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Preface by the General Chair

August 25, 2015

Welcome to the 2015 Conference on Empirical Methods in Natural Language Processing. EMNLP is
annually organized by SIGDAT, the Association for Computational Linguistics’ special interest group on
linguistic data and corpus-based approaches to NLP. This year the conference will be held on September
17–21 in the enchanting city of Lisbon, Portugal.1

EMNLP has continued to increase in prominence as one of the most important conferences in Natural
Language Processing (NLP). This year the conference has experienced an unprecedented boost in submit-
ted papers. I believe that this reflects both the growth of the NLP field and also the health and strength of
the conference itself, with a history of many years of solid work. With this level of interest at submission
time, we are also expecting a record attendance. The conference will span a five-day period this year, and
it requires a growing organization structure.

Some of the features introduced in EMNLP 2014 will continue this year (e.g., tutorials, new chairs,
posters as parallel sessions, flat rates and flexibility for tutorials and workshops, etc.). We also introduce
some innovations, like a revised selection process for which talks are presented as talks versus posters.

This year I had the privilege of coordinating the conference from my General Chair position. This has
been a very instructive and enriching exercise which showed me the conference as a whole, from many
different angles. Prefaces in the proceedings invariably praise the team of organizers. This one will not
be an exception. Organizing a large conference as EMNLP requires excellent people working as a team
in multiple interrelated tasks. I have been lucky to work with an outstanding team of people, from whom
I learnt a lot. These aren’t empty words. I would like to thank each and every chair for the hard work that
made the conference a reality.

The Program Chairs, Jian Su and Chris Callison-Burch, did an excellent job at putting together a very
interesting program with over 300 papers. They had to deal with a very large number of submissions,
which exceeded even our most optimistic expectations. As a consequence, they were forced to be creative
and to find solutions on the fly to adapt to the situation. They recruited the largest ever program committee
and successfully managed a huge reviewing and decision making process under a very tight schedule. A
real gift for the general chair. They complemented the program with very interesting keynote speakers,
Yoshua Bengio and Justin Grimmer who will present exciting research topics for our community.

The EMNLP 2015 main conference is accompanied by 7 workshops and 8 tutorials during the first two
days. The Workshops Chairs, Zornitsa Kozareva and Jörg Tiedemann, and the Tutorials Chairs, Maggie
Li and Khalil Sima’an, conducted the selection processes in a joint effort with the other ACL conferences
in 2015 (NAACL and ACL-IJCNLP). This has been the standard procedure from last years. It has the
advantage of starting early, avoiding duplicated reviewing and allowing a more balanced selection among
conferences. EMNLP attracted a varied and interesting set of workshops and tutorials, which gives more
value to the conference.

Daniele Pighin and Yuval Marton were responsible for the always difficult and sometimes thankless
task of putting together the conference publications. This is a very complex effort which involves coordi-
nation with almost everyone in the team under the pressure of hard publication deadlines. Yuval is serving
in this position for a second year. Staggered two year terms for publication chairs is a new addition for

1Conference website: http://www.emnlp2015.org
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EMNLP starting this year, and we hope that it will be a permanent feature. In the first year, publication
chairs will learn and do the bulk of proceedings compilation. During the second year their role will be
more advisory, instructing and helping the first-year chair. This procedure will help the transmission of
the necessary know-how from year to year. Thanks to Yuval and Daniele for accepting the challenge and
making it work wonderfully. Finally, this is the second year that EMNLP uses a mobile app for the confer-
ence program (Conference4me). The publication chairs also coordinated the integration of the app with
SoftConf, which is now smoother and more seamless.

The local organization team was led by André Martins and João Graça. They did an amazing job,
working hard and with all the complexities and subtleties of local arrangements. One of the keys for the
success was the creation of a large team of local organizers with clearly defined roles and responsibilities.
They appointed very committed people: Isabel Trancoso (Local Publicity Chair), Fernando Batista (Hand-
book Chair), Bruno Martins (Website and App Chair), Luísa Coheur (Student Volunteer Coordinator), and
Helena Moniz (Local Arrangements Chair). Thanks to all. I am especially pleased about the new website,
which was revamped and looks more professional everyday. This is certainly a good investment for the
future.

A large conference as EMNLP needs to focus on dissemination activities too. Barbara Plank acted as
the international Publicity Chair. She did a fantastic job and coordinated very well with the local publicity
and the website chairs. The calls for papers, calls for participation, and main news of the conference were
timely distributed through ACL, the usual distribution lists, and also through the conference website and
two Facebook and Twitter accounts. The EMNLP2015 Twitter account garnered more followers than in
previous years.

I am really grateful to SIGDAT. Its secretary, Noah Smith, acted as the liasion between SIGDAT and
the conference organizers. He was always available and ready to help with very good advice. SIGDAT
also provided the funds for the student scholarship program. These grants help covering traveling expenses
to a dozen of students. The committee appointed for collecting the applications and making the decisions
was formed by Francisco Guzmán and Lluís Padró, who had to analyze all the information and decide the
awardees in only a few days.

Another sign of the health of EMNLP and the field in general is the interest showed by sponsors.
Thanks to the work of our sponsorship team, formed by João Graça and Hang Li, in coordination with the
ACL International Sponsorship Committee, we got a record number of 13 sponsors for EMNLP 2015 (2
platinum, 3 gold, 6 silver and 2 bronze). In addition to these direct sponsors, we also have several smaller
supporters, exhibitors, and institutional partners. We are extremely grateful to all these companies and
institutions, which make a better conference possible at a more affordable registration fee.

Additionally, we counted on the invaluable help of Priscilla Rasmussen, supporting the local organiza-
tion in all fronts with her broad experience. She took care of the registration process too. We also got very
good advice, know-how, and helpful software and forms from last year general chair and local organizers,
Alessandro Moschitti and Kareem Darwish. Thank you.

Finally, I would like to thank the authors of submitted and accepted papers, and all the attendees to the
conference, who will be the main actors from September 17 to September 21, 2015. I am convinced that
we will experience a fantastic conference, scientifically exciting and full of fond memories, in the unique
environment of Lisbon.

Lluís Màrquez
EMNLP 2015 General Chair
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Preface by the Program Committee Co-Chairs

August 25, 2015

Welcome to the 2015 Conference on Empirical Methods in Natural Language Processing! This year we
received a record number of submissions. There were 1300 valid submissions. The 600 long papers and
700 short papers were allocated to one of 15 areas. The most popular areas this year were Semantics,
Statistical Models and Machine Learning Methods, Text Mining and NLP applications, and Machine
Translation.

Reviewing for a conference this size involves an enormous volunteer effort from many individuals. We
are very grateful to our 30 area chairs and to the more than 900 researchers who reviewed the submissions.
We accepted 312 papers (157 long and 155 short papers), representing a global acceptance rate of 24%.
An additional 17 papers accepted by the TACL journal were presented at the conference as well.

To decide whether the accepted papers should be presented as talks or posters, we asked the area chairs,
the reviewers, and the authors of accepted papers to vote on which papers they would like to attend. We
showed the title of each paper and its abstract, but not its authors. 400 people provided their input. We
selected talks based on popularity, while ensuring that each area was represented by at least one session.
Our rationale for taking a vote was that papers that many people wanted to attend would be better served
by presenting a talk in a large room, while papers with more specialized interest would benefit from the
one-on-one interactions facilitated by posters. Rather than doing large plenary poster sessions, we have
scheduled two parallel poster sessions with small batches of thematically similar papers that will be run
simultaneously with the talks.

We selected best papers from a shortlist of 20 papers that were nominated by the area chairs. The best
paper committee ranked the nominees, and based on their rankings we selected the following papers for
the best paper awards:

• Best paper - Broad-coverage CCG Semantic Parsing with AMR by Yoav Artzi, Kenton Lee and
Luke Zettlemoyer.
• Best paper - Semantically Conditioned LSTM-based Natural Language Generation for Spoken Dia-

logue Systems by Tsung-Hsien Wen, Milica Gasic, Nikola Mrkšić, Pei-Hao Su, David Vandyke and
Steve Young.

IBM has provided a cash scholarship for us to award to the best student paper. This will go to Tsung-
Hsien Wen, since he is currently a student. The following papers received an honorable mention for the
best paper award:

• Honorable mention for best paper - Traversing Knowledge Graphs in Vector Space by Kelvin Guu,
John Miller and Percy Liang.
• Honorable mention for best paper - Building a shared world: mapping distributional to model-

theoretic semantic spaces by Aurélie Herbelot and Eva Maria Vecchi.
• Honorable mention for best paper - Language Understanding for Text-based Games using Deep

Reinforcement Learning by Karthik Narasimhan, Tejas Kulkarni and Regina Barzilay.
• Honorable mention for best short paper - Joint Lemmatization and Morphological Tagging with

Lemming by Thomas Müller, Ryan Cotterell, Alexander Fraser and Hinrich Schütze.
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• Honorable mention for best short paper - Semi-Supervised Bootstrapping of Relationship Extractors
with Distributional Semantics by David S. Batista, Bruno Martins and Mário J. Silva.

This year we created a new “Best data set or resource” award, since so much work in our community is
driven by data. The paper that receiving this inaugural distinction is:

• Best data set or resource - A large annotated corpus for learning natural language inference by
Samuel R. Bowman, Gabor Angeli, Christopher Potts and Christopher D. Manning.

With two honorable mentions:

• Notable data set or resource - That’s So Annoying!!!: A Lexical and Frame-Semantic Embedding
Based Data Augmentation Approach to Automatic Categorization of Annoying Behaviors using
#petpeeve Tweets by William Yang Wang and Diyi Yang.
• Notable data set or resource - Modeling Reportable Events as Turning Points in Narrative by Jessica

Ouyang and Kathy McKeown.

We decided to give more awards than in past years by recognizing papers with honorable mentions and by
creating the new best data or resource award. Our goal was to recognize roughly the top 1% of all of the
submissions to the conference with awards (recognizing approximately the top 5% of accepted papers).
We are very grateful to our invited speakers Yoshua Bengio and Justin Grimmer.

Yoshua Bengio is professor of Computer Science and Operations Research at the Université de Mon-
tréal. He is the author of two books and more than 200 publications, the most cited being in the areas of
deep learning, recurrent neural networks, probabilistic learning algorithms, natural language processing
and manifold learning. He co-directs the Canadian Institute for Advanced Research’s program on deep
learning. He is on the board of NIPS. Professor Bengio’s research into deep learning has had a dramatic
impact on the field of NLP in the past few years, and has invigorated interest in AI through machine
learning.

Justin Grimmer is an associate professor of Political Science at Stanford University. His research uses
statistical methods to examine American politics. He is the author of two books on the topic “Represen-
tational Style in Congress: What Legislators Say and Why It Matters” and “The Impression of Influence:
How Legislator Communication and Government Spending Cultivate a Personal Vote.” His work has
appeared in the American Political Science Review, American Journal of Political Science, Journal of
Politics, Political Analysis, Proceedings of the National Academy of Sciences, Regulation and Gover-
nance, and Poetics. Professor Grimmer’s research points to exciting new directions for computational
social science and how the field of NLP can facilitate research in many areas.

We thank them in advance for coming to the conference and sharing their insights.
We would also like to thank our general chair Lluís Màrquez, André Martins and João Graça and

colleagues for their excellent work with the local organization, and Yuval Marton and Daniele Pighin for
doing an excellent job assembling these proceedings.

We thank SIGDAT for inviting us to serve as Program Co-Chairs of EMNLP 2015. We hope that the
conference is an excellent one. Enjoy your stay in Lisbon!

Chris Callison-Burch and Jian Su
EMNLP 2015 Program Committee Co-Chairs
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Bonan Min; Zhao-Yan Ming; Shachar Mirkin; Seyed Abolghasem Mirroshandel; Paramita Mirza; Mar-
garet Mitchell; Makoto Miwa; Yusuke Miyao; Daichi Mochihashi; Saif Mohammad; Mitra Mohtarami;
Karo Moilanen; Christian Monson; Manuel Montes; Christof Monz; Taesun Moon; Raymond Mooney;
Roser Morante; Alessandro Moschitti; Arjun Mukherjee; Philippe Muller; Dragos Munteanu; Yugo Mu-
rawaki; Brian Murphy; Lluís Màrquez;

Jian-Yun Nie; Maria Nadejde; Vinita Nahar; Preslav Nakov; Karthik Narasimhan; Shashi Narayan; Tahira
Naseem; Vivi Nastase; Borja Navarro; Roberto Navigli; Raheel Nawaz; Mark-Jan Nederhof; Arvind Nee-
lakantan; Sapna Negi; Aida Nematzadeh; Graham Neubig; Hwee Tou Ng; Vincent Ng; Nhung Nguyen;
Viet-An Nguyen; Garrett Nicolai; Jan Niehues; Rodney Nielsen; Zheng-Yu Niu; Joakim Nivre; Joel
Nothman; Scott Nowson; Pierre Nugues; Malte Nuhn;

Brendan O’Connor; Timothy O’Donnell; Stephan Oepen; Kemal Oflazer; Alice Oh; Naoaki Okazaki;
Desmond Ong; Constantin Orasan; Vicente Ordonez; Daniel Ortiz-Martínez; Miles Osborne; Mari Os-
tendorf;

Deepak P; Ulrike Pado; Muntsa Padró; Gustavo Paetzold; Georgios Paliouras; Martha Palmer; Alessio
Palmero Aprosio; Sinno J. Pan; Denis Paperno; Aasish Pappu; Rebecca J. Passonneau; Panupong Pa-
supat; Siddharth Patwardhan; Michael J. Paul; Adam Pauls; Ellie Pavlick; Lisa Pearl; Stephan Peitz;
Filipa Peleja; Xiaochang Peng; Sergio Penkale; Gerald Penn; Bianca Pereira; Bryan Perozzi; Johann Pe-
trak; Slav Petrov; Anselmo Peñas; Nghia The Pham; Lawrence Phillips; Karl Pichotta; Daniele Pighin;
Mohammad Taher Pilehvar; Manfred Pinkal; Juan Pino; Yuval Pinter; Emily Pitler; Barbara Plank;
Massimo Poesio; Tamara Polajnar; Heather Pon-Barry; Simone Paolo Ponzetto; Andrei Popescu-Belis;
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Invited Speaker: Yoshua Bengio
Deep Learning of Semantic Representations

Abstract: The core ingredient of deep learning is the notion of distributed representation. This
talk will start by explaining its theoretical advantages, in comparison with non-parametric meth-
ods based on counting frequencies of occurrence of observed tuples of values (like with n-
grams). The talk will then explain how having multiple levels of representation, i.e., depth, can
in principle give another exponential advantage. Neural language models have been extremely
successful in recent years but extending their reach from language modeling to machine trans-
lation is very appealing because it forces the learned intermediate representations to capture
meaning, and we found that the resulting word embeddings are qualitatively different. Recently,
we introduced the notion of attention-based encoder-decoder systems, with impressive results
on machine translation several language pairs and for mapping an image to a sentence, and these
results will conclude the talk.

Biography: Yoshua Bengio received a PhD in Computer Science from McGill University,
Canada in 1991. After two post-doctoral years, one at M.I.T. with Michael Jordan and one
at AT&T Bell Laboratories with Yann LeCun and Vladimir Vapnik, he became professor at
the Department of Computer Science and Operations Research at Université de Montréal. He
is the author of two books and more than 200 publications, the most cited being in the areas
of deep learning, recurrent neural networks, probabilistic learning algorithms, natural language
processing and manifold learning. He is among the most cited Canadian computer scientists
and is or has been associate editor of the top journals in machine learning and neural networks.
Since ’2000 he holds a Canada Research Chair in Statistical Learning Algorithms, since ’2006
an NSERC Industrial Chair, since ’2005 his is a Senior Fellow of the Canadian Institute for Ad-
vanced Research and since 2014 he co-directs its program focused on deep learning. He is on the
board of the NIPS foundation and has been program chair and general chair for NIPS. He has co-
organized the Learning Workshop for 14 years and co-created the new International Conference
on Learning Representations. His current interests are centered around a quest for AI through
machine learning, and include fundamental questions on deep learning and representation learn-
ing, the geometry of generalization in high-dimensional spaces, manifold learning, biologically
inspired learning algorithms, and challenging applications of statistical machine learning.
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Invited Speaker: Justin Grimmer
Measuring How Elected Officials and Constituents Communicate

Abstract: This talk will show how elected officials use communication to cultivate support with
constituents, how constituents express their views to elected officials, and why biases in both
kinds of communication matter for political representation. To demonstrate the bias and its ef-
fects, I propose to use novel collections of political texts and new text as data methods. Using
the new data and methods, I will show how the incentives of communication contribute to per-
ceptions of an angry public and vitriolic politicians. Among elected officials, the ideologically
extreme members of Congress disproportionately participate in policy debates, resulting in polit-
ical debates that occur between the most extreme members of each party. Among constituents,
the most ideologically extreme and angry voters disproportionately contact their member of
Congress, creating the impression of a polarized and vitriolic public. The talk will explain how
the findings help us to understand how representation occurs in American politics, while also
explaining how computational tools can help address questions in the social sciences.

Biography: Justin Grimmer is an associate professor of political science at Stanford Univer-
sity. His research examines how representation occurs in American politics using new statistical
methods. His first book Representational Style in Congress: What Legislators Say and Why It
Matters (Cambridge University Press, 2013) shows how senators define the type of representa-
tion they provide constituents and how this affects constituents’ evaluations and was awarded
the 2014 Richard Fenno Prize. His second book The Impression of Influence: How Legisla-
tor Communication and Government Spending Cultivate a Personal Vote (Princeton University
Press, 2014 with Sean J. Westwood and Solomon Messing) demonstrates how legislators ensure
they receive credit for government actions. His work has appeared in the American Political
Science Review, American Journal of Political Science, Journal of Politics, Political Analysis,
Proceedings of the National Academy of Sciences, Regulation and Governance, and Poetics.
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Modeling Tweet Arrival Times using Log-Gaussian Cox Processes
Michal Lukasik, P. K. Srijith, Trevor Cohn and Kalina Bontcheva

Pre-Computable Multi-Layer Neural Network Language Models
Jacob Devlin, Chris Quirk and Arul Menezes

Birds of a Feather Linked Together: A Discriminative Topic Model using Link-based
Priors
Weiwei Yang, Jordan Boyd-Graber and Philip Resnik

Aligning Knowledge and Text Embeddings by Entity Descriptions
Huaping Zhong, Jianwen Zhang, Zhen Wang, Hai Wan and Zheng Chen

An Empirical Analysis of Optimization for Max-Margin NLP
Jonathan K. Kummerfeld, Taylor Berg-Kirkpatrick and Dan Klein

Learning Better Embeddings for Rare Words Using Distributional Representations
Irina Sergienya and Hinrich Schütze
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13:30–13:55 Density-Driven Cross-Lingual Transfer of Dependency Parsers
Mohammad Sadegh Rasooli and Michael Collins

13:55–14:20 A Neural Network Model for Low-Resource Universal Dependency Parsing
Long Duong, Trevor Cohn, Steven Bird and Paul Cook

14:20–14:45 Improved Transition-based Parsing by Modeling Characters instead of Words with
LSTMs
Miguel Ballesteros, Chris Dyer and Noah A. Smith

14:45–15:10 [TACL] Approximation-Aware Dependency Parsing by Belief Propagation
Matthew R. Gormley, Mark Dredze and Jason Eisner

13:30–15:10 Session 2C: Summarization (Long Papers)

13:30–13:55 Sentence Compression by Deletion with LSTMs
Katja Filippova, Enrique Alfonseca, Carlos A. Colmenares, Lukasz Kaiser and
Oriol Vinyals

13:55–14:20 An Empirical Comparison Between N-gram and Syntactic Language Models for
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Jiangming Liu and Yue Zhang
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Alexander M. Rush, Sumit Chopra and Jason Weston

14:45–15:10 Scientific Article Summarization Using Citation-Context and Article’s Discourse
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13:30–15:10 Session 2D (P1-9): Text Mining and NLP Applications (Long Paper Posters)

Hashtag Recommendation Using Dirichlet Process Mixture Models Incorporating
Types of Hashtags
Yeyun Gong, Qi Zhang and Xuanjing Huang

A Graph-based Readability Assessment Method using Word Coupling
Zhiwei Jiang, Gang Sun, Qing Gu, Tao Bai and Daoxu Chen

More Features Are Not Always Better: Evaluating Generalizing Models in Incident
Type Classification of Tweets
Axel Schulz, Christian Guckelsberger and Benedikt Schmidt

Flexible Domain Adaptation for Automated Essay Scoring Using Correlated Linear
Regression
Peter Phandi, Kian Ming A. Chai and Hwee Tou Ng

Show Me Your Evidence - an Automatic Method for Context Dependent Evidence
Detection
Ruty Rinott, Lena Dankin, Carlos Alzate Perez, Mitesh M. Khapra, Ehud Aharoni
and Noam Slonim

Spelling Correction of User Search Queries through Statistical Machine Translation
Saša Hasan, Carmen Heger and Saab Mansour

Human Evaluation of Grammatical Error Correction Systems
Roman Grundkiewicz, Marcin Junczys-Dowmunt and Edward Gillian

Learning a Deep Hybrid Model for Semi-Supervised Text Classification
Alexander Ororbia II, C. Lee Giles and David Reitter

Joint Embedding of Query and Ad by Leveraging Implicit Feedback
Sungjin Lee and Yifan Hu
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Saturday, September 19, 2015 (continued)

13:30–15:10 Session 2E (P1-11): Information Extraction (Short Paper Posters)

Automatic Extraction of Time Expressions Accross Domains in French Narratives
Mike Donald Tapi Nzali, Xavier Tannier and Aurelie Neveol

Semi-Supervised Bootstrapping of Relationship Extractors with Distributional Se-
mantics
David S. Batista, Bruno Martins and Mário J. Silva

Extraction and generalisation of variables from scientific publications
Erwin Marsi and Pinar Öztürk

Named entity recognition with document-specific KB tag gazetteers
Will Radford, Xavier Carreras and James Henderson

"A Spousal Relation Begins with a Deletion of engage and Ends with an Addition of
divorce": Learning State Changing Verbs from Wikipedia Revision History
Derry Tanti Wijaya, Ndapandula Nakashole and Tom Mitchell

Improving Distant Supervision for Information Extraction Using Label Propagation
Through Lists
Lidong Bing, Sneha Chaudhari, Richard Wang and William Cohen

An Entity-centric Approach for Overcoming Knowledge Graph Sparsity
Manjunath Hegde and Partha P. Talukdar

Semantic Relation Classification via Convolutional Neural Networks with Simple
Negative Sampling
Kun Xu, Yansong Feng, Songfang Huang and Dongyan Zhao

A Baseline Temporal Tagger for all Languages
Jannik Strötgen and Michael Gertz

Named Entity Recognition for Chinese Social Media with Jointly Trained Embed-
dings
Nanyun Peng and Mark Dredze

Inferring Binary Relation Schemas for Open Information Extraction
Kangqi Luo, Xusheng Luo and Kenny Zhu
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Saturday, September 19, 2015 (continued)

13:30–15:10 Session 2E (P12-16): Information Retrieval and Question Answering (Short
Paper Posters)

LDTM: A Latent Document Type Model for Cumulative Citation Recommendation
Jingang Wang, Dandan Song, Zhiwei Zhang, Lejian Liao, Luo Si and Chin-Yew Lin

Online Sentence Novelty Scoring for Topical Document Streams
Sungjin Lee

Global Thread-level Inference for Comment Classification in Community Question
Answering
Shafiq Joty, Alberto Barrón-Cedeño, Giovanni Da San Martino, Simone Filice,
Lluís Màrquez, Alessandro Moschitti and Preslav Nakov

Key Concept Identification for Medical Information Retrieval
Jiaping Zheng and Hong Yu

Image-Mediated Learning for Zero-Shot Cross-Lingual Document Retrieval
Ruka Funaki and Hideki Nakayama

15:10–15:40 Coffee break

15:40–17:20 Session 3A: Sentiment Analysis and Opinion Mining 1 (Long Papers)

15:40–16:05 Detecting Risks in the Banking System by Sentiment Analysis
Clemens Nopp and Allan Hanbury

16:05–16:30 Sentiment Flow - A General Model of Web Review Argumentation
Henning Wachsmuth, Johannes Kiesel and Benno Stein

16:30–16:55 Neural Networks for Open Domain Targeted Sentiment
Meishan Zhang, Yue Zhang and Duy Tin Vo

16:55–17:20 Extracting Condition-Opinion Relations Toward Fine-grained Opinion Mining
Yuki Nakayama and Atsushi Fujii
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Saturday, September 19, 2015 (continued)

15:40–17:20 Session 3B: Semantics 2 (Long +TACL Papers)

15:40–16:05 A large annotated corpus for learning natural language inference
Samuel R. Bowman, Gabor Angeli, Christopher Potts and Christopher D. Manning

16:05–16:30 Question-Answer Driven Semantic Role Labeling: Using Natural Language to An-
notate Natural Language
Luheng He, Mike Lewis and Luke Zettlemoyer

16:30–16:55 [TACL] It’s All Fun and Games until Someone Annotates: Video Games with a
Purpose for Linguistic Annotation.
David Jurgens and Roberto Navigli

16:55–17:20 [TACL] Semantic Proto-Roles
Drew Reisinger, Rachel Rudinger, Francis Ferraro, Kyle Rawlins and Benjamin Van
Durme

15:40–17:20 Session 3C: Information Retrieval and Question Answering (Long Papers)

15:40–16:05 Name List Only? Target Entity Disambiguation in Short Texts
Yixin Cao, Juanzi Li, Xiaofei Guo, Shuanhu Bai, Heng Ji and Jie Tang

16:05–16:30 Biography-Dependent Collaborative Entity Archiving for Slot Filling
Yu Hong, Xiaobin Wang, Yadong Chen, Jian Wang, Tongtao Zhang and Heng Ji

16:30–16:55 Stochastic Top-k ListNet
Tianyi Luo, Dong Wang, Rong Liu and Yiqiao Pan

16:55–17:20 Exploring Markov Logic Networks for Question Answering
Tushar Khot, Niranjan Balasubramanian, Eric Gribkoff, Ashish Sabharwal, Peter
Clark and Oren Etzioni
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Yankai Lin, Zhiyuan Liu, Huanbo Luan, Maosong Sun, Siwei Rao and Song Liu

Corpus-level Fine-grained Entity Typing Using Contextual Information
Yadollah Yaghoobzadeh and Hinrich Schütze

Knowledge Base Unification via Sense Embeddings and Disambiguation
Claudio Delli Bovi, Luis Espinosa Anke and Roberto Navigli

Open-Domain Name Error Detection using a Multi-Task RNN
Hao Cheng, Hao Fang and Mari Ostendorf

Extracting Relations between Non-Standard Entities using Distant Supervision and
Imitation Learning
Isabelle Augenstein, Andreas Vlachos and Diana Maynard

Sieve-Based Spatial Relation Extraction with Expanding Parse Trees
Jennifer D’Souza and Vincent Ng

[TACL] Cross-Document Co-Reference Resolution using Sample-Based Clustering
with Knowledge Enrichment
Sourav Dutta and Gerhard Weikum

[TACL] Combining Minimally-supervised Methods for Arabic Named Entity Recog-
nition
Maha Althobaiti, Udo Kruschwitz and Massimo Poesio

xxxiv



Saturday, September 19, 2015 (continued)

15:40–17:20 Session 3E (P1-13): Text Mining and NLP Applications (Short Paper Posters)

Mr. Bennet, his coachman, and the Archbishop walk into a bar but only one of them
gets recognized: On The Difficulty of Detecting Characters in Literary Texts
Hardik Vala, David Jurgens, Andrew Piper and Derek Ruths

Convolutional Sentence Kernel from Word Embeddings for Short Text Categoriza-
tion
Jonghoon Kim, Francois Rousseau and Michalis Vazirgiannis

Predicting the Structure of Cooking Recipes
Jermsak Jermsurawong and Nizar Habash

TSDPMM: Incorporating Prior Topic Knowledge into Dirichlet Process Mixture
Models for Text Clustering
Linmei Hu, Juanzi Li, Xiaoli Li, Chao Shao and Xuzhong Wang

Sentence Modeling with Gated Recursive Neural Network
Xinchi Chen, Xipeng Qiu, Chenxi Zhu, Shiyu Wu and Xuanjing Huang

Learning Timeline Difference for Text Categorization
Fumiyo Fukumoto and Yoshimi Suzuki

Summarizing Topical Contents from PubMed Documents Using a Thematic Analysis
Sun Kim, Lana Yeganova and W John Wilbur

Recognizing Biographical Sections in Wikipedia
Alessio Palmero Aprosio and Sara Tonelli

Learn to Solve Algebra Word Problems Using Quadratic Programming
Lipu Zhou, Shuaixiang Dai and Liwei Chen

An Unsupervised Method for Discovering Lexical Variations in Roman Urdu Infor-
mal Text
Abdul Rafae, Abdul Qayyum, Muhammad Moeenuddin, Asim Karim, Hassan Saj-
jad and Faisal Kamiran

Component-Enhanced Chinese Character Embeddings
Yanran Li, Wenjie Li, Fei Sun and Sujian Li

Multi-label Text Categorization with Joint Learning Predictions-as-Features
Method
Li Li, Houfeng Wang, Xu Sun, Baobao Chang, Shi Zhao and Lei Sha

A Framework for Comparing Groups of Documents
Arun Maiya
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Saturday, September 19, 2015 (continued)

Sunday, September 20, 2015

07:30–18:00 Registration

09:00–10:00 Session P2: Plenary Session

Invited Talk: Measuring How Elected Officials and Constituents Communicate
Justin Grimmer

10:00–10:30 Coffee break

10:30–12:10 Session 4A: Information Extraction 1 (Long Papers)

10:30–10:55 C3EL: A Joint Model for Cross-Document Co-Reference Resolution and Entity
Linking
Sourav Dutta and Gerhard Weikum

10:55–11:20 Joint Mention Extraction and Classification with Mention Hypergraphs
Wei Lu and Dan Roth

11:20–11:45 FINET: Context-Aware Fine-Grained Named Entity Typing
Luciano Del Corro, Abdalghani Abujabal, Rainer Gemulla and Gerhard Weikum

11:45–12:10 Joint Entity Recognition and Disambiguation
Gang Luo, Xiaojiang Huang, Chin-Yew Lin and Zaiqing Nie

10:30–12:10 Session 4B: Statistical Modeling and Machine Learning 2 (Long Papers)

10:30–10:55 How Much Information Does a Human Translator Add to the Original?
Barret Zoph, Marjan Ghazvininejad and Kevin Knight

10:55–11:20 Hierarchical Recurrent Neural Network for Document Modeling
Rui Lin, Shujie Liu, Muyun Yang, Mu Li, Ming Zhou and Sheng Li

11:20–11:45 Auto-Sizing Neural Networks: With Applications to n-gram Language Models
Kenton Murray and David Chiang

11:45–12:10 Dual Decomposition Inference for Graphical Models over Strings
Nanyun Peng, Ryan Cotterell and Jason Eisner

xxxvi



Sunday, September 20, 2015 (continued)

10:30–12:10 Session 4C: Discourse (Long +TACL Papers)

10:30–10:55 Discourse parsing for multi-party chat dialogues
Stergos Afantenos, Eric Kow, Nicholas Asher and Jérémy Perret

10:55–11:20 Joint prediction in MST-style discourse parsing for argumentation mining
Andreas Peldszus and Manfred Stede

11:20–11:45 [TACL] One Vector is Not Enough: Entity-Augmented Distributed Semantics for
Discourse Relations
Yangfeng Ji and Jacob Eisenstein

11:45–12:10 [TACL] Latent Structures for Coreference Resolution
Sebastian Martschat and Michael Strube

10:30–12:10 Session 4D (P1-9): Semantics (Long Paper Posters)

Feature-Rich Two-Stage Logistic Regression for Monolingual Alignment
Md Arafat Sultan, Steven Bethard and Tamara Sumner

Semantic Role Labeling with Neural Network Factors
Nicholas FitzGerald, Oscar Täckström, Kuzman Ganchev and Dipanjan Das

RELLY: Inferring Hypernym Relationships Between Relational Phrases
Adam Grycner, Gerhard Weikum, Jay Pujara, James Foulds and Lise Getoor

Mise en Place: Unsupervised Interpretation of Instructional Recipes
Chloé Kiddon, Ganesa Thandavam Ponnuraj, Luke Zettlemoyer and Yejin Choi

Semantic Framework for Comparison Structures in Natural Language
Omid Bakhshandeh and James Allen

Sarcastic or Not: Word Embeddings to Predict the Literal or Sarcastic Meaning of
Words
Debanjan Ghosh, Weiwei Guo and Smaranda Muresan

Incorporating Trustiness and Collective Synonym/Contrastive Evidence into Taxon-
omy Construction
Tuan Luu Anh, Jung-jae Kim and See Kiong Ng

Learning to Automatically Solve Logic Grid Puzzles
Arindam Mitra and Chitta Baral
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Sunday, September 20, 2015 (continued)

10:30–12:10 Session 4E (P1-13): Machine Translation and Multilinguality (Short Paper
Posters)

Improving fast_align by Reordering
Chenchen Ding, Masao Utiyama and Eiichiro Sumita

Touch-Based Pre-Post-Editing of Machine Translation Output
Benjamin Marie and Aurélien Max

A Discriminative Training Procedure for Continuous Translation Models
Quoc-Khanh DO, Alexandre Allauzen and François Yvon

System Combination for Machine Translation through Paraphrasing
Wei-Yun Ma and Kathleen McKeown

Hierarchical Incremental Adaptation for Statistical Machine Translation
Joern Wuebker, Spence Green and John DeNero

ReVal: A Simple and Effective Machine Translation Evaluation Metric Based on
Recurrent Neural Networks
Rohit Gupta, Constantin Orasan and Josef van Genabith

Investigating Continuous Space Language Models for Machine Translation Quality
Estimation
Kashif Shah, Raymond W. M. Ng, Fethi Bougares and Lucia Specia

Supervised Phrase Table Triangulation with Neural Word Embeddings for Low-
Resource Languages
Tomer Levinboim and David Chiang

Translation Invariant Word Embeddings
Kejun Huang, Matt Gardner, Evangelos Papalexakis, Christos Faloutsos, Nikos
Sidiropoulos, Tom Mitchell, Partha P. Talukdar and Xiao Fu

Hierarchical Phrase-based Stream Decoding
Andrew Finch, Xiaolin Wang, Masao Utiyama and Eiichiro Sumita

Rule Selection with Soft Syntactic Features for String-to-Tree Statistical Machine
Translation
Fabienne Braune, Nina Seemann and Alexander Fraser

Motivating Personality-aware Machine Translation
Shachar Mirkin, Scott Nowson, Caroline Brun and Julien Perez

Trans-gram, Fast Cross-lingual Word-embeddings
Jocelyn Coulmance, Jean-Marc Marty, Guillaume Wenzek and Amine Benhalloum
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Sunday, September 20, 2015 (continued)

10:30–12:10 Session 4E (P14-16): Computational Psycholinguistics (Short Paper Posters)

The Overall Markedness of Discourse Relations
Lifeng Jin and Marie-Catherine de Marneffe

Experiments in Open Domain Deception Detection
Verónica Pérez-Rosas and Rada Mihalcea

A model of rapid phonotactic generalization
Tal Linzen and Timothy O’Donnell

12:10–12:50 Lunch

12:50–13:30 Session P3: SIGDAT business meeting

13:30–15:10 Session 5A: Text Mining and NLP Applications 1 (Long + TACL Papers)

13:30–13:55 [TACL] Unsupervised Identification of Translationese
Ella Rabinovich and Shuly Wintner

13:55–14:20 Automatically Solving Number Word Problems by Semantic Parsing and Reasoning
Shuming Shi, Yuehui Wang, Chin-Yew Lin, Xiaojiang Liu and Yong Rui

14:20–14:45 [TACL] Which Step Do I Take First? Troubleshooting with Bayesian Models
Annie Louis and Mirella Lapata

14:45–15:10 [TACL] Problems in Current Text Simplification Research: New Data Can Help
Wei Xu, Chris Callison-Burch and Courtney Napoles

xxxix



Sunday, September 20, 2015 (continued)

13:30–15:10 Session 5B: Semantics 3 (Long +TACL Papers)

13:30–13:55 Parsing English into Abstract Meaning Representation Using Syntax-Based Ma-
chine Translation
Michael Pust, Ulf Hermjakob, Kevin Knight, Daniel Marcu and Jonathan May

13:55–14:20 The Forest Convolutional Network: Compositional Distributional Semantics with a
Neural Chart and without Binarization
Phong Le and Willem Zuidema

14:20–14:45 Alignment-Based Compositional Semantics for Instruction Following
Jacob Andreas and Dan Klein

14:45–15:10 [TACL] Context-aware Frame-Semantic Role Labeling
Michael Roth and Mirella Lapata

13:30–15:10 Session 5C: Phonology and Word Segmentation (Long Papers)

13:30–13:55 Do we need bigram alignment models? On the effect of alignment quality on trans-
duction accuracy in G2P
Steffen Eger

13:55–14:20 Keyboard Logs as Natural Annotations for Word Segmentation
Fumihiko Takahasi and Shinsuke Mori

14:20–14:45 Long Short-Term Memory Neural Networks for Chinese Word Segmentation
Xinchi Chen, Xipeng Qiu, Chenxi Zhu, Pengfei Liu and Xuanjing Huang

14:45–15:10 Semi-supervised Chinese Word Segmentation based on Bilingual Information
Wei Chen and Bo Xu
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Sunday, September 20, 2015 (continued)

13:30–15:10 Session 5D (P1-8): Machine Translation and Multilinguality (Long Paper
Posters)

Hierarchical Back-off Modeling of Hiero Grammar based on Non-parametric
Bayesian Model
Hidetaka Kamigaito, Taro Watanabe, Hiroya Takamura, Manabu Okumura and Ei-
ichiro Sumita

Consistency-Aware Search for Word Alignment
Shiqi Shen, Yang Liu, Maosong Sun and Huanbo Luan

Graph-Based Collective Lexical Selection for Statistical Machine Translation
Jinsong Su, Deyi Xiong, Shujian Huang, Xianpei Han and Junfeng Yao

Bilingual Correspondence Recursive Autoencoder for Statistical Machine Transla-
tion
Jinsong Su, Deyi Xiong, Biao Zhang, Yang Liu, Junfeng Yao and Min Zhang

How to Avoid Unwanted Pregnancies: Domain Adaptation using Neural Network
Models
Shafiq Joty, Hassan Sajjad, Nadir Durrani, Kamla Al-Mannai, Ahmed Abdelali and
Stephan Vogel

Detecting Content-Heavy Sentences: A Cross-Language Case Study
Junyi Jessy Li and Ani Nenkova

Search-Aware Tuning for Hierarchical Phrase-based Decoding
Feifei Zhai, Liang Huang and Kai Zhao

Part-of-speech Taggers for Low-resource Languages using CCA Features
Young-Bum Kim, Benjamin Snyder and Ruhi Sarikaya
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Sunday, September 20, 2015 (continued)

13:30–15:10 Session 5E (P1-12): Tagging, Chunking, Sytnax and Parsing (Short Paper
Posters)

An Improved Tag Dictionary for Faster Part-of-Speech Tagging
Robert Moore

Improving Arabic Diacritization through Syntactic Analysis
Anas Shahrour, Salam Khalifa and Nizar Habash

Combining Discrete and Continuous Features for Deterministic Transition-based
Dependency Parsing
Meishan Zhang and Yue Zhang

Efficient Inner-to-outer Greedy Algorithm for Higher-order Labeled Dependency
Parsing
Xuezhe Ma and Eduard Hovy

Online Updating of Word Representations for Part-of-Speech Tagging
Wenpeng Yin, Tobias Schnabel and Hinrich Schütze

Empty Category Detection using Path Features and Distributed Case Frames
Shunsuke Takeno, Masaaki Nagata and Kazuhide Yamamoto

Foreebank: Syntactic Analysis of Customer Support Forums
Rasoul Kaljahi, Jennifer Foster, Johann Roturier, Corentin Ribeyre, Teresa Lynn
and Joseph Le Roux

Semi-supervised Dependency Parsing using Bilexical Contextual Features from
Auto-Parsed Data
Eliyahu Kiperwasser and Yoav Goldberg

Improved Transition-Based Parsing and Tagging with Neural Networks
Chris Alberti, David Weiss, Greg Coppola and Slav Petrov

Syntactic Parse Fusion
Do Kook Choe, David McClosky and Eugene Charniak

Not All Contexts Are Created Equal: Better Word Representations with Variable
Attention
Wang Ling, Yulia Tsvetkov, Silvio Amir, Ramon Fermandez, Chris Dyer, Alan W
Black, Isabel Trancoso and Chu-Cheng Lin

An Improved Non-monotonic Transition System for Dependency Parsing
Matthew Honnibal and Mark Johnson
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Sunday, September 20, 2015 (continued)

15:10–15:40 Coffee break

15:40–17:20 Session 6A: Machine Translation 2 (Long Papers)

15:40–16:05 Improving Statistical Machine Translation with a Multilingual Paraphrase
Database
Ramtin Mehdizadeh Seraj, Maryam Siahbani and Anoop Sarkar

16:05–16:30 Learning Semantic Representations for Nonterminals in Hierarchical Phrase-Based
Translation
Xing Wang, Deyi Xiong and Min Zhang

16:30–16:55 A Comparison between Count and Neural Network Models Based on Joint Transla-
tion and Reordering Sequences
Andreas Guta, Tamer Alkhouli, Jan-Thorsten Peter, Joern Wuebker and Hermann
Ney

16:55–17:20 Effective Approaches to Attention-based Neural Machine Translation
Thang Luong, Hieu Pham and Christopher D. Manning

15:40–17:20 Session 6B: Sentiment Analysis and Opinion Mining 2 / Tagging, Chunking
and Parsing 2 (Long Papers)

15:40–16:05 Document Modeling with Gated Recurrent Neural Network for Sentiment Classifi-
cation
Duyu Tang, Bing Qin and Ting Liu

16:05–16:30 Fine-grained Opinion Mining with Recurrent Neural Networks and Word Embed-
dings
Pengfei Liu, Shafiq Joty and Helen Meng

16:30–16:55 Joint A* CCG Parsing and Semantic Role Labelling
Mike Lewis, Luheng He and Luke Zettlemoyer

16:55–17:20 Improving Semantic Parsing with Enriched Synchronous Context-Free Grammar
Junhui Li, Muhua Zhu, Wei Lu and Guodong Zhou
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Sunday, September 20, 2015 (continued)

15:40–17:20 Session 6C: Language and Vision / Information Extraction 2 (Long Papers)

15:40–16:05 Solving Geometry Problems: Combining Text and Diagram Interpretation
Minjoon Seo, Hannaneh Hajishirzi, Ali Farhadi, Oren Etzioni and Clint Malcolm

16:05–16:30 Do You See What I Mean? Visual Resolution of Linguistic Ambiguities
Yevgeni Berzak, Andrei Barbu, Daniel Harari, Boris Katz and Shimon Ullman

16:30–16:55 Efficient and Expressive Knowledge Base Completion Using Subgraph Feature Ex-
traction
Matt Gardner and Tom Mitchell

16:55–17:20 Representing Text for Joint Embedding of Text and Knowledge Bases
Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi Choudhury
and Michael Gamon

15:40–17:20 Session 6D (P1-11): Statistical Models and Machine Learning Methods for
NLP (Long Paper Posters)

A Utility Model of Authors in the Scientific Community
Yanchuan Sim, Bryan Routledge and Noah A. Smith

Finding Function in Form: Compositional Character Models for Open Vocabulary
Word Representation
Wang Ling, Chris Dyer, Alan W Black, Isabel Trancoso, Ramon Fermandez, Silvio
Amir, Luis Marujo and Tiago Luis

Syntax-Aware Multi-Sense Word Embeddings for Deep Compositional Models of
Meaning
Jianpeng Cheng and Dimitri Kartsaklis

Conversation Trees: A Grammar Model for Topic Structure in Forums
Annie Louis and Shay B. Cohen

Fast, Flexible Models for Discovering Topic Correlation across Weakly-Related
Collections
Jingwei Zhang, Aaron Gerow, Jaan Altosaar, James Evans and Richard Jean So

Molding CNNs for text: non-linear, non-consecutive convolutions
Tao Lei, Regina Barzilay and Tommi Jaakkola
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Sunday, September 20, 2015 (continued)

Multi-Perspective Sentence Similarity Modeling with Convolutional Neural Net-
works
Hua He, Kevin Gimpel and Jimmy Lin

Posterior calibration and exploratory analysis for natural language processing
models
Khanh Nguyen and Brendan O’Connor

A Generative Word Embedding Model and its Low Rank Positive Semidefinite Solu-
tion
Shaohua Li, Jun Zhu and Chunyan Miao

Reading Documents for Bayesian Online Change Point Detection
Taehoon Kim and Jaesik Choi

15:40–17:20 Session 6E (P1-13): Semantics (Short Paper Posters)

Recognizing Textual Entailment Using Probabilistic Inference
Lei Sha, Sujian Li, Baobao Chang, Zhifang Sui and Tingsong Jiang

Chinese Semantic Role Labeling with Bidirectional Recurrent Neural Networks
Zhen Wang, Tingsong Jiang, Baobao Chang and Zhifang Sui

Unsupervised Negation Focus Identification with Word-Topic Graph Model
Bowei Zou, Guodong Zhou and Qiaoming Zhu

Reverse-engineering Language: A Study on the Semantic Compositionality of Ger-
man Compounds
Corina Dima

Event Detection and Factuality Assessment with Non-Expert Supervision
Kenton Lee, Yoav Artzi, Yejin Choi and Luke Zettlemoyer

Large-Scale Acquisition of Entailment Pattern Pairs by Exploiting Transitivity
Julien Kloetzer, Kentaro Torisawa, Chikara Hashimoto and Jong-Hoon Oh

Context-Dependent Knowledge Graph Embedding
Yuanfei Luo, Quan Wang, Bin Wang and Li Guo

Learning to Identify the Best Contexts for Knowledge-based WSD
Evgenia Wasserman Pritsker, William Cohen and Einat Minkov
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Sunday, September 20, 2015 (continued)

Measuring Prerequisite Relations Among Concepts
Chen Liang, Zhaohui Wu, Wenyi Huang and C. Lee Giles

Adapting Phrase-based Machine Translation to Normalise Medical Terms in Social
Media Messages
Nut Limsopatham and Nigel Collier

Script Induction as Language Modeling
Rachel Rudinger, Pushpendre Rastogi, Francis Ferraro and Benjamin Van Durme

Online Learning of Interpretable Word Embeddings
Hongyin Luo, Zhiyuan Liu, Huanbo Luan and Maosong Sun

A Strong Lexical Matching Method for the Machine Comprehension Test
Ellery Smith, Nicola Greco, Matko Bosnjak and Andreas Vlachos

19:00–23:00 Conference Dinner

Monday, September 21, 2015

07:30–18:00 Registration

09:00–10:00 Session P4: Plenary Session

09:00–09:05 Best Paper Awards
Chris Callison-Burch and Jian Su

09:05–09:30 Broad-coverage CCG Semantic Parsing with AMR
Yoav Artzi, Kenton Lee and Luke Zettlemoyer

09:30–09:55 Semantically Conditioned LSTM-based Natural Language Generation for Spoken
Dialogue Systems
Tsung-Hsien Wen, Milica Gasic, Nikola Mrkšić, Pei-Hao Su, David Vandyke and
Steve Young

09:55–10:05 A Large Annotated Corpus for Learning Natural Language Inference
Samuel R. Bowman, Gabor Angeli, Christopher Potts and Christopher D. Manning

10:05–10:30 Coffee break
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Monday, September 21, 2015 (continued)

10:30–12:10 Session 7A: Semantics 4 (Long +TACL Papers)

10:30–10:55 Do Multi-Sense Embeddings Improve Natural Language Understanding?
Jiwei Li and Dan Jurafsky

10:55–11:20 Learning Semantic Composition to Detect Non-compositionality of Multiword Ex-
pressions
Majid Yazdani, Meghdad Farahmand and James Henderson

11:20–11:45 Solving General Arithmetic Word Problems
Subhro Roy and Dan Roth

11:45–12:10 [TACL] From Paraphrase Database to Compositional Paraphrase Model and Back
John Wieting, Mohit Bansal, Kevin Gimpel, Karen Livescu and Dan Roth

10:30–12:10 Session 7B: Information Extraction 3 (Long Papers)

10:30–10:55 Distant Supervision for Relation Extraction via Piecewise Convolutional Neural
Networks
Daojian Zeng, Kang Liu, Yubo Chen and Jun Zhao

10:55–11:20 CORE: Context-Aware Open Relation Extraction with Factorization Machines
Fabio Petroni, Luciano Del Corro and Rainer Gemulla

11:20–11:45 Improved Relation Extraction with Feature-Rich Compositional Embedding Models
Matthew R. Gormley, Mo Yu and Mark Dredze

11:45–12:10 Classifying Relations via Long Short Term Memory Networks along Shortest De-
pendency Paths
Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng and Zhi Jin

10:30–12:10 Session 7C: Computational Psycholinguistics / Machine Translation 3 (Long
Papers)

10:30–10:55 A Computational Cognitive Model of Novel Word Generalization
Aida Nematzadeh, Erin Grant and Suzanne Stevenson

10:55–11:20 Personality Profiling of Fictional Characters using Sense-Level Links between Lex-
ical Resources
Lucie Flekova and Iryna Gurevych

11:20–11:45 Leave-one-out Word Alignment without Garbage Collector Effects
Xiaolin Wang, Masao Utiyama, Andrew Finch, Taro Watanabe and Eiichiro Sumita

11:45–12:10 Generalized Agreement for Bidirectional Word Alignment
Chunyang Liu, Yang Liu, Maosong Sun, Huanbo Luan and Heng Yu
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Monday, September 21, 2015 (continued)

10:30–12:10 Session 7D (P1-6): Word Segmentation, Tagging and Parsing (Long +TACL
Paper Posters)

A Transition-based Model for Joint Segmentation, POS-tagging and Normalization
Tao Qian, Yue Zhang, Meishan Zhang, Yafeng Ren and Donghong Ji

Multilingual discriminative lexicalized phrase structure parsing
Benoit Crabbé

Hierarchical Low-Rank Tensors for Multilingual Transfer Parsing
Yuan Zhang and Regina Barzilay

Diversity in Spectral Learning for Natural Language Parsing
Shashi Narayan and Shay B. Cohen

Transition-based Dependency Parsing Using Two Heterogeneous Gated Recursive
Neural Networks
Xinchi Chen, Yaqian Zhou, Chenxi Zhu, Xipeng Qiu and Xuanjing Huang

[TACL] A Graph-based Lattice Dependency Parser for Joint Morphological Seg-
mentation and Syntactic Analysis
Wolfgang Seeker and Özlem Çetinoğlu

10:30–12:10 Session 7E (P1-3): Spoken Language Processing (Short Paper Posters)

Turn-taking phenomena in incremental dialogue systems
Hatim Khouzaimi, Romain Laroche and Fabrice Lefevre

Hierarchical Latent Words Language Models for Robust Modeling to Out-Of Do-
main Tasks
Ryo Masumura, Taichi Asami, Takanobu Oba, Hirokazu Masataki, Sumitaka
Sakauchi and Akinori Ito

A Coarse-Grained Model for Optimal Coupling of ASR and SMT Systems for Speech
Translation
Gaurav Kumar, Graeme Blackwood, Jan Trmal, Daniel Povey and Sanjeev Khudan-
pur
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Monday, September 21, 2015 (continued)

10:30–12:10 Session 7E (P4-18): Summarization (Short Paper Posters)

Abstractive Multi-document Summarization with Semantic Information Extraction
Wei Li

Concept-based Summarization using Integer Linear Programming: From Concept
Pruning to Multiple Optimal Solutions
Florian Boudin, Hugo Mougard and Benoit Favre

GhostWriter: Using an LSTM for Automatic Rap Lyric Generation
Peter Potash, Alexey Romanov and Anna Rumshisky

Better Summarization Evaluation with Word Embeddings for ROUGE
Jun-Ping Ng and Viktoria Abrecht

Krimping texts for better summarization
Marina Litvak, Mark Last and Natalia Vanetik

From the Virtual to the RealWorld: Referring to Objects in Real-World Spatial
Scenes
Dimitra Gkatzia, Verena Rieser, Phil Bartie and William Mackaness

An Unsupervised Bayesian Modelling Approach for Storyline Detection on News
Articles
Deyu Zhou, Haiyang Xu and Yulan He

Topical Coherence for Graph-based Extractive Summarization
Daraksha Parveen, Hans-Martin Ramsl and Michael Strube
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Monday, September 21, 2015 (continued)

Summarizing Student Responses to Reflection Prompts
Wencan Luo and Diane Litman

Extractive Summarization by Maximizing Semantic Volume
Dani Yogatama, Fei Liu and Noah A. Smith

LCSTS: A Large Scale Chinese Short Text Summarization Dataset
Baotian Hu, Qingcai Chen and Fangze Zhu

Discourse Planning with an N-gram Model of Relations
Or Biran and Kathleen McKeown

Experiments with Generative Models for Dependency Tree Linearization
Richard Futrell and Edward Gibson

Summarization Based on Embedding Distributions
Hayato Kobayashi, Masaki Noguchi and Taichi Yatsuka

Reversibility reconsidered: finite-state factors for efficient probabilistic sampling in
parsing and generation
Marc Dymetman, Sriram Venkatapathy and Chunyang Xiao

12:10–13:30 Lunch

13:30–15:15 Session 8A: Fun and Quirky Topics (Short Papers)

13:30–13:45 A quantitative analysis of gender differences in movies using psycholinguistic nor-
matives
Anil Ramakrishna, Nikolaos Malandrakis, Elizabeth Staruk and Shrikanth
Narayanan

13:45–14:00 EMNLP versus ACL: Analyzing NLP research over time
Sujatha Das Gollapalli and Xiaoli Li

14:00–14:15 Answering Elementary Science Questions by Constructing Coherent Scenes using
Background Knowledge
Yang Li and Peter Clark

14:15–14:30 WikiQA: A Challenge Dataset for Open-Domain Question Answering
Yi Yang, Wen-tau Yih and Christopher Meek
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Monday, September 21, 2015 (continued)

14:30–14:45 Personalized Machine Translation: Predicting Translational Preferences
Shachar Mirkin and Jean-Luc Meunier

14:45–15:00 Talking to the crowd: What do people react to in online discussions?
Aaron Jaech, Victoria Zayats, Hao Fang, Mari Ostendorf and Hannaneh Hajishirzi

15:00–15:15 What Your Username Says About You
Aaron Jaech and Mari Ostendorf

13:30–15:15 Session 8B: Semantics 5 (Short Papers)

13:30–13:45 Knowledge Base Inference using Bridging Entities
Bhushan Kotnis, Pradeep Bansal and Partha P. Talukdar

13:45–14:00 Specializing Word Embeddings for Similarity or Relatedness
Douwe Kiela, Felix Hill and Stephen Clark

14:00–14:15 Evaluation of Word Vector Representations by Subspace Alignment
Yulia Tsvetkov, Manaal Faruqui, Wang Ling, Guillaume Lample and Chris Dyer

14:15–14:30 Higher-order logical inference with compositional semantics
Koji Mineshima, Pascual Martínez-Gómez, Yusuke Miyao and Daisuke Bekki

14:30–14:45 Any-language frame-semantic parsing
Anders Johannsen, Héctor Martínez Alonso and Anders Søgaard

15:00–15:15 What’s in an Embedding? Analyzing Word Embeddings through Multilingual Eval-
uation
Arne Köhn
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Monday, September 21, 2015 (continued)

13:30–15:15 Session 8C: Statistical Modeling, Machine Learning / Machine Translation
(Short Papers)

13:30–13:45 Joint Event Trigger Identification and Event Coreference Resolution with Structured
Perceptron
Jun Araki and Teruko Mitamura

13:45–14:00 A Joint Dependency Model of Morphological and Syntactic Structure for Statistical
Machine Translation
Rico Sennrich and Barry Haddow

14:00–14:15 Variable-Length Word Encodings for Neural Translation Models
Rohan Chitnis and John DeNero

14:15–14:30 A Binarized Neural Network Joint Model for Machine Translation
Jingyi Zhang, Masao Utiyama, Eiichiro Sumita, Graham Neubig and Satoshi Naka-
mura

14:30–14:45 Bayesian Optimization of Text Representations
Dani Yogatama, Lingpeng Kong and Noah A. Smith

14:45–15:00 A Comparative Study on Regularization Strategies for Embedding-based Neural
Networks
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Abstract

In this paper, we consider the task of learn-
ing control policies for text-based games.
In these games, all interactions in the vir-
tual world are through text and the un-
derlying state is not observed. The re-
sulting language barrier makes such envi-
ronments challenging for automatic game
players. We employ a deep reinforcement
learning framework to jointly learn state
representations and action policies using
game rewards as feedback. This frame-
work enables us to map text descriptions
into vector representations that capture the
semantics of the game states. We eval-
uate our approach on two game worlds,
comparing against baselines using bag-of-
words and bag-of-bigrams for state rep-
resentations. Our algorithm outperforms
the baselines on both worlds demonstrat-
ing the importance of learning expressive
representations. 1

1 Introduction

In this paper, we address the task of learning con-
trol policies for text-based strategy games. These
games, predecessors to modern graphical ones,
still enjoy a large following worldwide.2 They of-
ten involve complex worlds with rich interactions
and elaborate textual descriptions of the underly-
ing states (see Figure 1). Players read descriptions
of the current world state and respond with natural
language commands to take actions. Since the un-
derlying state is not directly observable, the player
has to understand the text in order to act, making it

∗Both authors contributed equally to this work.
1Code is available at http://people.csail.mit.

edu/karthikn/mud-play.
2http://mudstats.com/

State 1: The old bridge
You are standing very close to the bridge’s
eastern foundation. If you go east you will
be back on solid ground ... The bridge
sways in the wind.

Command: Go east
State 2: Ruined gatehouse
The old gatehouse is near collapse. Part of
its northern wall has already fallen down ...
East of the gatehouse leads out to a small
open area surrounded by the remains of the
castle. There is also a standing archway of-
fering passage to a path along the old south-
ern inner wall.
Exits: Standing archway, castle corner,
Bridge over the abyss

Figure 1: Sample gameplay from a Fantasy World.
The player with the quest of finding a secret tomb,
is currently located on an old bridge. She then
chooses an action to go east that brings her to a
ruined gatehouse (State 2).

challenging for existing AI programs to play these
games (DePristo and Zubek, 2001).

In designing an autonomous game player, we
have considerable latitude when selecting an ad-
equate state representation to use. The simplest
method is to use a bag-of-words representation
derived from the text description. However, this
scheme disregards the ordering of words and the
finer nuances of meaning that evolve from com-
posing words into sentences and paragraphs. For
instance, in State 2 in Figure 1, the agent has to
understand that going east will lead it to the cas-
tle whereas moving south will take it to the stand-
ing archway. An alternative approach is to convert
text descriptions to pre-specified representations
using annotated training data, commonly used in

1



language grounding tasks (Matuszek et al., 2013;
Kushman et al., 2014).

In contrast, our goal is to learn useful represen-
tations in conjunction with control policies. We
adopt a reinforcement learning framework and for-
mulate game sequences as Markov Decision Pro-
cesses. An agent playing the game aims to maxi-
mize rewards that it obtains from the game engine
upon the occurrence of certain events. The agent
learns a policy in the form of an action-value func-
tion Q(s, a) which denotes the long-term merit of
an action a in state s.

The action-value function is parametrized us-
ing a deep recurrent neural network, trained us-
ing the game feedback. The network contains two
modules. The first one converts textual descrip-
tions into vector representations that act as prox-
ies for states. This component is implemented us-
ing Long Short-Term Memory (LSTM) networks
(Hochreiter and Schmidhuber, 1997). The second
module of the network scores the actions given the
vector representation computed by the first.

We evaluate our model using two Multi-User
Dungeon (MUD) games (Curtis, 1992; Amir and
Doyle, 2002). The first game is designed to pro-
vide a controlled setup for the task, while the sec-
ond is a publicly available one and contains hu-
man generated text descriptions with significant
language variability. We compare our algorithm
against baselines of a random player and mod-
els that use bag-of-words or bag-of-bigrams rep-
resentations for a state. We demonstrate that our
model LSTM-DQN significantly outperforms the
baselines in terms of number of completed quests
and accumulated rewards. For instance, on a fan-
tasy MUD game, our model learns to complete
96% of the quests, while the bag-of-words model
and a random baseline solve only 82% and 5% of
the quests, respectively. Moreover, we show that
the acquired representation can be reused across
games, speeding up learning and leading to faster
convergence of Q-values.

2 Related Work

Learning control policies from text is gaining in-
creasing interest in the NLP community. Example
applications include interpreting help documenta-
tion for software (Branavan et al., 2010), navi-
gating with directions (Vogel and Jurafsky, 2010;
Kollar et al., 2010; Artzi and Zettlemoyer, 2013;
Matuszek et al., 2013; Andreas and Klein, 2015)

and playing computer games (Eisenstein et al.,
2009; Branavan et al., 2011a).

Games provide a rich domain for grounded lan-
guage analysis. Prior work has assumed perfect
knowledge of the underlying state of the game to
learn policies. Gorniak and Roy (2005) developed
a game character that can be controlled by spoken
instructions adaptable to the game situation. The
grounding of commands to actions is learned from
a transcript manually annotated with actions and
state attributes. Eisenstein et al. (2009) learn game
rules by analyzing a collection of game-related
documents and precompiled traces of the game. In
contrast to the above work, our model combines
text interpretation and strategy learning in a single
framework. As a result, textual analysis is guided
by the received control feedback, and the learned
strategy directly builds on the text interpretation.

Our work closely relates to an automatic game
player that utilizes text manuals to learn strategies
for Civilization (Branavan et al., 2011a). Similar
to our approach, text analysis and control strate-
gies are learned jointly using feedback provided
by the game simulation. In their setup, states are
fully observable, and the model learns a strategy
by combining state/action features and features
extracted from text. However, in our application,
the state representation is not provided, but has to
be inferred from a textual description. Therefore,
it is not sufficient to extract features from text to
supplement a simulation-based player.

Another related line of work consists of auto-
matic video game players that infer state repre-
sentations directly from raw pixels (Koutnı́k et al.,
2013; Mnih et al., 2015). For instance, Mnih et
al. (2015) learn control strategies using convolu-
tional neural networks, trained with a variant of
Q-learning (Watkins and Dayan, 1992). While
both approaches use deep reinforcement learning
for training, our work has important differences.
In order to handle the sequential nature of text, we
use Long Short-Term Memory networks to auto-
matically learn useful representations for arbitrary
text descriptions. Additionally, we show that de-
composing the network into a representation layer
and an action selector is useful for transferring the
learnt representations to new game scenarios.

3 Background

Game Representation We represent a game by
the tuple 〈H,A, T,R,Ψ〉, where H is the set of
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all possible game states, A = {(a, o)} is the set of
all commands (action-object pairs), T (h′ | h, a, o)
is the stochastic transition function between states
and R(h, a, o) is the reward function. The game
state H is hidden from the player, who only re-
ceives a varying textual description, produced by
a stochastic function Ψ : H → S. Specifically,
the underlying state h in the game engine keeps
track of attributes such as the player’s location,
her health points, time of day, etc. The function
Ψ (also part of the game framework) then converts
this state into a textual description of the location
the player is at or a message indicating low health.
We do not assume access to either H or Ψ for our
agent during both training and testing phases of
our experiments. We denote the space of all possi-
ble text descriptions s to be S. Rewards are gener-
ated using R and are only given to the player upon
completion of in-game quests.

Q-Learning Reinforcement Learning is a com-
monly used framework for learning control poli-
cies in game environments (Silver et al., 2007;
Amato and Shani, 2010; Branavan et al., 2011b;
Szita, 2012). The game environment can be
formulated as a sequence of state transitions
(s, a, r, s′) of a Markov Decision Process (MDP).
The agent takes an action a in state s by consult-
ing a state-action value function Q(s, a), which is
a measure of the action’s expected long-term re-
ward. Q-Learning (Watkins and Dayan, 1992) is
a model-free technique which is used to learn an
optimal Q(s, a) for the agent. Starting from a ran-
dom Q-function, the agent continuously updates
its Q-values by playing the game and obtaining re-
wards. The iterative updates are derived from the
Bellman equation (Sutton and Barto, 1998):

(1)Qi+1(s, a) = E[r + γmax
a′

Qi(s′, a′) | s, a]

where γ is a discount factor for future rewards and
the expectation is over all game transitions that in-
volved the agent taking action a in state s.

Using these evolving Q-values, the agent
chooses the action with the highest Q(s, a) to
maximize its expected future rewards. In practice,
the trade-off between exploration and exploitation
can be achieved following an ε-greedy policy (Sut-
ton and Barto, 1998), where the agent performs a
random action with probability ε.

Deep Q-Network In large games, it is often im-
practical to maintain the Q-value for all possible

Mean Pooling

LSTM LSTM LSTM LSTM

Linear

ReLU

Linear Linear

Q(s, a) Q(s, o)

w1 w2 w3 wn

�R

vs
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Figure 2: Architecture of LSTM-DQN: The Rep-
resentation Generator (φR) (bottom) takes as input
a stream of words observed in state s and produces
a vector representation vs, which is fed into the
action scorer (φA) (top) to produce scores for all
actions and argument objects.

state-action pairs. One solution to this problem
is to approximate Q(s, a) using a parametrized
function Q(s, a; θ), which can generalize over
states and actions by considering higher-level at-
tributes (Sutton and Barto, 1998; Branavan et al.,
2011a). However, creating a good parametrization
requires knowledge of the state and action spaces.
One way to bypass this feature engineering is to
use a Deep Q-Network (DQN) (Mnih et al., 2015).
The DQN approximates the Q-value function with
a deep neural network to predict Q(s, a) for all
possible actions a simultaneously given the cur-
rent state s. The non-linear function layers of the
DQN also enable it to learn better value functions
than linear approximators.

4 Learning Representations and Control
Policies

In this section, we describe our model (DQN) and
describe its use in learning good Q-value approxi-
mations for games with stochastic textual descrip-
tions. We divide our model into two parts. The
first module is a representation generator that con-
verts the textual description of the current state
into a vector. This vector is then input into the
second module which is an action scorer. Fig-
ure 2 shows the overall architecture of our model.
We learn the parameters of both the representation
generator and the action scorer jointly, using the
in-game reward feedback.
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Representation Generator (φR) The represen-
tation generator reads raw text displayed to the
agent and converts it to a vector representation vs.
A bag-of-words (BOW) representation is not suf-
ficient to capture higher-order structures of sen-
tences and paragraphs. The need for a better se-
mantic representation of the text is evident from
the average performance of this representation in
playing MUD-games (as we show in Section 6).

In order to assimilate better representations,
we utilize a Long Short-Term Memory network
(LSTM) (Hochreiter and Schmidhuber, 1997) as
a representation generator. LSTMs are recurrent
neural networks with the ability to connect and
recognize long-range patterns between words in
text. They are more robust than BOW to small
variations in word usage and are able to capture
underlying semantics of sentences to some ex-
tent. In recent work, LSTMs have been used suc-
cessfully in NLP tasks such as machine transla-
tion (Sutskever et al., 2014) and sentiment anal-
ysis (Tai et al., 2015) to compose vector repre-
sentations of sentences from word-level embed-
dings (Mikolov et al., 2013; Pennington et al.,
2014). In our setup, the LSTM network takes in
word embeddings wk from the words in a descrip-
tion s and produces output vectors xk at each step.

To get the final state representation vs, we add a
mean pooling layer which computes the element-
wise mean over the output vectors xk.3

(2)vs =
1
n

n∑
k=1

xk

Action Scorer (φA) The action scorer module
produces scores for the set of possible actions
given the current state representation. We use a
multi-layered neural network for this purpose (see
Figure 2). The input to this module is the vec-
tor from the representation generator, vs = φR(s)
and the outputs are scores for actions a ∈ A.
Scores for all actions are predicted simultaneously,
which is computationally more efficient than scor-
ing each state-action pair separately. Thus, by
combining the representation generator and action
scorer, we can obtain the approximation for the Q-
function as Q(s, a) ≈ φA(φR(s))[a].

An additional complexity in playing MUD-
games is that the actions taken by the player are

3We also experimented with considering just the output
vector of the LSTM after processing the last word. Empiri-
cally, we find that mean pooling leads to faster learning, so
we use it in all our experiments.

multi-word natural language commands such as
eat apple or go east. Due to computational con-
straints, in this work we limit ourselves to con-
sider commands to consist of one action (e.g. eat)
and one argument object (e.g. apple). This as-
sumption holds for the majority of the commands
in our worlds, with the exception of one class of
commands that require two arguments (e.g. move
red-root right, move blue-root up). We consider all
possible actions and objects available in the game
and predict both for each state using the same net-
work (Figure 2). We consider the Q-value of the
entire command (a, o) to be the average of the Q-
values of the action a and the object o. For the rest
of this section, we only show equations forQ(s, a)
but similar ones hold for Q(s, o).

Parameter Learning We learn the parameters
θR of the representation generator and θA of the
action scorer using stochastic gradient descent
with RMSprop (Tieleman and Hinton, 2012). The
complete training procedure is shown in Algo-
rithm 1. In each iteration i, we update the pa-
rameters to reduce the discrepancy between the
predicted value of the current state Q(st, at; θi)
(where θi = [θR; θA]i) and the expected Q-value
given the reward rt and the value of the next state
maxa Q(st+1, a; θi−1).

We keep track of the agent’s previous experi-
ences in a memory D.4 Instead of performing
updates to the Q-value using transitions from the
current episode, we sample a random transition
(ŝ, â, s′, r) from D. Updating the parameters in
this way avoids issues due to strong correlation
when using transitions of the same episode (Mnih
et al., 2015). Using the sampled transition and (1),
we obtain the following loss function to minimize:

(3)Li(θi) = Eŝ,â[(yi −Q(ŝ, â; θi))2]

where yi = Eŝ,â[r + γmaxa′ Q(s′, a′; θi−1) | ŝ, â]
is the target Q-value with parameters θi−1 fixed
from the previous iteration.

The updates on the parameters θ can be per-
formed using the following gradient of Li(θi):

∇θi
Li(θi) = Eŝ,â[2(yi −Q(ŝ, â; θi))∇θi

Q(ŝ, â; θi)]

For each epoch of training, the agent plays several
episodes of the game, which is restarted after ev-
ery terminal state.

4The memory is limited and rewritten in a first-in-first-out
(FIFO) fashion.
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Algorithm 1 Training Procedure for DQN with prioritized sampling
1: Initialize experience memory D
2: Initialize parameters of representation generator (φR) and action scorer (φA) randomly
3: for episode = 1,M do
4: Initialize game and get start state description s1
5: for t = 1, T do
6: Convert st (text) to representation vst using φR
7: if random() < ε then
8: Select a random action at
9: else

10: Compute Q(st, a) for all actions using φA(vst)
11: Select at = argmax Q(st, a)
12: Execute action at and observe reward rt and new state st+1

13: Set priority pt = 1 if rt > 0, else pt = 0
14: Store transition (st, at, rt, st+1, pt) in D
15: Sample random mini batch of transitions (sj , aj , rj , sj+1, pj) from D,

with fraction ρ having pj = 1

16: Set yj =
{
rj if sj+1 is terminal
rj + γ maxa′ Q(sj+1, a

′; θ) if sj+1 is non-terminal
17: Perform gradient descent step on the loss L(θ) = (yj −Q(sj , aj ; θ))2

Mini-batch Sampling In practice, online up-
dates to the parameters θ are performed over a
mini batch of state transitions, instead of a single
transition. This increases the number of experi-
ences used per step and is also more efficient due
to optimized matrix operations.

The simplest method to create these mini-
batches from the experience memory D is to sam-
ple uniformly at random. However, certain ex-
periences are more valuable than others for the
agent to learn from. For instance, rare transitions
that provide positive rewards can be used more of-
ten to learn optimal Q-values faster. In our ex-
periments, we consider such positive-reward tran-
sitions to have higher priority and keep track of
them in D. We use prioritized sampling (inspired
by Moore and Atkeson (1993)) to sample a frac-
tion ρ of transitions from the higher priority pool
and a fraction 1− ρ from the rest.

5 Experimental Setup

Game Environment For our game environ-
ment, we modify Evennia,5 an open-source library
for building online textual MUD games. Evennia
is a Python-based framework that allows one to
easily create new games by writing a batch file
describing the environment with details of rooms,

5http://www.evennia.com/

Stats Home World Fantasy World
Vocabulary size 84 1340

Avg. words / description 10.5 65.21
Max descriptions / room 3 100
# diff. quest descriptions 12 -

State transitions Deterministic Stochastic
# states (underlying) 16 ≥ 56

Branching factor
(# commands / state) 40 222

Table 1: Various statistics of the two game worlds

objects and actions. The game engine keeps
track of the game state internally, presenting tex-
tual descriptions to the player and receiving text
commands from the player. We conduct exper-
iments on two worlds - a smaller Home world
we created ourselves, and a larger, more com-
plex Fantasy world created by Evennia’s develop-
ers. The motivation behind Home world is to ab-
stract away high-level planning and focus on the
language understanding requirements of the game.

Table 1 provides statistics of the game worlds.
We observe that the Fantasy world is moderately
sized with a vocabulary of 1340 words and up to
100 different descriptions for a room. These de-
scriptions were created manually by the game de-
velopers. These diverse, engaging descriptions are
designed to make it interesting and exciting for hu-
man players. Several rooms have many alternative
descriptions, invoked randomly on each visit by
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the player.
Comparatively, the Home world is smaller: it

has a very restricted vocabulary of 84 words and
the room descriptions are relatively structured.
However, both the room descriptions (which are
also varied and randomly provided to the agent)
and the quest descriptions were adversarially cre-
ated with negation and conjunction of facts to
force an agent to actually understand the state in
order to play well. Therefore, this domain pro-
vides an interesting challenge for language under-
standing.

In both worlds, the agent receives a positive
reward on completing a quest, and negative re-
wards for getting into bad situations like falling
off a bridge, or losing a battle. We also add
small deterministic negative rewards for each non-
terminating step. This incentivizes the agent to
learn policies that solve quests in fewer steps. The
supplementary material has details on the reward
structure.

Home World We created Home world to mimic
the environment of a typical house.6 The world
consists of four rooms - a living room, a bedroom,
a kitchen and a garden with connecting pathways.
Every room is reachable from every other room.
Each room contains a representative object that the
agent can interact with. For instance, the kitchen
has an apple that the player can eat. Transitions
between the rooms are deterministic. At the start
of each game episode, the player is placed in a ran-
dom room and provided with a randomly selected
quest. The text provided to the player contains
both the description of her current state and that
of the quest. Thus, the player can begin in one
of 16 different states (4 rooms × 4 quests), which
adds to the world’s complexity.

An example of a quest given to the player in
text is Not you are sleepy now but you are hun-
gry now. To complete this quest and obtain a re-
ward, the player has to navigate through the house
to reach the kitchen and eat the apple (i.e type in
the command eat apple). More importantly, the
player should interpret that the quest does not re-
quire her to take a nap in the bedroom. We cre-
ated such misguiding quests to make it hard for
agents to succeed without having an adequate level
of language understanding.

6An illustration is provided in the supplementary material.

Fantasy World The Fantasy world is consider-
ably more complex and involves quests such as
navigating through a broken bridge or finding the
secret tomb of an ancient hero. This game also has
stochastic transitions in addition to varying state
descriptions provided to the player. For instance,
there is a possibility of the player falling from the
bridge if she lingers too long on it.

Due to the large command space in this game,7

we make use of cues provided by the game itself to
narrow down the set of possible objects to consider
in each state. For instance, in the MUD example in
Figure 1, the game provides a list of possible exits.
If the game does not provide such clues for the
current state, we consider all objects in the game.

Evaluation We use two metrics for measuring
an agent’s performance: (1) the cumulative reward
obtained per episode averaged over the episodes
and (2) the fraction of quests completed by the
agent. The evaluation procedure is as follows. In
each epoch, we first train the agent on M episodes
of T steps each. At the end of this training, we
have a testing phase of running M episodes of the
game for T steps. We useM = 50, T = 20 for the
Home world and M = 20, T = 250 for the Fan-
tasy world. For all evaluation episodes, we run the
agent following an ε-greedy policy with ε = 0.05,
which makes the agent choose the best action ac-
cording to its Q-values 95% of the time. We report
the agent’s performance at each epoch.

Baselines We compare our LSTM-DQN model
with three baselines. The first is a Random agent
that chooses both actions and objects uniformly at
random from all available choices.8 The other two
are BOW-DQN and BI-DQN, which use a bag-
of-words and a bag-of-bigrams representation of
the text, respectively, as input to the DQN action
scorer. These baselines serve to illustrate the im-
portance of having a good representation layer for
the task.

Settings For our DQN models, we used D =
100000, γ = 0.5. We use a learning rate of 0.0005
for RMSprop. We anneal the ε for ε-greedy from
1 to 0.2 over 100000 transitions. A mini-batch
gradient update is performed every 4 steps of the
gameplay. We roll out the LSTM (over words) for

7We consider 222 possible command combinations of 6
actions and 37 object arguments.

8In the case of the Fantasy world, the object choices are
narrowed down using game clues as described earlier.
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Figure 3: Left: Graphs showing the evolution of average reward and quest completion rate for BOW-
DQN, LSTM-DQN and a Random baseline on the Home world (top) and Fantasy world (bottom). Note
that the reward is shown in log scale for the Fantasy world. Right: Graphs showing effects of transfer
learning and prioritized sampling on the Home world.

a maximum of 30 steps on the Home world and for
100 steps on the Fantasy world. For the prioritized
sampling, we used ρ = 0.25 for both worlds. We
employed a mini-batch size of 64 and word em-
bedding size d = 20 in all experiments.

6 Results

Home World Figure 3 illustrates the perfor-
mance of LSTM-DQN compared to the baselines.
We can observe that the Random baseline per-
forms quite poorly, completing only around 10%
of quests on average9 obtaining a low reward of
around −1.58. The BOW-DQN model performs
significantly better and is able to complete around
46% of the quests, with an average reward of 0.20.
The improvement in reward is due to both greater
quest success rate and a lower rate of issuing in-
valid commands (e.g. eat apple would be invalid
in the bedroom since there is no apple). We no-
tice that both the reward and quest completion
graphs of this model are volatile. This is because
the model fails to pick out differences between
quests like Not you are hungry now but you are
sleepy now and Not you are sleepy now but you

9Averaged over the last 10 epochs.

are hungry now. The BI-DQN model suffers from
the same issue although it performs slightly bet-
ter than BOW-DQN by completing 48% of quests.
In contrast, the LSTM-DQN model does not suf-
fer from this issue and is able to complete 100%
of the quests after around 50 epochs of training,
achieving close to the optimal reward possible.10

This demonstrates that having an expressive rep-
resentation for text is crucial to understanding the
game states and choosing intelligent actions.

In addition, we also investigated the impact of
using a deep neural network for modeling the ac-
tion scorer φA. Figure 4 illustrates the perfor-
mance of the BOW-DQN and BI-DQN models
along with their simpler versions BOW-LIN and
BI-LIN, which use a single linear layer for φA. It
can be seen that the DQN models clearly achieve
better performance than their linear counterparts,
which points to them modeling the control policy
better.

Fantasy World We evaluate all the models on
the Fantasy world in the same manner as before
and report reward, quest completion rates and Q-

10Note that since each step incurs a penalty of −0.01, the
best reward (on average) a player can get is around 0.98.
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Figure 4: Quest completion rates of DQN vs. Lin-
ear models on Home world.

values. The quest we evaluate on involves crossing
the broken bridge (which takes a minimum of five
steps), with the possibility of falling off at random
(a 5% chance) when the player is on the bridge.
The game has an additional quest of reaching a
secret tomb. However, this is a complex quest that
requires the player to memorize game events and
perform high-level planning which are beyond the
scope of this current work. Therefore, we focus
only on the first quest.

From Figure 3 (bottom), we can see that the
Random baseline does poorly in terms of both av-
erage per-episode reward11 and quest completion
rates. BOW-DQN converges to a much higher av-
erage reward of −12.68 and achieves around 82%
quest completion. Again, the BOW-DQN is often
confused by varying (10 different) descriptions of
the portions of the bridge, which reflects in its er-
ratic performance on the quest. The BI-DQN per-
forms very well on quest completion by finishing
97% of quests. However, this model tends to find
sub-optimal solutions and gets an average reward
of −26.68, even worse than BOW-DQN. One rea-
son for this is the negative rewards the agent ob-
tains after falling off the bridge. The LSTM-DQN
model again performs best, achieving an average
reward of −11.33 and completing 96% of quests
on average. Though this world does not con-
tain descriptions adversarial to BOW-DQN or BI-
DQN, the LSTM-DQN obtains higher average re-
ward by completing the quest in fewer steps and
showing more resilience to variations in the state
descriptions.

Transfer Learning We would like the represen-
tations learnt by φR to be generic enough and

11Note that the rewards graph is in log scale.

“Kitchen”

“Living room”

“Bedroom”

“Garden”

Figure 5: t-SNE visualization of the word embed-
dings (except stopwords) after training on Home
world. The embedding values are initialized ran-
domly.

transferable to new game worlds. To test this,
we created a second Home world with the same
rooms, but a completely different map, changing
the locations of the rooms and the pathways be-
tween them. The main differentiating factor of
this world from the original home world lies in the
high-level planning required to complete quests.

We initialized the LSTM part of an LSTM-
DQN agent with parameters θR learnt from the
original home world and trained it on the new
world.12 Figure 3 (top right) demonstrates that
the agent with transferred parameters is able to
learn quicker than an agent starting from scratch
initialized with random parameters (No Transfer),
reaching the optimal policy almost 20 epochs ear-
lier. This indicates that these simulated worlds can
be used to learn good representations for language
that transfer across worlds.

Prioritized sampling We also investigate the ef-
fects of different minibatch sampling procedures
on the parameter learning. From Figure 3 (bottom
right), we observe that using prioritized sampling
significantly speeds up learning, with the agent
achieving the optimal policy around 50 epochs
faster than using uniform sampling. This shows
promise for further research into different schemes
of assigning priority to transitions.

Representation Analysis We analyzed the rep-
resentations learnt by the LSTM-DQN model on
the Home world. Figure 5 shows a visualization

12The parameters for the Action Scorer (θA) are initialized
randomly.
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Description Nearest neighbor
You are halfways out on the unstable bridge. From the castle

you hear a distant howling sound, like that of a large dog or

other beast.

The bridge slopes precariously where it extends westwards to-

wards the lowest point - the center point of the hang bridge. You

clasp the ropes firmly as the bridge sways and creaks under you.

The ruins opens up to the sky in a small open area, lined by

columns. ... To the west is the gatehouse and entrance to the

castle, whereas southwards the columns make way for a wide

open courtyard.

The old gatehouse is near collapse. .... East the gatehouse leads

out to a small open area surrounded by the remains of the cas-

tle. There is also a standing archway offering passage to a path

along the old southern inner wall.

Table 2: Sample descriptions from the Fantasy world and their nearest neighbors (NN) according to their
vector representations from the LSTM representation generator. The NNs are often descriptions of the
same or similar (nearby) states in the game.

of learnt word embeddings, reduced to two di-
mensions using t-SNE (Van der Maaten and Hin-
ton, 2008). All the vectors were initialized ran-
domly before training. We can see that semanti-
cally similar words appear close together to form
coherent subspaces. In fact, we observe four dif-
ferent subspaces, each for one type of room along
with its corresponding object(s) and quest words.
For instance, food items like pizza and rooms like
kitchen are very close to the word hungry which
appears in a quest description. This shows that
the agent learns to form meaningful associations
between the semantics of the quest and the envi-
ronment. Table 2 shows some examples of de-
scriptions from Fantasy world and their nearest
neighbors using cosine similarity between their
corresponding vector representations produced by
LSTM-DQN. The model is able to correlate de-
scriptions of the same (or similar) underlying
states and project them onto nearby points in the
representation subspace.

7 Conclusions

We address the task of end-to-end learning of con-
trol policies for text-based games. In these games,
all interactions in the virtual world are through
text and the underlying state is not observed. The
resulting language variability makes such envi-
ronments challenging for automatic game play-
ers. We employ a deep reinforcement learning
framework to jointly learn state representations
and action policies using game rewards as feed-
back. This framework enables us to map text de-
scriptions into vector representations that capture
the semantics of the game states. Our experiments
demonstrate the importance of learning good rep-
resentations of text in order to play these games
well. Future directions include tackling high-level

planning and strategy learning to improve the per-
formance of intelligent agents.
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Abstract

Distributional methods have proven to ex-
cel at capturing fuzzy, graded aspects of
meaning (Italy is more similar to Spain
than to Germany). In contrast, it is diffi-
cult to extract the values of more specific
attributes of word referents from distribu-
tional representations, attributes of the kind
typically found in structured knowledge
bases (Italy has 60 million inhabitants). In
this paper, we pursue the hypothesis that
distributional vectors also implicitly en-
code referential attributes.

We show that a standard supervised regres-
sion model is in fact sufficient to retrieve
such attributes to a reasonable degree of ac-
curacy: When evaluated on the prediction
of both categorical and numeric attributes
of countries and cities, the model consis-
tently reduces baseline error by 30%, and is
not far from the upper bound. Further anal-
ysis suggests that our model is able to “ob-
jectify” distributional representations for
entities, anchoring them more firmly in the
external world in measurable ways.

1 Introduction

Distributional models induce vector-based seman-
tic representations of words from their contextual
distributions in corpora, exploiting the observation
that words with related meanings tend to occur
in similar linguistic contexts (Turney and Pantel,
2010; Erk, 2012). Since the approach only requires
raw text as input, it can be used to harvest word
representations on a very large scale. By encoding
the rich knowledge that is present in text, these
representations are able to capture many aspects
of word meaning. Moreover, approximating se-
mantic similarity by graded geometric distance in a
vector space is an effective strategy to address the

many linguistic phenomena that are better charac-
terized in gradient rather than discrete terms, such
as synonymy, selectional preferences, and semantic
priming (Baroni and Lenci, 2010; Erk et al., 2010;
Padó and Lapata, 2007, among others).

However, not all aspects of human semantic
knowledge are satisfactorily captured in terms of
fuzzy relations and graded similarity. In particular,
our knowledge of the meaning of words denoting
specific entities involves a number of “hard facts”
about the referents they denote that are best for-
malized as attribute-value pairs, of the sort that are
stored in manually-curated knowledge bases, such
as FreeBase or Wikidata.1 While distributional vec-
tors can capture the useful fact that, say, Italy is in
many ways more similar to Spain than to Germany,
as humans we also know (or we can easily look up)
a set of objective facts about Italy, such as what is
its capital, its area, its official language and GDP,
that are difficult to express in the language of vector
algebra and geometry.

In this paper, we explore the hypothesis that dis-
tributional vectors implicitly encode such attributes
of referential entities, which we will call referential
attributes. We show that a simple supervised algo-
rithm applied to vectors can retrieve them so that
they can be expressed in the explicit language of
structured knowledge bases. Concretely, we train
a logistic regression model to predict the values of
both numeric and categorical FreeBase attributes
of countries and cities from their distributional vec-
tors. This model makes predictions that are signifi-
cantly better than an informed baseline, in-between
the latter and an upper-bound method. Qualitative
analysis of the results points both to the inherent
difficulty of correctly retrieving certain classes of
attributes, and to some intriguing properties of the
conceptual nature of the knowledge encoded in dis-
tributional data, that bias their predictions about
certain objective attributes of geographic entities.

1www.freebase.com, www.wikidata.org.
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We see our experiment as a first step towards
integrating conceptual and referential aspects of
meaning in distributional semantics, as we further
discuss in the conclusion.

2 Method

2.1 Distributional Representations
Mikolov et al.’s (2013) skip-gram model is a
state-of-the-art “predictive” distributional seman-
tic model which represents each word in a space
of latent dimensions optimized to predict the con-
texts of the word’s occurrences. For our study,
we adopt the pre-trained 1,000-dimensional skip-
gram model for Named Entities that is available
at https://code.google.com/p/word2vec/

and was produced from a 100-billion token news
corpus. We refer to this model as WORD2VEC.

2.2 Referential Representations
As our source of referential attributes, we use Free-
Base (see footnote 1), a knowledge base of struc-
tured information on a wide range of entities of
different semantic types (people, geographical enti-
ties, etc.). The information in FreeBase comes from
various sources, including Wikipedia and domain-
specific databases, plus user content generation and
correction. FreeBase currently records at least 2
attributes for over 47 million entities, and it has
been used fairly extensively in NLP before (Mintz
et al., 2009; Socher et al., 2013a, among others).

For each entity, FreeBase contains a list of at-
tribute-value tuples (where values can in turn be
entities, allowing a graph view of the data that
we do not exploit here). Table 1 shows a sample
of the attributes that FreeBase records for coun-
tries. Note that some attributes are simple (e.g.,
date founded), while other can be called com-
plex, in the sense that they are attributes of at-
tributes (e.g., geolocation::latitude). We
use a double-colon notation to refer to complex
attributes. The values of all attributes can be either
numeric or categorical. The numeric attributes in
particular are often strongly correlated, both within
attributes types across years (e.g., fertility rate in
different years) and across attributes within years
(e.g., absolute GDP and GDP per capita in a given
year).

We built two datasets for our experiments, one
for countries and one for cities, with data automati-
cally extracted from FreeBase.2 We consider two

2Both datasets are publicly available at http:

Attribute Value

geolocation::latitude 52.52
geolocation::longitude 13.38
fertility rate::1960 2.37
fertility rate::1994 1.24
fertility rate::2010 1.39
date founded 1871-01-18
containedBy Western Europe
containedBy Europe
containedBy Eurasia
adjectival form German

Table 1: Sample of numeric and binary FreeBase
attributes for Germany.

datasets in order to check that the mapping we seek
can be established not just for one, possible hand-
picked, type of entities; we leave it to future work
to study very different kinds of entities, such as
people or institutions.

The Countries dataset consists of the 260
countries for which we have a distributional
vector. Some countries do not exist anymore,
like Yugoslavia, but, since this does not impact
our method, we keep them in the dataset. The
dataset records all simple attributes as well as
complex attributes of at most two hops in the
FreeBase graph, without manual inspection. We
linearly rescale all numeric attributes to [0..1] and
translate all categorical attributes into a binary
representation by suffixing the original value to
the original attribute name. For example, the
attribute member-of::organization with the
value world bank results in a binary attribute
member-of::organization::world bank

having value 1 for all and only those countries
that are members of the World Bank, 0 for the
others.3 Attributes that occur less than 15 times
are discarded, since they are either not consistently
recorded or rare. This results in a total of 707
numeric and 247 binary attributes. Finally, we
partition the data into training, validation, and test
set, using a 60-20-20 percent split.

We apply the same process to the Cities dataset,
which consists of 1645 cities from the intersection
of the distributional and FreeBase city lists. In

//www.ims.uni-stuttgart.de/forschung/
ressourcen/korpora/CityCountry.html.

3We considered treating some categorical attributes as
multi-valued, but decided against it since the cases in which al-
ternative values are mutually exclusive are rare (e.g., the same
country can be containedBy multiple entities, cf. Table 1).
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this case, we have 211 numeric and 106 binary
attributes – the numbers are smaller because coun-
tries have a richer representation in FreeBase than
cities.

2.3 Attribute Prediction
We do zero-shot learning of full FreeBase attribute-
based country/city representations, based on distri-
butional (WORD2VEC) representations. It is zero-
shot learning in the sense of Palatucci et al. (2009):
We split the datasets at the entity, rather than at-
tribute level, such that at test time our system must
predict the full attribute set of countries and cities
that were not seen during training at all.

We use logistic regression. In effect, we predict
each output variable (FreeBase attribute) with an in-
dependent logistic regression model based on a con-
stant set of input features (WORD2VEC distribu-
tional dimensions). We call this model DIST2REF.
DIST2REF does not take advantage of the corre-
lations between the output attributes mentioned in
Section 2.2.

The dependent variables are binary as well as nu-
meric FreeBase attributes, and our model does not
distinguish between them. For binary attributes,
we interpret the value returned by the model as
the probability of “success” of a binary Bernoulli
trial. In the numeric case, we view the probabil-
ity returned by the model as directly representing
normalized attribute values.

2.4 Experimental Setup
We design the model using the Countries dataset,
and apply it to Cities without further tuning to test
its robustness. We optimize the parameters with
gradient descent, using the Cross Entropy error
function. We considered L2 regularization to ad-
dress possible overfitting, but experiments on val-
idation set showed that the model performs best
without any regularization.

As for baselines, for binary features we predict
the majority class (0 or 1), and for numeric features
we predict the mean value of the feature in the
training set. These are of course strong baselines
to beat.

As an upper bound, we train a model that uses
the same architecture as described above but uses
as input not distributional vectors but the FreeBase
attributes themselves. In other words, this model
has to learn “only” an identity mapping. This is not
trivial, though, for example due to the presence of
strong correlations among attributes, in particular

the time series attributes (cf. Section 2.2). We call
this model REF2REF.

2.5 Evaluation

Since there is no appropriate unified evaluation
measure that covers both numeric and binary at-
tributes, we evaluate them separately. For binary
attributes, we report the attributes’ mean accuracy.

For numeric attributes, we consider attribute
prediction a ranking task. As an example, take
the population::2011::number attribute, and
imagine that we only have three countries (Ger-
many: 80M; Spain: 36M; and Netherlands: 17M).
If we predict 56M for Spain’s population, it is still
(correctly) predicted as the second most populous
country (rank difference of 0); a prediction of 16M,
however, would push Spain to third place (rank
difference of 1).

This suggests the use of rank correlation coef-
ficients like Spearman’s ρ. However, we want to
measure not only how well the model can rank the
countries in the test set, but also whether these pre-
dictions are consistent with the training set (which
makes evaluation both more challenging and more
realistic). One way of achieving this goal would be
to use ρ on the union of training and test instances,
but this could lead to misleadingly high correlation
coefficients since this method would include the
labels of the training instances in the evaluation.

Consequently, we define our own evaluation
measure, following a rationale similar to Frome et
al.’s (2013) evaluation of a zero-shot learning sce-
nario. What we evaluate, for each attribute, is the
rank of the test countries in the whole country list.
Note that this makes our task harder, as there are
more confounders: If we only evaluated on the test
set, there would be shorter lists and therefore less
chances of getting bad rankings. So, concretely, we
first define the prediction quality of each attribute,
Q(a), as the median of the rank difference between
the prediction and the gold standard in a list that
includes both training and test countries (we use
the median to give less weight to outlier countries).
We also normalize the rank difference to obtain a
number between zero and one. In a second step,
we define the quality of the complete model, the
normalized rank score (NRS), as the mean of all
attribute quality scores, in parallel to our evaluation
on binary attributes.

Let the set of instances I be partitioned into train-
ing instances Tr and test instances Ts. Let a ∈ A
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Attribute Type Model Countries Cities

Binary (Acc)
Most Frequent Class Baseline 0.86 0.97
DIST2REF 0.90 0.99
REF2REF (upper bound) 0.96 1.00

Numeric (NRS)
Mean Value Baseline 0.35 0.35
DIST2REF 0.22 0.25
REF2REF (upper bound) 0.14 0.21

Table 2: Results for predicting FreeBase attributes from distributional vectors on the test sets. Both
evaluation measures range between 0 and 1. For accuracy, 1 is best. For normalized rank score (NRS), 0
is best. All pairwise differences between models are significant (p<0.001, bootstrap resampling).

denote an attribute. We write pa(i) for the pre-
dicted value of attribute a for instance i and ga(i)
for the gold standard value. Finally, let r(v, S) de-
note the rank of value v in the list resulting when
ordering the set S. Now we can define:

Q(a) =
1
||I||med{|r(pa(i), I) − (1)

r(ga(i), I)| − 1 | i ∈ Ts}
NRS =

1
||A||

∑
a∈A

Q(a) (2)

This measure can be interpreted similarly to Mean
Reciprocal Rank (Manning et al., 2008): It has
range [0..1], with smaller numbers indicating better
ranking: 0.1, for example, means that, on average,
the prediction is 10% of the ranks off (e.g., by four
countries in a forty-country list).4

Note that, when evaluating each instance i, we
use gold-standard values for all other instances, so
that there the baseline is not hampered by ties.

3 Results

Table 2 shows the results of our experiments on the
two test sets. For accuracy 1 is best, but for NRS
0 is best. Recall from Section 2.2 that we perform
model selection on the Countries dataset only.

The baseline is relatively high, in particular for
the binary attributes, many of which are positive
for a small subset of entities only. The amount of
skew differs considerably between the two datasets,
though. For Countries, the baseline yields an ac-
curacy of 0.86, but it achieves 0.97 on Cities. The
increase stems from very sparse categorical City
features such as containedBy, which includes all

4Subtracting 1 in Equation (1) ensures that, when the pre-
dicted and gold value of an attribute are adjacent in the rank-
ing, their rank difference is 0, capturing the intuition of rank
difference as counting the number of falsely intervening items.

levels of administrative divisions – that is, for the
US, all counties appear as values and are trans-
formed into sparse binary features (cf. Section 2.2).
Of course, the predictions of the baseline are use-
less, since it always predicts the absence of any
features. On numeric features, where the baseline
predicts the mean, its performance is 0.35 NRS on
both datasets. In other words, its average prediction
is off by about one third the length of the ranked
list for each attribute.

Recall that the upper bound model, REF2REF,
uses FreeBase attributes to predict FreeBase at-
tributes. All it has to learn is that there is one
feature in the input that corresponds ideally to the
output. This works almost perfectly for binary at-
tributes, with accuracy values of 0.96 (Countries)
and 1.00 (Cities). However, its performance on
numeric features (with NRS at 0.14 and 0.21, re-
spectively) is not quite perfect. We attribute this to
the presence of correlations (cf. Section 2.2).

The model whose performance we are actually
interested in, DIST2REF, in which we map from
distributional information to FreeBase features, per-
forms with remarkable consistency between these
two extremes. In fact, we see a consistent error
reduction of around 30% over the baseline, with
a similar distance to the upper bound. A signifi-
cance test with bootstrap resampling (Efron and
Tibshirani, 1994) showed that all pairwise com-
parisons (Baseline vs. DIST2REF, DIST2REF vs.
REF2REF) are statistically significant at p<0.001.

To rule out that we misinterpret our accuracy-
based evaluation for the binary features in the
face of a highly skewed class distribution, we also
computed precision, recall, and F-Score values.
The relative patterns match those of the accuracy-
based evaluation well (Countries: baseline F=0.13,
DIST2REF F=0.51, REF2REF F=0.77) and indicate
that generally precision is higher than recall.
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We think that these are overall promising results,
given that the FreeBase attributes we predict are
fairly fine-grained, and we only use generic distri-
butional information as input.

4 Analysis

We take the overall results just presented to suggest
that we are able to learn referential attributes from
distributional information to a large extent. In this
section we take a closer look at what kind of in-
formation we are able to learn, what is beyond the
scope of our model, and what are the differences
between the entity representations in WORD2VEC

and the ones our model produces. All the data
concerns the test sets only.

4.1 Attribute Groups

We start with a qualitative analysis of the Countries
dataset. Due to the large number of attributes, we
sort all individual attributes into attribute groups
by their base name (i.e. the leftmost component
of their name, cf. Section 2.2), which offers an
accessible level of granularity for inspection. We
obtain 34 numeric and 40 binary attribute groups
with median sizes of 8.5 and 2 attributes per group,
respectively.

Table 3 shows the attribute groups for both types
sorted by quality. For each group, we report av-
erage normalized rank score (NRS) and accuracy,
respectively, for both DIST2REF and the baseline.

The analysis suggests that there are two main
factors that account for the results: (1) The degree
to which an attribute is contextually supported, that
is, to what extent its values can be identified on the
basis of the contextual information that is captured
in a distributional model, and (2) general proper-
ties of the data that affect Machine Learning, most
notably data sparseness, possibly also feature value
distributions.

Attributes that are contextually supported in-
clude for instance those related to socioeconomic
development (see below for details); people talk
(and so write) about countries being more or less
developed, rich, having one or another kind of laws,
and this is captured in the abstractions over textual
context that distributional models perform. As an
extreme example of an attribute that is not contex-
tually supported, consider the numeric ISO code
of a country (iso numeric), whose values are ar-
bitrary: They do not correspond to facts about the
world that are reflected in the way people use lan-

guage, and so can’t be picked up by the distribu-
tional model. For this reason, DIST2REF does
worse than the baseline.

Note that, in a sufficiently large corpus, we might
indeed encounter statements like The numeric ISO
code for Spain is 724. However, since distributional
models represent words as aggregated distributions
of their contexts, and compute semantic similarity
from these context distributions, the contexts that
they use need to be generic enough to yield mean-
ingful overlap between concepts (e.g., words). As a
result, distributional models cannot easily represent
knowledge of the form “the value for property Y
of word/concept X is Z”.

Fortunately, we find that many FreeBase at-
tributes are contextually supported to a substantial
degree, even some seemingly arbitrary ones. An ex-
ample is calling codes, which we predict very well.
They turn out to be correlated with geolocations:
2X calling codes are located in Africa, 3X call-
ing codes in Southern and Eastern Europe and 4X
calling codes in Western and Northern Europe (for
comparison, ISO codes are assigned in a roughly
alphabetical order).

Numeric Attributes. Our best numeric at-
tributes belong to the geolocation group (lati-
tude and longitude). We provide a more detailed
analysis of these attributes below (Section 4.2). As
mentioned above, we also excel at many attributes
related to a country’s economic and social devel-
opment (broadly construed), such as GNI, GDP,
CO2 emissions, internet usage (each per capita),
or fertility rate. These attributes can be expected
to be contextually grounded – e.g., Luxembourg
will occur with contexts like “broadband” or “rich”
more than India.

Note, however, that the information contained in
the vectors is surprisingly subtle: For instance, the
fertility rate is a function of both general develop-
ment status (lower rates in more developed coun-
tries) and of specific social factors (higher rates in
countries with more support for families, such as
France and Finland compared countries with less
support, such as Germany or Italy).

Around the middle of the table, we find the ab-
solute versions of the developmental cluster above
(GNI in $, real and nominal GDP). Evidently, the
absolute versions of these attributes are substan-
tially less contextually supported than the relative
versions. This is not surprising: While India and
China have high absolute GDPs because they are
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Numeric Attributes (Normalized Rank Score: lower is better)

Attribute Group DIST2REF BL #A f(A)

geolocation! 0.07 0.30 2 250
gdp nominal per capita! 0.11 0.27 1 172
gni per capita in ppp dollars! 0.12 0.28 32 155
co2 emissions per capita! 0.12 0.25 49 157
fertility rate! 0.12 0.24 52 178
calling code! 0.12 0.27 1 205
internet users percent pop! 0.13 0.32 22 184
entry! 0.14 0.23 2 140
gni in ppp dollars! 0.16 0.31 32 154
broadband penetration rate! 0.17 0.68 15 23
population growth rate! 0.19 0.31 52 201
military expenditure perc gdp! 0.20 0.27 24 128
gdp real! 0.20 0.34 51 149
life expectancy! 0.20 0.24 52 179
electricity cons. per capita! 0.22 0.36 50 105
gdp nominal! 0.22 0.34 52 157
energy use per capita! 0.23 0.39 51 104
population! 0.25 0.42 54 202
places imported from! 0.26 0.29 2 18
iso numeric!! 0.26 0.23 1 220
national anthem since! 0.27 0.43 1 97
championships athletes! 0.28 0.33 1 18
gdp growth rate! 0.28 0.41 51 154
government debt percent gdp!! 0.33 0.19 17 24
casualties!! 0.39 0.35 1 33
athletic performances rank! 0.43 0.43 1 34
date founded!! 0.46 0.41 1 61
date dissolved! 0.48 0.48 1 21
climate avg rainfall!! 0.50 0.38 1 4
force deployments! 0.53 0.58 2 20
religions percentage! 0.58 0.66 2 14
minimum wage! 0.63 0.82 28 17

Binary Attributes (Accuracy: higher is better)

Attribute Group DIST2REF BL #A f(A)

continent! 0.98 0.84 4 45
time zones! 0.98 0.93 2 26
containedBy! 0.98 0.81 9 49
casualties!! 0.96 0.97 2 17
places exported to!! 0.96 0.98 2 17
member of! 0.95 0.86 25 27
championships athletes!! 0.94 0.96 1 22
military conflicts! 0.94 0.94 2 18
organizations! 0.94 0.93 8 20
entry! 0.94 0.81 5 30
minimum wage! 0.93 0.93 2 20
gdp nominal! 0.92 0.85 1 213
religions! 0.92 0.93 3 23
tournaments participated in! 0.91 0.91 2 27
places imported from! 0.91 0.91 2 18
athletic performances! 0.91 0.89 30 26
medals won! 0.91 0.89 29 31
gdp nominal per capita! 0.90 0.85 1 215
currency used! 0.89 0.89 2 26
official language! 0.89 0.81 4 32
administrative area type! 0.89 0.69 1 185
companies founded! 0.89 0.83 3 39
organizations founded! 0.89 0.83 3 39
schools founded! 0.89 0.83 3 39
olympics participated in! 0.88 0.81 9 55
tour operators! 0.88 0.89 3 40
athletes! 0.88 0.86 48 36
languages spoken! 0.88 0.84 5 38
government bodies! 0.88 0.87 2 34
administrative parent! 0.87 0.69 1 185
gdp real! 0.87 0.73 1 189
gni in ppp dollars! 0.87 0.62 1 170
gni per capita in ppp dollars! 0.87 0.62 1 170
is clear! 0.87 0.87 1 23
governing officials! 0.86 0.82 14 34
form of government! 0.84 0.81 11 42
equivalent instances! 0.79 0.75 1 200
exceptions! 0.69 0.67 1 87
loc type! 0.69 0.58 1 146
adjectival form!! 0.65 0.69 1 65

Table 3: Results for all attribute groups on the Countries test set, in descending order of performance.
DIST2REF, BL: models; #A: number of attributes in group; f(A): median number of countries instantiating
each attribute in the dataset (260 countries); !: attribute group where model performs worse than baseline.

large countries, and for instance Luxembourg has
a much smaller one, these numbers are not indica-
tive of the actual conditions in these countries, and
therefore also not so clearly correlated with what
people write about them. This provides another
interesting angle on the difference between distri-
butional and formal knowledge representation. In
a formal system, absolute GDP, relative GDP, and
population stand in a fixed linear relationship and
knowing any two of the three uniquely determines
the third – thus, all three attributes have equal status.
In our distributional space, their status is clearly

different, determined by the conceptual relevance
of the different attributes.

Towards the end of the table, we find more
attributes related to socioeconomic develop-
ment, such as government percent debt and
minimum wage. While these should be contextu-
ally supported, too, the problem here is factor (2)
mentioned above, namely severe data sparsity (see
column f(A) in Table 3, which lists the median
number of datapoints that exhibit each attribute
group). The same goes for the remaining attribute
groups, for instance casualties (describing the
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total number of military casualties incurred in his-
tory), date founded and date dissolved,5 or
climate avg rainfall.

Binary Attributes. The binary attributes show
a similar picture, albeit somewhat less sharp. We
again find contextually unsupported groups, many
of them arising from our fully automatic attribute
mining from FreeBase (cf. Section 2.2). There
are many categorical attributes that store meta-
data about numeric attributes (such as the cur-
rency in the gdp and gni groups) as well as
meta-information of FreeBase: exceptions is
a specific marker of potentially inconsistent en-
tries about Ghana, and equivalent instances

is a flag concerning links between FreeBase and
OpenCyc. Fortunately, almost all contextually un-
supported groups are small, with only one or two
attributes, and do not have a large impact on the
overall performance. We decided not to exclude
them from evaluation for robustness’ sake, since
there is no automatic way to identify contextually
unsupported attributes in a new dataset.

We obtain good results on meaningful attributes
that are arguably strongly contextually grounded,
such as geographical and geopolitical attributes
(member of: membership in international organi-
zations; location on a continent, etc.). However,
we fare relatively badly on government-related
attributes (form of government, governing offi-
cials). While this seems surprising at first glance,
the form of government attribute in FreeBase
makes very fine-grained distinctions: Its values
include “unitary state”, “presidential system”, “par-
liamentary system” and “republic”, which are not
mutually exclusive, and misses obvious alternatives
like “authoritarian system”. It is not surprising
that distributional models cannot make such sub-
tle distinction between presidential and parliamen-
tary systems. The attribute governing official

presents a similar case. Other bad attributes are
very domain-specific, including athletes, encod-
ing the athletic disciplines that countries participate
in (such as swimming, judo, running, etc.), and the
data sparsity issue is certainly worse for the binary
attributes.

5Note that date-based attributes can be contextually sup-
ported: We do better on national anthem since, for
which we have more datapoints, 97.

Model Countries Cities

WORD2VEC -0.36 -0.45
DIST2REF 0.49 0.88

Table 4: Pearson correlation coefficients of model-
predicted vs. ground truth distances between coun-
tries and cities in the test sets. WORD2VEC corre-
lations are negative because we use cosines.

4.2 Geolocation
To analyze the difference between the distributional
representations and the output of our model, we
focus on geolocation, our best attribute group.

It has already been shown that geometric dis-
tance in distributional space captures, to a cer-
tain extent, physical distance between locations
in the real world (Louwerse and Zwaan, 2009). Ta-
ble 4 shows that DIST2REF extracts even more pre-
cise distance information from distributional vec-
tors. The table reports the correlation between real
and model-predicted distances for countries and
cities. Ground-truth great circle distances (Kern
and Bland, 1948) between items are computed us-
ing the FreeBase longitude and latitude values; for
DIST2REF we use its predicted latitude and longi-
tude values; for WORD2VEC, the cosines between
the corresponding distributional vectors.

We obtain highly significant correlations in all
cases (p<10−14), but much higher for DIST2REF.
For countries, as shown in Table 4, the correlation
is -0.36 for WORD2VEC (negative, because cosine
is a similarity measure), 0.49 for DIST2REF. For
cities, WORD2VEC reaches -0.45 correlation, and
DIST2REF distances are at 0.88, showing that the
method can estimate city positions to a perhaps
unexpectedly high degree of accuracy.6

This result suggests that we manage to objec-
tify the information in the distributional model,
anchoring the entities more firmly in the external
world. Indeed, distributional models are known to
be subject to conceptual or cultural effects in their
distance estimations. For instance, in WORD2VEC

German and Spanish cities are much farther away
than in the physical world, while cities within Spain
and within Germany are predicted to be a bit closer
than they actually are. Note that these effects have

6The results are confirmed when the analysis is repeated
using the Spearman correlation measure: The DIST2REF co-
efficients are stable, whereas those of WORD2VEC go down
to 0.22 (countries) and 0.40 (cities), respectively. The good
results for Spearman, as a rank-based measure, indicate that
our success is not dominated by outliers.
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an actual cognitive basis: Human intuitions about
objective physical distance between countries and
cities are biased by cognitive, cultural and socio-
economic factors, as explored for example in Fried-
man et al. (2002), who report that Texans locate
Canadian cities closer to the US border relative to
Mexican cities, despite their proximity to the latter,
and that they place Southern US cities further south
than they really are.

Interestingly, DIST2REF does also show some
cultural effects in its geolocation errors: For exam-
ple, some Pacific island states with lesser-known
identities (e.g., Nauru and French Polynesia) are
placed in the Indian Ocean, where we find the per-
haps prototypes of beautiful islands, like Seychelles
and Mauritius; also, Central American countries
(such as Panama, El Salvador, and Nicaragua)
move towards their “cultural center of gravity”,
South America.

However, this kind of cultural bias is much more
prominent in the original WORD2VEC distribu-
tional representation. The Spain/Germany effect
discussed above is not found in the DIST2REF

model at all. And while both DIST2REF and
WORD2VEC place Mexican and Spanish cities in
our test set closer to each other than they actually
are, WORD2VEC does so to a much larger extent.
In line with our goal to extract referential attributes,
thus, we are satisfied to see that DIST2REF man-
ages to minimize this bias and distill the referential
part from the distributional representations.

5 Related Work

There is a large literature on exploiting corpus ev-
idence, sometimes through distributional seman-
tic methods, in order to construct and populate
structured knowledge bases (KBs) (e.g., Buitelaar
and Cimiano (2008) and references therein). This
line of work, however, does not attempt to con-
nect entity representations extracted from corpora
and from KBs, as we do. Moreover, it focuses on
harvesting relations between entities or between
entities and a limited number of discrete attributes,
rather than predicting full-fledged KB representa-
tions of specific entities, like we do. Freitas and
Curry (2014) and Freitas et al. (2014) embed rela-
tional graphs from KBs in a distributional semantic
space to support various forms of search and rea-
soning about the KB. The focus is again on rela-
tions between discrete entities, and on exploiting
distributional semantics to navigate among them.

Socher et al. (2013a) represent WordNet and
FreeBase entities with corpus-based distributional
vectors. They train a tensor for each relation of
interest to return high scores when combined with
the vectors of two entities that hold the intended
relation. At test time, the system is used to classify
relational tuples as true or false, as well as to predict
new entities that hold a certain relationship with a
target entity. This is quite close in spirit to what we
do, except that, given an entity1-relation-entity2
tuple, we treat relation-entity2 as a binary attribute
of entity1, and we try to induce such attributes on a
larger scale (Socher et al. consider seven relations
in total). Moreover, we rely on the same architec-
ture to learn discrete features denoting relations
with entities and numerical features, to induce full
attribute-based descriptions of entities.

Our proposal is only distantly related to methods
to embed words tokens and KB entities and rela-
tionships in a vector space, e.g., for better relation
extraction (see Weston et al. (2013) and references
therein). This line of work does not use distribu-
tional semantics to induce word vectors, and ig-
nores numerical attributes.

The broader goal of getting at referential infor-
mation with distributional semantics is shared with
Herbelot (2015). However, the specific approach
is different, as she constructs vectors for individ-
ual entities (literary characters) by contextualizing
generic noun vectors with distributional properties
of those entities. Finally, we share our methodol-
ogy with work on mapping between corpus-based
word representations and other representational
spaces, such as subject-generated concept prop-
erties (Johns and Jones, 2012; Hill et al., 2014;
Făgărăşan et al., 2015), visual features (Frome et
al., 2013; Socher et al., 2013b; Lazaridou et al.,
2014) or brain signals (Mitchell et al., 2008; Mur-
phy et al., 2012). In all these settings, the focus is
entirely on predicting numerical attributes, whereas
we treat both numerical and binary attributes. Ru-
binstein et al. (2015) use distributional vectors to
predict binary conceptual attributes of common
nouns, as well as a continuous score measuring
saliency of such attributes. Our target features are
conceptually very different from those of all these
studies.

6 Discussion and Conclusion

We have shown that a simple model can learn to
predict, to a reasonable degree of accuracy, ref-
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erential attributes of an entity that are typically
seen in a knowledge base from the corresponding
corpus-based distributional representation. The re-
sults suggest that, while distributional semantic
vectors can be used “as-is” to capture generic word
similarity, with some supervision it is also pos-
sible to extract other kinds of information from
them, including structured factual statements of the
sort encoded in manually-curated knowledge bases.
This makes distributional vectors very attractive as
general-purpose word meaning representations.

We have also shown that some of the errors in the
predictions can be explained on cultural grounds,
but that these effects are more pronounced in the
input of our model, a standard distributional se-
mantic model, than in its output. In this sense, our
model manages to objectify the information that it
is provided with. Our analyses also suggest that
the main limiting factor in learning referential at-
tributes, apart from good old data sparseness, is the
degree to which they are contextually supported,
that is, to what extent they are expressed with con-
sistent and specific linguistic means in the context
of their target words. This determines whether they
are actually represented in the distributional model
in the first place.

More generally, we see our work as a small
step towards the more general goal of bridging the
concept-referent gap in distributional semantics.
A common noun such as dog denotes a concept,
based on a prototype with fuzzy boundaries, sus-
ceptible of metaphorical extensions, and bearing all
the other hallmarks of generic conceptual knowl-
edge (Carlson, 2009; Murphy, 2002). These might
be adequately captured by the properties of the dog
vector in distributional semantic space. However,
when used in a specific discourse, words and more
complex linguistic expressions often denote spe-
cific referents with fixed, “hard” properties, such
as this dog, or Amur, when used for my neighbor’s
dog at 3.31pm on May 29th 2015 in Novosibirsk, a
61cm-tall black-and-tan foxhound. Amur is more
easily characterized by a set of precise attribute-
value pairs than by a vector in a generic concep-
tual space. Our experiment suggests that distri-
butional vectors encode both generic conceptual
knowledge and more precise attributes of specific
referents. Of course, while we can use FreeBase
and other knowledge bases to gather training data
about public-domain entities, such as countries or
cities, it is still not clear where we could gather

appropriate training data to learn about the specific
properties of “private-discourse” referents such as
Amur. Moreover, it remains to be seen whether
the properties of common named entities, such as
countries and cities, that are in a sense “hybrid” be-
tween the conceptual and referential domains, also
transfer to entities of a more specific and private
kind. Finally, it is still not clear how to extend
the current approach beyond words and phrases
directly denoting an entity (Amur) to other kinds
of definite descriptions (this dog).
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Abstract

In this paper, we introduce an approach to au-
tomatically map a standard distributional se-
mantic space onto a set-theoretic model. We
predict that there is a functional relationship
between distributional information and vecto-
rial concept representations in which dimen-
sions are predicates and weights are gener-
alised quantifiers. In order to test our pre-
diction, we learn a model of such relation-
ship over a publicly available dataset of feature
norms annotated with natural language quan-
tifiers. Our initial experimental results show
that, at least for domain-specific data, we can
indeed map between formalisms, and generate
high-quality vector representations which en-
capsulate set overlap information. We further
investigate the generation of natural language
quantifiers from such vectors.

1 Introduction
In recent years, the complementarity of distributional
and formal semantics has become increasingly evi-
dent. While distributional semantics (Turney and Pan-
tel, 2010; Clark, 2012; Erk, 2012) has proved very suc-
cessful in modelling lexical effects such as graded sim-
ilarity and polysemy, it clearly has difficulties account-
ing for logical phenomena which are well covered by
model-theoretic semantics (Grefenstette, 2013).

A number of proposals have emerged from these
considerations, suggesting that an overarching seman-
tics integrating both distributional and formal aspects
would be desirable (Coecke et al., 2011; Bernardi et al.,
2013; Grefenstette, 2013; Baroni et al., 2014a; Garrette
et al., 2013; Beltagy et al., 2013; Lewis and Steedman,
2013). We will use the term ‘Formal Distributional Se-
mantics’ (FDS) to refer to such proposals. This paper
follows this line of work, focusing on one central ques-
tion: the formalisation of the systematic dependencies
between lexical and set-theoretic levels.

Let us consider the following examples.

1. Kim writes books.

2. Kim likes books.

The preferred reading of 1 has a logical form where
the object is treated as an existential, while the object
in 2 has a generic reading:

• ∃x∗[book′(x∗) ∧ write′(Kim, x∗)]
• GEN x[book′(x)→ like′(Kim, x)]

with x∗ indicating a plurality and GEN the generic
quantifier.

It is generally accepted that the appropriate choice
of quantifier for an ambiguous bare plural object de-
pends, amongst other things, on the lexical semantics
of the verb (e.g. Glasbey (2006)). This type of inter-
action implies the existence of systematic influences of
the lexicon over logic, which could in principle be for-
malised.

A model of the lexicon/logic interface would be de-
sirable to explain how speakers resolve standard cases
of ambiguity like the bare plural in 1 and 2, but more
generally, it could be the basis for answering a more
fundamental question: how do speakers construct a
model of a sentence for which they have no prior per-
ceptual data?

People can make complex inferences about state-
ments without having access to their real-world ref-
erence. As an example, consider the sentence The
kouprey is a mammal. English speakers have no
problem ascertaining that if x is a kouprey, x is a
mammal (which set-theoretic semantics would express
as ∀x[kouprey′(x) → mammal′(x)]), regardless of
whether they have ever encountered a kouprey. The in-
ference is supported by the lexical semantics of mam-
mal, which applies a property (being a mammal) to all
instances of a class. Much more complex inferences
are routinely performed by speakers, down to estimat-
ing the cardinality of the entities involved in a partic-
ular situation. Compare e.g. The cats are on the sofa
(2 / a few cats?), I picked pears today (a few / a few
dozen?) and The protesters were blocking the entire
avenue (hundreds/thousands of protesters?).
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Understanding how this process works would not
only give us an insight into a complex cognitive pro-
cess, but also make a crucial contribution to NLP tasks
relying on inference (e.g. the Recognising Textual En-
tailment challenge, RTE: Dagan et al. (2009)). In-
deed, while systems have successfully been developed
to model entailment between quantifiers, ranging from
natural logic approaches (MacCartney and Manning,
2008) to distributional semantics solutions (Baroni et
al., 2012), they rely on an explicit representation of
quantification. That is, they can model the entailment
All koupreys are mammals |= This kouprey is a mam-
mal, but not Koupreys are mammals |= This kouprey is
a mammal.

In this work, we assume the existence of a mapping
between language (distributional models) and world
(set-theoretic models), or to be more precise, between
language and a shared set of beliefs about the world, as
negotiated by a group of speakers. To operationalise
this mapping, we propose that set-theoretic models,
like distributions, can be expressed in terms of vec-
tors – giving us a common representation across for-
malisms. Using a publicly available dataset of feature
norms annotated with quantifiers1 (Herbelot and Vec-
chi, 2015), we show that human-like intuitions about
the quantification of simple subject/predicate pairs can
be induced from standard distributional data.

This paper is structured as follows. §2 reviews re-
lated work, focusing in turn on approaches to formal
distributional semantics, computational work on quan-
tification, and mapping between semantic spaces. In
§3, we describe our dataset. §4 and §5 describe our
experiments, reporting correlation against human an-
notations. We discuss our results in §6 and end with an
attempt at generating natural language quantifiers from
our mapped vectors (§7).

2 Related Work

2.1 Formal Distributional Semantics

The relation between distributional and formal seman-
tics has been the object of a number of studies in re-
cent years. Proposals for a FDS, i.e. a combination
of both formalisms, roughly fall into two groups: a)
the fully distributional approaches, which redefine the
concepts of formal semantics in distributional terms
(Coecke et al., 2011; Bernardi et al., 2013; Grefen-
stette, 2013; Hermann et al., 2013; Baroni et al., 2014a;
Clarke, 2012); b) the hybrid approaches, which try to
keep the set-theoretic apparatus for function words and
integrate distributions as content words representations
(Erk, 2013; Garrette et al., 2013; Beltagy et al., 2013;
Lewis and Steedman, 2013). This paper follows the hy-
brid frameworks in that we fully preserve the principles
of set theory and do not attempt to give a distributional
interpretation to phenomena traditionally catered for by

1Data available at http://www.cl.cam.ac.uk/
˜ah433/mcrae-quantified-majority.txt

formal semantics such as quantification or negation.
Our account is also similar to that proposed by Erk

(2015). Erk suggests that distributional data influences
semantic ‘knowledge’2: specifically, while a speaker
may not know the extension of the word alligator, they
maintain an information state which models properties
of alligators (for instance, that they are animals). This
information state is described in terms of probabilistic
logic, which accounts for an agent’s uncertainty about
what the world is like. The probability of a sentence
is the summed probability of the possible worlds that
make it true. Similarly, we assume a systematic relation
between distributional information and world knowl-
edge, expressed set-theoretically. The knowledge rep-
resentation we derive is not a model proper: it cannot
be said to be a description of a world – either the real
one or a speaker’s set of beliefs (c.f. §4 for more de-
tails). But it is a good approximation of the shared in-
tuitions people have about the world, in the way that
distributional representations are an averaged represen-
tation of how a group of speakers use their language.

2.2 Generalised quantifiers
Computational semantics has traditionally focused on
very specific aspects of quantification. There is a large
literature on the computational formalisation of quan-
tifiers as automata, starting with Van Benthem (1986).
In parallel to this work, much research has been done
on drawing inferences from explicitly quantified state-
ments – i.e. statements quantified with determiners
such as some/most/all, which give information about
the set overlap of a subject-predicate pair (Cooper et
al., 1996; Alshawi and Crouch, 1992; MacCartney and
Manning, 2008). Recent work in this area has even
shown that entailment between explicit quantifiers can
be modelled distributionally (Baroni et al., 2012). A
complementary object of focus, actively pursued in the
1990s, has been inference between generic statements
(Bacchus, 1989; Vogel, 1995).

Beside those efforts, computational approaches have
been developed to convert arbitrary text into logical
forms. The techniques range from completely super-
vised (Baldwin et al., 2004; Bos, 2008) to lightly su-
pervised (Zettlemoyer and Collins, 2005). Such work
has shown that it was possible to automatically give
complex formal semantics analyses to large amounts
of data. But the formalisation of quantifiers in those
systems either remains very much underspecified (e.g.
bare plurals are not resolved into either existentials or
generics) or relies on some grounded information, for
example in the form of a database.

To the best of our knowledge, no existing system is
able to universally predict the generalised quantifica-
tion of noun phrases, including those introduced by the
(in)definite singulars a/the and definite plurals the. The
closest attempt is Herbelot (2013), who suggests that

2We use the term knowledge loosely, to refer to a
speaker’s beliefs about the world or a state of affairs.
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Concept Feature

ape

is muscular ALL
is wooly MOST
lives on coasts SOME
is blind FEW

tricycle

has 3 wheels ALL
used by children MOST
is small SOME
used for transportation FEW
a bike NO

Table 1: Example annotations for concepts.

‘model-theoretic vectors’ can be built out of distribu-
tional vectors supplemented with manually annotated
training data. The proposed implementation, however,
fails to validate the theory.

Our work follows the intuition that distributions can
be translated into set-theoretic equivalents. But it im-
plements the mapping as a systematic linear transfor-
mation. Our approach is similar to Gupta et al. (2015),
who predict numerical attributes for unseen concepts
(countries and cities) from distributional vectors, get-
ting comparably accurate estimates for features such as
the GDP or CO2 emissions of a country. We comple-
ment such research by providing a more formal inter-
pretation of the mapping between language and world
knowledge. In particular, we offer a) a vectorial repre-
sentation of set-theoretic models; b) a mechanism for
predicting the application of generalised quantifiers to
the sets in a model.

2.3 Mapping between Semantic Spaces
The mapping between different semantic modalities or
semantic spaces has been explored in various aspects.
In cognitive science, research by Riordan and Jones
(2011) and Andrews et al. (2009) show that models that
map between and integrate perceptual and linguistic in-
formation perform better at fitting human semantic in-
tuition. In NLP, Mikolov et al. (2013b) show that a
linear mapping between vector spaces of different lan-
guages can be learned to infer missing dictionary en-
tries by relying on a small amount of bilingual infor-
mation. Frome et al. (2013) learn a linear regression
to transform vector-based image representations onto
vectors representing the same concepts in a linguistic
semantic space, and Lazaridou et al. (2014) explore
mapping techniques to learn a cross-modal mapping
between text and images with promising performance.
We follow the basic intuition introduced by these pre-
vious studies: a simple linear function can map be-
tween semantic spaces, in this case between a linguistic
(distributional) semantic space and a model-theoretic
space.

3 Annotated datasets
3.1 The quantified McRae norms
The McRae norms (McRae et al., 2005) are a set of
feature norms elicited from 725 human participants for

541 concepts covering living and non-living entities
(e.g. alligator, chair, accordion). The annotators were
given concepts and asked to provide features for them,
covering physical, functional and other properties. The
result is a set of 7257 concept-feature pairs such as air-
plane used-for-passengers or bear is-brown.

In our work, we use the annotation layer pro-
duced by Herbelot and Vecchi (2015) for the McRae
norms (henceforth QMR): for each concept-feature
pair (C, f), the annotation provides a natural language
quantifier expressing the ratio of instances of C having
the feature f , as elicited by three coders. The quan-
tifiers in use are NO, FEW, SOME, MOST, ALL. Ta-
ble 1 provides example annotations for concept-feature
pairs (reproduced from the original paper). An addi-
tional label, KIND, was introduced for usages of the
concept as a kind, where quantification does not ap-
ply (e.g. beaver symbol-of-Canada). A subset of the
annotation layer is available for training computational
models, corresponding to all instances with a majority
label (i.e. those where two or three coders agreed on a
label). The reported average weighted Cohen kappa on
this data is κ = 0.59.

In the following, we use a derived gold standard in-
cluding all 5 quantified classes in QMR (removing the
KIND items), with the annotation set to majority opin-
ion (6156 instances). The natural language quantifiers
are converted to a numerical format (see §4 for details).
Using the numerical data, we can calculate the mean
Spearman rank correlation between the three annota-
tors, which comes to 0.63.

3.2 Additional animal data

QMR gives us an average of 11 features per con-
cept. This results in fairly sparse vectors in the model-
theoretic semantic space (see §4). In order to remedy
data sparsity, we consider the use of additional data in
the form of the animal dataset from Herbelot (2013)
(henceforth AD). AD3 is a set of 72 animal concepts
with quantification annotations along 54 features. The
main differences between QMR and AD are as follows:

• Nature of features: the features in AD are not hu-
man elicited norms, but linguistic predicates ob-
tained from a corpus analysis.

• Comprehensiveness of annotation: the 72 con-
cepts were annotated along all 54 features. This
ensures the availability of a large number of nega-
tively quantified pairs (e.g. cat is-fish).

We manually align the AD concepts and features to
the QMR format, changing e.g. bat to bat (animal).
The QMR and AD sets have an overlap of 39 concepts
and 33 features.

3Data available at http://www.cl.cam.ac.uk/
˜ah433/material/herbelot_iwcs13_data.
txt.
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4 Semantic spaces
We construct two distinct semantic spaces (distribu-
tional and model-theoretic), as described below.

4.1 The distributional semantic space
We consider two distributional semantic space archi-
tectures which have each shown to have considerable
success in a number of semantic tasks. First, we build
a co-occurrence based space (DScooc), in which a word
is represented by co-occurrence counts with content
words (nouns, verbs, adjectives and adverbs). As a
source corpus, we use a concatenation of the ukWaC,
a 2009 dump of the English Wikipedia and the BNC4,
which consists of about 2.8 billion tokens. We select
the top 10K content words for the contexts, using a bag-
of-words approach and counting co-occurrences within
a sentence. We then apply positive Pointwise Mutual
Information to the raw counts, and reduce the dimen-
sions to 300 through Singular Value Decomposition.5

Next we consider the context-predicting vectors
(DSMikolov) available as part of the word2vec6 project
(Mikolov et al., 2013a). We use the publicly avail-
able vectors which were trained on a Google News
dataset of circa 100 billion tokens. Baroni et al. (2014b)
showed that vectors constructed under this architecture
outperform the classic count-based approaches across
many semantic tasks, and we therefore explore this op-
tion as a valid distributional representation of a word’s
semantics.

4.2 The model-theoretic space
Our ‘model-theoretic space’ differs in a couple of
important respects from traditional formal semantics
models. So it may be helpful to first come back to
the standard definition of a model, which relies on two
components: an ontology and a denotation function
(Cann, 1993). The ontology describes a world (which
can be a simple situation or ‘state of affairs’), with ev-
erything that is contained in that world. Ontologies can
be represented in various ways, but in this paper, we
assume they are formalised in terms of sets of entities.
The denotation function associates words with their ex-
tensions in the model, i.e. the sets they refer to. Thanks
to the availability of the ontology, it is possible to define
a truth function for sentences, which computes whether
a particular statement corresponds to the model or not.

In our account, we do not have an a priori model of
the world: we wish to infer it from our observation of
language data. We believe this to be an advantage over
traditional formal semantics, which requires full onto-
logical data to be available in order to account for refer-
ence and truth conditions, but never spells out how this

4http://wacky.sslmit.unibo.it, http:
//www.natcorp.ox.ac.uk

5All semantic spaces, both distributional and model-
theoretic, were built using the DISSECT toolkit (Dinu et al.,
2013).

6https://code.google.com/p/word2vec

data comes into being. This however implies that our
produced ontology will necessarily be partial: we can
only model what can be inferred from language use.
This has consequences for the denotation function.

Let’s imagine a world with three cats and two horses.
In model theory, the word horse has an extension in that
world which is the set of horses, with a cardinality of
two. This can be trivially derived because the world is
fully described in the ontology. In our approach, how-
ever, it is unlikely we might be able to learn the cardi-
nality of any set in any world. And in fact, it is clear
that ‘in real life’, speakers do miss this information for
many sets (how many horses are there in the world?)
Note that we do not in principle reject the possibility
to learn cardinalities from distributional data (for an
example of this, see Gupta et al. (2015)). We simply
remark that this will not always possible, or even desir-
able from a cognitive point of view. By extension, this
means that a model built from distributional data does
not support denotation in the standard way, and thus
precludes the definition of a truth function: we cannot
verify the truth of the sentence There are 25,957 white
horses in the world. Our ‘model-theoretic’ space may
then be described as an underspecified set-theoretic
representation of some shared beliefs about the world.

Our ‘ontology’ can be defined as follows. To each
word wk in vocabulary V = w1...m corresponds
a set w′k with underspecified cardinality. A num-
ber of predicates p′1...n are similarly defined as sets
with an unknown number of elements. Our claim
is that this very underspecified model can be fur-
ther specified by learning a function F from dis-
tributions to generalised quantifiers. Specifically,
F ( ~wk) = {Q1(w′k, p

′
1), Q2(w′k, p

′
2)...Qn(w′k, p

′
n)},

where ~wk is the distribution of wk and Q1...Qn ∈
{no, few, some,most, all} . That is, F takes a dis-
tribution ~wk and returns a quantifier for each predicate
in the model, corresponding to the set overlap between
w′k and p′1...n. Note that we focus here on 5 quanti-
fiers only, but as mentioned above, we do not preclude
the possibility of learning others (including cardinals in
appropriate cases).
F ( ~wk) lives in a model-theoretic space which

broadly follows the representation suggested by Her-
belot (2013). We assume a space with n dimensions
d1...dn which correspond to predicates p′1...n (e.g. is
fluffy, used for transportation). In that space, F ( ~wk) is
weighted along the dimension dm in proportion to the
set overlapw′k∩p′m.7 The following shows a toy vector
with only four dimensions for the concept horse.

a mammal 1
has four legs 0.95
is brown 0.35
is scaly 0

7In Herbelot (2013), weights are taken to be probabilities,
but we prefer to talk of quantifiers, as the notion models our
data more directly.
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This vector tells us that the set of horses includes
the set of mammals (the number of horses that are also
mammals divided by the number of horses comes to 1,
i.e. all horses are mammals), and that the set of horses
and the set of things that are scaly are disjoint (no horse
is scaly). We also learn that a great majority of horses
have four legs and that some are brown.

In the following, we experiment with 3 model-
theoretic spaces built from the McRae and AD datasets
described in §3. As both datasets are annotated with
natural language quantifiers rather than cardinality ra-
tios, we convert the annotation into a numerical for-
mat, where ALL → 1, MOST → 0.95, SOME → 0.35,
FEW → 0.05, and NO → 0. These values correspond
to the weights giving the best inter-annotator agree-
ment in Herbelot and Vecchi (2015), when calculating
weighted Cohen’s kappa on QMR.

In each model-theoretic space, a concept is repre-
sented as a vector in which the dimensions are features
(has buttons, is green), and the values of the vectors
along each dimension are quantifiers (in numerical for-
mat). When a feature does not occur with a concept
in QMR, the concept’s vector receives a weight of 0
on the corresponding dimension.8 We define 3 spaces
as follows. The McRae-based model-theoretic space
(MTQMR) contains 541 concepts, as described in §3.1.
The second space is constructed specifically for the ad-
ditional animal data from §3.2 (MTAD). Finally, we
merge the two into a single space of 555 unique con-
cepts (MTQMR+AD).

5 Experiments

5.1 Experimental setup

To map from one semantic representation to another,
we learn a function f : DS → MT that transforms
a distributional semantic vector for a concept to its
model-theoretic equivalent.

Following previous research showing that similari-
ties amongst word representations can be maintained
within linear transformations (Mikolov et al., 2013b;
Frome et al., 2013), we learn the mapping as a linear
relationship between the distributional representation
of a word and its model-theoretic representation. We
estimate the coefficients of the function using (multi-
variate) partial least squares regression (PLSR) as im-
plemented in the R pls package (Mevik and Wehrens,
2007).

We learn a function from the distributional space to
each of the model-theoretic spaces (c.f. §4). The dis-
tribution of training and test items is outlined in Ta-
ble 2, expressed as a number of concept vectors. We
also include the number of quantified instances in the
test set (i.e. the number of actual concept-feature pairs
that were explicitly annotated in QMR/AD and that

8No transformations or dimensionality reductions were
performed on the MT spaces.

Space # train # test # dims # test
vec. vec. inst.

MTQMR 400 141 2172 1570
MTAD 60 12 54 648
MTQMR+AD 410 145 2193 1595

Table 2: Distribution of training/test items for each
model-theoretic semantic space. We also provide the
number of dimensions for each space, and the actual
number of concept-feature instances tested on.

we can thus evaluate – this is a portion of each concept
vector in the spaces including QMR data).

5.2 Results

We first consider a preliminary quantitative analysis to
better understand the behavior of the transformations,
while a more qualitative analysis is provided in §6. The
results in Table 3 show the degree to which predicted
values for each dimension in a model-theoretic space
correlate with the gold annotations, operationalised as
the Spearman ρ (rank-order correlation). Wherever ap-
propriate, we also report the mean Spearman correla-
tion between the three human annotators for the par-
ticular test set under consideration, showing how much
they agreed on their judgements.9 These figures pro-
vide an upper bound performance for the system, i.e.
we will consider having reached human performance if
the correlation between system and gold standard is in
the same range as the agreement between humans. For
each mapping tested, Table 3 provides details about the
training data used to learn the mapping function and
the test data for the respective results. Also for each
mapping, results are reported when learned from either
the co-occurrence distributional space (DScooc) or the
context-predicting distributional space (DSMikolov).

The top section of the table reports results for the
QMR and AD dataset taken separately, as well as their
concatenation. Performance on the domain-specific
AD is very promising, at 0.641 correlation, calculated
over 648 test instances. The results when trained on
just the QMR features (MTQMR) are much lower (0.35
over 1570 test instances), which we put down to the
wider variety of concepts in that dataset; we however
observe a substantial increase in performance when
we train and test over the two datasets (MTQMR+AD:
0.569 over 1595 instances).

We investigate whether merging the datasets gen-
erally benefits QMR concepts or just the animals
(see middle section in Table 3). The result on the
MTanimals test set, which includes animals from the
AD and QMR datasets, shows that this category fares
indeed very well, at ρ = 0.663. But while augment-
ing the training data with category-specific datapoints
benefits that category, it does not improve the results

9These figures are only available for the QMR dataset, as
AD only contains one annotation per subject-predicate pair.
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Model-Theoretic Distributional
train test DScooc DSMikolov human
MTQMR MTQMR 0.350 0.346 0.624
MTAD MTAD 0.641 0.634 –
MTQMR+AD MTQMR+AD 0.569 0.523 –
MTQMR+AD MTanimals 0.663 0.612 –
MTQMR+AD MTno-animals 0.353 0.341 –
MTQMR MTQMRanimals 0.419 0.405 –
MTQMR+AD MTQMRanimals 0.666 0.600 0.663

Table 3: (Spearman) correlations of mapped dimensions with gold annotations for all test items. The table reports
results (ρ) when mapped from a distributional space (DScooc or DSMikolov) to each MT space, as well as the
correlation with human annotations when available. The train/test data for the mappings is specified in Table 2.
For further analysis we report the results when tested only on animal test items (animals), or on all test items but
animals (no-animals). MTanimals contains test items from both AD and the animal section of the McRae norms.
See text for more details.

for concepts of other classes (c.f. compare MTanimals

with MTno-animals).
Finally, we quantify the specific improvement to the

QMR animal concepts by comparing the correlation
obtained on MTQMRanimals (a test set consisting only
of QMR animal features) after training on a) the QMR
data alone and b) the merged dataset (third section of
Table 3). Performance increases from 0.419 to 0.666 on
that specific set. This is in line with the inter-annotator
agreement (0.663).

To summarise, we find that the best correlations
with the gold annotations are seen when we in-
clude the animal-only dataset in training (MTAD

and MTQMR+AD) and test on just animal concepts
(MTAD, MTanimals and MTQMRanimals ). As one
might expect, category-specific training data yields
high performance when tested on the same category.
Although this expectation seems intuitive, it is worth
noting that our system produces promisingly high cor-
relations, reaching human-performance on a subset of
our data. The assumption we can draw from these
results is that, given a reasonable amount of training
data for a category, we can proficiently generate model-
theoretic representations for concept-feature pairs from
a distributional space. The empirical question remains
whether this can be generalized for all categories in the
QMR dataset.

It is important to keep in mind that the MT spaces
are not full matrices, meaning that we have ‘miss-
ing values’ for various dimensions when a concept
is converted into a vector. For example, the feature
has a tail is not among the annotated features for bear
in QMR and has a weight of 0, even though most bears
have a tail. This is a consequence of the original McRae
dataset, rather than the design of our approach. But
it follows that in this quantitative analysis, we are not
able to confirm the accuracy of the predicted values
on dimensions for which we do not have gold anno-
tations. This may also affect the performance of the
system by including ‘false’ 0 weights in the training

% of gold in...
top 5 neighbours 19% (27/145)

top 10 neighbours 29% (42/145)
top 20 neighbours 46% (67/145)

Table 4: Percentage of gold vectors found in the top
neighbours of the mapped concepts, shown for the
DScooc→MTQMR+AD transformation.

data. Although this does not affect our reported cor-
relation results – we test the correlations on those val-
ues for which we have gold annotations only – it does
open the door to a natural next step in the evaluation.
In order to judge the performance of the system on the
missing gold dimensions, we need a manual analysis
to assess the quality of the whole vectors, which goes
hand-in-hand with obtaining additional annotations for
the missing dimensions. It seems, therefore, that an ac-
tive learning strategy would allow us to not only eval-
uate the model-theoretic vectors more fully, but also
improve the system by capturing new data.10

In this analysis, we focused primarily on the com-
parison between transformations using various truth-
theoretic datasets for training and generation. We leave
it to further work to extensively compare the effect of
varying the type of the distributional space. Our re-
sults show, however, that the Mikolov model performs
slightly worse than the co-occurrence space (cooc), dis-
proving the idea that predictive models always outper-
form count-based models.

6 Discussion
To further assess the quality of the produced space, we
perform a nearest-neighbour analysis of our results to
evaluate the coherence of the estimated vectors: for

10As suggested by a reviewer, one could also treat the miss-
ing entries as latent dimensions and define the loss function
on only the known entries. We leave it to future work to test
this promising option to resolve the issue of data sparsity.
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axe hatchet
a tool a tool

is sharp is sharp
has a handle has a handle

used for cutting used for cutting
has a metal blade made of metal

a weapon an axe
has a head is small

used for chopping –
has a blade –

is dangerous –
is heavy –

used by lumberjacks –
used for killing –

Table 5: McRae feature norms for axe and hatchet

each concept in our test set, we return its nearest neigh-
bours from the gold dataset, as given by the cosine sim-
ilarity measure, hoping to find that the estimated vector
is close to its ideal representation (see Făgărăşan et al.
(2015) for a similar evaluation on McRae norms). Re-
sults are shown in Table 4. We find that the gold vector
is among the top 5 nearest neighbours to the predicted
equivalent in nearly 20% of concepts, with the percent-
age of gold items in the top neighbours improving as
we increase the size of the neighbourhood. We per-
form a more in-depth analysis of the neighbourhoods
for each concept to gain a better understanding of their
behaviour and quality.

We discover that, in many cases, the mapped vector
is close to a similar concept in the gold standard, but not
to itself. So for instance,

−−−−−−→
alligatormapped is very close

to
−−−−−−→
crocodilegold, but not to

−−−−−−→
alligatorgold. Similar find-

ings are made for church/cathedral, axe/hatchet, dish-
washer/fridge, etc. A further investigation show that in
the gold standard itself, those pairs are not as close to
each other as they should be. Here are some relevant
cosine similarities:

alligator − crocodile 0.47
church− cathedral 0.45
axe− hatchet 0.50
dishwasher − fridge 0.21

Two reasons can be identified for these compara-
tively low11 similarities. First, the McRae norms do not
make for a consistent semantic space because a feature
that – from an extensional point of view – seems rele-
vant to two concepts may only have been produced by
the annotators for one of them. As an example of this,
see Table 5, which shows the feature norms for axe and
hatchet after processing (§3). Although the concepts
share 4 features, they also differ quite strongly, an axe
being seen as a weapon with a blade, while the hatchet
is itself referred to as an axe. Extensionally, of course,
there is no reason to think that a hatchet does not have

11Compare with e.g. ape - monkey, Sim = 0.97.

a blade or might not be dangerous, but those features
do not appear in the norms for the concept. This re-
sults in the two vectors being clearly separated in the
set-theoretic space. This means that the distribution of
axe may well be mapped to a region close to hatchet,
but thereby ends up separated from the gold axe vector.

The second, related issue is that the animal con-
cepts in the McRae norms are annotated along fewer
dimensions than in AD. For example, alligator – which
only appears in the McRae set – has 13 features, while
crocodile (in both sets) has 70. Given that features
which are not mentioned for a concept receive a weight
of 0, this also results in very different vectors.

In Table 6, we provide the top weighted features for
a small set of concepts. As expected, the animal repre-
sentations (bear, housefly) have higher quality than the
other two (plum, cottage). But overall, the ranking of
dimensions is sensible. We see also that these represen-
tations have ‘learnt’ features for which we do not have
values in our gold data – thereby correcting some of the
0 values in the training vectors.

7 Generating natural language
quantifiers

In a last experiment, we attempt to map the set-
theoretic vectors obtained in §5 back to natural lan-
guage quantifiers. This last step completes our
pipeline, giving us a system that produces quantified
statements of the type All dogs are mammals or Some
bears are brown from distributional data.

For each mapped vector F ( ~wk) = ~vk and a set of di-
mensions d1...n corresponding to properties p′1...n, the
value of ~vk along each dimension is indicative of the
proportion of instances of w′k having the property sig-
nalled by the dimension. The smaller the value, the
smaller the overlap between the set of instances of w′k
and the set of things having the property. Deriving
natural language quantifiers from these values involves
setting four thresholds tall, tmost, tsome and tfew so
that for instance, if the value of ~vk along dm is more
than tall, it is the case that all instances of ~wk have
property pm, and similarly for the other quantifiers (no
has a special status as it is not entailed by any of the
other quantifiers under consideration). We set the t-
thresholds by a systematic search on a training set (see
below).

To evaluate this step, we propose a function that cal-
culates precision while taking into account the two fol-
lowing factors: a) some errors are worse than others:
the system shouldn’t be overly penalised for classifying
a property as MOST rather than ALL, but much more for
classifying a gold standard ALL as SOME; b) errors that
are conducive to false inferences should be strongly pe-
nalised, e.g. generating all dogs are black is more seri-
ous than some dogs are mammals, because the former
might lead to incorrect inferences with respect to indi-
vidual dogs while the latter is true, even though it is
pragmatically odd.
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bear housefly plum cottage
an animal an insect a fruit has a roof
a mammal is small grows on trees used for shelter∗

has eyes flies tastes sweet has doors∗

is muscular is slender∗ is edible a house
has a head crawls∗ is round has windows
has 4 legs stings∗ is small is small
has a heart has legs has skin a building∗

is terrestrial is large∗ is juicy used for living in
has hair a bug∗ tastes good made of wood∗

is brown has wings has seeds∗ made by humans∗

walks is black is green∗ worn on feet∗

is wooly is terrestrial∗ has peel∗ has rooms∗

has a tail∗ hibernates∗ is orange∗ used for storing farm equipment∗

a carnivore has a heart∗ is citrus∗ found on farms∗

is large has eyes is yellow∗ found in the country
a predator has antennae∗ has vitamin C∗ an appliance∗

is furry∗ bites∗ has leaves∗ has tenants∗

roosts jumps∗ has a pit has a bathroom∗

is stout has a head∗ has a stem∗ requires rent∗

hunted by people is grey∗ grows in warm climates∗ requires a landlord∗

Table 6: Example of 20 most weighted contexts in the predicted model-theoretic vectors for 4 test concepts, shown
for the DScooc→MTMcRae+AD transformation. Features marked with an asterisk (∗) are not among the concept’s
features in the gold data.

Gold
no few some most all

M
ap

pe
d

no 0 -0.05 -0.35 -0.95 -1
few -0.05 0 0.2 0.9 0.95
some -0.35 -0.2 0 0.6 0.65
most -0.95 -0.9 -0.6 0 0.05
all -1 -0.95 -0.65 -0.05 0

Table 7: Distance matrix for the evaluation of the natu-
ral language quantifiers generation step.

We set a distance matrix, which we will use for pe-
nalising errors. This matrix, shown in Table 7, is ba-
sically equivalent to the matrix used by Herbelot and
Vecchi (2015) to calculate weighted kappa between
annotators, with the difference that all errors involv-
ing NO cause incorrect inferences and receive special
treatment. Cases where the gold quantifier entails the
mapped quantifier (all cats |= some cats) have posi-
tive distances, while cases where the entailment doesn’t
hold have negative distances. Using the distance ma-
trix, we give a score to each instance in our test data as
follows:

s =

{
1− d if d ≥ 0
d if d < 0

(1)

where d is obtained from the distance matrix.
This has the effect that when the mapped quantifier

equals the gold quantifier, the system scores 1; when
the mapped value deviates from the gold standard but
produces a true sentence (some dogs are mammals), the
system gets a partial score proportional to the distance
between its output and the gold data; when the map-
ping results in a false sentence (all dogs are black), the

Gold
no few some most all

M
ap

pe
d

no 238 66 20 4 2
few 53 45 30 19 12
some 6 1 2 3 2
most 4 6 4 16 56
all 0 0 0 2 3

Table 8: Confusion matrix for the results of the natural
language quantifiers generation.

system is penalised with minus points.

In what follows, we report the average performance
of the system as P =

∑
sm

N where sm is the score
assigned to a particular test instance, and N is the
number of test instances. We evaluate on the 648 test
instances of MTAD, as this is the only dataset con-
taining a fair number of negatively quantified concept-
predicate pairs. We perform 5-fold cross-evaluation on
this data, using 4 folds to set the t thresholds, and test-
ing on one fold. We obtain an average P of 0.61. Infer-
ence is preserved in 73% of cases (also averaged over
the 5 folds).

Table 8 shows the confusion matrix for our results.
We note that the system classifies NO-quantified in-
stances with good accuracy (72% – most confusions
being with FEW). Because of the penalty given to
instances that violate proper entailment, the system
is conservative and prefers FEW to SOME, as well as
MOST to ALL. Table 9 shows randomly selected in-
stances, together with their mapped quantifier and the
label from the gold standard.
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Instance Mapped Gold
raven a bird most all
pigeon has hair few no
elephant has eyes most all
crab is blind few few
snail a predator no no
octopus is stout no few
turtle roosts no few
moose is yellow no no
cobra hunted by people some some
snail forages few no
chicken is nocturnal few no
moose has a heart most all
pigeon hunted by people no few
cobra bites few most

Table 9: Examples of mapped concept-predicate pairs

8 Conclusion

In this paper, we introduced an approach to map from
distributional to model-theoretic semantic vectors. Us-
ing traditional distributional representations for a con-
cept, we showed that we are able to generate vecto-
rial representations that encapsulate generalised quan-
tifiers.

We found that with a relatively “cheap” linear func-
tion – cheap in that it is easy to learn and requires mod-
est training data – we can reproduce the quantifiers in
our gold annotation with high correlation, reaching hu-
man performance on a domain-specific test set. In fu-
ture work, we will however explore the effect of more
powerful functions to learn the transformations from
distributional to model-theoretic spaces.

Our qualitative analysis showed that our predicted
model-theoretic vectors sensibly model the concepts
under consideration, even for features which do not
have gold annotations. This is not only a promising
result for our approach, but it provides potential as a
next step to this work: expanding our training data with
non-zero dimensions in an active learning procedure.
We also experimented with generating natural language
quantifiers from the mapped vectorial representations,
producing ‘true’ quantified sentences with a 73% accu-
racy.

We note that our approach gives a systematic way
to disambiguate non-explicitly quantified sentences
such as generics, opening up new possibilities for im-
proved semantic parsing and recognising entailment.
Right now, many parsers give the same broad anal-
ysis to Mosquitoes are insects and Mosquitoes carry
malaria, involving an underspecified/generic quanti-
fier. This prevents inferring, for instance, that Mandie
the mosquito is definitely an insect but may or may
not carry malaria. In contrast, our system would at-
tribute the most plausible quantifiers to those sentences
(all/few), allowing us to produce correct inferences.

The focus of this paper was concept-predicate pairs

out of context. That is, we considered quantified sen-
tences where the restrictor was the entire set denoted
by a lexical item. A natural next step is to inves-
tigate the quantification of statements involving con-
textualised subsets. For instance, we should obtain a
different quantifier for taxis are yellow depending on
whether the sentence starts with In London... or In New
York... In future work, we will test our system on such
context-specific examples, using contextualised vector
representations such as the ones proposed by e.g. Erk
and Padó (2008) and Dinu and Lapata (2010).

We conclude by noting again that the set-theoretic
models produced in this work differ from formal se-
mantics models in important ways. They do not rep-
resent the world per se, but rather some shared beliefs
about the world, induced from an annotated dataset of
feature norms. This calls for a modified version of the
standard denotation function and for the replacement of
the truth function with a ‘plausibility’ function, which
would indicate how likely a stereotypical speaker might
be to agree with a particular sentence. While this would
be a fundamental departure from the core philosophy of
model theory, we feel that it may be a worthwhile en-
deavour, allowing us to preserve the immense benefits
of the set-theoretic apparatus in a cognitively plausible
fashion. Following this aim, we hope to expand the pre-
liminary framework presented here into a more expres-
sive vector-based interpretation of set theory, catering
for aspects not covered in this paper (e.g. cardinality,
non-intersective modification) and refining our notion
of a model, together with its relation to meaning.
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tured vector space model for word meaning in con-
text. In Proceedings of the 2008 Conference on
Empirical Methods in Natural Language Processing
(EMNLP2008), pages 897–906, Honolulu, HI.

Katrin Erk. 2012. Vector space models of word mean-
ing and phrase meaning: a survey. Language and
Linguistics Compass, 6:635–653.

Katrin Erk. 2013. Towards a semantics for distribu-
tional representations. In Proceedings of the Tenth
International Conference on Computational Seman-
tics (IWCS2013), Potsdam, Germany.

Katrin Erk. 2015. What do you know about an alli-
gator when you know the company it keeps? Un-
published draft. https://utexas.box.com/
s/ekznoh08afi1kpkbf0hb.

Andrea Frome, Greg S Corrado, Jon Shlens, Samy
Bengio, Jeff Dean, Tomas Mikolov, et al. 2013.
Devise: A deep visual-semantic embedding model.
In Advances in Neural Information Processing Sys-
tems, pages 2121–2129.
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Abstract

Compared to tree grammars, graph gram-
mars have stronger generative capacity
over structures. Based on an edge re-
placement grammar, in this paper we pro-
pose to use a synchronous graph-to-string
grammar for statistical machine transla-
tion. The graph we use is directly con-
verted from a dependency tree by labelling
edges. We build our translation model
in the log-linear framework with stan-
dard features. Large-scale experiments
on Chinese–English and German–English
tasks show that our model is significantly
better than the state-of-the-art hierarchical
phrase-based (HPB) model and a recently
improved dependency tree-to-string model
on BLEU, METEOR and TER scores. Ex-
periments also suggest that our model has
better capability to perform long-distance
reordering and is more suitable for trans-
lating long sentences.

1 Introduction

Compared to trees, which have dominated the field
of natural language processing (NLP) for decades,
graphs are more general for modelling natural lan-
guages. The corresponding grammars for recog-
nizing and producing graphs are more flexible and
powerful than tree grammars. However, because
of their high complexity, graph grammars have not
been widely used in NLP.

Recently, along with progress on graph-based
meaning representation, hyperedge replacement
grammars (HRG) (Drewes et al., 1997) have been
revisited, explored and used for semantic-based
machine translation (Jones et al., 2012). How-
ever, the translation process is rather complex and
the resources it relies on, namely abstract meaning
corpora, are limited as well.

As most available syntactic resources and tools
are tree-based, in this paper we propose to con-
vert dependency trees, which are usually taken as
a kind of shallow semantic representation, to de-
pendency graphs by labelling edges. We then use
a synchronous version of edge replacement gram-
mar (ERG) (Section 2), a special case of HRG,
to translate these graphs. The resulting translation
model has the same order of magnitude in terms
of time complexity with the hierarchical phrase-
based model (HPB) (Chiang, 2005) under a certain
restriction (Section 3).

Compared to dependency tree-to-string models,
using ERG for graph-to-string translation brings
some benefits (Section 3). Thanks to the stronger
generative capacity of the grammar, our model
can naturally translate siblings in a tree struc-
ture, which are usually treated as non-syntactic
phrases and handled by other techniques (Huck et
al., 2014; Xie et al., 2014). Furthermore, com-
pared to the known treelet approach (Quirk et al.,
2005) and Dep2Str (Xie et al., 2011), our method
not only uses treelets but also has a full capacity
of reordering.

We define our translation model (Section 4) in
the log-linear framework (Och and Ney, 2002).
Large-scale experiments (Section 5) on Chinese–
English and German–English, two language pairs
that have a high degree of syntactic reordering,
show that our method significantly improves trans-
lation quality over both HPB and Dep2Str, as
measured by BLEU (Papineni et al., 2002), TER
(Snover et al., 2006) and METEOR (Denkowski
and Lavie, 2011). We also find that the rules in
our model are more suitable for long-distance re-
ordering and translating long sentences.

2 Edge Replacement Grammar

As a special case of HRG, ERG is also a context-
free rewriting grammar to recognize and produce
graphs. Following HRG, the graph we use in this
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Figure 1: An example of a derivation in an ERG. Dark circles are external nodes.

paper is connected, nodes ordered, acyclic and
has edge labels but no node labels (Chiang et al.,
2013). We provide some formal definitions on
ERG.

Definition 1. A connected, edge-labeled, ordered
graph is a tuple H = 〈V,E, φ〉, where

• V is a finite set of nodes.

• E ⊆ V 2 is a finite set of edges.

• φ : E → C assigns a label (drawn from C)
to each edge.

In ERG, the elementary unit is a graph frag-
ment, which is also the right-hand side of a pro-
duction in the grammar. Its definition is as follows.

Definition 2. A graph fragment is a tuple H =
〈V,E, φ,X〉, where 〈V,E, φ〉 is a graph and X ∈
(V ∪ V 2) is a list of distinct nodes. Following
Chiang et al. (2013), we call these external nodes.

The external nodes indicate how to integrate a
graph into another one during a derivation. Dif-
ferent to HRG, ERG limits the number of external
nodes to 2 at most to make sure hyperedges do not
exist during a derivation. Now we define the ERG.

Definition 3. An edge replacement grammar is a
tuple 〈N,T, P, S〉, where

• N and T are disjoint finite sets of non-
terminal symbols and terminal symbols, re-
spectively.

• P is a finite set of productions of the form
A→ R, where A ∈ N and R is a graph frag-
ment, where edge-labels are from N

⋃
T .

• S ∈ N is the start symbol.

Figure 1 shows an example of a derivation in an
ERG to produce a graph. Starting from the start
symbol S, when a rule (A → R) is applied to an
edge e, the edge is replaced by the graph fragment
R. Just like in HRG, the ordering of nodes Ve in e
and external nodes XR in R implies the mapping
from Ve to XR (Chiang et al., 2013).

3 Graph-to-String Grammar

In SMT, we need a synchronous grammar to si-
multaneously parse an input graph and produce
translations. The graph we use in this paper is
from a dependency structure which is capable of
modelling long-distance relations in a sentence.

3.1 The Grammar
Before defining the synchronous grammar, we
firstly define a dependency graph which is a spe-
cial case of a graph.
Definition 4. A dependency graph is a tuple
〈V,E, φ,∆〉, where 〈V,E, φ〉 is a graph and ∆ is
a restriction: edges are ordered.

A dependency graph is directly derived from
a dependency tree by labeling edges with words,
as shown in Figure 2. Although in general graph
edges are unordered, in Definition 4 we keep word
order by ordering edges, because the word order is
an important piece of information for translation.

Similar to the graph fragment, a dependency-
graph fragment is defined as below.
Definition 5. A dependency-graph fragment is a
tuple 〈V,E, φ,∆, X〉, where 〈V,E, φ,∆〉 is a de-
pendency graph,X ∈ (V ∪V 2) is a list of external
nodes.
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Figure 2: An example of deriving a dependency
graph from a dependency tree by labelling edges
with words.

In this paper, we define a synchronous ERG
over dependency graphs as a dependency graph-
to-string grammar, which can be used for MT.

Definition 6. A dependency graph-to-string
grammar (DGSG) is a tuple 〈N,T, T ′, P, S〉,
where

• N is a finite set of non-terminal symbols.

• T and T ′ are finite sets of terminal symbols.

• S ∈ N is the start symbol.

• P is a finite set of productions of the form
〈A→ R,A′ → R′,∼〉, where A,A′ ∈ N , R
is a dependency-graph fragment over N

⋃
T

andR′ is a string overN
⋃
T ′. ∼ is a one-to-

one mapping between non-terminal symbols
in R and R′.

Figure 3 shows a derivation simultaneously pro-
ducing a Chinese dependency graph and an En-
glish string using a DGSG. Each time a rule is ap-
plied, the dependency-graph fragment in the rule
replaces an edge in the source graph, and the string
in the rule replaces a non-terminal in the target
string.

Proposition 1. DGSG has stronger generative ca-
pacity over graph-string pairs than both SCFG and
synchronous tree substitution grammar (STSG).

Proof. STSG has stronger generative capacity
over structures than SCFG (Chiang, 2012).1

Any STSG can easily be converted into a DGSG
by labelling edges in tree structures.

1The following STSG generates a trivial example of a
tree-string pair that no SCFG can generate, as SCFG must
always have an equal number of non-terminal symbols.

X
|
ε

:

X
|
X
|
ε

The following DGSG generates a trivial exam-
ple of a graph-string pair, which no STSG can gen-
erate, as the left-head side has no head nodes while
STSG always requires one to form a tree.

c:a b

This proof is also verified in Figure 3 where
the third rule is used to translate a non-syntactic
phrase, which can be a problem for dependency
tree-to-string methods. In addition, the second
rule translates a treelet and the first rule encodes
reordering information inside. All these three
aspects are uniformly modeled in our grammar,
which makes it more powerful than other methods,
such as the treelet approach and the Dep2Str.

3.2 Time Complexity and a Restriction

Given a dependency graph, training and decod-
ing time using DGSG depends on the number of
dependency-graph fragments. For example, for a
graph where the degree of a node is k, the number
of all possible fragments starting from the node is
O(2k). Therefore, the time complexity would be
exponential if we consider them all.

It is easy to find that the high complexity of
DGSG comes from the free combination of edges.
That means that a dependency-graph fragment can
cover discontinuous words of an input sentence.
However, this is not the convention in the field of
SMT.

For efficient training and decoding, we add a re-
striction to DGSG: each dependency-graph frag-
ment covers a continuous span of the source sen-
tence. This reduces the complexity from exponen-
tial time to cubic time.

3.3 Non-terminal Symbols

In this paper we build a dependency graph-to-
string model, so we only use one non-terminal
symbol X as in HPB on the target side. However,
on the source side we define non-terminal symbols
over Part-of-Speech (POS) tags, which can be eas-
ily obtained as a by-product of dependency pars-
ing.

We define the head of a dependency-graph frag-
ment H as a list of edges, the dependency head of
each of which is not in this fragment. Then the
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Figure 3: An example of a derivation in dependency graph-to-string grammar to produce a Chinese
dependency graph and an English string. Rules are included in dashed rectangles. Target strings are in
solid rectangles. External nodes are dark circles. This example is under the restriction in Section 3.2. In
addition to the start symbol S, non-terminal symbols for the source side are M and N , while the target
side only has one non-terminal X . The index in each non-terminal of a rule indicates the mapping.

36



NR_P_AD
Chenggong/AD

Zai/P

Nanfei/NR

Shijiebei/NR

Figure 4: An example inducing a non-terminal
symbol (left side) for a dependency-graph frag-
ment (right side). Each edge is labeled by a word
associated with its POS tag. The head of this frag-
ment includes three edges which are in the rectan-
gle.

non-terminal symbol for H is defined as the join-
ing of POS tags of its head (Li et al., 2012). Figure
4 shows an example.

3.4 Rule Extraction
As well as the restriction defined in Section 3.2
making the grammar much smaller, it also results
in a similar way of extracting rules as in HPB. In-
spired by HPB, we define the rule set over initial
pairs.

Given a word-aligned dependency graph-string
pair P = 〈G, e,∼〉, let Gji stand for the sub-graph
(it may not be connected) covering words from po-
sition i to position j. Then a rule 〈Gji , ej

′
i′ 〉 is an

initial pair of P , iff:

1. Gji is a dependency-graph fragment. That
means it is a connected sub-graph and has at
most two external nodes, nodes which con-
nect with nodes outside or are the root.

2. It is consistent with the word alignment ∼
(Och and Ney, 2004).

The set of rules from P satisfies the following:

1. If 〈Gji , ej
′
i′ 〉 is an initial pair, then

〈N(Gji )→ Gji , X → ej
′
i′ 〉

is a rule, where N(G) defines the non-
terminal symbol for G.

2. If 〈N(R) → R,X → R′〉 is a rule of P and
〈Gji , ej

′
i′ 〉 is an initial pair such that Gji is a

sub-graph of R and R′ = r1e
j′
i′ r2, then

〈N(R)→ R\Gji k, X → r1Xkr2〉

is a rule of P , where \ means replacing Gji
in R with an edge labelled with N(Gji ) and

k is a unique index for a pair of non-terminal
symbols.

As in HPB, in addition to rules extracted from
the parallel corpus, we also use glue rules to com-
bine fragments and translations when no matched
rule can be found.

Furthermore, we can use the same rule extrac-
tion algorithm as that in HPB, except that we need
to check if a span of a source sentence indicates
a dependency-graph fragment, in which case we
keep the dependency structure and induce a non-
terminal for the fragment.

4 Model and Decoding

We define our model in the log-linear framework
over a derivation d, as in Equation (1):

P (d) ∝
∏
i

φi(d)λi (1)

where φi are features defined on derivations and
λi are feature weights. In our experiments, we use
9 features:

• translation probabilities P (s|t) and P (t|s),
where s is the source graph fragment and t
is the target string.

• lexical translation probabilities Plex(s|t) and
Plex(t|s).

• language model lm(e) over translation e.

• rule penalty exp(−1).

• word penalty exp(|e|).

• glue penalty exp(−1).

• unknown words penalty exp(u(g)), where
u(g) is the number of unknown words in a
source graph g.

Our decoder is based on the conventional chart
parsing CYK algorithm (Kasami, 1965; Younger,
1967; Cocke and Schwartz, 1970). It searches for
the best derivation d∗ among all possible deriva-
tions D, as in Equation (2):

d∗ = argmax
d∈D

P (d) (2)

For each span of an input graph, the decoder
checks if it is a dependency-graph fragment. Then
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ZH–EN
corpus #sent. #words(ZH) #words(EN)
train 1.5M+ 38M+ ∼45M
dev 878 22,655 26,905
MT04 1,597 43,719 52,705
MT05 1,082 29,880 35,326

DE–EN
corpus #sent. #words(DE) #words(EN)
train 2M+ 52M+ 55M+
dev 3,003 72,661 74,753
WMT12 3,003 72,603 72,988
WMT13 3,000 63,412 64,810

Table 1: Chinese–English (ZH–EN) and German–
English (DE–EN) corpora. For the English side of
dev and test sets, words counts are averaged across
all references.

for each fragment, the decoder finds rules to trans-
late it. The translation of a large span can be ob-
tained by combining translations from its sub-span
using rules which have non-terminals. Finally,
glue rules are used to make sure that at least one
translation is produced.

5 Experiment

We conduct experiments on Chinese–English and
German–English translation tasks.

5.1 Datasets

The Chinese–English training corpus is from
LDC, including LDC2002E18, LDC2003E07,
LDC2003E14, LDC2004T07, the Hansards por-
tion of LDC2004T08 and LDC2005T06. NIST
2002 is taken as a development set to tune weights,
and NIST 2004 (MT04) and NIST 2005 (MT05)
are two test sets to evaluate systems. Table 1 pro-
vides a summary of this corpus. The Stanford Chi-
nese word segmenter (Chang et al., 2008) is used
to segment Chinese sentences. The Stanford de-
pendency parser (Chang et al., 2009) parses a Chi-
nese sentence into a projective dependency tree
which is then converted to a dependency graph in
our model.

The German–English training corpus is from
WMT 2014, including Europarl V7 and News
Commentary. News-test 2011 is taken as a de-
velopment set, while News-test 2012 (WMT12)
and News-test 2013 (WMT13) are our test sets.
Table 1 provides a summary of this corpus. We

use mate-tools2 to perform morphological analysis
and parse German sentences (Bohnet, 2010). Then
MaltParser3 converts a parse result into a projec-
tive dependency tree (Nivre and Nilsson, 2005).

5.2 Settings

In this paper, we mainly compare our system
(DGST) with HPB in Moses (Koehn et al., 2007).
We implement our model in Moses and take
the same settings as Moses HPB in all experi-
ments. In addition, translation results from a re-
cently open-source dependency tree-to-string sys-
tem, Dep2Str4 (Li et al., 2014), which is imple-
mented in Moses and improves the dependency-
based model in Xie et al. (2011), are also reported.
All systems use the same sets of features defined
in Section 4.

In all experiments, word alignment is performed
by GIZA++ (Och and Ney, 2003) with the heuris-
tic function grow-diag-final-and. We use SRILM
(Stolcke, 2002) to train a 5-gram language model
on the Xinhua portion of the English Gigaword
corpus 5th edition with modified Kneser-Ney dis-
counting (Chen and Goodman, 1996). Minimum
Error Rate Training (MERT) (Och, 2003) is used
to tune weights.

To obtain more reliable results, in each experi-
ment, we run MERT three times and report aver-
age scores. These scores are calculated by three
widely used automatic metrics in case-insensitive
mode: BLEU, METEOR and TER.

5.3 Results

Table 2 shows the scores of all three metrics on all
systems. Similar to Li et al. (2014), in our experi-
ments Dep2Str has on average a comparable result
with Moses HPB in terms of BLEU and METEOR
scores. However, it obtains a significantly higher
(i.e. worse) TER score on the Chinese–English
task. This may suggest that translations produced
by Dep2Str need more post-editing effort (He et
al., 2010).

By contrast, on all test sets, measured by all
metrics, our system is significantly better than
Moses HPB. On the Chinese–English task, our
system achieves an average gain of 1.25 (abso-
lute, 3.6% relative) BLEU score and 0.55 (abso-
lute, 1.7% relative) METEOR score while also ob-

2http://code.google.com/p/mate-tools/
3http://www.maltparser.org/
4http://computing.dcu.ie/˜liangyouli/

dep2str.zip
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Metric System
ZH–EN DE–EN

MT04 MT05 WMT12 WMT13

BLEU ↑
Moses HPB 35.6 33.8 20.2 22.7
Dep2Str 35.4 33.9 20.3 22.8
DGST 36.6 35.3 20.7 23.3

METEOR ↑
Moses HPB 31.6 31.9 28.6 29.7
Dep2Str 31.8 31.9 28.5 29.5∗

DGST 32.1 32.5 28.7 29.8

TER ↓
Moses HPB 57.0 58.3 63.2 59.5
Dep2Str 58.2∗ 59.6∗ 63.1 59.6
DGST 56.1 57.0 62.6 59.0

Table 2: Metric scores for all systems on Chinese–English (ZH–EN) and German–English (DE–EN) cor-
pus. Each score is the average score over three MERT runs. Bold figures mean a system is significantly
better than Moses HPB at p ≤ 0.01. Moses HPB is significantly better than systems with ∗ at p ≤ 0.01.

Length
Percentage

MT04 MT05 WMT12 WMT13
(0, 10] 7.6% 8.6% 15.0% 19.2%
(10, 20] 28.2% 26.0% 31.4% 37.2%
(20, 30] 28.2% 26.5% 26.3% 24.5%
(30, 40] 20.2% 23.8% 14.4% 12.0%
(40,∞) 15.7% 15.2% 12.9% 7.2%

Table 3: Statistics of sentence length on four test
sets.

taining a reduction of 1.1 (absolute, 1.91% rela-
tive) TER score on average.

On the German–English task, our system
achieves an average gain of 0.55 (absolute, 2.56%
relative) BLEU score and 0.1 (absolute, 0.35% rel-
ative) METEOR score and also obtains a reduction
of 0.55 (absolute, 0.89% relative) TER score on
average.

5.4 Analysis

As shown in Table 2, compared to Moses HPB
and Dep2Str, our system achieves higher transla-
tion quality as measured by three automatic met-
rics. In this section, we investigate whether de-
pendency structures bring benefits as expected on
long-distance reordering. Table 3 provides the
statistics on sentence length of our four test sets.

In both HPB and our model, the length range
of a reordering performed on an input sentence is
related to the use of glue grammars which bring
two benefits during decoding. When no matched
rule is found in the models, glue grammars are ap-
plied to make sure a translation is produced. In ad-
dition, because of the generalization capability of

rules, which typically are learned under a length
limitation, using them on long sentences could
cause translation quality to deteriorate. Therefore,
when the length of a phrase is greater than a cer-
tain value, glue grammars are also applied. There-
fore, our experiment of analysis is based on the
length limitation that a rule can cover (max. phrase
length) during decoding.

We set this max. phrase length to different val-
ues, including 10, 20 (default), 30, 40 and 50.
Figure 5 gives the BLEU scores on all test sets.
We find that on all different values, our system
achieves higher BLEU scores than Moses HPB.
In addition, when the max. phrase length be-
comes larger, Moses HPB shows a declining trend
in most cases, especially on the German–English
task (WMT12 and WMT13). However, our sys-
tem is less sensitive to this value. We hypothesize
that this is because rules from dependency graphs
have better generalization for translating longer
phrases and are more suitable for translating long
sentences.

5.5 Case Study

On a manual check, we find that translations pro-
duced by our system are more fluent than those of
both Moses HPB and Dep2Str. Figure 6 gives an
example comparing translations produced by three
systems on the Chinese–English task.

We first find a case of long-distance relation,
i.e. the subject-verb-object (SVO) structure in the
source sentence. In this example, this relation im-
plies a long-distance reordering, which moves the
translation of the object to the front of its mod-
ifiers, as shown in the given reference. Com-
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Figure 5: BLEU scores of Moses HPB and DGST (our system) when the length of maximum phrase that
a rule can cover during decoding is set to different values.
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Ref: The two sides welcomed the decision by the Iraqi Interim Governing Council to establish a special court to try the murderers.

HPB:  the two sides welcomed the 

interim iraqi authority on establishing 

a special court, trial of the murderer.

Dep2Str: the two sides welcomed the 

decision on the Establishment of a 

special court, justice murderers of the 

provisional governing council of iraq.

DGST: the two sides welcomed the decision 

of the iraqi interim governing council on the 

establishment of a special court, justice 

murderers.

Figure 6: An example of comparing translations produced by three systems on the Chinese–English
task. The source sentence is parsed into a dependency structure. Each source word is annotated by a
corresponding English word (or phrase).
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Figure 7: An example of inducing a dependency structure in Figure 6 to ”X的(of) X” structure in our
system by using treelets and non-syntactic phrases. í denotes one or more steps. All non-terminals are
simply represented by X.
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pared to Moses HPB, both Dep2Str and our sys-
tem, which rely on dependency structures, are ca-
pable of dealing with this. This also suggests that
dependency structures are useful for long-distance
reordering.

Furthermore, compared to Dep2Str, our system
produces a better translation for the ”X 的(of)
X” expression, which is not explicitly represented
in the dependency structure and thus results in a
wrong translation in Dep2Str. After looking into
the details of the translation process, we find that
our system induces the dependency structure to the
”X 的(of) X” structure by handling both treelets
and non-syntactic phrases. Figure 7 shows the pro-
cess of this induction.

6 Related Work

Dependency structures have been used in SMT for
a few years. Because of its better inter-lingual
phrasal cohesion properties (Fox, 2002), it is be-
lieved to be beneficial to translation.

Researchers have tried to use dependency struc-
tures on both target and source sides. Shen et
al. (2010) propose a string-to-dependency model
by using dependency fragments of neighbouring
words on the target side, which makes the model
easier to include a dependency-based language
model.

Menezes and Quirk (2005) and Quirk et al.
(2005) propose the treelet approach which uses de-
pendency structures on the source side. Xiong et
al. (2007) extend this approach by allowing gaps
in rules. However, their methods need a sepa-
rate reordering model to decide the position of
translated words (insertion problem). To avoid
this problem, Xie et al. (2011) propose to use
full head-dependent structures of a dependency
tree and build a new dependency-to-string model.
However, this model has difficulties in handling
non-syntactic phrasal rules and ignores treelets.
Meng et al. (2013) and Xie et al. (2014) further
augment this model by incorporating constituent
phrases and integrating fix/float structures (Shen
et al., 2010), respectively, to allow phrasal rules.
Li et al. (2014) extend this model by decomposing
head-dependent structures into treelets.

Different from these methods, by labelling
edges and using the ERG, our model considers the
three aspects in a unified way: treelet, reordering
and non-syntactic phrase. In addition, the ERG
also naturally provides a decision on what kind of

treelets and phrases should be used.

7 Conclusion

In this paper, we present a dependency graph-to-
string grammar based on a graph grammar, which
we call edge replacement grammar. This gram-
mar can simultaneously produce a pair of depen-
dency graph and string. With a restriction of us-
ing contiguous edges, our translation model built
using this grammar can decode an input depen-
dency graph, which is directly converted from a
dependency tree, in cubic time using the CYK al-
gorithm.

Experiments on Chinese–English and German–
English tasks show that our model is significantly
better than the hierarchical phrase-based model
and a recent dependency tree-to-string model
(Dep2Str) in Moses. We also find that the rules
used in our model are more suitable for long-
distance reordering and translating long sentences.

Although experiments show significant im-
provements over baselines, our model has limita-
tions that can be avenues for future work. The re-
striction used in this paper reduces the time com-
plexity but at the same time reduces the generative
capacity of graph grammars. Without allowing hy-
peredges or only using at most two external nodes
reduces the phrase coverage in our model as well.
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Abstract

We present a novel approach for unsu-
pervised induction of a Reordering Gram-
mar using a modified form of permuta-
tion trees (Zhang and Gildea, 2007), which
we apply to preordering in phrase-based
machine translation. Unlike previous ap-
proaches, we induce in one step both the
hierarchical structure and the transduction
function over it from word-aligned parallel
corpora. Furthermore, our model (1) han-
dles non-ITG reordering patterns (up to
5-ary branching), (2) is learned from all
derivations by treating not only labeling
but also bracketing as latent variable, (3) is
entirely unlexicalized at the level of re-
ordering rules, and (4) requires no linguis-
tic annotation.

Our model is evaluated both for accuracy
in predicting target order, and for its im-
pact on translation quality. We report sig-
nificant performance gains over phrase re-
ordering, and over two known preordering
baselines for English-Japanese.

1 Introduction

Preordering (Collins et al., 2005) aims at permut-
ing the words of a source sentence s into a new
order ś, hopefully close to a plausible target word
order. Preordering is often used to bridge long dis-
tance reorderings (e.g., in Japanese- or German-
English), before applying phrase-based models
(Koehn et al., 2007). Preordering is often bro-
ken down into two steps: finding a suitable tree
structure, and then finding a transduction function
over it. A common approach is to use monolin-
gual syntactic trees and focus on finding a trans-
duction function of the sibling subtrees under the
nodes (Lerner and Petrov, 2013; Xia and Mccord,
2004). The (direct correspondence) assumption

underlying this approach is that permuting the sib-
lings of nodes in a source syntactic tree can pro-
duce a plausible target order. An alternative ap-
proach creates reordering rules manually and then
learns the right structure for applying these rules
(Katz-Brown et al., 2011). Others attempt learn-
ing the transduction structure and the transduction
function in two separate, consecutive steps (DeN-
ero and Uszkoreit, 2011). Here we address the
challenge of learning both the trees and the trans-
duction functions jointly, in one fell swoop, from
word-aligned parallel corpora.

Learning both trees and transductions jointly
raises two questions. How to obtain suitable trees
for the source sentence and how to learn a distri-
bution over random variables specifically aimed
at reordering in a hierarchical model? In this
work we solve both challenges by using the fac-
torizations of permutations into Permutation Trees
(PETs) (Zhang and Gildea, 2007). As we ex-
plain next, PETs can be crucial for exposing the
hierarchical reordering patterns found in word-
alignments.

We obtain permutations in the training data by
segmenting every word-aligned source-target pair
into minimal phrase pairs; the resulting alignment
between minimal phrases is written as a permuta-
tion (1:1 and onto) on the source side. Every per-
mutation can be factorized into a forest of PETs
(over the source sentences) which we use as a la-
tent treebank for training a Probabilistic Context-
Free Grammar (PCFG) tailor made for preorder-
ing as we explain next.

Figure 1 shows two alternative PETs for the
same permutation over minimal phrases. The
nodes have labels (like P3142) which stand for lo-
cal permutations (called prime permutation) over
the child nodes; for example, the root label P3142
stands for prime permutation 〈3, 1, 4, 2〉, which
says that the first child of the root becomes 3rd on
the target side, the second becomes 1st, the third
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becomes 4th and the fourth becomes 2nd. The
prime permutations are non-factorizable permuta-
tions like 〈1, 2〉, 〈2, 1〉 and 〈2, 4, 1, 3〉.

We think PETs are suitable for learning pre-
ordering for two reasons. Firstly, PETs specify ex-
actly the phrase pairs defined by the permutation.
Secondly, every permutation is factorizable into
prime permutations only (Albert and Atkinson,
2005). Therefore, PETs expose maximal sharing
between different permutations in terms of both
phrases and their reordering. We expect this to be
advantageous for learning hierarchical reordering.

For learning preordering, we first extract an ini-
tial PCFG from the latent treebank of PETs over
the source sentences only. We initialize the non-
terminal set of this PCFG to the prime permuta-
tions decorating the PET nodes. Subsequently we
split these coarse labels in the same way as latent
variable splitting is learned for treebank parsing
(Matsuzaki et al., 2005; Prescher, 2005; Petrov et
al., 2006; Saluja et al., 2014). Unlike treebank
parsing, however, our training treebank is latent
because it consists of a whole forest of PETs per
training instance (s).

Learning the splits on a latent treebank of PETs
results in a Reordering PCFG which we use to
parse input source sentences into split-decorated
trees, i.e., the labels are the splits of prime permu-
tations. After parsing s, we map the splits back on
their initial prime permutations, and then retrieve
a reordered version ś of s. In this sense, our latent
splits are dedicated to reordering.

We face two technical difficulties alien to work
on latent PCFGs in treebank parsing. Firstly, as
mentioned above, permutations may factorize into
more than one PET (a forest) leading to a latent
training treebank.1 And secondly, after we parse
a source string s, we are interested in ś, the per-
muted version of s, not in the best derivation/PET.
Exact computation is a known NP-Complete prob-
lem (Sima’an, 2002). We solve this by a new
Minimum-Bayes Risk decoding approach using
Kendall reordering score as loss function, which
is an efficient measure over permutations (Birch
and Osborne, 2011; Isozaki et al., 2010a).

In summary, this paper contributes:
• A novel latent hierarchical source reordering

model working over all derivations of PETs

1All PETs for the same permutation share the same set
of prime permutations but differ only in bracketing structure
(Zhang and Gildea, 2007).

• A label splitting approach based on PCFGs
over minimal phrases as terminals, learned
from an ambiguous treebank, where the label
splits start out from prime permutations.
• A fast Minimum Bayes Risk decoding over

Kendall τ reordering score for selecting ś.
We report results for extensive experiments on
English-Japanese showing that our Reordering
PCFG gives substantial improvements when used
as preordering for phrase-based models, outper-
forming two existing baselines for this task.

2 PETs and the Hidden Treebank

We aim at learning a PCFG which we will use for
parsing source sentences s into synchronous trees,
from which we can obtain a reordered source ver-
sion ś. Since PCFGs are non-synchronous gram-
mars, we will use the nonterminal labels to encode
reordering transductions, i.e., this PCFG is implic-
itly an SCFG. We can do this because s and ś are
over the same alphabet.

Here, we have access only to a word-aligned
parallel corpus, not a treebank. The following
steps summarize our approach for acquiring a la-
tent treebank and how it is used for learning a Re-
ordering PCFG:

1. Obtain a permutation over minimal phrases
from every word-alignment.

2. Obtain a latent treebank of PETs by factoriz-
ing the permutations.

3. Extract a PCFG from the PETs with initial
nonterminals taken from the PETs.

4. Learn to split the initial nonterminals and es-
timate rule probabilities.

These steps are detailed in the next section, but we
will start out with an intuitive exposition of PETs,
the latent treebank and the Reordering Grammar.

Figure 1 shows examples of how PETs look
like – see (Zhang and Gildea, 2007) for algorith-
mic details. Here we label the nodes with nonter-
minals which stand for prime permutations from
the operators on the PETs. For example, non-
terminals P12, P21 and P3142 correspond re-
spectively to reordering transducers 〈1, 2〉, 〈2, 1〉
and 〈3, 1, 4, 2〉. A prime permutation on a source
node µ is a transduction dictating how the chil-
dren of µ are reordered at the target side, e.g.,
P21 inverts the child order. We must stress that
any similarity with ITG (Wu, 1997) is restricted
to the fact that the straight and inverted operators
of ITG are the binary case of prime permutations
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P12

Professor Chomsky ,   I   would like to  thank you

Ebenso möchte Ich Ihnen , Herr Professor Chomsky , herzlich danken

P3142

P12
P21

(a) Canonical PET

P12

Professor Chomsky ,   I   would like to  thank you

Ebenso möchte Ich Ihnen , Herr Professor Chomsky , herzlich danken

P3142

P12
P21

(b) Alternative PET

Figure 1: Possible Permutation Trees (PETs) for one sentence pair

in PETs (P12 and P21). ITGs recognize only the
binarizable permutations, which is a major restric-
tion when used on the data: there are many non-
binarizable permutations in actual data (Welling-
ton et al., 2006). In contrast, our PETs are ob-
tained by factorizing permutations obtained from
the data, i.e., they exactly fit the range of prime
permutations in the parallel corpus. In practice we
limit them to maximum arity 5.

We can extract PCFG rules from the PETs, e.g.,
P21 → P12 P2413. However, these rules are
decorated with too coarse labels. A similar prob-
lem was encountered in non-lexicalized monolin-
gual parsing, and one solution was to lexicalize
the productions (Collins, 2003) using head words.
But linguistic heads do not make sense for PETs,
so we opt for the alternative approach (Matsuzaki
et al., 2005), which splits the nonterminals and
softly percolates the splits through the trees gradu-
ally fitting them to the training data. Splitting has
a shadow side, however, because it leads to com-
binatorial explosion in grammar size.

Suppose for example node P21 could split into
P211 and P212 and similarly P2413 splits into
P24131 and 24132. This means that rule P21 →
P12 P2413 will form eight new rules:

P211 → P121 P24131 P211 → P121 P24132

P211 → P122 P24131 P211 → P122 P24132

P212 → P121 P24131 P212 → P121 P24132

P212 → P122 P24131 P212 → P122 P24132

Should we want to split each nonterminal into
30 subcategories, then an n-ary rule will split
into 30n+1 new rules, which is prohibitively large.
Here we use the “unary trick” as in Figure 2. The
superscript on the nonterminals denotes the child
position from left to right. For example P212

1

means that this node is a second child, and the

mother nonterminal label is P211. For the running
example rule, this gives the following rules:

P211 → P211
1 P212

1 P212 → P211
2 P212

2

P211
1 → P121 P212

1 → P24131

P211
1 → P122 P212

1 → P24132

P211
2 → P121 P212

2 → P24131

P211
2 → P122 P212

2 → P24132

The unary trick leads to substantial reduction in
grammar size, e.g., for arity 5 rules and 30 splits
we could have had 306 = 729000000 split-rules,
but with the unary trick we only have 30+302∗5 =
4530 split rules. The unary trick was used in
early lexicalized parsing work (Carroll and Rooth,
1998).2 This split PCFG constitutes a latent
PCFG because the splits cannot be read of a tree-
bank. It must be learned from the latent treebank
of PETs, as described next.

P12

Professor Chomsky ,   I   would like to  thank you

Ebenso möchte Ich Ihnen , Herr Professor Chomsky , herzlich danken

P3142

P12 P21

P121 P122

P121 P122

P211 P212

P31421

P31422

P31423

P31424

Figure 2: Permutation Tree with unary trick

3 Details of Latent Reordering PCFG

Obtaining permutations Given a source sen-
tence s and its alignment a to a target sentence

2After applying the unary trick, we add a constraint on
splitting: all nonterminals on an n-ary branching rule must
be split simultaneously.
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t in the training corpus, we segment 〈s,a, t〉 into
a sequence of minimal phrases sm (maximal se-
quence) such that the reordering between these
minimal phrases constitutes a permutation πm.
We do not extract non-contiguous or non-minimal
phrases because reordering them often involves
complicated transductions which could hamper
the performance of our learning algorithm.3

Unaligned words Next we describe the use of
the factorization of permutations into PET forests
for training a PCFG model. But first we need
to extend the PETs to allow for unaligned words.
An unaligned word is joined with a neighboring
phrase to the left or the right, depending on the
source language properties (e.g., whether the lan-
guage is head-initial or -final (Chomsky, 1970)).
Our experiments use English as source language
(head-initial), so the unaligned words are joined
to phrases to their right. This modifies a PET by
adding a new binary branching node µ (dominat-
ing the unaligned word and the phrase it is joined
to) which is labeled with a dedicated nonterminal:
P01 if the unaligned word joins to the right and
P10 if it joins to the left.

3.1 Probability model

We decompose the permutation πm into a forest
of permutation trees PEF (πm) in O(n3), follow-
ing algorithms in (Zhang et al., 2008; Zhang and
Gildea, 2007) with trivial modifications. Each
PET ∆ ∈ PEF (πm) is a different bracketing
(differing in binary branching structure only). We
consider the bracketing hidden in the latent tree-
bank, and apply unsupervised learning to induce a
distribution over possible bracketings. Our prob-
ability model starts from the joint probability of a
sequence of minimal phrases sm and a permuta-
tion πm over it. This demands summing over all
PETs ∆ in the forest PEF (πm), and for every
PET also over all its label splits, which are given
by the grammar derivations d:

P (sm, πm) =
∑

∆∈PEF (πm)

∑
d∈∆

P (d, sm) (1)

The probability of a derivation d is a product of
probabilities of all the rules r that build it:

P (sm, πm) =
∑

∆∈PEF (πm)

∑
d∈∆

∏
r∈d

P (r) (2)

3Which differs from (Quirk and Menezes, 2006).

As usual, the parameters of this model are the
PCFG rule probabilities which are estimated from
the latent treebank using EM as explained next.

3.2 Learning Splits on Latent Treebank

For training the latent PCFG over the latent tree-
bank, we resort to EM (Dempster et al., 1977)
which estimates PCFG rule probabilities to max-
imize the likelihood of the parallel corpus in-
stances. Computing expectations for EM is
done efficiently using Inside-Outside (Lari and
Young, 1990). As in other state splitting models
(Matsuzaki et al., 2005), after splitting the non-
terminals, we distribute the probability uniformly
over the new rules, and we add to each new rule
some random noise to break the symmetry. We
split the non-terminals only once as in (Matsuzaki
et al., 2005) (unlike (Petrov et al., 2006)). For es-
timating the distribution for unknown words we
replace all words that appear ≤ 3 times with the
“UNKNOWN” token.

3.3 Inference

We use CKY+ (Chappelier and Rajman, 1998) to
parse a source sentence s into a forest using the
learned split PCFG. Unfortunately, computing the
most-likely permutation (or alternatively ś) as in

argmax
π∈Π

∑
∆∈PEF (π)

∑
d∈∆

P (d, πm)

from a lattice of permutations Π using a PCFG
is NP-complete (Sima’an, 2002). Existing tech-
niques, like variational decoding or Minimum-
Bayes Risk (MBR), used for minimizing loss over
trees as in (Petrov and Klein, 2007), are not di-
rectly applicable here. Hence, we opt for mini-
mizing the risk of making an error under a loss
function over permutations using the MBR deci-
sion rule (Kumar and Byrne, 2004):

π̂ = argmin
π

∑
πr

Loss(π, πr)P (πr) (3)

The loss function we minimize is Kendall τ (Birch
and Osborne, 2011; Isozaki et al., 2010a) which
is a ratio of wrongly ordered pairs of words (in-
cluding gapped pairs) to the total number of pairs.
We do Monte Carlo sampling of 10000 derivations
from the chart of the s and then find the least risky
permutation in terms of this loss. We sample from
the true distribution by sampling edges recursively
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using their inside probabilities. An empirical dis-
tribution over permutations P (π) is given by the
relative frequency of π in the sample.

With large samples it is hard to efficiently com-
pute expected Kendall τ loss for each sampled
hypothesis. For sentence of length k and sam-
ple of size n the complexity of a naive algorithm
is O(n2k2). Computing Kendall τ alone takes
O(k2). We use the fact that Kendall τ decom-
poses as a linear function over all skip-bigrams b
that could be built for any permutation of length k:

Kendall(π, πr) =
∑
b

1− δ(π, b)
k(k−1)

2

δ(πr, b) (4)

Here δ returns 1 if permutation π contains the skip
bigram b, otherwise it returns 0. With this decom-
position we can use the method from (DeNero et
al., 2009) to efficiently compute the MBR hypoth-
esis. Combining Equations 3 and 4 we get:

π̂ = argmin
π

∑
πr

∑
b

1− δ(π, b)
k(k−1)

2

δ(πr, b)P (πr) (5)

We can move the summation inside and reformu-
late the expected Kendall τ loss as expectation
over the skip-bigrams of the permutation.

= argmin
π

∑
b

(1− δ(π, b))
[∑

πr
δ(πr, b)P (πr)

]
(6)

= argmin
π

∑
b

(1− δ(π, b))EP (πr)δ(πr, b) (7)

= argmax
π

∑
b

δ(π, b)EP (πr)δ(πr, b) (8)

This means we need to pass through the sampled
list only twice: (1) to compute expectations over
skip bigrams and (2) to compute expected loss of
each sampled permutation. The time complexity
is O(nk2) which is quite fast in practice.

4 Experiments

We conduct experiments with three baselines:
• Baseline A: No preordering.
• Baseline B: Rule based preordering (Isozaki

et al., 2010b), which first obtains an HPSG
parse tree using Enju parser 4 and after that
swaps the children by moving the syntactic
head to the final position to account for differ-
ent head orientation in English and Japanese.

4http://www.nactem.ac.uk/enju/

• Baseline C: LADER (Neubig et al., 2012):
latent variable preordering that is based on
ITG and large-margin training with latent
variables. We used LADER in standard set-
tings without any linguistic features (POS
tags or syntactic trees).

And we test four variants of our model:
• RGleft - only canonical left branching PET
• RGright - only canonical right branching PET
• RGITG-forest - all PETs that are binary (ITG)
• RGPET-forest - all PETs.

We test these models on English-Japanese
NTCIR-8 Patent Translation (PATMT) Task. For
tuning we use all NTCIR-7 dev sets and for test-
ing the test set from NTCIR-9 from both direc-
tions. All used data was tokenized (English with
Moses tokenizer and Japanese with KyTea 5) and
filtered for sentences between 4 and 50 words. A
subset of this data is used for training the Reorder-
ing Grammar, obtained by filtering out sentences
that have prime permutations of arity > 5, and for
the ITG version arity > 2. Baseline C was trained
on 600 sentences because training is prohibitively
slow. Table 1 shows the sizes of data used.

corpus #sents #words #words
source target

train RGPET 786k 21M –
train RGITG 783k 21M –
train LADER 600 15k –
train translation 950k 25M 30M
tune translation 2k 55K 66K
test translation 3k 78K 93K

Table 1: Data stats

The Reordering Grammar was trained for 10 it-
erations of EM on train RG data. We use 30 splits
for binary non-terminals and 3 for non-binary.
Training on this dataset takes 2 days and parsing
tuning and testing set without any pruning takes
11 and 18 hours respectively.

4.1 Intrinsic evaluation

We test how well our model predicts gold reorder-
ings before translation by training the alignment
model using MGIZA++ 6 on the training corpus
and using it to align the test corpus. Gold re-
orderings for the test corpus are obtained by sort-
ing words by their average target position and
(unaligned words follow their right neighboring

5http://www.phontron.com/kytea/
6http://www.kyloo.net/software/doku.php/mgiza:overview
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word). We use Kendall τ score for evaluation
(note the difference with Section 3.3 where we de-
fined it as a loss function).

Table 2 shows that our models outperform all
baselines on this task. The only strange result
here is that rule-based preordering obtains a lower
score than no preordering, which might be an ar-
tifact of the Enju parser changing the tokenization
of its input, so the Kendall τ of this system might
not really reflect the real quality of the preorder-
ing. All other systems use the same tokenization.

Kendall τ
ANo preordering 0.7655
BRule based 0.7567
CLADER 0.8176
RGleft-branching 0.8201
RGright-branching 0.8246
RGITG-forest 0.823
RGPET-forest 0.8255

Table 2: Reordering prediction

4.2 Extrinsic evaluation in MT

The reordered output of all the mentioned base-
lines and versions of our model are translated with
phrase-based MT system (Koehn et al., 2007) (dis-
tortion limit set to 6 with distance based reordering
model) that is trained on gold preordering of the
training data 7 ś − t. The only exception is Base-
line A which is trained on original s− t.

We use a 5-gram language model trained with
KenLM 8, tune 3 times with kb-mira (Cherry and
Foster, 2012) to account for tuner instability and
evaluated using Multeval 9 for statistical signifi-
cance on 3 metrics: BLEU (Papineni et al., 2002),
METEOR (Denkowski and Lavie, 2014) and TER
(Snover et al., 2006). We additionally report
RIBES score (Isozaki et al., 2010a) that concen-
trates on word order more than other metrics.

Single or all PETs? In Table 3 we see that
using all PETs during training makes a big im-
pact on performance. Only the all PETs variants

7Earlier work on preordering applies the preordering
model to the training data to obtain a parallel corpus of
guessed ś − t pairs, which are the word re-aligned and then
used for training the back-end MT system (Khalilov and
Sima’an, 2011). We skip this, we take the risk of mismatch
between the preordering and the back-end system, but this
simplifies training and saves a good amount of training time.

8http://kheafield.com/code/kenlm/
9https://github.com/jhclark/multeval

System BLEU ↑ METEOR ↑ TER ↓ RIBES ↑
ANo preord. 27.8 48.9 59.2 68.29
BRule based 29.6 48.7 59.2 71.12
CLADER 31.1 50.5 56.0 74.29

RGleft 31.2AB 50.5AB 56.3AB
C 74.45

RGright 31.4AB 50.5AB 56.3AB
C 75.29

RGITG-forest 31.6ABC 50.8ABC 55.7ABC 75.29
RGPET-forest 32.0ABC 51.0ABC 55.7ABC 75.62

Table 3: Comparison of different preordering
models. Superscripts A, B and C signify if the sys-
tem is significantly better (p < 0.05) than the re-
spective baseline or significantly worse (in which
case it is a subscript). Significance tests were not
computed for RIBES. Score is bold if the system
is significantly better than all the baselines.

(RGITG-forest and RGPET-forest) significantly outper-
form all baselines. If we are to choose a single
PET per training instance, then learning RG from
only left-branching PETs (the one usually cho-
sen in other work, e.g. (Saluja et al., 2014)) per-
forms slightly worse than the right-branching PET.
This is possibly because English is mostly right-
branching. So even though both PETs describe the
same reordering, RGright captures reordering over
English input better than RGleft.

All PETs or binary only? RGPET-forest performs
significantly better than RGITG-forest (p < 0.05).
Non-ITG reordering operators are predicted rarely
(in only 99 sentences of the test set), but they
make a difference, because these operators often
appear high in the predicted PET. Furthermore,
having these operators during training might allow
for better fit to the data.

How much reordering is resolved by the
Reordering Grammar? Obviously, completely
factorizing out the reordering from the transla-
tion process is impossible because reordering de-
pends to a certain degree on target lexical choice.
To quantify the contribution of Reordering Gram-
mar, we tested decoding with different distortion
limit values in the SMT system. We compare the
phrase-based (PB) system with distance based cost
function for reordering (Koehn et al., 2007) with
and without preordering.

Figure 3 shows that Reordering Grammar
gives substantial performance improvements at
all distortion limits (both BLEU and RIBES).
RGPET-forest is less sensitive to changes in decoder
distortion limit than standard PBSMT. The perfor-
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Figure 3: Distortion effect on BLEU and RIBES

mance of RGPET-forest varies only by 1.1 BLEU
points while standard PBSMT by 4.3 BLEU
points. Some local reordering in the decoder
seems to help RGPET-forest but large distortion
limits seem to degrade the preordering choice.
This shows also that the improved performance of
RGPET-forest is not only a result of efficiently ex-
ploring the full space of permutations, but also a
result of improved scoring of permutations.

System BLEU ↑ METEOR ↑ TER ↓ RIBES ↑
DPBMSD 29.6 50.1 58.0 68.97
EHiero 32.6 52.1 54.5 74.12

RGPET-forest+MSD 32.4D 51.3D
E 55.3D

E 75.72

Table 4: Comparison to MSD and Hiero

Does the improvement remain for a decoder
with MSD reordering model? We compare the
RGPET-forest preordered model against a decoder
that uses the strong MSD model (Tillmann, 2004;
Koehn et al., 2007). Table 4 shows that using
Reordering Grammar as front-end to MSD re-
ordering (full Moses) improves performance by
2.8 BLEU points. The improvement is confirmed
by METEOR, TER and RIBES. Our preordering
model and MSD are complementary – the Re-
ordering Grammar captures long distance reorder-
ing, while MSD possibly does better local reorder-
ings, especially reorderings conditioned on the
lexical part of translation units.

Interestingly, the MSD model (BLEU 29.6)
improves over distance-based reordering (BLEU
27.8) by (BLEU 1.8), whereas the difference be-
tween these systems as back-ends to Reordering
Grammar (respectively BLEU 32.4 and 32.0) is

far smaller (0.4 BLEU). This suggests that a ma-
jor share of reorderings can be handled well by
preordering without conditioning on target lexical
choice. Furthermore, this shows that RGPET-forest
preordering is not very sensitive to the decoder’s
reordering model.

Comparison to a Hierarchical model (Hiero).
Hierarchical preordering is not intended for a hi-
erarchical model as Hiero (Chiang, 2005). Yet,
here we compare our preordering system (PB
MSD+RG) to Hiero for completeness, while we
should keep in mind that Hiero’s reordering model
has access to much richer training data. We will
discuss these differences shortly.

Table 4 shows that the difference in BLEU is
not statistically significant, but there is more dif-
ference in METEOR and TER. RIBES, which
concentrates more on reordering, prefers Reorder-
ing Grammar over Hiero. It is somewhat sur-
prising that a preordering model combined with a
phrase-based model succeeds to rival Hiero’s per-
formance on English-Japanese. Especially when
looking at the differences between the two:

1. Reordering Grammar uses only minimal
phrases, while Hiero uses composite (longer)
phrases which encapsulate internal reorder-
ings, but also non-contiguous phrases.

2. Hiero conditions its reordering on the lexical
target side, whereas the Reordering Grammar
does not (by definition).

3. Hiero uses a range of features, e.g., a lan-
guage model, while Reordering Grammar is
a mere generative PCFG.

The advantages of Hiero can be brought to bear
upon Reordering Grammar by reformulating it as
a discriminative model.

Which structure is learned? Figure 4 shows
an example PET output showing how our model
learns: (1) that the article “the” has no equiva-
lent in Japanese, (2) that verbs go after their ob-
ject, (3) to use postpositions instead of preposi-
tions, and (4) to correctly group certain syntactic
units, e.g. NPs and VPs.

5 Related work

The majority of work on preordering is based
on syntactic parse trees, e.g., (Lerner and Petrov,
2013; Khalilov and Sima’an, 2011; Xia and Mc-
cord, 2004). Here we concentrate on work that
has common aspects with this work. Neubig et
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Figure 4: Example parse of English sentence that predicts reordering for English-Japanese

al (2012) trains a latent non-probabilistic discrim-
inative model for preordering as an ITG-like gram-
mar limited to binarizable permutations. Tromble
and Eisner (2009) use ITG but do not train the
grammar. They only use it to constrain the lo-
cal search. DeNero and Uszkoreit (2011) present
two separate consecutive steps for unsupervised
induction of hierarchical structure (ITG) and the
induction of a reordering function over it. In con-
trast, here we learn both the structure and the re-
ordering function simultaneously. Furthermore, at
test time, our inference with MBR over a mea-
sure of permutation (Kendall) allows exploiting
both structure and reordering weights for infer-
ence, whereas test-time inference in (DeNero and
Uszkoreit, 2011) is also a two step process – the
parser forwards to the next stage the best parse.

Dyer and Resnik (2010) treat reordering as a la-
tent variable and try to sum over all derivations
that lead not only to the same reordering but also
to the same translation. In their work they consider
all permutations allowed by a given syntactic tree.

Saers et al (2012) induce synchronous gram-
mar for translation by splitting the non-terminals,
but unlike our approach they split generic non-
terminals and not operators. Their most expres-
sive grammar covers only binarizable permuta-
tions. The decoder that uses this model does not
try to sum over many derivations that have the
same yield. They do not make independence as-
sumption like our “unary trick” which is proba-
bly the reason they do not split more than 8 times.
They do not compare their results to any other
SMT system and test on a very small dataset.

Saluja et al (2014) attempts inducing a refined
Hiero grammar (latent synchronous CFG) from
Normalized Decomposition Trees (NDT) (Zhang
et al., 2008). While there are similarities with

the present work, there are major differences. On
the similarity side, NDTs are decomposing align-
ments in ways similar to PETs, and both Saluja’s
and our models refine the labels on the nodes of
these decompositions. However, there are major
differences between the two:

• Our model is completely monolingual and
unlexicalized (does not condition its reorder-
ing on the translation) in contrast with the La-
tent SCFG used in (Saluja et al., 2014),
• Our Latent PCFG label splits are defined

as refinements of prime permutations, i.e.,
specifically designed for learning reordering,
whereas (Saluja et al., 2014) aims at learn-
ing label splitting that helps predicting NDTs
from source sentences,
• Our model exploits all PETs and all deriva-

tions, both during training (latent treebank)
and during inferences. In (Saluja et al., 2014)
only left branching NDT derivations are used
for learning the model.
• The training data used by (Saluja et al., 2014)

is about 60 times smaller in number of words
than the data used here; the test set of (Saluja
et al., 2014) also consists of far shorter sen-
tences where reordering could be less crucial.

A related work with a similar intuition is presented
in (Maillette de Buy Wenniger and Sima’an,
2014), where nodes of a tree structure similar
to PETs are labeled with reordering patterns ob-
tained by factorizing word alignments into Hierar-
chical Alignment Trees. These patterns are used
for labeling the standard Hiero grammar. Unlike
this work, the labels extracted by (Maillette de
Buy Wenniger and Sima’an, 2014) are clustered
manually into less than a dozen labels without the
possibility of fitting the labels to the training data.
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6 Conclusion

We present a generative Reordering PCFG model
learned from latent treebanks over PETs obtained
by factorizing permutations over minimal phrase
pairs. Our Reordering PCFG handles non-ITG
reordering patterns (up to 5-ary branching) and
it works with all PETs that factorize a permuta-
tion (rather than a single PET). To the best of our
knowledge this is the first time both extensions
are shown to improve performance. The empiri-
cal results on English-Japanese show that (1) when
used for preordering, the Reordering PCFG helps
particularly with relieving the phrase-based model
from long range reorderings, (2) combined with
a state-of-the-art phrase model, Reordering PCFG
shows performance not too different from Hiero,
supporting the common wisdom of factorizing
long range reordering outside the decoder, (3) Re-
ordering PCFG generates derivations that seem
to coincide well with linguistically-motivated re-
ordering patterns for English-Japanese. There are
various direction we would like to explore, the
most obvious of which are integrating the learned
reordering with other feature functions in a dis-
criminative setting, and extending the model to
deal with non-contiguous minimal phrases.
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Abstract

Divergent word order between languages
causes delay in simultaneous machine
translation. We present a sentence rewrit-
ing method that generates more mono-
tonic translations to improve the speed-
accuracy tradeoff. We design grammati-
cality and meaning-preserving syntactic
transformation rules that operate on con-
stituent parse trees. We apply the rules
to reference translations to make their
word order closer to the source language
word order. On Japanese-English transla-
tion (two languages with substantially dif-
ferent structure), incorporating the rewrit-
ten, more monotonic reference translation
into a phrase-based machine translation
system enables better translations faster
than a baseline system that only uses gold
reference translations.

1 Introduction

Simultaneous interpretation is challenging because
it demands both quality and speed. Conventional
batch translation waits until the entire sentence is
completed before starting to translate. This merely
optimizes translation quality and often introduces
undesirable lag between the speaker and the audi-
ence. Simultaneous interpretation instead requires
a tradeoff between quality and speed. A common
strategy is to translate independently translatable
segments as soon as possible. Various segmenta-
tion methods (Fujita et al., 2013; Oda et al., 2014)
reduce translation delay; they are limited, however,
by the unavoidable word reordering between lan-
guages with drastically different word orders. We
show an example of Japanese-English translation
in Figure 1. Consider the batch translation: in En-
glish, the verb change comes immediately after the
subject We, whereas in Japanese it comes at the end

of the sentence; therefore, to produce an intelligible
English sentence, we must translate the object after
the final verb is observed, resulting in one large and
painfully delayed segment.

To reduce structural discrepancy, we can apply
syntactic transformations to make the word order
of one language closer to the other. Consider the
monotone translation in Figure 1. By passivizing
the English sentence, we can cache the subject and
begin translating before observing the final verb.
Furthermore, by using the English possessive, we
mimic the order of the Japanese genitive construc-
tion. These transformations enable us to divide the
input into shorter segments, thus reducing transla-
tion delay.

To produce such monotone translations, a
straightforward approach is to incorporate inter-
pretation data into the learning of a machine trans-
lation (MT) system, because human interpreters
use a variety of strategies (Shimizu et al., 2014;
Camayd-Freixas, 2011; Tohyama and Matsubara,
2006) to fine-tune the word order. Shimizu et
al. (2013) shows that this approach improves the
speed-accuracy tradeoff. However, existing paral-
lel simultaneous interpretation corpora (Shimizu
et al., 2014; Matsubara et al., 2002; Bendazzoli
and Sandrelli, 2005) are often small, and collecting
new data is expensive due to the inherent costs of
recording and transcribing speeches (Paulik and
Waibel, 2010). In addition, due to the intense time
pressure during interpretation, human interpreta-
tion has the disadvantage of simpler, less precise
diction (Camayd-Freixas, 2011; Al-Khanji et al.,
2000) compared to human translations done at the
translator’s leisure, allowing for more introspection
and precise word choice.

We aim to address the data scarcity problem and
combine translators’ lexical precision and inter-
preters’ syntactic flexibility. We propose to rewrite
the reference translation in a way that uses the
original lexicon, obeys standard grammar rules of
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�
�           ���              ��     �         ���               	�    ���  
 !
We-TOP  government-GEN  structure  and  composition-ACC  change  should  COP

Source:

�
�  ||                    ���������	���� 
 !
    We        should change the structure and composition of the government       

�
�  ||         ���        ||          ������        ||   	����
 !
                the government’s   structure and composition   should be changed by us

Batch:

Monotone:

Figure 1: Divergent word order between language pairs can cause long delays in simultaneous translation:
Segments (||) mark the portions of the sentence that can be translated together. (Case markers: topic (TOP),
genitive (GEN), accusative (ACC), copula (COP).)

the target language, preserves the original seman-
tics, and yields more monotonic translations. We
then train the MT system with the rewritten refer-
ences so that it learns how to produce low-latency
translations from the data. A data-driven approach
to learning these rewriting rules is hampered by
the dearth of parallel data: we have few examples
of text that have been both interpreted and trans-
lated. Therefore, we design syntactic transforma-
tion rules based on linguistic analysis of the source
and the target languages. We apply these rules to
parsed text and decide whether to accept the rewrit-
ten sentence based on the amount of delay reduc-
tion. In this work, we focus on Japanese to English
translation, because (i) Japanese and English have
significantly different word orders (SOV vs. SVO);
and consequently, (ii) the syntactic constituents re-
quired earlier by an English sentence often come
late in the corresponding Japanese sentence.

We evaluate our approach using standard ma-
chine translation data (the Reuters newsfeed
Japanese-English corpus) in a simultaneous trans-
lation setting. Our experimental results show that
including the rewritten references into the learning
of a phrase-based MT system results in a better
speed-accuracy tradeoff against both the original
and the rewritten reference translations.

2 The Problem of Delay Reduction

Simultaneous interpretation has two goals: produc-
ing good translations and producing them promptly.
However, most existing parallel corpora and MT
systems do not address the issue of delay during
translation. We explicitly adapt the training data
by rewriting rules to reduce delay. We first define
translation delay and describe—in general terms—
our rewriting rules. In the next section, we describe
the rules in more detail.

While we are motivated by real-time interpreta-
tion, to simplify our problem, we assume that we
have perfect text input. Given this constraint, a typ-
ical simultaneous interpretation system (Sridhar et
al., 2013; Fujita et al., 2013; Oda et al., 2014) pro-
duces partial translations of consecutive segments
in the source sentence and concatenates them to
produce a complete translation. We define the trans-
lation delay of a sentence as the average number
of tokens the system has to observe between trans-
lation of two consecutive segments (denoted by #
words/seg).1 For instance, the minimum delay of
1 word/seg is achieved when we translate immedi-
ately upon hearing a word. At test time, when the
input is segmented, the delay is the average seg-
ment length. During the data preprocessing step of
rewriting, we calculate delay from word alignments
(Section 4).

Given a reference batch translation x, we ap-
ply a set of rewriting rulesR to x to minimize its
delay. A rewriting rule r ∈ R is a mapping that
takes the constituent parse tree of x as input and
outputs a modified parse tree, which specifies a
rewritten sentence x′. The tree-editing operation
includes node deletion, insertion, and swapping, as
well as induced changes of word form and node
label. A valid transformation rule should rearrange
constituents in x to follow the word order of the
input sentence as closely as possible, subject to
grammatical constraints and preservation of the
original meaning.

1Ideally, delay should be based on time lapse. However,
timestamping is not applicable to typical MT corpus, therefore
we approximate it by number of tokens and ignore decoding
time.
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3 Transformation Rules

We design a variety of syntactic transformation
rules for Japanese-English translation motivated by
their structural differences. Our rules cover verb,
noun, and clause reordering. While we specifi-
cally focus on Japanese to English, many rules are
broadly applicable to SOV to SVO languages.

3.1 Verb Phrases

The most significant difference between Japanese
and English is that the head of a verb phrase comes
at the end of Japanese sentences. In English, it occu-
pies one of the initial positions. We now introduce
rules that can postpone a head verb.

Passivization and Activization In Japanese, the
standard structure of a sentence is NP1 NP2 verb,
where case markers following the verb indicate
the voice of the sentence. However, in English, we
have NP1 verb NP2, where the form of the verb
indicates its voice. Changing the voice is particu-
larly useful when NP2 (object in an active-voice
sentence and subject in a passive-voice sentence)
is long. By reversing positions of verb and NP2,
we are not held back by the upcoming verb and can
start to translate NP2 immediately. Figure 1 shows
an example in which passive voice can help make
the target and source word orders more compatible,
but it is not the case that passivizing every sentence
would be a good idea; sometimes making a pas-
sive sentence active makes the word orders more
compatible if the objects are relatively short:

O: The talk was denied by the boycott group
spokesman.

R: The boycott group spokesman denied the talk.

Quotative Verbs Quotative verbs are verbs that,
syntactically and semantically, resemble said and
often start an independent clause. Such verbs are
frequent, especially in news, and can be moved to
the end of a sentence:

O: They announced that the president will re-
structure the division.

R: The president will restructure the division,
they announced.

In addition to quotative verbs, candidates typi-
cally include factive (e.g., know, realize, observe),
factive-like (e.g., announce, determine), belief (e.g.,
believe, think, suspect), and antifactive (e.g., doubt,
deny) verbs. When these verbs are followed by a

clause (S or SBAR), we move the verb and its sub-
ject to the end of the clause.

While some exploratory work automatically ex-
tracts factive verbs, to our knowledge, an exhaus-
tive list does not exist. To obtain a list with rea-
sonable coverage, we exploit the fact that Japanese
has an unambiguous quotative particle, to, that pre-
cedes such verbs.2 We identify all of the verbs in
the Kyoto corpus (Neubig, 2011) marked by the
quotative particle and translate them into English.
We then use these as our quotative verbs.3

3.2 Noun Phrases

Another difference between Japanese and English
lies in the order of adjectives and the nouns they
modify. We identify two situations where we can
take advantage of the flexibility of English gram-
mar to favor sentence structures consistent with
positions of nouns in Japanese.

Genitive Reordering In Japanese, genitive con-
structions always occur in the form of X no Y,
where Y belongs to X. In English, however, the
order may be reversed through the of construction.
Therefore, we transform constructions NP1 of NP2

to possessives using the apostrophe-s, NP2’(s) NP1

(Figure 1). We use simple heuristics to decide if
such a transformation is valid. For example, when
X / Y contains proper nouns (e.g., the City of New
York), numbers (e.g., seven pounds of sugar), or
pronouns (e.g., most of them), changing them to the
possessive case is not legal.

that Clause In English, clauses are often modi-
fied through a pleonastic pronoun. E.g., It is ADJP
to/that SBAR/S. In Japanese, however, the subject
(clause) is usually put at the beginning. To be con-
sistent with the Japanese word order, we move the
modified clause to the start of the sentence: To
S/SBAR is ADJP. The rewritten English sentence
is still grammatical, although its structure is less
frequent in common English usage. For example,

O: It is important to remain watchful.
R: To remain watchful is important.

2We use a morphological analyzer to distinguish between
the conjunction and quotative particles. Examples of words
marked by this particle include 見られる (expect), 言う
(say), 思われる (seem), する (assume), 信じる (believe)
and so on.

3We also include the phrase It looks like.
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   We new world the loveSource:
Delay:

We  love the new worldTarget:

1 4

   We new world the loveSource:
Delay:

The new world is loved by usNew target:

2 1 2

Figure 2: An example of applying the passivization rule to create a translation reference that is more
monotonic.

3.3 Conjunction Clause

In Japanese, clausal conjunctions are often marked
at the end of the initial clause of a compound sen-
tence. In English, however, the order of clauses is
more flexible. We can therefore reduce delay by
reordering the English clauses to mirror how they
typically appear in Japanese. Below we describe
rules reversing the order of clauses connected by
these conjunctions:

• Clausal conjunctions: because (of), in order
to

• Contrastive conjunctions: despite, even
though, although

• Conditionals: (even) if, as a result (of)
• Misc: according to

In standard Japanese, such conjunctions include
no de, kara, de mo and so on. The sentence often
appears in the form of S2 conj, S1. In English,
however, two common constructions are

S1 conj S2: We should march because win-
ter is coming.
conj S2, S1: Because winter is coming, we
should march.

To follow the Japanese clause order, we adapt the
above two constructions to

S2, conj’ S1: Winter is coming, because of
this, we should march.

Here conj’ represents the original conjunction
word appended with simple pronouns/phrases to
refer to S2. For example, because → because of
this, even if → even if this is the case.

4 Sentence Rewriting Process

We now turn our attention to the implementation of
the syntactic transformation rules described above.
Applying a transformation consists of three steps:

1. Detection: Identify nodes in the parse tree for
which the transformation is applicable;

2. Modification: Transform nodes and labels;
3. Evaluation: Compute delay reduction, and

decide whether to accept the rewritten sen-
tence.

Figure 2 illustrates the process using passivization
as an example. In the detection step, we find the
subtree that satisfies the condition of applying a
rule. In this case, we look for an S node whose chil-
dren include an NP (denoted by NP1), the subject,
and a VP to its right, such that the VP node has
a leaf VB*, the main verb,4 followed by another
NP (denoted by NP2), the object. We allow the par-
ent nodes (S and VP) to have additional children
besides the matched ones. They are not affected
during the transformation. In the modification step,
we swap the subject node and object node; we add
the verb be in its correct form by checking the tense
of the verb and the form of NP2;5and we add the
preposition by before the subject. The process is
executed recursively throughout the parse tree.

4The main verb excludes be and have when it indicates
tense (e.g., have done).

5We use the Nodebox linguistic library (https://www.
nodebox.net/code) to detect and modify word forms.
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Although our rules are designed to minimize
long range reordering, there are exceptions.6 Thus
applying a rule does not always reduce delay. In
the evaluation step, we compare translation delay
before and after applying the rule. We accept a
rewritten sentence if its delay is reduced; other-
wise, we revert to the input sentence. Since we do
not segment sentences during rewriting, we must
estimate the delay.

To estimate the delay, we use word alignments.
Figure 2c shows the source Japanese sentence in
its word-for-word English translation and align-
ments from the target words to the source words.
The first English word, We, is aligned to the first
Japanese word; it can thus be treated as an inde-
pendent segment and translated immediately. The
second English word, love, is aligned to the last
Japanese word, which means the system cannot
start to translate until four more Japanese words
are revealed. This alignment therefore forms a seg-
ment with delay of four words/seg. Alignments of
the following words come before the source word
aligned to love; hence, they are already translated
in the previous segment and we do not double count
their delay. In this example, the delay of the orig-
inal sentence is 2.5 word/seg; after rewriting, it
is reduced to 1.7 word/seg. Therefore, we accept
the rewritten sentence. However, when the subject
phrase is long and the object phrase is short, a swap
may not reduce delay.

We can now formally define the delay. Let ei be
the ith target word in the input sentence x and ai
be the maximum index among indices of source
words that ei aligned to. We define the delay of ei
as di = max(0, ai−maxj<i aj). The delay of x is
then

∑N
i=1 di/N , where the sum is over all aligned

words except punctuation and stopwords.

Given a set of rules, we need to decide which
rules to apply and in what order. Fortunately, our
rules have little interaction with each other, and
the order of application has a negligible effect. We
apply the rules, roughly, sequentially in order of
complexity: if the output of current rule is not ac-
cepted, the sentence is reverted to the last accepted
version.

Train Tune Test

Ja 21.3M 30.2k 23.3k
En-GD 16.8M 23.8k 18.5k
En-RW 16.8M 24.1k 18.7k

Table 1: Number of words in the training, tuning,
and test datasets. En-GD and En-RW represent the
gold reference set and the rewritten reference set.

5 Experiments

We evaluate our method on the Reuters Japanese-
English corpus of news articles (Utiyama and Isa-
hara, 2003). For training the MT system, we also
include the EIJIRO dictionary entries and the ac-
companying example sentences.7 Statistics of the
dataset are shown in Table 1. The rewritten trans-
lation is generally slightly longer than the gold
translation because our rewriting often involves
inserting pronouns (e.g. it, this) for antecedents.

We use the TreebankWordTokenizer
from NLTK (Bird et al., 2009) to tokenize En-
glish sentences and Kuromoji Japanese mor-
phological analyzer8 to tokenize Japanese sen-
tences. Our phrase-based MT system is trained
by Moses (Koehn et al., 2003) with standard
parameters settings. We use GIZA++ (Och and
Ney, 2003) for word alignment and k-best batch
MIRA (Cherry and Foster, 2012) for tuning. The
translation quality is evaluated by BLEU (Papineni
et al., 2002) and RIBES (Isozaki et al., 2010).9 To
obtain the parse trees for English sentences, we use
the Stanford Parser (Klein and Manning, 2003) and
the included English model.

5.1 Quality of Rewritten Translations

After applying the rewriting rules (Section 4), Ta-
ble 2 shows the percentage of sentences that are
candidates and how many rewrites are accepted.
The most generalizable rules are passivization and
delaying quotative verbs. We rewrite 32.2% of sen-
tences, reducing the delay from 9.9 words/seg to
6.3 words/seg per segment for rewritten sentences
and from 7.8 words/seg to 6.7 words/seg overall.

6For example, in clause transformation, the Japanese con-
junction moshi, which is clause initial, may appear at the
beginning of a sentence to emphasize conditionals, although
its appearance is relatively rare.

7Available at http://eijiro.jp
8Available at http://www.atilika.org/
9In contrast to BLEU, RIBES is an order-sensitive metric

commonly used for translation between Japanese and English.
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verb voice noun conj.

Applicable % 39.9 50.0 26.4 4.8
Accepted % 22.5 24.0 51.2 38.4

Table 2: Percentage of sentences that each rule
category can be applied to (Applicable) and the
percentage of sentences for which the rule results
in a more monotonic sentence (Accepted).

We evaluate the quality of our rewritten sen-
tences from two perspectives: grammaticality and
preserved semantics. To examine how close the
rewritten sentences are to standard English, we
train a 5-gram language model using the English
data from the Europarl corpus, consisting of 46
million words, and use it to compute perplexity.
Rewriting references increases the perplexity un-
der the language model only slightly: from 332.0
to 335.4. To ensure that rewrites leave meaning
unchanged, we use the SEMAFOR semantic role
labeler (Das et al., 2014) on the original and mod-
ified sentence; for each role-labeled token in the
reference sentence, we examine its corresponding
role in the rewritten sentence and calculate the aver-
age accuracy acrosss all sentences. Even ignoring
benign lexical changes—for example, he becom-
ing him in a passivized sentence—95.5% of the
words retain their semantic roles in the rewritten
sentences.

Although our rules are conservative to minimize
corruption, some errors are unavoidable propaga-
tion of parser errors. For example, the sentence the
London Stock Exchange closes at 1230 GMT today
is parsed as:10

(S (NP the London Stock Exchange)
(VP (VBZ closes)

(PP at 1230)
(NP GMT today)))

GMT today is separated from the PP as an NP and is
mistaken as the object. The passive version is then
GMT today is closed at 1230 by the London Stock
Exchange. Such errors could be reduced by skip-
ping nodes with low inside/outside scores given
by the parser, or skipping low-frequency patterns.
However, we leave this for future work.

5.2 Segmentation

At test time, we use right probability (Fujita et
al., 2013, RP) to decide when to start translating a

10For simplicity we show the shallow parse only.

sentence. As we read in the source Japanese sen-
tence, if the input segment matches an entry in
the learned phrase table, we query the RP of the
Japanese/English phrase pair. A higher RP indicates
that the English translation of this Japanese phrase
will likely be followed by the translation of the
next Japanese phrase. In other words, translation
of the two consecutive Japanese phrases is mono-
tonic, thus, we can begin translating immediately.
Following (Fujita et al., 2013), if the RP of the
current phrase is lower than a fixed threshold, we
cache the current phrase and wait for more words
from the source sentence; otherwise, we translate
all cached phrases. Finally, translations of segments
are concatenated to form a complete translation of
the input sentence.

5.3 Speed/Accuracy Trade-off

To show the effect of rewritten references, we com-
pare the following MT systems:

• GD: only gold reference translations;
• RW: only rewritten reference translations;
• RW+GD: both gold and the rewritten refer-

ences; and
• RW-LM+GD: using gold reference transla-

tions but using the rewritten references for
training the LM and for tuning.

For RW+GD and RW-LM+GD, we interpolate the
language models of GD and RW. The interpolat-
ing weight is tuned with the rewritten sentences.
For RW+GD, we combine the translation models
(phrase tables and reordering tables) of RW and
GD by fill-up combination (Bisazza et al., 2011),
where all entries in the tables of RW are preserved
and entries from the tables of GD are added if new.

Increasing the RP threshold increases interpreta-
tion delay but improves the quality of the transla-
tion. We set the RP threshold at 0.0, 0.2, 0.4, 0.8
and finally 1.0 (equivalent to batch translation).
Figure 3 shows the BLEU/RIBES scores vs. the
number of words per segement as we increase the
threshold. Rewritten sentences alone do not sig-
nificantly improve over the baseline. We suspect
this is because the transformation rules sometimes
generate ungrammatical sentences due to parsing
errors, which impairs learning. However, combin-
ing RW and GD results in a better speed-accuracy
tradeoff: the RW+GD curve completely dominates
other curves in Figure 3a, 3c. Thus, using more
monotone translations improves simultaneous ma-
chine translation, and because RW-LM+GD is about
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Figure 3: Speed/accuracy tradeoff curves: BLEU (left) / RIBES (right) versus translation delay (average
number of words per segment).

the same as GD, the major improvement likely
comes from the translation model from rewritten
sentences.

The right two plots recapitulate the evaluation
with the RIBES metric. This result is less clear, as
MT systems are optimized for BLEU and RIBES

penalizes word reordering, making it difficult to
compare systems that intentionally change word
order. Nevertheless, RW is comparable to GD on
gold references and superior to the baseline on
rewritten references.

5.4 Effect on Verbs

Rewriting training data not only creates lower la-
tency simultaneous translations, but it also im-
proves batch translation. One reason is that SOV

to SVO translation often drops the verb because of
long range reordering. (We see this for Japanese
here, but this is also true for German.) Similar word
orders in the source and target results in less re-
ordering and improves phrase-based MT (Collins

Translation

GD RW RW+GD Gold ref

# of verbs 1971 2050 2224 2731

Table 3: Number of verbs in the test set transla-
tion produced by different models and the gold
reference translation. Boldface indicates the num-
ber is significantly larger than others (excluding
the gold ref) according to two-sample t-tests with
p < 0.001.

et al., 2005; Xu et al., 2009). Table 3 shows the
number of verbs in the translations of the test sen-
tences produced by GD, RW, RW+GD, as well as
the number in the gold reference translation. Both
RW and RW+GD produce more verbs (a statistically
significant result), although RW+GD captures the
most verbs.
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Ref

he also said that the real dangers for the euro lay in the
potential for divergences in the domestic policy needs
among the various participating nations of the single
currency.

GD
he also for the euro, is a real danger to launch a single
currency in many different countries and domestic
policies on the need for the possibility of a difference.

RW

he also for the euro is a real danger to launch a single
currency in many different countries and domestic
policies to the needs of the possibility of a difference,
he said.

Table 4: Example of translation produced by GD

and RW.

5.5 Error Analysis
Table 4 compares translations by GD and RW. RW

correctly puts the verb said at the end, while GD

drops the final verb. However, RW still produces he
at the beginning (also the first word in the Japanese
source sentence). This is because our current seg-
mentation strategy do not preserve words for later
translation—a note-taking strategy used by human
interpreters.

6 Related Work

Previous approaches to simultaneous machine
translation have employed explicit interpretation
strategies for coping with delay. Two major ap-
proaches are segmentation and prediction.

Most segmentation strategies are based on
heuristics, such as pauses in speech (Fügen et
al., 2007; Bangalore et al., 2009), comma predic-
tion (Sridhar et al., 2013) and phrase reordering
probability (Fujita et al., 2013). Learning-based
methods have also been proposed. Oda et al. (2014)
find segmentations that maximize the BLEU score
of the final concatenated translation by dynamic
programming. Grissom II et al. (2014) formulate
simultaneous translation as a sequential decision
making problem and uses reinforcement learning
to decide when to translate. One limitation of these
methods is that when learning with standard batch
MT corpus, their gain can be restricted by natural
word reordering between the source and the target
sentences, as explained in Section 1.

In an SOV-SVO context, methods to predict un-
seen words are proposed to alleviate the above re-
striction. Matsubara et al. (1999) predict the En-
glish verb in the target sentence and integrates it
syntactically. Grissom II et al. (2014) predict the fi-
nal verb in the source sentence and decide when to
use the predicted verb with reinforcement learning.

Nevertheless, unless the predictor considers con-
textual and background information, which human
interpreters often rely on for prediction (Hönig,
1997; Camayd-Freixas, 2011), such a prediction
task is inherently hard.

Unlike previous approaches to simultaneous
translation, we directly adapt the training data and
transform a translated sentence to an “interpreted”
one. We can, therefore, take advantage of the abun-
dance of parallel batch-translated corpora for train-
ing a simultaneous MT system. In addition, as a data
preprocessing step, our approach is orthogonal to
the others, with which it can be easily combined.

This work is also related to preprocessing re-
ordering approaches (Xu et al., 2009; Collins et
al., 2005; Galley and Manning, 2008; Hoshino et
al., 2013; Hoshino et al., 2014) in batch MT for
language pairs with substantially different word or-
ders. However, our problem is different in several
ways. First, while the approaches resemble each
other, our motivation is to reduce translation delay.
Second, they reorder the source sentence, which is
nontrivial and time-consuming when the sentence
is incrementally revealed. Third, rewriting the tar-
get sentence requires the output to be grammatical
(for it to be used as reference translation), which is
not a concern when rewriting source sentences.

7 Conclusion

Training MT systems with more monotonic
(interpretation-like) sentences improves the speed-
accuracy tradeoff for simultaneous machine trans-
lation. By designing syntactic transformations and
rewriting batch translations into more monotonic
translations, we reduce the translation delay. MT

systems trained on the rewritten reference transla-
tions learn interpretation strategies implicitly from
the data.

Our rewrites are based on linguistic knowledge
and inspired by techniques used by human inter-
preters. They cover a wide range of reordering phe-
nomena between Japanese and English, and more
generally, between SOV and SVO languages. A nat-
ural extension is to automatically extract such rules
from parallel corpora. While there exist approaches
that extract syntactic tree transformation rules auto-
matically, one of the difficulties is that most parallel
corpora is dominated by lexical paraphrasing in-
stead of syntactic paraphrasing.
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Abstract

This paper describes an approach to large-
scale modeling of sentiment analysis for
the social sciences. The goal is to model
relations between nation states through so-
cial media. Many cross-disciplinary appli-
cations of NLP involve making predictions
(such as predicting political elections), but
this paper instead focuses on a model that
is applicable to broader analysis. Do cit-
izens express opinions in line with their
home country’s formal relations? When
opinions diverge over time, what is the
cause and can social media serve to de-
tect these changes? We describe several
learning algorithms to study how the pop-
ulace of a country discusses foreign na-
tions on Twitter, ranging from state-of-the-
art contextual sentiment analysis to some
required practical learners that filter irrel-
evant tweets. We evaluate on standard
sentiment evaluations, but we also show
strong correlations with two public opin-
ion polls and current international alliance
relationships. We conclude with some po-
litical science use cases.

1 Introduction

The volume of text available on social media pro-
vides a new opportunity for public policy and po-
litical science. Specifically in the area of interna-
tional relations, advances in natural language un-
derstanding and sentiment analysis may offer new
insights into the sentiment of one nation toward
another. This paper processes 17 months of Twit-
ter data to identify discussions about sovereign
states, and it aggregates opinions toward these

states from foreign nations. We present a novel
application of contextual sentiment with this task,
and identify several semi-supervised learning al-
gorithms that are needed to address the reference
resolution challenge inherent to country names.
We present intrinsic evaluations of our learners on
labeled datasets as well as four extrinsic politi-
cal science evaluations that show strong alignment
with our large-scale sentiment extraction.

An open question for international policy mak-
ers is the extent to which public opinion drives de-
cision making. How do military conflicts affect a
neutral nation’s relationship? Does public opin-
ion shift toward a country after a formal alliance is
created, or must popular opinion shift first? These
questions are difficult to address due to the lack of
measurable data. While polling data can be col-
lected, collection beyond a handful of countries
is cost prohibitive. This paper hypothesizes that
sentiment analysis can be used as a proxy to track
international relations between nation states. We
describe the largest attempt (over 2 billion tweets)
to measure nation state sentiment across hundreds
of country pairs.

The core challenge to measuring public opin-
ion between countries is an accurate algorithm to
judge the sentiment of a text toward another na-
tion. Unlike traditional sentiment analysis, the
general sentiment of the text is not adequate. Let
the following serve as an example.

I miss Pakistan. I am in full sad mode right about
now. @RachOrange (California)

This tweet is a positive example from the USA to-
ward Pakistan. However, a typical sentiment clas-
sifier misclassifies this as negative because miss
and sad express sadness. A contextual sentiment
classification is needed to identify that the predi-
cate miss is positive toward its argument. Several

65



recent competitions included contextual classifi-
cation tasks, and this paper builds on the best of
those algorithms for a unique nation-nation sen-
timent classifier. We describe a multi-classifier
model that aggregates tweets into counts of pos-
itive and negative sentiment from one country to-
ward another. Several unique filters are required to
resolve textual references toward country names.

We first present standard NLP sentiment exper-
iments that show the classifiers achieve good per-
formance on individual tweets. To evaluate the
complete nation-nation system, we present four
novel evaluations, including two public opinion
polls. Correlation with the polls is high at ρ = .8,
and our nation-nation sentiment is 84% accurate
with NATO and EU relations. We then discuss the
implications for both NLP as a technical science
and political science as a social science.

2 Previous Work

Sentiment analysis is a large field applicable to
many genres. This paper focuses on social me-
dia and contextual polarity, so we only address the
closest work in those areas. For a broader perspec-
tive, several survey papers are available (Pang and
Lee, 2008; Tang et al., 2009; Liu and Zhang, 2012;
Tsytsarau and Palpanas, 2012).

Several sources for microblogs have been used
to measure a large population’s mood and opin-
ion. O’Connor et al. (2010) used Twitter data to
compute a ratio of positive and negative words to
measure consumer confidence and presidential ap-
proval. Kramer (2010) counted lexicon words on
Facebook for a general ’happiness’ measure, and
Thelwall (2011) built a general sentiment model
on MySpace user comments. These are early gen-
eral sentiment algorithms for social media.

Other microblog research focused on finding
noisy training data with distant supervision. Many
of these algorithms use emoticons as semantic in-
dicators of polarity. For instance, a tweet that con-
tains a sad face likely contains a negative polar-
ity (Read, 2005; Go et al., 2009; Bifet and Frank,
2010; Pak and Paroubek, 2010; Davidov et al.,
2010; Kouloumpis et al., 2011). In a similar vein,
hashtags can serve as noisy labels (Davidov et al.,
2010; Kouloumpis et al., 2011). Our bootstrap
learner is similar in its selection of seed tokens.

Supervised learning for contextual polarity has
received more attention recently. Jiang et al.
(2011) is an early approach. Work on product

reviews sought the sentiment toward particular
product features. These systems used rule based
models based on parts of speech and surface fea-
tures (Nasukawa and Yi, 2003; Hu and Liu, 2004;
Ding and Liu, 2007). Most notably, recent Se-
meval competitions addressed contextual polarity
(Nakov et al., 2013; Rosenthal et al., 2014). The
top performing systems learned their own lexicons
custom to the domain (Mohammad et al., 2013;
Zhu et al., 2014). Our proposed system includes
many of their features, but several fail to help on
nation-nation sentiment.

Early approaches to topic detection on social
media were straightforward, selecting a keyword
(e.g., “Obama”) to represent the topic (e.g., “US
President”) and retrieving tweets containing the
word (O’Connor et al., 2010; Tumasjan et al.,
2010; Tan et al., 2011). These systems classify the
polarity of the entire tweet, but ignore the ques-
tion of polarity toward the particular topic. This
paper focuses on identifying tweets with nation
mentions, and identifying the sentiment toward the
mention, not the overall sentiment of the text.

Event detection on Twitter is also relevant
(Sakaki et al., 2010; Becker et al., 2011). In fact,
O’Connor et al. (2013) modeled events to detect
international relations, but our goal is to model
long term relation trends, not isolated events.

Large-scale computational studies of social me-
dia are relatively new to the international relations
community. Barbera and Rivero (2014) is a no-
table example for election analysis. Some studied
online discussion about Palestine (Lynch, 2014)
and the role of Twitter in the Arab Spring (Howard
et al., 2011; Howard, 2013). However, they sim-
ply counted the volume of tweets containing key-
words. This paper applies a deeper NLP analysis
and we show that frequency alone fails at detecting
nation-nation relations.

Most relevant to this paper is a study of Ara-
bic tweets into anti-American sentiment. Jamal et
al. (2015) used a supervised sentiment classifier
on Arabic tweets to measure sentiment toward the
USA. Our paper differs by taking a broader view.
We investigate with state-of-the-art sentiment al-
gorithms, and we we study practical problems that
arise within when measuring nation-nation senti-
ment across all country pairs. To our knowledge,
this paper is the largest computational approach
(17 months with 2 billion tweets) to measuring in-
ternational relations on social media.
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3 Microblog Datasets

The main dataset for this study is 17 months of
tweets obtained through the keyword Twitter API
that mention one of 187 unique countries. The
dataset spans from Sep. 3, 2013 to Jan 10, 2015
with 3-5 million tweets per day. Each tweet in-
cludes the profile location and geolocation data (if
available) of the user who posted the tweet. Col-
lection was not limited to a specific location in or-
der to retrieve samples from across the world. This
dataset is used in all political science experiments
(Sections 6.2 and 6.3).

A smaller labeled dataset is used for supervised
classification. We randomly sampled the data to
create a dataset of 4250 tweets. The authors ini-
tially labeled each tweet with one of four senti-
ment labels: positive, negative, objective, or ir-
relevant. Text was only labeled as positive if it
is positive toward the nation’s mention. Text that
contains a nation’s mention, but does not contain
sentiment toward the mention is labeled objective.
Text with a mention that is not referent to a phys-
ical country is labeled irrelevant despite presence
of sentiment. This irrelevant distinction is a depar-
ture from sentiment competitions. A second label-
ing added a fifth label to the irrelevant tweets to
split off dining topics.

Usernames (e.g., @user) and URLs are replaced
with placeholder tokens. Multiple whitespace
characters are condensed and the text is split on
it. Punctuation attached to tokens is removed
(but saved) and used in later punctuation features.
Punctuation is not treated as separate tokens in
the n-gram features. We prepend occurrences of
“not” to their subsequent tokens, merging the two
into a new token (e.g., “not happy” becomes “not-
happy”). Once the raw text of the tweet is tok-
enized as above, non-English tweets are filtered
out. English filtering is performed by LingPipe1.
We manually evaluated this filter and found it
86.2% accurate over 400 tweets. Accuracy is lost
due to slang and the short nature of the text.

4 Classifying Nation-Nation Sentiment

Given a tweet containing a country’s name, our
goal is to identify the sentiment of the text toward
that nation. Unlike most work on contextual polar-
ity, this requires reference resolution of the target
phrase (e.g., the country name). Previous Semeval

1alias-i.com/lingpipe/#lingpipe

competitions evaluate the sentiment of a text to-
ward a phrase, but the semantics of the phrase is
largely ignored. For instance, the following exam-
ple would make an excellent Semeval test item, but
its classification is irrelevant to the goal of measur-
ing nation sentiment:

My daughter and I have been to Angelo’s several
times when in Little Italy. Love love it!

The author is obviously positively inclined to-
ward Little Italy, however, Little Italy does not
refer to the country of Italy. We found that
most tweets referring to dining or visiting foreign-
themed restaurants are not relevant to determining
nation to nation sentiment. It became necessary to
research new classifiers that perform basic refer-
ence resolution.

4.1 Reference Resolution: Irrelevant
Detection

This paper defines reference resolution in the tra-
ditional linguistic sense: determine the real-world
referent of a text mention. Most NLP tasks use
coreference resolution: determine the text an-
tecedent of a text mention. This paper requires ref-
erence resolution because the target phrase often
does not refer to an actual geolocated country. Af-
ter collecting months of tweets that include coun-
try name mentions, data analysis revealed several
types of these non-references. We treat reference
resolution as a classification problem. Below are
a variety of supervised and semi-supervised learn-
ers that identify different types of errant country
references, and ultimately serve to filter out these
irrelevant tweets.

4.1.1 Dining Classifier
One of our early observations was that mentions
of nations are often in the context of eating and
dining, as evidenced here:

This is the first turkey sandwich I’ve had in
awhile... It’s great turkey.

Taste of China For chinese food lover’s. For
more info Please visit

This class of tweet is problematic to our study
of international politics. While microblogs about
dining can contain heavy emotion, a link to the
writer’s opinion about the foreign nation itself
is ambiguous. We thus filter out dining text
through supervised classification. Using the la-
beled dataset in Section 3, we annotated a dine la-
bel for all dining tweets. Tweets without a dine
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Dine Rel
All unigrams in text X X
1-3grams that include the country X X
Bigram and Trigram country pattern X X
Four Square app pattern X
Named Entity 2-3grams w/ country X
Emoticon happy or sad X
Ending text punctuation X
Binary: contains exclamation point X

Table 1: Dining and Relevant features.

label are considered not-dine. We ran a logistic
regression for two labels, dine and not-dine. Text
features are shown in Table 1.

4.1.2 Irrelevancy Classifier
Beyond dining, a broader class of irrelevant tweets
refer to non-nation entities. These microblogs
contain country names, but the mentions do not
reference the physical country. The following ex-
amples illustrate this class of irrelevant tweets (na-
tion tokens in bold):

Yesterday was chilly out and now today’s going
to be 80. New England weather is so bipolar I
hate it so much

Bank Of America Upgrades ConocoPhillips On
More Favorable Outlook

Several types of irrelevancy can be found, but
the most common is a non-nation geolocation like
New England. Proper nouns like Bank of Amer-
ica are frequent as well. A named entity recog-
nizer (NER) identified some of these, but we ulti-
mately turned to supervised classification for bet-
ter accuracy (space constraints prevent discussion
of NER performance). We trained a logistic re-
gression classifier on the relevant tweets in the
Section 3 dataset, and mapped all other labels to
irrelevant. Features used are shown in Table 1.

4.1.3 Bootstrap Learner
After filtering non-referent tweets, we observed
that many positive and negative tweets reference
countries in the context of sporting events and mu-
sic/concerts. These are correctly labeled relevant
by the above binary classifiers (and possibly anno-
tated as positive or negative), but the topic (sports
or music) does not contain a strong semantic con-
nection to the author’s actual opinion about the
country. A couple of sport examples are given
here:

@SpecialKBrook Wow - the Brittish judge scored
the fight a draw - lucky England’s fighters are
better than their judges.

Congo LFC now someone give me that goalie’s
jersey :p

The sport topic has a less diverse vocabulary
than other topics. We hypothesized that a boot-
strap learning framework (Riloff and Jones, 1999)
could quickly learn its unique language without
the need for supervised learning. Beginning with
a short list of sport keywords (football, basket-
ball, baseball, cricket, soccer, golf, hockey, rugby,
game, vs), we ran two iterations of a bootstrapped
learner. The first step retrieves tweets containing
one of the keywords. The second counts token oc-
currences in this set and computes pointwise mu-
tual information (PMI) scores for each unigram by
comparing with the unigram counts over the entire
corpus. The learner processed ˜190 million tweets
(a couple months of data). The PMI scores from
this process then form the basis of a simple topic
classifier.

A tweet is classified as a topic (e.g., sports) if its
average token PMI score is above a learned thresh-
old for that topic:

scoreT (text) =
1
N

∑
w∈text

pmiT (w) (1)

where N is the number of tokens in the text and
T ∈ {sports, concerts}. The text is classified
as in topic if scoreT (text) > λt. The threshold
λT was determined by visual inspection of a held
out 1000 tweets to maximize accuracy. The initial
seed words and λT thresholds for each topic are
given here:

Seed Words λ
football, basketball, baseball, cricket, soccer,
golf, hockey, rugby, game, vs

0.08

concert, music, album, song, playlist, stage,
drum

0.15

4.2 Contextual Sentiment Analysis
The above classifiers identify relevant tweets with
references to geolocated nations. Approximately
21% are filtered out, leaving 79% for the remain-
ing component of this paper: contextual sentiment
analysis. Contextual sentiment analysis focuses on
the disposition of text toward a word or phrase (in
this case, a country’s name). Most data-driven ap-
proaches rely on labeled corpora to drive the learn-
ing process, and this paper is no different.

Assigning polarity to a word/phrase requires
features that capture the surrounding context. The
following tweets are examples of context with
strong polarity toward the country in bold.
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RT @ChrissyCostanza: Happiest girl ever. I
LOVE YOU SINGAPORE

there’s no Singapore Got Talent cus the only tal-
ent we have is stomping complaining & staring

Singapore is the target country here. The first
tweet is overtly positive toward it, but the second
requires a more subtle interpretation. The nega-
tive context is toward us, referencing the people of
the Singapore anaphor. It seems reasonable to in-
fer that they are negative toward the country as a
whole, but a deeper reasoning is required to make
the connection. These difficult decisions require a
wide-range of lexical features. We build on the top
performing features from contextual polarity sys-
tems in Semeval 2013 and 2014 (Mohammad et
al., 2013; Zhu et al., 2014). We used the following
set of features to capture these different contexts:

Token Features: All unigrams and bigrams.

Target Patterns: This feature creates patterns
from n-grams that include the target word. The
target is replaced with a variable to capture gen-
eralized patterns. For instance, “to France last”
becomes “to X last”. Bigram and trigram patterns
are created.

Punctuation: End of sentence punctuation and
punctuation attached to target words. Prefix and
postfix punctuation are separate features.

Emoticons: Two binary features for the pres-
ence/absence of smiley and sad face emoticons.

Hand-Built Dictionary: Two binary features,
postivemood and negativemood, indicate if a token
appears in a sentiment lexicon’s positive or nega-
tive list. We use Bing Liu’s Opinion Lexicon2.

Nation-Nation Learned Dictionary: Following
the success of Zhu et al. (2014), we learn a
mood dictionary from our domain-specific nation
dataset. We count unigrams (bigrams did not
improve performance) in one year of unfiltered
tweets with nation mentions that contain an emoti-
con. Using these counts, each unigram computes
its PMI scores toward happy and sad contexts. We
construct features based on these PMI scores: (1)
the highest happy PMI score of all unigrams in a
tweet, (2) the highest sad PMI score, (3) the num-
ber of positive tokens, (4) the number of negative
tokens, and (5) the sum of the token PMI differ-
ences between happy-sad.

2http://www.cs.uic.edu/˜liub/FBS/sentiment-analysis.html

General Learned Dictionary: We computed the
same features as in the above learned dictionary,
but instead counted tokens in all tweets of the gen-
eral emoticon corpus of Go et al. (2009).

The contextual sentiment learner is trained on
the labeled dataset (Section 3). Only tweets with
positive, negative, or objective labels are included
(irrelevant and dining are ignored). Stanford’s
CoreNLP (nlp.stanford.edu/software) is used to
train a MaxEnt classifier with its default settings.

5 Nation to Nation Pipeline

The complete system to determine the nation-
nation sentiment of a tweet consists of 3 steps:
(1) identify the country origin of the tweet, (2) fil-
ter out tweets without references to geolocated na-
tions and filter out irrelevant topics, and (3) iden-
tify the sentiment toward the country. We pro-
cessed 17 months of tweets (Section 3).

The first step identifies the origin of the tweet
with either its GPS coordinates or the profile lo-
cation of the Twitter user. Profile locations are
mapped to countries with an exhaustive list of
country names, major cities, and patterns that
match US city/states (e.g., Pensacola,FL maps to
USA). Non-english tweets are removed with ling-
pipe. The second step filters non-referent, irrel-
evant, dining, and concert tweets with the clas-
sifiers from Section 4.1 (about 21% of tweets at
this stage). The final step is the contextual sen-
timent classifier (Section 4.2). Tweets that make
it through receive 1 of 3 possible labels: positive,
negative, objective.

The aggregate counts of the three labels are col-
lected for each day. This was around 1.2 million
nation labels per day over 17 months. The counts
are used for evaluation in the experiments.

6 Experiments

Our goal is to first prove the accuracy of our senti-
ment classifiers, then show the broader pipeline’s
correlation with known nation-nation politics.We
thus conducted three types of experiments. The
first is an intrinsic evaluation of the classifiers with
common frameworks from the NLP community.
The second is an extrinsic evaluation from multi-
ple political science datasets. The third is a set of
use case proposals for application of this analysis.
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Dining Classifier
Label P R F1
dining .76 .48 .59
not-dining .96 .99 .98
Baseline Accuracy 93.1%
Accuracy 95.3%

Irrelevant Classifier
Label Prec Recall F1
irrelevant .84 .90 .87
relevant .84 .75 .80
Baseline Accuracy 58.7%
Accuracy 84.0%

Sentiment Classifier
Label Prec Recall F1
positive .64 .47 .54
negative .60 .33 .43
objective .71 .87 .78
Baseline Accuracy 59.0%
Accuracy 68.7%

Table 2: Classifier performance. Precision/Recall is calculated for each label separately. Accuracy is
over all labels: # correct/total.

6.1 Classifier Experiments

The dining, irrelevant, and sentiment classifiers
are supervised systems trained on a labeled dataset
of 4,250 tweets. We split the dataset into training,
dev, and test sets. The dev set contains 200 tweets,
the test set has 750 tweets, and the training set size
varied based on the available labels. The features
in this paper were developed solely on the training
and dev datasets. Reported results are on the un-
seen test set of 750 tweets. The bootstrapped clas-
sifiers for sports and concerts were learned with-
out labeled data, so we ran the sports and concerts
classifiers on an unseen portion of our data, and
manually evaluated the first 200 tweets that were
labeled by each classifier.

Precision and recall are calculated individually
for each class label: P = #correct/#guessed
and R = #correct/#gold. Where #guessed is
how many times the classifier predicted the target
label, and #gold is how many times the target la-
bel appears in the dataset. Accuracy is also shown,
calculated as a single score over all labels together:
Accuracy = #correct/N . The first table in Ta-
ble 2 shows the dining classifier’s performance.
The majority class baseline is high at 93% because
only 7% of the data is about dining. The clas-
sifier achieves a 29% decrease in accuracy error
(2% absolute increase). The second table shows
the more general irrelevant classifier. The majority
class baseline is much lower than dining at 58.7%.
Many tweets that contain a country name are not
relevant nor references to the geolocated country
itself. Our trained classifier does well on this task
achieving 84% accuracy, a 26% absolute increase
over baseline. It is 84% precise with 90% recall on
detecting irrelevant tweets. The third table in Ta-
ble 2 shows sentiment classifier results. Accuracy
is almost 10% absolute above the majority class.

Finally, the bootstrapped classifiers perform at
98% accuracy for sports and 90% for concerts.

Positive/Negative Ratios
Target Ratio Target Ratio
US to Canada 11.9 US to Ireland 3.2
US to Italy 10.8 US to Spain 3.0
US to Japan 7.7 US to France 2.7
US to Australia 3.5 US to Jordan 2.1
US to UK 3.5 US to Mexico 1.9

Table 3: Positive/Negative ratios for the US to-
ward its top 10 frequently mentioned nations.

6.2 Nation-Nation Sentiment Experiments
Nation opinions are represented as directed edges:
each edge (X,Y) represents the opinion of nation
X toward nation Y. The weight of an edge is the
ratio of positive to negative counts:

R(X,Y ) = C(X,Y, positive)/C(X,Y, negative)

where C(X,Y,L) is the number of tweets by nation
X users about nation Y with sentiment L. Only
tweets that make it through the Nation to Nation
Pipeline of Section 5 receive sentiment labels. If
a nation pair (X,Y) was observed less than 1000
times, it is not included in the evaluations. We
provide experiments later to evaluate this cutoff’s
affect.

The dataset (Section 3) spans 17 months from
2013-2015. All tweets are classified or filtered
out, and R(X,Y) is computed for all pairs. Table
3 shows the top 10 nation pair ratios (with over
500k tweets between them) for the U.S.

We present four formal evaluations to answer
the central question of this paper: can sentiment
from social media be used to help approximate in-
ternational opinions? The first two experiments
use public opinion polls of national sentiment to-
ward other nations. The third uses military con-
flicts as a proxy for negative relations, and the
fourth uses current formal alliances as a proxy for
positive relations. None of these can provide a
complete picture of the connection between pop-
ular sentiment and international relations, but the
four together provide a strong case that sentiment
contains a useful signal.
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Correlation: Public Opinion Polls
Human Poll Sentiment Freq. Baseline

Germany Canada China
Canada Japan Israel

UK EU USA
Japan France Russia
France UK India

EU Brazil Japan
Brazil USA Canada
USA India UK
China South Africa Pakistan

South Korea South Korea France
South Africa Germany Iran

India Russia Brazil
Russia China Germany
Israel Israel North Korea

North Korea North Korea South Korea
Pakistan Iran South Africa

Iran Pakistan EU
Correlation 0.80 -0.06

Table 4: Polling Data: ranking of a nation’s “posi-
tive contribution” to the world, compared to auto-
matically identified nation-nation sentiment.

Each year, GlobeScan/PIPA releases polling
data of 16 nations in a ranked ordering based on
how 26,000 people view their “positive contribu-
tion” to the world3. This poll helps to determine
whether or not this paper’s sentiment pipeline
matches human polling. We created our own rank-
ing by assigning a world score to each nation
n: the average sentiment ratio of all other na-
tions toward n. Since the polling data also ranks
the EU, we average the EU member nation world
scores for an EU world score. Table 4 shows the
PIPA poll (Human Poll) and our world ranking
(Sentiment). Using Spearman’s rank correlation
coefficient to measure agreement, our ranking is
strongly correlated at ρ = 0.8 (perfect is 1.0). The
main mistake in our ranking is Germany. We also
compare against a Frequency Baseline to elim-
inate the possibility that it’s simply a matter of
topic popularity. Poll rankings could simply be
correlated with who people choose to discuss, or
vice versa. The frequency baseline is the aver-
age number of twitter mentions per nation (i.e., the
most discussed). This baseline shows no correla-
tion at ρ = −.06.

We then evaluated against a US-centric polling
agency, Gallup. They asked Americans to rate
other nations as ’favorable’ or ’unfavorable’ in a
2014 poll4. The result is a ranking of favora-
bility. In contrast to the PIPA poll which evalu-

3http://www.worldpublicopinion.org/pipa/2013CountryRatingPoll.pdf
4http://www.gallup.com/poll/1624/perceptions-foreign-countries.aspx

ates many nations looking in, Gallup evaluates a
single nation looking out. Space constraints pre-
vent us from visually showing the US ranking,
but again the sentiment ratios have a strong cor-
relation at ρ = .81. The frequency baseline is
ρ = .23. The nation-nation sentiment extraction
strongly correlates with both world views (PIPA)
and US-specific views (Gallup).

The third evaluation uses a political science
dataset from the Correlates of War Project, the
Militarized Interstate Disputes v4.01 (MID)
(Ghosn et al., 2004). This dataset is used in
the field of international relations, listing conflicts
since 1816. We limit the evaluation to conflicts
after 1990 to keep relations current. The dataset
ends at 2001, so while not a completely current
evaluation, it stands as a proxy for negative rela-
tions. Each conflict in MID is labeled with a con-
flict severity. We convert severity labels between
nations to a pair score MID(X,Y):

MID(X,Y ) =
∑

d∈Disputes(X,Y )

score(d) (2)

where Disputes(X,Y) is the set of conflicts be-
tween the two nations X and Y, and score(d) is a
severity score for the type of dispute d. War is -5,
use of force is -4, displays of force is -3, threaten-
ing use of force is -2, and no militarized action is
-1. We take the sum of severity scores and save all
nation pairs (X,Y) such that MID(X,Y ) < −10.
This score indicates multiple conflicts and are thus
considered as nations with true negative relations.

We then compare our sentiment ratios R(X,Y)
against these gold negative pairs. Each continuous
R(X,Y) is discretized into sentiment categories for
ease of comparison. Since the mean across all
R(X,Y) is 1.25, we consider an interval around
1.25 as neutral and create positive and negative la-
bels above and below that neutral center:

ratiolabel(Z) =



positive, if Z ≥ 2.4

slightpos, if 2.4 > Z ≥ 1.4

neutral, if 1.4 > Z ≥ 1.1

slightneg, if 1.1 > Z ≥ 0.8

negative, if 0.8 > Z

The bottom table in Table 5 shows the number of
nation pairs that align with the negative labels of
the MID dataset. Only pairs that have at least 1000
tweets are evaluated. Of the resulting 90 pairs,
61 are correctly identified by our system as neg-
ative or slight negative for an accuracy of 68%.
19 positive pairs are incorrectly aligned with MID-
negative. Error analysis shows that many incorrect
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Positive: Formal Alliances
Pos SlPos N SlNeg Neg

# Nation Pairs 341 65 22 26 28

Negative: Military Disputes
Pos SlPos N SlNeg Neg

MID-Negative 12 7 10 15 46

Table 5: Top: The number of NATO/EU nation
pairs with automatic sentiment labels. Bottom:
The number of pairs with military disputes (MID
dataset) and automatic sentiment labels.

labels are between nations with a smaller Twit-
ter presence, so performance likely suffers due to
lack of data. For robustness testing, we shifted
the thresholds that discretize the nation ratios and
MID scores into postive and negative categories.
The accuracy result shows little change. We also
reran the experiment with a higher cutoff of 10,000
instead of 1,000. The negative disputes accuracy
increases from 68% to 81%, but the recall obvi-
ously drops as less countries are included. This
suggests the sentiment ratios might be used on
a sliding confidence scale based on frequency of
mention.

To evaluate positive relations, we use current
alliances as a fourth evaluation. NATO and the
EU are the main global alliances with elements
of mutual defense. We do not include trade-only
alliances as trade is not always an indication of
allegiance and approval (Russia and Ukraine is a
current example of this disparity). This evaluation
considers pairs of nations within NATO and within
the EU as gold positive relations. We compare our
sentiment ratios to these pairs in the top of Table 5.
This evaluation is broader than the conflict evalu-
ation because NATO and EU nations have more of
a Twitter presence. Of the 482 country pairs, our
positive/slightpos accuracy is 84.2%.

6.3 Application Experiments

We now briefly discuss how these positive results
for nation-nation sentiment relates to political sci-
ence analysis.

One core area of study is how national sen-
timent shifts over time, and why. Computing
R(X,Y) on a bi-weekly basis, Figure 1 graphs the
sentiment ratio from the USA toward India and Is-
rael. The timeline shows significant favorability
toward India during their extended election sea-
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Figure 1: USA opinion of India/Israel over 2-week
intervals from Sep-2013 to Feb-2015.

son, but afterward the opinion is similar to before
the election. In contrast, the 2014 Israel-Gaza con-
flict shows a very different effect. US opinion of
Israel is initially steady (slightly positive) until the
conflict causes a large dip. Unlike India’s spike,
US opinion stays depressed even after the conflict
concludes. It appears to have only risen to ‘nor-
mal’ levels months later. We do note that the wa-
ter is slightly muddied because our algorithm may
not distinguish well between sentiment toward the
war, Israel itself, or even sympathy toward casu-
alties. However, it’s clear that nation-nation sen-
timent is captured, and future work is needed to
identify finer grained sentiment as needed.

Another application is inter-alliance relations.
For instance, Table 6 shows how NATO member
nations view other alliances. The table shows the
average of all R(X,Y) edges for each nation within
an alliance to a nation in the other. According to
our ratios, NATO countries have stark differences
between how they view themselves versus how
they view African Union/Arab League nations.
Further, our pipeline enables analysis of outside
nations looking in. For instance, the nations with
the most positive view of the EU are Uruguay,
Lithuania (EU member), Belarus, Moldova, and
Slovakia (EU member). Almost all (not Uruguay)
are eastern european nations. Moldova is currently
seeking EU membership and Belarus had closer
ties until recently. Our results might point to po-
tential future alliances. Future work is needed to
explore this implied connection.

Finally, the R(X,Y) ratios can also represent a
nation’s opinion profile. Represent each nation X
by a vector of its R(X,Y) ratios. This represents
its entire international view based on social me-
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Inter-Alliance Opinion Ratios
Source Target Average R(X,Y)
NATO African Union 0.45
NATO Arab League 0.48
NATO European Union 1.51
NATO NATO 1.55

Table 6: Average pos/neg ratio of NATO nations
toward the nations in other formal alliances.

MID Accuracy with Filters
Filters Correct Incorrect Acc.
Dining+Sports 61 29 68%
Sports only 61 37 62%
None 56 51 52%

Table 7: Filtering effects on the MID results.

dia sentiment. Space prohibits more detail, but
we clustered opinion profiles with k-means (k=12)
and cosine similarity. Typical alliances, such as
European and African clusters, are learned.

6.4 Ablation Tests
The sentiment pipeline includes two practical fil-
ters to remove tweets about dining and sports.
We added these during training and developement
solely based on our interpretation and analysis of
the data. We did not evaluate on the test datasets
until the very end. Table 7 shows results from the
MID evaluation with the dining and sports filters
removed in sequence.

The number of correctly identified negative na-
tion pairs is mostly unchanged, but the number of
incorrect decisions increases dramatically. This
occurs because a greater number of tweets make
it through the pipeline. Further, this shows that the
filters effectively remove tweets that cause mis-
classification errors.

7 Discussion

This work is an important first step toward auto-
matic means to broadly detect international rela-
tions from social media. We use sentiment analy-
sis as a proxy for extracting at least one aspect of
the large set of factors involved in such relations.
This paper is the largest application of sentiment
analysis across a diverse set of nation-nation pairs
(hundreds of country pairs over 17 months), and
we showed that this sentiment is strongly corre-
lated (ρ = 0.8) with two independent public opin-
ion polls. These correlations more importantly
suggest that we are not simply identifying a bi-

nary positive or negative relation, but that the rela-
tive sentiment scores are useful. The failure of fre-
quency baselines on this ranking further suggests
that this is not a side effect of topic frequency.

One argument against using public opinion
polls for an evaluation is that the same people
who are polled by PIPA might be the same peo-
ple who tend to voice opinions on Twitter. The
Twitter dataset is not independent from the polls,
so the strong correlation we found could simply be
a matter of sampling the same population. This is
not possible to know, but whether or not it is the
case, this paper’s pipeline could be quite valuable
in automating expensive and time consuming hu-
man polls.

The results that focused on positive sentiment
(polls and alliances) are quite high. Negative sen-
timent revealed a lower 68% accuracy on the MID
dataset, but it is due to the fact that nation-nation
conflicts often occur between smaller nations that
are not represented well on Twitter. Requiring a
higher observed count improves accuracy to 81%.

While we are cautious not to make broad claims
about discovering international relations on Twit-
ter, we are encouraged by the experimental align-
ment with current alliances and historical conflict
data. The sentiment timeline for Israel and India
(Figure 1) is also intriguing. Tracking nation rela-
tions over a longer time period presents an oppor-
tunity for future study. This continual tracking of
sentiment is one of the most obvious benefits of an
automated approach.

Finally, an interactive world map is
available to browse this paper’s data at
www.usna.edu/Users/cs/nchamber/nations.
Each nation can be selected to visually color the
map with its positive/negative lens, and timelines
showing sentiment shifts between nations are vis-
ible. All code, data, and results are also available
on this page. We hope this work encourages even
further connections between NLP and political
science.
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Pablo Barberá and Gonzalo Rivero. 2014. Understand-

ing the political representativeness of twitter users.
Social Science Computer Review, December.

Hila Becker, Mor Naaman, and Luis Gravano. 2011.
Beyond trending topics: Real-world event identifi-
cation on twitter. ICWSM, 11:438–441.

Albert Bifet and Eibe Frank. 2010. Sentiment knowl-
edge discovery in twitter streaming data. In Lecture
Notes in Computer Science, volume 6332, pages 1–
15.

Dmitry Davidov, Oren Tsur, and Ari Rappoport. 2010.
Enhanced sentiment learning using twitter hashtags
and smileys. In Proceedings of the 23rd Inter-
national Conference on Computational Linguistics
(COLING 2010).

Xiaowen Ding and Bing Liu. 2007. The utility of lin-
guistic rules in opinion mining. In Proceedings of
SIGIR-2007, pages 23–27.

Ghosn, Faten, Glenn Palmer, and Stuart Bremer. 2004.
The mid3 data set, 1993-2001: Procedures, coding
rules, and description. In Conflict Management and
Peace Science 21, pages 133–154.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit-
ter sentiment classification using distant supervision.
Technical report.

Philip N. Howard, Aiden Duffy, Deen Freelon, Muza-
mmil Hussain, Will Mari, and Marwa Mazaid.
2011. Opening closed regimes: What was the role
of social media during the arab spring? Technical
Report working paper 2011.1, University of Wash-
ington, September.

Philip N. Howard. 2013. Democracy’s Fourth Wave?
Digital Media and the Arab Spring. Oxford Univer-
sity Press.

Minqing Hu and Bing Liu. 2004. Mining and sum-
marizing customer reviews. In Proceedings of the
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining.

Amaney A. Jamal, Robert O. Keohane, David Rom-
ney, and Dustin Tingley. 2015. Anti-americanism
and anti-interventionism in arabic twitter discourses.
Perspectives on Politics, pages 55–73, March.

Long Jiang, Mo Yu, Ming Zhou, Xiaohua Liu, and
Tiejun Zhao. 2011. Target-dependent twitter sen-
timent classification. In Proceedings of the Associa-
tion for Computational Linguistics (ACL-2011).

Efthymios Kouloumpis, Theresa Wilson, and Johanna
Moore. 2011. Twitter sentiment analysis: The good
the bad and the omg! In Proceedings of the Fifth In-
ternational AAAI Conference on Weblogs and Social
Media.

Adam D. I. Kramer. 2010. An unobtrusive behavioral
model of ‘gross national happiness’. In Proceedings
of the 28th International Conference on Human Fac-
tors in Computing Systems (CHI 2010).

Bing Liu and Lei Zhang. 2012. A survey of opinion
mining and sentiment analysis. Mining Text Data,
pages 415–463.

Marc Lynch. 2014. Arabs do care about
gaza. www.washingtonpost.com/blogs/monkey-
cage/wp/2014/07/14/arabs-do-care-about-gaza.

Saif M. Mohammad, Svetlana Kiritchenko, and Xiao-
dan Zhu. 2013. Nrc-canada: Building the state-
of-the-art in sentiment analysis of tweets. In Pro-
ceedings of the seventh international workshop on
Semantic Evaluation Exercises (SemEval-2013).

Preslav Nakov, Zornitsa Kozareva, Alan Ritter, Sara
Rosenthal, Veselin Stoyanov, and Theresa Wilson.
2013. Semeval-2013 task 2: Sentiment analysis
in twitter. In Proceedings of the 7th International
Workshop on Semantic Evaluation. Association for
Computational Linguistics.

Tetsuya Nasukawa and Jeonghee Yi. 2003. Senti-
ment analysis: capturing favorability using natural
language processing. In Proceedings of K-CAP.

Brendan O’Connor, Ramnath Balasubramanyan,
Bryan R. Routledge, and Noah A. Smith. 2010.
From tweets to polls: Linking text sentiment to
public opinion time series. In Proceedings of the
AAAI Conference on Weblogs and Social Media.

Brendan O’Connor, Brandon M Stewart, and Noah A
Smith. 2013. Learning to extract international re-
lations from political context. In ACL (1), pages
1094–1104.

Alexander Pak and Patrick Paroubek. 2010. Twit-
ter as a corpus for sentiment analysis and opinion
mining. In Proceedings of the Seventh International
Conference On Language Resources and Evaluation
(LREC).

B. Pang and L. Lee. 2008. Opinion mining and senti-
ment analysis. Foundations and Trends in Informa-
tion Retrieval.

Jonathon Read. 2005. Using emoticons to reduce de-
pendency in machine learning techniques for senti-
ment classification. In Proceedings of the ACL Stu-
dent Research Workshop (ACL-2005).

Ellen Riloff and Rosie Jones. 1999. Learning dic-
tionaries for information extraction by multi-level
bootstrapping. In Proceedings of the 16th Na-
tional Conference on Artificial Intelligence (AAAI-
99), pages 474–479.

Sara Rosenthal, Preslav Nakov, Alan Ritter, and
Veselin Stoyanov. 2014. Semeval-2014 task 9: Sen-
timent analysis in twitter. Association for Computa-
tional Linguistics.

74



Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo.
2010. Earthquake shakes twitter users: real-time
event detection by social sensors. In Proceedings
of the 19th international conference on World wide
web, pages 851–860. ACM.

Chenhao Tan, Lillian Lee, Jie Tang, Long Jiang, Ming
Zhou, and Ping Li. 2011. User-level sentiment anal-
ysis incorporating social networks. In Proceedings
of the 17th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining.

H. Tang, S. Tan, and X. Cheng. 2009. A survey on
sentiment detection of reviews. Expert Systems with
Applications.

Mike Thelwall, Kevan Buckley, and Georgios Pal-
toglou. 2011. Sentiment in twitter events. Journal
of the American Society for Information Science and
Technology, 62(2):406–418.

M. Tsytsarau and T. Palpanas. 2012. Survey on min-
ing subjective data on the web. Data Mining and
Knowledge Discovery Journal, 24(3):478–514.

Andranik Tumasjan, Timm O. Sprenger, Philipp G.
Sandner, and Isabell M. Welpe. 2010. Election fore-
casts with twitter: How 140 characters reflect the po-
litical landscape. Social Science Computer Review.

Xiaodan Zhu, Svetlana Kiritchenko, and Saif M. Mo-
hammad. 2014. Nrc-canada-2014: Recent improve-
ments in the sentiment analysis of tweets. In Pro-
ceedings of the seventh international workshop on
Semantic Evaluation Exercises (SemEval-2013).

75



Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 76–85,
Lisbon, Portugal, 17-21 September 2015. c©2015 Association for Computational Linguistics.

Open Extraction of Fine-Grained Political Statements

David Bamman
School of Information

University of California, Berkeley
Berkeley, CA 94720, USA

dbamman@berkeley.edu

Noah A. Smith
Computer Science & Engineering

University of Washington
Seattle, WA 98195, USA

nasmith@cs.washington.edu

Abstract

Text data has recently been used as evi-
dence in estimating the political ideologies
of individuals, including political elites
and social media users. While inferences
about people are often the intrinsic quan-
tity of interest, we draw inspiration from
open information extraction to identify a
new task: inferring the political import of
propositions like OBAMA IS A SOCIAL-
IST. We present several models that ex-
ploit the structure that exists between peo-
ple and the assertions they make to learn
latent positions of people and propositions
at the same time, and we evaluate them on
a novel dataset of propositions judged on a
political spectrum.

1 Introduction

Over the past few years, much work has fo-
cussed on inferring political preferences of peo-
ple from their behavior, both in unsupervised and
supervised settings. Classical ideal point models
(Poole and Rosenthal, 1985; Martin and Quinn,
2002) estimate the political ideologies of legisla-
tors through their observed voting behavior, pos-
sibly paired with the textual content of bills (Ger-
rish and Blei, 2012) and debate text (Nguyen et al.,
2015); other unsupervised models estimate ideolo-
gies of politicians from their speeches alone (Sim
et al., 2013). Twitter users have also been mod-
eled in a similar framework, using their observed
following behavior of political elites as evidence
to be explained (Barberá, 2015). Supervised mod-
els, likewise, have not only been used for assessing
the political stance of sentences (Iyyer et al., 2014)
but are also very popular for predicting the holis-
tic ideologies of everyday users on Twitter (Rao
et al., 2010; Pennacchiotti and Popescu, 2011;
Al Zamal et al., 2012; Cohen and Ruths, 2013;

Volkova et al., 2014), Facebook (Bond and Mess-
ing, 2015) and blogs (Jiang and Argamon, 2008),
where training data is relatively easy to obtain—
either from user self-declarations, political follow-
ing behavior, or third-party categorizations.

Aside from their intrinsic value, estimates of
users’ political ideologies have been useful for
quantifying the orientation of news media sources
(Park et al., 2011; Zhou et al., 2011). We con-
sider in this work a different task: estimating the
political import of propositions like OBAMA IS A

SOCIALIST.
In focusing on propositional statements, we

draw on a parallel, but largely independent, strand
of research in open information extraction. IE sys-
tems, from early slot-filling models with predeter-
mined ontologies (Hobbs et al., 1993) to the large-
scale open-vocabulary systems in use today (Fader
et al., 2011; Mitchell et al., 2015) have worked
toward learning type-level propositional informa-
tion from text, such as BARACK OBAMA IS PRES-
IDENT. To a large extent, the ability to learn these
facts from text is dependent on having data sources
that are either relatively factual in their presenta-
tion (e.g., news articles and Wikipedia) or are suf-
ficiently diverse to average over conflicting opin-
ions (e.g., broad, random samples of the web).

Many of the propositional statements that in-
dividuals make online are, of course, not objec-
tive descriptions of reality at all, but rather reflect
their own beliefs, opinions and other private men-
tal states (Wiebe et al., 2005). While much work
has investigated methods for establishing the truth
content of individual sentences — whether from
the perspective of veridicality (de Marneffe et al.,
2012), fact assessment (Nakashole and Mitchell,
2014), or subjectivity analysis (Wiebe et al., 2003;
Wilson, 2008) — the structure that exists between
users and their assertions gives us an opportunity
to situate them both in the same political space:
in this work we operate at the level of subject-
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predicate propositions, and present models that
capture not only the variation in what subjects
(e.g., OBAMA, ABORTION, GUN CONTROL) that
individual communities are more likely to discuss,
but also the variation in what predicates differ-
ent communities assert of the same subject (e.g.,
GLOBAL WARMING IS A HOAX vs. IS A FACT).
The contributions of this work are as follows:
• We present a new evaluation dataset of 766

propositions judged according to their positions
in a political spectrum.
• We present and evaluate several models for es-

timating the ideal points of subject-predicate
propositions, and find that unsupervised meth-
ods perform best (on sufficiently partisan data).

2 Task and Data

The task that we propose in this work is assessing
the political import of type-level propositions; on
average, are liberals or conservatives more likely
to claim that GLOBAL WARMING IS A HOAX? To
support this task, we create a benchmark of po-
litical propositions, extracted from politically par-
tisan data, paired with human judgments (details
in §2.3). We define a proposition to be a tuple
comprised of a subject and predicate, each consist-
ing of one or more words, such as 〈global warm-
ing, is a hoax〉.1 We adopt an open vocabulary
approach where each unique predicate defines a
unary relation.

2.1 Data

In order to extract propositions that are likely to be
political in nature and exhibit variability accord-
ing to ideology, we collect data from a politically
volatile source: comments on partisan blogs.

We draw data from NPR,2 Mother Jones3 and
Politico4, all listed by Pew Research (Mitchell
et al., 2014) as news sources most trusted by
those with consistently liberal views; Breitbart,5

most trusted by those with consistently conser-
vative views; and the Daily Caller,6 Young Con-
servatives7 and the Independent Journal Review,8

1We use these typographical conventions throughout:
Subjects are in sans serif, predicates in italics.

2http://www.npr.org
3http://www.motherjones.com
4http://www.politico.com
5http://www.breitbart.com
6http://dailycaller.com
7http://www.youngcons.com
8https://www.ijreview.com

all popular among conservatives (Kaufman, 2014).
All data comes from articles published between
2012–2015 and is centered on the US political
landscape.

Source Articles Posts Tokens Users
Politico 10,305 9.8M 348.4M 173,519
Breitbart 46,068 8.8M 336.4M 165,607
Daily Caller 46,114 5.4M 240.4M 228,696
Mother Jones 16,830 1.9M 119.2M 138,995
NPR 14993 1.6M 82.6M 62,600
IJ Review 3,396 278K 13.1M 51,589
Young Cons. 4,948 222K 10.6M 34,434
Total 142,654 28.0M 1.15B 621,231

Table 1: Data.

We gather comments using the Disqus API;9 as
a comment hosting service, Disqus allows users to
post to different blogs using a single identity. Ta-
ble 1 lists the total number of articles, user com-
ments, unique users and tokens extracted from
each blog source. In total, we extract 28 million
comments (1.2 billion tokens) posted by 621,231
unique users.10

2.2 Extracting Propositions

The blog comments in table 1 provide raw data
from which to mine propositional assertions. In
order to extract structured 〈subject, predicate〉
propositions from text, we first parse all com-
ments using the collapsed dependencies (de Marn-
effe and Manning, 2008) of the Stanford parser
(Manning et al., 2014), and identify all subjects as
those that hold an nsubj or nsubjpass relation
to their head. In order to balance the tradeoff be-
tween generality and specificity in the representa-
tion of assertions, we extract three representations
of each predicate.

1. Exact strings, which capture verbatim the
specific nuance of the assertion. This in-
cludes all subjects paired with their heads and
all descendants of that head. Tense and num-
ber are preserved.

Example: 〈Reagan, gave amnesty to 3 mil-
lion undocumented immigrants〉
2. Reduced syntactic tuples, which provide
a level of abstraction by lemmatizing word
forms and including only specific syntactic
relationships. This includes propositions de-

9https://disqus.com/api/
10While terms of service prohibit our release of this data,

we will make available tools to allow others to collect similar
data from Disqus for these blogs.
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fined as nominal subjects paired with their
heads and children of that head that are
negators, modal auxiliaries (can, may, might,
shall, could, would), particles and direct ob-
jects. All word forms are lemmatized, remov-
ing tense information on verbs and number
on nouns.

Example: 〈Reagan, give amnesty〉
3. Subject-verb tuples, which provide a more
general layer of abstraction by only encod-
ing the relationship between a subject and its
main action. In this case, a proposition is de-
fined as the nominal subject and its lemma-
tized head.

Example: 〈Reagan, give〉
The human benchmark defined in §2.3 below

considers only verbatim predicates, while all mod-
els proposed in §3 and all baselines in §4 include
the union of all three representations as data.

Here, syntactic structure not only provides in-
formation in the representation of propositions,
but also allows us to define criteria by which to
exclude predicates — since we are looking to ex-
tract propositions that are directly asserted by an
author of a blog comment (and not second-order
reporting), we exclude all propositions dominated
by an attitude predicate (Republicans think that
Obama should be impeached) and all those con-
tained within a conditional clause (If Obama were
impeached. . . ). We also exclude all assertions
drawn from questions (i.e., sentences containing
a question mark) and all assertions extracted from
quoted text (i.e., surrounded by quotation marks).

In total, from all 28 million comments across
all seven blogs, we extract all propositions defined
by the criteria above, yielding a total of 61 million
propositions (45 million unique).

2.3 Human Benchmark

From all propositions with a verbatim predicate
extracted from the entire dataset, we rank the
most frequent subjects and manually filter out non-
content terms (like that, one, someone, anyone,
etc.) to yield a set of 138 target topics, the most
frequent of which are obama, democrats, bush,
hillary, and america.

For each proposition containing one of these
topics as its subject and mentioned by at least
5 different people across all blogs, we randomly
sampled 1,000 in proportion to their frequency of

use (so that sentences that appear more frequently
in the data are more likely to be sampled); the sen-
tences selected in this random way contain a va-
riety of politically charged viewpoints. We then
presented them to workers on Amazon Mechanical
Turk for judgments on the extent to which they re-
flect a US liberal vs. conservative political world-
view.

For each sentence, we paid 7 annotators in the
United States to a.) confirm that the extracted
sentence was a well-formed assertion and b.) to
rate “the most likely political belief of the per-
son who would say it” on a five-point scale: very
conservative/Republican (−2), slightly conserva-
tive/Republican (−1), neutral (0), slightly lib-
eral/Democrat (1), and very liberal/Democrat (2).

We keep all sentences that at least six annotators
have marked as meaningful (those excluded by
this criterion include sentence fragments like bush
wasn’t and those that are difficult to understand
without context, such as romney is obama) and
where the standard deviation of the responses is
under 1 (which excludes sentences with flat distri-
butions such as government does nothing well and
those with bimodal distributions, such as christie
is done). After this quality control, we average
the responses to create a dataset of 766 proposi-
tions paired with their political judgments. Table
2 presents a random sample of annotations from
this dataset.

proposition mean s.d.
obama lied and people died -2.000 0.000
gay marriage is not a civil right -1.857 0.350
obama can’t be trusted -1.714 0.452
hillary lied -0.857 0.990
hillary won’t run -0.714 0.452
bush was just as bad 0.857 0.639
obama would win 1.429 0.495
rand paul is a phony 1.429 0.495
abortion is not murder 1.571 0.495
hillary will win in 2016 1.857 0.350

Table 2: Random sample of AMT annotations.

3 Models

The models we introduce to assess the political
import of propositions are based on two funda-
mental ideas. First, users’ latent political pref-
erences, while unobserved, can provide an orga-
nizing principle for inference about propositions
in an unsupervised setting. Second, by decou-
pling the variation in subjects discussed by dif-
ferent communities (e.g., liberals may talk more
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about global warming while conservatives may
talk more about gun rights) from variation in what
statements are predicated of those subjects (e.g.,
liberals may assert that 〈global warming, is a
fact〉 while conservatives may be more likely to
assert that it is a hoax), we are able to have a more
flexible and interpretable parameterization of ob-
served textual behavior that allows us to directly
measure both.

We present two models below: one that repre-
sents users and propositions as real-valued points,
and another that represents each as categorical
variables. For both models, the input is a set of
users paired with a list of 〈subject, predicate〉 tu-
ples they author; the variables of interest we seek
are representations of those users, subjects, and
predicates that explain the coupling between users
and propositions we see.

3.1 Additive Model

The first model we present (fig. 1) represents each
user, subject, and predicate as a real-valued point
in K-dimensional space. In the experiments that
follow, we consider the simple case where K = 1
but present the model in more general terms below.

In this model, we parameterize the generative
probability of a subject (like Obama) as used by
an individual u as the exponentiated sum of a
background log frequency of that subject in the
corpus overall (msbj ) and K additive effects, nor-
malized over the space of S possible subjects, as a
real-valued analogue to the SAGE model of Eisen-
stein et al. (2011). While the background term
controls the overall frequency of a subject in the
corpus, β ∈ RK×S mediates the relative increase
or decrease in probability of a subject for each la-
tent dimension. Intuitively, when both ηu,k and
βk,sbj (for a given user u, dimension k, and sub-
ject sbj ) are the same sign (either both positive
or both negative), the probability of that subject
under that user increases; when they differ, it de-
creases. β·,sbj is a K-dimensional representation
of subject sbj , and ηu,· is a K-dimensional repre-
sentation of user u.

P (sbj | u, η, β,msbj ) =

exp
(
msbj +

∑K
k=1 ηu,kβk,sbj

)
∑

sbj ′ exp
(
msbj ′ +

∑K
k=1 ηu,kβk,sbj ′

) (1)

Likewise, we parameterize the generative proba-
bility of a predicate (conditioned on a subject) in

the same way; for S subjects, each of which con-
tains (up to) P predicates, ψ ∈ RS×K×P captures
the relative increase or decrease in probability for
a given predicate conditioned on its subject, rel-
ative to its background frequency in the corpus
overall, mpred |sbj .

P (pred | sbj , u, η, ψ,mpred |sbj ) =

exp
(
mpred |sbj +

∑K
k=1 ηu,kψsbj ,k,pred

)
∑

pred ′ exp
(
mpred ′|sbj +

∑K
k=1 ηu,kψsbj ,k,pred ′

)
(2)

η

pred

µ σ

ψsb jβ

µs

σs

µp

σp

msb j mpred

K

W

U

Figure 1: Additive model with decoupled subjects
and predicates. η contains aK-dimensional repre-
sentation of each user; β captures the variation in
observed subjects, and ψ captures the variation in
predicates for a fixed subject.

The full generative story for this model runs as
follows. For a vocabulary of subjects of size S,
where each subject s has P predicates:
– For each dimension k, draw subject coefficients
βk ∈ RS ∼ Norm(µs, σsI)

– For each subject s:
– For each dimension k, draw subject-specific

predicate coefficients ψs,k ∈ RP ∼
Norm(µp, σpI)

– For each user u:
– Draw user representation η ∈ RK ∼

Norm(µ, σI)
– For each proposition 〈sbj , pred〉 made by u:

– Draw sbj according to eq. 1
– Draw pred according to eq. 2

The unobserved quantities of interest in this
model are η, β and ψ. In the experiments reported
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below, we set the prior distributions on η, β and
ψ to be standard normals (µ = 0, σ = 1) and per-
form maximum a posteriori inference with respect
to η, β and ψ in turn for a total of 25 iterations.

While β and ψ provide scores for the polit-
ical import of subjects and of predicates condi-
tioned on fixed subjects, respectively, we can re-
cover a single ideological score for both a subject
and its predicate by adding their effects together.
In the evaluation given in §5, let the PREDICATE

SCORE for 〈subject, predicate〉 be that given by
ψsubject,·,predicate, and let the PROPOSITION SCORE

be β·,subject + ψsubject,·,predicate.

3.2 Single Membership Model

While the additive model above represents each
user and proposition as a real-valued point in K-
dimensional space, we can also represent those
values as categorical variables in an unsupervised
naı̈ve Bayes parameterization; in this case, a user
is not defined as a mixture of different effects, but
rather belongs to a single unique community. The
generative story for this model (shown in fig. 2) is
as follows:

– Draw population distribution over categories
θ ∼ Dir(α)

– For each category k, draw distribution over sub-
jects φk ∼ Dir(γ)

– For each category k and subject s:
– Draw distribution over subject-specific predi-

cates ξk,s ∼ Dir(γs)
– For each user u:

– Draw user type index z ∼ Cat(θ)
– For each proposition 〈sbj , pred〉 made by u:

– Draw subject sbj ∼ Cat(φz)
– Draw predicate pred ∼ Cat(ξz,sbj )

We set K = 2 in an attempt to recover a dis-
tinction between liberal and conservative users.
For the experiments reported below, we run in-
ference using collapsed Gibbs sampling (Griffiths
and Steyvers, 2004) for 100 iterations, perform-
ing hyperparameter optimization on α, γ and γs
(all asymmetric) every 10 using the fixed-point
method of Minka (2003).

In order to compare the subject-specific predi-
cate distributions across categories, we first calcu-
late the posterior predictive distribution by taking
a single sample of all latent variables z to estimate

z

pred

θα

ξsb jφ

γ γs

Wu

U

Figure 2: Single membership model with decou-
pled subjects and predicates. z is the latent cate-
gory identity of a user (e.g., liberal or conserva-
tive); φ is a distribution over subjects for each cat-
egory; and ξ is a distribution of predicates given
subject s.

the following (Asuncion et al., 2009):

ζ̂z,v =
c(z, v) + γv∑
v′ c(z, v′) + γv′

(3)

Where ζ̂z,v is the vth element of the zth multino-
mial being estimated, c(z, v) is the count of ele-
ment v associated with category z and γv is the
associated Dirichlet hyperparameter for that ele-
ment. Given this smoothed distribution, for each
proposition we assign it a real valued score, the
log-likelihood ratio between its value in these two
distributions. In the evaluation that follows, let the
PREDICATE SCORE for a given 〈subject, predi-
cate〉 under this model be:

log

(
ξ̂0,subject,predicate

ξ̂1,subject,predicate

)
(4)

Let the PROPOSITION SCORE be:

log

(
φ̂0,subject × ξ̂0,subject,predicate

φ̂1,subject × ξ̂1,subject,predicate

)
(5)

4 Comparison

The two models described in §3 are unsupervised
methods for estimating the latent political posi-
tions of users along with propositional assertions.
We compare with three other models, a mixture
of unsupervised, supervised, and semi-supervised
methods. Unlike our models, these were not de-
signed for the task described in §2.
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4.1 Principal Component Analysis

To compare against another purely unsupervised
model, we evaluate against principal component
analysis (PCA), a latent linear model that min-
imizes the average reconstruction error between
an original data matrix X ∈ Rn×p and a low-
dimensional approximation ZW>, where Z ∈
Rn×K can be thought of as a K-dimensional la-
tent representation of the input and W ∈ Rp×K

contains the eigenvectors of the K largest eigen-
values of the covariance matrix XX>, providing
a K-dimensional representation for each feature.
We perform PCA with K = 1 on two representa-
tions of our data: a.) counts, where the input data
matrix contains the counts for each proposition for
each user, and b.) frequencies, where we normal-
ize those counts for each user to unit length. While
the input data is sparse, we must center each col-
umn to have a 0 mean (resulting in a dense ma-
trix) and perform PCA through a singular value
decomposition of that column-centered data using
the method of Halko (2011); in using SVD for
PCA, the right singular vectors correspond to the
principal directions; from these we directly read
off a K = 1 dimensional score for each proposi-
tion in our data.

4.2 `2-Regularized Logistic Regression

While unsupervised methods potentially allow us
to learn interesting structure in data, they are of-
ten eclipsed in prediction tasks by the addition of
any form of supervision. While purely supervised
models give more control over the exact decision
boundary being learned, they can suffer by learn-
ing from a much smaller training set than unsu-
pervised methods have access to. To evaluate this
tradeoff, we compare against a supervised model
trained using naturally occurring data – users who
self-declare themselves in their profiles to be lib-
eral, conservative, democrat, or republican. We
randomly sampled 150 users who self-identify as
liberals and 150 who identify as conservatives. We
do not expect these users to be a truly random sam-
ple of the population — those who self-declare
their political affiliation are more likely to engage
with political content differently from those who
do not (Sandvig, 2015; Hargittai, 2015) — but is a
method that has been used for political prediction
tasks in the past (Cohen and Ruths, 2013).

We build a predictive model using two classes
of features: a.) binary indicators of the most

frequent 25,000 unigrams and multiword expres-
sions11 in the corpus overall; and b.) features de-
rived from user posting activity to the seven blogs
shown in table 1 (binary indicators of the blogs
posted to, and the identity of the most frequent
blog). In a tenfold cross-validation (using `2-
regularized logistic regression), this classifier at-
tains an accuracy rate of 76.7% (with a standard
error of ±1.7 across the ten folds).

In order to establish real-valued scores for
propositions, we follow the same method as for
the single membership model described above, us-
ing the log likelihood ratio of the probability of
the proposition under each condition, where that
probability is given as the count of the proposi-
tion among users classified as (e.g.) liberals (plus
some small smoothing factor) divided by the total
number of propositions used by them overall.

score(prop) = log
P (prop | z = conservative)

P (prop | z = liberal)
(6)

4.3 Co-Training
Since the features we use for the supervised model
provide two roughly independent views of the
data, we also evaluate against the semi-supervised
method of co-training (Blum and Mitchell, 1998).
Here, we train two different logistic regression
classifiers, each with access to only the unigrams
and multiword expressions employed by the user
(hwords ) or to binary indicators of the blogs posted
to and the identity of the most frequent blog
(hblogs ). For ten iterations, we pick a random sam-
ple U ′ of 1,000 data points from the full dataset
U and classify each using the two classifiers;
each classifier then adds up to 100 of the highest-
confidence predictions to the training set, retaining
the class distribution balance of the initial training
set; after training, the final predictive probability
for an item is the product of the two trained clas-
sifiers. In a tenfold cross-validation, co-training
yielded a slightly higher (but not statistically sig-
nificant) accuracy over pure supervision (77.0%
±1.8). We calculate scores for propositions in the
same way as for the fully supervised case above.

5 Evaluation

For the experiments that follow, we limit the input
data available to all models to only those propo-

11Multiword expressions were found using the method of
Justeson and Katz (1995).
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sitions whose subject falls within the evaluation
benchmark; and include only propositions used by
at least five different users, and only users who
make at least five different assertions, yielding a
total dataset of 40,803 users and 1.9 million propo-
sitions (81,728 unique), containing the union of all
three kinds of extracted propositions from §2.2.

Each of the automatic methods that we discuss
above assigns a real-valued score to propositions
like OBAMA IS A SOCIALIST. Our goal in evalu-
ation is to judge how well those model scores re-
cover those assigned by humans in our benchmark.
Since each method may make different assump-
tions about the distribution of scores (and normal-
izing them may be sensitive to outliers), we do not
attempt to model them directly, but rather use two
nonparametric tests: Spearman’s rank correlation
coefficient and cluster purity.

Spearman’s rank correlation coefficient. The
set of scores in the human benchmark and as out-
put by a model each defines a ranked list of propo-
sitions; Spearman’s rank correlation coefficient
(ρ) is a nonparametric test of the Pearson correla-
tion coefficient measured over the ranks of items
in two lists (rather than their values). We use
the absolute value of ρ to compare the degree to
which the ranked propositions of two lists are lin-
early correlated; a perfect correlation would have
ρ = 1.0; no correlation would have ρ = 0.0.

Purity. While Spearman’s rank correlation co-
efficient gives us a nonparametric estimate of the
degree to which the exact order of two sequences
are the same, we can also soften the exact order-
ing assumption and evaluate the degree to which a
ranked proposition falls on the correct side of the
political continuum (i.e., not considering whether
OBAMA IS A SOCIALIST is more or less conserva-
tive than OBAMA IS A DICTATOR but rather that it
is more conservative than liberal). For each ranked
list, we form two clusters of propositions, split at
the midpoint: all scores below the midpoint de-
fine one cluster, and all scores above or equal de-
fine a second. For N = 766 propositions, given
gold clusters G = {g1, g2} and model clusters
Cn = {c1, c2} (each containing 383 propositions),
we calculate purity as the average overlap for the
best alignment between the two gold clusters and

their model counterparts.12

Purity =
1
N

(
max
j
|g1 ∩ cj |+ max

j
|g2 ∩ cj |

)
(7)

A perfect purity score (in which all items from
each cluster in C are matched to the same cluster
in G) is 1.0; given that all clusters are identically
sized (being defined as the set falling on each half
of a midpoint), a random assignment would yield
a score of 0.50 in expectation.

Model Purity Spearman’s ρ
Additive (PROP.) 0.757 ±0.020 0.648 ±0.017

Single mem. (PROP.) 0.754 ±0.019 0.628 ±0.017

Single mem. (PRED.) 0.702 ±0.018 0.555 ±0.015

Additive (PRED.) 0.705 ±0.018 0.490 ±0.013

Co-training 0.695 ±0.018 0.450 ±0.013

LR 0.619 ±0.016 0.278 ±0.010

PCA (frequency) 0.518 ±0.014 0.098 ±0.009

PCA (counts) 0.514 ±0.014 0.066 ±0.008

Table 3: Evaluation. Higher is better.

Table 3 presents the results of this evaluation.
For both of the models described in §3, we present
results for scoring a proposition like OBAMA IS

A SOCIALIST based only on the conditional pred-
icate score (PRED.) and on a score that includes
variation in the subject as well (PROP.). Since both
models are fit using approximate inference with a
non-convex objective function, we run five models
with different random initializations and present
the average across all five.

We estimate confidence intervals using the
block jackknife (Quenouille, 1956; Efron and
Stein, 1981), calculating purity and Spearman’s
ρ over 76 resampled subsets of the full 766 ele-
ments, each leaving out 10.13 For both metrics,
the two best performing models show statistically
significant improvement over all other models, but
are not significantly different from each other.

We draw two messages from these results:

For heavily partisan data, unsupervised meth-
ods are sufficient. In drawing on comments on
politically partisan blogs, we are able to match hu-
man judgments of the political import of proposi-
tions quite well (both of the unsupervised models

12In this case, with two clusters on each side, the best
alignment in maximal in that gn,i → cn,j ⇒ gn,¬i → cn,¬j .

13As a clustering metric, purity has no closed-form expres-
sion for confidence sets, and since its evaluation requires its
elements to be unique (in order to be matched across clus-
ters), we cannot use common resampling-with-replacement
techniques such as the bootstrap (Efron, 1979).
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described in §3 outperform their supervised and
semi-supervised counterparts by a large margin),
which suggests that the easiest structure to find in
this particular data is the affiliation of users with
their political ideologies. Both unsupervised mod-
els are able to exploit the natural structure with-
out being constrained by a small amount of train-
ing data that may be more biased (e.g., in its class
balance) than helpful. The two generative models
also widely outperform PCA, which may reflect a
mismatch between its underlying assumptions and
the textual data we observe; PCA treats data spar-
sity as structural zeros (not simply missing data)
and so must model not only the variation that ex-
ists between users, but also the variation that exists
in their frequency of use; other latent component
models may be a better fit for this kind of data.

Joint information is important. For both mod-
els, including information about the full joint
probability of a subject and predicate together
yields substantial improvements for both purity
and the Spearman correlation coefficient com-
pared to scores calculated from variation in the
conditional predicate alone. While we might have
considered variation in the predicate to be suffi-
cient in distinguishing between political parties,
we see that this is simply not the case; variation
in the subject may help anchor propositions in the
spectrum relative to each other.

6 Convergent Validity

The primary quantity of interest that we are trying
to estimate in the models described above is the
political position of an assertion; a user’s latent
political affiliation is only a helpful auxiliary vari-
able in reaching this goal. We can, however, also
measure the correlation of those variables them-
selves with other variables of interest, such as
users’ self-declarations of political affiliation and
audience participation on the different blogs. Both
provide measures of convergent validity that con-
firm the distinction being made in our models is
indeed one of political ideology.

6.1 Correlation with Self-declarations

One form of data not exploited by the unsu-
pervised models described above are users’ self-
declarations; we omit these above in order to make
the models as general as possible (requiring only
text and not metadata), but they can provide an

independent measure of the distinctions our un-
supervised models are learning. (The supervised
baselines in contrast are able to draw on this pro-
file information for training data.)

Approximately 12% of the users in the data in-
put to our models (4,718 of 40,804) have affiliated
self-declared profile information; the most fre-
quent of these include retired, businessman, stu-
dent, and patriot. For all of these users, we regress
binary indicators of the top 25,000 unigrams in
their profiles against the MAP estimate of their po-
litical affiliation in the single-membership model.
Across all 5 folds, the features with the highest
predictive weights for one class were patriot, con-
servative, obama, and god while the highest pre-
dictive weights for the other are progressive, voter,
liberal, and science.

6.2 Estimating Media Audience

We can also use users’ latent political ideologies to
estimate the overall ideological makeup of a blog’s
active audience. If we assign each post to our es-
timate of the political ideology of its author, we
find that Mother Jones has the highest fraction of
comments by estimated liberals at 80.4%, while
Breitbart has the highest percentage of comments
by conservatives (79.5%).

Blog % Liberal by post
Mother Jones 80.4%
NPR 67.4%
Politico 51.6%
Young Conservatives 38.0%
Daily Caller 28.4%
IJ Review 28.0%
Breitbart 20.5%

Table 4: Media audience.

This broadly accords with Mitchell et al. (2014),
which finds that among the blogs in our dataset,
consistently liberal respondents trust NPR and
Mother Jones most, while consistent conservatives
trust Breitbart most and NPR and Mother Jones
the least.

7 Conclusion

We introduce the task of estimating the political
import of propositions such as OBAMA IS A SO-
CIALIST; while much work in open information
extraction has focused on learning facts such as
OBAMA IS PRESIDENT from text, we are able to
exploit structure in the users and communities who
make such assertions in order to align them all
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within the same political space. Given sufficiently
partisan data (here, comments on political blogs),
we find that the unsupervised generative models
presented here are able to outperform other mod-
els, including those given access to supervision.

One natural downstream application of this
work is fine-grained opinion polling; while ex-
isting work has leveraged social media data on
Twitter for uncovering correlations with con-
sumer confidence, political polls (O’Connor et al.,
2010), and flu trends (Paul and Dredze, 2011),
our work points the way toward identifying fine-
grained, interpretable propositions in public dis-
course and estimating latent aspects (such as po-
litical affiliation) of the communities who as-
sert them. Data and code to support this work
can be found at http://people.ischool.
berkeley.edu/˜dbamman/emnlp2015/.
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Abstract

In this paper, we present a comprehensive
study of the relationship between an indi-
vidual’s personal traits and his/her brand
preferences. In our analysis, we included
a large number of character traits such as
personality, personal values and individual
needs. These trait features were obtained
from both a psychometric survey and au-
tomated social media analytics. We also
included an extensive set of brand names
from diverse product categories. From this
analysis, we want to shed some light on (1)
whether it is possible to use personal traits
to infer an individual’s brand preferences
(2) whether the trait features automatically
inferred from social media are good prox-
ies for the ground truth character traits in
brand preference prediction.

1 Introduction

Brand preference analysis is an important topic in
marketing. To induce a desired brand choice, a
marketer must understand the main factors that in-
fluence a consumer’s brand preferences. This task
is not easy since many factors may play a role
in determining one’s brand preferences such as a
consumer’s individual characteristics and prefer-
ences as well as the properties of a brand (e.g.,
its perceived quality). Among consumer related
factors, demographics such as age, gender and in-
come have been studied extensively in marketing
research (Evans, 1959; Elliott, 1994; Lin, 2002).
In this study, we focus on analyzing a set of con-
sumer characteristics, which have received less
attention but with these features, potentially we
can build more precise and more accurate brand
preference prediction models. Especially, we fo-
cus on three types of personal traits: personality,

personal values, and individual needs. Personal-
ity is a combination of characteristics or qualities
that form an individual’s distinctive character; Per-
sonal values reflect what are important to different
individuals and what motivate them in their deci-
sion making. Moreover, all people have certain
needs that they want to satisfy. Thus, analyzing a
comprehensive set of personal traits may help us
understand the way we react to a particular brand.

Previously, the relationship between personal
traits and brand preference/purchase decisions has
drawn limited interest in marketing research due
to the difficulty in obtaining consumer traits on a
large scale. Among these efforts, Westfall found
that differences exist between the personalities of
the owners of convertible cars and those of stan-
dard & compact cars (Westfall, 1962). Similarly,
the congruence of personal and brand personal-
ity was suggested to be a predictor of consumers’
brand preferences (Jamal and Goode, 2001; Dik-
cius et al., 2013). However, Shank & Lang-
meyer found personal traits less useful in building
a strategic marketing tool (Shank and Langmeyer,
1994).

Given limited and sometimes conflicting results
in previous research, in this study, we want to sys-
tematically investigate the relationship between a
comprehensive set of personal traits and brand
preferences. Specifically, we want to shed some
light on (1) whether it is possible to use personal
traits to predict consumer’s brand preferences? (2)
whether it is feasible to use automatically inferred
personal traits to build brand preference prediction
systems that are scalable?

Our study offers several significant contribu-
tions to the field of brand preference analysis:

1. It is the first study that includes a comprehen-
sive set of personal traits in brand preference
analysis. Our current investigation includes
personality (5 general categories and 30 sub-
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facets), personal values (5 dimensions) and
individual needs (12 dimensions). In con-
trast, previous work typically only included
a small number of personal traits (e.g., just 5
personality traits in (Hirsh et al., 2012)).

2. It is the first study that uses personal traits
obtained from both psychometric evaluation
and social media analytics. The traits scores
derived from psychometric tests are more ac-
curate, which allow us to focus on the re-
lationship between personal traits and brand
preferences without the distractions from the
mistakes introduced by an automated trait in-
ference system. However, since psychomet-
ric tests require users to answer a large num-
ber of survey questions, without sufficient in-
centives, it is difficult to perform psychomet-
ric evaluation for a large number of people.
In contrast, automatically derived trait fea-
tures based on social media analytics require
no user effort, and can be applied to millions
of social media users.

3. Our study involves diverse brand categories
such as luxury car brands, retail brands, fast
food brands, and household product brands
(e.g., shampoo brands). With this data, we
can investigate whether the relationship be-
tween personal traits and brand preferences
varies across multiple product categories.

Since the current study focuses on a compre-
hensive set of consumer characteristics and pref-
erences which does not include many important
brand properties such as perceived quality, risk,
price and market presence, the main goal of our in-
vestigation is not to build a highly accurate brand
preference prediction system. Instead, we want to
first establish the feasibility of using derived trait
features in building large-scale brand preference
prediction systems. In the following, we first sum-
marize some prior work, then describe the details
of our experiments.

2 Related Work

Predicting brand preference is a hard problem. A
large number of factors may influence customers’
choices. Table 1 summarizes the factors that have
been explored in previous research. Due to the
scope, so far, there isn’t any prior investigation
that is capable of incorporating all the factors in

a single model. Our study is one of the most com-
prehensive analyses so far. We not only investi-
gate the influence of a large number of personal
traits but also combine them with other known
consumer-related features such as demographics
and personal interests. We however have not in-
cluded any brand-related properties such as per-
ceived quality, risk and market presence because
we do not have access to these data.

Consumer
Oriented
Features

Demographic characteristics (Evans, 1959; Koponen, 1960; El-
liott, 1994; Lin, 2002) including Age, Education, Gender, Fam-
ily dimensions, Marital Status, Ethnic group, Geographic loca-
tion, Social Class, Community
Attitude (Bass and Talarzyk, 1972; Haley and Case, 1979),
Personalities (Westfall, 1962; Shank and Langmeyer, 1994;
Myszkowski and Storme, 2012), Needs (Evans, 1959), Trust
(Chaudhuri and Holbrook, 2001), Customer Satisfaction (Bryant
and Cha, 1996; Mittal and Kamakura, 2001; Olsen, 2002),
Brand loyalty (Olsen, 2002), Group Influences (Witt and Bruce,
1972), Consumers’ memory (Hutchinson et al., 1994), Aspira-
tions (Truong et al., 2010), Purchase history (Dong and Stewart,
2012), Mental Accounting (Thaler, 1985), Involvement (Celsi
and Olson, 1988), Social Influence (Wood and Hayes, 2012)

Brand-
Related
Factors

Price, Market presence, Market response in (Papadopoulos et
al., 1990), Promotion (Graeff, 1996), Brand name (Zinkhan
and Martin Jr, 1987; Klink, 2001), Quality (Dickerson, 1982;
Olsen, 2002), Service quality, Equity, Value in (Hellier et
al., 2003), Country of origin (Han and Terpstra, 1988; Tse
and Gorn, 1993), Product image (Westfall, 1962), Brand per-
sonality (Aaker, 1997), Pioneering advantages (Carpenter and
Nakamoto, 1989), Recallability (Costley and Brucks, 1992),
Communication (advertising) (Nicholls et al., 2011; Liu and
Tang, 2011), Social environment (Witt and Bruce, 1972), Per-
ceived risk (Peter and Ryan, 1976; Campbell and Goodstein,
2001), Product attributes (Semeijn et al., 2004), Product visi-
bility (Sutton and Riesz, 1979)

Table 1: Features explored in previous studies

In recent social media studies, Wang et al. uti-
lized customer reviews to predict coffee brand sat-
isfaction (Wang et al., 2013). Also, there is a
large-body of work trying to predict brand pref-
erences based on one’s social media posts. Most
of these work, however is performed in the con-
text of sentiment analysis. In sentiment analy-
sis, the main focus was to infer the sentiment
associated with a post that mentions a particular
brand/product. For example, Kim et al. collected
600,000 tweets that contain smartphone-related
keywords and then performed sentiment analysis
to infer whether a user’s attitude toward a par-
ticular mobile phone is positive or negative (Kim
et al., 2012). Similarly, Mostafa analyzed the
sentiment associated with 3,500+ tweets, which
showed a generally positive consumer sentiment
towards several famous brands (Mostafa, 2013).
In contrast, our trait-based analysis is more gen-
eral since it does not require users to explicitly ex-
press their opinions about a specific brand. For ex-
ample, to infer whether an individual likes BMW
or not, with sentiment analysis, a user has to ex-
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plicitly express his opinion towards BMW (e.g.
Driving BMW is exciting!). In contrast, with our
system, if we know that he likes to seek excite-
ment (excitement, a needs dimension) and enjoys
luxury products (Hedonism, a values dimension),
we can guess he may like BMW although he has
never explicitly mentioned BMW in his social me-
dia posts before. This difference is important since
among the millions of products on social media,
only a small number of products have been explic-
itly rated/mentioned by a particular user.

In summary, brand preferences may be influ-
enced by many consumer and brand-related fac-
tors. Previous research has not paid sufficient at-
tention to the influence of personal traits. In ad-
dition, most previous studies used psychometric
surveys which are impractical in mass marketing
since it is unlikely that a large number of cus-
tomers would take the time to answer lengthy sur-
vey questions. In this study, we focus on inves-
tigating the feasibility of using automatically in-
ferred personal traits in large-scale brand prefer-
ence prediction. Next, we describe the dataset we
collected to support this study.

3 Data Collection

To investigate how personal traits are related to an
individual’s brand preferences, we collected two
datasets. In the first dataset, in addition to brand
preferences, we also used standard psychometric
tests to obtain clean and accurate personal trait
measures. With this dataset, we can build and
evaluate brand preference prediction models that
use accurate personal traits. In contrast, the second
dataset is used to build and evaluate brand prefer-
ence prediction models that use trait features auto-
matically inferred from social media. By compar-
ing the models built from both datasets, we can
answer questions such as: (1) whether personal
traits are useful in predicting brand preferences (2)
whether the traits automatically inferred from so-
cial media are useful in predicting brand prefer-
ences.

To collect these datasets, we designed two Ama-
zon Mechanical Turk (MTurk) 1 tasks. All the
MTurk participants are from the US since people
outside the US may be unfamiliar with some of the
brands. In the following, we describe the details of
each MTurk task.

1http://mturk.com/

Category Brand
Beverage (2) Coca-Cola, Pepsi
Luxury Car (3) BMW, Cadillac, Lexus
Fast Food (4) Chipotle, McDonald’s, Panera Bread (PB) , Subway
Retail (4) Kohl’s, Macy’s, Nordstrom, Target

Shampoo (4) Head & Shoulders (HS), Herbal Essences (HE),
Pantene, Suave

Smart Phone (5) HTC, iPhone, Samsung, SONY, Nokia

Table 2: Selected brand categories and brands

3.1 Task 1: PTBP Survey

To collect the first dataset, we conducted a Per-
sonal Traits & Brand Preferences (PTBP) survey.
Our trait survey includes five parts designed to
measure three types of personal traits: personal-
ity, values and needs plus demographics and per-
sonal interests. Specifically, since the Big-Five
model of personality is the most popular model
of personality traits among personality psycholo-
gists, we adopted a standard survey for Big 5 per-
sonality. Here to limit the time MTurkers need to
spend on the survey, instead of the full 300-item
personality test, we used the shorter 50-item IPIP
survey (Goldberg, 1993) which will score a user
along 5 general personality dimensions: open-
ness, conscientiousness, extraversion, agreeable-
ness and neuroticism. However, with the shorter
survey, we can not obtain the scores for 30 ad-
ditional personality facets. Similarly, we used
the standard 21-item PVQ survey to obtain the
values defined in Schwartz’s theory of basic val-
ues (Schwartz, 2003). We also used the 35-item
BNS survey to obtain the needs defined in Ford’s
needs model (Ford, 2005; Yang and Li, 2013). In
addition, we also included survey questions about
a user’s demographics (e.g., gender, age, marital
status, education and income) and personal inter-
ests (e.g,, automobile, sports, movies, travel) since
they were used in some previous studies on brand
preference (Pennacchiotti and Gurumurthy, 2011;
Lin, 2002). Finally for each user, we collected
her preferences for 22 brands in six categories.
We have chosen well-known brands from diverse
groups ranging from mobile phones to retail stores
and fast food restaurants. The brands within each
category are often competitors. For each brand in
each category, we asked users to rate their prefer-
ences using a 5-point scale: Love, Like, Neutral,
Dislike and Hate. A user can choose “n/a” if she
has no knowledge of a particular brand. In total,
we have collected the data from 1,207 MTurkers.
To ensure the quality of the data collected from
MTurk, we also included several validation ques-
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tions. The validation questions are pairs of ques-
tions that are paraphrases of each other. If the an-
swers to a pair of validation questions are signif-
icantly different, the user data are excluded from
our analysis. Our final dataset has 1,017 valid re-
sponses. Table 2 lists all the brands used in our
study. All the measures used in our PTBP survey
are listed in Table 3.

Question
Category Features

Personalities (5)
Big-five personalities:
Agreeableness, Conscientiousness,
Extraversion, Neuroticism, Openness

Values (5) Conservation, Hedonism, Openness to change,
Self Enhancement, Self Transcendence

Needs (12)
Challenge, Closeness, Curiosity, Excitement,
Harmony, Ideal, Liberty, Love, Practicality,
Self-expression, Stability, Structure

Topics of
Interest (20)

Politics, Business, Technology, Science, Health,
Sports, Education, Books, Dance, Movie, Music,
Television, Theater, Video games, Automobiles,
Dining wine, Fashion style, Home garden,
International news, US news

Location (2) City, State

Demographics (6) Gender, Age, Marital status, Have children,
Education status, Income

Brand Preferences (22) Ratings for all the 22 brands

Table 3: PTBP Survey Feature Summary

3.2 Task 2: TAE Survey

The data collected in the Text Analytics Evalu-
ation (TAE) survey are used to study the corre-
lation between the trait features inferred from a
person’s social media posts (e.g., tweets) and his
brand preferences. Before the TAE survey, the
participants were first asked to verify whether they
had a Twitter account, if so, provide us their Twit-
ter IDs. The users also agreed that we could access
their tweets after the survey. Since our automated
trait inference system relies on linguistic cues de-
rived from a person’s Twitter posts, to ensure we
can have a stable and reliable reading of one’s
personal traits from his tweets, only active Twit-
ter users with over 50 tweets (excluding retweets)
can participate this survey. Since the majority of
MTurkers are not active Twitter users, to increase
the size of our data, in addition to MTurk, we also
directly invited random Twitter users to participate
in our TAE survey.

In addition to Twitter IDs, we also asked par-
ticipants to provide their preferences for the same
22 brands as those used in the PTBP survey. Simi-
larly, to filter out data by people who do not follow
instructions, we also added two validation ques-
tions. In total, in the TAE survey, we have col-
lected data from 659 participants, out of which
608 are valid. (550 valid ones are from MTurk,

and 109 are from direct Twitter invitation).

3.3 Data Preparation

To obtain the trait scores for each user based on his
answers in the PTBP survey, we first computed the
raw trait scores based on the original survey guide-
lines. Since different surveys used different scales,
we normalized the trait scores by using their rank
percentile (e.g., top 1%, top 5%). As a result, all
the normalized personal trait scores are between 0
and 1.

Moreover, for each of the 20 topics of interest,
we created a binary variable, indicating whether
a participant is interested in a specific topic. In
addition, each demographics feature such as age,
education, income, was first mapped to an integer
and then normalized into a number between 0 and
1.

To derive the trait scores for a user in the TAE
survey, we crawled all the tweets in his Twitter
account. Since personal traits are inferred from
the text authored by a user, we discarded all the
retweets. Due to the restrictions of the Twit-
ter API, we can only crawl a maximum of 3,200
tweets for each user2.

Recent research in psycholinguistics has shown
it is possible to automatically infer personal traits
from one’s linguistic footprints such as tweets and
blogs (Yarkoni, 2010; Chen et al., 2014; Yang
and Li, 2013). Here, we used a similar ap-
proach. Specifically, given input text authored by a
user (e.g., tweets), our system computed the word
counts of different psychologically-meaningful
word categories defined in the Linguistic Inquiry
and Word Count (LIWC) dictionary (Pennebaker
et al., 2001). The LIWC counts were then used
to build prediction models to correlate one’s word
usage with his ground truth personal traits ob-
tained via a prior psychometric survey. Then the
built models were used to automatically infer a
user’s personal traits. Based on a preliminary eval-
uation with 250 participants, more than 80 per-
cent of them, scores for traits that were inferred
for all three models correlated significantly with
survey-based scores (p<0.05 and correlation coef-
ficient between 0.05 and 0.8). Specifically, scores
that were derived by our system correlated with
survey-based scores for 80.8% of participants’ �Big
Five scores (p<0.05 and correlation coefficients
between 0.05 and 0.75), for 86.6% of participants’

2https://dev.twitter.com
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Needs scores (p<0.05 and correlation coefficient
between 0.05 and 0.8), and for 98.21% of partic-
ipants’ Values scores (p<0.05 and correlation co-
efficients between 0.05 and 0.55). Moreover, the
participants also rated on a five-point scale how
well each derived characteristic matched their per-
ceptions of themselves, and their ratings suggest
that the inferred characteristics largely matched
their self-perceptions. Specifically, means of all
ratings were above 3 (“somewhat”) out of 5 (“per-
fect”): 3.4 (with a std. of 1.14) for Big Five, 3.39
(with a std. of 1.34) for Needs, and 3.13 (with a
std. of 1.17) for Values.

In addition to personal traits, we also included
topics of interest in the TAE dataset. They were
automatically inferred from tweets using Latent
Dirichlet Allocation (LDA) (Blei et al., 2003).
Since we need a large Twitter dataset to mine a list
of general topics of interest, our current tweet col-
lection is not sufficient. Therefore, we use a sep-
arate and much larger Twitter dataset from 10,000
randomly selected Twitter users. For each user, we
crawled his tweets and then aggregated them into
a big document, one for each Twitter user. As a re-
sult, we have 10,000 documents in our dataset. We
then built an LDA topic model using this dataset.
From the LDA inference results, we can infer a
user’s topics of interest. Basically, for a given user
u, LDA outputs a per user topic distribution Θu,
which is a T -dimensional vector where T is the
number of topics. The value θu,i is an indication of
how likely Topic i is mentioned in user u’s tweets.
The higher θu,i is, the more likely that user u is
interested in topic i. Table 4 shows some of the
topics automatically learned by LDA.

Manually
Labeled
Name

Top 10 Topic keywords

Mobile phone google app apple data mobile
iphone web android tech windows

Alcohol drinking beer wine vegas earned badge tonight ale bar ipa
Travel travel hotel cruise ttot trip family great world tips top
Driving slow drive traffic lane car north south blvd lanes crash

Game game app ipad video ve games
gameinsight free android xbox

Table 4: Selected topics and top words from LDA

As a summary, table 5 shows all the features
from the TAE survey, including those automati-
cally inferred from tweets. For personality, fol-
lowing the same procedure defined in (Yarkoni,
2010), in addition to the Big five personality di-
mensions, our system is able to automatically ex-
tract 30 additional personality facets for the TAE

dataset.

Question Category Features
Survey Features
Twitter ID
Brand Preference for 22 Brands

Derived Features
Personalities (35) Big-five personalities plus their sub-facets auto-

matically inferred from tweets (Yarkoni, 2010)
Values (5) Same as those in Table 3 but inferred from

tweets
Needs (12) Same as those in Table 3 but inferred from

tweets
Topics of
Interest (50) Automatically inferred using a topic model

Location (2) City, State inferred from IP address
Twitter Metadata
(5) Number of tweets, Number of followers, Num-

ber of friends, Favorite count, Listed count
Online Behavior
(31) Avg. number of tweets posted in each of the 7

days in a week, and each of the 24 hours in a
day.

Table 5: TAE survey feature summary

In the following section, we explain two analy-
ses we performed on these datasets.

4 Experiment 1

The main objective of this analysis is twofold: (1)
to understand why people like or dislike a brand.
(2) to build a computational model that automati-
cally differentiates people who have positive, neg-
ative, or neutral opinions about a brand.

4.1 Definition and Statistics
For each brand in this study, we define people who
have positive opinions as those who gave a love or
like rating in their brand preference surveys. Simi-
larly, people who have negative opinions are those
who gave a hate or dislike rating. People who gave
a neutral rating are in the neutral category. Table 6
shows the number of instances in each of the three
categories for each brand.

4.2 Classification
In this experiment, we want to investigate whether
it is possible to differentiate people who have (Pos-
itive, Negative, or Neutral) opinions towards dif-
ferent brands. For each brand, we built three-
way classifiers using different classification algo-
rithms including AdaBoost (Freund and Schapire,
1996), Decision Tree (C4.5) (Quinlan, 1993), Lo-
gistic Regression, Naive Bayes, Random Forest
(Breiman, 2001), and SVM (Platt, 1999). In addi-
tion, for SVM, we have tested different kernels in-
cluding polynomial kernel, pearson VII function-
based universal kernel (Üstün et al., 2006), and the
radial basis function kernel. They are all imple-
mented in the Weka machine learning toolkit (Hall
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Brands PTBP Survey TAE Survey
Positive Negative Neutral Positive Negative Neutral

Coca-Cola 519 190 115 363 73 67
Pepsi 360 315 153 261 132 110

BMW 382 85 113 280 34 183
Cadillac 239 162 144 212 61 226
Lexus 361 80 119 255 44 200

Chipotle 443 95 103 298 46 114
McDonald’s 304 383 143 270 152 84
PB 437 99 135 316 36 119
Subway 534 176 123 371 75 61

Kohl’s 402 154 202 298 58 147
Macy’s 293 137 210 252 37 207
Nordstrom 227 196 176 177 39 256
Target 640 87 106 430 18 58

HS 314 260 166 246 68 175
HE 388 138 171 259 46 181
Pantene 377 165 173 259 52 177
Suave 362 225 173 238 85 175

HTC 280 111 165 180 46 249
iPhone 426 218 83 338 98 67
Samsung 564 62 104 344 28 128
SONY 114 222 181 61 82 316
Nokia 161 266 215 126 94 263

Table 6: Number of instances in each category

et al., 2009). Since our current goal is not to build
the best brand preference prediction system, but to
show the feasibility of building brand preference
prediction systems that are scalable to millions of
users, we ran all our classifiers using the default
parameter settings from Weka (E.g. for Random
Forest, we used 10 trees. The umber of features
was set to log2(number of all features)+1.). We
expect in the future, by optimizing model parame-
ters, we can further improve the prediction power
of each model.

The baseline classifiers classify every data in-
stance into the majority class. Among all the
classifiers we tested, we found that overall Naive
Bayes has the best performance on both the PTBP
and the TAE datasets. In the following, we report
the average F-scores and AUC across 22 different
brands using Naive Bayes with 10-fold cross val-
idations. We created models that use all the user
features and also those that use only trait features.
Table 7 shows the results.

Best
Classifier

PTBP TAE
F AUC F AUC

All features 0.483 0.569 0.501 0.547
Traits only 0.475 0.556 0.502 0.528

Baseline 0.396 0.493 0.444 0.490

Table 7: 3-Way Classification Results

Overall, all the classifiers performed signifi-
cantly better than the baselines (p<0.05). More-
over, the models using all the features performed
similarly to those using only trait features. The
differences are not statistically significant. In ad-
dition, comparing the models trained on the PTBP

data with those on the TAE dataset, their perfor-
mances are very similar, although the exact num-
bers are not directly comparable since they are
from two different datasets.

To break down the results by product category,
in Table 8, we list the per-brand classification re-
sults using only the trait features. The numbers
in the parentheses show the F-score percentage in-
crease from the baselines. In general, models with
trait features did much better than the baselines on
both datasets. But their effectiveness varied from
one brand to another. For example, the trait fea-
tures were very effective in predicting user prefer-
ences for Cadillac (50.8% increase on the PTBP
dataset and 68.5% increase on the TAE dataset).
In contrast, there was barely any improvement for
Target. After inspecting the data, it seems this
may be caused by the distribution of the data. For
instance, the Target TAE data was very skewed.
There were 430 people who had positive opinions
about Target versus 18 people who had negative
opinions. Since the baseline predicts “all people
like Target”, which resulted in a pretty high F-
score (0.781), any further improvement over this
baseline became more difficult.

Brand PTBP TAE
BL F Best F ↑% BL F Best F ↑%

Coca-Cola 0.487 0.503 3.3% 0.605 0.605 0.0%
Pepsi 0.263 0.427 62.4% 0.355 0.416 17.2%

BMW 0.522 0.562 7.7% 0.406 0.499 22.9%
Cadillac 0.266 0.401 50.8% 0.282 0.474 68.1%
Lexus 0.505 0.531 5.2% 0.346 0.5 44.5%

Chipotle 0.564 0.59 4.6% 0.513 0.53 3.3%
McDonald’s 0.291 0.42 44.3% 0.371 0.459 23.7%
PB 0.513 0.528 2.9% 0.539 0.58 7.6%
Subway 0.501 0.525 4.8% 0.618 0.623 0.8%

Kohl’s 0.368 0.466 26.6% 0.441 0.506 14.7%
Macy’s 0.288 0.465 61.5% 0.342 0.5 46.2%
Nordstrom 0.207 0.421 103.4% 0.381 0.467 22.6%
Target 0.668 0.67 0.3% 0.781 0.781 0.0%

HS 0.253 0.399 57.7% 0.337 0.454 34.7%
HE 0.397 0.43 8.3% 0.371 0.494 33.2%
Pantene 0.363 0.452 24.5% 0.368 0.51 38.6%
Suave 0.307 0.375 22.2% 0.309 0.434 40.5%

HTC 0.337 0.411 22.0% 0.361 0.455 26.0%
iPhone 0.432 0.501 16.0% 0.54 0.557 3.2%
Samsung 0.673 0.673 0.0% 0.561 0.574 2.3%
SONY 0.258 0.407 57.8% 0.561 0.575 2.5%
Nokia 0.243 0.397 63.4% 0.384 0.432 12.5%

Table 8: Classification Results By Brand

In summary, for the task of differentiating peo-
ple who have positive, negative, or neutral opin-
ions towards different brands, automatically in-
ferred traits can be a good proxy for the clean data
derived from psychometric surveys. Models based
on the trait features inferred from social media can
perform similarly to those using a much larger set
of clean features. This result is encouraging since
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it implies that it is possible to build large-scale
brand preference prediction systems that do not re-
quire costly psychometric surveys.

4.3 Top Features
In this study, we want to find out what are the most
significant features that can be used to differenti-
ate a brand’s likers from dislikers. The feature se-
lection was conducted using logistic regression in
SPSS3. Due to the page limit, we cannot list all the
significant features for all the 22 brands. Here we
only show the most important features in predict-
ing people who like and dislike luxury car brands
based on the PTBP dataset (Table 9). Based on
the regression analysis, all the features are sig-
nificantly associated with brand preferences ( p<
0.05). In this table, personal trait features are high-
lighted and followed by their types: P (Personali-
ties), V (Values), and N (Needs). “+” or “-” means
the features contribute positively or negatively to
the model. As shown in the table, more than half
of all the top features are trait features. For ex-
ample, the No. one trait feature to differentiate
BMW likers from dislikers is ideal, a trait associ-
ated with people who have a desire for perfection.
For Cadillac, the top trait is hedonism, which is
often associated with people who pursue pleasure
and sensuous gratification in life. For Lexus, the
most useful feature is self-expression, a trait often
associated with people who have a desire to assert
their own identifies. Other interesting findings in-
clude that females are less likely to be a fan of a
luxury car brand than males. This is true across all
three luxury car brands.

BMW Cadillac Lexus
ideal (N) + have children(no) - sports +
love (N) + television + self expression (N) +
conscientiousness (P) + hedonism (V) + television +
gender(female) - home garden - self enhancement (V) +
us news + gender(female) - fashion style +
health + conservation (V) + theater -
hedonism (V) - self enhancement (V) - agreeableness (P) +
challenge (N) - science + openness to change (V) -
conservation (V) - love (N) - curiosity (N) +
self enhancement (V) + theater - gender(female) -

Table 9: Top 10 features for predicting opinions
toward cars

5 Experiment 2

In the previous section, we demonstrated that
given a particular brand such as Pepsi, it is possi-
ble to automatically differentiate the people who
have positive, negative or neutral opinions. In

3http://www-01.ibm.com/software/analytics/spss/

this section, we try to answer a different question:
given a list of competing brands in the same prod-
uct category, can we automatically rank a user’s
preferences of these brands? For example, given
popular beverage brands such as Pepsi and Coca-
Cola, can we automatically predict whether a per-
son will like Pepsi or Coca-Cola more?

5.1 Average Rank for Each Brand

For each user, we rank all the brands in each prod-
uct category based on his preferences in the sur-
vey (e.g., 1 means most preferred brand). We ag-
gregate the ranks from all the users and show the
overall brand preference ranks for both datasets.
As shown in table 10, the overall brand preference
ranks for the PTBP and TAE surveys are highly
correlated. Half of the product categories have ex-
act the same preference ranks for all the products;
The other half has only one slightly mis-matched
rank in each product category. This suggests that
the population participated in the PTBP and TAE
survey has very similar brand preference distribu-
tions. In the future, it maybe interesting to inves-
tigate how this rank is related to different brands’
market share.

PTBP TAE

Beverage 1. Coca-cola 1. Coca-cola
2. Pepsi 2. Pepsi

Car
1. BMW 1. BMW
2. Lexus 2. Lexus
3. Cadillac 3. Cadillac

Fast Food

1. Chipotle 1. Panera Bread
2. Panera Bread 2. Chipotle
3. Subway 3. Subway
4. McDonald’s 4. McDonald’s

Retail

1. Target 1. Target
2. Macy’s 2. Kohl’s
3. Kohl’s 3. Macy’s
4. Nordstrom 4. Nordstrom

Shampoo

1. Herbal Essences 1. Herbal Essences
2. Pantene 2. Pantene
3. Suave 3. Head & Shoulders
4. Head & Shoulders 4. Suave

Smart Phone

1. Samsung 1. Samsung
2. iPhone 2. iPhone
3. HTC 3. HTC
4. Nokia 4. Nokia
5. SONY 5. SONY

Table 10: Overall preference rank

5.2 Rank Correlation

To predict the rank of a product in each category,
we trained a multi-class classifier to estimate how
likely a user will like a brand. For example, for
smart phone brands, since we have four compet-
ing brands, we train a 4-way classifier to estimate
the likelihood a person likes iPhone, HTC, Nokia
and Sony. We then output the preference rank
based on the estimated likelihood. Higher likeli-
hood means a stronger preference. We also built
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two types of models, one used all the user features,
the other used traits only. We applied them to both
the PTBP and the TAE datasets.

Since our model and the ground truth both pro-
duce a ranked list for each product category, here
we used rank correlation analysis to evaluate the
quality of the predicted ranks. For each user and
each product category, we computed the Spear-
man’s rank correlation coefficient ρ. If the coef-
ficient ρ is 1, there is a perfect positive correlation
between the predict rank and the ground truth (i.e.
both produce identical ranks). If ρ is -1, there is a
perfect negative correlation between the predicted
rank and the ground truth (i.e., the rank predicted
by the system is exactly the opposite of the ground
truth). If ρ is 0 , then the predicted rank and the
ground truth are randomly related. For each prod-
uct category, we report the average ρ across all the
users.

PTBP TAE
All Features Traits Only All Features Traits Only

Brand avg. ρ avg. ρ avg. ρ avg. ρ
Beverage 0.264 0.301 0.234 0.372
Car 0.322 0.345 0.461 0.447
Fast Food 0.359 0.326 0.328 0.292
Retail 0.326 0.341 0.553 0.505
Shampoo 0.187 0.116 0.284 0.258
Smart Phone 0.414 0.403 0.497 0.545
All Avg. 0.312 0.305 0.393 0.403

Table 11: Evaluating predicted ranks

We use the overall rank data in Table 10 as our
baseline. Specifically, for each product category,
the baseline always ranks all its brands based on
the average ranks defined in Table 10. For each
user and each product category, we compute the ρ
between the user’s ground truth rank in the survey
and the rank produced by the baseline. We com-
pute the average ρ across all the users and all the
product categories to represent the baseline perfor-
mance. For the PTBP data, the average ρ for the
baseline is 0.193. For the TAE data, the average ρ
is 0.060.

There are several main findings from these re-
sults. First, for all the product categories, the
predicted ranks are all significantly and positively
correlated with the ground truth (p < 0.05). Also,
our models perform significantly better than the
non-personalized ranks produced by the baseline.
This result is important because it shows that there
is a stable and statistically significant agreement
between the predicted ranks and the ground truth
and the personalized models with additional trait
features perform significantly better than the non-

personalized baseline system (on PTBP, the aver-
age ρ of the model with personal traits is 0.305
versus 0.193 of the baseline. It is 0.403 versus
0.060 on the TAE dataset). Second, the perfor-
mance on the TAE dataset is better than that on
the PTBP dataset (e.g., the average ρ is 0.403 on
TAE versus 0.305 on PTBP when only trait fea-
tures were used). This may be due to the fact that
in the TAE dataset, in addition to the Big 5 person-
ality features, we also automatically extracted 30
personality sub-facets from tweets using the pro-
cedure described in (Yarkoni, 2010). These finer-
grained personality features are not available in
the PTBP dataset. This result is encouraging since
it suggests that using automatically inferred traits
can predict brand preferences as well as if not bet-
ter than the clean trait features that can be obtained
only through costly psychometric evaluations. Fi-
nally, for our models, since the overall correlation
coefficients ρ are between 0.3 and 0.4, the strength
of these correlations is moderate. Thus, it may
not be sufficient to build an accurate brand pref-
erence prediction system with only user features.
Other features especially brand-related features as
well as features that capture the compatibility of a
brand and a user are needed.

5.3 Top Features

We used multinomial logistic regression to find the
most significant predicting features for each brand
category. We show the feature ranks by signifi-
cance for survey data in Table 12 and 13. Almost
all of the top 10 features for each brand are signif-
icantly correlated with the ranks. Again, the per-
sonal traits features are highlighted and followed
by their types: P (Personalities), V (Values), and
N (Needs).

6 Conclusion and Future Direction

In this paper, we present a comprehensive analy-
sis of the relationship between personal traits and
brand preferences. Our study includes a large
number of personal traits including personality,
personal values and individual needs. We collect
two datasets: one contains clean user features ob-
tained from psychometric surveys; The other in-
cludes noisy users features derived automatically
from social media posts. We investigate the in-
fluence of personal traits in two scenarios: (1) in
differentiating people who have positive, negative,
or neutral opinion about a brand, (2) in ranking
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Beverage Car Fast Food
practicality (N) self enhancement (V) education status
us news hedonism (V) gender
stability (N) television conservation (V)
science sports sports
curiosity (N) ideal (N) video games
have children agreeableness (P) marital status
agreeableness (P) excitement (N) science
love (N) gender age
books health automobiles
marital status dining wine business

Smart Phone Retail Shampoo
books stability (N) gender
ideal (N) structure (N) age
dining wine automobiles openness (P)
closeness (N) health movie
have children international news education status
income education structure (N)
television have children curiosity (N)
self enhancement (V) practicality (N) openness to change (V)
marital status conservation (V) theater
automobiles gender self transcendence (V)

Table 12: Top 10 features for predicting rank cor-
relation (PTBP)

Beverage Car Fast Food
activity level (P) altruism (P) friend count
immoderation (P) adventurousness (P) sympathy (P)
altruism (P) hedonism (V) conservation (V)
intellect (P) openness (P) all tweet count
cautiousness (P) trust (P) self efficacy (P)
extraversion (P) artistic interests (P) stability (N)
friendliness (P) sympathy (P) altruism (P)
self discipline (P) morality (P) depression (P)
openness (P) liberalism (P) liberty (N)
closeness (N) listed count gregariousness (P)

Smart Phone Retail Shampoo
neuroticism (P) openness to change (V) cautiousness (P)
openness (P) love (N) cooperation (P)
achievement striving (P) immoderation (P) intellect (P)
altruism (P) sympathy (P) self consciousness (P)
anger (P) hedonism (V) morality (P)
assertiveness (P) all tweet count harmony (N)
cautiousness (P) activity level (P) activity level (P)
depression (P) trust (P) vulnerability (P)
dutifulness (P) cautiousness (P) immoderation (P)
immoderation (P) liberty (N) openness (P)

Table 13: Top 10 features for predicting rank cor-
relation (TAE)

a user’s preference of competing brands within a
product category. Our findings demonstrated that
it is possible to use personal traits in predicting
a user’s brand preferences. Moreover, we have
also shown that automatically inferred user fea-
tures are good proxies for the clean trait features
that can be acquired only from costly psychome-
tric surveys. This work may have significant im-
pact on the field of brand preference analysis since
this suggests that it is possible for businesses to
build scalable marketing tools to identify and tar-
get potential customers on social media.

Brand preference prediction is a hard problem.
So far, we have focused primarily on user features.
To further improve the prediction accuracy, in the
future, we will extend our current study by incor-
porating new features such as the properties of a
brand as well social influence from people in one’s
social network.
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Abstract

Trending topics in microblogs such as
Twitter are valuable resources to under-
stand social aspects of real-world events.
To enable deep analyses of such trends, se-
mantic annotation is an effective approach;
yet the problem of annotating microblog
trending topics is largely unexplored by
the research community. In this work, we
tackle the problem of mapping trending
Twitter topics to entities from Wikipedia.
We propose a novel model that comple-
ments traditional text-based approaches by
rewarding entities that exhibit a high tem-
poral correlation with topics during their
burst time period. By exploiting temporal
information from the Wikipedia edit his-
tory and page view logs, we have improved
the annotation performance by 17-28%, as
compared to the competitive baselines.

1 Introduction

With the proliferation of microblogging and its
wide influence on how information is shared and
digested, the studying of microblog sites has
gained interest in recent NLP research. Several ap-
proaches have been proposed to enable a deep un-
derstanding of information on Twitter. An emerg-
ing approach is to use semantic annotation tech-
niques, for instance by mapping Twitter informa-
tion snippets to canonical entities in a knowledge
base or to Wikipedia (Meij et al., 2012; Guo et al.,
2013), or by revisiting NLP tasks in the Twitter do-
main (Owoputi et al., 2013; Ritter et al., 2011).
Much of the existing work focuses on annotating
a single Twitter message (tweet). However, infor-
mation in Twitter is rarely digested in isolation, but
rather in a collective manner, with the adoption of
special mechanisms such as hashtags. When put
together, the unprecedentedly massive adoption of
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Figure 1: Example of trending hashtag annota-
tion. During the 2014 Winter Olympics, the hash-
tag ‘#sochi’ had a different meaning.

a hashtag within a short time period can lead to
bursts and often reflect trending social attention.
Understanding the meaning of trending hashtags
offers a valuable opportunity for various applica-
tions and studies, such as viral marketing, social
behavior analysis, recommendation, etc. Unfor-
tunately, the task of hashtag annotation has been
largely unexplored so far.

In this paper, we study the problem of annotat-
ing trending hashtags on Twitter by entities de-
rived from Wikipedia. Instead of establishing a
static semantic connection between hashtags and
entities, we are interested in dynamically linking
the hashtags to entities that are closest to the un-
derlying topics during burst time periods of the
hashtags. For instance, while ‘#sochi’ refers to
a city in Russia, during February 2014, the hash-
tag was used to report the 2014 Winter Olympics
(cf. Figure 1). Hence, it should be linked more
to Wikipedia pages related to the event than to the
location.

Compared to traditional domains of text (e.g.,
news articles), annotating hashtags poses addi-
tional challenges. Hashtags’ surface forms are
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very ad-hoc, as they are chosen not in favor of
the text quality, but by the dynamics in attention
of the large crowd. In addition, the evolution
of the semantics of hashtags (e.g., in the case of
‘#sochi’) makes them more ambiguous. Further-
more, a hashtag can encode multiple topics at once.
For example, in March 2014, ‘#oscar’ refers to the
86th Academy Awards, but at the same time also
to the Trial of Oscar Pistorius. Sometimes, it is
difficult even for humans to understand a trending
hashtag without knowledge about what was hap-
pening with the related entities in the real world.

In this work, we propose a novel solu-
tion to these challenges by leveraging temporal
knowledge about entity dynamics derived from
Wikipedia. We hypothesize that a trending hashtag
is associated with an increase in public attention to
certain entities, and this can also be observed on
Wikipedia. As in Figure 1, we can identify 2014
Winter Olympics as a prominent entity for ‘#sochi’
during February 2014, by observing the change of
user attention to the entity, for instance via the page
view statistics of Wikipedia articles. We exploit
both Wikipedia edits and page views for annota-
tion. We also propose a novel learning method,
inspired by the information spreading nature of so-
cial media such as Twitter, to suggest the optimal
annotations without the need for human labeling.
In summary:

• We are the first to combine the Wikipedia edit
history and page view statistics to overcome
the temporal ambiguity of Twitter hashtags.

• We propose a novel and efficient learning al-
gorithm based on influence maximization to
automatically annotate hashtags. The idea is
generalizable to other social media sites that
have a similar information spreading nature.

• We conduct thorough experiments on a real-
world dataset and show that our system can
outperform competitive baselines by 17-28%.

2 Related Work

Entity Linking in Microblogs The task of se-
mantic annotation in microblogs has been recently
tackled by different methods, which can be divided
into two classes, i.e., content-based and graph-
based methods. While the content-based methods
(Meij et al., 2012; Guo et al., 2013; Fang and
Chang, 2014) consider tweets independently, the

graph-based methods (Cassidy et al., 2012; Liu et
al., 2013) use all related tweets (e.g., posted by a
user) together. However, most of them focus on
entity mentions in tweets. In contrast, we take
into account hashtags which reflect the topics dis-
cussed in tweets, and leverage external resources
from Wikipedia (in particular, the edit history and
page view logs) for semantic annotation.

Analysis of Twitter Hashtags In an attempt to
understand the user interest dynamics on Twitter,
a rich body of work analyzes the temporal pat-
terns of popular hashtags (Lehmann et al., 2012;
Naaman et al., 2011; Tsur and Rappoport, 2012).
Few works have paid attention to the semantics of
hashtags, i.e., to the underlying topics conveyed
in the corresponding tweets. Recently, Bansal et
al. (2015) attempt to segment a hashtag and link
each of its tokens to a Wikipedia page. However,
the authors only aim to retrieve entities directly
mentioned within a hashtag, which are very few
in practice. The external information derived from
the tweets is largely ignored. In contrast, we ex-
ploit both context information from the microblog
and Wikipedia resources.

Event Mining Using Wikipedia Recently some
works exploit Wikipedia for detecting and ana-
lyzing events on Twitter (Osborne et al., 2012;
Tolomei et al., 2013; Tran et al., 2014). However,
most of the existing studies focus on the statistical
signals of Wikipedia (such as the edit or page view
volumes). We are the first to combine the content
of the Wikipedia edit history and the magnitude of
page views to handle trending topics on Twitter.

3 Framework

Preliminaries We refer to an entity (denoted
by e) as any object described by a Wikipedia ar-
ticle (ignoring disambiguation, lists, and redirect
pages). The number of times an entity’s article has
been requested is called the entity view count. The
text content of the article is denoted by C(e). In
this work, we choose to study hashtags at the daily
level, i.e., from the timestamps of tweets we only
consider their creation day. A hashtag is called
trending at a time point (a day) if the number of
tweets where it appears is significantly higher than
that on other days. There are many ways to de-
tect such trendings. (Lappas et al., 2009; Lehmann
et al., 2012). Each trending hashtag has one or
multiple burst time periods, surrounding the trend-
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ing day, where the users’ interest in the underly-
ing topic remains stronger than in other periods.
We denote with T (h) (or T for short) one hashtag
burst time period, and withDT (h) the set of tweets
containing the hashtag h created during T .

Task Definition Given a trending hashtag h and
the burst time period T of h, identify the top-k
most prominent entities to describe h during T .

It is worth noting that not all trending hashtags
are mapable to Wikipedia entities, as the coverage
of topics in Wikipedia is much lower than on Twit-
ter. This is also the limitation of systems relying
on Wikipedia such as entity disambiguation, which
can only disambiguate popular entities and not the
ones in the long tail. In this study, we focus on the
precision and the popular trending hashtags, and
leave the improvement of recall to future work.

Overview We approach the task in three steps.
The first step is to identify all entity candidates by
checking surface forms of the constituent tweets
of the hashtag. In the second step, we compute
different similarities between each candidate and
the hashtag, based on different types of contexts,
which are derived from either side (Wikipedia or
Twitter). Finally, we learn a unified ranking func-
tion for each (hashtag, entity) pair and choose the
top-k entities with the highest scores. The ranking
function is learned through an unsupervised model
and needs no human-defined labels.

3.1 Entity Linking

The most obvious resource to identify candidate
entities for a hashtag is via its tweets. We follow
common approaches that use a lexicon to match
each textual phrase in a tweet to a potential en-
tity set (Shen et al., 2013; Fang and Chang, 2014).
Our lexicon is constructed from Wikipedia page ti-
tles, hyperlink anchors, redirects, and disambigua-
tion pages, which are mapped to the correspond-
ing entities. As for the tweet phrases, we extract
all n-grams (n ≤ 5) from the input tweets within
T . We apply the longest-match heuristic (Meij et
al., 2012): We start with the longest n-grams and
stop as soon as the entity set is found, otherwise
we continue with the smaller constituent n-grams.

Candidate Set Expansion While the lexicon-
based linking works well for single tweets, ap-
plying it on the hashtag level has subtle implica-
tions. Processing a huge amount of text, especially
during a hashtag burst time period, incurs expen-

sive computational costs. Therefore, to guarantee a
good recall in this step while still maintaining fea-
sible computation, we apply entity linking only on
a random sample of the complete tweet set. Then,
for each candidate entity e, we include all entities
whose Wikipedia article is linked with the article
of e by an outgoing or incoming link.

3.2 Measuring Entity–Hashtag Similarities
To rank the entity by prominence, we measure the
similarity between each candidate entity and the
hashtag. We study three types of similarities:

Mention Similarity This measure relies on the
explicit mentions of entities in tweets. It assumes
that entities directly linked from more prominent
anchors are more relevant to the hashtag. It is es-
timated using both statistics from Wikipedia and
tweet phrases, and turns out to be surprisingly ef-
fective in practice (Fang and Chang, 2014).

Context Similarity For entities that are not di-
rectly linked to mentions (the mention similar-
ity is zero) we exploit external resources instead.
Their prominence is perceived by users via exter-
nal sources, such as web pages linked from tweets,
or entity home pages or Wikipedia pages. By ex-
ploiting the content of entities from these external
sources, we can complement the explicit similarity
metrics based on mentions.

Temporal Similarity The two measures above
rely on the textual representation and are degraded
by the linguistic difference between the two plat-
forms. To overcome this drawback, we incorpo-
rate the temporal dynamics of hashtags and enti-
ties, which serve as a proxy to the change of user
interests towards the underlying topics (Ciglan and
Nørvåg, 2010). We employ the correlation be-
tween the times series of hashtag adoption and the
entity view as the third similarity measure.

3.3 Ranking Entity Prominence
While each similarity measure captures one evi-
dence of the entity prominence, we need to unify
all scores to obtain a global ranking function. In
this work, we propose to combine the individual
similarities using a linear function:

f(e, h) = αfm(e, h)+βfc(e, h)+γft(e, h) (1)

where α, β, γ are model weights and fm, fc, ft are
the similarity measures based on mentions, con-
text, and temporal information, respectively, be-
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tween the entity e and the hashtag h. We further
constrain that α + β + γ = 1, so that the ranking
scores of entities are normalized between 0 and 1,
and that our learning algorithm is more tractable.
The algorithm, which automatically learns the pa-
rameters without the need of human-labeled data,
is explained in detail in Section 5.

4 Similarity Measures

We now discuss in detail how the similarity mea-
sures between hashtags and entities are computed.

4.1 Link-based Mention Similarity

The similarity of an entity with one individual
mention in a tweet can be interpreted as the prob-
abilistic prior in mapping the mention to the en-
tity via the lexicon. One common way to estimate
the entity prior exploits the anchor statistics from
Wikipedia links, and has been proven to work well
in different domains of text. We follow this ap-
proach and define LP (e|m) = |lm(e)|∑

m′ |lm′ (e)| as the
link prior of the entity e given a mention m, where
lm(e) is the set of links with anchor m that point
to e. The mention similarity fm is measured as the
aggregation of link priors of the entity e over all
mentions in all tweets with the hashtag h:

fm(e, h) =
∑
m

(LP (e|m) · q(m)) (2)

where q(m) is the frequency of the mentionm over
all mentions of e in all tweets of h.

4.1.1 Context Similarity
To compute fc, we first construct the contexts for
hashtags and entities. The context of a hashtag
is built by extracting all words from its tweets.
We tokenize and parse the tweets’ part-of-speech
tags (Owoputi et al., 2013), and remove words
of Twitter-specific tags (e.g., @-mentions, URLs,
emoticons, etc.). Hashtags are normalized using
the word breaking method by Wang et al. (2011).

The textual context of an entity is extracted from
its Wikipedia article. One subtle aspect is that the
articles are not created at once, but are incremen-
tally updated over time in accordance with chang-
ing information about entities. Texts added in the
same time period of a trending hashtag contribute
more to the context similarity between the entity
and the hashtag. Based on this observation, we use
the Wikipedia revision history – an archive of all
revisions of Wikipedia articles – to calculate the

entity context. We collect the revisions of articles
during the time period T , plus one day to acknowl-
edge possible time lags. We compute the differ-
ence between two consecutive revisions, and ex-
tract only the added text snippets. These snippets
are accumulated to form the temporal context of
an entity e during T , denoted by CT (e). The dis-
tribution of a word w for the entity e is estimated
by a mixture between the probability of generating
w from the temporal context and from the general
context C(e) of the entity:

P̂ (w|e) = λP̂ (w|MCT (e))+(1−λ)P̂ (w|MC(e))

where MCT (e) and MC(e) are the language mod-
els of e based on CT (e) and C(e), respec-
tively. The probability P̂ (w|MC(e)) can be re-
garded as corresponding to the background model,
while P̂ (w|MCT (e)) corresponds to the fore-
ground model in traditional language modeling
settings. Here we use a simple maximum like-
lihood estimation to estimate these probabilities:
P̂ (w|MC(e)) = tfw,c

|C(e)| and P̂ (w|MCT (e)) =
tfw,cT
|CT (e)| , where tfw,c and tfw,cT are the term fre-
quencies of w in the two text sources of C(e)
and CT (e), respectively, and |C(e)| and |CT (e)|
are the lengths of the two texts, respectively. We
use the same estimation for tweets: P̂ (w|h) =
tfw,D(h)

|D(h)| , where D(h) is the concatenated text of
all tweets of h in T . We use and normalize the
Kullback-Leibler divergence to compare the dis-
tributions over all words appearing both in the
Wikipedia contexts and the tweets:

KL(e ‖ h) =
∑
w

P̂ (w|e) · P̂ (w|e)
P̂ (w|h)

fc(e, h) = e−KL(e ‖ h) (3)

4.1.2 Temporal Similarity
The third similarity, ft, is computed using tem-
poral signals from both sources – Twitter and
Wikipedia. For the hashtags, we build the time
series based on the volume of tweets adopt-
ing the hashtag h on each day in T : TSh =
[n1, n2, . . . , n|T |]. Similarly for the entities, we
build the time series of view counts for the entity e
in T : TSe = [v1, v2, . . . , v|T |]. A time series sim-
ilarity metric is then used to compute ft. Several
metrics can be used, however most of them suf-
fer from the time lag and scaling discrepancy, or
incur expensive computational costs (Radinsky et
al., 2011). In this work, we employ a simple yet
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Figure 2: Excerpt of tweets about ice hockey results in the 2014 Winter Olympics (left), and the observed
linking process between time-aligned revisions of candidate Wikipedia entities (right). Links come more
from prominent entities to marginal ones to provide background, or more context for the topics. Thus,
starting from prominent entities, we can reach more entities in the graph of candidate entities

effective metric that is agnostic to the scaling and
time lag of time series (Yang and Leskovec, 2011).
It measures the distance between two time series
by finding optimal shifting and scaling parameters
to match the shape of two time series:

ft(e, h) = min
q,δ

‖TSh − δdq(TSe)‖
‖TSh‖ (4)

where dq(TSe) is the time series derived from TSe
by shifting q time units, and ‖·‖ is the L2 norm. It
has been proven that Equation 4 has a closed-form
solution for δ given fixed q, thus we can design an
efficient gradient-based optimization algorithm to
compute ft (Yang and Leskovec, 2011).

5 Entity Prominence Ranking

5.1 Ranking Framework
To unify the individual similarities into one global
metric (Equation 1), we need a guiding premise
of what manifest the prominence of an entity to a
hashtag. Such a premise can be instructed through
manual assessment (Meij et al., 2012; Guo et al.,
2013), but it requires human-labeled data and is
biased from evaluator to evaluator. Other heuris-
tics assume that entities close to the main topic of
a text are also coherent to each other (Ratinov et
al., 2011; Liu et al., 2013). Based on this, state-of-
the-art methods in traditional disambiguation es-
timate entity prominence by optimizing the over-
all coherence of the entities’ semantic relatedness.
However, this coherence does not hold for topics
in hashtags: Entities reported in a big topic such
as the Olympics vary greatly with different sub-
events. They are not always coherent to each other,

as they are largely dependent on the users’ diverse
attention to each sub-event. This heterogeneity of
hashtags calls for a different premise, abandoning
the idea of coherence.

Influence Maximization (IM) We propose a
new approach to find entities for a hashtag. We
use an observed behavioral pattern in creating
Wikipedia pages for guiding our approach to en-
tity prominence: Wikipedia articles of entities that
are prominent for a topic are quickly created or
updated,1 and subsequently enriched with links to
related entities. This linking process signals the
dynamics of editor attention and exposure to the
event (Keegan et al., 2011). We argue that the pro-
cess does not, or to a much lesser degree, happen to
more marginal entities or to very general entities.
As illustrated in Figure 2, the entities closer to the
2014 Olympics get more updates in the revisions
of their Wikipedia articles, with subsequent links
pointing to articles of more distant entities. The
direction of the links influences the shifting atten-
tion of users (Keegan et al., 2011) as they follow
the structure of articles in Wikipedia.

We assume that, similar to Wikipedia, the entity
prominence also influences how users are exposed
and spread the hashtag on Twitter. In particular,
the initial spreading of a trending hashtag involves
more entities in the focus of the topic. Subsequent
exposure and spreading of the hashtag then include
other related entities (e.g., discussing background
or providing context), driven by interests in differ-
ent parts of the topic. Based on this assumption,

1Osborne et al. (2012) suggested a time lag of 3 hours.
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we propose to gauge the entity prominence as its
potential in maximizing the information spreading
within all entities present in the tweets of the hash-
tag. In other words, the problem of ranking the
most prominent entities becomes identifying the
set of entities that lead to the largest number of en-
tities in the candidate set. This problem is known
in social network research as influence maximiza-
tion (Kempe et al., 2003).

Iterative Influence-Prominence Learning (IPL)
IM itself is an NP-hard problem (Kempe et al.,
2003). Therefore, we propose an approximation
framework, which can jointly learn the influence
scores of the entity and the entity prominence
together. The framework (called IPL) contains
several iterations, each consisting of two steps:
(1) Pick up a model and use it to compute the entity
influence score. (2) Based on the influence scores,
update the entity prominence. In the sequel we de-
tail our learning framework.

5.2 Entity Graph
Influence Graph To compute the entity influ-
ence scores, we first construct the entity influence
graph as follows. For each hashtag h, we construct
a directed graph Gh = (Eh, Vh), where the nodes
Eh ⊆ E consist of all candidate entities (cf. Sec-
tion 3.1), and an edge (ei, ej) ∈ Vh indicates that
there is a link from ej’s Wikipedia article to ei’s.
Note that edges of the influence graph are inversed
in direction to links in Wikipedia, as such a link
gives an “influence endorsement” from the desti-
nation entity to the source entity.

Entity Relatedness In this work, we assume that
an entity endorses more of its influence score to
highly related entities than to lower related ones.
We use a popular entity relatedness measure sug-
gested by Milne and Witten (2008):

MW (e1, e2) = 1− log(max(|I1|,|I2|)−log(|I1∩I2|)))
log(|E|)−log(min(|I1|,|I2|))

where I1 and I2 are sets of entities having links to
e1 and e2, respectively, and E is the set of all enti-
ties in Wikipedia. The influence transition from ei
to ej is defined as the normalized value:

bi,j =
MW (ei, ej)∑

(ei,ek)∈V MW (ei, ek)
(5)

Influence Score Let rh be the influence score
vector of entities in Gh. We can estimate rh effi-
ciently using random walk models, similarly to the

Algorithm 1: Entity Influence-Prominence Learning
Input : h, T,DT (h),B, k, learning rate µ, threshold ε
Output: ω, top-k most prominent entities.

Initialize: ω := ω(0)

Calculate fm, fc, ft, fω := fω(0) using Eqs. 1, 2, 3, 4
while true do

f̂ω := normalize fω
Set sh := f̂ω, calculate rh using Eq. 6
Sort rh, get the top-k entities E(h, k)
if
∑

e∈E(h,k) L(f(e, h), r(e, h)) < ε then
Stop

end
ω := ω − µ∑e∈E(h,k)∇L(f(e, h), r(e, h))

end
return ω,E(h, k)

baseline method suggested by Liu et al. (2014):

rh := τBrh + (1− τ)sh (6)

where B is the influence transition matrix, sh are
the initial influence scores that are based on the en-
tity prominence model (Step 1 of IPL), and τ is the
damping factor.

5.3 Learning Algorithm

Now we detail the IPL algorithm. The objective
is to learn the model ω = (α, β, γ) of the global
function (Equation 1). The general idea is that we
find an optimal ω such that the average error with
respect to the top influencing entities is minimized

ω = arg min
∑
E(h,k)

L(f(e, h), r(e, h))

where r(e, h) is the influence score of e and h,
E(h, k) is the set of top-k entities with highest
r(e, h), and L is the squared error loss function,
L(x, y) = (x−y)2

2 .
The main steps are depicted in Algorithm 1. We

start with an initial guess for ω, and compute the
similarities for the candidate entities. Here fm, fc,
ft, and fω represent the similarity score vectors. We
use matrix multiplication to calculate the similari-
ties efficiently. In each iteration, we first normalize
fω such that the entity scores sum up to 1. A ran-
dom walk is performed to calculate the influence
score rh. Then we update ω using a batch gradient
descent method on the top-k influencer entities. To
derive the gradient of the loss function L, we first
remark that our random walk Equation 6 is similar
to context-sensitive PageRank (Haveliwala, 2002).
Using the linearity property (Fogaras et al., 2005),
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Total Tweets 500,551,041
Trending Hashtags 2,444
Test Hashtags 30
Test Tweets 352,394
Distinct Mentions 145,941
Test (Entity, Hashtag) pairs 6,965
Candidates per Hashtag (avg.) 50
Extended Candidates (avg.) 182

Table 1: Statistics of the dataset.

we can express r(e, h) as the linear function of in-
fluence scores obtained by initializing with the in-
dividual similarities fm, fc, and ft instead of fω.
The derivative thus can be written as:

∇L(f(e, h), r(e, h)) = α(rm(e, h)− fm(e, h))+
β(rc(e, h)− fc(e, h)) + γ(rt(e, h)− ft(e, h))

where rm(e, h), rc(e, h), rt(e, h) are the compo-
nents of the three vector solutions of Equation 6,
each having sh replaced by fm, fc, ft respectively.

Since both B and f̂ω are normalized such that
their column sums are equal to 1, Equation 6 is
convergent (Haveliwala, 2002). Also, as discussed
above, rh is a linear combination of factors that
are independent of ω, hence L is a convex func-
tion, and the batch gradient descent is also guaran-
teed to converge. In practice, we can utilize sev-
eral indexing techniques to significantly speed up
the similarity and influence scores calculation.

6 Experiments and Results

6.1 Setup
Dataset There is no standard benchmark for our
problem, since available datasets on microblog an-
notation (such as the Microposts challenge (Basave
et al., 2014)) do not have global statistics, so we
cannot identify the trending hashtags. Therefore,
we created our own dataset. We used the Twitter
API to collect from the public stream a sample of
500, 551, 041 tweets from January to April 2014.
We removed hashtags that were adopted by less
than 500 users, having no letters, or having char-
acters repeated more than 4 times (e.g., ‘#oooom-
mgg’). We identified trending hashtags by comput-
ing the daily time series of hashtag tweet counts,
and removing those of which the time series’ vari-
ance score is less than 900. To identify the hashtag
burst time period T , we compute the outlier frac-
tion (Lehmann et al., 2012) for each hashtag h and

day t: pt(h) = |nt−nb|
max (nb,nmin) , where nt is the num-

ber of tweets containing h, nb is the median value
of nt over all points in a 2-month time window cen-
tered on t, and nmin = 10 is the threshold to filter
low activity hashtags. The hashtag is skipped if its
highest outlier fraction score is less than 15. Fi-
nally, we define the burst time period of a trending
hashtag as the time window of size w, centered at
day t0 with the highest pt0(h).

For the Wikipedia datasets we process the dump
from 3rd May 2014, so as to cover all events in the
Twitter dataset. We have developed Hedera (Tran
and Nguyen, 2014), a scalable tool for process-
ing the Wikipedia revision history dataset based on
Map-Reduce paradigm. In addition, we download
the Wikipedia page view dataset that stores how
many times a Wikipedia article was requested on
an hourly level. We process the dataset for the four
months of our study and use Hedera to accumulate
all view counts of redirects to the actual articles.

Sampling From the trending hashtags, we sam-
ple 30 distinct hashtags for evaluation. Since our
study focuses on trending hashtags that are ma-
pable to entities in Wikipedia, the sampling must
cover a sufficient number of “popular” topics that
are seen in Wikipedia, and at the same time cover
rare topics in the long tail. To do this, we apply
several heuristics in the sampling. First, we only
consider hashtags where the lexicon-based link-
ing (Section 3.1) results in at least 20 different
entities. Second, we randomly choose hashtags
to cover different types of topics (long-running
events, breaking events, endogenous hashtags). In-
stead of inspecting all hashtags in our corpus, we
follow Lehmann et al. (2012) and calculate the
fraction of tweets published before, during and af-
ter the peak. The hashtags are then clustered in
this 3-dimensional vector space. Each cluster sug-
gests a group of hashtags with a distinct seman-
tics (Lehmann et al., 2012). We then pick up hash-
tags randomly from each cluster, resulting in 200
hashtags in total. From this rough sample, three
inspectors carefully checked the tweets and chose
30 hashtags where the meanings and hashtag types
were certain to the knowledge of the inspectors.

Parameter Settings We initialize the similarity
weights to 1

3 , the damping factor to τ = 0.85, and
the weight for the language model to λ = 0.9. The
learning rate µ is empirically fixed to µ = 0.003.
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Tagme Wikiminer Meij Kauri M C T IPL

P@5 0.284 0.253 0.500 0.305 0.453 0.263 0.474 0.642
P@15 0.253 0.147 0.670 0.319 0.312 0.245 0.378 0.495
MAP 0.148 0.096 0.375 0.162 0.211 0.140 0.291 0.439

Table 2: Experimental results on the sampled trending hashtags.

Baseline We compare IPL with other entity an-
notation methods. Our first group of baselines in-
cludes entity linking systems in domains of gen-
eral text, Wikiminer (Milne and Witten, 2008),
and short text, Tagme (Ferragina and Scaiella,
2012). For each method, we use the default param-
eter settings, apply them for the individual tweets,
and take the average of the annotation confidence
scores as the prominence ranking function. The
second group of baselines includes systems specif-
ically designed for microblogs. For the content-
based methods, we compare against Meij et al.
(2012), which uses a supervised method to rank en-
tities with respect to tweets. We train the model us-
ing the same training data as in the original paper.
For the graph-based method, we compare against
KAURI (Shen et al., 2013), a method which uses
user interest propagation to optimize the entity
linking scores. To tune the parameters, we pick
up four hashtags from different clusters, randomly
sample 50 tweets for each, and manually annotate
the tweets. For all baselines, we obtained the im-
plementation from the authors. The exception is
Meij method, where we implemented ourselves,
but we clarified with the authors via emails on sev-
eral settings. In addition, we also compare three
variants of our method, using only local functions
for entity ranking (referred to as M , C, and T for
mention, context, and time, respectively).

Evaluation In total, there are 6, 965 entity-
hashtag pairs returned by all systems. We employ
five volunteers to evaluate the pairs in the range
from 0 to 2, where 0 means the entity is noisy or
obviously unrelated, 2 means the entity is strongly
tied to the topic of the hashtag, and 1 means that
although the entity and hashtag might share some
common contexts, they are not involved in a di-
rect relationship (for instance, the entity is a too
general concept such as Ice hockey, as in the case
illustrated in Figure 2). The annotators were ad-
vised to use search engines, the Twitter search box
or Wikipedia archives whenever applicable to get
more background on the stories. Inter-annotator
agreement under Fleiss score is 0.625.

6.2 Results and Discussion

Table 2 shows the performance comparison of the
methods using the standard metrics for a ranking
system (precision at 5 and 15 and MAP at 15). In
general, all baselines perform worse than reported
in the literature, confirming the higher complexity
of the hashtag annotation task as compared to tra-
ditional tasks. Interestingly enough, using our lo-
cal similarities already produces better results than
Tagme and Wikiminer. The local model fm signif-
icantly outperforms both the baselines in all met-
rics. Combining the similarities improves the per-
formance even more significantly.2 Compared to
the baselines, IPL improves the performance by
17-28%. The time similarity achieves the high-
est result compared to other content-based mention
and context similarities. This supports our assump-
tion that lexical matching is not always the best
strategy to link entities in tweets. The time series-
based metric incurs lower cost than others, yet it
produces a considerably good performance. Con-
text similarity based on Wikipedia edits does not
yield much improvement. This can be explained
in two ways. First, information in Wikipedia is
largely biased to popular entities, it fails to cap-
ture many entities in the long tail. Second, lan-
guage models are dependent on direct word rep-
resentations, which are different between Twitter
and Wikipedia. This is another advantage of non-
content measures such as ft.

For the second group of baselines (Kauri and
Meij), we also observe the reduction in precision,
especially for Kauri. This is because the method
relies on the coherence of user interests within a
group of tweets to be able to perform well, which
does not hold in the context of hashtags. One as-
tonishing result is that Meij performs better than
IPL in terms of P@15. However, it performs worse
in terms of MAP and P@5, suggesting that most
of the correctly identified entities are ranked lower
in the list. This is reasonable, as Meij attempts to
optimize (with human supervision effort) the se-

2All significance tests are done against both Tagme and
Wikiminer, with a p-value < 0.01.
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Figure 3: Performance of the methods for different
types of trending hashtags.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

 0  10  20  30  40  50  60

M
A

P

burst time period window size w in days

Kauri
Tagme

Wikiminer
IPL

Figure 4: IPL compared to other baselines on dif-
ferent sizes of the burst time window T .

mantic agreement between entities and informa-
tion found in the tweets, instead of ranking their
prominence as in our work. To investigate this
case further, we re-examined the hashtags and di-
vided them by their semantics, as to whether the
hashtags are spurious trends of memes inside so-
cial media (endogenous, e.g., “#stopasian2014”),
or whether they reflect external events (exogenous,
e.g., “#mh370”). The performance of the methods
in terms of MAP scores is shown in Figure 3. It can
be clearly seen that entity linking methods perform
well in the endogenous group, but then deteriorate
in the exogenous group. The explanation is that
for endogenous hashtags, the topical consonance
between tweets is very low, thus most of the as-
sessments become just verifying general concepts
(such as locations) In this case, topical annotation
is trumped by conceptual annotation. However,
whenever the hashtag evolves into a meaningful
topic, a deeper annotation method will produce a
significant improvement, as seen in Figure 3.

Finally, we study the impact of the burst time pe-
riod on the annotation quality. For this, we expand
the window size w (cf. Section 6.1) and examine
how different methods perform. The result is de-
picted in Figure 4. It is obvious that within the win-

dow of 2 months (where the hashtag time series is
constructed and a trending time is identified), our
method is stable and always outperforms the base-
lines by a large margin. Even when the trending
hashtag has been saturated, hence introduced more
noise, our method is still able to identify the promi-
nent entities with high quality.

7 Conclusion and Future Work

In this work, we address the new problem of
topically annotating a trending hashtag using
Wikipedia entities, which has many important ap-
plications in social media analysis. We study
Wikipedia temporal resources and find that using
efficient time series-based measures can comple-
ment content-based methods well in the domain
of Twitter. We propose use similarity measures
to model both the local mention-based, as well as
the global context- and time-based prominence of
entities. We propose a novel strategy of topical
annotation of texts using and influence maximiza-
tion approach and design an efficient learning algo-
rithm to automatically unify the similarities with-
out the need of human involvement. The experi-
ments show that our method outperforms signifi-
cantly the established baselines.

As future work, we aim to improve the effi-
ciency of our entire workflow, such that the anno-
tation can become an end-to-end service. We also
aim to improve the context similarity between en-
tities and the topic, for example by using a deeper
distributional semantics-based method, instead of
language models as in our current work. In addi-
tion, we plan to extend the annotation framework
to other types of trending topics, by including the
type of out-of-knowledge entities. Finally, we are
investigating how to apply more advanced influ-
ence maximization methods. We believe that in-
fluence maximization has a great potential in NLP
research, beyond the scope of annotation for mi-
croblogging topics.
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mizing the spread of influence through a social net-
work. In KDD, pages 137–146.

T. Lappas, B. Arai, M. Platakis, D. Kotsakos, and
D. Gunopulos. 2009. On burstiness-aware search
for document sequences. In KDD, pages 477–486.
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Abstract

We present a novel framework of
system combination for multi-document
summarization. For each input set
(input), we generate candidate summaries
by combining whole sentences from
the summaries generated by different
systems. We show that the oracle among
these candidates is much better than
the summaries that we have combined.
We then present a supervised model
to select among the candidates. The
model relies on a rich set of features that
capture content importance from different
perspectives. Our model performs better
than the systems that we combined based
on manual and automatic evaluations. We
also achieve very competitive performance
on six DUC/TAC datasets, comparable to
the state-of-the-art on most datasets.

1 Introduction

Recent work shows that state-of-the-art
summarization systems generate very different
summaries, despite the fact that they have similar
performance (Hong et al., 2014). This suggests
that combining summaries from different systems
might be helpful in improving content quality.

A handful of papers have studied system
combination for summarization. Based on the
ranks of the input sentences assigned by different
systems (i.e., basic systems), methods have been
proposed to re-rank these sentences (Wang and Li,
2012; Pei et al., 2012). However, these methods
require the basic systems to assign importance
scores to all input sentences. Thapar et al.
(2006) combine the summaries from different
systems, based on a graph-based measure that
computes summary-input or summary-summary
similarity. However, their method does not show

an advantage over the basic systems. In summary,
few prior papers have successfully generating
better summaries by combining the summaries
from different systems (i.e., basic summaries).

This paper focuses on practical system
combination, where we combine the summaries
generated by four portable unsupervised
systems. We choose these systems, because:
First, these systems are either off-the-shelf or
easy-to-implement. Second, even though many
systems have been proposed for multi-document
summarization, the output of them are often
available only on one dataset or even unavailable.
Third, compared to more sophisticated supervised
methods (Kulesza and Taskar, 2012; Cao et al.,
2015a), simple unsupervised methods perform
unexpectedly well. Many of them achieved the
state-of-the-art performance when they were
proposed (Erkan and Radev, 2004; Gillick et al.,
2009) and still serve as competitive baselines
(Hong et al., 2014).

After the summarizers have been chosen, we
present a two-step pipeline that combines the
basic summaries. In the first step, we generate
combined candidate summaries (Section 4). We
investigate two methods to do this: one uses entire
basic summaries directly, the other combines these
summaries on the sentence level. We show
that the latter method has a much higher oracle
performance. The second step includes a new
supervised model that selects among the candidate
summaries (Section 5).

Our contributions are:

• We show that by combining summaries on
the sentence level, the best possible (oracle)
performance is very high.

• In the second step of our pipeline, we
propose a supervised model that includes a
rich set of new features. These features
capture content importance from different
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perspectives, based on different sources. We
verify the effectiveness of these features.

• Our method outperforms the basic systems
and several competitive baselines. Our model
achieves competitive performance on six
DUC/TAC datasets, which is on par with the
state-of-the-art on most of these datasets.

• Our method can be used to combine
summaries generated by any systems.

2 Related Work

System combination has enjoyed great success
in many domains, such as automatic speech
recognition (Fiscus, 1997; Mangu et al., 2000),
machine translation (Frederking and Nirenburg,
1994; Bangalore et al., 2001) and parsing
(Henderson and Brill, 1999; Sagae and Lavie,
2006). However, only a handful of papers have
leveraged this idea for summarization. Mohamed
and Rajasekaran (2005) present a method that
relies on a document graph (DG), which includes
concepts connected by relations. This method
selects among the outputs of the basic systems,
based on their overlaps with the input in terms of
DG. Thapar et al. (2006) propose to iteratively
include sentences, based on the overlap of DG
between the current sentence and (1) the original
input, or (2) the basic summaries. However,
in both papers, the machine summaries are not
compared against human references. Rather, their
evaluations compare the summaries to the input
based on the overlap of DG. Moreover, even when
evaluated in this way, the combined system does
not show an advantage over the best basic system.

System combination in summarization has also
been regarded as rank aggregation, where the
combined system re-ranks the input sentences
based on the ranks of those sentences assigned by
the basic systems. Wang and Li (2012) propose an
unsupervised method to minimize the distance of
the final ranking compared to the initial rankings.
Pei et al. (2012) propose a supervised method
which handles an issue in Wang and Li (2012)
that all basic systems are regarded as equally
important. Even though both methods show
advantages over the basic systems, they have two
limitations. Most importantly, only summarizers
that assign importance scores to each sentence
can be used as the input summarizers. Second,
only the sentence scores (ranks) from the basic

systems and system identity information is utilized
during the re-ranking process. The signal from
the original input is ignored. Our method handles
these limitations.

Our method derives an overall informativeness
score for each candidate summary, then selects the
one with the highest score. This is related to the
growing body of research in global optimization,
which selects the most informative subset of
sentences towards a global objective (McDonald,
2007; Gillick et al., 2009; Aker et al., 2010). Some
work uses integer linear programming to find the
exact solution (Gillick et al., 2009; Li et al.,
2015), other work employs supervised methods to
optimize the ROUGE scores of a summary (Lin
and Bilmes, 2011; Kulesza and Taskar, 2012).
Here we use the ROUGE scores of the candidate
summaries as labels while training our model.

In our work, we propose novel features that
encode the content quality of the entire summary.
Though prior work has extensively investigated
features that are indicative of important words
(Yih et al., 2007; Hong and Nenkova, 2014) or
sentences (Litvak et al., 2010; Ouyang et al.,
2011), little work has focused on designing global
features defined over the summary. Indeed, even
for the papers that employ supervised methods
to conduct global inference, the features are
defined on the sentence level (Aker et al., 2010;
Kulesza and Taskar, 2012). The most closely
related papers are the ones that investigated
automatic evaluation of summarization without
human references (Louis and Nenkova, 2009;
Saggion et al., 2010), where the effectiveness
of several summary-input similarity metrics are
examined. In our work, we propose a wide range
of features. These features are derived not only
based on the input, but also based on the basic
summaries and the summary-input pairs from the
New York Times (NYT) corpus (Sandhaus, 2008).

3 Data and Evaluation

We conduct a large scale experiment on six
datasets from the Document Understanding
Conference (DUC) and the Text Analysis
Conference (TAC). The tasks include generic
(DUC 2001–2004) and query-focused (TAC
2008, 2009) multi-document summarization.
We evaluate on the task of generating 100-word
summaries.

We use ROUGE (Lin, 2004) for automatic
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evaluation, which compares the machine
summaries to the human references. We
report ROUGE-1 (unigram recall) and ROUGE-2
(bigram recall), with stemming and stopwords
included.1 Among automatic evaluation metrics,
ROUGE-1 (R-1) can predict that one system
performs significantly better than the other
with the highest recall (Rankel et al., 2013).
ROUGE-2 (R-2) provides the best agreement
with manual evaluations (Owczarzak et al., 2012).
R-1 and R-2 are the most widely used metrics in
summarization literature.

4 Generating Candidate Summaries

We first introduce the four basic unsupervised
systems, then describe our approach of generating
candidate summaries. The four systems all
perform extractive summarization, which directly
selects sentences from the input. Among
these systems, ICSISumm achieves the highest
ROUGE-2 in the TAC 2008, 2009 workshops.2

The other systems are often used as competitive
baselines; we implement these ourselves. Table
1 shows their performances. The word overlap
between summaries generated by these systems is
low, which indicates high diversity.

The basic systems are used for both generic and
query-focused summarization. For the latter task,
we filter out the sentences that have no overlap
with the query in terms of content words for the
systems that we implemented.

4.1 Four Basic Unsupervised Systems

ICSISumm: This system (Gillick et al., 2009)
optimizes the coverage of bigrams weighted by
their document frequency within the input using
Integer Linear Programming (ILP). Even though
this problem is NP-hard, a standard ILP solver can
find the exact solution fairly quickly in this case.
Greedy-KL: This system aims to minimize the
Kullback-Leibler (KL) divergence between the
word probability distribution of the summary and
that of the input. Because finding the summary
with the smallest KL divergence is intractable, we
employ a greedy method that iteratively selects
an additional sentence that minimizes the KL
divergence (Haghighi and Vanderwende, 2009).

1ROUGE version 1.5.5 with arguments: -c 95 -r 1000 -n
2 -2 4 -u -m -a -l 100 -x

2We use the toolkit provided via this link directly:
https://code.google.com/p/icsisumm/

ProbSum: This system (Nenkova et al., 2006)
scores a sentence by taking the average of word
probabilities over the words in the sentence, with
stopwords assigned zero weights. Compared to
Nenkova et al. (2006), we slightly change the way
of handling redundancy: we iteratively include a
sentence into the summary if its cosine similarity
with any sentence in the summary does not exceed
0.5.3

LLRSum: This system (Conroy et al., 2006)
employs a log-likelihood ratio (LLR) test to select
topic words of an input (Lin and Hovy, 2000).
The LLR test compares the distribution of words
in the input to a large background corpus. Similar
to Conroy et al. (2006), we consider words as
topic words if their χ-square statistic derived by
LLR exceeds 10. The sentence importance score
is equal to the number of topic words divided by
the number of words in the sentence. Redundancy
is handled in the same way as in ProbSum.

4.2 Generating Candidate Summaries

4.2.1 Selecting a Full Summary

There does not exist a system that always
outperforms the others for all problems. Based on
this fact, we directly use the summary outputs (i.e.,
basic summaries) as the candidate summaries.

4.2.2 Sentence Level Combination

Different systems provide different pieces of the
correct answer. Based on this fact, the combined
summary should include sentences that appear
in the summaries produced by different systems.
Here we exhaustively enumerate sentences so that
to form the candidate summaries. A similar
approach has been used to generate candidate
summaries for single-document summarization
(Ceylan et al., 2010).

Let D = s1, . . . , sn denote the sequence
of unique sentences that appear in the basic
summaries. We enumerate all subsequences Ai =
si1 , . . . , sik of D in lexicographical order. Ai can
be used as a candidate summary iff

∑k
j=1 l(sij ) ≥

L and
∑k−1

j=1 l(sij ) < L, where l(s) is the
number of words in s and L is the predefined
summary length. Table 2 shows the average
number of (unique) sentences and summaries that
are generated per input.

3The threshold is determined on the development set.
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DUC 01 DUC 02 DUC 03 DUC 04 TAC 08 TAC 09
R-1 R-2 R-1 R-2 R-1 R-2 R-1 R-2 R-1 R-2 R-1 R-2

ICSISumm 0.342 0.079 0.373 0.095 0.381 0.103 0.384 0.098 0.388 0.119 0.393 0.121
Greedy-KL 0.331 0.067 0.358 0.075 0.383 0.086 0.383 0.090 0.372 0.094 0.384 0.099
ProbSum 0.303 0.056 0.326 0.071 0.360 0.088 0.354 0.082 0.350 0.087 0.357 0.094
LLRSum 0.318 0.067 0.329 0.068 0.354 0.085 0.359 0.081 0.372 0.096 0.364 0.097

SumOracle R-1 0.361 0.084 0.391 0.103 0.407 0.106 0.403 0.103 0.408 0.124 0.417 0.130
SumOracle R-2 0.349 0.090 0.385 0.106 0.398 0.113 0.394 0.108 0.403 0.129 0.411 0.136
SentOracle R-1 0.400 0.097 0.439 0.121 0.442 0.123 0.437 0.119 0.448 0.139 0.453 0.146
SentOracle R-2 0.368 0.109 0.416 0.134 0.422 0.136 0.420 0.131 0.430 0.152 0.437 0.158

Table 1: The performance of the basic systems and the performance of the oracle systems based on the
methods described in Section 4.2.1 and Section 4.2.2. The evaluation metric that each oracle optimizes
is shown in Bold.

Dataset # sents # unique # summaries # total
DUC 01 20.8 17.7 7498 224940
DUC 02 21.1 17.6 12048 710832
DUC 03 19.3 15.4 3448 103440
DUC 04 19.5 15.6 3270 163500
TAC 08 18.5 14.8 2436 107184
TAC 09 18.0 13.7 1328 63744

Table 2: Average number of sentences (# sents),
unique sentences (# unique), candidate summaries
per input (# summaries) and the total number of
candidate summaries for each dataset (# total).

Note that we consider the order of sentences in
Ai (generated from D) as a relatively unimportant
factor. Though two summaries with the same set
of sentences can have different ROUGE scores due
to the truncation of the last sentence, because the
majority of content covered is still the same, the
difference in ROUGE score is relatively small. In
order to generate other possible summaries, one
needs to swap the last sentence. However, the
total number of summaries per dataset is already
huge (see Table 2). Therefore, we do not generate
other candidate summaries, because it would cost
much more additional space, while the difference
in content is relatively small.

4.2.3 Comparison of the Oracle Systems

We examine the upper bounds of the two methods
described in Section 4.2.1 and Section 4.2.2. For
the first method, we design two oracle systems
that pick the basic summary with the highest
ROUGE-1 (R-1) and ROUGE-2 (R-2) (denoted
as SumOracle R-1 and SumOracle R-2). For the
second method, we design two oracle systems
that pick the best summary in terms of R-1 and
R-2 among the summary candidates (denoted as
SentOracle R-1 and SentOracle R-2). As shown in

Table 1, the advantage of the first two oracles over
ICSISumm is limited: on average 0.021/0.006 and
0.013/0.011 (R-1/R-2). However, the advantage
of the latter oracles over ICSISumm is much
larger: on average 0.060/0.022 and 0.039/0.034
(R-1/R-2). Clearly, system combination is more
promising if we combine the basic summaries at
the sentence level. Therefore, we adopt the latter
method to generate candidate summaries.

5 Features

We introduce the features used in our model
that selects among the candidate summaries.
Traditionally in summarization, features are
derived based on the input (denoted as I). In
our work, we propose a class of novel features
that compares the candidate summary to the set
of the basic summaries (denoted as H), where
H can be regarded as a hyper-summary of I .
This excels in the way that it takes advantage of
the consensus between systems. Moreover, we
propose system identity features, which capture
the fact that content from a better system should
have a higher chance to be selected.

Our model includes classical indicators of
content importance (e.g., frequency, locations) and
novel features that have been recently proposed for
other tasks. For example, we design features that
estimate the intrinsic importance of words from
a large corpus (Hong and Nenkova, 2014). We
also include features that compute the information
density of the first sentence that each word appears
in (Yang and Nenkova, 2014). These features are
specifically tailored for our task (see Section 5.2).

We classify our features into summary level,
word level and system identity features. Note that
we do not consider stopwords and do not perform
stemming. There are 360 features in our model.

110



5.1 Summary Level Features
Summary level features directly encode the
informativeness of the entire summary. Some of
them are initially proposed in Louis and Nenkova
(2013) that evaluates the summary content without
human models. Different from them, the features
in our work use not only I , but also H as
the “input” (except for the redundancy features).
“Input” refers to I or H in the rest of Section 5.
Distributional Similarity: These features
compute the distributional similarity (divergence)
between the n-gram (n = 1, 2) probability
distribution of the summary and that of the input
(I or H). Good summaries tend to have high
similarity and low divergence. We use three
measures: Kullback-Leibler (KL) divergence,
Jenson-Shannon (JS) divergence and cosine
similarity.

Let P and Q denote the n-gram distribution of
the summary and that of the input respectively.
Let pλ(w) be the probability of n-gram w in
distribution λ. The KL divergence KL(P ‖ Q)
and the JS divergence JS(P ‖ Q) are defined as:

KL(P ‖ Q) =
∑
w

pP (w) · log
pP (w)

pQ(w)
(1)

JS(P ‖ Q) =
1

2
KL(P ‖ A) +

1

2
KL(Q ‖ A) (2)

where A is the average of P and Q. Noticing
that KL divergence is not symmetric, both
KL(P ‖ Q) and KL(Q ‖ P ) are computed.
In particular, smoothing is performed while
computing KL(Q ‖ P ), where we use the same
setting as in Louis and Nenkova (2013).
Topic words: Good summaries tend to include
more topic words (TWs). We derive TWs using
the method described in the LLRSum system in
Section 4.1. For each summary S, we compute:
(1) the ratio of the words that are TWs to all words
in S; (2) the recall of TWs in S.
Sentence location: Sentences that appear at the
beginning of an article are likely to be more
critical. Greedy-based summarizers (ProbSum,
LLRSum, GreedyKL) also select important
sentences first. To capture these intuitions, we
set features over the sentences in a summary (S)
based on their locations. There are features that
indicate whether a sentence in S has appeared as
the first sentence in the input. We also set features
to indicate the normalized position of a sentence
in the documents of an input: by assigning 1 to
the first sentence, 0 to the last sentence. When

one sentence appears multiple times, the earliest
position is used. Features are then set on the
summary level, which equal to the mean of their
corresponding features on the sentence level over
all sentences in the summary S.
Redundancy: Redundancy correlates negatively
with content quality (Pitler et al., 2010). To
indicate redundancy, we compute the maximum
and average cosine similarity of all pairs of
sentences in the summaries. Summaries with
higher redundancy are expected to score higher.

5.2 Word Level Features

Better summaries should include words or phrases
that are of higher importance. Hence, we design
features to encode the overall importance of
unigrams and bigrams in a summary. We first
generate features for the n-grams (n = 1, 2) in a
summary S, then generate the feature vector vS

for S. The procedure is as follows:
Let t denote the unigram or bigram in a

summary. For each t that includes content words,
we form vt, where each component of vt is an
importance indicator of t. If t does not include
any content words, we set vt = 0. Let S′ denote
the unique n-grams in S and let L denote the
summary length. We compute two feature vectors:
vS1 = (

∑
t∈S vt)/L and vS2 = (

∑
t∈S′ vt)/L,

which are the coverage of n-grams by word token
and word type, normalized by summary length.
Finally, vS is formed by concatenating vS1 and
vS2 for unigrams and bigrams.

Below we describe the features in vt. Similar
to Section 5.1, the features are computed based on
both I and H . We also derive features based on
summary-article pairs from the NYT corpus.
Frequency related features: For each n-gram t,
we compute its probability, TF*IDF4, document
frequency (DF) and χ-square statistic from LLR
test. Another feature is set to be equal to DF
normalized by the number of input documents.
A binary feature is set to determine whether DF
is at least three, inspired by the observation that
document specific words should not be regarded
as informative (Mason and Charniak, 2011).

It has been shown that unimportant words of
an input should not be considered while scoring
the summary (Gupta et al., 2007; Mason and
Charniak, 2011). The features below are designed

4IDF is computed using the news articles between year
2004 and 2007 of the New York Times corpus.
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capture this. Let the binary function b(t) denote
whether or not t includes topic words (which
approximate whether or not t is important),
features are set to be equal to the product of the
DF related features and b(t).
Word locations: The words that appear close to
the beginning of I or H are likely to be important.
Here for each n-gram token, we compute its
normalized locations in the documents. Then
for each n-gram type t, we compute its first,
average, last and average first location across its
occurrences in all documents of an input. Features
are also set to determine whether t has appeared
in the first sentence and the number of times t
appears in the first sentences of an input.
Information density of the first sentence:
The first sentence of an article can be either
informative or entertaining. Clearly, the words
that appear in an informative first sentence should
be assigned higher importance scores. To capture
this, we compute the importance score (called
information density in Yang and Nenkova (2014))
of the first sentence, that is defined as the number
of TWs divided by the number of words in the
sentence. For each t, we compute the maximal
and average of importance scores over all first
sentences that t appears in.
Global word importance: Some words are
globally important (e.g., “war”, “death”) or
unimportant (e.g., “Mr.”, “a.m.”) to humans,
independent of a particular input. Hong and
Nenkova (2014) proposed a class of methods to
estimate the global importance of words, based
on the change of word probabilities between the
summary-article pairs from the NYT corpus. The
importance are used as features for identifying
words that are used in human summaries. Here we
replicate the features used in that work, except that
we perform more careful pre-processings. This
class of features are set only for unigrams.

5.3 System Identity Features

For each basic system Ai, we compute the
sentence and n-gram overlap between S and the
summary from Ai (SAi). We hypothesize that
the quality (i.e., ROUGE score) of a summary is
positively (negatively) correlated to the overlap
between this summary and a good (bad) basic
summary of the same input. We design six
sentence and two word overlap features for each
system, which leads to a total of 32 features.

Sentence overlap: Let D0, DAi denote the set of
sentences in S and SAi , respectively. For each
system Ai, we set a feature |D0

⋂
DAi |/|D0|.

We further consider sentence lengths. Let l(D)
denote the total length of sentences in set D, we
set a feature l(D0

⋂
DAi)/l(D0) for each system

Ai. Lastly, we compute the binary version of
|D0

⋂
DAi |/|D0|.

Furthermore, we exclude the sentences that
appear in multiple basic summaries from D0, then
compute the three features above for the new D0.
System identity features might be more helpful in
selecting among the sentences that are generated
by only one of the systems.
N-gram overlap: We compute the fraction of
n-gram (n = 1, 2) tokens in S that appears in SAi .
The n-grams consisting of solely stopwords are
removed before computation.

6 Baseline Approaches

We present three summary combination methods
that are used as baselines:
Voting: We select sentences according to the total
number of times that they appear in all basic
summaries, from large to small. When there are
ties, we randomly pick an unselected sentence.
The procedure is repeated 100 times and the mean
ROUGE score is reported.
Summarization from Summaries: We
directly run ICSISumm and Greedy-KL over
the summaries from the basic systems.
Jensen-Shannon (JS) Divergence: We select
among the pool of candidate summaries. The
summary with the smallest JS divergence between
the summary and (1) the input (JS-I), or
(2) the hyper-summaries (JS-H) is selected.
Summary-input JS divergence is the best metric
to identify a better summarizer without human
references (Louis and Nenkova, 2009).

7 Experiments and Results

7.1 Experiment Settings
We use the DUC 03, 04 datasets as training and
development sets. The candidate summaries of
these two sets are used as training instances. There
are 80 input sets; each input includes an average of
3336 candidate summaries. During development,
we perform four-fold cross-validation. The DUC
01, 02 and TAC 08, 09 datasets are used as the
held-out test sets. We use two-sided Wilcoxon test
to compare the performance between two systems.
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(a) ROUGE-1 of the proposed and the basic systems (b) ROUGE-2 of the proposed and the basic systems

(c) ROUGE-1 of the proposed and baseline approaches (d) ROUGE-2 of the proposed and baseline approaches

Figure 1: ROUGE scores of different systems on the DUC 2001–2004 and TAC 2008, 2009 datasets

We choose ROUGE-1 (R-1) as training labels,
as it outperforms using ROUGE-2 (R-2) as labels
(see Table 3). We suspect that the advantage of
R-1 is because it has higher sensitivity in capturing
the differences in content between summaries.5

In order to find a better learning method, we
have experimented with support vector regression
(SVR) (Drucker et al., 1997)6 and SVM-Rank
(Joachims, 1999).7 SVR has been used for
estimating sentence (Ouyang et al., 2011) or
document (Aker et al., 2010) importance in
summarization. SVM-Rank has been used for
ranking summaries according to their linguistic
qualities (Pitler et al., 2010). In SVM-Rank, only
the relative ranks between training instances of
an input are considered while learning the model.
Our experiment shows that SVR outperforms
SVM-Rank (see Table 3). This means that it is
useful to compare the summaries across different

5Recent methods that performs global optimization for
summarization mostly use R-1 while training (Lin and
Bilmes, 2011; Kulesza and Taskar, 2012; Sipos et al., 2012).

6We use the SVR model in SVMLight (Joachims, 1999)
with linear kernel and default parameter settings when trained
on R-1. When trained on R-2, we tune ε in loss function on
the developmenet set, because the default setting assigns the
same value to all data points.

7We use the SVM-Rank toolkit (Joachims, 2006) with
default parameter settings.

input sets and leverage the actual ROUGE scores.

Settings R-1 R-2
SVR + R-1 0.3986 0.1040
SVR + R-2 0.3890 0.1023
SVMRank + R-1 0.3932 0.0996
SVMRank + R-2 0.3854 0.0982

Table 3: Performance on the development set with
different models and training labels.

7.2 Comparing with the Basic Systems and
the Baseline Methods

We evaluate our model on the development set and
the test sets. As shown in Figure 1 (a) and Table
4, our model performs consistently better than
all basic systems on R-1. It performs similar to
ICSISumm and better than the other basic systems
on R-2 (see Figure 1 (b) and Table 4).

Apart from automatic evaluation, we also
manually evaluate the summaries using the
Pyramid method (Nenkova et al., 2007). This
method solicits annotators to score a summary
based on its coverage of summary content units,
which are identified from human references. Here
we evaluate the Pyramid scores of four systems:
our system, two best basic systems and the oracle
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Dataset System R-1 R-2
DUC 03 ICSISumm 0.3813 0.1028

SumCombine 0.3959 0.1018
DUC 04 ICSISumm 0.3841 0.0978

SumCombine 0.3995 0.1048
DPP 0.3979 0.0962

RegSum 0.3857 0.0975
DUC 01 ICSISumm 0.3421 0.0785

SumCombine 0.3526† 0.0788
R2N2 ILP 0.3691 0.0787
PriorSum 0.3598 0.0789

DUC 02 ICSISumm 0.3733 0.0954
SumCombine 0.3823 0.0946

R2N2 ILP 0.3796 0.0888
PriorSum 0.3663 0.0897

ClusterCMRW 0.3855 0.0865
TAC 08 ICSISumm 0.3880 0.1186

SumCombine 0.3978 0.1208
Li et al. (2013) n/a 0.1235
A & M (2013) n/a 0.1230
Li et al. (2015) n/a 0.1184

TAC 09 ICSISumm 0.3931 0.1211
SumCombine 0.4009† 0.1200

Li et al. (2015) n/a 0.1277

Table 4: Performance comparison on six DUC
and TAC datasets. Bold indicates statistical
significant compared to ICSISumm (p < 0.05).
† indicates the difference is close to significant
compared to ICSISumm (0.05 ≤ p < 0.1).

on the TAC 08 dataset. Our model (Combine)
outperforms ICSISumm and Greedy-KL by 0.019
and 0.090, respectively (see Table 5).

Oracle Combine ICSISumm KL
Pyr. score 0.626 0.549 0.530 0.459

Table 5: The Pyramid score on the TAC 08 data.

Figure 1 (c), (d) compare our model with
the baseline approaches proposed in Section 6.
The baselines that only consider the consensus
between different systems perform poorly (voting,
summarization on summaries, JS-H). JS-I has the
best ROUGE-1 among baselines, while it is still
much inferior to our model. Therefore, effective
system combination appears to be difficult using
methods based on a single indicator.

7.3 Comparing with the State-of-the-art

Table 4 compares our model (SumCombine) with
the state-of-the-art systems. On the DUC 03
and 04 data, ICSISumm is among one of the
best systems. SumCombine performs significantly
better compared to it on R-1. We also achieve
a better performance compared to the other top

performing extractive systems (DPP (Kulesza and
Taskar, 2012), RegSum (Hong and Nenkova,
2014)) on the DUC 04 data.

On the DUC 01 and 02 data, the top performing
systems we find are R2N2 ILP (Cao et al., 2015a)
and PriorSum (Cao et al., 2015b); both of them
utilize neural networks. Comparing to these two,
SumCombine achieves a lower performance on
the DUC 01 data and a higher performance on
the DUC 02 data. It also has a slightly lower
R-1 and a higher R-2 compared to ClusterCMRW
(Wan and Yang, 2008), a graph-based system
that achieves the highest R-1 on the DUC 02
data. On the TAC 08 data, the top performing
systems (Li et al., 2013; Almeida and Martins,
2013) achieve the state-of-the-art performance
by sentence compression. Our model performs
extractive summarization, but still has similar R-2
compared to theirs.8 On the TAC 09 data, the
best system uses a supervised method that weighs
bigrams in the ILP framework by leveraging
external resources (Li et al., 2015). This system is
better than ours on the TAC 09 data and is inferior
to ours on the TAC 08 data.

Overall, our combination model achieves very
competitive performance, comparable to the
state-of-the-art on multiple benchmarks.

At last, we compare SumCombine to SSA (Pei
et al., 2012) and WCS (Wang and Li, 2012), the
models that perform system combination by rank
aggregation. The systems are evaluated on the
DUC 04 data. In order to compare with these two
papers, we truncate our summaries to 665 bytes
and report F1-score. Pei et al. (2012) report the
performance on 10 randomly selected input sets.
In order to have the same size of training data with
them, we conduct five-fold cross-validation.

System R-1 R-2 R-SU4
SumCombine 0.3943 0.1015 0.1411

SSA (Pei et al., 2012) 0.3977 0.0953 0.1394
WCS (Wang and Li, 2012) 0.3987 0.0961 0.1353

Table 6: Comparison with other combination
methods on the DUC 04 dataset.

As shown in Table 6, SumCombine performs
better than SSA and WCS on R-2 and R-SU4, but
not on R-1. It is worth noting that these three

8These papers report ROUGE-SU4 (R-SU4) (measures
skip bigram with maximum gap of 4) instead of R-1.
Our model has very similar R-SU4 (−0.0002/+0.0007)
compared to them.
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Dev. Set DUC 01 DUC 02 TUC 08 TAC 09 Average
R-1 R-2 R-1 R-2 R-1 R-2 R-1 R-2 R-1 R-2 R-1 R-2

All features .3986 .1040 .3526 .0788 .3823 .0946 .3978 .1208 .4009 .1200 .3864 .1036
-summary .3946 .1014 .3469 .0779 .3760 .0872 .3950 .1185 .3988 .1191 .3823 .1008
-word .3946 .1002† .3429 .0733 .3787 .0919 .3939 .1172 .3988 .1232 .3829 .1012
-system .3964 .1022 .3483 .0776 .3772 .0895 .4009 .1193 .3936 .1110 .3833 .0999
-input .3822 .0956 .3433 .0764 .3786 .0912 .3858 .1148 .3960 .1159 .3772 .0988
-hyper-sum .3978 .1022 .3512 .0777 .3806 .0918 .3968 .1193 .3994 .1177 .3852 .1017
-global .3948 .1021 .3457 .0760 .3821 .0954 .3959 .1136 .4010 .1215 .3839 .1017

summary .3960 .1018 .3344 .0701 .3748 .0910 .3957 .1166 .4009 .1170 .3804 .0993
word .3919 .1006 .3492 .0765 .3784 .0905 .3956 .1166 .3956 .1146 .3821 .0998
system .3881 .0958 .3430 .0746 .3689 .0868 .3898 .1096 .3926 .1145 .3765 .0963
input .3979 .1009 .3410 .0729† .3764 .0904 .3907 .1129 .4015 .1189 .3815 .0992
hyper-sum .3852 .0952 .3447 .0725 .3665 .0823 .3871† .1080 .3906† .1140 .3748 .0944

Table 7: Performance after ablating features (row 2–7) or using a single class of features (row 8–12).
Bold and † represent statistical significant (p < 0.05) and close to significant (0.05 ≤ p < 0.1) compared
to using all features (two-sided Wilcoxon test).

systems cannot be directly compared, because
different basic systems are used. In fact, compared
to SumCombine, SSA and WCS achieve larger
improvements over the basic systems that are
used. This might be because ranker aggregation
is a better strategy, or because combining weaker
systems is easier to result in large improvements.

7.4 Effects of Features

We conduct two experiments to examine the
effectiveness of features (see Table 7). First, we
remove one class of feature at a time from the full
feature set. Second, we show the performance
of a single feature class. Apart from reporting
the performance on the development and the test
sets, we also show the macro average performance
across the five sets.9 This helps to understand the
contribution of different features in general.

Summary level, word level and system identity
features are all useful, with ablating them leads
to an average of 0.0031 to 0.0041 decrease on
R-1. Ablating summary and word level features
can lead to a significant decrease in performance
on some sets. If we use a single set of features,
then the summary and word level features turn out
to be more useful than the system identity features.

The word and summary level features compute
the content importance based on three sources:
the input, the basic summaries (hyper-sum) and
the New York Times corpus (global). We ablate
the features derived from these three sources
respectively. The input-based features are the most
important; removing them leads to a very large

9We do not compute the statistical significance for the
average score.

decrease in performance, especially on R-1. The
features derived from the basic summaries are also
effective; even though removing them only lead to
a small decrease in performance, we can observe
the decrease on all five sets. Ablating global
indicators leads to an average decrease of about
0.002 on R-1 and R-2.

Interestingly, for the same feature class, the
effectiveness vary to a great extent across different
datasets. For example, ablating word level features
decreases the R-2 significantly on the DUC 01
data, but increases the R-2 on the TAC 09 data.
However, by looking at the average performance,
it becomes clear that it is necessary to use all
features. The features computed based on the
input are identified as the most important.

8 Conclusion

In this paper, we present a pipeline that combines
the summaries from four portable unsupervised
summarizers. We show that system combination
is very promising in improving content quality.
We propose a supervised model to select among
the candidate summaries. Experiments show
that our model performs better than the systems
that are combined, which is comparable to the
state-of-the-art on multiple benchmarks.
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Lloret, and Manuel Palomar. 2010. Quantifying
the limits and success of extractive summarization
systems across domains. In Proceedings of ACL,
pages 903–911.

John M. Conroy, Judith D. Schlesinger, and Dianne P.
O’Leary. 2006. Topic-focused multi-document
summarization using an approximate oracle score.
In Proceedings of COLING/ACL, pages 152–159.

Harris Drucker, Chris J.C. Burges, Linda Kaufman,
Alex Smola, Vladimir Vapnik, et al. 1997. Support
vector regression machines. In Proceedings of
NIPS, volume 9, pages 155–161.

Gunes Erkan and Dragomir R. Radev. 2004. Lexrank:
graph-based lexical centrality as salience in text
summarization. Journal of Artificial Intelligence
Research, 22(1):457–479.

Jonathan G. Fiscus. 1997. A post-processing system
to yield reduced word error rates: Recognizer output
voting error reduction (ROVER). In Proceedings of
ASRU, pages 347–354.

Robert Frederking and Sergei Nirenburg. 1994. Three
heads are better than one. In Proceedings of ANLP,
pages 95–100.

Dan Gillick, Benoit Favre, Dilek Hakkani-Tur, Berndt
Bohnet, Yang Liu, and Shasha Xie. 2009. The
ICSI/UTD Summarization System at TAC 2009. In
Proceedings of TAC.

Surabhi Gupta, Ani Nenkova, and Dan Jurafsky.
2007. Measuring importance and query relevance
in topic-focused multi-document summarization. In
Proceedings of ACL, pages 193–196.

Aria Haghighi and Lucy Vanderwende. 2009.
Exploring content models for multi-document
summarization. In Proceedings of HLT-NAACL,
pages 362–370.

John C. Henderson and Eric Brill. 1999. Exploiting
diversity for natural language processing:
Combining parsers. In Proceedings of EMNLP,
pages 187–194.

Kai Hong and Ani Nenkova. 2014. Improving
the estimation of word importance for news
multi-document summarization. In Proceedings of
EACL, pages 712–721.

Kai Hong, John M. Conroy, Benoit Favre, Alex
Kulesza, Hui Lin, and Ani Nenkova. 2014. A
repositary of state of the art and competitive baseline
summaries for generic news summarization. In
Proceedings of LREC, pages 1608–1616.

Thorsten Joachims. 1999. Making large-scale SVM
learning practical. In B. Schölkopf, C. Burges,
and A. Smola, editors, Advances in Kernel Methods
- Support Vector Learning, chapter 11, pages
169–184. MIT Press, Cambridge, MA.

Thorsten Joachims. 2006. Training linear svms in
linear time. In Proceedings of KDD, pages 217–226.

Alex Kulesza and Ben Taskar. 2012. Determinantal
point processes for machine learning. Foundations
and Trends in Machine Learning, 5(2–3).

Chen Li, Fei Liu, Fuliang Weng, and Yang Liu.
2013. Document summarization via guided
sentence compression. In Proceedings of EMNLP,
pages 490–500.

Chen Li, Yang Liu, and Lin Zhao. 2015.
Using external resources and joint learning for
bigram weighting in ilp-based multi-document
summarization. In Proceedings of NAACL-HLT,
pages 778–787.

Hui Lin and Jeff Bilmes. 2011. A class of
submodular functions for document summarization.
In Proceedings of ACL, pages 510–520.

Chin-Yew Lin and Eduard Hovy. 2000. The
automated acquisition of topic signatures for text
summarization. In Proceedings of COLING, pages
495–501.

Chin-Yew Lin. 2004. Rouge: A package for
automatic evaluation of summaries. In Text
Summarization Branches Out: Proceedings of the
ACL-04 Workshop, pages 74–81.

Marina Litvak, Mark Last, and Menahem Friedman.
2010. A new approach to improving multilingual
summarization using a genetic algorithm. In
Proceedings of ACL, pages 927–936.

116



Annie Louis and Ani Nenkova. 2009. Automatically
evaluating content selection in summarization
without human models. In Proceedings of EMNLP,
pages 306–314.

Annie Louis and Ani Nenkova. 2013. Automatically
assessing machine summary content without
a gold standard. Computational Linguistics,
39(2):267–300.

Lidia Mangu, Eric Brill, and Andreas Stolcke.
2000. Finding consensus in speech recognition:
word error minimization and other applications of
confusion networks. Computer Speech & Language,
14(4):373–400.

Rebecca Mason and Eugene Charniak. 2011.
Extractive multi-document summaries should
explicitly not contain document-specific content.
In Proceedings of the Workshop on Automatic
Summarization for Different Genres, Media, and
Languages, pages 49–54.

Ryan McDonald. 2007. A study of global inference
algorithms in multi-document summarization. In
Proceedings of ECIR, pages 557–564.

Ahmed A Mohamed and Sanguthevar Rajasekaran.
2005. A text summarizer based on meta-search. In
Proceedings of ISSPIT, pages 670–674.

Ani Nenkova, Lucy Vanderwende, and Kathleen
McKeown. 2006. A compositional context sensitive
multi-document summarizer: exploring the factors
that influence summarization. In Proceedings of
SIGIR, pages 573–580.

Ani Nenkova, Rebecca Passonneau, and Kathleen
McKeown. 2007. The pyramid method:
Incorporating human content selection variation in
summarization evaluation. ACM Transactions on
Speech and Language Processing (TSLP), 4(2):4.

You Ouyang, Wenjie Li, Sujian Li, and Qin Lu.
2011. Applying regression models to query-focused
multi-document summarization. Inf. Process.
Manage., 47(2):227–237, March.

Karolina Owczarzak, John M. Conroy, Hoa Trang
Dang, and Ani Nenkova. 2012. An assessment
of the accuracy of automatic evaluation in
summarization. In Proceedings of NAACL-HLT
2012: Workshop on Evaluation Metrics and System
Comparison for Automatic Summarization, pages
1–9.

Yulong Pei, Wenpeng Yin, Qifeng Fan, and Lian’en
Huang. 2012. A supervised aggregation framework
for multi-document summarization. In Proceedings
of COLING, pages 2225–2242.

Emily Pitler, Annie Louis, and Ani Nenkova.
2010. Automatic evaluation of linguistic quality in
multi-document summarization. In Proceedings of
ACL, pages 544–554.

Peter A. Rankel, John M. Conroy, Hoa Trang Dang,
and Ani Nenkova. 2013. A decade of automatic
content evaluation of news summaries: Reassessing
the state of the art. In Proceedings of ACL, pages
131–136.

Kenji Sagae and Alon Lavie. 2006. Parser
combination by reparsing. In Proceedings of
NAACL: Short Papers, pages 129–132.

Horacio Saggion, Juan-Manuel Torres-Moreno, Iria da
Cunha, and Eric SanJuan. 2010. Multilingual
summarization evaluation without human models.
In Proceedings of COLING, pages 1059–1067.

Evan Sandhaus. 2008. The new york times annotated
corpus. Linguistic Data Consortium, Philadelphia,
PA.

Ruben Sipos, Pannaga Shivaswamy, and Thorsten
Joachims. 2012. Large-margin learning of
submodular summarization models. In Proceedings
of EACL, pages 224–233.

Vishal Thapar, Ahmed A Mohamed, and Sanguthevar
Rajasekaran. 2006. Consensus text summarizer
based on meta-search algorithms. In Proceedings
of ISSPIT, pages 403–407.

Xiaojun Wan and Jianwu Yang. 2008. Multi-document
summarization using cluster-based link analysis. In
Proceedings of SIGIR, pages 299–306.

Dingding Wang and Tao Li. 2012. Weighted
consensus multi-document summarization.
Information Processing & Management,
48(3):513–523.

Yinfei Yang and Ani Nenkova. 2014. Detecting
information-dense texts in multiple news domains.
In Proceedings of AAAI, pages 1650–1656.

Wen-tau Yih, Joshua Goodman, Lucy Vanderwende,
and Hisami Suzuki. 2007. Multi-document
summarization by maximizing informative
content-words. In Proceedings of IJCAI, pages
1776–1782.

117



Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 118–127,
Lisbon, Portugal, 17-21 September 2015. c©2015 Association for Computational Linguistics.

Phrase-based Compressive Cross-Language Summarization

Jin-ge Yao Xiaojun Wan Jianguo Xiao
Institute of Computer Science and Technology, Peking University, Beijing 100871, China

Key Laboratory of Computational Linguistic (Peking University), MOE, China
{yaojinge, wanxiaojun, xiaojianguo}@pku.edu.cn

Abstract

The task of cross-language document
summarization is to create a summary in a
target language from documents in a dif-
ferent source language. Previous meth-
ods only involve direct extraction of au-
tomatically translated sentences from the
original documents. Inspired by phrase-
based machine translation, we propose
a phrase-based model to simultaneously
perform sentence scoring, extraction and
compression. We design a greedy algo-
rithm to approximately optimize the score
function. Experimental results show that
our methods outperform the state-of-the-
art extractive systems while maintaining
similar grammatical quality.

1 Introduction

The task of cross-language summarization is to
produce a summary in a target language from
documents written in a different source language.
This task is particularly useful for readers to
quickly get the main idea of documents written in
a source language that they are not familiar with.
Following Wan (2011), we focus on English-to-
Chinese summarization in this work.

The simplest and the most straightforward
way to perform cross-language summarization is
pipelining general summarization and machine
translation. Such systems either translate all the
documents before running generic summarization
algorithms on the translated documents, or sum-
marize from the original documents and then only
translate the produced summary into the target lan-
guage. Wan (2011) show that such pipelining ap-
proaches are inferior to methods that utilize in-
formation from both sides. In that work, the au-
thor proposes graph-based models and achieves
fair amount of improvement. However, to the best

of our knowledge, no previous work of this task
tries to focus on summarization beyond pure sen-
tence extraction.

On the other hand, cross-language summariza-
tion can be seen as a special kind of machine trans-
lation: translating the original documents into a
brief summary in a different language. Inspired by
phrase-based machine translation models (Koehn
et al., 2003), we propose a phrase-based scoring
scheme for cross-language summarization in this
work.

Since our framework is based on phrases, we
are not limited to produce extractive summaries.
We can use the scoring scheme to perform joint
sentence selection and compression. Unlike typi-
cal sentence compression methods, our proposed
algorithm does not require additional syntactic
preprocessing such as part-of-speech tagging or
syntactic parsing. We only utilize information
from translated texts with phrase alignments. The
scoring function consists of a submodular term of
compressed sentences and a bounded distortion
penalty term. We design a greedy procedure to
efficiently get approximate solutions.

For experimental evaluation, we use the
DUC2001 dataset with manually translated refer-
ence Chinese summaries. Results based on the
ROUGE metrics show the effectiveness of our pro-
posed methods. We also conduct manual evalua-
tion and the results suggest that the linguistic qual-
ity of produced summaries is not decreased by too
much, compared with extractive counterparts. In
some cases, the grammatical smoothness can even
be improved by compression.

The contributions of this paper include:

• Utilizing the phrase alignment information,
we design a scoring scheme for the cross-
language document summarization task.

• We design an efficient greedy algorithm to
generate summaries. The greedy algorithm is
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partially submodular and has a provable con-
stant approximation factor to the optimal so-
lution up to a small constant.

• We achieve state-of-the-art results using the
extractive counterpart of our compressive
summarization framework. Performance in
terms of ROUGE metrics can be significantly
improved when simultaneously performing
extraction and compression.

2 Background

Document summarization can be treated as a spe-
cial kind of translation process: translating from a
bunch of related source documents to a short tar-
get summary. This analogy also holds for cross-
language document summarization, with the only
difference that the languages of source documents
and the target summary are different.

Our design of sentence scoring function for
cross-language document summarization purpose
is inspired by phrase-based machine translation
models. Here we briefly describe the general idea
of phrase-based translation. One may refer to
Koehn (2009) for more detailed description.

2.1 Phrase-based Machine Translation

Phrase-based machine translation models are cur-
rently giving state-of-the-art translations for many
pairs of languages and dominating modern statis-
tical machine translation. Classical word-based
IBM models cannot capture local contextual in-
formation and local reordering very well. Phrase-
based translation models operate on lexical entries
with more than one word on the source language
and the target language. The allowance of multi-
word expressions is believed to be the main rea-
son for the improvements that phrase-based mod-
els give. Note that these multi-word expressions,
typically addressed as phrases in machine transla-
tion literature, are essentially continuous n-grams
and do not need to be linguistically integrate and
meaningful constituents.

Define y as a phrase-based derivation, or
more precisely a finite sequence of phrases
p1, p2, . . . , pL. For any derivation y we use e(y)
to refer to the target-side translation text defined
by y. This translation is derived by concatenat-
ing the strings e(p1), e(p2), . . . , e(pL). The scor-
ing scheme for a phrase-based derivation y from

the source sentence to the target sentence e(y) is:

f(y) =
L∑
k=1

g(pk) + LM(e(y))

+
L−1∑
k=1

η|start(pk+1)− 1− end(pk)|

where LM(·) is the target-side language model
score, g(·) is the score function of phrases, η < 0
is the distortion parameter for penalizing the dis-
tance between neighboring phrases in the deriva-
tion. Note that the phrases addressed here are
typically continuous n-grams and need not to be
grammatical linguistic phrasal units. Later we will
directly use phrases provided by modern machine
translation systems.

Searching for the best translation under this
score definition is difficult in general. Thus
approximate decoding algorithms such as beam
search should be applied. Meanwhile, several con-
straints should be satisfied during the decoding
process. The most important one is to set a con-
stant limit of the distortion term |start(pk+1) −
1 − end(pk)| ≤ δ to exhibit derivations with dis-
tant phrase translations.

3 Phrase-based Cross-Language
Summarization

Inspired by the general idea of phrase-based
machine translation, we describe our proposed
phrase-based model for cross-language summa-
rization in this section.

3.1 Phrase-based Sentence Scoring
In the context of cross-language summarization,
here we assume that we can also have phrases
in both source and target languages along with
phrase alignments between the two sides. For
summarization purposes, we may wish to se-
lect sentences containing more important phrases.
Then it is plausible to measure the scores of these
aligned phrases via importance weighing.

Inspired by phrase-based translation models, we
can assign phrase-based scores to sentences from
the translated documents for summarization pur-
poses. We define our scoring function for each
sentence s as:

F (s) =
∑
p∈s

d0g(p) + bg(s)

+η dist(y(s))
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Here in the first term g(·) is the score of phrase p,
which can be simply set to document frequency.
The phrase score is penalized with a constant
damping factor d0 to decay scores for repeated
phrases. The second term bg(s) is the bigram
score of sentence s. It is used here to simu-
late the effect of language models in phrase-based
translation models. Denoting y(s) as the phrase-
based derivation (as mentioned earlier in the previ-
ous section) of sentence s, the last distortion term
dist(y(s)) =

∑L
k=1 |start(pk+1)− 1− end(pk)|

is exactly the same as the distortion penalty term
in phrase-based translation models. This term can
be used as a reflection of complexity of the trans-
lation. All the above terms can be derived from
bilingual sentence pairs with phrase alignments.

Meanwhile, we may also wish to exclude unim-
portant phrases and badly translated phrases. Our
definition can also be used to guide sentence com-
pression by trying to remove redundant phrase.

Based on the definition over sentences, we de-
fine our summary scoring measure over a sum-
mary S:

F (S) =
∑
p∈S

count(p,S)∑
i=1

di−1g(p) +
∑
s∈S

bg(s)

+η
∑
s∈S

dist(y(s))

where d is a predefined constant damping factor to
penalize repeated occurrences of the same phrases,
count(p, S) is the number of occurrences in the
summary S for phrase p. All other terms are in-
herited from the sentence score definition.

In the next section we describe our framework
to efficiently utilize this scoring function for cross-
language summarization.

3.2 A Greedy Algorithm for Compressed
Sentence Selection

Utilizing the phrase-based score definition of sen-
tences, we can use greedy algorithms to simulta-
neously perform sentence selection and sentence
compression. Assuming that we have a predefined
budget B (e.g. total number of Chinese charac-
ters allowed) to restrict the total length of a gen-
erated summary. We use C(S) to denote the cost
of a summary S, measured by the number of Chi-
nese characters contained in total. The greedy al-
gorithm we will use for our compressive summa-
rization is listed in Algorithm 1.

Algorithm 1 A greedy algorithm for phrase-based
summarization

1: S ← ∅
2: i← 1
3: single best = argmaxs∈U,C({s})≤B F ({s})
4: while U 6= ∅ do
5: si = argmaxs∈U

F (Si−1∪{s})−F (Si−1)
C({s})r

6: if C(Si−1 ∪ {s}) ≤ B then
7: Si ← Si−1 ∪ {s}
8: i← i+ 1
9: end if

10: U ← U \ {si}
11: end while
12: return S∗ = argmaxS∈{single best,Si} F (S)

The space U denotes the set of all possible com-
pressed sentences. In each iteration, the algorithm
tries to find the compressed sentence with maxi-
mum gain-cost ratio (Line 5, where we will fol-
low previous work to set r = 1), and merge it to
the summary set at the current iteration (denoted
as Si). The target is to find the compression with
maximum gain-cost ratio. This will be discussed
in the next section. Note that the algorithm is also
naturally applicable to extractive summarization.
For extractive summarization, Line 5 corresponds
to direct calculations of sentence scores based on
our proposed phrase-based function andU will de-
note all full sentences from the original translated
documents.

The outline of this algorithm is very similar to
the greedy algorithm used by Morita et al. (2013)
for subtree extraction, except that in our context
the increase of cost function when adding a sen-
tence is exactly the cost of that sentence.

When the distortion term is ignored (η = 0), the
scoring function is clearly submodular 1 (Lin and
Bilmes, 2010) in terms of the set of compressed
sentences, since the score now only consists of
functional gains of phrases along with bigrams
of a compressed sentence. Morita et al. (2013)
have proved that when r = 1, this greedy algo-
rithm will achieve a constant approximation factor
1
2(1 − e−1) to the optimal solution. Note that this
only gives us the worst case guarantee. What we
can achieve in practice is usually far better.

On the other hand, setting η < 0 will not affect
1A set function F : 2U → R defined over subsets of

a universe set U is said to be submodular iff it satisfies the
diminishing returns property: ∀S ⊆ T ⊆ U \ u, we have
F (S ∪ {u})− F (S) ≥ F (T ∪ {u})− F (T ).
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the performance guarantee too much. Intuitively
this is because in most phrase-based translation
models a distortion limit constraint |start(pk+1)−
1 − end(pk)| ≤ δ will be applied on distor-
tion terms, while performing sentence compres-
sion can never increase distortion. The main con-
clusion is formulated as:

Theorem 1. If Algorithm 1 outputs Sgreedy while
the optimal solution is OPT , we have

F (Sgreedy) ≥ 1
2
(1− e−1)F (OPT ) +

1
2
ηγ.

Here γ > 0 is a constant controlled by distor-
tion difference between sentences, which is rel-
atively small in practice compared with phrase
scores. η < 0 is the distortion parameter. Note
that when η is set to be 0, the scoring function is
submodular and then we recover the 1

2(1 − e−1)
approximation factor as studied by Morita et al.
(2013). We leave the proof of Theorem 1 to sup-
plementary materials due to space limit. The sub-
modularity term in the score plays an important
role in the proof.

3.3 Finding the Maximum Density
Compression

In Algorithm 1, the most important part is the
greedy selection process (Line 5). The greedy se-
lection criteria here is to maximize the gain-cost
ratio. For compressive summarization, we are try-
ing to compress each unselected sentence s to s̃,
aiming at maximizing the gain-cost ratio, where
the gain corresponds to

F (Si−1 ∪ {s})− F (Si−1)

=
∑
p∈s

count(p,S)∑
i=1

di−1g(p) + bg(s) + ηdist(s),

and then add the compressed sentence s̃with max-
imum gain-cost ratio to the summary. We will also
address the compression process for each sentence
as finding the maximum density compression. The
whole framework forms a joint selection and com-
pression process.

In our phrase-based scoring for sentences, al-
though there exist no apparent optimal substruc-
ture available for exact dynamic programming
due to nonlocal distortion penalty, we can have a
tractable approximate procedure since the search
space is only defined by local decisions on
whether a phrase should be kept or dropped.

Our compression process for each sentence s is
displayed in Algorithm 2. It gradually expands the
set of phrases to be kept in the final compression,
from the initial set of large density phrases (Line 4,
assuming that phrases with large scores and small
costs will always be kept), we can recover the
compression with maximum density. The function
dist(·, ·) is the unit distortion penalty defined as
dist(a, b) = |start(b) − 1 − end(a)|. We define
p.score to be the sum of damped phrase score for
phrase p, i.e. p.score =

∑count(p,Si−1)
i=1 di−1g(p),

when the current partial summary is Si−1. There-
fore during each iteration of the greedy selection
process, the compression procedure will also be
affected by sentences that have already been in-
cluded. Define p.cost as the number of words p
contains.

Algorithm 2 A growing algorithm for finding the
maximum density compressed sentence
1: function GET MAX DENSITY COMPRESSION(s, Si−1)
2: queue Q← ∅, kept← ∅
3: for each phrase p in s.phrases do
4: if p.score/p.cost > 1 then
5: kept← kept ∪{p}
6: Q.enqueue(p)
7: end if
8: end for
9: while Q 6= ∅ do

10: p← Q.deque()
11: ppv ← p.previous phrase, pnx← p.next phrase
12: if ppv.score+bg(ppv,p)+ηdist(ppv,p)

ppv.cost+p.cost
> 1 then

13: Q.enqueue(ppv), kept← kept ∪{ppv}
14: end if
15: if pnx.score+bg(pnx,p)+ηdist(p,pnx)

p.cost+pnx.cost
> 1 then

16: Q.enqueue(pnx), kept← kept ∪{pnx}
17: end if
18: end while
19: return s̃ = kept, ratio = F (Si−1∪{s̃})−F (Si−1)

s̃.cost
20: end function

Empirically we find this procedure gives al-
most the same results with exhaustive search while
maintaining efficiency. Assuming that sentence
length is no more thanL, then the asymptotic com-
plexity of Algorithm 2 will be O(L) since the al-
gorithm requires two passes of all phrases. There-
fore the whole framework requires O(kNL) time
for a document cluster containing N sentences in
total to generate a summary with k sentences.

In the final compressed sentence we just leave
the selected phrases continuously as they are, rely-
ing on bigram scores to ensure local smoothness.
The task is after all a summarization task, where
bigram scores play a role of not only controlling
grammaticality but keeping main information of
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the original documents.
Later we will see that this compression process

will not hurt grammatical fluency of translated
sentences in general. In many cases it may even
improve fluency by deleting redundant parenthe-
ses or removing incorrectly reordered (unimpor-
tant) phrases.

4 Experiments

4.1 Data
Currently there are not so many available datasets
for our particular setting of the cross-language
summarization task. Hence we only evaluate our
method on the same dataset used by Wan (2011).
The dataset is created by manually translating the
reference summaries into Chinese from the origi-
nal DUC 2001 dataset in English. We will refer to
this dataset as the DUC 2001 dataset in this paper.
There are 30 English document sets in the DUC
2001 dataset for multi-document summarization.
Each set contains several documents related to the
same topic. Three generic reference English sum-
maries are provided by NIST annotators for each
document set. All these English summaries have
been translated to Chinese by native Chinese an-
notators.

All the English sentences in the original docu-
ments have been automatically translated into Chi-
nese using Google Translate. We also collect the
phrase alignment information from the responses
of Google Translate (stored in JSON format) along
with the translated texts. We use the Stanford Chi-
nese Word Segmenter 2 for Chinese word segmen-
tation.

The parameters in the algorithms are simply set
to be r = 1, d = 0.5, η = −0.5.

4.2 Evaluation
We will report the performance of our compres-
sive solution, denoted as PBCS (for Phrase-Based
Compressive Summarization), with comparisons
of the following systems:

• PBES: The acronym comes from Phrase-
Based Extractive Summarization. It is the
extractive counterpart of our solution without
calling Algorithm 2.

• Baseline (EN): This baseline relies on
merely the English-side information for En-

2http://nlp.stanford.edu/software/
segmenter.shtml

glish sentence ranking in the original doc-
uments. The scoring function is designed
to be document frequencies of English bi-
grams, which is similar to the second term
in our proposed sentence scoring function in
Section 3.1 and is submodular. 3 The ex-
tracted English summary is finally automati-
cally translated into the corresponding Chi-
nese summary. This is also known as the
summary translation scheme.

• Baseline (CN): This baseline relies on
merely the Chinese-side information for Chi-
nese sentence ranking. The scoring function
is similarly defined by document frequency
of Chinese bigrams. The Chinese summary
sentences are then directly extracted from the
translated Chinese documents. This is also
known as the document translation scheme.

• CoRank: We reimplement the graph-based
CoRank algorithm, which gives the state-of-
the-art performance on the same DUC 2001
dataset for comparison.

• Baseline (ENcomp): This is a compressive
baseline where the extracted English sen-
tences in Baseline (EN) will be compressed
before being translated to Chinese. The com-
pression process follows from an integer lin-
ear program as described by Clarke and La-
pata (2008). This baseline gives strong per-
formance as we have found on English DUC
2001 dataset as well as other monolingual
datasets.

We experiment with two kinds of summary bud-
gets for comparative study. The first one is limit-
ing the summary length to be no more than five
sentences. The second one is limiting the total
number of Chinese characters of each produced
summary to be no more than 300. They will be
addressed as Sentence Budgeting and Character
Budgeting in the experimental results respectively.

Similar to traditional summarization tasks, we
use the ROUGE metrics for automatic evalua-
tion of all systems in comparison. The ROUGE
metrics measure summary quality by counting
overlapping word units (e.g. n-grams) between
the candidate summary and the reference sum-
mary. Following previous work in the same

3In our experiments this method gives similar perfor-
mance compared with graph-based pipelining baselines im-
plemented in previous work.
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task, we report the following ROUGE F-measure
scores: ROUGE-1 (unigrams), ROUGE-2 (bi-
grams), ROUGE-W (weighted longest common
subsequence; weight=1.2), ROUGE-L (longest
common subsequences), and ROUGE-SU4 (skip
bigrams with a maximum distance of 4). Here
we investigate two kinds of ROUGE metrics for
Chinese: ROUGE metrics based on words (after
Chinese word segmentation) and ROUGE metrics
based on singleton Chinese characters. The latter
metrics will not suffer from the problem of word
segmentation inconsistency.

To compare our method with extractive base-
lines in terms of information loss and grammati-
cal quality, we also ask three native Chinese stu-
dents as annotators to carry out manual evalua-
tion. The aspects considered during evaluation
include Grammaticality (GR), Non-Redundancy
(NR), Referential Clarity (RC), Topical Focus
(TF) and Structural Coherence (SC). Each aspect
is rated with scores from 1 (poor) to 5 (good) 4.
This evaluation is performed on the same random
sample of 10 document sets from the DUC 2001
dataset. One group of the gold-standard sum-
maries is left out for evaluation of human-level
performance. The other two groups are shown to
the annotators, giving them a sense of topics talked
about in the document sets.

4.3 Results and Discussion

Table 1 and Table 2 display the ROUGE results for
our proposed methods and the baseline methods,
including both word-based and character-based
evaluation. We also conduct pairwise t-test and
find that almost all the differences between PBCS
and other systems are statistically significant with
p� 0.01 5 except for the ROUGE-W metric.

We have the same observations with previous
work on the inferiority of using information from
only one-side, while using Chinese-side infor-
mation only is more beneficial than English-side
only. The CoRank algorithm utilizes both sides
of information together and achieves significantly
better performance over Baseline(EN) and Base-
line(CN). Our compressive system outperforms
the CoRank algorithm 6 in all metrics.

4Fractional numbers are allowed for cases where the an-
notators feel uncertain about.

5The significance level holds after Bonferroni adjustment,
for the purpose of multiple testing.

6There exists ignorable difference between the results of
our reimplemented version of CoRank and those reported by

Also our system overperforms the compressive
pipelining system (Baseline(ENcomp)) as well.
Note that the latter only considers information
from the source language side. Meanwhile sen-
tence compression may sometimes causes worse
translations compared with translating the full
original sentence.

For manual evaluation, the average score and
standard deviation for each metric is displayed
in Table 3. From the comparison between com-
pressive summarization and the extractive ver-
sion, there exist slight improvements of non-
redundancy. This exactly matches what we can
expect from sentence compression that keeps only
important part and drop redundancy. We also ob-
serve certain amount of improvements on refer-
ential clarity. This may be a result of deletions
of some phrases containing pronouns, such as he
said. Most of such phrases are semantically unim-
portant and will be dropped during the process of
finding the maximum density compression.

Despite not directly using syntactic informa-
tion, our compressive summaries do not suffer too
much loss of grammaticality. This suggest that
bigrams can be treated as good indicators of lo-
cal grammatical smoothness. We reckon that sen-
tences describing the same events may partially
share descriptive bigram patterns, thus sentences
selected by the algorithm will consist of mostly
important patterns that appear repeatedly in the
original document cluster. Only those words that
are neither semantically important nor syntacti-
cally pivotal will be deleted.

Figure 1 lists the summaries for the first docu-
ment set D04 in the DUC 2001 dataset produced
by the proposed compressive system. The Chi-
nese side sentences have been split with spaces ac-
cording to phrase alignment results. Phrases that
have been compressed are grayed out. We also
include original English sentences for reference,
with deletions according to word alignments from
the Chinese sentences. We can observe that our
compressive system tries to compress sentences by
removing relatively unimportant phrases. The ef-
fect of translation errors (e.g. the word watch in on
storm watch has been incorrectly translated in the
example) can also be reduced since those incor-
rectly translated words will be dropped for having
low information gains. In some cases the gram-

Wan (2011). We believe that this comes from different ma-
chine translation results output by Google Translate.

123



Sentence Budgeting ROUGE-1 ROUGE-2 ROUGE-W ROUGE-L ROUGE-SU4
Baseline(EN) 0.23655 0.03550 0.05324 0.12559 0.06410
Baseline(CN) 0.23454 0.03858 0.05753 0.13120 0.06962
PBES 0.25313 0.04073 0.06103 0.13583 0.06970
CoRank (reported) N/A 0.04282 0.06158 0.14521 0.07805
CoRank (reimplemented) 0.24257 0.04115 0.06076 0.13717 0.07453
Baseline(ENcomp) 0.24879 0.04441 0.05865 0.13233 0.07543
PBCS 0.26872 0.04815 0.06425 0.14607 0.08065

Character Budgeting ROUGE-1 ROUGE-2 ROUGE-W ROUGE-L ROUGE-SU4
Baseline(EN) 0.21460 0.03494 0.05150 0.12343 0.06278
Baseline(CN) 0.21589 0.03732 0.05420 0.12867 0.06405
PBES 0.22825 0.04037 0.05527 0.12856 0.06894
CoRank (reimplemented) 0.22593 0.04069 0.05887 0.12818 0.07241
Baseline(ENcomp) 0.23663 0.04245 0.06134 0.13070 0.07365
PBCS 0.24917 0.04632 0.06252 0.13591 0.07953

Table 1: Results of word-based ROUGE evaluation

Sentence Budgeting ROUGE-1 ROUGE-2 ROUGE-W ROUGE-L ROUGE-SU4
Baseline(EN) 0.34842 0.11823 0.05505 0.15665 0.12320
Baseline(CN) 0.34901 0.12015 0.05664 0.15942 0.12625
PBES 0.36618 0.12281 0.05913 0.16018 0.11317
CoRank (reimplemented) 0.37601 0.12570 0.06088 0.17350 0.13352
Baseline(ENcomp) 0.36982 0.13001 0.06906 0.16233 0.13543
PBCS 0.37890 0.13549 0.07102 0.17632 0.14098

Character Budgeting ROUGE-1 ROUGE-2 ROUGE-W ROUGE-L ROUGE-SU4
Baseline(EN) 0.33602 0.10546 0.05263 0.15437 0.12161
Baseline(CN) 0.34075 0.12012 0.05678 0.15736 0.11981
PBES 0.35483 0.11902 0.05642 0.15899 0.11205
CoRank (reimplemented) 0.36147 0.12305 0.05847 0.16962 0.13364
Baseline(ENcomp) 0.36654 0.12960 0.06503 0.15987 0.13421
PBCS 0.37842 0.13441 0.07005 0.16928 0.13985

Table 2: Results of character-based ROUGE evaluation

System GR NR RC TF SC
CoRank 3.00±0.75 3.35±0.57 3.55±0.82 3.90±0.79 3.55±0.74
PBES 2.90±0.89 3.25±0.70 3.50±0.87 3.96±0.80 3.45±0.50
PBCS 2.90±0.83 3.60±0.49 3.75±0.82 3.93±0.68 3.40±0.58
Human 4.60±0.49 4.15±0.73 4.35±0.73 4.93±0.25 3.90±0.94

Table 3: Manual evaluation results

matical fluency can even be improved from sen-
tence compression, as redundant parentheses may
sometimes be removed. We leave the output sum-
maries from all systems for the same document set
to supplementary materials.

In our experiments, we also study the influ-
ence of relevant parameter settings. Figure 2a de-
picts the variation of ROUGE-2 F-measure when
changing the damping factor d from different val-
ues in {1, 2−1, 3−1, 4−1, 5−1}, while η = −0.5
being fixed. We can see that under proper range
the value of d does not effect the result for too
much. No damping or too much damping will
severely decrease the performance. Figure 2b
shows the performance change under different set-
tings of the distortion parameter η taking values

from {0,−0.2,−0.5,−1,−3}, while fixing d =
0.5. The results suggest that, for our purposes of
summarization, the difference of considering dis-
tortion penalty or not is obvious. At certain level,
the effect brought by different values distortion pa-
rameter becomes stable.

We also empirically study the effect of approx-
imation. The compressive summarization frame-
work proposed in this paper can be trivially cast
into an integer linear program (ILP), with the
number of variables being too large to make the
problem tractable 7. In this experiment, we use

7By casting decisions on whether to select a certain phrase
or bigram as binary variables, with additional linear con-
straints on phrase/bigram selection consistency, we get an
ILP with essentially the same objective function and a linear
budget constraint. This is conceptually equivalent to solving
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凯特 女士 硬朗 ， 紧急服务 在佛罗里达州 的 戴德 县， 承担了 风暴 的冲击 主

任 估计， 安德鲁 已经 造成 150亿 美元 到 200亿 美元 的损害 （ 75亿 英镑 ， 

100亿 英镑 ） 。 
Ms Kate Hale, director of emergency services in Florida's Dade County, which bore the brunt 
of the storm, estimated that Andrew had already caused Dollars 15bn to Dollars 20bn 
(Pounds 7.5bn-Pounds 10bn) of damage. 
 

雨果飓风 ， 袭击 东海岸 在 1989年9月 ， 花费了 保险业 约 42亿 美元 。 
Hurricane Hugo, which hit the east coast in September 1989, cost the insurance industry 
about Dollars 4.2bn. 
 

美国城市 沿 墨西哥湾的 阿拉巴马州 到得克萨斯州 东部 是 在 风暴 手表 昨晚 安

德鲁 飓风 向西 横跨 佛罗里达州南部 席卷 后 ，造成 至少 八人死亡 和严重的 财

产损失 。 
US CITIES along the Gulf of Mexico from Alabama to eastern Texas were on storm watch 
last night as Hurricane Andrew headed west after sweeping across southern Florida, causing 
at least eight deaths and severe property damage. 
 

过去的 严重 飓风 美国 ，雨果 ， 袭击 南卡罗来纳州 于1989年 ， 耗资 从 保险

损失 行业 42亿 美元 ，但 造成的 总伤害 的 估计 60亿 美元 和 100亿 美元 之间 

不等 。 
The last serious US hurricane, Hugo, which struck South Carolina in 1989, cost the industry 
Dollars 4.2bn from insured losses, though estimates of the total damage caused ranged 
between Dollars 6bn and Dollars 10bn. 
 

最初的 报道称， 至少有一人 已经 死亡 ， 75 人受伤 ，数千 取得 沿着 路易斯安

那州海岸 无家可归 ， 14 证实 在佛罗里达州和 死亡 三 巴哈马群岛 后 。 
Initial reports said at least one person had died, 75 been injured and thousands made 
homeless along the Louisiana coast, after 14 confirmed deaths in Florida and three in the 
Bahamas. 

Figure 1: Example compressive summary

lp solve package 8 as the ILP solver to ob-
tain an exact solution on the first document cluster
(D04) in DUC 2001 dataset. In Figure 2c, we de-
pict the objective value achieved by ILP as exact
solution, comparing with results from sentences
which are gradually selected and compressed by
our greedy algorithm. We can see that the approx-
imation is close.

5 Related Work

The task focused in this paper is cross-language
document summarization. Several pilot studies
have investigated this task. Before Wan (2011)’s
work that explicitly utilizes bilingual information
in a graph-based framework, earlier methods often
use information only from one language (de Chal-
endar et al., 2005; Pingali et al., 2007; Orasan and
Chiorean, 2008; Litvak et al., 2010).

This work is closely related to greedy algo-
rithms for budgeted submodular maximization.
Many studies have formalized text summarization
tasks as submodular maximization problems (Lin
and Bilmes, 2010; Lin and Bilmes, 2011; Morita
et al., 2013). A more recent work (Dasgupta
et al., 2013) discussed the problem of maximiz-
ing a function with a submodular part and a non-
submodular dispersion term, which may appear to
be closer to our scoring functions.

In recent years, some research has made
progress beyond extractive summarization, espe-

the original maximization problem with pruned brute-force
enumeration and therefore exactly optimal but too costly.

8http://lpsolve.sourceforge.net/

cially in the context of compressive summariza-
tion. Zajic et al. (2006) tries a pipeline strat-
egy with heuristics to generate multiple candidate
compressions and extract from this compressed
sentences. Berg-Kirkpatrick et al. (2011) cre-
ate linear models of weights learned by struc-
tural SVMs for different components and tried
to jointly formulate sentence selection and syntax
tree trimming in integer linear programs. Wood-
send and Lapata (2012) propose quasi tree sub-
stitution grammars for multiple rewriting oper-
ations. All these methods involve integer lin-
ear programming solvers to generate compressed
summaries, which is time-consuming for multi-
document summarization tasks. Almeida and
Martins (2013) form the compressive summariza-
tion problem in a more efficient dual decomposi-
tion framework. Models for sentence compression
and extractive summarization are trained by multi-
task learning techniques. Wang et al. (2013) ex-
plore different types of compression on constituent
parse trees for query-focused summarization. Li
et al. (2013) propose a guided sentence compres-
sion model with ILP-based summary sentence se-
lection. Their following work (Li et al., 2014) in-
corporate various constraints on constituent parse
trees to improve the linguistic quality of the com-
pressed sentences. In these studies, the best-
performing systems require supervised learning
for different subtasks. More recent work tries to
formulate document summarization tasks as opti-
mization problems and use their solutions to guide
sentence compression(Li et al., 2015; Yao et al.,
2015). Bing et al. (2015) employ integer linear
programming for conducting phrase selection and
merging simultaneously to form compressed sen-
tences after phrase extraction.

6 Conclusion and Future Work

In this paper we propose a phrase-based frame-
work for the task of cross-language document
summarization. The proposed scoring scheme can
be naturally operated on compressive summariza-
tion. We use efficient greedy procedure to ap-
proximately optimize the scoring function. Exper-
imental results show improvements of our com-
pressive solution over state-of-the-art systems.
Even though we do not explicitly use any syntactic
information, the generated summaries of our sys-
tem do not lose much grammaticality and fluency.

The scoring function in our framework is in-
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Figure 2: Experimental analysis

spired by earlier phrase-based machine translation
models. Our next step is to try more fine-grained
scoring schemes using similar techniques from
modern approaches of statistical machine transla-
tion. To further improve grammaticality of gener-
ated summaries, we may try to sacrifice the time
efficiency for a little bit and use syntactic informa-
tion provided by syntactic parsers.

Our framework currently uses only the single
best translation. It will be more powerful to inte-
grate machine translation and summarization, uti-
lizing multiple possible translations.

Currently many successful statistical machine
translation systems are phrase-based with align-
ment information provided and we utilize this fact
in this work. It is interesting to explore how will
the performance be affected if we are only pro-
vided with parallel sentences and then alignments
can only be derived using an independent aligner.
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Abstract

We provide an analysis of current evalua-
tion methodologies applied to summariza-
tion metrics and identify the following ar-
eas of concern: (1) movement away from
evaluation by correlation with human as-
sessment; (2) omission of important com-
ponents of human assessment from eval-
uations, in addition to large numbers of
metric variants; (3) absence of methods
of significance testing improvements over
a baseline. We outline an evaluation
methodology that overcomes all such chal-
lenges, providing the first method of sig-
nificance testing suitable for evaluation of
summarization metrics. Our evaluation re-
veals for the first time which metric vari-
ants significantly outperform others, op-
timal metric variants distinct from cur-
rent recommended best variants, as well
as machine translation metric BLEU to
have performance on-par with ROUGE for
the purpose of evaluation of summariza-
tion systems. We subsequently replicate
a recent large-scale evaluation that relied
on, what we now know to be, suboptimal
ROUGE variants revealing distinct conclu-
sions about the relative performance of
state-of-the-art summarization systems.

1 Introduction

Automatic metrics of summarization evaluation
have their origins in machine translation (MT),
with ROUGE (Lin and Hovy, 2003), the first and
still most widely used automatic summarization
metric, comprising an adaption of the BLEU score
(Papineni et al., 2002). Automatic evaluation in

MT and summarization have much in common, as
both involve the automatic comparison of system-
generated texts with one or more human-generated
reference texts, contrasting either system-output
translations or peer summaries with human ref-
erence translations or model summaries, depend-
ing on the task. In both MT and summarization
evaluation, any newly proposed automatic metric
must be assessed by the degree to which it pro-
vides a good substitute of human assessment, and
although there are obvious parallels between eval-
uation of systems in the two areas, when it comes
to evaluation of metrics, summarization has di-
verged considerably from methodologies applied
to evaluation of metrics in MT.

Since the inception of BLEU, evaluation of au-
tomatic metrics in MT has been by correlation
with human assessment. In contrast in summa-
rization, over the years since the introduction of
ROUGE, summarization evaluation has seen a va-
riety of different methodologies applied to evalu-
ation of its metrics. Evaluation of summarization
metrics has included, for example, the ability of a
metric/significance test combination to distinguish
between sets of human and system-generated sum-
maries (Rankel et al., 2011), or by accuracy of
conclusions drawn from metrics when combined
with a particular significance test, Wilcoxon rank-
sum (Owczarzak et al., 2012).

Besides moving away from well-established
methods such as correlation with human judg-
ment, previous summarization metric evaluations
have been additionally limited by inclusion of only
a small proportion of possible metrics and vari-
ants. For example, although the most commonly
used metric ROUGE has a very large number of
possible variants, it is common to include only a
small range of those in evaluations. This has the
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obvious disadvantage that superior variants may
exist but remain unidentified due to their omission.

Despite such limitations, however, subsequent
evaluations of state-of-the-art summarization sys-
tems operate under the assumption that recom-
mended ROUGE variants are optimal and rely on
this assumption to draw conclusions about the rel-
ative performance of systems (Hong et al., 2014).
This forces us to raise some important questions.
Firstly, to what degree was the divergence away
from evaluation methodologies still applied to MT
metrics today well-founded? For example, were
the original methodology, by correlation with hu-
man assessment, to be applied, would a distinct
variant of ROUGE emerge as superior and subse-
quently lead to distinct system rankings? Sec-
ondly, were all variants of ROUGE to be included
in evaluations, would a variant originally omitted
from the evaluation emerge as superior and lead to
further differences in summarization system rank-
ings? Furthermore, although methods of statistical
significance testing are commonly applied to eval-
uation of summarization systems, attempts to iden-
tify significant differences in performance of met-
rics are extremely rare, and when they have been
applied unfortunately have not used an appropriate
test.

This motivates our review of past and current
methodologies applied to the evaluation of sum-
marization metrics. Since MT evaluation in gen-
eral has its own imperfections, we do not at-
tempt to indiscriminately impose all MT evalua-
tion methodologies on summarization, but specif-
ically revisit evaluation methodologies applied to
one particular area of summarization, evaluation
of metrics. Correlations with human assessment
reveal an extremely wide range in performance
among variants, highlighting the importance of an
optimal choice of ROUGE variant in system eval-
uations. Since distinct variants of ROUGE achieve
significantly stronger correlation with human as-
sessment than previous recommended best vari-
ants, we subsequently replicate a recent evaluation
of state-of-the-art summarization systems reveal-
ing distinct conclusions about the relative perfor-
mance of systems. In addition, we include in the
evaluation of metrics, an evaluation of BLEU for
the purpose of summarization evaluation, and con-
trary to common belief, precision-based BLEU is
on-par with recall-based ROUGE for evaluation of
summarization systems.

2 Related Work

When ROUGE (Lin and Hovy, 2003) was first pro-
posed, the methodology applied to its evaluation,
in one respect, was similar to that applied to met-
rics in MT, as ROUGE variants were evaluated
by correlation with a form of human assessment.
Where the evaluation methodology diverged from
MT, however, was with respect to the precise rep-
resentation of human assessment that was em-
ployed. In MT evaluation of metrics, although
experimentation has taken place with regards to
methods of elicitation of assessments from human
judges (Callison-Burch et al., 2008), human as-
sessment is always aimed to encapsulate the over-
all quality of translations. In contrast in summa-
rization, metrics are evaluated by the degree to
which metric scores correlate with human cover-
age scores for summaries, a recall-based formu-
lation of the number of peer summary units that
a human assessor believed had the same meaning
as model summaries. Substitution of overall qual-
ity assessments with a recall-based manual metric,
unfortunately has the potential to introduce bias
into the evaluation of metrics in favor of recall-
based formulations.

One dimension of summary quality omitted
from human coverage scores is, for example, the
order in which the units of a summary are ar-
ranged within the summary. Despite unit order
quite likely being something of importance to a
human assessor, assessment of metrics by correla-
tion with human coverage scores does not in any
respect take into account the order in which the
units of a summary appear, and evaluation by hu-
man coverage scores alone means that a summary
with its units scrambled or even reversed in the-
ory receives precisely the same metric score as the
original. Given current evaluation methodologies
for assessment of metrics, a metric that scores two
such summaries differently would be unfairly pe-
nalized for it. Furthermore, when the linguistic
quality of summaries has been assessed in parallel
with annotations used to compute human cover-
age scores, it has been shown that the two dimen-
sions of quality do not correlate with one another
(no significant correlation) (Pitler et al., 2010),
providing evidence that coverage scores alone do
not fully represent human judgment of the overall
quality of summaries.

Subsequent summarization metric evaluations
depart from correlation with human judgment fur-
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ther by evaluating metrics according to the abil-
ity of a metric/significance test combination to
identify a significant difference between the qual-
ity of human and system-generated summaries
(Rankel et al., 2011). Unfortunately, the evalua-
tion of metrics with respect to how well they dis-
tinguish between high-quality human summaries
and all system-generated summaries, does not pro-
vide insight into the task of metrics, to score better
quality system-generated summaries higher than
worse quality system-generated summaries, how-
ever. This is in contrast to evaluation of MT met-
rics by correlation with human judgment, where
metrics only receive credit for their ability to ap-
propriately score system-output documents rela-
tive to other system-output documents. Since dif-
ferences in quality levels between pairs of system-
generated summaries are likely to be far smaller
than differences in system and human-generated
summaries, the methodology unfortunately sets
too low a bar for summarization metrics to meet.

Furthermore, the approach to metric evaluation
unfortunately does not work in the long-term, as
the performance of summarization systems im-
proves and approaches or achieves the quality of
a human, a metric that accurately identifies this
achievement would be unfairly penalized for it.
Separate from the evaluation of metrics, Rankel et
al. (2011) make the highly important recommen-
dation of paired tests for identification of signifi-
cant differences in performance of summarization
systems. Since data used in the evaluation of sum-
marization systems is not independent, paired tests
are more appropriate and more powerful.

Owczarzak et al. (2012) diverge further from
correlation with human judgment for evaluation
of metrics by assessing the accuracy of metrics
to identify significant differences between pairs of
systems when combined with a significance test.
Although the approach to evaluation of metrics
provides insight into the accuracy of conclusions
drawn from metric/test combinations, the evalua-
tion is limited by inclusion of only six variants of
ROUGE, fewer than 4% of possible ROUGE vari-
ants. Despite such limitations, however, subse-
quent evaluations relied on recommended ROUGE

variants to rank state-of-the-art systems (Hong et
al., 2014).

Although methods of identifying significant dif-
ferences in performance are commonly applied to
the evaluation of systems in summarization, the

application of significance tests to the evaluation
of summarization metrics is extremely rare, and
when attempts have been made, unfortunately ap-
propriate tests have not been applied. Computa-
tion of confidence intervals for individual correla-
tion with human coverage scores, for example, un-
fortunately does not provide insight into whether
or not a difference in correlation with human cov-
erage scores is significant.

3 Summarization Metric Evaluation

When large-scale human evaluation of summa-
rization systems takes place, human evaluation
commonly takes the form of annotation of whether
or not system-generated summary units express
the meaning of model summary units, annotations
subsequently used to compute human coverage
scores. In addition, an evaluation of the linguis-
tic quality of summaries is commonly carried out.
As described in Section 2, when used for the eval-
uation of metrics, linguistic quality is commonly
omitted, however, with metrics only assessed by
the degree to which they correlate with human
coverage scores. In contrast, we include all avail-
able human assessment data for evaluating met-
rics.

3.1 Combining Quality and Coverage

In DUC-2004 (Over et al., 2007), human annota-
tions used to compute summary coverage are car-
ried out by identification of matching peer units
(PUs), the units in a peer summary that express
content of the corresponding model summary. In
addition, an overall coverage estimate (E) is pro-
vided by the human annotator, the proportion of
the corresponding model summary or collective
model units (MUs) expressed overall by a given
peer summary. Human coverage scores (CS) are
computed by combining Matching PUs with cov-
erage estimates as follows:

CS =
|Matching PUs| · E

|MUs| (1)

In addition to annotations used to compute human
coverage scores, human assessors were asked to
rate the linguistic quality of summaries under 7
different criteria, providing ratings from A to E,
with A denoting highest and E least quality rat-
ing.

Figure 1 is a scatter-plot of human coverage
scores and corresponding linguistic quality scores
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Figure 1: Scatter-plot of mean linguistic qual-
ity and coverage scores for human assessments of
summaries in DUC-2004

for all human-assessed summaries from DUC-
2004, where, for the purpose of comparison, each
of the 7 linguistic quality ratings are converted to
a corresponding percentage quality (A= 100%;
B= 75%; C= 50%; D= 25%; E= 0%). The lo-
cation of all points almost exclusively within the
upper left corner of the plot in Figure 1 indicates
that the linguistic quality of almost all summaries
reaches at least as high a level as its corresponding
coverage score. This follows the intuition that a
summary is unlikely to obtain high coverage with-
out sufficient linguistic quality, while the same
cannot be said for the converse, that a high level
of linguistic quality necessarily leads to high cov-
erage. More importantly, however, linguistic qual-
ity scores provide an additional dimension of hu-
man assessment, allowing greater discriminatory
power between the quality of summaries than was
possible with coverage scores alone.

Figure 2 includes linguistic quality and cover-
age score distributions from DUC-2004 human
evaluation, where each distribution is skewed in
opposing directions, in addition to the distribution
of the average of the two scores for summaries.

For the purpose of metric evaluation, we com-
bine human coverage and linguistic quality scores
using the average of the two scores, and use this
as a gold standard human score for evaluation of
metrics:

Human Assessment Score = CS+MLQ
2
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Figure 2: Combining linguistic quality and cover-
age scores provided by human assessors in DUC-
2004

3.2 ROUGE

ROUGE includes a large number of distinct vari-
ants, including eight choices of n-gram counting
method (ROUGE-1; 2; 3; 4; S4; SU4; W; L), binary
settings such as word-stemming of summaries and
an option to remove or retain stop-words. Addi-
tional configurations include the use of precision,
recall or f-score to compute individual summary
scores. Finally, options for computation of the
overall score for a system is by computation of the
mean or median of that system’s summary score
distribution. In total, therefore, when employing
ROUGE for the evaluation of summarization sys-
tems, there are 192 (8 x 2 x 2 x 3 x 2) possible
system-level variants to choose from.

The fact that final overall ROUGE scores for
systems are comprised of the mean or median
of ROUGE scores of individual summaries, is,
again, a divergence from MT evaluation, as n-
gram counts used to compute BLEU scores are
computed at the document as opposed to sentence-
level. However, in this respect, ROUGE has a dis-
tinct advantage over BLEU, as the fact that ROUGE

comprises the mean or median score of individ-
ual summary scores makes possible the applica-
tion of standard methods of significance testing
differences in system-level ROUGE scores, while
BLEU is restricted to the application of random-
ized methods (Koehn, 2004; Graham et al., 2014).
For this purpose, differences in median ROUGE
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scores can be tested for statistical significance us-
ing, for example, Wilcoxon signed-rank test, while
paired t-test can be applied to difference of mean
ROUGE scores for systems.

3.3 Metric Evaluation by Pearson’s r
Moses (Koehn et al., 2007) multi-bleu1 was used
to compute BLEU (Papineni et al., 2002) scores
for summaries and prepare4rouge2 applied to sum-
maries before running ROUGE (Lin and Hovy,
2003). Table 1 shows the Pearson correlation of
each variant of ROUGE with human assessment, in
addition to BLEU’s correlation with the same hu-
man assessment of summaries from DUC-2004.
Somewhat surprisingly, BLEU MT evaluation met-
ric achieves strongest correlation with human as-
sessment overall, r = 0.797, with performance
of ROUGE variants ranging from r = 0.786, just
below that of BLEU, to as low as r = 0.293.
For many pairs of metrics, differences in correla-
tion with human judgment are small, however, and
prior to concluding superiority in performance of
one metric over another, significance tests should
be applied.

4 Metric Significance Testing

In MT, recent work has identified the suitabil-
ity of Williams significance test (Williams, 1959)
for evaluation of automatic MT metrics (Graham
and Baldwin, 2014; Graham et al., 2015; Gra-
ham, 2015), and, for similar reasons, Williams
test is suited to significance testing differences
in performance of competing summarization met-
rics which we detail further below. Williams test
has additionally been used in evaluation of sys-
tems that automatically assess spoken and writ-
ten language quality (Yannakoudakis et al., 2011;
Yannakoudakis and Briscoe, 2012; Evanini et al.,
2013).

Evaluation of a given summarization metric,
Mnew, by Pearson correlation takes the form of
quantifying the correlation, r(Mnew, H), that ex-
ists between metric scores for systems and corre-
sponding human assessment scores, and contrast-
ing this correlation with the correlation for some
baseline metric, r(Mbase, H).

One approach to testing for significance that
may seem reasonable is to apply a significance test

1
https://github.com/moses-smt/mosesdecoder/

commits/master/scripts/generic/multi-bleu.perl
2
http://kavita-ganesan.com/content/

prepare4rouge-script-prepare-rouge-evaluation

separately to the correlation of each metric with
human assessment, with the hope that the new
metric will achieve a significant correlation where
the baseline metric does not. The reasoning here
is flawed however: the fact that one correlation is
significantly higher than zero (r(Mnew, H)) and
that of another is not, does not necessarily mean
that the difference between the two correlations is
significant. Instead, a specific test should be ap-
plied to the difference in correlations. For this
same reason, confidence intervals for individual
correlations with human assessment are also not
useful.

If samples that data are drawn from are inde-
pendent, and differences in correlations are com-
puted on independent data sets, the Fisher r to z
transformation is applied to test for significant dif-
ferences in correlations. Data used for the eval-
uation of summarization metrics are not indepen-
dent, as evaluations comprise three sets of scores
for precisely the same set of summaries (corre-
sponding to variables X1, X2 and X3 below),
and subsequently three correlations: r(Mbase, H),
r(Mnew, H) and r(Mnew,Mbase). If r(Mbase, H)
and r(Mnew, H) are both > 0, then the third
correlation, between metric scores themselves,
r(Mbase,Mnew), must also be > 0. The strength
of this correlation, directly between scores of
pairs of summarization metrics, should be taken
into account using a significance test of the dif-
ference in correlation between r(Mbase, H) and
r(Mnew, H).

Williams test 3 (Williams, 1959) evaluates the
significance of a difference in dependent correla-
tions (Steiger, 1980). It is formulated as follows
as a test of whether the population correlation be-
tween X1 and X3 equals the population correla-
tion between X2 and X3:

t(n− 3) =
(r13 − r23)

√
(n− 1)(1 + r12)√

2K (n−1)
(n−3) + (r23+r13)2

4 (1− r12)3
,

where rij is the correlation between Xi and Xj , n
is the size of the population, and:

K = 1− r12
2 − r13

2 − r23
2 + 2r12r13r23

Since the power of Williams test increases when
the third correlation, r(Mbase,Mnew), between
metric scores is stronger, metrics should not be
ranked by the number of competing metrics they

3Also known as Hotelling-Williams.
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BLEU 0.797 •
R-2 Y Y A P 0.786 •
R-3 N N A F 0.785 •
R-2 N Y A P 0.783 •
R-3 N Y A P 0.781 •
R-3 Y N A F 0.779 •
R-3 N N A R 0.777 •
R-4 N N A F 0.771 •
R-3 N N A P 0.771 •
R-3 Y N A R 0.770 •
R-2 N Y A F 0.769 •
R-4 N N A R 0.768 •
R-2 Y Y A F 0.768 •
R-3 Y N A P 0.767 •
R-3 N N M F 0.766 •
R-3 N Y A F 0.764 •
R-3 Y Y A P 0.764 •
R-4 Y N A F 0.763 •
R-4 N N A P 0.762 •
R-4 Y N A R 0.761 •
R-3 N N M P 0.760 •
R-4 Y Y A P 0.759 •
R-2 Y N A P 0.759 •
R-4 N Y A P 0.758 •
R-2 N N A P 0.757 •
R-3 N N M R 0.753 •
R-4 Y N A P 0.752 •
R-3 Y Y A F 0.748 •
R-2 N N A F 0.747 •
R-2 Y N A F 0.747 •
R-3 N Y A R 0.746 •
R-3 Y N M P 0.744 •
R-2 N Y M P 0.743 •
R-3 Y N M F 0.743 •
R-2 N Y A R 0.742 •
R-2 Y Y M P 0.741 •
R-2 N Y M F 0.740 •
R-3 Y N M R 0.739 •
R-2 Y Y A R 0.737 •
R-2 Y Y M F 0.735 •
R-2 N N M P 0.734 •
R-3 Y Y M P 0.733 •
R-3 Y Y A R 0.730
R-4 Y Y A F 0.729 •
R-3 Y Y M F 0.726 •
R-S4 Y N A P 0.725 •
R-SU4 N N A P 0.724 •
R-2 Y N M P 0.724
R-S4 N Y A P 0.724
R-SU4 Y N A P 0.723 •
R-S4 N N A P 0.723 •
R-2 N Y M R 0.722 •
R-4 N Y A F 0.721 •
R-1 N N A P 0.720 •
R-2 N N M F 0.719 •
R-SU4 N Y A P 0.719
R-1 Y N A P 0.714 •
R-2 Y Y M R 0.714 •
R-3 Y Y M R 0.713 •
R-4 Y Y A R 0.712 •
R-S4 Y Y A P 0.711
R-SU4 Y Y A P 0.710
R-2 N N A R 0.710 •
R-W N Y A P 0.709 •
R-2 Y N A R 0.707 •
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R-2 Y N M F 0.706
R-3 N Y M P 0.704 •
R-1 N Y A P 0.704 •
R-4 N N M R 0.703 •
R-L N Y A P 0.700 •
R-W Y Y A P 0.700 •
R-4 N Y A R 0.700 •
R-1 Y N M P 0.699 •
R-S4 N Y M P 0.698
R-1 Y Y A P 0.698 •
R-3 N Y M F 0.697 •
R-W N N A P 0.696 •
R-W Y N A P 0.695 •
R-4 N N M F 0.695 •
R-S4 N Y M F 0.693
R-S4 N Y A F 0.691
R-SU4 N Y M P 0.690
R-1 N N M P 0.690 •
R-2 N N M R 0.689
R-L Y Y A P 0.688 •
R-3 N Y M R 0.687 •
R-S4 N N M P 0.687
R-S4 Y N A F 0.687
R-S4 N N A F 0.687
R-4 N N M P 0.687 •
R-L N N A P 0.686 •
R-SU4 N N M P 0.686
R-L Y N A P 0.683 •
R-W N N M P 0.682 •
R-W Y N M P 0.680 •
R-SU4 Y N M P 0.678
R-SU4 N Y A F 0.678
R-S4 Y Y A F 0.676
R-SU4 N Y M F 0.676
R-SU4 N N A F 0.673
R-1 N Y M P 0.673
R-2 Y N M R 0.672
R-SU4 Y N A F 0.671
R-S4 N Y M R 0.670
R-S4 Y N M P 0.670
R-SU4 Y Y A F 0.668
R-S4 N N M F 0.666
R-W N Y M P 0.664
R-S4 Y Y M P 0.664
R-SU4 Y Y M P 0.663
R-L N N M P 0.661 •
R-SU4 N N M F 0.658
R-1 N Y A F 0.656
R-W Y Y M P 0.656
R-S4 N Y A R 0.656
R-L Y N M P 0.656 •
R-W N Y A F 0.655
R-1 N Y M F 0.653
R-L N Y A F 0.652
R-1 Y Y M P 0.651
R-S4 Y Y M F 0.649
R-1 Y Y A F 0.649
R-SU4 Y Y M F 0.649
R-SU4 N Y M R 0.646
R-L N Y M P 0.645
R-W N Y M F 0.642
R-W Y Y A F 0.642
R-4 Y N M R 0.641
R-S4 Y Y A R 0.641
R-4 Y N M F 0.639

Metric St
em

m
in

g

R
SW

A
ve

./M
ed

P/
R

/F

r

R-L Y Y A F 0.638
R-1 N N A F 0.637
R-S4 Y N M F 0.634
R-4 Y N M P 0.634
R-1 N N M F 0.634
R-SU4 N Y A R 0.633
R-L Y Y M P 0.633
R-SU4 Y Y M R 0.631
R-1 Y N A F 0.630
R-1 Y Y M F 0.629
R-S4 Y Y M R 0.626
R-S4 N N A R 0.626
R-SU4 Y N M F 0.625
R-S4 Y N A R 0.624
R-L N Y M F 0.623
R-SU4 Y Y A R 0.622
R-1 Y N M F 0.617
R-1 N Y M R 0.615
R-W N Y A R 0.613
R-S4 N N M R 0.611
R-L N Y M R 0.609
R-1 N Y A R 0.604
R-L N Y A R 0.601
R-W N N M F 0.600
R-L N N M F 0.599
R-W Y Y A R 0.598
R-W N Y M R 0.597
R-1 Y Y A R 0.595
R-1 Y Y M R 0.591
R-L N N A F 0.586
R-W Y Y M F 0.586
R-W Y N M F 0.585
R-L Y Y A R 0.583
R-L Y Y M F 0.582
R-L Y Y M R 0.579
R-L Y N A F 0.579
R-W N N A F 0.579
R-SU4 N N M R 0.576
R-W Y N A F 0.576
R-SU4 N N A R 0.574
R-SU4 Y N A R 0.571
R-L Y N M F 0.569
R-W Y Y M R 0.567
R-S4 Y N M R 0.566
R-SU4 Y N M R 0.525
R-1 N N M R 0.488
R-1 Y N M R 0.477
R-W Y N M R 0.477
R-1 N N A R 0.470
R-W N N M R 0.470
R-L N N M R 0.470
R-1 Y N A R 0.459
R-W N N A R 0.456
R-W Y N A R 0.452
R-L Y N M R 0.423
R-L N N A R 0.416
R-L Y N A R 0.406
R-4 Y Y M P 0.307
R-4 Y Y M F 0.302
R-4 N Y M P 0.301
R-4 Y Y M R 0.297
R-4 N Y M F 0.296
R-4 N Y M R 0.293

Table 1: Pearson correlation (r) of BLEU and 192 variants of ROUGE (R-*) with human assessment in
DUC-2004, with (Y) and without (N) stemming, with (Y) and without (N) removal of stop words (RSW),
aggregated at the summary level using precision (P), recall (R) or f-score (F), aggregated at the system
level by average (A) or median (M) summary score, correlations marked with • signify a metric/variant
whose correlation with human assessment is not significantly weaker than that of any other metric/variant
(an optimal variant) according to pairwise Williams significance tests, variants employed in Hong et al.
(2014) are in bold.
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outperform, as a metric that happens to correlate
strongly with a higher number of competing met-
rics in a given competition would be at an un-
fair advantage. This increased power also means,
somewhat counter-intuitively, it can happen for a
pair of competing metrics for which the correla-
tion between metric scores is strong, that a small
difference in competing correlations with human
assessment is significant, while, for a different
pair of metrics with a larger difference in corre-
lation, the difference is not significant, because
r(Mbase,Mnew) is weak. For example, in Ta-
ble 1 the difference in correlation with human as-
sessment of BLEU and that of median ROUGE-L
precision with stemming and stop-words retained,
0.141 (0.797 − 0.656), is not significant, while
the smaller difference in correlation with human
assessment between correlations of BLEU and av-
erage ROUGE-3 recall with stemming and stop-
words removed, 0.067 (0.797 − 0.73) is signifi-
cant, since scores of the latter pair of metrics cor-
relate with one another with more strength.

As part of this research, we have made avail-
able an open-source implementation of statistical
tests for evaluation of summarization metrics, at
https://github.com/ygraham/nlp-williams.

4.1 Significance Test Results

In Table 1, • identifies variants of ROUGE not sig-
nificantly outperformed by any other variant. Fig-
ure 3 shows pairwise Williams significance test
outcomes for BLEU, the top ten ROUGE variants,
as well as current recommended ROUGE variants
(Owczarzak et al. (2012)) used to compare sys-
tems in Hong et al. (2014). Current recommended
best variants of ROUGE are shown to be signifi-
cantly outperformed by several other ROUGE vari-
ants.

Although BLEU achieves strongest correlation
with human assessment overall, Figure 3 reveals
the difference between BLEU’s correlation with
human assessment and that of the best-performing
ROUGE variant as not statistically significant, and
since ROUGE holds the distinct advantage over
BLEU of facilitating standard methods of signif-
icance testing differences in scores for systems,
for this reason alone we recommend the use of the
best-performing ROUGE variant over BLEU, aver-
age ROUGE-2 precision with stemming and stop-
words removed.

Table 2 shows proportions of optimal ROUGE
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Figure 3: Pairwise significance test outcomes for
BLEU, best-performing ROUGE (rows 2-9), and
ROUGE applied in Hong et al. (2014) (bottom 3
rows), with (ST1) and without (ST0) stemming,
with (RS1) and without (RS0) removal of stop
words, for average (A) or median (M) ROUGE pre-
cision (P), recall (R) or f-score (F), colored cells
denote significant win for row i metric over col-
umn j metric with Williams test.

variants that can be attributed to each of ROUGE’s
configuration options. Contrary to prior belief,
the vast majority of optimal ROUGE variants are
precision-based, showing that the assumption that
recall-based metrics are superior for evaluation
of summarization systems to be inaccurate, and
a likely presence of bias in favor of recall-based
metrics in evaluations by correlation with human
coverage scores alone. Furthermore, since there
exists a vast number of possible formulations that
could potentially be applied to evaluation of sum-
maries that are neither purely precision nor recall-
based, evaluation methodologies should avoid re-
liance on assumptions that either precision or re-
call is superior and instead base conclusions on
empirical evidence where possible.

5 Summarization System Evaluation

Since we have established that the variants of
ROUGE used to rank state-of-the-art and baseline
summarization systems in Hong et al. (2014) have
significantly weaker correlations with human as-
sessment than several other ROUGE variants, this
motivates our replication of the evaluation. We
evaluate systems using the variant of ROUGE that
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N-gram Count

R-3 28.7
R-2 25.0
R-4 18.8
R-1 7.5
R-L 7.5
R-W 7.5
R-S4 2.5
R-SU4 2.5

Stemming

Not Stemmed 53.8
Stemmed 46.2

Stop-words

Not Rem. 56.2
Removed 43.8

Summary-level Agg.

Prec. 52.5
F-score 25.0
Recall 22.5

System-level Agg.

Average 63.7
Median 36.3

Table 2: Proportions of optimal ROUGE variants
attributed to each ROUGE configuration option
(%).

ROUGE ROUGE
System Best Original

DPP 8.498 9.62
ICSISumm 8.317 9.78
RegSum 8.187 9.75
Submodular 8.047 9.35
CLASSY11 7.717 9.20
CLASSY04 7.690 8.96
OCCAMS V 7.643 9.76
GreedyKL 6.918 8.53
FreqSum 6.838 8.11
TsSum 6.671 8.15
Centroid 6.660 7.97
LexRank 6.655 7.47

Table 3: Summarization systems originally in-
cluded in Hong et al. (2014) evaluated with the
best-performing ROUGE variant (Best): average
ROUGE-2 precision with stemming and stop words
removed; and evaluated with original suboptimal
variant (median ROUGE-2 recall with stemming
and without removal of stop-words)

achieves strongest correlation with human assess-
ment, average ROUGE-2 precision with stemming
and stop-words removed.

Table 3 shows ROUGE scores for summarization
systems originally presented in Hong et al. (2014).
System rankings diverge considerably from those
of the original evaluation. Notably, the system
now taking first place had originally ranked in
fourth position.

Since the best variant of ROUGE is based on av-
erage ROUGE scores as opposed to median ROUGE

scores, a difference of means significance test is
appropriate provided the normality assumption of
score distributions for systems is not violated. In

D
P

P
IC

S
IS

um
m

R
eg

S
um

S
ub

m
od

ul
ar

C
LA

S
S

Y
11

C
LA

S
S

Y
04

O
C

C
A

M
S

_V
G

re
ed

yK
L

F
re

qS
um

T
sS

um
C

en
tr

oi
d

Le
xR

an
k

LexRank
Centroid
TsSum
FreqSum
GreedyKL
OCCAMS_V
CLASSY04
CLASSY11
Submodular
RegSum
ICSISumm
DPP

Figure 4: Summarization system pairwise signif-
icance test outcomes (paired t-test) for state-of-
the-art (top 7 rows) and baseline systems (bot-
tom 5 rows) of Hong et al. (2014) evaluated with
best-performing ROUGE variant: average ROUGE-
2 precision with stemming and stop words re-
moved, colored cells denote a significant greater
mean score for row i system over column j sys-
tem according to paired t-test.

addition, since data used to evaluate systems are
not independent, paired tests are also appropri-
ate (Rankel et al., 2011). ROUGE score distri-
butions for systems were tested for normality us-
ing the Shapiro-Wilk test (Royston, 1982) where
score distributions for none of the included sys-
tems were shown to be significantly non-normal.

Figure 4 shows outcomes of paired t-tests for
summary score distributions of each pair of sys-
tems, revealing three summarization systems not
significantly outperformed by any other as DPP,
ICSISUMM and REGSUM. In addition, as ex-
pected, all state-of-the-art systems significantly
outperform all baseline systems.

6 Human Assessment Combinations

In order to evaluate metrics by correlation with hu-
man assessment, it is necessary to obtain a single
human evaluation score per system. For example,
in the evaluation of metrics in Section 3, we com-
bined linguistic quality and coverage into a sin-
gle score using the mean of the two scores. Other
combinations are of course possible, but without
any additional human evaluation data, it is chal-
lenging to identify the combination that best rep-
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Metric Stem. RSW Ave/Med P/R/F Mean Geometric
Mean

Harmonic
Mean

Coverage
Only

Ling. Qual.
Only

BLEU 0.797• 0.901• 0.936• 0.944• 0.642•
ROUGE-2 Y Y A P 0.786• 0.870• 0.887• 0.878 0.660•
ROUGE-3 N N A F 0.785• 0.869• 0.893 0.894 0.650•
ROUGE-2 N Y A P 0.783• 0.868• 0.885• 0.876 0.658•
ROUGE-3 N Y A P 0.781• 0.836• 0.840 0.826 0.682•
ROUGE-3 Y N A F 0.779• 0.866• 0.891 0.893 0.643•
ROUGE-3 N N A R 0.777• 0.871• 0.901 0.907 0.632•
ROUGE-4 N N A F 0.771• 0.843• 0.863 0.866 0.645•
ROUGE-3 N N A P 0.771• 0.837• 0.849 0.843 0.658•
ROUGE-3 Y N A R 0.770• 0.867• 0.899 0.905 0.624•
ROUGE-2 N Y A F 0.769• 0.877• 0.909• 0.910• 0.619•
ROUGE-2 Y Y A F 0.768• 0.875• 0.908• 0.908• 0.618•
ROUGE-3 Y N A P 0.767• 0.835• 0.849 0.843 0.652•
ROUGE-3 Y Y A P 0.764• 0.825• 0.832 0.821 0.660•
ROUGE-4 N N A P 0.762• 0.815• 0.824 0.819 0.657•
ROUGE-4 Y Y A P 0.759• 0.794 0.790 0.774 0.678•
ROUGE-4 N Y A P 0.758• 0.793 0.789 0.772 0.678•
ROUGE-4 Y N A P 0.752• 0.809 0.819 0.815 0.646•
ROUGE-2 N N A F 0.747• 0.867• 0.907• 0.910• 0.587•
ROUGE-2 Y N A F 0.747• 0.868• 0.908• 0.912• 0.586•
ROUGE-2 N Y A R 0.742• 0.862• 0.904• 0.912• 0.578•
ROUGE-2 N Y M F 0.740• 0.855• 0.894• 0.898• 0.584•
ROUGE-2 Y Y A R 0.737• 0.858• 0.900• 0.908• 0.575•
ROUGE-2 N Y M R 0.722• 0.848• 0.895• 0.905• 0.553•
ROUGE-2 N N M R 0.689 0.828 0.884• 0.901• 0.508

Table 4: Correlation of top-ten metric variants for each alternate combination of linguistic quality and
coverage, • denotes a metric not significantly outperformed by any other under that particular human
evaluation combination, highest correlations highlighted in bold font.

resents an overall human assessment for a given
summary. One possibility would be to search for
optimal weights for combining quality and cover-
age, but there is a risk with this approach that we
will not find the most representative combination
but simply the combination that best describes the
metrics.

An additional variation of human assessment
scores is by combining coverage and quality with
a variant of the arithmetic mean, such as the har-
monic or geometric mean. Table 4 shows correla-
tions of BLEU and the top ten performing variants
of ROUGE when evaluated against the arithmetic
(mean), harmonic and geometric mean of quality
and coverage scores for summaries. In addition,
Table 4 includes correlations of metric scores with
coverage alone, as well as linguistic quality scores
alone to provide additional insight, although lin-
guistic quality scores alone do not provide a suffi-
cient evaluation of metrics – since it is possible to
generate summaries with perfect linguistic quality
without inclusion of any relevant content whatso-
ever.

BLEU MT metric achieves highest correlation
across all human evaluation combinations and
highest again when evaluated against human cov-
erage scores alone, and BLEU’s brevity penalty,
that like recall penalizes a system for too short out-
put, is a probable cause of the metric overcom-

ing the recall-based bias of an evaluation based
on coverage scores alone. In addition, our rec-
ommended variant, ave. ROUGE-2 prec. with
stemming and stop words removed is not signif-
icantly outperformed by BLEU or any other vari-
ant of ROUGE for any of the three combined mean
human assessment scores.

7 Conclusions

An analysis of evaluation of summarization met-
rics was provided with an evaluation of BLEU and
192 variants of ROUGE. Detail of the first suitable
summarization metric significance test, Williams
test, was provided. Results reveal superior vari-
ants of metrics distinct from previously best rec-
ommendations. Replication of a recent evalua-
tion of state-of-the-art summarization systems also
revealed contrasting conclusions about the rela-
tive performance of systems. In addition, BLEU

achieves strongest correlation with human assess-
ment overall, but does not significantly outperform
the best-performing ROUGE variant.
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Abstract

Social media such as Twitter have become
an important method of communication,
with potential opportunities for NLG to fa-
cilitate the generation of social media con-
tent. We focus on the generation of in-
dicative tweets that contain a link to an ex-
ternal web page. While it is natural and
tempting to view the linked web page as
the source text from which the tweet is
generated in an extractive summarization
setting, it is unclear to what extent ac-
tual indicative tweets behave like extrac-
tive summaries. We collect a corpus of
indicative tweets with their associated ar-
ticles and investigate to what extent they
can be derived from the articles using ex-
tractive methods. We also consider the im-
pact of the formality and genre of the ar-
ticle. Our results demonstrate the limits
of viewing indicative tweet generation as
extractive summarization, and point to the
need for the development of a methodol-
ogy for tweet generation that is sensitive
to genre-specific issues.

1 Introduction

With the rise in popularity of social media, mes-
sage broadcasting sites such as Twitter and other
microblogging services have become an important
means of communication, with an estimated 500
million tweets being written every day1. In addi-
tion to individual users, various organizations and
public figures such as newspapers, government
officials and entertainers have established them-
selves on social media in order to disseminate in-
formation or promote their products.

While there has been recent progress in the
development of Twitter-specific POS taggers,

1https://about.twitter.com/company

parsers, and other tweet understanding tools
(Owoputi et al., 2013; Kong et al., 2014), there has
been little work on methods for generating tweets,
despite the utility this would have for users and
organizations.

In this paper, we study the generation of the par-
ticular class of tweets that contain a link to an ex-
ternal web page that is composed primarily of text.
Given the short length of a tweet, the presence of
a URL in the tweet is a strong signal that the tweet
is functioning to help Twitter users decide whether
to read the full article. This class of tweets, which
we call indicative tweets, represents a large sub-
set of tweets overall, constituting more than half
of the tweets in our data set. Indicative tweets
would appear to be the easiest to handle using cur-
rent methods in text summarization, because there
is a clear source of input from which a tweet could
be generated. In effect, the tweet would be acting
as an indicative summary of the article it is being
linked to, and it would seem that existing meth-
ods in summarization can be applied. It should be
noted that a tweet being indicative does not pre-
clude it from also providing a critical evaluation
of the linked article.

There has in fact been some work along these
lines, within the framework of extractive summa-
rization. Lofi and Krestel (2012) describe a system
to generate tweets from local government records
through keyphrase extraction. Lloret and Palo-
mar (2013) compares various extractive summa-
rization algorithms applied on Twitter data to gen-
erate tweets from documents.

Lofi and Krestel do not provide a formal evalua-
tion of their model, while Lloret and Palomar com-
pared overlap between system-generated and user-
generated tweets using ROUGE (Lin, 2004). Un-
fortunately, they also show that there is little corre-
lation between ROUGE scores and the perceived
quality of the tweets when rated by human users
for indicativeness and interest. More scrutiny is
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required to determine whether the wholesale adop-
tion of methods and evaluation schemes from ex-
tractive summarization is justified.

Beyond issues of evaluation measures, it is also
unclear whether extraction is the strategy em-
ployed by human tweeters. One of the origi-
nal motivations behind extractive summarization
was the observation that human summary writers
tended to extract snippets of key phrases from the
source text (Mani, 2001). And while it may be true
that an automatic tweet generation system need
not necessarily follow the same approach to writ-
ing as human tweeters, it is still necessary to know
what proportion of tweets could be accounted for
in an extractive summarization paradigm.

With indicative tweets, an additional issue
arises in that the genre of the source text is not
constrained; for example it may be a news article
or an informal blog post. This may be vastly dif-
ferent from the desired formality of tweet itself,
and thus, a genre-appropriate extract may not be
available.

We begin to address the above issues through
a study that examines to what extent tweet gener-
ation can be viewed as an extractive summariza-
tion problem. We extracted a dataset of indica-
tive tweets containing a link to an external article,
including the documents linked to by the tweets.
We used this data and applied unigram, bigram
and LCS (longest common subsequence) match-
ing techniques inspired by ROUGE to determine
what proportion of tweets can be found in the
linked article. Even with the permissive unigram
match measure, we find that well under half of the
tweet can be found in the linked article. We also
use stylistic analysis on the articles to examine the
role that genre differences between the source text
and the target tweet play, and find that it is easier to
extract tweets from more formal articles than less
formal ones.

Our results point to the need for the devel-
opment of a methodology for indicative tweet
generation, rather than to expropriate the extrac-
tive summarization paradigm that was developed
mostly on news text. Such a methodology will ide-
ally be sensitive to stylistic factors as well as the
underlying intent of the tweet.

2 Background and Related Work

There have been studies on a number of different
issues related to Twitter data, including classifying

tweets and sentiment analysis of tweets. Ghosh et
al. (2011) classified the retweeting activity of users
based on time intervals between retweets of a sin-
gle user and frequency of retweets from unique
users. ‘Retweet’ here means the occurrence of
the same URL in a different tweet. The study
was able to classify the retweeting as automatic or
robotic retweeting, campaigns, news, blogs and so
on, based on the time-interval and user-frequency
distributions. In another study, Chen et al. (2012)
were able to extract sentiment expressions from a
corpus of tweets including both formal words and
informal slang that bear sentiment.

Other studies using Twitter data include
O’Connor et al. (2010), who use topic summa-
rization for a given search for better browsing.
Chakrabarti and Punera (2011) generate an event
summary by learning about the event using a
Hidden Markov Model over the tweets describ-
ing it. Wang et al. (2014) generate a coherent
event summary by treating summarization as an
optimization problem for topic cohesion. Inouye
and Kalita (2011) compare multiple summariza-
tion techniques to generate a summary of multi-
post blogs on Twitter. Wei and Gao (2014) use
tweets to help in generating better summaries of
news articles.

As described in Section 1, we analyze tweet
generation using measures inspired by extrac-
tive summarization evaluation. There has been
one study comparing different text summariza-
tion techniques for tweet generation by Lloret and
Palomar (2013). Summarization systems were
used to generate sentences lesser than 140 charac-
ters in length by summarizing documents, which
could then be taken to be tweets. The system-
generated tweets were evaluated using ROUGE
measures (Lin, 2004). The ROUGE-1, ROUGE-2
and ROUGE-L measures were used, and a human-
written reference tweet was taken to be the gold
standard.

The limits of extractive summarization have
been studied by He et al. (2000). They compare
user preferences for various types of summaries
of an audio-visual presentation. They demonstrate
that the most preferred method of summarization
is highlights and notes provided by the author,
rather than transcripts or slides from the presen-
tation. Conroy et al. (2006) computed an oracle
ROUGE score to investigate the same issue of the
limits of extraction for news text.
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These studies show that extractive summariza-
tion algorithms may not generate good quality
summaries despite giving high ROUGE evalua-
tion scores. Cheung and Penn (2013) show that
for the news genre, extractive summarization sys-
tems that are optimized for centrality—that is, get-
ting the core parts of the text into the summary—
cannot perform well when compared to model
summaries, since the model summaries are ab-
stracted from the document to a large extent.

3 Data Extraction and Preprocessing

3.1 Using Twitter for Data Extraction

As mentioned earlier, there have been numerous
studies that used data from the public Twitter
feeds. However, none of the datasets in those stud-
ies focused on tweets and related articles linked
to these tweets. The dataset of Lloret and Palo-
mar (2013) is an exception, as it contains tweets
and the news articles they link to, but it only con-
tains 200 English tweet-article pairs. Wei and
Gao (2014) also constructed a dataset that contains
both tweets and articles linked through them, but
this data only deals with news text, and does not
contain the variety of topics we wanted in the data.
We therefore chose to build our own dataset. This
section describes extraction, cleaning and other
preprocessing of the data.

3.2 Extracting Data

Data was extracted from Twitter using the Twit-
ter REST API using 51 search terms, or hashtags.
These hashtags were chosen from a range of topics
including pop culture, international summit meet-
ings discussing political issues, lawsuits and tri-
als, social issues and health care issues. All these
hashtags were trending (being tweeted about at a
high rate) at the time of extraction of the data. To
get a broader sample, the data was extracted over
the course of 15 days in November, 2014, which
gave us multiple news stories to choose from for
the search terms. The search terms were chosen so
that there would be broad representation in terms
of various stylistic properties of text like formal-
ity, subjectivity, etc. For example, searches related
to politics would be more formal, while those re-
lated to films would be informal, and would also
have a lot more opinion pieces about them. A few
examples of the search terms and their distribution
in genre are shown in Table 1.

We extracted about 30,000 tweets, of which

more than half, or around 16,000, contained URLs
to an external news article, photo on photo sharing
sites, or video.

Politics Science & Technology
#apec2014
#G20
#oscarpistorius

#rosetta
#lollipop
#mangalayan

Events Films and Pop culture
#haiyan
#memorialday
#ottawashootings

#TaylorSwift
#theforceawakens
#johnoliver

International Sports
#berlinwall
#ebola
#erdogan

#ausvssa
#playingitmyway
#nycmarathon

Table 1: Examples of the hashtags used for extrac-
tion, grouped into various categories.

The data from the tweets was cleaned by remov-
ing the tweets that were not in English as well as
the retweets; i.e., re-publications of a tweet by a
different user.

We deduplicated the 16,000 extracted URLs
into 6,003 unique addressed, then extracted and
preprocessed their contents. The newspaper
package2 was used to extract article text and the
title from the web page. Since we are interested
in text articles that can serve as the source text
for summarization algorithms, we needed to re-
move photos and video links such as those from
Instagram and YouTube. To do so, we removed
those links that contained fewer than a threshold of
150 words. After this preprocessing, the number
of useful articles was reduced from 6003 to 3066.
There were some further tweet-article pairs where
the text of the tweets was identical, these were re-
moved by further preprocessing and the number of
unique tweet-article pairs came down to 2471.

The final version of the data consists of tweets
along with other information about the tweet, such
as links to articles, hashtags, time of publication,
etc. We also retain the linked article text and pre-
processed it using the CoreNLP toolkit (Manning
et al., 2014). This includes the URL itself and the
text extracted from the article, as well as some ex-
tracted information such as sentence boundaries,
POS tags for tokens, parse trees and dependency
trees. These annotations are used later during our

2https://pypi.python.org/pypi/newspaper
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analysis in Section 4. Table 2 shows an example
of an entry in the dataset.

Tweet ‘#RiggsReport: #CA as the #Election-
Night exception. Voters rewarded #GOP
nationally, but not in the #GoldenState.
http://t.co/K542wvSNVz’

Title ‘The Riggs Report: California as the
Election Night exception’

Text ‘When the dust settled on Election Night
last week...’

Table 2: Example of a tweet, title of the article and
the text.

4 Analysis

We now describe the analyses we performed on
the data. Our goal is to investigate what propor-
tion of the indicative tweets that we extracted can
be found in the articles that they link to, in order to
determine whether indicative tweet generation can
be viewed as an extractive summarization prob-
lem. Table 3 gives an example of data where the
tweet that was shared about the article does not
come directly from the article text, while Table 4
shows a tweet that was almost entirely extracted
from the text of the article, but changed a little for
the purpose of readability.

Tweet Are #Airlines doing enough with
#Ebola? http://t.co/XExWwxmjnk
#travel

Title Could shortsighted airline refund poli-
cies lead to an outbreak?

Text The deadly Ebola virus has arrived in
the United States just in time for the hol-
iday travel season, carrying fear and un-
certainty with it...

Table 3: Example of a tweet, title of the article and
the text when tweet cannot be extracted from text.

We first compute the proportion of tweets that
can be recovered directly from the article in its en-
tirety (Section 4.1). Then, we calculate the degree
of overlap in terms of unigrams and bigrams be-
tween the tweet and the text of the document (Sec-
tions 4.2, 4.3).

In addition, we consider locality within the arti-
cle when computing the overlap. For the unigram
analysis, we performed a variant of the analysis,

Tweet Officer Wilson will be returned
to active duty if no indictment,
says #Ferguson Police Chief
http://t.co/zrRIBxMUYJ

Title Jackson clarifies comments on Wilson’s
future status

Text ...Chief Jackson said if the grand jury
does not indict Wilson, he will imme-
diately return to active duty....

Table 4: Example of a tweet, title of the article
and the text when tweet can be extracted from text.
The matched portions of the tweet and article are
in bold.

in which we computed the overlap within three-
sentence windows in the source article (Section
4.4). We also compute the least common subse-
quences between the tweet and the document (Sec-
tion 4.5). This was done to investigate whether
sentence compression techniques could be applied
to local context windows to generate the tweet.

These calculations are analogous to the
ROUGE-1, -2 and -L style calculations. These
results give an indication of the degree to which
the tweet is extracted from the document text.

For all these analyses, the stop words have been
eliminated from the tweet as well as the doc-
ument, so that only the informative words are
taken into consideration. The comparisons were
made without lemmatization or stemming, to ad-
here closely to existing work in extractive sum-
marization, where the only modifications to the
source text are removing discourse cue words or
removing words by sentence compression tech-
niques. The hashtags, references (@) and URLs
from the tweets were all removed for analysis.

4.1 Exact Match Calculations

We first checked for a complete substring match
of the tweet in the text. Out of the 2471 unique
instances of tweet and article pairs, a complete
match was found only 23 times. In 9 cases out of
these, the tweet text matched the title of the arti-
cle, which our preprocessing tool did not correctly
separate from the body of the article. In the other
cases, the text of the tweet appears in its entirety
inside the body of the article. This suggests that
the user chose the sentence that either seemed to
be the most conclusive contribution of the article,
or expressed the opinion of the user to be tweeted.
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Figure 1: Distribution of unigram match percent-
age over unique tweets and articles. The mean is
29.53%, indicated by the red horizontal line, with
a standard deviation of 20.2%

An example for this is detailed in Table 5.

Apart from the 9 times where the tweet was
matched with title in the article, we also checked
to see if the tweet text matched with the arti-
cle titles that were separately extracted by the
newspaper package in order to determine if
tweets could be generated using the headline gen-
eration methods. We found that it did not match
with the titles. However, even though there are no
exact matches, there might still be matches where
the tweet is a slight modification of the headline
of the article, and can be measured using a partial
match measure.

Tweet @PNHP: 6. Renounce punitive
and counterproductive measures
such as sealing the borders,
http://t.co/LRLS2MhPRE #Ebola

Title Physicians for a National Health Pro-
gram

Text As health professionals and trainees, we
call on President Obama to take the fol-
lowing immediate steps to address the
Ebola crisis... 6. Renounce punitive
and counterproductive measures such
as sealing the borders, and take steps to
address the...

Table 5: Example where tweet is extracted as is
from the text, matched portion in bold.

Figure 2: Histogram of number of unique tweet-
article pairs vs number of unigrams matched. The
mean number of unigrams matched per tweet-
article pair is 3.9.

4.2 Percentage Match for Unigrams
Next, we did a percentage match with the text of
the article. This was a bag-of-words check using
unigram overlap between the tweet and the doc-
ument. Let unigrams(x) be the set of unigrams
for some text x, then u, the percentage of match-
ing unigrams found between a given tweet, t and a
given article, a, can be defined as

u =
|unigrams(t) ∩ unigrams(a)|

|unigrams(t)| ∗ 100 (1)

Figure 1 shows the percentage of matches in the
tweet and the article text as compared to the num-
ber of unigrams in the tweet. The mean match
percentage is 29.53% and standard deviation is
20.2%. The mean of this distribution shows that
the number of matched unigrams from a tweet in
the article are fairly low. Figure 2 shows the num-
ber of articles with a certain number of matching
unigrams. The graph shows that the most common
number of unigrams matched was 2. The num-
ber of articles with higher unigrams matched goes
on decreasing. The slight rise at the end - more
than 10 matched unigrams - is accounted for by
the completely matched tweets described above.

4.3 Percentage Match for Bigrams
Similar to the unigram matching techniques, the
bigram percentage matching was also calculated.
The text of the tweet was converted into bigrams
and we then looked for those bigrams in the ar-
ticle text. The percentage was calculated similar
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Figure 3: Distribution of bigram match percent-
age over the tweet-article pair. The mean here is
10.73% shown by the red horizontal line, with a
standard deviation of 18.5%

Figure 4: Histogram of number of unique tweet-
article pairs vs number of bigrams matched. The
mean number of bigrams matched per article is
1.9.

to the unigram matching done earlier. For the set
of bigrams for a text x, bigrams(x), percentage of
matching bigrams b for the tweet t and article a is:

b =
|bigrams(t) ∩ bigrams(a)|

|bigrams(t)| ∗ 100 (2)

Figure 3 shows the percentages of matched bi-
grams found. The mean is 10.73 with a standard
deviation of 18.5. As seen in the figure, most of
the tweet-article pairs have no matched bigrams.
The percentage then increases to reflect the com-
plete matches found above.

Figure 4 shows frequency of the number of
tweet-article pairs for the number of bigrams

matched. There are no matched bigrams for most
of the pairs. A smaller number of articles had one
matched bigram, and the number decreased until
the end, where it increases a little at more than 10
matched bigrams because of exact tweet matches.

4.4 Percentage Match Inside a Window in
the Article Text

The next analysis checks for a significant word
matching inside a three-sentence window inside
the article text. We used a three sentence long win-
dow using the sentence boundary information ob-
tained during preprocessing. A window of three
sentences was chosen to give a smaller context for
the tweet to be extracted from than the entire arti-
cle. The number was chosen as a moderate context
window size as not too small to reduce it to a sen-
tence level, and not too big for the context to be
diluted. This was done to investigate whether a
pseudo-extractive multi-sentence compression ap-
proach could convert a small number of sentences
into a tweet.

After the text of the window was extracted, we
performed a similar analysis as the last one, ex-
cept on a smaller set of sentences. The match-
ing percentages from all three-sentence windows
in the articles were computed and the maximum
out of these was taken for the final results. Let
a sentence window wi be the set of three consec-
utive sentences starting from the sentence number
i. For this window, the unigram match in the tweet
t, and the window is the unigram match u calcu-
lated above. Then, the maximum match from all
the windows, uw is

uw = maxwi∈Su(t, wi) (3)

The result from this experiment is shown in Fig-
ure 5. Here, the mean of the values is 26.6% and
deviation 17%. Again this shows that only a small
proportion of tweets can be generated even with
an approach that combines unigrams from multi-
ple sentences in the article.

4.5 Longest Common Subsequence Match
Inside a Window for the Text

The percentage match analyses were a bag-of-
words approach that disregarded the order of the
words inside the texts and tweets. To respect the
order of the words in the sentence of the tweet,
we also used the least common subsequence al-
gorithm between the tweet text and the document
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Figure 5: Percentages of common words in tweet
and a three sentence window in the article. The
maximum match from all percentages is chosen
for an article. The red horizontal line is the mean
is 26.6%, and standard deviation 17%.

text. This subsequence matching was done inside
a sentence window of 5 sentences. Again, the fi-
nal result for the article was the window in which
the maximum percentage was recorded among all
windows. The percentage match was calculated
using the number of words in the tweet as the de-
nominator.

If lcs(t, a) is the longest common subsequence
between the tweet t and article a, unigrams(x) is
the set of unigrams for a text x, then the percentage
of match for the lcs as compared to the tweet, l is

l =
|lcs(t, a)|
|unigrams(t)| ∗ 100 (4)

These numbers are shown in Figure 6. The
mean here is 44.6% and the standard deviation is
22.7%.

5 Interaction with Formality

As seen in the results of the analyses performed in
Section 4, the tweets have little in common with
the articles they are linked to. This shows that
extractive summarization algorithms can only re-
cover a small proportion of the indicative tweets.

To tie in the results of the findings above with
some intuitive notions about the text and see how
formality interacts with the results, we also cal-
culated the formality of the articles. This formal-
ity score was correlated with the longest common
subsequence measure that we defined above.

We assume that the formality of an article can
be estimated by the formality of the words and

Figure 6: Percentages of words matching in tweet
and document text using an LCS algorithm. Mean
is 44.6%, which is shown by the red horizontal
line, and standard deviation is 22.7%.

phrases in the article. We used the formality lex-
icon of Brooke and Hirst (2013). They calculate
formality scores for words and sentences by train-
ing a model on a large corpus based on the ap-
pearance of words in specific documents. Their
model represents words as vectors and the formal
and informal seeds appear in opposite halves of the
graphs, suggesting that we can use these seeds to
determine if an article is formal or informal. The
lexicon consists of words and phrases and their de-
gree of formality. Thus, more formal words are
marked on a positive scale and informal words like
those occurring in colloquial language are marked
on a negative scale.

Let the set of formality expressions from the
lexicon be L, and the formality score for an ex-
pression e be score(e). Let the set of all substrings
from the article substrings(a) be S. Then, the for-
mality score f for an article a is the number of
formal expressions per 10 words in article is

f =

∑
e∈L&e∈S

score(e)

|unigrams(a)| ∗ 10 (5)

The formality lexicon gave positive weights for
formal expressions and negative for informal ex-
pressions. When we computed f using both for-
mal and informal expressions, we found that the
informal words predominated and “swamped” the
signal of the formal words, leading to incompre-
hensible results. Thus, we discarded the informal
words and used only the weights from the formal
words in our final calculations. To check that these
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formality scores made sense intuitively, we calcu-
lated the average formality score for the articles
belonging to each hashtag and ordered them, as
shown in Table 7.

Lowest Highest
#theforceawakens #KevinVickers
#TaylorSwift #erdogan
#winteriscoming #apec

Table 6: Table of hashtags (broadly, topics) with
highest and lowest formality according to the lex-
icon.

This formality score for each article was cor-
related with the percentage of match obtained us-
ing the longest common subsequence algorithm.
The Pearson correlation value was 0.41, with a p-
value of 7.08e-66, indicating that the interaction
between formality and overlap was highly signifi-
cant. Hence, we can say that the more formal the
subject or the article, the better the tweet can be
extracted from the article. Table 7 gives an exam-
ple of the formality of the article, which is a low
4.2 formality words per 10 words, where the tweet
is not extracted from the article, but rephrased
from the article instead.

Tweet @globetoronto: Why Buffalo
got clobbered with snow and
Toronto did not. #weather #snow-
storm http://t.co/gcwwoDPZmX...
http://t.co/BXY7EH6F3u”

Title What caused Buffalos massive snow and
why Toronto got lucky

Text Torontonians have long been the butt of
jokes about calling in the army every
time a few snow flurries whip by...

Table 7: Example of a tweet, title of the article
where the formality of the article is over the mean,
and the tweet is extracted from the article.

We speculate that tweets associated with less
formal articles may contain more abbreviations
and non-standard words or spellings, which de-
creases the amount of overlap. We plan to experi-
ment with tweet normalization systems to account
for this factor.

6 Discussions

Having presented the above statistics showing that
only a small portion of indicative tweets can be

recovered from the article they link to if viewed as
an extractive summarization problem, the question
then becomes, how should we view the process of
tweet generation?

We think that one promising direction is to
model more explicitly the intent, or the purpose
of the tweets. There have been several studies on
classifying intents in tweets, but in many cases the
intents are general, high-level intents of the tweets,
more akin to classifying the topic or genre of the
tweet than the intent. Wang et al. (2015) clas-
sify intents as food and drink, travel, career and
so on, ones that can directly be used as intents for
purchasing and can be utilized for advertisements.
They also focus on finding tweets with intent and
then classifying those. Banerjee et al. (2012) an-
alyze real time data to detect presence of intents
in tweets. Gómez-Adorno et al. (2014) use fea-
tures from text and stylistics to determine user in-
tentions, which are classified as news report, opin-
ion, publicity and so on. Mohammad et al. (2013)
study the classification of user intents specifically
for tweets related to elections. They study one
election and classify tweets as ones that agree or
disagree with the candidate, ones that are meant
for humour, support and so on.

These definitions of intent, while a promising
start, will not be sufficient for tweet generation.
For this purpose, intent would be the reason the
user chose to share the article with that particu-
lar text. This would include reasons like support
some cause, promote a product or an article, agree
or disagree with an event, or express an opinion
about it. Identifying these intents will help pro-
vide parameters for generating tweets.

7 Conclusion

We have described a study that investigates
whether indicative tweet generation can be viewed
as an extractive summarization problem. By ana-
lyzing a collection of indicative tweets that we col-
lected according to measures inspired by extrac-
tive summarization evaluation measures, we find
that most tweets cannot be recovered from the ar-
ticle that they link to, demonstrating a limit to the
effectiveness of extractive methods.

We further performed an analysis to deter-
mine the role of formality differences between the
source article and the Twitter genre. We find evi-
dence that formality is an important factor, as the
less formal the source article is, the less extrac-
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tive the tweets seem to be. Future methods that
can change the level of formality of a piece of text
without changing the contents will be needed, as
will those that explicitly consider the intended use
of the tweet.
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Abstract

This paper is concerned with the task of
bilingual lexicon induction using image-
based features. By applying features from
a convolutional neural network (CNN), we
obtain state-of-the-art performance on a
standard dataset, obtaining a 79% relative
improvement over previous work which
uses bags of visual words based on SIFT
features. The CNN image-based approach
is also compared with state-of-the-art lin-
guistic approaches to bilingual lexicon in-
duction, even outperforming these for one
of three language pairs on another stan-
dard dataset. Furthermore, we shed new
light on the type of visual similarity met-
ric to use for genuine similarity versus re-
latedness tasks, and experiment with using
multiple layers from the same network in
an attempt to improve performance.

1 Introduction

Bilingual lexicon induction is the task of finding
words that share a common meaning across differ-
ent languages. It plays an important role in a va-
riety of tasks in information retrieval and natural
language processing, including cross-lingual in-
formation retrieval (Lavrenko et al., 2002; Levow
et al., 2005) and statistical machine translation
(Och and Ney, 2003). Although parallel corpora
have been used successfully for inducing bilin-
gual lexicons for some languages (Och and Ney,
2003), these corpora are either too small or un-
available for many language pairs. Consequently,
mono-lingual approaches that rely on compara-
ble instead of parallel corpora have been devel-
oped (Fung and Yee, 1998; Koehn and Knight,
2002). These approaches work by mapping lan-
guage pairs to a shared bilingual space and ex-

tracting lexical items from that space. Bergsma
and Van Durme (2011) showed that this bilingual
space need not be linguistic in nature: they used
labeled images from the Web to obtain bilingual
lexical translation pairs based on the visual fea-
tures of corresponding images. Local features are
computed using SIFT (Lowe, 2004) and color his-
tograms (Deselaers et al., 2008) and aggregated as
bags of visual words (BOVW) (Sivic and Zisser-
man, 2003) to get bilingual representations in a
shared visual space. Their highest performance is
obtained by combining these visual features with
normalized edit distance, an orthographic similar-
ity metric (Navarro, 2001).

There are several advantages to having a vi-
sual rather than a linguistic intermediate bilin-
gual space: First, while labeled images are readily
available for many languages through resources
such as Google Images, language pairs that have
sizeable comparable, let alone parallel, corpora
are relatively scarce. Second, it has been found
that meaning is often grounded in the perceptual
system, and that the quality of semantic repre-
sentations improves significantly when they are
grounded in the visual modality (Silberer and La-
pata, 2012; Bruni et al., 2014). Having an inter-
mediate visual space means that words in differ-
ent languages can be grounded in the same space.
Third, it is natural to use vision as an intermediate:
when we communicate with someone who does
not speak our language, we often communicate
by directly referring to our surroundings. Lan-
guages that are linguistically far apart will, by cog-
nitive necessity, still refer to objects in the same
visual space. While some approaches to bilingual
lexicon induction rely on orthographic properties
(Haghighi et al., 2008; Koehn and Knight, 2002)
or properties of frequency distributions (Schafer
and Yarowsky, 2002) that will work only for
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closely related languages, a visual space can work
for any language, whether it’s English or Chinese,
Arabic or Icelandic, or all Greek to you.

It has recently been shown, however, that much
better performance can be achieved on seman-
tic similarity and relatedness tasks by using vi-
sual representations from deep convolutional neu-
ral networks (CNNs) instead of BOVW features
(Kiela and Bottou, 2014). In this paper we ap-
ply such CNN-derived visual features to the task
of bilingual lexicon induction. To obtain a trans-
lation of a word in a source language, we find
the nearest neighbours from words in the target
language, where words in both languages reside
in a shared visual space made up of CNN-based
features. Nearest neighbours are found by apply-
ing similarity metrics from both Kiela and Bottou
(2014) and Bergsma and Van Durme (2011). In
summary, the contributions of this paper are:

• We obtain a relative improvement of 79%
over Bergsma and Van Durme (2011) on a
standard dataset based on fifteen language
pairs.
• We shed new light on the question of whether

genuine similarity versus semantic related-
ness tasks require different similarity metrics
for optimal performance (Kiela and Bottou,
2014).
• We experiment with using different layers of

the CNN and find that performance is not af-
fected significantly in either case, obtaining
a slight improvement for the relatedness task
but no improvement for genuine similarity.
• Finally, we show that the visual approach out-

performs the linguistic approaches on one of
the three language pairs on a standard dataset.
To our knowledge this is the first work to pro-
vide a comparison of visual and state-of-the-
art linguistic approaches to bilingual lexicon
induction.

2 Related Work

2.1 Bilingual Lexicon Learning

Bilingual lexicon learning is the task of auto-
matically inducing word translations from raw
data, and is an attractive alternative to the time-
consuming and expensive process of manually
building high-quality resources for a wide vari-
ety of language pairs and domains. Early ap-
proaches relied on limited and domain-restricted

parallel data, and the induced lexicons were typi-
cally a by-product of word alignment models (Och
and Ney, 2003). To alleviate the issue of low cov-
erage, a large body of work has been dedicated
to lexicon learning from more abundant and less
restricted comparable data, e.g., (Fung and Yee,
1998; Rapp, 1999; Gaussier et al., 2004; Shezaf
and Rappoport, 2010; Tamura et al., 2012). How-
ever, these models typically rely on the availabil-
ity of bilingual seed lexicons to produce shared
bilingual spaces, as well as large repositories of
comparable data. Therefore, several approaches
attempt to learn lexicons from large monolingual
data sets in two languages (Koehn and Knight,
2002; Haghighi et al., 2008), but their perfor-
mance again relies on language pair-dependent
clues such as orthographic similarity. A further
approach removed the requirement of seed lexi-
cons, and induced lexicons using bilingual spaces
spanned by multilingual probabilistic topic mod-
els (Vulić et al., 2011; Liu et al., 2013; Vulić and
Moens, 2013b). However, these models require
document alignments as initial bilingual signals.

In this work, following recent research in
multi-modal semantics and image representation
learning—in particular deep learning and con-
volutional neural networks—we test the ability
of purely visual data to induce shared bilingual
spaces and to consequently learn bilingual word
correspondences in these spaces. By compiling
images related to linguistic concepts given in dif-
ferent languages, the potentially prohibitive data
requirements and language pair-dependence from
prior work is removed.

2.2 Deep Convolutional Neural Networks

Deep convolutional neural networks (CNNs) have
become extremely popular in the computer vi-
sion community. These networks currently pro-
vide state-of-the-art performance for a variety of
key computer vision tasks such as object recogni-
tion (Razavian et al., 2014). They tend to be rel-
atively deep, consisting of a number of rectified
linear unit layers (Nair and Hinton, 2010) and a
series of convolutional layers (Krizhevsky et al.,
2012). Recently, such layers have been used in
transfer learning techniques, where they are used
as mid-level features in other computer vision
tasks (Oquab et al., 2014). Although the idea of
transferring CNN features is not new (Driancourt
and Bottou, 1990), the simultaneous availability of

149



Figure 1: Illustration of calculating similarity be-
tween images from different languages.

massive amounts of data and cheap GPUs has led
to considerable advances in computer vision, simi-
lar in scale to those witnessed with SIFT and HOG
descriptors a decade ago (Razavian et al., 2014).

2.3 Multi-Modal Semantics

Multi-modal semantics is motivated by parallels
with human concept acquisition. It has been found
that semantic knowledge, from a very early age,
relies heavily on perceptual information (Louw-
erse, 2008), and there exists substantial evidence
that many concepts are grounded in the percep-
tual system (Barsalou, 2008). One way to accom-
plish such grounding is by combining linguistic
representations with information from a percep-
tual modality, obtained from, e.g., property norm-
ing experiments (Silberer and Lapata, 2012; Sil-
berer et al., 2013; Roller and Schulte im Walde,
2013; Hill and Korhonen, 2014) or extracting
features from raw image data (Feng and Lapata,
2010; Leong and Mihalcea, 2011; Bruni et al.,
2014; Kiela et al., 2014). Such multi-modal vi-
sual approaches often rely on local descriptors,
such as SIFT (Lowe, 2004), SURF (Bay et al.,
2008), or HOG (Dalal and Triggs, 2005), as well
as pyramidal variants of these descriptors such as
PHOW (Bosch et al., 2007). However, deep CNN
features have recently been successfully trans-
ferred to multi-modal semantics (Kiela and Bot-
tou, 2014; Shen et al., 2014). Deep learning tech-
niques have also been successfully employed in
cross-modal tasks (Frome et al., 2013; Socher et
al., 2014; Lazaridou et al., 2014; Kiros et al.,
2014). Other examples of multi-modal deep learn-
ing use restricted Boltzmann machines (Srivastava
and Salakhutdinov, 2014) or auto-encoders (Wu et
al., 2013; Silberer and Lapata, 2014).

3 A Purely Visual Approach to Bilingual
Lexicon Learning

We assume that the best translation, or match-
ing lexical item, of a word ws (in the source lan-
guage) is the word wt (in the target language)
that is the nearest cross-lingual neighbour to ws
in the bilingual visual space. Hence a similarity
(or distance) score between lexical items from dif-
ferent languages is required. In this section, we
describe: one, how to build image representations
from sets of images associated with each lexical
item, i.e. how to induce a shared bilingual visual
space in which all lexical items are represented;
and two, how to compute the similarity between
lexical items using their visual representations in
the shared bilingual space. We also describe the
evaluation datasets and metrics we use.

To facilitate further research, we will make our
code and data publicly available. Please see the
following webpage: http://www.cl.cam.
ac.uk/˜dk427/bli.html.

3.1 Image Representations
We use Google Images to extract the top n ranked
images for each lexical item in the evaluation
datasets. It has been shown that images from
Google yield higher quality representations than
comparable sources such as Flickr (Bergsma and
Goebel, 2011) and that Google-derived datasets
are competitive with “hand prepared datasets”
(Fergus et al., 2005). Google Images also has
the advantage that it has full coverage and is
multi-lingual, as opposed to other potential im-
age sources such as ImageNet (Deng et al., 2009)
or the ESP Game Dataset (von Ahn and Dabbish,
2004). For each Google search we specify the tar-
get language corresponding to the lexical item’s
language. Figure 2 gives some example images
retrieved using the same query terms in different
languages. For each image, we extract the pre-
softmax layer of an AlexNet (Krizhevsky et al.,
2012). The network contains a number of lay-
ers, starting with five convolutional layers, two
fully connected layers and finally a softmax, and
has been pre-trained on the ImageNet classifica-
tion task using Caffe (Jia et al., 2014). See Figure
1 for a simple diagram illustrating the approach.

3.2 Visual Similarity
Suppose that, as part of the evaluation, the similar-
ity between bicycle and fiets is required. Each of
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the two words has n images associated with it – the
top n as returned by Google image search, using
bicycle and fiets as separate query terms. Hence
to calculate the similarity, a measure is required
which takes two sets of images as input. The stan-
dard approach in multi-modal semantics is to de-
rive a single image representation for each word,
e.g., by averaging the n images. An alternative is
to take the pointwise maximum across the n im-
age vector representations, also producing a sin-
gle vector (Kiela and Bottou, 2014). Kiela and
Bottou call these combined representations CNN-
MEAN and CNN-MAX, respectively. Cosine is
then used to calculate the similarity between the
resulting pair of image vectors.

An alternative strategy, however, is to consider
the similarities between individual images instead
of their aggregated representations. Bergsma and
Van Durme (2011) propose two similarity met-
rics based on this principle: taking the average
of the maximum similarity scores (AVGMAX), or
the maximum of the maximum similarity scores
(MAXMAX) between associated images. Contin-
uing with our example, for each of the n images
for bicycle, the maximum similarity is found by
searching over the n images for fiets. AVGMAX

then takes the average of those n maximum simi-
larites; MAXMAX takes the maximum. To avoid
confusion, we will refer to the CNN-based mod-
els that use these metrics as CNN-AVGMAX and
CNN-MAXMAX. Formally, these metrics are de-
fined as in Table 1. We experiment with both kinds
of MAX and find that they optimize for different
kinds of similarity.

3.3 Evaluations

Test Sets. Bergsma and Van Durme’s primary
evaluation dataset consists of a set of five hundred
matching lexical items for fifteen language pairs,
based on six languages. (The fifteen pairs results
from all ways of pairing six languages). The data
is publicly available online.1 In order to get the
five hundred lexical items, they first rank nouns
by the conditional probability of them occurring
in the pattern “{image,photo,photograph,picture}
of {a,an} ” in the web-scale Google N-gram
corpus (Lin et al., 2010), and take the top five hun-
dred words as their English lexicon. For each item

1http://www.clsp.jhu.edu/˜sbergsma/LexImg/

AVGMAX 1
n

∑
is∈I(ws)

max
it∈I(wt)

sim(is, it)

MAXMAX max
is∈I(ws)

max
it∈I(wt)

sim(is, it)

CNN-MEAN sim( 1
n

∑
is∈I(ws)

is,
1
n

∑
it∈I(wt)

it)

CNN-MAX sim(max′ I(ws),max′ I(wt))

Table 1: Visual similarity metrics between two
sets of n images. I(ws) represents the set of im-
ages for a given source word ws, I(wt) the set of
images for a given target word wt; max′ takes a
set of vectors and returns the single element-wise
maximum vector.

in the English lexicon, they obtain correspond-
ing items in the other languages—Spanish, Ital-
ian, French, German and Dutch—through Google
Translate. We call this dataset BERGSMA500.

In addition to that dataset, we evaluate on a
dataset constructed to measure the general perfor-
mance of bilingual lexicon learning models from
comparable Wikipedia data (Vulić and Moens,
2013a). The dataset comprises 1, 000 nouns in
three languages: Spanish (ES), Italian (IT), and
Dutch (NL), along with their one-to-one gold-
standard word translations in English (EN) com-
piled semi-automatically using Google Translate
and manual annotators for each language. We call
this dataset VULIC10002. The test set is accom-
panied with comparable data for training, for the
three language pairs ES/IT/NL-EN on which text-
based models for bilingual lexicon induction were
trained (Vulić and Moens, 2013a).

Given the way that the BERGSMA500 dataset
was created, in particular the use of the pattern
described above, it contains largely concrete lin-
guistic concepts (since, eg, image of a democracy
is unlikely to have a high corpus frequency). In
contrast, VULIC1000 was designed to capture
general bilingual word correspondences, and con-
tains several highly abstract test examples, such as
entendimiento (understanding) and desigualdad
(inequality) in Spanish, or scoperta (discovery)
and cambiamento (change) in Italian. Using the
two evaluation datasets can potentially provide

2http://people.cs.kuleuven.be/˜ivan.vulic/software/
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Figure 2: Example images for the languages in the Bergsma and Van Durme dataset.

Method P@1 P@5 P@20 MRR
B&VD Visual-Only 31.1 41.4 53.7 0.367
B&VD Visual + NED 48.0 59.5 68.7 0.536

CNN-AVGMAX 56.7 69.2 77.4 0.658
CNN-MAXMAX 42.8 60.0 64.5 0.529
CNN-MEAN 50.5 62.7 71.1 0.586
CNN-MAX 51.4 64.9 74.8 0.608

Table 2: Performance on BERGSMA500 com-
pared to Bergsma and Van Durme (B&VD).

some insight into how purely visual models for
bilingual lexicon induction behave with respect to
both abstract and concrete concepts.

Evaluation Metrics. We measure performance in
a standard way using mean-reciprocal rank:

MRR =
1
M

M∑
i=1

1
rank(ws, wt)

(1)

where rank(ws, wt) denotes the rank of the cor-
rect translation wt (as provided in the gold stan-
dard) in the ranked list of translation candidates
for ws, andM is the number of test cases. We also
use precision at N (P@N) (Gaussier et al., 2004;
Tamura et al., 2012; Vulić and Moens, 2013a),
which measures the proportion of test instances
where the correct translation is within the top N
highest ranked translations.

4 Results

We evaluate the four similarity metrics on the
BERGSMA500 dataset and compare the results to
the systems of Bergsma and Van Durme, who
report results for the AVGMAX function, hav-
ing concluded that it performs better than MAX-
MAX on English-Spanish translations. We report
their best-performing visual-only system, which
combines SIFT-based descriptors with color his-
tograms, as well as their best-performing overall
system, which combines the visual approach with
normalized edit distance (NED). Results are aver-
aged over fifteen language pairs.

The results can be seen in Table 2. Each of the
CNN-based methods outperforms the B&VD sys-
tems. The best performing method overall, CNN-
AVGMAX, provides a 79% relative improvement
over the B&VD visual-only system on the MRR
measure, and a 23% relative improvement over
their best-performing approach, which includes
non-visual information in the form of orthographic
similarity. Moreover, their methods include a tun-
ing parameter λ that governs the contributions
of SIFT-based, color histogram and normalized
edit distance similarity scores, whilst our approach
does not require any parameter tuning.

4.1 Similarity and Relatedness

The results in Table 2 indicate that the per-
image CNN-AVGMAX metric outperforms the

152



Language Pair Method P@1 P@5 P@10 P@20 MRR

ES⇒ EN

BOOTSTRAP 57.7 74.7 80.9 84.8 0.652

CNN-AVGMAX 41.9 54.6 59.1 65.6 0.485

CNN-MAXMAX 34.9 47.4 53.7 58.5 0.414

CNN-MEAN 35.4 48.5 51.7 55.8 0.416

CNN-MAX 33.3 46.3 50.3 54.5 0.395

IT⇒ EN

BOOTSTRAP 64.7 80.6 85.6 89.7 0.716

CNN-AVGMAX 28.3 40.6 44.8 50.9 0.343

CNN-MAXMAX 22.6 33.5 38.6 44.4 0.282

CNN-MEAN 22.7 33.2 37.9 42.6 0.281

CNN-MAX 21.3 32.7 36.8 41.5 0.269

NL⇒ EN

BOOTSTRAP 20.6 35.7 43.4 51.3 0.277

CNN-AVGMAX 38.4 48.5 53.7 58.6 0.435

CNN-MAXMAX 30.8 42.6 47.8 52.9 0.367

CNN-MEAN 32.3 42.3 46.5 50.1 0.373

CNN-MAX 30.4 41.0 44.3 49.3 0.356

Table 4: Performance on VULIC1000 compared to the linguistic bootstrapping method of Vulić and
Moens (2013b).

Method MEN SimLex-999

CNN-AVGMAX 0.56 0.34

CNN-MAXMAX 0.55 0.36
CNN-MEAN 0.61 0.32

CNN-MAX 0.60 0.27

Table 3: Spearman ρs correlation for the visual
similarity metrics on a relatedness (MEN) and a
genuine similarity (SimLex-999) dataset.

aggregated visual representation-based metrics of
CNN-MEAN and CNN-MAX, despite the fact
that Kiela and Bottou (2014) achieved optimal per-
formance using the latter metrics on a well-known
conceptual relatedness dataset. It has been noted
before that there is a clear distinction between sim-
ilarity and relatedness. This is one of the reasons
that, for example, WordSim353 (Finkelstein et al.,
2002) has been criticized: it gives high similarity
scores to cases of genuine similarity as well as re-
latedness (Agirre et al., 2009; Hill et al., 2014).
The MEN dataset (Bruni et al., 2014) that Kiela
and Bottou (2014) evaluate on explicitly measures
word relatedness. In contrast, the current lexicon
learning task seems to require something else than
relatedness: whilst a chair and table are semanti-
cally related, a translation for chair is not a good
translation for table. For example, we want to
make sure we translate chair to stuhl in German,
and not to tisch. In other words, what we are inter-

ested in for this particular task is genuine similar-
ity, rather than relatedness.

Thus, we can evaluate the quality of our simi-
larity metrics by comparing their performance on
similarity and relatedness tasks: if a metric per-
forms well at measuring genuine similarity, this is
indicative of its performance in the bilingual lexi-
con induction task. In order to examine this ques-
tion further, we evaluate performance on the MEN
dataset, which measures relatedness (Bruni et al.,
2014), and the nouns-subset of the SimLex-999
dataset, which measures genuine similarity (Hill
et al., 2014). For each pair in the dataset, we cal-
culate the similarity score and report the Spearman
ρs correlation, which measures how well the rank-
ing of pairs given by the automatic system matches
that according to the gold-standard human similar-
ity scores. The results are reported in Table 3.

It is clear that the per-image similarity met-
rics perform better on genuine similarity, as mea-
sured by SimLex-999, than on relatedness, as mea-
sured by MEN. In fact, the “aggressive” CNN-
MAXMAX method, which picks out a single pair
of images to represent a linguistic pair, works best
for SimLex-999, indicating how stringently it fo-
cuses on genuine similarity. For the aggregated vi-
sual representation-based metrics, we see the op-
posite effect: they perform better on the related-
ness task. This sheds light on a question raised
by Kiela and Bottou (2014), where they speculate

153



that certain errors are a result of whether their vi-
sual similarity metric measures genuine similar-
ity on the one hand or relatedness on the other:
we are better off using per-image visual metrics
for genuine similarity, while aggregated visual
representation-based metrics yield better perfor-
mance on relatedness tasks.

4.2 Results on VULIC1000

This section compares our visual-only approach
to linguistic approaches for bilingual lexicon in-
duction. Since BERGSMA500 has not been eval-
uated with such methods, we evaluate on the
VULIC1000 dataset (Vulić and Moens, 2013a).
This dataset has been used to test the ability of
bilingual lexicon induction models to learn trans-
lations from comparable data (see sect. 3.3). We
do not necessarily expect visual methods to out-
perform linguistic ones, but it is instructive to see
the comparison.

We compare our visual models against the cur-
rent state-of-the-art lexicon induction model us-
ing comparable data (Vulić and Moens, 2013b).
This model induces translations from compara-
ble Wikipedia data in two steps: (1) It learns a
set of highly reliable one-to-one translation pairs
using a shared bilingual space obtained by ap-
plying the multilingual probabilistic topic model-
ing (MuPTM) framework (Mimno et al., 2009).
(2) These highly reliable one-to-one translation
pairs serve as dimensions of a word-based bilin-
gual semantic space (Gaussier et al., 2004; Tamura
et al., 2012). The model then bootstraps from
the high-precision seed lexicon of translations and
learns new dimensions of the bilingual space until
convergence. This model, which we call BOOT-
STRAP, obtains the current best results on the eval-
uation dataset. For more details about the boot-
strapping model and its comparison against other
approaches, we refer to Vulić and Moens (2013b).

Table 4 shows the results for the language pairs
in the VULIC1000 dataset. Of the four similar-
ity metrics, CNN-AVGMAX again performs best,
as it did for BERGSMA500. The linguistic BOOT-
STRAP method outperforms our visual approach
for two of the three language pairs, but, for the
NL-EN language pair, the visual methods in fact
perform better. This can be explained by the ob-
servation that Vulić and Moens’s NL-EN training
data for the BOOTSTRAP model is less abundant
(2-3 times fewer Wikipedia articles) and of lower

Method FC7 FC6+FC7 POOL5+
FC6+FC7

MEN

CNN-AVGMAX 0.56 0.57 0.57

CNN-MAXMAX 0.55 0.55 0.56

CNN-MEAN 0.61 0.61 0.61

CNN-MAX 0.60 0.62 0.61

SimLex-999

CNN-AVGMAX 0.34 0.33 0.31

CNN-MAXMAX 0.36 0.35 0.34

CNN-MEAN 0.32 0.32 0.31

CNN-MAX 0.27 0.26 0.26

Table 5: Spearman ρs correlation for the visual
similarity metrics on a relatedness (MEN) and
a genuine similarity (SimLex-999) dataset using
more than one layer from the CNN.

quality than the data for their ES-EN and IT-EN
models. We view these results as highly encourag-
ing: while purely visual methods cannot yet reach
the peak performance of linguistic approaches that
are trained on sufficient amounts of high-quality
text data, they outperform linguistic state-of-the-
art methods when there is less or lower quality text
data available —which one might reasonably ex-
pect to be the default scenario.

4.3 Adding CNN Layers
The AlexNet (Krizhevsky et al., 2012) from which
our image representations are extracted contains
a number of layers. Kiela and Bottou (2014)
only use the fully connected pre-softmax layer
(which we call FC7) for their image representa-
tions. It has been found, however, that other layers
in the network, especially the preceding fully con-
nected (FC6) and fifth convolutional max pooling
(POOL5) layers, also have good properties for
usage in transfer learning (Girshick et al., 2014;
Yosinski et al., 2014). Hence we performed a
(very) preliminary investigation of whether perfor-
mance increases with the use of additional layers.

In light of our findings concerning the differ-
ence between genuine similarity and relatedness,
this also gives rise to the question of whether the
additional layers might be useful for similarity
or relatedness, or both. We hypothesize that the
nature of the task matters here: if we are only
concerned with genuine similarity, layer FC7 is
likely to contain all the necessary information to
judge whether two images are similar or not, since
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Dataset Language Image dispersion

BERGSMA500

EN 0.640 (σ=0.074)

ES 0.639 (σ=0.072)

IT 0.646 (σ=0.071)

FR 0.647 (σ=0.072)

DE 0.642 (σ=0.072)

NL 0.645 (σ=0.074)

VULIC1000

EN 0.705 (σ=0.095)

ES 0.694 (σ=0.092)

IT 0.725 (σ=0.078)

NL 0.716 (σ=0.080)

Table 6: Average image dispersion for the
datasets, by language.

the network has been trained for object recogni-
tion. If, however, we are interested in related-
ness, related properties may just as well be en-
coded deeper in the network, so in the layers pre-
ceding FC7 rather than in FC7 itself.

We combined CNN layers with each other by
concatenating the normalized layers. For the bilin-
gual lexicon induction tasks, we found that perfor-
mance did not signficantly increase, which is con-
sistent with our hypothesis (since bilingual lexicon
induction requires genuine similarity rather than
relatedness, and so only requires FC7). We then
tested on the MEN dataset (Bruni et al., 2014) for
relatedness and the nouns subset of the SimLex-
999 dataset (Hill et al., 2014) for genuine similar-
ity. The results can be found in Table 5.

The results appear to indicate that adding such
additional information does not have a clear effect
for genuine similarity, but may lead to a small per-
formance increase for relatedness. This could ex-
plain why we did not see increased performance
on the bilingual lexicon induction task with ad-
ditional layers. However, the increase in perfor-
mance on the relatedness task is relatively minor,
and further investigation is required into the utility
of the additional layers for relatedness tasks.

5 Discussion

A possible explanation for the difference in per-
formance between languages and datasets is that
some words are more concrete than others: a vi-
sual representation for elephant is likely to be
of higher quality than one for happiness. Visual
representations in multi-modal models have been
found to perform much better for concrete than ab-
stract concepts (Kiela et al., 2014).

Although concreteness ratings are available for
(some) English words, this is not the case for other
languages, so in order to examine the concreteness
of the datasets we use a substitute method that has
been shown to closely mirror how abstract a con-
cept is: image dispersion (Kiela et al., 2014). The
image dispersion d of a concept word w is defined
as the average pairwise cosine distance between
all the image representations {i1 . . . in} in the set
of images for a given word:

d(w) =
2

n(n− 1)

∑
i<j≤n

1− ij · ik
|ij ||ik| (2)

The average image dispersions for the two
datasets, broken down by language, are shown in
Table 6. BERGSMA500 has a lower average im-
age dispersion score in general, and thus is more
concrete than VULIC1000. It also has less vari-
ance. This may explain why we score higher, in
absolute terms, on that dataset than on the more
abstract one.

When examining individual languages in the
datasets, we note that the worst performing lan-
guage on VULIC1000 is Italian, which is also the
most abstract dataset, with the highest average im-
age dispersion score and the lowest variance.

There is some evidence that abstract concepts
are also perceptually grounded (Lakoff and John-
son, 1999), but in a more complex way, since
abstract concepts express more varied situations
(Barsalou and Wiemer-Hastings, 2005). Using an
image resource like Google Images that has full
coverage for almost any word, means that we can
retrieve what we might call “associated” images
(such as images of voters for words like democ-
racy) as opposed to “extensional” images (such
as images of cats for cat). This explains why we
still obtain good performance on the more abstract
VULIC1000 dataset, in some cases outperform-
ing linguistic methods: even abstract concepts can
have a clear visual representation, albeit of the as-
sociated rather than extensional kind.

However, abstract concepts are overall more
likely to yield noisier image sets. Thus, one way to
improve results would be to take a multi-modal ap-
proach, where we also include linguistic informa-
tion, if available, especially for abstract concepts.

6 Conclusions and Future Work

We have presented a novel approach to bilingual
lexicon induction that uses convolutional neural

155



network-derived visual features. Using only such
visual features, we outperform existing visual and
orthographic systems, and even a state-of-the-art
linguistic approach for one language, on standard
bilingual lexicon induction tasks. In doing so,
we have shed new light on which visual similar-
ity metric to use for similarity or relatedness tasks,
and have experimented with using multiple layers
from a CNN. The beauty of the current approach is
that it is completely language agnostic and closely
mirrors how humans would perform bilingual lex-
icon induction: by referring to the external world.
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Douwe Kiela and Léon Bottou. 2014. Learning image
embeddings using convolutional neural networks for
improved multi-modal semantics. In EMNLP, pages
36–45.

Douwe Kiela, Felix Hill, Anna Korhonen, and Stephen
Clark. 2014. Improving multi-modal representa-
tions using image dispersion: Why less is sometimes
more. In ACL, pages 835–841.

Ryan Kiros, Ruslan Salakhutdinov, and Richard S.
Zemel. 2014. Multimodal neural language models.
In ICML, pages 595–603.

Philipp Koehn and Kevin Knight. 2002. Learning a
translation lexicon from monolingual corpora. In
ULA’02 Workshop, pages 9–16.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-
ton. 2012. ImageNet classification with deep con-
volutional neural networks. In NIPS, pages 1106–
1114.

George Lakoff and Mark Johnson. 1999. Philosophy
in the flesh: The embodied mind and its challenge to
Western thought.

Victor Lavrenko, Martin Choquette, and W. Bruce
Croft. 2002. Cross-lingual relevance models. In
SIGIR, pages 175–182.

Angeliki Lazaridou, Elia Bruni, and Marco Baroni.
2014. Is this a wampimuk? Cross-modal map-
ping between distributional semantics and the visual
world. In ACL, pages 1403–1414.

Chee Wee Leong and Rada Mihalcea. 2011. Going
beyond text: A hybrid image-text approach for mea-
suring word relatedness. In IJCNLP, pages 1403–
1407.

Gina-Anne Levow, Douglas Oard, and Philip Resnik.
2005. Dictionary-based techniques for cross-
language information retrieval. Information Pro-
cessing & Management, 41:523 – 547, 2005/05//.

Dekang Lin, Kenneth Ward Church, Heng Ji, Satoshi
Sekine, David Yarowsky, Shane Bergsma, Kailash
Patil, Emily Pitler, Rachel Lathbury, Vikram Rao,
Kapil Dalwani, and Sushant Narsale. 2010. New
tools for Web-scale N-grams. In LREC, pages
2221–2227.

Xiaodong Liu, Kevin Duh, and Yuji Matsumoto. 2013.
Topic models + word alignment = A flexible frame-
work for extracting bilingual dictionary from com-
parable corpus. In CoNLL, pages 212–221.

Max M. Louwerse. 2008. Symbol interdependency in
symbolic and embodied cognition. Topics in Cogni-
tive Science, 59(1):617–645.

David G. Lowe. 2004. Distinctive image features from
scale-invariant keypoints. International Journal of
Computer Vision, 60(2):91–110.

David M. Mimno, Hanna M. Wallach, Jason Narad-
owsky, David A. Smith, and Andrew McCallum.
2009. Polylingual topic models. In EMNLP, pages
880–889.

Vinod Nair and Geoffrey E Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In ICML, pages 807–814.

Gonzalo Navarro. 2001. A guided tour to approx-
imate string matching. ACM Computing Surveys,
33(1):31–88.

Franz Josef Och and Hermann Ney. 2003. A sys-
tematic comparison of various statistical alignment
models. Computational Linguistics, 29(1):19–51.
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Abstract

Cross-Lingual Learning provides a mech-
anism to adapt NLP tools available for la-
bel rich languages to achieve similar tasks
for label-scarce languages. An efficient
cross-lingual tool significantly reduces the
cost and effort required to manually an-
notate data. In this paper, we use the
Recursive Autoencoder architecture to de-
velop a Cross Lingual Sentiment Analysis
(CLSA) tool using sentence aligned cor-
pora between a pair of resource rich (En-
glish) and resource poor (Hindi) language.
The system is based on the assumption
that semantic similarity between different
phrases also implies sentiment similarity in
majority of sentences. The resulting sys-
tem is then analyzed on a newly developed
Movie Reviews Dataset in Hindi with la-
bels given on a rating scale and compare
performance of our system against exist-
ing systems. It is shown that our approach
significantly outperforms state of the art
systems for Sentiment Analysis, especially
when labeled data is scarce.

1 Introduction

Sentiment Analysis is a NLP task that deals with
extraction of opinion from a piece of text on a
topic. This is used by a large number of advertising
and media companies to get a sense of public opin-
ion from their reviews. The ever increasing user
generated content has always been motivation for
sentiment analysis research, but majority of work
has been done for English Language. However, in
recent years, there has been emergence of increas-
ing amount of text in Hindi on electronic sources
but NLP Frameworks to process this data is sadly
miniscule. A major cause for this is the lack of
annotated datasets in Indian Languages.

One solution is to create cross lingual tools be-
tween a resource rich and resource poor language
that exploit large amounts of unlabeled data and
sentence aligned corpora that are widely available
on web through bilingual newspapers, magazines,
etc. Many different approaches have been identi-
fied to perform Cross Lingual Tasks but they de-
pend on the presence of MT-System or Bilingual
Dictionaries between the source and target lan-
guage.
In this paper, we use Bilingually Constrained

Recursive Auto-encoder (BRAE) given by (Zhang
et al., 2014) to perform Cross Lingual sentiment
analysis. Major Contributions of this paper are
as follows: First, We develop a new Rating scale
based Movie Review Dataset for Hindi. Second,
a general framework to perform Cross Lingual
Classification tasks is developed by modifying
the architecture and training procedure for BRAE
model. This model exploits the fact that phrases in
two languages, that share same semantic meaning,
can be used to learn language independent seman-
tic vector representations. These embeddings can
further be fine-tuned using labeled dataset in En-
glish to capture enough class information regard-
ing Resource poor language. We train the resultant
framework on English-Hindi Language pair and
evaluate it against state of the art SA systems on
existing and newly developed dataset.

2 Related Work

2.1 Sentiment Analysis in Hindi

In recent years, there have been emergence of
works on Sentiment Analysis (both monolingual
and cross-lingual) for Hindi. (Joshi et al., 2010)
provided a comparative analysis of Unigram based
In-language, MT based Cross Lingual and Word-
Net based Sentiment classifier, achieving highest
accuracy of 78.14%. (Mittal et al., 2013) described
a system based on Hindi SentiWordNet for assign-
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ing positive/negative polarity to movie reviews. In
this approach, overall semantic orientation of the
review document was determined by aggregating
the polarity values of the words in the document
assigned using the WordNet. They also included
explicit rules for handling Negation and Discourse
relations during preprocessing in their model to
achieve better accuracies.
For Languages where labeled data is not present,

approaches based on cross-lingual sentiment anal-
ysis are used. Usually, such methods need inter-
mediary machine translation system (Wan et al.,
2011; Brooke et al., 2009) or a bilingual dictionary
(Ghorbel and Jacot, 2011; Lu et al., 2011) to bridge
the language gap. Given the subtle and different
ways in which sentiments can be expressed and the
cultural diversity amongst different languages, an
MT system has to be of a superior quality to per-
form well(Balamurali et al., 2012).
(Balamurali et al., 2012) present an alterna-

tive approach to Cross Lingual Sentiment Analy-
sis (CLSA) using WordNet senses as features for
supervised sentiment classification. A document
in Resource Poor Language was tested for polarity
through a classifier trained on sense marked and
polarity labeled corpora in Resource rich language.
The crux of the idea was to use the linked Word-
Nets of two languages to bridge the language gap.
Recently, (Popat et al., 2013) describes a Cross

Lingual Clustering based SA System. In this ap-
proach, features were generated using syntagmatic
property based word clusters created from unla-
beled monolingual corpora, thereby eliminating
the need for Bilingual Dictionaries. These features
were then used to train a linear SVM to predict
positive or negative polarity on a tourism review
dataset.

2.2 Autoencoders in NLP Tasks
Autoencoders are neural networks that learn a low
dimensional vector representation of fixed-size in-
puts such as image segments or bag-of-word rep-
resentations of documents. They can be used to
efficiently learn feature encodings that are useful
for classification. The Autoencoders were first
applied in a recursive setting by Pollack (1990)
in recursive auto-associative memories (RAAMs).
However, RAAMs needed fixed recursive data
structures to learn vector representations, whereas
RAE given by (Socher et al., 2011) builds recur-
sive data structure using a greedy algorithm. The
RAE can be pre-trainedwith an unsupervised algo-

rithm and then fine-tuned according to the label of
the phrase, such as the syntactic category in pars-
ing(Socher et al., 2013), the polarity in sentiment
analysis, etc. The learned structures are not neces-
sarily syntactically accurate but can capture more
of the semantic information in the word vectors.

3 BRAE Framework

(Zhang et al., 2014) used the RAE along with a
Bilingually Constrained Model to simultaneously
learn phrase embeddings for two languages in se-
mantic vector space. The core idea behind BRAE
is that a phrase and its correct translation should
share the same semantic meaning. Thus, they
can supervise each other to learn their seman-
tic phrase embeddings. Similarly, non-translation
pairs should have different semantic meanings,
and this information can also be used to guide
learning semantic phrase embeddings. In this
method, a standard recursive autoencoder (RAE)
pre-trains the phrase embedding with an unsuper-
vised algorithm by greedily minimizing the re-
construction error (Socher et al., 2011), while the
bilingually-constrained model learns to finetune
the phrase embedding by minimizing the seman-
tic distance between translation equivalents and
maximizing the semantic distance between non-
translation pairs.
In this section, We will briefly present the struc-

ture and training algorithm for BRAE model. Af-
ter that, we show how this model can be adapted
to perform CLSA.

3.1 Recursive Auto-encoder Framework
In this model, each word wk in the vocabulary V
of given language corresponds to a vector xk ∈ Rn

and stacked into a single word embedding matrix
L ∈ Rn×|V |. This matrix is learned using DNN
(Collobert andWeston, 2008; Mikolov et al., 2013)
and serves as input to further stages of RAE.
Using this matrix, a phrase (w1w2 . . . wm) is

first projected into a list of vectors (x1, x2, . . . xm).
The RAE learns the vector representation of the
phrase by combining two children vectors recur-
sively in a bottom-up manner. For two children
c1 = x1, c2 = x2, the auto-encoder computes the
parent vector y1:

y1 = f(W (1)[c1; c2] + b(1)); y1 ∈ Rn (1)

To assess how well the parent vector represents
its children, the auto-encoder reconstructs the chil-
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transformations 

Figure 1: An illustration of BRAE structure

dren :
[c′1; c

′
2] = W (2)p + b(2) (2)

and tries to minimize the reconstruction error (Eu-
clidean Distance)Erec([c1; c2]) between the inputs
[c1; c2] and their reconstructions [c′1; c′2].
Given y1, Eq.1 is used again to compute y2 by

setting the children to be [c1; c2] = [y1; x3]. The
same auto-encoder is re-used until the vector of
the whole phrase is generated. For unsupervised
phrase embedding, the sum of reconstruction er-
rors at each node in binary tree y is minimized:

Erec(x; θ) = argminy∈A(x)

∑
k∈y

Erec([c1; c2]k)

(3)
Where A(x) denotes all the possible binary trees
that can be built from inputs x. A greedy algorithm
is used to generate the optimal binary tree y∗. The
parameters θrec = (θ(1), θ(2)) are optimized over
all the phrases in the training data. For further de-
tails, please refer (Socher et al., 2011)

3.2 Semantic Error
The BRAE model jointly learns two RAEs for
source language LS and target language LT . Each
RAE learn semantic vector representation ps and
pt of phrases s and t respectively in translation-
equivalent phrase pair (s, t) in bilingual corpora
(shown in Fig.1). The transformation between the
two is defined by:

p′t = f(W t
sps + bt

s), p
′
s = f(W s

t pt + bs
t ) (4)

where θt
s = (W t

s , b
t
s), θ

s
t = (W s

t , bs
t ) are new pa-

rameters introduced.
The semantic error between learned vector rep-

resentations ps and pt is calculated as :

Esem(s, t; θ) = E∗
sem(t|s; θs

t ) + E∗
sem(s|t; θt

s)
(5)

where E∗
sem(s|t; θs

t ) is the semantic distance of
ps given pt and vice versa. To calculate it, we

first calculate Euclidean distance between origi-
nal pt and transformation p′t as Dsem(s|t, θt

s) =
1
2∥pt − p′t∥2. The max-semantic-margin distance
between them is then defined as

E∗
sem(s|t, θt

s) = max{0, Dsem(s|t, θt
s)

−Dsem(s|t′, θt
s) + 1} (6)

where we simultaneously minimize the distance
between translation pairs and maximized between
non-translation pairs. Here t′ in non-translation
pair (s, t′) is obtained by replacing the words in t
with randomly chosen target language words. We
calculate the E∗

sem(t|s; θs
t ) in similar manner.

3.3 BRAE Objective Function
Thus, for the phrase pair (s, t), the joint error be-
comes:

E(s, t, θ) = E(s|t, θ) + E(t|s, θ)
E(s|t, θ) = αErec(s; θrec

s ) + (1− α)E∗
sem(s|t, θt

s))
E(t|s, θ) = αErec(t; θrec

t ) + (1− α)E∗
sem(t|s, θs

t ))
(7)

The hyper-parameter α weighs the reconstruction
and semantic errors. The above equation indi-
cates that the Parameter sets θt = (θs

t , θ
rec
t ) and

θs = (θt
s, θ

rec
s ) on each side respectively can be

optimized independently as long as the phrase rep-
resentation of other side is given to compute se-
mantic error.
The final BRAE objective over the phrase pairs

training set (S, T ) becomes:

JBRAE =
1
N

∑
(s,t)∈(S,T )

E(s, t; θ) +
λBRAE

2
∥θ∥2

(8)

3.4 Unsupervised Training of BRAE
The word embedding matrices Ls and Lt are pre-
trained using unlabeled monolingual data with
Word2Vec toolkit (Mikolov et al., 2013). All other
parameters are initialized randomly. We use SGD
algorithm for parameter optimization. For full gra-
dient calculations for each parameter set, please
see (Zhang et al., 2014).
1. RAE Training Phase: Apply RAE Frame-

work (Sec. 3.1) to pre-train the source and target
phrase representations ps and pt respectively by
optimizing θrec

s and θrec
t using unlabeled monolin-

gual datasets.
2. Cross-Training Phase: Use target-side

phrase representation pt to update the source-side
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parameters θs and obtain source-side phrase repre-
sentation p′s, and vice-versa for ps. Calculate the
joint error over the bilingual training corpus. On
reaching a local minima or predefined no. of iter-
ations (30 in our case), terminate this phase, other-
wise set ps = p′s, pt = p′t, and repeat.

4 Adapting Model for Classifying
Sentiments

At the end of previous Training procedure, we ob-
tain high quality phrase embeddings in both source
and target language and transformation function
between them. We now extend that model to per-
form cross lingual supervised tasks, specifically
CLSA.
To achieve this, we need to modify the learned

semantic phrase embeddings such that they can
capture information about sentiment. Since we
only use monolingual labeled datasets from this
point onwards, the supervised learning phases will
occur independently for each RAE as we do not
have any ''phrase pairs'' now. Thus, the new se-
mantic vector space generated for word and phrase
embeddings may no longer be in sync with their
corresponding transformations.
We propose following modifications to the sys-

tem to deal with this problem. Let LS and LT rep-
resent Resource rich and Resource poor language
respectively in above model.
Modifications in architecture: We first in-

clude a softmax (σ) layer on top of each parent
node in RAE for LS to predict a K-dimensional
multinomial distribution over the set of output
classes defined by the task (e.g : polarity, Ratings).

d(p; θce) = σ(W cep) (9)

Given this layer, we calculate cross entropy er-
rorEce(pk, t, Wce) generated for node pk in binary
tree, where t is target multinomial distribution or
one-hot binary vector for target label. We use this
layer to capture and predict actual sentiment in-
formation about the data in both LS and LT (de-
scribed in next section). We show a node in modi-
fied architecture in Fig.2.
Penalty for Movement in Semantic Vector

space: During subsequent training phases, we in-
clude the euclidean norm of the difference between
the original and new phrase embeddings as penalty
in reconstruction error at each node of the tree.

E∗
rec([c1; c2]; θ) = Erec([c1; c2]; θ) +

λp

2
∥p− p∗∥2

(10)

Resource Rich Language Resource Poor Language 

Reconstruction Reconstruction Cross-Entropy 

Figure 2: An illustration of BRAE segment with
Cross Entropy layer

Here p is the phrase representation we get during
forward propagation of current training iteration
and p∗ is the representation we get if we apply the
parameters obtained at the end of the Cross training
phase to children [c1; c2] of that node. The reason
to do this is twofold.
First, during supervised training, the error will

back propagate through RAEs for both languages
affecting their respective weights matrices and
word embeddings. This will modify the semantic
representation of phrases captured during previous
phases of training procedure and adversely affect
the transformations derived from them. Therefore
we need to include some procedure such that the
transformation information learned during Cross-
training phase is not lost.
Secondly, we observe that the information about

the semantic similarity of a word or phrase also im-
plies sentiment similarity between the two. That is
when dealing with bilingual data, words or phrases
that appear near each other in semantic space typi-
cally represent common sentiment information and
we want our model to create a decision boundary
around these vectors instead ofmodifying them too
much.
Disconnecting the RAEs: We fix the trans-

formation weights between the two RAEs, i.e.
in subsequent training steps the transformation
weights(θt

s, θ
s
t ) are not modified but rather pass

the back propagated error as it is to previous lay-
ers. We observed that on optimizing the objec-
tive along with the penalty term, the transforma-
tion weights are preserved between new seman-
tic/sentiment vector spaces, resulting in slightly
degraded performance, but were still able to
preserve enough information about the semantic
structure of two languages.Also, it reinforced the
penalty imposed on the movement of phrase em-
beddings in semantic vector space.On the other
hand, if the weights were allowed to be updated,
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the accuracies were affected severely as infor-
mation learned during previous phases was lost
and the weights were not been able to capture
enough information about the modified phrase em-
beddings and generalize well on test phrases not
encountered in labeled training set of Resource
Scarce Language.

4.1 Supervised Training Phases
We now explain supervised training procedure us-
ing only monolingual labeled data for each lan-
guage. These training phases occur at the end of
BRAE training. In each training phase, we use
SGD algorithm to perform parameter optimiza-
tion.

4.1.1 Phase I : Resource Rich language
In this phase, we only modify the parameters of
RAELS

, i.e. θrec
s and θce by optimizing following

objective over (sentence, label) pairs (x, t) in its
labeled corpus.

JS =
1
N

∑
(x,t)

E(x, t; θ) +
λS

2
∥θ∥2

(11)

whereE(x, t; θ) is the sum over the errors obtained
at each node of the tree that is constructed by the
greedy RAE:

E(x, t; θ) =
∑

k∈RAELS
(x)

κE∗
rec([c1; c2]k; θs)

+ (1− κ)Ece(pk, t; θce)
(12)

To compute this gradient, we first greedily con-
struct all trees and then derivatives for these trees
are computed efficiently via back-propagation
through structure (Goller and Kuchler, 1996). The
gradient for our new reconstruction function (Eq.
10) w.r.t to p at a given node is calculated as

∂E∗
rec

∂p
=

∂Erec

∂p
+ λp(p− p∗) (13)

The first term ∂Erec
∂p is calculated as in standard

RAE model. The partial derivative in above equa-
tion is used to compute parameter gradients in stan-
dard back-propagation algorithm.

4.1.2 Phase II : Resource Poor Language
In this phase, we modify the parameters of
RAELT

and θce by optimizing Objective JT over
(sentence, label) pairs (x, t) in labeled corpus for
LT (much smaller than that for LS). The equation

for JT is similar to Eq.11 and Eq.12 but with θt and
η as parameters instead of θs and κ respectively.
Since cross-entropy layer is only associatedwith

LS , we need to traverse the transformation param-
eters to obtain sentiment distribution for each node
(green path in Fig.2). That is, we first transform pt

to source side phrase p′s and then apply the cross
entropy weights to it.

d(pt, θce) = σ(W ce.f(W t
spt + bt

s)) (14)

We use the similar back-propagation through
structure approach for gradient calculation in
Phase I. During back propagation, 1) we do not
update the transformation weights, 2) we transfer
error signals during back-propagation from Cross-
entropy layer to θ

(1)
t as if the transformation was

an additional layer in the network.

4.1.3 Predicting overall sentiment
To predict overall sentiment associated with the
sentence in LT , we use the phrase embeddings pt

of the top layer of the RAELT
and it transforma-

tion p′s. Together, we train a softmax regression
classifier on concatenation of these two vector us-
ing weight matrix W ∈ RK×2n

5 Experimental Work

We perform experiments on two kind of sentiment
analysis systems : (1) that gives +ve/-ve polarity
to each review and (2) assigns ratings in range 1 -
4 to each review.

5.1 External Datasets Used
For pre-training the word embeddings and RAE
Training, we used HindMonoCorp 0.5(Bojar et al.,
2014) with 44.49M sentences (787M Tokens) and
English Gigaword Corpus.
For Cross Training, we used the bilingual

sentence-aligned data fromHindEnCorp1 (Bojar et
al., 2014) with 273.9k sentence pairs (3.76M En-
glish, 3.88M Hindi Tokens). This dataset contains
sentence pair obtained from Bilingual New Arti-
cles, Wikipedia entries, Automated Translations,
etc. Training and Validation division is 70% and
30% for all above datasets.
In Supervised Phase I, we

used IMDB11 dataset available at
http://ai.stanford.edu/~amaas/data/sentiment/
and first used by (Maas et al., 2011) for +ve/-ve

1http://ufal.mff.cuni.cz/hindencorp
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system containing 25000 +ve and 25000 -ve
movie reviews.
For 4-ratings system, we use Rotten Toma-

toes Review dataset (scale dataset v1.0) found
at http://www.cs.cornell.edu/People/pabo/movie-
review-data. The dataset is divided into four
author-specific corpora, containing 1770, 902,
1307, and 1027 documents and each document has
accompanying 4-Ratings ({0, 1, 2, 3}) label.

5.2 Rating Based Hindi Movie Review
(RHMR) Dataset

We crawled the Hindi Movie Reviews Website2 to
obtain 2945 movie reviews. Each Movie Review
on this site is assigned rating in range 1 to 4 by
at least three reviewers. We first discard reviews
that whose sum of pairwise difference of ratings is
greater than two. The final rating for each review is
calculated by taking the average of the ratings and
rounding up to nearest integer. The fraction of Re-
views obtained in ratings 1-4 are [0.20, 0.25, 0.35,
0.20] respectively. Average length of reviews is
84 words. For +ve/-ve polarity based system, we
group the reviews with ratings {1, 2} as negative
and {3, 4} as positive.

5.3 Experimental Settings
We used following Baselines for Sentiment Anal-
ysis in Hindi :
Majority class: Assign the most frequent class

in the training set (Rating:3 / Polarity:+ve)
Bag-of-words: Softmax regression on Binary

Bag-of-words
We also compare our system with state of the art

Monolingual and Cross Lingual System for Senti-
ment Analysis in Hindi as described by (Popat et
al., 2013) using the same experimental setup. The
best systems in each category given by them are as
below:
WordNet Based: Using Hindi-SentiWordNet3,

each word in a review was mapped to correspond-
ing synset identifiers. These identifiers were used
as features for creating sentiment classifiers based
onBinary/Multiclass SVM trained on bag ofwords
representation using libSVM library.
Cross Lingual (XL) Clustering Based: Here,

joint clustering was performed on unlabeled bilin-
gual corpora which maximizes the joint likelihood
of monolingual and cross-lingual factors.. For de-
tails, please refer the work of (Popat et al., 2013).

2http://hindi.webdunia.com/bollywood-movie-review/
3http://www.cfilt.iitb.ac.in/

Each word in a reviewwas then mapped to its clus-
ter identifier and used as features in an SVM.
Our approaches
Basic RAE:We use the Semi-Supervised RAE

based classification where we first trained a stan-
dard RAE using Hindi monolingual corpora, then
applied supervised training procedure as described
in (Socher et al., 2011). This approach doesn't use
bilingual corpora, but is dependent on amount of
labeled data in Hindi.
BRAE-U:We neither include penalty term, nor

fix the transformations weights in our proposed
system.
BRAE-P:We only include the penalty term but

allow the transformation weights to be modified in
proposed system.
BRAE-F: We add the penalty term and fix the

transformation weights during back propagation in
proposed system.

5.4 Experimental Setup

We combined the text data from all English
Datasets (English Gigaword + HindEnCorp En-
glish Portion + IBMD11 + Scale Dataset) de-
scribed above to train the word embeddings us-
ing Word2Vec toolkit and RAE. Similarly, we
combined text data from all Hindi Datasets
(HindMonoCorp + HindiEnCorp Hindi Portion +
RHMR) to train word embeddings and RAE for
Hindi.
We used MOSES Toolkit (Koehn et al., 2007)

to obtain high quality bilingual phrase pairs from
HindEnCorp to train our BRAE model. After
removing the duplicates, 364.3k bilingual phrase
pairs were obtained with lengths ranging from 1-
6, since bigger phrases reduced the performance of
the system in terms of Joint Error of BRAEmodel.
We randomly split our RHMR dataset into 10

segments and report the average of 10-fold cross
validation accuracies for each setting for both Rat-
ings and Polarity classifiers.
We also report 5-fold cross validation accuracy

on Standard Movie Reviews Dataset (hereby re-
ferred as SMRD) given by (Joshi et al., 2010)
which contains 125 +ve and 125 -ve reviews
in Hindi. The dataset can be obtained at
http://www.cfilt.iitb.ac.in/Resources.html.
Since this project is about reducing depen-

dence on annotated datasets, we experiment on
how accuracy varies with labeled training dataset
(RHMR) size. To perform this, we train our model
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in 10% increments (150 examples) of training set
size (each class sampled in proportion of original
set). For each size, we sample the data 10 times
with replacement and trained the model. For each
sample, we calculated 10-fold cross validation ac-
curacy as described above. Final accuracy for each
sizewas calculated by averaging the accuracies ob-
tained on all 10 samples. Similar kind of evalua-
tion is done for all other Baselines explored.
In subsequent section, the word 'significant' im-

plies that the results were statistically significant
(p < 0.05) with paired T-test

5.5 BRAE Hyper Parameters
We empirically set the learning rate as 0.05. The
word vector dimension was selected as 80 from set
[40, 60, 80, 100, 120] using Cross Validation. We
used joint error of BRAE model to select α as 0.2
from range [0.05, 0.5] in steps of 0.05. Also, λL

was set as 0.001 for DNN trained for word embed-
ding and λBRAE as 0.0001.
For semi-supervised phases , we used 5-fold

cross validation on training set to select κ and η in
range [0.0, 1.0] in steps of 0.05 with optimal value
obtained at κ = 0.2 and η = 0.35. Parameter λp

was selected as 0.01 , λS as 0.1 and λT as 0.04
after selection in range [0.0, 1.0] in steps of 0.01.

5.6 Results

Dataset RHMR SMRD
Classifier Ratings Polarity Polarity

Majority class 35.19 51.83 52.34
Bag-of-Words 51.98 62.52 68.47
WordNet based 55.47 67.29 75.5
XL Clustering 72.34 84.46 84.71
Basic RAE 75.53 79.31 81.06
BRAE-U 76.01 82.66 84.83
BRAE-P 79.70 84.85 87.00
BRAE-F 81.22 90.50 90.21

Table 1: Accuracies obtained for various Exper-
imental Settings. Model are trained on complete
labeled training datasets

Table 1 present the results obtained for both rat-
ings based and polarity classifier on RHMR and
MRD Dataset. Our model gives significantly bet-
ter performance for ratings based classification
than any other baseline system currently used for
SA in Hindi. The margin of accuracy obtained
against next best classifier is about 8%. Also, for

A ↓ /P → P-1 P-2 P-3 P-4
A-1 83.19 15.28 1.53 0.00
A-2 12.23 82.20 5.57 0.00
A-3 0.00 9.03 81.26 9.71
A-4 0.00 1.87 19.69 78.44

F1-score 0.83 0.78 0.82 0.80

Table 2: Confusion Matrix for Ratings by BRAE-
F, Across: Predicted Rating, Downward: Actual
Rating

+ve/-ve polarity classifier, the accuracy showed an
improvement of 6% over next highest baseline.
In Table 2, we calculate the confusion matrix for

our model(BRAE-F) for the 4-Ratings case. Value
in a cell (Ai, Pj) represents the percentage of ex-
amples in actual rating class i that are predicted
as rating j. We also show the F1 score calcu-
lated for each individual rating class. It clearly
shows that our model has low variation in F1-
scores and thereby its performance among various
rating classes.
In Fig. 3, we show the variation in accuracy

of the classifiers with amount of sentiment labeled
Training data used. We note that our approach con-
sistently outperforms the explored baselines at all
dataset sizes. Also, our model was able to attain
accuracy comparable to other baselines at about
50% less labeled data showing its strength in ex-
ploiting the unlabeled resources.
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Figure 3: Variation of Accuracy (+ve/-ve Polarity)
with Size of labeled Dataset(Hindi), x-axis: Frac-
tion of Dataset Used, y-axis: %age Accuracy Ob-
tained

We also experiment with variation of accuracies
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New Word/Phrase Similar Words/Phrases Sentiment label
depressing gloomy उदास Rating : 1
Ǔनराशाजनक discouraging Ǔनराशा×मक Polarity : -ve
was painful was difficult कǑठन था Rating : 2
दद[नाक था was badखराब था Polarity : -ve

should be awarded was appreciated सराहना कȧ गई Rating : 4
सàमाǓनत ͩकया जाना चाǑहए will get accolades वाहवाहȣ ͧमलना चाǑहए Polarity : +ve

public won't come no one will come कोई नहȣं आएगा Rating : 1
लोग नहȣं आएगा viewers won't come दश[क नहȣं आएगा Polarity : -ve

Table 3: Semantically similar phrases obtained for new phrases and their assigned label

with amount of Unlabeled Bilingual Training Data
used for Cross Lingual models explored. Again
we increase size of bilingual dataset in 10% incre-
ments and calculate the accuracy as described pre-
viously. In Fig. 4, we observed that performance
of the proposed approach steadily increases with
amount of data added, yet even at about 50000
(20%) phrase pairs, our model produces remark-
able gains in accuracy.
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Figure 4: Variation of Accuracy (+ve/-ve polarity)
with Size of Unlabeled Bilingual Corpora, x-axis:
Fraction of Training Data Used, y-axis: %age Ac-
curacy Obtained

We also observed that the model which restricts
modification to transformation weights during su-
pervised phase II does better than the one which
allows the modification at all dataset sizes. This
result appears to be counterintuitive to normal op-
eration of neural network based models, but sup-
ports our hypothesis as explained in previous sec-
tions.

5.7 Performance and Error Analysis
Analysis on the test results showed that the major
advantage given by our model occurs due to pres-
ence of unknown words (i.e.words not present in
labeled dataset) in test data. Since we restricted
the movement in semantic vector space, our model
was able to infer the sentiment for a unknown
word/phrase by comparing it with semantically
similar words/phrases. In Table 3, we extracted
the Top-2 semantically similar phrases in training
set for small new phrases and sentiment labeled
assigned to them by our model (the phrases are
manually translated from Hindi for reader's under-
standing). As we can see, our model was able to
extract grammatically correct phrases with similar
semantic nature as given phrase and assign correct
sentiment label to it.
Secondly, We found that our model was able to

correctly infer word sense for polysemous words
that adversely affected the quality of sentiment
classifiers in our baselines. This eliminates the
need for manually constructed fine grained lexi-
cal resource like WordNets and development of
automated annotation resources. For example,
to a phrase like "Her acting of a schizophrenic
mother made our hearts weep", the baselines clas-
sifiers assigned negative polarity due to presence
of words like 'weep', yet our model was correctly
able to predict positive polarity and assigned it a
rating of 3.
Error Analysis of test results showed that errors

made by our model can be classified in two major
categories :
1) A review may only give description of the

object in question (in our case , the description of
the film) without actually presenting any individ-
ual sentiments about it or it may express conflict-
ing sentiments about two different aspects about
the same object. This presents difficulty in assign-
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ing a single polarity/rating to the review.
2) Presence of subtle contextual references af-

fected the quality of predictions made by our clas-
sifier. For example, sentence like ''His poor acting
generally destroys a movie, but this time it didn't''
got a rating of 2 due to presence of phrase with
negative sense (here the phrase doesn't have am-
biguous sense), yet the actual sentiment expressed
is positive due to temporal dependence and gen-
eralization. Also, "This movie made his last one
looked good" makes a reference to entities exter-
nal to the review, which again forces our model to
make wrong prediction of rating 3.
Analyzing these aspects andmaking correct pre-

dictions on such examples needs further work.

6 Conclusion and Future Work

This study focused on developing a Cross Lin-
gual Supervised Classifier based on Bilingually
Constrained Recursive Autoencoder. To achieve
this, our model first learns phrase embeddings for
two languages using Standard RAE, then fine tune
these embeddings using Cross Training procedure.
After imposing certain restrictions on these em-
beddings, we perform supervised training using
labeled sentiment corpora in English and a much
smaller one in Hindi to get the final classifier.
The experimental work showed that our model

was remarkably effective for classification of
Movie Reviews in Hindi on a rating scale and
predicting polarity using least amount of data to
achieve same accuracy as other systems explored.
Moreover it reduces the need for MT System or
lexical resources like Linked WordNets since the
performance is not degraded too much even when
we lack large quantity of labeled data.
In Future, we hope to 1) extend this system to

learn phrase representations among multiple lan-
guages simultaneously, 2) apply this framework to
other cross Lingual Tasks such as Paraphrase de-
tection, Question Answering, Aspect Based Opin-
ion Mining etc and 3) Learning different weight
matrices at different nodes to capture complex re-
lations between words and phrases.
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Abstract

Opinion summarization is the task of pro-
ducing the summary of a text, such that the
summary also preserves the sentiment of
the text. Opinion Summarization is thus a
trade-off between summarization and sen-
timent analysis. The demand of com-
pression may drop sentiment bearing sen-
tences, and the demand of sentiment de-
tection may bring in redundant sentences.
We harness the power of submodularity
to strike a balance between two conflict-
ing requirements. We investigate an in-
cipient class of submodular functions for
the problem, and a partial enumeration
based greedy algorithm that has perfor-
mance guarantee of 63%. Our functions
generate summaries such that there is good
correlation between document sentiment
and summary sentiment along with good
ROUGE score, which outperforms the-
state-of-the-art algorithms.

1 Introduction

Sentiment Analysis is often addressed as a classi-
fication task, which aims at determining the sen-
timent of a word, sentence, paragraph or a docu-
ment as a whole into positive, negative or neutral
classes (Pang et al., 2002). Summarization, on the
other hand is the task of aggregating and represent-
ing information content from a single document or
multiple documents in a brief and fluent manner.
Due to the explosive growth of data, fine grained
sentiment analysis as well as summarization on the
whole chunk of data can be a very time-consuming
task. Sentiment Analysis also requires filtering of
text portions as either objective (factual informa-
tion) or subjective (expressing some sentiment or
opinion) during pre-processing and then, classify-
ing the subjective extracts as positive or negative.

Subjective extracts can also be provided to users
as a summary of the sentiment-oriented content
of the reviews in search engines. In this paper,
we address the problem of generic extractive sum-
marization of reviews, a task commonly known as
Opinion Summarization (Liu, 2012). The goals of
opinion summarization are:

1. Present a short summary that conveys the
essence as well as the sentiment of the review

2. Provide a short subjective extract to NLP
pipeline for faster execution (e.g. sentiment
analysis, review clustering etc.).

In this paper, we use movie reviews for opinion
summarization task as they often have the follow-
ing parts:

1. Plot - Description of the story, which is fac-
tual in nature

2. Critique - Opinion about the movie, which is
sentiment bearing

Clearly, opinion summary to be generated will
have a trade-off between the two opposing parts
- subjective critique and objective plot. Our goal
is to strike a balance through linear combination of
suitable submodular functions in our paper. Joint
models of relevance and subjectivity have a great
benefit in that they have a large degree of freedom
as far as controlling redundancy goes. In con-
trast, conventional two-stage approach Pang and
Lee (2004), which first generate candidate sub-
jective sentences using min-cut and then selects
top subjective sentences within budget to generate
a summary, have less computational complexity
than joint models. However, two-stage approaches
are suboptimal for text summarization. For ex-
ample, when we select subjective sentences first,
the sentiment as well information content may be-
come redundant for a particular aspect. On the
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other hand, when we extract sentences first, an im-
portant subjective sentence may fail to be selected,
simply because it is long. The two stage conflict
in the sense that the demand of compression may
drop sentiment bearing sentences, and the demand
of sentiment detection may bring in redundant sen-
tences. We then, use partial enumeration based
greedy algorithm (Khuller et al., 1999), which
gives performance guarantee of (1− e−1)≈ 0.632
(Sviridenko, 2004). The performance guarantee
reported is better than simple greedy algorithm,
used by Lin and Bilmes (2010) as their proof is
erroneous (Morita et al., 2013). Further, the same
greedy algorithm, which was used again in Lin and
Bilmes (2011) gives only performance guarantee
of 1

2(1− e1) ≈ 0.316 (Khuller et al., 1999).
The rest of the paper is as follows - in the next

section, we look at previous work and establish
further motivation for our work. Following that,
we build the theory and formulate suitable objec-
tives for opinion summarization task. In the final
section, we present results based on implementa-
tion and testing of the functions. Experimental re-
sults show that the functions outperform the-state-
of-the-art methods.

2 Previous Work

Automatically generating opinion summaries
from large review text corpora has long been stud-
ied in both information retrieval and natural lan-
guage processing.

In (Pang and Lee, 2004), a mincut-based algo-
rithm was proposed to classify each sentence as
being subjective or objective. The purpose of this
work was to remove objective sentences from re-
views to improve document level sentiment classi-
fication. Interestingly, the cut functions are sym-
metrical and submodular, and the problem of find-
ing min-cut is equivalent to minimizing a symmet-
ric submodular function.

Lerman et al. (2009) proposed three different
models - sentiment match (SM), sentiment match
+ aspect coverage (SMAC) and sentiment-aspect
match (SAM) to perform summarization of re-
views of a product. The first model is called sen-
timent match (SM), which extracts sentences so
that the average sentiment of the summary is as
close as possible to the average sentiment rating
of reviews of the entity i.e. low MISMATCH
but with high sentiment INTENSITY. The sec-
ond model, called sentiment match + aspect cov-

erage (SMAC), builds a summary that trades-off
between DIVERSITY, maximally covering impor-
tant aspects and MISMATCH, matching the over-
all sentiment of the entity along with high INTEN-
SITY. The third model, called sentiment-aspect
match (SAM), not only attempts to cover impor-
tant aspects, but cover them with appropriate sen-
timent using KL-Divergence function. Here, IN-
TENSITY and DIVERSITY in the first two mod-
els are linear monotone submodular functions,
while KL-Divergence function i.e. relative en-
tropy in last model, unlike entropy is not mono-
tone submodular.

In (Nishikawa et al., 2010b), a more sophis-
ticated summarization technique was proposed,
which generates a traditional text summary by se-
lecting and ordering sentences taken from multi-
ple reviews, considering both informativeness and
readability of the final summary. The readability
score in this paper would have been linear mono-
tone submodular function, if the negative polarity
was not penalizing. In (Nishikawa et al., 2010a),
the authors further studied this problem using an
integer linear programming formulation.

On the other hand, Lin et al .(2011) treated the
task of generic summarization as monotone sub-
modular function maximization. Further, they ar-
gued that monotone non-decreasing submodular
functions are an ideal class of functions to inves-
tigate for document summarization. They also
show, in fact, that many well-established meth-
ods for summarization (Carbonell and Goldstein,
1998; Filatova, 2004; Riedhammer et al., 2010)
correspond to submodular function optimization,
a property not explicitly mentioned in these publi-
cations. Since many authors either in summariza-
tion or opinion summarization have used functions
similar to submodular functions as objective, we
can take this fact as testament to the value of sub-
modular functions for opinion summarization.

3 Theoretical Background

3.1 Introduction to Submodular Functions
A submodular function is a set function (f : 2V →
R) having a natural diminishing returns property.
Diminishing returns property holds if the differ-
ence in the value of the function that a single ele-
ment makes when added to an input set decreases
as the size of the input set increases i.e. for every
A,B ⊆ V with A ⊆ B and every x ∈ V \B, we
have that f(A∪{x})−f(A) ≥ f(B∪{x})−f(B).
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A submodular function f is monotone if for every
A ⊆ B, we have that f(A) ≤ f(B).

The extractive summarization task can be mod-
eled as optimization problem i.e. finding a set
S ⊆ V (S is set of sentences in summary, V is
set of sentences in Document) which maximizes a
submodular function f(S) subject to budget con-
straints. In the following section, we will justify
the use of submodular function for opinion sum-
marization. Another advantage of choosing mono-
tone submodular function is that there exists a
polynomial-time greedy algorithm for constrained
monotone submodular objective. The greedy al-
gorithm guarantees that the summary solution ob-
tained is almost as good as (63%) the best possi-
ble summary solution according to the objective
(Sviridenko, 2004; Wolsey, 1982).

3.2 Submodularity in Opinion
Summarization

Opinion Summarization should be modeled as
a monotone submodular optimization problem,
since opinion summary also holds following prop-
erties:

1. Monotonicity - As more sentences are added
to opinion summary, subjectivity increases
along with information content as opinion-
ated words are being added.

2. Diminishing Return - If multiple sentences of
varying intensity are added to opinion sum-
mary, the effect of a lower intensity polarity
bearing sentence is diluted in the presence of
a higher intensity one.

To show that opinion summarization inherently
follow the diminishing return property, consider
the following sentences1 with positive polarity:
A: “Even the acting in From Hell is solid, with the
dreamy Depp turning in a typically strong perfor-
mance and deftly handling a British accent.”
B: “Worth mentioning are the supporting roles by
Ians Holm and Richardsonlog.”
(A ∪ B) : “Even the acting in From Hell is solid,
with the dreamy Depp turning in a typically strong
performance and deftly handling a British accent.
Worth mentioning are the supporting roles by Ians
Holm and Richardsonlog.” Compare A and its su-
perset, A ∪ B as candidate summaries. Sentence
A and B convey positive sentiment, but sentence

1http://www.imdb.com/reviews/295/29590.html

B has less intensity compared to sentence A. After
reading the text (A∪B), it is clear that the effect of
sentence B has diminished in front of sentence A,
though both are of same polarity. B can be thus,
removed from the candidate summary as it does
a diminishing addition in presence of sentence A
to the positive sentiment over the "acting" aspect
of the entity "movie". The diminishing return not
only holds for same polarity but also, for opposite
polarity. Consider another example2:
A: “The movie is predictive with foreseeable end-
ing.”
B: “Still it’s very well-done that no movie in this
entire year has a scene that evokes pure joy as this
does.”
(A ∪ B) : “The movie is predictive with foresee-
able ending. Still it’s very well-done that no movie
in this entire year has a scene that evokes pure joy
as this does.” Compare B and its superset, A ∪
B as candidate summaries. Sentence A has neg-
ative sentiment whereas sentence B conveys posi-
tive sentiment with more intensity. When we read
the text (A ∪ B), it is clear that the effect of sen-
tence A has diminished in front of sentence B in
text , as usually polarity of higher intensity dom-
inates over the polarity of lower intensity. Now,
consider a general example3,
“Laurence plays Neo’s mentor Morpheus and he
does an excellent job of it. His lines flow with con-
fidence and style that makes his acting unique and
interesting. The movie has lot of special effects
and action-packed scenes with part of the appeal
has philosophical and religious underpinnings.”

If the budget for summary had been only two
subjective sentences, then picking up first two
would have redundantly captured only single as-
pect (i.e. acting) and the redundancy of the con-
cept (acting) also causes a diminishing return of
the second sentence because of the difference in
sentiment intensity. However, picking the last
sentence with either one of the first two would
have not just covered both the aspects (i.e. acting
and visual effects) but since, the sentences are not
overlapping in aspects, there would not have been
any diminishing return of sentiment on shared as-
pect (acting). Thus, it can be verified that opinion
polarity also holds submodular property of dimin-
ishing return, if they are on the same aspect of a
distinct entity.

2http://www.imdb.com/reviews/159/15918.html
3http://www.imdb.com/title/tt0133093/reviews
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4 Formulation

Let V represent the set of the sentences in a doc-
ument. The task of extractive opinion summariza-
tion is to select a subset S ∈ V to represent the
entirety (ground set V ) . Obviously, we should
have |S| ≤ |V | as it is a summary and should be
small. Therefore, constraints on S can naturally be
modeled as knapsack constraints:∑

i∈S
ci ≤ b (1)

where ci is the non-negative cost of selecting
unit i (e.g., the number of words in the sentence)
and b is our budget. If we use a set function
F : 2V → R to measure the quality of the sum-
mary set S, the summarization problem can then
be formalized as the following combinatorial opti-
mization problem:

S∗ ∈ argmaxS⊂V F (S) s.t.
∑
i∈S

ci ≤ b (2)

where F (S) , total utility of summary is given as
a linear combination of L(S), relevance and A(S),
subjective coverage of aspects.

F (S) = αL(S) + βA(S) (3)

This formulation clearly brings out the trade-off
between the subjective and the objective part. The
intuition behind the combination of sentiment and
aspect coverage in same function A(S) is that opin-
ion polarity holds submodular property of dimin-
ishing return only if the set of sentences talk about
common aspect of the same entity as discussed
in previous section. L(S) , relevance is modeled
same as in (Lin and Bilmes, 2011) as it captures
the summary property, while our novel function,
A(S) has been modeled differently through a suit-
able submodular function such that it captures the
subjectivity property.

L(S) =
∑
i∈V

min{ci(S), γci(V )} (4)

ci(S) =
∑
j∈S

wi,j (5)

Here, wi,j > 0 measures the similarity between
ith and jth sentences and ci(S) measures the sim-
ilarity of summary with the document.

Since, A(S), subjective coverage of aspects has
to be modeled as monotone submodular function,
it has been formulated as :

1. A1 : Modular Function
A1(S) is simple linear function, which is sum
of weighted subjective scores for each sen-
tence. No budgeting constraints are added to
this formulation.

A1(S) =
∑
i

∑
j∈(Pi∩S)

sj ∗ wi (6)

Here Pi; i = 1...K is a partition of the ground
set V (i.e., ∪iPi = V ), which contains sen-
tences pertaining to different distinct aspects.
wi are the weights of the partitions, based on
the corresponding aspects. sj is the subjec-
tive score of the sentence j in summary. The
subjective score sj is calculated using senti-
wordnet as sum of the positive score ∈ [0, 1]
and negative score ∈ [0, 1] (Esuli and Sebas-
tiani, 2006).

sj =
∑

word∈j
(pos(word) + neg(word))

(7)

2. A2 : Budget-additive Function
A2(S) is an extension to A1(S), where max-
imum subjectivity score is restricted with
budget based on aspect. Here, λ ∈ [0, 1]
is threshold coefficient for budget additive
function to avoid redundancy of high senti-
ment on same aspect. When aspect i is satu-
rated by S (min(

∑
j∈(Pi∩S) sj , λ) = λ), any

new sentence j cannot further improve cov-
erage over i and thus, other aspects, which
are not yet saturated will have a better chance
of being covered. This formulation ensures
that produced summary is diverse enough and
conveys sentiment about different aspects by
budgeting.

A2(S) =
∑
i

min(
∑

j∈(Pi∩S)

sj , λi) ∗ wi (8)

3. A3 : Polarity Partitioned Budget-additive
Function
In previous formulation we have not consid-
ered the polarity of the sentences. For ex-
ample, if an aspect have many positive sen-
tences with more intensity but few negative
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sentences with less intensity, A2 more likely
to reward more positive sentences because of
intensity. In this formulation budgeting ap-
plied not only on aspect but polarity scores
too. This ensures that both positive and neg-
ative polarity sentences are part of summary.

A3(S) =
∑
i

min(
∑

j∈(Pi∩S∩Ppos)

sj , λi) ∗ wi

+min(
∑

j∈(Pi∩S∩Pneg)

sj , λi) ∗ wi

(9)

Ppos and Pneg are the partition of the sen-
tences in the ground set V , based on their
sign of polarity score. The polarity score polj
for partitioning sentences into Ppos and Pneg
is calculated as difference of the positive and
negative score.

polj =
∑

word∈j
(pos(word)− neg(word))

(10)

Polarity based partitions bring out contrast
view on a particular aspect, which is simi-
lar to contrast view opinion summarization to
give the reader a direct comparative view of
different strong opinions.

4. A4 : Facility Location Function

In this formulation, we model the facil-
ity location objective function (Krause and
Golovin, 2014) for opinion summarization as
choosing possible sentences (facilities) out
of document (set of locations) to serve as-
pects (customers) giving service of value sj .
If each aspect (customer) chooses the sen-
tences (facility) with the highest value, the to-
tal value provided to all aspects (customers)
is modeled by this set function.

A4(S) =
∑
i

maxj∈(Pi∩S)sj ∗ wi (11)

So A4 rewards only a sentence which has
maximum subjectivity score in each aspect.

5. A5 : Polarity Partitioned Facility Location
Function
A5 is similar to A4, but for each aspect, A5

rewards two sentences with positive and neg-
ative polarity but with maximum subjectivity
scores in those polarity partitions.

A5(S) =
∑
i

maxj∈(Pi∩S∩Ppos)sj ∗ wi

+
∑
i

maxj∈(Pi∩S∩Pneg)sj ∗ wi
(12)

Each of the above functions are monotone sub-
modular as the parameters sj and wi are positive.
Since the first function is linear, it is both submod-
ular and supermodular, thus modular. Budget ad-
ditive and facility location functions (Krause and
Golovin, 2014) are special types of monotone sub-
modular functions. Since, monotone submodular-
ity is preserved under non-negative linear combi-
nations, polarity based partitioned function, whose
sub-parts are monotone submodular is also mono-
tone submodular.

5 Experiment

We have created Movie ontology tree manually
(figure 1). Further the ontology is enriched by
adding clue words to all aspects using wordnet
sense propagation algorithm (Esuli and Sebastiani,
2006) for three iterations. The algorithm does a
hard clustering of the sentences by assigning the
sentence aspect, which has maximum number of
clue words in that sentence. Clue words for ‘Plot’
aspect are story, script, storyline, chief, commu-
nicative, explain, narrate, narration, narrative,
narrator, report, reporter, scheme, schemer, script,
scriptural, storyteller, tell, write up..,.

For the experiments, we have used the polar-
ity dataset from Pang et al. (2004). The dataset
contains 1000 positive and 1000 negative movie
reviews with size varying between 700 to 1000
words. As summary generation is time consum-
ing task (DUC4 only used 25 summaries to eval-
uate the performance of systems), we picked 100
positive and 100 negative reviews randomly from
the dataset and their abstract summaries are gener-
ated manually with 200 words limit as budget for

4Document Understanding Conferences,
http://duc.nist.gov
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Figure 1: Movie Ontology Tree

evaluation. These 200 summaries are used as gold
standard for estimating ROUGE scores of system
generated summaries.

In the experiment, the partial enumeration based
greedy algorithm (Khuller et al., 1999) is used for
summary generation of 200 test documents within
budget of 200 words. The algorithm has two parts.
In the first part, the algorithm compares function
values of all feasible solutions (sets) of cardinal-
ity one or two. Let Summ1 be a feasible set of
cardinality one or two that has the largest value of
the objective function F (S). In the second part,
the algorithm enumerates all feasible sets of cardi-
nality three. The algorithm, then completes each
such set greedily and keeps the current solution
feasible with respect to the knapsack constraint.
Let Summ2 be the solution obtained in the second
part that has the largest value of objective function
over all choices of the starting set for the greedy
algorithm. Finally, the algorithm outputs Summ1

if F (Summ1) > F (Summ2) else Summ2 oth-
erwise. The algorithm does O(n2) function cal-
culations in first part, while O(n5) in second part.
This algorithm gives a performance guarantee of

(1−e−1) for solving monotone submodular objec-
tive with knapsack constraint (Khuller et al., 1999;
Sviridenko, 2004). As far as we know, the algo-
rithm has not been implemented for such prob-
lems because of complexity constraints (Lin and
Bilmes, 2011).

Algorithm 1 Overall Algorithm - Summary Ex-
traction
B⇐ 200
for Sentence s ∈ Document V do

Assign sentence s to one of aspects in movie ontology.
end for
Summ1 ⇐ argmax { F(S), such that S ⊆ V, |S| < 3, and
cost(S) ≤ B }
Summ2⇐ ∅
for all S ⊆ V, |S|=3, and cost(S) ≤ B do

U ⇐ V \S
while U 6= ∅ do

maxReturn⇐ 0.0
newSentence⇐ ∅
for Sentence s ∈ U do

S∗ ⇐ S ∪ {s}
F (S∗)⇐ αL(S∗) + (1− α)A(S∗)
return⇐ F (S∗)−F (S)

len(s)

if return ≥ maxReturn then
maxReturn⇐ return
newSentence⇐ s

end if
end for
if cost(S ∪ {newSentence}) ≤ B then

S ⇐ S ∪ {newSentence}
end if
U⇐ U \{newSentence}

end while
if F(S) ≥ F (Summ2) then

Summ2⇐ S
end if

end for
if F(Summ1) ≥ F(Summ2) then

Summary⇐ Summ1

else
Summary⇐ Summ2

end if

In the algorithm, the sentences are clustered in
different partitions, corresponding to different as-
pects in the ontology tree using the clue words.
In the experiment, hard clustering of the sentences
in aspect-based partitions is considered but soft-
clustering of the sentences will also work with this
approach, which has been left out to avoid further
parameter tuning for soft clustering assigments.
The weights of the partitions as well as the thresh-
old parameters for the A(S) are currently kept pro-
portional to the inverse of the depth of that aspect
in the ontology-tree as sentiment expressed on the
concepts at higher level in the ontology tree should
have more weightage.
∀ Aspects i,

wi = λi =
1

Level(i)
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The linear combination parameter β is set as 1−
α to bring out the trade-off between relevance and
subjective coverage of aspects andα is varied from
0 to 1 with step size 0.05 to find optimal α. γ in
L(S) is set to 0.5. The parameter learning, esp. α
and its impact have been already studied in (Lin
and Bilmes, 2011) and thus, is not addressed in
the paper. We have used the same approach of grid
search to find the optimal value of α.

6 Results

We use ROUGE (Lin, 2004) for evaluating the
content of summaries. We have used the 200 test
documents that are manually summarized as gold
standard data for ROUGE evaluation. For figuring
out the sentiment correlation between manual and
system generated summaries, we trained Naive
Bayes sentiment classifier (Pang et al., 2002) on
training data using bag of words approach with
features as unigrams and bigrams and then, us-
ing minimum Pearson’s chi-square score of 3 for
feature extraction (Pecina and Schlesinger, 2006)
before calculating the sentiment. The measure
of sentiment preservation is calculated as Pear-
son correlation between the sentiment score of the
document and the corresponding summary senti-
ment, both calculated by the Naive Bayes senti-
ment classifier while the measure of coverage of
information content is given by ROUGE-1 and
ROUGE-2 f-scores. Mathematically,

Correlation(X,Y ) =
Covariance(X,Y )

std.dev(X) ∗ std.dev(Y )
(13)

Here, random variable X is the sentiment score
of the document sample and random variable
Y is the sentiment score of the correspond-
ing summary sample. For 200 documents, it
will be [(X1, Y1), (X2, Y2), ..., (X200, Y200)] sam-
ple points for the above correlation function.

Following five baselines are used for compari-
son:

1. Baseline-1/TOP : Sentences selected con-
secutively from the start of the review within
the budget.

2. Baseline-2/TOP-SUBJ : Sentences ranked
based on their subjectivity and then, selected
with in the budget.

3. Baseline-3/LER-SM : (Lerman et al., 2009)
Sentences which have sentiment close to doc-
ument sentiment are chosen as Summary. We

have used same NaiveBayes classifier (Pang
et al., 2002) trained on imdb corpus to predict
the sentiment of a sentence and document.

minS⊂V
∑
j∈S

(|senti(V )− senti(j)|) (14)

4. Baseline-4/TEXTRANK : TextRank sum-
marizer is based on Graph based unsuper-
vised algorithm. Graph is constructed by cre-
ating a vertex for each sentence in the docu-
ment and edges between vertices based on the
number of words two sentences (of vertices)
have in common and then, ranking them by
applying PageRank to the resulting graph.
Summary is generated with sentences hav-
ing more vertex score (Mihalcea and Tarau,
2004).

5. Baseline-5/MINCUT : Mincut algorithm
(Pang and Lee, 2004) classifies the sentences
as subjective and objective sentences, by
finding minimum s-t cuts in graph of sen-
tences using maximum flow algorithm. In
the graph, each sentence is a vertex and the
edge between the vertex to the source or sink
is taken as probability of the sentence being
subjective or objective (individual scores).
To ensure the graph connectivity, edges are
drawn between every pair of sentence ver-
tices, with edge weights taken proportional to
the degree of proximity (association scores).
After maximum flow algorithm, the cut in
which source vertex lies is classified as sub-
jective and vice-versa. We pick top subjective
sentences within the budget as summary.

Among the five baselines, TOP and TOP-SUBJ
are simplistic. Though both TEXTRANK and
MINCUT were not originally proposed for opin-
ion summarization but a number of papers in opin-
ion summarization have built over these two meth-
ods and also, used them as baselines and thus,
comparing with the "well-known" baselines will
give the readers from the sentiment analysis field
an intuitive idea of the performance of our sys-
tem. MINCUT, however was reproposed specif-
ically for subjective summarization by Pang and
Lee (2004) and we use that formulation for com-
parison.

Table 1 compares the five functions with the
above baselines based on optimal values of trade-
off α. From the table, it can be inferred that all the
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System ROUGE1 ROUGE2 S. Corr.

TOP 0.43001 0.16591 0.86144
TOP-SUBJ 0.41807 0.14362 0.82953
LER-SM 0.42608 0.14533 0.96545
TEXTRANK 0.41987 0.14644 0.88967
MINCUT 0.39368 0.11047 0.84017
Submod-A1 0.43223 0.15702 0.95306
Submod-A2 0.43594 0.15977 0.97538
Submod-A3 0.43247 0.15436 0.93155
Submod-A4 0.43602 0.15760 0.98566
Submod-A5 0.42976 0.15551 0.95415

Table 1: ROUGE F-score and sentiment correla-
tion for optimal values of α with baselines 1-5

proposed functions not only outperform the base-
lines in terms of ROUGE scores for optimal pa-
rameters but also, give better correlation with the
document sentiment. This can be quantitively ver-
ified by test of significance, unpaired one-tailed
t-test without assuming equal variance between
the baselines and the systems. The p-values are
0.0203 and 0.0066 respectively for ROUGE-1 F
Score and Sentiment Correlation, justifying that
the performance improvement by our system over
the baselines is statistically significant at p <
0.05. The main reason being that the functions
with optimal values of trade-off parameter α strike
out a balance between relevance and subjectivity.
Clearly, the facility location based monotone sub-
modular functions are the best choice as objective
for opinion summarization task as they select sen-
tences with maximum subjectivity (facilities giv-
ing best service).

Our system is able to access the information of
aspect and polarity of each sentence, while some
baselines do not. So, the improvement over the
baselines may be attributed to those additional in-
formation rather than the optimality of the par-
tial enumeration greedy algorithm over submodu-
lar functions. So, we therefore, introduced the fol-
lowing baseline to question this misdoubt on the
experiment:

6. Baseline-6/LIN :

In this baseline, the greedy algorithm (Lin and
Bilmes, 2010) is used for summary generation, us-
ing the same functions and information in the for-
mulation. This algorithm fills the empty summary
set greedily by adding a single sentence in each

System ROUGE1 ROUGE2 S. Corr.

LIN-A1 0.43112 0.15795 0.89850
LIN-A2 0.42704 0.15382 0.90212
LIN-A3 0.42612 0.15297 0.93155
LIN-A4 0.42688 0.15245 0.93905
LIN-A5 0.43359 0.15922 0.91019
Submod-A1 0.43223 0.15702 0.95306
Submod-A2 0.43594 0.15977 0.97538
Submod-A3 0.43247 0.15436 0.93155
Submod-A4 0.43602 0.15760 0.98566
Submod-A5 0.42976 0.15551 0.95415

Table 2: ROUGE F-score and sentiment correla-
tion for optimal values of α with baseline 6
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Figure 2: Sentiment Correlation vs α

iteration, which gives maximum return over cost
ratio (F (S∗)−F (S)

len(s) ), ensuring that current solution
is feasible with respect to the knapsack constraint
(cost(S ∪ {newSentence}) ≤ B). This algorithm
has a complexity of O(n2) but gives only perfor-
mance guarantee of 1

2(1− e1) ≈ 0.316 (Khuller et
al., 1999).

Table 2 compares the same five functions in our
system with (Lin and Bilmes, 2010) system based
on optimal values of tradeoff α. From the table,
it can be inferred that our system also outperforms
this baseline both in terms of ROUGE scores and
sentiment correlation, which can be quantitively
verified by test of significance, unpaired one-tailed
t-test without assuming equal variance between
the baselines and the systems. The p-values are
0.02517 and 0.003965 respectively for ROUGE-1
F Score and Sentiment Correlation, justifying that
the performance improvement by our system over
LIN system is statistically significant at p < 0.05.

The figures 2 and 3 plot the value of senti-
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Sys ROUGE1 ROUGE2 Senti. Corr.

A1 0.43223 0.15702 0.84827
A2 0.43594 0.15977 0.88601
A3 0.43247 0.15436 0.87038
A4 0.43602 0.15760 0.87818
A5 0.42976 0.15551 0.90147

Table 3: Maximum ROUGE F-score and their cor-
responding sentiment correlation

ment correlation and ROUGE-1 F score for the
formulated submodular functions with respect to
the trade-off parameter, α respectively. Looking at
the graph 2, we can observe that more weightage
to relevance over subjective coverage of aspects
decreases the sentiment correlation, which was ex-
pected because the summary generated misses out
on subjective sentiment due to trade-off. Simi-
larly, by looking at the graph 3, we also observe
that more weightage to relevance over subjective
coverage of aspects increases the ROUGE score
as expected. The erratic behaviour in figure 3 can
be explained by arguing that subjective words are
also important for summary and thus, giving less
weightage to them over relevance, ROUGE score
will increase but not properly.

The table 3 presents the value of sentiment
correlation corresponding to maximum ROUGE
score (for α ≈ 1). Clearly, A4 and A2 have maxi-
mum ROUGE scores as they neglect polarities and
instead, reward on aspect based partitions, thus in-
creasing coverage. The table 4 presents the value
of ROUGE score corresponding to maximum sen-
timent correlation (for α≈ 0). Clearly,A4 also has
maximum sentiment correlation as it rewards max-
imum subjectivity, irrespective of polarities and

Sys Senti. Corr. ROUGE1 ROUGE2

A1 0.95306 0.42572 0.14939
A2 0.97538 0.41764 0.14836
A3 0.93155 0.42415 0.14782
A4 0.98566 0.42492 0.14942
A5 0.95415 0.42572 0.14266

Table 4: Maximum sentiment correlation and cor-
responding ROUGE F-Score

the corresponding ROUGE-2 F-score is also high-
est among all functions. Tables 1 and 2 contain
the ROUGE F-score and sentiment correlation for
optimal values of α, found after grid search while
tables 3 and 4 contain the peak values in the fig-
ures 2 and 3. For example, table 3 contains the
peak value of ROUGE-1 F score from figure 3 and
the corresponding value of Sentiment Correlation
from figure 2, at the same α.

7 Conclusion

In this paper, we show that conflict between sub-
jectivity and relevance naturally arises in opinion
summarization. To address this problem, we intro-
duce new monotone submodular functions that are
well suited to document summarization (Lin and
Bilmes, 2010; Lin and Bilmes, 2011; Morita et
al., 2013) by modeling two important properties of
opinion summary - relevance and subjective cover-
age of aspects. We then, design different possible
combinations of objective functions to model the
task. To solve the algorithm effectively, we use
the partial enumeration based algorithm, which
is though computationally expensive (O(n5) func-
tion calls), gives a performance guarantee of 63%
for an NP-hard problem like summarization (Mc-
Donald, 2007). We have justified the submodular
property of opinion summary through examples
and significant performance of the system over the
baselines. Further, this optimal trade-off between
relevance and subjectivity can be used to design
an evaluation framework for opinion summariza-
tion task as both part of the objective functions are
proportional to the ROUGE and Sentiment Corre-
lation respectively, which are widely used evalua-
tion measures (Kim et al., 2011). As opinion sum-
marization task lies in the intersection of opinion
mining and summarization problems, both IR and
NLP communities will benefit from our work.
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Abstract

In this work, we build an entity/event-level
sentiment analysis system, which is able to
recognize and infer both explicit and im-
plicit sentiments toward entities and events
in the text. We design Probabilistic Soft
Logic models that integrate explicit senti-
ments, inference rules, and +/-effect event
information (events that positively or neg-
atively affect entities). The experiments
show that the method is able to greatly im-
prove over baseline accuracies in recog-
nizing entity/event-level sentiments.

1 Introduction

There are increasing numbers of opinions ex-
pressed in various genres, including reviews,
newswire, editorials, and forums. While much
early work was at the document or sentence
level, to fully understand and utilize opinions, re-
searchers are increasingly carrying out more fine-
grained sentiment analysis to extract components
of opinion frames: the source (whose sentiment
is it), the polarity, and the target (what is the senti-
ment toward). Much fine-grained analysis is span
or aspect based (Yang and Cardie, 2014; Pontiki
et al., 2014). In contrast, this work contributes
to entity/event-level sentiment analysis. A sys-
tem that could recognize sentiments toward enti-
ties and events would be valuable in an application
such as Automatic Question Answering, to sup-
port answering questions such as “Who is nega-
tive/positive toward X?” (Stoyanov et al., 2005),
where X could be any entity or event.

Let us consider an example from the MPQA
opinion annotated corpus (Wiebe et al., 2005a;
Wilson, 2007; Deng and Wiebe, 2015).

Ex(1) When the Imam
( may God be satisfied with him 1)

issued the fatwa against 2 Salman Rushdie for

insulting 3 the Prophet ( peace be upon him 4),

the countries that are so-called 5 supporters of
human rights protested against 6 the fatwa.

There are several sentiment expressions anno-
tated in MPQA. In the first clause, the writer is
positive toward Imam and Prophet as expressed
by may God be satisfied with him (1) and peace
be upon him (4), respectively. Imam is negative
toward Salman Rushdie and the insulting event,
as revealed by the expression issued the fatwa
against (2). And Salman Rushdie is negative to-
ward Prophet, as revealed by the expression insult-
ing (3). In the second clause, the writer is negative
toward the countries, as expressed by so-called
(5). And the countries are negative toward fatwa,
as revealed by the expression protested against
(6). Using the source and the target, we summa-
rize the positive opinions above in a set P , and the
negative opinions above in another setN . Thus, P
contains {(writer, Imam), (writer, Prophet)}, and
N contains {(Imam, Rushdie), (Imam, insulting),
(Rushdie, Prophet), (writer, countries), (countries,
fatwa)}.1

An (ideal) explicit sentiment analysis system is
expected to extract the above sentiments expressed
by (1)-(6). However, there are many more sen-
timents communicated by the writer but not ex-
pressed via explicit expressions. First, Imam is
positive toward the Prophet, because Rushdie in-
sults the Prophet and Imam is angry that he does

1Sources in MPQA are nested, having the form 〈writer〉
or 〈writer, S1, . . . , Sn〉. This work only deals with the right-
most source, writer or Sn. Also, actions like issuing a fatwa
are treated the same as private states. Please see (Wiebe et
al., 2005a).
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Figure 1: Explicit and implicit sentiments in
Ex(1).

so. Second, the writer is negative toward Rushdie,
because the writer is positive toward the Prophet
but Rushdie insults him! Also, the writer is prob-
ably positive toward the fatwa since it is against
Rushdie. Third, the countries are probably nega-
tive toward Imam, because the countries are neg-
ative toward fatwa and it is Imam who issued
the fatwa. Thus, the set P should also contain
{(Imam, Prophet), (writer, fatwa)}, and the set
N should also contain {(writer, Rushdie), (coun-
tries, Imam)}. These opinions are not directly ex-
pressed, but are inferred by a human reader.2 The
explicit and implicit sentiments are summarized in
Figure 1, where each green line represents a posi-
tive sentiment and each red line represents a neg-
ative sentiment. The solid lines are explicit senti-
ments and the dashed lines are implicit sentiments.

In this work, we detect sentiments such as those
in P and N , where the sources are entities (or the
writer) and the targets are entities and events.

Previous work in sentiment analysis mainly fo-
cuses on detecting explicit opinions. Recently
there is emerging focus on sentiment inference,
which recognizes implicit sentiments by inferring
them from explicit sentiments via inference rules.
Current works in sentiment inference differ on
how the sentiment inference rules are defined and
how they are expressed. For example, Zhang
and Liu (2011) define linguistic templates to rec-
ognize phrases that express implicit sentiments,
while previously we (Deng et al., 2014) represent
a few simple rules as (in)equality constraints in In-
teger Linear Programming. In contrast to previous

2Note that the inferences are conversational implicatures;
they are defeasible and may not go through in context (Deng
et al., 2014; Wiebe and Deng, 2014).

work, we propose a more general set of inference
rules and encode them in a probabilistic soft logic
(PSL) framework (Bach et al., 2015). We chose
PSL because it is designed to have efficient infer-
ence and, as similar methods in Statistical Rela-
tional Learning do, it allows probabilistic models
to be specified in first-order logic, an expressive
and natural way to represent if-then rules, and it
supports joint prediction. Joint prediction is criti-
cal for our task because it involves multiple, mutu-
ally constraining ambiguities (the source, polarity,
and target).

Thus, this work aims at detecting both implicit
and explicit sentiments expressed by an entity to-
ward another entity/event (i.e., an eTarget) within
the sentence. The contributions of this work are:
(1) defining a method for entity/event-level senti-
ment analysis to provide a deeper understanding
of the text; (2) exploiting first-order logic rules to
infer such sentiments, where the source is not lim-
ited to the writer, and the target may be any entity,
event, or even another sentiment; and (3) devel-
oping a PSL model to jointly resolve explicit and
implicit sentiment ambiguities by integrating in-
ference rules.

2 Related Work

Fined-grained sentiment analysis. Most fine-
grained sentiment analysis is span or aspect based.
Previous work differs from the entity/event-level
sentiment analysis task we address in terms of tar-
gets and sources. In terms of targets, in a span-
based sentiment analysis system, the target is a
span instead of the exact head of the phrase re-
ferring to the target. The target in a span-based
system is evaluated by measuring the overlapping
proportion of an extracted span against the gold
standard phrase (Yang and Cardie, 2013), while
the eTarget in an entity/event-level system is eval-
uated against the exact word (i.e., head of NP/VP)
in the gold standard. It is a stricter evaluation.
While the targets in aspect-based sentiment analy-
sis are often entity targets, they are mainly product
aspects, which are a predefined set.3 In contrast,
the target in the entity/event-level task may be any
noun or verb. In terms of sources, previous work in
sentiment analysis trained on review data assumes
that the source is the writer of the review (Hu and
Liu, 2004; Titov and McDonald, 2008).

3As stated in SemEval-2014: “we annotate only aspect
terms naming particular aspects”.
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Our work is rare in that it allows sources other
than the writer and finds sentiments toward eTar-
gets which may be any entity or event.

Sentiment Inference. There is some recent
work investigating features that directly indicate
implicit sentiments (Zhang and Liu, 2011; Feng
et al., 2013). That work assumes the source is
only the writer. Further, as it uses features to di-
rectly extract implicit sentiments, it does not per-
form general sentiment inference.

Previously, we (Deng et al., 2013; Deng and
Wiebe, 2014; Deng et al., 2014) develop rules
and models to infer sentiments related to +/-effect
events, events that positively or negatively affect
entities. That work assumes that the source is only
the writer, and the targets are limited to entities
that participate in +/-effect events. Further, our
previous models all require certain manual (ora-
cle) annotations to be input. In this work we use
an expanded set of more general rules. We al-
low sources other than the writer, and targets that
may be any entity or event. In fact, under our new
rules, the targets of sentiments may be other sen-
timents; we model such novel “sentiment toward
sentiment” structures in Section 4.3. Finally, our
method requiring no manual annotations as input
when the inference is conducted.

Previously, we also propose a set of sentiment
inference rules and develop a rule-based system to
infer sentiments (Wiebe and Deng, 2014). How-
ever, the rule-based system requires all informa-
tion regarding explicit sentiments and +/-effect
events to be provided as oracle information by
manual annotations.

Probabilistic Soft Logic. Probabilistic Soft
Logic (PSL) is a variation of Markov Logic Net-
works, which is a framework for probabilistic
logic that employs weighted formulas in first-
order logic to compactly encode complex undi-
rected probabilistic graphical models (i.e., Markov
networks) (Bach et al., 2015; Beltagy et al., 2014).
PSL is a new statistical relational learning method
that has been applied to many NLP and other ma-
chine learning tasks in recent years (Beltagy et al.,
2014; London et al., 2013; Pujara et al., 2013;
Bach et al., 2013; Huang et al., 2013; Memory et
al., 2012). Previously, PSL has not been applied
to entity/event-level sentiment analysis.

3 Task Definition

In this section, we introduce the definition of
the entity/event-level sentiment analysis task, fol-
lowed by a description of the gold standard corpus.

For each sentence s, we define a set E consist-
ing of entities, events, and the writer of s, and sets
P and N consisting of positive and negative senti-
ments, respectively. Each element in P is a tuple,
representing a positive pair of two entities, (e1,
e2) where e1, e2 ∈ E, and e1 is positive toward
e2. A positive pair (e1,e2) aggregates all the posi-
tive sentiments from e1 to e2 in the sentence. N is
the corresponding set for negative pairs.

The goal of this work is to automatically rec-
ognize a set of positive pairs (Pauto) and a set of
negative pairs (Nauto). We compare the system
output (Pauto ∪ Nauto) against the gold standard
(Pgold ∪Ngold) for each sentence.

3.1 Gold Standard Corpus: MPQA 3.0
MPQA 3.0 is a recently developed corpus with
entity/event-level sentiment annotations (Deng
and Wiebe, 2015).4 It is built on the basis of
MPQA 2.0 (Wiebe et al., 2005b; Wilson, 2007),
which includes editorials, reviews, news reports,
and scripts of interviews from different news agen-
cies, and covers a wide range of topics.

In both MPQA 2.0 and 3.0, the top-level an-
notations include direct subjectives (DS). Each
DS has a nested-source annotation. Each DS has
one or more attitude links, meaning that all of the
attitudes share the same nested source. The at-
titudes differ from one another in their attitude
types, polarities, and/or targets. Moreover, both
corpora contain expressive subjective element
(ESE) annotations, which pinpoint specific ex-
pressions used to express subjectivity. We ignore
neutral ESEs and only consider ESEs whose po-
larity is positive or negative.

MPQA 2.0 and 3.0 differ in their target annota-
tions. In 2.0, each target is a span. A target annota-
tion of an opinion captures the most important tar-
get this opinion is expressed toward. Since the ex-
act boundaries of the spans are hard to define even
for human annotators (Wiebe et al., 2005a; Yang
and Cardie, 2013), the target span in MPQA 2.0
could be a single word, an NP or VP, or a text span
covering more than one constituent. In contrast, in
MPQA 3.0, each target is anchored to the head of
an NP or VP, which is a single word. It is called an

4Available at http://mpqa.cs.pitt.edu/corpora/
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eTarget since it is an entity or an event. In MPQA
2.0, only attitudes have target-span annotations. In
MPQA 3.0, both attitudes and ESEs have eTarget
annotations. Importantly, the eTargets include the
targets of both explicit and implicit sentiments.

Recall Ex(1) in Section 1. Pgold = {(writer,
Imam), (writer, Prophet), (Imam, Prophet),
(writer, fatwa)}, and Ngold = {(Imam, Rushdie),
(Imam, insulting), (Rushdie, Prophet), (writer,
countries), (countries, fatwa), (writer, Rushdie),
(countries, Imam)}.

4 PSL for Sentiment Analysis

We need to resolve three components for an opin-
ion frame: the source, the polarity, and the eTarget.
Each of these ambiguities has several candidates.
For example in Ex(1), the eTarget of the opinion
expression insulting is an ambiguity. The candi-
dates include Prophet, countries, and so on.

In this work, we use Probabilistic Soft Logic
(PSL). A PSL model is defined using a set of
atoms to be grounded, and a set of weighted if-
then rules expressed in first-order logic. For ex-
ample, we define the atom ETARGET(y,t) to rep-
resent an opinion y having eTarget t. If y and
t are constants, then ETARGET(y,t) is a ground
atom (e.g., ETARGET(insulting, Prophet)). Each
ground atom is assigned a score by a local system.
PSL takes as input all the local scores as well as
the constraints defined by the rules among atoms,
so that it is able to jointly resolve all the ambigu-
ities. In the final output, for example, the score
ETARGET(insulting, Prophet)> 0 means that PSL
considers Prophet to be an eTarget of insulting,
while ETARGET(insulting, countries) = 0 means
that PSL does not consider countries to be an eTar-
get of insulting.

In this section, we first introduce PSL in Section
4.1. We then present three PSL models in turn.
PSL1 (Section 4.2) aggregates span-based opin-
ions into Pauto and Nauto. PSL2 (Section 4.3) adds
sentiment inference rules to PSL1. For PSL3 (Sec-
tion 4.4), rules involving +/-effect events are added
to PSL2, resulting in the richest overall model.

4.1 Probabilistic Soft Logic

PSL (Bach et al., 2015) uses logical representa-
tions to compactly define large graphical models
with continuous variables, and includes methods
for performing efficient probabilistic inference for
the resulting models (Beltagy et al., 2014). As

mentioned above, a PSL model is defined using a
set of atoms to be grounded, and a set of weighted
if-then rules in first-order logic. For example,

friend(x,y) ∧ votesFor(y,z)⇒ votesFor(x,z)
means that a person may vote for the same per-
son as his/her friend. Each predicate in the rule is
an atom (e.g., friend(x,y)). A ground atom is pro-
duced by replacing variables with constants (e.g.,
friend(Tom, Mary)). Each rule is associated with
a weight, indicating the importance of this rule in
the whole rule set.

A key distinguishing feature of PSL is that each
ground atom a has a soft, continuous truth value
in the interval [0, 1], denoted as I(a), rather than
a binary truth value as in Markov Logic Net-
works and most other probabilistic logic frame-
works (Beltagy et al., 2014). To compute soft
truth values for logical formulas, Lukasiewicz re-
laxations are used:
l1 ∧ l2 = max{0, I(l1) + I(l2)− 1}
l1 ∨ l2 = min{I(l1) + I(l2), 1}
¬l1 = 1− I(l1)
A rule r ≡ rbody → rhead, is satisfied (i.e.

I(r) = 1) iff I(rbody) ≤ I(rhead). Other-
wise, a distance to satisfaction d(r) is calculated,
which defines how far a rule r is from being satis-
fied: d(r) = max {0, I(rbody)− I(rhead)}. Us-
ing d(r), PSL defines a probability distribution
over all possible interpretations I of all ground
atoms:

p(I) =
1
Z

exp {−1 ∗
∑
r∈R

λr(d(r))p}

where Z is the normalization constant, λr is the
weight of rule r, R is the set of all rules, and p de-
fines loss functions. PSL seeks the interpretation
with the minimum distance d(r) and which satis-
fies all rules to the extent possible.

4.2 PSL for Sentiment Aggregation (PSL1)

The first PSL model, PSL1, aggregates span-based
opinions into Pauto and Nauto. We call this senti-
ment aggregation because, instead of building an
entity/event-level sentiment system from scratch,
we choose to fully utilize previous work on span-
based sentiment analysis. PSL1 aggregates span-
based opinions into entity/event-level opinions.

Consistent with the task definition in Section 3,
we define two atoms in PSL:
(1) POSPAIR(s,t): a positive pair from s toward t
(2) NEGPAIR(s,t): a negative pair from s toward t
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Both s and t are chosen from the setE. The val-
ues of ground atoms (1) and (2) are not observed
and are inferred by PSL.

Then, we define atoms to model an entity/event-
level opinion:
(3) POS(y): y is a positive sentiment
(4) NEG(y): y is a negative sentiment
(5) SOURCE(y,s): the source of y is s
(6) ETARGET(y,t): the eTarget of y is t

Two rules are defined to aggregate various opin-
ions extracted by span-based systems into positive
pairs and negative pairs, shown in Part 1 of Table
1 as Rules 1.1 and 1.2. Thus, under our repre-
sentation, the PSL model not only finds a set of
eTargets of an opinion (ETARGET(y,t)), but also
represents the aggregated sentiments among enti-
ties and events (POSPAIR(s,t) and NEGPAIR(s,t))
in the sentence.

Next, we turn to assigning local scores to
ground atoms (3)-(6).

POS(y) and NEG(y): We build upon three span-
based sentiment analysis systems. The first, S1
(Yang and Cardie, 2013), and the second, S2
(Yang and Cardie, 2014), are both trained on
MPQA 2.0, which does not contain any eTarget
annotations. S1 extracts triples of 〈source span,
opinion span, target span〉, but does not extract
opinion polarities. S2 extracts opinion spans and
opinion polarities, but it does not extract sources
or targets. The third system, S3 (Socher et al.,
2013), is trained on movie review data. It extracts
opinion spans and polarities. The source is always
assumed to be the writer.

We take the union set of opinions extracted by
S1, S2 and S3. For each opinion y, a ground atom
is created, depending on the polarity (POS(y) if y
is positive and NEG(y) is y is negative). The po-
larity is determined as follows. If S2 assigns a po-
larity to y, then that polarity is used. If S3 but
not S2 assigns a polarity to y, then S3’s polarity
is used. In both cases, the score assigned to the
ground atom is 1.0. If neither S2 nor S3 assigns a
polarity to y, we use the MPQA subjectivity lex-
icon to determine its polarity. The score assigned
to the ground atom is the proportion of the words
in the opinion span that are included in the subjec-
tivity lexicon.

SOURCE(y,s): S1 extracts the source of each
opinion, S2 does not extract the source, and S3 as-
sumes the source is always the writer. Thus, for
an opinion y, if the source s is assigned by S1, a

ground atom SOURCE(y,s) is created with score
1.0. Otherwise, if S3 extracts opinion y, a ground
atom SOURCE(y,writer) is created with score 1.0
(since S3 assumes the source is always the writer).
Otherwise, we run the Stanford named entity rec-
ognizer (Manning et al., 2014; Finkel et al., 2005)
to extract named entities in the sentence. The near-
est named entity to the opinion span on the depen-
dency parse graph will be treated as the source.
The score is the reciprocal of the length of the path
between the opinion span and the source span in
the dependency parse.

ETARGET(y,t): Though each eTarget is an en-
tity or event, it is difficult to determine which
nouns and verbs should be considered. Taking
into consideration the trade-off between precision
and recall, we experimented with three methods
to select eTarget candidates. For each opinion y,
a ground atom ETARGET(y,t) is created for each
eTarget candidate t.

ET1 considers all the nouns and verbs in the
sentence, to provide a full recall of eTargets.

ET2 considers all the nouns and verbs in the tar-
get spans and opinion spans that are automatically
extracted by systems S1, S2 and S3. We hypoth-
esized that ET2 would be useful because most of
the eTargets in MPQA 3.0 appear within the opin-
ion or the target spans of MPQA 2.0.

ET3 considers the heads of the target and opin-
ion spans that are automatically extracted by sys-
tems S1, S2 and S3.5 ET3 also considers the heads
of siblings of target spans and opinion spans.
Among the three methods, ET3 has the lowest re-
call but the highest precision.

In addition, for the eTarget candidate set ex-
tracted by ET2, or ET3, we run the Stanford co-
reference system (Manning et al., 2014; Recasens
et al., 2013; Lee et al., 2013) to expand the set
in two ways. First, for each eTarget candidate t,
the co-reference system extracts the entities that
co-refer with t. We add the referring entities into
the candidate set. Second, the co-reference system
extracts words which the Stanford system judges
to be entities, regardless of whether they have any
referent or not. We add this set of entities to the
candidate set as well.

We train an SVM classifier (Cortes and Vap-
nik, 1995) to assign a score to the ground atom
ETARGET(y,t). Syntactic features describing the

5The head of a phrase is extracted by the Collins head
finder in the Stanford parser (Manning et al., 2014).
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Part 1. Aggregation Rules.
1.1 SOURCE(y,s) ∧ ETARGET(y,t) ∧ POS(y) ⇒ POSPAIR(s,t)
1.2 SOURCE(y,s) ∧ ETARGET(y,t) ∧ NEG(y) ⇒ NEGPAIR(s,t)

Part 2. Inference Rules.
2.1 POSPAIR(s1,y2) ∧ SOURCE(y2,s2) ⇒ POSPAIR(s1,s2)
2.2 POSPAIR(s1,y2) ∧ ETARGET(y2,t2) ∧ POS(y2) ⇒ POSPAIR(s1,t2)
2.3 POSPAIR(s1,y2) ∧ ETARGET(y2,t2) ∧ NEG(y2) ⇒ NEGPAIR(s1,t2)
2.4 NEGPAIR(s1,y2) ∧ SOURCE(y2,s2) ⇒ NEGPAIR(s1,s2)
2.5 NEGPAIR(s1,y2) ∧ ETARGET(y2,t2) ∧ POS(y2) ⇒ NEGPAIR(s1,t2)
2.6 NEGPAIR(s1,y2) ∧ ETARGET(y2,t2) ∧ NEG(y2) ⇒ POSPAIR(s1,t2)

Part 3. Inference Rules w.r.t +/-Effect Event Information.
3.1 POSPAIR(s,x) ∧ AGENT(x,a) ⇒ POSPAIR(s,a)
3.2 POSPAIR(s,x) ∧ THEME(x,h) ∧ +EFFECT(x) ⇒ POSPAIR(s,h)
3.3 POSPAIR(s,x) ∧ THEME(x,h) ∧ -EFFECT(x) ⇒ NEGPAIR(s,h)
3.4 NEGPAIR(s,x) ∧ AGENT(x,a) ⇒ NEGPAIR(s,a)
3.5 NEGPAIR(s,x) ∧ THEME(x,h) ∧ +EFFECT(x) ⇒ NEGPAIR(s,h)
3.6 NEGPAIR(s,x) ∧ THEME(x,h) ∧ -EFFECT(x) ⇒ POSPAIR(s,h)
3.7 POSPAIR(s,a) ∧ AGENT(x,a) ⇒ POSPAIR(s,x)
3.8 POSPAIR(s,h) ∧ THEME(x,h) ∧ +EFFECT(x) ⇒ POSPAIR(s,x)
3.9 POSPAIR(s,h) ∧ THEME(x,h) ∧ -EFFECT(x) ⇒ NEGPAIR(s,x)

3.10 NEGPAIR(s,a) ∧ AGENT(x,a) ⇒ NEGPAIR(s,x)
3.11 NEGPAIR(s,h) ∧ THEME(x,h) ∧ +EFFECT(x) ⇒ NEGPAIR(s,x)
3.12 NEGPAIR(s,h) ∧ THEME(x,h) ∧ -EFFECT(x) ⇒ POSPAIR(s,x)

Table 1: Rules in First-Order Logic.

relations between an eTarget and the extracted
opinion span and target span are considered, in-
cluding: (1) whether the eTarget is in the opin-
ion/target span; (2) the unigrams and bigrams on
the path from the eTarget to the opinion/target
span in the constituency parse tree; and (3) the
unigrams and bigrams on the path from the eTar-
get to the opinion/target word in the dependency
parse graph. We normalize the SVM scores into
the range of a ground atom score, [0,1].

4.3 PSL for Sentiment Inference (PSL2)

The two rules defined in Section 4.2 aggregate
various opinions into positive pairs and negative
pairs, but inferences have not yet been introduced.
PSL2 is defined using the atoms and rules in
PSL1. But it also includes some rules defined
in (Wiebe and Deng, 2014), represented here in
first-order logic in Part 2 of Table 1. Let us go
through an example inference for Ex(1), in partic-
ular, the inference that Imam is positive toward the
Prophet. Rule 2.6 supports this inference. Recall
the two explicit sentiments: Imam is negative to-
ward the insulting sentiment (revealed by issued
the fatwa against), and Rushdie is negative to-

ward the Prophet (revealed by insulting). Thus,
we can instantiate Rule 2.6, where s1 is Imam, y2

is the negative sentiment (insulting), and t2 is the
Prophet. The inference is: since Imam is negative
that there is any negative opinion expressed toward
the Prophet, we infer that Imam is positive toward
the Prophet.

NEGPAIR(Imam, insulting)
∧ ETARGET(insulting, Prophet)
∧ NEG(insulting)
⇒ POSPAIR(Imam, Prophet).

The inference rules in Part 2 of Table 1 are novel
in that eTargets may be sentiments (e.g., NEG-
PAIR(Imam,insulting) means that Imam is nega-
tive toward the negative sentiment revealed by in-
sulting). The inference rules link sentiments to
sentiments and, transitively, link entities to entities
(e.g., from Imam to Rushdie to the Prophet).

To support such rules, more groundings of
ETARGET(y,t) are created in PSL2 than in PSL1.
For two opinions y1 and y2, if the target span of
y1 overlaps with the opinion span of y2, we cre-
ate ETARGET(y1,y2) as a ground atom represent-
ing that y2 is an eTarget of y1.
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4.4 PSL Augmented with +/-Effect Events
(PSL3)

Finally, for PSL3, +/-effect event atoms and rules
are added to PSL2 for the inference of additional
sentiments.

According to (Deng et al., 2013), a +effect event
has positive effect on the theme (examples are
help, increase, and save), and a -effect event has
negative effect on the theme (examples are ob-
struct, decrease, and kill).6 We define the follow-
ing atoms to represent such events:
(7) +EFFECT(x): x is a +effect event
(8) -EFFECT(x): x is a -effect event
(9) AGENT(x,a): the agent of x is a
(10) THEME(x,h): the theme of x is h

Next we assign scores to these ground atoms.
+EFFECT(x) and -EFFECT(x): We use the

+/-effect sense-level lexicon (Choi and Wiebe,
2014)7 to extract the +/-effect events in each sen-
tence. The score of +EFFECT(x) is the fraction of
that word’s senses that are +effect senses accord-
ing to the lexicon, and the score of -EFFECT(x) is
the fraction of that word’s senses that are -effect
senses according to the lexicon. If a word does
not appear in the lexicon, we do not treat it as a +/-
effect event, and thus assign 0 to both +EFFECT(x)
and -EFFECT(x).

AGENT(x,a) and THEME(x,h): We consider all
nouns in the same or in sibling constituents of
a +/-effect event as potential agents or themes.
An SVM classifier is run to assign scores to
AGENT(x,a), and another SVM classifier is run to
assign scores to THEME(x,h). Both SVM clas-
sifiers are trained on a separate corpus, the +/-
effect corpus (Deng et al., 2013) used in (Deng et
al., 2014), which is annotated with +/-effect event,
agent, and theme spans. The features we use to
train the agent and theme classifier include uni-
gram, bigram and syntax information.

Generalizations of the inference rules used in
(Deng et al., 2014) are expressed in first-order
logic, shown in Part 3 of Table 1. Let us go
through an example inference for Ex(1), in partic-
ular, the inference that the countries are negative
toward Imam. Recall that we infer this because
the countries are negative toward the fatwa and it
is Imam who issued the fatwa. The rules support-
ing this inference are Rules 3.11 and 3.4 in Table

6In (Deng et al., 2013), such events are called good-
For/badFor events; they are later renamed as +/-effect events.

7Available at: http://mpqa.cs.pitt.edu/lexicons/effect lexicon/

1, where s is the countries, h is the fatwa, x is the
issue event, and a is Imam.

The application of Rule 3.11 can be explained
as follows. The countries are negative toward
the fatwa, and the issue event is a +effect event
with theme fatwa (the issue event is +effect for
the fatwa because it creates the fatwa; creation is
one type of +effect event identified in (Deng et al.,
2013)); thus, the countries are negative toward the
issue event.

NEGPAIR(countries, fatwa)
∧ THEME(issue, fatwa)
∧ +EFFECT(issue)
⇒ NEGPAIR(countries, issue) .

The application of Rule 3.4 can be explained as
follows. The countries are negative toward the is-
sue event, and it is Imam who conducted the event;
thus, the countries are negative toward Imam.

NEGPAIR(countries, issue)
∧ AGENT(issue, Imam)
⇒ NEGPAIR(countries, Imam) .

Finally, to support the new inferences, more
groundings of ETARGET(y,t) are defined in PSL3.
For a +/-effect event x whose agent is a, if one of
x and a is an eTarget candidate of y, the other will
be added to the eTarget candidate set for y (senti-
ments toward both +effect and -effect events and
their agents have the same polarity according to
the rules (Deng et al., 2014)). For +effect event
x whose theme is h, if one of x and h is an eTar-
get candidate of y, the other is added to the eTar-
get candidate set for y (sentiments toward +effect
events and their themes have the same polarity).

5 Experiments

We carry out experiments on the MPQA 3.0 cor-
pus. Currently, there are 70 documents, 1,634 sen-
tences, and 1,921 DS and ESEs in total. The to-
tal number of POSPAIR(s,t) and NEGPAIR(s,t) are
867 and 1,975, respectively. Though the PSL in-
ference does not need supervision and the SVM
classifier for agents and themes in Section 4.4 is
trained on a separate corpus, we still have to train
the eTarget SVM classifier to assign local scores
as described in Section 4.2. Thus, the experiments
are carried out using 5-fold cross validation. For
each fold test set, the eTarget classifier is trained
on the other folds. The trained classifier is then
run on the test set, and PSL inference is carried
out on the test set.
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In total, we have three methods for eTarget can-
didate selection (ET1, ET2, ET3) and three mod-
els for sentiment analysis (PSL1, PSL2, PSL3).

Baselines. Since each noun and verb may be an
eTarget, the first baseline (All NP/VP) regards all
the nouns and verbs as eTargets. The first baseline
estimates the difficulty of this task.

The second baseline (SVM) uses the SVM lo-
cal classification results from Section 4.2. The
score of ETARGET(y,t) is assigned by the SVM
classifier. Then it is normalized as input into PSL.
Before normalization, if the score assigned by the
SVM classifier is above 0, the SVM baseline con-
siders it as a correct eTarget.

5.1 Evaluations
First, we examine the performance of the PSL
models on correctly recognizing eTargets of a par-
ticular opinion. This evaluation is carried out
on a subset of the corpus: we only examine the
opinions which are automatically extracted by the
span-based systems (S1, S2 and S3). If an opinion
expression in the gold standard is not extracted by
any span-based system, it is not input into PSL, so
PSL cannot possibly find its eTargets.

The second and third evaluations assess perfor-
mance of the PSL models on correctly extracting
positive and negative pairs. Note that our senti-
ment analysis system has the capability, through
inference, to recognize positive and negative pairs
even if corresponding opinion expressions are not
extracted. Thus, the second and third evaluations
are carried out on the entire corpus. The second
evaluation uses ET3, and compares PSL1, PSL2
and PSL3. The third evaluation uses PSL3 and
compares performance using ET1, ET2 and ET3.
The results for the other combinations follow the
same trends.

ETargets of An Opinion. According to the gold
standard in Section 3.1, each opinion has a set of
eTargets. But not all eTargets are equally impor-
tant. Thus, our first evaluation assesses the perfor-
mance of extracting the most important eTarget.
As introduced in Section 3.1, a span-based target
annotation of an opinion in MPQA 2.0 captures
the most important target this opinion is expressed
toward. Thus, the head of the target span can be
considered to be the most important eTarget of an
opinion. We model this as a ranking problem to
compare models. For an opinion y automatically
extracted by a span-based system, both the SVM

baseline and PSL assign scores to ETARGET(y,t).
We rank the eTargets according to the scores. Be-
cause the ALL NP/VP baseline does not assign
scores to the nouns and verbs, we do not compare
with that baseline in this ranking experiment. We
use the Precision@N evaluation metric. If the top
N eTargets of an opinion contain the head of tar-
get span, we consider it as a correct hit. The results
are in Table 2.

Prec@1 Prec@3 Prec@5
SVM 0.0370 0.0556 0.0820
PSL1 0.5105 0.6905 0.7831
PSL2 0.5317 0.7486 0.7883
PSL3 0.5503 0.7434 0.8148

Table 2: Precision@N of Most Important ETarget.

Table 2 shows that SVM is poor at ranking
the most important eTarget. The PSL models are
much better, even PSL1, which does not include
any inference rules. This shows that SVM, which
only uses local features, cannot distinguish the
most important eTarget from the others. But the
PSL models consider all the opinions, and can rec-
ognize a true negative even if it ranks high in the
local results. The ability of PSL to rule out true
negative candidates will be repeatedly shown in
the later evaluations.

We not only evaluate the ability to recognize the
most important eTarget of a particular opinion, we
also evaluate the ability to extract all the eTargets
of that opinion. The F-measure of SVM is 0.2043,
while the F-measures of PSL1, PSL2 and PSL3
are 0.3135, 0.3239, and 0.3275, respectively. Cor-
rectly recognizing all the eTargets is difficult, but
all the PSL models are better than the baseline.

Positive Pairs and Negative Pairs. Now we
evaluate the performance in a stricter way. We
compare automatically extracted sets of sentiment
pairs: Pauto = {POSPAIR(s, t) > 0} and Nauto =
{NEGPAIR(s, t) > 0}, against the gold standard
sets Pgold and Ngold. Table 3 shows the accura-
cies using ET3. Note that higher accuracies can
be achieved, as shown later. Here we use ET3 just
to show the trend of results.

As shown in Table 3, the low accuracy of base-
line All NP/VP shows that entity/event-level sen-
timent analysis is a difficult task. Even the SVM
baseline does not have good accuracy. Note that
the SVM baseline in Table 3 uses ET3. The base-
line classifies the heads of target spans and opin-
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POSPAIR NEGPAIR

All NP/VP 0.1280 0.1654
SVM 0.0765 0.0670
PSL1 0.3356 0.3754
PSL2 0.3705 0.3705
PSL3 0.4315 0.3892

Table 3: Accuracy comparing PSL models (ET3
used for all)

ion spans, which are extracted by state-of-the-
art span-based sentiment analysis systems. This
shows the results from span-based sentiment anal-
ysis systems do not provide enough accurate in-
formation for the more fine-grained entity/event-
level sentiment analysis task. In contrast, PSL1
achieves much higher accuracy than the baselines.
PSL2 and PSL3, which add sentiment toward sen-
timent and +/-effect event inferences, give fur-
ther improvements. A reason is that SVM uses a
hard constraint to cut off many eTarget candidates,
while the PSL models take the scores as soft con-
straints.

A more critical reason is due to the definition
of accuracy: (TruePositive+TrueNegative)/All. A
significant benefit of using PSL is correctly recog-
nizing true negative eTarget candidates and elim-
inating them from the set. Interestingly, even
though both PSL2 and PSL3 introduce more eTar-
get candidates, both are able to recognize more
true negatives and improve the accuracy.

Note that F-measure does not count true nega-
tives. Precision is TP

TP+FP , and recall is TP
TP+FN ;

neither considers true negatives (TN). As shown
in Table 4, the increment of PSL model over base-
lines on F-measure is not as large as the increase
in accuracy. Comparing PSL2 and PSL3 to PSL1,
the inference rules largely increase recall but lower
precision. However, the accuracy in Table 3 keeps
growing. Thus, the biggest advantage of PSL
models is to correctly rule out true negative eTar-
gets. For the baselines, though the SVM baseline
has higher precision, it eliminates so many eTarget
candidates that the F-measure is not high.

ETarget Selection. To assess the methods for
eTarget selection, we run PSL3 (the fullest PSL
model) using each method in turn. The F-
measures and accuracies are listed in Table 5. The
F-measure of ET1 is slightly lower than the F-
measures of ET2 and ET3, while the accuracy of

Precision Recall F-measure
POSPAIR

All NP/VP 0.1481 0.4857 0.2270
SVM 0.3791 0.0870 0.1415
PSL1 0.2234 0.2687 0.2440
PSL2 0.1666 0.2738 0.2072
PSL3 0.1659 0.3523 0.2256

NEGPAIR

All NP/VP 0.1824 0.6408 0.2840
SVM 0.3568 0.0761 0.1254
PSL1 0.2857 0.3872 0.3288
PSL2 0.2772 0.3883 0.3235
PSL3 0.2586 0.4529 0.3292

Table 4: F-measure comparing PSL models (ET3
used for all)

ET1 is much better than the accuracies of ET2
and ET3. Again, this is because PSL recognizes
true negatives in the eTarget candidates. Since
ET1 considers more eTarget candidates, ET1 gives
PSL a greater opportunity to remove true nega-
tives, leading to an overall increase in accuracy.

POSPAIR NEGPAIR

F Acc. F Acc.
ET1 0.2192 0.4963 0.3157 0.4461
ET2 0.2374 0.4433 0.3261 0.3969
ET3 0.2256 0.4315 0.3295 0.3892

Table 5: Comparison of eTarget selection methods
(PSL3 used for all)

6 Conclusion

This work builds upon state-of-the-art span-
based sentiment analysis systems to perform
entity/event-level sentiment analysis covering
both explicit and implicit sentiments expressed
among entities and events in text. Probabilis-
tic Soft Logic models incorporating explicit senti-
ments, inference rules and +/-effect event informa-
tion are able to jointly disambiguate the ambigui-
ties in the opinion frames and improve over base-
line accuracies in recognizing entity/event-level
sentiments.
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Abstract

A simile is a comparison between two
essentially unlike things, such as “Jane
swims like a dolphin”. Similes often ex-
press a positive or negative sentiment to-
ward something, but recognizing the po-
larity of a simile can depend heavily on
world knowledge. For example, “memory
like an elephant” is positive, but “mem-
ory like a sieve” is negative. Our research
explores methods to recognize the polarity
of similes on Twitter. We train classifiers
using lexical, semantic, and sentiment fea-
tures, and experiment with both manu-
ally and automatically generated training
data. Our approach yields good perfor-
mance at identifying positive and negative
similes, and substantially outperforms ex-
isting sentiment resources.

1 Introduction

A simile is a form of figurative language that com-
pares two essentially unlike things (Paul, 1970),
such as “Jane swims like a dolphin”. Similes of-
ten express a positive or negative view toward an
entity, object, or experience (Li et al., 2012; Fish-
elov, 2007). Sometimes, the sentiment of a simile
is expressed explicitly, such as “Jane swims beau-
tifully like a dolphin!”. But in many cases the sen-
timent is implicit, evoked entirely from the com-
parison itself. “Jane swims like a dolphin” is eas-
ily understood to be a compliment toward Jane’s
swimming ability because dolphins are known to
be excellent swimmers.

A simile consists of four key components: the
topic or tenor (subject of the comparison), the ve-
hicle (object of the comparison), the event (act
or state), and a comparator (usually “as”, “like”,
or “than”) (Niculae and Danescu-Niculescu-Mizil,
2014). A property (shared attribute) can be op-
tionally included as well (e.g., “He is as red as

a tomato”). Our research aims to identify the af-
fective polarity of a simile as positive, negative, or
neutral, based on its component phrases.

Table 1 shows examples of similes and their po-
larity. A simile can have neutral polarity if it offers
an objective observation. Example (a) is a neutral
simile because, although bananas have a distinc-
tive smell, it is not generally considered to be a
particularly good or bad scent. Example (b) illus-
trates that using the subjective verb “stink” instead
of “smell” indicates a negative polarity toward the
scent of bananas. Example (c) shows that includ-
ing a subjective adjective such as “rotten” suggests
a negative sentiment. Example (d) has negative
polarity because the vehicle term, “garbage”, car-
ries a strong negative connotation.

Simile Polarity
(a) smells like bananas neutral
(b) stinks like bananas negative
(c) smells like rotten bananas negative
(d) smells like garbage negative
(e) memory like an elephant positive
(f) memory like a sieve negative
(g) looks like a celebrity positive
(h) acts like a celebrity negative

Table 1: Simile Examples with Affective Polarity.

However, the affective polarity of a simile of-
ten emerges from multiple component terms. For
instance, all of the words in Examples (e) and (f)
have neutral polarity. But Example (e) is positive
because elephants are widely known to have ex-
cellent memories, while Example (f) is negative
because a sieve has holes, which is metaphorical
with memory lapses. Examples (g) and (h) illus-
trate that a prior connotation can even be overrid-
den depending upon the property being compared.
In general, the word “celebrity” tends to have a
positive connotation and looking like a celebrity is
generally a compliment. But acting like a celebrity
is a negative simile because it alludes to negative
attributes such as narcissism or entitlement.
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Our research explores the challenge of identi-
fying the affective polarity of similes. First, we
introduce a new data set of similes extracted from
Twitter. We describe a manual annotation study to
label them with affective polarity. We also present
several approaches for identifying some instances
of positive and negative similes using existing sen-
timent resources, to automatically create labeled
data to train a classifier. Second, we describe a
machine learning classifier to recognize the affec-
tive polarity of similes by considering lexical, se-
mantic, and sentiment properties of their compo-
nents. Third, we present experimental results for
the simile polarity classifier, using both manually
annotated training data and automatically labeled
training data. Our evaluation shows that the clas-
sifier trained with manually labeled data achieves
good performance at identifying positive and neg-
ative similes. Training with automatically labeled
data produces classifiers that are not quite as good
as those trained with manually labeled data, but
they still substantially outperform existing senti-
ment resources and offer a way to easily train sim-
ile classifiers for different domains.

2 Related Work

Although similes are a popular form of com-
parison, there has been relatively little prior re-
search on understanding affective polarity in sim-
iles. Veale and Hao (2007) created a large sim-
ile case-base using the pattern “as ADJ as a/an
NOUN”. They collected similes by querying the
web after instantiating part of the pattern with ad-
jectives, and then had a human annotate 30,991
of the extracted similes for validity. Their fo-
cus was on extracting salient properties associated
with simile vehicles, and the affective perception
on vehicles that the salient properties bring about.

Veale (2012) took a step further and automati-
cally recognized the affect toward vehicles when
properties reinforce each other (e.g., hot and hu-
mid). They built a support graph of properties
and determined how they connect to unambiguous
positive and negative words. Li et al. (2012) used
similar patterns to retrieve similes and determine
basic sentiment toward simile vehicles across dif-
ferent languages using the compared properties.
One major difference with their work and ours
is that they determine sentiment or affective per-
ception toward entities or concepts extracted from
simile vehicles. In contrast, our work is focused

on determining affective polarity of a simile as a
whole, where the affective polarity typically re-
lates to an act or state of the tenor. In many cases,
a simile vehicle does not have positive or negative
polarity by itself. For example, “sauna” is not a
positive or negative concept, but “room feels like
a sauna” is a negative simile because it suggests
that the room is humid and unpleasant.

Niculae and Danescu-Niculescu-Mizil (2014)
created a simile data set from Amazon product re-
views, and determined when comparisons are figu-
rative. They did not identify affective polarity, but
showed that sentiment and figurative comparisons
are correlated. Fishelov (2007) conducted a study
of 16 similes where the connection between tenor
and vehicle is obvious or not obvious, and when
a conventional or unconventional explicit property
is present or absent. Fishelov analyzed responses
from participants to understand the positive and
negative impression a simile conveys toward its
tenor. Hanks (2005) presented an analysis of se-
mantic categories of simile vehicles (animal, roles
in society, artifact, etc.) that people most com-
monly use in similes.

Previous research has also explored sentiment
expressed through metaphor. Rumbell et al.
(2008) presented an analysis of animals that are
metaphorically used to describe a person. Ren-
toumi et al. (2009) determined use of figurative
language by disambiguating word senses, and then
determined sentiment polarity at the sense level
using ngram graph similarity. Wallington et al.
(2011) identified affect in metaphor and similes
when a comparison is made with an animal (e.g.,
dog, fox) or mythical creature (e.g., dragon, angel)
by analyzing WordNet sense glosses of the com-
pared terms. More recently, the SemEval-2015
Shared Task 11 (Ghosh et al., 2015) has addressed
the sentiment analysis of figurative language such
as irony, metaphor and sarcasm in Twitter.

Our work is also related to sentiment analy-
sis in general. The most common approach ap-
plies supervised classification with features such
as ngrams, parts-of-speech, punctuation, lexicon
features, etc. (e.g., (Kouloumpis et al., 2011;
Davidov et al., 2010; Mohammad et al., 2013)).
To overcome the challenge of acquiring manu-
ally labeled data, some work automatically col-
lects noisy training data using emoticons and hash-
tags (e.g., (Go et al., 2009; Purver and Battersby,
2012)). In addition to determining overall sen-
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timent, research has also focused on understand-
ing people’s sentiment during specific events such
as stock market fluctuations, presidential elec-
tions, Oscars, tsunamis, or toward entities such
as movies, companies, or aspects of a product
(Bollen et al., 2011; Thelwall et al., 2011; Jiang
et al., 2011; Hu and Liu, 2004; Jo and Oh, 2011).

To our knowledge, we are the first to explore
recognition of affective polarity in similes as a
whole, where the polarity relates to an act or state
of the tenor. Unlike previous work, we do not rely
on the presence of explicit properties. We also
present a data set annotated with affective polarity
in similes, and experiment with both manually an-
notated and automatically acquired training data.

3 Simile Data Set Creation

One of the major challenges of supervised clas-
sification is acquiring sufficient labeled data for
training, since manual annotation is time consum-
ing. However, similes sometimes contain words
with explicit polarity (e.g., “bed feels like heaven”
or “he cries like a baby”). Many of these cases
can be identified with existing sentiment resources
and then used to provide a classifier with training
instances. But because sentiment resources have
limitations (e.g., sentiment classifiers are not per-
fect, sentiment lexicons do not possess knowledge
of context), these instances will have some noise.
Therefore, we experiment with both manually la-
beled data sets that are smaller in size but high
quality, and automatically labeled data sets that are
comparatively larger but noisier.

Twitter is a popular microblogging platform and
is widely used for sentiment analysis. Thus it is an
excellent source for collecting similes that people
use in everyday conversation. For this research,
we extracted similes from 140 million tweets we
harvested using the Twitter streaming API from
March 2013 to April 2014. We started by select-
ing tweets containing three common compara-
tor keywords: “like”, “as”, and “than”. We re-
moved tweets with exact duplicate content, and
tweets containing a retweet token. An additional
challenge of tweets is that many are “near dupli-
cates” (e.g., shared tweets with an added sym-
bol or comment). So we performed an additional
de-duplication step using Jaccard similarity of tri-
grams to measure overlap in the text content be-
tween pairs of tweets. When Jaccard similarity
between two tweets was > 0.5, we kept only the

longer tweet, and repeated the process.
We used the UIUC Chunker (Punyakanok and

Roth, 2001) to identify phrase sequences with the
syntax of similes (e.g., NP1 + VP + PP-like + NP2,
or NP1 + VP + ADJP + PP-like + NP2, where
NP1 is the tenor, NP2 is the vehicle, VP is the
event, and ADJP is any explicitly mentioned prop-
erty). We generalized over the extracted similes
by removing the comparator, and the optional ex-
plicit property component. Our simile represen-
tation is thus a triple of the tenor, event and ve-
hicle. We also lemmatized all words using Stan-
ford CoreNLP (Manning et al., 2014). For a tenor
phrase, we kept only the head noun, which is usu-
ally sufficient to understand the affective polarity
target. We kept the entire noun phrase for the ve-
hicle, since vehicles like “ice box” and “gift box”
may represent two different concepts with differ-
ent polarities in similes. We replaced personal pro-
nouns (e.g., he, she) with a general PERSON token
and other pronouns (e.g., it, this, that) with a gen-
eral IT token. Table 2 presents examples of posi-
tive and negative similes in the annotated data set.

Positive Negative
PERSON, smile, sun PERSON, look, zombie
PERSON, feel, kid PERSON, treat, stranger
PERSON, be, older brother PERSON, feel, poo
IT, sound, heaven PERSON, look, clown
PERSON, look, superman word, cut, knife
IT, be, old time PERSON, act, child
IT, feel, home PERSON, look, voldemort
IT, fit, glove PERSON, look, wet dog
IT, would be, dream PERSON, treat, baby
IT, smell, spring PERSON, look, drug addict

Table 2: Sample Similes from Annotated Data.

Sometimes, vehicle phrases contain adjective
modifiers indicating explicit sentiment (e.g., “she
looks like a beautiful model”). Since a sim-
ile is trivial to classify with such a modifier,
we removed the instances that already had posi-
tive or negative adjective modifiers. To identify
these cases, we used the AFINN sentiment lexi-
con (Nielsen, 2011). Similes that contain profan-
ity (e.g., “You look like crap”) are nearly always
negative, and trivial to classify, so we filtered out
these cases using a freely available profanity list1.
We also removed any simile where the vehicle is
a pronoun (e.g., “it looks like that”), and discard
similes appearing fewer than 5 times. Our final
data set contains 7,594 similes.

1http://www.bannedwordlist.com/lists/swearWords.txt
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3.1 Manually Annotated Simile Data Set

To obtain manual annotation, we randomly se-
lected 1500 similes occurring at least 10 times,
from the 7,594 similes. Our expectation was that
more frequent similes will be easier for the anno-
tators to understand. We used Amazon’s Mechani-
cal Turk to obtain gold standard annotations for af-
fective polarity. We asked the annotators to deter-
mine if a simile expresses affective polarity toward
the subject (i.e., the tenor component), and to as-
sign one of four labels: positive, negative, neutral,
or invalid. The first two labels are for similes that
clearly express positive polarity (e.g., “Jane swims
like a dolphin”) or negative polarity (e.g., “Fred’s
hair looks like a bird’s nest”). The neutral label
is for similes that do not have positive or negative
polarity (e.g., “the cloud looks like a turtle” isn’t
a positive or negative comment about the cloud) or
similes that are ambiguous without the benefit of
context (e.g., “he is like my dog” could be good or
bad depending on the context).

The data also contained many misidentified
similes, typically due to parsing errors. For exam-
ple, sometimes there is an entire clause in place
of the vehicle (e.g., “I feel like im gonna puke”).
Other times, the informal text of Twitter makes the
tweet hard to parse (e.g., “he is like whatttt”) or a
verb occurs after “like” (e.g., “he is like hyperven-
tilating”). The invalid label covers these types of
erroneously extracted similes.

The annotation task was first conducted on a
small sample of 50 similes, to select workers that
had high annotation agreement with each other
and gold standard labels we prepared. The best
three workers then all annotated the official set
of 1500 similes. The average Cohen’s Kappa (κ)
(Carletta, 1996) between each pair of annotators
was 0.69. We then assigned the final label through
majority vote. However, none of the annotators
agreed on the same label for 78 of the 1500 simi-
les, and 303 instances were labeled as invalid sim-
iles by the annotators. So we removed these 381
instances from the annotated data set. Finally, we
randomly divided the remaining similes into an
evaluation (Eval) set of 741 similes, and a devel-
opment (Dev) set of 378 similes. Table 3 shows
the label distribution of these sets.

3.2 Automatically Labeled Similes

For any new domain (e.g., Amazon product re-
views), manual annotations for supervised training

Label # of Similes # of Similes
(Dev Data) (Eval Data)

Positive 164 312
Negative 181 343
Neutral 33 86
Total 378 741

Table 3: Manually Annotated Data.

may not be readily available, and being able to au-
tomatically obtain training instances can be valu-
able. We therefore create and experiment with six
types of automatically labeled training data.
Using AFINN Sentiment Lexicon Words: Our
first training data set is created using the AFINN
sentiment lexicon (Nielsen, 2011) containing
2,477 manually labeled words with integer values
ranging from -5 (negativity) to 5 (positivity). For
each simile, we sum the sentiment scores for all
lexicon words in the simile components, assigning
positive/negative polarity depending on whether
the sum is positive/negative. This method yields
460 positive and 423 negative similes.
Using MPQA Sentiment Lexicon Words: Our
second training data set is created using the
2,718 positive words and 4,910 negative words
from the MPQA lexicon (Wilson et al., 2005).
We applied the CMU part-of-speech tagger for
tweets (Owoputi et al., 2013) to match the MPQA
parts-of-speech for each word. We assign posi-
tive/negative polarity to similes with more posi-
tive/negative lexicon words. This method yields
629 positive and 522 negative similes.
Using Sentiment Classifiers: We create our third
training data set using a state-of-the-art sentiment
classifier designed for tweets. For this, we re-
implemented the NRC Canada sentiment classifier
(Zhu et al., 2014) using the same set of features
described by the authors. We use a Java imple-
mentation2 of SVM from LIBLINEAR (Fan et al.,
2008), with the original parameter values used by
the NRC Canada system. We trained the sentiment
classifier with all of the tweet training data from
SemEval 2013 subtask B (Nakov et al., 2013). We
label a simile as positive or negative if the senti-
ment classifier labels it as positive or negative, re-
spectively. This method yields 1185 positive and
402 negative similes.
Using Sentiment in Surrounding Words: The
previous approaches for labeling training in-
stances will primarily identify similes that con-
tain one or more strongly affective words. This

2http://liblinear.bwaldvogel.de/
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can potentially bias the training data and limit the
classifier’s ability to learn to recognize affective
similes that do not contain words with a positive
or negative connotation. Therefore, we explore
an additional approach where instead of judging
the sentiment of the words in the simile, we ana-
lyze the words in the tweet surrounding the sim-
ile. We hypothesize that there are often redundant
sentiment indicators in the tweet. For example, “I
hate it when my room is as cold as Antarctica”.
For each simile, we identify all tweets that contain
the simile and collect all of the words surround-
ing the simile in these tweets as a collective “con-
text” for the tweet. We then count the number of
distinct positive and negative sentiment words and
compute the probability of positive or negative po-
larity given all the sentiment words surrounding a
simile, and retain positive or negative similes with
probability higher than a threshold (here, 0.7 to en-
sure high quality). As our sentiment lexicon, we
combined the MPQA and the AFINN lexicon.

One issue is that when people feel amused (e.g.,
“he looks like a complete zombie, haha”) or sar-
castic (e.g., “my room feels like an igloo. great!
LOL.”), seemingly positive words in the context
can be misleading because the sentiment is actu-
ally negative. As a simple measure to mitigate this
issue, we manually removed a small set of laugh-
ter indicators from the lexicons (e.g., lol, haha).

This method yielded 492 positive and 181 neg-
ative similes.

Combination of Training Instances: As our last
two training sets, we combined sets of instances
labeled using the different methods above. As the
fifth set, we combined training instances collected
using the MPQA and AFINN lexicons and the
NRC Canada sentiment classifier, which yielded
a total of 2274 positive similes and 1347 negative
similes. As our sixth set, we added the instances
recognized from the surrounding words of a sim-
ile, producing the largest data set of 2766 positive
and 1528 negative similes.

We also select neutral instances that are not
identified as positive or negative by the above ap-
proaches and that also do not contain a sentiment
lexicon (AFINN + MPQA) word in their collective
context. For each approach, we then randomly se-
lect our final training instances for positive, neg-
ative and neutral classes maintaining the distribu-
tion of the development data. The final training
data sizes are reported in Table 5.

4 Classifying Simile Polarity

Our goal is to create a classifier that can deter-
mine whether a simile expresses positive or neg-
ative affective polarity toward its subject. We
present a classifier designed to label similes as
Positive, Negative, or Neutral polarity. In this sec-
tion, we describe the feature set and the classifica-
tion framework of the supervised classifiers.

4.1 Feature Set

We extract three types of features from a simile,
representing the lexical, semantic, and sentiment
properties of the simile components.

4.1.1 Lexical Features
Unigrams: A binary feature indicates the pres-
ence of a unigram in a simile. This feature is not
component specific, so the unigram can be from
any simile component (tenor, event or vehicle).
Simile Components: We define a binary feature
for each tenor, event and vehicle phrase in the
data set. This feature is component specific, (e.g.,
“dog” as a tenor is a different feature from “dog”
as a vehicle).
Paired Components: We use a binary feature for
each pair of simile components. Our intuition
is that a pair of components may indicate affec-
tive polarity when used together. For example,
“event:feel, vehicle:ice box” is negative for many
different tenors (e.g., house, room, hotel). Simi-
larly, “tenor:person, vehicle:snail” is negative for
many different events (e.g., move, run, drive).
Explicit Properties Associated with Vehicle:
Sometimes a simile explicitly mentions a property
that is common to the tenor and the vehicle (e.g.,
“my pillow is soft like a cloud”). Although the
properties are not part of our triples because they
are optional components, we can still use them as
valuable features, whenever present in the original
corpus. For each simile vehicle, we therefore ex-
tract all explicit properties mentioned with that ve-
hicle in our corpus, and create a binary feature for
each (e.g., “Jane swims like a dolphin” and “Jim
runs like a cheetah” can both share the feature fast,
if fast appears with both “dolphin” and “cheetah”
in the corpus as an explicit property).
Vehicle Pre-modifiers: We use a binary feature
for each noun or adjective pre-modifier that ap-
pears with the vehicle (the vehicle head noun itself
is excluded). Our intuition is that the same pre-
modifiers appearing with different vehicles indi-
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cate the same affective polarity (e.g., “smells like
wet dog” and “smells like wet clothes”).

4.1.2 Semantic Features

Hypernym Class: We obtain up to two levels of
hypernym classes for each simile component head,
using WordNet (Miller, 1995). For words with
multiple senses, we only use the first synset of
a word from WordNet, for simplicity. Once the
hypernym classes are obtained for a word, we no
longer keep the level information, and use a binary
feature to represent each hypernym class. Our in-
tuition is that groups of similar words can be used
in different similes with the same affective polarity
(e.g., room, bedroom).
Perception Verb: We create a binary feature to in-
dicate if the event component is a perception verb.
Perception verbs are fairly common in similes
(e.g., “looks like a model”, “smells like garbage”).
We use a set of the 5 most common perception
verbs in similes (look, feel, sound, smell, taste).

4.1.3 Sentiment Features

We add sentiment features that can be recognized
in the simile using existing sentiment resources.
For this purpose, we combined the MPQA (Wil-
son et al., 2005), and the AFINN lexicon (Nielsen,
2011) to use as our sentiment lexicon.
Component Sentiment: We use 3 binary features
(one for each component) to indicate the presence
of a positive sentiment word, and 3 binary features
to indicate the presence of a negative sentiment
word in each simile component.
Explicit Property Sentiment: We use 2 numeric
features that count the number of positive and neg-
ative properties that appear with the vehicle in our
corpus. We look for the property words in the
combined AFINN and MPQA sentiment lexicons.
Sentiment Classifier Label: We use 2 binary fea-
tures (one for positive and one for negative) to rep-
resent the label that the NRC-Canada Sentiment
Classifier assigns to a simile.
Simile Connotation Polarity: We use 2 binary
features (one for positive and one for negative) to
indicate the overall connotation of a simile. We
count whether the number of positive (or nega-
tive) connotation words is greater in a simile using
a Connotation Lexicon (Feng et al., 2013), which
contains 30,881 words with positive connotation
and 33,724 words with negative connotation.

4.2 Classification Framework
As our supervised classification algorithm, we use
a linear SVM classifier from LIBLINEAR (Fan et
al., 2008), with its default parameter settings. Our
goal is to assign one of three labels to a simile:
Positive, Negative, or Neutral. We train two bi-
nary classifiers, one for positive and one for nega-
tive polarity. For positive polarity, we use similes
labeled positive as positive training instances, and
similes labeled negative or neutral as the negative
training instances. For the negative polarity classi-
fier, we use similes labeled negative as the positive
training instances, and similes labeled positive or
neutral as the negative instances.

To classify a simile, we apply both classifiers.
If the simile is labeled as positive or negative, then
it is assigned that label. If the simile is labeled as
both positive and negative, or not labeled as either,
then it is assigned a neutral label. We did not cre-
ate a classifier to solely identify neutral similes be-
cause neutral similes are much less common than
positive/negative similes, making up only 8.7% of
the extracted similes in our development set (Ta-
ble 3). Consequently, obtaining a large set of neu-
tral similes via manual annotation would have re-
quired substantially more manual annotation ef-
fort. Secondly, we did not have a good way to
reliably identify neutral similes automatically.

5 Evaluation

5.1 Classification Performance with
Manually Annotated Data

Table 4 presents the results for supervised clas-
sification with our manually annotated data set
using 10-fold cross-validation. As baselines, we
used existing sentiment resources as described in
Section 3.2, but now applied to evaluation data.
We also used the connotation lexicon (Feng et
al., 2013) the same way as the MPQA sentiment
lexicon (Wilson et al., 2005) to compare as an
additional baseline. The top section of Table 4
shows how effective these four existing sentiment
resources are at assigning polarity to similes. Al-
though precision was sometimes very high, recall
was low across the board.

The lower section of Table 4 shows results for
our classifiers. We first trained a classifier using
only the sentiment features in order to shed light
on the effectiveness of traditional sentiment indi-
cators. Row (a) in Table 4 shows that this classifier
produces reasonable precision (65-72%) but recall
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Positive Negative Neutral
P R F P R F P R F

Sentiment Resource Baselines
AFINN Lexicon 88 17 28 95 18 31 13 95 23
MPQA Lexicon 83 21 34 90 15 26 13 95 24
Connotation Lexicon 61 38 47 63 40 49 17 63 26
NRC Canada Sentiment Classifier 72 34 47 94 16 27 13 83 23

Affective Polarity Simile Classifiers
(a) Sentiment Features 65 54 59 72 48 58 19 37 25
(b) Unigrams 73 52 61 74 70 72 21 47 29
(c) Unigrams + Other Lexical 73 56 63 75 76 75 26 45 33
(d) Unigrams + Other Lexical + Semantic 68 59 63 76 72 74 24 40 30
(e) Unigrams + Other Lexical + Semantic + Sentiment 75 60 67 77 79 78 25 40 31

Table 4: Results with Manually Annotated Training Data (P = Precision, R = Recall, F = F1-score).

Classifier # of Training Instances Positive Negative Neutral
Pos Neg Neu P R F P R F P R F

(a) SVM with labeled data using AFINN 384 423 78 78 32 45 85 31 45 14 80 24
(b) SVM with labeled data using MPQA 475 522 94 65 44 53 81 27 41 12 59 20
(c) SVM with labeled data using NRC Canada 365 402 74 72 34 47 94 16 27 13 83 23
(d) SVM with labeled data from (a), (b), + (c) 1085 1193 216 69 50 58 88 30 45 13 62 22
(e) SVM with labeled data using 164 181 34 60 57 59 62 57 60 13 20 16

sentiment in surrounding words
(f) SVM with labeled data from (a), (b), (c), + (e) 1221 1342 242 64 61 62 75 48 59 11 30 16

Table 5: Results with Automatically Labeled Training Data (P = Precision, R = Recall, F = F1-score).

levels only around 50% for both positive and neg-
ative polarity. The Neutral class has extremely low
precision, which indicates that many unrecognized
positive and negative similes are being classified
as Neutral.

Row (b) shows the results for a baseline classi-
fier trained only with unigram features. Unigrams
perform substantially better than the sentiment
features for negative polarity, but only slightly bet-
ter for positive polarity. Row (c) shows that the ad-
ditional lexical features described in Section 4.1.1
further improve performance.

Row (d) shows that adding the semantic fea-
tures did not improve performance. One reason
could be that some WordNet hypernym classes are
very specific and may not generalize well. Also,
similes can have different polarities with vehicle
words from the same general semantic class (e.g.,
“he runs like a cheetah” vs “he runs like a turtle”).

Finally, Row (e) shows that adding the sen-
timent features along with all the other features
yields a precision gain for positive polarity and a
recall gain for negative polarity. Overall, the full
feature set improves the F score from 61% to 67%
for positive polarity, and from 72% to 78% for
negative polarity, over the unigram baseline.

5.2 Classification Performance with
Automatically Acquired Training Data

Table 5 shows the performance of the classifiers
(using our full feature set) when they are trained
with automatically acquired training instances.
The upper section of Table 5 shows results using
training instances labeled by three different sen-
timent resources. Row (d) shows that combining
the training instances labeled by all three resources
produces the best results.

Row (e) of Table 5 shows the performance of
the classifiers when they are trained with instances
selected by analyzing sentiment in the surrounding
words of the similes. We observe a substantial re-
call gain, which validates our hypothesis that simi-
les obtained by recognizing sentiment in their sur-
rounding words provide the classifier with a more
diverse set of training examples. Finally, Row (f)
shows that using both types of training instances
further improves performance for positive polar-
ity, and increases precision for negative polarity
but with some loss of recall.

Comparing these results with Table 4, we see
that there is still a gap between the performance
of classifiers trained with manually annotated data
versus automatically acquired data. However, the
classifiers trained with automatically acquired data
produce substantially higher F scores than all of
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the baseline systems in Table 4. Using automati-
cally acquired training data is a practical approach
for creating simile classifiers for specific domains,
such as Amazon product reviews (e.g., “head-
phone sounds like garbage”, or “each song is like a
snow-flake”) which were studied in previous work
on figurative comparisons in similes (Niculae and
Danescu-Niculescu-Mizil, 2014).

5.3 Impact of Training Data Size

Figure 1: Learning Curve for Positive Similes.

Figure 2: Learning Curve for Negative Similes.

We also generated learning curves to determine
how much the size of the training set matters.
Figures 1 and 2 show the performance of classi-
fiers trained using varying amounts of manually
annotated data. We show results for the classi-
fiers trained only with unigram features and clas-
sifiers trained with our full feature set, for pos-
itive similes in Figure 1 and negative similes in
Figure 2. The results were produced from 2-fold,
3-fold, 5-fold and 10-fold cross-validation experi-
ments, with the size of the corresponding training
sets shown on the X-axis. These figures show that

the classifiers with unigram features hit a plateau
at about 600 training instances. However the clas-
sifiers with the full feature set continually bene-
fited from more training data. Table 6 presents a
sample of similes where the vehicle appears only
once in our data set. The unigram-based classifier
could not classify these instances, but the classifier
with the full feature set could.

Positive Negative
PERSON, feel, superhero PERSON, feel, old woman
PERSON, be, friend PERSON, be, hurricane
beast, look, beauty IT, feel, eternity
PERSON, feel, hero PERSON, feel, peasant
PERSON, feel, champion PERSON, eat, savage
PERSON, seem, sweetheart PERSON, be, witch
IT, be, sleepover PERSON, feel, prisoner
IT, be, reunion IT, be, north pole
PERSON, feel, president IT, feel, winter
ronaldo, be, messi PERSON, be, wolf

Table 6: Similes with unique vehicles that were
correctly classified using the full feature set.

6 Analysis and Discussion

We also conducted a qualitative analysis of our
new corpus of similes and the behavior of the clas-
sifiers. We hypothesized that there are at least
two reasons why similes might be difficult to clas-
sify. First, the interpretation of a simile can be
highly context-dependent and subjective, depend-
ing on the speaker or the perceiver. To illustrate,
Table 7 presents examples of similes that can have
different polarity depending on the speaker or per-
ceiver’s personal experience or location, and other
subjective aspects of the context. For example, it
looks like snow may be a good thing to someone
who lives in Utah where people look forward to
skiing, but a bad thing to someone living in Boston
during the winter of 2015. Similarly she smells
like a baby is typically positive to new mothers,
but was viewed as negative by the Mechanical
Turk annotators.

Polarity Simile Context
positive PERSON, smell, baby young mother
negative PERSON, smell, baby MTurkers
negative IT, look, snow lives in Boston
positive IT, look, snow lives in Utah
negative IT, look, rain lives in England
positive IT, look, rain lives in California

Table 7: Similes with Context-dependent Polarity.

Second, we hypothesized that the polarity of
a simile might interact with the distinction made
in previous work between figurative and literal
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uses of similes (Bredin, 1998; Addison, 1993), for
example Niculae and Danescu-Niculescu-Mizil
(2014) showed that sentiment and figurative com-
parisons are strongly correlated. Thus our expec-
tation was that most literal comparisons would be
neutral while most figurative comparisons would
carry polarity. To explore this issue, we conducted
an informal analysis of the 378 similes in our de-
velopment data set to examine the literal vs. figu-
rative distinction. For this analysis, we looked at
the simile component triples as well as the context
of ten tweets in which the simile appeared.

Our analysis suggests that the picture is more
complex than we initially hypothesized. We found
that, 1) the distinction between positive and nega-
tive similes in our data is orthogonal to the figura-
tive vs. literal distinction, 2) some similes are used
both figuratively and literally, and cannot be dif-
ferentiated without context, 3) even in cases when
all sample uses were literal, it is easy to invent
contexts where the simile might be used figura-
tively, and vice versa, and 4) for a particular in-
stance (simile + context), it is usually possible to
tell whether a figurative or literal use is intended
by examining the simile context, but some cases
remain ambiguous. Table 8 shows examples of
some similes that we identified as being figurative,
literal, or both depending on context.

Use Polarity Simile
fig positive house, smell, heaven
fig positive PERSON, look, queen
fig negative PERSON, look, tomato
lit negative hair, smell, smoke
lit neutral PERSON, look, each other

both neutral house, smell, pizza
both negative IT, smell, skunk
both negative PERSON, look, frankenstein

Table 8: Similes with figurative (fig) or literal
(lit) interpretation, or ambiguous depending on the
context.

These observations reinforce the difficulty with
making the figurative/literal distinction noted
by Niculae and Danescu-Niculescu-Mizil (2014),
whose annotation task required Turkers to label
comparisons on a scale of 1 to 4 ranging from
very literal to very figurative. Even with Master
Turkers, a qualification task, filtering annotators
by gold standard items, and collapsing scalar 1,2
values to literal and 3,4 values to figurative, the
inter-annotator agreement with Fleiss’ κ was 0.54.
They note that out of 2400 automatically extracted
comparison candidates, only 12% end up being se-

lected confidently as figurative comparisons.
Selected cases that the classifiers fail on are fur-

ther illustrated in Table 9. Examples S1 to S9
could be related to the difficulties noted above
with subjectivity of interpretation. Many people
for example like the smell of coffee and pizza, but
perhaps not when a person smells that way. Sim-
ilarly, a baby is often positive as a vehicle, but
smelling and sounding like a baby may not be pos-
itive depending on the circumstances, while the
positive or negative interpretation of sounding like
a pirate and looking like a pirate might also be
context dependent.

ID Simile Gold Man Auto
S1 PERSON, smell, coffee neg pos pos
S2 PERSON, smell, pizza pos neg neut
S3 IT, smell, pizza neut pos neut
S4 PERSON, sleep, baby pos pos neut
S5 PERSON, smell, baby neg neg neut
S6 PERSON, feel, baby pos neg pos
S7 PERSON, sound, baby neg pos neut
S8 PERSON, sound, pirate pos neg neg
S9 PERSON, look, pirate neg neg neut

Table 9: Error Analysis of Classifier Output (Man
= Classifier trained with manually annotated in-
stances, Auto = Classifier trained with automati-
cally annotated instances).

7 Conclusions

Similes are one example of a tractable case of
sentiment-bearing expressions that are not recog-
nized well by current sentiment analysis tools or
lexicons. Making progress on sentiment analysis
may require tackling many different types of lin-
guistic phenomena such as this one. To this end,
we have presented a simile data set labeled with
affective polarity and have presented a supervised
classification framework for recognizing affective
polarity in similes. We have also presented our
experiments with both manually labeled and au-
tomatically acquired training instances. We have
shown that with manually labeled data, our feature
set can substantially improve performance over a
unigram only baseline. We have also shown that
good performance can be achieved with automat-
ically acquired training instances, when manually
labeled data may not be available.
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Abstract

In this paper we focus on a new problem of
event coreference resolution across televi-
sion news videos. Based on the observa-
tion that the contents from multiple data
modalities are complementary, we develop
a novel approach to jointly encode effec-
tive features from both closed captions
and video key frames. Experiment re-
sults demonstrate that visual features pro-
vided 7.2% absolute F-score gain on state-
of-the-art text based event extraction and
coreference resolution.

1 Introduction

TV news is the medium that broadcasts events,
stories and other information via television. The
broadcast is conducted in programs with the name
of “Newscast”. Typically, newscasts require one
or several anchors who are introducing stories and
coordinating transition among topics, reporters or
journalists who are presenting events in the fields
and scenes that are captured by cameramen. Sim-
ilar to newspapers, the same stories are often re-
ported by multiple newscast agents. Moreover, in
order to increase the impact on audience, the same
stories and events are reported for mutliple times.
TV audience passively receives redundant infor-
mation, and often has difficulty in obtaining clear
and useful digest of ongoing events. These proper-
ties lead to needs for automatic methods to cluster
information and remove redundancy. We propose
a new research problem of event coreference reso-
lution across multiple news videos.

To tackle this problem, a good starting point
is processing the Closed Captions (CC) which
is accompanying videos in newcasts. The CC
is either generated by automatic speech recogni-
tion (ASR) systems or transcribed by a human
stenotype operator who inputs phonetics which are

Figure 1: Similar visual contents improve detec-
tion of a coreferential event pair which has a low
text-based confidence score.
Closed Captions: “It ’s not clear when it was
killed.”; “Jordan just executed two ISIS prisoners,
direct retaliation for the capture of the killing
Jordanian pilot.”

instantly and automatically translated into texts,
where events can be extracted. There exist some
previous event coreference resolution work such
as (Chen and Ji, 2009b; Chen et al., 2009; Lee et
al., 2012; Bejan and Harabagiu, 2010). However,
they only focused on formally written newswire
articles and utilized textual features. Such ap-
proaches do not perform well on CC due to (1).
the propagated errors from upper stream compo-
nents (e.g., automatic speech/stenotype recogni-
tion and event extraction); (2). the incomplete-
ness of information. Different from written news,
newscasts are often limited in time due to fixed
TV program schedules, thus, anchors and journal-
ists are trained and expected to organize reports
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which are comprehensively informative with com-
plementary visual and CC descriptions within a
short time. These two sides have minimal over-
lapped information while they are inter-dependent.
For example, anchors and reporters introduce the
background story which are not presented in the
videos, and thus the events extracted from CC of-
ten lack information about participants.

For example, as shown in Figure 1, these two
Conflict.Attack event mentions are coreferential.
However, in the first event mention, a mistake
in Closed Caption (“he was killed” → “it was
killed”) makes event extraction and text based
coreference systems unable to detect and link “it”
to the entity of “Jordanian pilot”. Fortunately,
videos often illustrate brief descriptions by vivid
visual contents. Moreover, diverse anchors, re-
porters and TV channels tend to use similar or
identical video contents to describe the same story,
even though they usually use different words and
phrases. Therefore, the challenges in coreference
resolution methods based on text information can
be addressed by incorporating visual similarity. In
this example, the visual similarity between the cor-
responding video frames is high because both of
them show the scene of the Jordanian pilot.

Similar work such as (Kong et al., 2014), (Ra-
manathan et al., 2014), (Motwani and Mooney,
2012) and (Ramanathan et al., 2013) have ex-
plored methods of linking visual materials with
texts. However, these methods mainly focus on
connecting image concepts with entities in text
mentions; and some of them do not clearly distin-
guish entity and event in the documents since the
definition of visual concepts often require both of
them. Moreover, the aforementioned work mainly
focuses on improving visual contents recognition
by introducing text features while our work will
take the opposite route, which takes advantage of
visual information to improve event coreference
resolution.

In this paper, we propose to jointly incorporate
features from both speech (textual) and video (vi-
sual) channels for the first time. We also build a
newscast crawling system that can automatically
accumulate video records and transcribe closed
captions. With the crawler, we created a bench-
mark dataset which is fully annotated with cross-
document coreferential events 1.

1Dataset can be found at
http://www.ee.columbia.edu/dvmm/newDownloads.htm

2 Approach

2.1 Event Extraction
Given unstructured transcribed CC, we extract en-
tities and events and present them in structured
forms. We follow the terminologies used in ACE
(Automatic Content Extraction) (NIST, 2005):
• Entity: an object or set of objects in the world,

such as person, organization and facility.
• Entity mention: words or phrases in the texts

that mention an entity.
• Event: a specific occurrence involving partici-

pants.
• Event trigger: the word that most clearly ex-

presses an event’s occurrence.
• Event argument: an entity, or a temporal expres-

sion or a value that has a certain role (e.g., Time-
Within, Place) in an event.
• Event mention: a sentence (or a text span ex-

tent) that mentions an event, including a distinct
trigger and arguments involved.

2.2 Text based Event Coreference Resolution
Coreferential events are defined as the same spe-
cific occurrence mentioned in different sentences,
documents and transcript texts. Coreferential
events should happen in the same place and within
the same time period, and the entities involved and
their roles should be identical. From the perspec-
tive of extracted events, each specific attribute and
argument from those events should match. How-
ever, mentions for the same event may appear in
forms of diverse words and phrases; and they do
not always cover all arguments or attributes.

To tackle these challenges, we adopt a Maxi-
mum Entropy (MaxEnt) model as in (Chen and
Ji, 2009b). We consider every pair of event men-
tions which share the same event type as a can-
didate and exploit features proposed in (Chen and
Ji, 2009b; Chen et al., 2009). Note that the goal
in (Chen and Ji, 2009b; Chen et al., 2009) was
to resolve event coreference within the same doc-
ument, whereas our scenario yields to a cross-
document/video transcript setting, so we remove
some improper and invalid features. We also in-
vestigated the approaches by (Lee et al., 2012)
and (Bejan and Harabagiu, 2010), but the con-
fidence estimation results from these alternative
methods are not reliable. Moreover, the input
of event coreference are automatic results from
event extraction instead of gold standard, so the
noise and errors significantly impact the corefer-
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ence performance, especially for unsupervised ap-
proaches (Bejan and Harabagiu, 2010). Neverthe-
less, we still incorporate features from the afore-
mentioned methods. Table 1 shows the features
that constitute the input of the MaxEnt model.

2.3 Visual Similarity

Visual content provides useful cues complemen-
tary with those used in text-based approach in
event coreference resolution. For example, two
coreferential events typically show similar or even
duplicate scenes, objects, and activities in the vi-
sual channel. Coherence of such visual content
has been used in grouping multiple video shots
into the same video story (Hsu et al., 2003), but
it has not been used for event coreference res-
olution. Recent work in computer vision has
demonstrated tremendous progress in large-scale
visual content recognition. In this work, we adopt
the state-of-the-art techniques (Krizhevsky et al.,
2012) and (Simonyan and Zisserman, 2014) that
train robust convolutional neural networks (CNN)
over millions of web images to detect 20,000 se-
mantic categories defined in ImageNet (Deng et
al., 2009) from each image. The 2nd to the
last layer features from such deep network can
be considered as high-level visual representation
that can be used to discriminate various seman-
tic classes (scenes, objects, activity). It has been
found effective in computing visual similarity be-
tween images, by directly computing the L2 dis-
tance of such features or through further met-
ric learning. To compute the similarity between
videos associated with two candidate event men-
tions, we sample multiple frames from each video
and aggregate the similarity scores of the few
most similar image pairs between the videos. Let
{f i1, f i2, ..., , f il } be the key frames sampled from
video Vi and {f j1 , f j2 , ..., , f jl } be key frames sam-
pled from video Vj . All the frames are resized to a
fixed resolution of 256 x 256 and fed into our pre-
trained CNN model. We get the high-level visual
representation Fm = FC7(fm) for each frame fm
from the output of the 2nd to the last fully con-
nected layer (FC7) of CNN model. Fm is a 4096
dimension vector. The visual distance of frames
fm and fn is defined by L2 distance, which is

Dmn = ||FC7(f im)− FC7(f jn)||2. (1)

The distance of video pair (Vi, Vj) is computed as

D̄ij =
1
k
∗
∑

(fm,fn)

Dmn (2)

, where (fm, fn) is the top k of most similar frame
pairs. In our experiment, we use k = 3. Such
aggregation method among the top matches is in-
tended to capture similarity between videos that
share only partially overlapped content.

Each news video story typically starts with an
introduction by an anchor person followed by
news footages showing the visual scenes or activ-
ities of the event. Therefore, when computing vi-
sual similarity, it’s important to exclude the anchor
shot and focus on the story-related clips. Anchor
frame detection (Hsu et al., 2003) is a well studied
problem. In order to detect anchor frames auto-
matically, a face detector is applied to all I-frames
of a video. We can obtain the location and size
of each detected face. After checking the tempo-
ral consistency of the detected faces within each
shot, we get a set of candidate anchor faces. The
detected face regions are further extended to re-
gions of interest that may include hair and upper
body. All the candidate faces detected from the
same video are clustered based on their HSV color
histogram. It is reasonable to assume that the most
frequent face cluster is the one corresponding to
the anchor faces. Once the anchor frames are de-
tected, they are excluded and only the non-anchor
frames are used to compute the visual similarity
between videos associated with event mentions.

2.4 Joint Re-ranking

Using the visual distance calculated from Sec-
tion 2.3, we can rerank the confidence values from
Section 2.2 using the text-based MaxEnt model.
We use the following empirical equation to adjust
the confidence:

W ′ij = Wij ∗ e−
D̄ij
α

+1, (3)

where Wij denotes the original coreference con-
fidence between event mentions i and j, Dij de-
notes the visual distance between the correspond-
ing video frames where the event mentions were
spoken and α is a parameter which is used to ad-
just the impact of visual distance. In the current
implementation, we empirically set it as the aver-
age of pair-wised visual distances between videos
of all event coreference candidates. With this α
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Category Features Remarks (EMi: the first event mention, EMj : the sec-
ond event mention)

Baseline

type subtype pair of event type and subtype in EMi

trigger pair trigger pair of EMi and EMj

pos pair part-of-speech pair of triggers of EMi and EMj

nominal 1 if the trigger of EMi is nominal
nom number “plural” or “singular” if the trigger of EMi is nominal
pronominal 1 if the trigger of EMi is pronominal
exact match 1 if the trigger spelling in EMi matches that in EMj

stem match 1 if the trigger stem in EMi matches that in EMj

trigger sim the semantic similarity scores between triggers of EMi

and EMj using WordNet(Miller, 1995)
Arguments argument match 1 if arguments holding the same roles in both EMi and

EMj matches

Attributes
mod,pol,gen,ten four event attributes in EMi: modality, polarity, gener-

icity and tense
mod conflict,
pol conflict, gen conflict,
ten conflict

1 if the attributes of EMi and EMj conflict

Table 1: Features for Event Coreference Resolution

we generally enhance the confidence of event pairs
with small visual distances and penalize those with
large ones. An alternative way for setting the alpha
parameter is through cross validation over separate
data partitions.

3 Experiments

3.1 Data and Setting
We establish a system that actively monitors over
100 U.S. major broadcast TV channels such as
ABC, CNN and FOX, and crawls newscasts from
these channels for more than two years (Li et
al., 2013a). With this crawler, we retrieve 100
videos and their correspondent transcribed CC
with the topic of “ISIS”2. This system also tem-
porally aligns the CC text with the transcribed text
from automatic speech recognition following the
methods in (Huang et al., 2003). This provides ac-
curate time alignment between the CC text and the
video frames. As CC consists of capitalized let-
ters, we apply the true-casing tool from Standford
CoreNLP (Manning et al., 2014) on CC. Then we
apply a state-of-the-art event extraction system (Li
et al., 2013b; Li et al., 2014) to extract event men-
tions from CC. We asked two human annotators
to investigate all event pairs and annotate coref-
erential pairs as the ground truth. Kappa coeffi-
cient for measuring inter-annotator agreement is

2abbreviation for Islamic State of Iraq and Syria

74.11%. In order to evaluate our system perfor-
mance, we rank the confidence scores of all event
mention pairs and present the results in Precision
vs. Detection Depth curve. Finally we find the
video frames corresponding to the event mentions,
remove the anchor frames and calculate the visual
similarity between the videos. Our final dataset
consists of 85 videos, 207 events and 848 event
pairs, where 47 pairs are considered coreferential.

We adopt the MaxEnt-based coreference reso-
lution system from (Chen and Ji, 2009b; Chen et
al., 2009) as our baseline, and use ACE 2005 En-
glish Corpus as the training set for the model. A
5-fold cross-validation is conducted on the train-
ing set and the average f-score is 56%. It is lower
than results from (Chen and Ji, 2009a) since we
remove some features which are not available for
the cross-document scenario.

3.2 Results
The peak F-score for the baseline system is
44.23% while our cross-media method boosts it
to 51.43%. Figure 2 shows the improvement af-
ter incorporating the visual information. We adopt
Wilcoxon signed-rank test to determine the signif-
icance between the pairs of precision scores at the
same depth. The z-ratio is 3.22, which shows the
improvement is significant.

For example, the event pair “So why hasn’t
U.S. air strikes targeted Kobani within the city
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Figure 2: Performance comparison between base-
line and our cross-media method on top 150 pairs.
Circles indicate the peak F-scores.

limits” and “Our strikes continue alongside our
partners.” was mistakenly considered coreferen-
tial by text features. In fact, the former “strikes”
mentions the airstrike and the latter refers to the
war or battle, therefore, they are not coreferential.
The corresponding video shots demonstrate two
different scenes: the former one shows bombing
while the latter shows that the president is giving
a speech about the strike. Thus the visual distance
successfully corrected this error.

3.3 Error Analysis
However, from Figure 2 we can also notice that
there are still some errors caused by the vi-
sual features. One major error type resides in
the negative pairs with both “relatively” high
textual coreference confidence scores and “rela-
tively” high visual similarity. From the text side,
the event pair contains similar events, for exam-
ple: “The Penn(tagon) says coalition air strikes
in and around the Syrian city of Kobani have kill
hundreds of ISIS fighters but more are stream-
ing in even as the air campaign intensifies.” and
“Throughout the day, explosions from coalition
air strikes sent plums of smoke towering into the
sky.”. They talk about two airstrikes during differ-
ent time periods and are not coreferential, but the
baseline system produces a high rank. Our current
approach limits the image frames to those over-
lapped with the speech of an event mention, and in
this error, both videos show “battle” scene, yield-
ing a small visual distance. The aforementioned
assumption that anchors and journalists tend to use
similar videos when describing the same events ,
which may introduce risk of error caused by sim-
ilar text event mentions with similar video shots.
For such errors, one potential solution is to expand
the video frame windows to capture more events
and concepts from videos. Expanding the detec-

tion range to include visual events in the temporal
neighborhood can also differentiate the events.

3.4 Discussion
A systematic way of choosing α in Equation 3 will
be useful. One idea is to adapt the α value for dif-
ferent types of events, e.g., we expect some event
types are more visually oriented than others and
thus use a smaller α value.

We also notice the impact of the errors from the
upstream event extraction system. According to
(Li et al., 2014) the F-score of event trigger label-
ing is 65.3%, and event argument labeling is 45%.
Missing arguments in events is a main problem,
thus the performance on automatically extracted
event mentions is significantly worse. About 20
more coreferential pairs could be detected if events
and arguments are perfectly extracted.

4 Conclusions and Future Work

In this paper, we improved event coreference res-
olution on newscast speech by incorporating vi-
sual similarity. We also build a crawler that pro-
vides a benchmark dataset of videos with aligned
closed captions. This system can also help cre-
ate more datasets to conduct research on video de-
scription generation. In the future, we will focus
on improving event extraction from texts by intro-
ducing more fine-grained cross-media information
such as object, concept and event detection results
from videos. Moreover, joint detection of events
from both sides is our ultimate goal, however, we
need to explore the mapping among events from
both text and visual sides, and automatic detection
of a wide range of objects and events from news
video itself is still challenging.
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Abstract

Integrating vision and language has long
been a dream in work on artificial intel-
ligence (AI). In the past two years, we
have witnessed an explosion of work that
brings together vision and language from
images to videos and beyond. The avail-
able corpora have played a crucial role in
advancing this area of research. In this
paper, we propose a set of quality met-
rics for evaluating and analyzing the vi-
sion & language datasets and categorize
them accordingly. Our analyses show that
the most recent datasets have been us-
ing more complex language and more ab-
stract concepts, however, there are differ-
ent strengths and weaknesses in each.

1 Introduction

Bringing together language and vision in one in-
telligent system has long been an ambition in AI
research, beginning with SHRDLU as one of the
first vision-language integration systems (Wino-
grad, 1972) and continuing with more recent at-
tempts on conversational robots grounded in the
visual world (Kollar et al., 2013; Cantrell et al.,
2010; Matuszek et al., 2012; Kruijff et al., 2007;
Roy et al., 2003). In the past few years, an influx
of new, large vision & language corpora, along-
side dramatic advances in vision research, has
sparked renewed interest in connecting vision and
language. Vision & language corpora now provide
alignments between visual content that can be rec-
ognized with Computer Vision (CV) algorithms
and language that can be understood and generated
using Natural Language Processing techniques.

Fueled in part by the newly emerging data, re-
search that blends techniques in vision and in lan-
guage has increased at an incredible rate. In just

∗F.F. and N.M. contributed equally to this work.

the past year, recent work has proposed meth-
ods for image and video captioning (Fang et al.,
2014; Donahue et al., 2014; Venugopalan et al.,
2015), summarization (Kim et al., 2015), refer-
ence (Kazemzadeh et al., 2014), and question an-
swering (Antol et al., 2015; Gao et al., 2015), to
name just a few. The newly crafted large-scale vi-
sion & language datasets have played a crucial role
in defining this research, serving as a foundation
for training/testing and helping to set benchmarks
for measuring system performance.

Crowdsourcing and large image collections
such as those provided by Flickr1 have made it
possible for researchers to propose methods for vi-
sion and language tasks alongside an accompany-
ing dataset. However, as more and more datasets
have emerged in this space, it has become un-
clear how different methods generalize beyond the
datasets they are evaluated on, and what data may
be useful for moving the field beyond a single task,
towards solving larger AI problems.

In this paper, we take a step back to document
this moment in time, making a record of the ma-
jor available corpora that are driving the field. We
provide a quantitative analysis of each of these
corpora in order to understand the characteristics
of each, and how they compare to one another.
The quality of a dataset must be measured and
compared to related datasets, as low quality data
may distort an entire subfield. We propose a set of
criteria for analyzing, evaluating and comparing
the quality of vision & language datasets against
each other. Knowing the details of a dataset com-
pared to similar datasets allows researchers to de-
fine more precisely what task(s) they are trying to
solve, and select the dataset(s) best suited to their
goals, while being aware of the implications and
biases the datasets could impose on a task.

We categorize the available datasets into three
major classes and evaluate them against these cri-

1 http://www.flickr.com
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teria. The datasets we present here were chosen
because they are all available to the community
and cover the data that has been created to sup-
port the recent focus on image captioning work.
More importantly, we provide an evolving web-
site2 containing pointers and references to many
more vision-to-language datasets, which we be-
lieve will be valuable in unifying the quickly ex-
panding research tasks in language and vision.

2 Quality Criteria for Language &
Vision Datasets

The quality of a dataset is highly dependent on
the sampling and scraping techniques used early
in the data collection process. However, the con-
tent of datasets can play a major role in narrowing
the focus of the field. Datasets are affected by both
reporting bias (Gordon and Durme, 2013), where
the frequency with which people write about ac-
tions, events, or states does not directly reflect
real-world frequencies of those phenomena; they
are also affected by photographer’s bias (Torralba
and Efros, 2011), where photographs are some-
what predictable within a given domain. This sug-
gests that new datasets may be useful towards the
larger AI goal if provided alongside a set of quanti-
tative metrics that show how they compare against
similar corpora, as well as more general “back-
ground” corpora. Such metrics can be used as in-
dicators of dataset bias and language richness. At
a higher level, we argue that clearly defined met-
rics are necessary to provide quantitative measure-
ments of how a new dataset compares to previous
work. This helps clarify and benchmark how re-
search is progressing towards a broader AI goal as
more and more data comes into play.

In this section, we propose a set of such metrics
that characterize vision & language datasets. We
focus on methods to measure language quality that
can be used across several corpora. We also briefly
examine metrics for vision quality. We evaluate
several recent datasets based on all proposed met-
rics in Section 4, with results reported in Tables 1,
2, and Figure 1.

2.1 Language Quality

We define the following criteria for evaluating the
captions or instructions of the datasets:
• Vocabulary Size (#vocab), the number of
unique vocabulary words.

2http://visionandlanguage.net

• Syntactic Complexity (Frazier, Yngve) mea-
sures the amount of embedding/branching in a
sentence’s syntax. We report mean Yngve (Yngve,
1960) and Frazier measurements (Frazier, 1985);
each provides a different counting on the number
of nodes in the phrase markers of syntactic trees.
• Part of Speech Distribution measures the dis-
tribution of nouns, verbs, adjectives, and other
parts of speech.
• Abstract:Concrete Ratio (#Conc, #Abs,
%Abs) indicates the range of visual and non-visual
concepts the dataset covers. Abstract terms are
ideas or concepts, such as ‘love’ or ‘think’ and
concrete terms are all the objects or events that are
mainly available to the senses. For this purpose,
we use a list of most common abstract terms in En-
glish (Vanderwende et al., 2015), and define con-
crete terms as all other words except for a small
set of function words.
• Average Sentence Length (Sent Len.) shows
how rich and descriptive the sentences are.
• Perplexity provides a measure of data skew
by measuring how expected sentences are from
one corpus according to a model trained on an-
other corpus. We analyze perplexity (Ppl) for each
dataset against a 5-gram language model learned
on a generic 30B words English dataset. We
further analyze pair-wise perplexity of datasets
against each other in Section 4.

2.2 Vision Quality

Our focus in this survey is mainly on language,
however, the characteristics of images or videos
and their corresponding annotations is as impor-
tant in vision & language research. The quality of
vision in a dataset can be characterized in part by
the variety of visual subjects and scenes provided,
as well as the richness of the annotations (e.g., seg-
mentation using bounding boxes (BB) or visual de-
pendencies between boxes). Moreover, a vision
corpus can use abstract or real images (Abs/Real).

3 The Available Datasets

We group a representative set of available datasets
based on their content. For a complete list of
datasets and their descriptions, please refer to the
supplementary website.2

3.1 Captioned Images

Several recent vision & language datasets provide
one or multiple captions per image. The captions
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of these datasets are either the original photo ti-
tle and descriptions provided by online users (Or-
donez et al., 2011; Thomee et al., 2015), or the
captions generated by crowd workers for existing
images. The former datasets tend to be larger in
size and contain more contextual descriptions.

3.1.1 User-generated Captions
• SBU Captioned Photo Dataset (Ordonez et al.,
2011) contains 1 million images with original user
generated captions, collected in the wild by sys-
tematic querying of Flickr. This dataset is col-
lected by querying Flickr for specific terms such as
objects and actions and then filtered images with
descriptions longer than certain mean length.
• Déjà Images Dataset (Chen et al., 2015) con-
sists of 180K unique user-generated captions as-
sociated with 4M Flickr images, where one cap-
tion is aligned with multiple images. This dataset
was collected by querying Flickr for 693 high fre-
quency nouns, then further filtered to have at least
one verb and be judged as “good” captions by
workers on Amazon’s Mechanical Turk (Turkers).

3.1.2 Crowd-sourced Captions
• UIUC Pascal Dataset (Farhadi et al., 2010) is
probably one of the first datasets aligning images
with captions. Pascal dataset contains 1,000 im-
ages with 5 sentences per image.
• Flickr 30K Images (Young et al., 2014) extends
previous Flickr datasets (Rashtchian et al., 2010),
and includes 158,915 crowd-sourced captions that
describe 31,783 images of people involved in ev-
eryday activities and events.
•Microsoft COCO Dataset (MS COCO) (Lin et
al., 2014) includes complex everyday scenes with
common objects in naturally occurring contexts.
Objects in the scene are labeled using per-instance
segmentations. In total, this dataset contains pho-
tos of 91 basic object types with 2.5 million la-
beled instances in 328k images, each paired with 5
captions. This dataset gave rise to the CVPR 2015
image captioning challenge and is continuing to be
a benchmark for comparing various aspects of vi-
sion and language research.
• Abstract Scenes Dataset (Clipart) (Zitnick et
al., 2013) was created with the goal of represent-
ing real-world scenes with clipart to study scene
semantics isolated from object recognition and
segmentation issues in image processing. This re-
moves the burden of low-level vision tasks. This
dataset contains 10,020 images of children playing

outdoors associated with total 60,396 descriptions.

3.1.3 Captions of Densely Labeled Images
Existing caption datasets provide images paired
with captions, but such brief image descriptions
capture only a subset of the content in each image.
Measuring the magnitude of the reporting bias in-
herent in such descriptions helps us to understand
the discrepancy between what we can learn for
the specific task of image captioning versus what
we can learn more generally from the photographs
people take. One dataset useful to this end pro-
vides image annotation for content selection:
•Microsoft Research Dense Visual Annotation
Corpus (Yatskar et al., 2014) provides a set of 500
images from the Flickr 8K dataset (Rashtchian et
al., 2010) that are densely labeled with 100,000
textual labels, with bounding boxes and facets an-
notated for each object. This approximates “gold
standard” visual recognition.

To get a rough estimate of the reporting bias in
image captioning, we determined the percentage
of top-level objects3 that are mentioned in the cap-
tions for this dataset out of all the objects that are
annotated. Of the average 8.04 available top-level
objects in the image, each of the captions only re-
ports an average of 2.7 of these objects.4 A more
detailed analysis of reporting bias is beyond the
scope of this paper, but we found that many of the
biases (e.g., people selection) found with abstract
scenes (Zitnick et al., 2013) are also present with
photos.

3.2 Video Description and Instruction

Video datasets aligned with descriptions (Chen et
al., 2010; Rohrbach et al., 2012; Regneri et al.,
2013; Naim et al., 2015; Malmaud et al., 2015)
generally represent limited domains and small lex-
icons, which is due to the fact that video process-
ing and understanding is a very compute-intensive
task. Available datasets include:
• Short Videos Described with Sentences (Yu
and Siskind, 2013) includes 61 video clips (each
35 seconds in length, filmed in three different

3This visual annotation consists of a two-level hierarchy,
where multiple Turkers enumerated and located objects and
stuff in each image, and these objects were then further la-
beled with finer-grained object information (Has attributes).

4We did not use an external synonym or paraphrasing re-
source to perform the matching between labels and captions,
as the dataset itself provides paraphrases for each object: each
object is labeled by multiple Turkers, who labeled Isa rela-
tions (e.g., “eagle” is a “bird”).
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Size(k) Language Vision

Dataset Img Txt Frazier Yngve Vocab
Size (k)

Sent
Len. #Conc #Abs %Abs Ppl (A)bs/

(R)eal BB

Balanced Brown - 52 18.5 77.21 47.7 20.82 40411 7264 15.24% 194 - -

User-Gen
SBU 1000 1000 9.70 26.03 254.6 13.29 243940 9495 3.74% 346 R -
Deja 4000 180 4.13 4.71 38.3 4.10 34581 3714 9.70% 184 R -

Crowd-
sourced

Pascal 1 5 8.03 25.78 3.4 10.78 2741 591 17.74% 123 R -
Flickr30K 32 159 9.50 27.00 20.3 12.98 17214 3033 14.98% 118 R -

COCO 328 2500 9.11 24.92 24.9 11.30 21607 3218 12.96% 121 R Y
Clipart 10 60 6.50 12.24 2.7 7.18 2202 482 17.96% 126 A Y

Video VDC 2 85 6.71 15.18 13.6 7.97 11795 1741 12.86% 148 R -

Beyond
VQA 10 330 6.50 14.00 6.2 7.58 5019 1194 19.22% 113 A/R -
CQA 123 118 9.69 11.18 10.2 8.65 8501 1636 16.14% 199 R Y
VML 11 360 6.83 12.72 11.2 7.56 9220 1914 17.19% 110 R Y

Table 1: Summary of statistics and quality metrics of a sample set of major datasets. For Brown, we report Frazier and Yngve
scores on automatically acquired parses, but we also compute them for the 24K sentences with gold parses: in this setting, the
mean Frazier score is 15.26 while the mean Yngve score is 58.48.

outdoor environments), showing multiple simul-
taneous events between a subset of four objects:
a person, a backpack, a chair, and a trash-can.
Each video was manually annotated (with very re-
stricted grammar and lexicon) with several sen-
tences describing what occurs in the video.
• Microsoft Research Video Description Cor-
pus (MS VDC) (Chen and Dolan, 2011) con-
tains parallel descriptions (85,550 English ones)
of 2,089 short video snippets (10-25 seconds
long). The descriptions are one sentence sum-
maries about the actions or events in the video
as described by Amazon Turkers. In this dataset,
both paraphrase and bilingual alternatives are cap-
tured, hence, the dataset can be useful translation,
paraphrasing, and video description purposes.

3.3 Beyond Visual Description

Recent work has demonstrated that n-gram lan-
guage modeling paired with scene-level under-
standing of an image trained on large enough
datasets can result in reasonable automatically
generated captions (Fang et al., 2014; Donahue
et al., 2014). Some works have proposed to step
beyond description generation, towards deeper AI
tasks such as question answering (Ren et al., 2015;
Malinowski and Fritz, 2014). We present two of
these attempts below:
• Visual Madlibs Dataset (VML) (Yu et al.,
2015) is a subset of 10,783 images from the MS
COCO dataset which aims to go beyond describ-
ing which objects are in the image. For a given
image, three Amazon Turkers were prompted
to complete one of 12 fill-in-the-blank template
questions, such as ‘when I look at this picture,
I feel –’, selected automatically based on the im-
age content. This dataset contains a total of

360,001 MadLib question and answers.
• Visual Question Answering (VQA) Dataset
(Antol et al., 2015) is created for the task of open-
ended VQA, where a system can be presented with
an image and a free-form natural-language ques-
tion (e.g., ‘how many people are in the photo?’),
and should be able to answer the question. This
dataset contains both real images and abstract
scenes, paired with questions and answers. Real
images include 123,285 images from MS COCO
dataset, and 10,000 clip-art abstract scenes, made
up from 20 ‘paperdoll’ human models with ad-
justable limbs and over 100 objects and 31 ani-
mals. Amazon Turkers were prompted to create
‘interesting’ questions, resulting in 215,150 ques-
tions and 430,920 answers.
• Toronto COCO-QA Dataset (CQA) (Ren et
al., 2015) is also a visual question answering
dataset, where the questions are automatically
generated from image captions of MS COCO
dataset. This dataset has a total of 123,287 im-
ages with 117,684 questions with one-word an-
swer about objects, numbers, colors, or locations.

4 Analysis

We analyze the datasets introduced in Section 3
according to the metrics defined in Section 2, us-
ing the Stanford CoreNLP suite to acquire parses
and part-of-speech tags (Manning et al., 2014).
We also include the Brown corpus (Francis and
Kucera, 1979; Marcus et al., 1999) as a reference
point. We find evidence that the VQA dataset cap-
tures more abstract concepts than other datasets,
with almost 20% of the words found in our ab-
stract concept resource. The Deja corpus has the
least number of abstract concepts, followed by
COCO and VDC. This reflects differences in col-
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Brown Clipart Coco Flickr30K CQA VDC VQA Pascal SBU

Brown 237.1 99.6 560.8 405.0 354.039 187.3 126.5 47.8 621.5
Clipart 233.6 11.2 117.4 109.4 210.8 82.5 114.7 28.7 130.6

Coco 274.6 59.2 36.2 75.3 137.0 87.1 236.9 39.3 111.0
Flickr30K 247.8 78.5 54.3 37.8 181.5 72.1 192.2 39.9 125.0

CQA 489.4 186.1 137.0 244.5 33.8 259.0 72.1 74.9 200.1
VDC 200.5 52.4 61.5 51.1 289.9 30.0 180.1 28.7 154.5
VQA 425.9 368.8 366.8 665.8 317.7 455.0 19.6 119.3 281.0

Pascal 265.2 64.5 43.2 63.4 174.2 83.0 228.2 36.0 105.3
SBU 473.9 107.1 346.4 344.0 328.5 230.7 194.3 78.2 119.8

#vocab 14.0k 1.1k 13k 9.4k 5.3k 4.9k 1.4k 1.0k 65.1k

Table 2: Perplexities across corpora, where rows represent test sets (20k sentences) and columns training sets (remaining
sentences). To make perplexities comparable, we used the same vocabulary frequency cutoff of 3. All models are 5-grams.
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Figure 1: Simplified part-of-speech distributions for the eight
datasets. We include the POS tags from the balanced Brown
corpus (Marcus et al., 1999) to contextualize any very shal-
low syntactic biases. We mapped all nouns to “N,” all verbs
to “V,” all adjectives to “J” and all other POS tags to “O.”

lecting the various corpora: For example, the Deja
corpus was collected to find specifically visual
phrases that can be used to describe multiple im-
ages. This corpus also has the most syntactically
simple phrases, as measured by both Frazier and
Yngve; this is likely caused by the phrases needing
to be general enough to capture multiple images.

The most syntactically complex sentences are
found in the Flickr30K, COCO and CQA datasets.
However, the CQA dataset suffers from a high per-
plexity against a background corpus relative to the
other datasets, at odds with relatively short sen-
tence lengths. This suggests that the automatic
caption-to-question conversion may be creating
unexpectedly complex sentences that are less re-
flective of general language usage. In contrast,
the COCO and Flickr30K dataset’s relatively high
syntactic complexity is in line with their relatively

high sentence length.
Table 2 illustrates further similarities between

datasets, and a more fine-grained use of perplex-
ity to measure the usefulness of a given train-
ing set for predicting words of a given test set.
Some datasets such as COCO, Flickr30K, and Cli-
part are generally more useful as out-domain data
compared to the QA datasets. Test sets for VQA
and CQA are quite idiosyncratic and yield poor
perplexity unless trained on in-domain data. As
shown in Figure 1, the COCO dataset is balanced
across POS tags most similarly to the balanced
Brown corpus (Marcus et al., 1999). The Clipart
dataset provides the highest proportion of verbs,
which often correspond to actions/poses in vision
research, while the Flickr30K corpus provides the
most nouns, which often correspond to object/stuff
categories in vision research.

We emphasize here that the distinction between
a qualitatively good or bad dataset is task depen-
dent. Therefore, all these metrics and the obtained
results provide the researchers with an objective
set of criteria so that they can make the decision
whether a dataset is suitable to a particular task.

5 Conclusion

We detail the recent growth of vision & language
corpora and compare and contrast several recently
released large datasets. We argue that newly in-
troduced corpora may measure how they compare
to similar datasets by measuring perplexity, syn-
tactic complexity, abstract:concrete word ratios,
among other metrics. By leveraging such met-
rics and comparing across corpora, research can
be sensitive to how datasets are biased in different
directions, and define new corpora accordingly.
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Abstract

We investigate the role that geometric, tex-
tual and visual features play in the task
of predicting a preposition that links two
visual entities depicted in an image. The
task is an important part of the subsequent
process of generating image descriptions.
We explore the prediction of prepositions
for a pair of entities, both in the case when
the labels of such entities are known and
unknown. In all situations we found clear
evidence that all three features contribute
to the prediction task.

1 Introduction

In recent years, there has been an increased in-
terest in the task of automatic generation of natu-
ral language image descriptions at sentence level,
compared to earlier work that annotates images
with a laundry list of terms (Duygulu et al., 2002).
The task is important in that such detailed anno-
tations are more informative and discriminative
compared to isolated textual labels, and are essen-
tial for improved text and image retrieval.

The most standard approach to generating such
descriptions involves first detecting instances of
pre-defined concepts in the image, and then rea-
soning about these concepts to generate image de-
scriptions e.g. (Kulkarni et al., 2011; Yang et al.,
2011). Our work is also based on this paradigm.
However, we assume that object instances have
already been pre-detected by visual recognisers,
and concentrate on a specific subtask of descrip-
tion generation. More specifically, given two vi-
sual entity instances where one could potentially
act as a modifier to the other, we address the prob-
lem of identifying the appropriate preposition to
connect these two entities (Figure 1). The inferred
prepositional relations will subsequently act as an

*A. Ramisa and J. Wang contributed equally to this work.

Figure 1: Given a subject boy and an object sled
and their location in the image, what would the
best preposition be to connect the two entities?

important intermediate representation towards the
eventual goal of generating image descriptions.

The main contribution of this paper is therefore
to learn to predict the most suitable preposition
given its context, and to learn this jointly from im-
ages and their descriptions. In particular, we con-
centrate on learning from (i) geometric relations
between two visual entities from image annota-
tions; (ii) textual features from textual descrip-
tions; (iii) visual features from images. Previous
work exists (Yang et al., 2011) that uses text cor-
pora to ‘guess’ the prepositions given the context
without considering the appropriate spatial rela-
tions between the entities in the image, signifying
a gap between visual content and its correspond-
ing description. For example, although person
on horse might commonly occur in text corpora,
a particular image might actually depict a person
standing beside a horse. On the other hand, work
that does consider the image content for generat-
ing prepositions (Kulkarni et al., 2011; Elliott and
Keller, 2013) map geometric relations to a limited
set of prepositions using manually defined rules,
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not as humans would naturally use them with a
richer vocabulary. We would like to have the best
of both worlds, by considering image content as
well as textual information to select the preposi-
tion best used to express the relation between two
entities. Our hypothesis is that the combination
of geometric, textual and visual features can help
with the task of predicting the most appropriate
preposition, since incorporating geometric and vi-
sual information should help generate a relation
that is consistent with the image content, whilst
incorporating textual information should help gen-
erate a description that is consistent with natural
language.

2 Related Work

The Natural Language Processing Community has
significant interest in different aspects of prepo-
sitions. The Prepositions Project (Litkowski and
Hargraves, 2005) analysed and produced a lex-
icon of English prepositions and their senses,
and subsequently used them in the Word Sense
Disambiguation of Prepositions task in SemEval-
2007 (Litkowski and Hargraves, 2007). In
SemEval-2012, Kordjamshidi et al. (2012) intro-
duce the more fine-grained task of spatial role
labelling to detect and classify spatial relations
expressed by triples (trajector, landmark, spa-
tial indicator). In the latest edition of SemEval-
2015, the SpaceEval task (Pustejovsky et al.,
2015) introduce further tasks of identifying spatial
and motion signals, as well as spatial configura-
tions/orientation and motion relation.

In work that links prepositions more strongly
to image content, Gupta and Davis (2008) model
prepositions implicitly to disambiguate image re-
gions, rather than for predicting prepositions.
Their work also require manual annotation of
prepositional relations. In image description gen-
eration work, Kulkarni et al. (2011) manually map
spatial relations to pre-defined prepositions, whilst
Yang et al. (2011) predict prepositions from large-
scale text corpora solely based on the complement
term, with the prepositions constrained to describ-
ing scenes (on the street). Elliott and Keller (2013)
define a list of eight spatial relations and their cor-
responding prepositional term for sentence gener-
ation. Although they also present alternative mod-
els that use text corpora for descriptions that are
more human-like, they are limited to verbs and
do not cover prepositions. Le et al. (2014) exam-

ine prepositions modifying human actions (verbs),
and conclude that these relate to positional infor-
mation to a certain extent. Other related work in-
clude training classifiers for prepositions with spa-
tial relation features to improve image segmenta-
tion and detection (Fidler et al., 2013); this work
is however limited to four prepositions.

3 Task Definition

We formally define the task of predicting prepo-
sitions as follows: Let P be the set of possible
prepositions. Let L be the set of possible land-
mark entities acting as the complement of a prepo-
sition, and let T be the set of possible trajector
entities modified by the prepositional phrase com-
prising a preposition and its landmark1. For exam-
ple, for the phrase person on bicycle, on would be
the preposition, bicycle the landmark, and person
the trajector. For this paper, we constrain trajector
and landmark to be entities that are visually iden-
tifiable in an image since we are interested in dis-
covering the role of visual features and geometric
configurations between two entities in the prepo-
sition prediction task.

Let D = {d1, d2, ..., dN} be the set of N ob-
servations, where each di for i = 1, 2..., N is rep-
resented by di = (xi, yi, ri), where xi and yi are
the feature representations for the trajector and the
landmark entities respectively, and ri the relative
geometric feature between the two visual entities.

Given di, the objective of the preposition pre-
diction task is to produce a ranked list of preposi-
tions (p1, p2, ...p|P |) according to how likely they
are to express the appropriate spatial relation be-
tween the given trajector and landmark entities
that are either known (Section 6.1) or only repre-
sented by visual features (Section 6.2).

4 Dataset

We base the preposition prediction task on two
large-scale image datasets with human authored
descriptions, namely MSCOCO (Lin et al., 2014)
and Flickr30k (Young et al., 2014; Plummer et al.,
2015). To extract instances of triples (trajector,
preposition, landmark) from image descriptions,
we used the Neural Network, transition-based de-
pendency parser of Chen and Manning (2014) as
implemented in Stanford CoreNLP (Manning et
al., 2014). Dependencies signifying prepositional

1The terminologies trajector and landmark are adopted
from spatial role labelling (Kordjamshidi et al., 2011)
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Bounding Box feature (number of dimensions)

• Vector (x, y) from centroid of trajector to centroid of
landmark, normalised by the size of the bounding box
enclosing both objects (2)

• Area of trajector bounding box relative to landmark (1)

• Aspect ratio of each bounding box (2)

• Area of each bounding box w.r.t. enclosing box (2)

• Intersection over union of the bounding boxes (1)

• Euclidean distance between the trajector and landmark
bounding boxes, normalised by the image size (1)

• Area of each bounding box w.r.t. the whole image (2)

Table 1: Geometric features derived from bound-
ing boxes.

relations are retained where both the governor and
its dependent overlap with the entity mentions in
the descriptions, and where both mentions have
corresponding bounding boxes. The MSCOCO
validation set is further annotated to remove er-
rors arising from dependency parsing (notably PP
attachment errors), and is used as our clean test
set. Our final dataset comprises 8,029 training
and 3,431 test instances for MSCOCO, and 46,847
training and 20,010 test instances for Flickr30k.
Details on how the triples were extracted from
captions and matched to instances in images are
available in the supplementary material.

We consider two variants of trajector and land-
mark terms in our experiments: (i) using the
provided high level categories as terms (80 for
MSCOCO and 8 for Flickr30k); (ii) using the
terms occurring in the sentence directly, which
constitute a bigger and more realistic challenge.
For Flickr30k, the descriptive phrases may cause
data sparseness (the furry, black and white dog).
Thus, we extracted the lemmatised head word of
each phrase, using a ‘semantic head’ variant of
the head finding rules of Collins (2003) in Stan-
ford CoreNLP. Entities from the same coreference
chain are denoted with a common head noun cho-
sen by majority vote among the group, with ties
broken by the most frequent head noun in the cor-
pus, and further ties broken at random.

5 Features

Geometric Features: Geometric features be-
tween a trajector and a landmark entity are derived
from bounding box annotations. We defined an
11-dimensional vector of bounding box features,

covering geometric relations such as distance, ori-
entation, relative bounding box sizes and overlaps
between bounding boxes (Table 1). We chose to
use continuous features as we felt these may be
more powerful and expressive compared to dis-
crete, binned features. Despite some of these fea-
tures being correlated, we left it to the classifier to
determine the most useful features for discrimina-
tion without having to withhold any unnecessarily.

Textual features: We consider two textual fea-
tures to encode the trajector and landmark terms
wti and wli. The first feature is a one-hot indica-
tor vector xIi and yIi for the trajector and land-
mark respectively, where xIi,t = 1 if index t cor-
responds to the trajector term wti and 0 elsewhere
(and similarly for landmark). As data sparseness
may be an issue, we also explore an alternative tex-
tual feature which encodes the terms as word2vec
embeddings (Mikolov et al., 2013). This encodes
each term as a vector such that semantically re-
lated terms are close in the vector space. This al-
lows information to be transferred across seman-
tically related terms during training (e.g. infor-
mation from person on boat can help predict the
preposition that mediates man and boat).

Image Features: While it is ideal to have vi-
sion systems produce a firm decision about the vi-
sual entity instance detected in an image, in real-
ity it may be beneficial to defer the decision by
allowing several possible interpretations of the in-
stance being detected. In such cases, we will not
have a single concept label for the entity, but in-
stead a high-level visual representation. For this
scenario, we extracted visual representations from
the final layer of a Convolutional Neural Network
trained on ImageNet (Krizhevsky et al., 2012), and
used them as representations for entity instances in
place of textual features.

6 Preposition Prediction

Here we highlight interesting findings from exper-
iments performed for the task of predicting prepo-
sitions for two different scenarios (Sections 6.1
and 6.2). Detailed results can be found in the sup-
plementary material.

Evaluation metrics. As there may be more than
one ‘correct’ preposition for a given context (per-
son on horse and person atop horse), we pro-
pose the mean rank of the correct preposition as
the main evaluation metric, as it accommodates
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IND W2V GF IND+GF W2V+GF Baseline

M
ea

n
ra

nk MSCOCO (max rank 17) 1.45 1.43 1.72 1.44 1.42 2.14
MSCOCO (balanced) 3.20 3.10 4.60 3.00 2.90 5.40
Flickr30k (max rank 52) 1.91 1.87 2.35 1.88 1.85 2.54
Flickr30k (balanced) 11.10 9.04 15.55 10.23 8.90 15.13

A
cc

ur
ac

y MSCOCO 79.7% 80.3% 68.4% 79.8% 80.4% 40.2%
MSCOCO (balanced) 52.5% 54.2% 31.5% 52.7% 53.9% 11.9%
Flickr30k 75.4% 75.2% 58.5% 75.8% 75.4% 53.7%
Flickr30k (balanced) 24.6% 25.9% 9.0% 25.2% 26.9% 4.0%

Table 2: Top: Mean rank of the correct preposition (lower is better). Bottom: Accuracy with different
feature configurations. All results are with the original trajector/landmark terms from descriptions. IND
stands for Indicator Vectors, W2V for Word2Vec, and GF for Geometric Features. As baseline we rank
the prepositions by their relative frequencies in the training dataset.

Figure 2: Normalised confusion matrices on the balanced test subsets for the two datasets (left:
MSCOCO, right: Flickr30k), using geometric features and word2vec with the original terms.

multiple possible prepositions that may be equally
valid. For completeness we also report classifica-
tion accuracy results.

Baseline. As baseline, we rank the prepositions
by their relative frequencies in the training dataset.
We found this to be a sufficiently strong baseline,
as ubiquitous prepositions such as with and in tend
to occur frequently in the dataset.

6.1 Ranking with known entity labels
In this section, we focus on predicting the best
preposition given the geometric and textual fea-
tures of the trajector and landmark entities. This
simulates the scenario of a vision detector provid-
ing a firm decision on the concept label for the

detected entities. We use a multi-class logistic
regression classifier (Fan et al., 2008), and con-
catenate multiple features into a single vector. We
compare high-level categories and terms from de-
scriptions as trajector/landmark labels. Preposi-
tions are ranked in descending order of the clas-
sifier output scores.

We found a few prepositions (e.g. with) dom-
inating the datasets. Thus, we also evaluated our
models on a balanced subset where each preposi-
tion is limited to a maximum of 50 random test
samples. The training samples are weighted ac-
cording to their class frequency in order to train
non-biased classifiers to predict this balanced test
set. The results on both the original and balanced
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Dataset
Prep (known labels) Preposition Trajector Landmark

acc rank acc rank acc rank acc rank

MSCOCO 79.8% 1.46 (17) 62.9% 1.92 (17) 65.6% 4.64 (74) 44.5% 7.30 (77)
Flickr30k 67.1% 2.16 (52) 61.7% 2.28 (52) 77.3% 1.43 (8) 66.4% 1.64 (8)

Table 3: Accuracy (acc) and mean rank (rank, with max rank in parenthesis) for each variable of the
CRF model, trained using the high-level concept labels. Columns under Prep (known labels) refer to
the results of predicting prepositions with the trajector and landmark labels fixed to the correct values.

test sets are compared.
As shown in Table 2, the system performed sig-

nificantly better than the baseline in most cases. In
general, geometric features perform better than the
baseline, and when combined with text features
further improve the results. In a per-preposition
analysis, the geometric features show up to 14%
improvement in the mean rank for Flickr30k.

In feature ablation tests on MSCOCO (bal-
anced), we found the y component of the trajector
to landmark vector to be important to most prepo-
sitions, especially for under, above and on. Other
important geometric features include the final two
features in Table 1 (Euclidean distance and area).

The benefit of the word2vec text feature is clear
when moving from high-level categories to origi-
nal terms from descriptions, where it consistently
improves the mean rank (up to 25%). In contrast,
the indicator vectors resulted in a less significant
improvement, if not worse performance, when us-
ing the sparse original terms.

We also evaluated the relative importance of the
trajector and the landmark, by withholding either
from the textual feature vector. We found that the
landmark plays a larger role in preposition predic-
tion as omitting the trajector produces 10%-30%
better results than omitting the landmark.

Figure 2 shows the confusion matrices of the
best-performing systems. Note that many mis-
takes arise from prepositions that are often equally
valid (e.g. predicting near instead of next to).

6.2 Ranking with unknown entity labels

Here, we investigate the task of jointly predicting
prepositions with the entity labels given geomet-
ric and visual features (without the trajector and
landmark labels). This simulates the scenario of
a vision detector output. For this structured pre-
diction task, we use a 3-node chain CRF model2,

2We used the toolbox by Mark Schmidt: http://www.
cs.ubc.ca/˜schmidtm/Software/UGM.html

with the centre node representing the preposition
and the two end nodes representing the trajector
and landmark. We use image features for the en-
tity nodes, and geometric features for the preposi-
tion node (Section 5). Due to computational con-
straints only high-level category labels are used,
but as seen in Section 6.1, this may actually be
hurting the performance.

Table 3 shows the results of the structured
model used to predict the most likely (trajector,
preposition, landmark) combination. To facili-
tate comparison with Section 6.1, column Prep
(known labels) shows the results with the trajec-
tor and landmark labels as known conditions and
fixed to the correct values, thus only needing to
predict the preposition. The model achieved excel-
lent performance considering the added difficulty
of the task.

7 Conclusions and Future Work

We explored the role of geometric, textual and
visual features in learning to predict a preposi-
tion given two bounding box instances in an im-
age, and found clear evidence that all three fea-
tures play a part in the task. Our system per-
forms well even with uncertainties surrounding
the entity labels. Future work could include non-
prepositional terms like verbs, having preposi-
tions modify verbs, adding word2vec embeddings
to the structured prediction model, and providing
stronger features – whether textual, visual or geo-
metric.
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Abstract

IBM Model 1 is a classical alignment
model. Of the first generation word-based
SMT models, it was the only such model
with a concave objective function. For
concave optimization problems like IBM
Model 1, we have guarantees on the con-
vergence of optimization algorithms such
as Expectation Maximization (EM). How-
ever, as was pointed out recently, the ob-
jective of IBM Model 1 is not strictly con-
cave and there is quite a bit of alignment
quality variance within the optimal solu-
tion set. In this work we detail a strictly
concave version of IBM Model 1 whose
EM algorithm is a simple modification of
the original EM algorithm of Model 1 and
does not require the tuning of a learning
rate or the insertion of an l2 penalty. More-
over, by addressing Model 1’s shortcom-
ings, we achieve AER and F-Measure im-
provements over the classical Model 1 by
over 30%.

1 Introduction

The IBM translation models were introduced in
(Brown et al., 1993) and were the first-generation
Statistical Machine Translation (SMT) systems.
In the current pipeline, these word-based models
are the seeds for more sophisticated models which
need alignment tableaus to start their optimization
procedure. Among the original IBM Models, only
IBM Model 1 can be formulated as a concave opti-
mization problem. Recently, there has been some
research on IBM Model 2 which addresses either
the model’s non-concavity (Simion et al., 2015)

∗Currently on leave at Google Inc. New York.

or over parametrization (Dyer et al., 2013). We
make the following contributions in this paper:

• We utilize and expand the mechanism intro-
duced in (Simion et al., 2015) to construct
strictly concave versions of IBM Model 11.
As was shown in (Toutanova and Galley,
2011), IBM Model 1 is not a strictly con-
cave optimization problem. What this means
in practice is that although we can initialize
the model with random parameters and get to
the same objective cost via the EM algorithm,
there is quite a bit of alignment quality vari-
ance within the model’s optimal solution set
and ambiguity persists on which optimal so-
lution truly is the best. Typically, the easiest
way to make a concave model strictly con-
cave is to append an l2 regularizer. However,
this method does not allow for seamless EM
training: we have to either use a learning-rate
dependent gradient based algorithm directly
or use a gradient method within the M step of
EM training. In this paper we show how to
get via a simple technique an infinite supply
of models that still allows a straightforward
application of the EM algorithm.

• As a concrete application of the above, we
detail a very simple strictly concave version
of IBM Model 1 and study the performance
of different members within this class. Our
strictly concave models combine some of the
elements of word association and positional
dependance as in IBM Model 2 to yield a sig-
nificant model improvement. Furthermore,

1Please refer as needed to the Appendix for examples
and definitions of convexity/concavity and strict convex-
ity/concavity.
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we now have guarantees that the solution we
find is unique.

• We detail an EM algorithm for a subclass of
strictly concave IBM Model 1 variants. The
EM algorithm is a small change to the orig-
inal EM algorithm introduced in (Brown et
al., 1993).

Notation. Throughout this paper, for any posi-
tive integer N , we use [N ] to denote {1 . . . N} and
[N ]0 to denote {0 . . . N}. We denote by Rn

+ the set
of nonnegative n dimensional vectors. We denote
by [0, 1]n the n−dimensional unit cube.

2 IBM Model 1

We begin by reviewing IBM Model 1 and in-
troducing the necessary notation. To this end,
throughout this section and the remainder of the
paper we assume that our set of training exam-
ples is (e(k), f (k)) for k = 1 . . . n, where e(k)

is the k’th English sentence and f (k) is the k’th
French sentence. Following standard convention,
we assume the task is to translate from French (the
“source” language) into English (the “target” lan-
guage). We use E to denote the English vocabu-
lary (set of possible English words), and F to de-
note the French vocabulary. The k’th English sen-
tence is a sequence of words e

(k)
1 . . . e

(k)
lk

where lk
is the length of the k’th English sentence, and each
e
(k)
i ∈ E; similarly the k’th French sentence is a

sequence f
(k)
1 . . . f

(k)
mk where each f

(k)
j ∈ F . We

define e
(k)
0 for k = 1 . . . n to be a special NULL

word (note that E contains the NULL word).
For each English word e ∈ E, we will assume

that D(e) is a dictionary specifying the set of pos-
sible French words that can be translations of e.
The set D(e) is a subset of F . In practice, D(e)
can be derived in various ways; in our experiments
we simply define D(e) to include all French words
f such that e and f are seen in a translation pair.

Given these definitions, the IBM Model 1 opti-
mization problem is given in Fig. 1 and, for exam-
ple, (Koehn, 2008). The parameters in this prob-
lem are t(f |e). The t(f |e) parameters are transla-
tion parameters specifying the probability of En-
glish word e being translated as French word f .
The objective function is then the log-likelihood
of the training data (see Eq. 3):

1
n

n�
k=1

mk�
j=1

log p(f (k)
j |e(k)) ,

where log p(f (k)
j |e(k)) is

log
lk�

i=0

t(f (k)
j |e(k)

i )
1 + lk

= C + log
lk�

i=0

t(f (k)
j |e(k)

i ) ,

and C is a constant that can be ignored.

Input: Define E, F , L, M , (e(k), f (k), lk, mk) for
k = 1 . . . n, D(e) for e ∈ E as in Section 2.

Parameters:
• A parameter t(f |e) for each e ∈ E, f ∈ D(e).

Constraints:

∀e ∈ E, f ∈ D(e), t(f |e) ≥ 0 (1)

∀e ∈ E,
�

f∈D(e)

t(f |e) = 1 (2)

Objective: Maximize

1
n

n�
k=1

mk�
j=1

log
lk�

i=0

t(f (k)
j |e(k)

i ) (3)

with respect to the t(f |e) parameters.

Figure 1: The IBM Model 1 Optimization Prob-
lem.

While IBM Model 1 is concave optimization
problem, it is not strictly concave (Toutanova and
Galley, 2011). Therefore, optimization methods
for IBM Model 1 (specifically, the EM algorithm)
are typically only guaranteed to reach a global
maximum of the objective function (see the Ap-
pendix for a simple example contrasting convex
and strictly convex functions). In particular, al-
though the objective cost is the same for any op-
timal solution, the translation quality of the so-
lutions is not fixed and will still depend on the
initialization of the model (Toutanova and Galley,
2011).

3 A Strictly Concave IBM Model 1

We now detail a very simple method to make IBM
Model 1 strictly concave with a unique optimal so-
lution without the need for appending an l2 loss.

Theorem 1. Consider IBM Model 1 and modify
its objective to be

1
n

n�
k=1

mk�
j=1

log
lk�

i=0

hi,j,k(t(f
(k)
j |e(k)

i )) (4)
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where hi,j,k : R+ → R+ is strictly concave. With
the new objective and the same constraints as IBM
Model 1, this new optimization problem is strictly
concave.

Proof. To prove concavity, we now show that the
new likelihood function

L(t) =
1
n

n�
k=1

mk�
j=1

log
lk�

i=0

hi,j,k(t(f
(k)
j |e(k)

i )) ,

is strictly concave (concavity follows in the same
way trivially). Suppose by way of contradiction
that there is (t) �= (t�) and θ ∈ (0, 1) such
that equality hold for Jensen’s inequality. Since
hi,j,k is strictly concave and (t) �= (t�) we must
have that there must be some (k, j, i) such that
t(f (k)

j |e(k)
i ) �= t�(f (k)

j |e(k)
i ) so that Jensen’s in-

equality is strict for hi,j,k and we have

hi,j,k(θt(f
(k)
j |e(k)

i ) + (1− θ)t�(f (k)
j |e(k)

i ))

> θhi,j,k(t(f
(k)
j |e(k)

i )) + (1− θ)hi,j,k(t�(f (k)
j |e(k)

i ))

Using Jensen’s inequality, the monotonicity of the
log, and the above strict inequality we have

L(θt + (1− θ)t
�
)

=

n�

k=1

mk�

j=1

log

lk�

i=0

hi,j,k(θt(f
(k)
j |e(k)

i ) + (1− θ)t
�
(f

(k)
j |e(k)

i ))

>
n�

k=1

mk�

j=1

log

lk�

i=0

θhi,j,k(t(f
(k)
j |e(k)

i )) + (1− θ)hi,j,k(t
�
(f

(k)
j |e(k)

i ))

≥ θ
n�

k=1

mk�

j=1

log

lk�

i=0

hi,j,k(t(f
(k)
j |e(k)

i ))

+ (1− θ)

n�

k=1

mk�

j=1

log

lk�

i=0

hi,j,k(t
�
(f

(k)
j |e(k)

i ))

= θL(t) + (1− θ)L(t
�
)

The IBM Model 1 strictly concave optimiza-
tion problem is presented in Fig. 2. In (7) it is
crucial that each hi,j,k be strictly concave within�lk

i=0 hi,j,k(t(f
(k)
j |e(k)

i )). For example, we have
that
√

x1 + x2 is concave but not strictly concave
and the proof of Theorem 1 would break down. To
see this, we can consider (x1, x2) �= (x1, x3) and
note that equality holds in Jensen’s inequality. We
should be clear: the main reason why Theorem 1
works is that we have hi,j,k are strictly concave (on
R+) and all the lexical probabilities that are argu-
ments to L are present within the log-likelihood.

Input: Define E, F , L, M , (e(k), f (k), lk, mk) for
k = 1 . . . n, D(e) for e ∈ E as in Section 2. A set
of strictly concave functions hi,j,k : R+ → R+.

Parameters:
• A parameter t(f |e) for each e ∈ E, f ∈ D(e).

Constraints:

∀e ∈ E, f ∈ D(e), t(f |e) ≥ 0 (5)

∀e ∈ E,
�

f∈D(e)

t(f |e) = 1 (6)

Objective: Maximize

1
n

n�
k=1

mk�
j=1

log
lk�

i=0

hi,j,k(t(f
(k)
j |e(k)

i )) (7)

with respect to the t(f |e) parameters.

Figure 2: The IBM Model 1 strictly concave opti-
mization problem.

4 Parameter Estimation via EM
For the IBM Model 1 strictly concave optimization
problem, we can derive a clean EM Algorithm if
we base our relaxation of

hi,j,k(t(f
(k)
j |e(k)

i )) = α(e
(k)
i , f

(k)
j )(t(f

(k)
j |e(k)

i ))β(e
(k)
i ,f

(k)
j )

with β(e(k)
i , f

(k)
j ) < 1. To justify this, we first

need the following:

Lemma 1. Consider h : R+ → R+ given by
h(x) = xβ where β ∈ (0, 1). Then h is strictly
concave.

Proof. The proof of this lemma is elementary
and follows since the second derivative given by
h
��
(x) = β(β − 1)xβ−2 is strictly negative.

For our concrete experiments, we picked a
model based on Lemma 1 and used h(x) = αxβ

with α, β ∈ (0, 1) so that

hi,j,k(t(f
(k)
j |e(k)

i )) = α(f
(k)
j , e

(k)
i )(t(f

(k)
j |e(k)

i ))
β(f

(k)
j

,e
(k)
i

)
.

Using this setup, parameter estimation for the new
model can be accomplished via a slight modifica-
tion of the EM algorithm for IBM Model 1. In
particular, we have that the posterior probabilities
of this model factor just as those of the standard
Model 1 and we have an M step that requires opti-
mizing�

a(k)

q(a(k)|e(k), f (k)) log p(f (k), a(k)|e(k))

223



1: Input: Define E, F , L, M , (e(k), f(k), lk, mk) for k = 1 . . . n,
D(e) for e ∈ E as in Section 2. An integer T specifying the number of
passes over the data. A set of weighting parameter α(e, f), β(e, f) ∈
(0, 1) for each e ∈ E, f ∈ D(e). A tuning parameter λ > 0.

2: Parameters:
• A parameter t(f |e) for each e ∈ E, f ∈ D(e).

3: Initialization:
• ∀e ∈ E, f ∈ D(e), set t(f |e) = 1/|D(e)|.

4: EM Algorithm:
5: for all t = 1 . . . T do
6: ∀e ∈ E, f ∈ D(e), count(f, e) = 0
7: ∀e ∈ E, count(e) = 0
8: EM Algorithm: Expectation
9: for all k = 1 . . . n do

10: for all j = 1 . . . mk do
11: δ1[i] = 0 ∀i ∈ [lk]0
12: Δ1 = 0
13: for all i = 0 . . . lk do

14: δ1[i] = α(f
(k)
j , e

(k)
i )(t(f

(k)
j |e(k)

i ))
β(f

(k)
j

,e
(k)
i

)

15: Δ1 += δ1[i]
16: for all i = 0 . . . lk do
17: δ1[i] =

δ1[i]
Δ1

18: count(f
(k)
j , e

(k)
i ) += β(f

(k)
j , e

(k)
i )δ1[i]

19: count(e
(k)
i ) += β(f

(k)
j , e

(k)
i )δ1[i]

20: EM Algorithm: Maximization
21: for all e ∈ E do
22: for all f ∈ D(e) do
23: t(f |e) =

count(e,f)
count(e)

24: Output: t parameters

Figure 3: Pseudocode for T iterations of the EM
Algorithm for the IBM Model 1 strictly concave
optimization problem.

where

q(a(k)|e(k), f (k)) ∝
mk�
j=1

h
a
(k)
j ,j,k

(t(f (k)
j |e(k)

a
(k)
j

))

are constants gotten in the E step. This optimiza-
tion step is very similar to the regular Model 1 M
step since the β drops down using log tβ = β log t;
the exact same count-based method can be ap-
plied. The details of this algorithm are in Fig. 3.

5 Choosing α and β

The performance of our new model will rely heav-
ily on the choice of α(e(k)

i , f
(k)
j ), β(e(k)

i , f
(k)
j ) ∈

(0, 1) we use. In particular, we could make β de-
pend on the association between the words, or the
words’ positions, or both. One classical measure
of word association is the dice coefficient (Och
and Ney, 2003) given by

dice(e, f) =
2c(e, f)

c(e) + c(f)
.

In the above, the count terms c are the number
of training sentences that have either a particular
word or a pair of of words (e, f). As with the other
choices we explore, the dice coefficient is a frac-
tion between 0 and 1, with 0 and 1 implying less

and more association, respectively. Additionally,
we make use of positional constants like those of
the IBM Model 2 distortions given by

d(i|j, l, m) =


1

(l+1)Z(j,l,m) : i = 0

le−λ| i
l
− j

m |
(l+1)Z(j,l,m) : i �= 0

In the above, Z(j, l, m) is the partition func-
tion discussed in (Dyer et al., 2013). The previ-
ous measures all lead to potential candidates for
β(e, f), we have t(f |e) ∈ (0, 1), and we want to
enlarge competing values when decoding (we use
αtβ instead of t when getting the Viterbi align-
ment). The above then implies that we will have
the word association measures inversely propor-
tional to β, and so we set β(e, f) = 1−dice(e, f)
or β(e, f) = 1 − d(i|j, l, m). In our experiments
we picked α(f (k)

j , e
(k)
i ) = d(i|j, lk, mk) or 1; we

hold λ to a constant of either 16 or 0 and do not
estimate this variable (λ = 16 can be chosen by
cross validation on a small trial data set).

6 Experiments

6.1 Data Sets
For our alignment experiments, we used a subset
of the Canadian Hansards bilingual corpus with
247,878 English-French sentence pairs as training
data, 37 sentences of development data, and 447
sentences of test data (Michalcea and Pederson,
2003). As a second validation corpus, we con-
sidered a training set of 48,706 Romanian-English
sentence-pairs, a development set of 17 sentence
pairs, and a test set of 248 sentence pairs (Michal-
cea and Pederson, 2003).

6.2 Methodology
Below we report results in both AER (lower is
better) and F-Measure (higher is better) (Och and
Ney, 2003) for the English → French translation
direction. To declare a better model we have to
settle on an alignment measure. Although the
relationship between AER/F-Measure and trans-
lation quality varies (Dyer et al., 2013), there
are some positive experiments (Fraser and Marcu,
2004) showing that F-Measure may be more use-
ful, so perhaps a comparison based on F-Measure
is ideal.

Table 1 contains our results for the Hansards
data. For the smaller Romanian data, we obtained
similar behavior, but we leave out these results due
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(α, β) (1, 1) (d, 1) (1, 1− dice) (1, 1− d) (d, 1− d)
Iteration AER

0 0.8716 0.6750 0.6240 0.6597 0.5570
1 0.4426 0.2917 0.4533 0.2738 0.3695
2 0.3383 0.2323 0.4028 0.2318 0.3085
3 0.3241 0.2190 0.3845 0.2252 0.2881
4 0.3191 0.2141 0.3751 0.2228 0.2833
5 0.3175 0.2118 0.3590 0.2229 0.2812
6 0.3160 0.2093 0.3566 0.2231 0.2793
7 0.3203 0.2090 0.3555 0.2236 0.2783
8 0.3198 0.2075 0.3546 0.2276 0.2777
9 0.3198 0.2066 0.3535 0.2323 0.2769

10 0.3177 0.2065 0.3531 0.2352 0.2769
Iteration F-Measure

0 0.0427 0.1451 0.2916 0.1897 0.2561
1 0.4213 0.5129 0.4401 0.5453 0.4427
2 0.5263 0.5726 0.4851 0.5940 0.5014
3 0.5413 0.5852 0.5022 0.6047 0.5199
4 0.5480 0.5909 0.5111 0.6085 0.5255
5 0.5500 0.5939 0.5264 0.6101 0.5273
6 0.5505 0.5959 0.5282 0.6101 0.5286
7 0.5449 0.5965 0.5298 0.6096 0.5296
8 0.5456 0.5977 0.5307 0.6068 0.5300
9 0.5451 0.5985 0.5318 0.6040 0.5309
10 0.5468 0.5984 0.5322 0.6024 0.5311

Table 1: Results on the English-French data for
various (α, β) settings as discussed in Section 5.
For the d parameters, we use λ = 16 throughout.
The standard IBM Model 1 is column 1 and cor-
responds to a setting of (1,1). The not necessarily
strictly concave model with (d,1) setting gives the
best AER, while the strictly concave model given
by the (1, 1−d) setting has the highest F-Measure.

to space limitations. Our experiments show that
using

hi,j,k(t(f
(k)
j |e(k)

i )) = (t(f (k)
j |e(k)

i ))1−d(i|j,lk,mk)

yields the best F-Measure performance and is not
far off in AER from the “fake”2 IBM Model 2
(gotten by setting (α, β) = (d, 1)) whose results
are in column 2 (the reason why we use this model
at all is since it should be better than IBM 1: we
want to know how far off we are from this obvi-
ous improvement). Moreover, we note that dice
does not lead to quality β exponents and that, un-
fortunately, combining methods as in column 5
((α, β) = (d, 1 − d)) does not necessarily lead
to additive gains in AER and F-Measure perfor-
mance.

2Generally speaking, when using

hi,j,k(t(f
(k)
j |e(k)

i )) = d(i|j, lk, mk)t(f
(k)
j |e(k)

i )

with d constant we cannot use Theorem 3 since h is linear.
Most likely, the strict concavity of the model will hold be-
cause of the asymmetry introduced by the d term; however,
there will be a necessary dependency on the data set.

7 Comparison with Previous Work

In this section we take a moment to also compare
our work with the classical IBM 1 work of (Moore,
2004). Summarizing (Moore, 2004), we note that
this work improves substancially upon the classi-
cal IBM Model 1 by introducing a set of heuris-
tics, among which are to (1) modify the lexical
parameter dictionaries (2) introduce an initializa-
tion heuristic (3) modify the standard IBM 1 EM
algorithm by introducing smoothing (4) tune ad-
ditional parameters. However, we stress that the
main concern of this work is not just heuristic-
based empirical improvement, but also structured
learning. In particular, although using an regular-
izer l2 and the methods of (Moore, 2004) would
yield a strictly concave version of IBM 1 as well
(with improvements), it is not at all obvious how
to choose the learning rate or set the penalty on
the lexical parameters. The goal of our work was
to offer a new, alternate form of regularization.
Moreover, since we are changing the original log-
likelihood, our method can be thought of as way
of bringing the l2 regularizer inside the log like-
lihood. Like (Moore, 2004), we also achieve ap-
preciable gains but have just one tuning parame-
ter (when β = 1 − d we just have the centering
λ parameter) and do not break the probabilistic in-
terpretation any more than appending a regularizer
would (our method modifies the log-likelihood but
the simplex constrains remain).

8 Conclusion

In this paper we showed how IBM Model 1 can
be made into a strictly convex optimization prob-
lem via functional composition. We looked at a
specific member within the studied optimization
family that allows for an easy EM algorithm. Fi-
nally, we conducted experiments showing how the
model performs on some standard data sets and
empirically showed 30% important over the stan-
dard IBM Model 1 algorithm. For further re-
search, we note that picking the optimal hi,j,k is
an open question, so provably finding and justify-
ing the choice is one topic of interest.
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Abstract

This paper discusses the use of factoriza-
tion techniques in distributional semantic
models. We focus on a method for re-
distributing the weight of latent variables,
which has previously been shown to im-
prove the performance of distributional se-
mantic models. However, this result has
not been replicated and remains poorly un-
derstood. We refine the method, and pro-
vide additional theoretical justification, as
well as empirical results that demonstrate
the viability of the proposed approach.

1 Introduction

Distributional Semantic Models (DSMs) have be-
come standard paraphernalia in the natural lan-
guage processing toolbox, and even though there
is a wide variety of models available, the basic
parameters of DSMs (context type and size, fre-
quency weighting, and dimension reduction) are
now well understood. This is demonstrated by the
recent convergence of state-of-the-art results (Ba-
roni et al., 2014; Levy and Goldberg, 2014).

However, there are a few notable exceptions.
One is the performance improvements demon-
strated in two different papers using a method for
redistributing the weight of principal components
(PCs) in factorized DSMs (Caron, 2001; Bulli-
naria and Levy, 2012). In the latter of these pa-
pers, the factorization of latent variables in DSMs
is used to reach a perfect score of 100% correct
answers on the TOEFL synonym test. This re-
sult is somewhat surprising, since the factorization
method is the inverse of what is normally used.

Neither the result nor the method has been repli-
cated, and therefore remains poorly understood.
The goal of this paper is to replicate and explain
the result. In the following sections, we first pro-
vide a brief review of DSMs and factorization, and

review the method for redistributing the weight of
latent variables. We then replicate the 100% score
on the TOEFL test and provide additional state-of-
the-art scores for the BLESS test. We also provide
a more principled reformulation of the factoriza-
tion method that is better suited for practical ap-
plications.

2 Distributional Semantics

Consider a set of words W = {w1, . . . , wn} and a
set of context wordsC = {c1, . . . , cm}. The DSM
representation is created by registering an occur-
rence of a word wi with a set of context words
cj , . . . , ck with a corresponding increment of the
projection of wi on the cj , . . . , ck bases. In other
words, each cell fij in the matrix representation F
represents a co-occurrence count between a word
wi and a context cj . In the following, we use
W = C, making the co-occurrence matrix sym-
metric Fn×n. We also adhere to standard practice
of weighting the co-occurrence counts with Posi-
tive Pointwise Mutual Information (PPMI) (Niwa
and Nitta, 1994), which is a variation of the stan-
dard PMI weighting,1 which simply discards non-
positive PMI values.

3 Singular Value Decomposition

The high dimensionality of the co-occurrence ma-
trix makes it necessary in most practical applica-
tions to apply some form of dimensionality re-
duction to F , with the goal of finding a ba-
sis {x̂j , ..., x̂k} that restates the original basis
{xk, ...} in a lower-dimensional space F̂ , where
F̂ denotes the rank-k approximation of F :

min
F̂∈Rn×Rk

|F − F̂ | (1)

1PMI(fij) = log
fij(

∑
ij fij)2∑

i fij
∑

j fij
∑

ij fij
.
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Assuming Gaussian-like distributions,2 a canoni-
cal way of achieving this is to maximize the vari-
ance of the data in the new basis. This enables or-
dering of the new basis according to how much of
the variance in the original data each component
describes.

A standard co-occurrence matrix is positive and
symmetric and thus has, by the spectral theorem,
a spectral decomposition of an ordered set of posi-
tive eigenvalues and an orthogonal set of eigenval-
ues:

F = UΣV T (2)

where U holds the eigenvectors of F , Σ holds the
eigenvalues, and V ∈ U(w) is a unitary matrix
mapping the original basis of F into its eigenba-
sis. Hence, by simply choosing the first k eigen-
values and their respective eigenvectors we have
the central result:

min
k
|F − F̂ | → F̂ ≈ UkΣkV

T
k (3)

where F̂ is the best rank-k approximation in the
Frobenius-norm. This is commonly referred to as
truncated Singular Value Decomposition (SVD).

Finally, using cosine similarity,3 V is redundant
due to invariance under unitary transformations,
which means we can represent the principal com-
ponents of F̂ in its most compact form F̂ ≡ UΣ
without any further comment.

This projection onto the eigenbasis does not
only provide an efficient compression of the sparse
co-occurrence data, but has also been shown to
improve the performance and noise tolerance of
DSMs (Schütze, 1992; Landauer and Dumais,
1997; Bullinaria and Levy, 2012).

4 The Caron p-transform

Caron (2001) introduce a method for renormaliza-
tion of the latent variables through an exponent
factor p ∈ R:

UΣ→ UΣp (4)

which is shown to improve the results of factorized
models using both information retrieval and ques-
tion answering test collections. We refer to this
renormalization as the Caron p-transform. Bulli-
naria and Levy (2012) further corroborate Caron’s

2It is well known that the Gaussian assumption does not
hold in reality, and consequently there are also other ap-
proaches to dimensionality reduction based on multinomial
distributions, which we will not consider in this paper.

3cos(wi, wj) =
wi·wj

|wi||wj |

result, and show that the optimum exponent pa-
rameter p for DSMs is with strong statistical sig-
nificance p < 1. Moreover, due to the redistri-
bution of weight to the lower variance PCs, Bul-
linaria and Levy (2012) show that similar perfor-
mance improvements can be achieved by simply
removing the first PCs. We refer to this as PC-
removal. A highlight of their results is a perfect
score of 100% on the TOEFL synonym test.

Apart form the perfect score on the TOEFL test,
it is noteworthy that the PC-removal scheme is the
inverse of how SVD is normally used in DSMs; in-
stead of retaining only the first PCs – which is the
standard way of using the SVD in DSMs – the PC-
removal scheme deletes them, and instead retains
all the rest.

5 Experiments

We replicate the experiment setup of Bullinaria
and Levy (2012) by removing punctuation and
decapitalizing the ukWaC corpus (Baroni et al.,
2009). The DSM includes the 50,000 most fre-
quent words along with the remaining 23 TOEFL
words and is populated using a ±2-sized context
window. Co-occurrence counts are weighted with
PPMI, and SVD is applied to the resulting ma-
trix, reducing the dimensionality to 5,000. The
results of removing the first PCs versus apply-
ing the Caron p-transform are shown in Figure 1,
which replicates the results from Bullinaria and
Levy (2012).

In order to better understand what influence the
transform has on the representations, we also pro-
vide results on the BLESS test (Baroni and Lenci,
2011), which lists a number of related terms to 200
target terms. The related terms represent 8 dif-
ferent kinds of semantic relations (co-hyponymy,
hypernymy, meronymy, attribute, event, and three
random classes corresponding to randomly se-
lected nouns, adjectives and verbs), and it is thus
possible to use the BLESS test to determine what
type of semantic relation a model favors. Since our
primary interest here is in paradigmatic relations,
we focus on the hypernymy and co-hyponymy re-
lations, and require that the model scores one of
the related terms from these classes higher than
the related terms from the other classes. The cor-
pus was split into different sizes to test the statisti-
cal significance of the weight redistribution effect.
Furthermore, it shows that the optimal weight dis-
tribution depends on the size of the data.

228



Figure 1: TOEFL score for the PC-removal
scheme and the Caron p-transform for the span of
PCs.

Figure 2 shows the BLESS results for both the
PC removal scheme and the Caron p-transform for
different sizes of the corpus. The best score is
92.96% for the PC removal, and 92.46% for the
Caron p-transform, both using the full data set.
Similarly to the TOEFL results, we see better re-
sults for a larger number of removed PCs. Inter-
estingly, there is clearly a larger improvement in
performance of the Caron p-transform than for the
PC removal scheme.

Figure 3 shows how the redistribution affects
the different relations in the BLESS test. The vi-
olin plots are based on the maximum values of
each relation, and the width of the violin repre-
sents the normalized probability density of cosine
measures. The cosine distributions, Θi, are based
on the best matches for each category i, and nor-
malized by the total mean and variance amongst
all categories Θ̂i = Θi−µ

σ . Thus, the figure illus-
trates how well each category is separated from
each other, the larger separation the better.

The results in Figure 3 indicate that the top 120
PCs contain a higher level of co-hyponymy rela-

Figure 2: BLESS score for the PC-removal
scheme and the Caron p-transform for the span of
PCs.

Figure 3: BLESS targets versus categories from
1,400 PCs representation of the entire corpus.

tions than the lower; removing the top 120 PCs
gives a violin shape that resembles the inverse of
the plot for the top 120 PCs. Although neither part
of the PC span is significantly better in separating
the categories, it is clear that removing the first 120
PCs increases the variance within the categories
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and especially amongst the coord-category. This
is an interesting result, since it seems to contra-
dict the hypothesis that removing the first PCs im-
proves the semantic quality of the representations
– there is obviously valuable semantic information
in the first PCs.

Table 1 summarizes our top results on the
TOEFL, BLESS, and also the SimLex-999 simi-
larity test (Hill et al., 2014), and compares them
to a baseline score from the Skipgram model
(Mikolov et al., 2013a), trained on the same data
using a window size of 2, negative samples, and
400-dimensional vectors.

TOEFL BLESS SimLex-999
PC removal 100 92.96 46.52
Caron p 100 92.46 46.66
Skipgram 83.75 83.00 39.91

Table 1: Top results for the PC removal and Caron
p on each test compared to the Skipgram model.

Unfortunately, the optimal redistribution of
weight on the PCs for the respective top scores
differ between the experiments. For the PC re-
moval the optimal number of removed PCs is 379
for TOEFL, 15 for BLESS and 128 for SimLex-
999, while the optimal number for the Caron p-
transform is -1.4 for TOEFL, 0.5 for BLESS and
-0.40 for SimLex-999. Hence, there is likely no
easy way to find a general expression of the opti-
mal redistribution of weight on the PCs for a given
application.

6 The Pareto Principle

It is common practice to reduce the dimensional-
ity of an n-dimensional space to as many PCs as
it takes to cover 80% of the total eigenvalue mass.
This convention is known as the Pareto principle
(or 80/20-rule), and generally gives a good trade-
off between compression and precision. The re-
sults presented in the previous section suggest a
type of inversion of this principle in the case of
DSMs.

Given a computational and practical limit of the
number of PCs m with weights Σ = {σ1, ..., σm},
the optimal redistribution of weight on these com-
ponents is such that the first l − m components
σ1, ..., σm−l is transformed such that they consti-
tute 20% of the new total mass. Where l−m is the
number of components representing the last 20 %
of the original mass. In other words, the function

f : Σ → Σ̂ performing this redistribution is such
that: ∑m−l

i=1 σ̂i∑m
i=1 σ̂i

≈ 20% (5)

In this formulation, we can consider the Caron p-
transform and the PC-removal scheme as special
cases, where the Caron p-transform is given by:

f(σi) = σpi ∀i, p ∈ R (6)

and the PC-removal scheme by:

f(σi) = (1− δ(F ))σi ∀i, F = {1....l} (7)

where δ(F ) denotes the generalized Kronecker
delta function.

To test this claim, we form this quotient for
the distributions of weights at the optimal parame-
ters for the Caron p-transform and the PC-removal
scheme for both the BLESS and TOEFL tests for
each of the 40 sub-corpora.

Even though the results are not as optimal for
the BLESS test as for the TOEFL, the results in
Figure 4 point in favor of this measure. The opti-
mal mass distributions for the Caron p-transform
and the PC removal are all around 20 %.

(a) TOEFL - PC removal (b) BLESS - PC removal

(c) TOEFL - Caron p (d) BLESS - Caron p

Figure 4: The mass redistribution ratio for the best
results on the 1,400 PC models.

This result does not only apply for 1,400 PCs,
but has also been verified on a smaller set of matri-
ces with sizes of 2,500 PCs, 4,000 PCs and 5,000
PCs. The results for 1,400 PCs and 5,000 PCs are
shown in Table 2. As can be seen in this table, the
rule of thumb yields reasonable good guesses for
both Caron p and PC removal, over the different
tests and for various number of PCs.
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5,000 PC representation

PC removal Caron p
Parameter 493 -0.80
TOEFL 100 98.75
BLESS 89.45 88.95
SimLex 44.82 45.74

1,400 PC representation

PC removal Caron p
Parameter 204 -0.80
TOEFL 93.75 93.75
BLESS 89.95 90.95
SimLex 45.45 46.47

Table 2: Results for the PC removal and Caron p
using the 80/20 rule

7 Conclusions and future work

This paper has discussed the method of redistribut-
ing the weight of the first PCs in factorized DSMs.
We have replicated previously published results,
and provided additional empirical justification for
the method. The method significantly outperforms
the baseline Skipgram model on all tests used in
the experiments. Our results also suggest a slight
refinement of the method, for which we have pro-
vided both theoretical and empirical justification.
The resulting rule of thumb method leads to stable
results that may be useful in practice.

Although the experiments in this paper has pro-
vided further evidence for the usefulness of re-
distributing the weight in factorized models, it
also raises additional interesting research ques-
tions. For example, does the method also im-
prove models that have been trained on smaller
data sets? Does it also hold for non-Gaussian
factorization like Non-negative Matrix Factoriza-
tion? How does the method affect the (local) struc-
tural properties of the representations; do factor-
ized models display the same type of structural
regularities as has been observed in word embed-
dings (Mikolov et al., 2013b), and would it be pos-
sible to use methods such as relative neighborhood
graphs (Gyllensten and Sahlgren, 2015) to explore
the local effects of the transformation?
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Abstract

In this paper we explore a POS tagging ap-
plication of neural architectures that can
infer word representations from the raw
character stream. It relies on two mod-
elling stages that are jointly learnt: a
convolutional network that infers a word
representation directly from the character
stream, followed by a prediction stage.
Models are evaluated on a POS and mor-
phological tagging task for German. Ex-
perimental results show that the convolu-
tional network can infer meaningful word
representations, while for the prediction
stage, a well designed and structured strat-
egy allows the model to outperform state-
of-the-art results, without any feature en-
gineering.

1 Introduction

Most modern statistical models for natural lan-
guage processing (NLP) applications are strongly
or fully lexicalized, for instance part-of-speech
(POS) and named entity taggers, as well as lan-
guage models, and parsers. In these models, the
observed word form is considered as the elemen-
tary unit, while its morphological properties re-
main neglected. As a result, the vocabulary ob-
served on training data heavily restricts the gener-
alization power of lexicalized models.

Designing subword-level systems is appealing
for several reasons. First, words sharing morpho-
logical properties often share grammatical func-
tion and meaning, and leveraging that information
can yield improved word representations. Sec-
ond, a subword-level analysis can address the out-
of-vocabulary issue i.e the fact that word-level
models fail to meaningfully process unseen word
forms. This allows a better processing of morpho-
logically rich languages in which there is a com-
binatorial explosion of word forms, most of which

are not observed during training. Finally, using
subword units could allow processing of noisy text
such as user-generated content on the Web, where
abbreviations, slang usage and spelling mistakes
cause the number of word types to explode.

This work investigates models that do not rely
on a fixed vocabulary to make a linguistic predic-
tion. Our main focus in this paper is POS tag-
ging, yet the proposed approach could be applied
to a wide variety of language processing tasks.
Our main contribution is to show that neural net-
works can successfully learn unlexicalized mod-
els that infer a useful word representation from
the character stream. This approach achieves state
of-the-art performance on a German POS tagging
task. This task is difficult because German is a
morphologically rich language1, as reflected by
the large number of morphological tags (255) in
our study, yielding a grand total of more than
600 POS+MORPH tags. An aggravating factor
is that these morphological categories are overtly
marked by a handful of highly ambiguous inflec-
tion marks (suffixes). We therefore believe that
this case study is well suited to assess both the rep-
resentation and prediction power of our models.

The architecture we explore in section 2 differs
from previous work that only consider the charac-
ter level. Following (Santos and Zadrozny, 2014),
it consists in two stages that are jointly learnt. The
lower stage is a convolutional network that infers
a word embedding from a character string of ar-
bitrary size, while the higher network infers the
POS tags based on this word embedding sequence.
For the latter, we investigate different architec-
tures of increasing complexities: from a feedfor-
ward and context-free inference to a bi-recurrent
network that predicts the global sequence. Exper-
imental results (section 4) show that the proposed
approach can achieve state of the art performance

1Besides inflected forms, German is characterized by a
possibly infinite and evolving set of compound nouns.
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and that the choice of architecture for the predic-
tion part of the model has a significant impact.

2 Network Architectures

The different architectures we propose act in two
stages to infer, for a sentence s = {w1, . . . , w|s|},
a sequence of tags {t1, . . . , t|s|}. Each tag belongs
to the tagset T . The first stage is designed to rep-
resent each word locally, and focuses on capturing
the meaningful morphological information. In the
second stage, we investigate different ways to pre-
dict the tag sequence that differ in how the global
information is used.

2.1 From character to word level
To obtain word embeddings, the usual approach
introduced by (Bengio et al., 2003) relies on a
fixed vocabulary W and each word w ∈ W is
mapped to a vector of nf real valued features by
a look-up matrix W ∈ R|W|∗nf . To avoid the use
of a fixed vocabulary, we propose to derive a word
representation from a sequence of character em-
bedding: if C denotes the finite set of characters,
each character is mapped on a vector of nc features
gathered in the look-up matrix C.

To infer a word embedding , we use a convo-
lution layer (Waibel et al., 1990; Collobert et al.,
2011), build as in (Santos and Zadrozny, 2014).
As illustrated in figure 1, a word w is a character
sequence {c1, .., c|w|} represented by their embed-
dings {Cc1 , .., Cc|w|}, where Cci denotes the row
in C associated to the character ci. A convolu-
tion filter W conv ∈ Rnf × Rdc∗nc is applied over
a sliding window of dc characters, producing local
features :

xn = W conv(Ccn−dc+1
: .. : Ccn)T + bconv,

where xn is a vector of size nf obtained for each
position n in the word2. The i-th element of the
embedding of w is the maximum over the i-th ele-
ments of the feature vectors :

[f ]i = tanh( max
1≤n≤|s|

[xn]i)

Using a maximum after a sliding convolution win-
dow ensures that the embedding combines local
features from the whole word, and selects the more

2Two padding character tokens are used to deal with bor-
der effects. The first is added at the beginning and the second
at the end of the word, as many times as it is necessary to ob-
tain the same number of windows than the length of the word.
Their embeddings are added to C.

nc

Wconv × (.)T + bconv

nf

e

max(.)

S h e n

f1 f2 f3 f4 f5

Cc1 Cc2 Cc3 Cc4 Cc5Csow Ceow

Figure 1: Architecture of the layer for character-
level encoding of words.

useful ones. The parameters of the layer are the
matrices C and W conv and the bias bconv.

2.2 From words to prediction

To predict the tag sequence associated to a sen-
tence s, we first use a feedforward architecture,
with a single hidden layer. To compute the proba-
bility of tagging the n-th word in the sentence with
tag ti, we use a window of dw word embeddings3

centered around the word wn:

xn = fn− dw−1
2

: ... : fn+ dw−1
2
,

followed by a hidden and output layers:

sn = W o tanh(W hxn + bh) + bo. (1)

The parameters of the hidden an output layers
are respectively W h, bh and W o, bo.

We also experiment with a a bidirectional re-
current layer, as described in (Graves et al.,
2013). The forward and backward passes allow
each prediction to be conditioned on the complete
past and future contexts, instead of merely a neigh-
boring window. As illustrated in figure 2, the for-
ward hidden state, at position n, will be computed
using the previous forward hidden state and the
word embedding in position n:

−→
hn = tanh(

−−→
W fhfn +

−−→
W hh

−−→
hn−1 + bh)

3Similarly, we use special word tokens for padding.
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nf

|T |

nh

f1 f2 f3 f4 f5

Figure 2: Bidirectional recurrent architecture for
tag prediction. The upper part is used in the case
of structured inference.

−−→
W fh and

−−→
W hh are the transition matrices of

the forward part of the layer, and bh is the bias.
The backward hidden states are computed simi-
larly, and the hidden states of each direction are
concatenated to pass through an output layer:

sn = W o(
−→
hn :
←−
hn) + bo. (2)

2.3 Inference and Training

To infer the tag sequence from the sequence of
output layers defined by equations 1 or 2, we ex-
plore two strategies. The first simply applies a
softmax function to the output layer of the net-
work described in the previous section. In this
case, each tag prediction is made independently of
the surrounding predictions.

For sequence labeling, a more appropriate so-
lution relies on the approach of (Collobert, 2011),
also used in (Santos and Zadrozny, 2014). Let con-
sider each possible tag sequence {t1, . . . , t|s|} as a
possible path over a sequence of hidden states. We
can add a transition matrix W trans and then com-
pute the score of a sequence as follows:

s({t}|s|1 , {w}|s|1 ) =
∑

1≤n≤|s|

(
W trans
tn−1,tn + [sn]tn

)
The Viterbi algorithm (Viterbi, 1967) offers an ex-
act solution to infer the path that gives the max-
imum score. It is worth noticing that both these
strategies can be applied to the feedforward and

bidirectional recurrent networks. For both strate-
gies, the whole network can estimate conditional
log-likelihood of a tag sequence given a sentence
s and the set of parameters θ. This criterion can
then be optimized using a stochastic gradient as-
cent with the back-propagation algorithm.

3 Related Work

The choice to consider words from the charac-
ter level has recently been more and more ex-
plored. While its raw application to language
modeling did not achieve clear improvement over
the word-based models (Mikolov et al., 2012), this
approach shown impressive results for text gen-
eration (Sutskever et al., 2011; Graves, 2013).
However, for this line of work, the main issue is
to learn long range dependencies at the character
level since the word level is not considered by the
model.

More recently, the character level was con-
sidered as more interpretable and convenient
way to explore and understand recurrent net-
works (Karpathy et al., 2015). In (Zhang and Le-
Cun, 2015), the authors build a text understand-
ing model that does not require any knowledge
and uses hierarchical feature extraction. Here the
character level allows the model to ignore the def-
inition a priori of a vocabulary and let the model
build its own representation of a sentence or a doc-
ument, directly from the character level. To some
extent, our work can be considered as an extension
of their work, tailored for POS tagging.

(Santos and Zadrozny, 2014) applies a very sim-
ilar model to the POS tagging of Portuguese and
English. (Luong et al., 2013) also descends lower
than the word level, using a dictionary of mor-
phemes and recursive neural networks to model
the structure of the words. Similarly, this allows
a better representation of rare and complex words,
evaluated on a word similarity task.

4 Experiments and Results

Experiments are carried out on the Part-of-Speech
and Morphological tagging tasks using the Ger-
man corpus TIGER Treebank (Brants et al., 2002).
To the best of our knowledge, the best results on
this task were published in (Mueller et al., 2013),
who applied a high-order CRF that includes an in-
tensive feature engineering to five different lan-
guages. German was highlighted as having ’the
most ambiguous morphology’. The corpus, de-
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POS POS+Morph

Architecture Encoding Output Dev Test Dev Test

Feedforward

Lex.
Simple 4.22 ± 0.05 5.89 ± 0.07 13.97 ± 0.14 17.46 ± 0.14
Struct. 3.90 ± 0.05 5.33 ± 0.09 12.22 ± 0.13 15.34 ± 0.13

Non-lex.
Simple 3.31 ± 0.07 4.22 ± 0.07 13.50 ± 0.16 16.23 ± 0.13
Struct. 2.92 ± 0.02 3.82 ± 0.04 11.65 ± 0.11 14.43 ± 0.19

Both
Simple 2.59 ± 0.05 3.34 ± 0.09 11.89 ± 0.14 14.63 ± 0.22
Struct. 2.22 ± 0.03∗ 2.86 ± 0.03∗ 9.11 ± 0.14 11.29 ± 0.06

biRNN

Lex
Simple 6.03 ± 0.06 8.05 ± 0.05 17.83 ± 0.11 21.33 ± 0.26
Struct. 3.89 ± 0.06 5.26 ± 0.05 11.88 ± 0.05 17.78 ± 0.12

Non-Lex
Simple 4.46 ± 0.08 5.84 ± 0.19 16.61 ± 0.18 19.39 ± 0.12
Struct. 2.74 ± 0.07 3.59 ± 0.07 10.09 ± 0.09 12.88 ± 0.28

Both
Simple 3.63 ± 0.06 4.63 ± 0.04 14.83 ± 0.11 17.54 ± 0.13
Struct. 2.21 ± 0.04∗ 2.86 ± 0.05∗ 8.63 ± 0.21∗ 10.97 ± 0.19∗

CRF 2.06 2.56 9.40 11.42

Table 1: Comparison of the feedforward and bidirectional recurrent architectures for predictions, with
different settings. The non-lexical encoding is convolutional. CRF refers to state-of-the-art system of
(Mueller et al., 2013). Simple and Struct. respectively denote the position-by-position and structured
prediction. ∗ indicates our best configuration.

scribed in details in (Fraser et al., 2013), contains
a training set of 40472 sentences, a development
and a test set of both 5000 sentences. We consider
the two tagging tasks, with first a coarse tagset (54
tags), and then a morpho-syntactical rich tagset
(619 items observed on the the training set).

4.1 Experimental settings

All the models are implemented4 with the Theano
library (Bergstra et al., 2010). For optimization,
we use Adagrad (Duchi et al., 2011), with a learn-
ing rate of 0.1. The other hyperparameters are:
the window sizes, dc and dw, respectively set to
5 and 9, the dimension of character embeddings,
word embeddings and of the hidden layer, nc, nf
and nh, that are respectively of 100, 200 and 2005.
The models were trained on 7 epochs. Parame-
ter initialization and corpus ordering are random,
and the results presented are the average and stan-
dard deviation of the POS Tagging error rate over
5 runs.

4Implementation is available at https://github.
com/MatthieuLabeau/NonlexNN

5For both the learning rate and the embedding sizes, re-
sults does not differ in a significant way in a large range of hy-
perparameters, and their impact resides more in convergence
speed and computation time

4.2 Results

The first experiment aims to evaluate the efficiency
of a convolutional encoding with the basic feed-
forward architecture for prediction. We compare
a completely non-lexicalized model which relies
only on a character-level encoding with a lexical-
ized model where we use conventional word em-
beddings stored with a fixed vocabulary6. Re-
sults are reported in Table 1 along with with the
state-of-the-art results published in (Mueller et al.,
2013). Results show that a character-level en-
coding yields better results than the conventional
word-level encoding. Moreover, the structured in-
ference allows the model to achieve accuracy rea-
sonably close to the performance of a high-order
CRF that uses handcrafted features. Finally, the
model that uses the concatenation of both the char-
acter and word-level embeddings outperforms the
state-of-the-art system on the more difficult task,
without any feature engineering.

To give an idea of how a simple model
would perform on such task, the reader can refer
to (Schmid and Laws, 2008) and (Mueller et al.,
2013). For instance in the former, by choosing the
most probable tag position-by-position, the error
rate on the development set of the TIGER dataset

6Every word that appears in the training set.
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is 32.7 for the simple POS Tagging task.
We further analyze the results by looking at

the error rates respectively on known and un-
known words7. From table 2, we observe that
the number of unknown words wrongly labeled
is divided by 3 for POS and almost divided by
2 for POS+Morph tagging, showing the ability
of character-level encoding to generalize to new
words. Moreover, a strictly non-lexical encoding
makes slightly more mistakes on words already
seen, whereas the model that concatenates both
embeddings will make less mistakes for both un-
known and known words.

This shows that information from the context
and from the morphology are complementary,
which is conjectured in (Mueller et al., 2013) by
using a morphological analyzer in complement of
higher-order CRF.

Lex. Non-lex. Both

POS Unknown 2970 1054 1010
Known 1974 2981 1620

POS+Morph Unknown 5827 3472 3384
Known 8652 10205 7232

Table 2: Error counts for known/unknown words
in the test set, with a structured feedforward pre-
diction model for the tagging task.

In the second set of experiments, we evaluate
the convolutional encoding with a bidirectional re-
current network for prediction. Results are pre-
sented in the second half of Table 1. Surprisingly,
this architecture performs poorly with simple in-
ference, but clearly improves when predicting a
structured output using the Viterbi algorithm, both
for training and testing. Moreover, a non-lexical
model trained to infer a tag sequence with the
Viterbi algorithm achieves results that are close to
the state-of-the-art, thus validating our approach.
We consider that this improvement comes from the
synergy between using a global training objective
with a global hidden representation, complexify-
ing the model but allowing a more efficient solu-
tion. Finally, the model that uses the combination
of both the character and word-level embeddings
yields the best results. It is interesting to notice
that the predictive architecture has no influence on
the results of the simple task when the prediction is

7Unknown words refer to words present in the develop-
ment or test sets, but not in the training set.

structured, but improves them on the difficult task.
This also shows that the contribution of word em-
beddings to our model corresponds to a difference
of 1.5 to 2 points in performance.

5 Conclusion

In this paper, we explored new models that can in-
fer meaningful word representations from the raw
character stream, allowing the model to exploit the
morphological properties of words without using
any handcrafted features or external tools. These
models can therefore efficiently process words that
were unseen in the training data. The evaluation
was carried out on a POS and morphological tag-
ging task for German. We described different ar-
chitectures that act in two stages: the first stage is a
convolutional network that infers a word represen-
tation directly from the character stream, while the
second stage performs the prediction. For the pre-
diction stage, we investigated different solutions
showing that a bidirectional recurrent network can
outperform state-of-the-art results when using a
structured inference algorithm.

Our results showed that character-level encod-
ing can address the unknown words problem for
morphologically complex languages. In the fu-
ture, we plan to extend these models to other tasks
such as syntactic parsing and machine translation.
Moreover, we will also investigate other architec-
tures to infer word embeddings from the character
level. For instance, preliminary experiments show
that bidirectional recurrent network can achieve
very competitive and promising results.
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Abstract

We investigate an extension of continuous
online learning in recurrent neural network
language models. The model keeps a sep-
arate vector representation of the current
unit of text being processed and adaptively
adjusts it after each prediction. The initial
experiments give promising results, indi-
cating that the method is able to increase
language modelling accuracy, while also
decreasing the parameters needed to store
the model along with the computation re-
quired at each step.

1 Introduction

In recent years, neural network models have
shown impressive performance on many natural
language processing tasks, such as speech recogni-
tion (Chorowski et al., 2014; Graves et al., 2013),
machine translation (Kalchbrenner and Blunsom,
2013; Cho et al., 2014), text classification (Le
and Mikolov, 2014; Kalchbrenner et al., 2014) and
image description generation (Kiros et al., 2014).
One of the main advantages of these methods is
the ability to learn smooth vector representations
for words, thereby reducing the sparsity problem
inherent in any natural language dataset.

Language modelling is another task where neu-
ral networks have delivered excellent results (Ben-
gio et al., 2003; Mikolov et al., 2011). Chelba
et al. (2014) have recently benchmarked several
well-known language models by training on very
large datasets. They found that a recurrent neu-
ral network language model (RNNLM) combined
with a 9-gram MaxEnt model was able to give the
best results and lowest perplexity.

In this work we investigate a possible extension
of RNNLM, by allowing it to continue learning
and adapting during testing. The model keeps a
vector representation of the current sentence that

is being processed, and continuously modifies it
based on an error signal. We refer to this as a ver-
sion of online learning, as gradient descent is used
to optimise the vector even during testing.

The technique is inspired by work on represen-
tation learning (Collobert and Weston, 2008; Mnih
and Hinton, 2008; Mikolov et al., 2013), espe-
cially Le and Mikolov (2014) who use a related
model to learn representations for text classifica-
tion. We extend the idea to recurrent models and
apply it to the task of language modelling. Our
results indicate that by exchanging some existing
model parameters for a component using online
learning, the system is able to achieve lower per-
plexity while also reducing the necessary compu-
tation.

2 RNNLM

We base our implementation of the RNNLM on
Mikolov et al. (2011), shown in Figure 1. The in-
put layer to the network consists of a 1-hot vec-
tor representing the previous word in the sequence,
and the hidden vector from the previous time step.
These are multiplied by corresponding weight ma-
trices and the resulting vectors are passed through
an activation function to calculate the hidden vec-

Figure 1: Recurrent neural network language
model (RNNLM)
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tor at the current time step.1

Class-based output architecture is used to avoid
calculating the softmax over all words in the vo-
cabulary. The probability distributions over words
and classes are calculated by multiplying the hid-
den vector with the corresponding weight matrix
and applying the softmax function:

hiddent = σ(E · inputt +Wh · hiddent−1)

classes = softmax(Wc · hiddent)
output = softmax(W (c)

o · hiddent)
where σ is the logistic function and W (c)

o is the
weight matrix between the hidden layer and the
output words in class c.

Finally, we multiply the probability of the next
word belonging to class c with the output proba-
bility of the next word given the class to get the
overall probability of the next word given the pre-
vious words:

P (wt+1|wt1) ≈ classesc · outputwt+1

Negative log-probability is used as the loss
function, which optimises the network to assign
a high probability to the correct words. The net-
work is trained using gradient descent and back-
propagation through time. In the basic model, this
means unrolling the recurrent network for a fixed
number of time steps, essentially turning it into a
deep feedforward network which outputs proba-
bility distributions on different layers. Instead of
using a fixed number of steps, our implementation
unrolls each sentence from the last word to the first
word, making it more suitable for processing indi-
vidual sentences as opposed to longer texts.

In addition, we introduce a special vector to use
as the hidden vector at the start of each sentence.
The values in this vector are treated as parame-
ters and optimised during training. This allows the
network to learn a suitable starting point when no
other information is available, giving slight perfor-
mance improvements in our experiments.

3 RNNLM with online learning

We extend the RNNLM by introducing an addi-
tional document/context vector, shown as doc in
Figure 2. This vector will represent the current

1Explicit multiplication for the word vectors can be
avoided by using data structures that retrieve the correct vec-
tor in constant time.

Figure 2: RNNLM with an additional document
vector for active learning

document being processed, whether that is a sen-
tence, paragraph or a larger text. When calculat-
ing output probabilities over classes and words, we
also condition them on this new document vector:

classes = softmax(Wc · hiddent +Wdc · doc)

output = softmax(W (c)
o ·hiddent+W

(c)
do ·doc)

whereWdc is the weight matrix between the docu-
ment vector and class layer, andW (c)

do is the weight
matrix between the document vector and output
words in class c.

We construct the document vector by treating
the values as parameters and optimising them dur-
ing both training and testing using backpropaga-
tion. At each time step, the system first performs
a forward pass through the network and outputs
probability distributions over classes and words.
We then use the next word in the sequence to cal-
culate the error derivatives in the output and back-
propagate them back into the document vector.
The update is not able to to affect the output at
the current time step, but it will modify the doc-
ument vector which will be used in the next time
step. The same word that is used for modifying
the document vector for the next time step is also
available in the input layer of the next time step,
therefore the system receives no additional knowl-
edge as input.

We are interested in modelling individual sen-
tences, therefore at the beginning of each sentence
the document vector is reset to a specific start-
ing state, which is optimised during training and
shared between all sentences. During testing, the
values in the document vector are continuously
modified depending on the error derivatives be-
ing backpropagated from the output layer, while
all other parameters in the model stay constant.
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When dealing with larger texts and domain-
specific corpora, similar ideas of iterative learning
can be applied to any language model. After pro-
cessing a certain amount of data during testing, a
new model could be trained using the previously
seen testing examples as additional training data.
Since this process adds more training data which
is likely to be similar to upcoming testing exam-
ples, the system is likely to achieve a better per-
formance.

However, when dealing with independent sen-
tences, online learning becomes more difficult to
apply. Each sentence contains very little addi-
tional data, and even if the language model is
adjusted after every individual word, it only ob-
tains evidence of previous words in the sentence,
whereas these words are relatively unlikely to oc-
cur again in the same sentence. Therefore, instead
of adjusting individual word representations, our
approach learns a distributed document vector to
represent the specific unit of text that is currently
being processed. This vector is then used as addi-
tional evidence when calculating output probabil-
ities.

Le and Mikolov (2014) use a similar method
for learning vector representations of documents
and paragraphs. They construct a feedforward
language model and include a paragraph vector
as an additional vector in the input layer. The
model parameters are trained on the training set,
and when given unseen test data, the system opti-
mises the paragraph vector according to the error
signal. They use these vectors as input to a logis-
tic regression classifier and achieve state-of-the-art
performance on sentiment classification of movie
reviews. However, they did not consider the effect
of this model modification directly on the task of
language modelling.

While the system of Le and Mikolov (2014)
uses a basic feedforward language model, we ex-
tend the idea to recurrent neural network language
models, as they are currently used in state-of-
the-art language modelling systems (Chelba et al.,
2014). Attaching the document vector to the input
layer is not preferable for RNNLM, as the error
is only backpropagated into the input layer after
several time steps. When this time step is reached
and the network is unrolled to perform backprop-
agation through time, several words have already
passed without receiving any additional informa-
tion. Since our implementation performs the un-

rolling only at the end of each sentence, the up-
dates would not have any effect. Therefore, we
attach the document vector directly to the output
layer, in parallel with the recurrent hidden compo-
nent. Parameters in the document vector can then
be updated at each time step, while the unrolling
and backpropagation through time still happens at
the end of the sentence.

4 Experiments

We constructed a dataset from English Wikipedia
to evaluate language modelling performance over
individual sentences. The text was tokenised, sen-
tence split and lowercased. The sentences were
shuffled, in order to minimise any transfer effects
between consecutive sentences, and then split into
training, development and test sets. The final sen-
tences were sampled randomly, in order to obtain
reasonable training times for the experiments. The
dataset sizes are shown in Table 2.

Train Dev Test

Words 9,990,782 237,037 4,208,847
Sentences 419,278 10,000 176,564

Table 2: Dataset sizes

Model performance is measured using perplex-
ity, therefore lower values indicate a model which
is able to better predict the data. Special tokens
are used to mark the beginning and end of a sen-
tence. The sentence end token is also included
in the evaluation, whereas the sentence start to-
ken is only used as context in the input layer.
Any words that occur less than 30 times in the
training data were replaced by a special token for
unknown words, leaving a vocabulary of 16,514
unique words. General learning rate was set to 0.1
and decreased during training, whereas the learn-
ing rate of the document vector was fixed at 0.1
for both training and testing.

As the baseline, we use the regular RNNLM
with 100-dimensional hidden layers and word vec-
tors (M = 100). In the experiments we increase
the capacity of the model and measure how that
affects the perplexity on the datasets. First, we
increase the value of M, allowing more informa-
tion to be stored into word representations, while
also increasing the number of hidden-hidden and
hidden-output connections. As can be seen in Ta-
ble 1, this improves the overall performance of the
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Train PPL Dev PPL Test PPL +Parameters +Operations

Baseline M=100 92.65 103.56 102.51 – –

M=120 88.60 98.78 97.79 666,960 7,400
M=100, D=20 87.28 95.36 94.39 332,300 6,000

M=135 85.17 96.33 95.71 1,167,705 13,475
M=100, D=35 80.11 91.05 90.29 581,525 10,500

Table 1: Perplexity and additional parameters/operations for different language model configurations

model – setting M to 120 and 135 leads to pro-
gressively lower perplexity.

Next, instead of increasing M , we add a D-
dimensional document vector to the model and use
this for online learning. When the same num-
ber of elements is added to M or D, our results
show consistently better performance when using
the document vector. Increasing M by 35 gives
perplexity 95.71, whereas using a 35-dimensional
document vector gives perplexity 90.29. We also
performed the same experiment using only half
of the training data, and the difference was even
larger – 105.50 and 98.23 correspondingly.

One reason why online learning during model
deployment is not commonly used is because it
is computationally expensive. Continuously re-
training the model and adjusting parameters can be
very time-consuming compared to a simple feed-
forward process through the network. However,
extra computation is also needed when using a
hidden vector of size M , as opposed to using a
smaller value. When increasing the value of M to
M +X , the RNNLM will contain

X · C + 2 ·X · V + 2 ·X ·M +X2

additional parameters and needs to perform

2 ·X ·M +X2 +X · C +X · E[O]

additional operations at each time step.2 C is the
number of classes, V is vocabulary size, and E[O]
is the expected number of words that need to be
processed in the output layer during one step.

The corresponding number of additional param-
eters in a RNNLM model using a D-dimensional
document vector for online learning is

D +D · V +D · C
2We only count the matrix multiplication operations, as

they take the majority of the time in a neural network lan-
guage model.

and additional operations

2 ·D · E[O] + 2 ·D · C

which includes the error backpropagation at each
time step. For our experiments V = 16, 514,
C = 100 and E[O] ≈ 50. Table 1 contains the ad-
ditional values for the experiments, showing that
replacing some hidden vector parameters with the
actively learned document vector leads to fewer
total parameters and fewer operations, along with
lower perplexity.

Figure 3 presents the relationship between per-
plexity and the number of additional parameters,
when increasing either M or D. The results are
averaged over 10 runs with different random ini-
tialisations. As can be seen, using a small docu-
ment vector lowers the perplexity with fewer pa-
rameters, compared to simply increasing the main
components of the network. The graph of per-
plexity with respect to additional operations in the
model also has a very similar shape.

0 500000 1000000 1500000 2000000
84

88

92

96

100

104

increasing M

increasing D

Figure 3: Perplexity as a function of additional
parameters when increasing either M or D. The
x-axis shows the number of additional parame-
ters in the model, with respect to the baseline of
M = 100, D = 0. The y-axis shows the perplex-
ity on the test set.
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Both Hufnagel and Marston also joined the long-standing technical death metal band Gorguts.

1. The band eventually went on to become the post-hardcore band Adair.
2. The band members originally came from different death metal bands, bonding over a common

interest in d-beat.
3. The proceeds went towards a home studio, which enabled him to concentrate on his solo output

and songs that were to become his debut mini-album ”Feeding The Wolves”.

The Chiefs reclaimed the title on September 29, 2014 in a Monday Night Football game against the
New England Patriots, hitting 142.2 decibels.

1. He played in twenty-four regular season games for the Colts, all off the bench.
2. In May 2009 the Warriors announced they had re-signed him until the end of the 2011 season.
3. The team played inconsistently throughout the campaign from the outset, losing the opening

two matches before winning four consecutive games during September 1927.

He was educated at Llandovery College and Jesus College, Oxford, where he obtained an M.A.
degree.

1. He studied at the Orthodox High School, then at the Faculty of Mathematics.
2. Kaigama studied for the priesthood at St. Augustine’s Seminary in Jos with further study in

theology in Rome.
3. Under his stewardship, Zahira College became one of the leading schools in the country.

Table 3: Examples of using the document vectors to find similar sentences in the development data.

In order to further explore the relationship be-
tween D and M , we trained a number of smaller
models with different values, under the constraint
D +M = 100. To reduce computation time, only
half of the training data was used in these experi-
ments. The lowest perplexity was achieved in the
region of D = 23 and M = 77, and making
the document vectors much smaller or larger led
to a decrease in performance. This indicates that
including the document vector does help increase
model accuracy, but as it contains no information
about the training data, this vector should be small
compared to the main model.

Intuitively, this approach works by having the
document vector capture the unique aspects of
each sentence. While the general RNNLM is a
smooth static representation of the entire training
data, the document vector is optimised to repre-
sent how each sentence differs from the main lan-
guage model. Therefore we performed a quali-
tative evaluation and found that the learned sen-
tence vectors were also very good predictors of
semantic similarity. The RNN language model
was trained on the training set, and then used to
process the development set. The last state of
the document vector of each sentence was used to
calculate cosine similarity. Table 3 contains ran-

domly sampled sentences from the development
set, together with corresponding development sen-
tences that have the highest similarity (excluding
the original sentence). Even though there is al-
most no word overlap, the retrieved sentences are
semantically very similar.

5 Conclusion

We have described a possible extension of
RNNLM which uses continuous online learning.
The model includes a separate vector to represent
the unit of text, such as a sentence, being cur-
rently processed. The vector starts in a default
state and is continuously updated using backprop-
agation, leading to a more informative representa-
tion. The modified language model achieves lower
perplexity with a more optimal use of parameters.

The idea of continuous training and adaptation
is natural and also established in biological learn-
ing processes, yet it is not widely used due to com-
putational complexity. Our experiments indicate
that by including this active learning component
in the neural network model, the system is able to
achieve higher accuracy, while also decreasing the
parameters needed to store the model and decreas-
ing the computation required.
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Abstract

When building spoken dialogue systems
for a new domain, a major bottleneck is
developing a spoken language understand-
ing (SLU) module that handles the new
domain’s terminology and semantic con-
cepts. We propose a statistical SLU model
that generalises to both previously unseen
input words and previously unseen out-
put classes by leveraging unlabelled data.
After mapping the utterance into a vector
space, the model exploits the structure of
the output labels by mapping each label
to a hyperplane that separates utterances
with and without that label. Both these
mappings are initialised with unsupervised
word embeddings, so they can be com-
puted even for words or concepts which
were not in the SLU training data.

1 Introduction

Spoken Language Understanding (SLU) in dia-
logue systems is the task of taking the utterance
output by a speech recognizer and assigning it a
semantic label that represents the dialogue actions
of that utterance accompanied with their associ-
ated attributes and values. For example, the utter-
ance ”I would like Chinese food” is labelled with
inform(food=Chinese), in which inform is the dia-
logue action that provides the value of the attribute
food that is Chinese.

Dialogue systems often use hand-crafted gram-
mars for SLU, such as Phoenix (Ward, 1994),
which are expensive to develop, and expensive
to extend or adapt to new attributes and values.
Statistical SLU models are usually trained on the
data obtained from a specific domain and loca-
tion, using a structured output classifier that can
be discriminative (Pradhan et al., 2004; Kate and
Mooney, 2006; Henderson et al., 2012) or genera-
tive (Schwartz et al., 1996; He and Young, 2005).

Gathering and annotating SLU data is costly and
time consuming and therefore SLU datasets are
small compare to the number of possible labels.

Because training sets for a new domain are
small, or non-existent, learning is often an in-
stance of Zero-shot or One-shot learning prob-
lems (Palatucci et al., 2009; L. Fei-Fei; Fergus,
2006), in which zero or few examples of some
output classes are available during the training.
For example, in the restaurant reservation domain,
not all possible combinations of foods and dia-
logue actions may be included in the training set.
The general idea to solve this type of problems is
to map the input and class labels to a semantic
space of usually lower dimension in which simi-
lar classes are represented by closer points in the
space (Palatucci et al., 2009; Weston et al., 2011;
Weston et al., 2010). Usually unsupervised knowl-
edge sources are used to form semantic codes of
the labels that helps us to generalize to unseen la-
bels.

On the other hand, there are also different ways
to express the same meaning, and similarly, most
of them can not be included in the training set.
For instance, the system may have seen ”Please
give me the telephone number” in training, but the
user might ask ”Please give me the phone” at test
time. This problem, feature sparsity, is a common
issue in many NLP tasks. Decomposition of in-
put feature parameters using vector-matrix mul-
tiplication (Bengio et al., 2003; Collobert et al.,
2011; Collobert and Weston, 2008) has addressed
this sparsity issue successfully in previous work.
In this way, by sharing the word representations
and composition matrices, we can overcome fea-
ture sparsity by producing similar representations
for similar utterances.

In order to represent words and concepts we
use word embeddings, which are a form of vec-
tor space model. Word embeddings have proven
to be effective models of semantic representation
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of words in various NLP tasks (Baroni et al., 2014;
Yazdani and Popescu-Belis, 2013; Collobert et al.,
2011; Collobert and Weston, 2008; Huang et al.,
2012; Mikolov et al., 2013b). In addition to pa-
rameter sharing, these representations enable us
to leverage large scale unlabelled data. Because
word embeddings trained on unlabeled data reflect
the similarity between words, they help the model
generalize from the words in the original training
corpora to the words in the new extended domain,
and help generalize from small amounts of data in
the extended domain.

The contribution of this paper is to build a rep-
resentation learning classifier for the SLU task that
can generalize to unseen words and labels. For ev-
ery utterance we learn how to compose the word
vectors to form the semantics of that utterance for
this task of language understanding. Furthermore,
we learn how to compose the semantics of each la-
bel from the semantics of the words used to name
that label. This enables us to generalize to unseen
labels.

In this work we use the word2vec software of
Mikolov et al. (2013a)1 to induce unsupervised
word embeddings that are used to initialize word
embedding parameters. For this, we use an En-
glish Wikipedia dump as our unlabelled training
corpus, which is a diverse broad-coverage corpus.
It has been shown (Baroni et al., 2014; Mikolov
et al., 2013b) that these embeddings capture lex-
ical similarities even when they are trained on a
diverse corpus like Wikipedia. We test our models
on a restaurant booking domain. We investigate
domain adaptation by adding new attribute types
(e.g. goodformeal) and new attribute values (e.g.
Hayes Valley as a restaurant location). Our exper-
iments indicate that our model has better perfor-
mance compared to a hand-crafted system as well
as a SVM baseline.

2 SLU Datasets

The dialogue utterances used to build the SLU
dataset were collected during a trial of online di-
alogue policy adaptation for a restaurant reserva-
tion system based in San Francisco. The trial be-
gan with (area, pricerange and food), and adapted
the Interaction Manager online to handle the ad-
ditional attribute types near, allowedforkids, and
goodformeal (Gašic et al., 2014). User utterances
from these trials were transcribed and annotated

1https://code.google.com/p/word2vec/

with dialogue acts by an expert, and afterwards
edited by another expert2. Each user utterance was
annotated with a set of labels, where each label
consists of an act type (e.g. inform, request), an
attribute type (e.g. foodtype, pricerange), and an
attribute value (e.g. Chinese, Cheap).

The dataset is separated into four subsets,
SFCore, SF1Ext, SF2Ext and SF3Ext, each
with an increasing set of attribute types, as speci-
fied in Table 1. This table also gives the total num-
ber of utterances in each data set. For our first ex-
periment, we split each dataset into about 15% for
the testing set and 85% for the training set. For our
second experiment we use each extended subset
for testing and its preceding subsets for training.

Ontology Attribute types ( # of values ) # of utterances
SFCore food(59), area(155), pricerange(3) 1103
SF1Ext SFCore + near(39) 1810
SF2Ext SF1Ext + allowedforkids(2) 1571
SF3Ext SF2Ext +goodformeal(4) 1518

Table 1: Domains for San Francisco (SF) restau-
rants expanding in complexity

3 A Dialogue Act Representation
Learning Classifier

The SLU model is run on each hypothesis output
by the ASR component, and tries to predict the
correct set of dialogue act labels for each hypoth-
esis. This problem is in general an instance of
multi-label classification, because a single utter-
ance can have multiple dialogue act labels. Also,
these labels are structured, since each label consist
of an act type, an attribute type, and an attribute
value. Each label component also has canonical
text associated with it, which is the text used to
name the label component (e.g. “Chinese” as a
value).

The number of possible dialogue acts grows
rapidly as the domain is extended with new at-
tribute types and values, making this task one of
multi-label classification with a very large number
of labels. One natural approach to this task is to
train one binary classifier for each possible label,
to decide whether or not to include it in the output.
In our case, this requires training a large number
of classifiers, and it is impossible to generalize to

2This data is publically available from
https://sites.google.com/site/
parlanceprojectofficial/home/
datarepository
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dialogue acts that include attributes or values that
were not in the training set since there won’t be
any parameter sharing among label classifiers.

In our alternative approach, we build the rep-
resentation of the utterance and the representation
of the label from their constituent words, then we
check if these representations match or not. In the
following we explain in details this representation
learning model.

3.1 Utterance Representation Learning
In this section we explain how to build the utter-
ance representation from its constituent words. In
addition to words, we use bigrams, since they have
been shown previously to be effective features for
this task (Henderson et al., 2012). Following the
success in transfer learning from parsing to under-
standing tasks (Henderson et al., 2013; Socher et
al., 2013), we use dependency parse bigrams in
our features as well. We learn to build a local rep-
resentation at each word position in the utterance
by using the word representation, adjacent word
representations, and the head word representation.
Let φ(w) be a d dimensional vector representing
the word w, and φ(Ui) be a h dimensional vector
which is the local representation at word position
i. We compute the local representation as follows:

φ(Ui) = σ(φ(wi)Wword + φ(wh)WparseRk
+

φ(wj)Wprevious + φ(wk)Wnext) (1)

in which wh is the head word with the depen-
dency relation Rk to wi, and wj and wk are the
previous and next words. Wword is a d × h ma-
trix that transforms the word embedding to hidden
representation inputs. WparseRk

is a d × h ma-
trix for the relation Rk that similarly transforms
the head word embedding (so Wparse is a tensor),
and Wprevious and Wnext similarly transform the
previous and next words’ embeddings. Figure 1
depicts this representation building at each word.

3.2 Label Representation Learning
One standard way to address the problem of multi-
label classification is building binary classifiers
for each possible label. Large margin classifiers
have been shown to be an effective tool for this
task (Pradhan et al., 2004; Kate and Mooney,
2006). We use the same idea of binary classifiers
to learn one hyperplane per label, which separates
the utterances with this label from all other utter-
ances, with a large margin. In the standard way of

Figure 1: The multi-label classifier

building the classifier, each label’s hyperplane is
independent of other labels. To extend this model
to a zero-shot learning classifier, we use parame-
ter sharing among label hyperplanes so that similar
labels have similar hyperplanes.

We exploit the structure of labels by assuming
that each hyperplane representation is a compo-
sition of representations of the label’s constituent
components, namely dialogue action, attribute and
attribute value. We learn the composition function
and the constituent representations while training
the classifiers, using the labelled SLU data. The
constituent representations are initialised as the
word embeddings for the label constituent’s name
string, such as “inform”, “food” and “Chinese”,
where these embeddings are trained on the unla-
belled data. Figure 1 depicts the classifier model.

We define the hyperplane of the label aj(attk =
vall) with its normal vector Waj ,attk,vall as:

Waj ,attk,vall = σ([φ(aj), φ(attk), φ(vall)]Wih)Who

where φ(·) is the same mapping to d dimensional
word vectors that is used above in the utterance
representation, Wih is a 3d× h matrix and Who is
a h × h matrix. The score of each local represen-
tation vector φ(Ui) is its distance from this label
hyperplane, which is computed as the dot product
of the local vector φ(Ui) with the normal vector
Waj ,attk,vall .

We sum these local scores for each po-
sition i to build the whole utterance score:∑

i φ(Ui)W T
aj ,attk,vall

. Alternatively we can think
of this computation as summing the local vectors
to get a whole-utterance representation φ(U) =∑

i φ(Ui) and then doing the dot product. The
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pooling method (sum) used in the model is (inten-
tionally) over-simplistic. We did not want to dis-
tract from the main contribution of the paper, and
our dataset did not justify any more complex solu-
tion since utterances are short. It can be replaced
by more powerful approaches if it is needed.

To train a large margin classifier, we train all
the parameters such that the score of an utterance
is bigger than a margin for its labels and less than
the negative margin for all other labels. Thus, the
loss function is as follows:

min
θ

λ

2
θ2+

∑
U

max(0, 1−y
∑
i

φ(Ui)W T
aj ,attk,vall

)

(2)
where θ is all the parameters of the model, namely
φ(wi) (word embeddings), Wword, WParse,
Wprevious, Wnext, Wih, and Who. y is either 1 or
−1 depending whether the input U has that label
or not.

To optimize this large margin classifier we per-
form stochastic gradient descent by using the ada-
grad algorithm on this primal loss function, sim-
ilarly to Pegasos SVM (Shalev-Shwartz et al.,
2007), but here we backpropagate the errors to
the representations to train the word embeddings
and composition functions. In each iteration of the
stochastic training algorithm, we randomly select
an utterance and its labels as positive examples
and choose randomly another utterance with a dif-
ferent label as a negative example. When choos-
ing the negative sample randomly, we sample ut-
terances with the same dialogue act but different
attribute or value with 4 times higher probability
than utterances with a different dialogue act. This
biased negative sampling speeds up the training
process since it provides more difficult training ex-
amples to the learner.

The model is able to address the adaptivity is-
sues because the utterance and the dialogue act
representations are in the same space using the
same shared parameters φ(w), which are ini-
tialised with unsupervised word embeddings. It
has been shown that such word embeddings cap-
ture word similarities and hence the classifier is
no longer ignorant about any new attribute type or
attribute value. Also, there is parameter sharing
between dialogue acts because these word/label
embeddings are shared, and the matrices for the
composition of these representations are the same
across all dialogue acts. This can help overcome
sparsity in the SLU training set by transferring

learning between similar situations and similar
dialogue act triples. For example, if the train-
ing set does not contain any examples of the act
”request(postcode)”, but many examples of ”re-
quest(phone)”, sharing the parameters can help
with the recognition of ”request(postcode)” in ut-
terances similar to ”request(phone)”. Moreover,
the SLU model is to some extent robust against
paraphrasing in the input utterance because it
maps the utterance to a semantic space, and uses
parse bigrams. More sophisticated vector-space
semantic representations of the utterance are an
area for future work, but should be largely orthog-
onal to the contribution of this paper.

To find the set of compatible dialogue acts for a
given utterance, we should check all possible dia-
logue acts. This can severely slow down SLU. To
avoid testing all possible dialogue combinations,
we build three different classifiers: The first one
recognises the act types in the utterance, the sec-
ond one recognises the attribute types for each of
the chosen act types, and the third classifier recog-
nises the full dialogue acts as we described above,
but only for the chosen pairs of act types and at-
tribute types.

4 SLU Experiments

In the first experiment, we measure SLU perfor-
mance trained on all available data, by building a
dataset that is the union of all the above datasets.
This measures the performance of SLU when there
is a small amount of data for an extended do-
main. This dataset, similarly to SF3Ext, has 6
main attribute types. Table 2 shows the perfor-
mance of this model. We report as baselines the
performance of the Phoenix system (hand crafted
for this domain) and a binary linear SVM trained
on the same data. The hidden layers have size
h=d=50. For this experiment, we split each dataset
into about 15% for the testing set and 85% for the
training set.

System Outputs Precision Recall F-core
Phoenix 516 84.10 41.65 55.71
SVM 690 65.03 52.45 58.06
Our 932 90.24 81.15 85.45

Table 2: Performance on union of data (SF-
Core+SF1Ext+SF2Ext+SF3Ext)

Our SLU model can adapt well to the extended
domain with more attribute types. We observe
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Test set
model, train set SF1Ext SF2Ext SF3Ext

P—R—F P—R—F P—R—F
Our SFcore 73.36—66.11—69.54 74.61—59.73—66.34 72.54—53.86—61.81
SVM SFcore 50.66— 38.7— 43.87 49.64—34.70— 40.84 48.99—30.91—37.90
Our SF1Ext 83.18—66.08—73.65 78.32—59.98—67.93
SVM SF1Ext 58.72—41.71—48.77 53.25—34.88—42.15
Our SF2Ext 84.12—67.78—75.07
SVM SF2Ext 59.27—42.80—49.70

Table 3: SLU performance: trained on a smaller domain and tested on more inclusive domains.

particularly that the recall is almost twice as high
as the hand-crafted baseline. This shows that our
SLU can recognise most of the dialogue acts in
an utterance, where the rule-based Phoenix sys-
tem and a classifier without composed output can-
not. Overall there are 1042 dialogue acts in the
test set. SLU recall is very important in the over-
all dialogue system performance, as the effect of a
missed dialogue act is hard to handle for the Inter-
action Manager. Both hand-crafted and our system
show relatively high precision.

In the next experiment, we measure how well
the new SLU model performs in an extended do-
main without any training examples from that ex-
tended domain. We train a SLU model on each
subset, and test it on each of the more inclusive
subsets. Table 3 shows the results.

Not surprisingly, the performance is better if
SLU is trained on a similar domain to the test do-
main, and adding more attribute types and values
decreases the performance more. But our SLU
can generalise very well to the extended domain,
achieving much better generalisation that the SVM
model.

4.1 Conclusion
In this paper, we describe a new SLU model
that is designed for improved domain adaptation.
The multi-label classification problem of dialogue
act recognition is addressed with a classifier that
learns to build an utterance representation and a
dialogue act representation, and decides whether
or not they are compatible. The dialogue act repre-
sentation is a vector composition of its constituent
labels’ embeddings, and is trained as the hyper-
plane of a large margin binary classifier for that di-
alogue act. The utterance representation is trained
as a composition of word embeddings. Since the
utterance and the dialogue act representations are

both built using unsupervised word embeddings
and share these embedding parameters, the model
can address the issues of domain adaptation. Word
embeddings capture word similarities, and hence
the classifier is able to generalise from known at-
tribute types or values to similar novel attribute
types or values. We tested this SLU model on
datasets where the number of attribute types and
values is increased, and show much better re-
sults than the baselines, especially in recall. The
model succeeds in both adapting to an extended
domain using relatively few training examples and
in recognising novel attribute types and values.
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Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. J. Mach. Learn. Res., 3:1137–1155.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of the 25th International Conference on
Machine Learning, ICML ’08, pages 160–167.

248



Ronan Collobert, Jason Weston, Léon Bottou, Michael
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Abstract

Research on modeling time series text cor-
pora has typically focused on predicting
what text will come next, but less well
studied is predicting when the next text
event will occur. In this paper we ad-
dress the latter case, framed as modeling
continuous inter-arrival times under a log-
Gaussian Cox process, a form of inhomo-
geneous Poisson process which captures
the varying rate at which the tweets ar-
rive over time. In an application to ru-
mour modeling of tweets surrounding the
2014 Ferguson riots, we show how inter-
arrival times between tweets can be ac-
curately predicted, and that incorporating
textual features further improves predic-
tions.

1 Introduction

Twitter is a popular micro-blogging service which
provides real-time information on events happen-
ing across the world. Evolution of events over time
can be monitored there with applications to dis-
aster management, journalism etc. For example,
Twitter has been used to detect the occurrence of
earthquakes in Japan through user posts (Sakaki
et al., 2010). Modeling the temporal dynamics of
tweets provides useful information about the evo-
lution of events. Inter-arrival time prediction is a
type of such modeling and has application in many
settings featuring continuous time streaming text
corpora, including journalism for event monitor-
ing, real-time disaster monitoring and advertising
on social media. For example, journalists track
several rumours related to an event. Predicted ar-
rival times of tweets can be applied for ranking
rumours according to their activity and narrow the
interest to investigate a rumour with a short inter-
arrival time over that of a longer one.

Modeling the inter-arrival time of tweets is a
challenging task due to complex temporal patterns
exhibited. Tweets associated with an event stream
arrive at different rates at different points in time.
For example, Figure 1a shows the arrival times
(denoted by black crosses) of tweets associated
with an example rumour around Ferguson riots in
2014. Notice the existence of regions of both high
and low density of arrival times over a one hour
interval. We propose to address inter-arrival time
prediction problem with log-Gaussian Cox pro-
cess (LGCP), an inhomogeneous Poisson process
(IPP) which models tweets to be generated by an
underlying intensity function which varies across
time. Moreover, it assumes a non-parametric form
for the intensity function allowing the model com-
plexity to depend on the data set. We also pro-
vide an approach to consider textual content of
tweets to model inter-arrival times. We evaluate
the models using Twitter rumours from the 2014
Ferguson unrest, and demonstrate that they pro-
vide good predictions for inter-arrival times, beat-
ing the baselines e.g. homogeneous Poisson Pro-
cess, Gaussian Process regression and univariate
Hawkes Process. Even though the central appli-
cation is rumours, one could apply the proposed
approaches to model the arrival times of tweets
corresponding to other types of memes, e.g. dis-
cussions about politics.

This paper makes the following contributions:
1. Introduces log-Gaussian Cox process to predict
tweet arrival times. 2. Demonstrates how incor-
porating text improves results of inter-arrival time
prediction.

2 Related Work

Previous approaches to modeling inter-arrival
times of tweets (Perera et al., 2010; Sakaki et al.,
2010; Esteban et al., 2012; Doerr et al., 2013) were
not complex enough to consider their time vary-
ing characteristics. Perera et al. (2010) modeled
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Figure 1: Intensity functions and corresponding predicted arrival times for different methods across
example Ferguson rumours. Arrival times predicted by LGCP are denoted by red pluses, LGCPTXT by
blue dots, and ground truth by black crosses. Light regions denote uncertainty of predictions.

inter-arrival times as independent and exponen-
tially distributed with a constant rate parameter. A
similar model is used by Sakaki et al. (2010) to
monitor the tweets related to earthquakes. The re-
newal process model used by Esteban et al. (2012)
assumes the inter-arrival times to be independent
and identically distributed. Gonzalez et al. (2014)
attempts to model arrival times of tweets using a
Gaussian process but assumes the tweet arrivals to
be independent every hour. These approaches do
not take into account the varying characteristics of
arrival times of tweets.

Point processes such as Poisson and Hawkess
process have been used for spatio-temporal model-
ing of meme spread in social networks (Yang and
Zha, 2013; Simma and Jordan, 2010). Hawkes
processes (Yang and Zha, 2013) were also found
to be useful for modeling the underlying network
structure. These models capture relevant network
information in the underlying intensity function.
We use a log-Gaussian cox process which provides
a Bayesian method to capture relevant information
through the prior. It has been found to be use-
ful e.g. for conflict mapping (Zammit-Mangion
et al., 2012) and for frequency prediction in Twit-
ter (Lukasik et al., 2015).

3 Data & Problem

In this section we describe the data and we formal-
ize the problem of modeling tweet arrival times.

Data We consider the Ferguson rumour data set
(Zubiaga et al., 2015), consisting of tweets on ru-

mours around 2014 Ferguson unrest. It consists
of conversational threads that have been manually
labeled by annotators to correspond to rumours1.
Since some rumours have few posts, we consider
only those with at least 15 posts in the first hour as
they express interesting behaviour (Lukasik et al.,
2015). This results in 114 rumours consisting of a
total of 4098 tweets.

Problem Definition Let us consider a time in-
terval [0, 2] measured in hours, a set of rumours
R = {Ei}ni=1, where rumour Ei consists of a
set of mi posts Ei = {pij}mi

j=1. Posts are tuples
pij = (xij , t

i
j), where xij is text (in our case a vec-

tor of Brown clusters counts, see section 5) and tij
is time of occurrence of post pij , measured in time
since the first post on rumour Ei.

We introduce the problem of predicting the ex-
act time of posts in the future unobserved time in-
terval, which is studied as inter-arrival time pre-
diction. In our setting, we observe posts over
a target rumour i for one hour and over refer-
ence rumours (other than i) for two hours. Thus,
the training data set is RO = {EOi }ni=1, where

EOi = {pij}m
O
i

1 (mO
i represents number of posts

observed for ith rumour). We query the model for
a complete set of times {tij}mi

mO
i +1

of posts about
rumour i in the future one hour time interval.

1For a fully automated approach, a system for early detec-
tion of rumours (Zhao et al., 2015) could be run first and our
models then applied to the resulting rumours.
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4 Model

The problem of modeling the inter-arrival times of
tweets can be solved using Poisson processes (Per-
era et al., 2010; Sakaki et al., 2010). A homo-
geneous Poisson process (HPP) assumes the in-
tensity to be constant (with respect to time and
the rumour statistics). It is not adequate to model
the inter-arrival times of tweets because it assumes
constant rate of point arrival across time. Inhomo-
geneous Poisson process (IPP) (Lee et al., 1991)
can model tweets occurring at a variable rate by
considering the intensity to be a function of time,
i.e. λ(t). For example, in Figure 1a we show in-
tensity functions learnt for two different IPP mod-
els. Notice how the generated arrival times vary
according to the intensity function values.

Log-Gaussian Cox process We consider a
log-Gaussian Cox process (LGCP) (Møller and
Syversveen, 1998), a special case of IPP, where
the intensity function is assumed to be stochas-
tic. The intensity function λ(t) is modeled using
a latent function f(t) sampled from a Gaussian
process (Rasmussen and Williams, 2005). To en-
sure positivity of the intensity function, we con-
sider λ(t) = exp (f(t)). This provides a non-
parametric Bayesian approach to model the inten-
sity function, where the complexity of the model
is learnt from the training data. Moreover, we can
define the functional form of the intensity function
through appropriate GP priors.

Modeling inter-arrival time Inhomogeneous
Poisson process (unlike HPP) uses a time vary-
ing intensity function and hence, the distribution
of inter-arrival times is not independent and iden-
tically distributed (Ross, 2010). In IPP, the number
of tweets y occurring in an interval [s, e] is Poisson
distributed with rate

∫ e
s λ(t)dt.

p(y|λ(t), [s, e]) = Poisson(y|
∫ e

s
λ(t)dt)

=
(
∫ e
s λ(t)dt)y exp(− ∫ es λ(t)dt)

y!
(1)

Assume that nth tweet occurred at time En = s
and we are interested in the inter-arrival time Tn
of the next tweet. The arrival time of next tweet
En+1 can be obtained as En+1 = En + Tn. The
cumulative distribution for Tn, which provides the
probability that a tweet occurs by time s + u can

be obtained as2

p(Tn ≤ u) = 1− p(Tn > u|λ(t), En = s)
= 1− p(0 events in [s, s+ u]|λ(t))

= 1− exp(−
∫ s+u

s
λ(t)dt)

= 1− exp(−
∫ u

0
λ(s+ t)dt) (2)

The derivation is obtained by considering a
Poisson probability for 0 counts with rate parame-
ter given by

∫ s+u
s λ(t)dt and applying integration

by substitution to obtain (2). The probability den-
sity function of the random variable Tn is obtained
by taking the derivative of (2) with respect to u:

p(Tn = u) = λ(s+ u) exp(−
∫ u

0
λ(s+ t)dt).

(3)
The computational difficulties arising from inte-
gration are dealt by assuming the intensity func-
tion to be constant in an interval and approximat-
ing the inter-arrival time density as (Møller and
Syversveen, 1998; Vanhatalo et al., 2013)

p(Tn = u) = λ(s+ u) exp(−uλ(s+
u

2
)). (4)

We associate a distinct intensity function
λi(t) = exp(fi(t)) with each rumour Ei as
they have varying temporal profiles. The la-
tent function fi is modelled to come from a
zero mean Gaussian process (GP) (Rasmussen
and Williams, 2005) prior with covariance de-
fined by a squared exponential (SE) kernel over
time, ktime(t, t′) = a exp(−(t− t′)2/l). We con-
sider the likelihood of posts EO

i over the entire
training period to be product of Poisson distri-
bution (1) over equal length sub-intervals with
the rate in a sub-interval [s, e] approximated as
(e− s) exp(fi(1

2(s+ e))). The likelihood of posts
in the rumour data is obtained by taking the prod-
uct of the likelihoods over individual rumours.

The distribution of the posterior p(fi|EO
i ) is

intractable and a Laplace approximation (Ras-
mussen and Williams, 2005) is used to obtain the
posterior. The predictive distribution fi(ti∗) at time
ti∗ is obtained using the approximated posterior.
The intensity function value at the point ti∗ is then
obtained as

λi(ti∗|EO
i ) =

∫
exp

(
fi(ti∗)

)
p
(
fi(ti∗)|EO

i

)
dfi(ti∗).

2We suppress the conditioning variables for brevity.
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Algorithm 1 Importance sampling for predicting
the next arrival time

1: Input: Intensity function λ(t), previous ar-
rival time s, proposal distribution
q(t) = exp(t; 2), number of samples N

2: for i = 1 to N do
3: Sample ui ∼ q(t).
4: Obtain weights wi = p(ui)

q(ui)
,

where p(t) is given by (4).
5: end for
6: Predict expected inter-arrival time as
ū =

∑N
i=1 ui

wi∑N
j=1 wj

7: Predict the next arrival time as t̄ = s+ ū.
8: Return: t̄

Importance sampling We are interested in pre-
dicting the next arrival time of a tweet given the
time at which the previous tweet was posted. This
is achieved by sampling the inter-arrival time of
occurrence of the next tweet using equation (4).
We use the importance sampling scheme (Gelman
et al., 2003) where an exponential distribution is
used as the proposal density. We set the rate pa-
rameter of this exponential distribution to 2 which
generates points with a mean value around 0.5.
Assuming the previous tweet occurred at time s,
we obtain the arrival time of next tweet as outlined
in Algorithm 1. We run this algorithm sequen-
tially, i.e. the time t̄ returned from Algorithm 1
becomes starting time s in the next iteration. We
stop at the end of the interval of interest, for which
a user wants to find times of post occurrences.

Incorporating text We consider adding the
kernel over text from posts to the previously
introduced kernel over time. We join text
from the observed posts together, so a dif-
ferent component is added to kernel values
across different rumours. The full kernel then
takes form kTXT((t, i), (t′, i′)) = ktime(t, t′) +
ktext

(∑
pi

j∈EO
i

xij ,
∑

pi′
j ∈EO

i′
xi

′
j

)
. We compare

text via linear kernel with additive underlying base
similarity, expressed by ktext(x,x′) = b+ cxTx′.

Optimization All model parameters (a, l, b, c)
are obtained by maximizing the marginal likeli-
hood p(EOi ) =

∫
p(EO

i |fi)p(fi)dfi over all ru-
mour data sets.

5 Experiments

Data preprocessing In our experiments, we
consider the first two hours of each rumour lifes-
pan. The posts from the first hour of a target ru-
mour is considered as observed (training data) and
we predict the arrival times of tweets in the sec-
ond hour. We consider observations over equal
sized time intervals of length six minutes in the
rumour lifespan for learning the intensity func-
tion. The text in the tweets is represented by using
Brown cluster ids associated with the words. This
is obtained using 1000 clusters acquired on a large
scale Twitter corpus (Owoputi et al., 2013).

Evaluation metrics Let the arrival times pre-
dicted by a model be (t̂1, . . . , t̂M ) and let the
actual arrival times be (t1, . . . , tN ). We intro-
duce two metrics based on root mean squared er-
ror (RMSE) for evaluating predicted inter-arrival
times. First is aligned root mean squared er-
ror (ARMSE), where we align the initial K =
min(M,N) arrival times and calculate the RMSE
between such two subsequences. The sec-
ond is called penalized root mean squared error
(PRMSE). In this metric we penalize approaches
which predict a different number of inter-arrival
times than the actual number. The PRMSE met-
ric is defined as the square root of the following
expression.

1
K

K∑
i=1

(t̂i − ti)2 + I[M > N ]
M∑

i=N+1

(T − t̂i)2

+I[M < N ]
N∑

i=M+1

(T − ti)2 (5)

The second and third term in (5) respectively pe-
nalize for the excessive or insufficient number of
points predicted by the model.

Baselines We consider a homogeneous Poisson
process (HPP) (Perera et al., 2010) as a baseline
which results in exponentially distributed inter-
arrival times with rate λ. The rate parameter is
set to the maximum likelihood estimate, the recip-
rocal of the mean of the inter-arrival times in the
training data. The second baseline is a GP with
a linear kernel (GPLIN), where the inter-arrival
time is modeled as a function of time of occur-
rence of last tweet. This model tends to predict
small inter-arrival times yielding a huge number
of points. We limit the number of predicted points
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method ARMSE PRMSE

GPLIN 20.60±22.01? 1279.78±903.90?
HPP 21.85±22.82? 431.4±96.5?
HP 15.94±18.20 363.70±59.01?

LGCP 13.31±14.28 261.26±92.97?
LGCP Pooled 19.18±20.36? 183.25±102.20?

LGCPTXT 15.52±18.79 154.05±115.70

Table 1: ARMSE and PRMSE between the true
event times and the predicted event times ex-
pressed in minutes (lower is better) over the 114
Ferguson rumours, showing mean ± std. dev.
Key ? denotes significantly worse than LGCPTXT
method according to one-sided Wilcoxon signed
rank test (p < 0.05). In case of ARMSE, LGCP is
not significantly better than LGCP TXT according
to Wilcoxon test.

to 1000 (above the maximum count yielded by any
rumour from our dataset), thus reducing the error
from this method.

We also compare against Hawkes Process
(HP) (Yang and Zha, 2013), a self exciting point
process where an occurrence of a tweet increases
the probability of tweets arriving soon after-
wards. We consider a univariate Hawkes pro-
cess where the intensity function is modeled as
λi(t) = µ+

∑
tij<t

ktime(tij , t). The kernel pa-
rameters and µ are learnt by maximizing the like-
lihood. We apply the importance sampling algo-
rithm discussed in Algorithm 1 for generating ar-
rival times for Hawkess process. We consider this
baseline only in the single-task setting, where ref-
erence rumours are not considered.

LGCP settings In the case of LGCP, the model
parameters of the intensity function associated
with a rumour are learnt from the observed inter-
arrival times from that rumour alone. LGCP
Pooled and LGCPTXT consider a different setting
where this is learnt additionally using the inter-
arrival times of all other rumours observed over
the entire two hour life-span.

Results Table 1 reports the results of predicting
arrival times of tweets in the second hour of the
rumour lifecycle. In terms of ARMSE, LGCP is
the best method, performing better than LGCP-
TXT (though not statistically significantly) and
outperforming other approaches. However, this
metric does not penalize for the wrong number
of predicted arrival times. Figure 1b depicts an
example rumour, where LGCP greatly overesti-

mates the number of points in the interval of inter-
est. Here, the three points from the ground truth
(denoted by black crosses) and the initial three
points predicted by the LGCP model (denoted by
red pluses), happen to lie very close, yielding a
low ARMSE error. However, LGCP predicts a
large number of arrivals in this interval making it a
bad model compared to LGCPTXT which predicts
only four points (denoted by blue dots). ARMSE
fails to capture this and hence we use PRMSE.
Note that Hawkes Process is performing worse
than the LGCP approach.

According to PRMSE, LGCPTXT is the most
successful method, significantly outperforming all
other according to Wilcoxon signed rank test. Fig-
ure 1a depicts the behavior of LGCP and LGCP-
TXT on rumour 39 with a larger number of points
from the ground truth. Here, LGCPTXT predicts
relatively less number of arrivals than LGCP. The
performance of Hawkes Process is again worse
than the LGCP approach. The self excitory nature
of Hawkes process may not be appropriate for this
dataset and setting, where in the second hour the
number of points tends to decrease as time passes.

We also note, that GPLIN performs very poorly
according to PRMSE. This is because the inter-
arrival times predicted by GPLIN for several ru-
mours become smaller as time grows resulting in
a large number of arrival times.

6 Conclusions

This paper introduced the log-Gaussian Cox pro-
cesses for the problem of predicting the inter-
arrival times of tweets. We showed how text from
posts helps to achieve significant improvements.
Evaluation on a set of rumours from Ferguson ri-
ots showed efficacy of our methods comparing to
baselines. The proposed approaches are generaliz-
able to problems other than rumours, e.g. disaster
management and advertisement campaigns.
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Abstract

In the last several years, neural network
models have significantly improved accu-
racy in a number of NLP tasks. How-
ever, one serious drawback that has im-
peded their adoption in production sys-
tems is the slow runtime speed of neu-
ral network models compared to alternate
models, such as maximum entropy classi-
fiers. In Devlin et al. (2014), the authors
presented a simple technique for speeding
up feed-forward embedding-based neural
network models, where the dot product be-
tween each word embedding and part of
the first hidden layer are pre-computed of-
fline. However, this technique cannot be
used for hidden layers beyond the first. In
this paper, we explore a neural network
architecture where the embedding layer
feeds into multiple hidden layers that are
placed “next to” one another so that each
can be pre-computed independently. On
a large scale language modeling task, this
architecture achieves a 10x speedup at run-
time and a significant reduction in perplex-
ity when compared to a standard multi-
layer network.

1 Introduction

Neural network models have become extremely
popular in the last several years for a wide va-
riety of NLP tasks, including language model-
ing (Schwenk, 2007), sentiment analysis (Socher
et al., 2013), translation modeling (Devlin et al.,
2014), and many others (Collobert et al., 2011).
However, a serious drawback of neural network
models is their slow speeds in training and test
time (runtime) relative to alternative models such
as maximum entropy (Berger et al., 1996) or back-
off models (Kneser and Ney, 1995).

One popular application of neural network
models in NLP is using neural network language
models (NNLMs) as an additional feature in an
existing machine translation (MT) or automatic
speech recognition (ASR) engines. NNLMs are
particularly costly in this scenario, since decoding
a single sentence typically requires tens of thou-
sands or more n-gram lookups. Although we will
focus on this particular scenario in this paper, it
is important to note that the techniques presented
generalize to any feed-forward embedding-based
neural network model.

One popular technique for improving the run-
time speed of NNLMs involves training the net-
work to be “approximately normalized,” so that
the softmax normalizer does not have to be com-
puted after training. Two algorithms have been
proposed to achieve this: (1) noise-contrastive es-
timation (NCE) (Mnih and Teh, 2012; Vaswani et
al., 2013) and (2) explicit self-normalization (De-
vlin et al., 2014), which is used in this paper.

However, even with self-normalized networks,
computing the output of an intermediate hidden
layer still requires a costly matrix-vector multipli-
cation. To mitigate this, Devlin et al. (2014) made
the observation that for 1-layer NNLMs, the dot
product between each embedding+position pair
and the first hidden layer can be pre-computed af-
ter training is complete, which allows the matrix-
vector multiplication to be replaced by a hand-
ful of vector additions. Using these two tech-
niques in combination improves the runtime speed
of NNLMs by several orders of magnitude with no
degradation to accuracy.

To understand pre-computation, first assume
that we are training a NNLM that uses 250-
dimensional word embeddings, a four word con-
text window, and a 500-dimensional hidden layer.
The weight matrix for the first hidden layer is thus
1000× 500. For each word in the vocabulary and
each of the four positions in the context vector, we
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Figure 1: The “pre-computation trick.” The dot
product between each word embedding and each
section of the hidden layer can be computed of-
fline.

Figure 2: Network architectures.

can pre-compute the dot product between the 250-
dimensional word embedding and the 250 × 500
section of the hidden layer. This results in four
500-dimensional vectors for each word that can be
stored in a lookup table. At test time, we can sim-
ply sum four vectors to obtain the output of the
first hidden layer. This is shown visually in Fig-
ure 1. Note that this is not an approximation, and
the resulting output vector is identical to the orig-
inal matrix-vector product. However, the major
limitation of the “pre-computation trick” is that it
only works with 1-hidden layer architectures, even
though more accurate models can nearly always be
obtained by training multi-layer networks.

In this paper, we explore a network architecture
where multiple hidden layers are placed “next to”
one another instead of “on top of” one another, as
is usually done. The output of these lateral lay-
ers are combined using an inexpensive element-
wise function and fed into the output layer. Cru-
cially, then, we can apply the pre-computation
trick to each hidden layer independently, allowing
for very powerful models that are orders of magni-
tude faster at runtime than a standard multi-layer
network.

Mathematically, this can be thought of as a gen-
eralization of maxout networks (Goodfellow et al.,
2013), where different element-wise combination

functions are explored rather than just the max
function.

2 Lateral Network

In a standard feed-forward embedding-based neu-
ral network, the input tokens are mapped into a
continuous vector using an embedding table1, and
this embedding vector is fed into the first hidden
layer. The output of each hidden layer is then fed
into the next hidden layer. We refer to this as the
stacked architecture. For a two layer network, we
can represent the output of the final hidden layer
as:

H = φ(W2φ(W 1E(x)))

where x is the input vector, E(x) is the output
of the embedding layer, Wi is the weight matrix
for layer i, and φ is the transfer function such as
tanh. Generally,H is then multiplied by an output
matrix and a softmax is performed to obtain the
output probabilities.

In the lateral network architecture, the embed-
ding layer is fed into two or more “side-by-side”
hidden layers, and the outputs of these hidden lay-
ers are combined using an element-wise function
such as maximum or multiplication. This is repre-
sented as:

H = C(φ(W 1E(x)), φ(W 2E(x)))

Where C is a combination function that takes
two or more k-dimensional vectors as inputs and
produces as k-dimensional vector as output. If
C(h1, h2) = max(h1, h2) then this is equivalent
to a maxout network (Goodfellow et al., 2013). To
generalize this, we explore three different combi-
nation functions: 2

Cmax(h1, h2) = max(h1, h2)
Cmul(h1, h2) = h1 ∗ (h2 + 1)
Cadd(h1, h2) = h1 + h2

The three-or-more hidden layer versions are
constructed as expected.3

A visualization is given in Figure 2. Crucially,
for the lateral architecture, each hidden layer can
be pre-computed independently, allowing for very
fast n-gram probability lookups at runtime.

1The embeddings may or may not be trained jointly with
the rest of the model.

2Note that C is an element-wise function, so these repre-
sent the operation on a single dimension of the input vectors.

3The + 1 in Cmul is used for all hidden layers after the
first. This is used to prevent the value from being very close
to 0.
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3 Language Modeling Results

In this section we report results on a large scale
language modeling task.

3.1 Data

Our LM training corpus consists of 120M words
from the New York Times portion of the English
GigaWord data set. This was chosen instead of the
commonly used 1M word Penn Tree Bank corpus
in order to better represent real world LM training
scenarios. We use all data from 2008 and 2009 as
training, the first 100k words from June 2010 as
validation, and the first 100k words from Decem-
ber 2010 as test. The data is segmented and to-
kenized using the Stanford Word Segmenter with
default settings.

3.2 Neural Network Training

Training was performed with an in-house toolkit
using stochastic gradient descent. The vocab-
ulary is limited to 16k words so that the out-
put layer can be trained using a basic softmax
with self-normalization. All experiments use 250-
dimensional word embeddings and a tanh activa-
tion function. The weights were initialized in the
range [-0.05, 0.05], the batch size was 256, and the
initial learning rate was 0.25.

3.3 5-gram LM Perplexity

5-gram results are shown in Table 1. The 1-layer
NNLM achieves a 13.2 perplexity improvement
over the Kneser-Ney smoothed baseline (Kneser
and Ney, 1995). Consistent with Schwenk et
al. (2014), using additional hidden layers to the
stacked (standard) network results in 2.0-3.0 per-
plexity improvements on top of the 1-layer model.

The lateral architecture significantly outper-
forms any of the stacked networks, achieving a
6.5 perplexity reduction over the 1-layer model.
The multiplicative combination function performs
better than the additive and max functions by a
small margin, which suggests that it better allows
for modeling complex relationships between input
words.

Perhaps most surprisingly, the additive function
performs as well as the max function, despite the
fact that it provides no additional modeling power
compared to a 1-layer network. However, it does
allow the model to generalize better than a 1-layer
network by explicitly tying together two or three
hidden nodes from each node in the output layer.

Condition PPL
5-gram KNLM 91.1
1-Layer (k=500) 77.9
1-Layer (k=1000) 77.7
2-Stacked (k=500) 76.3
2-Stacked (k=1000) 76.2
3-Stacked (k=1000) 74.8
2-Lateral Max (k=500) 73.8
2-Lateral Mul ... 72.7
2-Lateral Add 73.7
3-Lateral Max 73.1
3-Lateral Mul 71.1
3-Lateral Add 72.3

Table 1: Perplexity of 5-gram models on the New
York Times test set. k is the size of the hidden
layer(s).

3.4 Runtime Speed

The runtime speed of the various models is
shown in Table 2. These are computed on a
single core of a E5-2650 2.6 GHz CPU. Con-
sistent with Devlin et al. (2014), we see that
the baseline model achieves only 230 n-gram
lookups per second (LPS) at test time, while the
pre-computed, self-normalized 1-layer network
achieves 600,000 LPS. Adding a second stacked
layer slows this down to 24,000 LPS due to the
500 × 500 matrix-vector multiplication that must
be performed. However, the lateral configura-
tion achieves 305,000 LPS while obtaining a bet-
ter perplexity than the stacked network. In com-
parison, the fastest backoff LM implementation,
KenLM (Heafield, 2011), achieves 1-2 million
lookups per second.

In terms of memory usage, it is difficult to fairly
compare backoff LMs and NNLMs because neural
networks scale linearly with the vocabulary size,
while backoff LMs scale linearly with the num-
ber of unique n-grams. In this case, the non-
precomputed neural network model is 25 MB, and
the pre-computed 2-lateral network is 136 MB.4

The KenLM models are 1.1 GB for the Probing
model and 317 MB for the Trie model. With a
vocabulary of 50k, the 2-lateral network would
be 425MB. In general, a pre-computed NNLM is
comparable to or smaller than an equivalent back-
off LM in terms of model size.

4The floats can be quantized to 2 bytes after training with-
out loss of accuracy.
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Condition Lookups
Per Sec.

KenLM Probing 1,923,000
KenLM Trie 950,000
1-Layer (No PC, No SN) 230
1-Layer (No PC) 13,000
1-Layer 600,000
2-Stacked 24,000
2-Stacked (Batch=128) 58,000
2-Lateral Mul 305,000

Table 2: Runtime speed of the 5-gram LM on a
single CPU core. “PC” = pre-computation, “SN”
= self-normalization, which are used in all but the
first two experiments. The batch size is 1 except
when specified. 500-dimensional hidden layers
are used in all cases. “Float Ops.” is the ap-
proximate number of floating point operations per
lookup.

3.5 High-Order LM Perplexity

We also report results on a 10-gram LM trained
on the same data, to explore whether the lateral
network can achieve an even higher relative gain
when a large input context window is available.
Results are shown in Table 3. Although there is a
large absolute improvement over the 5-gram LM,
the relative improvement between the 1-layer, 3-
stacked, and 3-lateral systems are similar to the
5-gram scenario.

Condition PPL
1-Layer (k=500) 69.8
3-Stacked (k=1000) 65.8
3-Lateral Mul (k=500) 63.4
Gated Recurrent (k=1000) 55.4

Table 3: Perplexity of 10-gram models on the New
York Times test set. The Gated Recurrent model
uses the full word history.

As another point of comparison we report re-
sults with an gated recurrent network (Cho et al.,
2014). As is consistent with the literature, the
recurrent network significantly outperforms any
of the feed-forward models (Sundermeyer et al.,
2013).

However, recurrent models have two major
downsides. First, they cannot easily be integrated
into existing MT/ASR engines without signifi-
cantly altering the search algorithm and search

Condition Test BLEU Test PPL
Baseline 37.95 -
+NNLM 1-Layer 38.89 138.3
+NNLM 2-Stacked 39.13 136.2
+NNLM 2-Lateral 39.15 132.3
+NNJM 1-Layer 40.71 6.33
+NNJM 2-Stacked 40.82 6.25
+NNJM 2-Lateral 40.89 6.13

Table 4: Results on English-German machine
translation test set.

space, since they require a fully expanded tar-
get context. Second, the matrix-vector product
between the previous hidden state and the hid-
den weight matrix cannot be pre-computed, which
makes the models significantly slower than pre-
computable feed-forward networks.

4 Machine Translation Results

Although the lateral networks achieve a significant
reduction in LM perplexity over the 1-layer net-
work, it is not clear how much this will improved
performance in a downstream task. To evaluate
this, we trained two neural network models for
use as additional features in a machine translation
(MT) system.

The first feature is a 5-gram NNLM, which used
1000 dimensions for the stacked network and 500
for the lateral network. The second feature is a
neural network joint model (NNJM), which pre-
dicts each target word using 5-gram target context
and 7-gram source context. For evaluation, we
present both the model perplexity and the BLEU
score when using the model as an additional MT
feature.

Results are presented on a large scale English-
German speech translation task. The parallel train-
ing data consists of 600M words from a variety of
sources, including OPUS (Tiedemann, 2012) and
a large in-house web crawl. The baseline 4-gram
Kneser-Ney smoothed LM is trained on 7B words
of German data. The NNLM and NNTMs are
trained only on the parallel data. Our MT decoder
is a proprietary engine similar to Moses (Koehn et
al., 2007). The tuning set consists of 4000 utter-
ances from conversational and newswire data, and
the test set consists of 1500 sentences of collected
conversational data.

Results are show in Table 4. We can see that
perplexity improvements are similar to what is
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seen in the English NYT data, and that improve-
ments in BLEU over a 1-layer model are small but
consistent. There is not a significant difference in
BLEU between the 2-Stacked and 2-Lateral con-
figuration.

5 Conclusion

In this paper, we explored an alternate architec-
ture for embedding-based neural network models
which allows for a fully pre-computable network
with multiple hidden layers. The resulting mod-
els achieve better perplexity than a standard multi-
layer network and is at least an order of magnitude
faster at runtime.

In future work, we can assess the impact of
this model on a wider array of feed-forward
embedding-based neural network models, such as
the DSSM (Huang et al., 2013).
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Abstract

A wide range of applications, from social
media to scientific literature analysis, in-
volve graphs in which documents are con-
nected by links. We introduce a topic
model for link prediction based on the in-
tuition that linked documents will tend to
have similar topic distributions, integrat-
ing a max-margin learning criterion and
lexical term weights in the loss function.
We validate our approach on the tweets
from 2,000 Sina Weibo users and evalu-
ate our model’s reconstruction of the so-
cial network.

1 Introduction

Many application areas for text analysis involve
documents connected by links of one or more
types—for example, analysis of scientific pa-
pers (citations, co-authorship), Web pages (hyper-
links), legislation (co-sponsorship, citations), and
social media (followers, mentions, etc.). In this
paper we work within the widely used framework
of topic modeling (Blei et al., 2003, LDA) to de-
velop a model that is simple and intuitive, but
which identifies high quality topics while also ac-
curately predicting link structure.

Our work here is inspired by the phenomenon
of homophily, the tendency of people to associate
with others who are like themselves (McPherson
et al., 2001). As manifested in social networks,
the intuition is that people who are associated with
one another are likely to discuss similar topics, and
vice versa. The new topic model we propose there-
fore takes association links into account so that a
document’s topic distribution is influenced by the
topic distributions of its neighbors. Specifically,
we propose a joint model that uses link structure
to define clusters (cliques) of documents and, fol-
lowing the intuition that documents in the same

cluster are likely to have similar topic distribu-
tions, assigns each cluster its own separate Dirich-
let prior over the cluster’s topic distribution. This
use of priors is consistent with previous work that
has shown document-topic priors to be useful in
encoding various types of prior knowledge and
improving topic modeling performance (Mimno
and McCallum, 2008). We then use distributed
representations to “seed” the topic representations
before getting down to modeling the documents.
Our joint objective function uses a discriminative,
max-margin approach (Zhu et al., 2012; Zhu et
al., 2014) to both model the contents of documents
and produce good predictions of links; in addition,
it improves prediction by including lexical terms
in the decision function (Nguyen et al., 2013).

Our baseline for comparison is the Relational
Topic Model (Chang and Blei, 2010, henceforth
RTM), which jointly captures topics and binary
link indicators in a style similar to supervised
LDA (McAuliffe and Blei, 2008, sLDA), instead
of modeling links alone, e.g., as in the Latent
Multi-group Membership Graph model (Kim and
Leskovec, 2012, LMMG). We also compare our
approach with Daumé III (2009), who uses docu-
ment links to create a Markov random topic field
(MRTF). Daumé does not, however, look at link
prediction, as his upstream model (Mimno and
McCallum, 2008) only generates documents con-
ditioned on links. In contrast, our downstream
model allows the prediction of links, like RTM.

Our model’s primary contribution is in its novel
combination of a straightforward joint modeling
approach, max-margin learning, and exploitation
of lexical information in both topic seeding and
regression, yielding a simple but effective model
for topic-informed discriminative link prediction.
Like other topic models which treat binary values
“probabilistically”, our model can convert binary
link indicators into non-zero weights, with poten-
tial application to improving models like Volkova
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Figure 1: A graphical model of our model for two
documents. The contribution of our model is the
use of document clusters (π), the use of words (w)
in the prediction of document links (y), and a max-
margin objective.

et al. (2014), who use neighbor relationships to
improve prediction of user-level attributes.

Our corpus is collected from Sina Weibo with
three types of links between documents. We first
conduct a reality check of our model against LDA
and MRTF and then perform link prediction tasks.
We demonstrate improvements in link prediction
as measured by predictive link rank and provide
both qualitative and quantitative perspectives on
the improvements achieved by the model.

2 Discriminative Links from Topics

Figure 1 is a two-document segment of our model,
which has the following generative process:

1. For each related-document cluster l ∈ {1, . . . , L}
Draw πl ∼ Dir(α′)

2. For each topic k ∈ {1, . . . ,K}
(a) Draw word distribution φk ∼ Dir(β)
(b) Draw topic regression parameter ηk ∼ N (0, ν2)

3. For each word v ∈ {1, . . . , V }
Draw lexical regression parameter τv ∼ N (0, ν2)

4. For each document d ∈ {1, . . . , D}
(a) Draw topic proportions θd ∼ Dir(απld)
(b) For each word td,n in document d

i. Draw a topic assignment zd,n ∼ Mult(θd)
ii. Draw a word td,n ∼ Mult(φzd,n)

5. For each linked pair of documents d and d′

Draw binary link indicator
yd,d′ |zd,zd′ ,wd,wd′ ∼ Ψ(·|zd,zd′ ,wd,wd′ ,η, τ )

Step 1: Identifying birds of a feather. Prior
to the generative process, given a training set of
documents and document-to-document links, we
begin by identifying small clusters or cliques us-
ing strongly connected components, which auto-
matically determines the number of clusters from
the link graph. Intuitively, documents in the same
clique are likely to have similar topic distributions.

Therefore, each of the L cliques l (the “birds of a
feather” of our title) is assigned a separate Dirich-
let prior πl over K topics.

Step 2a: Using seed words to improve topic
quality. To improve topic quality, we identify
seed words for the K topics using distributed lexi-
cal representations: the key idea is to complement
the more global information captured in LDA-
style topics with representations based on local
contextual information. We cluster the most fre-
quent words’ word2vec representations (Mikolov
et al., 2013) into K word-clusters using the k-
means algorithm, based on the training corpus.1

We then enforce a one-to-one association between
these discovered word clusters and the K top-
ics. For any word token wd,n whose word type
is in cluster k, the associated topic assignment
zd,n can only be k. To choose topic k’s seed
words, within its word-cluster we compute each
word wk,i’s skip-gram transition probability sum
Sk,i to the other words as

Sk,i =
Nk∑

j=1,j 6=i
p(wk,j |wk,i), (1)

where Nk denotes the number of words in topic k.
We then select the three words with the highest

sum of transition probabilities as the seed words
for topic k. In the sampling process (Section 3),
seed words are only assigned to their correspond-
ing topics, similar to the use of hard constraints by
Andrzejewski and Zhu (2009).

Steps 2b-3: Link regression parameters.
Given two documents d and d′, we want to pre-
dict whether they are linked by taking advantage
of their topic patterns: the more similar two docu-
ments are, the more likely it is that they should be
linked together. Like RTM, we will compute a re-
gression in Step 5 using the topic distributions of
d and d′; however, we follow Nguyen et al. (2013)
by also including a document’s word-level distri-
bution as a regression input.2 The regression value
of document d and d′ is

Rd,d′ = ηT(zd ◦ zd′) + τT(wd ◦wd′), (2)

where zd = 1
Nd

∑
n zd,n, and wd = 1

Nd

∑
nwd,n;

◦ denotes the Hadamard product; η and τ are the
1In the experiment, seed words must appear at least 1,000

times.
2Both approaches contrast with the links-only approach

of Kim and Leskovec (2012).
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weight vectors for topic-based and lexically-based
predictions, respectively.

Step 4: Generating documents. Documents
are generated as in LDA, where each document’s
topic distribution θ is drawn from the cluster’s
topic prior (a parametric analog to the HDP of Teh
et al. (2006)) and each word’s topic assignment is
drawn from the document’s topic distribution (ex-
cept for seed words, as described above).

Step 5: Generating links. Our model is a
“downstream” supervised topic model, i.e., the
prediction of the observable variable (here, docu-
ment links) is informed by the documents’ topic
distributions, as in sLDA (Blei and McAuliffe,
2007). In contrast to Chang and Blei (2010), who
use a sigmoid as their link prediction function Ψ,
we instead use hinge loss: the probability Ψ that
two documents d and d′ are linked is
p(yd,d′ = 1 |zd,zd′ ,wd,wd′) = exp(−2cmax(0, ζd,d′)),

where c is the regularization parameter. In the
hinge loss function, ζd,d′ is

ζd,d′ = 1− yd,d′Rd,d′ . (3)

3 Posterior Inference

Sampling Topics. Following Polson and Scott
(2011), by introducing an auxiliary variable λd,d′ ,
we derive the conditional probability of a topic as-
signment

p(zd,n = k | z−d,n,w−d,n, wd,n = v)

∝ N−d,nk,v + β

N−d,nk,· + V β
× (N−d,nd,k + απ−d,nld,k

)×

∏
d′

exp
(
−(cζd,d′ + λd,d′)2

2λd,d′

)
, (4)

where Nk,v denotes the count of word v assigned
to topic k; Nd,k is the number of tokens in doc-
ument d that are assigned to topic k.3 Marginal
counts are denoted by ·; −d,n denotes that the
count excludes token n in document d; d′ denotes
the indexes of documents which are linked to doc-
ument d; π−d,nld,k

is estimated based on the maximal
path assumption (Wallach, 2008)

π−d,nld,k
=

∑
d′∈S(ld)N

−d,n
d′,k + α′∑

d′∈S(ld)N
−d,n
d′,· +Kα′

, (5)

where S(ld) denotes the cluster which contains
document d (Step 1 in the generative process).

3More details here and throughout this section appear in
the supplementary materials.

Optimizing topic and lexical regression pa-
rameters. While topic regression parameters η
and lexical regression parameters τ can be sam-
pled (Zhu et al., 2014), the associated covariance
matrix is huge (approximately 12K × 12K in our
experiments). Instead, we optimize these parame-
ters using L-BFGS.

Sampling auxiliary variables. The like-
lihood of auxiliary variables λ follows a
generalized inverse Gaussian distribution
GIG(λd,d′ ; 1

2 , 1, c
2ζ2
d,d′). Thus we sample

λ−1
d,d′ from a an inverse Gaussian distribution

p(λ−1
d,d′ |z,w,η, τ ) = IG

(
λ−1

d,d′ ;
1

c|ζd,d′ | , 1
)
. (6)

4 Experimental Results

4.1 Dataset
We crawl data from Sina Weibo, the largest
Chinese micro-blog platform. The dataset con-
tains 2,000 randomly-selected verified users, each
represented by a single document aggregating all
the user’s posts. We also crawl links between pairs
of users when both are in our dataset. Links cor-
respond to three types of interactions on Weibo:
mentioning, retweeting and following.4

4.2 Perplexity Results
As an initial reality check, we first apply a simpli-
fied version of our model which only uses user in-
teractions for topic modeling and does not predict
links. This permits a direct comparison of our
model’s performance against LDA and Markov
random topic fields (Daumé III, 2009, MRTF) by
evaluating perplexity.

We set α = α′ = 15 and run the models on
20 topics for all models in this and following sec-
tions. The results are the average values of five
independent runs. Following Daumé, in each run,
for each document, 80% of its tokens are randomly
selected for training and the remaining 20% are
for test. As the training corpus is generated ran-
domly, seeding is not applied in this section. The
results are given in Table 1, where I- denotes that
the model incorporates user interactions.

The results confirm that our model outperforms
both LDA and MRTF and that its use of user inter-
actions holds promise.

4We use ICTCLAS (Zhang et al., 2003) for segmentation.
After stopword and low-frequency word removal, the vocab-
ulary includes 12,257 words, with∼755 tokens per document
and 5,404 links.
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Figure 2: Lex-IS-MED-RTM, combining all three extensions, performs the best on predicting mention-
ing and following links, although IS-RTM achieves a close value on mentioning links and even a slightly
better value on retweeting links. User interactions (denoted by “I”) sometimes bring down the perfor-
mance, as cluster priors are not applied in this intrinsic evaluation.

Link Model Perplexity
– LDA 2605.06

Mentioning
MRTF 2582.08
I-LDA 2522.58

Retweeting
MRTF 2588.30
I-LDA 2519.27

Following
MRTF 2587.26
I-LDA 2530.67

Table 1: Our simplified model I-LDA achieves
lower perplexities than both LDA and MRTF,
by incorporating different cliques extracted from
three types of user interactions.

4.3 Link Prediction Results

In this section, we apply our model on link pre-
diction tasks and evaluate by predictive link rank
(PLR). A document’s PLR is the average rank,
among all documents, of the documents to which
it actually links. This means that lower values of
PLR are better.

Figure 2 breaks out the 5-fold cross validation
results and the distinct extensions of RTM.5 The
results support the value in combining all three
extensions using Lex-IS-MED-RTM, although for
mentioning and retweeting, Lex-IS-MED-RTM
and IS-RTM are quite close.

Applying user interactions does not always pro-
duce improvements. This is because in our in-
trinsic evaluation, we assume that the links on the
test set are not observable and cluster priors are

5IS- denotes that the model incorporates user interactions
and seed words, Lex- means that lexical terms were included
in the link probability function (Equation 3), and MED- de-
notes max-margin learning (Zhu et al., 2014; Zhu et al.,
2012). Each type of link is applied separately; e.g., in Fig-
ure 2(a) results are based only on mentioning links, ignoring
retweeting and following links.

not applied. However, according to the training
performance (extrinsic evaluations which we are
still in progress), user interactions do benefit link
prediction performance when links are partially
available, e.g., suggesting more links based on ob-
served links. In contrast, hinge loss and lexical
term weights do not depend on metadata availabil-
ity and generally produce improvements in link
prediction performance.

4.4 Illustrative Example

We illustrate model behavior qualitatively by look-
ing at two test set users, designated A and B.
User A is a reporter who runs “We Media” on
his account, sending news items to followers, and
B is a consultant with a wide range of interests.
Their tweets reveal that both are interested in so-
cial news—a topic emphasizing words like soci-
ety, country, government, laws, leaders, political
party, news, etc. Both often retweet news re-
lated to unfairness in society and local govern-
ment scandals (government, police, leaders, party,
policy, chief secretary). For example, User A
retweeted a report that a person about to be exe-
cuted was unable to take a photo with his family
before his execution, writing I feel heartbroken.
User B retweeted news that a mayor was fired and
investigated because of a bribe; in his retweet, he
expresses his dissatisfaction with what the mayor
did when he was in power. In addition, User A fol-
lows new technology (smart phone, Apple, Sam-
sung, software, hardware, etc.) and B is interested
in food (snacks, noodles, wine, fish, etc.).

As ground truth, there is a mentioning link
from A to B; Table 2 shows this link’s PLR in
the mentioning models, which generally improves
with model sophistication. The mentioning tweet
is a news item that is consistent with the model’s
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Model RTM IS-RTM Lex-IS-RTM MED-RTM IS-MED-RTM Lex-IS-MED-RTM
PLR of the Link 24 10 9 74 18 26

Social News
Topic Proportion

User A 0.018 0.021 0.034 0.016 0.027 0.030
User B 0.309 0.413 0.408 0.318 0.355 0.392

Table 2: Data for Illustrative Example

Model RTM IS-RTM Lex-IS-RTM MED-RTM IS-MED-RTM Lex-IS-MED-RTM
Topic PMI 1.186 1.224 1.216 1.214 1.294 1.229

Average
Regression

Values

Linked Pairs 0.2403 0.3692 0.4031 0.7220 0.6321 0.7668
All Pairs 0.06636 0.07729 0.08020 0.2482 0.2041 0.2428

Ratio 3.621 4.777 5.026 2.909 3.097 3.158
SD/Avg 0.9415 1.2081 1.2671 0.6364 0.7254 0.7353

Table 3: Values for Quantitative Analysis

characterization of the users’ interests (particu-
larly social news and technology): a Samsung
Galaxy S4 exploded and caused a fire while charg-
ing. Consistent with intuition, the prevalence of
the social news topic also generally increases as
the models grow more sophisticated.6

4.5 Quantitative Analysis

Topic Quality. Automatic coherence detec-
tion (Lau et al., 2014) is an alternative to manual
evaluations of topic quality (Chang et al., 2009).
In each topic, the top n words’ average pointwise
mutual information (PMI)—based on a reference
corpus—serves as a measure of topic coherence.7

Topic quality improves with user interactions
and max-margin learning (Table 3). PMI drops
when lexical terms are added to the link probabil-
ity function, however. This is consistent with the
role of lexical terms in the model; their purpose
is to improve link prediction performance, not im-
prove topic quality.

Average Regression Value. One way to assess
the quality of link prediction is to compare the
scores of (ground-truth) linked documents to doc-
uments in general. In Table 3, the Average Re-
gression Values show this comparison as a ratio.
The higher the ratio, the more linked document
pairs differ from unlinked pairs, which means that
linked documents are easier to distinguish. This
ratio improves as RTM extensions are added, indi-
cating better link modeling quality.

6Numerically its proportion is consistently lower for
User A, whose interests are more diverse.

7We set n = 20 and use a reference corpus of 1,143,525
news items from Sogou Lab, comprising items from June to
July 2012, http://www.sogou.com/labs/dl/ca.
html. Each averages ∼347 tokens, using the same segmen-
tation scheme as the experimental corpus.

In the SD/Avg row of Table 3, we also compute
a ratio of standard deviations to mean values. Ra-
tios given by the models with hinge loss are lower
than those not using hinge loss. This means that
the regression values given by the models with
hinge loss are more concentrated around the av-
erage value, suggesting that these models can bet-
ter identify linked pairs, even though the ratio of
linked pairs’ average regression value to all pairs’
average value is lower.

5 Conclusions and Future Work

We introduce a new topic model that takes ad-
vantage of document links, incorporating link in-
formation straightforwardly by deriving clusters
from the link graph and assigning each cluster
a separate Dirichlet prior. We also take advan-
tage of locally-derived distributed representations
to “seed” the model’s latent topics in an informed
way, and we integrate max-margin prediction and
lexical regression to improve link prediction qual-
ity. Our quantitative results show improvements in
predictive link rank, and our qualitative and quan-
titative analysis illustrate that the model’s behavior
is intuitively plausible.

In future work, we plan to engage in further
model analysis and comparison, to explore al-
terations to model structure, e.g. introducing
hierarchical topic models, to use other cluster-
ing methods to obtain priors, and to explore the
value of predicted links for downstream tasks
such as friend recommendation (Pennacchiotti
and Gurumurthy, 2011) and inference of user at-
tributes (Volkova et al., 2014).
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Abstract

We study the problem of jointly em-
bedding a knowledge base and a text
corpus. The key issue is the alignment
model making sure the vectors of entities,
relations and words are in the same space.
Wang et al. (2014a) rely on Wikipedia an-
chors, making the applicable scope quite
limited. In this paper we propose a new
alignment model based on text descrip-
tions of entities, without dependency on
anchors. We require the embedding vector
of an entity not only to fit the structured
constraints in KBs but also to be equal to
the embedding vector computed from the
text description. Extensive experiments
show that, the proposed approach consis-
tently performs comparably or even better
than the method of Wang et al. (2014a),
which is encouraging as we do not use
any anchor information.

1 Introduction

Knowledge base embedding has attracted surging
interest recently. The aim is to learn continuous
vector representations (embeddings) for entities
and relations of a structured knowledge base (KB)
such as Freebase. Typically it optimizes a global
objective function over all the facts in the KB and
hence the embedding vector of an entity / relation
is expected to encode global information in the
KB. It is capable of reasoning missing facts in
a KB and helping facts extraction (Bordes et al.,
2011; Bordes et al., 2012; Bordes et al., 2013;
Socher et al., 2013; Chang et al., 2013; Wang et
al., 2014b; Lin et al., 2015).

Although seeming encouraging, the approaches
in the aforementioned literature suffer from two
common issues: (1) Embeddings are exclusive
to entities/relations within KBs. Computation

between KBs and text cannot be handled, which
are prevalent in practice. For example, in fact
extraction, a candidate value may be just a phrase
in text. (2) KB sparsity. The above approaches are
only based on structured facts of KBs, and thus
cannot work well on entities with few facts.

An important milestone, the approach of Wang
et al. (2014a) solves issue (1) by jointly embed-
ding entities, relations, and words into the same
vector space and hence is able to deal with word-
s/phrases beyond entities in KBs. The key com-
ponent is the so-called alignment model, which
makes sure the embeddings of entities, relations,
and words are in the same space. Two alignment
models are introduced there: one uses entity
names and another uses Wikipedia anchors. How-
ever, both of them have drawbacks. As reported in
the paper, using entity names severely pollutes the
embeddings of words. Thus it is not recommended
in practice. Using Wikipedia anchors completely
relies on the special data source and hence the
approach cannot be applied to other customer data.

To fully address the two issues, this paper pro-
poses a new alignment method, aligning by entity
descriptions. We only assume some entities in
KBs have text descriptions, which almost always
holds in practice. We require the embedding of
an entity not only fits the structured constraints
in KBs but also equals the vector computed from
the text description. Meanwhile, if an entity has
few facts, the description will provide information
for embedding, thus the issue of KB sparsity
is also well handled. We conduct extensive
experiments on the tasks of triplet classification,
link prediction, relational fact extraction, and
analogical reasoning to compare with the previous
approach (Wang et al., 2014a). Results show
that our approach consistently achieves better or
comparable performance.
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2 Related Work

TransE This is a representative knowledge em-
bedding model proposed by Bordes et al. (2013).
For a fact (h, r, t) in KBs, where h is the head en-
tity, r is the relation, and t is the tail entity, TransE
models the relation r as a translation vector r con-
necting the embeddings h and t of the two entities,
i.e., h + r is close to t. The model is simple, ef-
fective and efficient. Most knowledge embedding
models thereafter including this paper are variants
of this model (Wang et al., 2014b; Wang et al.,
2014a; Lin et al., 2015).

Skip-gram This is an efficient word embedding
method proposed by Mikolov et al. (2013a),
which learns word embeddings from word
concurrencies in text windows. Without any
supervision, it amazingly recovers the semantic
relations between words in a vector space such as
’King’− ’Queen’ ≈ ’Man’− ’Women’. However,
as it is unsupervised, it cannot tell the exact
relation between two words.

Knowledge and Text Jointly Embedding
Wang et al. (2014a) combines knowledge embed-
ding and word embedding in a joint framework
so that the entities/relations and words are in the
same vector space and hence operators like inner
product (similarity) between them are meaning-
ful. This brings convenience to tasks requiring
computation between knowledge bases and text.
Meanwhile, jointly embedding utilizes informa-
tion from both structured KBs and unstructured
text and hence the knowledge embedding and
word embedding can be enhanced by each other.
Their model is composed of three components: a
knowledge model to embed entities and relations,
a text model to embed words, and an alignment
model to make sure entities/relations and words
are in the same vector space. The knowledge
model and text model are variants of TransE
and Skip-gram respectively. The key component
is the alignment model. They introduced two:
alignment by entity names and alignment by
Wikipedia anchors. (1) Alignment by Entity
Names makes a replicate of KB facts but replaces
each entity ID with its name string, i.e., the
vector of a name phrase is encouraged to equal
to the vector of the entity (identified by ID). It
has problems with ambiguous entity names and
observed polluting word embeddings thus it is not
recommended by the authors. (2) Alignment by

Wikipedia Anchors replaces the surface phrase
v of a Wikipedia anchor with its corresponding
Freebase entity ev and defines the likelihood

LAA =
∑

(w,v)∈C,v∈A
log Pr(w|ev) (1)

where C is the collection of observed word and
context pairs and A refers to the set of all anchors
in Wikipedia. Pr(w|ev) is the probability of the
anchor predicting its context word, which takes a
form similar to Skip-gram for word embedding.
Alignment by anchors works well in both improv-
ing knowledge embedding and word embeddings.
However, it completely relies on the special data
source of Wikipedia anchors and cannot be applied
to other general data settings.

3 Alignment by Entity Descriptions

We first describe the settings and notations. Giv-
en a knowledge base, i.e., a set of facts (h, r, t),
where h, t ∈ E (the set of entities) and r ∈ R (the
set of relations). Some entities have text descrip-
tions. The description of entity e is denoted asDe.
wi,n is the nth word in the description of ei. Ni is
the length (in words) of the description of ei. We
try to learn embeddings ei, rj and wl for each en-
tity ei, relation rj and word wl respectively. The
vocabulary of words is V . The union vocabulary
of entities and words together is I = E ∪ V . In
this paper “word(s)” refers to “word(s)/phrase(s)”.

We follow the jointly embedding framework of
(Wang et al., 2014a), i.e., learning optimal embed-
dings by minimizing the following loss

L ({ei}, {rj}, {wl}) = LK + LT + LA, (2)

where LK , LT and LA are the component loss
functions of the knowledge model, text model and
alignment model respectively. Our focus is on
a new alignment model LA while the knowledge
model LK and text model LT are the same as the
counterparts in (Wang et al., 2014a). However, to
make the content self-contained, we still need to
briefly explain LK and LT .

Knowledge Model Describes the plausibility of
a triplet (h, r, t) by defining

Pr(h|r, t) =
exp{z(h, r, t)}∑
h̃∈I exp{z(h̃, r, t)} , (3)

where z(h, r, t) = b− 0.5 · ‖h+ r− t‖22, b = 7 as
suggested by Wang et al. (2014a). Pr(r|h, t) and
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Pr(t|h, r) are defined in the same way. The loss
function of knowledge model is then defined as

LK = −
∑

(h,r,t)

[
log Pr(h|r, t)

+ log Pr(t|h, r) + log Pr(r|h, t)] (4)

Text Model Defines the probability of a pair of
words w and v co-occurring in a text window:

Pr(w|v) =
exp{z(w, v)}∑
w̃∈V exp{z(w̃, v)} (5)

where z(w, v) = b−0.5 · ‖w−v‖22. Then the loss
function of text model is

LT = −
∑
(w,v)

log Pr(w|v) (6)

Alignment Model This part is different from
Wang et al. (2014a). For each word w in the
description of entity e, we define Pr(w|e), the
conditional probability of predicting w given e:

Pr(w|e) =
exp{z(e, w)}∑
w̃∈V exp{z(e, w̃)} , (7)

where z(e, w) = b − 0.5 · ‖e −w‖22. Notice that
e is the same vector of entity e appearing in the
knowledge model of Eq. (3).

We also define Pr(e|w) in the same way by re-
vising the normalization term

Pr(e|w) =
exp{z(e, w)}∑
ẽ∈E exp{z(ẽ, w)} (8)

Then the loss function of alignment model is

LA = −
∑
e∈E

∑
w∈De

[log Pr(w|e) + log Pr(e|w)]

(9)

Training We use stochastic gradient descent (S-
GD) to minimize the overall loss of Eq. (2), which
sequentially updates the embeddings. Negative
sampling is used to calculate the normalization
items over large vocabularies. We implement a
multi-threading version to deal with large data set-
s, where memory is shared and lock-free.

4 Experiments

We conduct experiments on the following tasks:
link prediction (Bordes et al., 2013), triplet clas-
sification (Socher et al., 2013), relational fact ex-
traction (Weston et al., 2013), and analogical rea-
soning (Mikolov et al., 2013b). The last one e-
valuates quality of word embeddings. We try

Table 1: Link prediction results.

Metric MEAN HITS@10
Raw Filtered Raw Filtered

TransE 243 125 34.9 47.1
Jointly(anchor) 166 47 49.9 72.0

Jointly(desp) 167 39 51.7 77.3

Table 2: Triplet classification results.
Type e - e w - e e - w w - w all

Separately 94.0 51.7 51.0 69.0 73.6
Jointly(anchor) 95.2 65.3 65.1 76.2 79.9

Jointly(desp) 96.1 66.7 66.1 76.4 80.9

to study whether the proposed alignment mod-
el, without using any anchor information, is able
to achieve comparable or better performance than
alignment by anchors. As to the methods, “Sep-
arately” denotes the method of separately embed-
ding knowledge bases and text. “Jointly(anchor)”
and “Jointly(name)” denote the jointly embedding
methods based on Alignment by Wikipedia An-
chors and Alignment by Entity Names in (Wang
et al., 2014a) respectively. “Jointly(desp)” is the
joint embedding method based on alignment by
entity descriptions.

Data For link prediction, FB15K from (Bordes
et al., 2013) is used as the knowledge base. For
triplet classification, a large dataset provided by
(Wang et al., 2014a) is used as the knowledge
base. Both sets are subsets of Freebase. For all
tasks, Wikipedia articles are used as the text cor-
pus. As many Wikipedia articles can be mapped
to Freebase entities, we regard a Wikipedia arti-
cle as the description for the corresponding entity
in Freebase. Following the settings in (Wang et
al., 2014a), we apply the same preprocessing step-
s, including sentence segmentation, tokenization,
and named entity recognition. We combine the
consecutive tokens covered by an anchor or iden-
tically tagged as “Location/Person/Organization”
and regard them as phrases.

Link Prediction This task aims to complete a
fact (h, r, t) in absence of h or t, simply based on
‖h+r− t‖. We follow the same protocol in (Bor-
des et al., 2013). We directly copy the results of
the baseline (TransE) from (Bordes et al., 2013)
and implement “Jointly(anchor)”. The results are
in Table 1. “MEAN” is the average rank of the true
absent entity. “HITS@10” is accuracy of the top
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Figure 1: Precision-recall curves for relation extraction. (a) Mintz (Mintz et al., 2009) as base extractor
(b) MIML (Surdeanu et al., 2012) as base extractor.

10 predictions containing the true entity. Lower
“MEAN” and higher “HITS@10” is better. “Raw”
and “Filtered” are two settings on processing can-
didates (Bordes et al., 2013).

We train “Jointly(anchor)” and “Joint-
ly(desp)” with the embedding dimension k
among {50, 100, 150}, the learning rate α in
{0.01, 0.025}, the number of negative examples
per positive example c in {5, 10}, the max skip-
range s in {5, 10} and traverse the text corpus
with only 1 epoch. The best configurations of
“Jointly(anchor)” and “Jointly(desp)” are exactly
the same: k = 100, α = 0.025, c = 10, s = 5.

From the results, we observe that: (1) Both
jointly embedding methods are much better than
the baseline TransE, which demonstrates that ex-
ternal textual resources make entity embeddings
become more discriminative. Intuitively, “Joint-
ly(anchor)” indicates “how to use an entity in tex-
t”, while “Jointly(desp)” shows “what is the def-
inition/meaning of an entity”. Both are helpful
to distinguish an entity from others. (2) Under
the setting of “Raw”, “Jointly(desp)” and “Joint-
ly(anchor)” are comparable. In other settings
“Jointly(desp)” wins.

Triplet Classification This is a binary classifi-
cation task, predicting whether a candidate triplet
(h, r, t) is a correct fact or not. It is used in (Socher
et al., 2013; Wang et al., 2014b; Wang et al.,
2014a). We follow the same protocol in (Wang
et al., 2014a).

We train their models via our own implemen-

tation on our dataset. The results are in Table 2.
“e-e” means both sides of a triplet (h, r, t) are en-
tities in KB, “e-w” means the tail side is a word
out of KB entity vocabulary, similarly for “w-e”
and “w-w”. The best configurations of the mod-
els are: k = 150, α = 0.025, c = 10, s = 5 and
traversing the text corpus with 6 epochs.

The results reveal that: (1) Jointly embedding is
indeed effective. Both jointly embedding methods
can well handle the cases of “e-w”, “w-e” and “w-
w”, which means the vector computation between
entities/relations and words are really meaning-
ful. Meanwhile, even the case of “e-e” is also
improved. (2) Our method, “Jointly(desp)”, out-
performs “Jointly(anchor)” on all types of triplets.
We believe that the good performance of “Joint-
ly(desp)” is due to the appropriate design of the
alignment mechanism. Using entity’s description
information is a more straightforward and effec-
tive way to align entity embeddings and word em-
beddings.

Relational Fact Extraction This task is to ex-
tract facts (h, r, t) from plain text. Weston et al.
(2013) show that combing scores from TransE and
some text side base extractor achieved much bet-
ter precision-recall curve compared to the base
extractor. Wang et al. (2014a) confirm this ob-
servation and show that jointly embedding brings
further encouraging improvement over TransE. In
this experiment, we follow the same settings as
(Wang et al., 2014a) to investigate the perfor-
mance of our new alignment model. We use the
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Table 3: Analogical reasoning results

Metric Words Phrases
Acc. Hits@10 Acc. Hits@10

Skip-gram 67.4 86.7 22.0 63.6
Jointly(anchor) 69.4 87.7 26.2 68.1
Jointly(name) 44.5 69.7 11.5 46.0

Jointly(desp) 69.3 88.3 49.0 86.5

same public dataset NYT+FB, released by Riedel
et al. (2010) and used in (Weston et al., 2013) and
(Wang et al., 2014a). We use Mintz (Mintz et al.,
2009) and MIML (Surdeanu et al., 2012) as our
base extractors.

In order to combine the score of a base extrac-
tor and the score from embeddings, we only re-
serve the testing triplets whose entitites and rela-
tions can be mapped to the embeddings learned
from the triplet classification experiment. Since
both Mintz and MIML are probabilistic models,
we use the same method in (Wang et al., 2014a) to
linearly combine the scores.

The precision-recall curves are plot in Fig. (1).
On both base extractors, the jointly embedding
methods outperform separate embedding. More-
over, “Jointly(desp)” is slightly better than “Joint-
ly(anchor)”, which is in accordance with the re-
sults from the link prediction experiment and the
triplet classification experiment.

Analogical Reasoning This task evaluates the
quality of word embeddings (Mikolov et al.,
2013b). We use the original dataset released
by (Mikolov et al., 2013b) and follow the same
evaluation protocol of (Wang et al., 2014a). For
a true analogical pair like (“France”, “Paris”) and
(“China”, “Beijing”), we hide “Beijing” and pre-
dict it by selecting the word from the vocabu-
lary whose vector has highest similarity with the
vector of “China” + “Paris” - “France”. We
use the word embeddings learned for the triplet
classification experiment and conduct the analogi-
cal reasoning experiment for “Skip-gram”, “Joint-
ly(anchor)”, “Jointly(name)” and “Jointly(desp)”.

Results are presented in Table 3. “Acc” is the
accuracy of the predicted word. “HITS@10” is the
accuracy of the top 10 candidates containing the
ground truth. The evaluation analogical pairs are
organized into two groups, “Words” and “Phras-
es”, by whether an analogical pair contains phras-
es (i.e., multiple words). From the table we ob-
serve that: (1) Both “Jointly(anchor)” and “Joint-
ly(desp)” outperform “Skip-gram”. (2) “Joint-

ly(desp)” achieves the best results, especially for
the case of “Phrases”. Both “Jointly(anchor)” and
“Skip-gram” only consider the context of words,
while “Jointly(desp)” not only consider the con-
text but also use the whole document to disam-
biguate words. Intuitively, the whole document
is also a valuable resource to disambiguate word-
s. (3) We further verify that “Jointly(name)”, i.e.,
using entity names for alignment, indeed pollutes
word embeddings, which is consistent with the re-
ports in (Wang et al., 2014a).

The above four experiments are consisten-
t in results: without using any anchor informa-
tion, alignment by entity description is able to
achieve better or comparable performance, com-
pared to alignment by Wikipedia anchors pro-
posed by Wang et al. (2014a).

5 Conclusion

We propose a new alignment model based on enti-
ty descriptions for jointly embedding a knowledge
base and a text corpus. Compared to the method
of alignment using Wikipedia anchors Wang et al.
(2014a), our method has no dependency on special
data sources of anchors and hence can be applied
to any knowledge bases with text descriptions for
entities. Extensive experiments on four prevalen-
t tasks to evaluate the quality of knowledge and
word embeddings produce very consistent results:
our alignment model achieves better or compara-
ble performance.
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Abstract

Despite the convexity of structured max-
margin objectives (Taskar et al., 2004;
Tsochantaridis et al., 2004), the many
ways to optimize them are not equally ef-
fective in practice. We compare a range of
online optimization methods over a vari-
ety of structured NLP tasks (coreference,
summarization, parsing, etc) and find sev-
eral broad trends. First, margin methods
do tend to outperform both likelihood and
the perceptron. Second, for max-margin
objectives, primal optimization methods
are often more robust and progress faster
than dual methods. This advantage is
most pronounced for tasks with dense or
continuous-valued features. Overall, we
argue for a particularly simple online pri-
mal subgradient descent method that, de-
spite being rarely mentioned in the litera-
ture, is surprisingly effective in relation to
its alternatives.

1 Introduction

Structured discriminative models have proven ef-
fective across a range of tasks in NLP includ-
ing tagging (Lafferty et al., 2001; Collins, 2002),
reranking parses (Charniak and Johnson, 2005),
and many more (Taskar, 2004; Smith, 2011).
Common approaches to training such models in-
clude margin methods, likelihood methods, and
mistake-driven procedures like the averaged per-
ceptron algorithm. In this paper, we primarily con-
sider the relative empirical behavior of several on-
line optimization methods for margin-based objec-
tives, with secondary attention to other approaches
for calibration.

It is increasingly common to train structured
models using a max-margin objective that incor-
porates a loss function that decomposes in the

same way as the dynamic program used for in-
ference (Taskar, 2004). Fortunately, most struc-
tured margin objectives are convex, so a range
of optimization methods with similar theoretical
properties are available – in short, any of these
methods will work in the end. However, in prac-
tice, how fast each method converges varies across
tasks. Moreover, some of the most popular meth-
ods more loosely associated with the margin ob-
jective, such as the MIRA algorithm (Crammer
and Singer, 2003) or even the averaged perceptron
(Freund and Schapire, 1999) are not global opti-
mizations and can have different properties.

We analyze a range of methods empirically, to
understand on which tasks and with which fea-
ture types, they are most effective. We modified
six existing, high-performance, systems to enable
loss-augmented decoding, and trained these mod-
els with six different methods. We have released
our learning code as a Java library.1 Our results
provide support for the conventional wisdom that
margin-based optimization is broadly effective,
frequently outperforming likelihood optimization
and the perceptron algorithm. We also found that
directly optimizing the primal structured margin
objective based on subgradients calculated from
single training instances is surprisingly effective,
performing consistently well across all tasks.

2 Learning Algorithms

We implemented a range of optimization methods
that are widely used in NLP; below we categorize
them into margin, likelihood, and perceptron-like
methods. In each case, we used a structured loss
function, modified to suit each task. In general,
we focus on online methods because of their sub-
stantial speed advantages, rather than algorithms
such as LBFGS (Liu and Nocedal, 1989) or batch
Exponentiated Gradient (Collins et al., 2008).

1http://nlp.cs.berkeley.edu/software.shtml
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Algorithm 1 The Online Primal Subgradient Algorithm with `1 or `2 regularization, and sparse updates
Parameters: g
iters Number of iterations
C Regularization constant (10−1 to 10−8)
η Learning rate (100 to 10−4)
δ Initializer for q (10−6)

w = 0 Weight vector
q = δ Cumulative squared gradient
u = 0 Time of last update for each weight
n = 0 Number of updates so far
for iter ∈ [1, iters] do

for batch ∈ data do
Sum gradients from loss-aug. decodes
g = 0
for (xi, yi) ∈ batch do
for y = argmax

y′∈Y (xi)
[SCORE(y′) + L(y′, yi)]

for g += (f(y)− f(yi))
Update the active features
q += g2......Element-wise square
n += 1
for f ∈ nonzero features in g do

wf = UPDATE-ACTIVE(wf , gf , qf )
uf = n

The AdaGrad update
function UPDATE-ACTIVE(w, g, q)

return w
√
q−ηg

ηC+
√
q [`2]

d = |w − η√
qg| − η√

qC [`1]
return sign(w − η√

qg) ·max(0, d) [`1]

Functions only needed for sparse updates
A single update equivalent to a series of AdaGrad
updates where the weight’s subgradient was zero
function UPDATE-CATCHUP(w, q, t)

return w
( √

q
ηC+

√
q

)t
[`2]

return sign(w) ·max(0, |w| − ηC√
q t) [`1]

Compute w>f(y′), but for each weight, apply an
update to catch up on the steps in which the gra-
dient for that weight was zero
function SCORE(y′)

s = 0
for f ∈ f(y′) do
forwf = UPDATE-CATCHUP(wf , qf , n−uf )
for uf = n
for s += wf
return s

Note: To implement without the sparse update, use SCORE = w>f(y′), and run the update loop on the left over all features.
Also, for comparison, to implement perceptron, remove the sparse update and use UPDATE-ACTIVE = return w + g.

2.1 Margin

Cutting Plane (Tsochantaridis et al., 2004)
Solves a sequence of quadratic programs (QP),
each of which is an approximation to the dual
formulation of the margin-based learning prob-
lem. At each iteration, the current QP is refined
by adding additional active constraints. We solve
each approximate QP using Sequential Minimal
Optimization (Platt, 1999; Taskar et al., 2004).

Online Cutting Plane (Chang and Yih, 2013)
A modified form of cutting plane that only par-
tially solves the QP on each iteration, operating in
the dual space and optimizing a single dual vari-
able on each iteration. We use a variant of Chang
and Yih (2013) for the L1 loss margin objective.

Online Primal Subgradient (Ratliff et al., 2007)
Computes the subgradient of the margin objective
on each instance by performing a loss-augmented
decode, then uses these instance-wise subgradi-
ents to optimize the global objective using Ada-
Grad (Duchi et al., 2011) with either L1 or L2 reg-
ularization. The simplest implementation of Ada-
Grad touches every weight when doing the update

for a batch. To save time, we distinguish between
two different types of update. When the subgradi-
ent is nonzero, we apply the usual update. When
the subgradient is zero, we apply a numerically
equivalent update later, at the next time the weight
is queried. This saves time, as we only touch
the weights corresponding to the (usually sparse)
nonzero directions in the current batch’s subgradi-
ent. Algorithm 1 gives pseudocode for our imple-
mentation, which was based on Dyer (2013).

2.2 Likelihood
Stochastic Gradient Descent The built-in train-
ing method for many of the systems was
softmax-margin likelihood optimization (Gimpel
and Smith, 2010) via subgradient descent with ei-
ther AdaGrad or AdaDelta (Duchi et al., 2011;
Zeiler, 2012). We include results with each sys-
tem’s default settings as a point of comparison.

2.3 Mistake Driven
Averaged Perceptron (Freund and Schapire,
1999; Collins, 2002) On a mistake, weights for
features on the system output are decremented and
weights for features on the gold output are incre-
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mented. Weights are averaged over the course of
training, and decoding is not loss-augmented.

Margin Infused Relaxed Algorithm (Crammer
and Singer, 2003) A modified form of the per-
ceptron that uses loss-augmented decoding and
makes the smallest update necessary to give a mar-
gin at least as large as the loss of each solution.
MIRA is generally presented as being related to
the perceptron because it does not explicitly op-
timize a global objective, but it also has connec-
tions to margin methods, as explored by Chiang
(2012). We consider one-best decoding, where the
quadratic program for determining the magnitude
of the update has a closed form.

3 Tasks and Systems

We considered tasks covering a range of structured
output spaces, from sequences to non-projective
trees. Most of the corresponding systems use
models designed for likelihood-based structured
prediction. Some use sparse indicator features,
while others use dense continuous-valued features.

Named Entity Recognition This task provides
a case of sequence prediction. We used the NER
component of Durrett and Klein (2014)’s entity
stack, training it independently of the other com-
ponents. We define the loss as the number of in-
correctly labelled words, and train on the CoNLL
2012 division of OntoNotes (Pradhan et al., 2007).

Coreference Resolution This gives an example
of training when there are multiple gold outputs
for each instance. The system we consider uses
latent links between mentions in the same cluster,
marginalizing over the possibilities during learn-
ing (Durrett and Klein, 2013). Since the model
decomposes across mentions, we train by treat-
ing them as independent predictions with multiple
gold outputs, comparing the inferred link with the
gold link that is scored highest under the current
model. We use the system’s weighted loss func-
tion, and the same data as for NER.

Constituency Parsing We considered two dif-
ferent systems. The first uses only sparse indicator
features (Hall et al., 2014), while the second is pa-
rameterized via a neural network and adds dense
features derived from word vectors (Durrett and
Klein, 2015).2 We define the loss as the number

2Our results are slightly lower as we save time by only
using the dense features and a reduced n-gram context.

of incorrect rule productions, and use the standard
Penn Treebank division (Marcus et al., 1993).

Dependency Parsing We used the first-order
MST parser in two modes, Eisner’s algorithm
for projective trees (Eisner, 1996; McDonald et
al., 2005b), and the Chu-Liu-Edmonds algorithm
for non-projective trees (Chu and Liu, 1965; Ed-
monds, 1967; McDonald et al., 2005a). The loss
function was the number of arcs with an incorrect
parent or label, and we used the standard division
of the English Universal Dependencies (Agić et
al., 2015). The built-in training method for MST
parser is averaged, 1-best MIRA, which we in-
clude for comparison purposes.

Summarization With this task, we explore a
case in which there is relatively little training data
and the model uses a small number of dense fea-
tures. The system uses a linear model with fea-
tures considering counts of bigrams in the input
document collection. The system forms the out-
put summary by selecting a subset of the sen-
tences in the input collection that does not exceed
a fixed word-length limit (Berg-Kirkpatrick et al.,
2011). Inference involves solving an integer linear
program, the loss function is bigram recall, and
the data is from the TAC shared tasks (Dang and
Owczarzak, 2008; Dang and Owczarzak, 2009).

3.1 Tuning
For each method we tuned hyperparameters by
considering a grid of values and measuring dev
set performance over five training iterations, ex-
cept for constituency parsing, where we took five
measurements, 4k instances apart. For the cutting
plane methods we cached constraints in memory
to save time, but the memory cost was too great
to run batch cutting plane on constituency parsing
(over 60 Gb), and so is not included in the results.

4 Observations

From the results in Figure 1 and during tuning,
we can make several observations about these op-
timization methods’ performance on these tasks.

Observation 1: Margin methods generally per-
form best As expected given prior work, mar-
gin methods equal or surpass the performance
of likelihood and perceptron methods across al-
most all of these tasks. Coreference resolution
is an exception, but that model has latent vari-
ables that likelihood may treat more effectively,
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Figure 1: Variation in dev set performance (y)
across training iterations (x). To show all varia-
tion, the scale of the y-axis changes partway, as
indicated. Lines that stop early had converged.
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Time per iteration relative to averaged perceptron
Method NER Coref Span Parser Neural Parser MST Proj. MST Non-Proj. Summ.
AP 1.0 1.0 1.0 - 1.0 1.0 1.0
MIRA 1.9 1.0 1.0 1.0 1.0 1.0 1.0
CP 60.8 2.7 - - 6.8 8.4 0.6
OCP 2.7 1.7 0.9 0.9 1.5 1.6 1.1
OPS 3.9 1.3 1.1 1.0 1.8 2.0 0.9
Decoding 0.6 0.2 0.9 0.7 0.7 0.6 0.7

Table 1: Comparison of time per iteration relative to the perceptron (or MIRA for the Neural Parser).
Decoding shows the time spent on inference. Times were averaged across the entire run. OPS uses batch
size 10 for NER to save time, but performs just as well as with batch size 1 in Figure 1.

and has a weighted loss function tuned for like-
lihood (softmax-margin).

Observation 2: Dual cutting plane methods ap-
pear to learn more slowly Both cutting plane
methods took more iterations to reach peak per-
formance than the other methods. In addition, for
batch cutting plane, accuracy varied so drastically
that we extended tuning to ten iterations, and even
then choosing the best parameters was sometimes
difficult. Table 1 shows that the online cutting
plane method did take slightly less time per iter-
ation than OPS, but not enough to compensate for
the slower learning rate.

Observation 3: Learning with real-valued
features is difficult for perceptron methods
Learning models for tasks such as NER, which are
driven by sparse indicator features, often roughly
amounts to tallying the features that are con-
trastively present in correct hypotheses. In such
cases, most learning methods work fairly well.
However, when models use real-valued features,
learning may involve determining a more delicate
balance between features. In the models we con-
sider that have real-valued features, summariza-
tion and parsing with a neural model, we can see
that perceptron methods indeed have difficulty.3

Observation 4: Online Primal Subgradient is
robust and effective All of the margin based
methods, and gradient descent on likelihood, re-
quire tuning of a regularization constant and a step
size (or convergence requirements for SMO). The
dual methods were particularly sensitive to these
hyperparameters, performing poorly if they were
not chosen carefully. In contrast, performance for
the primal methods remained high over a broad

3For the neural parser, the perceptron took a gradient step
for each mistake, but this had dismal performance.

range of values.
Our implementation of sparse updates for Ada-

Grad was crucial for high-speed performance, de-
creasing time by an order of magnitude on tasks
with many sparse features, such as NER and de-
pendency parsing.

Observation 5: Other minor properties We
found that varying the batch size did not substan-
tially impact performance after a given number of
decodes, but did enable a speed improvement as
decoding of multiple instances can occur in paral-
lel. Increasing batch sizes leads to a further im-
provement to OPS, as overall there are fewer up-
dates per iteration. For some tasks, re-tuning the
step size was necessary when changing batch size.

5 Conclusion

The effectiveness of max-margin optimization
methods is widely known, but the default choice
of learning algorithm in NLP is often a form of the
perceptron (or likelihood) instead. Our results il-
lustrate some of the pitfalls of perceptron methods
and suggest that online optimization of the max-
margin objective via primal subgradients is a sim-
ple, well-behaved alternative.
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Abstract

There are two main types of word repre-
sentations: low-dimensional embeddings
and high-dimensional distributional vec-
tors, in which each dimension corresponds
to a context word. In this paper, we ini-
tialize an embedding-learning model with
distributional vectors. Evaluation on word
similarity shows that this initialization sig-
nificantly increases the quality of embed-
dings for rare words.

1 Introduction

Standard neural network (NN) architectures for in-
ducing embeddings have an input layer that repre-
sents each word as a one-hot vector (e.g., Turian
et al. (2010), Collobert et al. (2011), Mikolov et
al. (2013)). There is no usable information avail-
able in this input-layer representation except for
the identity of the word. We call this standard ini-
tialization method one-hot initialization.

Distributional representations (e.g., Schütze
(1992), Lund and Burgess (1996), Sahlgren
(2008), Turney and Pantel (2010), Baroni and
Lenci (2010)) represent a word as a high-
dimensional vector in which each dimension cor-
responds to a context word. They have been suc-
cessfully used for a wide variety of tasks in natu-
ral language processing such as phrase similarity
(Mitchell and Lapata, 2010) and sentiment analy-
sis (Turney and Littman, 2003).

In this paper, we investigate distributional ini-
tialization: the use of distributional vectors as rep-
resentations of words at the input layer of NN ar-
chitectures for embedding learning to improve the
embeddings of rare words. It is difficult for one-
hot initialization to learn good embeddings from
only a few examples. In contrast, distributional
initialization provides an additional source of in-
formation – the global distribution of the word in

the corpus – that improves embeddings learned for
rare words. We will demonstrate this type of im-
provement in the experiments reported below.

In summary, we introduce the idea of dis-
tributional initialization for embedding learn-
ing, an alternative to one-hot initialization that
combines distributed representations (or embed-
dings) with distributional representations (or high-
dimensional vectors). We show that distributional
initialization significantly improves the quality of
embeddings learned for rare words.

We will first describe our methods in Section 2
and the experimental setup in Section 3. Section 4
presents and discusses experimental results. We
summarize related work in Section 5 and finish
with conclusion in Section 6 and discussion of fu-
ture work in Section 7.

2 Method

Weighting. We use two different weighting
schemes for distributional vectors. Let v1, . . . , vn
be the vocabulary of context words. In BINARY
weighting, entry 1 ≤ i ≤ n in the distributional
vector of target word w is set to 1 iff vi and w
cooccur at a distance of at most ten words in the
corpus and to 0 otherwise.

In PPMI weighting, entry 1 ≤ i ≤ n in the
distributional vector of target word w is set to the
PPMI (positive pointwise mutual information, in-
troduced by Niwa and Nitta (1994)) of w and vi.
We divide PPMI values by their maximum to en-
sure they are in [0, 1] because we will combine
one-hot vectors (whose values are 0/1) with PPMI
weights and it is important that they are on the
same scale.

We use two different distributional initializa-
tions, shown in Figure 1: separate (left) and mixed
(right). Combinations of these two initializations
with both BINARY and PPMI weighting will be
investigated in the experiments.

Recall that n is the dimensionality of the distri-
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Figure 1: One-hot vectors of frequent words and distributional vectors of rare words are separate in separate initialization (left)
and overlap in mixed initialization (right). This example is for BINARY weighting.

butional vectors. Let k be the number of words
with frequency > θ, where the frequency thresh-
old θ is a parameter.

In separate initialization, the input represen-
tation for a word is the concatenation of a k-
dimensional vector and an n-dimensional vec-
tor. For a word with frequency > θ, the k-
dimensional vector is a one-hot vector and the n-
dimensional vector is zero. For a word with fre-
quency ≤ θ, the k-dimensional vector is zero and
the n-dimensional vector is its distributional vec-
tor.

In mixed initialization, the input representation
for a word is an n-dimensional vector: a one-hot
vector for a word with frequency > θ and a distri-
butional vector for a word with frequency ≤ θ.

In summary, separate initialization uses sepa-
rate representation spaces for frequent words (one-
hot space) and rare words (distributional space).
Mixed initialization uses the same representation
space for all words; and rare words share weights
with the frequent words that they cooccur with.

3 Experimental setup

We use ukWaC+WaCkypedia (Baroni et al.,
2009), a corpus of 2.4 billion tokens and 6 million
word types. Based on (Turian et al., 2010), we
preprocess the corpus by removing sentences that
are less than 90% lowercase; lowercasing; replac-
ing URLs, email addresses and digits by special
tokens; tokenization (Schmid, 2000); replacing
words with frequency 1 with <unk>; and adding
end-of-sentence tokens. After preprocessing, the
size n of the context word vocabulary is 2.7 mil-
lion.

We evaluate on six word similarity judgment
data sets (number of pairs in parentheses): RG

(Rubenstein and Goodenough (1965), 65) MC
(Miller and Charles (1991), 30), MEN1 (Bruni et
al. (2012), 3000), WordSim3532 (Finkelstein et al.
(2001), 353), Stanford Rare Word3 (Luong et al.
(2013), 2034) and SimLex-9994 (Hill et al. (2014),
999). We exclude from the evaluation the 16 pairs
in RW that contain a word that does not occur in
our corpus.

Our goal in this paper is to investigate the ef-
fect of using distributional initialization vs. one-
hot initialization on the quality of embeddings of
rare words.

However, except for RW, the six data sets con-
tain only a single word with frequency ≤100, all
other words are more frequent.

To address this issue, we artificially make all
words in the six data sets rare. We do this by
keeping only θ randomly chosen occurrences in
the corpus (for words with frequency >θ) and re-
placing all other occurrences with a different to-
ken (e.g., “fire” is replaced with “*fire*”). This
procedure – corpus downsampling – ensures that
all words in the six data sets are rare in the corpus
and that our setup directly evaluates the impact of
distributional initialization on rare words.

Note that we use θ for two different purposes:
(i) θ is the frequency threshold that determines
which words are classified as rare and which as
frequent in Figure 1 – changing θ corresponds to
moving the horizontal dashed line in separate and
mixed initialization up and down; (ii) θ is the pa-
rameter that determines how many occurrences of
a word are left in the corpus when we remove oc-

1
clic.cimec.unitn.it/˜elia.bruni/MEN

2
alfonseca.org/eng/research/wordsim353.html

3
www-nlp.stanford.edu/˜lmthang/morphoNLM/

4
cl.cam.ac.uk/˜fh295/simlex.html
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A B C D E F G H I J K L
RG MC MEN WS RW SL

θ mixed sep mixed sep mixed sep mixed sep mixed sep mixed sep
1

B
IN

A
RY

10 *56.54 47.06 35.96 32.10 *43.76*45.56 34.21*40.93 *24.81 20.85 *18.30*13.76
2 20 *59.08 45.31 *46.66 35.22 52.05*52.38 41.44 47.53 *29.48 26.93 *20.85*16.86
3 50 *63.20 51.07 *52.35 37.45 58.21 53.80 43.14 44.88 31.32 29.16 *24.19*22.45
4 100 68.33 52.50 61.70 35.94 61.69 55.23 48.25 44.89 33.29 30.22 *26.74 24.66
5

PP
M

I 10 *56.87*51.94 *37.31*46.52 *48.05*50.49 38.41*47.54 *25.53 23.12 *19.70*15.59
6 20 *59.08*50.32 *47.51*45.17 *54.88*56.42 43.31*53.19 *29.78*28.51 *21.84*19.23
7 50 *64.90*64.36 *55.27*56.75 60.51 61.04 45.76 55.55 32.05 30.25 *25.11*21.60
8 100 71.08 58.37 68.14 52.33 63.05 60.74 48.66 55.49 33.25 30.49 *27.13 22.60
9

on
e-

ho
t 10 38.93 16.67 40.70 35.17 20.69 8.97

10 20 42.17 25.21 50.21 43.74 26.58 13.62
11 50 56.01 42.35 60.22 54.10 32.16 20.01
12 100 67.47 61.33 65.14 59.87 35.19 24.06

Table 1: Spearman correlation coefficients ×100 between human and embedding-based similarity judgments, averaged over 5
runs. Distributional initialization correlations that are higher (resp. significantly higher) than corresponding one-hot correlations
are set in bold (resp. marked *).

currences to ensure that words from the evaluation
data sets are rare in the corpus.

We covary these two parameters in the experi-
ments below; e.g., we apply distributional initial-
ization with θ = 20 to a corpus constructed to have
θ = 20 occurrences of words from similarity data
sets. We do this to ensure that all evaluation words
are rare words for the purpose of distributional ini-
tialization and so we can exploit all pairs in the
evaluation data sets for evaluating the efficacy of
our method for rare words.

We modified word2vec5 (Mikolov et al., 2013)
to accommodate distributional initialization; to
support distributional vectors at the input layer,
we changed the implementation of activation func-
tions and backpropagation. We use the skipgram
model, hierarchical softmax, set the size of the
context window to 10 (10 words to the left and 10
to the right), min-count to 1 (train on all tokens),
embedding size to 100, sampling rate to 10−3 and
train models for one epoch.

For four values of the frequency threshold,
θ ∈ {10, 20, 50, 100},6 we train word2vec models

5
code.google.com/p/word2vec

6A reviewer asks whether the value of θ should depend on
the size of the training corpus. Our intuition is that it is in-
dependent of corpus size. If a certain amount of information
– corresponding to a certain number of contexts – is required
to learn a meaningful representation of a word, then it should
not matter whether that given number of contexts occurs in a
small corpus or in a large corpus. However, if the contexts
themselves contain many rare words (which is more likely in
a small corpus), then corpus size could be an important vari-

with one-hot initialization and with the four com-
binations of weighting (BINARY, PPMI) and dis-
tributional initialization (mixed, separate), a total
of 4× (1 + 2× 2) = 20 models. For each train-
ing run, we perform corpus downsampling and ini-
tialize the parameters of the models randomly. To
get a reliable assessment of performance, we train
5 instances of each model and report averages of
the 5 runs. One model takes ∼3 hours to train on
23 CPU cores, 2.30GHz.

4 Experimental results and discussion

Table 1 shows experimental results, averaged over
5 runs. The evaluation measure is Spearman
correlation ×100 between human and machine-
generated pair similarity judgments.

Frequency threshold θ. The main result is that
for θ ∈ {10, 20} distributional initialization is
better than one-hot initialization (see bold num-
bers): compare lines 1&5 with line 9; and lines
2&6 with line 10. This is true for both mixed and
separate initialization, with the exception of WS,
for which mixed (column G) is better in only 1
(line 5) of 4 cases.

Looking only at results for θ ∈ {10, 20}, 18 of
24 improvements are significant7 for mixed initial-
ization and 16 of 24 improvements are significant
for separate initialization (lines 1&5 vs 9 and lines

able to take into account.
7Two-sample t-test, two-tailed, assuming equal variance,

p < .05
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2&6 vs 10).
For θ ∈ {50, 100}, mixed initialization does

well for RG, MC and SL, but the gap between
mixed and one-hot initializations is generally
smaller for these larger values of θ; e.g., the dif-
ference is larger than 9 for θ = 10 (A1&A5 vs
A/B9, C1&C5 vs C/D9, K1&K5 vs K/L9) and less
than 9 for θ = 100 (A4&A8 vs A/B12, C4&C8
vs C/D12, K4&K8 vs K/L12) for these three data
sets.

Recall that each value of θ effectively results in
a different training corpus – a training corpus in
which the number of occurrences of the words in
the evaluation data sets has been reduced to ≤ θ
(cf. Section 3).

Our results indicate that distributional initializa-
tion is beneficial for very rare words – those that
occur no more than 20 times in the corpus. Our
results for medium rare words – those that occur
between 50 and 100 times – are less clear: either
there are no improvements or improvements are
small.

Thus, our recommendation is to use θ = 20.
Scalability. The time complexity of the ba-

sic version of word2vec is O(ECWD log V )
(Mikolov et al., 2013) where E is the number
of epochs, C is the corpus size, W is the con-
text window size, D is the number of dimensions
of the embedding space, and V is the vocabu-
lary size. Distributional initialization adds a term
I , the average number of entries in the distribu-
tional vectors, so that time complexity increases to
O(IECWD log V ). For rare words, I is small, so
that there is no big difference in efficiency between
one-hot initialization and distributional initializa-
tion of word2vec. However, for frequent words
I would be large, so that distributional initializa-
tion may not be scalable in that case. So even if
our experiments had shown that distributional ini-
tialization helps for both rare and frequent words,
scalability would be an argument for only using it
for rare words.

Binary vs. PPMI. PPMI weighting is almost al-
ways better than BINARY, with three exceptions
(I8, L7, L8) where the difference between the two
is small and not significant. The probable explana-
tion is that the PPMI weights in [0, 1] convey de-
tailed, graded information about the strength of as-
sociation between two words, taking into account
their base frequencies. In contrast, the BINARY
weights in {0, 1} only indicate if there was any in-

stance of cooccurrence at all – without considering
frequency of cooccurrence and without normaliz-
ing for base frequencies.

Mixed vs. Separate. Mixed initialization is less
variable and more predictable than separate initial-
ization: performance for mixed initialization al-
ways goes up as θ increases, e.g., 56.54→ 59.08
→ 63.20→ 68.33 (column A, lines 1–4). In con-
trast, separate initialization performance often de-
creases, e.g., from 47.06 to 45.31 (column B, lines
1–2) when θ is increased. Since more informa-
tion (more occurrences of the words that simi-
larity judgments are computed for) should gener-
ally not have a negative effect on performance, the
only explanation is that separate is more variable
than mixed and that this variability sometimes re-
sults in decreased performance. Figure 1 explains
this difference between the two initializations: in
mixed initialization (right panel), rare words are
tied to frequent words, so their representations are
smoothed by representations learned for frequent
words. In separate initialization (left panel), no
such links to frequent words exist, resulting in
higher variability.

Because of its lower variability, our experiments
suggest that mixed initialiation is a better choice
than separate initialization.

One-hot vs. Distributional initialization. Our
experiments show that distributional representa-
tion is helpful for rare words. It is difficult for
one-hot initialization to learn good embeddings
for such words, based on only a small number of
contexts in the corpus. In such cases, distribu-
tional initialization makes the learning task easier
since in addition to the contexts of the rare word,
the learner now also has access to the global dis-
tribution of the rare word and can take advantage
of weight sharing with other words that have sim-
ilar distributional representations to smooth em-
beddings systematically.

Thus, distributional initialization is a form of
smoothing: the embedding of a rare word is tied to
the embeddings of other words via the links shown
in Figure 1: the 1s in the lower “rare words” part
of the illustrations for separate and mixed initial-
ization. As is true for smoothing in general, pa-
rameter estimates for frequent events benefit less
from smoothing or can even deteriorate. In con-
trast, smoothing is essential for rare events. Where
the boundary lies between rare and frequent events
depends on the specifics of the problem and the

283



smoothing method used and is usually an empiri-
cal question. Our results indicate that that bound-
ary lies somewhere between 20 and 50 in our set-
ting.8

Variance of results. Table 1 shows averages of
five runs. The variance of results was quite high
for low-performing models. For higher perform-
ing models – those with values ≥ 40 – the ra-
tio of standard deviation divided by mean ranged
from .005 to .29. The median was .044. While
the variance from run to run is quite high for low-
performing models and for a few high-performing
models, the significance test takes this into ac-
count, so that the relatively high variability does
not undermine our results.

In summary, we have shown that distributional
initialization improves the quality of word embed-
dings for rare words. Our recommendation is to
use mixed initialization with PPMI weighting and
the value θ = 20 of the frequency threshold.

5 Related work

An alternative to using distributional information
for initialization is to use syntactic and semantic
information for initialization. Approaches along
these lines include Botha and Blunsom (2014)
who represent a word as a sum of embedding vec-
tors of its morphemes. Cui et al. (2014) use a
weighted average of vectors of morphologically
similar words. Bian et al. (2014) extend a word’s
vector with vectors of entity categories and POS
tags. This line of work also is partially motivated
by improving the embeddings of rare words. Dis-
tributional information on the one hand and syn-
tactic/semantic information on the other hand are
likely to be complementary, so that a combination
of our approach with this prior work is promising.

Le et al. (2010) propose three schemes to ad-
dress word embedding initialization. Reinitializa-
tion and iterative reinitialization use vectors from
prediction space to initialize the context space dur-
ing training. This approach is both more complex
and less efficient than ours. One-vector initializa-
tion initializes all word embeddings with the same

8A reviewer asks: “If a word is rare, its distributional vec-
tor should also be sparse and less informative, which does not
guarantee to be a good starting point.” This is true and it sug-
gests that it may not be possible to learn a very high-quality
representation for a rare word. But this it not our goal. Our
goal is simply to learn a better representation than the one
that is learned by standard word2vec. Our explanation for
our positive experimental results is that distributional initial-
ization implements a form of smoothing.

random vector to keep rare words close to each
other. This approach is also less efficient than ours
since the initial embedding is much denser than in
our approach.

6 Conclusion

We have introduced distributional initialization of
neural network architectures for learning better
embeddings for rare words. Experimental results
on a word similarity judgment task demonstrate
that embeddings of rare words learned with dis-
tributional initialization perform better than em-
beddings learned with traditional one-hot initial-
ization.

7 Future work

Our work is the first exploration of the utility
of distributional representations as initialization
for embedding learning algorithms like word2vec.
There are a number of research questions we
would like to investigate in the future.

First, we showed that distributional represen-
tation is beneficial for words with very low fre-
quency. It was not beneficial in our experiments
for more frequent words. A more extensive analy-
sis of the factors that are responsible for the posi-
tive effect of distributional representation is in or-
der.

Second, to simplify our experimental setup and
make the number of runs mangeable, we used the
parameter θ both for corpus processing (only θ oc-
currences of a particular word were left in the cor-
pus) and as the separator between rare words that
are distributionally initialized and frequent words
that are not. It remains to be investigated whether
there are interactions between these two properties
of our model, e.g., a high rare-frequent separator
may work well for words whose corpus frequency
is much smaller than the separator.

Third, while we have shown that distributional
initialization improves the quality of representa-
tions of rare words, we did not investigate whether
distributional initialization for rare words has any
adverse effect on the quality of representations of
frequent words for which one-hot initialization is
applied. Since rare and frequent words are linked
in the mixed model, this possibility cannot be dis-
missed and we plan to investigate it in future work.
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Abstract

Performing link prediction in Knowledge
Bases (KBs) with embedding-based mod-
els, like with the model TransE (Bordes et
al., 2013) which represents relationships
as translations in the embedding space,
have shown promising results in recent
years. Most of these works are focused on
modeling single relationships and hence
do not take full advantage of the graph
structure of KBs. In this paper, we pro-
pose an extension of TransE that learns to
explicitly model composition of relation-
ships via the addition of their correspond-
ing translation vectors. We show empir-
ically that this allows to improve perfor-
mance for predicting single relationships
as well as compositions of pairs of them.

1 Introduction

Performing link prediction on multi-relational data
is becoming essential in order to complete the
huge amount of missing information of the knowl-
edge bases. These knowledge can be formalized
as directed multi-relation graphs, whose node cor-
respond to entities connected with edges encod-
ing various kind of relationships. We denote these
connections via triples (head, label, tail). Link
prediction consists in filling in incomplete triples
like (head, label, ?) or (?, label, tail).

In this context, embedding models (Wang et
al., 2014; Lin et al., 2015; Jenatton et al., 2012;
Socher et al., 2013) that attempt to learn low-
dimensional vector or matrix representations of
entities and relationships have shown promising
performance in recent years. In particular, the ba-
sic model TRANSE (Bordes et al., 2013) has been
proved to be very powerful. This model treats each
relationship as a translation vector operating on
the embedding representing the entities. Hence,

for a triple (head, label, tail), the vector embed-
dings of head and tail are learned so that they are
connected through a translation parameterized by
the vector associated with label. Many extensions
have been proposed to improve the representation
power of TRANSE while still keeping its simplic-
ity, by adding some projections steps before the
translation (Wang et al., 2014; Lin et al., 2015).

In this paper, we propose an extension of
TRANSE 1 that focuses on improving its represen-
tation of the underlying graph of multi-relational
data by trying to learn compositions of relation-
ships as sequences of translations in the embed-
ding space. The idea is to train the embeddings
by learning simple reasonings, such as the rela-
tionship people/nationality should give a similar
result as the composition people/city of birth and
city/country. In our approach, called RTRANSE,
the training set is augmented with relevant ex-
amples of such compositions by performing con-
strained walks in the knowledge graph, and train-
ing so that sequences of translations lead to the
desired result. The idea of compositionality to
model multi-relational data was previously intro-
duced in (Neelakantan et al., 2015). That work
composes relationships by means of recurrent neu-
ral networks (RNN) (one per relationship) with
non-linearities. However, we show that there is
a natural way to compose relationships by simply
adding translation vectors and not requiring ad-
ditional parameters, which makes it specially ap-
pealing because of its scalability.

We present experimental results that show the
superiority of RTRANSE over TRANSE in terms
of link prediction. A detailed evaluation, in which
test examples are classified as easy or hard de-
pending on their similarity with training data,
highlights the improvement of RTRANSE on both
categories. Our experiments include a new eval-
uation protocol, in which the model is directly

1Code available in https://github.com/glorotxa/SME
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asked to answer questions related to compositions
of relations, such as (head, label1, label2, ?).
RTRANSE also achieves significantly better per-
formances than TRANSE on this new dataset.

We describe RTRANSE in the next section, and
present our experiments in Section 3.

2 Model

The model we propose is inspired by TRANSE
(Bordes et al., 2013). In TRANSE, entities and
relationships of a KB are mapped to low dimen-
sional vectors, called embeddings. These embed-
dings are learnt so that for each fact (h, `, t) in the
KB, we have h+ ` ≈ t in the embedding space.

Using translations for relationships naturally
leads to embed the composition of two relation-
ships as the sum of their embeddings: on a path
(h, `, t), (t, `′, t′), we should have h+`+`′ ≈ t′ in
the embedding space. The original TRANSE does
not enforce that the embeddings accurately repro-
duce such compositions. The recurrent TRANSE
we propose here has a modified training stage to
include such compositions. This should allow to
model simple reasonings in the KB, such as peo-
ple/nationality is similar to the composition of
people/city of birth and city/country.

2.1 Recurrent TransE

We describe in this section our model in its full
generality, which allows to deal with composi-
tions of an arbitrary number of relationships, even
though in this first work we experimented only
with compositions of two relationships.

Triples that are the result of a compositions are
denoted by (h, {`i}pi=1, t), where p is the number
of relationships that are composed to go from h
to t. Such a path means that there exist entities
e1, ..., ep+1, with e1 = h and ep+1 = t such that
for all k, (ek, `k, ek+1) is a fact in the KB. Our
model, RTRANSE for recurrent TRANSE, repre-
sents each step sk(h, {`i}pi=1, t) along the path in
the KB with the recurrence relationship (boldface
characters denote embedding vectors i.e. h is the
embedding vector of the entity h):

s1(h, {`i}pi=1, t) = h

sk+1(h, {`i}pi=1, t) = sk(h, {`i}pi=1, t) + `k .

Then, the energy of a triple is computed as

d(h, {`i}pi=1, t) = ||sp(h, {`i}pi=1, t)− t||2 .

2.2 Path construction and filtering
The experience of the paper is motivated by learn-
ing simple reasonings in the KB through the com-
positions of relationships. Therefore, we restricted
our analysis to paths of length 2 created as follows.

First, for each fact (h, `, t), retrieve all paths
(h, {`1, `2}, t) such that there is e such that both
(h, `1, e) and (e, `2, t) are in the KB. Then, we
filter out paths where (h, `1, e) = (h, `, t) or
(e, `2, t) = (h, `, t), as well as the paths with
`1 = `2 and h = e = t.

We focused on “unambiguous” paths, so that
the reasoning might actually make sense. In par-
ticular, we considered only paths where `1 is either
a 1-to-1 or a 1-to-many relationship, and where
`2 is either a 1-to-1 or a many-to-1 relationship.
In our experiments, the paths created for training
only consider the training subset of facts.

In the remainder of the paper, such paths of
length 2 are called quadruples.

2.3 Training and regularization
Our training objective is decomposed in two parts:
the first one is the ranking criterion on triples of
TRANSE, ignoring quadruples. Paths are then
taken into account through additional regulariza-
tion terms.

Denoting by S the set of facts in the KB, the
first part of the training objective is the following
ranking criterion that operates on triples∑

(h,`,t)∈S
(h′,`,t′)∈S(h,`,t)

[
γ + d(h, `, t)− d(h′, `, t′)]

+
,

where [x]+ = max(x, 0) is the positive part of
x, γ is a margin hyperparameter and S(h,`,t) is the
set of corrupted triples created from (h, `, t) by re-
placing either h or t with another KB entity.

This ranking loss effectively trains so that the
embedding of the tail is the nearest neighbor of the
translated head, but it does not guarantee that the
distance between the tail and the translated head is
small. The nearest neighbor criterion is sufficient
to make inference over simple triples, but making
sure that the distance is small is necessary for the
composition rule to be accurate. In order to ac-
count for the compositionality of relationships, we
add two additional regularization terms:

• λ∑(h,`,t)∈S d(h, `, t)
2

• α∑(h,{`1,`2},t)∈S N`→{`1,`2}d(h, {`1, `2}, t)2 .
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DATA SET FAMILY FB15K
ENTITIES 721 14,951
RELATIONSHIPS 7 1,345
TRAINING TRIPLES 8,461 483,142
TRAINING QUAD. – 30,252
VALIDATION TRIPLES 2,820 50,000
TEST TRIPLES 2,821 59,071
TEST QUAD. – 1,852

Table 1: Statistics of the datasets.

MODEL
TRANSE RTRANSE

MR H@10 MR H@10
EASY 17.7 76.8 12.5 82.2
HARD 191.0 48.9 205.7 51.0
EASY W. COMP. 16.4 78.8 11.6 83.0
EASY W/O COMP. 21.6 71.3 16.0 75.3
HARD W. COMP. 208.1 46.8 212.2 49.3
HARD W/O COMP. 122.9 57.0 123.8 57.5
OVERALL 50.7 71.5 49.5 76.2

Table 2: Detailed performances on FB15k of
TRANSE and RTRANSE. H@10 are in %. W.
COMP. indicates examples for which there exist
quadruplets in train matching their relationship.

The first criterion only applies to original facts
of the KB, while the second term applies to
quadruples. N`→{`1,`2}, which involves both the
relationships of the quadruple and the relation-
ship ` from which it was created, is the num-
ber of paths involving relationships {`1, `2} cre-
ated from a fact involving `, normalized by the
total number of quadruples created from facts
involving `. This criterion puts more weight
on paths that are reliable as an alternative for
a relationship, for instance {people/city of birth,
city/country} is likely a better alternative to peo-
ple/nationality than {people/writer of the film,
film/film release region}. Finally, a regularization
term µ||e||22 is added for each entity embedding e.

3 Experiments

This section presents experiments on the bench-
mark FB15K introduced in (Bordes et al., 2013)
and on FAMILY, a slightly extended version of the
artificial database described in (Garcı́a-Durán et
al., 2014). Table 1 gives their statistics.

3.1 Experimental Protocol
Data FB15K is a subset of Freebase, a very
large database of generic facts gathering more than
1.2 billion triples and 80 million entities. Inspired
by (Hinton, 1986), FAMILY is a database that
contains triples expressing family relationships
(cousin of, has ancestor, married to, parent of,
related to, sibling of, uncle of) among the mem-

bers of 5 families along 6 generations. This dataset
is artificial and each family is organized in a lay-
ered tree structure where each layer refers to a gen-
eration. Families are connected among them by
marriage links between two members, randomly
sampled from the same layer of different fami-
lies. Interestingly on this dataset, there are ob-
vious compositional relationships like uncle of ≈
sibling of + parent of or parent of ≈ married to
+ parent of, among others.

Setting Our main comparison is TRANSE so we
followed the same experimental setting as in (Bor-
des et al., 2013), using ranking metrics for eval-
uation. For each test triple we replaced the head
by each of the entities in turn, and then computed
the score of each of these candidates and sorted
them. Since other positive candidates (i.e. entities
forming true triples) can be ranked higher than the
target one, we filtered out all the positive candi-
dates existing in either the training, validation and
test set, except the target one, from the ranking
and then we kept the rank of the target entity. The
same procedure is repeated but removing the tail
instead of the head. The filtered mean rank (mean
rank in the rest) is the average of these ranks, and
the filtered Hits@10 (H@10 in the rest) is the pro-
portion of target entities in the top 10 predictions.

The embedding dimensions were set to 20 for
FAMILY and 100 for FB15K. Training was per-
formed by stochastic gradient descent, stopping
after for 500 epochs. On FB15K, we used the
embeddings of TRANSE to initialize RTRANSE,
and we set a learning rate of 0.001 to fine-tune
RTRANSE. On FAMILY, both algorithms were ini-
tialized randomly and used a learning rate of 0.01.
The mean rank was used as a validation criterion,
and the values of γ, λ, α and µ were chosen re-
spectively among {0.25, 0.5, 1}, {1e−4, 1e−5, 0},
{0.1, 0.05, 0.1, 0.01, 0.005} and {1e−4, 1e−5, 0}.

3.2 Results

Overall performances Experiments on FAM-
ILY show a quantitative improvement of the per-
formance of RTRANSE : where TRANSE gets a
mean rank of 6.7 and a H@5 of 68.7, RTRANSE
get a performance of 6.3 and 72.3 respectively.

Similarly, on FB15K, Table 2 (last row) shows
that training on longer paths (length 2 here) actu-
ally consistently improves the performance while
predicting heads and tails of triples only: the over-
all H@10 improves by almost 5% from 71.5 for
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3 Nearest entities to h+ l1 + l2
RTRANSE TRANSE

h: madtv U.S.A. Ireland
l1: regular TV appearance Ireland U.S.A.
l2: nationality Japan U.K.
h: stargate atlantis Hawaii Scotland
l1: regular TV appearance Scotland Hawaii
l2: nationality U.S.A. U.K.
h: malay southeast asia taiwan
l1: language/main country malaysia southeast asia
l2: continent asia philippines
h: indiana state university the hoosier state maryland
l1: institution/campuses terre haute rhode island
l2: location/state province region rhode island the constitution state
h: university of victoria victoria kelowna
l1: institution/campuses kurnaby toronto
l2: location/citytown kelowna ottawa

Table 3: Examples of predictions on quadruples of TRANSE and RTRANSE. The relation paths {l1, l2}
of the first two examples encode the single the relationship l tv program/country of origin; the third one
stands for /language/human language/region and the last two ones for /location/location/containedby.
The correct answer is in bold.

TRANSE to 76.2 for RTRANSE.

Detailed results In order to better understand
the gains of RTRANSE, we performed a detailed
evaluation on FB15K, by classifying the test
triples along two axes: easy vs hard and with
composition vs without composition. A test triple
(h, `, t) is easy if its head and tail are connected
by a triple in the training set, i.e. if either (h, `′, t)
or (t, `′, h) is seen in train for some relationship
`′. Otherwise, the triple is hard. Orthogonally,
the test triple (h, `, t) is with composition if there
is at least one path {`1, `2} for the relationship `,
regardless of the existence of that specific path be-
tween the entities h and t. If no such path exists,
(h, `, t) is without composition.

The detailed results are shown in Table 2. We
can see that comparatively to TRANSE, RTANSE
particularly improves performances in terms of
H@10 on triples with composition, improving on
easy triples by 4.2% (from 78.8% to 83,0%) and
hard triples by 2.5% (from 46.8% to 49.3%). The
main gains are still on easy triples, and in fact
the H@10 on easy triples without composition in-
creases by 4%, from 71.3% to 75.3%. The mean
rank also considerably improves on easy triples,
and stays somehow still on hard ones. All in
all, the results show that considering paths during

training very significantly improves performances,
and the results on triples with composition suggest
that RTRANSE is indeed capable of capturing the
evidence of links that exist in longer paths.

3.3 Results on quadruples
While usual evaluations for link prediction in KBs
focus on predicting a missing element of a test
triple, we propose here to extend the evaluation
to answering more complex questions, such as
(h, {`1, `2}, ?) or (?, {`1, `2}, t).
Examples Table 3 presents examples of predic-
tions of both TRANSE and our model RTRANSE
on such quadruples. The two first examples try
to predict the origin of two TV series from the na-
tionality of the actors that regularly appear in them
(regular tv appearance). In the first one, the amer-
ican actor phil lamarr is the only entity connected
to the american TV show madtv through the rela-
tionship regular tv appearance. RTRANSE is able
to correctly infer the country of origin from this
information since it forces country of origin ≈
regular tv appearance + nationality. On the other
side TRANSE is affected by the cascading error
since the ranking loss does not guarantee that the
distance between h + l1 and phil lamarr is small,
so when summing l2 it eventually ends up closer
to Ireland rather than USA. In contrast, the second
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example shows that answering that question by us-
ing that path is sometimes difficult: the members
of the cast of that TV show have different nation-
alities, so RTRANSE lists the nationalities of these
ones and the correct one is ranked third. TRANSE
is again more affected than RTRANSE by the cas-
cading error. In the third one, RTRANSE deducts
the main region where malay is spoken from the
continent of the country with the most number of
speakers of that language. In the last two exam-
ples, our model infers the location of those uni-
versities by forcing an equivalence between their
location and the location of their respective cam-
pus.

Prediction performance For a more quantita-
tive analysis, we have generated a new test dataset
of link prediction on quadruples on FB15K. This
test set was created by generating the paths from
the usual test set (the triple test set) and remov-
ing those quadruples that are used for training. We
obtain 1,852 quadruples. The overall experimen-
tal protocol is the same as before, trying to predict
the head or tail of these quadruple in turn.

On that evaluation protocol, RTRANSE has a
mean rank of 114.0 and a H@10 of 68.2%, while
TRANSE obtains a mean rank of 159.9 and a
H@10 of 65.2% (using the same models as in the
previous subsection). We can see that learning
on paths improves performances on both metrics,
with a gain of 3% in terms of H@10 and an im-
portant gain of about 46 in mean rank, which cor-
responds to a relative improvement of about 30%.

4 Conclusion

We have proposed to learn embeddings of compo-
sitions of relationships in the translation model for
link prediction in KBs. Our experimental results
show that this approach is promising.

We considered in this work a restricted set of
small paths of length two. We leave the study of
more general paths to future work.
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Abstract

In order to reduce noise in training data,
most natural language crowdsourcing an-
notation tasks gather redundant labels and
aggregate them into an integrated label,
which is provided to the classifier. How-
ever, aggregation discards potentially use-
ful information from linguistically am-
biguous instances.

For five natural language tasks, we pass
item agreement on to the task classifier
via soft labeling and low-agreement filter-
ing of the training dataset. We find a sta-
tistically significant benefit from low item
agreement training filtering in four of our
five tasks, and no systematic benefit from
soft labeling.

1 Introduction

Crowdsourcing is a cheap and increasingly-
utilized source of annotation labels. In a typical
annotation task, five or ten labels are collected for
an instance, and are aggregated together into an
integrated label. The high number of labels is
used to compensate for worker bias, task misun-
derstanding, lack of interest, incompetance, and
malicious intent (Wauthier and Jordan, 2011).

Majority voting for label aggregation has been
found effective in filtering noisy labels (Nowak
and Rüger, 2010). Labels can be aggregated un-
der weighted conditions reflecting the reliability
of the annotator (Whitehill et al., 2009; Welinder
et al., 2010). Certain classifiers are also robust
to random (unbiased) label noise (Tibshirani and
Manning, 2014; Beigman and Beigman Klebanov,
2009). However, minority label information is dis-
carded by aggregation, and when the labels were

gathered under controlled circumstances, these la-
bels may reflect linguistic intuition and contain
useful information (Plank et al., 2014b). Two al-
ternative strategies that allow the classifier to learn
from the item agreement include training instance
filtering and soft labeling. Filtering training in-
stances by item agreement removes low agree-
ment instances from the training set. Soft labeling
assigns a classifier weight to a training instance
based on the item agreement.

Consider two Affect Recognition instances and
their Krippendorff (1970)’s α item agreement :

Text: India’s Taj Mahal gets facelift
Sadness Rating (0-100): 8.0
α Agreement (-1.0 – 1.0): 0.7

Figure 1: Affect Recognition Easy Case.

Text: After Iraq trip, Clinton proposes war limits
Sadness Rating (0-100): 12.5
α Agreement (-1.0 – 1.0): -0.1

Figure 2: Affect Recognition Hard Case.

In Figure 1, annotators mostly agreed that the
headline expresses little sadness. But in Figure 2,
the low item agreement may be caused by instance
difficulty (i.e., Is a war zone sad or just bad?):
a Hard Case (Zeman, 2010). Previous work
(Beigman Klebanov and Beigman, 2014; Beigman
and Beigman Klebanov, 2009) has shown that
training strategy may affect Hard and Easy Case
test instances differently.

In this work, for five natural language tasks,
we examine the impact of passing crowdsource
item agreement on to the task classifier, by means
of training instance filtering and soft labeling.
We construct classifiers for Biased Text Detec-
tion, Stemming Classification, Recognizing Tex-
tual Entailment, Twitter POS Tagging, and Affect
Recognition, and evaluate the effect of our dif-
ferent training strategies on the accuracy of each
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task. These tasks represent a wide range of ma-
chine learning tasks typical in NLP: sentence-level
SVM regression using n-grams; word pairs with
character-based features and binary SVM classi-
fication; pairwise sentence binary SVM classi-
fication with similarity score features; CRF se-
quence word classification with a range of fea-
ture types; and sentence-level regression using a
token-weight averaging, respectively. We use pre-
existing, freely-available crowdsourced datasets
and post all our experiment code on GitHub1.

Contributions This is the first work (1) to ap-
ply item-agreement-weighted soft labeling from
crowdsourced labels to multiple real natural lan-
guage tasks; (2) to filter training instances by item
agreement from crowdsourced labels, for multiple
natural language tasks; (3) to evaluate classifier
performance on high item agreement (Easy Case)
instances and low item agreement (Hard Case) in-
stances across multiple natural language tasks.

2 Related Work

Dekel and Shamir (2009) calculated integrated
labels for an information retrieval crowdsourced
dataset, and identified low-quality workers by de-
viation from the integrated label. Removal of
these workers’ labels improved classifier perfor-
mance on data that was not similarly filtered.
While much work (Dawid and Skene, 1979;
Ipeirotis et al., 2010; Dalvi et al., 2013) has ex-
plored techniques to model worker ability, bias,
and instance difficulty while aggregating labels,
there is no evaluation comparing classifiers trained
on the new integrated labels with other options, on
their respective NLP tasks.

Training instance filtering aims to remove mis-
labeled instances from the training dataset. Scul-
ley and Cormack (2008) learned a logistic regres-
sion classifier to identify and filter noisy labels in
a spam email filtering task. They also proposed
a label correcting technique that replaces identi-
fied noisy labels with “corrected” labels, at the risk
of introducing noise into the corpus. Rebbapra-
gada et al. (2009) developed a label noise detection
technique to cluster training instances and remove
label outliers. Raykar et al. (2010) jointly learned
a classifier/regressor, annotator accuracy, and the
integrated label on datasets with multiple noisy la-
bels, outperforming Smyth et al. (1995)’s model

1github.com/EmilyKJamison/crowdsourcing

of estimating ground truth labels.
Soft labeling, or the association of one train-

ing instance with multiple, weighted, conflict-
ing labels, is a technique to model noisy training
data. Thiel (2008) found that soft labeled train-
ing data produced more accurate classifiers than
hard labeled training data, with both Radial Ba-
sis Function Networks and Fuzzy-Input Fuzzy-
Output SVMs. Shen and Lapata (2007) used soft
labeling to model their semantic frame structures
in a question answering task, to represent that the
semantic frames can bear multiple sematic roles.

Previous research has found that, for a few in-
dividual NLP tasks, training while incorporating
label noise weight may produce a better model.
Martı́nez Alonso et al. (2015) show that inform-
ing a parser of annotator disagreement via loss
function reduced error in labeled attachments by
6.4%. Plank et al. (2014a) incorporate annota-
tor disagreement in POS tags into the loss func-
tion of a POS-tag machine learner, resulting in
improved performance on downstream chunking.
Beigman Klebanov and Beigman (2014) observed
that, on a task classifying text as semantically old
or new, the inclusion of Hard Cases in training
data resulted in reduced classifier performance on
Easy Cases.

3 Overview of Experiments

We built systems for the five NLP tasks, and
trained them using aggregation, soft labeling, and
instance screening strategies. When labels were
numeric, the integrated label was the average2.
When labels were nominal, the integrated label
was majority vote. Krippendorff (1970)’s α item
agreement was used to filter ambiguous train-
ing instances. For soft labeling, percentage item
agreement was used to assign instance weights.
We followed Sheng et al. (2008)’s suggested Mul-
tiplied Examples procedure: for each unlabeled in-
stance xi and each existing label yi ∈ Li = {yij}
(as annotated by worker j), we create one replica
of xi, assign it yi, and weight the instance accord-
ing to the count of yi in Li (i.e., the percentage
item agrement). For each training strategy (Soft-
Label, etc), the training instances were changed
by the strategy, but the test instances were unaf-
fected. For the division of test instances into Hard

2We followed Yano et al. (2010) and Strapparava and Mi-
halcea (2007) in using mean as gold standard. Although an-
other aggregation such as as median might be more represen-
tative, such discussion is beyond the scope of this paper.
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and Easy Cases, the training instances were un-
affected, but the test instances were filtered by α
item agreement. Hard/Easy Case parameters were
chosen to divide the corpus by item agreement into
roughly equal portions3, relative to the corpus, for
post-hoc error analysis.

All systems except Affect Recognition were
constructed using DKPro Text Classification
(Daxenberger et al., 2014), and used Weka’s SMO
(Platt, 1999) or SMOreg (Shevade et al., 2000) im-
plementations with default parameters, with 10-
fold (or 5-fold, for computationally-intensive POS
Tagging) cross-validation. More details are avail-
able in the Supplemental Notes document.

Agreement Parameters Training strategies
HighAgree and VeryHigh utilize agreement cutoff
parameters that vary per corpus. These strategies
are a discretized approximation of the gradual
effect of filtering low agreement instances from
the training data. For any given corpus, we could
not use a cutoff value equal to no filtering, or
that eliminated a class. If there were only 2
remaining cutoffs, we used these. If there were
more candidate cutoff values, we trained and
evaluated a classifier on a development set and
chose the value for HighAgree that maximized
Hard Case performance on the development set.

Percentage Agreement In this paper, we follow
Beigman Klebanov and Beigman (2014) in us-
ing the nominal agreement categories Hard Cases
and Easy Cases to separate instances by item
agreement. However, unlike Beigman Klebanov
and Beigman (2014) who use simple percentage
agreement, we calculate item-specific agreement
via Krippendorff (1970)’s α item agreement4, with
Nominal, Ordinal, or Ratio distance metrics as ap-
propriate. The agreement is expressed in the range
(-1.0 – 1.0); 1.0 is perfect agreement.

3.1 Biased Language Detection
This task detects the use of bias in political text.
The corpus (Yano et al., 2010)5 consists of 1,041
sentences from American political blogs. For each
sentence, five crowdsource annotators chose a la-
bel no bias, some bias, and very biased. We follow
Yano et al. (2010) in representing the amount of
bias on a numerical scale (1-3). Hard/Easy Case

3Limited by the discrete nature of our agreement.
4From the DKPro Statistics library (Meyer et al., 2014)
5Available at sites.google.com/site/

amtworkshop2010/data-1

cutoffs were <-.21 and >.20. Of 1041 total in-
stances, 161 were Hard Cases (<-.21) and 499
were Easy Cases (>.20).

We built an SVM regression task using uni-
grams, to predict the numerical amount of bias.
The gold standard was the integrated labels. Item-
specific agreement was calculated with Ordinal
Distance Function (Krippendorff, 1980).

We used the following training strategies:
VeryHigh Filtered for agreement >0.4.
HighAgree Filtered for agreement >-0.2.
SoftLabel One training instance is generated for
each label from a text, and weighted by how many
times that label occurred with the text.
SLLimited SoftLabel, except that training in-
stances with a label distance >1.0 from the origi-
nal text label average are discarded.

3.2 Morphological Stemming

The goal of this binary classification task is to pre-
dict, given an original word and a stemmed ver-
sion of the word, whether the stemmed version
has been correctly stemmed. The word pair was
correct if: the stemmed word contained one less
affix; or if the original word was a compound,
the stemmed word had a space inserted between
the components; or if the original word was mis-
spelled, the stemmed word was deleted; or if the
original word had no affixes and was not a com-
pound and was not misspelled, then the stemmed
word had no changes.

This dataset was compiled by Carpenter et al.
(2009)6. The dataset contains 6679 word pairs;
most pairs have 5 labels each. In the cross-
validation division, no pairs with the same original
word could be split across training and test data.
The gold standard was the integrated label, with
4898 positive and 1781 negative pairs. Hard/Easy
Case cutoffs were <-.5 and >.5. Of 6679 total
instances, 822 were Hard Cases (<-.5) and 3615
were Easy Cases (>.5). Features used are combi-
nations of the characters after the removal of the
longest common substring between the word pair,
including 0-2 additional characters from the sub-
string; word boundaries are marked.

Stemming-new training strategies include:
HighAgree Filtered for agreement >-0.1.
SLLimited MajVote with instances weighted by
the frequency of the label for the text pair.

6Available at github.com/bob-carpenter/anno
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3.3 Recognising Textual Entailment
Recognizing textual entailment is the process of
determining if, given two sentences text and hy-
pothesis, the meaning of the hypothesis can be in-
ferred from the text.

We used the dataset from the PASCAL RTE-1,
which contains 800 sentence pairs. The crowd-
source annotations of 10 labels per pair were ob-
tained by Snow et al. (2008)7. We reproduced the
basic system described in (Dagan et al., 2006) of
TF-IDF weighted Cosine Similarity between lem-
mas of the text and hypothesis. The weight of each
wordi in documentj , n total documents, is the
log-plus-one termi frequency normalized by raw
termi document frequency, with Euclidean nor-
malization.

weight(i, j) =
{

(1 + log(tfi,j)) Ndfi
if tfi,j ≥ 1

0 if tfi,j = 0

Additionally, we used features including the dif-
ference in noun chunk character and token length,
the difference in number of tokens, shared named
entities, and subtask names. The gold standard
was the original labels from Dagan et al. (2006).
Hard/Easy Case cutoffs were<0.0 and>.3. Train-
ing strategies are from Biased Language (Very-
High) and Stem (others) experiments, except the
HighAgree cutoff was 0.0 and the VeryHigh cutoff
was 0.3. Of 800 total instances, 230 were Hard
Cases (<0.0) and 207 were Easy Cases (>.30).

3.4 POS tagging
We built a POS-tagger for Twitter posts. We used
the training section of the dataset from Gimpel et
al. (2011). The POS tagset was the universal tag
set (Petrov et al., 2012); we converted Gimpel et
al. (2011)’s tags to the universal tagset using Hovy
et al. (2014)’s mapping. Crowdsource labels for
this data came from Hovy et al. (2014)8, who ob-
tained 5 labels for each tweet. After aligning and
cleaning, our dataset consisted of 953 tweets of
14,439 tokens.

We followed Hovy et al. (2014) in constructing
a CRF classifier (Lafferty et al., 2001), using a list
of English affixes, Hovy et al. (2014)’s set of or-
thographic features, and word clusters (Owoputi
et al., 2013). In the cross-validation division, in-
dividual tweets were assigned to folds. The gold
standard was the integrated label. Hard/Easy Case

7Available at sites.google.com/site/
nlpannotations/

8Available at lowlands.ku.dk/results/

cutoffs were <0.0 and >.49. Of 14,439 tokens,
649 were Hard Cases (<0.0) and 10830 were Easy
Cases (>.49).

We used the following strategies:
VeryHigh For each token t in sequence s where
agreement(t)<0.5, s is broken into two separate
sequences s1 and s2 and t is deleted (i.e. filtered).
HighAgree VeryHigh with agreement <0.2.
SoftLabel For each proto-sequence s, we generate
5 sequences {s0, s1, ..., si}, in which each token t
is assigned a crowdsource label drawn at random:
lt,si ∈ Lt.
SLLimited, Each token t in sequence s is assigned
its MajVote label. Then s is given a weight repre-
senting the average item agreement for all t ∈ s.
3.5 Affect Recognition

Our Affect Recognition experiments are based on
the affective text annotation task in Strapparava
and Mihalcea (2007), using the Sadness dataset.
Each headline is rated for “sadness” using a scale
of 0-100. Examples are in Figures 1 and 2.
We use the crowdsourced annotation for a 100-
headline sample of this dataset provided by Snow
et al. (2008)9, with 10 annotations per emotion per
headline. Of 100 total instances, 20 were Hard
Cases (<0.0) and 49 were Easy Cases (>.30).

Our system design is identical to Snow et al.
(2008), which is similar to the SWAT system (Katz
et al., 2007), a top-performing system on the Se-
mEval Affective Text task. Hard/Easy Case cut-
offs were <0.0 and >.3.
Training strategies are the same as for the Biased
Language experiments, except:
VeryHigh Filtered for agreement >0.3.
HighAgree Filtered for agreement >0.
SLLimited SoftLabel, except that instances with
a label distance >20.0 from the original label av-
erage are discarded.

4 Results

Our results on all five tasks, using each of the
training strategies and variously evaluating on all,
Easy, or Hard Cases, can be seen in Table 1.
Systems outputing numeric values show results in
Pearson correlation, and systems outputing nomi-
nal labels show micro F1. Soft labeling (SoftLa-
bel) failed to outperform integrated labels for 4
of the 5 complete test sets. Likewise, SLLimited

9Available at sites.google.com/site/
nlpannotations/
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Biased Lang Stemming RTE POS Affective Text
Training All Hard Easy All Hard Easy All Hard Easy All Hard Easy All Hard Easy

Integrated .236 .144 .221 .797 .568 .927 .513 .330 .831 .790 .370 .878 .446 .115 .476
VeryHigh .140 .010 .158 – – – .499 .304 .836 .771 .310 .869 .326 .059 .376

HighAgree .231 .210 .222 .796 .569 .924 .543 .361 .831 .810 .382 .901 .453 .265 .505
SoftLabel .223 .131 .210 .766 .539 .957 .499 .304 .836 .789 .353 .880 .450 .112 .477

SLLimited .235 .158 .208 .799 .569 .930 .493 .291 .831 .797 .376 .882 .450 .139 .472

Table 1: Results (Pearson or micro F1) with different training strategies and all, Hard, and Easy Cases.
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Figure 3: Biased Language.
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Figure 5: POS Tags.
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Figure 6: Affective Text.

did not significantly outperform Integrated. How-
ever, HighAgree does outperform Integrated on 4
or the 5 tasks, especially for Hard Cases: Hard
Case improvements for Biased Language and POS
Tagging, and Affective Text, and overall improve-
ments for RTE, POS Tagging, and Affective Text
were significant (Paired TTest, p < 0.05, for nu-
merical output, or McNemar’s Test10 (McNemar,
1947), p < 0.05, for nominal classes). The fifth
task, Stemming, had the lowest number of item
agreement categories of the five tasks, preventing
fine-grained agreement training filtering, which
explains why filtering shows no benefit.

All training strategies used the same amount of
annotated data as input, and for filtering strategies
such as HighAgree, a reduced number of strategy-
output instances are used to train the model. As a
higher cutoff is used for HighAgree, the lack of
training data results in a worse model; this can
be seen in the downward curves of Figures 3 – 6,
where the curved line is HighAgree and the match-
ing pattern straight line is Integrated. (Due to the
low number of item agreement categories, Stem-
ming results are not displayed in an item agree-
ment cutoff table.) However, Figures 4 – 6 show
the overall performance boost, and Figure 3 shows
the Hard Case performance boost, right before the
downward curves from too little training data, us-
ing HighAgree.

Comparability We found the accuracy of our
systems was similar to that reported in previous lit-
erature. Dagan et al. (2006) report performance of
the RTE system, on a different data division, with
accuracy=0.568. Hovy et al. (2014) report major-
ity vote results (from acc=0.805 to acc=0.837 on
a different data section) similar to our results of

10See Japkowicz and Shah (2011) for usage description.

0.790 micro-F1. For Affective Text, Snow et al.
(2008) report results on a different data section of
r=0.174, a merged result from systems trained on
combinations of crowdsource labels and evaluated
against expert-trained systems. The SWAT sys-
tem (Katz et al., 2007), which also used lexical
resources and additional training data, acheived
r=0.3898 on a different section of data. These re-
sults are comparable with ours, which range from
r=0.326 to r=0.453.

5 Conclusions and Future Work

In this work, for five natural langauge tasks, we
have examined the impact of informing the classi-
fier of crowdsource item agreement, by means of
soft labeling and removal of low-agreement train-
ing instances. We found a statistically significant
benefit from low-agreement training filtering in
four of our five tasks, and strongest improvements
for Hard Cases. Previous work (Beigman Kle-
banov and Beigman, 2014) found a similar effect,
but only evaluated a single task, so generalizabil-
ity was unknown. We also found that soft labeling
was not beneficial compared to aggregation. Our
findings suggest that the best crowdsource label
training strategy is to remove low item agreement
instances from the training set.

Acknowledgments

This work has been supported by the Volk-
swagen Foundation as part of the Lichtenberg-
Professorship Program under grant No. I/82806,
and by the Center for Advanced Security Research
(www.cased.de).

295



References
Eyal Beigman and Beata Beigman Klebanov. 2009.

Learning with annotation noise. In Proceedings of
the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference
on Natural Language Processing of the AFNLP,
pages 280–287, Suntec, Singapore.

Beata Beigman Klebanov and Eyal Beigman. 2014.
Difficult cases: From data to learning, and back. In
Proceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics, pages 390–
396, Baltimore, Maryland.

Bob Carpenter, Emily Jamison, and Breck Baldwin.
2009. Building a stemming corpus: Coding stan-
dards. http://lingpipe-blog.com/2009/
02/25/stemming-morphology-corpus-
coding-standards/.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The PASCAL Recognising Textual En-
tailment Challenge. In Machine learning chal-
lenges. Evaluating predictive uncertainty, visual ob-
ject classification, and recognising textual entail-
ment, pages 177–190. Springer.

Nilesh Dalvi, Anirban Dasgupta, Ravi Kumar, and Vib-
hor Rastogi. 2013. Aggregating crowdsourced bi-
nary ratings. In Proceedings of the 22nd Interna-
tional Conference on World Wide Web, pages 285–
294, Rio de Janeiro, Brazil.

Alexander Philip Dawid and Allan M. Skene. 1979.
Maximum likelihood estimation of observer error-
rates using the EM algorithm. Journal of the
Royal Statistical Society. Series C (Applied Statis-
tics), 28(1):20–28.

Johannes Daxenberger, Oliver Ferschke, Iryna
Gurevych, and Torsten Zesch. 2014. DKPro TC:
A Java-based Framework for Supervised Learning
Experiments on Textual Data. In Proceedings
of 52nd Annual Meeting of the Association for
Computational Linguistics, pages 61–66, Baltimore,
Maryland.

Ofer Dekel and Ohad Shamir. 2009. Vox populi: Col-
lecting high-quality labels from a crowd. In Pro-
ceedings of the Twenty-Second Annual Conference
on Learning Theory, Montreal, Canada. Online pro-
ceedings.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein,
Michael Heilman, Dani Yogatama, Jeffrey Flanigan,
and Noah A. Smith. 2011. Part-of-speech tag-
ging for Twitter: Annotation, features, and exper-
iments. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguis-
tics: Human Language Technologies, pages 42–47,
Portland, Oregon.

Dirk Hovy, Barbara Plank, and Anders Søgaard. 2014.
Experiments with crowdsourced re-annotation of a

pos tagging data set. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics, pages 377–382, Baltimore, Maryland.

Panagiotis G. Ipeirotis, Foster Provost, and Jing Wang.
2010. Quality management on Amazon Mechanical
Turk. In Proceedings of the ACM SIGKDD Work-
shop on Human Computation, pages 64–67, Wash-
ington DC, USA.

Nathalie Japkowicz and Mohak Shah. 2011. Evalu-
ating learning algorithms: a classification perspec-
tive. Cambridge University Press.

Phil Katz, Matt Singleton, and Richard Wicentowski.
2007. SWAT-MP:The SemEval-2007 Systems for
Task 5 and Task 14. In Proceedings of the Fourth
International Workshop on Semantic Evaluations
(SemEval-2007), pages 308–313, Prague, Czech Re-
public.

Klaus Krippendorff. 1970. Estimating the reliabil-
ity, systematic error and random error of interval
data. Educational and Psychological Measurement,
30(1):61–70.

Klaus Krippendorff. 1980. Content analysis: An in-
troduction to its methodology. Sage, Beverly Hills,
California.

John Lafferty, Andrew McCallum, and Fernando C.N.
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In Proceedings of the 18th Interna-
tional Conference on Machine Learning, pages 282–
289, Williamstown, Massachusetts.
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Abstract

We present a comprehensive study of eval-
uation methods for unsupervised embed-
ding techniques that obtain meaningful
representations of words from text. Differ-
ent evaluations result in different orderings
of embedding methods, calling into ques-
tion the common assumption that there is
one single optimal vector representation.
We present new evaluation techniques that
directly compare embeddings with respect
to specific queries. These methods re-
duce bias, provide greater insight, and
allow us to solicit data-driven relevance
judgments rapidly and accurately through
crowdsourcing.

1 Introduction

Neural word embeddings represent meaning via
geometry. A good embedding provides vector rep-
resentations of words such that the relationship be-
tween two vectors mirrors the linguistic relation-
ship between the two words. Despite the growing
interest in vector representations of semantic in-
formation, there has been relatively little work on
direct evaluations of these models. In this work,
we explore several approaches to measuring the
quality of neural word embeddings. In particu-
lar, we perform a comprehensive analysis of eval-
uation methods and introduce novel methods that
can be implemented through crowdsourcing, pro-
viding better insights into the relative strengths of
different embeddings.

Existing schemes fall into two major categories:
extrinsic and intrinsic evaluation. In extrinsic eval-
uation, we use word embeddings as input features
to a downstream task and measure changes in per-
formance metrics specific to that task. Examples
include part-of-speech tagging and named-entity
recognition (Pennington et al., 2014). Extrinsic

evaluation only provides one way to specify the
goodness of an embedding, and it is not clear how
it connects to other measures.

Intrinsic evaluations directly test for syntactic or
semantic relationships between words (Mikolov et
al., 2013a; Baroni et al., 2014). These tasks typi-
cally involve a pre-selected set of query terms and
semantically related target words, which we refer
to as a query inventory. Methods are evaluated
by compiling an aggregate score for each method
such as a correlation coefficient, which then serves
as an absolute measure of quality. Query inven-
tories have so far been collected opportunistically
from prior work in psycholinguistics, information
retrieval (Finkelstein et al., 2002), and image anal-
ysis (Bruni et al., 2014). Because these inventories
were not constructed for word embedding evalu-
ation, they are often idiosyncratic, dominated by
specific types of queries, and poorly calibrated to
corpus statistics.

To remedy these problems, this paper makes
the following contributions. First, this is the first
paper to conduct a comprehensive study cover-
ing a wide range of evaluation criteria and popu-
lar embedding techniques. In particular, we study
how outcomes from three different evaluation cri-
teria are connected: word relatedness, coherence,
downstream performance. We show that using dif-
ferent criteria results in different relative orderings
of embeddings. These results indicate that embed-
ding methods should be compared in the context
of a specific task, e.g., linguistic insight or good
downstream performance.

Second, we study the connections between di-
rect evaluation with real users and pre-collected
offline data. We propose a new approach to evalu-
ation that focuses on direct comparison of embed-
dings with respect to individual queries rather than
overall summary scores. Because we phrase all
tasks as choice problems rather than ordinal rel-
evance tasks, we can ease the burden of the an-
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notators. We show that these evaluations can be
gathered efficiently from crowdsourcing. Our re-
sults also indicate that there is in fact strong corre-
lation between the results of automated similarity
evaluation and direct human evaluation. This re-
sult justifies the use of offline data, at least for the
similarity task.

Third, we propose a model- and data-driven ap-
proach to constructing query inventories. Rather
than picking words in an ad hoc fashion, we se-
lect query words to be diverse with respect to
their frequency, parts-of-speech and abstractness.
To facilitate systematic evaluation and compar-
ison of new embedding models, we release a
new frequency-calibrated query inventory along
with all user judgments at http://www.cs.
cornell.edu/˜schnabts/eval/.

Finally, we observe that word embeddings en-
code a surprising degree of information about
word frequency. We found this was true even in
models that explicitly reserve parameters to com-
pensate for frequency effects. This finding may
explain some of the variability across embeddings
and across evaluation methods. It also casts doubt
on the common practice of using the vanilla co-
sine similarity as a similarity measure in the em-
bedding space.

It is important to note that this work is a survey
of evaluation methods not a survey of embedding
methods. The specific example embeddings pre-
sented here were chosen as representative samples
only, and may not be optimal.

2 Word embeddings

We refer to a word embedding as a mapping V →
RD : w 7→ ~w that maps a word w from a vocabu-
lary V to a real-valued vector ~w in an embedding
space of dimensionality D.

Following previous work (Collobert et al.,
2011; Mikolov et al., 2013a) we use the com-
monly employed cosine similarity, defined as
similarity(w1, w2) = ~w1·~w2

‖~w1‖‖~w2‖ , for all similar-
ity computations in the embedding space. The list
of nearest neighbors of a word w are all words
v ∈ V \ {w}, sorted in descending order by
similarity(w, v). We will denote w as the query
word in the remainder of this paper.

All experiments in this paper are carried out
on six popular unsupervised embedding meth-
ods. These embeddings form a representative
but incomplete subset; and since we are study-

ing evaluation methods and not embeddings them-
selves, no attempt has been made to optimize these
embeddings. The first two embedding models,
the CBOW model of word2vec (Mikolov et al.,
2013a) and C&W embeddings (Collobert et al.,
2011) both are motivated by a probabilistic predic-
tion approach. Given a number of context words
around a target word w, these models formulate
the embedding task as that of finding a representa-
tion that is good at predicting w from the context
representations.

The second group of models, Hellinger PCA
(Lebret and Collobert, 2014), GloVe (Pennington
et al., 2014), TSCCA (Dhillon et al., 2012) and
Sparse Random Projections (Li et al., 2006) fol-
low a reconstruction approach: word embeddings
should be able to capture as much relevant infor-
mation from the original co-occurrence matrix as
possible.

Training corpus. We tried to make the compar-
ison as fair as possible. As the C&W embeddings
were only available pretrained on a November
2007 snapshot of Wikipedia, we chose the closest
available Wikipedia dump (2008-03-01) for train-
ing the other models. We tokenized the data us-
ing the Stanford tokenizer (Manning et al., 2014).
Like Collobert et al. (2011), we lower-cased all
words and replaced digits with zeros.

Details. All models embedded words into a 50-
dimensional space (D = 50). As implemented,
each method uses a different vocabulary, so we
computed the intersection of the six vocabularies
and used the resulting set of 103,647 words for all
nearest-neighbor experiments.

3 Relatedness

We begin with intrinsic evaluation of relatedness
using both pre-collected human evaluations and a
novel online user study. Section 3.1 introduces the
list of datasets that is commonly used as a bench-
mark for embedding methods. There, embeddings
are evaluated individually and only their final
scores are compared, hence we refer to this sce-
nario as absolute intrinsic evaluation. We present
a new scenario, comparative intrinsic evaluation,
in which we ask people directly for their prefer-
ences among different embeddings. We demon-
strate that we can achieve the same results as of-
fline, absolute metrics using online, comparative
metrics.
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3.1 Absolute intrinsic evaluation

For the absolute intrinsic evaluation, we used the
same datasets and tasks as Baroni et al. (2014).
While we present results on all tasks for complete-
ness, we will mainly focus on relatedness in this
section. There are four broad categories:

• Relatedness: These datasets contain relat-
edness scores for pairs of words; the cosine
similarity of the embeddings for two words
should have high correlation (Spearman or
Pearson) with human relatedness scores.

• Analogy: This task was popularized by
Mikolov et al. (2013a). The goal is to find
a term x for a given term y so that x : y best
resembles a sample relationship a : b.

• Categorization: Here, the goal is to re-
cover a clustering of words into different cat-
egories. To do this, the corresponding word
vectors of all words in a dataset are clustered
and the purity of the returned clusters is com-
puted with respect to the labeled dataset.

• Selectional preference: The goal is to deter-
mine how typical a noun is for a verb either
as a subject or as an object (e.g., people eat,
but we rarely eat people). We follow the pro-
cedure that is outlined in Baroni et al. (2014).

Several important design questions come up
when designing reusable datasets for evaluating
relatedness. While we focus mainly on challenges
that arise in the relatedness evaluation task, many
of the questions discussed also apply to other sce-
narios.

Query inventory. How we pick the word
pairs to evaluate affects the results of the evalu-
ation. The commonly-used WordSim-353 dataset
(Finkelstein et al., 2002), for example, only tries
to have word pairs with a diverse set of similarity
scores. The more recent MEN dataset (Bruni et
al., 2014) follows a similar strategy, but restricts
queries to words that occur as annotations in an
image dataset. However, there are more important
criteria that should be considered in order to cre-
ate a diverse dataset: (i) the frequency of the words
in the English language (ii) the parts of speech of
the words and (iii) abstractness vs. concreteness
of the terms. Not only is frequency important be-
cause we want to test the quality of embeddings
on rare words, but also because it is related with

distance in the embedding space as we show later
and should be explicitly considered.

Metric aggregation. The main conceptual
shortcoming of using correlation-based metrics is
that they aggregate scores of different pairs —
even though these scores can vary greatly in the
embedding space. We can view the relatedness
task as the task of evaluating a set of rankings,
similar to ranking evaluation in Information Re-
trieval. More specifically, we have one query for
each unique query word w and rank all remaining
words v in the vocabulary accordingly. The prob-
lem now is that we usually cannot directly com-
pare scores from different rankings (Aslam and
Montague, 2001) as their scores are not guaran-
teed to have the same ranges. An even worse case
is the following scenario. Assume we use rank
correlation as our metric. As a consequence, we
need our gold ranking to define an order on all
the word pairs. However, this also means that we
somehow need to order completely unrelated word
pairs; for example, we have to decide whether
(dog, cat) is more similar than (banana, apple).

3.2 Absolute results
Table 1 presents the results on 14 different datasets
for the six embedding models. We excluded ex-
amples from datasets that contained words not in
our vocabulary. For the relatedness and selective
preference tasks, the numbers in the table indicate
the correlation coefficient of human scores and the
cosine similarity times 100. The numbers for the
categorization tasks reflect the purities of the re-
sulting clusters. For the analogy task, we report
accuracy.

CBOW outperforms other embeddings on 10 of
14 datasets. CBOW especially excels at the relat-
edness and analogy tasks, but fails to surpass other
models on the selective preferences tasks. Ran-
dom projection performs worst in 13 out of the
14 tasks, being followed by Hellinger PCA. C&W
and TSCCA are similar on average, but differ
across datasets. Moreover, although TSCCA and
GloVe perform similarly on most tasks, TSCCA
suffers disproportionally on the analogy tasks.

3.3 Comparative intrinsic evaluation
In comparative evaluation, users give direct feed-
back on the embeddings themselves, so we do not
have to define a metric that compares scored word
pairs. Rather than defining both query and target
words, we need only choose query words since the
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relatedness categorization sel. prefs analogy
rg ws wss wsr men toefl ap esslli batt. up mcrae an ansyn ansem average

CBOW 74.0 64.0 71.5 56.5 70.7 66.7 65.9 70.5 85.2 24.1 13.9 52.2 47.8 57.6 58.6
GloVe 63.7 54.8 65.8 49.6 64.6 69.4 64.1 65.9 77.8 27.0 18.4 42.2 44.2 39.7 53.4

TSCCA 57.8 54.4 64.7 43.3 56.7 58.3 57.5 70.5 64.2 31.0 14.4 15.5 19.0 11.1 44.2
C&W 48.1 49.8 60.7 40.1 57.5 66.7 60.6 61.4 80.2 28.3 16.0 10.9 12.2 9.3 43.0

H-PCA 19.8 32.9 43.6 15.1 21.3 54.2 34.1 50.0 42.0 -2.5 3.2 3.0 2.4 3.7 23.1
Rand. Proj. 17.1 19.5 24.9 16.1 11.3 51.4 21.9 38.6 29.6 -8.5 1.2 1.0 0.3 1.9 16.2

Table 1: Results on absolute intrinsic evaluation. The best result for each dataset is highlighted in bold.
The second row contains the names of the corresponding datasets.

embeddings themselves will be used to define the
comparable target words.

Query inventory. We compiled a diverse in-
ventory of 100 query words that balance fre-
quency, part of speech (POS), and concreteness.
First, we selected 10 out of 45 broad categories
from WordNet (Miller, 1995). We then chose an
equal number of categories that mostly contained
abstract concepts and categories that referred to
concrete concepts. Among those categories, we
had one for adjectives and adverbs each, and four
for nouns and verbs each. From each category,
we drew ten random words with the restriction
that there be exactly three rare words (i.e., occur-
ring fewer than 2500 times in the training corpus)
among the ten.

Details. Our experiments were performed with
users from Amazon Mechanical Turk (MTurk)
that were native speakers of English with sufficient
experience and positive feedback on the Amazon
Mechanical Turk framework.

For each of the 100 query words in the dataset,
the nearest neighbors at ranks k ∈ {1, 5, 50} for
the six embeddings were retrieved. For each query
word and k, we presented the six words along with
the query word to the users. Each Turker was re-
quested to evaluate between 25 and 50 items per
task, where an item corresponds to the query word
and the set of 6 retrieved neighbor words from
each of the 6 embeddings. The payment was be-
tween $0.01 and $0.02 per item. The users were
then asked to pick the word that is most similar ac-
cording to their perception (the instructions were
almost identical to the WordSim-353 dataset in-
structions). Duplicate words were consolidated,
and a click was counted for all embeddings that
returned that word. An option “I don’t know the
meaning of one (or several) of the words” was also

provided as an alternative. Table 2 shows an exam-
ple instance that was given to the Turkers.

Query: skillfully
(a) swiftly (b) expertly
(c) cleverly (d) pointedly

Table 2: Example instance of comparative in-
trinsic evaluation task. The presented options in
this example are nearest neighbors to the query
word according to (a) C&W, (b) CBOW, GloVe,
TSCCA (c) Rand. Proj. and (d) H-PCA.

The combination of 100 query words and 3
ranks yielded 300 items on which we solicited
judgements by a median of 7 Turkers (min=5,
max=14). We compare embeddings by average
win ratio, where the win ratio was how many times
raters chose embedding e divided by the number
of total ratings for item i.

3.4 Comparative results

Overall comparative results replicate previous re-
sults. Figure 1(a) shows normalized win ratio
scores for each embedding across 3 conditions
corresponding to the frequency of the query word
in the training corpus. The scores were normal-
ized to sum to one in each condition to emphasize
relative differences. CBOW in general performed
the best and random projection the worst (p-value
< 0.05 for all pairs except H-PCA and C&W in
comparing un-normalized score differences for the
ALL-FREQ condition with a randomized permuta-
tion test). The novel comparative evaluations cor-
respond both in rank and in relative margins to
those shown in Table 1.

Unlike previous results, we can now show
differences beyond the nearest neighbors. Fig-
ure 1(b) presents the same results, but this time

301



Rand. Proj H-PCA C&W TSCCA GloVe CBOW
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

S
co

re
freq  2500

freq > 2500

all freq

(a) Normalized scores by global word frequency.
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(b) Normalized scores by nearest neighbor rank k.
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(c) Normalized scores by part of speech.
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(d) Normalized scores by category.

Figure 1: Direct comparison task

broken up by the rank k of the neighbors that were
compared. CBOW has its strengths especially at
rank k = 1. For neighbors that appear after that,
CBOW does not necessarily produce better em-
beddings. In fact, it even does worse for k = 50
than GloVe. It is important to note, however, that
we cannot make absolute statements about how
performance behaves across different values of k
since each assessment is always relative to the
quality of all other embeddings.

We balanced our query inventory also with re-
spect to parts of speech and abstractness vs. con-
creteness. Figure 1(c) shows the relative per-
formances of all embeddings for the four POS
classes (adjectives, adverbs, nouns and verbs).
While most embeddings show relatively homoge-
neous behaviour across the four classes, GloVe
suffers disproportionally on adverbs. Moving on
to Figure 1(d), we can see a similar behavior for
TSCCA: Its performance is much lower on con-
crete words than on abstract ones. This differ-
ence may be important, as recent related work
finds that simply differentiating between general
and specific terms explains much of the observed

variation between embedding methods in hierar-
chical classification tasks (Levy et al., 2015b). We
take the two observations above as evidence that a
more fine-grained analysis is necessary in discern-
ing different embedding methods.

As a by-product, we observed that there was
no embedding method that consistently performed
best on all of the four different absolute evaluation
tasks. However, we would like to reiterate that our
goal is not to identify one best method, but rather
point out that different evaluations (e.g., changing
the rank k of the nearest neighbors in the compar-
ison task) result in different outcomes.

4 Coherence

In the relatedness task we measure whether a pair
of semantically similar words are near each other
in the embedding space. In this novel coherence
task we assess whether groups of words in a small
neighborhood in the embedding space are mutu-
ally related. Previous work has used this property
for qualitative evaluation using visualizations of
2D projections (Turian et al., 2010), but we are not
aware of any work using local neighborhoods for
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quantitative evaluation. Good embeddings should
have coherent neighborhoods for each word, so
inserting a word not belonging to this neighbor-
hood should be easy to spot. Similar to Chang et
al. (2009), we presented Turkers with four words,
three of which are close neighbors and one of
which is an “intruder.” For each of the 100 words
in our query set of Section 3.3, we retrieved the
two nearest neighbors. These words along with the
query word defined the set of (supposedly) good
options. Table 3 shows an example instance that
was given to the Turkers.

(a) finally (b) eventually
(c) immediately (d) put

Table 3: Example instance of intrusion task. The
query word is option (a), intruder is (d).

To normalize for frequency-based effects, we
computed the average frequency avg of the three
words in this set and chose the intruder word to be
the first word that had a frequency of avg ± 500
starting at rank 100 of the list of nearest neighbors.

Results. In total, we solicited judgments on 600
items (100 query words for each of the 6 em-
beddings) from a median of 7 Turkers (min=4,
max=11) per item, where each Turker evaluated
between 25 and 50 items per task. Figure 2 shows
the results of the intrusion experiment. The evalu-
ation measure is micro-averaged precision for an
embedding across 100 query words, where per-
item precision is defined as the number of raters
that discovered the intruder divided the total num-
ber of raters of item i. Random guessing would
achieve an average precision of 0.25.

All embeddings perform better than guessing,
indicating that there is at least some coherent
structure captured in all of them. However,
the best performing embeddings at this task are
TSCCA, CBOW and GloVe (the precision mean
differences were not significant under a random
permutation test), while TSCCA attains greater
precision (p < 0.05) in relation to C&W, H-PCA
and random projection embeddings. These re-
sults are in contrast to the direct comparison study,
where the performance of TSCCA was found to be
significantly worse than that of CBOW. However,
the order of the last three embeddings remains un-
changed, implying that performance on the intru-
sion task and performance on the direct compari-
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Figure 2: Intrusion task: average precision by
global word frequency.

son task are correlated. CBOW and C&W seem
to do equally well on rare and frequent words,
whereas the other models’ performance suffers on
rare words.

Discussion. Evaluation of set-based properties
of embeddings may produce different results from
item-based evaluation: rankings we got from the
intrusion task did not match the rankings we ob-
tained from the relatedness task. Pairwise similar-
ities seem to be only part of the information that is
encoded in word embeddings, so looking at more
global measures is necessary for a better under-
standing of differences between embeddings.

We choose intruder words based on similar but
lower-ranked words, so an embedding could score
well on this task by doing an unusually bad job
at returning less-closely related words. However,
the results in Figure 1(b) suggest that there is lit-
tle differences at higher ranks (rank 50) between
embeddings.

5 Extrinsic Tasks

Extrinsic evaluations measure the contribution of
a word embedding model to a specific task. There
is an implicit assumption in the use of such eval-
uations that there is a consistent, global ranking
of word embedding quality, and that higher qual-
ity embeddings will necessarily improve results on
any downstream task. We find that this assumption
does not hold: different tasks favor different em-
beddings. Although these evaluations are useful
in characterizing the relative strengths of different
models, we do not recommend that they be used as
a proxy for a general notion of embedding quality.
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dev test p-value

Baseline 94.18 93.78 0.000
Rand. Proj. 94.33 93.90 0.006

GloVe 94.28 93.93 0.015
H-PCA 94.48 93.96 0.029

C&W 94.53 94.12
CBOW 94.32 93.93 0.012

TSCCA 94.53 94.09 0.357

Table 4: F1 chunking results using different word
embeddings as features. The p-values are with re-
spect to the best performing method.

test p-value

BOW (baseline) 88.90 7.45·10−14

Rand. Proj. 62.95 7.47·10−12

GloVe 74.87 5.00·10−2

H-PCA 69.45 6.06·10−11

C&W 72.37 1.29·10−7

CBOW 75.78
TSCCA 75.02 7.28·10−4

Table 5: F1 sentiment analysis results using differ-
ent word embeddings as features. The p-values are
with respect to the best performing embedding.

Noun phrase chunking. First we use a noun
phrase chunking task similar to that used by Turian
et al. (2010). The only difference is that we nor-
malize all word vectors to unit length, rather than
scaling them with some custom factor, before giv-
ing them to the conditional random field (CRF)
model as input. We expect that this task will be
more sensitive to syntactic information than to se-
mantic information.

Sentiment classification. Second we use a re-
cently released dataset for binary sentiment clas-
sification by Maas et al. (2011). The dataset con-
tains 50K movie reviews with a balanced distribu-
tion of binary polarity labels. We evaluate the rel-
ative performance of word embeddings at this task
as follows: we generate embedding-only features
for each review by computing a linear combina-
tion of word embeddings weighted by the num-
ber of times that the word appeared in the review
(using the same bag-of-words features as Maas
et al. (2011)). A LIBLINEAR logistic regression
model (Fan et al., 2008) with the default parame-
ters is trained and evaluated using 10 fold cross-
validation. A vanilla bag of words feature set is

the baseline (denoted as BOW here). We expect
that this task will be more sensitive to semantic
information than syntactic information.

Results. Table 4 shows the average F1-scores
for the chunking task. The p-values were com-
puted using randomization (Yeh, 2000) on the sen-
tence level. First, we can observe that adding word
vectors as features results in performance lifts with
all embeddings when compared to the baseline.
The performance of C&W and TSCCA is statis-
tically not significant, and C&W does better than
all the remaining methods at the p = 0.05 level.
Surprisingly, although the performance of Ran-
dom Projections is still last, the gap to GloVe and
CBOW is now very small. Table 5 shows results
on the sentiment analysis task. We recover a sim-
ilar order of embeddings as in the absolute intrin-
sic evaluation, however, the order of TSCCA and
GloVe is now reversed.

Discussion. Performance on downstream tasks
is not consistent across tasks, and may not be con-
sistent with intrinsic evaluations. Comparing per-
formance across tasks may provide insight into
the information encoded by an embedding, but
we should not expect any specific task to act as
a proxy for abstract quality. Furthermore, if good
downstream performance is really the goal of an
embedding, we recommend that embeddings be
trained specifically to optimize a specific objective
(Lebret and Collobert, 2014).

6 Discussion

We find consistent differences between word em-
beddings, despite the fact that they are operating
on the same input data and optimizing arguably
very similar objective functions (Pennington et al.,
2014; Levy and Goldberg, 2014). Recent work
suggests that many apparent performance differ-
ences on specific tasks are due to a lack of hyper-
parameter optimization (Levy et al., 2015a). Dif-
ferent algorithms are, in fact, encoding surpris-
ingly different information that may or may not
align with our desired use cases. For example,
we find that embeddings encode differing degrees
of information about word frequency, even after
length normalization. This result is surprising for
two reasons. First, many algorithms reserve dis-
tinct “intercept” parameters to absorb frequency-
based effects. Second, we expect that the ge-
ometry of the embedding space will be primar-
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Figure 3: Embeddings can accurately predict
whether a word is frequent or rare.

ily driven by semantics: the relatively small num-
ber of frequent words should be evenly distributed
through the space, while large numbers of rare,
specific words should cluster around related, but
more frequent, words.

We trained a logistic regression model to predict
word frequency categories based on word vectors.
The linear classifier was trained to put words ei-
ther in a frequent or rare category, with thresholds
varying from 100 to 50,000. At each threshold fre-
quency, we sampled the training sets to ensure a
consistent balance of the label distribution across
all frequencies. We used length-normalized em-
beddings, as rare words might have shorter vec-
tors resulting from fewer updates during training
(Turian et al., 2010). We report the mean accuracy
and standard deviation (1σ) using five-fold cross-
validation at each threshold frequency in Figure 3.

All word embeddings do better than random,
suggesting that they contain some frequency in-
formation. GloVe and TSCCA achieve nearly
100% accuracy on thresholds up to 1000. Unlike
all other embeddings, accuracy for C&W embed-
dings increases for larger threshold values. Fur-
ther investigation revealed that the weight vector
direction changes gradually with the threshold fre-
quency — indicating that frequency seems to be
encoded in a smooth way in the embedding space.

Although GloVe and CBOW are the two best
performing embeddings on the intrinsic tasks, they
differ vastly in the amount of frequency informa-
tion they encode. As a consequence, we can con-
clude that most of the differences in frequency pre-
diction are not due to intrinsic properties of natu-
ral language: it is not the case that frequent words
naturally have only frequent neighbors.
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Figure 4: Avg. word rank by frequency in train-
ing corpus vs. nearest-neighbor rank in the C&W
embedding space.

Word frequency information in the embedding
space also affects cosine similarity. For each of the
words in the WordSim-353 dataset, we queried for
the k = 1000 nearest neighbors. We then looked
up their frequency ranks in the training corpus and
averaged those ranks over all the query words. We
found a strong correlation between the frequency
of a word and its position in the ranking of near-
est neighbors in our experiments. Figure 4 shows
a power law relationship for C&W embeddings
between a word’s nearest neighbor rank (w.r.t. a
query) and the word’s frequency rank in the train-
ing corpus (nn-rank ∼ 1000 · corpus-rank0.17).
This is a concern: the frequency of a word in the
language plays a critical role in word processing
of humans as well (Cattell, 1886). As a conse-
quence, we need to explicitly consider word fre-
quency as a factor in the experiment design. Also,
the above results mean that the commonly-used
cosine similarity in the embedding space for the
intrinsic tasks gets polluted by frequency-based
effects. We believe that further research should
address how to better measure linguistic relation-
ships between words in the embedding space, e.g.,
by learning a custom metric.

7 Related work

Mikolov et al. (2013b) demonstrate that cer-
tain linguistic regularities exist in the embedding
space. The authors show that by doing simple
vector arithmetic in the embedding space, one
can solve various syntactic and semantic analogy
tasks. This is different to previous work, which
phrased the analogy task as a classification prob-
lem (Turney, 2008). Surprisingly, word embed-
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dings seem to capture even more complex linguis-
tic properties. Chen et al. (2013) show that word
embeddings even contain information about re-
gional spellings (UK vs. US), noun gender and
sentiment polarity.

Previous work in evaluation for word embed-
dings can be divided into intrinsic and extrin-
sic evaluations. Intrinsic evaluations measure the
quality of word vectors by directly measuring
correlation between semantic relatedness and ge-
ometric relatedness, usually through inventories
of query terms. Focusing on intrinsic measures,
Baroni et al. (2014) compare word embeddings
against distributional word vectors on a variety of
query inventories and tasks. Faruqui and Dyer
(2014) provide a website that allows the automatic
evaluation of embeddings on a number of query
inventories. Gao et al. (2014) publish an improved
query inventory for the analogical reasoning task.
Finally, Tsvetkov et al. (2015) propose a new in-
trinsic measure that better correlates with extrinsic
performance. However, all these evaluations are
done on precollected inventories and mostly lim-
ited to local metrics like relatedness.

Extrinsic evaluations use embeddings as fea-
tures in models for other tasks, such as semantic
role labeling or part-of-speech tagging (Collobert
et al., 2011), and improve the performance of ex-
isting systems (Turian et al., 2010). However, they
have been less successful at other tasks such as
parsing (Andreas and Klein, 2014).

More work has been done in unsupervised se-
mantic modeling in the context of topic models.
One example is the word intrusion task (Chang et
al., 2009), in which annotators are asked to iden-
tify a random word inserted into the set of high
probability words for a given topic. Word embed-
dings do not produce interpretable dimensions, so
we cannot directly use this method, but we present
a related task based on nearest neighbors. Manual
evaluation is expensive and time-consuming, but
other work establishes that automated evaluations
can closely model human intuitions (Newman et
al., 2010).

8 Conclusions

There are many factors that affect word embed-
ding quality. Standard aggregate evaluations,
while useful, do not present a complete or con-
sistent picture. Factors such as word frequency
play a significant and previously unacknowledged

role. Word frequency also interferes with the
commonly-used cosine similarity measure. We
present a novel evaluation framework based on di-
rect comparisons between embeddings that pro-
vides more fine-grained analysis and supports sim-
ple, crowdsourced relevance judgments. We also
present a novel Coherence task that measures our
intuition that neighborhoods in the embedding
space should be semantically or syntactically re-
lated. We find that extrinsic evaluations, although
useful for highlighting specific aspects of embed-
ding performance, should not be used as a proxy
for generic quality.
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Abstract

Latent Dirichlet allocation (LDA) is a pop-
ular topic modeling technique for explor-
ing hidden topics in text corpora. Increas-
ingly, topic modeling needs to scale to
larger topic spaces and use richer forms
of prior knowledge, such as word correla-
tions or document labels. However, infer-
ence is cumbersome for LDA models with
prior knowledge. As a result, LDA mod-
els that use prior knowledge only work
in small-scale scenarios. In this work,
we propose a factor graph framework,
Sparse Constrained LDA (SC-LDA), for
efficiently incorporating prior knowledge
into LDA. We evaluate SC-LDA’s ability
to incorporate word correlation knowledge
and document label knowledge on three
benchmark datasets. Compared to several
baseline methods, SC-LDA achieves com-
parable performance but is significantly
faster.

1 Challenge: Leveraging Prior
Knowledge in Large-scale Topic
Models

Topic models, such as Latent Dirichlet Alloca-
tion (Blei et al., 2003, LDA), have been success-
fully used for discovering hidden topics in text col-
lections. LDA is an unsupervised model—it re-
quires no annotation—and discovers, without any
supervision, the thematic trends in a text collec-
tion. However, LDA’s lack of supervision can
lead to disappointing results. Often, the hidden
topics learned by LDA fail to make sense to end
users. Part of the problem is that the objective
function of topic models does not always corre-
late with human judgments of topic quality (Chang
et al., 2009). Therefore, it’s often necessary to
incorporate prior knowledge into topic models to

improve the model’s performance. Recent work
has also shown that by interactive human feedback
can improve the quality and stability of topics (Hu
and Boyd-Graber, 2012; Yang et al., 2015). In-
formation about documents (Ramage et al., 2009)
or words (Boyd-Graber et al., 2007) can improve
LDA’s topics.

In addition to its occasional inscrutability, scal-
ability can also hamper LDA’s adoption. Conven-
tional Gibbs sampling—the most widely used in-
ference for LDA—scales linearly with the num-
ber of topics. Moreover, accurate training usu-
ally takes many sampling passes over the dataset.
Therefore, for large datasets with millions or even
billions of tokens, conventional Gibbs sampling
takes too long to finish. For standard LDA, re-
cently introduced fast sampling methods (Yao et
al., 2009; Li et al., 2014; Yuan et al., 2015) en-
able industrial applications of topic modeling to
search engines and online advertising, where cap-
turing the “long tail” of infrequently used topics
requires large topic spaces. For example, while
typical LDA models in academic papers have up
to 103 topics, industrial applications with 105–106

topics are common (Wang et al., 2014). Moreover,
scaling topic models to many topics can also re-
veal the hierarchical structure of topics (Downey
et al., 2015).

Thus, there is a need for topic models that can
both benefit from rich prior information and that
can scale to large datasets. However, existing
methods for improving scalability focus on topic
models without prior information. To rectify this,
we propose a factor graph model that encodes a
potential function over the hidden topic variables,
encouraging topics consistent with prior knowl-
edge. The factor model representation admits an
efficient sampling algorithm that takes advantage
of the model’s sparsity. We show that our method
achieves comparable performance but runs signifi-
cantly faster than baseline methods, enabling mod-

308



els to discover models with many topics enriched
by prior knowledge.

2 Efficient Algorithm for Incorporating
Knowledge into LDA

In this section, we introduce the factor model for
incorporating prior knowledge and show how to
efficiently use Gibbs sampling for inference.

2.1 Background: LDA and SparseLDA

A statistical topic model represents words in doc-
uments in a collection D as mixtures of T top-
ics, which are multinomials over a vocabulary of
size V . In LDA, each document d is associated
with a multinomial distribution over topics, θd.
The probability of a word type w given topic z
is φw|z . The multinomial distributions θd and φz
are drawn from Dirichlet distributions: α and β
are the hyperparameters for θ and φ. We represent
the document collection D as a sequence of words
w, and topic assignments as z. We use symmetric
priors α and β in the model and experiment, but
asymmetric priors are easily encoded in the mod-
els (Wallach et al., 2009).

Discovering the latent topic assignments z from
observed words w requires inferring the the pos-
terior distribution P (z|w). Griffiths and Steyvers
(2004) propose using collapsed Gibbs sampling.
The probability of a topic assignment z = t in
document d given an observed word type w and
the other topic assignments z− is

P (z = t|z−, w) ∝ (nd,t + α)
nw,t + β

nt + V β
(1)

where z− are the topic assignments of all other
tokens. This conditional probability is based on
cumulative counts of topic assignments: nd,t is the
number of times topic t is used in document d,
nw,t is the number of times word type w is used in
topic t, and nt is the marginal count of the number
of tokens assigned to topic t.

Unfortunately, explicitly computing the condi-
tional probability is quite for models with many
topics. The time complexity of drawing a sample
by Equation 1 is linear to the number of topics.
Yao et al. (2009) propose a clever factorization of
Equation 1 so that the complexity is typically sub-
linear by breaking the conditional probability into

three “buckets”:∑
t

P (z = t|z−, w) =
∑
t

αβ

nt + V β︸ ︷︷ ︸
s

(2)

+
∑

t,nd,t>0

nd,tβ

nt + V β︸ ︷︷ ︸
r

+
∑

t,nw,t>0

(nd,t + α)nw,t
nt + V β︸ ︷︷ ︸
q

.

The first term s is the “smoothing only”
bucket—constant for all documents. The second
term r is the “document only” bucket that is shared
by a document’s tokens. Both s and r have simple
constant time updates. The last term q has to be
computed specifically for each token, only for the
few types with non-zero counts in a topic, due to
the sparsity of word-topic count. Since q often has
the largest mass and few non-zero terms, we start
the sampling from bucket q.

2.2 A Factor Model for Incorporating Prior
Knowledge

With SparseLDA, inferring LDA models over
large topic spaces becomes tractable. However,
existing methods for incorporating prior knowl-
edge use conventional Gibbs sampling, which hin-
ders inference. We address this limitation in this
section by adding a factor graph to encode prior
knowledge.

LDA assumes that the hidden topic assignment
of a word is independent from other hidden top-
ics, given the document’s topic distribution θ.
While this assumption facilitates computational
efficiency, it loses the rich correlation between
words. In many scenarios, users have external
knowledge regarding word correlation, document
labels, or document relations, which can reshape
topic models and improve coherence.

Prior knowledge can constrain what models dis-
cover. A correlation between two words v and w
indicates that they have a similar topic distribu-
tion, i.e., p(z|v) ≈ p(z|w).1 Therefore, the poste-
rior topic assignments v and w will be correlated.
In contrast, if v and w are uncorrelated, nothing—
other than the Dirichlet’s rich get richer effect—
prevents the topics from diverging. Similarly, if
two documents share a label, then it is reasonable

1In (Andrzejewski et al., 2009) two correlated words are
taken to indicate that p(v|z) ≈ p(w|z). However, for word
types that have very different frequencies, these two quan-
tities would never be close, and thus p(z|v) ≈ p(z|w) is a
more intuitive constraint.

2309



to assume that they are more likely than two ran-
dom documents to share topics.

We denote the set of prior knowledge as M .
Each prior knowledge m ∈ M defines a potential
function fm(z, w, d) of the hidden topic z of word
type w in document d with which m is associated.
Therefore, the complete prior knowledge M de-
fines a score on the current topic assignments z:

ψ(z,M) =
∏
z∈z

exp fm(z, w, d) (3)

If m is knowledge about word type w, then
fm(z, w, d) applies to all hidden topics of word
w. If m is knowledge about document d, then
fm(z, w, d) applies to all topics that are in docu-
ment d. The potential function assigns large values
to the topics that accord with prior knowledge but
penalizes the topic assignments that disagree with
the prior knowledge. In an extreme case, if a prior
knowledge m says word type w in document d is
Topic 3, then the potential function fm(z, w, d) is
zero for all topics but Topic 3.

Since the potential function ψ is a function of
z, and it is only a real-value score of current topic
assignments, the potential can be factored out of
the marginalized joint:

P (w, z|α, β,M) = P (w|z, β)P (z|α)ψ(z,M) (4)

=

∫
θ

∫
φ

p(w|z, φ)p(φ|β)p(z|θ)p(θ|α)ψ(z,M)dθdφ

= ψ(z,M)

∫
θ

∫
φ

p(w|z, φ)p(φ|β)p(z|θ)p(θ|α)dθdφ.

Given the joint likelihood and observed data, the
goal is evaluate the posterior P (z|w). Com-
puting P (z|w) involves evaluating a probabil-
ity distribution on a large discrete state space:
P (z|w) = P (z,w)/

∑
z P (z,w). Griffiths and

Steyvers (2004)—mirroring the original inspira-
tions for Gibbs sampling (Geman and Geman,
1990)—draw an analogy to statistical physics,
viewing standard LDA as a system that favors con-
figurations z that compromise between having few
topics per document and having few words per
topic, with the terms of this compromise being set
by the hyperparameters α and β. Our factor model
representation of prior knowledge adds a further
constraint that asks the model to also consider en-
sembles of topic assignments z that are compatible
with a standard LDA model and the given prior
knowledge.

The collapsed Gibbs Sampling for inferring

topic assignment z of word w in document d is:

P (z = t|w, z−,M) (5)

=
P (w, z−, z = t|α, β,M)

P (w, z−|α, β,M)

=
P (w, z−, z = t)

P (w, z−)
ψ(z−, z = t,M)

ψ(z−,M)

∝
{

(nd,t + α)
nw,t + β

nt +Wβ

}
ψ(z−, z = t,M)

ψ(z−,M)

∝
{

(nd,t + α)
nw,t + β

nt +Wβ

}
exp fm(z = t, w, d).

The first term is identical to standard LDA, and
admits efficient computation using SparseLDA.
However, if the second term, exp fm(z, w, d), is
dense, we still need to compute it explicitly T
times (once for each topic) because we need the
summation of P (z = t) for sampling. There-
fore, the critical part of speeding up the sampler is
finding a sparse representation of the second term.
In the following sections, we show that natural,
sparse prior knowledge representations are possi-
ble. We first present an efficient sparse representa-
tion of word correlation prior knowledge and then
one for document-label knowledge.

2.3 Word Correlation Prior Knowledge
We now illustrate how we can encode word cor-
relation knowledge as a set of sparse constraints
fm(z, w, d) in our model. In previous work (An-
drzejewski et al., 2009; Hu et al., 2011; Xie et al.,
2015), word correlation prior knowledge is repre-
sented as word must-link constraints and cannot-
link constraints. A must-link relation between two
words indicates that the two words tend to be re-
lated to the same topics, i.e. their topic probabil-
ities are correlated. In contrast, a cannot-link re-
lation between two words indicates that these two
words are not topically similar, and they should
not both be prominent within the same topic. For
example, “quarterback” and “fumble” are both re-
lated to American football, so they can share a
must-link relation. But “fumble” and “bank” im-
ply two different topics, so they share a cannot-
link.

Let us say word w is associated with a set
of prior knowledge correlations Mw. Each prior
knowledge m ∈ Mw is a word pair (w,w′), and
it has “topic preference” of w given its correla-
tion word w′. The must-link set of w is Mm

w ,
and the cannot-link set of w is M c

w, i.e., Mw =
M c
w

⋃
Mm
w . In the example above, Mm

fumble =
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{quarterback}, and M c
fumble = {bank}, so

Mfumble = {quarterback, bank}. The topic as-
signment of word “fumble” has higher conditional
probability for the same topics as “quarterback”
but lower probability for topics containing “bank”.

The potential score of sampling topic t for word
type w—if Mw is not empty—is

fm(z, w, d) =
∑
u∈Mm

w

log max(λ, nu,z)+

∑
v∈Mc

w

log
1

max(λ, nv,z)
.

(6)

where λ is a hyperparameter, which we call the
correlation strength. The intuitive explanation of
Equation 6 is that the prior knowledge about the
word type w will make an impact on the condi-
tional probability of sampling the hidden topic z.
Unlike standard LDA where every word’s hidden
topic is independent of other words given θ, Equa-
tion 6 instead increases the probability that a word
w will be drawn from the same topics as those of
w’s must-link word set, and decreases its probabil-
ity of being drawn from the same topics as those
of w’s cannot-link word set.

The hyperparameter λ controls the strength of
each piece of prior knowledge. The smaller λ is,
the stronger this correlation is. For large λ, the
constraint is inactive for topics except those with
the large counts. As λ decreases, the constraint
becomes active for topics with lesser counts. We
can adjust the value of λ for each piece of prior
knowledge based on our confidence. In our exper-
iments, for simplicity, we use the same value λ for
all knowledge and set λ = 1.

From Equation 6 and Equation 5, the condi-
tional probability of a topic z in document d given
an observed word type w is:

P (z = t|w, z−,M)

∝
{

αβ

nt + V β
+

nd,tβ

nt + V β
+

(nd,t + α)nw,t
nt + V β

}
{ ∏
u∈Mm

w

max(λ, nu,t)
∏
v∈Mc

w

1
max(λ, nv,t)

}
(7)

As explained above, λ controls the “strength” of
the prior knowledge term. If λ is large, the prior
knowledge has little impact on the conditional
probability of topic assignments.

Let’s return to the question whether Equation 6
is sparse, allowing efficient computation of Equa-
tion 7. Fortunately, nu,t and nv,t, which are the

Figure 1: Histogram of nonzero topic counts for
word types in NYT-News dataset after inference.
81.9% word types have fewer than 50 topics with
nonzero counts. This sparsity allows our sparse
constraints to speed inference.

topic counts for must-link word u and cannot-
link word v, are often sparse. For example, in
a 100-topic model trained on the NIPS dataset,
87.2% of word types have fewer than ten top-
ics with nonzero counts. In a 500-topic model
trained on a larger dataset like the New York Times
News (Sandhaus, 2008), 81.9% of word types
have fewer than 50 topics with nonzero counts.
Moreover, the model becomes increasingly sparse
with additional Gibbs iterations. Figure 1 shows
the word frequency histogram of nonzero topic
counts of NYT-News dataset.

Therefore, the computational cost of Equation 7
can be reduced. SparseLDA efficiently computes
the s, r, q bins as in Equation 3. Then for words
that are associated with prior knowledge, we up-
date s, r, q with an additional potential term. We
only need to compute the potential term for the
topics whose counts are greater than λ. The col-
lapsed Gibbs sampling procedure is summarized
in Algorithm 1.

Algorithm 1 Gibbs Sampling for word type w in
document d, given w’s correlation set Mw

1: compute st, rt, qt with SparseLDA, (see Eq.
3)

2: for t← 0 to T do
3: update st, rt, qt. ∀u ∈Mw if nu,t > λ
4: end for
5: p(t) = st + rt + qt
6: sample new topic assignment for w from p(t)
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2.4 Other Types of Prior Knowledge
The factor model framework can also handle other
types of prior knowledge, such as document la-
bels, sentence labels, and document link relations.
We briefly describe document labels here.

Ramage et al. (2009) propose Labeled-LDA,
which improves LDA with document labels. It as-
sumes that there is a one-to-one mapping between
topics and labels, and it restricts each document’s
topics to be sampled only from those allowed by
the documents label set. Therefore, Labeled-LDA
can be expressed in our model. We define

fm(z, w, d) =

{
1, if z ∈ md

−∞, else
(8)

where md specifies document d’s label set con-
verted to corresponding topic labels. Since
fm(z, w, d) is sparse, we can speed up the train-
ing as well. Sentence-level prior knowledge (e.g.,
for sentiment or aspect models (Paul and Girju,
2010)) can be defined in a similar way.

Documents can be associated with other useful
metadata. For example, a scientific paper and the
prior work it cites might have similar topics (Di-
etz et al., 2007) or friends in a social network
might talk about the same topics (Chang and Blei,
2009). To model link relations, we can use Equa-
tion 6 and replace the word-topic counts nv,z with
document-topic counts nd,z . By doing so, we en-
courage related documents to have similar topic
structures. Moreover, the document-topic count is
also sparse, which fits into the efficient learning
framework.

Therefore, for different types of prior knowl-
edge, as long as we can define ψ(z,M) appropri-
ately so that f(z, w, d) are sparse, we are able to
speed up learning.

3 Experiments

In this section, we demonstrate the effectiveness of
our SC-LDA by comparing it with several baseline
methods on three benchmark datasets. We first
evaluate the convergence rate of each method and
then evaluate the learned model parameter φ—the
topic-word distribution—in terms of topic coher-
ence. We show that SC-LDA can achieve results
comparable to the baseline models but is signifi-
cantly faster. We set up all experiments on a 8-
Core 2.8GHz CPU, 16GB RAM machine.2

2Our implementation of SC-LDA is avail-
able at https://github.com/yya518/

DATASET DOCS TYPE TOKEN(APPROX)
NIPS 1,500 12,419 1,900,000
NYT-NEWS 3,000,000 102,660 100,000,000
20NG 18,828 21,514 1,946,000

Table 1: Characteristics of benchmark datasets.
We use NIPS and NYT for word correlation exper-
iments and 20NG for document label experiments.

3.1 Dataset

We use the NIPS and NYT-News datasets from
the UCI bag of words data collections.3 These
two datasets have no document labels, and we use
them for word correlation experiments. We also
use the 20Newsgroup (20NG) dataset,4 which has
document labels, for document label experiments.
Table 1 shows the characteristics of each dataset.
Since NIPS and NYT-News have already been pre-
processed, to ensure repeatability, we use the data
“as they are” from the sources. For 20NG, we
perform tokenization and stopword removal using
Mallet (McCallum, 2002) and remove words that
appear fewer than 10 times.

3.2 Prior Knowledge Generation

Word Correlation Prior Knowledge Previous
work proposes two methods to automatically gen-
erate prior word correlation knowledge from ex-
ternal sources. Hu and Boyd-Graber (2012) use
WordNet 3.0 to obtain synsets for word types, and
then if a synset is also in the vocabulary, they
add a must-link correlation between the word type
and the synset. Xie et al. (2015) use a different
method that takes advantage of an existing pre-
trained word embedding. Each word embedding is
a real-valued vector capturing the word’s semantic
meaning based on distributional similarity. If the
similarity between the embeddings of two word
types in the vocabulary exceeds a threshold, they
generate a must-link between the two words.

In our experiments, we adopt a hybrid method
that combines the above two methods. For a noun
word type, we first obtain its synsets from Word-
Net 3.0. We also obtain the embeddings of each
word from word2vec (Mikolov et al., 2013). If the
synset is also in the vocabulary, and the similar-
ity between the synset and the word is higher than
a threshold, which in our experiment is 0.2, we
generate a must-link between thee words. Empir-

sparse-constrained-lda.
3https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
4http://qwone.com/ jason/20Newsgroups/
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ically, this hybrid method is able to obtain high
quality correlated words. For example, for the
NIPS dataset, the must-links we obtain for ran-
domness are {noise, entropy, stochasticity}.
Document Label Prior Knowledge Since doc-
uments in the 20NG dataset are associated with
labels, we use the labels directly as prior knowl-
edge.

3.3 Baselines

The baseline methods for incorporating word cor-
relation prior knowledge in our experiments are as
follows:
DF-LDA: incorporates word must-links and
cannot-links using a Dirichlet Forest prior in LDA
(Andrzejewski et al., 2009). Here we use Hu
and Boyd-Graber (2012)’s efficient implementa-
tion FAST-RB-SDW for DF-LDA.
Logic-LDA: encodes general domain knowledge
as first-order logic and incorporates it in LDA (An-
drzejewski et al., 2011). Logic-LDA has been
used for word correlations and document label
knowledge.
MRF-LDA: encodes word correlations in LDA as
a Markov random field (Xie et al., 2015).

We also use Mallet’s SparseLDA implementa-
tion for vanilla LDA in the topic coherence exper-
iment. We use a symmetric Dirichlet prior for all
models. We set α = 1.0, β = 0.01. For DF-LDA,
η = 100. For Logic-LDA, we use the default pa-
rameter setting in the package: a sample rate of
1.0 and step rate of 10.0. For MRF-LDA, we use
the default setting with γ = 1.0. (Parameter se-
mantics can be found in the original papers.)

3.4 Convergence

The main advantage of our method over other ex-
isting methods is efficiency. In this experiment,
we show the change of our model’s log likelihood
over time. In topic models, the log likelihood
change is a good indicator of whether a model has
converged or not. Figure 2 shows the log like-
lihood change over time for SC-LDA and three
baseline methods on NIPS and NYT-News dataset.
SC-LDA converges faster than all the other meth-
ods.

We also conduct experiments on SC-LDA with
varying numbers of word correlations. Table 2
shows the Gibbs sampling iteration time on the
1st, 50th, 100th and the 200th iteration. We also
incorporate different numbers of word correlations

Figure 2: Models’ log likelihood convergence on
NIPS dataset (above) and NYT-News dataset (be-
low). For NIPS, a 100-topic model with 100
must-links is trained. For NYT-News, a 500-
topic model with 100 must-links is trained. SC-
LDA reaches likelihood convergence much more
rapidly than the other methods.

# Word Correlations
round C0 C100 C500 C1000
1st iteration 2.02 2.14 2.30 2.50
50th iteration 0.53 0.56 0.58 0.62
100th iteration 0.48 0.50 0.53 0.56
200th iteration 0.48 0.49 0.52 0.56

Table 2: SC-LDA runtime (in seconds) in the
1st, 50th, 100th, and 200th iteration with different
numbers of correlations.

in SC-LDA. SC-LDA runs faster as sampling pro-
ceeds as the sparsity increases, but additional cor-
relations slow the model.

3.5 Topic Coherence

Topic models are often evaluated using perplex-
ity on held-out test data, but this evaluation is of-
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ten at odds with human evaluations (Chang et al.,
2009). Following Mimno et al. (2011), we em-
ploy Topic Coherence—a metric that is consis-
tent with human judgment—to measure a topic
model’s quality. Topic t’s coherence is defined

as C(t : V (t)) =
∑M

m=2

∑m−1
l=1 log F (v

(t)
m ,v

(t)
l )+ε

F (v
(t)
l )

,

where F (v) is the document frequency of word
type v, F (v, v′) is the co-document frequency of
word type v and v′, and V (t) = (v(t)

1 , ..., v
(t)
M ) is

a list of the M most probable words in topic t.
In our experiments, we choose the ten words with
highest probability in the topic to compute topic
coherence, i.e., M = 10. Mimno et al. (2011) use
ε = 1, but Röder et al. (2015) show smaller ε (such
as 10−12) improves coherence stability, so we set
ε = 10−12. Larger topic coherence scores imply
more coherent topics.

We train a 500-topic model on the NIPS dataset
with different methods and compare the average
topic coherence score and the average of the top
twenty topic coherence scores. Since the topics
learned by topic model often contain “bad” top-
ics (Mimno et al., 2011) which do not make sense
to end users, evaluating the top twenty topics re-
flects the model’s performance. We let each model
train for one hour. Figure 3 shows the topic co-
herence of each method. SC-LDA has about the
same average topic coherence with LDA but has
higher coherence score (-36.6) for the top 20 top-
ics than LDA (-39.1). This is because incorporat-
ing word correlation knowledge encourages cor-
related words to have high probability under the
same topic, thus improving the coherence score.
For the other methods, however, because they can-
not converge within an hour, their topic coherence
scores are much worse than SC-LDA and LDA.
This again demonstrates the efficiency of SC-LDA
over other baselines.

3.6 Document Label Prior Knowledge
SC-LDA can also handle other types of prior
knowledge. We compare it with Labeled-LDA
(Ramage et al., 2009). Labeled-LDA also uses
Gibbs sampling for inference, allowing direct
computation time comparisons.

Table 3 shows the average running time per it-
eration for Labeled-LDA and SC-LDA. Because
document labels apply sparsity to the document-
topic counts, the average running time per itera-
tion decreases as the number of labeled document
increases. SC-LDA exhibits greater speedup with

Figure 3: Average topic coherence and average top
20 topic coherence. The models are trained on
NIPS dataset with 500-topic and 100 word corre-
lations. SC-LDA achieves higher topic coherence
than other methods.

# Topics
T50 T100 T200 T500

Labeled-LDA 0.93 1.89 3.60 8.05
SC-LDA 0.38 0.45 0.51 0.72

# Labeled Documents
C500 C1000 C2000 C5000

Labeled-LDA 1.95 1.88 1.75 1.48
SC-LDA 0.51 0.45 0.41 0.31

Table 3: The average running time per iteration
over 100 iterations, averaged over 5 seeds, on
20NG dataset. Experiments begin with 100 top-
ics, 1000 labeled documents, and then vary one
dimension: number of topics (top), or number of
labeled documents (bottom).

more topics; when T = 500,5 SC-LDA runs more
than ten times faster than Labeled-LDA.

4 Related Work

This works brings together two lines of research:
incorporating rich knowledge into probabilistic
models and efficient inference of probabilistic
models on large datasets. Both are common ar-
eas of interest across many machine learning for-
malisms: probabilistic logic (Bach et al., 2015),
graph algorithms (Low et al., 2012), and proba-
bilistic grammars (Cohen et al., 2008). However,
our focus in this paper is the intersection of these
lines of research with topic models.

5For 20NG dataset, it may overfit the data with 500 topics,
but here we use it to demonstrate the scalability.
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Adding knowledge and metadata to topic mod-
els makes the models richer, more understandable,
and more domain-specific. A common distinc-
tion is upstream (conditioning on metadata) vs.
downstream models (conditioning on variables al-
ready present in a topic model to predict meta-
data) (Mimno et al., 2008). Downstream models
are typically better at prediction tasks such as pre-
dicting sentiment (Blei and McAuliffe, 2007), ide-
ology (Nguyen et al., 2014a), or links in a social
network (Chang and Blei, 2009). In contrast, our
approach—an upstream model—is often easier to
implement and leads to more interpretable topics.
Upstream models at the document level have been
used to understand the labels in large document
collections (Ramage et al., 2009; Nguyen et al.,
2014b) and capture relationships in document net-
works using Markov random fields (Daumé III,
2009). At the word level, Xie et al. (2015) in-
corporate word correlation to LDA by building a
Markov Random Field regularization, similar to
Newman et al. (2011), who use regularization to
improve topic coherence. However, despite these
exciting applications, the experiments in the above
work are typically on small datasets.

In contrast, there is a huge interest in improving
the scalability of topic models to large numbers
of documents, numbers of topics, and vocabular-
ies. Attempts to scale inference for topic mod-
els have started from both variational inference
and Gibbs sampling—two popular learning infer-
ence techniques for topic modeling. Gibbs sam-
pling is a popular technique because of its sim-
plicitly and low latency. However, for large num-
bers of topics, Gibbs sampling can become un-
wieldy. Porteous et al. (2008) address this issue by
creating an upper bound approximation that pro-
duces accurate results, while SparseLDA (Yao et
al., 2009) present an effective factorization that
speeds inference without sacrificing accuracy. Just
as our model builds on SparseLDA’s insights,
SparseLDA has been incorporated into commer-
cial deployments (Wang et al., 2014) and im-
proved using alias tables (Li et al., 2014). Yuan
et al. (2015) also presents an efficient constant
time sampling algorithm for building big topic
models. Variational inference can easily be paral-
lelized (Nallapati et al., 2007; Zhai et al., 2012),
but has high latency, which has been addressed
by performing online updates (Hoffman et al.,
2010) and taking stochastic gradients estimated by

MCMC inference (Mimno et al., 2012). In this
paper, we only focus on single-processor learning,
but existing parallelization techniques (Newman et
al., 2009) are applicable to our model.

At the intersection lies models that improve the
scalability of upstream topic model inference. In
addition to our SC-LDA, Hu and Boyd-Graber
(2012) speed Gibbs sampling in tree-based topic
models using SparseLDA’s factorization strategy,
and Hu et al. (2014) extend this approach by paral-
lelizing global parameter updates using variational
inference. Our work is more general (also encom-
passing document-based constraints) and is faster.
In contrast to these upstream models, Zhu et al.
(2013) and Nguyen et al. (2015) improve inference
of downstream models.

5 Conclusion

We present a factor graph framework for incorpo-
rating prior knowledge into topic models. By ex-
pressing the prior knowledge as sparse constraints
on the hidden topic variables, we are able to take
advantage of the sparsity to speed up training. We
demonstrate in experiments that our model runs
significantly faster than the other alternative mod-
els and achieves comparable performance in terms
of topic coherence. Efficient algorithms for incor-
porating prior knowledge with large topic models
will benefit several downstream applications. For
example, interactive topic modeling becomes fea-
sible because fast model updates reduce the user’s
waiting time and thus improve the user experience.
Personalized topic modeling is also an interesting
future direction in which the model will generate
a personalized topic structure based on the user’s
preferences or interests. For all these applications,
an efficient learning algorithm is a crucial prereq-
uisite.
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Abstract

Path queries on a knowledge graph can
be used to answer compositional ques-
tions such as “What languages are spoken
by people living in Lisbon?”. However,
knowledge graphs often have missing facts
(edges) which disrupts path queries. Re-
cent models for knowledge base comple-
tion impute missing facts by embedding
knowledge graphs in vector spaces. We
show that these models can be recursively
applied to answer path queries, but that
they suffer from cascading errors. This
motivates a new “compositional” training
objective, which dramatically improves all
models’ ability to answer path queries, in
some cases more than doubling accuracy.
On a standard knowledge base comple-
tion task, we also demonstrate that com-
positional training acts as a novel form of
structural regularization, reliably improv-
ing performance across all base models
(reducing errors by up to 43%) and achiev-
ing new state-of-the-art results.

1 Introduction

Broad-coverage knowledge bases such as Free-
base (Bollacker et al., 2008) support a rich array
of reasoning and question answering applications,
but they are known to suffer from incomplete cov-
erage (Min et al., 2013). For example, as of May
2015, Freebase has an entity Tad Lincoln (Abra-
ham Lincoln’s son), but does not have his ethnic-
ity. An elegant solution to incompleteness is using
vector space representations: Controlling the di-
mensionality of the vector space forces generaliza-
tion to new facts (Nickel et al., 2011; Nickel et al.,
2012; Socher et al., 2013; Riedel et al., 2013; Nee-
lakantan et al., 2015). In the example, we would
hope to infer Tad’s ethnicity from the ethnicity of
his parents.

Figure 1: We propose performing path queries
such as tad lincoln/parents/location (“Where
are Tad Lincoln’s parents located?”) in a parallel
low-dimensional vector space. Here, entity sets
(boxed) are represented as real vectors, and edge
traversal is driven by vector-to-vector transforma-
tions (e.g., matrix multiplication).

However, what is missing from these vector
space models is the original strength of knowledge
bases: the ability to support compositional queries
(Ullman, 1985). For example, we might ask
what the ethnicity of Abraham Lincoln’s daugh-
ter would be. This can be formulated as a path
query on the knowledge graph, and we would like
a method that can answer this efficiently, while
generalizing over missing facts and even missing
or hypothetical entities (Abraham Lincoln did not
in fact have a daughter).

In this paper, we present a scheme to answer
path queries on knowledge bases by “composi-
tionalizing” a broad class of vector space mod-
els that have been used for knowledge base com-
pletion (see Figure 1). At a high level, we inter-
pret the base vector space model as implementing
a soft edge traversal operator. This operator can
then be recursively applied to predict paths. Our
interpretation suggests a new compositional train-
ing objective that encourages better modeling of
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paths. Our technique is applicable to a broad class
of composable models that includes the bilinear
model (Nickel et al., 2011) and TransE (Bordes et
al., 2013).

We have two key empirical findings: First, we
show that compositional training enables us to
answer path queries up to at least length 5 by
substantially reducing cascading errors present in
the base vector space model. Second, we find
that somewhat surprisingly, compositional train-
ing also improves upon state-of-the-art perfor-
mance for knowledge base completion, which is a
special case of answering unit length path queries.
Therefore, compositional training can also be seen
as a new form of structural regularization for ex-
isting models.

2 Task

We now give a formal definition of the task of an-
swering path queries on a knowledge base. Let
E be a set of entities and R be a set of binary
relations. A knowledge graph G is defined as a
set of triples of the form (s, r, t) where s, t ∈ E
and r ∈ R. An example of a triple in Freebase is
(tad lincoln, parents, abraham lincoln).

A path query q consists of an initial anchor en-
tity, s, followed by a sequence of relations to be
traversed, p = (r1, . . . , rk). The answer or deno-
tation of the query, JqK, is the set of all entities that
can be reached from s by traversing p. Formally,
this can be defined recursively:

JsK def= {s}, (1)

Jq/rK def= {t : ∃s ∈ JqK, (s, r, t) ∈ G} . (2)

For example, tad lincoln/parents/location is a
query q that asks: “Where did Tad Lincoln’s par-
ents live?”.

For evaluation (see Section 5 for details), we de-
fine the set of candidate answers to a query C(q)
as the set of all entities that “type match”, namely
those that participate in the final relation of q at
least once; and let N (q) be the incorrect answers:

C (s/r1/ · · · /rk) def= {t | ∃e, (e, rk, t) ∈ G} (3)

N (q) def= C (q) \JqK. (4)

Knowledge base completion. Knowledge base
completion (KBC) is the task of predicting
whether a given edge (s, r, t) belongs in the graph
or not. This can be formulated as a path query
q = s/r with candidate answer t.

3 Compositionalization

In this section, we show how to compositional-
ize existing KBC models to answer path queries.
We start with a motivating example in Section 3.1,
then present the general technique in Section 3.2.
This suggests a new compositional training objec-
tive, described in Section 3.3. Finally, we illus-
trate the technique for several more models in Sec-
tion 3.4, which we use in our experiments.

3.1 Example
A common vector space model for knowledge
base completion is the bilinear model (Nickel et
al., 2011). In this model, we learn a vector xe ∈
Rd for each entity e ∈ E and a matrix Wr ∈ Rd×d

for each relation r ∈ R. Given a query s/r (ask-
ing for the set of entities connected to s via relation
r), the bilinear model scores how likely t ∈ Js/rK
holds using

score(s/r, t) = x>s Wrxt. (5)

To motivate our compositionalization tech-
nique, take d = |E| and suppose Wr is the ad-
jacency matrix for relation r and entity vector xe
is the indicator vector with a 1 in the entry corre-
sponding to entity e. Then, to answer a path query
q = s/r1/ . . . /rk, we would then compute

score(q, t) = x>s Wr1 . . .Wrkxt. (6)

It is easy to verify that the score counts the number
of unique paths between s and t following rela-
tions r1/ . . . /rk. Hence, any t with positive score
is a correct answer (JqK = {t : score(q, t) > 0}).

Let us interpret (6) recursively. The model be-
gins with an entity vector xs, and sequentially
applies traversal operators Tri(v) = v>Wri for
each ri. Each traversal operation results in a
new “set vector” representing the entities reached
at that point in traversal (corresponding to the
nonzero entries of the set vector). Finally, it ap-
plies the membership operator M(v, xt) = v>xt
to check if t ∈ Js/r1/ . . . /rkK. Writing graph
traversal in this way immediately suggests a useful
generalization: take d much smaller than |E| and
learn the parameters Wr and xe.

3.2 General technique
The strategy used to extend the bilinear model of
(5) to the compositional model in (6) can be ap-
plied to any composable model: namely, one that
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has a scoring function of the form:

score(s/r, t) = M(Tr(xs), xt) (7)

for some choice of membership operator M : Rd×
Rd → R and traversal operator Tr : Rd → Rd.

We can now define the vector denotation of a
query JqKV analogous to the definition of JqK in
(1) and (2):

JsKV
def= xs, (8)

Jq/rKV
def= Tr (JqKV) . (9)

The score function for a compositionalized
model is then

score(q, t) = M(JqKV, JtKV). (10)

We would like JqKV to approximately represent
the set JqK in the sense that for every e ∈ JqK,
M (JqKV, JeKV) is larger than the values for e 6∈JqK. Of course it is not possible to represent all
sets perfectly, but in the next section, we present a
training objective that explicitly optimizes T and
M to preserve path information.

3.3 Compositional training
The score function in (10) naturally suggests a new
compositional training objective. Let {(qi, ti)}Ni=1

denote a set of path query training examples with
path lengths ranging from 1 to L. We minimize
the following max-margin objective:

J(Θ) =
N∑
i=1

∑
t′∈N (qi)

[
1−margin(qi, ti, t′)

]
+
,

margin(q, t, t′) = score(q, t)− score(q, t′),

where the parameters are the membership opera-
tor, the traversal operators, and the entity vectors:

Θ = {M} ∪ {Tr : r ∈ R} ∪
{
xe ∈ Rd : e ∈ E

}
.

This objective encourages the construction of
“set vectors”: because there are path queries of
different lengths and types, the model must learn
to produce an accurate set vector JqKV after any
sequence of traversals. Another perspective is
that each traversal operator is trained such that
its transformation preserves information in the
set vector which might be needed in subsequent
traversal steps.

In contrast, previously proposed training objec-
tives for knowledge base completion only train on

queries of path length 1. We will refer to this spe-
cial case as single-edge training.

In Section 5, we show that compositional train-
ing leads to substantially better results for both
path query answering and knowledge base com-
pletion. In Section 6, we provide insight into why.

3.4 Other composable models

There are many possible candidates for T and M.
For example, T could be one’s favorite neural net-
work mapping from Rd to Rd. Here, we focus on
two composable models that were both recently
shown to achieve state-of-the-art performance on
knowledge base completion.

TransE. The TransE model of Bordes et al.
(2013) uses the scoring function

score(s/r, t) = −‖xs + wr − xt‖22. (11)

where xs, wr and xt are all d-dimensional vectors.
In this case, the model can be expressed using

membership operator

M(v, xt) = −‖v − xt‖22 (12)

and traversal operator Tr(xs) = xs + wr.
Hence, TransE can handle a path query q =
s/r1/r2/ · · · /rk using

score(q, t) = −‖xs + wr1 + · · ·+ wrk − xt‖22.

We visualize the compositional TransE model in
Figure 2.

Bilinear-Diag. The Bilinear-Diag model of
Yang et al. (2015) is a special case of the bilinear
model with the relation matrices constrained to be
diagonal. Alternatively, the model can be viewed
as a variant of TransE with multiplicative interac-
tions between entity and relation vectors.

Not all models can be compositionalized. It
is important to point out that some models are
not naturally composable—for example, the latent
feature model of Riedel et al. (2013) and the neu-
ral tensor network of Socher et al. (2013). These
approaches have scoring functions which combine
s, r and t in a way that does not involve an inter-
mediate vector representing s/r alone without t,
so they do not decompose according to (7).
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WordNet Freebase
Relations 11 13
Entities 38,696 75,043

Base Train 112,581 316,232
Test 10,544 23,733

Paths Train 2,129,539 6,266,058
Test 46,577 109,557

Table 1: WordNet and Freebase statistics for base
and path query datasets.

3.5 Implementation

We use AdaGrad (Duchi et al., 2010) to optimize
J(Θ), which is in general non-convex. Initial-
ization scale, mini-batch size and step size were
cross-validated for all models. We initialize all
parameters with i.i.d. Gaussians of variance 0.1 in
every entry, use a mini-batch size of 300 examples,
and a step size in [0.001, 0.1] (chosen via cross-
validation) for all of the models. For each exam-
ple q, we sample 10 negative entities t′ ∈ N (q).
During training, all of the entity vectors are con-
strained to lie on the unit ball, and we clipped the
gradients to the median of the observed gradients
if the update exceeded 3 times the median.

We first train on path queries of length 1 until
convergence and then train on all path queries until
convergence. This guarantees that the model mas-
ters basic edges before composing them to form
paths. When training on path queries, we explic-
itly parameterize inverse relations. For the bilinear
model, we initialize Wr−1 with W>r . For TransE,
we initialize wr−1 with −wr. For Bilinear-Diag,
we found initializing wr−1 with the exact inverse
1/wr is numerically unstable, so we instead ran-
domly initialize wr−1 with i.i.d Gaussians of vari-
ance 0.1 in every entry. Additionally, for the bi-
linear model, we replaced the sum over N (qi) in
the objective with a max since it yielded slightly
higher accuracy. Our models are implemented us-
ing Theano (Bastien et al., 2012; Bergstra et al.,
2010).

4 Datasets

In Section 4.1, we describe two standard knowl-
edge base completion datasets. These consist of
single-edge queries, so we call them base datasets.
In Section 4.2, we generate path query datasets
from these base datasets.

4.1 Base datasets

Our experiments are conducted using the sub-
sets of WordNet and Freebase from Socher et al.
(2013). The statistics of these datasets and their
splits are given in Table 1.

The WordNet and Freebase subsets exhibit sub-
stantial differences that can influence model per-
formance. The Freebase subset is almost bipartite
with most of the edges taking the form (s, r, t) for
some person s, relation r and property t. In Word-
Net, both the source and target entities are arbi-
trary words.

Both the raw WordNet and Freebase contain
many relations that are almost perfectly correlated
with an inverse relation. For example, WordNet
contains both has part and part of, and Freebase
contains both parents and children. At test time,
a query on an edge (s, r, t) is easy to answer if the
inverse triple (t, r−1, s) was observed in the train-
ing set. Following Socher et al. (2013), we ac-
count for this by excluding such “trivial” queries
from the test set.

4.2 Path query datasets

Given a base knowledge graph, we generate path
queries by performing random walks on the graph.
If we view compositional training as a form of reg-
ularization, this approach allows us to generate ex-
tremely large amounts of auxiliary training data.
The procedure is given below.

Let Gtrain be the training graph, which consists
only of the edges in the training set of the base
dataset. We then repeatedly generate training ex-
amples with the following procedure:

1. Uniformly sample a path length L ∈
{1, . . . , Lmax}, and uniformly sample a start-
ing entity s ∈ E .

2. Perform a random walk beginning at entity s
and continuing L steps.

(a) At step i of the walk, choose a relation
ri uniformly from the set of relations in-
cident on the current entity e.

(b) Choose the next entity uniformly from
the set of entities reachable via ri.

3. Output a query-answer pair, (q, t), where q =
s/r1/ · · · /rL and t is the final entity of the
random walk.
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In practice, we do not sample paths of length 1 and
instead directly add all of the edges from Gtrain to
the path query dataset.

To generate a path query test set, we repeat
the above procedure except using the graph Gfull,
which is Gtrain plus all of the test edges from the
base dataset. Then we remove any queries from
the test set that also appeared in the training set.
The statistics for the path query datasets are pre-
sented in Table 1.

5 Main results

We evaluate the models derived in Section 3 on
two tasks: path query answering and knowledge
base completion. On both tasks, we show that the
compositional training strategy proposed in Sec-
tion 3.3 leads to substantial performance gains
over standard single-edge training. We also com-
pare directly against the KBC results of Socher et
al. (2013), demonstrating that previously inferior
models now match or outperform state-of-the-art
models after compositional training.

Evaluation metric. Numerous metrics have
been used to evaluate knowledge base queries, in-
cluding hits at 10 (percentage of correct answers
ranked in the top 10) and mean rank. We evaluate
on hits at 10, as well as a normalized version of
mean rank, mean quantile, which better accounts
for the total number of candidates. For a query q,
the quantile of a correct answer t is the fraction of
incorrect answers ranked after t:

|{t′ ∈ N (q) : score(q, t′) < score(q, t)}|
|N (q)| (13)

The quantile ranges from 0 to 1, with 1 being opti-
mal. Mean quantile is then defined to be the aver-
age quantile score over all examples in the dataset.
To illustrate why normalization is important, con-
sider a set of queries on the relation gender. A
model that predicts the incorrect gender on ev-
ery query would receive a mean rank of 2 (since
there are only 2 candidate answers), which is fairly
good in absolute terms, whereas the mean quantile
would be 0, rightfully penalizing the model.

As a final note, several of the queries in the
Freebase path dataset are “type-match trivial” in
the sense that all of the type matching candidates
C(q) are correct answers to the query. In this case,
mean quantile is undefined and we exclude such
queries from evaluation.

Overview. The upper half of Table 2 shows
that compositional training improves path query-
ing performance across all models and metrics on
both datasets, reducing error by up to 76.2%.

The lower half of Table 2 shows that surpris-
ingly, compositional training also improves per-
formance on knowledge base completion across
almost all models, metrics and datasets. On Word-
Net, TransE benefits the most, with a 43.3% re-
duction in error. On Freebase, Bilinear benefits
the most, with a 38.8% reduction in error.

In terms of mean quantile, the best overall
model is TransE (COMP). In terms of hits at 10, the
best model on WordNet is Bilinear (COMP), while
the best model on Freebase is TransE (COMP).

Deduction and Induction. Table 3 takes a
deeper look at performance on path query answer-
ing. We divided path queries into two subsets: de-
duction and induction. The deduction subset con-
sists of queries q = s/p where the source and tar-
get entities JqK are connected via relations p in the
training graph Gtrain, but the specific query q was
never seen during training. Such queries can be
answered by performing explicit traversal on the
training graph, so this subset tests a model’s abil-
ity to approximate the underlying training graph
and predict the existence of a path from a collec-
tion of single edges. The induction subset consists
of all other queries. This means that at least one
edge was missing on all paths following p from
source to target in the training graph. Hence, this
subset tests a model’s generalization ability and its
robustness to missing edges.

Performance on the deduction subset of the
dataset is disappointingly low for models trained
with single-edge training: they struggle to answer
path queries even when all edges in the path query
have been seen at training time. Compositional
training dramatically reduces these errors, some-
times doubling mean quantile. In Section 6, we
analyze how this might be possible. After com-
positional training, performance on the harder in-
duction subset is also much stronger. Even when
edges are missing along a path, the models are able
to infer them.

Interpretable queries. Although our path
datasets consists of random queries, both datasets
contain a large number of useful, interpretable
queries. Results on a few illustrative examples are
shown in Table 4.
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Bilinear Bilinear-Diag TransE
Path query task SINGLE COMP (%red) SINGLE COMP (%red) SINGLE COMP (%red)

WordNet
MQ 84.7 89.4 30.7 59.7 90.4 76.2 83.7 93.3 58.9

H@10 43.6 54.3 19.0 7.9 31.1 25.4 13.8 43.5 34.5

Freebase
MQ 58.0 83.5 60.7 57.9 84.8 63.9 86.2 88 13.0

H@10 25.9 42.1 21.9 23.1 38.6 20.2 45.4 50.5 9.3
KBC task SINGLE COMP (%red) SINGLE COMP (%red) SINGLE COMP (%red)

WordNet
MQ 76.1 82.0 24.7 76.5 84.3 33.2 75.5 86.1 43.3

H@10 19.2 27.3 10.0 12.9 14.4 1.72 4.6 16.5 12.5

Freebase
MQ 85.3 91.0 38.8 84.6 89.1 29.2 92.7 92.8 1.37

H@10 70.2 76.4 20.8 63.2 67.0 10.3 78.8 78.6 -0.9

Table 2: Path query answering and knowledge base completion. We compare the performance of
single-edge training (SINGLE) vs compositional training (COMP). MQ: mean quantile, H@10: hits at 10,
%red: percentage reduction in error.

Interpretable Queries Bilinear SINGLE Bilinear COMP

X/institution/institution−1/profession 50.0 93.6
X/parents/religion 81.9 97.1

X/nationality/nationality−1/ethnicity−1 68.0 87.0
X/has part/has instance−1 92.6 95.1
X/type of/type of/type of 72.8 79.4

Table 4: Path query performance (mean quantile) on a selection of interpretable queries. We compare
Bilinear SINGLE and Bilinear COMP. Meanings of each query (descending): “What professions are there
at X’s institution?”; “What is the religion of X’s parents?”; “What are the ethnicities of people from the
same country as X?”; “What types of parts does X have?”; and the transitive “What is X a type of?”.
(Note that a relation r and its inverse r−1 do not necessarily cancel out if r is not a one-to-one mapping.
For example, X/institution/institution−1 denotes the set of all people who work at the institution X
works at, which is not just X.)

Path query task WordNet Freebase
Ded. Ind. Ded. Ind.

Bilinear SINGLE 96.9 66.0 49.3 49.4
COMP 98.9 75.6 82.1 70.6

Bi-Diag SINGLE 56.3 51.6 49.3 50.2
COMP 98.5 78.2 84.5 72.8

TransE SINGLE 92.6 71.7 85.3 72.4
COMP 99.0 87.4 87.5 76.3

Table 3: Deduction and induction. We compare
mean quantile performance of single-edge training
(SINGLE) vs compositional training (COMP). Length
1 queries are excluded.

Comparison with Socher et al. (2013). Here,
we measure performance on the KBC task in terms
of the accuracy metric of Socher et al. (2013).
This evaluation involves sampled negatives, and is
hence noisier than mean quantile, but makes our
results directly comparable to Socher et al. (2013).
Our results show that previously inferior models

such as the bilinear model can outperform state-
of-the-art models after compositional training.

Socher et al. (2013) proposed parametrizing
each entity vector as the average of vectors of
words in the entity (wtad lincoln = 1

2(wtad +
wlincoln), and pretraining these word vectors us-
ing the method of Turian et al. (2010). Table 5
reports results when using this approach in con-
junction with compositional training. We initial-
ized all models with word vectors from Penning-
ton et al. (2014). We found that composition-
ally trained models outperform the neural tensor
network (NTN) on WordNet, while being only
slightly behind on Freebase. (We did not use word
vectors in any of our other experiments.)

When the strategy of averaging word vectors to
form entity vectors is not applied, our composi-
tional models are significantly better on WordNet
and slightly better on Freebase. It is worth noting
that in many domains, entity names are not lexi-
cally meaningful, so word vector averaging is not
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Accuracy WordNet Freebase
EV WV EV WV

NTN 70.6 86.2 87.2 90.0
Bilinear COMP 77.6 87.6 86.1 89.4
TransE COMP 80.3 84.9 87.6 89.6

Table 5: Model performance in terms of accu-
racy. EV: entity vectors are separate (initialized
randomly); WV: entity vectors are average of word
vectors (initialized with pretrained word vectors).

always meaningful.

6 Analysis

In this section, we try to understand why com-
positional training is effective. For concrete-
ness, everything is described in terms of the bi-
linear model. We will refer to the compositionally
trained model as COMP, and the model trained with
single-edge training as SINGLE.

6.1 Why does compositional training
improve path query answering?

It is tempting to think that if SINGLE has accurately
modeled individual edges in a graph, it should ac-
curately model the paths that result from those
edges. This intuition turns out to be incorrect, as
revealed by SINGLE’s relatively weak performance
on the path query dataset. We hypothesize that this
is due to cascading errors along the path. For a
given edge (s, r, t) on the path, single-edge train-
ing encourages xt to be closer to x>s Wr than any
other incorrect xt′ . However, once this is achieved
by a margin of 1, it does not push xt any closer to
x>s Wr. The remaining discrepancy is noise which
gets added at each step of path traversal. This is
illustrated schematically in Figure 2.

To observe this phenomenon empirically, we
examine how well a model handles each interme-
diate step of a path query. We can do this by
measuring the reconstruction quality (RQ) of the
set vector produced after each traversal operation.
Since each intermediate stage is itself a valid path
query, we define RQ to be the average quantile
over all entities that belong in JqK:

RQ (q) =
1
|JqK| ∑

t∈JqK quantile (q, t) (14)

When all entities in JqK are ranked above all in-
correct entities, RQ is 1. In Figure 3, we illustrate
how RQ changes over the course of a query.

Figure 2: Cascading errors visualized for
TransE. Each node represents the position of an
entity in vector space. The relation parent is
ideally a simple horizontal translation, but each
traversal introduces noise. The red circle is where
we expect Tad’s parent to be. The red square is
where we expect Tad’s grandparent to be. Dotted
red lines show that error grows larger as we tra-
verse farther away from Tad. Compositional train-
ing pulls the entity vectors closer to the ideal ar-
rangement.

Given the nature of cascading errors, it might
seem reasonable to address the problem by adding
a term to our objective which explicitly encour-
ages x>s Wr to be as close as possible to xt. With
this motivation, we tried adding λ‖x>s Wr − xt‖22
term to the objective of the bilinear model and a
λ‖xs +wr−xt‖22 term to the objective of TransE.
We experimented with different settings of λ over
the range [0.001, 100]. In no case did this addi-
tional `2 term improve SINGLE’s performance on
the path query or single edge dataset. These re-
sults suggest that compositional training is a more
effective way to combat cascading errors.

6.2 Why does compositional training
improve knowledge base completion?

Table 2 reveals that COMP also performs better on
the single-edge task of knowledge base comple-
tion. This is somewhat surprising, since SINGLE

is trained on a training set which distributionally
matches the test set, whereas COMP is not. How-
ever, COMP’s better performance on path queries
suggests that there must be another factor at play.
At a high level, training on paths must be provid-
ing some form of structural regularization which
reduces cascading errors. Indeed, paths in a
knowledge graph have proven to be important fea-
tures for predicting the existence of single edges
(Lao et al., 2011; Neelakantan et al., 2015). For
example, consider the following Horn clause:

parents (x, y)∧ location (y, z)⇒ place of birth (x, z) ,
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Figure 3: Reconstruction quality (RQ) at each step
of the query tad lincoln/parents/place of birth/

place of birth−1/profession. COMP experiences
significantly less degradation in RQ as path length
increases. Correspondingly, the set of 5 highest
scoring entities computed at each step using COMP

(green) is significiantly more accurate than the set
given by SINGLE (blue). Correct entities are bolded.

which states that if x has a parent with location
z, then x has place of birth z. The body of the
Horn clause expresses a path from x to z. If COMP

models the path better, then it should be better able
to use that knowledge to infer the head of the Horn
clause.

More generally, consider Horn clauses of the
form p ⇒ r, where p = r1/ . . . /rk is a path type
and r is the relation being predicted. Let us focus
on Horn clauses with high precision as defined by:

prec(p) =
|JpK ∩ JrK|
|JpK| , (15)

where JpK is the set of entity pairs connected by p,
and similarly for JrK.

Intuitively, one way for the model to implicitly
learn and exploit such a Horn clause would be to
satisfy the following two criteria:

1. The model should ensure a consistent spa-
tial relationship between entity pairs that are
related by the path type p; that is, keeping
x>s Wr1 . . .Wrk close to xt for all valid (s, t)
pairs.

2. The model’s representation of the path type p
and relation r should capture that spatial re-
lationship; that is, x>s Wr1 . . .Wrk ≈ xt im-
plies x>s Wr ≈ xt, or simply Wr1 . . .Wrk ≈
Wr.

We have already seen empirically that SINGLE does
not meet criterion 1, because cascading errors
cause it to put incorrect entity vectors xt′ closer
to x>s Wr1 . . .Wrk than the correct entity. COMP

mitigates these errors.
To empirically verify that COMP also does a bet-

ter job of meeting criterion 2, we perform the
following: for a path type p and relation r, de-
fine dist(p, r) to be the angle between their corre-
sponding matrices (treated as vectors in Rd2). This
is a natural measure because x>s Wrxt computes
the matrix inner product between Wr and xsx>t .
Hence, any matrix with small distance from Wr

will produce nearly the same scores as Wr for the
same entity pairs.

If COMP is better at capturing the correlation be-
tween p and r, then we would expect that when
prec(p) is high, compositional training should
shrink dist(p, r) more. To confirm this hypothe-
sis, we enumerated over all 676 possible paths of
length 2 (including inverted relations), and exam-
ined the proportional reduction in dist(p, r) caused
by compositional training,

∆dist(p, r) =
distCOMP(p, r)− distSINGLE(p, r)

distSINGLE(p, r)
.

(16)

Figure 4 shows that higher precision paths indeed
correspond to larger reductions in dist(p, r).

7 Related work

Knowledge base completion with vector space
models. Many models have been proposed for
knowledge base completion, including those re-
viewed in Section 3.4 (Nickel et al., 2011; Bor-
des et al., 2013; Yang et al., 2015; Socher et al.,
2013). Dong et al. (2014) demonstrated that KBC
models can improve the quality of relation extrac-
tion by serving as graph-based priors. Riedel et
al. (2013) showed that such models can be also be
directly used for open-domain relation extraction.
Our compositional training technique is an orthog-
onal improvement that could help any composable
model.

Distributional compositional semantics. Pre-
vious works have explored compositional vector
space representations in the context of logic and
sentence interpretation. In Socher et al. (2012), a
matrix is associated with each word of a sentence,
and can be used to recursively modify the mean-
ing of nearby constituents. Grefenstette (2013) ex-
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Figure 4: We divide paths of length 2 into high
precision (> 0.3), low precision (≤ 0.3), and not
co-occuring with r. Here r = nationality. Each
box plot shows the min, max, and first and third
quartiles of ∆dist(p, r). As hypothesized, com-
positional training results in large decreases in
dist(p, r) for high precision paths p, modest de-
creases for low precision paths, and little to no de-
creases for irrelevant paths.

plored the ability of tensors to simulate logical cal-
culi. Bowman et al. (2014) showed that recursive
neural networks can learn to distinguish impor-
tant semantic relations. Socher et al. (2014) found
that compositional models were powerful enough
to describe and retrieve images.

We demonstrate that compositional representa-
tions are also useful in the context of knowledge
base querying and completion. In the aforemen-
tioned work, compositional models produce vec-
tors which represent truth values, sentiment or im-
age features. In our approach, vectors represent
sets of entities constituting the denotation of a
knowledge base query.

Path modeling. Numerous methods have been
proposed to leverage path information for knowl-
edge base completion and question answering.
Nickel et al. (2014) proposed combining low-rank
models with sparse path features. Lao and Cohen
(2010) used random walks as features and Gard-
ner et al. (2014) extended this approach by us-
ing vector space similarity to govern random walk
probabilities. Neelakantan et al. (2015) addressed
the problem of path sparsity by embedding paths
using a recurrent neural network. Perozzi et al.
(2014) sampled random walks on social networks
as training examples, with a different goal to clas-

sify nodes in the network. Bordes et al. (2014) em-
bed paths as a sum of relation vectors for question
answering. Our approach is unique in modeling
the denotation of each intermediate step of a path
query, and using this information to regularize the
spatial arrangement of entity vectors.

8 Discussion

We introduced the task of answering path queries
on an incomplete knowledge base, and presented a
general technique for compositionalizing a broad
class of vector space models. Our experiments
show that compositional training leads to state-of-
the-art performance on both path query answering
and knowledge base completion.

There are several key ideas from this paper: reg-
ularization by augmenting the dataset with paths,
representing sets as low-dimensional vectors in
a context-sensitive way, and performing function
composition using vectors. We believe these three
could all have greater applicability in the develop-
ment of vector space models for knowledge repre-
sentation and inference.
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Abstract

We present a novel method for the cross-
lingual transfer of dependency parsers.
Our goal is to induce a dependency parser
in a target language of interest without
any direct supervision: instead we as-
sume access to parallel translations be-
tween the target and one or more source
languages, and to supervised parsers in
the source language(s). Our key contribu-
tions are to show the utility of dense pro-
jected structures when training the target
language parser, and to introduce a novel
learning algorithm that makes use of dense
structures. Results on several languages
show an absolute improvement of 5.51%
in average dependency accuracy over the
state-of-the-art method of (Ma and Xia,
2014). Our average dependency accuracy
of 82.18% compares favourably to the ac-
curacy of fully supervised methods.

1 Introduction

In recent years there has been a great deal of inter-
est in dependency parsing models for natural lan-
guages. Supervised learning methods have been
shown to produce highly accurate dependency-
parsing models; unfortunately, these methods rely
on human-annotated data, which is expensive to
obtain, leading to a significant barrier to the devel-
opment of dependency parsers for new languages.
Recent work has considered unsupervised meth-
ods (e.g. (Klein and Manning, 2004; Headden III
et al., 2009; Gillenwater et al., 2011; Mareček
and Straka, 2013; Spitkovsky et al., 2013; Le and
Zuidema, 2015; Grave and Elhadad, 2015)), or
methods that transfer linguistic structures across
languages (e.g. (Cohen et al., 2011; McDonald et
al., 2011; Ma and Xia, 2014; Tiedemann, 2015;

∗Currently on leave at Google Inc. New York.

Guo et al., 2015; Zhang and Barzilay, 2015; Xiao
and Guo, 2015)), in an effort to reduce or eliminate
the need for annotated training examples. Unfor-
tunately the accuracy of these methods generally
lags quite substantially behind the performance of
fully supervised approaches.

This paper describes novel methods for the
transfer of syntactic information between lan-
guages. As in previous work (Hwa et al., 2005;
Ganchev et al., 2009; McDonald et al., 2011; Ma
and Xia, 2014), our goal is to induce a dependency
parser in a target language of interest without any
direct supervision (i.e., a treebank) in the target
language: instead we assume access to parallel
translations between the target and one or more
source languages, and to supervised parsers in the
source languages. We can then use alignments in-
duced using tools such as GIZA++ (Och and Ney,
2000), to transfer dependencies from the source
language(s) to the target language (example pro-
jections are shown in Figure 1). A target language
parser is then trained on the projected dependen-
cies.

Our contributions are as follows:

• We demonstrate the utility of dense projected
structures when training the target-language
parser. In the most extreme case, a “dense”
structure is a sentence in the target language
where the projected dependencies form a
fully projective tree that includes all words in
the sentence (we will refer to these structures
as “full” trees). In more relaxed definitions,
we might include sentences where at least
some proportion (e.g., 80%) of the words par-
ticipate as a modifier in some dependency, or
where long sequences (e.g., 7 words or more)
of words all participate as modifiers in some
dependency. We give empirical evidence that
dense structures give particularly high accu-
racy for their projected dependencies.
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The political priorities must be set by this House and the MEPs . ROOT

Die politischen Prioritäten müssen von diesem Parlament und den Europaabgeordneten abgesteckt werden . ROOT

Figure 1: An example projection from English to German in the EuroParl data (Koehn, 2005). The
English parse tree is the output from a supervised parser, while the German parse tree is projected from
the English parse tree using translation alignments from GIZA++.

• We describe a training algorithm that builds
on the definitions of dense structures. The
algorithm initially trains the model on full
trees, then iteratively introduces increasingly
relaxed definitions of density. The algo-
rithm makes use of a training method that
can leverage partial (incomplete) dependency
structures, and also makes use of confidence
scores from a perceptron-trained model.

In spite of the simplicity of our approach,
our experiments demonstrate significant improve-
ments in accuracy over previous work. In ex-
periments on transfer from a single source lan-
guage (English) to a single target language (Ger-
man, French, Spanish, Italian, Portuguese, and
Swedish), our average dependency accuracy is
78.89%. When using multiple source languages,
average accuracy is improved to 82.18%. This is
a 5.51% absolute improvement over the previous
best results reported on this data set, 76.67% for
the approach of (Ma and Xia, 2014). To give an-
other perspective, our accuracy is close to that of
the fully supervised approach of (McDonald et al.,
2005), which gives 84.29% accuracy on this data.
To the best of our knowledge these are the high-
est accuracy parsing results for an approach that
makes no use of treebank data for the language of
interest.

2 Related Work

A number of researchers have considered the
problem of projecting linguistic annotations from
the source to the target language in a parallel cor-
pus (Yarowsky et al., 2001; Hwa et al., 2005;

Ganchev et al., 2009; Spreyer and Kuhn, 2009;
McDonald et al., 2011; Ma and Xia, 2014). The
projected annotations are then used to train a
model in the target language. This prior work in-
volves various innovations such as the use of pos-
terior regularization (Ganchev et al., 2009), the
use of entropy regularization and parallel guid-
ance (Ma and Xia, 2014), the use of a simple
method to transfer delexicalized parsers across
languages (McDonald et al., 2011), and a method
for training on partial annotations that are pro-
jected from source to target language (Spreyer and
Kuhn, 2009). There is also recent work on tree-
bank translation via a machine translation system
(Tiedemann et al., 2014; Tiedemann, 2015). The
work of (McDonald et al., 2011) and (Ma and Xia,
2014) is most relevant to our own work, for two
reasons: first, these papers consider dependency
parsing, and as in our work use the latest version of
the Google universal treebank for evaluation;1 sec-
ond, these papers represent the state of the art in
accuracy. The results in (Ma and Xia, 2014) dom-
inate the accuracies for all other papers discussed
in this related work section: they report an aver-
age accuracy of 76.67% on the languages German,
Italian, Spanish, French, Swedish and Portuguese;
this evaluation includes all sentence lengths.

Other work on unsupervised parsing has con-
sidered various methods that transfer information
from source to target languages, where parsers are
available in the source languages, but without the
use of parallel corpora (Cohen et al., 2011; Dur-

1The original paper of (McDonald et al., 2011) does not
use the Google universal treebank, however (Ma and Xia,
2014) reimplemented the model and report results on the
Google universal treebank.
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rett et al., 2012; Naseem et al., 2012; Täckström
et al., 2013; Duong et al., 2015; Zhang and Barzi-
lay, 2015). These results are somewhat below the
performance of (Ma and Xia, 2014).2

3 Our Approach

This section describes our approach, giving defini-
tions of parallel data and of dense projected struc-
tures; describing preliminary exploratory experi-
ments on transfer from German to English; de-
scribing the iterative training algorithm used in our
work; and finally describing a generalization of the
method to transfer from multiple languages.

3.1 Parallel Data Definitions
We assume that we have parallel data in two lan-
guages. The source language, for which we have
a supervised parser, is assumed to be English. The
target language, for which our goal is to learn a
parser, will be referred to as the “foreign” lan-
guage. We describe the generalization to more
than two languages in §3.5.

We use the following notation. Our parallel
data is a set of examples (e(k), f (k)) for k =
1 . . . n, where each e(k) is an English sentence,
and each f (k) is a foreign sentence. Each e(k) =
e
(k)
1 . . . e

(k)
sk where e(k)i is a word, and sk is the

length of k’th source sentence. Similarly, f (k) =
f

(k)
1 . . . f

(k)
tk

where f (k)
j is a word, and tk is the

length of k’th foreign sentence.
A dependency is a four-tuple (l, k, h,m) where

l ∈ {e, f} is the language, k is the sentence num-
ber, h is the head index, m is the modifier index.
Note that if l = e then we have 0 ≤ h ≤ sk and
1 ≤ m ≤ sk, conversely if l = f then 0 ≤ h ≤ tk
and 1 ≤ m ≤ tk. We use h = 0 when h is the root
of the sentence.

For any k ∈ {1 . . . n}, j ∈ {0 . . . tk}, Ak,j is
an integer specifying which word in e(k)1 . . . e

(k)
sk ,

word f (k)
j is aligned to. It is NULL if f (k)

j is not
aligned to anything. We have Ak,0 = 0 for all k:
that is, the root in one language is always aligned
to the root in the other language.

In our experiments we use intersected align-
ments from GIZA++ (Och and Ney, 2000) to pro-
vide the Ak,j values.

2With one exception: on Spanish, using the CoNLL defi-
nition of dependencies. The good results from (Ma and Xia,
2014) on the universal dependencies for Spanish may show
that the result on the CONLL data is an anomaly, perhaps
due to the annotation scheme in Spanish being different from
other languages.

3.2 Projected Dependencies
We now describe various sets of projected depen-
dencies. We use D to denote the set of all de-
pendencies in the source language: these depen-
dencies are the result of parsing the English side
of the translation data using a supervised parser.
Each dependency (l, k, h,m) ∈ D is a four-tuple
as described above, with l = e. We will use P to
denote the set of all projected dependencies from
the source to target language. The set P is con-
structed from D and the alignment variables Ak,j
as follows:

P = {(l, k, h,m) : l = f

∧ (e, k, Ak,h, Ak,m) ∈ D}
We say the k’th sentence receives a full parse

under the dependencies P if the dependencies
(f, k, h,m) for k form a projective tree over the
entire sentence: that is, each word has exactly one
head, the root symbol is the head of the entire
structure, and the resulting structure is a projec-
tive tree. We use T100 ⊆ {1 . . . n} to denote the
set of all sentences that receive a full parse under
P . We then define the following set,

P100 = {(l, k, h,m) ∈ P : k ∈ T100}
We say the k’th sentence receives a dense parse

under the dependencies P if the dependencies of
the form (f, k, h,m) for k form a projective tree
over at least 80% of the words in the sentence. We
use T80 ⊆ {1 . . . n} to denote the set of all sen-
tences that receive a dense parse under P . We then
define the following set,

P80 = {(l, k, h,m) ∈ P : k ∈ T80}
We say the k’th sentence receives a span-s parse

where s is an integer if there is a sequence of at
least s consecutive words in the target language
that are all seen as a modifier in the set P . We use
Ss to refer to the set of all sentences with a span-s
parse. We define the sets

P≥7 = {(l, k, h,m) ∈ P : k ∈ S7}
P≥5 = {(l, k, h,m) ∈ P : k ∈ S5}
P≥1 = {(l, k, h,m) ∈ P : k ∈ S1}

Finally, we also create datasets that only include
projected dependencies that are consistent with re-
spect to part-of-speech (POS) tags for the head and
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modifier words in source and target data. We as-
sume a function POS(k, j, i) which returns TRUE
if the POS tags for words f (k)

j and e(k)i are consis-
tent. The definition of POS-consistent projected
dependencies is then as follows:

P̄ = {(l, k, h,m) ∈ P :
POS(k, h,Ak,h) ∧ POS(k,m,Ak,m)}

We experiment with two definitions for the POS
function. The first imposes a hard constraint, that
the POS tags in the two languages must be identi-
cal. The second imposes a soft constraint, that the
two POS tags must fall into the same equivalance
class: the equivalence classes used are listed in
§4.1.

Given this definition of P̄ , we can create sets
P̄100, P̄80, P̄≥7, P̄≥5, and P̄≥1, using analogous
definitions to those given above.

3.3 Preliminary Experiments with Transfer
from English to German

Throughout the experiments in this paper, we used
German as the target language for development of
our approach. Table 1 shows some preliminary re-
sults on transferring dependencies from English to
German. We can estimate the accuracy of depen-
dency subsets such as P100, P80, P≥7 and so on
by comparing these dependencies to the depen-
dencies from a supervised German parser on the
same data. That is, we use a supervised parser to
provide gold standard annotations. The full set of
dependencies P give 74.0% accuracy under this
measure; results for P100 are considerably higher
in accuracy, ranging from 83.0% to 90.1% depend-
ing on how POS constraints are used.

As a second evaluation method, we can test
the accuracy of a model trained on the P100 data.
The benefit of the soft-matching POS definition
is clear. The hard match definition harms perfor-
mance, presumably because it reduces the number
of sentences used to train the model.

Throughout the rest of this paper, we use the
soft POS constraints in all projection algorithms.3

3.4 The Training Procedure

We now describe the training procedure used in
our experiments. We use a perceptron-trained
shift-reduce parser, similar to that of (Zhang and
Nivre, 2011). We assume that the parser is able

3The hard constraint is also used by Ma and Xia (2014).

Inputs: Sets P100, P80, P≥7, P≥5, P≥1 as de-
fined in §3.2.

Definitions: Functions TRAIN, CDECODE,
TOP as defined in §3.4.

Algorithm:

1. θ1 = TRAIN(P100)

2. P1
100 = CDECODE(P80 ∪ P≥7, θ

1)

3. θ2 = TRAIN(P100 ∪ TOP(P1
100, θ

1))

4. P2
100 = CDECODE(P80 ∪ P≥5, θ

2)

5. θ3 = TRAIN(P100 ∪ TOP(P2
100, θ

2))

6. P3
100 = CDECODE(P≥1, θ

3)

7. θ4 = TRAIN(P100 ∪ TOP(P3
100, θ

3))

Output: Parameter vectors θ1, θ2, θ3, θ4.

Figure 2: The learning algorithm.

to operate in a “constrained” mode, where it re-
turns the highest scoring parse that is consistent
with a given subset of dependencies. This can be
achieved via zero-cost dynamic oracles (Goldberg
and Nivre, 2013).

We assume the following definitions:

• TRAIN(D) is a function that takes a set of de-
pendency structures D as input, and returns a
model θ as its output. The dependency struc-
tures are assumed to be full trees: that is, they
correspond to fully projected trees with the
root symbol as their root.

• CDECODE(P, θ) is a function that takes a
set of partial dependency structures P , and
a model θ as input, and as output returns a
set of full trees D. It achieves this by con-
strained decoding of the sentences inP under
the model θ, where for each sentence we use
beam search to search for the highest scoring
projective full tree that is consistent with the
dependencies in P .

• TOP(D, θ) takes as input a set of full trees
D, and a model θ. It returns the top m high-
est scoring trees in D (in our experiments we
usedm = 200, 000), where the score for each
tree is the perceptron-based score normalized
by the sentence length. Thus we return the
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POS Constraints
P dense P100 Train on P100#sen Acc. #sen Acc. #sen Acc.

No Restriction 968k 74.0 65k 81.4 23k 83.0 69.5
Hard match 927k 80.1 26k 88.0 8k 90.1 68.0
Soft match 904k 80.0 52k 84.9 18k 85.8 70.6

Table 1: Statistics showing the accuracy for various definitions of projected trees: see §3.2 for definitions
of P , P100 etc. Columns labeled “Acc.” show accuracy when the output of a supervised German parser
is used as gold standard data. Columns labeled “#sen” show number of sentences. “dense” shows
P100 ∪ P80 ∪ P≥7 and “Train” shows accuracy on test data of a model trained on the P100 trees.

200,000 trees that the perceptron is most con-
fident on.4

Figure 2 shows the learning algorithm. It gener-
ates a sequence of parsing models, θ1 . . . θ4. In the
first stage of learning, the model is initialized by
training on P100. The method then uses this model
to fill in the missing dependencies on P80 ∪ P≥7

using the CDECODE method; this data is added
to P100 and the model is retrained. The method is
iterated, at each point adding in additional partial
structures (note that P≥7 ⊆ P≥5 ⊆ P≥1, hence at
each stage we expand the set of training data that
is parsed using CDECODE).

3.5 Generalization to Multiple Languages
We now consider the generalization to learning
from multiple languages. We again assume that
the task is to learn a parser in a single target lan-
guage, for example German. We assume that we
now have multiple source languages. For exam-
ple, in our experiments with German as the target,
we used English, French, Spanish, Portuguese,
Swedish, and Italian as source languages. We as-
sume that we have fully supervised parsers for all
source languages. We will consider two methods
for combining information from the different lan-
guages:

Method 1: Concatenation In this approach, we
form sets P , P100, P80, P≥7 etc. from each of
the languages separately, and then concatenate5

the data to give new definitions of P , P100,P80,
P≥7 etc.

Method 2: Voting In this case, we assume
that each target language sentence is aligned to
a source language sentence in each of the source
languages. This is the case, for example, in the

4In cases where |D| < m, the entire set D is returned.
5That is, dependency structures projected from different

languages are taken to be entirely separate from each other.

Europarl data, where we have translations of the
same material into multiple languages. We can
then create the set P of projected dependencies
using a voting scheme. For any word (k, j) seen
in the target language, each source language will
identify a headword (this headword may be NULL
if there is no alignment giving a dependency). We
simply take the most frequent headword chosen by
the languages. After creating the set P , we can
create subsets such as P100, P80, P≥7 in exactly
the same way as before.

Once the various projected dependency training
sets have been created, we train the dependency
parsing model using the algorithm given in §3.4.

4 Experiments

We now describe experiments using our approach.
We first describe data and tools used in the exper-
iments, and then describe results.

4.1 Data and Tools

Data We use the EuroParl data (Koehn, 2005)
as our parallel data and the Google universal tree-
bank (v2; standard data) (McDonald et al., 2013)
as our evaluation data, and as our training data for
the supervised source-language parsers. We use
seven languages that are present in both Europarl
and the Google universal treebank: English (used
only as the source language), and German, Span-
ish, French, Italian, Portuguese and Swedish.

Word Alignments We use Giza++6 (Och and
Ney, 2000) to induce word alignments. Sentences
with length greater than 100 and single-word sen-
tences are removed from the parallel data. We fol-
low common practice in training Giza++ for both
translation directions, and taking the intersection
of the two sets as our final alignment. Giza++ de-

6http://www.statmt.org/moses/giza/
GIZA++.html

332



L
en→trgt concat→trgt voting→trgt

θ1 θ2 θ3 θ4 θ1 θ2 θ3 θ4 θ1 θ2 θ3 θ4

de 70.56 72.86 73.74 74.32 73.47 75.17 75.59 76.34 78.17 79.29 79.36 79.68
es 75.69 77.27 77.29 78.17 79.53 79.57 79.67 80.28 79.82 80.76 81.16 80.86
fr 77.03 78.54 78.70 79.91 81.23 81.79 82.30 82.24 82.17 82.75 82.47 82.72
it 77.35 78.64 79.06 79.46 81.49 82.25 82.02 82.49 82.58 82.95 83.45 83.67
pt 75.98 77.96 78.29 79.38 80.29 81.73 81.53 82.23 80.12 81.70 81.69 82.07
sv 78.68 80.28 80.81 82.11 82.53 83.78 83.83 83.80 82.85 83.76 83.85 84.06

avg 75.88 77.59 77.98 78.89 79.76 80.72 80.82 81.23 80.95 81.87 82.00 82.18

Table 2: Parsing accuracies of different methods on the test data using the gold standard POS tags.
The models θ1 . . . θ4 are described in §3.4. “en→trgt” is the single-source setting with English as the
source language. “concat→trgt” and “voting→trgt” are results with multiple source languages for the
concatenation and voting methods

fault alignment model is used in all of our experi-
ments.

The Parsing Model For all parsing experiments
we use the Yara parser7 (Rasooli and Tetreault,
2015), a reimplementation of the k-beam arc-eager
parser of Zhang and Nivre (2011). We use a beam
size of 64, and Brown clustering features8 (Brown
et al., 1992; Liang, 2005). The parser gives per-
formance close to the state of the art: for example
on section 23 of the Penn WSJ treebank (Marcus
et al., 1993), it achieves 93.32% accuracy, com-
pared to 92.9% accuracy for the parser of (Zhang
and Nivre, 2011).

POS Consistency As mentioned in §3.2, we de-
fine a soft POS consistency constraint to prune
some projected dependencies. A source/target lan-
guage word pair satisifies this constraint if one of
the following conditions hold: 1) the POS tags for
the two words are identical; 2) the word forms for
the two words are identical (this occurs frequently
for numbers, for example); 3) both tags are in one
of the following equivalence classes: {ADV ↔
ADJ} {ADV ↔ PRT} {ADJ ↔ PRON} {DET
↔ NUM} {DET ↔ PRON} {DET ↔ NOUN}
{PRON↔NOUN} {NUM↔X} {X↔ .}. These
rules were developed primarily on German, with
some additional validation on Spanish. These
rules required a small amount of human engineer-
ing, but we view this as relatively negligible.

Parameter Tuning We used German as a tar-
get language in the development of our approach,
and in setting hyper-parameters. The parser is

7https://github.com/yahoo/YaraParser
8https://github.com/percyliang/

brown-cluster

trained using the averaged structured perceptron
algorithm (Collins, 2002) with max-violation up-
dates (Huang et al., 2012). The number of iter-
ations over the training data is 5 when training
model θ1 in any setting, and 2, 1 and 4 when train-
ing models θ2, θ3, θ4 respectively. These values
are chosen by observing the performance on Ger-
man. We use θ4 as the final output from the train-
ing process: this is found to be optimal in English
to German projections.

4.2 Results

This section gives results of our approach for the
single source, multi-source (concatenation) and
multi-source (voting) methods. Following pre-
vious work (Ma and Xia, 2014) we use gold-
standard part-of-speech (POS) tags on test data.
We also provide results with automatic POS tags.

Results with a Single Source Language The
first set of results are with a single source lan-
guage; we use English as the source in all of these
experiments. Table 2 shows the accuracy of pa-
rameters θ1 . . . θ4 for transfer into German, Span-
ish, French, Italian, Portuguese, and Swedish.
Even the lowest performing model, θ1, which is
trained only on full trees, has a performance of
75.88%, close to the 76.15% accuracy for the
method of (Ma and Xia, 2014). There are clear
gains as we move from θ1 to θ4, on all languages.
The average accuracy for θ4 is 78.89%.

Results with Multiple Source Languages, us-
ing Concatenation Table 2 shows results using
multiple source languages, using the concatena-
tion method. In these experiments for a given
target language we use all other languages in our

333



Model en→ trgt concat voting sup(1st) sup(ae)
de 73.01 74.70 78.77 80.29 84.25
es 76.31 78.33 79.17 82.17 84.66
fr 77.54 79.71 80.77 81.33 84.95
it 78.14 80.82 82.03 83.90 87.03
pt 78.14 80.81 80.67 84.80 88.08
sv 79.31 80.81 82.03 81.12 84.87

avg 77.08 79.20 80.57 82.27 85.64

Table 3: Parsing results with automatic part of speech tags on the test data. Sup (1st) is the supervised
first-order dependency parser (McDonald et al., 2005) and sup (ae) is the Yara arc-eager parser (Rasooli
and Tetreault, 2015).

Model ge15 zb15 zb s15 mph11 mx14 en→ trgt concat voting sup(1st) sup(ae)
de 51.0 62.5 74.2 69.77 74.30 74.32(+0.02) 76.34(+2.04) 79.68(+5.38) 81.65 85.34
es 59.2 78.0 78.4 68.72 75.53 78.17(+2.64) 80.28(+4.75) 80.86(+5.33) 83.92 86.69
fr 59.0 78.9 79.6 73.13 76.53 79.91(+3.38) 82.24(+5.71) 82.72(+6.19) 83.51 86.24
it 55.6 79.3 80.9 70.74 77.74 79.46(+1.72) 82.49(+4.75) 83.67(+5.93) 85.47 88.83
pt 57.0 78.6 79.3 69.82 76.65 79.38(+2.73) 82.23(+5.58) 82.07(+5.42) 85.67 89.44
sv 54.8 75.0 78.3 75.87 79.27 82.11(+2.84) 83.80(+4.53) 84.06(+4.79) 85.59 88.06

avg 56.1 75.4 78.4 71.34 76.67 78.89(+2.22) 81.23(+4.56) 82.18(+5.51) 84.29 87.50

Table 4: Comparison to previous work: ge15 (Grave and Elhadad, 2015, Figure 4), zb15 (Zhang and
Barzilay, 2015), zb s15 (Zhang and Barzilay, 2015, semi-supervised with 50 annotated sentences),
mph11 (McDonald et al., 2011) and mx14 (Ma and Xia, 2014) on the Google universal treebank v2.
The mph11 results are copied from (Ma and Xia, 2014, Table 4). All results are reported on gold part
of speech tags. The numbers in parentheses are absolute improvements over (Ma and Xia, 2014). Sup
(1st) is the supervised first-order dependency parser used by (Ma and Xia, 2014) and sup(ae) is the Yara
arc-eager supervised parser (Rasooli and Tetreault, 2015).

data as source languages. The performance of θ1

improves from an average of 75.88% for a sin-
gle source language, to 79.76% for multiple lan-
guages. The performance of θ4 gives an additional
improvement to 81.23%.

Results with Multiple Source Languages, us-
ing Voting The final set of results in Table 2 are
for multiple languages using the voting strategy.
There are further improvements: model θ1 has av-
erage accuracy of 80.95%, and model θ4 has aver-
age accuracy of 82.18%.

Results with Automatic POS Tags We use our
final θ4 models to parse the treebank with auto-
matic tags provided by the same POS tagger used
for tagging the parallel data. Table 3 shows the re-
sults for the transfer methods and the supervised
parsing models of (McDonald et al., 2011) and
(Rasooli and Tetreault, 2015). The first-order su-
pervised method of (McDonald et al., 2005) gives
only a 1.7% average absolute improvement in ac-

curacy over the voting method. For one language
(Swedish), our method actually gives improved
accuracy over the 1st order parser.

Comparison to Previous Results Table 4 gives
a comparison of the accuracy on the six languages,
using the single source and multiple source meth-
ods, to previous work. As shown in the table, our
model outperforms all models: among them, the
results of (McDonald et al., 2011) and (Ma and
Xia, 2014) are directly comparable to us because
they use the same training and evaluation data.
The recent work of (Xiao and Guo, 2015) uses the
same parallel data but evaluates on CoNLL tree-
banks but their results are lower than Ma and Xia
(2014). The recent work of (Guo et al., 2015)
evaluates on the same data as ours but uses differ-
ent parallel corpora. They only reported on three
languages (German: 60.35, Spanish: 71.90 and
French: 72.93) which are all far bellow our re-
sults. The work of (Grave and Elhadad, 2015) is
the state-of-the-art fully unsupervised model with
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L
en→ trg concat voting

P80 ∪ P≥7 P100 P80 ∪ P≥7 P100 P80 ∪ P≥7 P100

sen# dep# len acc. sen# len acc. sen# dep# len acc. sen# len acc. sen# dep# len acc. sen# dep# acc.
de 34k 9.6 28.3 84.7 18k 6.8 85.8 98k 9.4 28.8 84.1 51k 6.3 88.0 75k 10.8 23.5 84.5 47k 8.2 91.4
es 108k 10.9 31.4 87.3 20k 7.4 89.4 536k 11.0 31.8 86.3 89k 7.5 89.8 346k 17.0 28.5 86.1 109k 12.1 89.2
fr 70k 10.1 32.8 85.8 13k 6.7 84.1 342k 10.5 33.0 87.5 47k 6.9 89.5 303k 14.9 29.9 87.4 78k 11.7 91.2
it 57k 10.0 31.2 84.4 9k 6.3 76.9 434k 11.1 31.3 84.7 70k 7.4 87.2 301k 15.2 28.5 84.5 101k 12.4 87.9
pt 489k 10.0 31.0 85.2 10k 6.0 84.0 462k 11.1 31.3 81.4 77k 7.3 85.4 222k 12.4 30.3 81.3 39k 8.8 85.8
sv 81k 10.4 25.8 83.1 30k 7.4 87.8 255k 9.5 23.6 84.6 79k 6.8 89.7 211k 12.2 25.2 84.2 86k 9.5 88.8

avg 140k 10.2 30.1 85.1 17k 6.8 84.7 354k 10.4 30.0 84.8 69k 7.0 88.3 243k 13.7 27.6 84.7 77k 10.4 89.0

Table 5: Table showing statistics on projected dependencies for the target languages, for the single-
source, multi-source (concat) and multi-source (voting) methods. “sen#” is the number of sentences.
“dep#” is the average number of dependencies per sentence. “len” is the average sentence length. “acc.”
is the percentage of projected dependencies that agree with the output from a supervised parser.

minimal linguistic prior knowledge. The model of
(Zhang and Barzilay, 2015) does not use any paral-
lel data but uses linguistic information across lan-
guages. Their semi-supervised model selectively
samples 50 annotated sentences but our model out-
performs their model.

Compared to the results of (McDonald et al.,
2011) and (Ma and Xia, 2014) which are directly
comparable, there are clear improvements across
all languages; the highest accuracy, 82.18%, is a
5.51% absolute improvement over the average ac-
curacy for (Ma and Xia, 2014).

5 Analysis

We conclude with some analysis of the accuracy
of the projected dependencies for the different lan-
guages, for different definitions (P100, P80 etc.),
and for different projection methods. Table 5 gives
a summary of statistics for the various languages.
Recall that German is used as the development
language in our experiments; the other languages
can be considered to be test languages. In all cases
the accuracy reported is the percentage match to a
supervised parser used to parse the same data.

There are some clear trends. The accuracy of
the P100 datasets is high, with an average accuracy
of 84.7% for the single source method, 88.3% for
the concatenation method, and 89.0% for the vot-
ing method. The voting method not only increases
accuracy over the single source method, but also
increases the number of sentences (from an aver-
age 17k to 77k) and the average number of depen-
dencies per sentence (from 6.8 to 10.4).

The accuracy of the P80 ∪ P≥7 datasets is
slightly lower, with around 83-87% accuracy for
the single source, concatenation and voting meth-
ods. The voting method gives a significant in-
crease in the number of sentences—from an av-

erage of 140k to 243k. The average sentence
length for this data is around 28 words, consid-
erably longer than the P100 data; the addition of
longer sentences is very likely beneficial to the
model. For the voting method the average number
of dependencies is 13.7, giving an average density
of 50% on these sentences.

The accuracy for the different languages, in par-
ticular for the voting data, is surprisingly uniform,
with a range of 85.8-91.4% for the P100 data, and
81.3-87.4% for the P80 ∪ P≥7 data. The number
of sentences for each language, the average length
of those sentences, and average number of depen-
dencies per sentence is also quite uniform, with
the exception of German, which is a clear outlier.
German has fewer sentences, and fewer dependen-
cies per sentence: this may account for it having
the lowest accuracy for our models. Future work
should investigate why this is the case: one hy-
pothesis is that German has quite different word
order from the other languages (it is V2, and verb
final), which may lead to a degradation in the qual-
ity of the alignments from GIZA++, or in the pro-
jection process.

Finally, figure 3 shows some randomly selected
examples from the P100 data for Spanish, giving
a qualitative feel for the data obtained using the
voting method.

6 Conclusions

We have described a density-driven method for
the induction of dependency parsers using paral-
lel data and source-language parsers. The key
ideas are a series of increasingly relaxed defini-
tions of density, together with an iterative train-
ing procedure that makes use of these definitions.
The method gives a significant gain over previous
methods, with dependency accuracies approach-
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El informe presentado por la red abarca una serie de temas muy vasta . ROOT

(a)

La Comisión debe proponer medidas para corregir estas verdaderas desviaciones . ROOT

(b)

Podrı́a lograr sus fines si los distintos paı́ses de la Unión partieran del mismo punto . ROOT

(c)

Hemos visto cooperación entre estos paı́ses en esta área . ROOT

(d)

Confirma la importancia de abordar el desafı́o de la sostenibilidad con una combinación de consolidación fiscal y reformas estructurales . ROOT

(e)

Figure 3: Randomly selected examples of Spanish dependency structures derived using the voting
method. Dashed/red dependencies are mismatches with the output of a supervised Spanish parser; all
other dependencies match the supervised parser. In these examples, 92.4% of dependencies match the
supervised parser; this is close to the average match rate on Spanish of 89.2% for the voting method.

ing the level of fully supervised methods. Future
work should consider application of the method to
a broader set of languages, and application of the
method to transfer of information other than de-
pendency structures.
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Abstract

Accurate dependency parsing requires
large treebanks, which are only available
for a few languages. We propose a method
that takes advantage of shared structure
across languages to build a mature parser
using less training data. We propose
a model for learning a shared “univer-
sal” parser that operates over an inter-
lingual continuous representation of lan-
guage, along with language-specific map-
ping components. Compared with super-
vised learning, our methods give a con-
sistent 8-10% improvement across several
treebanks in low-resource simulations.

1 Introduction

Dependency parsing is an important task for Nat-
ural Language Processing (NLP) with application
to text classification (Özgür and Güngör, 2010),
relation extraction (Bunescu and Mooney, 2005),
question answering (Cui et al., 2005), statistical
machine translation (Xu et al., 2009), and sen-
timent analysis (Socher et al., 2013). A mature
parser normally requires a large treebank for train-
ing, yet such resources are rarely available and
are costly to build. Ideally, we would be able to
construct a high quality parser with less training
data, thereby enabling accurate parsing for low-
resource languages.

In this paper we formalize the dependency pars-
ing task for a low-resource language as a domain
adaptation task, in which a target resource-poor
language treebank is treated as in-domain, while
a much larger treebank in a high-resource lan-
guage forms the out-of-domain data. In this way,
we can apply well-understood domain adaptation
techniques to the dependency parsing task. How-
ever, a crucial requirement for domain adaptation
is that the in-domain and out-of-domain data have

compatible representations. In applying our ap-
proach to data from several languages, we must
learn such a cross-lingual representation. Here
we frame this representation learning as part of a
neural network training. The underlying hypoth-
esis for the joint learning is that there are some
shared-structures across languages that we can ex-
ploit. This hypothesis is motivated by the excellent
results of the cross-lingual application of unlexi-
calised parsing (McDonald et al., 2011), whereby
a delexicalized parser constructed on one language
is applied directly to another language.

Our approach works by jointly training a neu-
ral network dependency parser to model the syn-
tax in both a source and target language. Many of
the parameters of the source and target language
parsers are shared, except for a small handful of
language-specific parameters. In this way, the in-
formation can flow back and forth between lan-
guages, allowing for the learning of a compatible
cross-lingual syntactic representation, while also
allowing the parsers to mutually correct one an-
other’s errors. We include some language-specific
components, in order to better model the lexicon
of each language and allow learning of the syntac-
tic idiosyncrasies of each language. Our experi-
ments show that this outperforms a purely super-
vised setting, on both small and large data condi-
tions, with a gain as high as 10% for small train-
ing sets. Our proposed joint training method also
out-performs the conventional cascade approach
where the parameters between source and target
languages are related together through a regular-
ization term (Duong et al., 2015).

Our model is flexible, allowing easy incorpora-
tion of peripheral information. For example, as-
suming the presence of a small bilingual dictio-
nary is befitting of a low-resource setting, as this
is prototypically one of the first artifacts gener-
ated by field linguists. We incorporate a bilin-
gual dictionary as a set of soft constraints on the
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model, such that it learns similar representations
for each word and its translation(s). For example,
the representation of house in English should be
close to haus in German. We empirically show
that adding a bilingual dictionary improves parser
performance, particularly when target data is lim-
ited.

The final contribution of the paper concerns
the learned word embeddings. We demonstrate
that these encode meaningful syntactic phenom-
ena, both in terms of the observable clusters and
through a verb classification task. The code for
this paper is published as an open source project.1

2 Related Work

This work is motivated by the idea of delexical-
ized parsing, in which a parser is built without
any lexical features and trained on a treebank for
a resource-rich source language (Zeman et al.,
2008). It is then applied directly to parse sentences
in the target resource-poor languages. Delexical-
ized parsing relies on the fact that identical part-of-
speech (POS) inventories are highly informative of
dependency relations, and that there exists shared
dependency structures across languages.

Building a dependency parser for a resource-
poor language usually starts with the delexical-
ized parser and then uses other resources to refine
the model. McDonald et al. (2011) and Ma and
Xia (2014) exploited parallel data as the bridge
to transfer constraints from the source resource-
rich language to the target resource-poor lan-
guages. Täckström et al. (2012) also used par-
allel data to induce cross-lingual word clusters
which added as features for their delexicalized
parser. Durrett et al. (2012) constructed the set of
language-independent features and used a bilin-
gual dictionary as the bridge to transfer these fea-
tures from source to target language. Täckström
et al. (2013) additionally used high-level linguis-
tic features extracted from the World Atlas of Lan-
guage Structures (WALS) (Dryer and Haspelmath,
2013).

For low-resource languages, no large paral-
lel corpus is available. Some linguists are
dependency-annotating small amounts of field
data, e.g. for Karuk, a nearly-extinct language of
Northwest California (Garrett et al., 2013). Ac-
cordingly, we adopt a different resource require-

1http://github.com/longdt219/
universal_dependency_parser

ment: a small treebank in the target low-resource
language.

Domain adaptation or joint-training is a differ-
ent branch of research, and falls outside the scope
of this paper. Nevertheless, we would like to con-
trast our work with Senna (Collobert et al., 2011),
a neural network framework to perform a vari-
ety of NLP tasks such as part-of-speech (POS)
tagging, named entity recognition (NER), chunk-
ing, and so forth. Both approaches exploit com-
mon linguistic properties of the data through joint
learning. However, Collobert et al’s goal is to find
a single input representation that can work well
for many tasks. Our goal is different: we allow
the joint-training inputs to be different but con-
strain the parameter weights in the upper layer
to be identical. Consequently, our method ap-
plies to the task where inputs are different, pos-
sibly from different languages or domains. Their
method applies for different tasks in the same lan-
guage/domain where the inputs are fairly similar.

2.1 Supervised Neural Network Parser

This section describes the monolingual neural net-
work dependency parser structure of Chen and
Manning (2014). This parser achieves excellent
performance, and has a highly flexible formula-
tion allowing auxilliary inputs. The model is based
on a transition-based dependency parser (Nivre,
2006) formulated as a neural-network classifier to
decide which transition to apply to each parsing
state configuration.2 That is, for each configura-
tion, the selected list of words, POS tags and la-
bels from the Stack, Queue and Arcs are extracted.
Each word, POS and label is mapped into a low-
dimension vector representation using an embed-
ding matrix, which is then fed into a two-layer
neural network classifier to predict the next pars-
ing action. The set of parameters for the model is
E = {Eword, Epos, Earc} for the embedding layer,
W1 for the fully connected cubic hidden layer and
W2 for the softmax output layer. The model pre-
diction function is

P (Y |X = ~x,W1,W2, E) =

softmax
(
W2 × cube(W1 × Φ [~x,E])

)
(1)

2Our approach is focused on a technique for transfer
learning which can be more widely applied to other types
of dependency parser (and models, generally) regardless of
whether they are transition-based or graph-based.
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where cube is a non-linear activation function, Φ is
the embedding function that returns a vector rep-
resentation of parsing state x using an embedding
matrix E. We refer the reader to Chen and Man-
ning (2014) for a more detailed description.

3 A Joint Interlingual Model

We assume a small treebank in a target resource-
poor language, as well as a larger treebank in the
source language. Our objective is to learn a model
of both languages, subject to the constraint that
both models are similar overall, while allowing for
some limited language variability. Instead of just
training two different parsers on source and then
on target, we train them jointly, in order to learn
an interlingual parser. This allows the method to
take maximum advantage of the limited treebank
data available, resulting in highly accurate pre-
dicted parses.

Training a monolingual parser as de-
scribed in section 2.1 requires optimizing
the simple cross-entropy learning objec-
tive, L = −∑|D|i=1 logP (Y = ~y(i)|X = ~x(i)),
where P (Y |X) is given by equation 1 and
D = {~x(i), ~y(i)}ni=1 is the training data. Joint
training of a parser over the source and target
languages can be achieved by simply adding two
such cross-entropy objectives, i.e.,

Ljoint = −
|Ds|∑
i=1

logP (Ys = ~y(i)
s |Xs = ~x(i)

s )

−
|Dt|∑
i=1

logP (Yt = ~y
(i)
t |Xt = ~x

(i)
t ) , (2)

where the training data, D = Ds ∪Dt, comprises
data in both the source and target language. How-
ever training the model according to equation 2
will result in two independent parsers. To enforce
similarity between the two parsers, we adopt pa-
rameter sharing: the neural network parameters,
W1 and W2, are identical in both parsers. Thereby

P (Yα|Xα = ~x) = P (Y |X = ~x,W1,W2, Eα) ,

where the subscript α ∈ {s, t} denotes the source
or target language. We allow the embedding
matrix Eα to differ in order to accommodate
language-specific features, in terms of the repre-
sentations of lexical types, Ewords , part-of-speech,
E

pos
s and dependency arc labels Earc

s . This reflects

the fact that different languages have different lex-
icon, parts-of-speech often exhibit different roles,
and dependency edges serve different functions,
e.g. in Korean a static verb can serve as an adjec-
tive (Kim, 2001). During training, the language-
specific errors are back propagated through dif-
ferent branches according to the language, guid-
ing learning towards an interlingual representa-
tion that informs parsing decisions in both lan-
guages. The set of parameters for the model is
W1,W2, Es, Et where Es, Et are the embedding
matrices for the source and target languages.

Generally speaking, we can understand the
model as building the universal dependency parser
that parses the universal language. Specifically,
the model is the combination of two parts: the
universal part (W1,W2) that is shared between the
languages, and the conversion part (Es, Et) that
maps a language-specific representation into the
universal language. Naturally, we could stack sev-
eral non-linear layers in the conversion compo-
nents such that the model can better transform the
input into the universal representation; we leave
this exploration for future work. Currently, our
cross-lingual word embeddings are meaningful for
a pair of source and target languages. However,
our model can easily be used for joint training over
k > 2 languages. We also leave this avenue of en-
quiry for future work

One concern from equation 2 is that when the
source language treebank Ds is much bigger than
the target language treebank Dt, it is likely to
dominate, and consequently, learning will mainly
focus on optimizing the source language parser.
We adjust for this disparity by balancing the two
datasets,Ds andDt, during training. When select-
ing mini-batches for online gradient updates, we
select an equal number of classification instances
from the source and target languages. Thus, for
each step |Ds| = |Dt|, effectively reweighting the
cross-entropy components in (2) to ensure parity
between the languages.

The other concern is over-fitting, especially
when we only have a small treebank in the tar-
get language. As suggested by Chen and Man-
ning (2014), we apply drop-out, a form of reg-
ularization for both source and target language.
That is, we randomly drop some of the activa-
tion units from both hidden layer and input layer.
Following Srivastava et al. (2014), we randomly
dropout 20% of the input layer and 50% of the hid-
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den layer. Empirically, we observe a substantial
improvement applying dropout to the model over
MLE or l2 regularization.

3.1 Incorporating a Dictionary
Our model is flexible, enabling us to freely add
additional components. In this section, we assume
the presence of a bilingual dictionary between the
source and target language. We seek to incorpo-
rate this dictionary as a part of model learning, to
encode the intuition that if two lexical items are
translations of one another, the parser should treat
them similarly.3 Recall that the mapping layer
is the combination of word, pos and arc embed-
dings, i.e., Eα = {Eword

α , E
pos
α , Earc

α }. We can
easily add bilingual dictionary constraints to the
model in the form of regularization to minimize
the l2 distance between word representations, i.e.,∑
〈i,j〉∈D ‖Eword(i)

s − Eword(j)
t ‖2F , where D com-

prises translation pairs, word(i) and word(j).
When the languages share the same POS tagset

and arc set,4 we can also add further constraints
such as their language-specific embeddings be
close together. This results a regularised training
objective,

Ldict = Ljoint−λ
( ∑
〈i,j〉∈D

‖Eword(i)
s −Eword(j)

t ‖2F

+ ‖Epos
s − Epos

t ‖2F + ‖Earc
s − Earc

t ‖2F
)
, (3)

where λ ∈ [0,∞] controls to what degree we
bind these words or pos tags or arc labels to-
gether, with high λ tying the parameters and small
λ allowing independent learning. We expect the
best value of λ to fall somewhere between these
extremes. Finally, we use a mini-batch size of
1000 instance pairs and adaptive learning rate
trainer, adagrad (Duchi et al., 2011) to build our
two separate models corresponding to equations 2
and 3.

4 Experiments

In this section, we compare our joint training ap-
proach with baseline methods of supervised learn-
ing in the target language, and cascaded learning
of source and target parsers.

3However, this is not always the case. For example, modal
or auxiliary verbs in English often have no translations in
different languages or map to words with different syntactic
functions.

4As was the case for our experiments.

4.1 Dataset
We experiment with the Universal Dependency
Treebank (UDT) V1.0 (Nivre et al., 2015), sim-
ulating low resource settings.5 This treebank has
many desirable properties for our model: the de-
pendency types (arc labels set) and coarse POS
tagset are the same across languages. This re-
moves the need for mapping the source and target
language tagsets to a common tagset. Moreover,
the dependency types are also common across
languages allowing evaluation of the labelled at-
tachment score (LAS). The treebank covers 10
languages,6 with some languages very highly
resourced—Czech, French and Spanish have 400k
tokens—and only modest amounts of data for
other languages—Hungarian and Irish have only
around 25k tokens. Cross-lingual models assume
English as the source language, for which we have
a large treebank, and only a small treebank of 3k
tokens exists in each target language, simulated by
subsampling the corpus.

4.2 Baseline Cascade Model
We compare our approach to a baseline inter-
lingual model based on the same parsing algo-
rithm as presented in section 2.1, but with cas-
caded training (Duong et al., 2015). This works
by first learning the source language parser, and
then training the target language parser using a
regularization term to minimise the distance be-
tween the parameters of the target parser and the
source parser (which is fixed). In this way, some
structural information from the source parser can
be used in the target parser, however it is likely
that the representation will be overly biased to-
wards the source language and consequently may
not prove as useful for modelling the target.

4.3 Monolingual Word Embeddings
While the Epos and Earc are randomly initialized,
we initialize both the source and target language
word embeddings Eword

s , Eword
t of our neural net-

work models with pre-trained embeddings. This is
an advantage since we can incorporate the mono-
lingual data which is often available, even for

5Evaluating on truly resource-poor languages would be
preferable to simulation. However for ease of training and
evaluation, which requires a small treebank in the target lan-
guage, we simulate the low-resource setting using a small part
of the UDT.

6Czech (cs), English (en), Finnish (fi), French (fr), Ger-
man (de), Hungarian (hu), Irish (ga), Italian (it), Spanish (es),
Swedish (sv).
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Figure 1: Sensitivity of regularization parameter λ
against the LAS measured on the Swedish devel-
opment set trained on 1000 (tokens).

resource-poor languages. We collect monolingual
data for each language from the Machine Trans-
lation Workshop (WMT) data,7 Europarl (Koehn,
2005) and EU Bookshop Corpus (Skadiņš et al.,
2014). The size of monolingual data also varies
significantly, with as much as 400 million tokens
for English and German, and as few as 4 mil-
lion tokens for Irish. We use the skip-gram model
(Mikolov et al., 2013b) to induce 50-dimensional
word embeddings.

4.4 Bilingual Dictionary

For the extended model as described in section 3.1,
we also need a bilingual dictionary. We extract
dictionaries from PanLex (Kamholz et al., 2014)
which currently covers around 1300 language va-
rieties and about 12 million expressions. This
dataset is growing and aims at covering all lan-
guages in the world and up to 350 million expres-
sions. The translations in PanLex come from var-
ious sources such as glossaries, dictionaries, au-
tomatic inference from other languages, etc. Nat-
urally, the bilingual dictionary size varies greatly
among resource-poor and resource-rich languages.

4.5 Regularization Parameter Tuning

Joint training with a dictionary (see equation 3)
includes a regularization sensitivity parameter λ.
This parameter controls to what extent we should
bind the source words and their target translation,
common POS tags and arcs together. In this sec-
tion we measure the sensitivity of our approach
with respect to this parameter. In a real world sce-

7http://www.statmt.org/wmt14/

nario, getting development data to tune this param-
eter is difficult. Thus, we want a parameter that
can work well cross-lingually. To simulate this,
we only tune the parameter on one language and
apply it directly to different languages. We trained
on a small Swedish treebank with 1k tokens, test-
ing several different values of λ. We evaluated on
the Swedish development dataset. Figure 1 shows
the labelled attachment score (LAS) for different
λ. It’s clearly visible that λ = 0.0001 gives the
maximum LAS on the development set. Thus, we
use this value for all the experiments involving a
dictionary hereafter.

4.6 Results

For our initial experiments we assume that we
have only a small target treebank with 3000 to-
kens (around 200 sentences). Ideally the much
larger source language (English) treebank should
be able to improve parser performance versus sim-
ple supervised learning on such a small collection.
We apply the joint model (equation 2) and joint
model with the dictionary constraints (equation 3)
for each target language,

The results are reported in Table 1. The su-
pervised neural network dependency parser per-
formed worst, as expected, and the baseline cas-
cade model consistently outperformed the super-
vised model on all languages by an average mar-
gin of 5.6% (absolute).8 The joint model also
consistently out-performed both baselines giving
a further 1.9% average improvement over the cas-
cade. This was despite the fact that the cascaded
model had the benefit of tuning for the regulariza-
tion parameters on a development corpus, while
the joint model had no parameter tuning. Note that
the improvement varies substantially across lan-
guages, and is largest for Czech but is only minor
for Swedish. The joint model with the bilingual
dictionary outperforms the joint model, however,
the improvement is modest (0.7%). Nevertheless,
this model gives substantial improvements com-
pared with the cascaded and the supervised model
(2.6% and 8.2%).

5 Analysis

5.1 Learning Curve

In section 4.6, we used a 3k token treebank in the
target language. What if we have more or less

8We use absolute percentage comparisons herein.
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cs de es fi fr ga hu it sv µ

Supervised 43.1 47.3 60.3 46.4 56.2 59.4 48.4 65.4 52.6 53.2
Baseline Cascaded 49.6 59.2 66.4 49.5 63.2 59.5 50.5 69.9 61.4 58.8
Joint 55.2 61.2 69.1 51.4 65.3 60.6 51.2 71.2 61.4 60.7
Joint + Dict 55.7 61.8 70.5 51.5 67.2 61.1 51.0 71.3 62.5 61.4

Table 1: Labelled attachment score (LAS) for each model type trained on 3000 tokens for each target
language (columns). All bar the supervised model also use a large English treebank.
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Figure 2: Learning curve for Joint model, Joint
+ Dict model, Baseline cascaded and Supervised
model: the x-axis is the size of data (number of
tokens); the y-axis is the average LAS measured
on 9 languages (except English).

target language data? Figure 2 shows the learn-
ing curve with respect to various models on differ-
ent data sizes averaged over all target languages.
For small datasets of 1k training tokens, the cas-
caded model, joint model and joint + dict model
performed similarly well, out-performing the su-
pervised model by about 10% (absolute). With
more training data, we see interesting changes
to the relative performance of the different mod-
els. While the baseline cascade model still out-
performs the supervised model, the improvement
is diminishing, and by 15k, the difference is only
2.9%. On the other hand, compared with the su-
pervised model, the joint and joint + dict models
perform consistently well at all sizes, maintaining
an 8% lead at 15k. This shows the superiority of
joint training compared with single language train-
ing.

To understand this pattern of performance dif-
ferences for the cascade versus the joint model,
one needs to consider the cascade model formu-
lation. In this approach, the target language pa-
rameters are tied (softly) with the source language

parameters through regularization. This is a bene-
fit for small datasets, providing a smoothing func-
tion to limit overtraining. However, when we
have more training data, these constraints limit
the capacity of the model to describe the target
data. This is compounded by the problem that
the source representation may not be appropriate
for modelling the target language, and there is no
way to correct for this. In contrast the joint model
learns a mutually compatible representation auto-
matically during joint training.

The performance results for the joint model
with and without the dictionary are similar over-
all. Only on small datasets (1k, 3k), is the dif-
ference notable. From 5k tokens, the bilingual
dictionary doesn’t confer additional information,
presumably as there is sufficient data for learning
syntactic word representations. Moreover, trans-
lation entries exist between syntactically related
word types as well as semantically related pairs,
with the latter potentially limiting the beneficial
effect of the dictionary.

When training on all the target language data,
the supervised model does well, surpassing the
cascade model. Surprisingly, the joint models out-
perform slightly, yielding a 0.4% improvement.
This is an interesting observation suggesting that
our method has potential for use not only for low
resource problems, but also high resource settings.

5.2 Different Tagsets

In the above experiments, we used the universal
POS tagset for all the languages in the corpus.
However, for some languages,9 the UDT also pro-
vides language specific POS tags. We use this data
to test the relative performance of the model using
a universal tagset cf. language specific tagsets. In
this experiment, we applied the same joint model
(see §3) but with a language specific tagset instead
of UPOS for these languages. We expect the joint

9en, cs, fi, ga, it and sv.
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Figure 3: Learning curve for joint model using the
UPOS tagset or language specific POS tagset: the
x-axis is the size of data (number of tokens); the y-
axis is the average LAS measured on 5 languages
(except English).

model to automatically learn to project the differ-
ent tagsets into a common space, i.e., implicitly
learn a tagset mapping between languages. Fig-
ure 3 shows the learning curve comparing the joint
model with the two types of POS tagsets. For the
small dataset, it is clear that the data is insuffi-
cient for the model to learn a good tagset map-
ping, especially for a morphologically rich lan-
guage like Czech. However, with more data, the
model is better able to learn the tagset mapping as
part of joint training. Beyond 15k tokens, the joint
model using the language specific POS tagset out-
performs UPOS. Clearly there is some information
lost in the UPOS tagset, although the UPOS map-
ping simultanously provides implicit linguistic su-
pervision. This explains why the UPOS might be
useful in small data scenarios, but detrimental at
scale. Using all the target data (“All”) the language
specific POS provides a 1% (absolute) gain over
UPOS.

5.3 Universal Representation

As described in section 3, we can consider our
joint model as the combination of two parts: a uni-
versal parser and a language-specific embedding
Es or Et that converts the source and target lan-
guage into the universal representation. We now
seek to analyse qualitatively this universal repre-
sentation through visualization. For this purpose
we use a joint model of English and French, using
all the available French treebank (more than 350k

NOUN PROPN ADV DET ADJ ADP VERB NUM

`

      English
      French

Figure 4: Universal Language visualization ac-
cording to language and POS. (This should be
viewed in colour.)

tokens) as well as a bilingual dictionary.10 Fig-
ure 4 shows the t-SNE (Van Der Maaten, 2014)
projection of the 50 dimensional word embed-
dings in both languages. We can see that English
and French are mixed nicely together. The colour-
ing denotes the POS tag, showing clearly that the
words with similar POS tags are grouped together
regardless of languages. This is partially under-
standable since word embeddings for dependency
parsing need to convey the dependency context
rather than surrounding words, as in most distri-
butional embedding models. Words having similar
dependency relation should be grouped together as
they are treated similarly by the parser.

Some of the learned cross-lingual word-
embeddings are shown in Table 2, which includes
the five nearest neighbours to selected English
words according to the monolingual word embed-
ding (section 4.3) and our cross-lingual depen-
dency word embeddings, trained using PanLex.
The monolingual sets appear to be strongly char-
acterised by distributional similarity. The cross-
lingual embeddings display greater semantic sim-
ilarity, while being more variable morphosyntacti-
cally. In many cases, the top five words of English
and French are translations of each other, but with
varying inflectional endings in the French forms.
For example, “buy” vs “vendez” or “invest” vs “in-

10We also visualized the cross-lingual word embeddings
without the dictionary, however the results were rather odd.
Although we saw coherent POS clusters, the two languages
were largely disjoint. We speculate that many components of
the embeddings are use for only one language, and these out-
number the shared components, and thus more careful pro-
jection is needed for meaningful visualisation.
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Words Mono
Cross lingual embedding

En Fr

sell

buy buy revendre
eat invest vendez
produce integrate acheter
compete guide achètent
burn eat investir

playing

serving sailing jouait
acting play navigue
paying moving jouent
pursuing faces pièce
running ran jouer

hard

difficult crazy dur
harder strange dures
easy beautiful hard
magnificent friendly fou
painful difficult folles

initially

originally originally réellement
previously previously déjà
officially officially récemment
basically actually dernièrement
already already surroı̂t

university

teachers school universitaire
student education université
teacher student école
student medicine scolaire
training participant school

mobile

wireless computers mobile
goods Web mobiles
online Internet ordinateurs
freight computer Web
broadband web internet

Table 2: Examples of 5 nearest neighbours with
the target English word using the original mono-
lingual word embedding and our cross-lingual de-
pendency based word embedding.

vestir”. This is a direct consequence of incorpo-
rating the bilingual lexicon. Moreover, the top five
closest words of both English and French mostly
have the same part of speech. This is consistent
with the finding in Figure 4.

Levin (1993) has shown that there is a strong
connection between a verb’s meaning and its syn-
tactic behaviour. We compare the English side
of our cross-lingual dependency based word em-
beddings with various other pre-trained monolin-
gual English word embeddings and our mono-
lingual embedding (section 4.3) on Verb-143
dataset (Baker et al., 2014). This dataset con-
tains 143 pairs of verbs that are manually given
score from 1 to 10 according to the meaning sim-
ilarity. Table 3 shows the Pearson correlation

Correlation

Senna (Collobert et al., 2011) 0.36
Skip-gram (Mikolov et al., 2013a) 0.27
RNN (Mikolov et al., 2011) 0.31
Our monolingual embedding 0.39
Our crosslingual embedding 0.44

Table 3: Compare the English side of our cross-
lingual embeddings with various other embed-
dings evaluated on Verb-143 dataset (Baker et al.,
2014). We directly use the pre-trained models
from corresponding papers.

with human judgment for our embeddings and
other pre-trained embeddings. As expected, our
cross-lingual embeddings out-perform others em-
beddings on this dataset. This is partly because the
syntactic behaviour is well encoded in our word
embeddings through dependency relation.

Our embeddings encode not just cross-lingual
correspondences, but also capture dependency re-
lations which we expect might be beneficial for
other NLP tasks based on dependency parsing,
e.g., cross-lingual semantic role labelling where
long-distance relationship can be captured by
word embedding.

6 Conclusion

In this paper, we present a training method for
building a dependency parser for a resource-
poor language using a larger treebank in a high-
resource language. Our approach takes advantage
of the shared structure among languages to learn
a universal parser and language-specific mappings
to the lexicon, parts of speech and dependency
arcs. Compared with supervised learning, our
joint model gives a consistent 8-10% improvement
over several different datasets in simulation low-
resource scenarios. Interestingly, some small but
consistent gains are still realised by joint cross-
lingual training even on large complete treebanks.
This suggests that our approach has utility not just
in low resource settings. Our joint model is flexi-
ble, allowing the incorporation of a bilingual dic-
tionary, which results in small improvements par-
ticularly for tiny training scenarios.

As the side-effect of training our joint model,
we obtain cross-lingual word embeddings special-
ized for dependency parsing. We expect these em-
beddings to be beneficial to other syntatic and se-
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mantic tasks. In future work, we plan to extend
joint training to several languages, and further ex-
plore the idea of learning and exploiting cross-
lingual embeddings.
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Abstract

We present extensions to a continuous-
state dependency parsing method that
makes it applicable to morphologically
rich languages. Starting with a high-
performance transition-based parser that
uses long short-term memory (LSTM) re-
current neural networks to learn repre-
sentations of the parser state, we replace
lookup-based word representations with
representations constructed from the or-
thographic representations of the words,
also using LSTMs. This allows statistical
sharing across word forms that are simi-
lar on the surface. Experiments for mor-
phologically rich languages show that the
parsing model benefits from incorporating
the character-based encodings of words.

1 Introduction

At the heart of natural language parsing is the chal-
lenge of representing the “state” of an algorithm—
what parts of a parse have been built and what
parts of the input string are not yet accounted for—
as it incrementally constructs a parse. Traditional
approaches rely on independence assumptions, de-
composition of scoring functions, and/or greedy
approximations to keep this space manageable.
Continuous-state parsers have been proposed, in
which the state is embedded as a vector (Titov
and Henderson, 2007; Stenetorp, 2013; Chen and
Manning, 2014; Dyer et al., 2015; Zhou et al.,
2015; Weiss et al., 2015). Dyer et al. reported
state-of-the-art performance on English and Chi-
nese benchmarks using a transition-based parser
whose continuous-state embeddings were con-
structed using LSTM recurrent neural networks
(RNNs) whose parameters were estimated to max-
imize the probability of a gold-standard sequence
of parse actions.

The primary contribution made in this work is to
take the idea of continuous-state parsing a step fur-
ther by making the word embeddings that are used
to construct the parse state sensitive to the mor-
phology of the words.1 Since it it is well known
that a word’s form often provides strong evidence
regarding its grammatical role in morphologically
rich languages (Ballesteros, 2013, inter alia), this
has promise to improve accuracy and statistical ef-
ficiency relative to traditional approaches that treat
each word type as opaque and independently mod-
eled. In the traditional parameterization, words
with similar grammatical roles will only be em-
bedded near each other if they are observed in
similar contexts with sufficient frequency. Our
approach reparameterizes word embeddings using
the same RNN machinery used in the parser: a
word’s vector is calculated based on the sequence
of orthographic symbols representing it (§3).

Although our model is provided no supervision
in the form of explicit morphological annotation,
we find that it gives a large performance increase
when parsing morphologically rich languages in
the SPMRL datasets (Seddah et al., 2013; Seddah
and Tsarfaty, 2014), especially in agglutinative
languages and the ones that present extensive case
systems (§4). In languages that show little mor-
phology, performance remains good, showing that
the RNN composition strategy is capable of cap-
turing both morphological regularities and arbi-
trariness in the sense of Saussure (1916). Finally,
a particularly noteworthy result is that we find that
character-based word embeddings in some cases
obviate explicit POS information, which is usually
found to be indispensable for accurate parsing.

A secondary contribution of this work is to
show that the continuous-state parser of Dyer et al.
(2015) can learn to generate nonprojective trees.
We do this by augmenting its transition operations

1Software for replicating the experiments is available
from https://github.com/clab/lstm-parser.
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with a SWAP operation (Nivre, 2009) (§2.4), en-
abling the parser to produce nonprojective depen-
dencies which are often found in morphologically
rich languages.

2 An LSTM Dependency Parser

We begin by reviewing the parsing approach of
Dyer et al. (2015) on which our work is based.

Like most transition-based parsers, Dyer et al.’s
parser can be understood as the sequential manip-
ulation of three data structures: a buffer B initial-
ized with the sequence of words to be parsed, a
stack S containing partially-built parses, and a list
A of actions previously taken by the parser. In
particular, the parser implements the arc-standard
parsing algorithm (Nivre, 2004).

At each time step t, a transition action is ap-
plied that alters these data structures by pushing
or popping words from the stack and the buffer;
the operations are listed in Figure 1.

Along with the discrete transitions above, the
parser calculates a vector representation of the
states of B, S, and A; at time step t these are de-
noted by bt, st, and at, respectively. The total
parser state at t is given by

pt = max {0,W[st;bt;at] + d} (1)

where the matrix W and the vector d are learned
parameters. This continuous-state representation
pt is used to decide which operation to apply next,
updating B, S, and A (Figure 1).

We elaborate on the design of bt, st, and at us-
ing RNNs in §2.1, on the representation of partial
parses in S in §2.2, and on the parser’s decision
mechanism in §2.3. We discuss the inclusion of
SWAP in §2.4.

2.1 Stack LSTMs

RNNs are functions that read a sequence of vectors
incrementally; at time step t the vector xt is read in
and the hidden state ht computed using xt and the
previous hidden state ht−1. In principle, this al-
lows retaining information from time steps in the
distant past, but the nonlinear “squashing” func-
tions applied in the calcluation of each ht result
in a decay of the error signal used in training with
backpropagation. LSTMs are a variant of RNNs
designed to cope with this “vanishing gradient”
problem using an extra memory “cell” (Hochreiter
and Schmidhuber, 1997; Graves, 2013).

Past work explains the computation within an
LSTM through the metaphors of deciding how
much of the current input to pass into memory
(it) or forget (ft). We refer interested readers to
the original papers and present only the recursive
equations updating the memory cell ct and hidden
state ht given xt, the previous hidden state ht−1,
and the memory cell ct−1:

it = σ(Wixxt + Wihht−1 + Wicct−1 + bi)
ft = 1− it
ct = ft � ct−1+

it � tanh(Wcxxt + Wchht−1 + bc)
ot = σ(Woxxt + Wohht−1 + Wocct + bo)
ht = ot � tanh(ct),

where σ is the component-wise logistic sig-
moid function and � is the component-wise
(Hadamard) product. Parameters are all repre-
sented using W and b. This formulation differs
slightly from the classic LSTM formulation in that
it makes use of “peephole connections” (Gers et
al., 2002) and defines the forget gate so that it sums
with the input gate to 1 (Greff et al., 2015). To im-
prove the representational capacity of LSTMs (and
RNNs generally), they can be stacked in “layers.”
In these architectures, the input LSTM at higher
layers at time t is the value of ht computed by the
lower layer (and xt is the input at the lowest layer).

The stack LSTM augments the left-to-right se-
quential model of the conventional LSTM with a
stack pointer. As in the LSTM, new inputs are
added in the right-most position, but the stack
pointer indicates which LSTM cell provides ct−1

and ht−1 for the computation of the next iterate.
Further, the stack LSTM provides a pop opera-
tion that moves the stack pointer to the previous
element. Hence each of the parser data structures
(B, S, and A) is implemented with its own stack
LSTM, each with its own parameters. The values
of bt, st, and at are the ht vectors from their re-
spective stack LSTMs.

2.2 Composition Functions

Whenever a REDUCE operation is selected, two
tree fragments are popped off of S and combined
to form a new tree fragment, which is then popped
back onto S (see Figure 1). This tree must be em-
bedded as an input vector xt.

To do this, Dyer et al. (2015) use a recursive
neural network gr (for relation r) that composes
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Stackt Buffert Action Stackt+1 Buffert+1 Dependency
(u, u), (v, v), S B REDUCE-RIGHT(r) (gr(u,v), u), S B u

r→ v

(u, u), (v, v), S B REDUCE-LEFT(r) (gr(v,u), v), S B u
r← v

S (u, u), B SHIFT (u, u), S B —
(u, u), (v, v), S B SWAP (u, u), S (v, v), B —

Figure 1: Parser transitions indicating the action applied to the stack and buffer and the resulting stack and
buffer states. Bold symbols indicate (learned) embeddings of words and relations, script symbols indicate
the corresponding words and relations. Dyer et al. (2015) used the SHIFT and REDUCE operations in their
continuous-state parser; we add SWAP.

the representations of the two subtrees popped
from S (we denote these by u and v), resulting in
a new vector gr(u,v) or gr(v,u), depending on
the direction of attachment. The resulting vector
embeds the tree fragment in the same space as the
words and other tree fragments. This kind of com-
position was thoroughly explored in prior work
(Socher et al., 2011; Socher et al., 2013b; Her-
mann and Blunsom, 2013; Socher et al., 2013a);
for details, see Dyer et al. (2015).

2.3 Predicting Parser Decisions
The parser uses a probabilistic model of parser de-
cisions at each time step t. Letting A(S,B) de-
note the set of allowed transitions given the stack
S and buffer S (i.e., those where preconditions
are met; see Figure 1), the probability of action
z ∈ A(S,B) defined using a log-linear distribu-
tion:

p(z | pt) =
exp

(
g>z pt + qz

)∑
z′∈A(S,B) exp

(
g>z′pt + qz′

) (2)

(where gz and qz are parameters associated with
each action type z).

Parsing proceeds by always choosing the most
probable action from A(S,B). The probabilistic
definition allows parameter estimation for all of
the parameters (W∗, b∗ in all three stack LSTMs,
as well as W, d, g∗, and q∗) by maximizing the
conditional likelihood of each correct parser deci-
sions given the state.

2.4 Adding the SWAP Operation
Dyer et al. (2015)’s parser implemented the most
basic version of the arc-standard algorithm, which
is capable of producing only projective parse trees.
In order to deal with nonprojective trees, we also
add the SWAP operation which allows nonprojec-
tive trees to be produced.

The SWAP operation, first introduced by Nivre
(2009), allows a transition-based parser to produce

nonprojective trees. Here, the inclusion of the
SWAP operation requires breaking the linearity of
the stack by removing tokens that are not at the top
of the stack. This is easily handled with the stack
LSTM. Figure 1 shows how the parser is capable
of moving words from the stack (S) to the buffer
(B), breaking the linear order of words. Since a
node that is swapped may have already been as-
signed as the head of a dependent, the buffer (B)
can now also contain tree fragments.

3 Word Representations

The main contribution of this paper is to change
the word representations. In this section, we
present the standard word embeddings as in Dyer
et al. (2015), and the improvements we made gen-
erating word embeddings designed to capture mor-
phology based on orthographic strings.

3.1 Baseline: Standard Word Embeddings

Dyer et al.’s parser generates a word representation
for each input token by concatenating two vectors:
a vector representation for each word type (w)
and a representation (t) of the POS tag of the to-
ken (if it is used), provided as auxiliary input to the
parser.2 A linear map (V) is applied to the result-
ing vector and passed through a component-wise
ReLU:

x = max {0,V[w; t] + b}

For out-of-vocabulary words, the parser uses an
“UNK” token that is handled as a separate word
during parsing time. This mapping can be shown
schematically as in Figure 2.

2Dyer et al. (2015), included a third input representation
learned from a neural language model (w̃LM). We do not in-
clude these pretrained representations in our experiments, fo-
cusing instead on character-based representations.
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Figure 2: Baseline model word embeddings for an
in-vocabulary word that is tagged with POS tag
NN (right) and an out-of-vocabulary word with
POS tag JJ (left).

3.2 Character-Based Embeddings of Words
Following Ling et al. (2015), we compute
character-based continuous-space vector embed-
dings of words using bidirectional LSTMs (Graves
and Schmidhuber, 2005). When the parser initi-
ates the learning process and populates the buffer
with all the words from the sentence, it reads the
words character by character from left to right and
computes a continuous-space vector embedding
the character sequence, which is the h vector of
the LSTM; we denote it by

→
w. The same process

is also applied in reverse (albeit with different pa-
rameters), computing a similar continuous-space
vector embedding starting from the last character
and finishing at the first (

←
w); again each character

is represented with an LSTM cell. After that, we
concatenate these vectors and a (learned) represen-
tation of their tag to produce the representation w.
As in §3.1, a linear map (V) is applied and passed
through a component-wise ReLU.

x = max
{
0,V[

→
w;
←
w; t] + b

}
This process is shown schematically in Figure 3.

Note that under this representation, out-of-
vocabulary words are treated as bidirectional
LSTM encodings and thus they will be “close” to
other words that the parser has seen during train-
ing, ideally close to their more frequent, syntacti-
cally similar morphological relatives. We conjec-
ture that this will give a clear advantage over a sin-
gle “UNK” token for all the words that the parser
does not see during training, as done by Dyer et
al. (2015) and other parsers without additional re-
sources. In §4 we confirm this hypothesis.

4 Experiments

We applied our parsing model and several varia-
tions of it to several parsing tasks and report re-
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Figure 3: Character-based word embedding of the
word party. This representation is used for both
in-vocabulary and out-of-vocabulary words.

sults below.

4.1 Data

In order to find out whether the character-based
representations are capable of learning the mor-
phology of words, we applied the parser to mor-
phologically rich languages specifically the tree-
banks of the SPMRL shared task (Seddah et
al., 2013; Seddah and Tsarfaty, 2014): Arabic
(Maamouri et al., 2004), Basque (Aduriz et al.,
2003), French (Abeillé et al., 2003), German
(Seeker and Kuhn, 2012), Hebrew (Sima’an et al.,
2001), Hungarian (Vincze et al., 2010), Korean
(Choi, 2013), Polish (Świdziński and Woliński,
2010) and Swedish (Nivre et al., 2006b). For all
the corpora of the SPMRL Shared Task we used
predicted POS tags as provided by the shared task
organizers.3 For these datasets, evaluation is cal-
culated using eval07.pl, which includes punc-
tuation.

We also experimented with the Turkish de-
pendency treebank4 (Oflazer et al., 2003) of the
CoNLL-X Shared Task (Buchholz and Marsi,
2006). We used gold POS tags, as is common with
the CoNLL-X data sets.

To put our results in context with the most re-
cent neural network transition-based parsers, we
run the parser in the same Chinese and English

3The POS tags were calculated with the MarMot tag-
ger (Müller et al., 2013) by the best performing system of
the SPMRL Shared Task (Björkelund et al., 2013). Arabic:
97.38. Basque: 97.02. French: 97.61. German: 98.10. He-
brew: 97.09. Hungarian: 98.72. Korean: 94.03. Polish:
98.12. Swedish: 97.27.

4Since the Turkish dependency treebank does not have a
development set, we extracted the last 150 sentences from the
4996 sentences of the training set as a development set.
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setups as Chen and Manning (2014) and Dyer et
al. (2015). For Chinese, we use the Penn Chi-
nese Treebank 5.1 (CTB5) following Zhang and
Clark (2008b),5 with gold POS tags. For En-
glish, we used the Stanford Dependency (SD) rep-
resentation of the Penn Treebank6 (Marcus et al.,
1993; Marneffe et al., 2006).7. Results for Turk-
ish, Chinese, and English are calculated using the
CoNLL-X eval.pl script, which ignores punc-
tuation symbols.

4.2 Experimental Configurations
In order to isolate the improvements provided by
the LSTM encodings of characters, we run the
stack LSTM parser in the following configura-
tions:

• Words: words only, as in §3.1 (but without
POS tags)

• Chars: character-based representations of
words with bidirectional LSTMs, as in §3.2
(but without POS tags)

• Words + POS: words and POS tags (§3.1)

• Chars + POS: character-based representa-
tions of words with bidirectional LSTMs plus
POS tags (§3.2)

None of the experimental configurations in-
clude pretrained word-embeddings or any addi-
tional data resources. All experiments include the
SWAP transition, meaning that nonprojective trees
can be produced in any language.

Dimensionality. The full version of our parsing
model sets dimensionalities as follows. LSTM
hidden states are of size 100, and we use two
layers of LSTMs for each stack. Embeddings of
the parser actions used in the composition func-
tions have 20 dimensions, and the output embed-
ding size is 20 dimensions. The learned word
representations embeddings have 32 dimensions
when used, while the character-based representa-
tions have 100 dimensions, when used. Part of
speech embeddings have 12 dimensions. These di-
mensionalities were chosen after running several
tests with different values, but a more careful se-
lection of these values would probably further im-
prove results.

5Training: 001–815, 1001–1136. Development: 886–
931, 1148–1151. Test: 816–885, 1137–1147.

6Training: 02–21. Development: 22. Test: 23.
7The POS tags are predicted by using the Stanford Tagger

(Toutanova et al., 2003) with an accuracy of 97.3%.

4.3 Training Procedure

Parameters are initialized randomly—refer to
Dyer et al. (2015) for specifics—and optimized
using stochastic gradient descent (without mini-
batches) using derivatives of the negative log like-
lihood of the sequence of parsing actions com-
puted using backpropagation. Training is stopped
when the learned model’s UAS stops improving
on the development set, and this model is used to
parse the test set. No pretraining of any parameters
is done.

4.4 Results and Discussion

Tables 1 and 2 show the results of the parsers for
the development sets and the final test sets, respec-
tively. Most notable are improvements for agglu-
tinative languages—Basque, Hungarian, Korean,
and Turkish—both when POS tags are included
and when they are not. Consistently, across all
languages, Chars outperforms Words, suggest-
ing that the character-level LSTMs are learning
representations that capture similar information to
parts of speech. On average, Chars is on par with
Words + POS, and the best average of labeled at-
tachment scores is achieved with Chars + POS.

It is common practice to encode morphological
information in treebank POS tags; for instance, the
Penn Treebank includes English number and tense
(e.g., NNS is plural noun and VBD is verb in past
tense). Even if our character-based representations
are capable of encoding the same kind of informa-
tion, existing POS tags suffice for high accuracy.
However, the POS tags in treebanks for morpho-
logically rich languages do not seem to be enough.

Swedish, English, and French use suffixes for
the verb tenses and number,8 while Hebrew uses
prepositional particles rather than grammatical
case. Tsarfaty (2006) and Cohen and Smith (2007)
argued that, for Hebrew, determining the correct
morphological segmentation is dependent on syn-
tactic context. Our approach sidesteps this step,
capturing the same kind of information in the vec-
tors, and learning it from syntactic context. Even
for Chinese, which is not morphologically rich,
Chars shows a benefit over Words, perhaps by
capturing regularities in syllable structure within
words.

8Tense and number features provide little improvement in
a transition-based parser, compared with other features such
as case, when the POS tags are included (Ballesteros, 2013).
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UAS

Language Words Chars Words Chars
+ POS + POS

Arabic 86.14 87.20 87.44 87.07
Basque 78.42 84.97 83.49 85.58
French 84.84 86.21 87.00 86.33
German 88.14 90.94 91.16 91.23
Hebrew 79.73 79.92 81.99 80.76
Hungarian 72.38 80.16 78.47 80.85
Korean 78.98 88.98 87.36 89.14
Polish 73.29 85.69 89.32 88.54
Swedish 73.44 75.03 80.02 78.85
Turkish 71.10 74.91 77.13 77.96
Chinese 79.43 80.36 85.98 85.81
English 91.64 91.98 92.94 92.49
Average 79.79 83.86 85.19 85.38

LAS

Language Words Chars Words Chars
+ POS + POS

Arabic 82.73 84.34 84.81 84.36
Basque 67.08 78.22 74.31 79.52
French 80.32 81.70 82.71 81.51
German 85.36 88.68 89.04 88.83
Hebrew 69.42 70.58 74.11 72.18
Hungarian 62.14 75.61 69.50 76.16
Korean 67.48 86.80 83.80 86.88
Polish 65.13 78.23 81.84 80.97
Swedish 64.77 66.74 72.09 69.88
Turkish 53.98 62.91 62.30 62.87
Chinese 75.64 77.06 84.36 84.10
English 88.60 89.58 90.63 90.08
Average 71.89 78.37 79.13 79.78

Table 1: Unlabeled attachment scores (left) and labeled attachment scores (right) on the development
sets (not a standard development set for Turkish). In each table, the first two columns show the results of
the parser with word lookup (Words) vs. character-based (Chars) representations. The last two columns
add POS tags. Boldface shows the better result comparing Words vs. Chars and comparing Words +
POS vs. Chars + POS.

UAS

Language Words Chars Words Chars
+ POS + POS

Arabic 85.21 86.08 86.05 86.07
Basque 77.06 85.19 82.92 85.22
French 83.74 85.34 86.15 85.78
German 82.75 86.80 87.33 87.26
Hebrew 77.62 79.93 80.68 80.17
Hungarian 72.78 80.35 78.64 80.92
Korean 78.70 88.39 86.85 88.30
Polish 72.01 83.44 87.06 85.97
Swedish 76.39 79.18 83.43 83.24
Turkish 71.70 76.32 75.32 76.34
Chinese 79.01 79.94 85.96 85.30
English 91.16 91.47 92.57 91.63
Average 79.01 85.36 84.41 84.68

LAS

Language Words Chars Words Chars
+ POS + POS

Arabic 82.05 83.41 83.46 83.40
Basque 66.61 79.09 73.56 78.61
French 79.22 80.92 82.03 81.08
German 79.15 84.04 84.62 84.49
Hebrew 68.71 71.26 72.70 72.26
Hungarian 61.93 75.19 69.31 76.34
Korean 67.50 86.27 83.37 86.21
Polish 63.96 76.84 79.83 78.24
Swedish 67.69 71.19 76.40 74.47
Turkish 54.55 64.34 61.22 62.28
Chinese 74.79 76.29 84.40 83.72
English 88.42 88.94 90.31 89.44
Average 71.22 78.15 78.43 79.21

Table 2: Unlabeled attachment scores (left) and labeled attachment scores (right) on the test sets. In
each table, the first two columns show the results of the parser with word lookup (Words) vs. character-
based (Chars) representations. The last two columns add POS tags. Boldface shows the better result
comparing Words vs. Chars and comparing Words + POS vs. Chars + POS.

4.4.1 Learned Word Representations

Figure 4 visualizes a sample of the character-
based bidirectional LSTMs’s learned representa-
tions (Chars). Clear clusters of past tense verbs,
gerunds, and other syntactic classes are visible.
The colors in the figure represent the most com-
mon POS tag for each word.

4.4.2 Out-of-Vocabulary Words

The character-based representation for words is
notably beneficial for out-of-vocabulary (OOV)
words. We tested this specifically by comparing
Chars to a model in which all OOVs are replaced
by the string “UNK” during parsing. This always
has a negative effect on LAS (average−4.5 points,

−2.8 UAS). Figure 5 shows how this drop varies
with the development OOV rate across treebanks;
most extreme is Korean, which drops 15.5 LAS. A
similar, but less pronounced pattern, was observed
for models that include POS.

Interestingly, this artificially impoverished
model is still consistently better than Words for
all languages (e.g., for Korean, by 4 LAS). This
implies that not all of the improvement is due to
OOV words; statistical sharing across orthograph-
ically close words is beneficial, as well.

4.4.3 Computational Requirements
The character-based representations make the
parser slower, since they require composing the
character-based bidirectional LSTMs for each
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Figure 5: On the x-axis is the OOV rate in development data, by treebank; on the y-axis is the difference
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given a single representation.
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Figure 4: Character-based word representations
of 30 random words from the English develop-
ment set (Chars). Dots in red represent past tense
verbs; dots in orange represent gerund verbs; dots
in black represent present tense verbs; dots in blue
represent adjectives; dots in green represent ad-
verbs; dots in yellow represent singular nouns;
dots in brown represent plural nouns. The visu-
alization was produced using t-SNE; see http:
//lvdmaaten.github.io/tsne/.

word of the input sentence; however, at test time
these results could be cached. On average, Words
parses a sentence in 44 ms, whileChars needs 130
ms.9 Training time is affected by the same cons-

9We are using a machine with 32 Intel Xeon CPU E5-
2650 at 2.00GHz; the parser runs on a single core.

tant, needing some hours to have a competitive
model. In terms of memory, Words requires on
average 300 MB of main memory for both train-
ing and parsing, while Chars requires 450 MB.

4.4.4 Comparison with State-of-the-Art

Table 3 shows a comparison with state-of-the-
art parsers. We include greedy transition-based
parsers that, like ours, do not apply a beam
search (Zhang and Clark, 2008b) or a dynamic
oracle (Goldberg and Nivre, 2013). For all the
SPMRL languages we show the results of Balles-
teros (2013), who reported results after carrying
out a careful automatic morphological feature se-
lection experiment. For Turkish, we show the re-
sults of Nivre et al. (2006a) which also carried
out a careful manual morphological feature se-
lection. Our parser outperforms these in most
cases. Since those systems rely on morphological
features, we believe that this comparison shows
even more that the character-based representations
are capturing morphological information, though
without explicit morphological features. For En-
glish and Chinese, we report (Dyer et al., 2015)
which is Words + POS but with pretrained word
embeddings.

We also show the best reported results on
these datasets. For the SPMRL data sets, the
best performing system of the shared task is ei-
ther Björkelund et al. (2013) or Björkelund et al.
(2014), which are consistently better than our sys-
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This Work Best Greedy Result Best Published Result
Language UAS LAS System UAS LAS System UAS LAS System
Arabic 86.08 83.41 Chars 84.57 81.90 B’13 88.32 86.21 B+’13
Basque 85.22 78.61 Chars + POS 84.33 78.58 B’13 89.96 85.70 B+’14
French 86.15 82.03 Words + POS 83.35 77.98 B’13 89.02 85.66 B+’14
German 87.33 84.62 Words + POS 85.38 82.75 B’13 91.64 89.65 B+’13
Hebrew 80.68 72.70 Words + POS 79.89 73.01 B’13 87.41 81.65 B+’14
Hungarian 80.92 76.34 Chars + POS 83.71 79.63 B’13 89.81 86.13 B+’13
Korean 88.39 86.27 Chars 85.72 82.06 B’13 89.10 87.27 B+’14
Polish 87.06 79.83 Words + POS 85.80 79.89 B’13 91.75 87.07 B+’13
Swedish 83.43 76.40 Words + POS 83.20 75.82 B’13 88.48 82.75 B+’14
Turkish 76.32 64.34 Chars 75.82 65.68 N+’06a 77.55 n/a K+’10
Chinese 85.96 84.40 Words + POS 87.20 85.70 D+’15 87.20 85.70 D+’15
English 92.57 90.31 Words + POS 93.10 90.90 D+’15 94.08 92.19 W+’15

Table 3: Test-set performance of our best results (according to UAS or LAS, whichever has the larger
difference), compared to state-of-the-art greedy transition-based parsers (“Best Greedy Result”) and best
results reported (“Best Published Result”). All of the systems we compare against use explicit mor-
phological features and/or one of the following: pretrained word embeddings, unlabeled data and a
combination of parsers; our models do not. B’13 is Ballesteros (2013); N+’06a is Nivre et al. (2006a);
D+’15 is Dyer et al. (2015); B+’13 is Björkelund et al. (2013); B+’14 is Björkelund et al. (2014); K+’10
is Koo et al. (2010); W+’15 is Weiss et al. (2015).

tem for all languages. Note that the comparison
is harsh to our system, which does not use unla-
beled data or explicit morphological features nor
any combination of different parsers. For Turkish,
we report the results of Koo et al. (2010), which
only reported unlabeled attachment scores. For
English, we report (Weiss et al., 2015) and for Chi-
nese, we report (Dyer et al., 2015) which is Words
+ POS but with pretrained word embeddings.

5 Related Work

Character-based representations have been ex-
plored in other NLP tasks; for instance, dos San-
tos and Zadrozny (2014) and dos Santos and
Guimarães (2015) learned character-level neural
representations for POS tagging and named entity
recognition, getting a large error reduction in both
tasks. Our approach is similar to theirs. Others
have used character-based models as features to
improve existing models. For instance, Chrupała
(2014) used character-based recurrent neural net-
works to normalize tweets.

Botha and Blunsom (2014) show that stems,
prefixes and suffixes can be used to learn useful
word representations but relying on an external
morphological analyzer. That is, they learn the
morpheme-meaning relationship with an additive
model, whereas we do not need a morphological
analyzer. Similarly, Chen et al. (2015) proposed
joint learning of character and word embeddings
for Chinese, claiming that characters contain rich
information.

Methods for joint morphological disambigua-
tion and parsing have been widely explored Tsar-
faty (2006; Cohen and Smith (2007; Goldberg
and Tsarfaty (2008; Goldberg and Elhadad (2011).
More recently, Bohnet et al. (2013) presented an
arc-standard transition-based parser that performs
competitively for joint morphological tagging and
dependency parsing for richly inflected languages,
such as Czech, Finnish, German, Hungarian, and
Russian. Our model seeks to achieve a simi-
lar benefit to parsing without explicitly reasoning
about the internal structure of words.

Zhang et al. (2013) presented efforts on Chinese
parsing with characters showing that Chinese can
be parsed at the character level, and that Chinese
word segmentation is useful for predicting the cor-
rect POS tags (Zhang and Clark, 2008a).

To the best of our knowledge, previous work has
not used character-based embeddings to improve
dependency parsers, as done in this paper.

6 Conclusion

We have presented several interesting findings.
First, we add new evidence that character-based
representations are useful for NLP tasks. In this
paper, we demonstrate that they are useful for
transition-based dependency parsing, since they
are capable of capturing morphological informa-
tion crucial for analyzing syntax.

The improvements provided by the character-
based representations using bidirectional LSTMs
are strong for agglutinative languages, such as
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Basque, Hungarian, Korean, and Turkish, compar-
ing favorably to POS tags as encoded in those lan-
guages’ currently available treebanks. This out-
come is important, since annotating morphologi-
cal information for a treebank is expensive. Our
finding suggests that the best investment of anno-
tation effort may be in dependencies, leaving mor-
phological features to be learned implicitly from
strings.

The character-based representations are also a
way of overcoming the out-of-vocabulary prob-
lem; without any additional resources, they en-
able the parser to substantially improve the per-
formance when OOV rates are high. We expect
that, in conjunction with a pretraing regime, or in
conjunction with distributional word embeddings,
further improvements could be realized.
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Abstract

We present an LSTM approach to
deletion-based sentence compression
where the task is to translate a sentence
into a sequence of zeros and ones, cor-
responding to token deletion decisions.
We demonstrate that even the most basic
version of the system, which is given no
syntactic information (no PoS or NE tags,
or dependencies) or desired compression
length, performs surprisingly well: around
30% of the compressions from a large test
set could be regenerated. We compare the
LSTM system with a competitive baseline
which is trained on the same amount of
data but is additionally provided with
all kinds of linguistic features. In an
experiment with human raters the LSTM-
based model outperforms the baseline
achieving 4.5 in readability and 3.8 in
informativeness.

1 Introduction

Sentence compression is a standard NLP task
where the goal is to generate a shorter paraphrase
of a sentence. Dozens of systems have been intro-
duced in the past two decades and most of them are
deletion-based: generated compressions are token
subsequences of the input sentences (Jing, 2000;
Knight & Marcu, 2000; McDonald, 2006; Clarke
& Lapata, 2008; Berg-Kirkpatrick et al., 2011, to
name a few).

Existing compression systems heavily use syn-
tactic information to minimize chances of intro-
ducing grammatical mistakes in the output. A
common approach is to use only some syntactic
information (Jing, 2000; Clarke & Lapata, 2008,

among others) or use syntactic features as signals
in a statistical model (McDonald, 2006). It is prob-
ably even more common to operate on syntactic
trees directly (dependency or constituency) and
generate compressions by pruning them (Knight
& Marcu, 2000; Berg-Kirkpatrick et al., 2011;
Filippova & Altun, 2013, among others). Unfortu-
nately, this makes such systems vulnerable to error
propagation as there is no way to recover from an
incorrect parse tree. With the state-of-the-art pars-
ing systems achieving about 91 points in labeled
attachment accuracy (Zhang & McDonald, 2014),
the problem is not a negligible one. To our knowl-
edge, there is no competitive compression system
so far which does not require any linguistic pre-
processing but tokenization.

In this paper we research the following ques-
tion: can a robust compression model be built
which only uses tokens and has no access to syn-
tactic or other linguistic information? While phe-
nomena like long-distance relations may seem to
make generation of grammatically correct com-
pressions impossible, we are going to present an
evidence to the contrary. In particular, we will
present a model which benefits from the very re-
cent advances in deep learning and uses word em-
beddings and Long Short Term Memory models
(LSTMs) to output surprisingly readable and in-
formative compressions. Trained on a corpus of
less than two million automatically extracted par-
allel sentences and using a standard tool to ob-
tain word embeddings, in its best and most sim-
ple configuration it achieves 4.5 points out of 5
in readability and 3.8 points in informativeness in
an extensive evaluation with human judges. We
believe that this is an important result as it may
suggest a new direction for sentence compression
research which is less tied to modeling linguistic
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structures, especially syntactic ones, than the com-
pression work so far.

The paper is organized as follows: Section 3
presents a competitive baseline which implements
the system of McDonald (2006) for large training
sets. The LSTM model and its three configura-
tions are introduced in Section 4. The evaluation
set-up and a discussion on wins and losses with
examples are presented in Section 5 which is fol-
lowed by the conclusions.

2 Related Work

The problem formulation we adopt in this paper
is very simple: for every token in the input sen-
tence we ask whether it should be kept or dropped,
which translates into a sequence labeling problem
with just two labels: one and zero. The dele-
tion approach is a standard one in compression re-
search, although the problem is often formulated
over the syntactic structure and not the raw to-
ken sequence. That is, one usually drops con-
stituents or prunes dependency edges (Jing, 2000;
Knight & Marcu, 2000; McDonald, 2006; Clarke
& Lapata, 2008; Berg-Kirkpatrick et al., 2011;
Filippova & Altun, 2013). Thus, the relation to
existing compression work is that we also use the
deletion approach.

Recent advances in machine learning made it
possible to escape the typical paradigm of map-
ping a fixed dimensional input to a fixed dimen-
sional output to mapping an input sequence onto
an output sequence. Even though many of these
models were proposed more than a decade ago,
it is not until recently that they have empirically
been shown to perform well. Indeed, core prob-
lems in natural language processing such as trans-
lation (Cho et al., 2014; Sutskever et al., 2014;
Luong et al., 2014), parsing (Vinyals et al., 2014),
image captioning (Vinyals et al., 2015; Xu et al.,
2015), or learning to execute small programs
(Zaremba & Sutskever, 2014) employed virtually
the same principles—the use of Recurrent Neural
Networks (RNNs). Thus, with regard to this line
of research, our work comes closest to the recent
machine translation work. An important differ-
ence is that we do not aim at building a model that
generates compressions directly but rather a model
which generates a sequence of deletion decisions.

A more complex translation model is also con-
ceivable and may significantly advance work on
compression by paraphrasing, of which there have

not been many examples yet (Cohn & Lapata,
2008). However, in this paper our goal is to
demonstrate that a simple but robust deletion-
based system can be built without using any lin-
guistic features other than token boundaries. We
leave experiments with paraphrasing models to fu-
ture work.

3 Baseline

We compare our model against the system of Mc-
Donald (2006) which also formulates sentence
compression as a binary sequence labeling prob-
lem. In contrast to our proposal, it makes use of
a large set of syntactic features which are treated
as soft evidence. The presence or absence of these
features is treated as signals which do not condi-
tion the output that the model can produce. There-
fore the model is robust against noise present in
the precomputed syntactic structures of the input
sentences.

The system was implemented based on the de-
scription by McDonald (2006) with two changes
which were necessary due to the large size of the
training data set used for model fitting. The first
change was related to the learning procedure and
the second one to the family of features used.

Regarding the learning procedure, the original
model uses a large-margin learning framework,
namely MIRA (Crammer & Singer, 2003), but
with some minor changes as presented by McDon-
ald et al. (2005). In this set-up, online learn-
ing is performed, and at each step an optimiza-
tion procedure is made where K constraints are in-
cluded, which correspond to the top-K solutions
for a given training observation. This optimiza-
tion step is equivalent to a Quadratic Programming
problem if K > 1, which is time-costly to solve,
and therefore not adequate for the large amount
of data we used for training the model. Further-
more, in his publication McDonald states clearly
that different values of K did not actually have
a major impact on the final performance of the
model. Consequently, and for the sake of being
able to successfully train the model with large-
scale data, the learning procedure is implemented
as a distributed structured perceptron with iterative
parameter mixing (McDonald et al., 2010), where
each shard is processed with MIRA and K is set to
1.

Setting K = 1 will only affect the weight up-
date described on line 4 of Figure 3 of McDonald
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(2006), which is now expressed as:

w(i+1) ← w(i) + τ × eyt,y
′

where τ = max
(

0,
L(yt,y′)−w · eyt,y

′

||eyt,y
′ ||2

)
eyt,y

′ = F (xt,yt)− F (xt,y′)

y′ = best(x; w(i))

F (x,y) =
|y|∑
j=2

f(x, I(yj−1), I(yj))

The second change concerns the feature set
used. While McDonald’s original model contains
deep syntactic features coming from both depen-
dency and constituency parse trees, we use only
dependency-based features. Additionally, and to
better compare the baseline with the LSTM mod-
els, we have included as an optional feature a
256-dimension embedding-vector representation
of each input word and its syntactic parent. The
vectors are pre-trained using the Skipgram model1

(Mikolov et al., 2013). Ultimately, our implemen-
tation of McDonald’s model contained 463,614 in-
dividual features, summarized in three categories:
• PoS features: Joint PoS tags of selected to-

kens. Unigram, bigram and trigram PoS con-
text of selected and dropped tokens. All the
previous features conjoined with one indicat-
ing if the last two selected tokens are adja-
cent.
• Deep syntactic features: Dependency labels

of taken and dropped tokens and their par-
ent dependencies. Boolean features indicat-
ing syntactic relations between selected to-
kens (i.e., siblings, parents, leaves, etc.). De-
pendency label of the least common ances-
tor in the dependency tree between a batch
of dropped tokens. All the previous features
conjoined with the PoS tag of the involved
tokens.
• Word features: Boolean features indicating

if a group of dropped nodes contain a com-
plete or incomplete parenthesization. Word-
embedding vectors of selected and dropped
tokens and their syntactic parents.

The model is fitted over ten epochs on the whole
training data, and for model selection a small de-
velopment set consisting of 5,000 previously un-
seen sentences is used (none of them belonging to

1https://code.google.com/p/word2vec/

the evaluation set). The automated metric used for
this selection was accuracy@1 which is the pro-
portion of golden compressions which could be
fully reproduced. The performance on the devel-
opment set plateaus when getting close to the last
epoch.

4 The LSTM model

Our approach is largely based on the sequence to
sequence paradigm proposed in Sutskever et al.
(2014). We train a model that maximizes the prob-
ability of the correct output given the input sen-
tence. Concretely, for each training pair (X,Y ),
we will learn a parametric model (with parameters
θ), by solving the following optimization problem:

θ∗ = arg max
θ

∑
X,Y

log p(Y |X; θ) (1)

where the sum is assumed to be over all train-
ing examples. To model the probability p, we
use the same architecture described by Sutskever
et al. (2014). In particular, we use a RNN
based on the Long Short Term Memory (LSTM)
unit (Hochreiter & Schmidhuber, 1997), designed
to avoid vanishing gradients and to remember
some long-distance dependences from the input
sequence. Figure 1 shows a basic LSTM archi-
tecture. The RNN is fed with input words Xi (one
at a time), until we feed a special symbol “GO”. It
is now a common practice (Sutskever et al., 2014;
Li & Jurafsky, 2015) to start feeding the input in
reversed order, as it has been shown to perform
better empirically. During the first pass over the
input, the network is expected to learn a com-
pact, distributed representation of the input sen-
tence, which will allow it to start generating the
right predictions when the second pass starts, after
the “GO” symbol is read.

We can apply the chain rule to decompose
Equation (1) as follows:

p(Y |X; θ) =
T∏
t=1

p(Yt|Y1, . . . , Yt−1, X; θ) (2)

noting that we made no independence assump-
tions. Once we find the optimal θ∗, we construct
our estimated compression Ŷ as:

Ŷ = arg max
Y

p(Y |X; θ∗) (3)
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LSTM
layer

XN ... X2 X1 GO X1 ...

Y0 Y1 Y2 ...

Input sequence

Target sequence

t=0 ... t=N-1 t=N t=N+1 t=N+1 t=N+2

X2

...

Figure 1: High-level overview of an LSTM unrolled through time.

LSTM cell: Let us review the sequence-to-
sequence LSTM model. The Long Short Term
Memory model of Hochreiter & Schmidhuber
(1997) is defined as follows. Let xt, ht, and
mt be the input, control state, and memory state
at timestep t. Then, given a sequence of inputs
(x1, . . . , xT ), the LSTM computes the h-sequence
(h1, . . . , hT ) and the m-sequence (m1, . . . ,mT )
as follows

it = sigm(W1xt +W2ht−1)
i′t = tanh(W3xt +W4ht−1)
ft = sigm(W5xt +W6ht−1)
ot = sigm(W7xt +W8ht−1)
mt = mt−1 � ft + it � i′t
ht = mt � ot

The operator � denotes element-wise multiplica-
tion, the matrices W1, . . . ,W8 and the vector h0

are the parameters of the model, and all the non-
linearities are computed element-wise.

Stochastic gradient descent is used to maximize
the training objective (Eq. (1)) w.r.t. all the LSTM
parameters.

Network architecture: In these experiments we
have used the architecture depicted in Figure 3.
Following Vinyals et al. (2014), we have used
three stacked LSTM layers to allow the upper
layers to learn higher-order representations of the
input, interleaved with dropout layers to prevent
overfitting (Srivastava et al., 2014). The output
layer is a SoftMax classifier that predicts, after the
“GO” symbol is read, one of the following three

   Embedding of current word       Last label Input
layer

dropout

LSTM layer

LSTM layer

softmax Output

dropout

LSTM layer

Figure 3: Architecture of the network used for
sentence compression. Note that this basic struc-
ture is then unrolled 120 times, with the standard
dependences from LSTM networks (Hochreiter &
Schmidhuber, 1997).

labels: 1, if a word is to be retained in the compres-
sion, 0 if a word is to be deleted, or EOS, which
is the output label used for the “GO” input and the
end-of-sentence final period.

Input representation: In the simplest imple-
mentation, that we call LSTM, the input layer
has 259 dimensions. The first 256 contain the
embedding-vector representation of the current in-
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function DECODE(X)
. Initialize and feed the reversed input.

Lstm← CREATELSTM
LayersState← INITIALIZELAYERS(Lstm)
for all Xi ∈ REVERSE(X) do

LayersState← ONESTEP(Lstm,LayersState,Xi)
end for
LayersState← ONESTEP(Lstm,LayersState,GO)
. Create the beam vector. Each item contains the state of the layers, the labels predicted so far, and probability.

Beam← {(LayersState, (), 1.0)}
. Beam search

for all Xi ∈ X do
NextBeam← {}
for all (LayersState, Labels, Prob) ∈ Beam do

(NextLayersState,Outputs)← ONESTEP(Lstm,LayersState,Xi)
for all Output ∈ Outputs do

NextBeam← NextBeam∪{(NextLayerState, Labels+Output.label, Prob∗Output.prob)}
end for

end for
Beam← TOPN(NextBeam)

end for
return TOP(Beam)

end function

Figure 2: Pseudocode of the beam-search algorithm for compressing an input sentence.

put word, pre-trained using the Skipgram model2

(Mikolov et al., 2013). The final three dimensions
contain a one-hot-spot representation of the gold-
standard label of the previous word (during train-
ing), or the generated label of the previous word
(during decoding).

For the LSTM+PAR architecture we first parse
the input sentence, and then we provide as input,
for each input word, the embedding-vector rep-
resentation of that word and its parent word in
the dependency tree. If the current input is the
root node, then a special parent embedding is con-
structed with all nodes set to zero except for one
node. In these settings we want to test the hypoth-
esis whether knowledge about the parent node can
be useful to decide if the current constituent is rel-
evant or not for the compression. The dimension-
ality of the input layer in this case is 515. Similarly
to McDonald (2006), syntax is used here as a soft
feature in the model.

For the LSTM+PAR+PRES architecture, we
again parse the input sentence, and use a 518-sized
embedding vector, that includes:
• The embedding vector for the current word

(256 dimensions).
• The embedding vector for the parent word

(256 dimensions).
• The label predicted for the last word (3 di-

mensions).
• A bit indicating whether the parent word has
2https://code.google.com/p/word2vec/

already been seen and kept in the compres-
sion (1 dimension).
• A bit indicating whether the parent word has

already been seen but discarded (1 dimen-
sion).
• A bit indicating whether the parent word

comes later in the input (1 dimension).

Decoding: Eq. (3) involves searching through
all possible output sequences (given X). Con-
trary to the baseline, in the case of LSTMs the
complete previous history is taken into account
for each prediction and we cannot simplify Eq. (2)
with a Markov assumption. Therefore, the search
space at decoding time is exponential on the length
of the input, and we have used a beam-search pro-
cedure as described in Figure 2.

Fixed parameters: For training, we unfold the
network 120 times and make sure that none of our
training instances is longer than that. The learn-
ing rate is initialized at 2, with a decay factor of
0.96 every 300,000 traning steps. The dropping
probability for the dropout layers is 0.2. The num-
ber of nodes in each LSTM layer is always identi-
cal to the number of nodes in the input layer. We
have not tuned these parameters nor the number of
stacked layers.
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5 Evaluation

5.1 Data

Both the LSTM systems we introduced and the
baseline require a training set of a considerable
size. In particular, the LSTM model uses 256-
dimensional embeddings of token sequences and
cannot be expected to perform well if trained on
a thousand parallel sentences, which is the size of
the commonly used data sets (Knight & Marcu,
2000; Clarke & Lapata, 2006). Following the
method of Filippova & Altun (2013), we collect
a much larger corpus of about two million paral-
lel sentence-compression instances from the news
where every compression is a subsequence of to-
kens from the input. For testing, we use the pub-
licly released set of 10,000 sentence-compression
pairs3. We take the first 200 sentences from this set
for the manual evaluation with human raters, and
the first 1,000 sentences for the automatic evalua-
tion.

5.2 Experiments

We evaluate the baseline and our systems on the
200-sentence test set in an experiment with human
raters. The raters were asked to rate readability
and informativeness of compressions given the in-
put which are the standard evaluation metrics for
compression. The former covers the grammatical
correctness, comprehensibility and fluency of the
output while the latter measures the amount of im-
portant content preserved in the compression.

Additionally, for experiments on the develop-
ment set, we used two metrics for automatic eval-
uation: per-sentence accuracy (i.e., how many
compressions could be fully reproduced) and
word-based F1-score. The latter differs from
the RASP-based relation F-score by Riezler et al.
(2003) in that we simply compute the recall and
precision in terms of tokens kept in the golden
and the generated compressions. We report these
results for completeness although it is the results
of the human evaluation from which we draw our
conclusions.

Compression ratio: The three versions of our
system (LSTM*) and the baseline (MIRA) have
comparable compression ratios (CR) which are
defined as the length of the compression in char-
acters divided over the sentence length. Since the

3http://storage.googleapis.com/
sentencecomp/compressiondata.json

ratios are very close, a comparison of the systems’
scores is justified (Napoles et al., 2011).

Automatic evaluation: A total of 1,000 sen-
tence pairs from the test set4 were used in the au-
tomatic evaluation. The results are summarized in
Table 1.

F1 Acc CR
MIRA 0.75 0.21 0.37
LSTM 0.80 0.30 0.39
LSTM+PAR 0.81 0.31 0.38
LSTM+PAR+PRES 0.82 0.34 0.38

Table 1: F1-score, per-sentence accuracy and
compression ratio for the baseline and the systems

There is a significant difference in performance of
the MIRA baseline and the LSTM models, both in
terms of F1-score and in accuracy. More than 30%
of golden compressions could be fully regenerated
by the LSTM systems which is in sharp contrast
with the 20% of MIRA. The differences in F-score
between the three versions of LSTM are not sig-
nificant, all scores are close to 0.81.

Evaluation with humans: The first 200 sen-
tences from the set of 1,000 used in the automatic
evaluation were compressed by each of the four
systems. Every sentence-compression pair was
rated by three raters who were asked to select a
rating on a five-point Likert scale, ranging from
one to five. In very few cases (around 1%) the
ratings were inconclusive (i.e., 1, 3, 5 were given
to the same pair) and had to be skipped. Table 2
summarizes the results.

read info
MIRA 4.31 3.55
LSTM 4.51† 3.78†

LSTM+PAR 4.40 3.73
LSTM+PAR+PRES 4.37 3.79†

Table 2: Readability and informativeness for the
baseline and the systems: † stands for significantly
better than MIRA with 0.95 confidence.

The results indicate that the LSTM models pro-
duce more readable and more informative com-
pressions. Interestingly, there is no benefit in us-
ing the syntactic information, at least not with

4We used the very first 1,000 instances.
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Sentence & LSTM Compression difficulty
A Virginia state senator and one-time candidate for governor stabbed by his son said Friday that he is
“alive so must live,” his first public statement since the assault and his son’s suicide shortly thereafter. quotes
State senator alive so must live.
Gwyneth Paltrow, 41 and husband Chris Martin, 37 are to separate after more than 10 years of marriage,
the actress announced on her website GOOP. commas
Gwyneth Paltrow are to separate.
Chris Hemsworth and the crew of his new movie ’In the Heart of the Sea’ were forced to flee flash floods
in the Canary Islands yesterday. quotes
Chris Hemsworth were forced to flee flash floods.
Police in Deltona, Fla., are trying to sniff out the identity of a man who allegedly attempted to pay
his water bill with cocaine. nothing
Police are trying to sniff out the identity. to remove
Just a week after a CISF trooper foiled a suicide bid by a woman in the Delhi metro, another woman
trooper from the same force prevented two women commuters from ending their lives, an official important
said Monday. context
Another woman trooper prevented two women commuters.
Whatever the crisis or embarrassment to his administration, Pres. Obama don’t know nuttin’ about it. nothing
Pres. Obama don’t know nuttin. to remove
TRADE and Industry Minister Rob Davies defended the government’s economic record in Parliament
on Tuesday, saying it had implemented structural reforms and countercyclical infrastructure projects
to help shore up the economy.
Rob Davies defended the government’s economic record.
Social activist Medha Patkar on Monday extended her “complete” support to Arvind Kejriwal-led
Aam Aadmi Party in Maharashtra.
Medha Patkar extended her support to Aam Aadmi Party.
State Sen. Stewart Greenleaf discusses his proposed human trafficking bill
at Calvery Baptist Church in Willow Grove Thursday night.
Stewart Greenleaf discusses his human trafficking bill.
Alan Turing, known as the father of computer science, the codebreaker that helped win World War 2,
and the man tortured by the state for being gay, is to receive a pardon nearly 60 years after his death.
Alan Turing is to receive a pardon.
Robert Levinson, an American who disappeared in Iran in 2007, was in the country working for the CIA,
according to a report from the Associated Press’s Matt Apuzzo and Adam Goldman.
Robert Levinson was working for the CIA.

Figure 4: Example sentences and compressions.

the amount of parallel data we had at our dis-
posal. The simple LSTM model which only uses
token embeddings to generate a sequence of dele-
tion decisions significantly outperforms the base-
line which was given not only embeddings but also
syntactic and other features.

Discussion: What are the wins and losses of the
LSTM systems? Figure 4 presents some of the
evaluated sentence-compression pairs. In terms
of readability, the basic LSTM system performed
surprisingly well. Only in a few cases (out of 200)
did it get an average score of two or three. Sen-
tences which pose difficulty to the model are the
ones with quotes, intervening commas, or other
uncommon punctuation patterns. For example, in
the second sentence in Figure 4, if one removes
from the input the age modifiers and the preced-
ing commas, the words and Chris Martin are not

dropped and the output compression is grammati-
cal, preserving both conjoined elements.

With regard to informativeness, the difficult
cases are those where there is very little to be re-
moved and where the model still removed more
than a half to achieve the compression ratio it ob-
served in the training data. For example, the only
part that can be removed from the fourth sentence
in Figure 4 is the modifier of police, everything
else being important content. Similarly, in the fifth
sentence the context of the event must be retained
in the compression for the event to be interpreted
correctly.

Arguably, such cases would also be difficult for
other systems. In particular, recognizing when the
context is crucial is a problem that can be solved
only by including deep semantic and discourse
features which has not been attempted yet. And
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sentences with quotes (direct speech, a song or a
book title, etc.) are challenging for parsers which
in turn provide important signals for most com-
pression systems.

The bottom of Figure 4 contains examples of
good compressions. Even though for a signifi-
cant number of input sentences the compression
was a continuous subsequence of tokens, there are
many discontinuous compressions. In particular,
the LSTM model learned to drop appositions, no
matter how long they are, temporal expressions,
optional modifiers, introductory clauses, etc.

Our understanding of why the extended model
(LSTM+PAR+PRES) performed worse in the hu-
man evlauation than the base model is that, in
the absence of syntactic features, the basic LSTM
learned a model of syntax useful for compression,
while LSTM++, which was given syntactic infor-
mation, learned to optimize for the particular way
the ”golden” set was created (tree pruning). While
the automatic evaluation penalized all deviations
from the single golden variant, in human evals
there was no penalty for readable alternatives.

6 Conclusions

We presented, to our knowledge, a first attempt at
building a competitive compression system which
is given no linguistic features from the input. The
two important components of the system are (1)
word embeddings, which can be obtained by any-
one either pre-trained, or by running word2vec
on a large corpus, and (2) an LSTM model which
draws on the very recent advances in research
on RNNs. The training data of about two mil-
lion sentence-compression pairs was collected au-
tomatically from the Internet.

Our results clearly indicate that a compression
model which is not given syntactic information ex-
plicitly in the form of features may still achieve
competitive performance. The high readability
and informativeness scores assigned by human
raters support this claim. In the future, we are
planning to experiment with more “interesting”
paraphrasing models which translate the input not
into a zero-one sequence but into words.
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Abstract

Syntactic language models and N-gram
language models have both been used in
word ordering. In this paper, we give
an empirical comparison between N-gram
and syntactic language models on word or-
der task. Our results show that the quality
of automatically-parsed training data has a
relatively small impact on syntactic mod-
els. Both of syntactic and N-gram mod-
els can benefit from large-scale raw text.
Compared with N-gram models, syntac-
tic models give overall better performance,
but they require much more training time.
In addition, the two models lead to differ-
ent error distributions in word ordering. A
combination of the two models integrates
the advantages of each model, achieving
the best result in a standard benchmark.

1 Introduction

N-gram language models have been used in a wide
range of the generation tasks, such as machine
translation (Koehn et al., 2003; Chiang, 2007;
Galley et al., 2004), text summarization (Barzilay
and McKeown, 2005) and realization (Guo et al.,
2011). Such models are trained from large-scale
raw text, capturing distributions of local word N-
grams, which can be used to improve the fluency
of synthesized text.

More recently, syntactic language models have
been used as a complement or alternative to N-
gram language models for machine translation
(Charniak et al., 2003; Shen et al., 2008; Schwartz
et al., 2011), syntactic analysis (Chen et al.,
2012) and tree linearization (Song et al., 2014).
Compared with N-gram models, syntactic mod-
els capture rich structural information, and can be
more effective in improving the fluency of large
constituents, long-range dependencies and over-
all sentential grammaticality. However, Syntactic

models require annotated syntactic structures for
training, which are expensive to obtain manually.
In addition, they can be slower compared to N-
gram models.

In this paper, we make an empirical compari-
son between syntactic and N-gram language mod-
els on the task of word ordering (Wan et al., 2009;
Zhang and Clark, 2011a; De Gispert et al., 2014),
which is to order a set of input words into a gram-
matical and fluent sentence. The task can be re-
garded as an abstract language modeling problem,
although methods have been explored extending it
for tree linearization (Zhang, 2013), broader text
generation (Song et al., 2014) and machine trans-
lation (Zhang et al., 2014).

We choose the model of Liu et al.(2015) as the
syntactic language model. There has been two
main types of syntactic language models in the
literature, the first being relatively more oriented
to syntactic structure, without an explicit empha-
sis on word orders (Shen et al., 2008; Chen et al.,
2012). As a result, this type of syntactic language
models are typically used jointly with N-gram
model for text-to-text tasks. The second type mod-
els syntactic structures incrementally, thereby can
be used to directly score surface orders (Schwartz
et al., 2011; Liu et al., 2015). We choose the dis-
criminative model of Liu et al. (2015), which gives
state-of-the-art results for word ordering.

We try to answer the following research ques-
tions by comparing the syntactic model and the N-
gram model using the same search algorithm.
• What is the influence of automatically-

parsed training data on the performance of
syntactic models. Because manual syntac-
tic annotations are relatively limited and highly
expensive, it is necessary to use large-scale
automatically-parsed sentences for training syn-
tactic language models. As a result, the syntac-
tic structures that a word ordering system learns
can be inaccurate. However, this might not affect
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Initial State ([], set(1...n),Ø)

Final State ([],Ø, A)

Induction Rules:

SHIFT
(σ,ρ,A)

([σ|i],ρ−{i},A)

L-ARC
([σ|j i],ρ,A)

([σ|i],ρ,A∪{j←i})
R-ARC

([σ|j i],ρ,A)
([σ|i],ρ,A∪{j→i})

Figure 1: Deduction system for transition-based
linearization.

the quality of the synthesized output, which is a
string only. We quantitatively study the influence
of parsing accuracy of syntactic training data on
word ordering output.
• What is the influence of data scale on the

performance. N-gram language models can be
trained efficiently over large numbers of raw sen-
tences. In contrast, syntactic language models can
be much slower to train due to rich features. We
compare the output quality of the two models on
different scales of training data, and also on differ-
ent amounts of training time.
•What are the errors characteristics of each

model. Syntactic language models can poten-
tially be better in capturing larger constituents and
overall sentence structures. However, compared
with N-gram models, little work has been done
to quantify the difference between the two mod-
els. We characterise the outputs using a set of dif-
ferent measures, and show empirically the relative
strength and weakness of each model.
• What is the effect of model combination.

Finally, because the two models make different
types of errors, they can be combined to give bet-
ter outputs. We develop a combined model by dis-
cretizing probability from N-gram model, and us-
ing them as features in the syntactic model. The
combined model gives the best results in a stan-
dard benchmark.

2 Systems

2.1 Syntactic word ordering

Syntactic word ordering algorithms take a multi-
set of input words constructing an output sen-
tence and its syntactic derivation simultaneously.
Transition-based syntactic word ordering can be
modelled as an extension to transition-based pars-
ing (Liu et al., 2015), with the main difference be-

step action σ ρ A

init [] (0 1 2) Ø

0 shift [1] (0 2)

1 shift [1 2] (0)

2 L-arc [2] (0) A ∪ {1← 2}
3 shift [2 0] ()

4 R-arc [2] () A ∪ {2→ 0}

Figure 2: Transition-based process for ordering
{“potatoes0”, “Tom1”, “likes2”}.

ing that the order of words is not given in the input,
which leads to a much larger search space.

We take the system of Liu, et al.1, which gives
state-of-the-art performance and efficiencies in
standard word ordering benchmark. It maintains
outputs in stack σ, and orders the unprocessed in-
coming words in a set ρ. Given an input bag of
words, ρ is initialized to the input and σ is ini-
tialized as empty. The system repeatedly applies
transition actions to consume words from ρ and
construct output on σ.

Figure 1 shows the deduction system, where ρ
is unordered and any word in ρ can be shifted onto
the stack σ. The set of actions are SHIFT, L-ARC

and R-ARC. The SHIFT actions add a word to the
stack. For the L-ARC and R-ARC actions, new
arcs {j ← i} and {j → i} are constructed re-
spectively. Under these possible actions, the un-
ordered word set “potatoes0 Tom1 likes2” is gen-
erated as shown in Figure 2, and the result is
“Tom1 ←likes2→potatoes0”.

We apply the learning and search framework
of Zhang and Clark (2011a). Pseudocode of the
search algorithm is shown in Algorithm 1. [] refers
to an empty stack, and set(1...n) represents the
full set of input words W and n is the number of
distinct words. candidates stores possible states,
and agenda stores temporary states transited from
possible actions. GETACTIONS generates a set of
possible actions depending on the current state s.
APPLY generates a new state by applying action on
the current state s. N-BEST produces the top k can-
didates in agenda. Finally, the algorithm returns
the highest-score state best in the agenda.

A global linear model is used to score search
hypotheses. Given a hypothesis h, its score is cal-
culated by:

Score(h) = Φ(h) · ~θ,
1http://sourceforge.net/projects/zgen/
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Algorithm 1 Transition-based linearisation
Input: W, a set of input word

Output: the highest-scored final state
1: candidates← ([], set(1..n),Ø)
2: agenda← Ø
3: N ← 2n
4: for i← 1..N do
5: for s in candidates do
6: for action in GETACTIONS(s) do
7: agenda← APPLY(s, action)
8: end for
9: end for

10: candidates← N-BEST(agenda)
11: agenda← Ø
12: end for
13: best← BEST(candidates)
14: return best

where Φ(h) is the feature vector of h, extracted
by using the same feature templates as Liu et
al.(2015), which are shown in Table 1 and ~θ is
the parameter vector of the model. The feature
templates essentially represents a syntactic lan-
guage model. As shown in Figure 2, from the hy-
potheses produced in steps 2 and 4, the features
“Tom1 ← likes2” and “likes2 → potatoes0” are
extracted, which corresponds to P (Tom1|likes2)
and P (potatoes0|likes2) respectively in the de-
pendency language model of Chen et al.,(2012).
Training. We apply perceptron with early-update
(Collins and Roark, 2004), and iteratively tune re-
lated parameters on a set of development data. For
each iteration, we measure the performance on the
development data, and choose best parameters for
final tests.

2.2 N-gram word ordering

We build an N-gram word ordering system under
the same beam-search framework as the syntac-
tic word ordering system. In particular, search is
performed incrementally, from left to right, adding
one word at each step. The decoding process can
be regarded as a simplified version of Algorithm 1,
with only SHIFT being returned by GETACTIONS,
and the score of each transition is given by a stan-
dard N-gram language model. We use the same
beam size for both N-gram and the syntactic word
ordering. Compared with the syntactic model,
the N-gram model has less information for disam-
biguation, but also has less structural ambiguities,
and therefore a smaller search space.

Unigram

S0w;S0p;S0,lw;S0,lp;S0,rw;S0,rp;

S0,l2w;S0,l2p;S0,r2w;S0,r2p;

S1w;S1p;S1,lw;S1,lp;S1,rw;S1,rp;

S1,l2w;S1,l2p;S1,r2w;S1,r2p;

Bigram

S0wS0,lw;S0wS0,lp;S0pS0,lw;S0pS0,lpS0,lp;

S0wS0,rw;S0wS0,rp;S0pS0,rw;S0pS0,rpS0,rp;

S1wS1,lw;S1wS1,lp;S1pS1,lw;S1pS1,lpS1,lp;

S1wS1,rw;S1wS1,rp;S1pS1,rw;S1pS1,rpS1,rp;

S0wS1w;S0wS1p;S0pS1w;S0pS1p;

Trigram

S0wS0pS0,lw;S0wS0,lwS0,lp;S0wS0pS0,lp;

S0pS0,lwS0,lp;S0wS0pS0,rw;S0wS0,lwS0,rp;

S0wS0pS0,rp;S0pS0,rwS0,rp;

S1wS1pS1,lw;S1wS1,lwS1,lp;S1wS1pS1,lp;

S1pS1,lwS1,lp;S1wS1pS1,rw;S1wS1,lwS1,rp;

S1wS1pS1,rp;S1pS1,rwS1,rp;

Linearization

w0; p0;w−1w0; p−1p0;w−2w−1w0; p−2p−1p0;

S0,lS0,l2w;S0,lpS0,l2p;S0,r2wS0,rw;S0,r2pS0,rp;

S1,lS1,l2w;S1,lpS1,l2p;S1,r2wS1,rw;S1,r2pS1,rp;

Table 1: Feature templates.

name domain # of sents # of tokens

training data
AFP News 35,390,025 844,395,322

XIN News 18,095,371 401,769,616

WSJ Finance 39,832 950,028

testing data
WSJ Finance 2,416 56,684

WPB News 2,000 43,712

SANCL Blog 1,015 20,356

Table 2: Data.

Training. We train N-gram language models
from raw text using modified Kneser-Ney smooth-
ing without pruning. The text is true-case tok-
enized, and we train 4-gram language modes using
KenLM2, which gives high efficiencies in standard
N-gram language model construction.

3 Experimental settings

3.1 Data
For training data, we use the Wall Street Journal
(WSJ) sections 1-22 of the Penn Treebank (Mar-

2https://kheafield.com/code/kenlm/
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domain sentence example

Finance
The $ 409 million bid includes the assum-

ption of an estimated $ 300 million in sec-

ured liabilities on those properties , accor-

ding to those making the bid.

News
But after rising steadily during the quarter-

century following World War II , wages ha-

ve stagnated since the manufacturing sector

began to contract .

Blog
The freaky thing here is that these bozos

are seriously claiming the moral high grou-

nd ?

Table 3: Domain examples.

cus et al., 1993), and the Agence France-Presse
(AFP) and Xinhua News Agency (XIN) subsets of
the English Giga Word Fifth Edition (Parker et al.,
2011). As the development data, we use WSJ sec-
tion 0 for parameter tuning. For testing, we use
data from various domain, which consist of WSJ
section 23, Washington Post/Bloomberg(WPB)
subsets of the English Giga Word Fifth Edition and
SANCL blog data, as shown in Table 2. Example
sentence in various test domains are shown in Ta-
ble 3.

3.2 Evaluation metrics

We follow previous work and use the BLEU met-
ric (Papineni et al., 2002) for evaluation. Since
BLEU only scores N-gram precisions, it can be in
favour of N-gram language models. We addition-
ally use METEOR3(Denkowski and Lavie, 2010)
to evaluate the system performances. The BLEU
metric measures the fluency of generated sentence
without considering long range ordering. The ME-
TEOR metric can potentially fix this problem us-
ing a set of mapping between generated sentences
and references to evaluate distortion. The fol-
lowing example illustrates the difference between
BLEU and METEOR on long range reordering,
where the reference is

(1) [The document is necessary for developer ,]0 [so you

can not follow this document to get right options .]1
and the generated output sentence is

(2) [so you can not follow this document to get right op-

tions .]1 [The document is necessary for developer ,]0 .
There is a big distortion in the output. The BLEU
metric gives a score of 90.09 out of 100, while

3http://www.cs.cmu.edu/∼alavie/METEOR/

ID # training sent # iter Avg F1

set57 900 1 57.31

set66 1800 1 66.82

set78 9000 1 78.73

set83 all 1 83.93

set88 all 30 88.10

Table 4: Parsing accuracy settings.

the METEOR gives a score of 61.34 out of 100.
This is because that METEOR is based on ex-
plicit word-to-word matches over the whole sen-
tence. For word ordering, word-to-word matches
are unique, which facilitates METEOR evaluation
between generated sentences and references. As
can bee seen from the example, long range dis-
tortion can highly influence the METEOR scores
making the METEOR metric more suitable for
evaluating word ordering distortions.

3.3 Data preparation
For all the experiments, we assume that the in-
put is a bag of words without order, and the out-
put is a fully ordered sentence. Following previ-
ous work (Wan et al., 2009; Zhang, 2013; Liu et
al., 2015), we treat base noun phrases (i.e. noun
phrases do not contains other noun phrases, such
as ‘Pierre Vinken’ and ‘a big cat’) as a single
word. This avoids unnecessary ambiguities in
combination between their subcomponents.

The syntactic model requires that the train-
ing sentences have syntactic dependency struc-
ture. However, only the WSJ data contains gold-
standard annotations. In order to obtain automati-
cally annotated dependency trees, we train a con-
stituent parser using the gold-standard bracketed
sentences from WSJ, and automatically parse the
Giga Word data. The results are turned into de-
pendency trees using Penn2Malt4, after base noun
phrases are extracted. In our experiments, we use
ZPar5 (Zhu et al., 2013) for automatic constituent
parsing.

In order to study the influence of parsing ac-
curacy of the training data, we also use ten-fold
jackknifing to construct WSJ training data with
different accuracies. The data is randomly split
into ten equal-size subsets, and each subset is auto-
matically parsed with a parser trained on the other

4http://stp.lingfil.uu.se/∼nivre/research/Penn2Malt.html
5http://people.sutd.edu.sg/∼yue zhang/doc/doc/con-

parser.html
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in-domain on WSJ test cross-domain on WPB test cross-domain on SANCL test
BLEU (%) METEOR (%) BLEU (%) METEOR (%) BLEU (%) METEOR (%)

syntax-set57 48.76 48.98 37.31 46.78 37.60 46.79

syntax-set66 48.79 48.98 37.52 46.81 38.28 46.90

syntax-set78 49.27 49.08 38.10 46.89 38.76 46.96

syntax-set83 49.74 49.16 37.68 46.84 38.67 46.93

syntax-set88 49.73 49.17 38.27 46.92 38.52 46.93

syntax-gold 50.82 49.33 37.76 46.84 39.97 47.26

Table 5: Influence result of parsing accuracy.

nine subset. In order to obtain datasets with dif-
ferent parsing accuracies, we randomly sample a
small number of sentences from each training sub-
set, as shown in Table 4. The dependency trees
of each set are derived from these bracketed sen-
tences using Penn2Malt after base noun phrase are
extracted as a single word.

4 Influence of parsing accuracy

4.1 In-domain word ordering

We train the syntactic models on the WSJ training
parsing data with different accuracies. The WSJ
development data are used to find out the optimal
number of training iterations for each experiments,
and the WSJ test results are shown in Table 5.

Table 5 shows that the parsing accuracy can af-
fect the performance of the syntactic model. A
higher parsing accuracy can lead to a better syn-
tactic language model. It conforms to the intu-
ition that syntactic quality affects the fluency of
surface texts. On the other hand, the influence is
not huge, the BLEU scores decrease by 1.0 points
as the parsing accuracy decreases from 88.10% to
57.31%

4.2 Cross-domain word ordering

The influence of parsing accuracy of the training
data on cross-domain word ordering is measured
by using the same training settings, but testing on
the WPB and SANCL test sets. Table 5 shows
that the performance on cross-domain word order-
ing cannot reach that of in-domain word ordering
using the syntactic models. Compared with the
cross-domain experiments, the influence of pars-
ing accuracy becomes smaller. In the WPB test,
the fluctuation of performance decline to about 0.9
BLEU points, and in the SANCL test, the fluctua-
tion is about 1.1 BLEU points.

In conclusion, the experiments show that pars-

ing accuracies have a relatively small influence on
the syntactic models. This suggests that it is possi-
ble to use large automatically-parsed data to train
syntactic models. On the other hand, when the
training data scale increases, syntactic models can
become much slower to train compared with N-
gram models. The influence on data scale, which
includes output quality and training time, is further
studied in the next section.

5 Influence of data scale

We use the AFP news data as the training data
for the experiments of this section. The syntac-
tic models are trained using automatically-parsed
trees derived from ZPar, as described in Section
3.3. The WPB test data is used to measure in-
domain performance, and the SANCL blog data
is used to measure cross-domain performance.

5.1 Influence on BLEU and METEOR

The Figure 3 and 4 shows that using both the
BLEU and the METEOR metrics, the perfor-
mance of the syntactic model is better than that
of the N-gram models. It suggests that sentences
generated by the syntactic model have both bet-
ter fluency and better ordering. The performance
of the syntactic models is not highly weakened in
cross-domain tests.

The grey dot in each figure shows the perfor-
mance of the syntactic model trained on the gold
WSJ training data, and evaluated on the same
WPB and SANCL test data sets. A comparison
between the grey dots and the dashed lines shows
that the syntactic model trained on the WSJ data
perform better than the syntactic model trained on
similar amounts of AFP data. This again shows
the effect of syntactic quality of the training data.

On the other hand, as the scale of automatically-
parsed AFP data increases, the performance of the
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Figure 3: In-domain results on different training data size.
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Figure 4: Cross-domain results on different training data sizes.
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Figure 5: BLEU on different training times.

syntactic model rapidly increases, surpassing the
syntactic model trained on the high-quality WSJ
data. This observation is important, showing that
large-scale data can be used to alleviate the prob-
lem of lower syntactic quality in automatically-
parsed data, which can be leveraged to address the
scarcity issue of manually annotated data in both
in-domain and cross-domain settings.

5.2 Influence on training time
The training time of both syntactic models and
N-gram models increases as the size of training
data increases. Figure 5 shows the BLEU of the
two systems under different amounts of training
time. There is no result reported for the syntac-
tic model beyond 1 million training sentences, be-
cause training becomes infeasibly slow 6. On the

6Our experiments are carried on a single thread of
3.60GHz CPU. If the training time is over 90 hours for a
model, we consider it infeasible.

other hand, the N-gram model can be trained using
all the WSJ, AFP, XIN training sentences, which
are 53 millions, within 103.2 seconds. As a result,
there is no overlap between the syntactic model
and the N-gram model curves.

As can be seen from the figure, the syntactic
model is much slower to train. However, it ben-
efits more from the scale of the training data, with
the slope of the dashed curve being steeper than
that of the solid curve. The N-gram model can
be trained with more data thanks to the fast train-
ing speed. However, the performance of the N-
gram model flattens when the training data size
reaches beyond 3 million. Projection of the solid
curve suggests that the performance of the N-gram
model may not surpass that of the syntactic model
even if sufficiently large data is available for train-
ing the N-gram model in more time.

6 Error analysis

Although giving overall better performance, the
syntactic model does not perform better than the
N-gram model in all cases. Here we analyze the
strength of each model via more fine-grained com-
parison.

In this set of experiments, the syntactic model is
trained using gold-standard annotated WSJ train-
ing parse trees, and the N-gram model is trained
using the data containing WSJ training data, AFP
and XIN. The WSJ test data, which contains
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Figure 6: Performance on sentences with different length.
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golden constituent trees, is used to analyze errors
in different aspects.

6.1 Sentence length

The BLEU and METEOR scores of the two sys-
tems on various sentence lengths are shown in
Figure 6. The results are measured by binning
sentences according to their lengths, so that each
bin contains about the same number of sentences.
As shown by the figure, the N-gram model per-
forms better on short sentences (less than 8 to-
kens), and the syntactic model performs better on
longer sentences. This can be explained by the
fact that longer sentences have richer underlying
syntactic structures, which can better captured by
the syntactic model. In contrast, for shorter sen-
tences, the syntactic structure is relatively simple,
and therefore the N-gram model can give better
performance based on string patterns, which form
smaller search spaces.

6.2 Distortion range

We measure the average distortion rate of output
word w using the following metric:

distortion(w) =
|iw − i′w|
len(Sw)

,

where iw is index of wordw in the output sentence
Sw, i′w is the index of the word w in the refer-
ence sentence. len(Sw) is the number of tokens in

Template distribution

NLM-LOW set 1 if p < e−12.5, else 0

NLM-20 use 20 bins to scatter probability

NLM-10 use 10 bins to scatter probability

NLM-5 use 5 bins to scatter probability

NLM-2 use 2 bins to scatter probability

Table 6: NLM feature templates.

sentence Sw. Figure 7 shows distributions of dis-
tortion respectively by the syntactic and N-gram
model. The N-gram model makes relatively fewer
short-range distortions, but more long-range dis-
tortions. This can be explained by the local scor-
ing nature of the N-gram model. In contrast, the
syntactic model makes less long-range distortions,
which can suggest better sentence structure.

6.3 Constituent span

We further evaluate sentence structure correctness
by evaluating the recalls of discovered constituent
span in output two systems, respectively. As
shown in Figure 8. The syntactic model performs
better in most constituent labels. However, the
N-gram model performs better in WHPP, SBARQ
and WHNP.

In the test data, WHPP, SBARQ and WHNP
are much less than PP, NP, VP, ADJP, ADVP and
CONJP, on which the syntactic model gives bet-
ter recalls. WHNP spans are small and most of
them consist of a question word (WP$) and one or
two nouns (e.g. “whose (WP$) parents (NNS)”).
WHPP spans are also small and usually consist
of a preposition (IN) and a WHNP span (e.g “at
(IN) what level (WHNP)”). The N-gram model
performs better on these small spans. The syntac-
tic model also performs better on S, which covers
the whole sentence structure. This verifies the hy-
pothesis introduce that syntactic language models
better capture overall sentential grammaticality.
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in-domain on WSJ test cross-domain on WPB test cross-domain on SANCL test # of
BLEU (%) METEOR (%) BLEU (%) METEOR (%) BLEU (%) METEOR (%) sent/s

syntax 50.82 49.33 37.76 46.84 39.97 47.26 17.9

4-gram 42.26 48.00 37.71 46.90 39.72 47.08 177.0
combined 52.38 49.66 39.12 47.07 40.60 47.38 15.4

Table 7: Final results on various domains.

7 Combining the syntactic and N-gram
models

The results above show the respective error char-
acteristics of each model, which are complimen-
tary. This suggests that better results can be
achieved by model combination.

7.1 N-gram language model feature

We integrate the two types of models by using
N-gram language model probabilities as features
in the syntactic model. N-gram language model
probabilities, which ranges from 0 to 1. Direct
use of real value probabilities as features does not
work well in our experiments, and we use dis-
cretized features instead. For the L-ARC and R-
ARC actions, because no words are pushed onto
the stack, The NLM feature is set to NULL by de-
fault. For the SHIFT action, different feature values
are extracted depending on the NLM from 0 to 1.

In order to measure the N-gram probabilities
on our data, we train the 4-gram language model
WSJ, AFP and XIN data, and randomly sample 4-
gram probabilities from the syntactic model output
on the WSJ development data, finding that most
of 4-gram probabilities p are larger than 10−12.5.
In this way, if p lower than 10−12.5, NLM feature
value is set to LOW. As for p larger than 10−12.5,
we extract the discrete features by assigning them
into different bins. We bin the 4-gram probabil-
ities with different granularities without overlap
features. As shown in Table 6, NLM-20, NLM-
10, NLM-5 and NLM-2 respectively use 20, 10, 5

BLEU (%) on WSJ test

Wan et al. (2009) 33.70*

Zhang and Clark (2011b) 40.10*

Zhang et al. (2012) 43.80*

Zhang (2013) 44.70

syntax (Liu et al., 2015) 50.82

4-gram 42.26

combined 52.38

Table 8: Final results of all systems, where “*”
means that the system uses extra POS input.

and 2 bins to capture NLM feature values.

7.2 Final results

We use the WSJ, AFP and XIN for training the N-
gram model7. The same WSJ, WPB and SANCL
test data are used to measure performances on dif-
ferent domains.

The experimental results are shown in Tables
7 and 8. In both in-domain and cross-domain
test data, the combined system outperforms all
other systems, with a BLEU score of 52.38 been
achieved in the WSJ domain. It would be overly
expensive to obtain a human oracle on discusses.
However, according to Papineni (2002), a BLEU

7For the combined model, we used the WSJ training data
for training, because the syntactic model is slower to train us-
ing large data. However, we did a set of experiments to scale
up the training data by sampling 900k sentences from AFP.
Results show that the combined model gives BLEU scores of
42.86 and 44.44 on the WPB and SANCL tests, respectively.
Cross-domain BLEU on WSJ, however falls to 49.84.
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BLEU sentences

ref For weeks , the market had been nervous

about takeovers , after Campeau Corp. ’s cash

crunch spurred concern about the prospects for

future highly leveraged takeovers .

41.37 For weeks , Campeau Corp. ’s cash had

the prospects for takeovers after the market

crunch spurred concern about future highly

leveraged takeovers , nervous been about .

ref Now , at 3:07 , one of the market ’s post-

crash “ reforms ” took hold as the S&P

500 futures contract had plunged 12 points

, equivalent to around a 100-point drop in

the Dow industrials .

51.39 Now , one of the market ’s reforms plunged

12 points in the Dow industrials as “ post-

crash , the S&P 500 futures contract ,

equivalent to 3:07 took hold at around a

100-point drop had . ”

ref Canadian Utilities had 1988 revenue of C$

1.16 billion , mainly from its natural gas

and electric utility businesses in Alberta ,

where the company serves about 800,000

customers .

64.38 Canadian Utilities , Alberta , where the

company had 1988 revenue of C$ 1.16

billion in its natural gas and electric utility

businesses serves mainly from about

800,000 customers .

Table 9: Output samples.

score of over 52.38 indicate an easily understood
sentence. Some sample outputs with different
BLEU scores are shown in Table 9

In addition, Table 7 shows that the N-gram
model is the fastest among the models due to its
small search space. The running time of the com-
bined system is larger than the pure syntactic sys-
tem, because of N-gram probability computation.
Table 8 compare our results with different previ-
ous methods on word ordering. Our combined
model gives the best reported performance on this
standard benchmarks.

8 Conclusion

We empirically compared the strengths and er-
ror distributions of syntactic and N-gram lan-
guage models on word ordering, showing that both
can benefit from large-scale raw text. The influ-

ence of parsing accuracies has relatively small im-
pact on the syntactic language model trained on
automatically-parsed data, which enables scaling
up of training data for syntactic language mod-
els. However, as the size of training data in-
creases, syntactic language models can become in-
tolerantly slow to train, making them benefit less
from the scale of training data, as compared with
N-gram models.

Syntactic models give better performance com-
pared with N-gram models, despite trained with
less data. On the other hand, the two models lead
to different error distributions in word ordering.
As a result, we combined the advantages of both
systems by integrating a syntactic model trained
with relatively small data and an N-gram model
trained with relatively large data. The resulting
model gives better performance than both single
models and achieves the best reported scores in a
standard benchmark for word ordering.

We release our code under GPL at https://
github.com/SUTDNLP/ZGen. Future work
includes application of the system on text-to-text
problem such as machine translation.
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Abstract

Summarization based on text extraction is
inherently limited, but generation-style ab-
stractive methods have proven challeng-
ing to build. In this work, we propose
a fully data-driven approach to abstrac-
tive sentence summarization. Our method
utilizes a local attention-based model that
generates each word of the summary con-
ditioned on the input sentence. While the
model is structurally simple, it can eas-
ily be trained end-to-end and scales to a
large amount of training data. The model
shows significant performance gains on
the DUC-2004 shared task compared with
several strong baselines.

1 Introduction

Summarization is an important challenge of natu-
ral language understanding. The aim is to produce
a condensed representation of an input text that
captures the core meaning of the original. Most
successful summarization systems utilize extrac-
tive approaches that crop out and stitch together
portions of the text to produce a condensed ver-
sion. In contrast, abstractive summarization at-
tempts to produce a bottom-up summary, aspects
of which may not appear as part of the original.

We focus on the task of sentence-level sum-
marization. While much work on this task has
looked at deletion-based sentence compression
techniques (Knight and Marcu (2002), among
many others), studies of human summarizers show
that it is common to apply various other operations
while condensing, such as paraphrasing, general-
ization, and reordering (Jing, 2002). Past work
has modeled this abstractive summarization prob-
lem either using linguistically-inspired constraints
(Dorr et al., 2003; Zajic et al., 2004) or with syn-
tactic transformations of the input text (Cohn and

Figure 1: Example output of the attention-based summa-
rization (ABS) system. The heatmap represents a soft align-
ment between the input (right) and the generated summary
(top). The columns represent the distribution over the input
after generating each word.

Lapata, 2008; Woodsend et al., 2010). These ap-
proaches are described in more detail in Section 6.

We instead explore a fully data-driven approach
for generating abstractive summaries. Inspired by
the recent success of neural machine translation,
we combine a neural language model with a con-
textual input encoder. Our encoder is modeled
off of the attention-based encoder of Bahdanau et
al. (2014) in that it learns a latent soft alignment
over the input text to help inform the summary (as
shown in Figure 1). Crucially both the encoder
and the generation model are trained jointly on the
sentence summarization task. The model is de-
scribed in detail in Section 3. Our model also in-
corporates a beam-search decoder as well as addi-
tional features to model extractive elements; these
aspects are discussed in Sections 4 and 5.

This approach to summarization, which we call
Attention-Based Summarization (ABS), incorpo-
rates less linguistic structure than comparable ab-
stractive summarization approaches, but can easily
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Input (x1, . . . ,x18). First sentence of article:
russian defense minister ivanov called sunday for the creation of a joint front for combating global terrorism
Output (y1, . . . ,y8). Generated headline:
russia calls for joint front against terrorism ⇐ g(terrorism,x, for, joint, front, against)

Figure 2: Example input sentence and the generated summary. The score of generating yi+1 (terrorism) is based on the
context yc (for . . . against) as well as the input x1 . . .x18. Note that the summary generated is abstractive which makes
it possible to generalize (russian defense minister to russia) and paraphrase (for combating to against),
in addition to compressing (dropping the creation of), see Jing (2002) for a survey of these editing operations.

scale to train on a large amount of data. Since our
system makes no assumptions about the vocabu-
lary of the generated summary it can be trained
directly on any document-summary pair.1 This
allows us to train a summarization model for
headline-generation on a corpus of article pairs
from Gigaword (Graff et al., 2003) consisting of
around 4 million articles. An example of genera-
tion is given in Figure 2, and we discuss the details
of this task in Section 7.

To test the effectiveness of this approach we
run extensive comparisons with multiple abstrac-
tive and extractive baselines, including traditional
syntax-based systems, integer linear program-
constrained systems, information-retrieval style
approaches, as well as statistical phrase-based ma-
chine translation. Section 8 describes the results
of these experiments. Our approach outperforms
a machine translation system trained on the same
large-scale dataset and yields a large improvement
over the highest scoring system in the DUC-2004
competition.

2 Background

We begin by defining the sentence summarization
task. Given an input sentence, the goal is to pro-
duce a condensed summary. Let the input con-
sist of a sequence of M words x1, . . . ,xM com-
ing from a fixed vocabulary V of size |V| = V .
We will represent each word as an indicator vector
xi ∈ {0, 1}V for i ∈ {1, . . . ,M}, sentences as a
sequence of indicators, and X as the set of possi-
ble inputs. Furthermore define the notation x[i,j,k]

to indicate the sub-sequence of elements i, j, k.
A summarizer takes x as input and outputs a

shortened sentence y of length N < M . We will
assume that the words in the summary also come
from the same vocabulary V and that the output is

1In contrast to a large-scale sentence compression sys-
tems like Filippova and Altun (2013) which require mono-
tonic aligned compressions.

a sequence y1, . . . ,yN . Note that in contrast to
related tasks, like machine translation, we will as-
sume that the output length N is fixed, and that
the system knows the length of the summary be-
fore generation.2

Next consider the problem of gen-
erating summaries. Define the set
Y ⊂ ({0, 1}V , . . . , {0, 1}V ) as all possible
sentences of length N , i.e. for all i and y ∈ Y , yi
is an indicator. We say a system is abstractive if it
tries to find the optimal sequence from this set Y ,

arg max
y∈Y

s(x,y), (1)

under a scoring function s : X ×Y 7→ R. Contrast
this to a fully extractive sentence summary3 which
transfers words from the input:

arg max
m∈{1,...M}N

s(x,x[m1,...,mN ]), (2)

or to the related problem of sentence compression
that concentrates on deleting words from the input:

arg max
m∈{1,...M}N ,mi−1<mi

s(x,x[m1,...,mN ]). (3)

While abstractive summarization poses a more dif-
ficult generation challenge, the lack of hard con-
straints gives the system more freedom in genera-
tion and allows it to fit with a wider range of train-
ing data.

In this work we focus on factored scoring func-
tions, s, that take into account a fixed window of
previous words:

s(x,y) ≈
N−1∑
i=0

g(yi+1,x,yc), (4)

2For the DUC-2004 evaluation, it is actually the number
of bytes of the output that is capped. More detail is given in
Section 7.

3Unfortunately the literature is inconsistent on the formal
definition of this distinction. Some systems self-described as
abstractive would be extractive under our definition.
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where we define yc , y[i−C+1,...,i] for a window
of size C.

In particular consider the conditional log-
probability of a summary given the input,
s(x,y) = log p(y|x; θ). We can write this as:

log p(y|x; θ) ≈
N−1∑
i=0

log p(yi+1|x,yc; θ),

where we make a Markov assumption on the
length of the context as size C and assume for
i < 1, yi is a special start symbol 〈S〉.

With this scoring function in mind, our main
focus will be on modelling the local conditional
distribution: p(yi+1|x,yc; θ). The next section
defines a parameterization for this distribution, in
Section 4, we return to the question of generation
for factored models, and in Section 5 we introduce
a modified factored scoring function.

3 Model

The distribution of interest, p(yi+1|x,yc; θ), is
a conditional language model based on the in-
put sentence x. Past work on summarization and
compression has used a noisy-channel approach to
split and independently estimate a language model
and a conditional summarization model (Banko et
al., 2000; Knight and Marcu, 2002; Daumé III and
Marcu, 2002), i.e.,

arg max
y

log p(y|x) = arg max
y

log p(y)p(x|y)

where p(y) and p(x|y) are estimated separately.
Here we instead follow work in neural machine
translation and directly parameterize the original
distribution as a neural network. The network con-
tains both a neural probabilistic language model
and an encoder which acts as a conditional sum-
marization model.

3.1 Neural Language Model
The core of our parameterization is a language
model for estimating the contextual probability of
the next word. The language model is adapted
from a standard feed-forward neural network lan-
guage model (NNLM), particularly the class of
NNLMs described by Bengio et al. (2003). The
full model is:

p(yi+1|yc,x; θ) ∝ exp(Vh + Wenc(x,yc)),
ỹc = [Eyi−C+1, . . . ,Eyi],
h = tanh(Uỹc).

x yc

enc

ỹc

h

p(yi+1|x,yc; θ)

W

E

U

V

(a)

x yc

x̃ ỹ′c

x̄ p

enc3

F G

P

(b)

Figure 3: (a) A network diagram for the NNLM decoder
with additional encoder element. (b) A network diagram for
the attention-based encoder enc3.

The parameters are θ = (E,U,V,W) where
E ∈ RD×V is a word embedding matrix, U ∈
R(CD)×H , V ∈ RV×H , W ∈ RV×H are weight
matrices,4 D is the size of the word embeddings,
and h is a hidden layer of size H . The black-box
function enc is a contextual encoder term that re-
turns a vector of size H representing the input and
current context; we consider several possible vari-
ants, described subsequently. Figure 3a gives a
schematic representation of the decoder architec-
ture.

3.2 Encoders

Note that without the encoder term this represents
a standard language model. By incorporating in
enc and training the two elements jointly we cru-
cially can incorporate the input text into genera-
tion. We discuss next several possible instantia-
tions of the encoder.

Bag-of-Words Encoder Our most basic model
simply uses the bag-of-words of the input sentence
embedded down to size H , while ignoring proper-
ties of the original order or relationships between
neighboring words. We write this model as:

enc1(x,yc) = p>x̃,
p = [1/M, . . . , 1/M ],
x̃ = [Fx1, . . . ,FxM ].

Where the input-side embedding matrix F ∈
RH×V is the only new parameter of the encoder
and p ∈ [0, 1]M is a uniform distribution over the
input words.

4Each of the weight matrices U, V, W also has a cor-
responding bias term. For readability, we omit these terms
throughout the paper.
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For summarization this model can capture the
relative importance of words to distinguish con-
tent words from stop words or embellishments.
Potentially the model can also learn to combine
words; although it is inherently limited in repre-
senting contiguous phrases.

Convolutional Encoder To address some of the
modelling issues with bag-of-words we also con-
sider using a deep convolutional encoder for the
input sentence. This architecture improves on the
bag-of-words model by allowing local interactions
between words while also not requiring the con-
text yc while encoding the input.

We utilize a standard time-delay neural network
(TDNN) architecture, alternating between tempo-
ral convolution layers and max pooling layers.

∀j, enc2(x,yc)j = max
i

x̃L
i,j , (5)

∀i, l ∈ {1, . . . L}, x̃l
j = tanh(max{x̄l

2i−1, x̄
l
2i}),

(6)

∀i, l ∈ {1, . . . L}, x̄l
i = Qlx̃l−1

[i−Q,...,i+Q], (7)

x̃0 = [Fx1, . . . ,FxM ]. (8)

Where F is a word embedding matrix and
QL×H×2Q+1 consists of a set of filters for each
layer {1, . . . L}. Eq. 7 is a temporal (1D) convolu-
tion layer, Eq. 6 consists of a 2-element temporal
max pooling layer and a pointwise non-linearity,
and final output Eq. 5 is a max over time. At each
layer x̃ is one half the size of x̄. For simplicity
we assume that the convolution is padded at the
boundaries, and that M is greater than 2L so that
the dimensions are well-defined.

Attention-Based Encoder While the convolu-
tional encoder has richer capacity than bag-of-
words, it still is required to produce a single rep-
resentation for the entire input sentence. A simi-
lar issue in machine translation inspired Bahdanau
et al. (2014) to instead utilize an attention-based
contextual encoder that constructs a representation
based on the generation context. Here we note that
if we exploit this context, we can actually use a
rather simple model similar to bag-of-words:

enc3(x,yc) = p>x̄,
p ∝ exp(x̃Pỹ′c),
x̃ = [Fx1, . . . ,FxM ],

ỹ′c = [Gyi−C+1, . . . ,Gyi],

∀i x̄i =
i+Q∑
q=i−Q

x̃i/Q.

Where G ∈ RD×V is an embedding of the con-
text, P ∈ RH×(CD) is a new weight matrix pa-
rameter mapping between the context embedding
and input embedding, and Q is a smoothing win-
dow. The full model is shown in Figure 3b.

Informally we can think of this model as simply
replacing the uniform distribution in bag-of-words
with a learned soft alignment, P, between the in-
put and the summary. Figure 1 shows an exam-
ple of this distribution p as a summary is gener-
ated. The soft alignment is then used to weight
the smoothed version of the input x̄ when con-
structing the representation. For instance if the
current context aligns well with position i then
the words xi−Q, . . . ,xi+Q are highly weighted
by the encoder. Together with the NNLM, this
model can be seen as a stripped-down version
of the attention-based neural machine translation
model.5

3.3 Training

The lack of generation constraints makes it pos-
sible to train the model on arbitrary input-output
pairs. Once we have defined the local condi-
tional model, p(yi+1|x,yc; θ), we can estimate
the parameters to minimize the negative log-
likelihood of a set of summaries. Define this train-
ing set as consisting of J input-summary pairs
(x(1),y(1)), . . . , (x(J),y(J)). The negative log-
likelihood conveniently factors6 into a term for
each token in the summary:

NLL(θ) = −
J∑

j=1

log p(y(j)|x(j); θ),

= −
J∑

j=1

N−1∑
i=1

log p(y
(j)
i+1|x(j),yc; θ).

We minimize NLL by using mini-batch stochastic
gradient descent. The details are described further
in Section 7.

5To be explicit, compared to Bahdanau et al. (2014)
our model uses an NNLM instead of a target-side LSTM,
source-side windowed averaging instead of a source-side bi-
directional RNN, and a weighted dot-product for alignment
instead of an alignment MLP.

6This is dependent on using the gold standard contexts
yc. An alternative is to use the predicted context within a
structured or reenforcement-learning style objective.
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4 Generating Summaries

We now return to the problem of generating sum-
maries. Recall from Eq. 4 that our goal is to find,

y∗ = arg max
y∈Y

N−1∑
i=0

g(yi+1,x,yc).

Unlike phrase-based machine translation where
inference is NP-hard, it actually is tractable in the-
ory to compute y∗. Since there is no explicit hard
alignment constraint, Viterbi decoding can be ap-
plied and requires O(NV C) time to find an exact
solution. In practice though V is large enough to
make this difficult.

An alternative approach is to approximate the
arg max with a strictly greedy or deterministic de-
coder. While decoders of this form can produce
very bad approximations, they have shown to be
relatively effective and fast for neural MT models
(Sutskever et al., 2014).

A compromise between exact and greedy de-
coding is to use a beam-search decoder (Algo-
rithm 1) which maintains the full vocabulary V
while limiting itself to K potential hypotheses at
each position of the summary. The beam-search
algorithm is shown here:

Algorithm 1 Beam Search
Input: Parameters θ, beam size K, input x
Output: Approx. K-best summaries
π[0]← {ε}
S = V if abstractive else {xi | ∀i}
for i = 0 to N − 1 do

. Generate Hypotheses
N ← {

[y,yi+1] | y ∈ π[i],yi+1 ∈ S
}

. Hypothesis Recombination

H ←
{
y ∈ N | s(y,x) > s(y′,x)

∀y′ ∈ N s.t. yc = y′c

}
. Filter K-Max
π[i+ 1]← K-arg max

y∈H
g(yi+1,yc,x) + s(y,x)

end for
return π[N ]

As with Viterbi this beam search algorithm is
much simpler than beam search for phrase-based
MT. Because there is no explicit constraint that
each source word be used exactly once there is
no need to maintain a bit set and we can sim-
ply move from left-to-right generating words. The
beam search algorithm requires O(KNV ) time.
From a computational perspective though, each
round of beam search is dominated by computing
p(yi|x,yc) for each of the K hypotheses. These

can be computed as a mini-batch, which in prac-
tice greatly reduces the factor of K.

5 Extension: Extractive Tuning

While we will see that the attention-based model
is effective at generating summaries, it does miss
an important aspect seen in the human-generated
references. In particular the abstractive model
does not have the capacity to find extractive word
matches when necessary, for example transferring
unseen proper noun phrases from the input. Simi-
lar issues have also been observed in neural trans-
lation models particularly in terms of translating
rare words (Luong et al., 2014).

To address this issue we experiment with tuning
a very small set of additional features that trade-
off the abstractive/extractive tendency of the sys-
tem. We do this by modifying our scoring function
to directly estimate the probability of a summary
using a log-linear model, as is standard in machine
translation:

p(y|x; θ, α) ∝ exp(α>
N−1∑
i=0

f(yi+1,x,yc)).

Where α ∈ R5 is a weight vector and f is a fea-
ture function. Finding the best summary under this
distribution corresponds to maximizing a factored
scoring function s,

s(y,x) =
N−1∑
i=0

α>f(yi+1,x,yc).

where g(yi+1,x,yc) , α>f(yi+1,x,yc) to sat-
isfy Eq. 4. The function f is defined to combine
the local conditional probability with some addi-
tional indicator featrues:

f(yi+1,x,yc) = [ log p(yi+1|x,yc; θ),
1{∃j. yi+1 = xj },
1{∃j. yi+1−k = xj−k ∀k ∈ {0, 1}},
1{∃j. yi+1−k = xj−k ∀k ∈ {0, 1, 2}},
1{∃k > j. yi = xk,yi+1 = xj} ].

These features correspond to indicators of uni-
gram, bigram, and trigram match with the input as
well as reordering of input words. Note that set-
ting α = 〈1, 0, . . . , 0〉 gives a model identical to
standard ABS.
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After training the main neural model, we fix θ
and tune the α parameters. We follow the statis-
tical machine translation setup and use minimum-
error rate training (MERT) to tune for the summa-
rization metric on tuning data (Och, 2003). This
tuning step is also identical to the one used for the
phrase-based machine translation baseline.

6 Related Work

Abstractive sentence summarization has been tra-
ditionally connected to the task of headline gener-
ation. Our work is similar to early work of Banko
et al. (2000) who developed a statistical machine
translation-inspired approach for this task using a
corpus of headline-article pairs. We extend this
approach by: (1) using a neural summarization
model as opposed to a count-based noisy-channel
model, (2) training the model on much larger scale
(25K compared to 4 million articles), (3) and al-
lowing fully abstractive decoding.

This task was standardized around the DUC-
2003 and DUC-2004 competitions (Over et al.,
2007). The TOPIARY system (Zajic et al., 2004)
performed the best in this task, and is described in
detail in the next section. We point interested read-
ers to the DUC web page (http://duc.nist.
gov/) for the full list of systems entered in this
shared task.

More recently, Cohn and Lapata (2008) give a
compression method which allows for more ar-
bitrary transformations. They extract tree trans-
duction rules from aligned, parsed texts and learn
weights on transfomations using a max-margin
learning algorithm. Woodsend et al. (2010) pro-
pose a quasi-synchronous grammar approach uti-
lizing both context-free parses and dependency
parses to produce legible summaries. Both of
these approaches differ from ours in that they di-
rectly use the syntax of the input/output sentences.
The latter system is W&L in our results; we at-
tempted to train the former system T3 on this
dataset but could not train it at scale.

In addition to Banko et al. (2000) there has been
some work using statistical machine translation
directly for abstractive summary. Wubben et al.
(2012) utilize MOSES directly as a method for text
simplification.

Recently Filippova and Altun (2013) developed
a strictly extractive system that is trained on a rel-
atively large corpora (250K sentences) of article-
title pairs. Because their focus is extractive com-

pression, the sentences are transformed by a series
of heuristics such that the words are in monotonic
alignment. Our system does not require this align-
ment step but instead uses the text directly.

Neural MT This work is closely related to re-
cent work on neural network language models
(NNLM) and to work on neural machine transla-
tion. The core of our model is a NNLM based on
that of Bengio et al. (2003).

Recently, there have been several papers about
models for machine translation (Kalchbrenner and
Blunsom, 2013; Cho et al., 2014; Sutskever et al.,
2014). Of these our model is most closely related
to the attention-based model of Bahdanau et al.
(2014), which explicitly finds a soft alignment be-
tween the current position and the input source.
Most of these models utilize recurrent neural net-
works (RNNs) for generation as opposed to feed-
forward models. We hope to incorporate an RNN-
LM in future work.

7 Experimental Setup

We experiment with our attention-based sentence
summarization model on the task of headline gen-
eration. In this section we describe the corpora
used for this task, the baseline methods we com-
pare with, and implementation details of our ap-
proach.

7.1 Data Set
The standard sentence summarization evaluation
set is associated with the DUC-2003 and DUC-
2004 shared tasks (Over et al., 2007). The
data for this task consists of 500 news arti-
cles from the New York Times and Associated
Press Wire services each paired with 4 different
human-generated reference summaries (not actu-
ally headlines), capped at 75 bytes. This data
set is evaluation-only, although the similarly sized
DUC-2003 data set was made available for the
task. The expectation is for a summary of roughly
14 words, based on the text of a complete arti-
cle (although we only make use of the first sen-
tence). The full data set is available by request at
http://duc.nist.gov/data.html.

For this shared task, systems were entered and
evaluated using several variants of the recall-
oriented ROUGE metric (Lin, 2004). To make
recall-only evaluation unbiased to length, out-
put of all systems is cut-off after 75-characters
and no bonus is given for shorter summaries.
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Unlike BLEU which interpolates various n-gram
matches, there are several versions of ROUGE
for different match lengths. The DUC evaluation
uses ROUGE-1 (unigrams), ROUGE-2 (bigrams),
and ROUGE-L (longest-common substring), all of
which we report.

In addition to the standard DUC-2014 evalu-
ation, we also report evaluation on single refer-
ence headline-generation using a randomly held-
out subset of Gigaword. This evaluation is closer
to the task the model is trained for, and it allows
us to use a bigger evaluation set, which we will in-
clude in our code release. For this evaluation, we
tune systems to generate output of the average title
length.

For training data for both tasks, we utilize the
annotated Gigaword data set (Graff et al., 2003;
Napoles et al., 2012), which consists of standard
Gigaword, preprocessed with Stanford CoreNLP
tools (Manning et al., 2014). Our model only uses
annotations for tokenization and sentence separa-
tion, although several of the baselines use parsing
and tagging as well. Gigaword contains around 9.5
million news articles sourced from various domes-
tic and international news services over the last
two decades.

For our training set, we pair the headline of each
article with its first sentence to create an input-
summary pair. While the model could in theory be
trained on any pair, Gigaword contains many spu-
rious headline-article pairs. We therefore prune
training based on the following heuristic filters:
(1) Are there no non-stop-words in common? (2)
Does the title contain a byline or other extrane-
ous editing marks? (3) Does the title have a ques-
tion mark or colon? After applying these filters,
the training set consists of roughly J = 4 million
title-article pairs. We apply a minimal preprocess-
ing step using PTB tokenization, lower-casing, re-
placing all digit characters with #, and replacing
of word types seen less than 5 times with UNK.
We also remove all articles from the time-period
of the DUC evaluation. release.

The complete input training vocabulary consists
of 119 million word tokens and 110K unique word
types with an average sentence size of 31.3 words.
The headline vocabulary consists of 31 million to-
kens and 69K word types with the average title
of length 8.3 words (note that this is significantly
shorter than the DUC summaries). On average
there are 4.6 overlapping word types between the

headline and the input; although only 2.6 in the
first 75-characters of the input.

7.2 Baselines

Due to the variety of approaches to the sentence
summarization problem, we report a broad set of
headline-generation baselines.

From the DUC-2004 task we include the PRE-
FIX baseline that simply returns the first 75-
characters of the input as the headline. We
also report the winning system on this shared
task, TOPIARY (Zajic et al., 2004). TOPIARY

merges a compression system using linguistically-
motivated transformations of the input (Dorr et al.,
2003) with an unsupervised topic detection (UTD)
algorithm that appends key phrases from the full
article onto the compressed output. Woodsend et
al. (2010) (described above) also report results on
the DUC dataset.

The DUC task also includes a set of manual
summaries performed by 8 human summarizers
each summarizing half of the test data sentences
(yielding 4 references per sentence). We report the
average inter-annotater agreement score as REF-
ERENCE. For reference, the best human evaluator
scores 31.7 ROUGE-1.

We also include several baselines that have ac-
cess to the same training data as our system. The
first is a sentence compression baseline COM-
PRESS (Clarke and Lapata, 2008). This model
uses the syntactic structure of the original sentence
along with a language model trained on the head-
line data to produce a compressed output. The
syntax and language model are combined with a
set of linguistic constraints and decoding is per-
formed with an ILP solver.

To control for memorizing titles from training,
we implement an information retrieval baseline,
IR. This baseline indexes the training set, and
gives the title for the article with highest BM-25
match to the input (see Manning et al. (2008)).

Finally, we use a phrase-based statistical ma-
chine translation system trained on Gigaword
to produce summaries, MOSES+ (Koehn et al.,
2007). To improve the baseline for this task, we
augment the phrase table with “deletion” rules
mapping each article word to ε, include an addi-
tional deletion feature for these rules, and allow
for an infinite distortion limit. We also explic-
itly tune the model using MERT to target the 75-
byte capped ROUGE score as opposed to standard
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DUC-2004 Gigaword
Model ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L Ext. %

IR 11.06 1.67 9.67 16.91 5.55 15.58 29.2
PREFIX 22.43 6.49 19.65 23.14 8.25 21.73 100
COMPRESS 19.77 4.02 17.30 19.63 5.13 18.28 100
W&L 22 6 17 - - - -
TOPIARY 25.12 6.46 20.12 - - - -
MOSES+ 26.50 8.13 22.85 28.77 12.10 26.44 70.5
ABS 26.55 7.06 22.05 30.88 12.22 27.77 85.4
ABS+ 28.18 8.49 23.81 31.00 12.65 28.34 91.5

REFERENCE 29.21 8.38 24.46 - - - 45.6

Table 1: Experimental results on the main summary tasks on various ROUGE metrics . Baseline models are described in
detail in Section 7.2. We report the percentage of tokens in the summary that also appear in the input for Gigaword as Ext %.

BLEU-based tuning. Unfortunately, one remain-
ing issue is that it is non-trivial to modify the trans-
lation decoder to produce fixed-length outputs, so
we tune the system to produce roughly the ex-
pected length.

7.3 Implementation

For training, we use mini-batch stochastic gradient
descent to minimize negative log-likelihood. We
use a learning rate of 0.05, and split the learning
rate by half if validation log-likelihood does not
improve for an epoch. Training is performed with
shuffled mini-batches of size 64. The minibatches
are grouped by input length. After each epoch, we
renormalize the embedding tables (Hinton et al.,
2012). Based on the validation set, we set hyper-
parameters as D = 200, H = 400, C = 5, L = 3,
and Q = 2.

Our implementation uses the Torch numerical
framework (http://torch.ch/) and will be
openly available along with the data pipeline. Cru-
cially, training is performed on GPUs and would
be intractable or require approximations other-
wise. Processing 1000 mini-batches with D =
200, H = 400 requires 160 seconds. Best valida-
tion accuracy is reached after 15 epochs through
the data, which requires around 4 days of training.

Additionally, as described in Section 5 we apply
a MERT tuning step after training using the DUC-
2003 data. For this step we use Z-MERT (Zaidan,
2009). We refer to the main model as ABS and the
tuned model as ABS+.

8 Results

Our main results are presented in Table 1. We
run experiments both using the DUC-2004 eval-
uation data set (500 sentences, 4 references, 75
bytes) with all systems and a randomly held-out

Gigaword test set (2000 sentences, 1 reference).
We first note that the baselines COMPRESS and IR
do relatively poorly on both datasets, indicating
that neither just having article information or lan-
guage model information alone is sufficient for the
task. The PREFIX baseline actually performs sur-
prisingly well on ROUGE-1 which makes sense
given the earlier observed overlap between article
and summary.

Both ABS and MOSES+ perform better
than TOPIARY, particularly on ROUGE-2 and
ROUGE-L in DUC. The full model ABS+ scores
the best on these tasks, and is significantly better
based on the default ROUGE confidence level
than TOPIARY on all metrics, and MOSES+ on
ROUGE-1 for DUC as well as ROUGE-1 and
ROUGE-L for Gigaword. Note that the additional
extractive features bias the system towards re-
taining more input words, which is useful for the
underlying metric.

Next we consider ablations to the model and al-
gorithm structure. Table 2 shows experiments for
the model with various encoders. For these exper-
iments we look at the perplexity of the system as
a language model on validation data, which con-
trols for the variable of inference and tuning. The
NNLM language model with no encoder gives a
gain over the standard n-gram language model.
Including even the bag-of-words encoder reduces
perplexity number to below 50. Both the convo-
lutional encoder and the attention-based encoder
further reduce the perplexity, with attention giving
a value below 30.

We also consider model and decoding ablations
on the main summary model, shown in Table 3.
These experiments compare to the BoW encoding
models, compare beam search and greedy decod-
ing, as well as restricting the system to be com-
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Model Encoder Perplexity

KN-Smoothed 5-Gram none 183.2
Feed-Forward NNLM none 145.9
Bag-of-Word enc1 43.6
Convolutional (TDNN) enc2 35.9
Attention-Based (ABS) enc3 27.1

Table 2: Perplexity results on the Gigaword validation
set comparing various language models with C=5 and end-
to-end summarization models. The encoders are defined in
Section 3.

Decoder Model Cons. R-1 R-2 R-L

Greedy ABS+ Abs 26.67 6.72 21.70
Beam BOW Abs 22.15 4.60 18.23
Beam ABS+ Ext 27.89 7.56 22.84
Beam ABS+ Abs 28.48 8.91 23.97

Table 3: ROUGE scores on DUC-2003 development data
for various versions of inference. Greedy and Beam are de-
scribed in Section 4. Ext. is a purely extractive version of the
system (Eq. 2)

plete extractive. Of these features, the biggest im-
pact is from using a more powerful encoder (atten-
tion versus BoW), as well as using beam search to
generate summaries. The abstractive nature of the
system helps, but for ROUGE even using pure ex-
tractive generation is effective.

Finally we consider example summaries shown
in Figure 4. Despite improving on the base-
line scores, this model is far from human per-
formance on this task. Generally the models are
good at picking out key words from the input,
such as names and places. However, both models
will reorder words in syntactically incorrect ways,
for instance in Sentence 7 both models have the
wrong subject. ABS often uses more interesting
re-wording, for instance new nz pm after election
in Sentence 4, but this can also lead to attachment
mistakes such a russian oil giant chevron in Sen-
tence 11.

9 Conclusion

We have presented a neural attention-based model
for abstractive summarization, based on recent de-
velopments in neural machine translation. We
combine this probabilistic model with a genera-
tion algorithm which produces accurate abstrac-
tive summaries. As a next step we would like
to further improve the grammaticality of the sum-
maries in a data-driven way, as well as scale this
system to generate paragraph-level summaries.
Both pose additional challenges in terms of effi-
cient alignment and consistency in generation.

I(1): a detained iranian-american academic accused of acting against
national security has been released from a tehran prison after a hefty
bail was posted , a to p judiciary official said tuesday .
G: iranian-american academic held in tehran released on bail
A: detained iranian-american academic released from jail after posting
bail
A+: detained iranian-american academic released from prison after
hefty bail

I(2): ministers from the european union and its mediterranean neighbors
gathered here under heavy security on monday for an unprecedented
conference on economic and political cooperation .
G: european mediterranean ministers gather for landmark conference
by julie bradford
A: mediterranean neighbors gather for unprecedented conference on
heavy security
A+: mediterranean neighbors gather under heavy security for unprece-
dented conference

I(3): the death toll from a school collapse in a haitian shanty-town rose
to ## after rescue workers uncovered a classroom with ## dead students
and their teacher , officials said saturday .
G: toll rises to ## in haiti school unk : official
A: death toll in haiti school accident rises to ##
A+: death toll in haiti school to ## dead students

I(4): australian foreign minister stephen smith sunday congratulated
new zealand ’s new prime minister-elect john key as he praised ousted
leader helen clark as a “ gutsy ” and respected politician .
G: time caught up with nz ’s gutsy clark says australian fm
A: australian foreign minister congratulates new nz pm after election
A+: australian foreign minister congratulates smith new zealand as
leader

I(5): two drunken south african fans hurled racist abuse at the country
’s rugby sevens coach after the team were eliminated from the weekend
’s hong kong tournament , reports said tuesday .
G: rugby union : racist taunts mar hong kong sevens : report
A: south african fans hurl racist taunts at rugby sevens
A+: south african fans racist abuse at rugby sevens tournament

I(6): christian conservatives – kingmakers in the last two us presidential
elections – may have less success in getting their pick elected in #### ,
political observers say .
G: christian conservatives power diminished ahead of #### vote
A: christian conservatives may have less success in #### election
A+: christian conservatives in the last two us presidential elections

I(7): the white house on thursday warned iran of possible new sanctions
after the un nuclear watchdog reported that tehran had begun sensitive
nuclear work at a key site in defiance of un resolutions .
G: us warns iran of step backward on nuclear issue
A: iran warns of possible new sanctions on nuclear work
A+: un nuclear watchdog warns iran of possible new sanctions

I(8): thousands of kashmiris chanting pro-pakistan slogans on sunday
attended a rally to welcome back a hardline separatist leader who
underwent cancer treatment in mumbai .
G: thousands attend rally for kashmir hardliner
A: thousands rally in support of hardline kashmiri separatist leader
A+: thousands of kashmiris rally to welcome back cancer treatment

I(9): an explosion in iraq ’s restive northeastern province of diyala
killed two us soldiers and wounded two more , the military reported
monday .
G: two us soldiers killed in iraq blast december toll ###
A: # us two soldiers killed in restive northeast province
A+: explosion in restive northeastern province kills two us soldiers

I(10): russian world no. # nikolay davydenko became the fifth with-
drawal through injury or illness at the sydney international wednesday ,
retiring from his second round match with a foot injury .
G: tennis : davydenko pulls out of sydney with injury
A: davydenko pulls out of sydney international with foot injury
A+: russian world no. # davydenko retires at sydney international

I(11): russia ’s gas and oil giant gazprom and us oil major chevron have
set up a joint venture based in resource-rich northwestern siberia , the
interfax news agency reported thursday quoting gazprom officials .
G: gazprom chevron set up joint venture
A: russian oil giant chevron set up siberia joint venture
A+: russia ’s gazprom set up joint venture in siberia

Figure 4: Example sentence summaries produced on Gi-
gaword. I is the input, A is ABS, and G is the true headline.
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Abstract

We propose a summarization approach for
scientific articles which takes advantage
of citation-context and the document
discourse model. While citations have
been previously used in generating
scientific summaries, they lack the related
context from the referenced article and
therefore do not accurately reflect the
article’s content. Our method overcomes
the problem of inconsistency between
the citation summary and the article’s
content by providing context for each
citation. We also leverage the inherent
scientific article’s discourse for producing
better summaries. We show that our
proposed method effectively improves
over existing summarization approaches
(greater than 30% improvement over the
best performing baseline) in terms of
ROUGE scores on TAC2014 scientific
summarization dataset. While the dataset
we use for evaluation is in the biomedical
domain, most of our approaches are
general and therefore adaptable to other
domains.

1 Introduction

Due to the expanding rate at which articles
are being published in each scientific field, it
has become difficult for researchers to keep up
with the developments in their respective fields.
Scientific summarization aims to facilitate this
problem by providing readers with concise and
informative representation of contributions or
findings of an article. Scientific summarization
is different than general summarization in three
main aspects (Teufel and Moens, 2002). First, the
length of scientific papers are usually much longer
than general articles (e.g newswire). Second,

in scientific summarization, the goal is typically
to provide a technical summary of the paper
which includes important findings, contributions
or impacts of a paper to the community. Finally,
scientific papers follow a natural discourse. A
common organization for scientific paper is the
one in which the problem is first introduced and
is followed by the description of hypotheses,
methods, experiments, findings and finally results
and implications. Scientific summarization
was recently further motivated by TAC2014
biomedical summarization track1 in which they
planned to investigate this problem in the domain
of biomedical science.

There are currently two types of approaches
towards scientific summarization. First is the
articles’ abstracts. While abstracts provide a
general overview of the paper, they cannot be
considered as an accurate scientific summary by
themselves. That is due to the fact that not all
the contributions and impacts of the paper are
included in the abstract (Elkiss et al., 2008). In
addition, the stated contributions are those that the
authors deem important while they might be less
important to the scientific community. Moreover,
contributions are stated in a general and less
focused fashion. These problems motivated the
other form of scientific summaries, i.e., citation
based summaries. Citation based summary is a
summary which is formed by utilizing a set of
citations to a referenced article (Qazvinian and
Radev, 2008; Qazvinian et al., 2013). This
set of citations has been previously indicated as
a good representation of important findings and
contributions of the article. Contributions stated
in the citations are usually more focused than the
abstract and contain additional information that is
not in the abstract (Elkiss et al., 2008).

However, citations may not accurately represent
1Text Analysis Conference - http://www.nist.gov/ tac/

2014
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the content of the referenced article as they are
biased towards the viewpoint of the citing authors.
Moreover, citations may address a contribution or
a finding regarding the referenced article without
referring to the assumptions and data under which
it was obtained.

The problem of inconsistency between the
degree of certainty of expressing findings between
the citing article and referenced article has
been also reported (De Waard and Maat, 2012).
Therefore, citations by themselves lack the related
“context” from the original article. We call the
textual spans in the reference articles that reflect
the citation, the citation-context. Figure 1 shows
an example of the citation-context in the reference
article (green color) for a citation in the citing
article (blue color).

We propose an approach to overcome the
aforementioned shortcomings of existing
scientific summaries. Specifically, we extract
citation-context in the reference article for each
citation. Then, by using the discourse facets of
the citations as well as community structure of the
citation-contexts, we extract candidate sentences
for the summary. The final summary is formed by
maximizing both novelty and informativeness of
the sentences in the summary. We evaluate and
compare our methods against several well-known
summarization methods. Evaluation results on the
TAC2014 dataset show that our proposed methods
can effectively improve over the well-known
existing summarization approaches. That is, we
obtained greater than 30% improvement over the
highest performing baseline in terms of mean
ROUGE scores.

2 Related work

Document summarization is a relatively well
studied area and various types of approaches for
document summarization have been proposed in
the past twenty years.

Latent Semantic Analysis (LSA) has been
used in text summarization first by (Gong
and Liu, 2001). Other variations of LSA
based summarization approaches have later
been introduced (Steinberger and Jezek, 2004;
Steinberger et al., 2005; Lee et al., 2009; Ozsoy
et al., 2010). Summarization approaches based
on topic modeling and Bayesian models have
also been explored (Vanderwende et al., 2007;
Haghighi and Vanderwende, 2009; Celikyilmaz

Citing article:

... The general impression that has emerged is that transformation
of human cells by Ras requires the inactivation of both the pRb and p53
pathways, typically achieved by introducing DNA tumor virus oncoproteins
such as SV40 large tumor antigen (T-Ag) or human papillomavirus E6 and
E7 proteins ( Serrano et al., 1997 ).
To address this question, we have been investigating the ...

Reference article (Serrano et al., 1997):
... continued to incorporate BrdU and proliferate following introduction
of H-ras V12. In agreement with previous reports ( 66 and 60), both
p53/ and p16/ MEFs expressing H-ras V12 displayed features of oncogenic
transformation (e.g., refractile morphology, loss of contact inhibition), which
were apparent almost immediately after H-ras V12 was transduced (data not
shown). These results indicate that p53 and p16 are essential for ras-induced
arrest in MEFs, and that inactivation of either p53 or p16 alone is sufficient
to circumvent arrest. In REF52 and IMR90 fibroblasts, a different approach
was ...

Figure 1: The blue highlighted span in the citing article
(top) shows the citation text, followed by the citation marker
(pink span). For this citation, the citation-context is the
green highlighted span in the reference article (bottom). The
text spans outside the scope of the citation text and citation-
context are not highlighted.

and Hakkani-Tur, 2010; Ritter et al., 2010;
Celikyilmaz and Hakkani-Tür, 2011; Ma and
Nakagawa, 2013; Li and Li, 2014). In these
approaches, the content/topic distribution in the
final summary is estimated using a graphical
probabilistic model. Some approaches have
viewed summarization as an optimization task
solved by linear programming (Clarke and
Lapata, 2008; Berg-Kirkpatrick et al., 2011;
Woodsend and Lapata, 2012). Many works
have viewed the summarization problem as a
supervised classification problem in which several
features are used to predict the inclusion of
document sentences in the summary. Variations
of supervised models have been utilized for
summary generation, such as: maximum entropy
(Osborne, 2002), HMM (Conroy et al., 2011),
CRF (Galley, 2006; Shen et al., 2007; Chali and
Hasan, 2012), SVM (Xie and Liu, 2010), logistic
regression (Louis et al., 2010) and reinforcement
learning (Rioux et al., 2014). Problems with
supervised models in context of summarization
include the need for large amount of annotated
data and domain dependency.

Graph based models have shown promising
results for text summarization. In these
approaches, the goal is to find the most central
sentences in the document by constructing a
graph in which nodes are sentences and edges
are similarity between these sentences. Examples
of these techniques include LexRank (Erkan
and Radev, 2004), TextRank (Mihalcea and
Tarau, 2004), and the work by (Paul et al.,
2010). Maximizing the novelty and preventing
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the redundancy in a summary is addressed
by greedy selection of content summarization
(Carbonell and Goldstein, 1998; Guo and Sanner,
2010; Lin et al., 2010). Rhetorical structure
of the documents have also been investigated
for automatic summarization. In this line of
work, dependency and discourse parsing based
on Rhetorical Structure Theory (RST) (Mann
and Thompson, 1988) is used for analyzing the
structure of the documents (Hirao et al., 2013;
Kikuchi et al., 2014; Yoshida et al., 2014).
Summarization based on rhetorical structure is
better suited for shorter documents and is highly
dependent on the quality of the discourse parser
that is used. Training the discourse parser
requires large amount of training data in the RST
framework.

Scientific article summarization was first
studied by (Teufel and Moens, 2002) in which
they trained a supervised Naive Bayes classifier
to select informative content for the summary.
Later (Elkiss et al., 2008) argue the benefits of
citations to scientific work analysis. (Cohan et
al., 2015) use a search oriented approach for
finding relevant parts of the reference paper to
citations. (Qazvinian and Radev, 2008; Qazvinian
et al., 2013) use citations to an article to construct
its summary. More specifically, they perform
hierarchical agglomerative clustering on citations
to maximize purity and select most central
sentences from each cluster for the final summary.
Our work is closest to (Qazvinian and Radev,
2008) with the difference that they only make
use of citations. While citations are useful for
summarization, relying solely on them might
not accurately capture the original context of
the referenced paper. That is, the generated
summary lacks the appropriate evidence to
reflect the content of the original paper, such as
circumstances, data and assumptions under which
certain findings were obtained. We address this
shortcoming by leveraging the citation-context
and the inherent discourse model in the scientific
articles.

3 The summarization approach

Our scientific summary generation algorithm is
composed of four steps: (1) Extracting the
citation-context, (2) Grouping citation-contexts,
(3) Ranking the sentences within each group and
(4) Selecting the sentences for final summary. We

assume that the citation text (the text span in
the citing article that references another article)
in each citing article is already known. We
describe each step in the following sub-sections.
Our proposed method generates a summary of
an article with the premise that the article has
a number of citations to it. We call the article
that is being referenced the “reference article”.
We shall note that we tokenized the articles’ text
to sentences by using the punkt unsupervised
sentence boundary detection algorithm (Kiss and
Strunk, 2006). We modified the original sentence
boundary detection algorithm to also account for
biomedical abbreviations. For the rest of the
paper, “sentence” refers to units that are output
of the sentence boundary detection algorithm,
whereas “text span” or in short “span” can consist
of multiple sentences.

3.1 Extracting the citation-context
As described in section 2, one problem with
existing citation based summarization approaches
is that they lack the context of the referenced
paper. Therefore, our goal is to leverage citation-
context in the reference article to correctly reflect
the reference paper. To find citation-contexts, we
consider each citation as an n-gram vector and use
vector space model for locating the relevant text
spans in the reference article. More specifically,
given a citation c, we return the ranked list of
text spans r1, r2, ..., rn which have the highest
similarity to c. We call the retrieved text spans
reference spans. These reference spans are
essentially forming the context for each citation.
The similarity function is the cosine similarity
between the pivoted normalized vectors. We
evaluated four different approaches for forming
the citation vector.

1. All terms in citation except for stopwords,
numeric values and citation markers i.e., name
of authors or numbered citations. In figure 1 an
example of citation marker is shown.

2. Terms with high inverted document frequency
(idf). Idf values of terms have shown to be a good
estimate of term informativeness.

3. Concepts that are represented through noun
phrases in the citation, for example in the
following: “ ... typically achieved by introducing
DNA tumor virus oncoproteins such a ... ” which
is part of a citation, the phrase “DNA tumor virus
oncoproteins” is a noun phrase.
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4. Biomedical concepts and noun phrases
expanded by related biomedical concepts: This
formation is specific to the biomedical domain.
It selects biomedical concepts and noun phrases
in the citation and uses related biomedical
terminology to expand the citation vector.
We used Metamap1 for extracting biomedical
concepts from the citation text (which is a tool
for mapping free form text to UMLS2 concepts).
For expanding the citation vector using the related
biomedical terminology, we used SNOMED CT3

ontology by which we added synonyms of the
concepts in the citation text to the citation vector.

3.2 Grouping the citation-contexts
After identifying the context for each citation, we
use them to form the summary. To capture various
important aspects of the reference article, we form
groups of citation-contexts that are about the same
topic. We use the following two approaches for
forming these groups:

Community detection - We want to find diverse
key aspects of the reference article. We form
the graph of extracted reference spans in which
nodes are sentences and edges are similarity
between sentences. As for the similarity function,
we use cosine similarity between tf-idf vectors
of the sentences. Similar to (Qazvinian and
Radev, 2008), we want to find subgraphs or
communities whose intra-connectivity is high but
inter-connectivity is low. Such quality is captured
by the modularity measure of the graph (Newman,
2006; Newman, 2012). Graph modularity
quantifies the denseness of the subgraphs in
comparison with denseness of the graph of
randomly distributed edges and is defined as
follows:

Q =
1

2m

∑
vw

[
Avw − kv × kw

2m
]
δ(cv, cw)

Where Avw is the weigh of the edge (v, w); kv is
the degree of the vertex v; cv is the community of
vertex v; δ is the Kronecker’s delta function and
m =

∑
vw Avw is the normalization factor.

While the general problem of precise partitioning
of the graph into highly dense communities

1http://metamap.nlm.nih.gov/
2Unified Medical Language System - a compendium of

controlled vocabularies in the biomedical sciences, http://
www.nlm.nih.gov/research/umls

3http://www.nlm.nih.gov/research/umls/Snomed/
snomed main.html

that optimizes the modularity is computationally
prohibitive (Brandes et al., 2008), many heuristic
algorithms have been proposed with reasonable
results. To extract communities from the graph
of reference spans, we use the algorithm proposed
by (Blondel et al., 2008) which is a simple
yet accurate and efficient community detection
algorithm. Specifically, communities are built in
a hierarchical fashion. At first, each node belongs
to a separate community. Then nodes are assigned
to new communities if there is a positive gain
in modularity. This process is applied iteratively
until no further improvement in modularity is
possible.

Discourse model - A natural discourse model is
followed in each scientific article. In this method,
instead of finding communities to capture different
important aspects of the paper, we try to select
reference spans based on the discourse model of
the paper. The discourse model is according
to the following facets: “hypothesis”, “method”,
“results”, “implication”, “discussion” and “data-
set-used”. The goal is to ideally include reference
spans from each of these discourse facets of the
article in the summary to correctly capture all
aspects of the article. We use a one-vs-rest SVM
supervised model with linear kernel to classify
the reference spans to their respective discourse
facets. Training was done on both the citation
and reference spans since empirical evaluation
showed marginal improvements upon including
the reference spans in addition to the citation
itself. We use unigram and verb features with tf-
idf weighting to train the classifier.

3.3 Ranking model

To identify the most representative sentences of
each group, we require a measure of importance
of sentences. We consider the sentences in a
group as a graph and rank nodes based on their
importance. An important node is a node that
has many connections with other nodes. There
are various ways of measuring centrality of nodes
such as nodes degree, betweenness, closeness and
eigenvectors. Here, we opt for eigenvectors and
we find the most central sentences in each group
by using the “power method” (Erkan and Radev,
2004) which iteratively updates the eigenvector
until convergence.

393



3.4 Selecting the sentences for final summary
After scoring and ranking the sentences in each
group which were identified either by discourse
model or by community detection algorithm, we
employ two strategies for generating the summary
within the summary length threshold.
• Iterative: We select top sentences iteratively from

each group until we reach the summary length
threshold. That is, we first pick the top sentence
from all groups and if the threshold is not met,
we select the second sentence and so forth. In the
discourse based method, the following ordering
for selecting sentences from groups is used:
“hypothesis”, “method”,“results”, “implication”
and “discussion”. In the community detection
method, no pre-determined order is specified.
• Novelty: We employ a greedy strategy similar to

MMR (Carbonell and Goldstein, 1998) in which
sentences from each group are selected based on
the following scoring formula:

score(S) def=λSim1(S, D)

− (1− λ)Sim2(S,Summary)

Where, for each sentence S, the score is a
linear interpolation of similarity of sentence with
all other sentences (Sim1) and the similarity
of sentence with the sentences already in the
summary (Sim2) and λ is a constant. We
empirically set λ = 0.7 and also selected
top 3 central sentences from each group as the
candidates for the final summary.

4 Experimental setup

4.1 Data
We used the TAC2014 biomedical summarization
dataset for evaluation of our proposed method.
The TAC2014 benchmark contains 20 topics
each of which consists of one reference article
and several articles that have citations to each
reference article (the statistics of the dataset is
shown in Table 1). All articles are biomedical
papers published by Elsevier. For each topic,
4 experts in biomedical domain have written a
scientific summary of length not exceeding 250
words for the reference article. The data also
contains annotated citation texts as well as the
discourse facets. The latter were used to build the
supervised discourse model. The distribution of
discourse facets is shown in Table 2.

Table 1: Dataset statistics
mean std

# of topics (reference articles) 20 0
# of Gold summaries for each topic 4 0
# of citing articles in each topic 15.65 2.70
# of citations to the reference article in

each citing article
1.57 1.17

Length of summaries (words) 235.64 31.24
Length of articles (words) 9759.86 2199.48

Table 2: Distribution of annotated discourse facets

Discourse facet count
Hypothesis 21

Method 155
Results 490

Implication 140
Discussion 446

4.2 Baselines
We compared existing well-known and widely-
used approaches discussed in section 2 with
our approach and evaluated their effectiveness
for scientific summarization. The first three
approaches use the scientific article’s text and the
last approach uses the citations to the article for
generating the summary.
• LSA (Steinberger and Jezek, 2004) - The LSA

summarization method is based on singular value
decomposition. In this method, a term document
index A is created in which the values correspond
to the tf-idf values of terms in the document.
Then, Singular Value Decomposition, a dimension
reduction approach, is applied to A. This will
yield a singular value matrix Σ and a singular
vector matrix VT . The top singular vectors are
selected from VT iteratively until length of the
summary reaches a predefined threshold.
• LexRank (Erkan and Radev, 2004) - LexRank

uses a measure called centrality to find the most
representative sentences in given sets of sentences.
It finds the most central sentences by updating the
score of each sentence using an algorithm based
on PageRank random walk ranking model (Page et
al., 1999). More specifically, the centrality score
of each sentence is represented by a centrality
matrix p which is updated iteratively through the
following equation using a method called “power
method”:

p = ATp

Where matrix A is based on the similarity matrix
B of the sentences:

A = [dU + (1− d)B]
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In which U is a square matrix with values 1/N and
d is a parameter called the damping factor. We set
d to 0.1 which is the default suggested value.
• MMR (Carbonell and Goldstein, 1998) - In

Maximal Marginal Relevance (MMR), sentences
are greedily ranked according to a score based on
their relevance to the document and the amount
of redundant information they carry. It scores
sentences based on the maximization of the linear
interpolation of the relevance to the document and
diversity:

MMR(S,D) def=λSim1(S, D)

− (1− λ)Sim2(S,Summary)

Where S is the sentence being evaluated, D is
the document being summarized, Sim1 and Sim2

are similarity function, Summary is the summary
formed by the previously selected sentences and
λ is a parameter. We used cosine similarity as
similarity functions and we set λ to 0.3, 0.5 and
0.7 for observing the effect of informativeness vs.
novelty.
• Citation summary (Qazvinian and Radev, 2008)-

In this approach, a network of citations is built
and citations are clustered to maximum purity
(Zhao and Karypis, 2001) and mutual information.
These clusters are then used to generate the final
summary by selecting the top central sentences
from each cluster in a round-robin fashion. Our
approach is similar to this work in that they also
use centrality scores on citation network clusters.
Since they only focus on citations, comparison of
our approach with this work gives a better insight
into how beneficial our use of citation-context
and article’s discourse model can be in generating
scientific summaries.

5 Results and discussions

5.1 Evaluation metrics
We use the ROUGE evaluation metrics which
has shown consistent correlation with manually
evaluated summarization scores (Lin, 2004). More
specifically, we use ROUGE-L, ROUGE-1 and
ROUGE-2 to evaluate and compare the quality of
the summaries generated by our system. While
ROUGE-N focuses on n-gram overlaps, ROUGE-L
uses the longest common subsequence to measure
the quality of the summary. ROUGE-N where N

is the n-gram order, is defined as follows:

ROUGE-N =

∑
S∈{Gold summaries}

∑
W∈S

fmatch(W )∑
S∈{Gold summaries}

∑
W∈S

f(W )

WhereW is the n-gram, f(.) is the count function,
fmatch(.) is the maximum number of n-grams co-
occurring in the generated summary and in a set of
gold summaries. For a candidate summary C with
n words and a gold summary S with u sentences,
ROUGE-L is defined as follows:

ROUGE-Lrec =

u∑
i=1

LCS∪(ri, C)∑u
i=1 |ri|

ROUGE-Lprec =

u∑
i=1

LCS∪(ri, C)

n

Where LCS∪(., .) is the Longest common
subsequence (LCS) score of the union of LCS
between gold sentence ri and the candidate
summary C. ROUGE-L f score is the harmonic
mean between precision and recall.

5.2 Comparison between summarizers
We generated two sets of summaries using the
methods and baselines described in previous
sections. We consider short summaries of
length 100 words and longer summaries of
length 250 words (which corresponds to the
length threshold in gold summaries). We also
considered the oracle’s performance by averaging
over the ROUGE scores of all human summaries
calculated by considering one human summary
against others in each topic. As far as 100
words summaries, since we did not have gold
summaries of that length, we considered the first
100 words from each gold summary. Figure 2
shows the box-and-whisker plots with ROUGE

scores. For each metric, the scores of each
summarizer in comparison with the baselines for
100 word summaries and 250 words summaries
are shown. The citation-context for all the
methods were identified by the citation text vector
method which uses the citation text except for
numeric values, stop words and citation markers
(first method in section 3.1). In section 5.3,
we analyze the effect of various citation-context
extraction methods that we discussed in section 3
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Figure 2: ROUGE-1, ROUGE-2 and ROUGE-L scores for different summarization approaches. Chartreuse (yellowish
green) box shows the oracle, green boxes show the proposed summarizers and blue boxes show the baselines; From left,
Oracle; Citation-Context-Comm-It: Community detection on citation-context followed by iterative selection; Citation-Context-
Community-Div: Community detection on citation-context followed by relevance and diversification in sentence selection;
Citation-Context-Discourse-Div: Discourse model on citation-context followed by relevance and diversification; Citation-
Context-Discourse-It: Discourse model on citation-context followed by iterative selection; Citation Summ.: Citation summary;
MMR 0.3: Maximal marginal relevance with λ = 0.3.
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on the final summary. The name of each
of our methods is shortened by the following
convention: [Summarization approach] [Sentence
selection strategy]. Summarization approach is
based on either community detection (Citation-
Context-Comm) or discourse model of the article
(Citation-Context-Disc) and sentence selection
strategy can be iterative (It) or by relevance and
diversification (Div).

We can clearly observe that our proposed
methods achieve encouraging results in
comparison with existing baselines. Specifically,
for 100 words short summaries, the discourse
based method (with 34.6% mean ROUGE-L
improvement over the best baseline) and for 250
word summaries, the community based method
(with 3.5% mean ROUGE-L improvement over the
best baseline) are the best performing methods.
We observe relative consistency between different
rouge scores for each summarization approach.
Grouping citation-context based on both the
discourse structure and the communities show
comparable results. The community detection
approach is thus effectively able to identify
diverse aspects of the article. The discourse
model of the scientific article is also able to
diversify selection of citation contexts for the final
summary. These results confirm our hypotheses
that using the citation context along with the
discourse model of the scientific articles can help
producing better summaries.

Comparison of performance of methods on
individual topics showed that the citation-context
methods consistently over perform all other
methods in most of the topics (65% of all topics).

While the discourse approach shows
encouraging results, we attribute its limitation
in achieving higher ROUGE scores to the
classification errors that we observed in intrinsic
classification evaluation. In evaluating the
performance of several classifiers, linear SVM
achieved the highest performance with accuracy
of 0.788 in comparison with human annotation
performance. Many of the citations cannot exactly
belong to only one of the discourse facets of
the paper and thus some errors in classification
are inevitable. This is also observable in
disagreements between the annotators in labeling
as reported by (Cohan et al., 2014). This fact
influences the diversification and finally the
summarization quality.

Among baseline summarization approaches,
LexRank performs relatively well. Its
performance is the best for short summaries
among other baselines. This is expected since
LexRank tries to find the most central sentences.
When the length of the summary is short, the
main idea in the summary is usually captured by
finding the most representative sentence which
LexRank can effectively achieve. However, the
sentences that it chooses are usually about the
same topic. Hence, the diversity in the gold
summaries is not considered. This becomes more
visible when we observe 250 word summaries.
Our discourse based method can overcome this
problem by including important contents for
diverse discourse facets (34.6% mean ROUGE-L
improvement for 100 words summaries and
13.9% improvement for 250 word summaries).
The community based approach achieves the
same diversification effect in an unsupervised
fashion by forming citation-context communities
(27.16% mean ROUGE-L improvement for 100
words summaries and 14.9% improvement for
250 word summaries).

The citation based summarization baseline
has somewhat average performance among the
baseline methods. This confirms that relying only
on the citations can not be optimal for scientific
summarization. While LSA approach performs
relatively well, we observe lower scores for all
variations of MMR approaches. We attribute
the low performance of MMR to its sub optimal
greedy selection of sentences from relatively long
scientific articles.

By comparing the two sentence selection
approaches (i.e., iterative and diversification-
relevance), we observe that while for shorter
length summaries the method based on
diversification performs better, for the longer
summaries results for the two methods are
comparable. This is because when the length
threshold is smaller, iterative approach may fail
to select best representative sentences from all
the groups. It essentially selects one sentence
from each group until the length threshold is met,
and consequently misses some aspects. Whereas,
the diversification method selects sentences that
maximize the gain in informativeness and at
the same time contributes to the novelty of the
summary. In longer summaries, due to larger
threshold, iterative approach seems to be able
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Figure 3: Comparison of the effect of different citation-context extraction methods on the quality of the final summary.

to select the top sentences from each group,
enabling it to reflect different aspect of the
paper. Therefore, the iterative approach performs
comparably well to the diversification approach.
This outcome is expected because the number of
groups are small. For discourse method, there are
5 different discourse facets and for community
method, on average 5.2 communities are detected.
Hence, iterative selection can select sentences
from most of these groups within 250 words limit
summaries.

5.3 Analysis of strategies for citation-context
extraction

Figure 3 shows ROUGE-L results for 250 words
summaries based on using different citation-
context extraction approaches, described in
section 3.1. Relatively comparable performance
for all the approaches is achieved. Using
the citation text for extracting the context is
almost as effective as other methods. Keywords
approach which uses the terms with high idf
values for locating the context achieves slightly
higher Rouge-L precision while it has the lowest
recall. This is expected since keywords approach
chooses only informative terms for extracting
citation-contexts. This results in missing terms
that may not be keywords by themselves but
help providing meaning. Noun phrases has
the highest mean F-score and thus suggests the
fact that noun phrases are good indicators of
important concepts in scientific text. We attribute
the high recall of noun phrases to the fact that
most important concepts are captured by only
selecting noun phrases. Interestingly, introducing
biomedical concepts and expanding the citation
vector by related concepts does not improve

the performance. This approach achieves a
relatively higher recall but a lower mean precision.
While capturing domain concepts along with noun
phrases helps improving the performance, adding
related concepts to the citation vector causes
drift from the original context as expressed in
the reference article. Therefore some decline in
performance is incurred.

6 Conclusion

We proposed a pipeline approach for
summarization of scientific articles which
takes advantage of the article’s inherent discourse
model and citation-contexts extracted from the
reference article1. Our approach focuses on the
problem of lack of context in existing citation
based summarization approaches. We effectively
achieved improvement over several well known
summarization approaches on the TAC2014
biomedical summarization dataset. That is, in all
cases we improved over the baselines; in some
cases we obtained greater than 30% improvement
for mean ROUGE scores over the best performing
baseline. While the dataset we use for evaluation
of scientific articles is in biomedical domain,
most of our approaches are general and therefore
adaptable to other scientific domains.
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Abstract

In recent years, the task of recommending
hashtags for microblogs has been given
increasing attention. Various methods
have been proposed to study the problem
from different aspects. However, most
of the recent studies have not considered
the differences in the types or uses of
hashtags. In this paper, we introduce
a novel nonparametric Bayesian method
for this task. Based on the Dirichlet
Process Mixture Models (DPMM), we
incorporate the type of hashtag as a hid-
den variable. The results of experiments
on the data collected from a real world
microblogging service demonstrate that
the proposed method outperforms state-
of-the-art methods that do not consider
these aspects. By taking these aspects into
consideration, the relative improvement of
the proposed method over the state-of-the-
art methods is around 12.2% in F1- score.

1 Introduction

Hashtags are used to mark keywords or topics in a
microblog. Over the past few years, social media
services have become some of the most important
communication channels for people. According
to the statistic reported by the Pew Research
Centers Internet & American Life Project in Aug
5, 2013, about 72% of adult internet users are
also members of at least one social networking
site. Hence, microblogs have also been widely
used as data sources for public opinion analy-
ses (Bermingham and Smeaton, 2010; Jiang et
al., 2011), prediction (Asur and Huberman, 2010;
Bollen et al., 2011), reputation management (Pang
and Lee, 2008; Otsuka et al., 2012), and many
other applications (Sakaki et al., 2010; Becker et
al., 2010; Guy et al., 2010; Guy et al., 2013).

In addition to the limited number of characters
in the content, microblogs also contain a form
of metadata tag (hashtag), which is a string of
characters preceded by the symbol (#). Hashtags
are used to mark the keywords or topics of
a microblog. They can occur anywhere in a
microblog, at the beginning, middle, or end.
Hashtags have been proven to be useful for many
applications, including microblog retrieval (Efron,
2010), query expansion (A.Bandyopadhyay et al.,
2011), and sentiment analysis (Davidov et al.,
2010; Wang et al., 2011). However, only a
small percentages of microblogs contain hashtags
provided by their authors. Hence, the task of rec-
ommending hashtags for microblogs has become
an important research topic and has received con-
siderable attention in recent years. Existing works
have studied discriminative models (Ohkura et
al., 2006; Heymann et al., 2008) and generative
models (Blei and Jordan, 2003; Krestel et al.,
2009; Ding et al., 2013; Godin et al., 2013) based
on the textual information of a single microblog.

Since microblog users are free to develop
and use their own hashtags, they may select
hashtags for different purposes. Based on an
analysis of the hashtags crawled from a real
online service, we observe that hashtags are used
for events, conferences, conversation, disasters,
memes, recall, quotes, and so on. To illustrate it
let us take the following examples:

Example 1:#Apple iOS 9 includes music fea-
ture, new security and support for older iPhones.

Example 2:#BREAKING: Missing cyclist Na-
talie Donoghue has been found alive after she
went missing in the Hunter Valley.

We can see that the hashtag #Apple iOS 9 used
in the example summarize the main topics of
the corresponding microblog. While, the aim of
hashtag #BREAKING in the example 2 is used as
a label of the microblog. The different uses greatly
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impact the strategy of hashtag recommendation.
However, there has been relatively few studies
which take this issue into consideration.

In this paper, we propose a novel nonpara-
metric Bayesian method to perform this problem.
Inspired by the methods proposed by Liu et
al. (2012), we assume that the hashtags and
textual content in the corresponding microblog are
parallel descriptions of the same thing in different
languages. We adapt a translation model with
topic distribution to achieve this task. Because
of the ability of Dirichlet Process Mixture Models
(DPMM) (Antoniak and others, 1974; Ferguson,
1983) to handle an unbounded number of topics,
the proposed method is extended from them.
Based on the different uses of hashtags, we
incorporate the type of hashtag into the DPMM as
a hidden variable.

The main contributions of this work can be
summarized as follows:

• Through analyzing the microblogs, we pro-
pose the problem of influences of types of
hashtags.

• We adopt a nonparametric Bayesian method
to perform the hash tag recommendation task,
which also takes the types of hashtags into
consideration.

• Experimental results on the dataset we
construct from a real microblogging service
show that the proposed method can achieve
significantly better performance than the
state-of-the-arts methods.

2 The Proposed Method

In this section, we first give some brief
descriptions about the Dirichlet process
(DP) and Dirichlet Process Mixture Models
(DPMM). Then, we detail the proposed hashtag
recommendation method.

2.1 Preliminaries

2.1.1 Dirichlet Process
The Dirichlet process (DP) is a distribution over
distributions. A DP, denoted by G ∼ DP (α,H),
is parameterized by a base measure H , and a
concentration parameter α. After a discussion
of basic definitions, we present two different
perspectives on the Dirichlet process.

A perspective on the Dirichlet process is stick-
breaking construction. The stick-breaking con-
struction considers a probability mass function
{βk}∞k=1 on a countably infinite set, where the
discrete probabilities are defined as follows:

vk|α ∼ Beta(1, α)

βk = vk

k−1∏
l=1

(1− vl).
(1)

The kth weight is a random proportion vk of the
remaining stick after the previous(k − 1) weights
have been defined. This stick-breaking construc-
tion is generally denoted by β ∼GEM(α) (GEM
stands for Griffiths, Engen and McCloskey). A
random draw G ∼ DP (α,H) can be expressed
as:

G =
∞∑
k=1

βkδθk θk|α,H ∼ H, (2)

where δθ is a probability measure concentrated at
θ.

A second perspective on the Dirichlet process
is provided by the Pólya urn scheme (Blackwell
and MacQueen, 1973). It refers to draws from
G. Let θ1, θ2, ... represent a sequence of inde-
pendent and identically distributed (i.i.d.) random
variables distributed according to G. Blackwell
and MacQueen (1973) showed that the conditional
distributions of θi given θ1, ..., θi−1 have the
following form:

θi|θ1, ..., θi−1, α,H

∼
i−1∑
j=1

j

i− 1 + α
δθj +

α

i− 1 + α
H.

(3)

Eq.(3) shows that θi has positive probability of
being equal to one of the previous draws. We use
φ1, ..., φK to represent the distinct values taken on
by θ1, ..., θi−1, and Eq.(3) can be re-expressed as:

θi|θ1, ..., θi−1, α,H

∼
K∑
k=1

mk

i− 1 + α
δθφk +

α

i− 1 + α
H,

(4)

where mk is the number of values θi′ = φk for
1 ≤ i′ < i.

2.1.2 Dirichlet Process Mixture Models
In nonparametric Bayesian statistics, DPs are
commonly used as prior distributions for mixture
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models with an unknown number of components.
Let F (θi) denotes the distribution of the observa-
tion xi given θi. We can get the observation xi as
follows:

θi|G ∼ G
xi|θi ∼ F (θi).

Given G ∼ DP (α,H), each observation xi from
an exchangeable data set x is generated by first
choosing a parameter θi ∼ G, and then sampling
xi ∼ F (θi). This model is referred to as a
Dirichlet process mixture model. This process
is often described by a set z of independently
sampled variables zi ∼ Mult(β) indicating the
component of the mixture G(θ) associated with
each data point xi ∼ F (θzi). Then we can get:

zi|β ∼Mult(β)
xi|{θk}∞k=1, zi ∼ F (θzi).

2.2 DPMM Based Hashtag Recommendation
2.2.1 The Generation Process
Let D represent the number of microblogs in the
given corpus. A microblog contains a bag of
words denoted by wd = {wd1 , wd2 , ..., wdNd},
where Nd is the total number of terms in the
microblog. A word is defined as an item from
a vocabulary with W distinct words indexed
by w = {w1, w2, ..., wW }. Each microblog
may have a number of hashtags denoted by
hd = {hd1 , hd2 , ..., hdMd}. Md is the number of
hashtags of microblog d. Each hashtag is from the
vocabulary with V distinct hashtags indexed by
h = {h1, h2, ..., hV }. Given an unlabeled data set,
the task of hashtag recommendation is to discover
a list of hashtags for each microblog.

In standard LDA, each document is viewed as a
mixture of topics, and each topic has probabilities
to generate words. A LDA is a generalization of a
finite mixture model. Since DP is the extension
of finite mixture models to the nonparametric
setting, the appropriate tool for nonparametric
topic models is HDP. However, both LDA and
HDP are normally suitable for long documents.
For microblogs, which have limited number of
words, a single microblog is most likely to talk
about a single topic. Hence, in this work, we
regard that each microblog associates with only
one topic. The set of documents are viewed as a
mixture of infinite topics. And we use DPs as prior
distributions for the mixture of infinite topics.

The main assumptions of our model are as
follows. When user u publishes a microblog, he
will first generate the content and then generate
the hashtags. When constructing the content,
he will select a topic based on the topic distri-
bution. Then he will choose a bag of words
one by one from the word distribution of the
topic or from the background words that captures
white noise. Hashtags will be chosen according
to the following two situations. In the first
situation, hashtags summarize the corresponding
microblogs. Hashtags of a microblog can be
generated from the content through the topic-
specific alignment probability between words and
hashtags. In the second situation, hashtag is used
as a label of the microblog. We recommend the
hashtags using the words in the microblog, which
is based on the frequency of words regarded as this
type of hashtag.

Let π be the probability of choosing a topic
word or a background word, and we use yd =
{ydn}Ndn=1 to indicate a word to be a topic word
or background word. θ denotes the topic distribu-
tion, and φk represents the word distribution for
topic k. φB represents the word distribution for
background words. We use xdm to represent the
type of hashtag hdm , and use zd to represent the
topic of document d. Then each hashtag hdm is
annotated according to the translation possibility
P (hdm |wd, zd, xdm , ϕxdm ), where ϕxdm is the
probability alignment table between words and
hashtags. The generation process is as Algo-
rithm 1.

Figure 1(a) shows the graphical representation
of the generation process in Algorithm 1. Fig-
ure 1(b) is the graphical model which does not take
the types of hashtags into consideration, where
ϕ∗ ∈ {ϕ1, ϕ2}. If ϕ∗ = ϕ1, the model is just
considering the first situation. when ϕ∗ = ϕ2,
only the second type of hashtag will be considered.

2.2.2 Learning

We use collapsed Gibbs sampling (Griffiths and
Steyvers, 2004) to obtain samples of hidden
variables assignment and to estimate the model
parameters from these samples.

The sampling probability of being a
topic/background word for the nth word in the
microblog d can be calculated by the following
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Figure 1: The graphical representation of the proposed model. Shaded circles are observations or
constants. Unshaded ones are hidden variables. CNHR represents the proposed hashtag recommendation
method. NHR* represents the model which does not take the types of hashtags into consideration.

Algorithm 1 The generation process of CNHR
Draw π ∼ Beta(σ), λ ∼ Beta(η)
Draw background word distribution φB ∼
Dir(βw)
Draw θ|α ∼ GEM(α)
for each microblog d = 1, 2, ..., D do

Draw zd ∼Mul(θ)
Draw word distribution φzd ∼ Dir(βw)
for each word n = 1, ..., Nd do

Draw ydn ∼ Ber(π)
if ydn = 0 then

Draw a word wdn from the background-
word distribution wdn ∼Mul(φB)

else
Draw a word wdn from the topic-word
distribution wdn ∼Mul(φzd)

end if
end for
for each hashtag m = 1, ...,Md do

Draw xdm ∼ Ber(λ)
Draw ϕxdm ∼ Dir(βh)
Draw a hashtag hdm ∼
P (hdm |wd, zd, xdm , ϕxdm )

end for
end for

equation:

p(ydn |w,h, z,y¬dn , σ, β
w)

∝ N¬n,p + σ

N¬n,(.) + 2σ
· N

wdn
¬n,l + βw

N
(.)
¬n,l + βwW

,
(5)

where l = B when p = 0 and l = zd when
p = 1, N¬n,p is a count of words that are assigned
to background words and any topic respectively,
N
wdn
¬n,B is the number of word wdn assigned to

background words, Nwdn¬n,zd is the number of word
wdn that are assigned to topic zd. All counters are
calculated with the current word wdn excluded.

We sample zd for the microblog d using the
following equation:

p(zd|w,h, z¬d,y,x, α, βw, βh) ∝ p(zd|z¬d, α)

· p(wd|z,w¬d,y, βw) · p(hd|z,wd,y,x, βh).
(6)

We can also represent p(zd|z¬d, α) with CRP as
described in the previous section. Since z1, z2, ...
is a sequence of i.i.d random variables, they are
exchangeable. Let us consider the dth variable zd
is the last observation, we can get the following
expression:

p(zd|z¬d, α) ∼
K∑
k

Nk
¬d

N
(.)
¬d − 1 + α

δ(zd, k) +
α

N
(.)
¬d − 1 + α

δ(zd, k̄),

(7)
where k is an exist topic and k̄ is a new topic,
Nk
¬d is the number of microblogs assigned with

topic k, N (.)
¬d is the total number of microblogs,

α is concentration parameter. All counters are
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calculated with the current microblog d excluded.
If zd equals an exist topic zd = k, then we can

calculate p(wd|z,w¬d,y, βw) by:

p(wd|z,w¬d,y, βw) =∫
φk
f̃(wd|φk)

∏
zj=k,j 6=d f̃(wj|φk)h(φk)dφk∫

φk

∏
zj=k,j 6=d f̃(wj|φk)h(φk)dφk

,

(8)
where f̃(wd|φk) =

∏
1≤n≤Nd,ydn=1 f(wdn |φk).

Nd is the number of words in microblog d.
f(wdn |φk) is the density of word wdn given topic
k. wd are the words in microblog d. h(φk) is the
density of base measure H .

If zd is a new topic zd = k̄, then we can
calculate p(wd|zd = k̄,w¬d,y, βw) by:

p(wd|zd = k̄,w¬d,y, βw) = p(wd|βw) =∫
φk̄

p̃(wd|φk̄)h(φk̄)dφk̄,
(9)

where p̃(wd|φk̄) =
∏

1≤n≤Nd,ydn=1 p(wdn |φk̄).
We can calculate the probabilities of generating

hashtags from two situations as follows:

p(hd|z,wd,y,x, βh) =
∏Md
m=1

∑
n∈Ñd

Mk,¬d
wdn

,hdm
+βh

Mk,¬d
wdn

,(.)
+βhV

xdm = 1

∏Md
m=1

∑
n∈Ñd,wdn=hdm

Mk,¬d
wdn

,2+βh

Mk,¬d
wdn

,(.)
+2βh

xdm = 2,

(10)
where Ñd represent the index set of topic
words(y = 1) in the microblog d, Mk,¬d

wdn ,hdm
is the number of occurrences that word wdn is
translated to hashtag hdm given topic k, Mk,¬d

wdn ,(.)

is the total number of occurrences that word wdn
is under topic k, Mk,¬d

wdn ,2
is the number of word

wdn recommended as the second type of hashtag
given topic k. All counters with ¬d are calculated
with the current microblog wd excluded.

We sample the index variable xdm for mth
hashtag in the microblog d as follows:

p(xdm |z,wd,y,x¬dm ,hd, β
h)

∝
Ñd∑
n=1

ϕ
xdm
hdm ,zd,wdn

N¬dmxdm
+ η

N¬dm(.) + 2η
,

(11)

where N¬dmxdm
is the number of hashtags that is

generated by the type xdm , N¬dm(.) is total number
of hashtags, the counters with ¬dm are calculated
with the current hashtag excluded.

After enough sampling iterations to burn in the
Markov chain, ϕ1 and ϕ2 are estimated as follows:

ϕ1
h,k,w =

Mk
w,h + βh

Mk
w,(.) + βhV

, ϕ2
h,k,w =

Mk
w,2 + βh

Mk
w,(.) + 2βh

,

(12)
The potential size of the probability alignment

ϕ1 between hashtag and word is W · V ·K. The
data sparsity may pose a more serious problem in
estimating ϕ1 than the topic-free word alignment
case. We use interpolation smoothing technique
for ϕ1. In this paper, we employ smoothing as
follows:

ϕ1∗
h,k,w = γϕ1

h,k,w + (1− γ)P (h|w), (13)

where ϕ1∗
h,k,w is the smoothed topical alignment

probabilities, ϕ1
h,k,w is the original topical align-

ment probabilities, P (h|w) is topic-free word
alignment probability. In this work, we obtain
P (h|w) by exploring IBM model-1 (Brown et al.,
1993). γ is trade-off of two probabilities ranging
from 0 to 1. When γ = 0, ϕ1∗

h,k,w reduces to topic-
free word alignment probability, and when γ = 1,
there will be no smoothing in ϕ1∗

h,k,w.

2.2.3 Hashtag Recommendation
Suppose given an unlabeled dataset, we firstly
discover the topic and determine topic/background
words for each microblog. The collapsed Gibbs
sampling is also applied for inference. The pro-
cess is almost same as previous section described
the model learning. The different is that there
are no hashtags in the unlabeled dataset. Hence,
when sampling zd for the microblog d, we use the
following equation:

p(zd|w, z¬d,y, α, βw)
∝ p(zd|z¬d, α) · p(wd|z,w¬d,y, βw).

(14)

Since there are no differences between the
word alignments with each hashtags for a new
topic in the unlabeled dataset, after the hidden
variables of topic/background words and the topic
of each microblog become stable, we only need
to estimate the distribution of topics exist in
the training dataset. Then we can estimate the
distribution of topics for the microblog d in the
unlabeled data by:

χdk =
p(k)p(wd1 |k)p(wd2 |k)...p(wdNd |k)

Z
,

(15)
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where p(wdn |k) = N
wdn
k +β

N
(.)
k +Wβ

and Nwdn
k is a count

of words wdn that are assigned to topic k in the
corpus. And p(k) = Nk

N(.)+α
is regarded as a prior

for topic distribution, where Z is the normalized
factor. With topic distribution χ and topic-specific
word alignment table ϕ∗, we can rank hashtags for
the microblog d in the unlabeled data through the
following equation:

p(hdm |wd, χd, ϕ∗) ∝
K∑

zd=1

Nd∑
n=1

C∑
x=1

p(zd|χd) · p(wdn |wd) · p(xdm)

· p(hdm |wdn , zd, xdm , ϕxdm∗),
(16)

where C is the number of hashtag types.
p(wdn |wd) is the weight of the word wdn in the
microblog content wd, which can be estimated
by the IDF score of the word, p(xdm) is the
probability of hashtag belong to the type xdm , we
can estimate it with Eq.(11). Based on the ranking
scores, we can suggest the top-ranked hashtags
for each microblog.

3 Experiments

3.1 Data Collection

We use a dataset collected from Sina Weibo1,
which provides the Twitter-like service and is one
of the most popular one in China, to evaluate the
proposed approach and alternative methods. The
original data set contains 282.2 million microblogs
posted by around 1.1 million users. These
microblogs were obtained by starting from a set
of seed users and their follower/followee relations.
We extract the microblogs posted with hashtags
between Jan. 2012 and July 2013. Finally,
1,118,792 microblogs posted are selected for this
work. The unique number of hashtags in the
corpus is 305,227. We randomly select 100K as
training data, 10K as development data, and 10K
as test set. The hashtags marked in the original
microblogs are considered as the golden standards.

3.2 Experiment Configurations

We use precision (P ), recall (R), and F1-score
(F1) to evaluate the performance. Precision is cal-
culated based on the percentage of “hashtags truly
assigned” among “hashtags assigned by system”.
Recall is calculated based on the “hashtags truly

1http://www.weibo.com

assigned” among “hashtags manually assigned”.
F1 is the harmonic mean of precision and recall.
We do 500 iterations of Gibbs sampling to train
the model. For optimizing the hyperparmeters of
the proposed method and alternative methods, we
use development data set to do it. In this work, the
scale parameter α is set to Gamma(5, 0.5). The
other settings of hyperparameters are as follows:
βw = 0.1, βh = 0.1, η = 0.01, and σ = 0.01.
The smoothing factor γ in Eq.(13) is set to 0.8.
For estimating the translation probability without
topical information, we use GIZA++ 1.07 (Och
and Ney, 2003) to do it.

Since hashtag recommendation task can also be
modeled as a classification problem, we compare
the proposed model with the following alternative
methods:

• Naive Bayes (NB): We formulate hashtag
recommendation as a binary classification
task and apply NB to model the posterior
probability of each hashtag given a mi-
croblog.

• Support Vector Machine (SVM): Similar to
Naive Bayes, each hashtag can be regarded as
one label and we use SVM to classify these
microblogs.

• Translation model (IBM-1): IBM model 1
is directly applied to obtain the alignment
probability between the word and the hash-
tag (Liu et al., 2011).

• Topical translation model (TTM): Ding et
al. (2013) proposed the TTM for hashtag
extraction. We implemented and extended
their method for evaluating on the corpus
constructed in this work. The number of
topics in TTM is set to 20, and α is set to
50/K. The hyperparameters used in TTM
are also selected based on the development
data set.

3.3 Experimental Results

Table 1 shows the comparisons of the proposed
method with the state-of-the-art methods on the
constructed evaluation dataset. “CNHR” denotes
the method proposed in this paper. “NHR1”
is a degenerate variation of CNHR, in which
we consider all the hashtags are generated from
distribution ϕ1. “NHR2” is a model in which
we consider all the hashtags are generated from

406



0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5

P
re

ci
si

o
n

Number of Recommended Hashtags

NB

TTM

IBM1

SVM

NHR1

NHR2

CNHR

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5

R
ec

a
ll

Number of Recommended Hashtags

NB

TTM

IBM1

SVM

NHR1

NHR2

CNHR

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4 5

F
1

Number of Recommended Hashtags

NB

TTM

IBM1

SVM

NHR1

NHR2

CNHR

Figure 2: Precision, Recall and F1 with recommended Hashtags range from 1 to 5

Table 1: Evaluation results of different methods on
the evaluation collection.

Methods Precision Recall F1

NB 0.230 0.203 0.215
SVM 0.426 0.376 0.399
IBM1 0.279 0.246 0.261
TTM 0.445 0.393 0.417
NHR1 0.448 0.395 0.419
NHR2 0.293 0.258 0.274
CNHR 0.502 0.442 0.470

distribution ϕ2. From the results, we can observe
that discriminative methods achieve worse results
than generative methods. We think that the large
number of hashtags is one of the main reasons of
the low performances.

From the results shown in Table 1, we also
observe that the proposed method can achieve sig-
nificantly better performance than existing meth-
ods. The relative improvement of proposed CNHR
over TTM is around 12.7% in F1. And we can
see that the performances of TTM are similar as
the results of NHR1. Since TTM and NHR1 are
similar with each other except that TTM is based
on LDA and NHR1 is adapted from DPMM. The
results demonstrate the advantage of using DPMM
over LDA. It does not need prior knowledge
about number of topics. Comparing the results of
the method CNHR with the methods NHR1 and
NHR2 which do not take the types of hashtags
into consideration, we can see that the proposed
method benefits a lot from incorporating the types
of hashtags.

Figure 2 shows the Precision, Recall, and F1

curves of NB, IBM1, SVM, TTM, NHR1, NHR2
and CNHR on the test data. Each point of a curve

Table 2: The influence of the number of topics
K of TTM.

K Precision Recall F1

10 0.441 0.389 0.413
20 0.445 0.393 0.417
30 0.432 0.381 0.405
40 0.413 0.364 0.387
50 0.391 0.345 0.367

represents the extraction of a different number of
hashtags ranging from 1 to 5 respectively. In
curves, the curve that is the highest of the graph in-
dicates the best performance. Based on the results,
we can observe that the performance of CNHR is
the highest in all the curves. This indicates that the
proposed method was significantly better than the
other methods.

In TTM, the number of topics K is also crucial
factor. Table 2 shows the impact of the number
of topics. From the table, we can observe that
TTM obtains the best performance when K is
set to 20. And performance decreases with more
number of topics. We think that data sparsity may
be one of the main reasons. With much more topic
number, the data sparsity problem will be more
serious when estimating topic-specific translation
probability. We compare our method with the best
performance of TTM.

From the description of the proposed model,
we can know that there is a smooth parameter
γ in the proposed method CNHR. To evaluate
the impact of it, Figure 3 shows the influence of
the translation probability smoothing parameter γ.
When γ is set to 0.0, it means that the topical
information is omitted. Comparing the results
of γ = 0.0 and other values, we can observe
that the topical information can benefit this task.
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Figure 3: The influence of the smoothing
parameter γ of CNHR.
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When γ is set to 1.0, it represents the method
without smoothing. The results indicate that it is
necessary to address the sparsity problem through
smoothing.

4 Related Works

Due to the usefulness of tag recommendation,
many methods have been proposed from different
perspectives (Heymann et al., 2008; Krestel et
al., 2009; Rendle et al., 2009; Liu et al., 2012;
Ding et al., 2013). Heymann et al. (Heymann
et al., 2008) investigated the tag recommen-
dation problem using the data collected from
social bookmarking system. They introduced an
entropy-based metric to capture the generality of a
particular tag. In (Song et al., 2008), a Poisson
Mixture Model based method is introduced to
achieve the tag recommendation task. Krestel
et al. (Krestel et al., 2009) introduced a Latent
Dirichlet Allocation to elicit a shared topical
structure from the collaborative tagging effort of
multiple users for recommending tags. Ding et
al. (2013) proposed to use translation process to
model this task.

Based on the the observation that similar web
pages tend to have the same tags, Lu et al. (2009)
proposed a method taking both tag information
and page content into account to achieve the task.
They extended the translation based method and
introduced a topic-specific translation model to
process the various meanings of words in different
topics. In (Tariq et al., 2013), discriminative-
term-weights were used to establish topic-term
relationships, of which users’ perception were

learned to suggest suitable hashtags for users.
To handle the vocabulary problem in keyphrase
extraction task, Liu et al. proposed a topical
word trigger model, which treated the keyphrase
extraction problem as a translation process with
latent topics (Liu et al., 2012).

Most of the works mentioned above are based
on textual information. Besides these methods,
personalized methods for different recommenda-
tion tasks have also been paid lots of atten-
tions (Liang et al., 2007; Shepitsen et al., 2008;
Garg and Weber, 2008; Li et al., 2010; Liang
et al., 2010; Rendle and Schmidt-Thieme, 2010;
Huang et al., 2012). Shepitsen et al. (2008)
proposed to use hierarchical agglomerative clus-
tering to take into account personalized navigation
context in cluster selection. In (Garg and Weber,
2008), the problem of personalized, interactive
tag recommendation was also studied based on
the statistics of the tags co-occurrence. Liang et
al. (2010) proposed to the multiple relationships
among users, items and tags to find the semantic
meaning of each tag for each user individually
and used this information for personalized item
recommendation.

From the brief descriptions given above, we
can observe that most of the previous works
on hashtag suggestion did not take the types
of hashtags into consideration. In this work,
we propose to incorporate it into the generative
methods.

5 Conclusions

In this paper, we study the problem of hashtag
recommendation for microblogs. Since exist-
ing translation model based methods for this
task regard all the hashtags generated from the
same distribution, we propose a novel method
which incorporates different type of hashtags have
different distribution into the topical translation
model for hashtag recommendation task. To
evaluate the proposed method, we also construct
a dataset from real world microblogging services.
The results of experiments on the constructed
dataset demonstrate that the proposed method
outperforms state-of-the-art methods that do not
consider these aspects.
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Abstract

This paper proposes a graph-based read-
ability assessment method using word
coupling. Compared to the state-of-the-
art methods such as the readability for-
mulae, the word-based and feature-based
methods, our method develops a coupled
bag-of-words model which combines the
merits of word frequencies and text fea-
tures. Unlike the general bag-of-words
model which assumes words are indepen-
dent, our model correlates the words based
on their similarities on readability. By
applying TF-IDF (Term Frequency and
Inverse Document Frequency), the cou-
pled TF-IDF matrix is built, and used in
the graph-based classification framework,
which involves graph building, merging
and label propagation. Experiments are
conducted on both English and Chinese
datasets. The results demonstrate both ef-
fectiveness and potential of the method.

1 Introduction

Readability assessment is a task that aims to eval-
uate the reading difficulty or comprehending easi-
ness of text documents. It is helpful for education-
ists to select texts appropriate to the reading/grade
levels of the students, and for web designers to or-
ganize texts on web pages for the users doing per-
sonalized searches for information retrieval.

Research on readability assessment starts from
the early 20th century (Dale and Chall, 1948).
Many useful readability formulae have been devel-
oped since then (Dale and Chall, 1948; McLaugh-
lin, 1969; Kincaid et al., 1975). Currently, due to
the development of natural language processing,
the methods on readability assessment have made
a great progress (Zakaluk and Samuels, 1988;

∗Corresponding author.

Benjamin, 2012; Gonzalez-Dios et al., 2014). The
word-based methods compute word frequencies in
documents to estimate their readability (Collins-
Thompson and Callan, 2004; Kidwell et al., 2009).
The feature-based methods extract text features
from documents and train classification models
to classify the readability (Schwarm and Osten-
dorf, 2005; Feng et al., 2010; François and Fairon,
2012; Hancke et al., 2012).

In this paper, we propose a graph-based method
using word coupling, which combines the mer-
its of both word frequencies and text features
for readability assessment. We design a cou-
pled bag-of-words model, which correlates words
based on their similarities on sentence-level read-
ability computed using text features. The model
is used in a graph-based classification frame-
work, which involves graph building, graph merg-
ing/combination, and label propagation. We per-
form experiments on datasets of both English and
Chinese. The results demonstrate both effective-
ness and potential of our method.

The rest of this paper is organized as follows:
Section 2 introduces backgrounds of our work.
Section 3 presents the details of the method. Sec-
tion 4 designs the experiments and explains the re-
sults. Finally, Section 5 concludes the paper with
planned future work.

2 Background

In this section, we introduce briefly three research
topics relevant to our work: readability assess-
ment, the bag-of-words model and the graph-
based label propagation method.

2.1 Readability Assessment

Research on readability assessment has devel-
oped three types of methods: the readability for-
mula, the word-based methods and the feature-
based methods (Kincaid et al., 1975; Collins-
Thompson and Callan, 2004; Schwarm and Os-
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tendorf, 2005). During the early time, many
well-known readability formulae have been devel-
oped to assess the readability of text documents
(Dale and Chall, 1948; McLaughlin, 1969; Kin-
caid et al., 1975). Surface text features are de-
fined in these formulae to measure both lexical
and grammatical complexities of a document. The
word-based methods focus on words and their fre-
quencies in a document to assess its readability,
which mainly include the unigram/bigram/n-gram
models (Collins-Thompson and Callan, 2004;
Schwarm and Ostendorf, 2005) and the word
acquisition model (Kidwell et al., 2009). The
feature-based methods focus on extracting text
features from a document and training a classifi-
cation model to classify its readability (Feng et
al., 2010; François and Fairon, 2012; Hancke et
al., 2012). Suitable text features are usually essen-
tial to the success of these methods. The Support
vector machine and logistic regression model are
two classification models commonly used in these
methods.

2.2 The Bag-of-Words Model
The bag-of-words model is mostly used for doc-
ument classification. It constructs a feature space
that contains all the distinct words in a language
(or the document set). A document is repre-
sented by a vector, whose components reflect the
weight of every distinct word contained in the doc-
ument. Normally, it assumes the words are inde-
pendent. Now the capturing of the relationship
among words has attracted considerable attention
(Wong et al., 1985; Cheng et al., 2013). Inspired
by these works, this paper adopts the bag-of-words
model in readability assessment, and refines the
model by computing similarity among words on
reading difficulty.

2.3 The Graph-based Label Propagation
Method

Graph-based label propagation is applied on a
graph to propagate class labels from labeled nodes
to unlabeled ones (Kim et al., 2013). It has been
successfully applied in various applications, such
as dictionary construction (Kim et al., 2013), word
segmentation and tagging (Zeng et al., 2013), and
sentiment classification (Ponomareva and Thel-
wall, 2012). Typically, a graph-based label propa-
gation method consists of two main steps: graph
construction and label propagation (Zeng et al.,
2013). During the first step, a similarity function

is required to build edges and compute weights
between pairs of the nodes (Daitch et al., 2009).
Some form of edge pruning is required to refine
the graph (Jebara et al., 2009). After that, effective
algorithms have been developed to propagate the
label distributions to all the nodes (Subramanya et
al., 2010; Kim et al., 2013).

3 The Proposed Method

In this section, we present GRAW (Graph-based
Readability Assessment method using Word cou-
pling), which constructs a coupled bag-of-words
model by exploiting the correlation of readabil-
ity among the words. Unlike the general bag-of-
words model which models document relationship
on topic, the coupled bag-of-words model extends
it to model the relationship among documents on
readability. In the following sections, we describe
in detail how to build the coupled bag-of-words
model. The model is then used in the graph-
based classification framework for readability as-
sessment.

3.1 The General Bag-of-Words Model
TF-IDF (Term Frequency and Inverse Document
Frequency) is the most popular scheme of the bag-
of-words model. Given the set of documents D,
the TF-IDF matrix M can be calculated based on
the logarithmically scaled term (i.e. word) fre-
quency (Salton and Buckley, 1988) as follows.

Mt,d = tft,d · idft,d
= (1 + log f(t, d)) · log

|D|
|{d|t ∈ d}|

(1)

where f(t, d) is the number of times that a term
(word) t occurs in a document d ∈ D.

3.2 The Coupled Bag-of-Words Model
As shown in Figure 1, three main stages are
required to construct the coupled bag-of-words
model: per-sentence readability estimation, word
coupling matrix construction and coupled TF-IDF
matrix calculation. The following sections de-
scribe the details of these stages.

3.2.1 Per-Sentence Readability Estimation
Two steps are required for the per-sentence read-
ability estimation. The first is to compute a read-
ing score of a sentence by heuristic functions. The
second is to determine the difficulty level of the
sentence by discretizing the score.
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Figure 1: The Framework of GRAW

Step 1. Given a sentence s, its reading diffi-
culty can be quantified as a reading score which is
a continuous variable denoted by r(s). The more
difficult s is, the greater r(s) will be. Based on
text features of s, r(s) can be computed by one of
the eight heuristic functions listed in Table 1 which
are grouped into three aspects.

Aspect Function Description

Surface

len(s) the length of the sentence s.

ans(s)
the average number of syllables (or strokes for
Chinese) per word (or character for Chinese) in
s.

anc(s) the average number of characters per word in s.

Lexical
lv(s)

the number of distinct types of POS, i.e. part of
speech, in s.

atr(s) the ratio of adjectives in s.
ntr(s) the ratio of nouns in s.

Syntatic
pth(s) the height of the syntax parser tree of s.

anp(s)
the average number of (noun, verb, and preposi-
tion) phrases in s.

Table 1: Three aspects of estimating reading diffi-
culty of sentences using heuristic functions

Step 2. Let η denote the pre-determined number
of difficulty levels, rmax and rmin denote the max-
imum and minimum reading score respectively of
all the sentences in D. To determine the difficulty
level l∗(s) (l∗(s) ∈ [1, η]) of a sentence s, the
range [rmin, rmax] is divided into η intervals, so
that each interval contains the reading scores of 1

η
of all the sentences. The assumption is that all the
sentences are equally distributed among the diffi-
culty levels. l∗(s) will be i, if the reading score
r(s) resides in the i-th interval.

For each of the three aspects, we compute one
l∗(s) for a sentence s by combining the heuristic
functions using the following equations. The as-
sumption is that the reading difficulty of a sentence
may be determined by the maximum measure on
the text features.

lsur(s) = max [llen(s), lans(s), lanc(s)]

llex(s) = max [llv(s), latr(s), lntr(s)]

lsyn(s) = max [lpth(s), lanp(s)]

(2)

3.2.2 Word Coupling Matrix Construction
Let V denote the set of all the words, a word cou-
pling matrix is defined as C∗ ∈ R|V|×|V|, the ele-
ment of which reflects the correlation between two
words (i.e. terms). Two steps are required to con-
struct this matrix. The first is to count the difficulty
distributions of words, and the second is to com-
pute the correlation between each pair of words
according to the similarity of their difficulty dis-
tributions.

Step 1. Let S denote the set of all the sen-
tences, pt denote the difficulty distribution of a
word (term) t. pt is a vector containing η (i.e. the
number of difficulty levels) values, the i-th part of
which can be calculated by the following formula.

pt(i) =
1
nt
·
∑
s∈S

δ(t ∈ s) · δ(l∗(s) = i) (3)

where nt refers to the number of sentences in
which t appears. The indicator function δ(x) re-
turns 1 if x is true and 0 otherwise. l∗(s) refers to
one of the functions lsur(s), llex(s) or lsyn(s).

Step 2. Given two words (terms) t1 and
t2, whose level distributions are pt1 and pt2 re-
spectively, we measure the distribution difference
cKL(t1, t2) using the Kullback-Leibler divergence
(Kullback and Leibler, 1951), computed by the
following formula.

cKL(t1, t2) =
1
2

(KL(pt1 ||pt2) +KL(pt2 ||pt1))
(4)

where KL(p||q) =
∑

i p(i) log p(i)
q(i) . After that,

the logistic function is applied on the computed
difference to get the normalized distribution simi-
larity, i.e.

sim(t1, t2) =
2

1 + ecKL(t1,t2)
(5)

Given a word ti, only λ other words with high-
est correlation (similarity) are selected to build the
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neighbor set of ti, denoted as N (ti). If a word tj
is not selected (i.e. tj /∈ N (ti)), the correspond-
ing sim(ti, tj) will be assigned 0. After that, the
word coupling matrix (i.e. C∗) with sim(ti, tj)
as elements is normalized along the rows so that
the sum of each row is 1. Based on three different
l∗(s), we construct three word coupling matrices
Csur, C lex and Csyn.

3.2.3 Coupled TF-IDF Matrix Calculation
In the general bag-of-words model, the words are
treated as independent of each other. However, for
readability assessment, words may be correlated
according to the similarity of their difficulty dis-
tributions. To improve the TF-IDF matrix M de-
scribed in Section 3.1, we multiply it by the word
coupling matrix C∗, so that the term frequencies
are shared among the highly correlated (coupled)
words. We denote the coupled TF-IDF matrix as
M∗, obtained by the following formula.

M∗ = C∗ ·M (6)

Specifically, three homogenous coupled TF-
IDF matrices M sur, M lex and M syn can be built
according to the three word coupling matrices C∗.

3.3 Graph-based Readability Assessment

We employ the coupled bag-of-words model for
readability assessment under the graph-based clas-
sification framework as described in the previ-
ous work (Zhu and Ghahramani, 2002). Firstly,
we construct a graph representing the readabil-
ity relationship among documents by using the
coupled bag-of-words model to compute the rela-
tions among these documents. Secondly, we esti-
mate reading levels of documents by applying la-
bel propagation on the graph.

3.3.1 Graph Construction
We build a directed graphG∗ to represent the read-
ability relation among documents, where nodes
represent documents, and edges are weighted by
the similarities between pairs of documents. Given
a similarity function, we link documents di to dj
with an edge of weight G∗ij , defined as:

G∗i,j =

{
sim(di, dj) if dj ∈ N (di)
0 otherwise

(7)

where N (di) is the set of k-nearest neighbors of
di determined by the similarity function.

common neighbors

candidate neighbors

0
2 04

1

v

3

Figure 2: Illustration of the graph merging strategy

Given the coupled matrix M∗ ∈ Rm×|D| which
maps each document into a m-dimension feature
space, the similarity function sim(di, dj) can be
defined by the Euclidean distance as follows.

sim(di, dj) =
1√∑m

k=1 (Mk,i −Mk,j)2 + ε

(8)

where ε is a small constant to avoid zero denomi-
nators.

Merge the three graphs Refer to Section 3.2,
the three coupled TF-IDF matrices will lead to
three different document graphs, denoted as Gsur,
Glex and Gsyn respectively. To take advantage of
the three aspects at one time, we need to merge the
three graphs into one, denoted as Gc.

In Gc, each node also keeps k neighbors, and
some edges shall be filtered out from the three
graphs. The basic idea is to remove edges con-
taining redundant information, as shown in Fig-
ure 2. For each node v, we firstly select the neigh-
bors which are common in all the three graphs (i.e.
N sur(v)∩N lex(v)∩N syn(v)). Secondly, for the
rest candidate nodes, which are the neighbors of
v in at least one graph, we select one by one the
node which possesses the least number of com-
mon neighbors (from all the three graphs) with the
nodes that are already selected in N c(v). The ob-
jective is to keep the number of triangles in Gc to
a minimum. The edge weights of Gc are averaged
on the corresponding edges appeared in the three
graphs.

Combine with the feature-based graph Previ-
ous studies usually extract text features from doc-
uments to assess the readability using classifica-
tion models. Here, we also take into consideration
the feature-based graph, where similarities among
documents are computed on text features. We use
the features defined in (Jiang et al., 2014), where
the model based features are eliminated since the
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computation depends on pre-assigned class labels,
and represent a document as a vector of the feature
values. We compute the similarity between any
pair of documents using the Euclidean distance,
and built the feature-based graph (denoted as Gf )
in the same way as above.

Additionally, to take advantage of both graphs,
we combine them into one (denoted as Gcf ) using
the following formula.

Gcfi,j = max [Gci,j , G
f
i,j ] (9)

3.3.2 Graph Propagation
Given a graphG∗ constructed in previous sections,
its nodes are divided into two sets: the labeled set
Vl and the unlabeled set Vu. The goal of label
propagation is to propagate class labels from the
labeled nodes (i.e. documents) to the entire graph.
Here, we use a simplified version of the label prop-
agation method presented in (Subramanya et al.,
2010), which has been proved effective (Kim et
al., 2013). The method iteratively updates the la-
bel distribution on a document node using the fol-
lowing equation.

p
(i)
d (l) =

1

κd

p0d(l)δ(d ∈ Vl) +
∑

v∈N(d)

Gd,vp
(i−1)
v (l)

 (10)

At the left side of Eq.10, p(i)
d (l) is the afterward

probability of l (i.e. the class label) on a node d at
the i-th iteration. At the right side, κd is the nor-
malizing constant to make sure the sum of all the
probabilities is 1, and p0

d(l) is the initial probabil-
ity of l on d if d is initially labeled (i.e. belonging
to the labeled set Vl). δ(x) is the indicator func-
tion. N (d) denotes the set of neighbors of d. The
iteration stops when the changes in p(i)

d (l) for all
the nodes and label values are small enough (e.g.
less than e−3), or i exceeds a predefined number
(e.g. greater than 30).

4 Empirical Studies

In this section, we conduct experiments on
datasets of both English and Chinese, to investi-
gate the following three research questions:

RQ1: Whether the proposed method (i.e.
GRAW) outperforms the state-of-the-art methods
for readability assessment?

RQ2: What are the effects of adding the
word coupling matrix to the general bag-of-words
model?

RQ3: Whether the graph merging strategy is
effective, and whether the performance can be

further improved by combining the feature-based
graph.

4.1 Corpus and Metrics

To evaluate our proposed method, we collected
two datasets. The first is CPT (Chinese primary
textbook) (Jiang et al., 2014), which contains Chi-
nese documents of six reading levels. The second
is ENCT (English New Concept textbook) which
contains English documents of four reading levels.
Both datasets are built from well-known textbooks
where documents are labeled as grade levels by
credible educationists. The details of the datasets
are listed in Table 2.

Dataset Language #Grade #Doc #Sent #Word
CPT Chinese 6 637 16145 234372

ENCT English 4 279 4671 62921

Table 2: Statistics of the datasets on both English
and Chinese

We conduct experiments on both datasets us-
ing the cross-validation which randomly divides a
dataset into labeled (training) and unlabeled (test)
sets. The labeling proportion is varied to inves-
tigate the performance of GRAW under differ-
ent circumstances. To reduce variability, given
certain labeling proportion, 100 rounds of cross-
validation are performed, and the validation re-
sults are averaged over all the rounds. We choose
the precision (P), recall (R) and F1-measure (F1)
as the performance metrics.

4.2 Comparison to the State-of-the-Art
Methods

To address RQ1, we implement the follow-
ing readability assessment methods and compare
GRAW to them: (1) SMOG (McLaughlin, 1969)
and FK (Kincaid et al., 1975) are two widely used
readability formulae. We reserve their core mea-
sures (i.e. text features, and number of strokes for
Chinese instead of number of syllables), and refine
the coefficients on both datasets to befit the read-
ing (grade) levels. (2) SUM (Collins-Thompson
and Callan, 2004) is a word-based method, which
trains one unigram model for each grade level, and
applies model smoothing both inter and intra the
grade levels. (3) LR and SVM refer to two feature-
based methods which incorporate text features de-
fined in (Jiang et al., 2014) to represent documents
as instances. The logistic regression model and
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Dataset Level Metric Methods
SMOG FK SUM LR SVM GRAWc GRAWcf

CPT (Chinese)

Gr.1
P 57.48 74.07 71.76 71.87 73.18 73.26 75.29
R 17.31 9.69 36.31 71.17 67.28 73.28 83.17
F1 26.14 15.25 47.67 71.23 69.70 72.98 78.89

Gr.2
P 34.73 31.44 37.94 51.62 50.78 52.05 55.83
R 31.06 28.00 29.73 56.48 59.45 57.36 66.06
F1 32.66 29.42 33.13 53.67 54.53 54.40 60.37

Gr.3
P 20.05 20.79 28.12 44.15 48.89 46.33 51.72
R 58.84 75.53 25.06 43.94 49.94 58.59 68.41
F1 29.89 32.40 26.35 43.72 49.04 51.57 58.74

Gr.4
P 25.06 28.94 25.60 33.35 33.92 39.90 44.15
R 41.06 31.82 28.76 31.82 33.64 35.42 28.88
F1 31.03 29.69 26.91 32.24 33.58 37.32 34.57

Gr.5
P 33.57 45.00 28.71 37.70 37.30 45.02 37.33
R 4.00 2.71 34.41 36.12 34.29 27.12 19.00
F1 7.02 4.95 31.10 36.61 35.47 33.35 24.45

Gr.6
P 0.00 6.67 32.21 40.47 46.53 45.91 44.24
R 0.00 0.35 45.81 39.03 43.48 51.81 54.06
F1 0.00 0.67 37.55 39.48 44.65 48.38 48.15

Avg.
P 28.48 34.48 37.39 46.53 48.43 50.41 51.43
R 25.38 24.68 33.35 46.43 48.01 50.60 53.26
F1 21.12 18.73 33.78 46.16 47.83 49.67 50.86

ENCT (English)

Gr.1
P 54.65 60.79 96.59 88.60 90.74 95.42 95.53
R 67.50 73.50 84.77 89.32 85.45 83.77 83.95
F1 60.18 66.36 90.09 88.64 87.76 89.01 89.18

Gr.2
P 50.11 56.23 78.30 85.51 90.80 88.60 89.03
R 59.28 63.93 35.07 86.07 92.86 96.76 96.86
F1 54.17 59.69 48.11 85.54 91.68 92.42 92.70

Gr.3
P 29.49 32.09 40.53 88.31 89.08 85.36 89.73
R 24.22 26.94 68.33 86.17 84.78 94.17 96.56
F1 26.40 29.15 50.77 86.94 86.16 89.40 92.92

Gr.4
P 85.73 94.00 69.30 89.79 81.20 91.70 95.26
R 14.64 18.21 97.64 87.07 85.21 77.93 85.36
F1 24.06 29.46 80.81 88.02 81.79 83.84 89.81

Avg.
P 55.00 60.78 71.18 88.05 87.95 90.27 92.39
R 41.41 45.65 71.45 87.16 87.08 88.16 90.68
F1 41.20 46.16 67.44 87.28 86.85 88.67 91.15

Table 3: The average Precision, Recall and F1-measure (%) per reading level of the seven methods for
readability assessment on both datasets when the labeling proportion is 0.7

support vector machine are used as the classifiers
respectively.

For GRAW, we implement label propagation on
both the merged graph Gc and the final graph Gcf

(Section 3.3), denoted as GRAWc and GRAWcf

respectively. Table 3 gives the average perfor-
mance measure per reading level resulted by the
implemented methods on both datasets. Unless
otherwise specified, we fixed η to 3, and λ to 2800
for CPT and 2000 for ENCT. The proportion of
the labeled (training) set is set to 0.7.

In Table 3, the precision, recall and F1-measure
of all the seven methods are calculated per read-
ing (grade) level on both English and Chinese
datasets. The values marked in bold in each row
refer to the maximum (best) measure gained by
the methods.

From Table 3, the readability formulae (SMOG
and FK) perform poorly on either the precision
or recall measure, and their F1-measure values
are generally the poorest. Both SMOG and FK
are designed for English, and have acceptable per-
formance on the English dataset ENCT. The un-
igram model (SUM) performs a little better than
the readability formulae. On ENCT, It has rel-
atively good performance on grade levels 1 and
4, while on the Chinese dataset CPT, the perfor-
mance is not satisfactory. The feature-based meth-
ods (LR and SVM) perform well on both ENCT
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Figure 3: The average F1-measure of the seven
methods on both datasets with the labeling pro-
portion varied from 0.1 to 0.9

and CPT, which means both the text features de-
veloped and the classifiers trained are useful. In
general, GRAWc performs better than both LR and
SVM, which demonstrates the effectiveness of our
method. In addition, by combining the feature-
based graph (GRAWcf ), GRAW can be improved,
and performs the best on all the three metrics over
the majority of reading levels on both datasets.
The only exception is on level 5 in CPT, which
suggests the requirement of further improvements.

We study the effect of labeling proportion on the
performance of these methods on both datasets.
The F1-measure averaged over the reading levels
is used, since it is a good representative of the three
metrics according to Table 3. Figure 3 depicts the
performance trends of all the methods.

From Figure 3, neither SMOG nor FK benefits
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(a) Comparison of the average F1-measure between the cou-
pling and general TF-IDF matrices
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the coupling and general TF-IDF matrices

400 800 1200 1600 2000 2400 2800 3200 3600 4000
0.35

0.375

0.4

0.425

0.45

0.475

0.5

Number of neighbors (λ)

F
1
−

m
e
a
s
u
re

 (
C

h
in

e
s
e
)

η=2

η=3

η=4

η=5

η=6

η=7

η=8

η=9

200 400 600 800 1000 1200 1400 1600 1800 2000
0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

Number of neighbors (λ)

F
1
−

m
e
a
s
u
re

 (
E

n
g
lis

h
)

η=2

η=3

η=4

η=5

η=6

η=7

η=8

η=9

(c) The effects of η and λ on the performance of the word
coupling matrix
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(d) The effect of corpus size on the performance of the word
coupling matrix

Figure 4: Four perspectives on the effectiveness of the word coupling matrices

from the increasing size of the labeled set. This
suggests that the performance of the readability
formulae can hardly be improved by accumulat-
ing training data. The other 5 methods achieve
better performance on larger labeled set, and out-
perform the two formulae even if the labeling pro-
portion is small. Both LR and SVM perform bet-
ter than SUM, but the performance is not good
when the labeling proportion is less than 0.3, es-
pecially on the Chinese dataset. On the Chinese
dataset, SVM performs better than LR, while on
the English dataset, the situation is reversed. Both
versions of GRAW outperform the other methods
over the labeling ranges on both datasets. In ad-
dition, GRAW performs well when the labeling
proportion is still small. Again, by combining the
feature-based graph, the performance of GRAW is
consistently improved.

In summary, GRAW can outperform the state-
of-the-art methods for readability assessment on
both English and Chinese datasets. By combin-
ing the feature-based graph, the performance of
GRAW can be further improved.

4.3 Effects of the Word Coupling Matrix

For RQ2, we firstly compare the coupled bag-of-
words model to the general model in the process
of graph construction. Four graphs are built by us-
ing each of the three word coupling matrices (i.e.
M sur, M lex and M syn) and the TF-IDF matrix

respectively. Label propagation is applied on each
graph to predict reading levels of unlabeled docu-
ments. The labeling proportion is varied from 0.1
to 0.9 on both the English and Chinese datasets.
Figure 4(a) depicts the average F1-measure re-
sulted from the four graphs.

From Figure 4(a), the three word coupling ma-
trices greatly outperform the TF-IDF matrix, espe-
cially on the Chinese dataset. This demonstrates
that the word coupling matrices are very effective
in improving the performance of the general bag-
of-words model for readability assessment.

Secondly, we investigate the performance of the
four matrices per reading level. Figure 4(b) de-
picts the recall rate per reading level of the four
corresponding graphs in bar charts. The labeling
proportion is set to 0.7. The recall rate is used
because it makes the reason evident that the TF-
IDF matrix performs poorly. From Figure 4(b), on
the Chinese dataset, nearly all the unlabeled docu-
ments are classified as level 1 by the TF-IDF ma-
trix, in which the word frequencies are too few to
make meaningful discrimination among the read-
ing levels. On the English dataset, the TF-IDF
matrix performs better, but still prefers to classify
documents into lower levels.

As described in Section 3.2.2, η (the number of
difficulty levels of sentences) and λ (the number
of neighbors pertained for each document node)
are two parameters in building the word coupling
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matrices. To investigate their effects on the per-
formance of the built matrices, we vary the val-
ues of both η and λ, and compute the average F1-
measure on the two datasets. Figure 4(c) depicts
the results in line charts, where η varies from 2 to 9
step by 1, while λ varies from 400 to 4000 step by
400 on Chinese and from 200 to 2000 step by 200
on English (the difference is due to the dissimilar
number of documents between the two datasets).
The three word coupling matrices exhibit similar
behavior during experiments, hence, only M syn is
depicted.

From Figure 4(c), a small η (e.g. 2 or 3) is good
on the Chinese dataset. However, on the English
dataset, η = 2 leads to the poorest performance. It
seems the increasing of η causes vibrated perfor-
mance, and the trend is further complicated when
involving λ. Above all, η = 3 gives a prefer-
able option on both datasets. For λ, most of the
lines exhibit a similar trend that rises first and then
keeps stable on both datasets, although some may
drop when λ is too large. This suggests that mak-
ing a relatively large number of the other words as
the neighbors of one (i.e. λ = 2800 on the Chi-
nese dataset and λ = 2000 on the English dataset)
will make an effective word coupling matrix.

The word coupling matrix constructed in
GRAW uses the whole corpus on either English
or Chinese. To investigate if the corpus size takes
effects on the performance of GRAW, we vary
the proportion of the corpus used by randomly re-
moving documents from each reading level. Fig-
ure 4(d) depicts the average F1-measure resulted
by M syn. The removing ratio is selected from
{0, 0.05, 0.1, 0.2, 0.4, 0.8}. Both the mean values
and deviations are shown on the line chart.

From Figure 4(d), on the Chinese dataset, the
performance of GRAW suffers little from remov-
ing documents, even if only 20% documents are
left for building the word coupling matrix. How-
ever, on the English dataset, the mean perfor-
mance drops sharply and the deviation increases
evidently. This suggests that cumulating sufficient
corpus is required for building a suitable word
coupling matrix in GRAW, and factors other than
number of documents may influence the corpus
quality, which deserves further study.

In summary, the word coupling matrix plays an
essential role in GRAW. For building a suitable
word coupling matrix, the number of difficulty
levels of sentences (η) can be set to 3, and a rel-

atively large number of the other words should be
selected as the neighbors of a word. A sufficient
corpus is required for refining the matrix.

4.4 Effectiveness of Graph Combination
For RQ3, we compare graphs built on each sin-
gular word coupling matrix (i.e. M sur, M lex and
M syn) to the merged graph (i.e. GRAWc) and the
combined graph (i.e. GRAWcf ). Figure 5 depicts
the average F1-measure resulted after applying la-
bel propagation on these graphs with labeling pro-
portion varied from 0.1 to 0.9. The feature-based
graph (i.e. Gf ) is also depicted for comparison.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.3

0.35

0.4

0.45

0.5

0.55

Proportion of the labeled set

F
1
−

m
e
a
s
u
re

 (
C

h
in

e
s
e
)

M
sur

M
lex

M
syn

G
f

GRAW
c

GRAW
cf

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.7

0.75

0.8

0.85

0.9

Proportion of the labeled set

F
1
−

m
e
a
s
u
re

 (
E

n
g
lis

h
)

M
sur

M
lex

M
syn

G
f

GRAW
c

GRAW
cf

Figure 5: The average F1-measure of differ-
ent types of graphs on the English and Chinese
datasets

From Figure 5, the merged graph GRAWc out-
performs the three basic graphs on both datasets
in most cases. Within the three, M syn performs
best, especially on the English dataset, where it
can outperform GRAWc slightly when the label-
ing proportion is small (0.2− 0.4). By combining
the feature-based graph, GRAWcf performs even
better on both datasets, although Gf performs
poorest among all the graphs. In summary, the
graph merging strategy is effective, and by com-
bining the feature-based graph, the performance
of GRAW can be improved. This demonstrates the
potential of GRAW.

5 Conclusion

In this paper, we propose a graph-based readabil-
ity assessment method using word coupling. The
coupled bag-of-words model is designed, which
exploits the correlation of readability among the
words, and by applying TF-IDF, models the rela-
tionship among documents on reading levels. The
model is employed in the graph-based classifica-
tion framework for readability assessment, which
involves graph building, merging, and label prop-
agation. Experiments are conducted on both Chi-
nese and English datasets. The results show that
our method can outperform the commonly used
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methods for readability assessment. In addition,
the evaluation demonstrates the potential of the
coupled bag-of-words model and the graph com-
bination/merging strategies.

In our future work, we plan to verify the sound-
ness of the results by applying our method on large
volume corpus of both English and Chinese. In ad-
dition, we will investigate other ways of comput-
ing the word coupling matrices, such as incorpo-
rating word coherency or semantics, and develop
efficient merging strategies which can be used for
training classification models, as well as for build-
ing graphs.
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Abstract

Social media represents a rich source of up-
to-date information about events such as in-
cidents. The sheer amount of available infor-
mation makes machine learning approaches a
necessity for further processing. This learn-
ing problem is often concerned with region-
ally restricted datasets such as data from only
one city. Because social media data such
as tweets varies considerably across differ-
ent cities, the training of efficient models re-
quires labeling data from each city of inter-
est, which is costly and time consuming.

In this study, we investigate which features
are most suitable for training generalizable
models, i.e., models that show good per-
formance across different datasets. We re-
implemented the most popular features from
the state of the art in addition to other novel
approaches, and evaluated them on data from
ten different cities. We show that many so-
phisticated features are not necessarily valu-
able for training a generalized model and
are outperformed by classic features such as
plain word-n-grams and character-n-grams.

1 Introduction

Incident information contained in social media has
proven to frequently include information not cap-
tured by standard emergency channels (e.g. 911
calls, bystander reports). Therefore, stakeholders
like emergency management and city administra-
tion can highly benefit from social media. Due to
its unstructured and unfocused nature, automatic

filtering of social media content is a necessity for
further analysis. A standard approach for this fil-
tering is automatic classification using a trained
machine learning model (Agarwal et al., 2012;
Schulz et al., 2013; Schulz et al., 2015b).

A problem for the classification approach is that
language, style and named entities used in social
media highly vary across different regions. Con-
sider the following two tweets as examples: “RT:
@People 0noe friday afternoon in heavy traffic,
car crash on I-90, right lane closed” and “Road
blocked due to traffic collision on I-495”. Both
tweets comprise entities that might refer to the
same thing with different wording, either on a se-
mantically low (“accident” and “car collision”) or
more abstract level (“I90” and “I-495”). With
simple syntactical text similarity approaches using
standard bag of words features, it is not easily pos-
sible to make use of this semantic similarity, even
though it is highly valuable for classification.

These limitations impose constraints on the
dataset, because tokens are likely to be related to
the location where the text was created or con-
tain location- or incident-sensitive topics. Models
trained using spatially and temporally restricted
data from one region are bound by the specific as-
pects of language and style expressed in the train-
ing data, thus, model reuse is not easily possible.

In this paper, we focus on the creation of gener-
alized models. Such models avoid the use of fea-
tures that — overfitting like — are only useful for
a specific region. Generalized models are intended
to work in different regions, even if training data
originates only from one ore few regions. This can
ensure high classification rates even in areas where
only few training samples are available. Finally, in
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times of increasing growth of cities and the merg-
ing with surrounding towns to large metropolitan
areas, they allow to cope with the latent transitions
in token use.

To create generalized models for incident type
classification (and social media classification in
general) the most important step is an appropri-
ate feature generation. Therefore, in this paper
we investigate the suitability of standard and novel
features and different machine learning algorithms
for the creation of generalized classification mod-
els for incident type classification. We conduct
intensive feature engineering and evaluation. For
this purpose, we have collected and labeled 10
datasets with high regional variation. To the best
of our knowledge, this is the first investigation of
the challenges of heterogeneous datasets in this
domain, and of the suitability of state of the art
classification and feature extraction techniques.

In summary, our contributions are: 1) Investi-
gation of features and feature groups for general-
ized social media/incident type classification mod-
els. 2) Identification of the best feature combina-
tions and classifiers for a generalized model. For
an evaluation (qualitative and inferential statistics)
of ten tweet datasets with high regional variation
we get an overall F-measure of > 83%. 3) The
evaluation shows that features extending a plain n-
gram-based approach are not necessarily valuable
for training a generalized model as these provide
little improvement.

Following this introduction, we give an
overview of related work in Section 2. In Sec-
tion 3, we provide a description of our datasets
followed by a comprehensive evaluation in Sec-
tion 4. We close with our conclusion and future
work in Section 5.

2 Related Work

A review of existing work on the classification
of social media content shows which features,
feature groups and algorithms are generally used
(see table 1). Furthermore, the number of classes
and the dominating approaches unfold. We re-
port the ratios of labeled tweets for the individual
approaches; however, we omit performance mea-
sures as these are directly related to the respective
datasets used for evaluation.

Classifiers based on Support Vector Machines
(SVM) or Naive Bayes (NB) clearly dominate in
terms of performance for incident type classifi-

cation. (Sakaki and Okazaki, 2010; Carvalho et
al., 2010; Agarwal et al., 2012; Robert Power,
2013; Schulz and Janssen, 2014) trained an
SVM, whereas (Agarwal et al., 2012; Imran et
al., 2013; Schulz and Janssen, 2014) also eval-
uated an NB classifier. In contrast to these
works, (Wanichayapong et al., 2011) followed
a dictionary-based approach using traffic-related
keywords. (Li et al., 2012) do not provide any in-
formation about the classifier used.

Feature groups are mostly based on word-n-
grams, such as unigrams (Carvalho et al., 2010),
bigrams (Imran et al., 2013), or the combination
of unigrams and bigrams (Robert Power, 2013;
Karimi et al., 2013; Agarwal et al., 2012). (Schulz
and Janssen, 2014) combined unigrams, bigrams,
and trigrams. Also, based on the words present in
the text named entities such as locations, organi-
zations, or persons were used by (Agarwal et al.,
2012; Li et al., 2012; Schulz and Janssen, 2014).

Twitter-specific features were also used, includ-
ing the number of hashtags, @-mentions or web-
text features such as the presence of numbers
or URLs (Li et al., 2012; Agarwal et al., 2012;
Robert Power, 2013; Karimi et al., 2013; Imran et
al., 2013; Schulz and Janssen, 2014).

Keywords also play a crucial role in fea-
ture design. (Sakaki and Okazaki, 2010) used
earthquake-specific keywords, statistical features
(the number of words in a tweet and the position of
keywords), and word context features (the words
before and after the earthquake-related keyword).
(Wanichayapong et al., 2011) used traffic-related
keywords in combination with location-related
keywords. Furthermore, Li et al. (2012) itera-
tively refined a keyword-based search for retriev-
ing a higher number of incident-related tweets.

Two approaches rely on more specific feature
groups. The approach of (Schulz and Janssen,
2014) is the only one that uses TF-IDF scores.
(Imran et al., 2013) use Kipper et al.’s (2006) ex-
tension of the Verbnet ontology for verbs.

The related approaches mostly use word-n-
grams and a variety of Twitter-specific features.
Datasets are spatially and temporally restricted
and limited to a small number, complicating gen-
eralizability.

3 Data Collection and Processing

We are interested in generalizable models for dif-
ferent regions, user-generated content has been
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Table 1: Overview of related approaches for incident type classification. (NEs = Named Entities)

Approach Classifier #Classes #Tweets N-Grams #NEs #URLs TF-IDF Twitter Other
(Sakaki and Okazaki, 2010) SVM 2 597 x Context

(Carvalho et al., 2010) SVM 2 3,300 x
(Wanichayapong et al., 2011) Keyw. 2 1,249

(Agarwal et al., 2012) NB, SVM 2 1,400 x x x
(Li et al., 2012) Undefined 2 Undef. x x

(Robert Power, 2013) Keyw., SVM 2 794 x x
(Karimi et al., 2013) SVM 6 5,747 x x
(Imran et al., 2013) NB 3 1,233 x x x Verbnet

(Schulz and Janssen, 2014) SVM, NB 4 2,000 x x x x x

created in. For this purpose, we created 10 datasets
with more than 20k labeled tweets to train and
test models with respect to their generalization.
In the following, we describe how this data was
collected, preprocessed, and which features were
generated.

3.1 Data Collection

We focus on tweets as suitable example for un-
structured textual information shared in social me-
dia. The classification of incident-related tweets
represents a challenge that is relevant for many
cities. We use a complex four-class classification
problem, where new tweets can be assigned to the
classes “crash”, “fire”, “shooting”, and a neutral
class “not incident related”. This goes beyond re-
lated work with a focus on two-class classification.
Our classes were identified as the most common
incident types in Seattle using the Fire Calls data
set (http://seattle.data.gov), an official incident in-
formation source.

As ground truth data, we collected several city-
specific datasets using the Twitter Search API.
These datasets were collected in a 15 km ra-
dius around the city centres of Boston (USA),
Brisbane (AUS), Chicago (USA), Dublin (IRE),
London (UK), Memphis (USA), New York City
(USA), San Francisco (USA), Seattle (USA), Syd-
ney (AUS).

We selected these cities because of their huge
regional distance, which allows us to evaluate our
approaches with respect not only to geographi-
cal, but also to cultural variations. Also, for all
cities, sufficiently many English tweets can be re-
trieved. We chose 15 km as radius to collect a rep-
resentative data sample even from cities with large
metropolitan areas. Despite the limitations of the
Twitter Search API with respect to the number of
geotagged tweets, we assume that our sample is,
although by definition incomplete, highly relevant

to our experiments.
We collected all available Tweets during lim-

ited time periods, resulting in three initial sets of
tweets: 7.5M tweets collected from November,
2012 to February, 2013 for Memphis and Seattle
(SET CITY 1); 2.5M tweets collected from Jan-
uary, 2014 to March, 2014 for New York City,
Chicago, and San Francisco (SET CITY 2); 5M
tweets collected from July, 2014 to August, 2014
for Boston, Brisbane, Dublin, London, and Syd-
ney (SET CITY 3).

For the manual labeling process, we had to se-
lect a subset of our original tweet set which in-
cluded our classes of interest for model training
and testing. Generating subsets is required be-
cause manual labeling of social media data is very
expensive, especially if multiple annotators are
involved. To generate subsets we used the ap-
proach of (Schulz et al., 2013) of extracting mi-
croposts using incident-related keywords. As a
result, more than 200 keywords were identified
for each class. Based on these incident-related
keywords, we were able to accurately and effi-
ciently filter the datasets. After applying keyword-
filtering, we randomly selected 5.000 microposts
for each city. Though one might assume that
this pre-filtering leads to a biased dataset, (Schulz
and Janssen, 2014) showed that keyword sampling
does not influence the classification process as the
performance of a keyword-based classifier is no-
tably worse compared to supervised classifiers.

In the next step, we removed all redundant
tweets as well as those with no textual con-
tent from the resulting sets as a couple of
tweets contain keywords that are part of hash-
tags or @-mentions, but have no useful textual
content. The tweets were then labeled manu-
ally by five annotators using the CrowdFlower
(http://www.crowdflower.com/) platform. We re-
trieved the manual labels and selected those for
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Table 2: Class distributions for all datasets.

Dataset Classes
Crash Fire Shooting No

Boston 347 188 28 2257
Sydney 587 189 39 2208

Brisbane 497 164 12 1915
Chicago 129 81 4 1270
Dublin 131 33 21 2630
London 283 95 29 2475

Memphis 23 30 27 721
NYC 129 239 45 1446
SF 161 82 61 1176

Seattle 204 153 139 390

which all coders agreed to at least 75%. In the case
of disagreement, the tweets were removed. This
resulted in ten datasets with regional diversity to
be used for evaluation.

Table 2 lists the class distributions for each
dataset. The distributions vary considerably, al-
lowing us to evaluate with typical city-specific
samples. Also, the “crash” class seems to be
the most prominent incident type, whereas “shoot-
ings” are less frequent. One reason for this is that
“shootings” do not occur as frequent as other inci-
dents, whereas another less obvious reason might
be that people tend to report more about specific
incident types and that there is not necessarily a
correlation between the real-world incidents and
those mentioned in tweets. Although the data sets
have been filtered based on keywords, the “no in-
cident” class remains the largest class.

One of the key questions that motivates our
work is to which extent the used words vary in
each dataset as an effect of the spatial and cultural
context. We thus analysed how similar all datasets
are by calculating the intersection of tokens. We
found that after preprocessing, between 14% and
23% tokens are shared between the datasets. We
do not assume that every unique token is a city-
specific token, but the large number of tweets in
our evaluations gives a first indication that there is
a diversity in the samples that either requires the
training of several individual- or one generalizing
model which is the focus of this paper.

3.2 Preprocessing and Feature Generation

To use our datasets for feature generation, i.e., for
deriving different feature groups that are used for
training a classification model, we had to convert
the texts into a structured representation by means
of preprocessing. Following this, we extracted

several features for training classification mod-
els. To evaluate the best feature groups for inci-
dent type classification, we re-implemented com-
monly used feature extraction approaches from the
state of the art. We further extended these feature
groups by additional ones that seemed promising
in this problem domain:

Preprocessing As a first step, the text was con-
verted to Unicode to preserve non-Unicode char-
acters. Specific URLs would not be useful for the
classification process, therefore we replaced them
with a common token “URL”. We then removed
stopwords and conducted tokenization. Every
token was then analysed and non-alphanumeric
characters were removed or replaced. Finally,
we applied lemmatization to normalize all tokens.
All preprocessing steps were performed by DKPro
TC (de Castilho and Gurevych, 2014), a popular
framework for text classification. After prepro-
cessing, we generated several features (see Table
3). In the following, we give a description of the
different feature groups.

Baseline Feature Sets As the most simple ap-
proach and as used in all related works, we repre-
sented tweets as a set of words and also as a set of
characters with varying lengths. As features, we
used a vector with the frequency of each n-gram.
Most importantly, we evaluated the powerset of all
different combinations of n-grams. For instance,
if a length of n = 2 was chosen, we evaluated the
three combinations (n = 1), (n = 1, 2), (n = 2).
Furthermore, as not all tokens are necessarily im-
portant for the classification process, we evaluated
several top-k selection strategies, i.e., taking only
the k most frequent n-grams into account. For this,
we tested k = 100, 1000, 5000 as well as the ap-
proach using all n-grams. We treat these features
as the baseline approach, and extend it by addi-
tional features, e.g. similarity, sentiment scores,
Twitter-specific features.

Sentiment Features Emoticons are widely used
to express emotions in textual content. Various
text classification approaches make use of these,
e.g. for sentiment analysis (Agarwal et al., 2011;
Go et al., 2009). For incident type classification,
they could also be useful as people link emotions
with ongoing incidents, thus, we re-implemented
three approaches for extracting sentiment features.
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Table 3: Overview of all feature groups implemented for comparison

Feature Group Description
Word-n-grams Each tweet is represented as a powerset of word-n-grams of length n = 1 to n = 3.
Char-n-grams Each tweet is represented as a powerset of char-n-grams of length n = 1 to n = 5.
POS EMO The Tweet NLP part-of-speech tagger (Owoputi et al., 2013) was used to identify emoticons. The ratio

of emoticons to all tokens is calculated.
DICT EMO An emoticon library that is based on the suggestions from Agarwal et al. (Agarwal et al., 2011) was

used comprising a set of 63 emoticons from Wikipedia. The number of positive and the number of
negative emoticons in a tweet is calculated.

AGG EMO One single sentiment score based on the second approach by aggregating the number of positive and
negative emoticons.

NER We used the Stanford Named Entity Recognizer (Finkel et al., 2005) and applied the three class model
to count the number of location, organization, and person mentions.

NR CHAR The number of characters in a tweet.
NR SENT The number of sentences in a tweet.
NR TOKEN The number of tokens in a tweet.
QUEST RT The proportion of question marks and sentences in a tweet.
EXCLA RT The proportion of exclamation marks and sentences in a tweet.
NR AT MN The number of @-mentions in a tweet.
NR HASHTAG The number of hashtags in a tweet.
NR URL The number of URLs present in a tweet.
NR SLANG The number of colloquial words (i.e., lol or ugh). Feature extraction is based on the Tweet NLP POS-

tags (Owoputi et al., 2013).
IS RT A boolean to indicate whether a tweet is a retweet.
NR CARD In conjunction with the named entities present in tweets, people tend to refer to street names (e.g.,I-95)

or the number of injured people (e.g.,2-people). Thus, we create a feature for the number of cardinal
numbers present in a tweet.

GREEDY ST Similarity scores following Greedy String Tiling (Wise, 1996) as a method to deal with shared sub-
strings that do not appear in the same order.

LEVENST The Levenshtein distance (Levenshtein, 1966) as an edit-distance metrics, i.e., the minimum number of
edit operations that transform one tweet into another.

TF IDF As the baseline relies on plain frequency-based weighting, we calculate the traditional TF-IDF scores
(Manning et al., 2009) for every tweet.

Named Entities: As shown in the state of the
art, named entities, i.e. entities that have been
assigned a name such as Seattle, are commonly
used in tweets. Named entities might be valuable,
as these are used frequently in incident-related
tweets. Thus, we also incorporated Named Entity
Recognition (NER) for feature extraction.

Stylistic Features: The style of a tweet could
be an additional indicator for incident relatedness.
For instance, a repetition of punctuations could
point at a person that is expressing emotions re-
sulting from an ongoing incident. Structured rep-
resentation might indicate high quality.

Twitter-specific features As shown in related
work, several Twitter-specific features seem to be
valuable for incident type classification such as the
number of @-mentions and hashtags.

Similarity Features The similarity of individual
tweets might be helpful to identify common top-
ics. We therefore implemented several similarity

scores1. The rationale behind this is to embrace
additional features that do not only take the raw
frequencies of words into account, but also which
words appear in which document.

To sum up, we re-implemented two approaches
that will serve as a baseline, and 18 additional fea-
ture groups to extend them. In the following sec-
tion, we will evaluate the usefulness of these ap-
proaches for training a generalizing model.

4 Evaluation

The goal of our evaluation is to determine which
features were most useful for creating a generaliz-
ing model. We first describe our method, includ-
ing the feature sets, the classification algorithms
used, and our sampling procedure. This is fol-
lowed by a results section in which we report dif-
ferences in performance by means of qualitative
and inferential statistics.
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4.1 Method
The indicators for well-performing features in re-
lated work allows us to perform a condensed
evaluation, compared to similar studies such as
(Hasanain et al., 2014).

Our approach comprises three steps: First, we
evaluated the baseline approaches, i.e., word- and
char-n-grams. Second, we combined each of the
remaining features with the best performing base-
line feature. Third, we again selected the best per-
forming combinations and evaluated their power
set. To evaluate the suitability of different features
for training generalizing models, we picked one
dataset from the 10 presented in Section 3.1 for
training, and tested on the remaining 9 datasets.
We did not evaluate different models on datasets
from only one city, as we were interested in gen-
eralizing models.

Selecting each city as training set resulted in 90
performance samples per model. The models were
formed by combining the feature sets described in
the previous section 3.2 or respectively, their com-
binations, with an SVM and NB classifier. We de-
cided for these classification algorithms since they
were the most successful in related work. Another
reason for the choice of NB is its good perfor-
mance in text classification tasks, as demonstrated
by Rennie et al. (2003). We relied on the Lib-
Linear implementation of an SVM because it has
been shown that for a large number of features
and a small number of instances, a linear kernel is
comparable to a non-linear one (Hsu et al., 2003).
As for SVMs parameter tuning is inevitable, we
evaluated the best settings for the slack variable
c whenever an SVM was used. For training and
testing, we used the reference implementations in
WEKA (Hall et al., 2009).

We calculated the F1-Measure for assessing
performance, because it is well established in text
classification, cannot be manipulated by the classi-
fication threshold parameter and allows to measure

1The respective similarity scores have been calculated on
the whole document corpus after preprocessing.

the overall performance of the approaches with
an emphasis on the individual classes (Jakowicz
and Shah, 2011). In Section 3.1, we demonstrated
that the proportion of data representing individ-
ual classes varies strongly. We therefore weighted
the F1-measure by this ratio and report the micro-
averaged results over all datasets F1. Given our
focus on training a generalizable model, we delib-
erately did not focus on the performance variation
in the individual datasets.

4.2 Results

In order to check whether our findings persist
at least across the two learning algorithms, we
did not aggregate the model performance samples
but analyzed them for each algorithm separately.
We therefore only have one independent variable,
our feature groups, that affects the model perfor-
mance. In order to keep p-value inflation low, we
only compared the ten best performing models for
each algorithm with respect to the F1-Measure.
Note that even if the difference in performance be-
tween these models appears small, there are thus
many worse models that were not explicitly listed.

Our samples generally do not fulfill the assump-
tions of normality and sphericity required by para-
metric tests for comparing more than two groups.
Under the violation of these assumptions, non-
parametric tests have more power and are less
prone to outliers (Demsar, 2006). We therefore
relied exclusively on the non-parametric tests sug-
gested in literature: Friedman’s test was used as
non-parametric alternative to a repeated-measures
one-way ANOVA, and Nemenyi’s test2 was used
post-hoc as a replacement for Tukey’s test.

In contrast to its parametric counterpart, Fried-
man’s test is based on a ranking of the models in-
duced by the performance measure, and therefore
only relies implicitly on the latter. Each model is
ranked from best to worst, with mean ranks being

2We chose Nemenyi’s test because it is widely accepted
in the machine learning community. A discussion of alterna-
tives can be found in Herrera et al. (Herrera, 2008).

Feature Group words(1000,1,2) words(1000,1,3) words(ALL,1,1) words(5000,1,1) words(100,1,1) words(100,1,2) words(100,1,3) words(5000,1,3) words(1000,1,1) words(5000,1,1)

F1 82.10 82.00 82.86 82.87 80.62 80.66 80.76 81.15 82.71 81.28

(a) LibLinear

Feature Group words(1000,1,2) words(1000,1,3) words(1000,1,1) words(5000,1,2) chars(5000,2,3) chars(5000,2,4) chars(1000,2,4) chars(1000,2,5) chars(1000,2,3) chars(5000,2,5)

F1 80.10 79.56 80.10 78.09 78.01 80.27 80.22 79.73 79.86 80.48

(b) NaiveBayes

Table 4: Average F1-Measure F1 for the ten best performing baseline feature groups
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used in case of ties. The Friedman statistic is cal-
culated by dividing the sum of squares of the mean
ranks by the sum of squares error. For sufficiently
many samples, the statistic follows a χ2 distribu-
tion with k− 1 degrees of freedom. The q statistic
used in Nemenyi’s test is similar to the one used
by Tukey, but uses rank differences. It utilises the
previous ranking from the Frieman test to calcu-
late and relate the average ranks of two models,
for each available pair. Two models are consid-
ered significantly different, if their difference in
mean ranks exceeds a critical value, which varies
for different significance levels. For a detailed de-
scription and examples of these tests, see (Jakow-
icz and Shah, 2011).

We illustrated the ranks and significant differ-
ences between the feature groups by means of
the critical difference (CD) diagram. Introduced
by Demsar (2006), this diagram lists the feature
groups ordered by their rank, where lower rank
numbers indicate higher performance. Feature
groups are connected with bars if they are not sig-
nificantly different, given α = 0.05.

In the following, we will use shortcuts like
words(1000,1,2) to denote the 1000 most frequent
uni- and bigrams. The same applies for char-n-
grams. Abbreviations can be found in Table 3.

4.2.1 Evaluation using LibLinear Classifier
We first evaluated which of our 20 baseline fea-
ture sets, as described in Section 3, lead to the best
classification performance over different datasets.
Notably, the ten best-performing approaches were
all combinations of word-n-grams. Table 4
contains the average F-Measures for these ap-
proaches. The Friedman test indicated strong sig-
nificant differences between the performances of
these groups (χ2

r(9) = 112.467, p < 0.001, α =
0.01). The subsequent Nemenyi test indicated
strong significant pairwise differences between the
performances of the models (α = 0.01), with p-
values listed in Table 2 in the supplementary.

Figure 1 illustrates the differences by means of
a CD diagram: the approaches of using simple un-
igrams of the most frequent 5000 and all words
provide the best results, i.e. they have the lowest
rank. They are not significantly different from the
1000 most frequent word-uni and bigrams. Never-
theless, they are significantly better than all other
baseline approaches.

This also applies to the char-n-gram ap-
proaches, that were not considered in this statisti-

CD

10 9 8 7 6 5 4 3 2 1

words(5000,1,1)

words(ALL,1,1)

words(1000,1,1)

words(1000,1,2)

words(1000,1,3)words(5000,1,2)

words(100,1,3)

words(100,1,2)

words(100,1,1)

words(5000,1,3)

Figure 1: CD diagram with the ranks of the ten
best performing baseline feature groups for Lib-
Linear. Feature groups are connected if they are
not significantly different (α = 0.05).

cal comparison due to their inferior performance.
It is important to note that the differences between
the worst word-n-gram approaches and the best
char-n-gram approaches could still be statistically
non-significant.

The best performing baseline approach for
LibLinear is using unigrams of the top 5000
words, i.e. words(5000,1,1), with F1 = 82.87.
We therefore picked this baseline feature group for
the second part of our evaluation. We added each
non-baseline feature individually to the selected
baseline approach and compared the performances
of these combinations and the non-extended base-
line group. Table 6 lists the averaged F-Measure.
When comparing the ten best-performing groups,
the Friedman test showed strong significant dif-
ferences between the performances of the models
(χ2
r(9) = 87.274, p < 0.001, α = 0.01). The

Nemenyi test partly showed strong significant dif-
ferences between the performances of the models
(for the corresponding p-values see Table 3 in the
supplementary). They are illustrated in the CD di-
agram in Figure 2. The tests indicate that adding
NER and NR AT MT to the baseline approach pro-
vides the best performances with F1 = 83.32 and
F1 = 83.03 respectively.

Finally, we evaluated the power set of these
feature groups, i.e. we compared the individual
groups and their combination. Table 5 contains
the corresponding averaged F-Measures. For the
resulting performance samples, the Friedman test
showed strong significant differences between the
models (χ2

r(3) = 72.014, p < 0.001, α = 0.01).
The Nemenyi test partly showed strong significant
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CD

10 9 8 7 6 5 4 3 2 1

NER

NR_AT_MN

NR_CARD

QUEST_RT

EXCLA_RTIS_RT

DICT_EMO

5000,1,1

NR_SLANG

POS_EMO

words(             )

Figure 2: CD diagram with the ranks of the
ten best performing feature groups for LibLinear,
comprising the baseline and the baseline with an
additional feature. Feature groups are connected
if they are not significantly different (α = 0.05).

Feature Group words(5000,1,1) +NER +NER+NR AT MN +NR AT MN

F1 82.87 83.32 83.48 83.03

Table 5: Average F1-Measure F1 for the power set
of best performing feature groups and LibLinear.

differences (α = 0.001), with p-values listed in
Table 4 in the supplementary and illustrated in Fig-
ure 3. The diagram shows that the combination
of NER and NR AT MN with the words(5000,1,1)
baseline outperforms all other models with respect
to F1 (F1 = 83.48), but does not differ sig-
nificantly from the plain NER approach (F1 =
83.32). This combination gives us the final and
best feature set for training a generalizing model
over our datasets. As can be seen, the plain n-gram
approach (F1 = 82.87) can be improved further
by 0.5%.

4.2.2 Evaluation using Naive Bayes Classifier
In this section, we repeat the previous steps for
the NB classifier. As baseline feature sets, we first
evaluated the word-n-gram and char-n-gram ap-
proaches. The averaged F-Measures can be found
in Table 4. The Friedman test showed strong sig-
nificant differences between the performances of
the models (χ2

r(9) = 110.293, p < 0.001, α =
0.01). The Nemenyi test partly showed strong sig-
nificant differences between the performances of
the models (for the corresponding p-values see Ta-
ble 1 in the supplementary). In contrast to the Li-
bLinear classifier, using the 5000 most frequent
combinations of two to five subsequent charac-
ters, i.e. chars(5000,2,5) provide the best F1 score
(F1 = 80.48). Thus, char-n-grams outperform the

CD

4 3 2 1

words(5000,1,1)

+NR_AT_MN

+NER+NR_AT_MN

+NER

Figure 3: CD diagram with the ranks of the
best baseline feature groups, complemented with
a combination of the best performing feature sets,
for LibLinear. Feature groups are connected if
they are not significantly different (α = 0.05).

word-n-gram approaches with respect to F1.
The CD diagram in Figure 5 shows that using

either the 5000 most frequent char-n-grams with
a length of two to five and two to four respec-
tively, the 1000 most frequent word-n-grams with
a length of one and one to two respectively, and the
1000 most frequent char-n-grams with a length of
two to four do not differ significantly. However,
using either the 5000 most frequent char-n-grams
with a length of two to five and two to four respec-
tively significantly outperform all other baseline
approaches. As a subsequent step, we added each
single feature to chars(5000,2,5) as the best base-
line approach to find if these provide better per-
formance for the NB classifier. Table 6 contains
the corresponding averaged F-Measures. Though
the Friedman test indicated strong significant dif-
ferences between the performances of the mod-
els (χ2

r(9) = 22.209, p = 0.008, α = 0.01), the
subsequent Nemenyi test did not indicate signifi-
cant pairwise differences. We can therefore not re-
peat the third step of our evaluation, but infer that
for a NB classifier, the plain char-n-gram-based
approach is sufficient for training a generalizing
model for our dataset.

The results indicate that LibLinear provides a
better avg. performance (F1 = 83.32) when train-
ing a generalizing model, compared to the NB
classifier (F1 = 80.48).

5 Conclusion and Future Work

In this paper, we compared the performance of
different popular feature groups and classification
algorithms for the task of training a generaliz-
ing model for incident type classification. We
carefully selected the most popular feature groups
from related work, and separately evaluated them

428



Feature Group words(5000,1,1) +DICT EMO +NER +NR CARD +NR AT MN +POS EMO +NR SLANG +EXCLA RT +QUEST RT +IS RT

F1 82.87 82.87 83.32 83.06 83.03 82.87 82.87 82.88 82.88 82.88

(a) LibLinear

Feature Group chars(5000,2,5) +DICT EMO +QUEST RT +NER +NR AT MN +NR HASHTAG +POS EMO +NR SLANG +NR SENT +EXCLA RT

F1 80.48 80.48 80.49 80.55 80.51 80.48 80.48 80.48 80.48 80.50

(b) NaiveBayes

Table 6: Average F1-Measure F1 for the ten best performing combinations of the best baseline and an
additional feature

CD

10 9 8 7 6 5 4 3 2 1

chars(5000,2,5)

chars(5000,2,4)

words(1000,1,2)

words(1000,1,1)

chars(1000,2,4)chars(1000,2,5)

words(1000,1,3)

chars(1000,2,3)

words(500,1,2)

chars(5000,2,3)

Figure 4: CD diagram with the ranks of the ten
best performing baseline feature groups for Naive
Bayes. Feature groups are connected if they are
not significantly different (α = 0.05).

Figure 5: Ranks of NB baseline feature groups.

for the LibLinear and NB classification algorithms
on ten spatially and temporally diverse datasets.
The resulting F1-measure samples indicate that
training a generalizing model, i.e., a model that
is applicable on previously unseen incident-related
data, is still a challenging task. We found that Li-
bLinear provides a better averaged performance
compared to the NB classifier. More surpris-
ingly, additional feature groups that are commonly
used in related work do not necessarily outperform
a plain n-gram-based approach. This highlights
the need for other novel approaches for training
generalizing classification models. Especially in
the domain of incident detection and emergency
management, our findings are important because
less time consuming techniques showed nearly the
same performance as sophisticated ones.

There are two main topics for our future work.
First, we will investigate the performance of mod-
els generated with biased datasets on unfiltered
datasets. This is relevant, if a technique like filter-
ing is used to include more relevant class examples

in a dataset than provided with an original sample
– a necessary step to realize a labeled dataset for
model learning of a rare-class task. Second, we
will work on using novel features for the creation
of generalized models. One example is the uti-
lization of the Semantic Web to generate abstract
features, utilizing a technique called Semantic Ab-
straction (Schulz et al., 2015a). Semantic Ab-
straction has shown to improve the generalization
of tweet classification by deriving features from
Linked Open Data and using location and tempo-
ral mentions.
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Abstract

Most of the current automated essay scor-
ing (AES) systems are trained using manu-
ally graded essays from a specific prompt.
These systems experience a drop in accu-
racy when used to grade an essay from a
different prompt. Obtaining a large num-
ber of manually graded essays each time
a new prompt is introduced is costly and
not viable. We propose domain adapta-
tion as a solution to adapt an AES system
from an initial prompt to a new prompt.
We also propose a novel domain adapta-
tion technique that uses Bayesian linear
ridge regression. We evaluate our domain
adaptation technique on the publicly avail-
able Automated Student Assessment Prize
(ASAP) dataset and show that our pro-
posed technique is a competitive default
domain adaptation algorithm for the AES
task.

1 Introduction

Essay writing is a common task evaluated in
schools and universities. In this task, students are
typically given a prompt or essay topic to write
about. Essay writing is included in high-stakes as-
sessments, such as Test of English as a Foreign
Language (TOEFL) and Graduate Record Exami-
nation (GRE). Manually grading all essays takes a
lot of time and effort for the graders. This is what
Automated Essay Scoring (AES) systems are try-
ing to alleviate.

Automated Essay Scoring uses computer soft-
ware to automatically evaluate an essay written in
an educational setting by giving it a score. Work
related to essay scoring can be traced back to
1966 when Ellis Page created a computer grading
software called Project Essay Grade (PEG). Re-
search on AES has continued through the years.

The recent Automated Student Assessment Prize
(ASAP) Competition1 sponsored by the Hewlett
Foundation in 2012 has renewed interest on this
topic. The agreement between the scores assigned
by state-of-the-art AES systems and the scores as-
signed by human raters has been shown to be rel-
atively high. See Shermis and Burstein (2013) for
a recent overview of AES.

AES is usually treated as a supervised machine
learning problem, either as a classification, regres-
sion, or rank preference task. Using this approach,
a training set in the form of human graded essays
is needed. However, human graded essays are not
readily available. This is perhaps why research in
this area was mostly done by commercial organi-
zations. After the ASAP competition, research in-
terest in this area has been rekindled because of
the released dataset.

Most of the recent AES related work is prompt-
specific. That is, an AES system is trained using
essays from a specific prompt and tested against
essays from the same prompt. These AES systems
will not work as well when tested against a differ-
ent prompt. Furthermore, generating the training
data each time a new prompt is introduced will be
costly and time consuming.

In this paper, we propose domain adaptation as
a solution to this problem. Instead of hiring peo-
ple to grade new essays each time a new prompt
is introduced, domain adaptation can be used to
adapt the old prompt-specific system to suit the
new prompt. This way, a smaller number of train-
ing essays from the new prompt is needed. In this
paper, we propose a novel domain adaptation tech-
nique based on Bayesian linear ridge regression.

The rest of this paper is organized as follows. In
Section 2, we give an overview of related work on
AES and domain adaptation. Section 3 describes
the AES task and the features used. Section 4
presents our novel domain adaptation algorithm.

1http://www.kaggle.com/c/asap-aes
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Section 5 describes our data, experimental setup,
and evaluation metric. Section 6 presents and dis-
cusses the results. We conclude in Section 7.

2 Related Work

We first introduce related work on automated es-
say scoring, followed by domain adaptation in the
context of natural language processing.

2.1 Automated Essay Scoring

Since the first AES system, Project Essay Grade,
was created in 1966, a number of commercial sys-
tems have been deployed. One such system, e-
rater (Attali and Burstein, 2004), is even used as
a replacement for the second human grader in the
Test of English as a Foreign Language (TOEFL)
and Graduate Record Examination (GRE). Other
AES commercial systems also exist, such as Intel-
liMetric2 and Intelligent Essay Assessor (Foltz et
al., 1999).

AES is generally considered as a machine learn-
ing problem. Some work, such as PEG (Page,
1994) and e-rater, considers it as a regression prob-
lem. PEG uses a large number of features with re-
gression to predict the human score. e-rater uses
natural language processing (NLP) techniques to
extract a smaller number of complex features, such
as grammatical error and lexical complexity, and
uses them with stepwise linear regression (At-
tali and Burstein, 2004). Others like (Larkey,
1998) take the classification approach. (Rudner
and Liang, 2002) uses Bayesian models for clas-
sification and treats AES as a text classification
problem. Intelligent Essay Assessor uses Latent
Semantic Analysis (LSA) (Landauer et al., 1998)
as a measure of semantic similarity between es-
says. Other recent work uses the preference rank-
ing based approach (Yannakoudakis et al., 2011;
Chen and He, 2013).

In this paper, we also treat AES as a regression
problem, following PEG and e-rater. We use re-
gression because the range of scores of the essays
could be very large and a classification approach
does not work well in this case. It also allows us to
model essay scores as continuous values and scale
them easily in the case of different score ranges
between the source essay prompt and the target es-
say prompt.

The features used differ among the systems,
ranging from simple features (e.g., word length,

2http://www.vantagelearning.com/products/intellimetric/

essay length, etc) to more complex features (e.g.,
grammatical errors). Some of these features are
generic in the sense that they could apply to all
kinds of prompts. Such features include the num-
ber of spelling errors, grammatical errors, lexical
complexity, etc. Others are prompt-specific fea-
tures such as bag of words features.

2.2 Domain Adaptation
The knowledge learned from a single domain
might not be directly applicable to another do-
main. For example, a named entity recognition
system trained on labeled news data might not per-
form as well on biomedical texts (Jiang and Zhai,
2007). We can solve this problem either by getting
labeled data from the other domain, which might
not be available, or by performing domain adapta-
tion.

Domain adaptation is the task of adapting
knowledge learned in a source domain to a target
domain. Various approaches to this task have been
proposed and used in the context of NLP. Some
commonly used approaches include EasyAdapt
(Daumé III, 2007), instance weighting (IW) (Jiang
and Zhai, 2007), and structural correspondence
learning (SCL) (Blitzer et al., 2006).

We can divide the approaches of domain adapta-
tion into two categories based on the availability of
labeled target data. The case where a small num-
ber of labeled target data is available is usually re-
ferred to as supervised domain adaptation (such
as EasyAdapt and IW). The case where no la-
beled target domain data is available is usually re-
ferred to as unsupervised domain adaptation (such
as SCL). In our work, we focus on supervised do-
main adaptation.

Daumé III (2007) described a domain adapta-
tion scheme called EasyAdapt which makes use of
feature augmentation. Suppose we have a feature
vector x in the original feature space. This scheme
will map this instance using the mapping functions
Φs(x) and Φt(x) for the source and target domain
respectively, where

Φs(x) = 〈x,x,0〉
Φt(x) = 〈x,0,x〉,

and 0 is a zero vector of length |x|. This adapta-
tion scheme is attractive because of its simplicity
and ease of use as a pre-processing step, and also
because it performs quite well despite its simplic-
ity. It has been used in various NLP tasks such
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as word segmentation (Monroe et al., 2014), ma-
chine translation (Green et al., 2014), word sense
disambiguation (Zhong et al., 2008), and short an-
swer scoring (Heilman and Madnani, 2013). Our
work is an extension of this scheme in the sense
that our work is a generalization of EasyAdapt.

3 Automated Essay Scoring

This section describes the Automated Essay Scor-
ing (AES) task and the features we use for the task.

3.1 Task Description

In AES, the input to the system is a student es-
say, and the output is the score assigned to the es-
say. The score assigned by the AES system will
be compared against the human assigned score
to measure their agreement. Common agree-
ment measures used include Pearson’s correlation,
Spearman’s correlation, and quadratic weighted
Kappa (QWK). We use QWK in this paper, which
is also the evaluation metric in the ASAP compe-
tition.

3.2 Features and Learning Algorithm

We model the AES task as a regression problem
and use Bayesian linear ridge regression (BLRR)
as our learning algorithm. We choose BLRR as
our learning algorithm so as to use the correlated
BLRR approach which will be explained in Sec-
tion 4. We use an open source essay scoring sys-
tem, EASE (Enhanced AI Scoring Engine)3, to ex-
tract the features. EASE is created by one of the
winners of the ASAP competition so the features
they use have been proven to be robust. Table 1
gives the features used by EASE.

Useful n-grams are defined as n-grams that sep-
arate good scoring essays and bad scoring es-
says, determined using the Fisher test (Fisher,
1922). Good scoring essays are essays with a
score greater than or equal to the average score,
and the remainder are considered as bad scoring
essays. The top 201 n-grams with the highest
Fisher values are then chosen as the bag features.
We perform the calculation of useful n-grams sep-
arately for source and target domain essays, and
join them together using set union during the do-
main adaptation experiment. This is done to pre-
vent the system from choosing only n-grams from
the source domain as the useful n-grams, since the

3https://github.com/edx/ease

number of source domain essays is much larger
than the target domain essays.

EASE uses NLTK (Bird et al., 2009) for POS
tagging and stemming, aspell for spellchecking,
and WordNet (Fellbaum, 1998) to get the syn-
onyms. Correct POS tags are generated using a
grammatically correct text (provided by EASE).
The POS tag sequences not included in the correct
POS tags are considered as bad POS. EASE uses
scikit-learn (Pedregosa et al., 2011) for extracting
unigram and bigram features. For linear regres-
sion, a constant feature of value one is appended
for the bias.

4 Correlated Bayesian Linear Ridge
Regression

First, consider the single-task setting. Let x ∈ Rp

be the feature vector of an essay. p represents the
number of features in x. The generative model for
an observed real-valued score y is

α ∼ Γ(α1, α2), λ ∼ Γ(λ1, λ2),

w ∼ N (0, λ−1I), f(x) def= xTw,

y ∼ N (f(xi), α−1).

Here, α and λ are Gamma distributed hyper-
parameters of the model; w ∈ Rp is the Normal
distributed weight vector of the model; f is the
latent function that returns the “true” score of an
essay represented by x by linear combination; and
y is the noisy observed score of x.

Now, consider the two-task setting, where we
indicate the source task and the target task by su-
perscripts s and t. Given an essay with feature
vector x, we consider its observed scores ys and
yt when evaluated in task s and task t separately.
We have scale hyper-parameters α and λ sampled
as before. In addition, we have the correlation ρ
between the two tasks. The generative model re-
lating the two tasks is

ρ ∼ pρ,

wt,ws ∼ N (0, λ−1I),

f t(x) def= xTwt,

f s(x) def= ρxTwt + (1− ρ2)1/2xTws,

yt ∼ N (f t(x), α−1),

ys ∼ N (f s(x), α−1),

where pρ is a chosen distribution over the correla-
tion; and wt and ws are the weight vectors of the
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Feature Type Feature Description

Length Number of characters
Number of words
Number of commas
Number of apostrophes
Number of sentence ending punctuation symbols ( “.”, “?”, or “!”)
Average word length

Part of speech (POS) Number of bad POS n-grams
Number of bad POS n-grams divided by the total number of words in the essay

Prompt Number of words in the essay that appears in the prompt
Number of words in the essay that appears in the prompt divided by the total

number of words in the essay
Number of words in the essay which is a word or a synonym of a word that

appears in the prompt
Number of words in the essay which is a word or a synonym of a word that

appears in the prompt divided by the total number of words in the essay

Bag of words Count of useful unigrams and bigrams (unstemmed)
Count of stemmed and spell corrected useful unigrams and bigrams

Table 1: Description of the features used by EASE.

target and the source tasks respectively, and they
are identically distributed but independent. In this
setting, it can be shown that the correlation be-
tween latent scoring functions for the target and
the source tasks is ρ. That is,

E(f t(x)f s(x′)) = λ−1ρxTx′. (1)

This, in fact, is a generalization of the EasyAdapt
scheme, for which the correlation ρ is fixed at 0.5
[(Daumé III, 2007), see eq. 3]. Two other common
values for ρ are 1 and 0; the former corresponds to
a straightforward concatenation of the source and
target data, while the latter is the shared-hyper-
parameter setting which shares α and λ between
the source and target domain. Through adjust-
ing ρ, the model traverses smoothly between these
three regimes of domain adaptation.

EasyAdapt is attractive because of its (frustrat-
ingly) ease of use via encoding the correlation
within an expanded feature representation scheme.
In the same way, the current setup can be achieved
readily by the expanded feature representation

Φt(x) = 〈x,0p〉 ,
Φs(x) =

〈
ρx, (1− ρ2)1/2x

〉 (2)

in R2p for the target and the source tasks. Asso-
ciated with this expanded feature representation is

the weight vector w
def= (wt,ws) also in R2p. As

we shall see in Section 4.1, such a representation
eases the estimation of the parameters.

The above model is related to the multi-task
Gaussian Process model that has been used for
joint emotion analysis (Beck et al., 2014). There,
the intrinsic coregionalisation model (ICM) has
been used with squared-exponential covariance
function. Here, we use the simpler linear covari-
ance function (Rasmussen and Williams, 2006),
and this leads to Bayesian linear ridge regression.
There are two reasons for this choice. The first
is that linear combination of carefully chosen fea-
tures, especially lexical ones, usually gives good
performance in NLP tasks. The second is in the
preceding paragraph: an intuitive feature expan-
sion representation of the domain adaptation pro-
cess that allows ease of parameter estimation.

The above model is derived from the Cholesky
decomposition(

1 ρ
ρ 1

)
=
(

1 0
ρ (1− ρ2)1/2

)(
1 ρ

0 (1− ρ2)1/2

)
of the desired correlation matrix that will eventu-
ally lead to equation (1). Other choices are possi-
ble, as long as equation (1) is satisfied. However,
the current choice has the desired property that the
wt portion of the combined weight vector is di-
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rectly interpretable as the weights for the features
in the target domain.

4.1 Maximum Likelihood Estimation
We estimate the parameters (α, λ, ρ) of the model
using penalized maximum likelihood. For α and
λ, the gamma distributions are used. For ρ, we
impose a distribution with density pρ(ρ) = 1 +
a − 2aρ, a ∈ [−1, 1]. This distribution is sup-
ported only in [0, 1]; negative ρs are not supported
because we think that negative transfer of informa-
tion from source to target domain prompts in this
essay scoring task is improbable. In our applica-
tion, we slightly bias the correlations towards zero
with a = 1/10 in order to ameliorate spurious cor-
relations.

For the training data, let there be nt examples in
the target domain and ns in the source domain. Let
Xt (resp. Xs) be the nt-by-p (resp. ns-by-p) de-
sign matrix for the training data in the target (resp.
source) domain. Let yt and ys be the correspond-
ing observed essay scores. The expanded feature
matrix due to equation (2) is

X
def=
(

Xt 0
ρXs (1− ρ2)1/2Xs

)
.

Similarly, let y be the stacking of yt and ys. Let
K

def= λ−1XXT + α−1I , which is also known
as the Gramian for the observations. The log
marginal likelihood of the training data is (Ras-
mussen and Williams, 2006)

L = −1
2
yTK−1y − 1

2
log |K| − nt + ns

2
log 2π.

This is penalized to give Lp by adding

(α1 − 1) log(α)− α2α + α1 log α2 − log Γ(α1)
+(λ1 − 1) log(λ)− λ2λ + λ1 log λ2 − log Γ(λ1)

+ log(1 + a− 2aρ).

The estimation of these parameters is then done
by optimising Lp. In our implementation, we use
scikit-learn for estimating α and λ in an inner
loop, and we use gradient descent for estimating
ρ in the outer loop using

∂Lp
∂ρ

=
1
2

tr
((

γγT −K−1
) ∂K

∂ρ

)
− 2a

1 + a− 2aρ
,

where γ
def= K−1y and

∂K

∂ρ
= λ−1

(
0 Xt(Xs)T

Xs(Xt)T 0

)
.

4.2 Prediction

We report the mean prediction as the score of
an essay. This uses the mean weight vector
w̄ = λ−1XTK−1y ∈ R2p, which may be parti-
tioned into two vectors w̄t and w̄s, each in Rp.
The prediction of a new essay represented by x∗
in the target domain is then given by xT∗w̄t.

5 Experiments

In this section, we will give a brief description
of the dataset we use, describe our experimental
setup, and explain the evaluation metric we use.

5.1 Data

We use the ASAP dataset4 for our domain adapta-
tion experiments. This dataset contains 8 prompts
of different genres. The average length of the es-
says differs for each prompt, ranging from 150 to
650 words. The essays were written by students
ranging in grade 7 to grade 10. All the essays were
graded by at least 2 human graders. The genres
include narrative, argumentative, or response. The
prompts also have different score ranges, as shown
in Table 2.

We pick four pairs of essay prompts to perform
our experiments. In each experiment, one of the
essay prompts from the pair will be the source do-
main and the other essay prompt will be the target
domain. The essay set pairs we choose are 1→ 2,
3 → 4, 5 → 6, and 7 → 8, where the pair 1 → 2
denotes using prompt 1 as the source domain and
prompt 2 as the target domain, for example. These
pairs are chosen based on the similarities in their
genres, score ranges, and median scores. The aim
is to have similar source and target domains for
effective domain adaptation.

5.2 Experimental Setup

We use 5-fold cross validation on the ASAP train-
ing data for evaluation. This is because the of-
ficial test data of the competition is not released
to the public. We divide the target domain data
randomly into 5 folds. One fold is used as the
test data, while the remaining four folds are col-
lected together and then sub-sampled to obtain the
target-domain training data. The sizes of the sub-
sampled target-domain training data are 10, 25, 50
and 100, with the larger sets containing the smaller
sets. All essays from the source domain are used.

4https://www.kaggle.com/c/asap-aes/data
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Score

Set # Essays Genre Avg len Range Median

1 1,783 ARG 350 2–12 8
2 1,800 ARG 350 1–6 3
3 1,726 RES 150 0–3 1
4 1,772 RES 150 0–3 1
5 1,805 RES 150 0–4 2
6 1,800 RES 150 0–4 2
7 1,569 NAR 250 0–30 16
8 723 NAR 650 0–60 36

Table 2: Selected details of the ASAP data. For
the genre column, ARG denotes argumentative es-
says, RES denotes response essays, and NAR de-
notes narrative essays.

Our evaluation considers the following four
ways in which we train the AES model:

SourceOnly Using essays from the source do-
main only;

TargetOnly Using 10, 25, 50, and 100 sampled
essays from the target domain only;

SharedHyper Using correlated Bayesian linear
ridge regression (BLRR) with ρ fixed to 0
on source domain essays and sampled essays
from the target domain.

EasyAdapt As SharedHyper, but with ρ = 0.5;

Concat As SharedHyper, but with ρ fixed to 1.0;

ML-ρ Using correlated BLRR with ρ maximizing
the likelihood of the data.

Since the source and target domain may have
different score ranges, we scale the scores linearly
to range from −1 to 1. When predicting on the
test essays, the predicted scores of our system will
be linearly scaled back to the target domain score
range and rounded to the nearest integer.

We build upon scikit-learn’s implementation of
BLRR for our learning algorithm. To ameliorate
the effects of different scales of features, we nor-
malize the features: length, POS, and prompt fea-
tures are linearly scaled to range from 0 to 1 ac-
cording to the training data; and the feature values
for bag-of-words features are log(1 + count) in-
stead of the actual counts.

We use scikit-learn version 0.15.2, NLTK ver-
sion 2.0b7, and aspell version 0.60.6.1 in this ex-
periment. The BLRR code (bayes.py) in scikit-
learn is modified to obtain valid likelihoods for use
in the outer loop for estimating ρ. We use scikit-
learn’s default value for the parameters α1, α2, λ1,
and λ2 which is 10−6.

QWK scores

Set # BLRR SVM Human

1 0.761 0.781 0.721
2 0.606 0.621 0.814
3 0.621 0.630 0.769
4 0.742 0.749 0.851
5 0.784 0.782 0.753
6 0.775 0.771 0.776
7 0.730 0.727 0.721
8 0.617 0.534 0.629

Table 3: In-domain experimental results.

5.3 Evaluation Metric
Quadratic weighted Kappa (QWK) is used to mea-
sure the agreement between the human rater and
the system. We choose to use this evaluation met-
ric since it is the official evaluation metric of the
ASAP competition. Other work such as (Chen and
He, 2013) that uses the ASAP dataset also uses
this evaluation metric. QWK is calculated using

κ = 1−
∑

i,j wi,jOi,j∑
i,j wi,jEi,j

,

where matrices O, (wi,j), and E are the matrices
of observed scores, weights, and expected scores
respectively. Matrix Oi,j corresponds to the num-
ber of essays that receive a score i by the first rater
and a score j by the second rater. The weight en-
tries are wi,j = (i− j)2/(N −1)2, where N is the
number of possible ratings. Matrix E is calculated
by taking the outer product between the score vec-
tors of the two raters, which are then normalized
to have the same sum as O.

6 Results and Discussion

In-domain results for comparison First, we
determine indicative upper bounds on the QWK
scores using Bayesian linear ridge regression
(BLRR). To this end, we perform 5-fold cross vali-
dation by training and testing within each domain.
This is also done with linear support vector ma-
chine (SVM) regression to confirm that BLRR is
a competitive method for this task. In addition,
since the ASAP data has at least 2 human annota-
tors for each essay, we also calculate the human
agreement score. The results are shown in Ta-
ble 3. We see that the BLRR scores are close to
the the human agreement scores for prompt 1 and
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QWK Scores

Method nt =10 25 50 100

1 → 2
SourceOnly 0.434
TargetOnly 0.069 0.169 0.279 0.395
SharedHyper 0.158 0.218 0.332 0.390
EasyAdapt 0.425 0.422 0.442 0.467
Concat 0.484 0.507 0.529 0.545
ML-ρ 0.463 0.457 0.492 0.510

3 → 4
SourceOnly 0.522
TargetOnly 0.117 0.398 0.545 0.626
SharedHyper 0.113 0.350 0.487 0.575
EasyAdapt 0.461 0.541 0.589 0.628
Concat 0.594 0.611 0.617 0.638
ML-ρ 0.593 0.609 0.618 0.646

5 → 6
SourceOnly 0.187
TargetOnly 0.416 0.506 0.554 0.608
SharedHyper 0.380 0.500 0.544 0.600
EasyAdapt 0.553 0.621 0.652 0.698
Concat 0.649 0.689 0.708 0.722
ML-ρ 0.539 0.662 0.680 0.713

7 → 8
SourceOnly 0.171
TargetOnly 0.290 0.381 0.426 0.477
SharedHyper 0.302 0.383 0.444 0.484
EasyAdapt 0.594 0.616 0.605 0.610
Concat 0.332 0.362 0.396 0.463
ML-ρ 0.586 0.607 0.613 0.621

Table 4: QWK scores of the six methods on four
domain adaptation experiments, ranging from us-
ing 10 target-domain essays (second column) to
100 target-domain essays (fifth column). The
scores are the averages over 5 folds. Setting a→ b
means the AES system is trained on essay set a
and tested on essay set b. For each set of six results
comparing the methods, the best score is bold-
faced and the second-best score is underlined.

prompts 5 to 8, but fall short by 10% to 20% for
prompts 2 to 4. We also see that BLRR is com-
parable to linear SVM regression, giving almost
the same performance for prompts 4 to 7; slightly
poorer performance for prompts 1 to 3; and much
better performance for prompt 8. The subsequent
discussion in this section will refer to the BLRR
scores in Table 3 for in-domain scores.

Importance of domain adaptation The results
of the domain adaptation experiments are tabu-
lated in Table 4, where the best scores are bold-
faced and the second-best scores are underlined.
As expected, for pairs 1 → 2, 3 → 4, and 5 → 6,
all the scores are below their corresponding up-
per bounds from the in-domain setting in Table 3.
However, for pair 7 → 8, the QWK score for
domain adaptation with 100 target essays outper-
forms that of the in-domain, albeit only by 0.4%.
This can be explained by the small number of es-
says in prompt 8 that can be used in both the in-
domain and domain adaptation settings, and that
domain adaptation additionally involves prompt 7
which has more than twice the number of essays;
see column two in Table 2. Hence, domain adap-
tation is effective in the context of small number
of target essays with large number of source es-
says. This can also be seen in Table 4 where we
have simulated small number of target essays with
sizes 10, 25, 50, and 100. When we compare the
scores of TargetOnly against the best scores and
second-best scores, we find that domain adapta-
tion is effective and important in improving the
QWK scores.

By the above argument alone, one might have
thought that an overwhelming large number of
source domain essays was sufficient for the tar-
get domain. However, this is not true. When we
compare the scores of SourceOnly against the best
scores and second-best scores, we find that do-
main adaptation again improves the QWK scores.
In fact, with just 10 additional target domain es-
says, effective domain adaptation can improve
over SourceOnly for all target domains 2, 4, 6, and
8 respectively.

This is the first time where the effects of domain
adaptation are shown in the AES task. In addi-
tion, the large improvement with a small number
of additional target domain essays in 5 → 6 and
7 → 8 suggests the high domain-dependence na-
ture of the task: learning on one essay prompt and
testing on another should be strongly discouraged.

Contributions by target-domain essays It is
instructive to understand why domain adaptation
is important for AES. To this end, we estimate the
contribution of bag-of-words features to the over-
all prediction by computing the ratio∑

i over bag-of-words features w2
i∑

i over all features w2
i
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using weights learned in the in-domain setting; see
Table 1 for the complete list of features. For do-
mains 2, 4, 6, and 8, which are the target domains
in the domain adaptation experiments, these ra-
tios are 0.37, 0.73, 0.69, and 0.93. The ratios for
the other four domains are similarly high. This
shows that bag-of-words features play a signifi-
cant role in the prediction of the essay scores. We
examine the number of bag-of-words features that
100 additional target domain essays would add to
SourceOnly; that is, we compare the bag-of-words
features for SourceOnly with those of SharedHy-
per, EasyAdapt, Concat, and ML-ρ for nt = 100.
The numbers of these additional features, aver-
aged over the five folds, are 269, 351, 377, and
291 for target domains 2, 4, 6, and 8 respectively.
In terms of percentages, these are 67%, 87%, 94%,
and 72% more features over SourceOnly. Such a
large number of additional bag-of-words features
contributed by target-domain essays, together with
the fact that these features are given high weights,
means that target-domain essays are important.

Comparing domain adaptation methods We
now compare the four domain adaptation meth-
ods: SharedHyper, EasyAdapt, Concat, and ML-ρ.
We recall that the first three are constrained cases
of the last by fixing ρ to 0, 0.5, and 1 respec-
tively. First, we see that SharedHyper is a rather
poor domain adaptation method for AES, because
it gives the lowest QWK score, except for the case
of using 25, 50, and 100 target essays in adapt-
ing from prompt 7 to prompt 8, where it is better
than Concat. In fact, its scores are generally close
to the TargetOnly scores. This is unsurprising,
since in SharedHyper the weights are effectively
not shared between the target and source training
examples: only the hyper-parameters α and λ are
shared. This is a weak form of information sharing
between the target and source domains. Hence,
we expect this to perform suboptimally when the
target and source domains bear more than spuri-
ous relationship, which is indeed the case here be-
cause we have chosen the source and target do-
main pairs based on their similarities, as described
in Section 5.1.

We now focus on EasyAdapt, Concat, and
ML-ρ, which are the better domain adaptation
methods from our results. We see that ML-ρ ei-
ther gives the best or second-best scores, except
for the one case of 5 → 6 with 10 target essays.
In comparison, although Concat performs consis-

tently well for 1→ 2, 3→ 4, and 5→ 6, its QWK
scores for 7 → 8 are quite poor and even lower
than those of TargetOnly for 25 or more target es-
says. In contrast to Concat, EasyAdapt performs
well for 7 → 8 but not so well for the other three
domain pairs.

Let us examine the reason for contrasting re-
sults between EasyAdapt and Concat to appreci-
ate the flexibility afforded by ML-ρ. The ρ es-
timated by ML-ρ for the pairs 1 → 2, 3 → 4,
5→ 6, and 7→ 8 with 100 target essays are 0.81,
0.97, 0.76, and 0.63 averaged over five folds. The
lower estimated correlation ρ for 7 → 8 means
that prompt 7 and prompt 8 are not as similar as
the other pairs are. In such a case as this, Concat,
which in effect considers the target domain to be
exactly the same as the source domain, can per-
form very poorly. For the other three pairs which
are more similar, the correlation of 0.5 assumed by
EasyAdapt is not strong enough to fully exploit the
similarities between the domains. Unlike Concat
and EasyAdapt, ML-ρ has the flexibility to allow
it to traverse effectively between the different de-
grees of domain similarity or relatedness based on
the source domain and target domain training data.
In view of this, we consider ML-ρ to be a compet-
itive default domain adaptation algorithm for the
AES task.

In retrospect of our present results, it can be
obvious why prompts 7 and 8 are not as simi-
lar as we would have hoped for more effective
domain adaptation. Both prompts ask for narra-
tive essays, and these by nature are very prompt-
specific and require words and phrases relating di-
rectly to the prompts. In fact, referring to a pre-
vious discussion on the contributions by target-
domain essays, we see that weights for the bag-
of-words features for prompt 8 contribute a high
of 93% of the total. When we examine the bag-
of-words features, we see that prompt 7 (which is
to write about patience) contributes only 19% to
the bag-of-words features of prompt 8 (which is to
write about laughter) in the in-domain experiment.
This means that 81% of the bag-of-words features,
which are important to narrative essays, must be
contributed by the target-domain essays relating to
prompt 8. Future work on domain adaptation for
AES can explore chosing the prior pρ on ρ to better
reflect the nature of the essays involved.
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7 Conclusion

In this work, we investigate the effectiveness of us-
ing domain adaptation when we only have a small
number of target domain essays. We have shown
that domain adaptation can achieve better results
compared to using just the small number of target
domain data or just using a large amount of data
from a different domain. As such, our research
will help reduce the amount of annotation work
needed to be done by human graders to introduce
a new prompt.
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Abstract
Engaging in a debate with oneself or others to
take decisions is an integral part of our day-to-
day life. A debate on a topic (say, use of per-
formance enhancing drugs) typically proceeds
by one party making an assertion/claim (say,
PEDs are bad for health) and then providing
an evidence to support the claim (say, a 2006
study shows that PEDs have psychiatric side
effects). In this work, we propose the task of
automatically detecting such evidences from
unstructured text that support a given claim.
This task has many practical applications in
decision support and persuasion enhancement
in a wide range of domains. We first introduce
an extensive benchmark data set tailored for
this task, which allows training statistical mod-
els and assessing their performance. Then, we
suggest a system architecture based on super-
vised learning to address the evidence detec-
tion task. Finally, promising experimental re-
sults are reported.

1 Introduction
In recent years there has been a growing interest in
the area of argumentation mining (Green et al., 2014;
Cardie et al., 2015; Wells, 2014). Part of this awak-
ening is the The DebaterTM project1 whose goal is to
develop technologies that will assist humans to de-
bate and reason, e.g., by automatically suggesting argu-
ments relevant to an examined topic. The minimal def-
inition of such an argument (Walton, 2009) is a set of
statements, made up of three parts – a claim (aka con-
clusion, proposition), a set of evidence (aka premises),
and an inference from the evidence to the claim. Need-
less to say, evidence plays a critical role in a persuasive
argument.

In most debate related skills, such as natural lan-
guage understanding and generation, humans currently
have an inherent advantage over a machine. However,
in the ability to provide high quality and diverse evi-
dence, machines have a very promising potential, being

1http://researcher.ibm.com/researcher/
view_group.php?id=5443

able to swiftly process large quantities of information.
Nonetheless, since most of the relevant information is
represented by unstructured text, successfully exploit-
ing these resources requires the ability to identify evi-
dence in free text. This is exactly the focus of our work.
Specifically, we formally define the task of evidence
detection, introduce an architecture for attacking this
problem, and demonstrate its performance over dedi-
cated manually labeled data.

Before defining the task formally, we introduce three
concepts which will be used throughout this paper.
These concepts were earlier defined in (Aharoni et al.,
2014) and we use the same definitions here. Topic: a
short phrase that frames the discussion. Claim: a gen-
eral, concise statement that directly supports or con-
tests the topic. Context Dependent Evidence (CDE):
a text segment that directly supports a claim in the con-
text of the topic. The first three rows of Table 1 show
examples of a topic, a claim and CDE.

For the purpose of this work, we assume that we
are given a concrete topic, a relevant claim, and po-
tentially relevant documents, provided either manually
or by automatic methods (Cartright et al., 2011; Levy
et al., 2014). Our task, which we term Context Depen-
dent Evidence Detection (CDED), is to automatically
pinpoint CDE within these documents. We further re-
quire that a detected CDE is reasonably well phrased,
and easily understandable in the given context, so that it
can be instantly and naturally used to support the claim
in a discussion. Table 1 gives examples of valid CDE
(V) and non-valid CDE (X) according to the definition
mentioned above.

It is well recognized that one can support a claim us-
ing different types of evidence (Rieke and Sillars, 2001;
Seech, 2008). Furthermore, for different use cases, dif-
ferent evidence types could be more suitable. Corre-
spondingly, we develop a classification approach that
is able to identify and distinguish between three com-
mon evidence types (Rieke and Sillars, 1984; Seech,
2008):

• Study Results of a quantitative analysis of data,
given as numbers, or as conclusions. (Table 1 S1);

2Note ibuprofen is considered a PED
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Topic: Use of performance enhancing drugs
(PEDs) in professional sports
Claim A: PEDs can be harmful to athletes
health
S1: A 2006 study examined 320 athletes for
psychiatric side effects induced by anabolic
steroid use. The study found a higher incidence
of mood disorders in these athletes compared to
a control group.

V

S2: The International Agency for Research on
Cancer classifies androgenic steroids as “Prob-
ably carcinogenic to humans.”

V

S3: Rica Reinisch, a triple Olympic cham-
pion and world record-setter at the Moscow
Games in 1980, has suffered numerous mis-
carriages and recurring ovarian cysts following
drug abuse.

V

S4: The UN estimates that there are more than
50 million regular users of heroin, cocaine and
synthetic drugs.

X

S5: FDA does not approve ibuprofen2 for ba-
bies younger than six months due to risk of
liver damage.

X

S6: Doping can ultimately damage your health. X
Claim B: Use of PED is inline with the spirit
of sport
S7: Professor Savulescu, a philosopher and
bioethicist, believes that biological manipula-
tion embodies the sports spirit: the capacity to
improve ourselves on the basis of reason and
judgment.

V

Table 1: Examples for defined concepts. The V/X in-
dicates if the candidate is a CDE to the claim above it,
according to our definition.

• Expert Testimony by a person / group / commit-
tee / organization with some known expertise / au-
thority on the topic. (Table 1 S2, S7);

• Anecdotal A description of an episode(s), cen-
tered on individual(s) or clearly located in place
and/or in time. (Table 1 S3);

Examining the valid and non-valid CDEs in Table
1 it should be clear that the distinction between them
is often quite subtle. For example, it is possible that
a piece of text has the characteristics of a certain evi-
dence type, but does not support the claim (see S4 in
Table 1). It is also possible that a piece of text supports
the claim, but is irrelevant in the context of the topic
(see S5 in Table 1). It could also be the case that a piece
of text entails the claim, but adds no new information
to support it (see S6 in Table 1).

We present here a pipeline architecture, relying on
supervised learning, to handle the different aspects of
CDED which shows promising results over a variety
of topics. We demonstrate that the proposed solution

and features can generalize well, namely that models
learned over different topics can perform reasonably
well on an entirely new topic. On average, for a signif-
icant fraction of claims the proposed system succeeds
to propose relevant CDE amongst its top 4 predictions,
and properly determines the evidence type. Further-
more we show that we are able to automatically pin-
point claims for which the performance of the system
are of even greater quality, enabling the user to obtain
higher precision for these claims.

We believe that the ability to automatically provide
evidence for given claims will have many practical
uses, helping layman and professionals in different do-
mains, to reach decisions and prepare for discussions,
from a lawyer presenting a case in court, to a politician
considering a new policy.

2 Related work
CDED is related to several other information retrieval
and NLP tasks. Probably the closest of which is the
relatively unexplored task of Evidence Retrieval (ER)
(Cartright et al., 2011; Bellot et al., 2013). However,
while ER focus is on identifying whole documents, in
CDED the goal is to pinpoint a typically much shorter
text segment which can be used directly to support a
claim. Furthermore, ER is typically performed for fac-
tual assertions, while in CDED one may want to con-
sider a wider range of claim types (Rieke and Sillars,
2001), cf. claim B in Table 1.

Another important line of related work is the Textual
Entailment (TE) framework (Dagan et al., 2009; Glick-
man et al., 2005). A text fragment, T, is said to entail a
textual hypothesis H if the truth of H can be most likely
inferred from T. While TE can be an important com-
ponent in a CDED approach, and perhaps vice versa,
the tasks are quite different. Namely, the goal of TE is
detecting semantic inference while the goal of CDED
is to provide evidence which can enhance the persua-
sion of a claim. For example, common instances of TE
are rephrases or summarizations of a sentence, how-
ever they cannot serve to support a claim within a dis-
cussion, as they merely repeat it (Table 1, S6). On the
other hand, an anecdotal story may have strong emo-
tional impact that will effectively support a claim dur-
ing a discussion, although the truth of the claim cannot
be inferred from such evidence. Furthermore, similar
to ER, TE focuses only on factual assertions, while we
focus on a wider range of claims (Rieke and Sillars,
2001), cf. claim B in Table 1.

Question answering (QA) (Dang et al., 2007) also
has some similar aspects to the proposed task, although
aiming at a very different goal, which is to provide an
explicit – typically unique and concise – answer, to a
question.

The proposed CDED task should be seen as an-
other contribution in the emerging field of argumen-
tation mining, with several important distinct charac-
teristics. Previous works suggested extracting full ar-
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Topics Claims Articles with
CDE CDE

avg. % of
claims with

CDE

avg. # CDE per
claim

Study 30 1587 136 1018 31 (22) 2.2 (0.9)
Expert 37 1702 214 1896 46 (22) 1.9 (0.8)
Anecdotal 22 1137 70 382 17 (11) 2.0 (1.6)
Total 39 1734 274 3057 60 (17) 2.9 (3.7)

Table 2: ’Topics’ indicate the number of topics included for each CDE type. This determines the number of claims
considered for each type. The next columns indicate the number of articles in which at least one CDE was found;
the total number of CDE detected for each type; the average percent of claims for which at least one CDE was
found; and for these claims, the average number of CDE found. Note that the total number of CDE is not a simple
sum of the CDE per type, as CDE can be assigned with more than one type. Standard deviations of distribution
across topics are given in parenthesis where relevant.

guments (Mochales Palau and Moens, 2009), analyz-
ing argument structure (Peldszus, 2014), and identi-
fying relations between arguments (Cabrio and Vil-
lata, 2012; Ghosh et al., 2014). Other works focused
on specific domains such as evidence-based legal doc-
uments (Mochales Palau and Moens, 2011; Ashley
and Walker, 2013), online debates (Cabrio and Villata,
2012; Boltužić and Šnajder, 2014), and product re-
views (Villalba and Saint-Dizier, 2012; Yessenalina et
al., 2010). In addition, some works based on machine-
learning techniques, used the same topic in training
and testing (Rosenfeld and Kraus, 2015; Boltužić and
Šnajder, 2014), relying on features from the topic itself
in identifying arguments. In contrast, here, we focus
on detecting an essential constituent of an argument –
the evidence – rather then detecting whole arguments,
or detecting other argument parts like claims (Levy et
al., 2014; Lippi and Torroni, 2015). In addition, we do
not limit ourselves to a particular domain, nor assume
that the topic of the discussion is known in advance. Fi-
nally, we aim to pinpoint evidence in a clearly defined
context, given by the pre–specified claim. Thus, the de-
veloped system should not only find pieces of text that
have general evidence characteristics but further iden-
tify which of these candidates can be used to support
a specific claim. Hence, as we demonstrate in our re-
sults, an essential part of a CDED system should be
dedicated to model and assess the semantic relation of
a candidate evidence to the given claim and topic.

3 Data

Since CDED is a new and rather complicated task, it is
beneficial to examine and understand the nature of the
data before moving on to developing a working solu-
tion. We therefore start by explaining the manual data
annotation process, and several important observations
over the resulting data.

To train and assess the classifiers in our system we
rely on data collected by the procedure described in
(Aharoni et al., 2014). Briefly, given a topic and a cor-
responding relevant claim, extracted from a Wikipedia
article by human annotators, the annotators were asked
to mark corresponding evidence – text segments sup-

porting the claim. To limit the amount of time anno-
tators spend on these tasks, labeling was restricted to
the article in which the claim was found. The task was
split into two stages. First, in the detection stage, five
annotators read the article, and mark all CDE candi-
dates they locate. Next, in the confirmation stage all the
candidates suggested by the annotators are presented to
another set of five annotators, which confirm or reject
each candidate, and determine the type(s) of accepted
candidates. Candidates which were confirmed by the
majority of the annotators are considered CDE, and are
assigned the type(s) suggested by at least three annota-
tors.

A total of 547 Wikipedia articles associated with 58
different topics were annotated through this procedure.
The topics were selected at random from Debatabase3

covering a wide variety of domains, from atheism to
the role of wind power in future energy supply. Out
of these topics, 39 were selected at random for train-
ing and testing the classifiers included in the system.
We refer to these data as the train and test data. The
remaining 19 topics were used for tuning various fea-
ture parameters, and developing auxiliary classifiers, as
described in Section 5. We refer to these data as the
held-out data.

In the 39 topics comprising the train and test data, a
total of 3, 057 distinct CDE were found in 274 articles
(See Table 2). The data is highly unbalanced towards
non CDE sentences. For example, for type Study, only
31% of the claims had at least one CDE. Of these 31%
claims, on average, a claim was associated with 2.17
CDEs. Further, on average these 2.17 CDEs together
span 1.5 sentences, whereas an average article in our
data consists of 150 sentences. In other words, even for
claims with at least one CDE of type Study, on average
only 2% of the sentences in the claim’s article are part
of such Study CDE.

In general, CDE in the examined data varied in
length from less than a sentence to more than a para-
graph. However, 90% of these CDE were composed of
segments of up to three sentences within the same para-
graph. Furthermore, in 95% of the cases, CDEs were

3http://idebate.org/debatabase
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Figure 1: Schematic description of the CDED system proposed in this work.

comprised of full sentences. Examining CDEs that
start or end mid-sentence, reveals that in most cases the
CDE is more concise in these boundaries, but is still a
valid CDE when extending the boundaries to include
the full sentence. We therefore decided not to address
this issue here, and we extend all CDE boundaries to
full sentences.

Apparently CDE of type Study and type Expert are
far more common in Wikipedia compared to Anecdotal
CDE. We expect this distribution to change in other less
scientifically inclined corpora.

Finally, the variance between different topics was
substantial, as depicted in Table 2 (refer to the stan-
dard deviations mentioned in parenthesis). For exam-
ple, the percentage of claims with Expert CDE varies
from 10% in the topic banning gambling to 95% in
the topic US responsibility for the Mexican drug wars.
This observed variability obviously adds to the diffi-
culty and complexity of the task.

In the experiments reported in this paper, out of the
39 topics in the train and test data, we exclude from
the evaluation of each type, topics that had less than
three CDE of that type. This leaves a total of 30, 37,
and 22 topics for types Expert, Study, and Anecdotal,
respectively.

The current work is the first to report results over
these CDE data, which are more than 4 times larger
compared to the data released in (Aharoni et al., 2014).
These data are now freely available for research pur-
poses 4.

4 System Architecture

The input to our system is a topic, a set of related arti-
cles and a set of relevant claims detected within these
articles. Given this input, our system provides the user
with a ranked list of candidate CDEs, originating from
the text in the claim’s article, for an automatically se-
lected subset of the input claims.

In general, we observe that a text segment should
satisfy three criteria to be considered CDE of a specific
type. It must be coherent; it must have characteristics

4https://www.research.ibm.com/haifa/
dept/vst/mlta_data.shtml

of the relevant Evidence type; and finally, of course, it
should support the claim.

In addition to these observations, we note that a pri-
ori, we do not expect all claims to be supported by
all CDE types (Park and Cardie, 2014). For example,
opinion claims like claim B in Table 1 are expected to
be less supported by Study evidence compared to fac-
tual claims, like claim A in Table 1. Moreover, as ev-
ident from Table 2, many claims do not have any as-
sociated CDE in the same article. Thus, the system
performance may naturally improve if it will propose
candidate CDE of a particular type, only to an auto-
matically identified subset of the input claims.

Based on these observations, we are led to suggest an
architecture which approaches CDED via a pipeline of
modular components. Each of these components relies
upon the results of its precedents, and is specifically
designed to address a single aspect of those mentioned
above. The resulting architecture is depicted in Figure
1. Briefly, in the proposed architecture, the first two
components are context-free, i.e., focused on the gen-
eral characteristics of a candidate, still not taking into
account the context of the claim, nor the topic. The
third component is context-dependent, considering the
relation of the candidate to the claim and topic. Finally,
the fourth component aims to identify a subset of the
claims for which CDE will be proposed.

We consider all text segments composed of one,
two or three consecutive sentences, included within the
same paragraph as candidates (see Section 5 for more
details). Given a set of such candidate CDEs – or sim-
ply, candidates – the first component, termed the co-
herence component, estimates the coherence of each
candidate. For example, consider CDE S1 in Table
1. A candidate which includes only the second sen-
tence is incoherent, as it includes critical unresolved
anaphora, that cannot be understood without the pre-
vious sentence. In parallel, the second component,
termed the evidence characteristics component, esti-
mates the extent to which the candidate’s statistical sig-
nature matches that of the examined evidence type. For
example, if no quantitative analysis of data is reported,
the candidate typically cannot be considered Study evi-
dence, regardless of the claim and topic. Next, we only
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retain candidates for which the average score of the first
two components was relatively high, aiming to further
focus our attention on the most promising candidates.

The retained candidates are then considered by the
context-dependent component which aims to determine
if the examined candidate indeed supports the provided
claim in the context of the topic. Thus, this component
ranks all retained candidates with respect to each claim.
Finally, the claim selection component aims to rank all
input claims, according to the probability that CDEs
are indeed found amongst top-ranking candidate for the
claim.

Dividing the overall task into sub-tasks has several
benefits. First, it allows training each component over
its most suitable data, in which the signal of the relevant
features is easier to capture. For example, many of the
features for the context-dependent component aim to
determine the semantic relatedness between the claim
and a candidate. If one would have tried to tackle the
entire CDED task simultaneously, the training data for
this component would have been masked by many can-
didates that are highly related to the claim, although
are not CDE – e.g., definitions of some aspects of the
claim. These candidates would have blurred the sig-
nal that should be captured by the semantic relatedness
features, as they represent candidates with negative la-
bels that are nonetheless semantically related to the
claim. By separating the tasks, we allow the context-
dependent component to avoid this inherent difficulty,
and train over much cleaner data.

Second, our pipeline allows efficient handling of the
CDED task in terms of run time. Semantic relatedness
features are often relatively complex and demanding in
terms of run time. The significant filtering done af-
ter the context-free stage, reduces the number of candi-
dates for which we have to calculate these features.

Finally, we note that some of the modular compo-
nents we develop as part of the pipeline might be of
interest by themselves. For example, context-free evi-
dence detection might be useful in cases in which the
claim and topic are not defined (Lippi and Torroni,
2015).

Naturally, we expect that different evidence types
will have different characteristics. For example, num-
bers are expected to be more common in CDE of type
Study compared to CDE of type Expert. Anecdotal
CDE is perhaps expected to be less semantically related
to the corresponding claim, as it may have a more asso-
ciative relation to the claim, compared to CDE of types
Study or type Expert. Correspondingly, all components
are developed, trained, and assessed, independently for
each CDE type.

In summary, the full flow of our system upon receiv-
ing a new topic with associated articles and claims, is
as follows:

1. All articles are split into sentences, and all con-
secutive segments up to three sentences within a
paragraph are generated as candidates.

2. Each candidate is assigned a score by the two
components in the context-free stage and their
scores are averaged. 5

3. A dynamic programming algorithm selects a com-
plete coverage of the article by non-overlapping
candidates with the maximal average context-free
score. The rest of the candidates are discarded.

4. The remaining candidates across all articles are
sorted and only the top 15% of these candidates
are retained. 6

5. For each claim, the context-dependent component
ranks all retained candidates within the claim’s ar-
ticle with respect to the claim.

6. The claim selection component considers all
claims and the candidates ranked with respect to
each claim and assigns a score per claim. If the
claim–score is below a pre–computed threshold,
no candidate CDE will be presented for that claim.

All components are based on a Logistic Regression
(LR) classifier, and the class probability is used as the
candidate score.

5 Technical approach
In this section, we provide more technical details for
each of the components in our architecture.

5.1 Coherence component
This component aims to score a candidate according
to its coherence. For example, a candidate with an
unresolved anaphora, or one that breaks a quotation
in the middle, is expected to receive a relatively low
score. As mentioned, this component considers all text
segments composed of 1–3 consecutive sentences in-
cluded within the same paragraph. This decision is
based on the observation that such segments cover 90%
of CDE in the labeled data. Reaching a full cover-
age requires examining segments up to 25 sentences,
which would vastly increase run time, for a relatively
small gain. Thus, for example, for a single paragraph
with five sentences, our system will examine a total of
5 + 4 + 3 = 12 candidates. For an article including 30
such paragraphs, a total of 360 candidates will be con-
sidered. During training, segments that conform to a
labeled CDE were considered positive examples, while
segments that overlap a labeled CDE, but either include
additional sentence(s), or exclude part of the CDE sen-
tences were considered negative examples.

Dominant features for this classifier included:
presence of incomplete quotes; presence of con-
trast related conjunctive adverbs – e.g., however,

5With additional training data, we might be able to learn
a more sophisticated function to combine both scores.

6This percentage was determined according to perfor-
mance on the held-out data set. We have also experimented
with methods where the threshold is score–based rather than
percentage–based, which gave similar results.
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nevertheless; segment length; and presence of un-
resolved co-references.

5.2 Evidence characteristics component
This component aims to estimate to what extent a can-
didate represents evidence of a certain type. The train
and test data for this component consisted of all text
segments composed of 1-3 consecutive sentences, in-
cluded within the same paragraph. Positive examples
are all labeled CDE of the corresponding evidence type.
Negative examples are all candidates that do not over-
lap labeled CDE of the relevant type, including CDE of
other types.

The dominant features for the classifier used in this
component relied on the following mechanisms:

• Lexicons – including external lexicons (the Har-
vard IV-4 dictionary) and manually and automat-
ically compiled in-house lexicons. Specifically,
for each evidence type, we manually compiled a
lexicon of words characterizing this type by look-
ing at examples from the held-out data. This re-
sulted with high–precision / low–recall lexicons.
For example, for type Expert we used a lexi-
con of words describing persons and organizations
that may have some relevant expertise, such as:
economist, philosopher, court. In addi-
tion, we used the held-out data to automatically
learn wider lexicons of words that are significantly
associated with each type. All the in-house lexi-
cons are described in detail in the supplementary
material.

• Named Entity Recognition (NER). We used the
Stanford NER (Finkel et al., 2005) to extract
named entities such as person and organization,
and an in-house NER (Lally et al., 2012) to extract
more fine grained categories such as ”educational
organization” and ”leader”.

• Patterns. We used regular expressions to repre-
sent features like: does that candidate contain a
quote; does it contain a citation; does it contain
numeric quantitative results. In addition, we gen-
erated complex regular expressions which com-
bine the above lexicons with NER results to cap-
ture patterns indicative of different types. For ex-
ample, the pattern [Person/organization, 0 to 10
wildcard words, an opinion verb - such as believe,
conclude, etc.] was highly indicative of Expert ev-
idence (cf. Table 1 S7).

• Subjectivity classifier. We manually labeled
1, 750 sentences, selected at random from articles
in the held-out data, as either subjective or objec-
tive. Next, each sentence was represented by a
concatenation of two feature vectors – (i) a bag-
of-words representation, limited to a handcrafted
subjectivity lexicon containing 100 words; (ii) a
bag-of-patterns representation based on patterns

observed as frequent in the subjective sentences,
detected by a modification of the SPM algorithm
(Srikant and Agrawal, 1996). An LR classifier
was then trained over the labeled sentences.

5.3 Context-dependent component
The goal of this component is to estimate whether a
candidate can be used to support a claim while dis-
cussing the given topic. The training data for this com-
ponent are [topic / claim / CDE] triplets. Triplets in
which the CDE and claim were linked in the labeled
data – namely, the CDE was identified as evidence for
the claim – were considered as positive examples. Neg-
ative examples were generated by combining claims
and CDEs detected in the same topic and article, but
that were not linked in our labeled data.

The features for the classifier used in this component
can be conceptually divided into four types: (i) Seman-
tic relatedness between the candidate and the claim (ii)
Semantic relatedness between text related to the candi-
date and the claim (iii) Relative location of the can-
didate with respect to the claim and (iv) sentiment–
agreement between the candidate and the claim.

In general, we rely on two methods to assess the se-
mantic relatedness between two texts. The first is based
on the cosine similarity between TF-IDF vectors repre-
senting each text. Before constructing the TF-IDF vec-
tors each text is augmented with acronym expansions,
and lexical relations (including antonym, derivationally
related and pertainym) from WordNet (Miller, 1995).
The second, relies on the average cosine similarity be-
tween the Word2Vec (Mikolov et al., 2013) representa-
tion of all pairs of words in the two texts, where in each
pair one word is taken from the first text and the other
word from the second.

For each of these two methods, we consider the se-
mantic relatedness between the claim and: Specified
slots in the candidate as detected by an in-house slot
grammar parser (McCord, 1990; McCord et al., 2012);
The entire candidate text; The header/sub-header of the
section/subsection containing the candidate; Titles of
citations referred to from the candidate.

5.4 Claim selection component
The goal of this component is to rank all claims accord-
ing to the probability that the claim’s article includes
CDE of the relevant type, associated with the claim.
The training data consisted of all claims, where pos-
itive examples included claims for which at least one
CDE of the relevant type existed in the labeled data and
negative examples included all remaining claims.

A thresholding mechanism on the component score
is used to determine the claims for which candidates
will be presented. This threshold was selected by opti-
mizing the F1 score over the set of held-out topics.

The features used by this component exploited three
types of information:

• Claim properties: We used the held-out data to
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generate two types of lexicons. The first lexicon
is generated separately per evidence type. It in-
cludes claim words that were found to be signifi-
cantly associated with positive examples, namely
with claims for which CDE were found. For
example, for type Study, this lexicon included
words such as lead, result, development
and significant. The second lexicon aimed
to characterize words that are significantly associ-
ated with factual claims vs. non–factual claims,
with the expectation that certain evidence types
might be more/less common for each of these
two claim categories. For this, 550 randomly
selected claims were annotated as factual/non–
factual. Words identified as characterizing factual
claims included increase, important, and
relate, while words like natural, freedom,
and right were found dominant for non-factual
claims.

• Claim’s relevance to topic and article: We ex-
pect that when an article’s main topic is highly re-
lated to the claim, it will more likely include CDE
for that claim. Similarly we expect that for claims
at the heart of the topic, CDE is more likely to be
provided. These properties are assessed by mea-
suring the semantic relatedness between (i) the
claim and the content of the claim’s article and (ii)
the claim and topic.

• Properties of claim’s article : Specifically,
we mainly consider the scores provided by the
context-dependent component to all candidates
examined in the claim’s article. If the observed
scores are relatively high/low, we expect the arti-
cle to be more/less likely to include evidence of
the considered type. Various statistics of these
scores, such as the maximum score and the stan-
dard deviation are used as features aiming to cap-
ture this intuition.

6 Experimental Results

6.1 Evaluation

We evaluated our approach using the Leave-One-Out
schema: for every topic, we trained the classifiers using
the claims and associated CDE in all other topics and
then applied the resulting models to the left out topic.

In general, we consider a candidate as true-positive if
it includes all sentences included in the CDE and no ad-
ditional sentences. However, for our analysis it is also
interesting to separate between (i) errors in selecting
the segment boundaries and (ii) errors of down the line
components that are affected by these errors. Thus, we
also include the overlap measure where we consider a
candidate as true-positive if at least one sentence within
it overlaps a sentence in a labeled CDE.

Our final assessment measure is the mean recipro-
cal rank (MRR), that is the inverse of the rank of the

first CDE detected for a particular claim, averaged over
all claims selected by the claim selection component.
This is motivated by the observation that in most prac-
tical use cases, it is usually more important to be able to
support many claims, than to provide all the CDE avail-
able for a single claim. We define the MRR of a claim
with no CDE (errors of the claim selection component)
to be 0.

Finally, we report the macro-averaged results over
the different topics, that is all topics have the same
weight regardless the amount of labeled claims and la-
beled CDE detected for them. The rational behind this
is that we wish to ensure that our system does rea-
sonably well across all topics examined. We note that
micro-averaging gave overall similar results.

6.2 Comparison to Baselines

To assess the necessity and contribution of the differ-
ent components we compare our full pipeline to partial
pipelines, where some of the component are disabled
or replaced by simple baselines. These baselines are
described below.

First, we consider the No Context-Free Stage
(NCFS) baseline which aims to assess the contribution
of the context-free stage by skipping this stage, and
passing all candidates directly to the context-dependent
component.

Next, we consider the Basic Claim Selection (BCS)
baseline which replaces the claim selection component.
It ranks claims according to the top score of the candi-
date CDE for the claim. A threshold was selected on
top of the training data, such that the average percent-
age of claims passing the threshold is equal to the av-
erage percentage of claims with CDEs in the labeled
data.

Since, to the best of our knowledge, this is the first
work to address CDED, there is no prior-art to com-
pare our results to. However, to ensure that this task
is indeed empirically different from related tasks, and
demands a specialized pipeline to handle, we compare
with two baselines that are often used in related tasks.

The BM25 basline handles CDED as an IR task,
where the claim represents the query, and all CDE can-
didates represent the documents in a standard IR set-
ting. After pre-processing, which includes tokeniza-
tion, stop word removal, and stemming (Porter, 1997)
we use BM25 (Robertson et al., 1996) to rank all rel-
evant candidates according to their similarity to the
query, namely to the input claim.

The W2V baseline handles CDED as a purely se-
mantic relatedness task using state of the art seman-
tic relatedness measure of Word2Vec (Mikolov et al.,
2013). Thus, we use the average cosine similarity be-
tween the Word2Vec representations of all words in a
given candidate to all words in the claim, to rank all
relevant candidates with respect to each claim.
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Type MRR MRR overlap
Pipeline NCFS W2V BM25 Pipeline NCFS W2V BM25

Study 0.37 0.19 0.09 0.14 0.51 0.39 0.24 0.23
Expert 0.41 0.29 0.28 0.15 0.58 0.52 0.50 0.24
Anecdotal 0.18 0.04 0.04 0.04 0.31 0.11 0.11 0.11

Table 3: Macro-averaged MRR for each CDE type. Only claims with CDE in the labeled data were considered in
these results.

6.3 Results

We start by assessing the proposed pipeline prior to the
claim selection component. Table 3 reports the MRR
following the context-dependent component when fil-
tering out claims for which no CDE were found in the
labeled data.
Impact of context free stage: Comparing the pipeline
performance to the baseline using only the context de-
pendent component (NCFS baseline), the results in-
dicate the necessity of the context-free stage in our
pipeline. That is, assessing the coherence of candi-
dates, as well as their evidence characteristics, seems
to be essential to properly address CDED. In particu-
lar, the fact that the gain is observed both in the MRR
measure and in the MRR-overlap measure suggests that
both the context-free components are valuable.
Impact of context dependent stage: Comparing the
NCFS basline to W2V and BM25 baselines shows that
for type Study, the context-dependent component alone
still has an advantage over a single semantic related-
ness feature. Observing feature weights learned by the
LR classifier, we estimate that much of this advantage
is due to also taking into consideration semantic relat-
edness of the claim to texts related to the candidate,
namely the header of the section containing the candi-
date and titles of citations referred to from the candi-
date.

For types Expert and Anecdotal the performance of
the context-dependent component are similar to those
of the W2V baseline. For type Expert, this suggests
that most of the signal in the context-dependent com-
ponent comes from semantic relatedness between the
claim and candidate CDE. Results for type Anecdotal
are significantly lower. This was somewhat expected,
given the smaller size of Anecdotal data available to
train our classifiers (Table 2). The declined perfor-
mance of the W2V and BM25 baselines for this type,
further suggests that the semantic relatedness of CDE
and claims for this type are less direct.
Impact of detecting segment boundaries: Compar-
ing the overlap MRR measure to the exact MRR high-
lights that identifying the correct segment boundaries is
still a challenge, and once we improve this aspect, we
can expect a significant improvement in the results.
Impact of claim selection component: We next turn
to assess the contribution of the claim selection compo-
nent. Table 4 compares the final MRR results – at the
end of the pipeline – for claims selected by the claim
selection component, vs. claims selected by the BCS

Type Pipeline BCS All claims
Study 0.25 0.16 0.12
Expert 0.34 0.23 0.20
Anecdotal 0.04 0.05 0.03

Table 4: Macro-averaged MRR over: 1) claims se-
lected by the claim selection component, 2) claims se-
lected by basic claim selection, and 3) all claims.

baseline. Additionally, to demonstrate the value of
claim selection in general, we add results when consid-
ering all claims. For types Expert and Study the claim
selection component shows a clear advantage over the
baselines. Furthermore, the improved performance is
achieved when passing a higher percentage of claims
than the BCS baseline (34% vs 31% for Study and 52%
vs 46% for Expert, Figure 2). Admittedly, for Anecdo-
tal CDE the performance of claim selection are poor.
For this component the small sample size for Anecdo-
tal CDE was even more acute – there were only 151
claims with CDE of type Anecdotal – thus few positive
examples to train this component.

Recall that the claim selection component’s thresh-
old was tuned over the held-out data to optimize the
F1 measure with respect to claims with/without CDE.
However, for some applications one may favor higher
precision at the expense of providing candidate CDEs
for less claims. Figure 2 shows that indeed, for type
Study, considering more strict thresholds of the claim
selection component monotonically improves the sys-
tem’s overall precision, as reflected by the improved
MRR. Similar results were obtained for type Expert.

Figure 2: MRR and average fraction of passed claims
as function of the claim selection threshold for type
Study. Arrow indicates threshold used to obtain the re-
sults in Table 4.

6.4 Examples of System Performance
To provide some intuition for the results of our sys-
tem, Table 5 shows the 4 top ranking candidate CDE
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According to econometric studies, negative side ef-
fects of aid can include an unbalanced appreciation
of the recipient’s currency, increasing corruption,
and adverse political effects such as postponements
of necessary economic and democratic reforms.

X

Many econometric studies in recent years have sup-
ported the view that development aid has no effect
on the speed with which countries develop.

V

An inquiry into aid effectiveness by the UK All
Party Parliamentary Group (APPG) for Debt, Aid
and Trade featured evidence from Rosalind Eyben,
a Fellow at the Institute of Development Studies.

X

A very large part of the spend money on develop-
ment aid is simply wasted uselessly. According to
Gerbert van der Aa, for the Netherlands, only 33% of
the development aid is successful, another 33% fails
and of the remaining 33% the effect is unclear. This
means that for example for the Netherlands, 1.33 to
2.66 billion is lost as it spends 4 billion in total of
development aid.

V

Table 5: Top ranking candidates for the claim aid is
ineffective in the context of the topic trade vs. aid

of type Study for the claim aid is ineffective in the con-
text of the topic trade vs. aid. Among these, 2 were
indeed labeled as CDE. The other two exemplify com-
mon errors of our system. Candidate 1 can be used to
support a highly related claim such as aid has nega-
tive side effects, but does not directly support the claim
under consideration. Candidate 3 mentions a relevant
study, but does not present its results, hence cannot be
used to support the claim.

7 Conclusions and Future Work

We have provided the definitions for the CDED task,
and described a system architecture that addresses the
issues at the heart of the task. We assessed the perfor-
mance of the proposed approach over a novel bench-
mark dataset, demonstrating the validity of our archi-
tecture, and the necessity of all its components.

There are still many open issues to address and di-
rections in which to expand the task and labeled data
which we hope to address in future work.

In this paper we define CDE only in the context of
supporting a claim. However, in many scenarios pro-
viding counter evidence can also be very useful. As
evidence supporting and contesting a claim share many
semantic and syntactic features, we believe that detect-
ing both cases simultaneously might be easier to ac-
complish, although to enhance the practical use of such
a solution, one may need to develop an additional com-
ponent, determining the polarity of the detected CDE.

Another natural direction to pursue is expanding the
documents which are considered for CDED beyond the
article containing the claim. These can include ad-
ditional Wikipedia articles and other resources such
as newspaper archives, scientific literature, blogs, etc.
This poses additional challenges in gathering labeled
data, as it will require a mechanism to decide which

documents to label per claim and will probably increase
the number of documents to be labeled. Expanding to
additional corpora will probably require development
of additional features, to capture signals unique to each
corpus. For example, in newspaper archives, the iden-
tity of the author might prove an important feature.

Finally, in this work we used manually identified
claims and articles. Combining a CDED solution with
recent works in the field of argumentation mining (Car-
tright et al., 2011; Levy et al., 2014; Lippi and Torroni,
2015), may give rise to a new generation of methods,
that will be able to automatically construct relevant ar-
guments on demand, for a variety of topics.
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Abstract

We use character-based statistical machine
translation in order to correct user search
queries in the e-commerce domain. The
training data is automatically extracted
from event logs where users re-issue their
search queries with potentially corrected
spelling within the same session. We show
results on a test set which was annotated
by humans and compare against online
autocorrection capabilities of three addi-
tional web sites. Overall, the methods
presented in this paper outperform fully
productized spellchecking and autocorrec-
tion services in terms of accuracy and F1
score. We also propose novel evaluation
steps based on retrieved search results of
the corrected queries in terms of quantity
and relevance.

1 Introduction

Spelling correction is an important feature for any
interactive service that takes input generated by
users, e.g. an e-commerce web site that allows
searching for goods and products. Misspellings
are very common with user-generated input and
the reason why many web sites offer spelling cor-
rection in the form of “Did you mean?” sug-
gestions or automatic corrections. Autocorrec-
tion increases user satisfaction by correcting ob-
vious errors, whereas suggestions make it con-
venient for users to accept a proposed correction
without retyping or correcting the query manually.
Spelling correction is not a trivial task, as search

∗ The author is now affiliated with Lilt Inc., Stanford,
CA, USA.

† The author is now affiliated with Stylight GmbH, Mu-
nich, Germany.

queries are often short and lack context. Mis-
spelled queries might be considered correct by a
statistical spelling correction system as there is ev-
idence in the data through frequent occurrences.

While common successful methods (cf. Sec-
tion 1.1) rely on either human-annotated data or
the entire web, we wanted to use easily accessi-
ble in-domain data and on top of that technology
that is already available. In this work, we use user
event logs from an e-commerce web site to fetch
similar search query pairs within an active session.
The main idea is that users issue a search query but
alter it into something similar within a given time
window which might be the correction of a poten-
tial typo. To the best of our knowledge, the idea
of collecting query corrections using user session
and time information is novel. Previous work sug-
gested collecting queries using information that a
user clicked on a proposed correction. Our pro-
posed method for collecting training data has sev-
eral advantages. First, we do not rely on a pre-
vious spelling correction system, but on user for-
mulations. Second, for many search queries, es-
pecially from the tail where search recall is gen-
erally low, these misspellings yield few results,
and thus, users looking for certain products are in-
clined to correct the query themselves in order to
find what they are looking for. We use Damerau-
Levenshtein distance (Damerau, 1964) on charac-
ter level as similarity criterion, i.e. queries within a
specific edit distance are considered to be related.

The steps proposed in this work are:

1. Extraction of similar user queries from search
logs for bootstrapping training data (Sec-
tion 2),

2. classification and filtering of data to remove
noisy entries (Section 3), and

451



3. spelling correction cast into a statistical ma-
chine translation framework based on charac-
ter bigram sequences (Section 4).

We also evaluate the work thoroughly in Sec-
tion 5 where we compare our method to three other
online sites, two of them from the e-commerce
domain, and present a novel approach that deter-
mines quality based on retrieved search results.
We show examples indicating that our method
can handle both corrections of misspelled queries
and queries with segmentation issues (i.e. missing
whitespace delimiters). A summary can be found
in Section 6.

To our knowledge, this is the first work that
uses character-based machine translation technol-
ogy on user-generated data for spelling correction.
Moreover, it is the first to evaluate the performance
in an e-commerce setting with there relevant mea-
sures.

1.1 Related Work

One of the more prominent papers on autocorrec-
tion of misspelled input is (Whitelaw et al., 2009).
The three-step approach incorporates a classifica-
tion step that determines whether a word is mis-
spelled, computes the most likely correction can-
didate and then, again, classifies whether this can-
didate is likely to be correct. An error model based
after (Brill and Moore, 2000) is trained on sim-
ilar word pairs extracted from large amounts of
web sites, and a language model is used to dis-
ambiguate correction candidates based on left and
right context around the current position. Our
method differs in several ways. First, we consider
full query pairs as training data, and do not use
single words as primary mode of operation. Sec-
ond, we do not train explicit error models P (w|s)
for words w and observed corrections s, but use
standard phrase-based machine translation model-
ing to derive phrase and lexical translation mod-
els. Although our level of context is shorter, es-
pecially for long words, the system automatically
uses cross-word level context.

The idea of using consecutive user queries from
a stream of events to improve ranking of web
search results was described in (Radlinski and
Joachims, 2005). The authors introduce the no-
tion of query chains that take advantage of users
reformulating their queries as a means to learn bet-
ter ranking functions. The classification of query
chains is performed by support vector machines,

and its training data is generated in a supervised
fashion by manual inspection and annotation. In
contrast, we do not manually annotate any of our
training data. Since our initial sets are quite noisy,
we apply a couple of heuristics that try to produce
a cleaner subset of the data that contains mostly
misspelled queries and their potential correction
candidates.

Another focus of researchers was specifically
to tackle misspelled web search queries and use
search engine logs for training and evaluation data
(Gao et al., 2010), which differs from our work
by collecting data using “click-through” enforce-
ment. The user is presented with a spelling cor-
rection, and if she clicks on it, they learn that the
correction is valid. Our method does not need a
previous spelling correction to work. In addition,
our proposed method has the potential to learn cor-
rections of new and rare terms that will not be pro-
duced by an automatic spelling correction.

In (Zhang et al., 2006), the authors use a
conventional spellchecker to correct web queries
through additional reranking of its output by a
ranking SVM. The training data is in part auto-
matically extracted, but also contains manually an-
notated pairs and, thus, is a semi-supervised ap-
proach. In this paper, we use an unsupervised ap-
proach to generate training data. Query spelling
correction that is based on click-through data and
uses a phrase-based error model is reported in
(Sun et al., 2010). Our models operate on char-
acter sequences instead of words, and we do not
observe issues with identity transformations (i.e.
non-corrections for correctly spelled input).

In (Cucerzan and Brill, 2004), the authors inves-
tigate a transformation method that corrects un-
likely queries into more likely variants based on
web query logs. The iterative approach transforms
a search query based on word uni- and bigram
decompositions, and the authors evaluate on both
a large set that contains around 17% misspelled
queries and a smaller set that is based on succes-
sive user-reformulated similar queries, a similar
setup that we use to extract our training data. They
stress the importance of a good language model,
as performance drops drastically going from a bi-
gram to a unigram LM.

The use of character-based models in combi-
nation with statistical machine translation is not
novel and was proposed for spelling correction,
e.g., in (Formiga and Fonollosa, 2012), (Liu et al.,
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2013) or (Chiu et al., 2013). The authors compare
a distance-based approach including a language
model, a confusion network-based approach, a
translation approach through a heuristically de-
fined phrase table coding all character transfor-
mations, and a character-based machine transla-
tion approach using standard procedures (auto-
matic word alignment and phrase extraction). The
training data is manually created in contrast to
our work where we automatically bootstrap train-
ing data from query logs. Research has also been
done for translation of closely related languages
(e.g. (Vilar et al., 2007) and (Nakov and Tiede-
mann, 2012)) and transliteration (e.g. (Deselaers et
al., 2009)). An early summary paper with various
spelling-related problems (non-word error detec-
tion, isolated-word error correction, and context-
dependent word correction) can be found in (Ku-
kich, 1992).

2 Extraction of training data

We use event logs that track user interactions on
an e-commerce web site. Each action of a user
visiting the site is stored in a data warehouse and
HDFS (Hadoop Distributed File System). We
store several billion of these user records on a daily
basis. The setup allows us to efficiently process
large amounts of data points using a Map-Reduce
framework via Hadoop1. As part of user event
tracking, all interactions on the site are stored in
the database, e.g. which search terms were en-
tered, which links were clicked, and what actions
resulted in this (i.e. buying an item, adding it to a
like or watch list, or simply advancing to the next
page of search results, and so on). We focus on
search terms that users enter within a given period
of time.

Our hypothesis is that users that enter consecu-
tive search terms are not satisfied with the results
and try to modify the query until the results are ac-
ceptable. We then analyze the sequence of search
queries as part of each user session. We only ex-
tract consecutive search queries that are similar
in terms of character-level Damerau-Levenshtein
edit distance which is the minimum number of
character insertions, deletions, substitutions and
transpositions (i.e. the swapping of two charac-
ters). Note that spelling correction in this kind of
environment also needs to address segmentation of
queries in case of missing whitespace. It is quite

1http://hadoop.apache.org

common to find query terms being concatenated
without the use of a space character, e.g. calvin-
klein, ipadair or xboxone. Also, search queries are
short in nature and often lack context, and particu-
larly for the e-commerce domain largely consist of
brand and product names and associated attributes
(e.g. size of clothing).

Our method extracts similar search query pairs
that will be used in our statistical machine trans-
lation setup as training data. Table 1 shows ex-
amples that we extract from the event logs. We
use edit distance thresholds of 3 and 5 characters,
where the latter is generally noisier. Noise in this
context is everything that is not related to mis-
spelled queries. After a closer look, we observe
that many queries are simply rewrites, i.e., users
either make refinements to their original query
by adding more words to narrow down results,
e.g., leather wallet → leather wallet men, delet-
ing words to decrease specificity, e.g., gucci belt
→ gucci, or simply going through various related
products or attributes, e.g., iphone 5→ iphone 5s
→ iphone 6 where they progress through different
products or nike air 9 → nike air 9.5 → nike air
10 where they iterate through different sizes.

The logs on HDFS are organized as sessions
where each session contains a stream of user
events up to a specific time of inactivity. We use
event timestamps to determine how long the users
need between consecutive queries, and discard
similar query pairs if they are above a threshold
of 20 seconds. We use Hadoop-based mapper and
reducer steps for the data extraction procedure. In
the mappers, pairs of similar user search queries
get emitted as per above edit distance criterion on
character level, whereas the reducer simply accu-
mulates all counts for identical search query pairs.
Due to the size of the data, we run the Hadoop
extraction jobs on 24-hour log portions, thus ob-
taining separate data sets for each day. Overall,
we can extract several hundred thousand to sev-
eral million similar query pairs on a daily basis for
edit distance thresholds of 3 and 5, respectively.

We pull several months of data from the Hadoop
logs and accumulate each daily pull with unique
entries for training our spelling correction system.
As mentioned above, search queries that are simi-
lar but where the original query is not misspelled
make up a big portion of the extracted data. The
following section focuses on how to filter the data
to result in containing mostly query pairs that fit
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Search query Similar consecutive query Edit distance User correction?
nike air hurache nike air huarache 1 Yes
jordan size 9 jordan size 9.5 2 No
galaxy s4 galaxy s5 1 No
pawer cord forplaystation 3 power cord for playstation 3 2 Yes
iphine 6 iphone 6 1 Yes
iphone 6 plus iphone 6 plus case 5 No
micheal korrs wstches michael kors watches 3 Yes
calvin klien men boit calvin klein men boot 2 Yes
boots boots men 4 No
sueter sweater 2 Yes

Table 1: Extracted query pairs found in user event logs. Labels in column 4 indicate whether user-
initiated spelling correction (Yes) has taken place vs. a search reformulation that entails the source query
not being misspelled (No).

our use case, i.e. mappings from misspelled to cor-
rected ones.

3 Filtering non-misspelled input

We tested a heuristic approach to filtering search
query pairs: a combination of regular expressions
and thresholded feature scores that detect search
progressions and refinements which should be re-
moved from the training data as they do not repre-
sent valid user corrections.

The manual filtering heuristic calculates a se-
quence of features for each search query pair, and
as soon as a feature fires, the entry is removed.
In the following, we will use the notation (x, y)
for a search query pair that is extracted from the
logs explained by our method in the previous sec-
tion. Query x is a user search query, and query y
is a similar query issued by the user in the same
session within a specific time window. Exam-
ple query pairs are (babydoll, baby dolls), (bike
wherl, bike wheel) or (size 12 yellow dress, size
14 yellow dress). We use the following features as
part of this process:

Regular expressions. We remove search query
pairs (x, y) if y is a rewrite of x using search-
related operators, e.g. y = "x" which adds quo-
tation marks around the query (and, thus, has an
edit distance of 2). Example: (bluetooth speakers,
"bluetooth speakers").

LM ratio. We use an English language model
trained on publicly available corpora (e.g. Eu-
roparl), frequent queries and web content from the
e-commerce domain to calculate log-likelihoods
for each query and filter entries if the ratio is above

zero, i.e. log p(x/y) = log p(x) − log p(y) > 0.
This step essentially removes query pairs (x, y)
if the log-likelihood of query y is smaller than
x which usually indicates that the correction is
more perplexing than the original query. Exam-
ple: (bluetooth ear phones, bluetooth ear hpones)
with a log-likelihood ratio of -7.31 + 16.43 > 0 is
removed as a typo actually appears on the “cor-
rected” side.

Edit operations. We use a simple heuristic that
detects search refinements in terms of word inser-
tions and deletions: a word-level edit distance cri-
terion is used to remove entries where edit opera-
tions indicate insertions or deletions of full words.
We also detect substitutions on number tokens
which are also excluded from training data. Ex-
amples: (polo shirt, polo shirt xl), (nikon d700,
nikon d7100).

Frequent terms. We look at queries (x, y) and
use a vocabulary with relative frequencies based
on the query data y to determine whether sub-
stitutions on word level change a frequent token
into another frequent token. Examples: (snake
bat wooden, snake bat wood), (hd dvds, hd dvd)
where wood/wooden and dvds/dvd are both fre-
quent tokens and, thus, most likely rewrites and
not corrections.

Language ID. The primary search language on
US sites is English, but there is also a non-
negligible mix of other languages, Spanish in par-
ticular. We do not remove all queries that are not
identified as English because language identifica-
tion on (often short) search queries is a non-trivial
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Method #queries #tokens MT Acc
all data 80.5M 235.6M 62.0%
heuristic filter 12.6M 40.1M 65.5%

Table 2: Filtering training data with a heuristic set
of features. Accuracies are given on DEV for MT
baselines with differences only in the data setup.

task with a high error rate and filtering for only En-
glish would remove a lot of valid entries. We sim-
ply remove query pairs where x is identified as ei-
ther Spanish or Unknown based on Google’s Com-
pact Language Detector2. Example: (accesorios
cuarto, accesorios de cuarto).

These heuristics help us to reduce the training
data size from 80 million noisy search query pairs
with around 235 million tokens to 12.5 million
query pairs with roughly 40 million tokens that are
of higher quality and most likely spelling correc-
tions.

Table 2 shows results of this filtering step in
terms of data sizes and the accuracy on the dev
set (cf. Section 4). We observe that the filter-
ing scheme reduces overall training size by almost
85% and increases accuracy on the development
set by 3.5% absolute. The removal of query pairs
is very aggressive at this point, and overall quality
of the spelling correction framework might benefit
from a more careful selection. We will look into
improved variants of filtering through a maximum
entropy classifier trained on actual search results
in the future.

4 Autocorrection framework

We cast the autocorrection task into character-
based statistical machine translation. For this, we
prepare the data by splitting words into sequences
of lowercased characters and use a special charac-
ter to mark whitespace that indicates word bound-
aries. Once these sequences of characters are cor-
rected, i.e. translated, they are merged back to the
full word forms. Table 3 shows an example search
query being preprocessed, translated and postpro-
cessed. We use bigram characters instead of single
characters, as suggested in (Tiedemann, 2012), in
order to improve the statistical alignment models
and make them more expressive.

For training the autocorrection system we use
basic methods and open-source tools for statistical

2https://code.google.com/p/cld2

machine translation. The character alignment is
obtained by using GIZA++ (Och and Ney, 2003)
for 4, 3 and 2 iterations of IBM Model 1, HMM,
and IBM Model 3, respectively. As opposed to
the standard machine translation task, we did not
observe improvements from IBM Model 4 and do
not use it as part of the alignment process.

We use Moses (Koehn et al., 2007) for standard
phrase extraction, building KenLM language mod-
els (Heafield, 2011) and tuning. The standard set
of features is used, including a phrase model, word
lexicon model, length penalty, jump penalty and a
language model. The model weights are optimized
using MERT (Och, 2003). The Moses framework
allows us to easily conduct experiments with sev-
eral settings and find the optimal one for our task
at hand. We experiment with varying context sizes
for phrase table and language model, additional
features and different scoring methods, e.g. BLEU
(Papineni et al., 2002) in comparison to directly
maximizing accuracy on the dev set. A more de-
tailed description of those experiments including
results will follow in Section 5.

Evaluation data. In order to evaluate our pro-
posed framework, we extracted 10,000 query pairs
from a one week period not part of the training
data. The initial size of 3.5M query pairs was re-
duced to 10k by exponential reservoir sampling
(Osborne et al., 2014) after sorting by frequency.
The result is a set of representative query pairs that
focuses more on frequent misspellings, but also
contains rare queries from the tail of the distribu-
tion.

We asked humans to create a gold reference an-
notation that we can use for tuning and evaluation
purposes. The guidelines were to check whether
for a search query pair (x, y), the left query x is
misspelled, and if so, whether the similar candi-
date y is a correct correction or else provide the
most likely correction. If x was not misspelled,
the guidelines instructed to propagate query x to
the gold reference y, i.e. for those cases, we have
identity or a true negative. If query x is not En-
glish, the annotators had to mark those entries and
we removed them from the set. This step affected
798 queries (i.e. around 8%, mostly Spanish), and
the final set contains 9202 query pairs. We split
those into half to produce 4,600 queries for dev
and 4,602 for test. The true negatives in those sets
(i.e. entries that do not need to be corrected) are
~15%. We are aware that this approach focuses on
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characters character bigrams
Original: hollowin custome

Preprocessing: h o l l o w i n S c u s t o m e ho ol ll lo ow wi in nS Sc cu st to om me
Translation: h a l l o w e e n S c o s t u m e ha al ll lo ow we ee en nS Sc co st tu um me

Postprocessing: halloween costume

Table 3: Preprocessing of input data as single character or character bigram sequences. “S” denotes
whitespace. After translation, postprocessing transforms back to word-level surface forms.

Eval data DEV TEST
#queries 4,600 4,602
#tokens 15,593 15,557
CER[%] 6.1 6.0
SER[%] 84.2 84.3

Table 4: Statistics on dev and test portions of
the post-edited evaluation data. CER is the char-
acter error rate of the misspelled queries against
the gold reference, SER is the sentence (i.e. here
query-level) error rate of the sets.

recall over precision, as the majority of queries is
usually not misspelled. Nevertheless, exponential
reservoir sampling helps us to focus on the head of
that distribution, and our main goal is to evaluate
the capabilities of the spelling correction frame-
work, not the overall system integration. A final
investigation in combination with query expansion
that will be evaluated in the context of the live site
is left for future work. Detailed statistics on the
two sets can be found in Table 4.

Additional training data. In addition to the par-
allel data pull from the query logs as described in
Section 2, we also take the top queries from those
logs where we are sure they are most likely cor-
rect and can be used as gold reference (e.g. search
queries like handbags or wedding dress appear
thousands of times), and generate artificially nois-
ified variants based on an English keyboard layout
and statistics derived from our development set.
On the dev set, we calculated a character error rate
of roughly 6%, and this rate is used as a muta-
tion rate for the artificially introduced noise. We
also determine the following edit operation rates
based on the dev set: 6% character transpositions,
18% for deletions, 33% for insertions, and 43%
for substitutions. The target character for substi-
tutions and insertions is based on a random Gaus-
sian distribution with a distance mean 1 and stan-
dard deviation of 1 around the selected character,
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Figure 1: Scoring schema.

i.e. we target neighboring keys on the keyboard.
For the query wedding dress, e.g., this method in-
troduces misspelled variants such as weddig dress,
weedimg dress, or weddinb dreess. We run this
method 10 times on a set of 688k queries and re-
move all duplicates, resulting in additional 4.6M
search query pairs with around 13M tokens for the
training data.

As a final step, we add frequent queries from
user event logs but also product titles of the live in-
ventory to the language model. In total, the mono-
lingual portion of the data contains roughly 31M
entries with 319M tokens which are added to the
target side of the bilingual training portion.

5 Experiments

In this section, we report on a series of hillclimb-
ing experiments used to optimize performance. In
the following, we use standard information re-
trieval criteria for evaluation, namely accuracy,
precision, recall, and F1 score. Figure 1 depicts
a natural way of how the scoring is performed.
TP denotes true positives, FN false negatives,
FP false positives, and TN true negatives, respec-
tively. Note that for the case where the gold ref-
erence demands a correction, and the speller pro-
duces a wrong correction different from the source
query, we have to increase both false positives FP
and false negatives FN . With this, we can do stan-
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TEST [%] Acc Prec Rec F1
online A 68.8 84.0 64.2 72.8
online B 63.0 77.4 60.2 67.7
online C 56.3 58.6 60.7 59.7
MT (this work) 70.6 74.0 72.3 73.1
MT (alt. setup) 70.2 77.1 69.3 73.0

Table 5: Comparison of accuracy, precision, recall
and F1 score against other online sites on the test
set.

dard calculation of accuracy as (TP +TN )/(P +
N) with P = TP +FN andN = TN +FP , pre-
cision as TP/(TP + FP), recall as TP/P , and
F1 score as 2TP/(2TP + FP + FN ).

5.1 Hillclimbing and performance

We compare the performance of our autocorrec-
tion system with that of three other online search
engines, both from the e-commerce as well as web
search domain. For this, we automated entering
our search terms on the corresponding sites and
extracted candidates from “Did you mean...” sug-
gestions or “Showing results for...” autocorrec-
tions. Table 5 shows that our method outperforms
all other systems in accuracy, recall and F1 score.
We argue that recall in our setup is more impor-
tant than precision because the goal is to correct
as much as possible as autocorrection is usually
invoked by the search backend as a result of low
or null recall size.

Gradual improvements were made to the system
setup and we track those on the development set.
Table 6 gives a couple of major waypoints in the
hillclimbing process. The baseline incorporates
all extracted training data and uses phrases up to
length 3 (i.e. up to three character bigrams for both
source and target side). The baseline language
model uses 6-grams. This setup is trained on very
noisy data that contains a lot of search refinements
that are not actual misspellings. The filtered data
improves results. In general, we observe a 3-4%
relative improvement across all scores when us-
ing bigrams instead of single characters. We ex-
periment with additional phrase features as part
of the phrase table and add 5 features based on
phrase pair-specific edit operations, i.e. the num-
ber of insertions, deletions, substitutions, transpo-
sitions and final overall edit distance, which helps
to increase precision. The artificially noisified data
gives additional small gains, as well as direct op-

timization of accuracy instead of BLEU or WER.
We did not observe significant differences when
tuning on BLEU versus WER. Most of the im-
provement though comes from increasing context
size, i.e., 10-gram language models and lengths
up to 5 bigram character spans for both source
and target phrases. We also observe that iterative
correction, i.e. running the speller a second time
over already corrected data, further improves per-
formance slightly which is in-line with findings in
(Cucerzan and Brill, 2004) and (Gubanov et al.,
2014).

Increasing precision. We also investigated a
system setup that focuses on precision over re-
call in order to be more in sync with the online
systems that have been most likely optimized to a
more cautious correction mode. Our previous ex-
periments prefer recall which is due to the 85:15
split of misspelled vs. correct queries in the dev
set. For a more conservative mode that focuses
on precision, we updated the dev set by automat-
ically adding “mostly-correct” queries with iden-
tity as correction candidate. For this, we extracted
the most frequent queries with a high number of
search results which can be deemed to be “al-
most” correct. The dev size increased to roughly
22k queries with an approximate split of 85:15 for
“correct” vs. misspelled. This is a more realistic
setting if the correction is applied to all incom-
ing queries, irrespective of the number of corre-
sponding search results (note also that this mode is
different from our initial one where we apply cor-
rections only to queries with low or null results).
We also found that tuning on Matthews Correla-
tion Coefficient (Matthews, 1975) balances better
precision versus recall, especially for unbalanced
classes which is the case here (i.e. 85:15 split).

In the last line of Table 6 we added more data
extracted over several additional months. The ad-
ditional data amounts to 60M queries, therefore
increasing the total training size to 72M queries.
This final setup, as described, improves precision
but hurts recall slightly. Overall, the F1 and ac-
curacy measures are still improved which is most
likely due to the additional training data.

Finally, we ran a large-scale experiment and
extracted the 100k most frequent unique queries
(which account for 7.8M queries based on their
actual frequencies). Since they represent the most
common queries, some of them typed thousands
of times by the users, they are deemed to be
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DEV [%] Acc Prec Rec F1
baseline 62.0 66.2 61.0 63.5
+filtered data 65.5 68.8 67.6 68.2
+phrase length 5 67.2 70.0 69.6 69.8
+phrase features 67.3 71.2 68.3 69.8
+artificial noise 67.8 71.4 68.3 69.8
+10-gram LM 68.7 71.9 70.5 71.2
+tune on Acc 68.9 72.1 70.3 71.2
+iterative 2nd run 69.0 72.2 70.5 71.4
+alt. setup (Prec) 69.5 75.4 68.5 71.8

Table 6: Hillclimbing on the dev set.

Query Category distribution
moto x 50% cell phones, 30% auto-

motive, 5% clothing, ...
tory burch fitbit 75% jewelry, 20% sports, ...
madden 15 65% games, 18% toys, 7%

collectibles, ...

Table 7: Item category distributions for queries.

“mostly” correct. We autocorrect the set through
our best system which results in changed queries
in <0.5% of the cases after manual filtering of
non-errors (e.g. segmentation differences that are
handled separately by our query expansion sys-
tem, e.g. rayban→ ray ban which are equivalent
in the search backend) and when compared against
the original input set. This means that most of
the queries are left unchanged and that the decod-
ing process of the SMT system does a good job
in classifying whether a correction is needed or
not. Manual inspection of the most frequent differ-
ences shows that changes actually happen on fre-
quently misspelled words which are part of those
top 100k queries, e.g. micheal→ michael, infared
→ infrared, or accesories→ accessories.

5.2 Search evaluation

An interesting way to evaluate the performance of
the autocorrection system is to look at it from a
search perspective. If the goal is to improve user
experience in search and retrieve more relevant re-
sults, we need to compare the search result sets
in terms of quantity and quality. For quantity we
are mainly interested in how many queries lead
to 0 search results before and after autocorrection.
Table 8 shows these numbers for our test set. We
improve the rate of null results by 51.8% absolute.
In a deeper analysis we see that out of the 81.6% in

TEST [%] null results KL div. < 1
misspelled 81.6 40.9
gold corrections 27.1 100.0
online A 36.5 84.4
online B 36.0 82.1
online C 33.0 76.4
MT (this work) 29.8 86.0

Table 8: Search results evaluation on the test set.
For null results, lower rates are better. For KL div.
evaluation, higher rates are better, as they indicate
a closer match with the category distribution from
the gold corrections.

the source set we improve the query behavior for
63.8% queries after autocorrection while we only
decrease from non-null to null for 1.6%. A manual
inspection of the 1.6% shows that those queries al-
ready led to very low search results (<10) even for
the source.

For quality, we compare the search result sets
for the autocorrected queries with those of the ref-
erence and get an estimate of how similar each
autocorrected query behaves to the expected be-
havior given by its gold correction. In particular,
we extract the categories from all items which are
returned as part of the search API calls (see Ta-
ble 7). We use Kullback-Leibler divergence (Kull-
back and Leibler, 1951) to compute the difference
between the category distributions. The KL diver-
gence defines the information lost when using one
distribution to approximate another:

D(P ||Q) =
∑
i

P (i) · ln
(
P (i)
Q(i)

)
In our case, we use the category distribution of the
results of the reference query as the observed data
P which we want to model with the category dis-
tribution Q from the results of the autocorrected
query. This gives us a more realistic evaluation of
the method, as it is more relevant to the retrieval
problem that autocorrection is trying to address.
The queries perfumes for women and perfume for
women, e.g., retrieve similar amounts and types of
items although their strings are different (note the
plural s in the first one) which is penalized when
computing accuracy on string level.

In order to deal with zero-probability events, we
smooth both distributions such that they contain
exactly the same categories. For this we add cat-
egories that are present in one distribution but not
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Misspelled query Correction
adidda whatch blooto adidas watch bluetooth
awrppstale buttin shirt aeropostale button shirt
bangen olafsn headset bang olufsen headset
camra exesers camera accessory
crystal and righston cuf ring crystal and rhinestone cuff ring
fauxfurmidcalfwesternboots faux fur mid calf western boots
fotbool chus football shoes
otherbooxiphon5 otterbox iphone 5
womens realhairsaltandpeper womens real hair salt and pepper

Table 9: Examples of misspelled user search queries that the presented system is able to correct.

the other with a very small probability which we
subtract from the highest probability in the distri-
bution so that all probabilities still sum up to 1. In
the case of getting 0 search results for either the
autocorrected or reference query we cannot com-
pute the KL divergence and we simply mark those
cases with a high number. If both queries return 0
search results we return a distance of 0. Note
that with this we do not penalize queries that are
misspelled and should have been corrected even if
they still retrieve 0 items in search after correction.
However, in this test we are only interested in the
search results we get and not in the correction it-
self.

Table 8 shows that the presented method is clos-
est in terms of KL divergence to category distri-
butions of search results based on the gold refer-
ences. Even though this is a nice and easy way to
indicate quality of search results, we do not claim
this method to be an in-depth analysis of relevance
of search results and leave this for future work.

5.3 Examples

The examples in Table 9 demonstrate the abil-
ities of the presented spelling correction frame-
work. We are able to handle extremely misspelled
queries, e.g. due to phonetic spelling by possibly
non-native speakers (camra → camera, chus →
shoes), words being glued together due to missing
whitespace (fauxfurmid... → faux fur mid...), or
brand name confusions (righston→ rhinestone).

6 Conclusion

In this paper, we presented a powerful spelling
correction system for the e-commerce domain us-
ing statistical phrase-based machine translation
based on character bigram sequences. We ex-
tracted training data from event logs where users

issue similar search queries within a certain pe-
riod of time. Filtering through various heuristics
is used to clean the initially noisy data set and re-
move entries not related to spelling errors. We
evaluated our system against established online
search sites, both in the general and e-commerce
domain, and showed favorable results in terms of
recall and retrieval rates.

We plan to further invest in improving preci-
sion. For this, we feel that adding full word-
level models will help to overcome the somewhat
limited context present in our character sequence-
based models. We also plan to investigate the pro-
totype directly in query expansion as part of the
search backend.
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Abstract

The paper presents the results of the first
large-scale human evaluation of automatic
grammatical error correction (GEC) sys-
tems. Twelve participating systems and
the unchanged input of the CoNLL-2014
shared task have been reassessed in a
WMT-inspired human evaluation proce-
dure. Methods introduced for the Work-
shop of Machine Translation evaluation
campaigns have been adapted to GEC and
extended where necessary. The produced
rankings are used to evaluate standard
metrics for grammatical error correction in
terms of correlation with human judgment.

1 Introduction

The field of automatic grammatical error correc-
tion (GEC) has seen a number of shared tasks
of different scope and for different languages.
The most impactful were the CoNLL-2013 and
CoNLL-2014 (Ng et al., 2013; Ng et al., 2014)
shared tasks on Grammatical Error Correction
for ESL (English as a second language) learn-
ers. They were preceded by the HOO shared tasks
(Dale and Kilgarriff, 2011; Dale et al., 2012).
Shared tasks for other languages took place as
well, including the QALB workshops for Arabic
(Mohit et al., 2014) and NLP-TEA competitions
for Chinese. These tasks use automatic metrics to
determine the quality of the participating systems.

However, these efforts pale in comparison to
competitions organized in other fields, e.g. dur-
ing the annual Workshops for Machine Transla-
tion (WMT). It is a central idea of the WMTs that
automatic measures of machine translation quality
are an imperfect substitute for human assessments.
Therefore, manual evaluation of the system out-
puts are conducted and their results are reported as
the final rankings of the workshops. These human

evaluation campaigns are an important driving fac-
tor for the advancement of MT and produce in-
sightful “by-products”, such as a huge number of
human assessments of machine translation outputs
that have been used to evaluate automatic metrics.

We believe that the unavailability of this kind
of quality assessment may stall the development
of GEC, as all the shared tasks and the entire field
have to cope with an inherent uncertainty of their
methods and metrics. We hope to make a step to-
wards alleviating this lack of confidence by pre-
senting the results of the first1 large-scale human
evaluation of automatic grammatical error correc-
tion systems submitted to the CoNLL-2014 shared
task. Most of our inspiration is drawn from the re-
cent WMT edition (Bojar et al., 2014) and its met-
rics task (Macháček and Bojar, 2014).

We also provide an analysis of correlation be-
tween the standard metrics in GEC and human
judgment and show that the commonly used pa-
rameters for standard metrics in the shared task
may not be optimal. The uncertainty about met-
rics quality leads to proposals of new metrics, with
Felice and Briscoe (2015) being a recent example.
Based on human judgments we can show that this
proposed metric maybe less useful than hoped.

2 Evaluation of GEC systems

Madnani et al. (2011) addresses two problems of
GEC evaluation: 1) a lack of informative metrics
and 2) an inability to directly compare the per-
formance of systems developed by different re-
searchers. Two evaluation methodologies are pre-
sented, both based on crowdsourcing which are
used to grade types of errors rather than system
performance as presented in this work. Chodorow
et al. (2012) draw attention to the many evalua-

1During the camera-ready preparation phase, we learned
about similar research by Napoles et al. (2015). After con-
tacting the authors, it was agreed to treat both works as fully
concurrent. Future work will compare the results.
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tion issues in error detection which make it hard
to compare different approaches. The lack of con-
sensus is due to the nature of the error detection
task. The authors argue that the choice of the met-
ric should take into account factors such as the
skew of the data and the application that the sys-
tem is used for.

The most recent addition is Felice and Briscoe
(2015) who present a novel evaluation method for
grammatical error correction that scores systems
in terms of improvement on the original text.

3 The CoNLL-2014 shared task

The goal of the CoNLL-2014 shared task (Ng et
al., 2014) was to evaluate algorithms and systems
for automatically correcting grammatical errors in
English essays written by second language learn-
ers of English. Training and test data was anno-
tated with 28 error types. Participating teams were
given training data with manually annotated cor-
rections of grammatical errors and were allowed
to use publicly available resources for training.

Twenty-five student non-native speakers of En-
glish were recruited to write essays to be used as
test data. Each student wrote two essays. The 50
test essays were error-annotated by two English
native speakers. The essays and error annotations
were made available after the task. The MaxMatch
(M2) scorer (Dahlmeier and Ng, 2012) has been
used as the official shared task evaluation metric.

4 Data collection

4.1 Sampling sentences for evaluation
The system outputs of the CoNLL-2014 shared
task serve as evaluation data. The test set consists
of 1312 sentences, there are twelve system out-
puts available. The thirteenth participant NARA
is missing from this set. However, in GEC eval-
uation there is also the input to consider. Often
system outputs are equal to the unmodified input,
as it is most desirable if there are in fact no errors.
We include INPUT as the thirteenth system.

Due to the small number of modifications that
GEC systems apply to the input, there is not only
a large overlap with the input, but also among all
systems (Figure 1). If we sample systems uni-
formly, we lose easily obtainable pairwise judg-
ments for systems with the same output, and if
we collapse before sampling we introduce a strong
bias towards ties. To counter that bias, we aban-
don uniform sampling of test set sentences and use
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Figure 1: Frequencies of distinct corrected sen-
tences produced by 13 systems per input sentence.

instead a parametrized distribution that favors di-
verse sets of outputs.

The probability pi for a set of outputs Oi is cal-
culated as follows: N is the number of systems to
be evaluated, M is the maximum number of sen-
tences presented to the evaluator in a single rank-
ing (we use M = 5). The set of system outputs to
be evaluated E = {O1, . . . , On} ∀1≤i≤n|Oi| =
N , consists of n (= 1312) sets Oi of N output
sentences each. Every sentence in Oi can overlap
with other sentences multiple times, so for each set
Oi we define the corresponding multiset of multi-
plicities Ui, such that

∑
u∈Ui

u = N .
We define ci(j) as the number of possible ways

to choose at mostM different sentences that cover
j systems for the i-th set of outputs:

ci(j) =

∣∣∣∣∣
{
S ⊆ Ui : |S| ≤M ∧

∑
u∈S

u = j

}∣∣∣∣∣ .
Then the expected number Ci of systems cov-

ered by choosing at most M sentences is

Ci =

∑N
j=M ci(j) · j∑N
j=M ci(j)

.

The pseudo-probability p′i of sampling the i-th
sentence is defined as

p′i =

(
M

2

)
(
Ci
2

) where
(
Ci
2

)
=
Ci(Ci − 1)

2

which is the ratio of pairwise comparisons of M
versus Ci different systems. By normalizing over
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(a) Screenshot of Appraise modified for GEC judgment.
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(b) Overlapping rankings.

Figure 2: Displayed ranking and corresponding overlapping rankings.

the entire set of output sets we obtain the probabil-
ity pi of sampling the i-th set of outputs as

pi =
p′i∑|E|
j=1 p

′
j

.

4.2 Collecting system rankings
The sets of outputs sampled with the described
method have been prepared for Appraise (Feder-
mann, 2010) and presented to the judges. Judges
were asked to rank sentences from best to worse.
Ties are allowed. Judges were aware that the ab-
solute ranks bear no relevance as ranks are later
turned into relative pairwise judgments. No notion
of “better” or “worse” was imposed by the authors,
we relied on the judges to develop their own intu-
ition. All eight judges are English native speakers
and have extensive backgrounds in linguistics.

Figure 2a displays a screen shot of Appraise
with a judged sentence. Several modifications to
the Appraise framework2 were implemented to ac-
count for the specific nature of GEC:

Only the input sentence is displayed (top, bold),
no reference correction is given. The input sen-
tence is surrounded by one preceding and one fol-

2A fork of the original source code with can be found at
https://github.com/snukky/Appraise

lowing sentence. Identical corrections are col-
lapsed into one output, system names with the
same output are recorded internally. Edited frag-
ments are highlighted, blue for insertions and sub-
stitutions, pale blue and crossed-out for deletions.

4.3 Pairwise judgments

As conducted during the WMT campaigns, we
turn rankings into sets of relative judgments of
the form A>B, A=B, A<B where the lower ranked
system scores a win. Absolute ranks and differ-
ences are lost. As mentioned above, due to the col-
lapsing of identical outputs we obtain significantly
more data than the usual 10 pairs from one ranking
with five sentences. Figure 2a contains a ranking
with overlapping outputs as displayed in the top
graph of Figure 2b. Pairs from within overlaps re-
sult in ties, pairs between overlaps are expanded
as products,

(
6
2

)
= 15 pairwise judgments can be

extracted. Greater overlap leads to more pairwise
judgments (bottom,

(
13
2

)
= 78).

Table 1 lists the full statistics for collected rank-
ings by individual annotators. Unexpanded pairs
are WMT-style pairwise judgments before an out-
put A gets split into overlapping systems A1, A2,
A3, etc. The large number of ties for expanded
pairs is to be expected due to the high overlap
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Judge Ranks Unexpanded Expanded

1 400 3525 (1022) 18400 (10166)
2 299 2684 (1099) 13657 (8429)
3 400 3523 (914) 18912 (9684)
4 201 1750 (550) 9478 (5539)
5 349 3099 (766) 17107 (8972)
6 400 3474 (517) 19313 (9209)
7 70 646 (145) 3383 (1593)
8 200 1815 (681) 8848 (5525)

Total 2319 20516 (5694) 109098 (59117)

Table 1: Statistics for collected rankings (Ranks),
unexpanded and expanded pairwise judgments,
numbers for ties are given in parentheses.

between systems (on average there are only 5.7
unique outputs among 13 systems).

4.4 Inter- and intra-annotator agreement
Again inspired by the WMT evaluation cam-
paigns, we compute annotator agreement as a
measure of reliability of the pairwise judgments
with Cohen’s kappa coefficient (Cohen, 1960):

κ =
P (A)− P (E)

1− P (E)
.

where P (A) is the proportion of times that anno-
tators agree, and P (E) is the proportion of times
that they would agree by chance. κ assumes values
from 0 (no agreement) to 1 (perfect agreement).

All probabilities are computed as ratios of em-
pirically counted pairwise judgments. As the
judges worked on collapsed outputs, we calculate
agreement scores for unexpanded pairs; otherwise,
the high overlap would unfairly increase agree-
ment.
P (A) is calculated by examining all pairs of

outputs which have been judged by two or more
judges, and counting the proportion of times that
they agreed that A<B, A=B, or A>B.
P (E) = P (A<B)2+P (A=B)2+P (A>B)2 is the

probability that two judges agree randomly. Intra-
annotator agreement as a measure of consistency
is calculated for output sets that have been judged
more than one time by the same annotator.

The agreement numbers in Table 2 are in the
lower range of values reported during WMT. How-
ever, it should be noted that judges never saw the
repeated outputs within one ranking which prob-
ably decreases agreement compared to the MT-
specific task.

Agreement Value Degree

Inter-annotator 0.29 Weak
Intra-annotator 0.46 Moderate

(a) Inter-annotator and intra-annotator agree-
ment for all judges

1 2 3 4 5 6 7 8
1 .42 .26 .30 .37 .34 .26 .31 .24
2 – .30 .25 .28 .23 .20 .10 .20
3 – – .50 .35 .44 .34 .46 .26
4 – – – .34 .34 .30 .20 .26
5 – – – – .60 .36 .34 .32
6 – – – – – .44 .35 .25
7 – – – – – – * *
8 – – – – – – – .48

(b) Pairwise inter-annotator and intra-annotator agree-
ment per judge. Stars indicate too few overlapping
judgements.

Table 2: Inter-annotator and intra-annotator agree-
ment (Cohen’s κ) on unexpanded pairwise judg-
ments.

5 Computing ranks

In this section, it is our aim to produce a system
ranking from best to worse by computing the av-
erage number of times each system was judged
better than other systems based on the collected
pairwise rankings. While previously introduced
methods for producing rankings, total orderings,
as well as partial orderings at chosen confidence-
levels, can be directly applied to our data, deter-
mining which ranking is more accurate turns out
to be methodologically and computationally more
involved due to the specific nature of GEC outputs.

5.1 Ranking methods

We adapt two ranking methods applied during
WMT13 and WMT14 to GEC evaluation: the Ex-
pected Wins method and a version of TrueSkill.

Expected Wins. Expected Wins (EW) has been
introduced for WMT13 (Bojar et al., 2013) and is
based on an underlying model of “relative ability”
proposed in Koehn (2012). One advantage of this
method is its intuitiveness; the scores reflect the
probability that a system Si will be ranked better
than another system that has been randomly cho-
sen from a pool of opponents {Sj : j 6= i}. Defin-
ing the function win(A,B) as the number of times
system A is ranked better than system B, Bojar et
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# System P R M2
0.5

1 CAMB 0.397 0.301 0.373
2 CUUI 0.417 0.248 0.367
3 AMU 0.416 0.214 0.350
4 POST 0.345 0.217 0.308
5 NTHU 0.350 0.188 0.299
6 RAC 0.331 0.149 0.266
7 UMC 0.312 0.144 0.253
8 PKU 0.322 0.136 0.253
9 SJTU 0.301 0.051 0.151
10 UFC 0.700 0.017 0.078
11 IPN 0.112 0.028 0.071
12 IITB 0.307 0.013 0.059
13 INPUT 0.000 0.000 0.000

(a) Official CoNLL-2014 ranking without un-
published NARA system.

# Score Range System

1 0.628 1 AMU
2 0.566 2-3 RAC

0.561 2-4 CAMB
0.550 3-5 CUUI
0.539 4-5 POST

3 0.513 6-8 UFC
0.506 6-8 PKU
0.495 7-9 UMC
0.485 7-10 IITB
0.463 10-11 SJTU
0.456 9-12 INPUT
0.437 11-12 NTHU

4 0.300 13 IPN

(b) Human ExpectedWins ranking
(final manual ranking).

# Score Range System

1 0.273 1 AMU
2 0.182 2 CAMB
3 0.114 3-4 RAC

0.105 3-5 CUUI
0.080 4-5 POST

4 -0.001 6-7 PKU
-0.022 6-8 UMC
-0.041 7-10 UFC
-0.055 8-11 IITB
-0.062 8-11 INPUT
-0.074 9-11 SJTU

5 -0.142 12 NTHU
6 -0.358 13 IPN

(c) Human TrueSkill ranking.
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AMU – .44 ‡ .47 ? .46 † .44 ‡ .34 ‡ .40 ‡ .37 ‡ .32 ‡ .34 ‡ .32 ‡ .31 ‡ .24 ‡
RAC .56 ‡ – .53 .48 .48 .40 ‡ .45 † .44 ‡ .39 ‡ .38 ‡ .38 ‡ .43 ‡ .28 ‡

CAMB .53 ? .47 – .49 .45 ‡ .43 ‡ .43 ‡ .42 ‡ .42 ‡ .43 ‡ .42 ‡ .43 ‡ .34 ‡
CUUI .54 † .52 .51 – .49 .42 ‡ .47 .46 † .42 ‡ .41 ‡ .41 ‡ .42 ‡ .32 ‡
POST .56 ‡ .52 .55 ‡ .51 – .45 ‡ .47 .46 ? .44 ‡ .44 ‡ .43 ‡ .42 ‡ .29 ‡
UFC .66 ‡ .60 ‡ .57 ‡ .58 ‡ .55 ‡ – .54 ? .50 .49 .44 ? .27 † .42 ‡ .21 ‡
PKU .60 ‡ .55 † .57 ‡ .53 .53 .46 ? – .50 .47 .46 ? .46 ? .46 † .35 ‡

UMC .63 ‡ .56 ‡ .58 ‡ .54 † .54 ? .50 .50 – .48 .47 .48 .45 ‡ .35 ‡
IITB .68 ‡ .61 ‡ .58 ‡ .58 ‡ .56 ‡ .51 .53 .52 – .48 .43 .43 ‡ .27 ‡

SJTU .66 ‡ .62 ‡ .57 ‡ .59 ‡ .56 ‡ .56 ? .54 ? .53 .52 – .53 .46 ? .30 ‡
INPUT .68 ‡ .62 ‡ .58 ‡ .59 ‡ .57 ‡ .73 † .54 ? .52 .57 .47 – .43 ‡ .22 ‡
NTHU .69 ‡ .57 ‡ .57 ‡ .58 ‡ .58 ‡ .58 ‡ .54 † .55 ‡ .57 ‡ .54 ? .57 ‡ – .41 ‡

IPN .76 ‡ .72 ‡ .66 ‡ .68 ‡ .71 ‡ .79 ‡ .65 ‡ .65 ‡ .73 ‡ .70 ‡ .78 ‡ .59 ‡ –

(d) Head-to-head comparison for ExpectedWins at p ≤ 0.10 (?), p ≤ 0.05 (†), and p ≤ 0.01 (‡).

Table 3: Comparison of official CoNLL-2014 ranking and human rankings. Ranges and clusters have
been calculated with bootstrap resampling at p ≤ 0.05.

al. (2013) calculate EW scores as follows:

scoreEW(Si) =
1

|{Sj}|
∑
j,j 6=i

win(Si, Sj)
win(Si, Sj) + win(Sj , Si)

.

TrueSkill. The TrueSkill ranking system (Her-
brich et al., 2007) is a skill based ranking system
for Xbox Live developed at Microsoft Research. It
is used to identify and model player (GEC systems
in our case) ability in a game to assign players to
competitive matches. The TrueSkill ranking sys-
tem models each player Si by two parameters: the
average relative ability µSi and the degree of un-

certainty in the player’s ability σ2
Si

. Maintaining
uncertainty allows TS to make greater changes to
the ability estimates at the beginning and smaller
changes after a number of consistent matches has
been played. Due to that TS can identify the abil-
ity of individual players from a smaller number of
pairwise comparisons.

A modification of this approach to the WMT
manual evaluation procedure by Sakaguchi et al.
(2014) has been adopted as the official rank-
ing method during WMT14 replacing EW. The
TrueSkill scores are calculated as inferred means:

scoreTS(Si) = µSi .

465



5.2 Rank clusters

Both ranking methods produce total orderings
without information on the statistical significance
of the obtained ranks. Bojar et al. (2014) notice
that the similarity of the participants in terms of
methods and training data causes some of them
to be very similar and group systems into equiv-
alence classes as proposed by Koehn (2012).

Although the methods and training data among
the systems examined in this paper are quite di-
verse, a great similarity of produced outputs is an
inherent property of GEC. Therefore, in this sec-
tion, for each system Sj placed on rank rj we
also try to determine the true systems rank ranges
[r′j , . . . , r

′′
j ] at a confidence-level of 95% and clus-

ters of equivalent systems by following the proce-
dure outlined by Koehn (2012).

This is accomplished by applying bootstrap re-
sampling. Pairwise rankings are drawn from the
set of judgments with multiple drawings. Based
on this sample a new ranking is produced. After
repeating this process a 1000 times the obtained
1000 ranks for Sj are sorted, with the top 25 and
bottom 25 ranks being discarded. The interval of
the remaining ranks serves as the final rank range.
Next, these rank ranges are used to produce clus-
ters of overlapping rank ranges. This is the last
step required to produce the rankings in Tables 3b
and 3c for both methods, EW and TS, respectively.

5.3 Choosing the final ranking

Now, we face the question which ranking should
be presented as the final result of the human eval-
uation task. Again, we turn to Bojar et al. (2014)
who choose their rankings based on the ranking
model’s ability to predict pairwise rankings. Ac-
curacy is computed by 100-fold cross-validation.
For each fold a new ranking is trained from 99
parts with the left-over part serving as test data.

In a first step, we calculate the accuracy of
the unclustered total orderings discarding ties. A
ranking based on model scores alone cannot pre-
dict ties, this requires equivalence classes. Bojar et
al. (2014) define a draw radius r such that systems
whose scores differ by less than r are assigned to
one cluster, r is tuned to maximize accuracy.

In our case, due to the large number of ties, their
method of tuning r is trapped in local maxima and
assigns all systems to a single cluster. Alterna-
tively, we propose to calculate clusters according
to the method described in the previous section.

Method EW TS

Total ordering (non-ties) 58.18 58.15
Bootstrapped clusters 40.12 39.48

Table 4: Accuracy for ranking-based prediction of
pairwise judgments.

By fixing p ≤ 0.05 we directly evaluate rank-
ings of the form given in Table 3. The absolute
values of scores and their different interpretations
between methods become irrelevant which makes
it unnecessary to tune a parameter like r. The
main drawback of this approach is its computa-
tional cost. For each of the 100 folds we boot-
strap another 100 rankings with EW and TS, fix
p ≤ 0.05 and calculate rank clusters. The single
clustered ranking for each fold is then used to cal-
culate accuracy for the held-out test data.

For our data, contrary to the MT-specific re-
sults from Bojar et al. (2014), EW beats TS in
both cases (Table 4). We therefore present the
ExpectedWins-based ranking (Table 3b) as the fi-
nal result of the human evaluation effort described
in this work and refer to it in the remainder of the
paper when the human ranking is mentioned.

5.4 Analysis

The final human-created ranking (Table 3b) con-
sists of four non-overlapping rank clusters. Rank
ranges have been calculated at a confidence level
of 95%. Comparing the official CoNLL-2014
ranking (Table 3a) with the manually created Ex-
pectedWins ranking shows interesting differences.

The AMU system is judged to be a clear leader
by human judges in its own rank cluster. For six
out of eight judges, AMU has the highest score
(Table 7). The officially winning system CAMB
occupies third place in terms of EW scores and
is placed in the second cluster with four systems.
Only one judge put CAMB in first place. RAC, a
middling system, is elevated to second place oc-
cupying a rank cluster with three other systems.
NTHU, another middling system that based on M2

should be similar to RAC, is put in the second to
last position. Two systems are judged to be worse
than INPUT. The rank cluster that includes INPUT
is the largest among the four clusters.

We also include pairwise comparisons between
all systems according to EW in Table 3d. Each cell
contains the percentage of times the system in that
column was judged to be better than the system in
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that row. Bold values mark the winner. We ap-
plied the Sign Test to measure statistically signifi-
cant differences, ? indicates statistical significance
at p ≤ 0.10, † at p ≤ 0.05, and ‡ at p ≤ 0.01.

6 Correlation with GEC metrics

Since WMT08 (Callison-Burch et al., 2008) the
“metrics task” has been part of the WMT. The aim
of the metrics task is to assess the quality of auto-
matic evaluation metrics for MT in terms of cor-
relation with the collected human judgments. We
attempt the same in the context of GEC.

6.1 Measures of correlation
Based on Macháček and Bojar (2013), we use
Spearman’s rank correlation ρ and Pearson’s r to
compare the similarity of rankings produced by
various metrics to the manual ranking from the
previous section.

Spearman’s rank correlation ρ. Spearman’s ρ
for rankings with no ties is defined as

ρ = 1− 6
∑
d2
i

n(n2 − 1)

where di is the distance between human and met-
ric rank for system i, n is the number of systems.

Pearson’s r. Macháček and Bojar (2013) find
that Spearman’s ρ is too harsh and propose to also
use Pearson’s r, calculated as

r =
∑n

i=1(Hi − H̄)(Mi − M̄)√∑n
i=1(Hi − H̄)2

√∑n
i=1(Mi − M̄)2

whereH andM are the vectors of human and met-
ric scores, H̄ and M̄ are corresponding means.

6.2 Metrics
The inventory of evaluation metrics for GEC is
significantly smaller than for MT. We hope that
making our data available will fuel the interest in
this area. The following metrics are assessed:

MaxMatch (M2). Due to its adoption as the
main evaluation metric of the CoNLL shared tasks
and the QALB shared tasks (Mohit et al., 2014),
the M2 metric (Dahlmeier and Ng, 2012) can be
seen as a de facto standard. Being an Fβ-score, M2

results are most influenced by the choice of β. Be-
tween the CoNLL-2013 and CoNLL-2014 shared
tasks, the organizers changed β from 1.0 to 0.5,
and motivate this with intuition alone. The QALB
shared tasks for Arabic continue to use β = 1.0.

Metric Spearman’s ρ Pearson’s r

M2 F1.0 0.648 0.610
M2 F0.5

∗ 0.692 0.627
M2 F0.25 0.720 0.680
M2 F0.18 0.758 0.701
M2 F0.1 0.670 0.652

I-WAcc -0.154 -0.098

BLEU -0.346 -0.240
METEOR -0.374 -0.241

Table 5: Correlation results for various metrics
and human ranking.

1 2 3 4 5 6 7 8 ρ ρ̄
1 – .70 .31 .76 .74 .19 .62 .48 .70

.72

2 .72 – .77 .84 .90 .57 .59 .64 .93
3 .53 .89 – .66 .70 .58 .42 .64 .63
4 .82 .79 .69 – .91 .42 .67 .54 .91
5 .65 .85 .82 .87 – .63 .63 .51 .93
6 .32 .71 .67 .56 .86 – .63 .39 .42
7 .72 .74 .57 .76 .72 .63 – .63 .76
8 .64 .85 .86 .69 .72 .57 .75 – .60
r .67 .93 .82 .87 .92 .66 .80 .82 –
r̄ .80

Table 6: Inter-annotator correlation (Spearman’s ρ
above the diagonal, Pearson’s r below).

I-measure/Weighted Accuracy (I-WAcc). The
recently proposed I-WAcc metric (Felice and
Briscoe, 2015) tries to address the shortcomings
of M2. The inclusion of true negatives into the for-
mula makes this a very conservative metric; quite
similar to the MT metrics described below. The
metric assigns negative weights to systems that are
harmful with regard to the input text, values from
the range [1,−1] are possible. The reported corre-
lation values have been calculated for the ranking
presented in Felice and Briscoe (2015).

Machine translation evaluation metrics. Bas-
ing most of our results on findings from MT, we
also take a look at two machine translation eval-
uation metrics, BLEU (Papineni et al., 2002) and
METEOR (Denkowski and Lavie, 2011). In order
to use the CoNLL-2014 gold standard with these
metrics, the edit-based annotation has been con-
verted into two plain text files, one per annotator.

6.3 Analysis

The correlation results are collected in table 5. The
M2 metric is generally moderately correlated with
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Figure 3: Spearman’s ρ and Pearson’s r correla-
tion of M2 with human judgment w.r.t. β. Dashed
line marks official CoNLL-2014 choice β = 0.5.

human judgment and is on the brink of high cor-
relation for values of β closer to 0.2. Compared
to M2, the other metrics are weakly or moderately
inversely correlated to human judgment. Inverse
correlation with human judgments for metrics that
all assign higher scores to better systems seems
problematic. In the case of I-WAcc, we would
go as far as to state an absence of correlation. It
seems the conservative approach adopted for I-
WAcc does not correspond to the notion of quality
that our judges worked out for themselves. The
switch to β = 0.5 from β = 1.0 for the CoNLL-
2014 shared task was a good choice, but a higher
correlation can be achieved for β = 0.25, the max-
imum is reached for β = 0.18. Correlation drops
sharply for β = 0.1. The lack of positive corre-
lation for the MT-metrics is interesting in the light
of improvement that results from a shift towards
precision for M2 as BLEU is based on precision.

Figure 3 contains detailed plots of ρ and r with
regard to β within the [0, 1] range. As the CoNLL-
2014 test data included edits from two annotators,

we plot curves for both annotators separately and
for the combined gold standard. In the case of
Spearman’s ρ having alternative error annotations,
this leads to higher correlation values. Based on
the plots we would recommend setting 0.2 ≤ β ≤
0.3 instead of 0.5 or even 1.0.

Inter-annotator correlations of rankings com-
puted for individual judges (Table 6) can be treated
as human-level upper bounds for metric correla-
tion. The penultimate column and row contain
correlations of rankings for individual judges with
rankings computed from all judges minus the re-
spective judge. The last column and row con-
tain the respective weighted (w.r.t. judgments per
judge) average of these correlations.

7 Conclusions and future work

We have successfully adapted methods from the
WMT human evaluation campaigns to automatic
grammatical error correction. The collected and
produced data has been made available and should
be useful for other researchers. Although we set
out to provide answers, we probably ended up with
more questions. The following (and more) might
be investigated in the future: What makes the win-
ning system special and why do the standard met-
rics fail at identifying this system? Can we come
up with better system-level metrics? Can mean-
ingful sentence-level metrics be developed?

Outside the scope of the particular data, we need
to wonder if our results generalize to other shared
tasks and other languages. The CoNLL-2014 data
concerns ESL learners only and may not be trans-
ferable to systems for native speakers. This would
be in line with the ideas developed by Chodorow et
al. (2012). We would hope to see similar endeav-
ors for the other shared tasks as this would enable
the field to draw more general conclusions.

Obtaining the data

The presented data and tools are available from:
https://github.com/grammatical/
evaluation
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# Score Range System

1 0.674 1-2 CAMB
0.658 1-2 AMU

2 0.573 3-6 CUUI
0.573 3-6 PKU
0.566 3-7 POST
0.553 3-8 RAC
0.544 4-8 NTHU
0.537 5-8 UMC

3 0.436 9-10 SJTU
0.419 9-11 UFC
0.387 10-12 IITB
0.332 11-12 INPUT

4 0.276 13 IPN

(a) Judge 1

# Score Range System

1 0.640 1 AMU
2 0.559 2-6 CUUI

0.558 2-6 RAC
0.557 2-7 UFC
0.543 2-7 CAMB
0.526 3-9 PKU
0.511 5-10 POST
0.511 4-11 IITB
0.508 5-10 UMC
0.473 7-11 INPUT
0.472 8-11 NTHU

3 0.398 12 SJTU
4 0.286 13 IPN

(b) Judge 2

# Score Range System

1 0.612 1-2 AMU
0.578 2-3 CUUI
0.564 2-5 UFC
0.534 3-7 RAC
0.526 4-7 POST
0.517 4-8 UMC
0.508 4-9 IITB
0.474 5-11 INPUT
0.467 8-12 SJTU
0.464 8-12 PKU
0.463 8-12 CAMB
0.458 9-12 NTHU

2 0.333 13 IPN

(c) Judge 3

# Score Range System

1 0.641 1-2 AMU
0.631 1-2 CAMB

2 0.581 3-4 RAC
0.578 3-4 CUUI

3 0.507 5-10 UFC
0.494 5-10 POST
0.490 5-10 UMC
0.488 5-11 SJTU
0.486 5-10 PKU
0.473 5-11 INPUT
0.441 9-12 NTHU
0.378 11-12 IITB

4 0.313 13 IPN

(d) Judge 4

# Score Range System

1 0.613 1-2 AMU
0.608 1-2 RAC

2 0.568 3-5 CUUI
0.554 3-6 CAMB
0.535 4-7 POST
0.526 4-9 UFC
0.515 5-9 PKU
0.496 6-10 SJTU
0.487 6-11 INPUT
0.472 8-11 IITB
0.461 9-11 UMC

3 0.375 12 NTHU
4 0.290 13 IPN

(e) Judge 5

# Score Range System

1 0.601 1-2 RAC
0.579 1-4 AMU
0.565 1-6 IITB
0.562 2-6 POST
0.548 2-8 INPUT
0.535 3-8 UFC
0.519 6-9 PKU
0.516 6-9 CAMB
0.491 7-10 SJTU
0.474 9-10 CUUI

2 0.428 11 UMC
3 0.368 12 NTHU
4 0.313 13 IPN

(f) Judge 6

# Score Range System

1 0.788 1 AMU
2 0.697 2 CAMB
3 0.553 3-7 RAC

0.544 3-7 UMC
0.537 3-7 POST
0.533 3-10 IITB
0.487 5-10 PKU
0.474 5-12 INPUT
0.462 6-11 CUUI
0.436 6-12 SJTU
0.408 8-12 UFC
0.386 9-12 NTHU

4 0.303 13 IPN

(g) Judge 7

# Score Range System

1 0.660 1-2 AMU
0.625 1-3 CUUI
0.568 2-7 IITB
0.556 3-6 CAMB
0.543 3-7 UMC
0.537 3-7 POST
0.483 5-10 INPUT
0.481 5-10 UFC
0.478 7-11 RAC
0.466 7-11 NTHU
0.420 10-12 PKU
0.419 10-12 SJTU

2 0.260 13 IPN

(h) Judge 8

Table 7: Rankings by individual annotators. Cluster ranks and rank ranges have been computed with
bootstrap resampling at p ≤ 0.1 to accomodate for the reduced number of judgments per judge.
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Matouš Macháček and Ondřej Bojar. 2013. Results
of the WMT13 metrics shared task. In Proc. of
the Eighth Workshop on Statistical Machine Trans-
lation, pages 45–51. ACL.
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Abstract

We present a novel fine-tuning algorithm
in a deep hybrid architecture for semi-
supervised text classification. During
each increment of the online learning pro-
cess, the fine-tuning algorithm serves as
a top-down mechanism for pseudo-jointly
modifying model parameters following a
bottom-up generative learning pass. The
resulting model, trained under what we
call the Bottom-Up-Top-Down learning al-
gorithm, is shown to outperform a vari-
ety of competitive models and baselines
trained across a wide range of splits be-
tween supervised and unsupervised train-
ing data.

1 Introduction

Recent breakthroughs in learning expressive neu-
ral architectures have addressed challenging prob-
lems in domains such as computer vision, speech
recognition, and natural language processing. This
success is owed to the representational power af-
forded by deeper architectures supported by long-
standing theoretical arguments (Hastad, 1987).
These architectures efficiently model complex,
highly varying functions via multiple layers of
non-linearities, which would otherwise require
very “wide” shallow models that need large quan-
tities of samples (Bengio, 2012). However, many
of these deeper models have relied on mini-batch
training on large-scale, labeled data-sets, either us-
ing unsupervised pre-training (Bengio et al., 2007)
or improved architectural components (such as ac-
tivation functions) (Schmidhuber, 2015).

In an online learning problem, samples are pre-
sented to the learning architecture at a given rate
(usually with one-time access to these data points),
and, as in the case of a web crawling agent, most
of these are unlabeled. Given this, batch training

and supervised learning frameworks are no longer
applicable. While incremental approaches such
as co-training have been employed to help these
models learn in a more update-able fashion (Blum
and Mitchell, 1998; Gollapalli et al., 2013), neural
architectures can naturally be trained in an online
manner through the use of stochastic gradient de-
scent (SGD).

Semi-supervised online learning does not only
address practical applications, but it also reflects
some challenges of human category acquisition
(Tomasello, 2001). Consider the case of a child
learning to discriminate between object categories
and mapping them to words, given only a small
amount of explicitly labeled data (the mother
pointing to the object), and a large portion of un-
supervised learning, where the child comprehends
an adult’s speech or experiences positive feedback
for his or her own utterances regardless of their
correctness. The original argument in this respect
applied to grammar (e.g., Chomsky, 1980; Pullum
& Scholz, 2002). While neural networks are not
necessarily models of actual cognitive processes,
semi-supervised models can show learnability and
illustrate possible constraints inherent to the learn-
ing process.

The contribution of this paper is the develop-
ment of the Bottom-Up-Top-Down learning al-
gorithm for training a Stacked Boltzmann Ex-
perts Network (SBEN) (Ororbia II et al., 2015)
hybrid architecture. This procedure combines
our proposed top-down fine-tuning procedure for
jointly modifying the parameters of a SBEN with
a modified form of the model’s original layer-wise
bottom-up learning pass (Ororbia II et al., 2015).
We investigate the performance of the constructed
deep model when applied to semi-supervised text
classification problems and find that our hybrid ar-
chitecture outperforms all baselines.
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2 Related Work

Recent successes in the domain of connection-
ist learning stem from the expressive power af-
forded by models, such as the Deep Belief Net-
work (DBN) (Hinton et al., 2006; Bengio et al.,
2007) or Stacked Denoising Autoencoder (Vincent
et al., 2010), that greedily learn layers of stacked
non-linear feature detectors, equivalent to levels of
abstraction of the original representation. In a va-
riety of language-based problems, deep architec-
tures have outperformed popular shallow models
and classifiers (Salakhutdinov and Hinton, 2009;
Liu, 2010; Socher et al., 2011; Glorot et al.,
2011b; Lu and Li, 2013; Lu et al., 2014). How-
ever, these architectures often operate in a multi-
stage learning process, where a generative archi-
tecture is pre-trained and then used to initialize pa-
rameters of a second architecture that can be dis-
criminatively fine-tuned (using back-propagation
of errors or drop-out: Hinton et al., 2012). Sev-
eral ideas have been proposed to help deep mod-
els deal with potentially uncooperative input dis-
tributions or encourage learning of discriminative
information earlier in the process, many leverag-
ing auxiliary models in various ways (Bengio et
al., 2007; Zhang et al., 2014; Lee et al., 2014). A
few methods for adapting deep architecture con-
struction to an incremental learning setting have
also been proposed (Calandra et al., 2012; Zhou
et al., 2012). Recently, it was shown in (Oror-
bia II et al., 2015) that deep hybrid architectures,
or multi-level models that integrate discriminative
and generative learning objectives, offer a strong
viable alternative to multi-stage learners and are
readily usable for categorization tasks.

For text-based classification, a dominating
model is the support vector machine (SVM)
(Cortes and Vapnik, 1995) with many useful in-
novations to yet further improve its discrimina-
tive performance (Subramanya and Bilmes, 2008).
When used in tandem with prior human knowl-
edge to hand-craft good features, this simple ar-
chitecture has proven effective in solving practical
text-based tasks, such as academic document clas-
sification (Caragea et al., 2014). However, while
model construction may be fast (especially when
using a linear kernel), this process is costly in
that it requires a great deal of human labor to an-
notate the training corpus. Our approach, which
builds on that of (Ororbia II et al., 2015), provides
a means for improving classification performance

when labeled data is in scarce supply, learning
structure and regularity within the text to reduce
classification error incrementally.

3 A Deep Hybrid Model for
Semi-Supervised Learning

To directly handle the problem of discriminative
learning when labeled data is scarce, (Ororbia II
et al., 2015) proposed deep hybrid architectures
that could effectively leverage small amounts of
labeled and large amounts of unlabeled data. In
particular, the best-performing architecture was
the Stacked Boltzmann Experts Network (SBEN),
which is a variant of the DBN. In its construction
and training, the SBEN design borrows many re-
cent insights from efficiently learning good DBN
models (Hinton et al., 2006) and is essentially a
stack of building block models where each layer
of model parameters is greedily modified while
freezing the parameters of all others. In con-
trast to the DBN, which stacks restricted Boltz-
mann machines (RBM’s) and is often used to ini-
tialize a deep multi-layer perceptron (MLP), the
SBEN model is constructed by composing hybrid
restricted Boltzmann machines and can be directly
applied to the discriminative task in a single learn-
ing phase.

The hybrid restricted Boltzmann machine
(HRBM) (Schmah et al., 2008; Larochelle and
Bengio, 2008; Larochelle et al., 2012) building
block of the SBEN is itself an extension of the
RBM meant to ultimately perform classification.
The HRBM graphical model is defined via pa-
rameters Θ = (W,U,b, c,d) (where W is the
input-to-hidden weight matrix, U the hidden-to-
class weight matrix, b is the visible bias vector, c is
the hidden unit bias vector, and d is the class unit
bias vector), and is a model of the joint distribu-
tion of a binary feature vector x = (x1, · · · , xD)
and its label y ∈ {1, · · · , C} that makes use of a
latent variable set h = (h1, · · · , hH). The model
assigns a probability to the triplet (y,x,h) using:

p(y, x,h) =
e−E(y,x,h)

Z
, (1)

p(y, x) =
1
Z

∑
h

e−E(y,x,h) (2)

where Z is known as the partition function. The
model’s energy function is defined as
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E(y, x,h) = −hTWx−bT x−cTh−dT ey−hTUey.
(3)

where ey = (1i=y)Ci=1 is the one-hot vector en-
coding of y. It is often not possible to compute
p(y, x,h) or the marginal p(y, x) due to the in-
tractable normalization constant. However, ex-
ploiting the model’s lack of intra-layer connec-
tions, block Gibbs sampling may be used to draw
samples of the HRBM’s latent variable layer given
the current state of the visible layer and vice versa.
This yields the following equations:

p(h|y, x) =
∏
j

p(hj |y, x),

p(hj = 1|y, x) = σ(cj + Ujy +
∑
i

Wjixi)
(4)

p(x|h) =
∏
i

p(xi|h),

p(xi = 1|h) = σ(bi +
∑
j

Wjihj)
(5)

p(y|h) =
edy+

∑
j Ujyhj∑

y? e
dy?+

∑
j Ujy?hj

(6)

where σ(v) = 1/(1 + e−v). Classification may
be performed directly with the HRBM by using its
free energy function F (y, x) to compute the con-
ditional distribution

p(y|x) =
e−F (y,x)∑

y?∈{1,··· ,C} e−F (y?,x)
(7)

where the free energy is formally defined as

−F (y, x) = (dy +
∑
j

ψ(cj + Ujy +
∑

Wjixi))

(8)
and ψ is the softplus activation function ψ(v) =
log(1 + ev).

To construct an N-layer SBEN (or N-SBEN), as
was shown in (Ororbia II et al., 2015), one may
learn a stack of HRBMs in one of two ways: (1)
in a strict greedy, layer-wise manner, where lay-
ers are each trained in isolation on all of the data
samples one at a time from the bottom-up; or (2)
in a more relaxed disjoint fashion, where all layers
are trained together on all of the data but still in a

Figure 1: Architecture of the SBEN model. The
model in feedforward mode can be viewed as a
directed model, however, during training, connec-
tions are bi-directional.

layer-wise bottom-up pass. To properly compute
intermediate data representations during training
and prediction in the SBEN, one must combine
Equations 4 and 7. (The specific procedure for do-
ing this can be found in the computeLayerwiseS-
tatistics sub-routine in Algorithm 1.) This gives
rise to the full SBEN architecture, which is de-
picted in Figure 1.

3.1 Ensembling of Layer-Wise Experts

The SBEN may be viewed as a natural vertical en-
semble of layer-wise “experts”, where each layer
maps latent representations to predictions, which
differs from standard methods such as boosting
(Schapire, 1990). Traditional feedforward neural
models propagate data through the final network
to obtain an output prediction yt from a penulti-
mate layer for a given xt. In contrast, this hybrid
model is capable of a producing a label ynt at each
level n for xt.

To vertically aggregate layer-wise expert out-
puts, we compute a simple mean predictor,
p(y|x)ensemble, as follows:

p(y|x)ensemble =
1
N

N∑
n=1

p(y|x)n (9)

This ensembling scheme provides a simple way to
incorporate acquired discriminative knowledge of
different levels of abstraction into the model’s fi-
nal prediction. We note that the SBEN’s inherent
layer-wise discriminative ability stands as an alter-
native to coupling helper classifiers (Bengio et al.,
2007) or the “companion objectives” (Lee et al.,
2014).
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3.2 The Bottom-Up-Top-Down Learning
Algorithm

With the SBEN architecture defined, we next
present its simple two-step training algorithm,
or the Bottom-Up-Top-Down procedure (BUTD),
which combines a greedy, bottom-up pass with a
subsequent top-down fine-tuning step. At every
iteration of training, the model makes use of a sin-
gle labeled sample (taken from an available, small
labeled data subset) and an example from either a
large unlabeled pool or a data-stream. We describe
each of the two phases in Sections 3.2.1 and 3.2.2.

3.2.1 Bottom-Up Layer-wise Learning (BU)
The first phase of N-SBEN learning consists of
a bottom-up pass where each layerwise HRBM
can be trained using a compound objective func-
tion. Data samples are propagated up the model
to the layer targeted for layer-wise training using
the feedforward schema described above. Each
HRBM layer of the SBEN is greedily trained us-
ing the frozen latent representations of the one be-
low, which are generated by using the lower level
expert’s input and prediction. The loss function
for each layer balances a discriminative objective
Ldisc, a supervised generative objective Lgen, and
an unsupervised generative objectiveLunsup, fully
defined as follows:

Lsemi(Dtrain,Dunlab) = γLdisc(Dtrain)
+αLgen(Dtrain)

+βLunsup(Dunlab)
(10)

Unlike generative pre-training of neural architec-
tures (Bengio et al., 2007), the additional free pa-
rameters γ, α, and β offer explicit control over
the extent to which the final parameters discovered
are influenced by generative learning (Larochelle
et al., 2012; Ororbia II et al., 2015). More im-
portantly, the generative objectives may be viewed
as providing data-dependent regularization on the
discriminative learning gradient of each layer.

The objectives themselves are defined as:

Ldisc(Dtrain) = −
|Dtrain|∑
t=1

log p(y|xt), (11)

Lgen(Dtrain) = −
|Dtrain|∑
t=1

log p(yt, xt), and (12)

Lunsup(Dunlab) = −
|Dunlab|∑
t=1

log p(xt) (13)

where Dtrain = {(xt, y)} is the labeled training
data-set and Dunlab = {(ut)} is the unlabeled
training data-set. The gradient for Ldisc may be
computed directly, which follows the general form

∂ log p(yt|x)
∂θ

= −Eh|yt,xt

[
∂

∂θ
(E(yt, xt,h))

]

+Ey,h|,x

[
∂

∂θ
(E(y, x,h))

]
(14)

and can be calculated directly (see Larochelle et
al., 2012 , for details) or through a form of Drop-
ping, such as Drop-Out or Drop-Connect (Tom-
czak, 2013). The generative gradients themselves
follow the form

∂ log p(yt, x)
∂θ

= −Eh|yt,xt

[
∂

∂θ
(E(yt, xt,h))

]

+Ey,x,h

[
∂

∂θ
(E(y, x,h))

]
(15)

and, despite being intractable for any sample
(xt, yt), may be approximated via the contrastive
divergence procedure (Hinton, 2002). The in-
tractable second expectation is replaced with a
point estimate using a single Gibbs sampling step.
To calculate the generative gradient for an unla-
beled sample u, a pseudo-label must be obtained
by using a layer-wise HRBM’s current estimate of
p(y|u), which can be viewed as a form of self-
training or Entropy Regularization (Lee, 2013).
The online procedure for computing the genera-
tive gradient (either labeled or unlabeled example)
for a single HRBM can be found in Ororbia et al.,
(2015).

Setting the coefficients that control learning ob-
jective influences can lead to different model con-
figurations (especially with respect to γ) as well as
impact the gradient-based training of each model
layer (i.e., α and β). In this paper, we shall ex-
plore two particular configurations, namely 1) by
setting γ = 0 and α = 1, which leads to con-
structing a purely generative model of Dtrain and
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Algorithm 1 Top-down fine-tuning of an N-SBEN (ensemble back-propagation). Note that “·” indicates
a Hadamard product, ξ is an error signal vector, the prime superscript indicates a derivative (i.e., σ′ means
derivative function of the sigmoid), and ẑ is the symbol for linear pre-activation values.

Input: (xt, yt) ∈ D, learning rate λ and model parameters Θ = {Θ1,Θ2, ...,ΘN}
function FINETUNEMODEL((xt, yt), λ, Θ)

Ω← ∅, xn ← xt, yn ← ∅ . Initialize list of layer-wise model statistics & variables
// Conduct feed-forward pass to collect layer-wise statistics
for Θn ∈ Θ do

(hn, ẑn, yhn,xn)← COMPUTELAYERWISESTATISTICS(xn,Θn)
Ωn ← (hn, ẑn, yhn, xn), xn ← hn, yn ← yhn

// Conduct error back-propagation pass to adjust layer-wise parameters
ξl ← ∅
for l← N, l−−, while l ≥ 1 do

(hl, ẑl, yhl ,xl)← Ω[l] . Grab relevant statistics for layer l of model
if i = N then

(5disc, ξl)← COMPUTEDISCIMINATIVEGRADIENT(yt,xl, ∅,hn, ẑ,Θl)
else

ξl ← ξl · σ′(ẑl)
(5disc, ξl)← COMPUTEDISCIMINATIVEGRADIENT(yt,xl, ξl,hn, ẑ,Θl)

Θn ← Θn − λ(5disc)
function COMPUTELAYERWISESTATISTICS(xt,Θn)

yht ← p(yt|xt,Θn) . Equation 7 under the layerwise model
ẑ← c +Wxt + Ueyt . Can re-use ẑ to perform next step
ht ∼ p(h|yht , xt,Θn) . Equation 4 under the layerwise model
return (ht, ẑ, yht , xt)

function COMPUTEDISCIMINATIVEGRADIENT(yt,xl, ξl,hn, ẑ,Θl)
o← p(y|hn,Θl), ξ ← softmax′(o) · −(yt/o)
5U ← ξhTn ,5d ← ξ, ξ ← Uξ, ξ ← ξ · σ′(ẑ)
if ξl 6= ∅ then

ξ ← ξ · ξl
5W ← ξxTl ,5c ← ξ,5b ← 0,5U ←5U + (ξeTyt

), ξ ←W T ξ
return (5← (5W ,5U ,5b,5c,5d), ξ)

Dunsup, and 2) by setting γ = 1 with α freely
varying (which recovers the model of Ororbia et
al., 2015). In both scenarios, β is allowed to vary
as a user-defined hyper-parameter. The second set-
ting of γ allows for training the SBEN directly
with only the bottom-up phase defined in this sec-
tion. However, if the first setting is used, a sec-
ond phase may be used to incorporate a top-down
fine-tuning phase. A bottom-up pass simply en-
tails computing this compound gradient for each
layer of the model for 1 or 2 samples per training
iteration. Notice that the first scenario reduces the
number of hyper-parameters to explore in model
selection, requiring only an appropriate value for
β to be found.

3.2.2 Top-Down Fine-tuning (TD)

Although efficient, the bottom-up procedure de-
scribed above is greedy, which means that the gra-
dients are computed for each layer-wise HRBM
independent of gradient information from other
layers of the model. One way we propose to
introduce a degree of joint training of param-
eters is to incorporate a second phase that ad-
justs the SBEN parameters via a modified form
of back-propagation. Such a routine can further
exploit the SBEN’s multiple predictors (or entry
points) where additional error signals may be com-
puted and aggregated while signals are reverse-
propagated down the network. We hypothesize
that holistic fine-tuning ensures that discrimina-
tive information is incorporated into the generative
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Algorithm 2 The Bottom-Up-Top-Down training procedure for learning an N-SBEN.
Input: (xt, yt) ∈ Dtrain, (ut) ∈ Dunlab, rates λ & β, p̄, & parameters Θ = {Θ1,Θ2, ...,ΘN}
function BOTTOMUPTOPDOWN((yt, xt, ut, λ, β, Θ)

APPLYBOTTOMUPPASS(yt, xt, ut, λ, γ = 0, α = 1, β, Θ) . See (Ororbia II et al., 2015)
// Up to two calls can be made to the top-down tuning routine
FINETUNEMODEL(xt, yt, λ, Θ) . See Algorithm 1 for details
vt ← pensemble(y|x,Θn) . Calculate pseudo-label probability using Equation 9
if max[vt] > p̄ then

vt ← TOONEHOT(vt) . Convert to 1-hot vector using argmax of model conditionals
FINETUNEMODEL(ut,vt, λ, Θ)

features being constructed in the bottom-up learn-
ing step. Furthermore, errors from experts above
are propagated down to lower layers, which were
initially frozen during the greedy, bottom-up train-
ing phase.

Fine-tuning in the context of training an SBEN
is different from using a pre-trained MLP that
is subsequently fine-tuned with back-propagation.
First, since the SBEN is a more complex architec-
ture than an MLP, pre-initializing an MLP would
be insufficient given that one would be tossing po-
tentially useful information stored in the SBEN’s
class filters (and corresponding class bias vectors)
of each layer-wise expert (i.e., U and d). Second,
merely using the SBEN as an intermediate model
ignores the fact the SBEN can already perform
classification directly. To avoid losing such infor-
mation and to fully exploit the model’s predictive
ability, we adapt the back-propagation algorithm
for training MLP’s to operate on the SBEN, which
we shall call ensemble back-propagation since
the fine-tuning method propagates error deriva-
tives down the network from many points of entry.
Ensemble back-propagation is described in Algo-
rithm 1.

With this second online training step, the
Bottom-Up-Top-Down (BUTD) training algorithm
for fully training an SBEN proceeds with a sin-
gle bottom-up modification step followed by a
single top-down joint fine-tuning step using the
ensemble back-propagation procedure defined in
Algorithm 1 for each training time step. A full
top-down phase can consist of up to two calls to
the ensemble back-propagation procedure. One
is used to jointly modify the SBEN’s parame-
ters with respect to the sample taken from Dtrain.
A second one is potentially needed to tune pa-
rameters with respect to the sample drawn from
Dunlab. For the unlabeled sample, if the high-
est class probability assigned by the SBEN (us-

ing Equation 9) is greater than a pre-set threshold
(i.e., max[pensemble(y|u)] > p̄), a pseudo-label is
created for that sample by converting the model’s
mean vector to a 1-hot encoding. The probability
threshold p̄ for the potential second call to the en-
semble back-propagation routine allows us to in-
corporate a tunable form of pseudo-labeling (Lee,
2013) into the Bottom-Up-Top-Down learning al-
gorithm.

The high-level view of the BUTD learning algo-
rithm is depicted in Algorithm 2.

4 Experimental Results

We investigate the viability of our deep hybrid ar-
chitecture for semi-supervised text categorization.
Model performance was evaluated on the WebKB
data-set 1 and a small-scale version of the 20News-
Group data-set 2.

The original WebKB collection contains pages
from a variety of universities (Cornell, Texas,
Washington, and Wisconsin as well as miscella-
neous pages from others). The 4-class classifica-
tion problem we defined using this data-set was
to determine if a web-page could be identified as
one belonging to a Student, Faculty, Course, or
a Project, yielding a subset of usable 4,199 sam-
ples. We applied simple pre-processing to the text,
namely stop-word removal and stemming, chose
to leverage only the k most frequently occurring
terms (this varied across the two experiments), and
binarized the document low-level representation
(only 1 page vector was discarded due to pres-
ence of 0 terms). The 20NewsGroup data-set, on
the other hand, contained 16242 total samples and
was already pre-processed, containing 100 terms,
binary-occurrence low-level representation, with

1The exact data-set we used can be found and downloaded
at http://www.cs.cmu.edu/afs/cs/project/theo-20/www/data/

2The exact data-set we used can be found and downloaded
at http://www.cs.nyu.edu/r̃oweis/data.html.
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tags for the four top-most highest level domains
or meta-topics in the newsgroups array.

For both data-sets, we evaluated model gen-
eralization performance using a stratified 5-fold
cross-validation (CV) scheme. For each possible
train/test split, we automatically partitioned the
training fold into separate labeled, unlabeled, and
validation subsets using stratified random sam-
pling without replacement. Generalization perfor-
mance was evaluated by estimating classification
error, average precision, average recall, and av-
erage F-Measure, where F-Measure was chosen
to be the harmonic mean of precision and recall,
F1 = 2(precision · recall)/(precision + recall).

4.1 Model Designs

We evaluated the BUTD version of our model,
the 3-SBEN,BUTD, as described in Algorithm 2.
For simplicity, the number of latent variables at
each level of the SBEN was held equal to the di-
mensionality of the data (i.e., a complete repre-
sentation). We compared this model trained with
BUTD against a version utilizing only the bottom-
up phase (3-SBEN,BU) as in Ororbia et al. (2015).
Both SBEN models contained 3 layers of latent
variables.

We compared against an array of baseline clas-
sifiers. We used our implementation of an incre-
mental version of Maximum Entropy, or MaxEnt-
ST (which, as explained in Sarikaya et al., 2014,
is equivalent to a softmax classifier). Further-
more, we used our implementation of the Pega-
sos algorithm (SVM-ST) (Shalev-Shwartz et al.,
2011) which was extended to follow a proper
multi-class scheme (Crammer and Singer, 2002).
This is the online formulation of the SVM, trained
via sub-gradient descent on the primal objective
followed by a projection step (for simplicity, we
opted to using a linear-kernel). Additionally, we
implemented a semi-supervised Bernoulli Naive
Bayes classifier (NB-EM) trained via Expectation-
Maximization as in (Nigam et al., 1999). We
also compared our model against the HRBM
(Larochelle and Bengio, 2008) (effectively a sin-
gle layer SBEN), which serves as a powerful, non-
linear shallow classifier in of itself, as well as a
3-layer sparse deep Rectifier Network (Glorot et
al., 2011a), or Rect, composed of leaky rectifier
units.

All shallow classifiers (except NB-EM and the
HRBM) were extended to the semi-supervised set-
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Figure 2: Mean CV generalization performance as
a function of labeled sample subset size (using 200
features).

ting by leveraging a simple self-training scheme in
order to learn from unlabeled data samples. The
self-training scheme entailed using a classifier’s
estimate of p(y|u) for an unlabeled sample and,
if max[p(y|u)] > p̄, we created a 1-hot proxy
encoding using the argmax of model’s predictor,
where p̄ is a threshold meta-parameter. Since we
found this simple pseudo-labeling approach, sim-
ilar in spirit to (Lee, 2013), to improve the results
for all classifiers, and thus we report all results uti-
lizing this scheme. 3 All classes of models (SBEN,
HRBM, Rect, SVM-ST, MaxEnt-ST, NB-ST) were
subject to the same model selection procedure de-
scribed in the next section.

4.2 Model Selection

Model selection was conducted using a paral-
lelized multi-setting scheme, where a configura-
tion file for each model was specified, describing
a set of hyper-parameter combinations to explore
(this is akin to a course-grained grid search, where
the points of model evaluation are set manually a
priori). For the SBEN’s, we varied the learning
rate ([0.01, 0.25]) and β coefficient ([0.1, 1.0]) and

3All model implementations were computationally veri-
fied for correctness when applicable. Since most discrim-
inative objectives followed a gradient descent optimization
scheme and could be realized in an automatic differentiation
framework, we checked gradient validity via finite difference
approximation.
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Table 1: WEBKB categorization results on 1% of the training data labeled (8 examples per class), rest
unlabeled (i.e., 5-fold means with standard error of the mean, 250 features).

Error Precision Recall F1-Score
NB-EM 0.369± 0.039 0.684± 0.022 0.680± 0.028 0.625± 0.043
MaxEnt-ST 0.402± 0.026 0.623± 0.025 0.593± 0.015 0.583± 0.020
SVM-ST 0.342± 0.020 0.663± 0.010 0.665± 0.014 0.644± 0.015
HRBM 0.252± 0.023 0.740± 0.019 0.765± 0.016 0.741± 0.021
3-Rect 0.328± 0.020 0.673± 0.017 0.680± 0.021 0.654± 0.023
3-SBEN,BU 0.239± 0.015 0.754± 0.014 0.780± 0.016 0.754± 0.015
3-SBEN,BUTD 0.210± 0.011 0.786± 0.009 0.784± 0.014 0.777± 0.012

Table 2: 20NewsGroup data-set categorization results on 1% of the training data labeled (8 examples per
class), rest unlabeled (i.e., 5-fold means with standard error of the mean).

Error Precision Recall F1-Score
NB-EM 0.275± 0.006 0.7176± 0.010 0.6685± 0.010 0.6697± 0.010
MaxEnt-ST 0.335± 0.005 0.643± 0.007 0.643± 0.007 0.639± 0.007
SVM-ST 0.346± 0.008 0.669± 0.016 0.644± 0.012 0.634± 0.011
HRBM 0.284± 0.006 0.706± 0.012 0.699± 0.009 0.696± 0.008
3-Rect 0.318± 0.009 0.661± 0.011 0.661± 0.012 0.657± 0.011
3-SBEN,BU 0.270± 0.006 0.715± 0.009 0.714± 0.009 0.710± 0.007
3-SBEN,BUTD 0.256± 0.007 0.732± 0.005 0.727± 0.006 0.725± 0.006

experimented with stochastic and mean-field ver-
sions of the models 4 (we found that mean-field did
slightly better for this experiment and thus report
the performance of this model in this paper). The
HRBM’s meta-parameters were tuned using a sim-
ilar set-up to (Larochelle et al., 2012) with learn-
ing rate varied in ([0.01, 0.25]), α in ([0.1, 0.5]),
and β in ({0.01, 0.1}). For the SVM-ST algo-
rithm, we tuned its slack variable λ, searching in
the interval [0.0001, 0.5], for MaxEnt-ST its learn-
ing rate in [0.0001, 0.1], and for p̄ of all models
(shallow and deep) that used pseudo-labeling we
searched the interval [0.1, 1.0]. All models of all
configurations were trained for a 10,000 iteration
sweep incrementally on the data and the model
state with lowest validation error for that partic-
ular run was used. The SBEN, HRBM, and Rect
models were also set to use a momentum term of
0.9 (linearly increased from 0.1 in the first 1000
training iterations) and the Rect model made use
of a small L1 regularization penalty to encourage
additional hidden sparsity. For a data-set like the
20NewsGroup, which contained a number of unla-
beled samples greater than training iterations, we
view our schema as simulating access to a data-

4Mean-field simply means no sampling steps were taken
after computing probability vectors, or “means” in any stage
of the computation.

stream, since all models had access to any given
unlabeled example only once during a training run.

4.3 Model Performance

We first conducted an experiment, using the We-
bKB data-set, exploring classification error as a
function of labeled data subset cardinality (Fig-
ure 2). In this setup, we repeated the strati-
fied cross-fold scheme for each possible labeled
data subset size, comparing the performance of
the SVM model against 3-SBEN,BU (blue dot-
ted curve) and 3-SBEN,BUTD (green dash-dotted
curve). We see that as the number of labeled ex-
amples increases (which entails greater human an-
notation effort) all models improve, nearly reach-
ing 90% accuracy. However, while the perfor-
mance difference between models becomes negli-
gible as the training set becomes more supervised,
as expected, it is in the less scarce regions of the
plot we are interested in. We see that for small
proportions, both variants of the SBEN outper-
form the SVM, and furthermore, the SBEN trained
via full BUTD can reach lower error, especially
for the most extreme scenario where only 8 la-
beled examples per class are available. We no-
tice a bump in the performance of BUTD as nearly
the whole training set becomes labeled and posit
that since the BUTD involves additional pseudo-
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Table 3: Top-most words that the SBEN (BUTD) model associates with the 4 NewsGroup meta-topics.
Meta-Topic Associated Terms
comp.* windows, graphics, card, driver, scsi, dos, files, display
rec.* players, hockey, season, nhl, team, league, baseball, games
sci.* orbit, shuttle, space, earth,mission, nasa,moon, doctor
talk.* jews, christian, religion, jesus, bible, war, israel, president

labeling steps (as in the top-down phase), there is
greater risk of reinforcing incorrect predictions in
the pseudo-joint 5 tuning of layerwise expert pa-
rameters. For text collections where most of the
data is labeled and unlabeled data is minimal, only
a simple bottom-up pass is needed to learn a good
hybrid model of the data.

The next set of experiments was conducted with
only 1% of the training sets labeled. We observe
(Tables 1 and 2) that our deep hybrid architec-
ture trained via BUTD outperforms all other mod-
els with respect to all performance metrics. While
the SBEN trained with simply an online bottom-up
performs significantly better than the SVM model,
we note a further reduction of error using our pro-
posed BUTD training procedure. The additional
top-down phase serves as a mechanism for uni-
fying the layer-wise experts, where error signals
for both labeled and pseudo-labeled examples in-
crease agreement among all model layer experts.

For the 20NewsGroup data-set, we conducted a
simple experiment to uncover some of the knowl-
edge acquired by our model with respect to the tar-
get categorization task. We applied the mechanism
from (Larochelle et al., 2012) to extract the vari-
ables that are most strongly associated with each
of the clamped target variables in the lowest layer
of a BUTD-trained SBEN. The top-scored terms
associated with each class variable are shown in
Table 3, using the 10 hidden nodes most highly
triggered by the clamped class node, in a model
trained on all of the 20NewsGroup data using a
model configuration determined from CV results
for the 20NewsGroup data-set reported in the pa-
per. Since the SBEN is a composition of layer-
wise experts each capable of classification, we
note that this procedure could be applied to each
level to uncover which unobserved variables are
most strongly associated with each class target.
We speculate that this could serve the basis for un-

5We use the phrase “pseudo-joint” to differentiate a model
that has all its parameters trained jointly from our own, where
only the top-down phase of BUTD introduces any form of
joint parameter modification.

covering the model’s underlying learnt hierarchy
of the data and be potentially used for knowledge
extraction, a subject for future work in analyzing
black box neural models such as our own.

5 Conclusions

We presented the Bottom-Up-Top-Down proce-
dure for training the Stacked Boltzmann Experts
Network, a hybrid architecture that balances both
discriminative and generative learning goals, in
the context of semi-supervised text categorization.
It combines a greedy, layer-wise bottom-up ap-
proach with a top-down fine-tuning method for
pseudo-joint modification of parameters.

Models were evaluated using two text corpora:
WebKB and 20NewsGroup. We compared re-
sults against several baseline models and found
that our hybrid architecture outperformed the oth-
ers in all settings investigated. We found that
the SBEN, especially when trained with the full
Bottom-Up-Top-Down learning procedure could
in some cases improve classification error by as
much 39% over the Pegasos SVM, and nearly 17%
over the HRBM, especially when data is in very
limited supply. While we were able to demon-
strate the viability of our hybrid model when using
only simple surface statistics of text, future work
shall include application of our models to more
semantic-oriented representations, such as those
leveraged in building log-linear language models
(Mikolov et al., 2013).
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Abstract
Sponsored search is at the center of a multibil-
lion dollar market established by search tech-
nology. Accurate ad click prediction is a key
component for this market to function since
the pricing mechanism heavily relies on the
estimation of click probabilities. Lexical fea-
tures derived from the text of both the query
and ads play a significant role, complementing
features based on historical click information.
The purpose of this paper is to explore the use
of word embedding techniques to generate ef-
fective text features that can capture not only
lexical similarity between query and ads but
also the latent user intents. We identify several
potential weaknesses of the plain application
of conventional word embedding methodolo-
gies for ad click prediction. These observa-
tions motivated us to propose a set of novel
joint word embedding methods by leveraging
implicit click feedback. We verify the effec-
tiveness of these new word embedding models
by adding features derived from the new mod-
els to the click prediction system of a com-
mercial search engine. Our evaluation results
clearly demonstrate the effectiveness of the
proposed methods. To the best of our knowl-
edge this work is the first successful applica-
tion of word embedding techniques for the task
of click prediction in sponsored search.

1 Introduction
Sponsored search is a multibillion dollar market
(Easley and Kleinberg, 2010) that makes most search
engine revenue and is one of the most successful ways
for advertisers to reach their intended audiences. When
search engines deliver results to a user, sponsored ad-
vertisement impressions (ads) are shown alongside the
organic search results (Figure 1). Typically the adver-
tiser pays the search engine based on the pay-per-click
model. In this model the advertiser pays only if the im-
pression that accompanies the search results is clicked.
The price is usually set by a generalized second-price
(GSP) auction (Edelman et al., 2005) that encourages
advertisers to bid truthfully. An advertiser wins if the
expected revenue for this advertiser, which is the bid

Figure 1: Sponsored ads when “pizza” was searched at
Yahoo! (www.yahoo.com).

price times the expected click probability (also know
as click through rate, or CTR), is ranked the highest.
The price the advertiser pays, known as cost-per-click
(CPC), is the bid price for the second ranked advertiser
times the ratio of the expected CTR between the sec-
ond and first ranked advertisers. From this discussion
it should be clear that CTR plays a key role in deciding
both the ranking and the pricing of the ads. Therefore
it is very important to predict CTR accurately.

The state of the art search engine typically uses a
machine learning model to predict CTR by exploiting
various features that have been found useful in prac-
tice. These include historical click performance fea-
tures such as historical click probability for the query,
the ad, the user, and a combination of these; contextual
features such as temporal and geographical informa-
tion; and text-based features such as query keywords or
ad title and description. Among these, historical click
performance features often have the most predictive
power for queries, ads and users that have registered
many impressions. For queries, ads and users that have
not registered many impressions, however, historical
CTR may have too high a variance to be useful. Hillard
et al. (2011) observed that the number of impressions
and clicks recorded on query-ad pairs have a very long
tail: only 61% of queries has greater than three clicks.
They also reported a drastic drop in the accuracy of the
click prediction model when fewer historical observa-
tions are available. Furthermore, fine-grained historical
CTR information takes a huge amount of space, which
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makes it costly to maintain. On the other hand, text
features are always readily available, and thus are par-
ticularly useful for those cases for which there is insuf-
ficient historical information.

Multiple researchers, for example (Richardson,
2007; Cheng and Cantú-Paz, 2010), reported the us-
age of text features including simple lexical similarity
scores between the query and ads, word or phrase over-
laps and the number of overlapping words and charac-
ters. Such features rely on the assumption that query-ad
overlap is correlated with perceived relevance. While
this is true to a certain extent, the use of simple lexical
similarity cannot capture semantic information such as
synonyms, entities of the same type and strong rela-
tionships between entities (e.g. CEO-company, brand-
model, part-of). Recently a host of studies on word
embedding have been conducted; all map words into
a vector space such that semantically relevant words
are placed near each other in the space (Mikolov et al.,
2013a; Pennington et al., 2014; Baroni et al., 2014).
The use of continuous word vectors has been shown
to be helpful for a wide range of NLP tasks by better
capturing both syntactic and semantic information than
simple lexical features (Socher et al., 2012a).

No previous research on sponsored search has suc-
cessfully used word embeddings to generate text fea-
tures. In this paper, we explore the use of word em-
beddings for click prediction. However, it is clear that
conventional word embeddings (which solely rely on
word co-occurrence in a context window) can only of-
fer limited discriminative power because queries and
ad text are typically very short. In addition, conven-
tional word embeddings cannot capture user intents,
preferences and desires. Wang et al. (2013) showed
that specific frequently occurring lexical patterns, e.g.,
x% off, guaranteed return in x days and official site, are
effective in triggering users desires, and thus lead to
significant differences in CTR. Conventional word em-
beddings cannot capture these phenomena since they
do not incorporate the implicit feedback users provide
through clicks and non-clicks. These observations nat-
urally lead us to leverage click feedback to infuse users’
intentions and desires into the vector space.

The simplest way to harness click feedback is to
train conventional word embedding models on a cor-
pus that only includes clicked impressions, where each
“sentence” is constructed by mixing the query and ad
text. Having trained a word embedding model, we sim-
ply take the average of word vectors of the query and
ads respectively to obtain sentence (or paragraph) vec-
tors, which in turn are used to compute the similarity
scores between the query and ads. Our experiments
show that this method does improve click prediction
performance. However, this method has several po-
tential weaknesses. First, the use of only clicked im-
pressions ignores the large amount of negative signals
contained in the non-clicked ad impressions. Second,
the use of indirect signals (word co-occurrences) can

be noisy or even harmful to our ultimate goal (accurate
click prediction) when it is combined with direct sig-
nals (impressions with click feedback). Third, without
explicit consideration about the averaging step in the
training process of word embedding models, a simple
averaging scheme across word vectors may be a subop-
timal. We therefore propose several joint word embed-
ding models; all of these aim to put query vectors close
to relevant ad vectors by explicitly utilizing both posi-
tive and negative click feedback. We evaluate all these
models against a large sponsored search data set from
a commercial search engine, and demonstrate that our
proposed models significantly improve click prediction
performance.

The rest of this paper is organized as follows. In Sec-
tion 2 we present a brief summary of related work. In
Section 3 we give some background information on ad
click prediction in sponsored search. In Section 4 we
describe our methods. In Section 5 we discuss our ex-
periments. We finish with some conclusions and future
directions in Section 6.

2 Related Work

Text features for predicting click probability There
have been many studies on the use of text features
for click prediction. For example, Dembczynski et
al. (2008) used a decision rule-based approach involv-
ing such lexical features as the number of words in
ad title and description, the number of segments and
length of the ad URL, and individual words and terms
in ad title and description. Cheng et al. (2010) used
a logistic regression model that used both historical
click performance features and simple lexical features
such as word or phrase overlap between query and ad
title and description. Trofimov et al. (2012) used a
variant of boosted decision trees with similar features.
Richardson et al. (2007) specifically considered new
ads (which lack historical click prediction data) and
proposed to use the CTR for ad terms, the frequency
of certain unigrams (e.g., dollar signs) and general En-
glish usage patterns, and simple lexical distance be-
tween the query and ads. In all this previous work,
text features consisted only of surface-level text fea-
tures. To the best of our knowledge, there is no previ-
ous work adopting semantic-level text features for the
purpose of click prediction, in particular word embed-
dings to measure query-ad relevance. In a similar vein
of research, Grbovic et al. (2015) adopted word embed-
dings to the task of query rewriting for a better match
between queries and keywords that advertisers entered
into an auction. Using the embeddings, semantically
similar queries are mapped into vectors close in the em-
bedding space, which allows expansion of a query via
K-nearest neighbor search.
Word embeddings for language processing Recently
many NLP systems have obtained improved perfor-
mance with less human engineering by adopting dis-
tributed word representations (Socher et al., 2012a).
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In particular, neural word embedding techniques are
now known to be effective in capturing syntactic and
semantic relationships, and more computationally ef-
ficient than many other competitors (Mikolov et al.,
2013a; Pennington et al., 2014; Baroni et al., 2014). On
top of word embeddings, a new stream of research on
sentence and paragraph embeddings has also emerged
to tackle higher level tasks such as sentiment analy-
sis, machine translation and semantic relatedness tasks.
Recursive Neural Networks (RNNs) have been used for
syntactic parsing (Socher et al., 2012b; Socher et al.,
2013; Socher et al., 2014; Irsoy and Cardie, 2014).
Long Short-Term Memory (LSTM) networks have been
applied to machine translation (Bahdanau et al., 2014;
Sutskever et al., 2014) and semantic processing (Tai
et al., 2015). Interestingly Convolutional Neural Net-
works (CNNs), widely used for image processing, have
recently emerged as a strong class of models for NLP
tasks (Kim, 2014; Blunsom et al., 2014). As apposed
to the models above, PhraseVector (Le and Mikolov,
2014) takes a less structured but unsupervised approach
by treating a piece of text as a token and performing
word embedding-like training with an unlimited con-
text window. None of this previous work exactly fits
the click prediction task. Since queries and ads are
much less structured than usual text, it is not attractive
to use models with complex structures, such as RNNs,
at the cost of speed and scalability. PhraseVector is less
structured but it does not support compositionality, suf-
fering from sparseness or requiring to train new vectors
for each unseen query and ad. Interestingly, as reported
in (Tai et al., 2015), a simple averaging scheme (mean
vector) was found to be very competitive to more com-
plex models for high level semantic tasks despite its
simplicity. These observations lead us to one of our
models that aims to improve the mean vector method
by directly optimizing mean vectors instead of word
vectors.
Joint embedding to bridge multiple views. Multi-
ple studies have explored the task of bringing multiple
views into the same vector space. For example, there
is now a large body of research on joint modeling of
text and image information (Frome et al., 2013; Karpa-
thy and Fei-Fei, 2014; Socher et al., 2014). The mul-
timodal embedding space helps find appropriate align-
ments between image regions and corresponding pieces
of text description. Joint embedding has also been ap-
plied to question answering (Wang et al., 2014) and se-
mantic understanding (Yang et al., 2014). In contrast
to the tasks above, there is no natural component-wise
correspondence between queries and ads; instead the
relationship is more implicit and pragmatic. Because of
this, our methods rely on global rather than component-
level signals for model training.

3 Baseline Click Prediction Model
We first present a high-level description of sponsored
search. The process consists of several stages. First,

given a user query, a list of candidate ads are retrieved,
either by exactly matching query terms to the bid terms
of the advertiser, or by first using query term expansion
to obtain a longer list of matched ads. Some candi-
date ads may be filtered out based on metrics such as
ad quality. Then, a click prediction model scores the
candidate ads to estimate how likely it is that each will
be clicked. This click probability serves a crucial role
both in the user experience and in the revenue for the
search engine. The ads with the highest click probabil-
ities are placed in the search results page. The price-
per-click for each ad shown is determined based on the
click probabilities and the GSP auction.

Our baseline click prediction model is formulated as
a supervised learning problem. Specifically we use Lo-
gistic Regression (LR) since LR is well suited for prob-
ability estimation. Given a variety of features, the prob-
ability of a click is expressed as:

p(c|q, a, u) =
1

1 + exp
{∑

i wifi(q, a, u)
} , (1)

where c ∈ {1, 0} is the label (1: click or 0: non-click),
fi(q, a, u) is the ith feature derived for query-ad-user
triple (q, a, u) and wi is the associated weight. The
model is trained using a stochastic gradient descent al-
gorithm on a per impression basis with l1 regularization
to avoid overfitting.

An accurate LR model relies greatly on the effective-
ness of its features. Our baseline model is furnished
with a rich set of features that are typically used in
commercial search engines. The first feature type is
based on the historical CTR of user, query, ad triples
(if there is enough historical information on this). We
use two groups of features of this type: COEC based
features and user factor features. The second feature
type is based on query and ad text.

Due to the significant decrease of CTR depending on
the ad position, it has become common practice to use
position-normalized CTR (a.k.a. Clicks Over Expected
Clicks):

COEC =

∑
p cp∑

p ip ∗ CTRp
, (2)

where the numerator is the total number of clicks re-
ceived by the configuration of interest; the denomi-
nator is the expected clicks (ECs) that an average ad
would receive after ip times impressions at position
p, and CTRp is the average CTR at position p, cal-
culated over all queries, ads and users. We use user-
independent features derived from COEC statistics for
specific query-ad pairs. However, many impressions
are needed for these statistics to be reliable and there-
fore data for specific query-ad pairs can be sparse and
noisy (only around 70% of queries and about 50% of
query-URL, query-bid term pairs have historical CTR).
To alleviate this problem, additional COEC statistics
over aggregations of queries or ads are also used. The
exact description of these aggregations is beyond the
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scope of this paper, but briefly we exploit the catego-
rization of the ads in ad groups, campaigns, and ac-
counts defined by advertisers.

Since it is well known that personalization features
are crucial to obtain accurate click prediction mod-
els (Cheng and Cantú-Paz, 2010), we also use features
that measure user factors relating to CTR. The user
click feedback features capture the inclination of indi-
vidual users to click on ads in general. The user-query
click feedback features indicate the propensity of users
to click for certain queries or groups of queries. Fi-
nally user-ad features dictate the user preferences on
certain ads or advertisers. However the data sparseness
problem becomes even more serious when it comes to
user-specific features (we use a threshold of 100 for
statistical confidence). For example, only about 5%
of user-URL pairs and 1% of user, query, URL triples
have historical CTR information. Therefore a set of
segment-level features can be extracted as back-off fea-
tures where users, queries and ads are clustered into
groups, and group level historical CTRs are collected.

Our second major feature type involves the lexical
similarity between query and ad text. These text fea-
tures assume that users are more likely to click on ads
that seem to be relevant to the query, and that per-
ceived relevance is correlated with the degree of query-
ad overlap. These features include the number of over-
lapping words and characters in query-ad URL, query-
ad title, and query-ad description, and the number of
words and characters in the query. The discrimination
power of simple lexical features is relatively limited be-
cause query and ad text are typically very short.

Finally, we use other contextual features that are
helpful in predicting the click probabilities.; for exam-
ple, time of day, day of week, and geographic infor-
mation. To model interactions among features, some
features are selected by domain knowledge to be con-
joined. All together, our baseline model utilize a com-
prehensive set of historical CTR, lexical, and contex-
tual features (over a hundred features in total). The fact
that this baseline model is highly optimized makes the
subsequent performance improvement from our pro-
posed algorithm meaningful. This baseline model is
used in production in part of a major search platform.

4 Joint Embedding for Click Prediction

We now describe several methods that jointly embed
words in both the query and the ads into the same vec-
tor space. In our experiments, we incorporate these
methods as features in our click prediction model. We
start by defining the notation used in this section. A
sponsored search dataset D is a set of tuples for each
ad impression (q, t, d, y) where q ≡ {qj} is a multi-
word query string, t ≡ {tk}, d ≡ {dl} are multiword
ad title and description strings, and y is a binary in-
dicator for whether the ad is clicked. We have two
choices in defining the vocabulary V from which words
are drawn: we can use a unified vocabulary for both

query and ads or define a separate vocabulary for each
– V ≡ Vq ⊕ Va. In our initial experiments the uni-
fied vocabulary constantly yielded better performances,
thus we always use the unified vocabulary here. We use
bold letters qj , tk,dl to denote the corresponding em-
bedding representations of {qj , tk, dl}. Finally we use
W to represent the vocabulary matrix; in W each col-
umn is a word vector.

4.1 Exploiting word2vec embedding
Typically word embeddings are learned from a given
text corpus through implicit supervision of predicting
the current word given a window of its surrounding text
or predicting each word in the window of the current
word. The former approach is known as continuous
bag-of-words (CBOW) and the latter Skip-gram. For
simplicity’s sake we use negative-sampling for training
word embedding models (Mikolov et al., 2013b). More
formally we define the binary conditional probability
for a pair of words (v, w): 1

p(v,w) =
1

1 + exp(−vT w)
, (3)

The CBOW algorithm learns word embeddings by
minimizing the following logloss of each impression i
with regard to W :

CBi(W ) =− log p(wi,µC)

−
∑

v∈N(wi)

log (1− p(v,µC)) , (4)

where the context C of a word wi comes from a win-
dow of size k around the word in a sentence of n words
w1,. . .,wn: C = wi−k,. . .,wi−1,wi+1,. . .,wi+k. µC is
the averaged context vector of wi; µC = 1

|C|
∑

v∈C v.
N(wi) is the set of negative examples which is drawn
according to the unigram distribution of the corpus
raised to the 3/4th power. Similarly to (Mikolov et al.,
2013b), we adopt a dynamic window size – for each
word the actual window size is sampled uniformly from
1, . . . , k.

Similarly the Skip-gram algorithm minimizes the
logloss of each impression i with regard to W :

SKi(W ) =−
∑
v∈C

log p(wi,v)

−
∑

v∈N(wi)

log (1− p(wi,v)) .
(5)

In our first word embedding model that incorporates
click feedback, we construct a corpus by taking only
clicked impressions from D and then mixing (q, t, d)
of each impression into a sentence. Then we simply
train CBOW and Skip-gram models on the corpus.

1We use only a single vector for a word unlike (Mikolov
et al., 2013b) where two vectors (“input” and “output”) for a
word are used. This halves the required space to store vectors
without performance loss.
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4.2 Joint word embedding using click feedback

Although the CBOW and Skip-gram models trained on
a specially constructed corpus can capture signals from
both click feedback and word co-occurrence, they have
a couple of drawbacks. First, by ingesting only clicked
impressions we “waste” the large amount of negative
signals contained in the non-clicked impressions. Sec-
ond, the incorporation of indirect signals such as word
co-occurrences can be rather harmful for achieving ac-
curate click prediction as these are very noisy com-
pared to direct signals such as click feedback.

For our second word embedding model that incorpo-
rates click feedback, we define a joint word embedding
model that minimizes the following weighted logloss:

JWi(W ) = η(yi)
{
l(yi, qi, ti) + l(yi, qi, di)

}
, (6)

where the component loss function l(·, ·, ·) is defined
as follows:

l(y, a, b) =
|a|∑
k

|b|∑
l

− y log p(ak,bl)

− (1− y) log (1− p(ak,bl)) .
(7)

Here η(yi) is a function that returns a small weight η
only to negative examples:

η(yi) =

{
η, if yi = 0,
1, otherwise.

(8)

The fact that the user did not click on an ad does
not necessarily mean that the ad is not what the user
wanted; it often means that the ad is just less favored
than the clicked ads (Rendle et al., 2009). Since the
scope of this work is restricted to estimating click prob-
ability on a per-impression basis, we adopt a weighting
scheme rather than optimizing rank-based loss over a
set of related impressions.

4.3 Joint mean vector optimization

The joint word embedding models defined in the pre-
vious sections do not define how to aggregate a vari-
able length sequence of word vectors into a sentence
(or paragraph) vector to facilitate the computation of
sentence-level similarity scores. One approach to this
aggregation task is mean vector: simply average the
word-level embeddings across the sentence or para-
graph. As noted by (Tai et al., 2015), this approach
is a strong competitor to more complex models such
as RNNs or LSTMs despite its simple composition
method. However, this method may generate subop-
timal sentence vectors. With weight logloss, we aim
to optimize sentence vectors instead of individual word
vectors:

JMi(W ) = η(yi)
{
l̄(yi, qi, ti) + l̄(yi, qi, di)

}
, (9)

where the component loss function l̄(·, ·, ·) is defined
as follows:

l̄(y, a, b) =− y log p(µa,µb)
− (1− y) log (1− p(µa,µb)) ,

(10)

where µs returns the average vector for the multiword
string s, i.e. µs = 1

|s|
∑|s|

k sk.

5 Experiments
Data The data used in our experiments were collected
from a random bucket of the Yahoo! sponsored search
traffic logs for a period of 4 weeks in October 2014.
In the data there are approximately 65 million unique
users, 150 million unique queries and 12 million unique
ads. There are approximately 985 million ad impres-
sion events in total. We split the data into 3 partitions
with respect to time: the first 14 days’ data are used
for training word embedding models, the next 7 days’
data for training click prediction models, and the last 7
days’ data for testing. Table 1 presents more detailed
statistics for the data.
Models We are interested in evaluating the usefulness
of different word embedding models as features for
click prediction, and already have a very good baseline
system for this task. Consequently, in all experiments
below, we used the same personalized historical CTRs,
contextual and lexical features as the baseline system
described in Section 3. We tested models with the fol-
lowing additional features derived from word embed-
dings:

1. cosine similarity between the mean vectors of the
query and ad title

2. cosine similarity between the mean vectors of the
query and ad description

3. sum of 1 and 2

4. sigmoid function value for the dot product of the
mean vectors of the query and ad title

5. sigmoid function value for the dot product of the
query and ad description

6. sum of 4 and 5

All these continuous features are quantized into 50
bins. We compared five different word embedding al-
gorithms:

1. Skip-gram trained on Wikipedia (SK-WIKI)

2. Skip-gram trained on clicked impressions (SK-
CI), see Section 4.1

3. CBOW trained on clicked impressions (CB-CI),
see Section 4.1

4. Joint individual word vector embedding (JIWV),
see Section 4.2
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Embedding Train Test Total
Number of impressions 489M 252M 244M 985M
Number of unique queries 82M 46M 45M 150M
Number of unique ads 8M 6M 6M 12M
Number of unique users 40M 25M 25M 65M
Number of unique words in query 6757K 6039K 5774K 16028K
Number of unique words in ad title 3371K 2586K 2557K 4598K
Number of unique words in ad description 1993K 1583K 1589K 2628K
Number of words in query 1600M 830M 800M 3230M
Number of words in ad title 3260M 1690M 1635M 6585M
Number of words in ad description 4311M 2206M 2131M 8650M
Average number of words in query per impression 3.275 3.284 3.289 3.281
Average number of words in ad title per impression 6.667 6.708 6.706 6.687
Average number of words in ad description per impression 8.818 8.759 8.741 8.784

Table 1: Data description

5. Joint mean vector embedding (JMV), see Sec-
tion 4.3

We used the skip-gram mode of word2vec 2 with a win-
dow size of 5 and negative sampling to train the SK-
WIKI model. For all other models we used in-house
implementation which employs AdagradRDA (Duchi
et al., 2011) to minimize the loss functions introduced
in Section 4. The dimension of a word vector is set
to 100 for all algorithms3. We removed a set of pre-
fixed stop-words and all words occurring fewer than
100 times; the resulting vocabulary comprised 126K
unique words. To process our web-scale data, we im-
plemented a multithread program where each thread
randomly traverses over a partition of the data D to
compute gradients and update the matrix W stored in a
shared memory. For computational efficiency, the hog-
wild lock-free approach (Recht et al., 2011) is used.
We set η in Eq. 8 and Eq. 9 to 0.2 through grid search
based on two-fold cross-validation. This small value
indeed verifies the idea of weak negative feedback for
unclicked impressions.

In order to circumvent the severe influence of ad po-
sition on the click prediction model, only the impres-
sions that are placed at the top position were used for
training the click prediction model. Note that CTR
at other positions can be derived from that of the ad
at the top position through scaling. Dembczynski et
al. (2008) showed that CTR can be decomposed as a
product of the probability of an ad getting clicked given
its being seen and the probability of an ad being seen at
a particular position.

Results We ordered query-ad pairs by the predicted
score to compute AucLoss (i.e. 1 - AUC where AUC
is the area under the Receiver Operating Characteris-
tic (ROC) curve). The ROC AUC is known to have a
correlation with the quality of ranking by the predicted
score (Fawcett, 2006); thus is one of the most important

2Available at https://code.google.com/p/word2vec/
3Higher vector dimensions such as 200 were also tried but

did not give a significant improvement.

metrics for click prediction (McMahan et al., 2013).

AucLoss Reduction (%)
Baseline + SK-WIKI 0.530
Baseline + SK-CI 0.595
Baseline + CB-CI 0.656
Baseline + JIWV 2.276
Baseline + JMV 4.114

Table 2: Comparative evaluation results in AucLoss re-
duction from the baseline system

Our experimental results (Table 2) show that the use
of features derived from our proposed word embed-
ding models significantly reduce AucLoss by up to
4.1%. For commercial search engines which have a
very strong baseline AucLoss, a reduction of 1% can be
considered large (McMahan et al., 2013). Moreover, as
expected, the more issues (as identified in Section 4) an
algorithm addresses, the better performance it achieves.
From the comparison between the SK-WIKI model and
the rest, we can recognize the importance of word em-
bedding models specialized to domain text and super-
vision signals. Also the difference between the CB-CI
(SK-CI) model and the JIWV model indicates the nois-
iness of indirect signals such as word co-occurrence
compared to direct signals like click feedback. Finally
the gap between the JIWV and JWV models highlights
the significance of considering compositionality in the
word embedding training process.

Eyeballing the most similar words to several queries
in the vector space is often helpful for getting some
sense about how different methods influence the result-
ing vector spaces. Table 3 lists the top 20 most similar
words to the query “metal watch.” The top words for
the SK-WIKI model are not semantically interesting in
terms of capturing the intent or desires. This clearly
shows the limitation of word embedding methods that
only rely on indirect signals (i.e. word co-occurrences)
from a generic text corpus (e.g. Wikipedia) for spon-
sored search click prediction. Noticeably the methods
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SK-WIKI CB-CI JIWV JMV
watch (0.733) metal (0.718) wwhl (0.711) tacticalwatch.com (0.701)
grind (0.687) previews (0.652) cbs (0.704) watchrepairsusa.com (0.695)
grease (0.682) yidio.com (0.648) station (0.668) omegas (0.689)
kites (0.676) episodes (0.633) putlocker.com (0.662) watchco.com (0.682)

hammer (0.675) steel (0.626) iwatch (0.659) wach (0.670)
spinning (0.672) whatch (0.615) kidizoom (0.658) station (0.656)
flashing (0.671) bobcometal.com (0.586) freesports360.com (0.658) shockwarehouse.com (0.628)

trash (0.670) ridiculousness (0.582) tedtalks (0.655) freesports360.com (0.618)
flame (0.669) www.abc.com (0.574) 11/10c (0.650) akribos (0.616)

flaming (0.665) a&e (0.573) movie2k (0.640) 18mm (0.616)
cigar (0.664) utube (0.570) nfl.com/now (0.637) narutoget.com (0.614)

home-made (0.663) instantly (0.565) criminalsgonewilddvd (0.631) watchstation.com (0.611)
glow (0.662) khoobsurat (0.562) espnnfllive.com (0.631) authenticwatches.com (0.610)

bouncing (0.662) outnumbered (0.561) foxsports1 (0.623) interrupted (0.603)
filler (0.662) itv (0.559) viooz (0.623) criminalsgonewilddvd (0.601)

smoke (0.660) premiere (0.556) bubble (0.623) whatch (0.600)
shoot (0.658) films (0.555) wewood (0.621) $109.99 (0.597)
scoop (0.653) stainless (0.554) westclox (0.617) tirebuyer.com (0.596)
noises (0.652) fabricators (0.550) potlocker (0.613) skagen.com (0.588)

rocking (0.651) fabrication (0.550) nickelodeon (0.613) wewood (0.584)

Table 3: Top 20 most similar words to “metal watch”

SK-WIKI CB-CI JIWV JMV
costumes (0.762) princess (0.833) costumes (0.831) new-costumes.com (0.815)

bride (0.723) costumed (0.814) wonder (0.784) coustume (0.808)
princesses (0.722) customes (0.808) sweetiegames.com (0.782) namefully.com (0.800)

serene (0.708) costume (0.806) cleopatra (0.753) $35.90 (0.789)
highness (0.676) costomes (0.806) new-costumes.com (0.752) 2-days (0.781)

bess (0.674) costimes (0.803) girls.simple (0.749) $36.90 (0.776)
princess]] (0.671) m.buycostumes.com (0.800) werewolf (0.749) costume (0.766)

attire (0.670) custumes (0.796) yoshi (0.747) $28.90 (0.764)
princess (0.662) officialprincesscostumes.com (0.792) leia (0.747) princess (0.758)
dresses (0.662) custume (0.789) merida (0.742) cistumes (0.756)

highness (0.658) coustome (0.789) $49.90 (0.735) spider-woman (0.756)
jewels (0.652) cosyumes (0.787) low-budget (0.727) the-wristband-factory.com (0.750)

wedding (0.651) coustume (0.786) babies (0.727) $17.90 (0.750)
robes (0.648) coustums (0.786) fembot (0.726) sugarsmascotcostumesċom (0.748)
prince (0.644) buycostumes.com (0.785) costums (0.722) cotumes (0.748)
clothes (0.644) codtume (0.784) $3.90 (0.721) coneheads (0.747)
dancing (0.644) leia (0.784) hermione (0.718) $23.90 (0.739)
sophie (0.640) coustumes (0.784) supergirl (0.715) $7.90 (0.739)

consorts (0.639) costums (0.783) toothless (0.713) costomes (0.738)
glamorous (0.639) coatumes (0.782) starlord (0.709) $19.90 (0.737)

Table 4: Top 20 most similar words to “princess costumes”

that incorporate click feedback find more words related
to products, services or websites instead of just con-
ceptuatlly related words. Given that real products or
services can be regarded as the best possible surrogates
to user intents and desires, this demonstrates the effec-
tiveness of our methods. This tendency gets stronger as
a method takes into account both positive and negative
click feedback.

Another very interesting observation comes from the
fact that none of the methods except JMV successfully
captures the composite meaning of “metal watch”; they
tend to either find related words separately for each
query word (e.g. “watch” is strongly associated to the
sense of watching something like movie or other types
of video) or find totally unrelated words (particularly
SK-WIKI). This demonstrates that it is crucial to ad-
dress compositionality in the very process of learning

word vectors.
Table 4 shows the top 20 most similar words to the

query “princess costumes.” In this example we can spot
another surprising result. The JMV model pushes a lot
of price related expressions to the top4. This may im-
ply that many parents search for lower cost costumes,
clearly showing a clear psychological desire in the fi-
nancial dimension. This observation confirms the find-
ings in (Wang et al., 2013) about the significant role of
certain ad expressions in triggering users’ psychologi-
cal desires. We also note that the CB-CI model returns
a lot of misspells for “costume(s)”, which would not
be possible with simple lexical features of the baseline
system. A close look at this example generally con-
firms the observations we made for the previous ex-

4We have not tried any normalization for numbers but it
might be worth doing given the important role they play.
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SK-WIKI CB-CI JIWV JMV
kids (0.724) game (0.629) kids (0.795) program (0.764)

pac-man (0.708) gams (0.615) kidsfootlocker.com (0.788) scorekeepers (0.757)
games (0.703) games (0.613) flight: (0.754) gamingchairs.hayneedle.com (0.754)
pinball (0.687) petrasplanet.com (0.601) edit: (0.744) teepees (0.752)

boy (0.680) for (0.590) raz (0.737) nn2 (0.750)
adventure (0.664) gamse (0.584) program (0.733) game (0.749)

roleplaying (0.664) ganes (0.574) abercrombiekids.com (0.729) girls (0.746)
quests (0.658) collectors (0.574) sumdog (0.721) cranium (0.746)
d&d (0.658) awsome (0.551) take20 (0.702) ggg (0.738)
genie (0.655) kid (0.550) freegamesdownload.com (0.699) pac-man (0.732)

solitaire (0.654) game.com (0.537) program; (0.695) kidsfootlocker.com (0.730)
gamers (0.653) g2u.com (0.536) gromsocial.com (0.694) equestriagirls.hasbro.com (0.721)

games=== (0.651) bouncing (0.533) softschools (0.693) kids (0.718)
game; (0.649) for.kids (0.532) gapkids (0.691) mahjong (0.718)

consoles]] (0.645) catching (0.528) downnload (0.682) tvo (0.717)
in-game (0.645) gamesfreak (0.519) edheads (0.681) sumdog (0.701)

rpg (0.644) minecraft (0.516) ruum.com (0.674) cpm.wargaming.net (0.699)
wargames (0.644) firetruck (0.514) gamestop (0.672) osgood-schlatter (0.698)

game]] (0.643) games: (0.513) a&f (0.668) gamestop (0.697)
fast-paced (0.641) todlers (0.512) pac-man (0.663) $4.01 (0.695)

Table 5: Top 20 most similar words to “game for kids”

ample. Finally Table 5 shows top the 20 most similar
words for the query “game for kids.” Once again we
found the same analysis holds for this case.

6 Conclusions

In this paper we explored the use of word embedding
techniques to overcome the shortcomings of traditional
lexical features for ad click prediction in sponsored
search. We identified several potential weaknesses of
the plain application of conventional word embedding
methodologies: the lack of the right machinery to har-
ness both positive and negative click feedback, the lim-
ited utility of pure word co-occurrence signals, and no
consideration of vector composition in the word em-
bedding training process. We proposed a set of new
implicit feedback-based joint word embedding meth-
ods to address those issues. We evaluated the new word
embedding methods in the context of a very good base-
line click prediction system, on a large scale data set
collected from Yahoo! search engine logs. Our exper-
imental results clearly demonstrate the effectiveness of
the proposed methods. We also presented several ex-
amples for qualitative analysis to advance our under-
standing on how each algorithm really contributes to
the improved performance. To the best of our knowl-
edge this work is the first successful application of
word embedding techniques for the sponsored search
task.

There are multiple interesting research directions for
future work. One of these directions is to extend the
vocabulary by identifying significant phrases (as well
as words) before training word vectors. Hillard et
al. (2011) employed Conditional Random Fields to di-
vide queries with multiple words into segments and
collected historical CTR on the segment level. We also
like to investigate more structured embedding methods
such as RNNs (probably for ad descriptions). In case

the computational cost of such methods are too high to
be practical for sponsored search, we can employ them
only for a small fraction of ads filtered by faster meth-
ods.

It may be possible to deal with the implicit nega-
tive feedback of unclicked ad impressions in a more
principled way by adopting ranking-based loss func-
tions. However, this is only possible with the extra cost
of identifying and aggregating related ads into a single
transaction.

Though not directly related to NLP, yet another
promising direction is to jointly embed not only text
data but also a variety of user activities (e.g., organic
search results, mobile app usages, other daily activities)
all together in the same vector space. Since many of the
different sources contain their own unique information,
we might be able to obtain a much better understand-
ing about the user state and intent through this rich joint
embedding space. Joint embedding with rich informa-
tion can also help us to perform automatic clustering of
users, eventually leading to powerful smoothing meth-
ods for personalized historical CTR statistics.
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Abstract

The prevalence of temporal references
across all types of natural language utter-
ances makes temporal analysis a key is-
sue in Natural Language Processing. This
work adresses three research questions:
1/is temporal expression recognition spe-
cific to a particular domain? 2/if so, can
we characterize domain specificity? and
3/how can subdomain specificity be inte-
grated in a single tool for unified temporal
expression extraction? Herein, we assess
temporal expression recognition from doc-
uments written in French covering three
domains. We present a new corpus of clin-
ical narratives annotated for temporal ex-
pressions, and also use existing corpora in
the newswire and historical domains. We
show that temporal expressions can be ex-
tracted with high performance across do-
mains (best F-measure 0.96 obtained with
a CRF model on clinical narratives). We
argue that domain adaptation for the ex-
traction of temporal expressions can be
done with limited efforts and should cover
pre-processing as well as temporal specific
tasks.

1 Introduction

References to phenomena occurring in the world
and their temporal characterization can be found
in natural language utterances across domains,
genres and languages. Temporal analysis is a
key issue in natural language processing that has
been receiving increasing attention in recent years.
Many efforts in this direction focused on newswire
text in English. The focus on this language and

domain was in part guided by the availability of
the TimeBank corpus (Pustejovsky et al., 2003)
used in evaluation campaigns such as TempE-
val (Verhagen et al., 2007). More recent efforts
have extended the initial work on English and ad-
dressed other languages such as Chinese (Li et al.,
2014), French (Moriceau and Tannier, 2014), Ara-
bic, Italian, Spanish, and Vietnamese (Strötgen et
al., 2014a). A study of three domain corpora in
English in addition to the newswire domain (SMS,
historical narratives and clinical trial abstracts)
yielded interesting insight to extend the normal-
ized representation of temporal expressions (Ströt-
gen and Gertz, 2012). This work was then ap-
plied to cover historical narratives in an additional
seven languages. One key finding was that domain
specificity could differ between languages (Ströt-
gen et al., 2014b). This prompts the need to study
temporal analysis across domains in a variety of
languages in order to adequately characterize each
domain and language pairs.

The clinical domain has been addressed dur-
ing the 2012 i2b2 challenge (Sun et al., 2013b),
with a task on temporal relation extraction from
clinical narratives. This task used a corpus of
clinical notes in English annotated with tempo-
ral information (Sun et al., 2013a) based on ISO-
TimeML (Pustejovsky et al., 2010). It prompted
further work in this domain in English (Jindal and
Roth, 2013) and Swedish (Velupillai, 2014), in-
cluding the release of detailed guidelines for creat-
ing temporal annotations of clinical text and a dis-
cussion of the clinical domain specificity related
to temporal aspects (Styler IV et al., 2014). Fi-
nally, clinical TempEval 2015 brought the tempo-
ral information extraction tasks of past TempEval
campaigns to the clinical domain (Bethard et al.,
2015).
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In this paper, we continue to explore temporal
expression identification across domains, with a
focus on French narratives. We introduce a new
corpus of French clinical narratives annotated with
normalized time expressions. We characterize
temporal expression recognition in three domains
and discuss how the development of an automated
temporal expression identification tool may be im-
pacted.

2 Temporal Expression Extraction and
Normalization

Rule-based methods were shown to be very ef-
ficient for the extraction and normalization of
time expressions from news narratives in sev-
eral languages1. In the latest SemEval cam-
paign (UzZaman et al., 2013), the rule-based Hei-
delTime (Strötgen and Gertz, 2010) out performed
machine-learning and hybrid counterparts by a
large margin. However, statistical systems ob-
tained promising results with respect to temporal
entity extraction.

Based on these results, we chose to use the
state-of-the-art rule-based system HeidelTime as
well as an in-house statistical tool relying on the
Wapiti (Lavergne et al., 2010) implementation of
Conditional Random Fields (CRFs) (Lafferty et
al., 2001).

Existing HeidelTime settings were used to cus-
tomize it for the analysis of news and historical
narratives in French. In addition, we developed a
set of 14 rules to provide additional customization
for the analysis of clinical narratives in French.

The CRF model was developed using part of the
clinical corpus as a training set, with domain in-
dependant surface and lexical features for the text
tokens:

• The original token from the text (word form);

• Surface features: capitalization of the to-
ken (all in upper/lower case, combination
of both), presence of digit (YES, NO) and
punctuation mark in the token (PUNCT,
NO_PUNCT), temporal type of token ac-
cording to HeidelTime;

• Lexical features: n-grams , number of words,
number of digits, number of consecutive re-
peats. Token frequency was computed based
on the entire training corpus.

1Normalization is the process of turning any reference to
a date into an absolute, formated date.

For clinical text analysis, we experimented
with standard tokenization (provided by TreeTag-
ger (Schmid, 1994)) and a custom tokenization
where punctuation marks are always considered
as token separators, even in dates such as “10-02-
2010” or “10.04.10”.2

3 French Corpora with Temporal
Annotations

For this study, we used two available French cor-
pora with TIMEX3 annotations: the French Time-
Bank corpus (FTB called news in this paper) (Bit-
tar et al., 2011) which covers the news domain and
the AncientTimes corpus (ATC, called historical
in this paper) (Strötgen et al., 2014b) which cov-
ers the historical domain.

To cover a third domain, we developed a corpus
using a set of clinical notes where personal iden-
tifying information (PII) had been marked and re-
placed by surrogates (Grouin and Névéol, 2014).
This included marking some temporal expressions
such as dates, which were replaced by surrogate
dates obtained by substracting a fixed number of
days to the original dates. Manual review ensured
that there were no format or other errors in the re-
introduced surrogate dates. For compatibility with
the sources that were already available, including
our study corpora and HeidelTime, we chose the
TIMEX3 standard for creating temporal annota-
tions.

Three annotators (the authors of this paper) con-
tributed towards the creation of gold-standard an-
notations for time expressions in the corpus. The
annotation of time expressions was carried out in
two phases: first, the time expressions and their
values were annotated, and second the time ex-
pressions were normalized. At the beginning of
the first phase, two initial samples of twenty doc-
uments were selected for all three annotators to
work on. These documents were pre-annotated us-
ing the French version of HeidelTime and dates
marked as PII. The annotators’ task was then to
revise the pre-annotations independently. This
phase of the annotation process contributed to
refining annotation guidelines and creating addi-
tional rules to improve on the pre-annotation. Sub-
sequently, the rest of the corpus was divided be-
tween annotators, so that each document was an-
notated independently by two annotators. Final

2This tokenization script, adapted from TreeTagger, is
available upon request.
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gold standard annotations were created by adju-
dicating any disagreements during meetings be-
tween the pair of contributing annotators. Two an-
notators contributed to the second phase of annota-
tions (normalization). A small sample of 20 docu-
ments was annotated independently by the two an-
notators. Inter-annotator agreement was then com-
puted and found to be sufficiently high to allow for
the rest of the corpus to be distributed between an-
notators.

The phasing of annotations allowed having all
corpus documents reviewed several times, so that
time expressions that might have been missed dur-
ing the first phase could be identified and added to
the gold standard in the second phase.

To visualize and create annotations, we used the
BRAT Rapid Annotation Tool (Stenetorp et al.,
2012). Inter-annotator agreement was computed
in terms of F-measure, using the companion brate-
val tool (Verspoor et al., 2013), which we extended
to compute inter-annotator agreement on normal-
ized entities.

Table 1 shows the distribution of time expres-
sions according to types in the three corpora used
in our study. It suggests that domain specificity
is reflected by the types of temporal expressions
found in each of the corpora. While Dates are
prevalent across domains, the news corpus stands
out with a high proportion of Times, the clinical
corpus with a high proportion of Set and the histor-
ical corpus with almost none of either type. Addi-
tional statistics on the clinical corpus are provided
in section 4.

FTB (news) ATC (hist.) Clinical
# % # % # %

Date 227 53.41 124 81.05 2594 65.14
Dur. 52 12.24 25 16.34 343 8.61
Set 16 3.76 3 0.02 994 24.96
Time 130 30.59 1 0.01 51 1.28

Table 1: Distribution of Time Expressions in three
French corpora

4 Results

4.1 French Clinical Corpus with Temporal
Annotations

Figure 1 shows an excerpt of the training corpus
annotated with temporal expressions. The blue
boxes show the normalized value associated with
each temporal expression. Due to the confidential

nature of the corpus, we are currenlty not able to
release it.

Table 2 presents detailed statistics on the clini-
cal corpus. Inter-annotator agreement was .91 F-
measure for temporal entity annotation (averaged
over the three annotator pairs on the training cor-
pus) and .99 F-measure for temporal normaliza-
tion (computed on a sample of 20 documents from
the training corpus).

Training Test All
Documents 246 115 361
Tokens 97,008 44,803 141,811
DATE 1,659 935 2,594
DURATION 255 88 343
TEMPORAL 605 389 994
SET (Frequency)
TIME 19 32 51

Table 2: Description of the gold standard clinical
corpus

4.2 Extraction of Temporal Expressions
across Domains

Table 3 presents the results of temporal expression
extraction in French narratives across the three
domains in our study. The model configurations
used are either HeidelTime (H) or statistical (S),
adapted to one of the three domains. For Heidel-
Time models, the adaptation consisted in selecting
a domain specific set of rules. We also report re-
sults by Strötgen et al. (2014b) showing the dif-
ference between HeidelTime 1.5 and the improve-
ments obtained by their new rules for historical
French texts. For statistical models, the adaptation
consisted in training the model on a corpus of the
relevant domain. We studied the effect of corpus
size by training a model using a portion of the clin-
ical training data equivalent in size to that of FTB
(marked clin- in Table 3). However, the ATC cor-
pus was too small to train any usable models (re-
sults not shown). Experiments with our adapted,
in-house tokenization tool are marked with a + in
the models.

The results of the evaluation are reported in
terms of precision, recall and F1-measure. We
evaluate the extraction of temporal expressions
associated to the correct TIMEX3 attribute type
(DATE, DURATION, TIME, SET), with the ‘strict’
measure (only exact match is correct) and the ‘re-
laxed’ measures (overlaps are allowed).
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Figure 1: Excerpt from a sample document annotated with temporal expressions; dates and personal
health information were replaced by plausible surrogates.

5 Discussion

Overall, our results show that while good perfor-
mance can be achieved for the extraction of tem-
poral expression on many specific domains, the
task of automatically extracting temporal expres-
sions is not solved across the board. Methods that
are successfully developed for one specific domain
do not carry very well over to other domains with-
out any adaptation work. In our experiments, rule-
based methods seem to fare somewhat better in
terms of generalizability, but statistical methods
can be better optimized for a particular domain,
given enough training data. Similar insight re-
sulted from a recent study of negation detection
in the clinical domain (Wu et al., 2014). One addi-
tional issue highlighted in the negation study was
that the definition of the entities that could fall un-
der the scope of negation varied from domain to
domain in the available negation corpora. This
pitfall is avoided with the temporal task thanks
to the use of the TimeML standard. The chal-
lenges of extracting temporal expressions across
domains that we identified in this study on French
correlate well with those described by (Strötgen
and Gertz, 2012) on English. The performance of
statistical models trained on in-domain data was
significantly higher compared to out-domain data:
S-news+ yielded the highest performance on the
News corpus (strict F-measure 0.74), and S-clin+
yielded the highest performance on the Clinical
corpus (strict F-measure 0.94).

Adaptation burden. The amount of effort
to adapt to new domains was overall limited for
the rule-based system: only a few rules needed
to be added to the news-oriented HeidelTime (2
for historical, 14 for clinical) to reach compara-

ble performance on other domains. The adapta-
tion effort for the statistical model relies mostly
on the availability of annotated corpora in the
relevant domains. A competitive CRF model
can be trained without using domain specific fea-
tures. However, we find that adaptation effort
can cover pre-processing: for clinical documents,
using domain-specific tokenization yielded im-
proved temporal expression extraction for both
rule-based and statistical systems. This is in line
with previous findings that pre-processing is es-
sential for making experiments reproducible, and
variations in pre-processing methods can result in
significant difference in performance for different
NLP tasks (Fokkens et al., 2013).

Finally, we can note that the difference between
HeidelTime and CRFs is much bigger on the strict
measure than on the relaxed measure, which may
suggest that small variations could be better han-
dled with more covering rules.

Impact of pre-processing, training corpus
type and size. Tokenization had a real impact
on the performance of statistical models. Using a
baseline tokenization method can reduce the per-
formance by several points in F-measure (strict
F-measure of 0.68 for S-news vs. 0.74 for S-
news+ on the News corpus, strict F-measure of
0.88 for S-clin vs. 0.94 for S-clin+ on the Clin-
ical corpus – see Table 3). Corpus size had a
comparably smaller impact. The training dataset
used for S-clin is 10 times larger than that used
for S-clin-, and yet it provides an improvement of
about 4 points in F-measure for in-domain appli-
cation. Conversely, for out-domain application,
using the larger model is detrimental. Using in-
domain training data (or more generally, training
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Test Model
relaxed strict

P R F P R F
C

lin
ic

al

H-news 0.83 0.69 0.75 0.63 0.53 0.57
H-clin 0.92 0.89 0.90 0.81 0.78 0.79
S-news 0.86 0.72 0.79 0.60 0.49 0.54
S-news+ 0.86 0.70 0.77 0.64 0.51 0.57
S-clin- 0.98 0.86 0.92 0.89 0.78 0.83
S-clin-+ 0.98 0.87 0.92 0.95 0.84 0.89
S-clin 0.98 0.93 0.96 0.91 0.85 0.88
S-clin+ 0.99 0.94 0.96 0.97 0.91 0.94

H
is

to
ri

ca
l

H-news1.5* 0.97 0.43 0.59 0.71 0.31 0.43
H-news* 0.98 0.84 0.91 0.89 0.76 0.82
H-clin 0.93 0.44 0.59 0.61 0.40 0.40
S-news 0.87 0.29 0.44 0.62 0.21 0.31
S-news+ 0.87 0.30 0.45 0.67 0.24 0.35
S-clin- 0.94 0.28 0.43 0.56 0.17 0.26
S-clin-+ 0.94 0.25 0.40 0.56 0.15 0.24
S-clin 0.96 0.30 0.46 0.61 0.19 0.29
S-clin+ 0.99 0.28 0.43 0.67 0.19 0.29

N
ew

s

H-news 0.85 0.79 0.82 0.83 0.78 0.81
H-clin 0.85 0.79 0.82 0,75 0.70 0.72
S-news 0.83 0.66 0.68 0.77 0.61 0.68
S-news+ 0.86 0.69 0.77 0.83 0.68 0.74
S-clin- 0.84 0.41 0.55 0.61 0.31 0.41
S-clin-+ 0.76 0.33 0.45 0.55 0.24 0.33
S-clin 0.76 0.41 0.53 0.62 0.34 0.44
S-clin+ 0.77 0.38 0.51 0.65 0.33 0.43

Table 3: Evaluation of temporal expression ex-
traction in French narratives across three domains.
Values from models with a ‘*’ come from Ströt-
gen et al. (2014b). Models with a ‘+’ used custom
tokenization. Models with a ‘-’ used the reduced
training set.

data that is as close as possible to in-domain, such
as News vs. Clinical for Historical) of any rea-
sonable size yields better performance, even if still
under the rule-based approach.

Limitations of this study. Size imbalance in
the corpora used in our study was a limitation; the
clinical corpus is much larger than the other two
and the Historical corpus is really small, which
limits the applicabiblity of statistical methods. In
our work with the clinical corpus, more time was
spent on annotating data and implementing sta-
tistical models vs. developping rules. Arguably,
devoting additional efforts to rule development
might improve the rule-based performance.

6 Conclusion and Future Work

This study contributes to a better understanding of
temporal expression recognition accross domains.
We found that an important part of domain speci-
ficity lies in the distribution of the types of tempo-
ral expressions accross domains. We also noticed
that specific mentions of temporal expressions can
be categorized as different types from one domain
to another (e.g. le soir was generally considered a
set in our clinical corpus – as in every night – and a
time in the news corpus – as in in the evening). The
results of our domain adaptation experiments sug-
gest that the performance of temporal expression
recognition is improved when domain specificity
is taken into account by using in-domain training
data or domain-specific rules.

In terms of adaptation strategy, our experiments
show that the addition of a limited number of rules
to the default (news-oriented) HeidelTime leads
to matching the expected performance of Heidel-
Time on a new domain corpus. Furthermore, we
show that more substantial efforts spent on an-
notating data can result in training data that will
support a statistical model that outperforms simple
rule adaptation. We can hypothesize that devoting
equivalent efforts towards rule development may
also result in increased performance. We believe
that some amount of corpus annotation is neces-
sary to gain adequate corpus knowledge to craft
such rules.

Overall, we show that domain adaptation for
the extraction of temporal expressions can be done
with limited efforts, provided that an adequate cor-
pus is available. We found that the tokenization
method used in pre-processing was instrumen-
tal for improving statistical model performance
across domains.

In future work, we will address the task of tem-
poral expression normalization.

Acknowledgments

This work was supported by the French National
Agency for Research under grant CABeRneT3

ANR-13-JS02-0009-01
The authors thank the Biomedical Informatics

Department at the Rouen University Hospital for
providing access to the LERUDI corpus for this
work.

3CABeRneT: Compréhension Automatique de Textes
Biomédicaux pour la Recherche Translationnelle

496



References
Steven Bethard, Leon Derczynski, Guergana Savova,

James Pustejovsky, and Marc Verhagen. 2015.
SemEval-2015 Task 6: Clinical TempEval. In Pro-
ceedings of the 9th International Workshop on Se-
mantic Evaluation (SemEval 2015), pages 806–814,
Denver, USA, jun. Association for Computational
Linguistics.

André Bittar, Pascal Amsili, Pascal Denis, and Lau-
rence Danlos. 2011. French TimeBank: An ISO-
TimeML Annotated Reference Corpus. In Proceed-
ings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language
Technologies: Short Papers - Volume 2, HLT ’11,
pages 130–134, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Antske Fokkens, Marieke van Erp, Marten Postma, Ted
Pedersen, Piek Vossen, and Nuno Freire. 2013. Off-
spring from Reproduction Problems: What Replica-
tion Failure Teaches Us. In ACL (1), pages 1691–
1701, Sofia, Bulgaria. The Association for Com-
puter Linguistics.

Cyril Grouin and Aurélie Névéol. 2014. De-
Identification of Clinical Notes in French: towards
a Protocol for Reference Corpus Developpement. In
J Biomed Inform, Aug.

P. Jindal and D. Roth. 2013. Extraction of Events
and Temporal Expressions from Clinical Narratives.
Journal of Biomedical Informatics (JBI), 10.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional Random Fields:
Probabilistic Models for Segmenting and Label-
ing Sequence Data. In Proceedings of the Eigh-
teenth International Conference on Machine Learn-
ing, ICML ’01, pages 282–289, San Francisco, CA,
USA. Morgan Kaufmann Publishers Inc.

Thomas Lavergne, Olivier Cappé, and Fran¸cois Yvon.
2010. Practical Very Large Scale CRFs. In Proceed-
ings of the 48th Annual Meeting of the Association
for Computational Linguistics, pages 504–513, Up-
psala, Sweden.

Hui Li, Jannik Strötgen, Julian Zell, and Michael Gertz.
2014. Chinese Temporal Tagging with HeidelTime.
In Proceedings of the 14th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, volume 2: Short Papers, pages 133–137.
Association for Computational Linguistics, April.

Véronique Moriceau and Xavier Tannier. 2014.
French Resources for Extraction and Normaliza-
tion of Temporal Expressions with HeidelTime. In
Proceedings of the 9th International Conference on
Language Resources and Evaluation (LREC 2014),
Reykjavík, Iceland, may.

J Pustejovsky, P Hanks, R Saur, A See, R Gaizauskas,
A Setzer, D Radev, B Sundheim, D Day, L Ferro,
and M Lazo. 2003. The TimeBank corpus. Corpus
Linguistics, page 647–656.

James Pustejovsky, Kiyong Lee, Harry Bunt, and Lau-
rent Romary. 2010. ISO-TimeML: An International
Standard for Semantic Annotation. In Proceedings
of the Seventh International Conference on Lan-
guage Resources and Evaluation, (LREC’10), pages
394–7, La Valette, Malta, May.

Helmut Schmid. 1994. Probabilistic Part-of-Speech
Tagging Using Decision Trees. In International
Conference on New Methods in Language Process-
ing, September.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
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Abstract

Semi-supervised bootstrapping techniques
for relationship extraction from text iter-
atively expand a set of initial seed rela-
tionships while limiting the semantic drift.
We research bootstrapping for relationship
extraction using word embeddings to find
similar relationships. Experimental results
show that relying on word embeddings
achieves a better performance on the task
of extracting four types of relationships
from a collection of newswire documents
when compared with a baseline using TF-
IDF to find similar relationships.

1 Introduction

Relationship Extraction (RE) transforms unstruc-
tured text into relational triples, each represent-
ing a relationship between two named-entities. A
bootstrapping system for RE starts with a collec-
tion of documents and a few seed instances. The
system scans the document collection, collecting
occurrence contexts for the seed instances. Then,
based on these contexts, the system generates ex-
traction patterns. The documents are scanned
again using the patterns to match new relation-
ship instances. These newly extracted instances
are then added to the seed set, and the process is
repeated until a certain stop criteria is met.

The objective of bootstrapping is thus to expand
the seed set with new relationship instances, while
limiting the semantic drift, i.e. the progressive de-
viation of the semantics for the extracted relation-
ships from the semantics of the seed relationships.

State-of-the-art approaches rely on word vec-
tor representations with TF-IDF weights (Salton
and Buckley, 1988). However expanding the seed
set by relying on TF-IDF representations to find
similar instances has limitations, since the similar-
ity between any two relationship instance vectors

of TF-IDF weights is only positive when the in-
stances share at least one term. For instance, the
phrases was founded by and is the co-founder of
do not have any common words, but they have the
same semantics. Stemming techniques can aid in
these cases, but only for variations of the same root
word (Porter, 1980).

We propose to address this challenge with an
approach based on word embeddings (Mikolov et
al., 2013a). By relying on word embeddings, the
similarity of two phrases can be captured even
if no common words exist. The word embed-
dings for co-founder and founded should be sim-
ilar, since these words tend to occur in the same
contexts. Word embeddings can nonetheless also
introduce semantic drift. When using word em-
beddings, phrases like studied history at can, for
instance, have a high similarity with phrases like
history professor at. In our approach, we control
the semantic drift by ranking the extracted rela-
tionship instances, and by scoring the generated
extraction patterns.

We implemented these ideas in BREDS, a boot-
strapping system for RE based on word embed-
dings. BREDS was evaluated with a collection of
1.2 million sentences from news articles. The ex-
perimental results show that our method outper-
forms a baseline bootstrapping system based on
the ideas of Agichtein and Gravano (2000) which
relies on TF-IDF representations.

2 Bootstrapping Relationship Extractors

Brin (1999) developed DIPRE, the first system to
apply bootstrapping for RE, which represents the
occurrences of seeds as three contexts of strings:
words before the first entity (BEF), words between
the two entities (BET), and words after the second
entity (AFT). DIPRE generates extraction patterns
by grouping contexts based on string matching,
and controls semantic drift by limiting the number
of instances a pattern can extract.
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Agichtein and Gravano (2000) developed
Snowball, which is inspired on DIPRE’s method
of collecting three contexts for each occurrence,
but computing a TF-IDF representation for each
context. The seed contexts are clustered with a
single-pass algorithm based on the cosine similar-
ity between contexts using the three vector repre-
sentations:

(1)
Sim(Sn, Sj) = α · cos(BEFi, BEFj)

+ β · cos(BETi, BETj)
+ γ · cos(AFTi, AFTj)

In the formula, the parameters α, β and γ weight
each vector. An extraction pattern is represented
by the centroid of the vectors that form a cluster.
The patterns are used to scan the text again, and
for each segment of text where any pair of enti-
ties with the same semantic types as the seeds co-
occur, three vectors are generated. If the similarity
from the context vectors towards an extraction pat-
tern is greater than a threshold τsim, the instance
is extracted.

Snowball scores the patterns and ranks the ex-
tracted instances to control the semantic drift. A
pattern is scored based on the instances that it ex-
tracted, which can be included in three sets: P ,
N , and U . If an extracted instance contains an
entity e1, which is part of a seed, and if the asso-
ciated entity e2 in the instance is the same as in
in the seed, then the extraction is considered pos-
itive (included in set P ). If the relationship con-
tradicts a relationship in the seed set (i.e., e2 does
not match), then the extraction is considered neg-
ative (included in a set N ). If the relationship is
not part of the seed set, the extraction is consid-
ered unknown (included in a set U ). A score is
assigned to each pattern p according to:

(2)Confρ(p) =
|P |

|P |+Wngt · |N |+Wunk · |U |

Wngt and Wunk are weights associated to the neg-
ative and unknown extractions, respectively. The
confidence of an instance is calculated based on
the similarity scores towards the patterns that ex-
tracted it, weighted by the pattern’s confidence:

Confι(i) = 1−
|ξ|∏
j=0

(1−Confρ(ξj)× Sim(Ci, ξj))

(3)

where, ξ is the set of patterns that extracted i, and
Ci is the textual context where i occurred. In-
stances with a confidence above a threshold τt are
used as seeds in the next iteration.

3 Bootstrapping Relationship Extractors
with Word Embeddings

BREDS follows the architecture of Snowball,
having the same processing phases: find seed
matches, generating extraction patterns, finding
relationship instances, and detecting semantic
drift. It differs, however, in that it attempts to find
similar relationships using word embeddings, in-
stead of relying on TF-IDF representations.

3.1 Find Seed Matches
BREDS scans the document collection and, if both
entities of a seed instance co-occur in a text seg-
ment within a sentence, then that segment is con-
sidered and BREDS extracts the three textual con-
texts as in Snowball: BEF, BET, and AFT.

In the BET context, BREDS tries to identify
a relational pattern based on a shallow heuristic
originally proposed in ReVerb (Fader et al., 2011).
The pattern limits a relation context to a verb (e.g.,
invented), a verb followed by a preposition (e.g.,
located in), or a verb followed by nouns, adjec-
tives, or adverbs ending in a preposition (e.g., has
atomic weight of). These patterns will nonetheless
only consider verb mediated relationships. If no
verbs exist between two entities, BREDS extracts
all the words between the two entities, to build the
representations for the BET context.

Each context is transformed into a single vec-
tor by a simple compositional function that starts
by removing stop-words and adjectives and then
sums the word embedding vectors of each indi-
vidual word. Representing small phrases by sum-
ming each individual word’s embedding results in
good representations for the semantics in small
phrases (Mikolov et al., 2013b).

A relationship instance i is represented by three
embedding vectors: VBEF , VBET , and VAFT .
Considering the sentence:

The tech company Soundcloud is based in Berlin,
capital of Germany.

BREDS generates the relationship instance with:

VBEF = E(“tech”) + E(“company”)

VBET = E(“is”) + E(“based”)

VAFT = E(“capital”)
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where, E(x) is the word embedding for word x.
BREDS also tries to identify the passive voice

using part-of-speech (PoS) tags, which can help
to detect the correct order of the entities in a rela-
tional triple. BREDS identifies the presence of the
passive voice by considering any form of the verb
to be, followed by a verb in the past tense or the
past participle, and ending in the word by.

For instance, the seed <Google, owns,
DoubleClick> states that the organisation
Google owns the organisation DoubleClick.
Using this seed, if BREDS detects a pattern like
agreed to be acquired by it will swap the order of
the entities when producing a relational triple, out-
putting the triple <ORG2, owns, ORG1>, instead
of the triple <ORG1, owns, ORG2>.

3.2 Extraction Patterns Generation
As Snowball, BREDS generates extraction pat-
terns by applying a single-pass clustering algo-
rithm to the relationship instances gathered in the
previous step. Each resulting cluster contains a
set of relationship instances, represented by their
three context vectors.

Algorithm 1 describes the clustering approach
taken by BREDS, which takes as input a list of
relationship instances and assigns the first instance
to a new empty cluster. Next, it iterates through the
list of instances, computing the similarity between
an instance in and every cluster Clj . The instance
in is assigned to the first cluster whose similarity
is higher or equal to a threshold τsim. If all the
clusters have a similarity lower than a threshold
τsim, a new cluster Cm is created, containing the
instance in.

The similarity function Sim(in, Clj), between
an instance in and a cluster Clj , returns the max-
imum of the similarities between an instance in
and any of the instances in a cluster Clj , if the
majority of the similarity scores is higher than a
threshold τsim. A value of zero is returned oth-
erwise. The similarity between two instances is
computed according to Formula (1). As a result,
clustering in Algorithm 1 differs from the original
Snowball method, which instead computes simi-
larities towards cluster centroids.

3.3 Find Relationship Instances
After the generation of extraction patterns,
BREDS finds relationship instances with Algo-
rithm 2. It scans the documents once again, col-
lecting all segments of text containing entity pairs

Algorithm 1: Single-Pass Clustering.
Input: Instances = {i1, i2, i3, ..., in }
Output: Patterns = {}
Cl1 = {i1}
Patterns = {Cl1}
for in ∈ Instances do

for Clj ∈ Patterns do
if Sim(in, Clj) >= τsim then

Clj = Clj ∪ {in}
else

Clm = {in}
Patterns = Patterns ∪ {Clm}

whose semantic types are the same as those in the
seed instances. For each segment, an instance i
is generated as described in Section 3.1, and the
similarity towards all previously generated extrac-
tion patterns (i.e., clusters) is computed. If the
similarity between i and a pattern Clj is equal
or above τsim, then i is considered a candidate
instance, and the confidence score of the pattern
is updated, according to Formula (2). The pat-
tern which has the highest similarity (patternbest)
is associated with i, along with the correspond-
ing similarity score (simbest). This information
is kept in a history of Candidates. Note that the
histories of Candidates and Patterns are kept
through all the bootstrap iterations, and new pat-
terns or instances can be added, or the scores of
existing patterns or instances can change.

Algorithm 2: Find Relationship Instances.
Input: Sentences = {s1, s2, s3, ..., sn }
Input: Patterns = {Cl1, Cl2, ..., Cln }
Output: Candidates
for si ∈ Sentences do

i = create instance(si)
simbest = 0
pbest = None
for Cli ∈ Patterns do

sim = Sim(i, Cli)
if sim >= τsim then

Confρ(Ci)
if sim >= simbest then

simbest = sim
Pbest = Cli

Candidates[i].patterns[pbest] = simbest
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3.4 Semantic Drift Detection

As Snowball, BREDS ranks the candidate in-
stances at the end of each iteration, based on the
scores computed with Formula (3). Instances with
a score equal or above the threshold τt are added
to the seed set, for use in the next iteration of the
bootstrapping algorithm.

4 Evaluation

In our evaluation we used a set of 5.5 million news
articles from AFP and APW (Parker et al., 2011).

Our pre-processing pipeline is based on the
models provided by the NLTK toolkit (Bird et
al., 2009): sentence segmentation1, tokenisa-
tion2, PoS-tagging3 and named-entity recognition
(NER). The NER module in NLTK is a wrapper
over the Stanford NER toolkit (Finkel et al., 2005).

We performed weak entity-linking by matching
entity names in sentences with FreebaseEasy (Bast
et al., 2014). FreebaseEasy is a processed version
of Freebase (Bollacker et al., 2008), which con-
tains a unique meaningful name for every entity,
together with canonical binary relations. For our
experiments, we selected only the sentences con-
taining at least two entities linked to FreebaseEasy,
which corresponded to 1.2 million sentences.

With the full articles set, we computed word
embeddings with the skip-gram model4 using
the word2vec5 implementation from Mikolov et.
al. (2013a). The TF-IDF representations used by
Snowball were calculated over the same articles
set. We adopted a previously proposed framework
for the evaluation of large-scale RE systems by
Bronzi et al. (2012), to estimate precision and re-
call, using FreebaseEasy as the knowledge base.

We considered entity pairs no further away than
6 tokens, and a window of 2 tokens for the BEF
and AFT contexts, ignoring the remaining of the
sentence. We discarded the clusters with only one
relationship instances, and ran a maximum of 4
bootstrapping iterations. The Wunk and Wngt pa-
rameters were set to 0.1 and 2, respectively, based
on the results reported by Yu et al. (2003).

We compared BREDS against Snowball in four
relationship types, shown in Table 1. For each re-
lationship type we considered several bootstrap-

1nltk.tokenize.punkt.PunktSentenceTokenizer
2nltk.tokenize.treebank.TreebankWordTokenizer
3taggers/maxent treebank pos tagger/english.pickle
4skip length of 5 tokens and vectors of 200 dimensions
5https://code.google.com/p/word2vec/

Relationship Seeds

acquired
{Adidas, Reebok}

{Google, DoubleClick}
founder-of

{CNN, Ted Turner}
{Amazon, Jeff Bezos}

headquartered
{Nokia, Espoo}
{Pfizer, New York}

affiliation
{Google, Marissa Mayer}
{Xerox, Ursula Burns}

Table 1: Relationship types and used seeds.

ping configurations by combining different values
for the τsim and τt thresholds, all within the inter-
val [0.5,1.0].

We bootstrapped each relationship with two
context weighting configurations in Formula (1):

• Conf1: α = 0.0, β = 1.0, γ = 0.0

• Conf2: α = 0.2, β = 0.6, γ = 0.2

where Conf1 only considers the BET context and
Conf2 uses the three contexts, while giving more
importance to the BET context.

Table 2 shows, for each relationship type, the
best F1 score and the corresponding precision and
recall, for all combinations of τsim and τt val-
ues, and considering only extracted relationship
instances with confidence scores equal or above
0.5. Table 2a shows the results for the BREDS sys-
tem, while Table 2b shows the results for Snow-
ball (ReVerb), a modified Snowball in which a re-
lational pattern based on ReVerb is used to select
the words for the BET context. Finally, Table 2c
shows the results for Snowball, implemented as
described in the original paper.

Overall, BREDS achieves better F1 scores than
both versions of Snowball. The F1 score of
BREDS is higher, mainly as a consequence of
much higher recall scores, which we believe to be
due to the relaxed semantic matching caused by
using the word embeddings. For some relation-
ship types, the recall more than doubles when us-
ing word embeddings instead of TF-IDF. For the
acquired relationship, when considering Conf1,
the precision of BREDS drops compared with the
other versions of Snowball, but without affecting
the F1 score, since the higher recall compensates
for the small loss in precision.

Regarding the context weighting configura-
tions, Conf2 produces a lower recall when com-
pared to Conf1. This might be caused by the
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sparsity of both BEF and AFT, which contain
many different words that do not contribute to
capture the relationship between the two enti-
ties. Although, sometimes, the phrase or word
that indicates a relationship occurs on the BEF or
AFT contexts, it is more often the case that these
phrases or words occur in the BET context.

The performance results of Snowball (Clas-
sic) and Snowball (ReVerb) suggest that selecting
words based on a relational pattern to represent the
BET context, instead of using all the words, works
better for TF-IDF representations.

The results also show that word embeddings
can generate more extraction patterns. For in-
stance, for the founder-of relationship, BREDS
learns patterns based on words such as founder, co-
founder, co-founders or founded, while Snowball
only learns patterns that have the word founder,
like CEO and founder or founder and chairman.

The implementations of BREDS and Snowball,
as described in this paper, are available on-line6.

5 Conclusions and Future Work

This paper reports on a novel bootstrapping sys-
tem for relation extraction based on word em-
beddings. In our experiments, bootstrapped RE
achieved better results when using word embed-
dings to find similar relationships than with simi-
larities between TF-IDF weighted vectors.

We have identified two main sources of errors:
NER problems and incorrect relational patterns
extraction due to the use of a shallow heuristic that
only captures local relationships.

In future work, more robust entity-linking ap-
proaches, as proposed by Hoffart et al. (2011),
could be included in our pre-processing pipeline.
This could alleviate NER errors and enable exper-
imentation with other relationship types.

Gabbard et al. (2011) have shown that co-
reference resolution can increase bootstrapping
RE performance, and the method of Durrett and
Klein (2014) could also be included in our pre-
processing pipeline.

Finally, we could explore richer compositional
functions, combining word embeddings with syn-
tactic dependencies (SD) (Yu et al., 2014). The
shortest path between two entities in an SD tree
supports the extraction of local and long-distance
relationships (Bunescu and Mooney, 2005).

6https://github.com/davidsbatista/
BREDS

BREDS
Relationship Precision Recall F1

Conf1
acquired 0.73 0.77 0.75
founder-of 0.98 0.86 0.91
headquartered 0.63 0.69 0.66
affiliation 0.85 0.91 0.88

Conf2
acquired 1.00 0.15 0.26
founder-of 0.97 0.79 0.87
headquartered 0.64 0.61 0.62
affiliation 0.84 0.60 0.70

(a) Precision, Recall and F1 results obtained with different
configurations of BREDS.

Snowball (ReVerb)
Relationship Precision Recall F1

Conf1
acquired 0.83 0.61 0.70
founder-of 0.96 0.77 0.86
headquartered 0.48 0.63 0.55
affiliation 0.52 0.29 0.37

Conf2
acquired 0.73 0.22 0.34
founder-of 0.97 0.75 0.85
headquartered 0.55 0.42 0.47
affiliation 0.36 0.05 0.08

(b) Precision, Recall and F1 results obtained with different
configurations of Snowball (ReVerb).

Snowball (Classic)
Relationship Precision Recall F1

Conf1
acquired 0.87 0.54 0.67
founder-of 0.97 0.76 0.85
headquartered 0.52 0.61 0.57
affiliation 0.49 0.29 0.36

Conf2
acquired 0.77 0.54 0.63
founder-of 0.98 0.73 0.84
headquartered 0.53 0.54 0.54
affiliation 0.42 0.08 0.13

(c) Precision, Recall and F1 results obtained with different
configurations of Snowball (Classic).

Table 2: Precision, Recall and F1 scores over the
four relationships for the three different systems.
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Abstract

Scientific theories and models in Earth sci-
ence typically involve changing variables
and their complex interactions, including
correlations, causal relations and chains
of positive/negative feedback loops. Vari-
ables tend to be complex rather than
atomic entities and expressed as noun
phrases containing multiple modifiers, e.g.
oxygen depletion in the upper 500 m of
the ocean or timing and magnitude of sur-
face temperature evolution in the Southern
Hemisphere in deglacial proxy records.
Text mining from Earth science literature
is therefore significantly different from
biomedical text mining and requires dif-
ferent approaches and methods. Our ap-
proach aims at automatically locating and
extracting variables and their direction of
variation: increasing, decreasing or just
changing. Variables are initially extracted
by matching tree patterns onto the syntax
trees of the source texts. Next, variables
are generalised in order to enhance their
similarity, facilitating hierarchical search
and inference. This generalisation is ac-
complished by progressive pruning of syn-
tax trees using a set of tree transformation
operations. Text mining results are pre-
sented as a browsable variable hierarchy
which allows users to inspect all mentions
of a particular variable type in the text as
well as any generalisations or specialisa-
tions. The approach is demonstrated on a
corpus of 10k abstracts of Nature publica-
tions in the field of Marine science. We
discuss experiences with this early proto-
type and outline a number of possible im-
provements and directions for future re-
search.

1 Introduction

Text mining of scientific literature originates from
efforts to cope with the ever growing flood of pub-
lications in biomedicine (Swanson, 1986; Swan-
son, 1988; Swanson and Smalheiser, 1997; Hearst,
1999; Ananiadou et al., 2006; Zweigenbaum et
al., 2007; Cohen and Hersh, 2005; Krallinger
et al., 2008; Rodriguez-Esteban, 2009; Zweigen-
baum and Demner-Fushman, 2009; Ananiadou et
al., 2010; Simpson and Demner-Fushman, 2012;
Ananiadou et al., 2014). Consequently the re-
sulting approaches, methods, tools and applica-
tions – as well as data, corpora and evaluation
tasks – are rooted in the paradigm of biomedi-
cal research and its conceptual framework. Typ-
ical source text consists of abstracts from PubMed
or full-text articles from PubMed Central. Stan-
dard tasks include recognition, normalisation and
mapping of biological entities (e.g., genes, pro-
teins, drugs, symptoms and diseases), extraction
of biological relations (e.g., protein-protein inter-
action, disease-gene associations or drug-drug in-
teraction) or bio-event extraction (e.g., regulation
or inhibition events and their participants). There
are extensive ontologies like the Gene Ontology
(Consortium, 2001), annotated corpora like the
GENIA (Kim et al., 2003) and BioInfer (Pyysalo
et al., 2007) corpora and dedicated shared tasks in-
cluding BioCreative (Hirschman et al., 2005) and
BioNLP (Pyysalo et al., 2012). In short, there is
a whole infrastructure supporting biomedical text
mining (Cohen and Hunter, 2008).

Text mining is now spreading out to other scien-
tific disciplines, notably in the humanities and so-
cial sciences (O’Connor et al., 2011), holding the
promise for knowledge discovery from large text
collections. Our own research targets text min-
ing in the field of Earth science, more specifically
in Oceanography or Marine science, with a focus
on climate change. As text mining efforts in this
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area are extremely rare (Ekstrom and Lau, 2008;
Vossen et al., 2010; Zhang et al., 2013; Marsi et
al., 2014; Aamot, 2014), it is not surprising that a
corresponding infrastructure is mostly lacking. In
addition, however, we found that due to significant
differences between the conceptual frameworks of
biomedicine and marine science, simply “porting”
the biomedical text mining infrastructure to an-
other domain will not suffice.

One major difference is that the biomedical en-
tities of interest are relatively well defined – genes,
proteins, organisms, species, drugs, diseases, etc.
– and typically expressed as proper nouns. In con-
trast, defining the entities of interest in marine sci-
ence turns out to be much harder. Not only does it
seem to be more open-ended in nature, the entities
themselves tend to be complex and expressed as
noun phrases containing multiple modifiers, giv-
ing rise to examples like oxygen depletion in the
upper 500 m of the ocean or timing and magnitude
of surface temperature evolution in the Southern
Hemisphere in deglacial proxy records.

Given the difficulties with entities, we pro-
pose to concentrate first on text mining of events,
leaving entities underspecified for the time being.
Theories and models in marine science are char-
acterised by changing variables and their com-
plex interactions, including correlations, causal re-
lations and chains of positive/negative feedback
loops. Many marine scientists are interested in
finding evidence – or counter-evidence – in the lit-
erature for events of change and their relations.
Here we present ongoing work to automatically
locate and extract variables and their direction of
variation: increasing, decreasing or just changing.
Examples are given in Table 1.

Since many of these changing variables are long
and complex expressions, their frequency of oc-
currence tends to be low, making the discovery of
relations among different variables harder. As a
partial solution to this problem, we propose pro-
gressive pruning of syntax trees using a set of tree
transformation operations. For example, general-
ising oxygen depletion in the upper 500 m of the
ocean to oxygen depletion in the ocean and sub-
sequently to the much more frequent oxygen de-
pletion. Text mining results are then presented as
a browsable variable hierarchy which allows users
to inspect all mentions of a particular variable type
in the text as well as any generalisations or special-
isations.

2 Variable extraction

Our text material consists of 10k abstracts from
journals published by Nature Publishing Group.
Search terms obtained from domain experts were
used to query Nature’s OpenSearch API1 for pub-
lications in a limited range of relevant journals,
after 1997, retrieving records including title and
abstract. The top-10k abstracts matching most
search terms were selected for further processing
with CoreNLP (Manning et al., 2014), including
tokenisation, sentence splitting, POS tagging, lem-
matisation and parsing. Lemmatised parse trees
were obtained by substituting terminals with their
lemmas. The resulting new corpus contains 9,586
article abstracts, 59,787 sentences and approxi-
mately 4M tokens.

Methods for information extraction broadly rely
on either knowledge-based pattern matching or su-
pervised machine learning (Sarawagi, 2008). Al-
though ML approaches are currently dominant in
IE research, rule-based systems have several ad-
vantages, including: (a) the rules are interpretable
and thus suitable for rapid development and do-
main transfer; and (b) humans and machines
can contribute to the same model (Valenzuela-
Escárcega et al., 2015). In our case, patterns of-
fered more flexibility in exploring the domain,
whereas the manual annotation required for ML
demands more commitment to a precise definition
of entities, relations and events, which we found
hard to achieve at this stage. Tree pattern match-
ing is applied to lemmatised syntax trees using the
Tregex engine (Levy and Andrew, 2006), which
supports a compact language for writing regular
expressions over trees; see Table 1 for examples
of patterns and matching phrases. For instance,
the pattern for a decreasing variable is defined as
a noun phrase (NP) that is immediately dominated
(>) by a verb phrase (VP), which in turn is headed
by (<<#) the lemma reduce. Similarly, the pat-
tern for increase describes an NP dominated by
a prepositional phrase (PP) that is headed by the
preposition in or of ; in addition, this PP must be
preceded by an NP sister node ($,) headed by the
lemma increase.

Patterns were generated by instantiating a small
set of hand-written pattern templates, drawing
from manually created lists of verbs and nouns ex-

1http://www.nature.com/developers/
documentation/api-references/
opensearch-api
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Table 1: Examples of tree patterns and matching variables

Direction: Tree pattern: Matched variable in sentence:

Change NP <- (/NN/=d1 < variability
$ /NN/) !$. PP

Thus the annual, Milankovitch and continuum temperature
variability together represent the response to deterministic inso-
lation forcing.

Increase NP > (PP <<# (in|of) $,
(NP <<# increase))

The record reveals a linear increase in annual temperature be-
tween 1958 and 2010 by 2.4 +/-1.2 degreesC . . .

Decrease NP > (VP <<# reduce ) Some researchers have observed that abundant natural gas substi-
tuting for coal could reduce carbon dioxide (CO2) emissions.

pressing change, increase or decrease. The pat-
terns cover expression as a main verb (X increases,
something increases X), attributive use of verbs
(increasing temperature, temperature is increas-
ing), head of NP (a temperature increase) or NP
with PP modifier (increase in temperature). The
total number of patterns is 320: 90 for change, 122
for increase, 108 for decrease (see supplements for
a full list). The total number of matched variables
in the corpus is 21,817: 9,352 for change, 7,400
for increase and 5,065 for decrease.

Some variables do not exactly correspond to a
node, i.e., not every variable is a valid syntac-
tic phrase. For instance, the pattern for Change
in Table 1 matches the NP the annual, Mi-
lankovitch and continuum temperature variabil-
ity, whereas the actual variable is the annual, Mi-
lankovitch and continuum temperature. This is
corrected in a post-processing step that deletes
the variability node from the extracted subtree
and substring. For this purpose, the pattern
contains an assignment of the name d1 to the
node directly dominating the lemma variability
(/NN/=d1 < variability)), allowing a cor-
responding tree operation to delete this node,
which is implemented using the Tsurgeon coun-
terpart of Tregex.

3 Variable generalisation

Since many of the extracted variables are long and
complex expressions, their frequency is low. The
most frequent variables are generic terms (climate
1207, temperature 156, global climate 73), but
over 66% is unique. This evidently impedes the
discovery of relations among variables. As a par-
tial solution to this problem, variables are gener-
alised by progressive pruning of syntax trees using
a set of tree transformation operations.

Figure 1 shows an example of generalisation
by iterative tree pruning. The first transformation
STRIP INIT DT strips the initial determiner from

the NP. Next, COORD 3.1 deletes everything but
the first conjunct from a coordinated structure of
three NPs, resulting in annual temperature , which
is finally reduced to just temperature by stripping
the premodifier (STRIP PREMOD 1 ). An anal-
ogous procedure is applied to the other two con-
juncts of the coordinated structure.

Tree transformations are implemented using
Tsurgeon (Levy and Andrew, 2006): Tregex pat-
terns match the syntactic structures of interest,
whereas an associated Tsurgeon operation deletes
selected nodes (see supplements for details). The
transformations are ordered in four groups. The
first group handles coordination of two to four
conjuncts (cf. Figure 1) – at the phrase level or the
lexical level – as well as cases of ellipsis (e.g. hail-
storm frequency and intensity into hailstorm fre-
quency and hailstorm intensity). The second group
strips bracketed material in parenthetical and list
structures. The third group deletes non-restrictive
relative clauses and other non-restrictive modi-
fiers preceded by a comma. The final group pro-
gressively strips premodifiers (mainly adjectives)
from left to right and postmodifiers (PPs, relative
clauses) from right to left . Since different trans-
formation may arrive at the same generalisation
(e.g. temperature in Figure 1), duplicates are fil-
tered out. After filtering, 150,716 variables re-
mained, which is 4.86 times the number of orig-
inally extracted variables.

As mentioned, the point of generalisation is to
find relations among variables. In Table 1, for ex-
ample, both the annual, Milankovitch and contin-
uum temperature variability and annual temper-
ature between 1958 and 2010 are generalised to
annual temperature. However, many generalised
variables are unique and thus serve no purpose in
relating variables. Retaining only original vari-
ables and generalised variables with at least two
mentions yields a total of 17,613 variable types.
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Figure 2: Partial screenshot of user interface showing variable type hierarchy (left) and linked variable
mentions in text (right) where colour encodes change (green), increase (red) or decrease (blue)

the annual , Milankovitch and continuum temperature
STRIP INIT DT→ annual , Milankovitch and
continuum temperature

COORD 3.1→ annual temperature
STRIP PREMOD 1→ temperature

COORDI 3.2→Milankovitch temperature
STRIP PREMOD 1→ temperature

COORD 3.3→ continuum temperature
STRIP PREMOD 1→ temperature

Figure 1: Example of generalisation by iterative
tree pruning

4 User interface

The output of the text mining step can be regarded
as a directed graph where the nodes are variable
types and the edges point from a more specific
variable to a more general variable (as a result of
a particular tree transformation). Each variable
type is also linked to a set of tokens, i.e. variable
mentions in the text which are either changing, in-
creasing or decreasing. Figure 2 shows how this
information is presented to the user in a browser
(see supplements for full version). The left panel
lists the variable types, ordered from most gen-
eral to most specific and, secondary, on decreas-
ing token frequency. Links point to more spe-
cific/general variables types, as well as to chang-
ing/increasing/decreasing variable mentions in the
text. The right panel shows the source text, where
colour encodes changing (green), increasing (red)
or decreasing (blue) variable mentions, which are
linked to their most specific variable type. This
setup allows users to quickly explore variables, for
example, finding abstracts containing a variable of
interest and from there to related variables.

5 Discussion

We have argued that the paradigm established in
biomedical text mining does not transfer directly
to other scientific domains like Earth science. A
new approach was proposed for extracting vari-
ables and their direction of variation (increasing,
decreasing or just changing), focusing on events
rather than entities. A generic system based on
syntactic pattern matching and tree transforma-
tions was described for extraction and subsequent
generalisation of variable events. Text mining
results are presented in an innovative way as a
browsable hierarchy ranging from most general
to most specific variables, with links to their tex-
tual instances. In addition, a first text corpus in
marine science was produced, including automati-
cally annotated change events. Our corpus as well
as the extracted variables are publicly available2.
We think our approach to extraction is generalis-
able to other domains where the entities of inter-
est are common nouns or complex noun phrases
rather the proper nouns, e.g. in nanotechnology &
nanoscience (Kostoff et al., 2007).

To the best of our knowledge, there are currently
no other systems for text mining in Earth science
which we can compare our results with, nor are
there any benchmark data sets for our task. Most
related is (Marsi et al., 2014), but their definition
of variables is more restricted and their pilot cor-
pus is too small for evaluation purposes. Report-
ing on our ongoing work now, future work will
include an evaluation by asking domain exports to
judge the correctness of extracted variables as well

2https://dl.dropboxusercontent.com/u/
2370516/emnlp15_corpus.zip

508



as their generalisations in the given context.

Preliminary observations indicate that most
problems originate from syntactic parsing errors,
in particular well-known ambiguities in coordi-
nation and PP-attachment. As a result, patterns
may either fail to match or match unintentionally,
yielding incomplete or incoherent variables. Since
many sentences are long, complex and domain-
specific, it comes as no surprise that the parser of-
ten fails to correctly resolve well-known ambigui-
ties in coordination and PP-attachment. However,
with pattern matching on strings and/or POS tags
instead of syntax trees, determining boundaries of
variables would be problematic. False positives
also occur because of different semantics of the
same pattern, e.g. change in western Europe is
unlikely to mean literally that the European con-
tinent is changing, neither does changes in less
than a few thousand years imply that past years
are changing.

At the same time, certain false negatives are
beyond the power of pattern matching. For in-
stance, variation may be entailed rather than ex-
plicitly stated: ocean acidification entails increas-
ing acidity of ocean water and Arctic warming en-
tails increasing temperature in the Arctic region.
This is closely related to textual entailment (An-
droutsopoulos and Malakasiotis, 2010; Dagan et
al., 2006), requiring inference in combination with
domain knowledge. A related matter is nega-
tion (no increase in global temperature), which
can even be expressed in non-trivial ways (tem-
perature remained constant) (Morante and Daele-
mans, 2009). Variables were also found to be re-
cursive or embedded, expressing “a change of a
change”. For example, reduce subseasonal tem-
perature variance implies both a change in tem-
perature as well as a decrease of this temperature
change. The current visualisation falls short in
these cases, as HTML browsers cannot render a
link in a link.

Generalisation by tree pruning appears to work
quite well as long as the parse is correct. How-
ever, pruning by itself is insufficient and should
be supplemented with other methods. For in-
stance, linking named entities like species, chemi-
cals or locations to unique concepts in appropriate
ontologies/taxonomies would support generalisa-
tions such as iron is a metal or a diatom is a plank-
ton. Generalisation also bears a strong resem-
blance to other text-to-text generation tasks such

as paraphrasing (Androutsopoulos and Malakasio-
tis, 2010), sentence compression (Jing, 2000) and
sentence simplification (Shardlow, 2014). Given
suitable training data, ML approaches may there-
fore be applied, e.g. (Knight and Marcu, 2002;
Cohn and Lapata, 2009).

The most general variables are probably too
generic to be of much help to a user, e.g. con-
centration, rate, level, etc. Likewise, climate is by
far the most frequent changing variable due to the
frequently occurring collocation climate change.
In addition, variables often contain references to
previously mentioned entities – anaphoric it being
the ultimate example of this – suggesting a need
for co-reference resolution (Miwa et al., 2012).

Yet another future direction is to structurally
model variables as opposed to a possibly over-
simplified generalisation. Similar to nominal SRL,
one can define relevant arguments including fre-
quency (e.g. annual), temporal scope (between
1958 and 2010), location, etc. The most generic
variables mentioned earlier in fact provide a good
basis for such modelling.

Extraction and generalisation of variables pro-
vides a basis for building systems supporting
knowledge discovery. One approach is min-
ing associations between variables frequently co-
occurring in the same sentence or abstract (Jenssen
et al., 2001; Hashimoto et al., 2012)) More precise
results can be expected by extracting causal re-
lations between change events (Chang and Choi,
2005; Blanco et al., 2008; Raja et al., 2013).
Pairs of change events – causally or otherwise
associated – obtained from different publications
can be chained together, possibly in combina-
tion with domain knowledge, in order to gener-
ate new hypotheses, as pioneered in the work on
literature-based knowledge discovery (Swanson,
1986; Swanson, 1988; Swanson and Smalheiser,
1997). Automatic extraction and generalisation of
variables from scientific publications thus paves
the way for future research on text mining in Earth
science.
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Abstract

We consider a novel setting for Named En-
tity Recognition (NER) where we have ac-
cess to document-specific knowledge base
tags. These tags consist of a canonical
name from a knowledge base (KB) and en-
tity type, but are not aligned to the text.
We explore how to use KB tags to cre-
ate document-specific gazetteers at infer-
ence time to improve NER. We find that
this kind of supervision helps recognise
organisations more than standard wide-
coverage gazetteers. Moreover, augment-
ing document-specific gazetteers with KB

information lets users specify fewer tags
for the same performance, reducing cost.

1 Introduction

NER is the task of identifying names in text and
assigning them a type (e.g. person, location, or-
ganisation, miscellaneous). State-of-the-art super-
vised approaches use models that incorporate a
name’s form, its linguistic context and its com-
patibility with known names. These models rely
on large manually-annotated corpora, specifying
name spans and types. These are vital for training
models, but it is laborious and expensive to label
every occurrence of a name in a document.

We consider a non-standard setting where, for
each document, we have metadata in the form of
document-specific knowledge base tags. A KB tag
is a canonical name, that is an identifier in a KB

(e.g. a Wikipedia title), and an entity type. While
these tags have a correct type assigned for at least
one context, they are not aligned to phrases in the
text, and may not share the same form as all of
their mentions (e.g. we may see the tag United
Nations for the mention UN). We also assume
that each tag matches at least one mention in the
document, but do not specify where in the docu-
ment the mention is.

There are many sources of KB tags, such as
manual entity indexing for news stories or data ex-
tracted from personalised knowledge stores. For
example, the New York Times Annotated Corpus
(Sandhaus, 2008) contains more than 1.5M arti-
cles “manually tagged by library scientists with
tags drawn from a normalized indexing vocabu-
lary of people, organizations, locations and topic
descriptors”. Names and types are also present
in large quantities of financial news stories from
Bloomberg (Bradesko et al., 2015), in the form of
linked names of companies and people.

Document-level tags may be quicker for anno-
tators to apply than the usual method of marking
spans in text, and are thus a cheap form of supervi-
sion. It is hard to make strong comparisons to the
standard NER task, as KB tags can be considered
partial, unaligned gold-standard supervision – so
fully supervised models should perform better, the
question is by how much and why.

This paper explores effective ways to use KB

tags for improving NER. We use the CoNLL
2003 English NER dataset (Tjong Kim Sang and
De Meulder, 2003), annotated with Wikipedia
links (Hoffart et al., 2011). This allows us to sim-
ulate a set of KB tags for each document in the
TRAIN, TESTA and TESTB splits of the dataset. We
use a document’s KB tags to build a document-
specific gazetteers which we use in addition to
standard features for a conditional random field
(CRF) model (Lafferty et al., 2001).

We compare against wide-coverage gazetteers,
which score 89.85% F-score on TESTA. Assum-
ing access to all possible KB tags, the upper bound
for KB tag models is substantially better at 92.85%
F-score. KB tags help NER accuracy across all
entity types, but provide relatively better supervi-
sion for organisation entities than wide-coverage
gazetteers. The benefit of KB tags comes from
their type information, which is required for good
performance. We also examine how performance
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degrades as we use fewer KB tags, simulating the
use-case where a busy knowledge worker spends
less time annotating. We find that KB augmenta-
tion means we require fewer tags to reach the same
performance, which reduces the cost of obtaining
KB tags. We show how KB tags can be exploited
as a useful complement to traditional NER super-
vision.

2 Background

Gazetteers have long been used to augment statis-
tical NER models, adding general evidence of to-
kens used in names (Nadeau and Sekine, 2007).
These are usually drawn from wide-coverage
sources like Wikipedia and census lists (Ratinov
and Roth, 2009) and can be incorporated into se-
quence models by designing binary features that
indicate whether a token appears in a gazetteer en-
try. Features can be refined by specifying which
part of an entry a token matches using tag en-
coding schemes such as IOB (Kazama and Tori-
sawa, 2007). Using multiple gazetteers allows fea-
ture weights to capture different name types and
sources. Given their purpose to increase coverage
beyond names included in training data, gazetteers
are usually large, general and static, remaining the
same during training and prediction time.

Beyond their use as sources for gazetteers, the
link structure in and around KBs has been used to
create training data. A prominent technique is to
follow links back from KB articles to documents
that mention the subject of the article, heuristically
labelling high-precision matches to create training
data. This has been used for genetic KBs (Mor-
gan et al., 2003; Vlachos and Gasperin, 2006), and
Wikipedia (Kazama and Torisawa, 2007; Rich-
man and Schone, 2008; Nothman et al., 2013).
These works do not consider our setting where
gold-standard entities are given at inference time
as their goal is to generate training data.

KBs have also been used to help other natural
language processing tasks such as coreference res-
olution (Rahman and Ng, 2011), topic modelling
(Kataria et al., 2011) and named entity linking
(Cucerzan, 2007; Ratinov et al., 2011). Finally,
it may be that supervised data is only available
in some circumstances, for example in the case
of personalising NER models. Jung et al. (2015)
query a user’s smartphone data services to create
user-specific gazetteers of personal information.
The background NER model is initially trained

Figure 1: An entity-tagged document, KB tags
with canonical name and type and KB with aliases.

without access to the user-specific information and
later adapted on the users’s smartphone.

3 Document-level KB tags

We incorporate information from KB tags by
building document-specific gazetteers. Figure 1
shows an example with a document in which the
names need to be recognised and typed (in square
brackets). We are also given a list of KB tags,
each of which is a canonical name and a type.
These are linked to a KB which we use to ex-
tract aliases, in our case each canonical name is
a Wikipedia article, and redirects to that article are
considered aliases. Our goal is that knowing that
a document mentions the entity West Indies
cricket team can help us identify Windies or
Calypso Cavaliers.

To create gazetteers from a document’s KB

tags, we preprocess the canonical name from
each KB tag, tokenising by underscore, lower-
casing and removing parenthesised suffixes (e.g.
Chris Lewis (cricketer) becomes chris
lewis). We use an encoding scheme to incorpo-
rate the type information from the KB tag. In-
spired by Kazama and Torisawa (2007), who ap-
plied IOB encoding to gazetteers, we apply the
BMEOW (a.k.a. BILOU), a scheme that also distin-
guishes between beginning, middle, end, outside
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and single word positions.1 For example, this al-
lows us to map chris lewis to B-PER E-PER,
and we can aggregate gazetteers of tokens for each
encoded type, such that the gazetteer for B-PER
contains chris.

Our CRF gazetteer features are calculated from
an input token from the text that we wish to label.
Having created a document’s KB tag gazetteers,
we can define binary features that are active if
an input token matches (case-insensitively) with a
particular gazetteer. This models both the part of
the KB tag name that the token matched, and its
type. The input token Chris thus activates the fea-
ture fB-PER and the token cricket would activate
the fI-MISC and fI-ORG, as it matches inside
entries of the two types.

4 Methodology

We define several configurations to investigate KB

tags. The first four baselines either do not use KB

tags, or do not integrate them into the CRF. The
second four configurations use KB tag features in
the CRF model.

4.1 Baselines

KB tag matching (MATCH) We find the longest
full match from the document gazetteer and apply
the known type. This will not match partial or non-
canonical names, but should be high-precision.
This is similar to the CoNLL 2003 baseline sys-
tem (Tjong Kim Sang and De Meulder, 2003).

Baseline (CRF) We train a CRF model using
CRFsuite (Okazaki, 2007) with a standard set
of features that encode lexical context, token
shape, but no external knowledge features such as
gazetteers. All following configurations build on
the CRF with standard features.

KB tag repair (CRF+REPAIR) We label the text
using the baseline CRF, then find the longest full
match from the document gazetteer and assign the
known type. When a gazetteer match overlaps
with a CRF match, we prefer the gazetteer and re-
move the latter. Although we do not consider par-
tial matches, this may recognise longer names that
can be difficult for CRF models.

Wide-coverage gazetteers (CRF+WIDE) This
uses gazetteers distributed with the Illinois NER

system (Ratinov and Roth, 2009). We encode each

1We omit the O tag as all gazetteer tokens are inside.

phrase using the BMEOW scheme described above,
and use the filename of each gazetteer as its type.
There are 33 gazetteers drawn from many sources
with approximately 2 million entries.

4.2 Using KB tags as CRF features
KB tag names (CRF+NAME) We generate
document-specific gazetteer features, but use the
same type for each entry.

KB tag names and types (CRF+NAME+TYPE)
This is equivalent to CRF+NAME, but includes
known types. Since type varies with context, this
may not be correct, but is hopefully informative.

KB tag names, types and KB aliases
(CRF+NAME+TYPE+AKA) This builds on
the above, but uses the KB to augment the
document-specific gazetteer with known aliases
of the KB tags, for example adding UN for
United Nations with the known type.

KB tag names, types, KB aliases and large
gazetteers (CRF+NAME+TYPE+AKA+WIDE) This
combines all KB tag features with the wide-
coverage gazetteers.

We fetch and cache KB information using a
Wikipedia API client.2 We assume the tag set of
person (PER), organisation (ORG), location (LOC)
and miscellaneous (MISC), and report precision,
recall and F-score from the conlleval evalu-
ation script. The median proportion of mentions
in a document that are linked to the KB is 81% in
TRAIN and TESTB, and 85% in TESTA. Augment-
ing the gazetteer with aliases produces, on aver-
age, 26 times the number of gazetteer entries than
KB tags alone in TESTA, and 23 times in TESTB.

5 Results

Table 1 shows the performance of different con-
figurations – we focus first on TESTA overall F-
scores. Matching against KB tag names results
in high-precision but low recall with an F-score
of 55.35%, far worse than the baseline CRF at
87.68%. Despite its naı̈ve assumptions, repair-
ing the CRF tags using longest matches in the
document gazetteer performs surprisingly well at
89.76%, just lower than using wide coverage
gazetteers, with an F-score of 89.85%.

The first setting that uses KB tags as CRF fea-
tures is CRF+NAME, which includes typeless names

2https://github.com/goldsmith/
Wikipedia adapted to allow access to Redirect pages.
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Method TESTA TESTB
P R F FLOC FMSC FORG FPER P R F

MATCH 94.93 39.06 55.35 76.90 22.01 29.47 59.24 94.57 37.62 53.83
CRF 88.52 86.86 87.68 90.92 85.18 81.44 90.06 81.87 80.93 81.40
+REPAIR 89.28 90.24 89.76 91.68 87.44 84.44 92.68 84.06 86.54 85.28
+WIDE 90.45 89.26 89.85 92.63 85.99 84.21 93.00 85.10 83.80 84.44
+NAME 89.96 88.64 89.29 92.21 85.57 82.71 92.89 84.26 82.72 83.48
+NAME+TYPE 93.29 92.12 92.70 95.42 88.19 88.18 95.38 89.46 87.92 88.69
+NAME+TYPE+AKA 93.42 92.29 92.85 95.63 88.35 88.27 95.54 89.90 88.74 89.32
+NAME+TYPE+AKA+WIDE 93.13 92.01 92.57 95.48 88.34 87.96 94.97 89.86 88.85 89.35

Table 1: Results for CoNLL 2003 TESTA and TESTB. We report P/R/F for all tags and per-type F-scores.
Methods starting with “+” build on the standard CRF by repairing or adding features.

Figure 2: How many sentences should an annotator check for KB tags? TESTA results for CRF+NAME+TYPE

and CRF+NAME+TYPE+AKA where KB tags are drawn from the first n sentences. This is compared to the F-
score for CRF+WIDE and versions of the models with access to all sentences in the document (horizontal,
thin lines).

and has an F-score of 89.29%. Precision and
recall are lower than wide coverage gazetteers,
suggesting that, without type information, big-
ger gazetteers are better. Adding type features
(CRF+NAME+TYPE) results in better performance
than either CRF or CRF+WIDE at 92.7% F-score.3

Augmenting the document gazetteers using aliases
from the KB further improves F-score for aliases
(92.85%). Adding wide-coverage gazetteers to KB

tags slightly decreases F-score at 92.57%. These
results indicate that type information is critical
and, to confirm this, we ran experiments that used
only name and alias information from KB tags.
This scores 89.45% F-score on TESTA and 83.62%
F-score on TESTB. While aliases help, type infor-
mation is required to improve performance beyond
wide coverage gazetteers.

To give some insight into why KB tag types
are effective, consider the name West Indian.
This appears 65 times across 11 of the 33 wide-

3We tried to manually map the 33 gazetteer filenames to
the 4 NER types, but this reduced performance on TESTA.

coverage gazetteers, including those that also con-
tain people, locations, organisations, songs. A
document-specific gazetteer is able to constrain
this type ambiguity, producing a cleaner signal
for the model. Aliases, on the other hand, allow
the model to capture non-canonical variants of a
name, but this depends on type information for
good NER performance.

We also examine the per-tag F-scores for
TESTA to investigate whether KB tags help some
types of entities more than others. Using
CRF+NAME+TYPE+AKA we obtain around 95.5%
F-score for PER and LOC entities. As with
CRF+WIDE, MISC entities remain hard to tag cor-
rectly. However, if we consider the percent-
age F-score gain by type over the CRF baseline,
CRF+WIDE gazetteers improve performance most
for PER (+2.94%), then ORG (2.77%) entities. The
top two are reversed for CRF+NAME+TYPE+AKA,
with ORG (+6.83%), then PER (+5.48%). This
suggests that KB tags are particularly well-suited
for helping recognise organisations names.
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We see similar trends in TESTB, except KB tags
and CRF+WIDE are complementary. The experi-
ments illustrate that if we are lucky enough to have
KB tags, they improve NER. However, the models
use all possible KB tags and should be considered
an upper bound. To better model busy workers, we
restrict the gazetteers to only KB tags from men-
tions in the first n sentences. This matches asking
an annotator to only bother looking at the first n
sentences. Figure 2 shows how the KB tag models
perform on TESTA as we increase n. To achieve
better performance than CRF+WIDE, one should
view the first 5 sentences for CRF+NAME+TYPE.
Aliases (CRF+NAME+TYPE+AKA) reduce perfor-
mance slightly when only using a few sentences,
but with more than 4 sentences, aliases are consis-
tently useful. This trend is also apparent in TESTB,
showing that augmenting tags with KB informa-
tion improves NER, especially when only a few
tags are available.

6 Discussion and conclusion

There are several avenues to explore further. Ask-
ing annotators to specify types is not ideal and it
would be better to predict them from the KB. We
only use the KB to collect aliases, but we could
use it to harvest related entities. Another chal-
lenge is appropriately modelling the interaction
between a sentence-level task and document-level
constraints. A KB tag might match a mention in
one sentence and this should influence predictions
there. However, its evidence should be less im-
portant elsewhere since that constraint has already
been satisfied. This would improve robustness,
however global constraints are hard to model in
sentence-unit CRF models.

This paper presents a novel NER setting
whereby we have access to some number of KB

tags – canonical names and types – at training
and inference time. We explore how best to use
this information, finding that CRF models can in-
deed take advantage of this non-standard supervi-
sion. Moreover, models benefit from integration
with the KB, in our case augmenting document
gazetteers to maximise the benefit of KB tags.

Acknowledgements

Thank you to the anonymous reviewers whose
comments helped us improve the paper.

References
Luka Bradesko, Janez Starc, and Stefano Pacifico.

2015. Isaac Bloomberg Meets Michael Bloomberg:
Better Entity Disambiguation for the News. In Pro-
ceedings of the 24th International Conference on
World Wide Web, WWW ’15 Companion, pages
631–635, Republic and Canton of Geneva, Switzer-
land. International World Wide Web Conferences
Steering Committee.

Silviu Cucerzan. 2007. Large-scale named entity
disambiguation based on Wikipedia data. In Pro-
ceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-
CoNLL), pages 708–716, Prague, Czech Republic,
June. Association for Computational Linguistics.

Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bor-
dino, Hagen Fürstenau, Manfred Pinkal, Marc Span-
iol, Bilyana Taneva, Stefan Thater, and Gerhard
Weikum. 2011. Robust disambiguation of named
entities in text. In Proceedings of the 2011 Con-
ference on Empirical Methods in Natural Language
Processing, pages 782–792, Edinburgh, Scotland,
UK., July. Association for Computational Linguis-
tics.

YoungHoon Jung, Karl Stratos, and Luca P. Carloni.
2015. LN-Annote: An alternative approach to
information extraction from emails using locally-
customized named-entity recognition. In Proceed-
ings of the 24th International Conference on World
Wide Web, WWW ’15, pages 538–548, Republic and
Canton of Geneva, Switzerland. International World
Wide Web Conferences Steering Committee.

Saurabh S Kataria, Krishnan S Kumar, Rajeev R Ras-
togi, Prithviraj Sen, and Srinivasan H Sengamedu.
2011. Entity disambiguation with hierarchical topic
models. In Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery
and data mining, pages 1037–1045. ACM.

Jun’ichi Kazama and Kentaro Torisawa. 2007. Ex-
ploiting Wikipedia as external knowledge for named
entity recognition. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning (EMNLP-CoNLL), pages 698–707,
Prague, Czech Republic, June. Association for Com-
putational Linguistics.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth Inter-
national Conference on Machine Learning, ICML
’01, pages 282–289, San Francisco, CA, USA. Mor-
gan Kaufmann Publishers Inc.

Alex Morgan, Lynette Hirschman, Alexander Yeh, and
Marc Colosimo. 2003. Gene name extraction us-
ing flybase resources. In Proceedings of the ACL

516



2003 Workshop on Natural Language Processing in
Biomedicine, pages 1–8, Sapporo, Japan, July. As-
sociation for Computational Linguistics.

David Nadeau and Satoshi Sekine. 2007. A survey
of named entity recognition and classification. Lin-
guisticae Investigationes, 30(1):3–26, January. Pub-
lisher: John Benjamins Publishing Company.

Joel Nothman, Nicky Ringland, Will Radford, Tara
Murphy, and James R. Curran. 2013. Learning mul-
tilingual named entity recognition from Wikipedia.
Artificial Intelligence, 194(0):151 – 175. Artificial
Intelligence, Wikipedia and Semi-Structured Re-
sources.

Naoaki Okazaki. 2007. Crfsuite: a fast implementa-
tion of conditional random fields (crfs).

Altaf Rahman and Vincent Ng. 2011. Coreference res-
olution with world knowledge. In Proceedings of
the 49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 814–824, Portland, Oregon, USA, June.
Association for Computational Linguistics.

Lev Ratinov and Dan Roth. 2009. Design chal-
lenges and misconceptions in named entity recog-
nition. In Proceedings of the Thirteenth Confer-
ence on Computational Natural Language Learning
(CoNLL-2009), pages 147–155, Boulder, Colorado,
June. Association for Computational Linguistics.

Lev Ratinov, Dan Roth, Doug Downey, and Mike An-
derson. 2011. Local and global algorithms for dis-
ambiguation to Wikipedia. In Proceedings of the
49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 1375–1384, Portland, Oregon, USA,
June. Association for Computational Linguistics.

Alexander E. Richman and Patrick Schone. 2008.
Mining wiki resources for multilingual named en-
tity recognition. In Proceedings of ACL-08: HLT,
pages 1–9, Columbus, Ohio, June. Association for
Computational Linguistics.

E. Sandhaus. 2008. The New York Times Annotated
Corpus. Linguistic Data Consortium, Philadelphia,
6(12).

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the conll-2003 shared task:
Language-independent named entity recognition. In
Walter Daelemans and Miles Osborne, editors, Pro-
ceedings of the Seventh Conference on Natural Lan-
guage Learning at HLT-NAACL 2003, pages 142–
147.

Andreas Vlachos and Caroline Gasperin. 2006. Boot-
strapping and evaluating named entity recognition in
the biomedical domain. In Proceedings of the HLT-
NAACL BioNLP Workshop on Linking Natural Lan-
guage and Biology, pages 138–145, New York, New
York, June. Association for Computational Linguis-
tics.

517



Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 518–523,
Lisbon, Portugal, 17-21 September 2015. c©2015 Association for Computational Linguistics.

“A Spousal Relation Begins with a Deletion of engage
and Ends with an Addition of divorce”:

Learning State Changing Verbs from Wikipedia Revision History
Derry Tanti Wijaya

Carnegie Mellon University
5000 Forbes Avenue

Pittsburgh, PA, 15213
dwijaya@cs.cmu.edu

Ndapandula Nakashole
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA, 15213
ndapa@cs.cmu.edu

Tom M. Mitchell
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA, 15213

tom.mitchell@cs.cmu.edu

Abstract

Learning to determine when the time-
varying facts of a Knowledge Base (KB)
have to be updated is a challenging task.
We propose to learn state changing verbs
from Wikipedia edit history. When a
state-changing event, such as a marriage
or death, happens to an entity, the in-
fobox on the entity’s Wikipedia page usu-
ally gets updated. At the same time, the
article text may be updated with verbs ei-
ther being added or deleted to reflect the
changes made to the infobox. We use
Wikipedia edit history to distantly super-
vise a method for automatically learning
verbs and state changes. Additionally, our
method uses constraints to effectively map
verbs to infobox changes. We observe in
our experiments that when state-changing
verbs are added or deleted from an en-
tity’s Wikipedia page text, we can predict
the entity’s infobox updates with 88% pre-
cision and 76% recall. One compelling
application of our verbs is to incorporate
them as triggers in methods for updating
existing KBs, which are currently mostly
static.

1 Introduction

Extracting relational facts between entities and
storing them in knowledge bases (KBs) has been a
topic of active research in recent years. The result-
ing KBs are generally static and are not updated
as the facts change (Suchanek et al., 2007; Carl-
son et al., 2010; Fader et al., 2011; Mitchell et al.,
2015). One possible approach to updating KBs is
to extract facts from dynamic Web content such
as news (Nakashole and Weikum, 2012). In this
paper, we propose to predict state changes caused

by verbs acting on entities in text. This is differ-
ent from simply applying the same text extraction
pipeline, that created the original KB, to dynamic
Web content.

In particular, our approach has the following ad-
vantages: (1) Consider for example the SPOUSE

relation, both marry and divorce are good patterns
for extracting this relation. In our work, we wish
to learn that they cause different state changes.
Thus, we can update the entity’s fact and its tem-
poral scope (Wijaya et al., 2014a). (2) Learning
state changing verbs can pave the way for learn-
ing the ordering of verbs in terms of their pre- and
post-conditions.

Our approach learns state changing verbs from
Wikipedia revision history. In particular, we seek
to establish a correspondence between infobox ed-
its and verbs edits in the same article. The infobox
of a Wikipedia article is a structured box that sum-
marizes an entity as a set of facts (attribute-value
pairs) . Our assumption is that when a state-
changing event happens to an entity e.g., a mar-
riage, its Wikipedia infobox is updated by adding
a new SPOUSE value. At approximately the same
time, the article text might be updated with verbs
that express the event, e.g., X is now married to Y.
Figure 1 is an example of an infobox of an entity
changing at the same time as the article’s main text
to reflect a marriage event.

Wikipedia revision history of many articles can
act as distant supervision data for learning the cor-
respondence between text and infobox changes.
However, these revisions are very noisy. Many in-
fobox slots can be updated when a single event
happens. For example, when a death happens,
slots regarding birth e.g., birthdate, birthplace,
may also be updated or added if they were miss-
ing before. Therefore, our method has to handle
these sources of noise. We leverage logical con-
straints to rule out meaningless mappings between
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05/24/2014 

marriage  

time 
05/23/2014 05/25/2014 

Figure 1: A snapshot of Kim Kardashian’s Wikipedia revision history, highlighting text and infobox
changes. In red (and green) are the differences between the page on 05/25/2014 and 05/23/2014: things
that are deleted from (and added to) the page.

infobox and text changes.
In summary, our contributions are as follows:

(1) we present an algorithm that uses Wikipedia
edit histories as distantly labeled data to learn
which verbs result in which state changes to en-
tities, and experimentally demonstrate its success,
(2) we make available this set of distantly la-
beled training data on our website1, and (3) we
also make available our learned mappings from
verbs to state changes, as a resource for other re-
searchers, on the same website.

2 Method

2.1 Data Construction

We construct a dataset from Wikipedia edit histo-
ries of person entities whose facts change between
the year 2007 and 2012 (i.e., have at least one fact
in YAGO KB (Suchanek et al., 2007) with a start
or end time in this period). We obtain Wikipedia
URLs of this set of entities P from YAGO and
crawl their article’s revision history. Given a per-
son p, his/her Wikipedia revision history Rp has
a set of ordered dates Tp on which revisions are
made to his/her Wikipedia page (we consider date
granularity). Each revision rp,t ∈ Rp is his/her
Wikipedia page at date t where t ∈ Tp.

Each Wikipedia revision rp,t is a set of infobox
slots Sp,t and textual content Cp,t. Each infobox
slot s ∈ Sp,t is a quadruple, 〈satt, svalue, sstart,
send〉 containing the attribute name (non-empty),
the attribute value, and the start and end time for

1http://www.cs.cmu.edu/ dwijaya/postcondition.html

which this attribute-value pair holds in reality.
A document dp,t in our data set is the difference2

between any two consecutive revisions separated
by more than 24 hours i.e., dp,t = rp,t+2 − rp,t,
where rp,t+2 is the first revision on date t+ 2 and
rp,t is the last revision on date t (as a page can be
revised many times in a day).

A document dp,t is therefore a set of infobox
changes ∆Sp,t and textual changes ∆Cp,t. Each
slot change δs ∈ ∆Sp,t = 〈satt, δsvalue, δsstart,
δsend〉 is prefixed with + or − to indicate whether
they are added or deleted in rp,t+2. Similarly, each
text change δc ∈ ∆Cp,t is prefixed with + or − to
indicate whether they are added or deleted.

For example, in Figure 1, a docu-
ment dkim, 05/23/2014 = rkim,05/25/2014 −
rkim,05/23/2014 is a set of slot changes: 〈SPOUSE,
+“Kanye West”, +“2014”, “ ”〉, 〈PARTNER, −“Kanye

West”, −“2012-present; engaged”, “ ”〉 and a set of
text changes: +“Kardashian and West were married in

May 2014”, −“She began dating West”, −“they became

engaged in October 2013”.
For each dp,t, we use ∆Sp,t to label the docu-

ment and ∆Cp,t to extract features for the docu-
ment. We label dp,t that has a new value or start
time added to its infobox: 〈satt,+δsvalue, ∗, ∗〉 ∈
∆Sp,t or 〈satt, ∗,+δsstart, ∗〉 ∈ ∆Sp,t with the la-
bel begin-satt and label dp,t that has a new end
time added to its infobox: 〈satt, ∗, ∗,+δsend〉 ∈
∆Sp,t with the label end-satt.

The label represents the state change that
2a HTML document obtained by “compare selected revi-

sions” functionality in Wikipedia
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happens in dp,t. For example, in Figure 1,
dkim, 05/23/2014 is labeled with begin-spouse.

The revision history dataset that we make avail-
able for future research consists of all documents
dp,t, labeled and unlabeled, ∀t ∈ Tp, t ∈
[01/01/2007, 12/31/2012], and ∀p ∈ P ; a to-
tal of 288,184 documents from revision histories
of 16,909 Wikipedia entities. Using our labeling
process, we find that out of 288,184 documents,
only 41,139 have labels (i.e., have their infobox
updated with new values/start/end time). The dis-
tribution of labels in the dataset is skewed towards
birth and death events as these are life events that
happen to almost all person entities in Wikipedia.
The distribution of labels in the dataset that we re-
lease can be seen in Figure 2. We show only labels
that we evaluate in our task.

For our task of learning state changing verbs
from this revision history dataset, for each la-
beled dp,t, we extract as features, verbs (or
verbs+prepositions) v ∈ ∆Cp,t of which its sub-
ject (or object) matches the Wikipedia entity p

and its object (or subject resp.) matches an in-
fobox value, start or end time: (vsubject, vobject) =
(arg1, arg2) or (vsubject, vobject) = (arg2, arg1), where
arg1= p and 〈satt,arg2, ∗, ∗〉 or 〈satt, ∗,arg2, ∗〉
or 〈satt, ∗, ∗,arg2〉 ∈ ∆Sp,t. We use Stanford
CoreNLP (Manning et al., 2014) to dependency
parse sentences and extract the subjects and ob-
jects of verbs. We find that 27,044 out of the
41,139 labeled documents contain verb edits, but
only 4,735 contain verb edits with two arguments,
where one argument matches the entity and an-
other matches the value of the infobox change. We
use the latter for our task, to improve the chance
that the verb edits used as features are related to
the infobox change.

2.2 Model

We use a Maximum Entropy (MAXENT) clas-
sifier3 given a set of training data = {(vd`

, y)}
where vd`

= (v1, v2, ... v|V |) ∈ R|V | is the |V |-
dimensional representation of a labeled document
d` where V is the set of all verbs in our training
data, and y is the label of d` as defined in 2.1.

These training documents are used to estimate a
set of weight vectors w = {w1, w2, ... w|Y |}, wy

∈ R|V |, one for each label y ∈ Y , the set of all
3We use MALLET implementation of MAXENT:

http://mallet.cs.umass.edu/

labels in our training data. The classifier can then
be applied to classify an unlabeled document du

using:

p(y|vdu) =
exp(wy · vdu)∑
y′ exp(wy′ · vdu)

(1)

2.3 Feature Selection using Constraints

While feature weights from the MAXENT model
allow us to identify verbs that are good features
for predicting a particular state change label, our
distantly supervised training data is inherently
noisy. Changes to multiple infoboxes can hap-
pen within our revision. We therefore utilize con-
straints among state changes to select consistent
verb features for each type of state change.

We use two types of constraints: (1) mutual ex-
clusion (Mutex) which indicate that mutex state
changes do not happen at the same time e.g., up-
date on birthdate should not typically happen with
update on deathcause. Hence, their state changing
verbs should be different. (2) Simultaneous (Sim)
constraints which indicate that simultaneous state
changes should typically happen at the same time
e.g., update on birthdate should typically happen
with other birth-related updates such as birthplace,
birthname, etc. We manually specified these two
types of constraints to all pairs infoboxes where
they apply. We have 10 mutex constraints and 23
simultaneously updated constraints. The full list
of constraints can be found in our website.

Given a set of constraints, a set of labels Y ,
and a set of base verbs4 B in our training data,
we solve a Mixed-Integer Program (MIP) for each
base verb b ∈ B to estimate whether b should be a
feature for state change y ∈ Y .

We obtain label membership probabilities
{P (y|b) = count(y, b)/

∑
y′ count(y′, b)} from

our training data. The MIP takes the scores P (y|b)
and constraints as input and produces a bit vector
of labels ab as output, each bit ayb ∈ {0, 1} repre-
sents whether or not b should be a feature for y.

The MIP formulation for a base verb b is pre-
sented by Equation 2. For each b, this method tries
to maximize the sum of scores of selected labels,
after penalizing for violation of label constraints.
Let ζy,y′ be slack variables for Sim constraints, and
ξy,y′ be slack variables for Mutex constraints.

4The verb root or base form of a verb (after removing
preposition)
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Figure 2: Distribution of labels we evaluate in our task in the revision history dataset.

Solving MIP per base verb is fast; we reduce the
number of labels considered per base verb i.e., we
only consider a label y to be a candidate for b if
∃ vi ∈ V s.t. wiy > 0 and b = base form of vi.

After we output ab for each b, we select features
for each label. We only select a verb vi to be a
feature for y if the learned weight wiy > 0 and
ayb = 1, where b = the base form of vi. Essentially
for each label, we select verb features that have
positive weights and are consistent for the label.

maximize
ab, ζy,y′ , ξy,y′

(∑
y

a
y
b ∗ P (y|b) −

∑
〈y,y′〉∈Sim

ζy,y′ −

∑
〈y,y′〉∈Mutex

ξy,y′
)

subject to
(
a
y
b − ay

′
b

)2 ≤ ζy,y′ , ∀〈y, y′〉 ∈ Sim
a
y
b + a

y′
b ≤ 1 + ξy,y′ , ∀〈y, y′〉 ∈Mutex

ζy,y′ , ξy,y′ ≥ 0, a
y
b ∈ {0, 1}, ∀y, y′

(2)

3 Experiments

We use 90% of our labeled documents that have
verb edits as features (section 2.1) as training data
and test on the remaining 10%. Since revision his-
tory data is noisy, we manually go through our test
data to discard documents that have incorrect in-
fobox labels by looking the text that changed. The
task is to predict for each document (revision), the
label (infobox slot change) of the document given
its verbs features. We compute precision, recall,
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Figure 3: Results of predicting state change labels
(infobox types) using verb features.

and F1 values of our predictions and compare the
values before and after feature selection (Fig. 3).

To the best of our knowledge, the task to learn
state-changing verbs in terms of states defined
in existing knowledge bases and learning it from
Wikipedia edit histories is novel. There is no pre-
vious approach that can be used as baseline; there-
fore we have compared our structured prediction
using MIP and MAXENT with a majority class
baseline. Both our approaches (MAXENT and
MAXENT + MIP) perform better than the majority
class baseline (Figure 3).

We observe the value of doing feature selec-
tion by asserting constraints in an MIP formula-
tion. Feature selection improves precision; re-
sulting in a better F1. By asserting constraints,
some of the inconsistent verb features for the la-

521



Label Verb
begin- +(arg1) die on (arg2), +(arg1) die (arg2),
deathdate +(arg1) pass on (arg2)
begin- +(arg1) be born in (arg2), +(arg1) bear in (arg2),
birthplace +(arg1) be born at (arg2)
begin- +(arg1) succeed (arg2), +(arg1) replace (arg2),
predecessor +(arg1) join cabinet as (arg2), +(arg1) join as (arg2)
begin- +(arg1) lose seat to (arg2), +(arg1) resign on (arg2),
successor +(arg1) resign from post on (arg2)
begin- +(arg1) be appointed on (arg2), +(arg1) serve from (arg2),
termstart +(arg1) be elected on (arg2)
begin- +(arg1) marry on (arg2), +(arg1) marry (arg2),
spouse +(arg1) be married on (arg2), -(arg1) be engaged to (arg2)
end-spouse +(arg1) file for divorce in (arg2), +(arg1) die on (arg2),

+(arg1) divorce in (arg2)
begin- +(arg1) start career with (arg2),
youthclubs +(arg1) begin career with (arg2), +(arg1) start with (arg2)

Table 1: Comparison of verb phrases learned be-
fore and after feature selection for various labels
(infobox types). The texts in bold are (preposi-
tion+) noun that occur most frequently with the
〈verb phrase, label〉 pair in the training data.

bels were removed. For example, before feature
selection, the verbs: “marry”, and “be married
to” were high-weighted features for both begin-
spouse and end-spouse. After asserting constraints
that begin-spouse is mutex with end-spouse, these
verbs (whose base form is “marry”) are filtered out
from the features of end-spouse. We show some of
the learned verb features (after feature selection)
for some of the labels in (Table 1). In average,
we have about 18 verbs per infobox state change
in our state changing verb resource that we make
available for future research.

4 Related Work

Learning from Wikipedia Revision History.
Wikipedia edit history has been exploited in a
number of problems. A popular task in this re-
gard is that of Wikipedia edit history categoriza-
tion (Daxenberger and Gurevych, 2013). This task
involves characterizing a given edit instance as one
of many possible categories such as spelling error
correction, paraphrasing, vandalism, and textual
entailment (Nelken and Yamangil, 2008; Cahill et
al., 2013; Zanzotto and Pennacchiotti, 2010; Re-
casens et al., 2013). Prior methods target various
tasks different from ours.

Learning State Changing Verbs. Very few
works have studied the problem of learning state
changing verbs. (Hosseini et al., 2014) learned
state changing verbs in the context of solving
arithmetic word problems. They learned the effect
of words such as add, subtract on the current state.

The VerbOcean resource was automatically gener-
ated from the Web (Chklovski and Pantel, 2004).
The authors studied the problem of fine-grained
semantic relationships between verbs. They learn
relations such as if someone has bought an item,
they may sell it at a later time. This then involves
capturing empirical regularities such as “X buys
Y” happens before “X sells Y”. Unlike the work
we present here, the methods of (Chklovski and
Pantel, 2004; Hosseini et al., 2014) do not make a
connection to KB relations such as Wikipedia in-
foboxes. In a vision paper, (Wijaya et al., 2014b)
give high level descriptions of a number of possi-
ble methods for learning state changing methods.
They did not implement any of them.

5 Conclusion

In this paper we presented a method that learns
state changing verb phrases from Wikipedia revi-
sion history. We first constructed and curated a
novel dataset from Wikipedia revision history that
is tailored to our task. We showed that this dataset
is useful for learning verb phrase features that are
effective for predicting state changes in the knowl-
edge base (KB), where we considered the KB to
be infoboxes and their values. As future work we
wish to explore the usefulness of our verb resource
to other KBs to improve KB freshness. This is im-
portant because existing KBs are mostly static. We
wish to also explore the application of the learned
verb resource to domains other than Wikipedia in-
fobox and text e.g., for predicting state changes in
the knowledge base from news text.

In this paper, we learned post-conditions of
verbs: state changes that occur when an event ex-
pressed by a verb happens. As future work we
would also explore the feasibility of learning pre-
conditions of verbs from Wikipedia revisions. Ad-
ditionally, most Wikipedia revisions only have text
changes without the associated infobox change.
Therefore, another line of future work is to also
learn from these unlabeled documents.
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Abstract

Because of polysemy, distant labeling for
information extraction leads to noisy train-
ing data. We describe a procedure for re-
ducing this noise by using label propaga-
tion on a graph in which the nodes are
entity mentions, and mentions are cou-
pled when they occur in coordinate list
structures. We show that this labeling ap-
proach leads to good performance even
when off-the-shelf classifiers are used on
the distantly-labeled data.

1 Introduction

In distantly-supervised information extraction
(IE), a knowledge base (KB) of relation or
concept instances is used to train an IE sys-
tem. For instance, a set of facts like adverse-
EffectOf(meloxicam, stomachBleeding), interacts-
With(meloxicam, ibuprofen), might be used to
train an IE system that extracts these relations
from documents. In distant supervision, instances
are first matched against a corpus, and the match-
ing sentences are then used to generate training
data consisting of labeled entity mentions. For in-
stance, matching the KB above might lead to la-
beling passage 1 from Table 1 as support for the
fact adverseEffectOf(, stomachBleeding).

A weakness of distant supervision is that it pro-
duces noisy training data: for instance, match-
ing the adverse effect weakness might lead to
incorrectly-labeled mention examples. Distant su-
pervision is often coupled with learning methods
that allow for this sort of noise by introducing la-
tent variables for each entity mention (e.g., (Hoff-
mann et al., 2011; Riedel et al., 2010; Surdeanu
et al., 2012)); by carefully selecting the entity
mentions from contexts likely to include specific
KB facts (Wu and Weld, 2010); by careful filter-

1. “Avoid drinking alcohol. It may increase
your risk of stomach bleeding.”

2. “Get emergency medical help if you have
chest pain, weakness, shortness of breath,
slurred speech, or problems with vision or
balance.”

Table 1: Passages from a page discussing the drug
meloxicam.

ing of the KB strings used as seeds (Movshovitz-
Attias and Cohen, 2012); or by making use of
named-entity linking methods and co-reference to
improve the matching phase of distant learning
(Koch et al., 2014).

Here we explore an alternative approach of
Distant IE using coordinate-term Lists (DIEL)
based on detection of lists in text, such as the one
illustrated in passage 2 in Table 1. Since list items
are usually of the same type, the unambiguous
mention chest pain here disambiguates the men-
tion weakness. Label propagation methods (Zhu
et al., 2003; Lin and Cohen, 2010) can be used
to exploit this intuition, by propagating the low-
confidence labels associated with distance super-
vision through an appropriate graph.

Here we describe a pipelined system which (1)
identifies lists of semantically-related items us-
ing lexico-syntactic patterns (2) uses distant su-
pervision, in combination with a label-propagation
method, to find entity mentions that can be confi-
dently labeled and (3) from this data, uses ordi-
nary classifier learners to classify entity mentions
by their semantic type. We show that this approach
outperforms a naive distant-supervision approach.
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2 DIEL: Distant IE Using Coordinate Lists

2.1 Corpus and KB

We consider extending the coverage of Free-
base in the medical domain, which is currently
fairly limited: e.g., a Freebase snapshot from
April 2014 has (after filtering noise with sim-
ple rules such as length greater than 60 char-
acters and containing comma) only 4,605 dis-
ease instances and 4,383 drug instances, whereas
dailymed.nlm.nih.gov contains data on
over 74k drugs, and malacards.org lists
nearly 10k diseases. We use a corpus down-
loaded from dailymed.nlm.nih.gov which
contains 28,590 XML documents, each of which
describes a drug that can be legally prescribed in
the United States. We focus here on extracting in-
stances of four semantic types, without explicitly
extracting relationships between them.

We used the GDep parser (Sagae and Tsujii,
2007), a dependency parser trained on the GENIA
Treebank, to parse this corpus. We used a simple
POS-tag based noun-phrase (NP) chunker, and ex-
tract a list for each coordinating conjunction that
modifies a nominal. For each NP we extract fea-
tures (described below); and for each identified
coordinate-term list, we extract its items, and a
similar feature set describing the list.

The extracted lists and their items, as well as
entity mentions and their corresponding NPs, can
be viewed as a bipartite graph, where one set of
vertices are identifiers for the lists and entity men-
tions, and the other set of vertices are the strings
that occur as items of those lists, or as NPs of those
mentions. Note that list items are also NPs. A
mention can be regarded as a singleton list that
contains only one item, and a list can be regarded
as a complexus mention that contains a few men-
tions. If an item is contained by a list, an edge
between the item vertex and the list vertex is in-
cluded in the graph. An example bipartite graph is
given in Figure 1, in which there are nine symp-
toms from three lists and three mentions. Some
symptoms are common, such as vomiting, while
some others are not, such as epigastric pain.

2.2 Label Propagation

It seems intuitive to assume that if two items co-
occur in a coordinate-term list, they are very likely
to have the same type, so it seems plausible to use
label propagation on this graph to propagate types
from NPs with known types (e.g., that match enti-

drowsiness

vomiting

list2
diarrhea

nausea

lethargy

epigastric_pain

list3

list1

watery_eyes

muscle_aches

goose_bumps

mention1

mention2

mention3

Figure 1: A bipartite graph example.

ties in the KB) to lists, and then from lists to NPs,
across this graph.

This can be viewed as semi-supervised learn-
ing (SSL) of the NPs that may denote a type (e.g.,
diseases or adverse effects). We adopt an exist-
ing multi-class label propagation method, namely,
MultiRankWalk (MRW) (Lin and Cohen, 2010),
to handle our task, which is a graph-based SSL
related to personalized PageRank (PPR) (Haveli-
wala et al., 2003) (aka random walk with restart
(Tong et al., 2006)). MRW can be described
as simply computing one personalized PageRank
vector for each class, where each vector is com-
puted using a personalization vector that is uni-
form over the seeds, and finally assigning to each
node the class associated with its highest-scoring
vector. MRW’s final scores depend on centrality of
nodes, as well as proximity to the seeds, and in this
respect MRW differs from other label propagation
methods (e.g., (Zhu et al., 2003)): in particular, it
will not assign identical scores to all seed exam-
ples. The MRW implementation we use is based
on ProPPR (Wang et al., 2013).

2.3 Classification

One could imagine using the output of MRW to
extend a KB directly. However, the process de-
scribed above cannot be used conveniently to la-
bel new documents as they appear. Since this is
also frequently a goal, we use the MRW output to
train a classifier, which can be then used to classify
the entity mentions (singleton lists) and coordinate
lists in any new document.

We use the same feature generator for both en-
tity mentions and lists. Shallow features include:
tokens in the NPs, and character prefixes/suffixes
of these tokens; tokens from the sentence contain-
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Run 1 2 3 4 5 6 7 8 9 10 Avg.
DIEL 0.418 0.390 0.404 0.420 0.400 0.397 0.404 0.403 0.409 0.404 0.405

DS-baseline 0.394 0.342 0.400 0.373 0.342 0.297 0.326 0.332 0.330 0.352 0.349
LP-baseline 0.167 0.167 0.162 0.155 0.150 0.159 0.157 0.165 0.167 0.167 0.162
Upper bound 0.617 0.616 0.615 0.619 0.620 0.614 0.618 0.617 0.615 0.618 0.617

Table 2: Recall on the held-out set.

ing the NP; and tokens and bigrams from a win-
dow around the NPs. From the dependence parse,
we also find the verb which is the closest ancestor
of the head of the NP, all modifiers of this verb,
and the path to this verb. For a list, the dependency
features are computed relative to the head of the
list. We used an SVM classifier (Chang and Lin,
2001) and discard singleton features, and also the
frequent 5% of all features (as a stop-wording vari-
ant). We train a binary classifier on the top N lists
(including entity mentions and coordinate lists) of
each type, as scored by MRW. A linear kernel and
defaults for all other parameters are used. If a new
list or mention is not classified as positive by all
binary classifiers, it is predicted as “other”.

3 Experimental Results

3.1 Results of Recovering KB

In this experiment, we examine the capability of
our approach in recovering KB type instances.
The targeted types are diseases, symptoms treated
and adverse effects (symptom for short), drugs,
and drug ingredients.

3.1.1 Baselines

We implemented a distant-supervision-based
baseline (DS-baseline). It attempts to classify
each NP in the input corpus into one of the four
types or “other” with the training seeds as distance
supervision. Each sentence is processed with the
same reprocessing pipeline to detect NPs. Then,
these NPs are labeled with the training seeds.
The features are defined and extracted in the
same way as we did for DIEL, and four binary
classifiers are trained with the same method.
Another baseline is developed with the output of
MRW LP (LP-baseline) that contains labeled lists
and mentions. Specifically, the labeled coordinate
lists are broken into items each of which has
the list class, and evaluation is conducted with
these items together with the labeled mentions as
positive predictions.

3.1.2 Settings
We extracted the seeds of these types from Free-
base, and got 4,605, 1,244, 4,383, and 4,066 in-
stances, respectively. The seeds are split into de-
velopment set and held-out evaluation set. The de-
velopment set is further split into a training set and
a validating set in the ratio of 4:1. The validating
set will be used in the next subsection to validate
different parameter settings, and the training set
is used in this experiment as MRW seeds and the
distant supervision of DS-baseline.

For getting the development set, the polyse-
mous instances (i.e., “headache”, belonging to
multiple classes: disease and symptom) are dis-
carded since such instances will bring in ambigu-
ity to the training examples of DS-baseline and
MRW LP. After that, we randomly take half of
the single-type instances as development set, and
the remaining single-type instances together with
the polysemous instances are used as held-out set.
We report the performance of 10 runs, and each
run has its own randomly generated training set
(containing 1,980 diseases, 310 symptoms, 1,066
drugs, and 911 ingredients on average) and held-
out set (containing 2,130 diseases, 857 symptoms,
3,051 drugs, and 2,927 ingredients on average).
For DS-baseline, 35,689 training examples are
collected on average for each run. For evaluation
metric, we calculate recall on the instances in the
held-out set.1

3.1.3 Results
DIEL can classify both NPs and coordinate lists,
and the lists are also broken into items for recall
calculation. The training examples of DIEL are
prepared with the top 20,000 lists of each type, as
scored by MRW with the training seeds. After re-
moving the multiple-class ones, we obtained, on
average, 58,614 training examples for each run.

The results are given in Table 2. DIEL out-
performs the baselines in all runs. It shows that

1Because the outputs contain many correct instances that
are not in Freebase, it is not suitable to calculate precision.
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2.5% 7.5% 12.5% 25% 50% 75% 100%
N P R P R P R P R P R P R P R

DIEL

1,000 0.581 0.119 0.680 0.150 0.706 0.154 0.754 0.216 0.768 0.277 0.749 0.308 0.769 0.331
2,000 0.587 0.168 0.675 0.183 0.705 0.192 0.746 0.245 0.760 0.292 0.747 0.317 0.777 0.347
4,000 0.551 0.205 0.661 0.225 0.682 0.254 0.726 0.295 0.763 0.334 0.763 0.356 0.766 0.375
6,000 0.500 0.205 0.636 0.244 0.650 0.281 0.680 0.314 0.757 0.362 0.758 0.380 0.768 0.392
8,000 0.518 0.219 0.615 0.251 0.641 0.300 0.662 0.331 0.727 0.393 0.764 0.407 0.762 0.409

10,000 0.520 0.219 0.610 0.260 0.643 0.309 0.664 0.349 0.708 0.406 0.753 0.436 0.765 0.429
20,000 0.520 0.216 0.590 0.277 0.634 0.335 0.661 0.375 0.688 0.435 0.723 0.473 0.746 0.494
30,000 0.520 0.216 0.584 0.284 0.624 0.341 0.649 0.392 0.688 0.454 0.717 0.486 0.737 0.496

LP-baseline 0.442 0.024 0.604 0.074 0.673 0.108 0.722 0.134 0.797 0.173 0.838 0.187 0.855 0.212
DS- Training NP# 678 2,442 5,983 9,831 18,230 27,549 35,689

baseline Performance 0.317 0.139 0.384 0.161 0.643 0.244 0.714 0.252 0.747 0.322 0.767 0.347 0.742 0.351

Table 4: The classification performance of the three methods with different parameters.

Type Disease Drug Ingredient Symptom
DIEL 0.369 0.312 0.489 0.555

DS-baseline 0.375 0.300 0.408 0.224
LP-baseline 0.185 0.101 0.117 0.453
Upper bound 0.445 0.652 0.700 0.697

Table 3: Recall on individual types.

our result is consistently better. The reason is
twofold. First, DIEL can avoid the effect of noisy
training data by disambiguation with the coordi-
nate relation in the list, so that the training exam-
ples are of high quality. Second, with label prop-
agation, we have a larger number of training ex-
amples, which helps the recall. Compared with
DS-baseline, DIEL’s performance is more stable
in different runs. It is because DS-baseline suffers
from the noisy training data and training seed sets
of different runs may bring in different levels of
noisy data. Thus, its run 3 achieves 0.400, while
run 6 only achieves 0.297. We also examined the
upper bound recall that a system can achieve on
our corpus. The results are given in the last row
of Table 2. On average, the best performance of a
system can achieve is 0.617.

The results for individual types are given in Ta-
ble 3. DIEL and DS-baseline achieve similar re-
sults for disease and drug. Especially, both sys-
tems cover more than 80% of the held-out dis-
ease instances that exist in the corpus. DS-baseline
performs poorly for symptom. The reason is that
symptom instances are more ambiguous than other
types, and they lead to more incorrectly-labeled
mention examples. LP-baseline achieves an en-
couraging recall for symptom, which shows that
coordinate lists are very helpful for disambiguat-
ing those symptom mentions.

3.2 Classification Results and Parameters

We present another experiment to examine the pre-
cision of the systems, and investigate the effect of
training size and top N numbers on the results.

3.2.1 Setting
The evaluation data is generated with the validat-
ing set of each run. Specifically, for DIEL and
LP-baseline, the evaluation data is prepared with
the top 500 lists (singleton and coordinate lists)
of each type, as scored by MRW with the validat-
ing instances as seeds. 2,000 testing examples are
collected in total since no multiple-class ones are
found. Manual checking on 200 random examples
shows that 99% of them are correct. The systems
are evaluated by their performance for classifying
these example lists. DIEL predicts the class of a
list with its feature vector, while LP-baseline de-
termines the class of a list by checking its pre-
dicted class in the result of MRW with the cor-
responding training instances as seeds. For DS-
baseline, the testing NP examples are obtained by
distant labeling with validating instances, and on
average 8,270 examples are collected for each run.

3.2.2 Results
The precision and recall are given in Table 4. For
each system, different portions of the training set
are used to train the system, as shown in the first
row. For DIEL, the top N number varies for gen-
erating training examples, as shown in the second
column. F1 values of DIEL with different settings
are given in Figure 2, and F1 comparison of three
systems is given in Figure 3. All results are the
average of 10 runs. Each run has its own ran-
domly generated development set, which is split
into training set and validating set.

In general, for all systems, larger number of
training seeds leads to better performance. For
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Figure 2: F1 values of DIEL under different settings.

DIEL, smaller N values achieve higher precision,
but lower recall. For smaller seed numbers, the
precision value is more sensitive to N. This is be-
cause the quality of training examples drops faster
compared with that from larger seed numbers. For
larger seeds numbers, the recall values are im-
proved more significantly when the N value is
larger. The reported results of DIEL in the pre-
vious experiment are obtained with top 20,000 ex-
amples from 100% seeds as training data, since
this setting achieves the highest F1 value as shown
in Figure 2.

For the DS-baseline, the number of training NPs
obtained with different portions of the training set
is given in the penultimate row. The recall val-
ues of this baseline are low. The reason is that it
only uses the training examples that are distantly
labeled with training seeds, thus, the trained clas-
sifier may not have good generalization on the test-
ing examples labeled with validating seeds. In ad-
dition, its performance is more sensitive on the
amount of training data. When the percentage
is lower than 25%, its precision and recall drop
significantly. Its F1 values are 0.381, 0.399 and
0.402 for 50%, 75%, and 100%, respectively. LP-
baseline achieves the highest precision when using
all training instances. It shows that MRW does
label the testing lists very accurately in condition
that the lists are traversed in the propagation with
the training instances as seeds. However, its recall
is much lower than DIEL. It is because, with the

0
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0.3
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0.5

0.6

2.5% 7.5% 12.5% 25% 50% 75% 100%

DIEL LP-baseline DS-baseline

Figure 3: F1 comparison under different portions
of the training seeds. For DIEL, top N = 20,000.

training seeds, MRW cannot effectively walk to
testing lists that are generated with the validating
set, having no intersection with the training set.

4 Conclusions

We explored an alternative approach to distant su-
pervision, based on detection of lists in text, to
overcome the weakness of distant supervision re-
sulted by noisy training data. It uses distant su-
pervision and label propagation to find mentions
that can be confidently labeled, and uses them
to train classifiers to label more entity mentions.
The experimental results show that this approach
consistently and significantly outperforms a naive
distant-supervision approach.
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Abstract

Automatic construction of knowledge
graphs (KGs) from unstructured text
has received considerable attention in
recent research, resulting in the con-
struction of several KGs with millions
of entities (nodes) and facts (edges)
among them. Unfortunately, such KGs
tend to be severely sparse in terms of
number of facts known for a given en-
tity, i.e., have low knowledge density.
For example, the NELL KG consists
of only 1.34 facts per entity. Unfor-
tunately, such low knowledge density
makes it challenging to use such KGs
in real-world applications. In contrast
to best-effort extraction paradigms fol-
lowed in the construction of such KGs,
in this paper we argue in favor of
ENTIty Centric Expansion (ENTICE),
an entity-centric KG population frame-
work, to alleviate the low knowledge
density problem in existing KGs. By
using ENTICE, we are able to increase
NELL’s knowledge density by a factor
of 7.7 at 75.5% accuracy. Additionally,
we are also able to extend the ontology
discovering new relations and entities.

1 Introduction

Over the last few years, automatic construc-
tion of knowledge graphs (KGs) from web-
scale text data has received considerable at-
tention, resulting in the construction of sev-
eral large KGs such as NELL (Mitchell et al.,
2015), Google’s Knowledge Vault (Dong et al.,
2014). These KGs consist of millions of en-
tities and facts involving them. While mea-
suring size of the KGs in terms of number of
entities and facts is helpful, they don’t read-
ily capture the volume of knowledge needed in

Known Target
Entity

New Target
Entity

Known
Relation

KR-KE KR-NE

New
Relation

NR-KE NR-NE

Table 1: Any new fact involving a source en-
tity from a Knowledge Graph (i.e., facts of the
form entity1-relation-entity2 where entity1 is
already in the KG) can be classified into one of
the four extraction classes shown above. Most
KG population techniques tend to focus on ex-
tracting facts of the KR-KE class. ENTICE,
the entity-centric approach proposed in this
paper, is able to extract facts of all four classes.

real-world applications. When such a KG is
used in an application, one is often interested
in known facts for a given entity, and not nec-
essarily the overall size of the KG. In particu-
lar, knowing the average number of facts per
entity is quite informative. We shall refer to
this as the knowledge density of the KG.

Low knowledge density (or high sparsity) in
automatically constructed KGs has been rec-
ognized in recent research (West et al., 2014).
For example, NELL KG has a knowledge den-
sity of 1.34. Such low knowledge density puts
significant limitations on the utility of these
KGs. Construction of such KGs tend to follow
a batch paradigm: the knowledge extraction
system makes a full pass over the text corpus
extracting whatever knowledge it finds, and fi-
nally aggregating all extractions into a graph.
Clearly, such best-effort extraction paradigm
has proved to be inadequate to address the low
knowledge density issue mentioned above. We
refer to such paradigm as best-effort since its
attention is divided equally among all possible
entities.

Recently, a few entity-centric methods have
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Figure 1: Dataflow and architecture and of ENTICE. See Section 3 for details.

been proposed to increase knowledge density
in KGs (Gardner et al., 2013; Gardner et
al., 2014). In contrast to the best-effort ap-
proaches mentioned above, these entity-centric
approaches aim at increasing knowledge den-
sity for a given entity. A new fact involving
the given entity can belong to one of the four
types shown in Table 1. Unfortunately, these
densifying techniques only aim at identifying
instances of known relations among entities al-
ready present in the KG, i.e., they fall in the
KR-KE type of Table 1.

In this paper we propose ENTIty Centric
Expansion (ENTICE), an entity-centric
knowledge densifying framework which, given
an entity, is capable of extracting facts be-
longing to all the four types shown in Table 1.
By using ENTICE, we are able to increase
NELL’s knowledge density by a factor of 7.71,
while achieving 75.4% accuracy. Our goal
here is to draw attention to the effectiveness
of entity-centric approaches with bigger scope
(i.e., covering all four extraction classes in
Table 1) towards improving knowledge den-
sity, and that even relatively straightforward
techniques can go a long way in alleviating
low knowledge density in existing state-of-
the-art KGs. ENTICE code is available at:
https://github.com/malllabiisc/entity-centric-

kb-pop

2 Related Work

Open Information Extraction (OIE) systems
(Yates et al., 2007; Fader et al., 2011; Schmitz
et al., 2012) aim at extracting textual triples of

1Measured with respect to the five categories exper-
imented with in the paper. See Section 4 for details.

the form noun phrase-predicate-noun phrase.
While such systems aim for extraction cover-
age, and because they operate in an ontology-
free setting, they don’t directly address the
problem of improving knowledge density in on-
tological KGs such as NELL. However, OIE
extractions provide a suitable starting point
which is exploited by ENTICE.

(Galárraga et al., 2014) addresses the prob-
lem of normalizing (or canonicalizing) OIE ex-
tractions which can be considered as one of the
components of ENTICE (see Section 3.3).

As previously mentioned, recent proposals
for improving density of KGs such as those re-
ported in (Gardner et al., 2013; Gardner et al.,
2014) focus on extracting facts of one of the
four extraction classes mentioned in Table 1,
viz., KR-KE. The KBP challenge (Surdeanu,
2013) also focuses on extracting facts while
keeping the relation set fixed, i.e., it addresses
the KR-KE and KR-NE extraction classes.

A method to improve knowledge density in
KGs by using search engine query logs and
a question answering system is presented in
(West et al., 2014). The proprietary nature of
datasets and tools used in this approach limits
its applicability in our setting.

ENTICE aims to improve knowledge den-
sity by extracting facts from all four extrac-
tion classes, i.e., for a given entity, it extracts
facts involving known relations, identifies po-
tentially new relations that might be relevant
for this entity, establishes such relations be-
tween the given entity and other known as
well as new entities – all in a single system.
While various parts of this problem have been
studied in isolation in the past, ENTICE is
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the first system to the best of our knowledge
that addresses the complete problem as a sin-
gle framework.

3 ENTIty Centric Expansion
(ENTICE)

Overall architecture and dataflow within EN-
TICE is shown in Figure 1. We describe each
of the components in the sections below.

3.1 Data Preprocessing

Given the source entity, documents relevant
to it are downloaded by issues queries against
Google. In order to make the query specific,
especially in case of ambiguous entities, a few
keywords are also added to the query. For the
experiments in this paper, the category is used
as the keyword. For example, for the entity Al-
bert Einstein from the scientist category, the
query will be ”Albert Einstein scientist”. Top
20 documents returned by the search engine
are downloaded and processed further. Text
is extracted from the raw downloaded docu-
ments using regex patters, HTML tag match-
ing, and by using the Boilerpipe tool2.

3.2 Triple Extraction

Text of each document obtained in the pre-
vious step is processed through the Stanford
CoreNLP toolkit (Manning et al., 2014) for
tokenization, coreference resolution, and de-
pendency parsing. Tokenized and coreference-
resolved sentences are then passes through
OpenIEv4 system 3 to extract (noun phrase,
predicate, noun phrase) triples. Multiple and
overlapping triples from the sentence was per-
mitted. Length filter is applied on the noun
phrase and the predicate of the triple ex-
tracted. This eliminates triples whose predi-
cate is more than 6 tokens and noun phrase
more than 7 tokens.

3.3 Noun and Relation Phrase
Normalization

Noun phrases (NPs) and relation phrases ob-
tained from the previous step are normalized
(or canonicalized) in this step. Canopy clus-
tering technique as proposed in (Galárraga et
al., 2014) was used for noun phrase as well re-
lation phrase clustering. Initial clustering is

2Boilerpipe: http://code.google.com/p/boilerpipe
3OpenIEv4: http://knowitall.github.io/openie/

done over the unlinked noun phrases in the
triples. Please note that since we are working
in an entity-centric manner, one of the two
NPs present in the triple is already connected
to the knowledge graph, and hence is consid-
ered linked. To cluster noun phrases, we first
construct canopies corresponding to each word
in the noun phrase. For example, for noun
phrase Albert Einstein, we create two canopies,
viz., a canopy for Albert and another canopy
for Einstein, and add Albert Einstein to both
canopies. Grouping of noun phrases inside the
canopy is the next step of clustering phase.
Noun phrase similarity is calculated based on
similarity of words in the noun phrases. Word
similarity is either direct string matching or
Gensim similarity score4, which internally uses
word2vec embeddings (Mikolov et al., 2013).
After calculating pairwise similarity of noun
phrases, hierarchical clustering is carried out
to group noun phrases inside each canopy. A
threshold score is used to stop hierarchical
clustering. At the end of this process, we have
canopies and groups of noun phrases inside
them. A noun phrase can be in more than one
canopy, hence those groups across canopies are
merged if the similarity is greater than certain
threshold. After this, each group will contain
facts which have similar noun phrases and dif-
ferent (or same) relation phrase. Again the
facts are clustered based on the similarity of
the relation phrase. Relation phrase similar-
ity calculation step resembles the one used for
noun phrases as described above.

After this triple clustering step, the best
representative triple from each cluster is se-
lected based on a few rules. We consider
the structure of POS tags in noun phrases of
a triple as one of the criteria. Secondly, if
both noun phrases in the triple are linked to
the knowledge graph, then it makes the triple
more likely to become a representative tuple
of the cluster. Also, if the NPs present in the
triple are frequent in the cluster, then it makes
the corresponding triple more like to become
a representative.

4https://github.com/piskvorky/gensim/
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Category Knowledge
Density in
NELL

Knowledge
Density after
ENTICE

# Facts
Evaluated

# Correct
Facts

Accuracy

Scientist 1.27 18.5 164 141 85.97

Universities 1.17 9 197 141 71.57

Books 1.34 4.49 202 165 81.68

Birds 1.27 6.69 194 136 70.10

Cars 1.5 11.61 201 140 69.65

Overall 1.3 10.05 958 723 75.46

Table 2: Knowledge densities of five categories in NELL and after application of ENTICE, along
with resulting accuracy. We observe that overall, ENTICE is able to increase knowledge density
by a factor of 7.7 at 75.5% accuracy. This is our main result.

Entity Name All facts in NELL Sample facts extracted by EN-
TICE

Extraction
Class

George Paget
Thomson

(George Paget Thomson, isIn-
stanceOf, scientist)

(Sir George Thomson, isFellowOf,
Royal Society)

NR-KE

(George Thomson, hasSpouse, Kath-
leen Buchanan Smith)

KR-NE

(George Paget Thomson, diedOn,
September 10)

KR-KE

Table 3: Facts corresponding to an entity from the scientists domain in NELL as well as those
extracted by ENTICE. While NELL contained only one fact for this entity, ENTICE was able
to extract 15 facts for this entity, only 3 of which are shown above.
Category KR - KE KR - NE NR - KE NR - NE

correct
facts

wrong
facts

acc. correct
facts

wrong
facts

acc. correct
facts

wrong
facts

acc. correct
facts

wrong
facts

acc.

Scientists 57 10 85.07 61 8 88.40 14 3 82.35 9 2 81.81

Cars 68 35 66.01 58 21 73.41 9 5 64.28 5 0 100

Universities 52 30 63.41 68 20 77.27 9 2 81.81 12 4 75

Books 78 24 76.47 79 12 86.81 2 0 100 6 1 85.71

Birds 67 29 69.79 46 19 70.76 15 4 78.94 8 6 57.14

Overall 322 128 71.55 312 80 79.59 49 14 77.77 40 13 75.47

Table 4: Accuracy breakdown over ENTICE extractions for each of the four extraction classes
in Table 1. For each category, approximately 200 extractions were evaluated using Mechanical
Turk.

3.4 Integrating with Knowledge
Graph

The set of normalized triples from the pre-
vious step are linked with the Knowledge
Graph, whenever possible, in this step. For
a given normalized triple, following steps are
performed as part of linking. First, category
of each noun phrase in the triple is obtained
based on string matching. In case of no match,
refinements like dropping of adjectives, con-
sidering only noun phrases are done to for re-
matching. Now, the relation phrase is mapped
to an existing predicate in the KG based on
the extraction patterns in the metadata of the
target relation (e.g., NELL and many other
KGs have such metadata available). Can-

didate predicates are chosen from the above
mapped predicates based on category signa-
ture of the two noun phrases (i.e. entity1 and
entity2). This is possible since the all the pred-
icates in NELL have the type signature defined
in the metadata. Frequency of the relation
phrase in the metadata is used as a criteria to
select a candidate from multiple predicates. If
such category-signature based mapping is not
possible, then the predicate is listed as a new
relation, and the corresponding triple marked
to belong to either NR-KE or NE-NE extrac-
tion class, depending on whether the target
entity is already present in the KG or not.
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4 Experiments

In order to evaluate effectiveness of ENTICE,
we apply it to increase knowledge density for
100 randomly selected entities from each of the
following five NELL categories: Scientist, Uni-
versities, Books, Birds, and Cars. For each
category, a random subset of extractions in
that category was evaluated using Mechanical
Turk. To get a better accuracy of the eval-
uation, each fact was evaluated by 3 workers.
Workers were made to classify each fact as cor-
rect, incorrect or can’t say. Only those facts
classified as correct by 2 or more evaluators
were considered as correct facts.

Main Result: Experimental results com-
paring knowledge densities in NELL and after
application of ENTICE, along with the accu-
racy of extractions, are presented in Table 2.
From this, we observe that ENTICE is able to
improve knowledge density in NELL by a fac-
tor of 7.7 while maintaining 75.5% accuracy.
Sample extraction examples and accuracy per-
extraction class are presented in Table 3 and
Table 4, respectively.

Noun and Relation Phrase Normaliza-
tion: We didn’t perform any intrinsic eval-
uation of the entity and relation normaliza-
tion step. However, in this section, we pro-
vide a few anecdotal examples to give a sense
of the output quality from this step. We ob-
serve that the canopy clustering algorithm for
entity and normalization is able to cluster to-
gether facts with somewhat different surface
representations. For example, the algorithm
came up with the following cluster with two
facts: {(J. Willard Milnor, was awarded,
2011 Abel Prize); (John Milnor, received, Abel
Prize)}. It is encouraging to see that the sys-
tem is able to put J. Willard Milnor and John
Milnor together, even though they have some-
what different surface forms (only one word
overlap). Similarly, the relation phrases was
awarded and received are also considered to
be equivalent in the context of these beliefs.

Integrating with Knowledge Graph:
Based on evaluation over a random-sampling,
we find that entity linking in ENTICE is 92%
accurate, while relation linking is about 70%
accurate.

In the entity linking stage, adjectives
present in a noun phrase (NP) were ignored

while matching the noun phrase to entities in
the knowledge graph (NELL KB in this case).
In case the whole NP didn’t find any match,
part of the NP was used to retrieve its cat-
egory, if any. For example, in (Georg Walde-
mar Cantor, was born in, 1854), the NP Georg
Waldemar Cantor was mapped to category
person using his last name and 1854 to cat-
egory date. The relation phrase ”was born
in” maps to many predicates in NELL rela-
tional metadata. NELL predicate AtDate was
selected based on the rule that category sig-
nature of the predicate matches the category
of the noun phrases present in the triple. It
also has the highest frequency count for the
relational phrase in the metadata.

We observed that relation mapping has
lesser accuracy due to two reasons. Firstly,
error in determining right categories of NPs
present in a triple; and secondly, due to
higher ambiguity involving relation phrases in
general, i.e., a single relation phrase usually
matches many relation predicates in the on-
tology.

5 Conclusion

This paper presents ENTICE, a simple but
effective entity-centric framework for increas-
ing knowledge densities in automatically con-
structed knowledge graphs. We find that EN-
TICE is able to significantly increase NELL’s
knowledge density by a factor of 7.7 at 75.5%
accuracy. In addition to extracting new facts,
ENTICE is also able to extend the ontol-
ogy. Our goal in this paper is twofold: (1)
to draw attention to the effectiveness of entity-
centric approaches with bigger scope (i.e., cov-
ering all four extraction classes in Table 1) to-
wards improving knowledge density; and (2)
to demonstrate that even relatively straight-
forward techniques can go a long way in allevi-
ating low knowledge density in existing state-
of- the-art KGs. While these initial results are
encouraging, we hope to apply ENTICE on
other knowledge graphs, and also experiment
with other normalization and entity linking al-
gorithms as part of future work.
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Abstract

Syntactic features play an essential role in
identifying relationship in a sentence. Pre-
vious neural network models directly work
on raw word sequences or constituent
parse trees, thus often suffer from irrele-
vant information introduced when subjects
and objects are in a long distance. In this
paper, we propose to learn more robust re-
lation representations from shortest depen-
dency paths through a convolution neu-
ral network. We further take the relation
directionality into account and propose a
straightforward negative sampling strategy
to improve the assignment of subjects and
objects. Experimental results show that
our method outperforms the state-of-the-
art approaches on the SemEval-2010 Task
8 dataset.

1 Introduction

The relation extraction (RE) task can be defined as
follows: given a sentence S with a pair of nomi-
nals e1 and e2, we aim to identify the relationship
between e1 and e2. RE is typically investigated
in a classification style, where many features have
been proposed, e.g., Hendrickx et al. (2010) de-
signed 16 types of features including POS, Word-
Net, FrameNet, dependency parse features, etc.
Among them, syntactic features are considered to
bring significant improvements in extraction accu-
racy (Bunescu and Mooney, 2005a). Earlier at-
tempts to encode syntactic information are mainly
kernel-based methods, such as the convolution tree
kernel (Qian et al., 2008), subsequence kernel
(Bunescu and Mooney, 2005b), and dependency
tree kernel (Bunescu and Mooney, 2005a).

With the recent success of neural networks in
natural language processing, different neural net-
work models are proposed to learn syntactic fea-
tures from raw sequences of words or constituent

parse trees (Zeng et al., 2014; Socher et al., 2012),
which have been proved effective, but, often suf-
fer from irrelevant subsequences or clauses, espe-
cially when subjects and objects are in a longer
distance. For example, in the sentence, “The
[singer]e1 , who performed three of the nominated
songs, also caused a [commotion]e2 on the red
carpet”, the who clause is used to modify subject
e1, but is unrelated to the Cause-Effect relation-
ship between singer and commotion. Incorporat-
ing such information into the model will hurt the
extraction performance. We therefore propose to
learn a more robust relation representation from
a convolution neural network (CNN) model that
works on the simple dependency path between
subjects and objects, which naturally characterizes
the relationship between two nominals and avoids
negative effects from other irrelevant chunks or
clauses.

Our second contribution is the introduction of
a negative sampling strategy into the CNN mod-
els to address the relation directionality, i.e., prop-
erly assigning the subject and object within a re-
lationship. In the above singer example, (singer,
commotion) hold the Cause-Effect relation, while
(commotion, singer) not. Previous works (Liu
et al., 2015) do not fully investigate the differ-
ences between subjects and objects in the utter-
ance, and simply transform a (K+1)-relation task
into a (2×K+1) classification task, where 1 is the
other relation. Interestingly, we find that depen-
dency paths naturally offer the relative positions
of subjects and objects through the path directions.
In this paper, we propose to model the relation di-
rectionality by exploiting the dependency path to
learn the assignments of subjects and objects us-
ing a straightforward negative sampling method,
which adopts the shortest dependency path from
the object to the subject as a negative sample. Ex-
perimental results show that the negative sampling
method significantly improves the performance,
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and our model outperforms the-state-of-the-art
methods on the SemEval-2010 Task 8 dataset.

2 The Shortest Path Hypothesis

If e1 and e2 are two nominals mentioned in the
same sentence, we assume that the shortest path
between e1 and e2 describes their relationship.
This is because (1) if e1 and e2 are arguments of
the same predicate, then their shortest path should
pass through that predicate; (2) if e1 and e2 belong
to different predicate-argument structures, their
shortest path will pass through a sequence of pred-
icates, and any consecutive predicates will share
a common argument. Note that, the order of the
predicates on the path indicates the proper assign-
ments of subjects and objects for that relation. For
example, in Figure 1, the dependency path consec-
utively passes through carried and receives, which
together implies that in the Instrument-Agency re-
lation, the subject and object play a sender and re-
ceiver role, respectively.

burst by pressure 

max pooling

tanh(W2 x     )

W3 x       

W1 x       

Input 

Lookup Table 

Convolution

Dependency Feature

Output

Window Processing 

nsubjpass prep dobj 

Hidden layer 1

Hidden layer 2

caused 

Figure 2: Architecture of the convolution neural
network.

3 A Convolutional Neural Network
Model

Our model successively takes the shortest depen-
dency path (i.e, the words, dependency edge direc-
tions, and dependency labels) from the subject to
the object as input, passes it through the lookup

table layer, produces local features around each
node on the dependency path, and combines these
features into a global feature vector that are then
fed to a softmax classifier. Each dimension of the
output vector indicates the confidence score of the
corresponding relation.

In the lookup table step, each node (i.e. word,
label or arrow) in the dependency path is trans-
formed into a vector by looking up the embedding
matrix We ∈ Rd×|V|, where d is the dimension of
a vector and V is a set of all nodes we consider.

Convolution To capture the local features
around each node of the dependency path, we con-
sider a fixed size window of nodes around each
node in the window processing component, pro-
ducing a matrix of node features of fixed size
dw × 1, where dw = d × w and w is the window
size. This matrix can be built by concatenating
the vectors of nodes within the window, which are
then fed to the convolutional layer.

In the convolutional layer, we use a linear trans-
formation W1 ∈ Rn1×dw to extract local features
around each window of the given sequence, where
n1 is the size of hidden layer 1. The resulting ma-
trix Z has size of n1 × t, where t is the number of
nodes in the input dependency path.

We can see that Z captures local contextual in-
formation in the dependency path. However, iden-
tifying a relationship requires considerations for
the whole dependency path. We therefore perform
a max pooling over Z to produce a global feature
vector in order to capture the most useful local
features produced by the convolutional layer (Col-
lobert et al., 2011), which has a fixed size of n1,
independent of the dependency path length.

Dependency based Relation Representation
To extract more meaningful features, we choose
hyperbolic tanh as the non-linearity function in the
second hidden layer, which has the advantage of
being slightly cheaper to compute, while leaving
the generalization performance unchanged. W2 ∈
Rn2×n1 is the linear transformation matrix, where
n2 is the size of hidden layer 2. The output vec-
tor can be considered as higher level syntactic fea-
tures, which is then fed to a softmax classifier.

Objective Function and Learning The softmax
classifier is used to predict a K-class distribution
d(x), where K is the size of all possible rela-
tion types, and the transformation matrix is W3 ∈
RK×n2 . We denote t(x) ∈ RK×1 as the target
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receiver recipientInstrument-Agency receiver carried radio through 

The recipient receives the call through a miniature radio receiver carried on his person

receives recipient 

Figure 1: The shortest dependency path representation for an example sentence from SemEval-08.

Train Strategy Test Strategy F1(%)
Blind Blind 79.3

Sighted Blind 81.3
Sighted Sighted 89.2

Table 1: Performances on the development set
with different train and testing strategies.

distribution vector1: the entry tk(x) is the proba-
bility that the dependency path describes the k-th
relation. We compute the cross entropy error be-
tween t(x) and d(x), and further define the objec-
tive function over all training data:

J(θ) = −
∑
x

K∑
k=1

tk(x) log dk(x) + λ||θ||2

where θ = (We,W1,W2,W3) is the set of model
parameters to be learned, and λ is a vector of reg-
ularization parameters. The model parameters θ
can be efficiently computed via backpropagation
through network structures. To minimize J(θ),
we apply stochastic gradient descent (SGD) with
AdaGrad (Duchi et al., 2011) in our experiments.

4 Negative Sampling

We start by presenting three pilot experiments on
the development set. In the first one, we assume
that the assignment of the subject and object for
a relation is not given (blind), we simply extract
features from e1 to e2, and test it in a blind set-
ting as well. In the second one, we assume that
the assignment is given (sighted) during training,
but still blind in the test phase. The last one is as-
sumed to give the assignment during both training
and test steps. The results are listed in Table 1.

The third experiment can be seen as an upper
bound, where we do not need to worry about the
assignments of subjects and objects. By com-
paring the first and the second one, we can see
that when adding assignment information during
training, our model can be significantly improved,

1Note that, there may be more than one relation existing
between two nominals. A dependency path thus may corre-
spond to multiple relations.

indicating that our dependency based representa-
tion can be used to learn the assignments of sub-
jects/objects, and injecting better understandings
of such assignments during training is crucial to
the performance. We admit that models with more
complex structures can better handle these con-
siderations. However, we find that this can be
achieved by simply feeding typical negative sam-
ples to the model and let the model learn from such
negative examples to correctly choose the right as-
signments of subjects and objects. In practice, we
can treat the opposite assignments of subjects and
the objects as negative examples. Note that, the
dependency path of the wrong assignment is dif-
ferent from that of the correct assignment, which
essentially offers the information for the model to
learn to distinguish the subject and the object.

5 Experimental Evaluation

We evaluate our model on the SemEval-2010 Task
8 (Hendrickx et al., 2010), which contains 10,717
annotated examples, including 8,000 instances for
training and 2,717 for test. We randomly sampled
2,182 samples from the training data for valida-
tion.

Given a sentence, we first find the shortest de-
pendency path connecting two marked nominals,
resulting in two dependency paths corresponding
to two opposite subject/object directions, and then
make predictions for the two paths, respectively.
We choose the relation other if and only if both
predictions are other. And for the rest cases, we
choose the non-other relation with highest confi-
dence as the output, since ideally, for a non-other
instance, our model will output the correct label
for the right subject/object direction and an other
label for the wrong direction. We evaluate our
models by macro-averaged F1 using the official
evaluation script.

We initialized We with 50-dimensional word
vectors trained by Turian et al. (2010). We tuned
the hyper parameters using the development set for
each experimental setting. The hyper parameters
include w, n1, n2, and regularization parameters
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Method Feature Sets F1
SVM 16 types of features 82.2
RNN - 74.8

+POS, NER, WordNet 77.6
MVRNN - 79.1

+POS, NER, WordNet 82.4
CNN - 78.9
(Zeng et al., 2014) +WordNet,words around nominals 82.7
DepNN +NER 83.6
depCNN - 81.3
depLCNN - 81.9
depLCNN +WordNet,words around nominals 83.7
depLCNN+NS - 84.0

+WordNet,words around nominals 85.6

Table 2: Comparisons of our models with other
methods on the SemEval 2010 task 8.

Negative sampling schemes F1
No negative examples 81.3
Randomly sampled negative examples from NYT 83.5
Dependency paths from the object to subject 85.4

Table 3: Comparisons of different negtive sam-
pling methods on the development set.

for We, W1, W2 and W3. The best setting was ob-
tained with the values: 3, 200, 100, 10−4, 10−3,
10−4 and 2× 10−3, respectively.

Results and Discussion Table 2 summarizes the
performances of our model, depLCNN+NS(+),
and state-of-the-art models, SVM (Hendrickx et
al., 2010), RNN, MV-RNN (Socher et al., 2012),
CNN (Zeng et al., 2014) and DepNN (Liu et al.,
2015). For fair comparisons, we also add two
types of lexical features, WordNet hypernyms and
words around nominals, as part of input vector to
the final softmax layer.

We can see that our vanilla depLCNN+NS,
without extra lexical features, still outperforms, by
a large margin, previously reported best systems,
MVRNN+ and CNN+, both of which have taken
extra lexical features into account, showing that
our treatment to dependency path can learn a ro-
bust and effective relation representation. When
augmented with similar lexical features, our de-
pLCNN+NS further improves by 1.6%, signifi-
cantly better than any other systems.

Let us first see the comparisons among plain
versions of depLCNN (taking both dependency di-
rections and labels into account), depCNN (con-
sidering the directions of dependency edges only),
MVRNN and CNN, which all work in a 2×K+1
fashion. We can see that the both of our depCNN
and depLCNN outperforms MVRNN and CNN by
at least 2.2%, indicating that our treatment is better

than previous conventions in capturing syntactic
structures for relation extraction. And note that de-
pLCNN, with extra considerations for dependency
labels, performs even better than depCNN, show-
ing that dependency labels offer more discrimina-
tive information that benefits the relation extrac-
tion task.

And when we compare plain depLCNN and
depLCNN+NS (without lexical features), we can
see that our Negative Sampling strategy brings an
improvement of 2.1% in F1. When both of the
two models are augmented with extra lexical fea-
tures, our NS strategy still gives an improvement
of 1.9%. These comparisons further show that our
NS strategy can drive our model to learn proper
assignments of subjects/objects for a relation.

Next, we will have a close look at the effect
of our Negative Sampling method. We conduct
additional experiments on the development set to
compare two different negative sampling methods.
As a baseline, we randomly sampled 8,000 nega-
tive examples from the NYT dataset (Chen et al.,
2014). For our proposed NS, we create a nega-
tive example from each non-other instance in the
training set, 6,586 in total. As shown in Table 2,
it is no doubt that introducing more negative ex-
amples improves the performances. We can see
that our model still benefits from the randomly
sampled negative examples, which may help our
model learn to refine the margin between the pos-
itive and negative examples. However, with sim-
ilar amount of negative examples, treating the re-
versed dependency paths from objects to subjects
as negative examples can achieve a better perfor-
mance (85.4% F1), improving random samples by
1.9%. This again proves that dependency paths
provide useful clues to reveal the assignments of
subjects and objects, and a model can learn from
such reversed paths as negative examples to make
correct assignments. Beyond the relation extrac-
tion task, we believed the proposed Negative Sam-
pling method has the potential to benefit other
NLP tasks, which we leave for future work.

6 Conclusion

In this paper, we exploit a convolution neural net-
work model to learn more robust and effective re-
lation representations from shortest dependency
paths for relation extraction. We further pro-
pose a simple negative sampling method to help
make correct assignments for subjects and objects
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within a relationship. Experimental results show
that our model significantly outperforms state-of-
the-art systems and our treatment to dependency
paths can well capture the syntactic features for
relation extraction.
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Abstract

Temporal taggers are usually developed
for a certain language. Besides English,
only few languages have been addressed,
and only the temporal tagger HeidelTime
covers several languages. While this
tool was manually extended to these lan-
guages, there have been earlier approaches
for automatic extensions to a single tar-
get language. In this paper, we present an
approach to extend HeidelTime to all lan-
guages in the world. Our evaluation shows
promising results, in particular consider-
ing that our approach neither requires lan-
guage skills nor training data, but results
in a baseline tagger for 200+ languages.

1 Introduction & Related Work

Temporal tagging (the extraction and normaliza-
tion of temporal expressions) is a crucial task in
NLP, and many applications can benefit from tem-
poral information, e.g., in the context of question
answering and information retrieval (Campos et
al., 2014). Thus, there has been a lot of research
during the last years addressing temporal infor-
mation extraction, as reflected by manually an-
notated corpora, approaches to temporal tagging,
and research challenges such as the TempEval se-
ries (Verhagen et al., 2010; UzZaman et al., 2013).

While, in the meantime, the range of anno-
tated corpora covers several languages different
from English, e.g., the French, Portuguese, Ital-
ian, and Romanian TimeBank corpora (Bittar et
al., 2011; Costa and Branco, 2012; Caselli et al.,
2011; Forascu and Tufis, 2012), most approaches
to temporal tagging focus on processing English
text, e.g., DANTE (Mazur and Dale, 2009; Mazur,
2012) and SUTime (Chang and Manning, 2012).
Of course, exceptions exist, e.g., TipSem for En-
glish and Spanish (Llorens et al., 2010), and Hei-
delTime (Strötgen and Gertz, 2013) even covers

13 languages. However, it required a lot of man-
ual effort to extend HeidelTime, and researchers
of different institutes and countries have been in-
volved for German (Strötgen and Gertz, 2011),
Dutch (van de Camp and Christiansen, 2012),
Spanish (Strötgen et al., 2013), French (Moriceau
and Tannier, 2014), Croatian (Skukan et al., 2014),
Vietnamese and Arabic (Strötgen et al., 2014),
Italian (Manfredi et al., 2014), Chinese (Li et al.,
2014), Russian, Estonian, and Portuguese.

Obviously, it is possible to manually extend
HeidelTime and thus a temporal tagger in general.
However, each language is typically addressed
separately, and the extension process is time- and
labor-intensive, so that a method to automate this
process is desirable. While there have been earlier
approaches for automatic extensions of temporal
taggers to further languages (Saquete et al., 2004;
Negri et al., 2006; Spreyer and Frank, 2008), these
were limited to a few languages and the results
were considered less successful, in particular for
the normalization subtask. In contrast, Angeli
and Uszkoreit (2013) presented an approach to
language-independent parsing of temporal expres-
sions, however, addressing only the normalization
and not the extraction subtask.

In this paper, we re-address the task of automat-
ically extending a temporal tagger to further lan-
guages. In contrast to previous work, we address
both subtasks of temporal tagging, i.e., the extrac-
tion and the normalization, and we do not limit our
work to a few selected languages, but we aim at
extending HeidelTime to cover all languages in the
world. In addition of making use of automatic pat-
tern translations based on Wiktionary,1 we allow
for fuzzy matching in the newly addressed lan-
guages. This strategy results in promising tempo-
ral tagging quality for many languages, although
our evaluations show that the quality of a manu-
ally extended temporal tagger is not reached, and

1http://www.wiktionary.org/.
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that there are open issues that need to be addressed
for specific language characteristics.

By making our newly developed resources pub-
licly available, we establish a baseline temporal
tagger for basically all languages in the world – for
comparison or as starting point for improvements.

2 HeidelTime

HeidelTime is a rule-based, domain-sensitive, and
publicly available temporal tagger that was de-
veloped with multilinguality in mind so that the
source code and language-dependent resources
are strictly separated, and it can be extended
to new languages without modifying its source
code (Strötgen and Gertz, 2013).

2.1 Input and Output Format

As input, HeidelTime requires linguistic prepro-
cessed documents with sentence, token, and part-
of-speech (pos) information – although it is possi-
ble to create language resources not making use of
pos constraints. For processing news-style docu-
ments, a publication date is additionally needed.

Temporal expressions are annotated following
the temporal markup language TimeML (Puste-
jovsky et al., 2005) using TIMEX3 tags with nor-
malization attributes, most importantly type (date,
time, duration, set) and value to represent the main
semantics of expressions in standard format.

2.2 Language-dependent Resources

Each language requires its own language resources
consisting of patterns, normalization information
and rules. Pattern files contain terms that are fre-
quently used to form temporal expressions, e.g.,
for names of months and weekdays or numbers
that may refer to a day or year. Regular expres-
sions can be used in the pattern files, and each pat-
tern file is interpreted as a regular expression pat-
tern, which can be called by HeidelTime’s rules.

Normalization files contain normalized infor-
mation for patterns defined in the pattern files, e.g.,
that the value of “January” is “01” and that “3” has
to be normalized to “03” in case it refers to a day
or a month and to “3” in case it refers to a duration.

Finally, for the four types of temporal expres-
sions (date, time, duration, and set), a rule file con-
tains all rules for respective expressions. In ad-
dition to a rule name, the extraction part and the
value normalization part are obligatory. The for-
mer is a regular expression that may contain any

number of references to pattern files, and in the lat-
ter, normalization functions are called to normal-
ize respective parts of the extracted expressions. In
addition, part-of-speech constraints can be spec-
ified, negative rules can be formulated, and off-
set information can be set, e.g., if parts of the ex-
tracted patterns are required context information
during the extraction process but not part of the
temporal expression itself.2

2.3 Manual Extension to a New Language

So far, HeidelTime resources for newly supported
languages have been manually created (cf. refer-
ences is Section 1). For this, the following steps
had to be completed: (i) linguistic preprocessing
for the new language has been provided, (ii) all
patterns in the pattern and normalization files have
been manually translated, and (iii) rules have been
developed iteratively. Starting with simple rules
of the source language (typically English), rules
have been adapted and added based on false nega-
tives, false positives, partial matches and incorrect
value normalizations on the training data for the
new language. Then, more complex rules of the
source language have been addressed step-by-step.

Note that tasks (ii) and (iii) have been carried
out by language experts, and task (iii) was per-
formed until no further improvements could be
achieved on the training data. In addition to the
fact that this process is time- and labor inten-
sive, further disadvantages are that a language ex-
pert and temporally annotated training data are re-
quired. Finally, languages are typically addressed
by different researchers with differing effort so
that quality and completeness varies.

3 Automatic Extension to All Languages

In this section, we present the steps of our auto-
matic extension approach in detail. A graphical
summary of our approach is depicted in Figure 1.

3.1 Linguistic Preprocessing

While part-of-speech (pos) information can be
helpful to write more general rules and to improve
temporal tagging quality, there is no pos tagger
covering all languages in the world. In addition,

2While these explanations are necessary to understand
our automated resource development approach that will
be presented in Section 3, for further details about Hei-
delTime and its language-dependent resources we refer
to Strötgen and Gertz (2013) and https://github.
com/HeidelTime/heideltime.
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B: simplified English normalization resources, e.g.,

Wiktionary    

// normMonthLong
''January'',''01''
''February'',''02''
... // Spanish

// reMonthLong
// Spanish
// normMonthLong

February

January

January
translation table {
Spanish: enero
…
}

(iii) get               
pages             

// Spanish
// reMonthLong
// ''January'',''01''
[Ee]nero
...

// Spanish
// normMonthLong
// ''January'',''01''
''[Ee]nero'',''01''
...

(i) for each language, e.g., Spanish, create pattern and normalization files

              (iv) extract translations and fill pattern and normalization files                                                                      

C: language-independent rules

final
language
resources

for all
languages

A: language-independent pattern and normalization files

(ii) extract                     
patterns                     

Figure 1: Graphical overview of the automated resource development process. Resources A and C are
directly added to the resources of all languages; resource B is processed following steps (i) to (iv).

the only obligatory linguistic preprocessing steps
are sentence splitting and tokenization. Thus, we
write a simple and generic, language-independent
sentence splitter and tokenizer, which we use for
all languages. Note that our tokenization is based
on a white-space token boundary assumption so
that we have to take care of languages without
such token boundaries separately (cf. Section 4).

3.2 Language-independent Resources
Some patterns and normalization information are
valid for all (many) languages, e.g., numbers for
days and months. For such patterns, we write
language-independent pattern and normalization
resources (Figure 1, A). These do not contain
language-dependent terms and will be part of the
resources for each of the languages in the world.

3.3 Simplified English Resources
The main goal of the simplified English resources
is to make HeidelTime’s original English re-
sources amenable to automatic translation. Thus,
rules are addressed in a language-independent
fashion (cf. Section 3.4), and the simplified En-
glish resources (Figure 1, B) are written as normal-
ization files, from which pattern and normalization
files for all languages are derived (Figure 1, i-iv).

For terms directly occurring in English rules,
new pattern files are created, and all English
patterns are written without regular expressions.
While this makes the resources longer (original
patterns with regular expressions are expanded to
many patterns), these simplified resources are nec-
essary for a smooth translation process.

3.4 Language-independent Rules
Based on HeidelTime’s English resources, we also
write completely language-independent rules for
date, time, duration, and set expressions. In addi-
tion, we add “creative” rules that are not necessary
for English expressions but might match expres-
sions in other languages. In particular, we allow
several orderings of patterns and sometimes even
random tokens in between. For instance, instead
of just a “month day” pattern (e.g., to match “Jan-
uary 13”), we add “day month”, “day X month”
and “month X day”, with “X” matching any token
(e.g., for the Spanish translation “13 de enero”).

In the extraction and normalization parts of the
rules, we refer to the names of the language-
independent and simplified English pattern and
normalization files. Note that in contrast to the
original rules, these rules do neither contain pos
constraints nor any English terms to guarantee
language independence. However, fuzzy pattern
matching is allowed at the end of some patterns to
try to take care of morphology-rich languages.

3.5 Creating Resources for All Languages
As shown in Figure 1, the patterns of the sim-
plified English resources are translated to all lan-
guages in the world using Wiktionary as transla-
tion resource. For each normalization file, the re-
spective pattern and normalization files for each
language in Wiktionary are created (i).3 Then,

3Note that Wiktionary exists in about 170 lan-
guages but contains translations to many more languages;
for details, see http://en.wiktionary.org/wiki/
Wiktionary:Statistics.
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HeidelTime 1.9 (manual) HeidelTime – automatic
relaxed extr value relaxed extr value

language: corpus / domain P R F1 F1 acc. P R F1 F1 acc.
English: TE-3 TimeBank / news (UzZaman et al., 2013) 93.1 90.8 91.9 79.6 86.5 95.6 49.2 64.9 54.7 84.3
English: TE-3 platinum / news (UzZaman et al., 2013) 93.1 88.4 90.7 78.1 86.1 98.7 56.5 71.9 54.4 75.7
English: WikiWars / narrative (Mazur and Dale, 2010) 98.3 86.1 91.8 83.1 90.5 97.9 58.4 73.2 53.4 73.0
Arabic: Arabic test-50* / news (Strötgen et al., 2014) 90.9 90.9 90.9 82.2 90.4 91.7 31.8 47.2 38.0 80.5
Chinese: TE-2 test impro. / news (Li et al., 2014) 95.8 89.3 92.4 79.5 86.0 100 9.5 17.3 7.6 44.0
Croatian: WikiWarsHR / narrative (Skukan et al., 2014) 92.6 90.5 91.5 80.8 88.3 87.3 6.8 12.6 9.7 77.0
French: FR-TimeBank / news (Bittar et al., 2011) 91.9 90.1 91.0 73.6 80.9 87.2 59.5 70.8 54.6 77.1
German: WikiWarsDE / narrative (Strötgen and Gertz, 2011) 98.7 89.3 93.8 83.0 88.5 98.4 64.7 78.1 59.7 76.4
Italian: EVALITA’14 test / news (Caselli et al., 2014) 92.7 86.1 89.3 75.0 84.0 98.5 41.2 58.1 49.3 84.9
Spanish: TempEval-3 test / news (UzZaman et al., 2013) 96.0 84.9 90.1 85.3 94.7 95.5 53.8 68.8 58.5 85.0
Vietnamese: WikiWarsVN / narrative (Strötgen et al., 2014) 98.2 98.2 98.2 91.4 93.1 84.0 45.5 59.0 27.1 45.9
Portuguese: PT-TimeBank test / news (Costa and Branco, 2012) 87.3 75.9 81.2 63.5 78.2 91.5 59.3 72.0 59.4 82.5
Portuguese: PT-TimeBank train / news (Costa and Branco, 2012) 83.3 73.1 77.9 54.5 70.0 88.2 51.0 64.6 50.4 78.0
Romanian: Ro-TimeBank / news (Forascu and Tufis, 2012) – – – – – 31.9 11.4 16.9 7.8 46.2

Table 1: Evaluation results for several languages on public corpora. HeidelTime 1.9 results as reported
on https://github.com/HeidelTime/heideltime/wiki/Evaluation-Results.

the patterns are extracted from the simplified En-
glish normalization resources (ii) and the respec-
tive Wiktionary pages are accessed (iii). These
contain translation information that is then added
to the pattern and normalization files of the oc-
curring languages by extracting respective trans-
lations (iv).

Note that for ambiguous words, Wiktionary
contains one translation table for each meaning.
For instance, there are two translation tables for
“November” for the meanings “eleventh month
of the Gregorian calendar” and “N in the ICAO
spelling alphabet”.4 Obviously, it is crucial to
use only the translations of the intended meaning.
Thus, in the case of multiple meanings of English
patterns, we provide the names of Wiktionary’s
correct translation tables to our translation script,
so that only translations of the correct meaning are
generated. In addition, if patterns in the new lan-
guage start with a lower case character, we allow
upper case and lower case for the respective char-
acter as shown in Figure 1, (iv).

Unfortunately, Wiktionary is of course not com-
plete and does not contain translations to all lan-
guages for all English patterns. However, to al-
low backtracking, we add the English information
to the resource files of all languages. If, at a later
point, the automatically created resources are used
as basis for developing better resources for spe-
cific languages, missing translations can be easily
detected and manually added.

4http://en.wiktionary.org/wiki/
November#Translations.

3.6 Improving and Finalizing the Resources
In particular for the rule development process, we
also create the automatic resources for English.
These are repeatedly evaluated on the tempo-
rally annotated English corpora TimeBank (Puste-
jovsky et al., 2003), TempEval-3 platinum (Uz-
Zaman et al., 2013), and WikiWars (Mazur and
Dale, 2010). Analyzing the errors on these cor-
pora, we iteratively improve the simplified English
resources and the rules. In Table 1, we compare
HeidelTime’s original English resources (Heidel-
Time 1.9) with the simplified resources (Heidel-
Time – automatic). While details about evaluation
measures will be described in Section 4, the results
of the automatic approach are obviously lower, as
expected due to the simplification process.

Resources for all languages are finally built by
combining the language-independent resources,
the automatically created pattern and normaliza-
tion files, and the language-independent rules.
Note that depending on the completeness of Wik-
tionary, the coverage of the resources – and thus
also their quality – varies between languages.

4 Evaluation

For a subset of languages, temporally annotated
corpora exist. Thus, we can directly evaluate our
approach for these languages. For German, Span-
ish, Italian, French, Portuguese, Croatian, Arabic,
Vietnamese, and Chinese, we compare our auto-
matic approach with HeidelTime’s manually de-
veloped resources. In addition, first results are re-
ported for Romanian.
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Figure 2: Language completeness statistics showing how many of the simplified English patterns have
translations in Wiktionary for the 238 languages with at least 10% coverage (ordered based on “all
patterns” coverage). A detailed plot with all language names is available on HeidelTime’s GitHub page.

For all other languages, it is obviously difficult
to judge the temporal tagging quality of the newly
developed resources. However, for an estimation
of the quality for languages without temporally an-
notated corpora, we provide completeness statis-
tics of the pattern translations. The fewer transla-
tions are available for a language, the more likely
it is that the temporal tagging quality is rather low.

4.1 Evaluation Measures

Since the task of temporal tagging is two-fold, we
report precision, recall, and F1-score for the ex-
traction task, and for the full task (relaxed extrac-
tion plus value normalization) value F1. Simi-
lar as the TempEval-3 organizers (UzZaman et al.,
2013), we consider value F1 with relaxed match-
ing as most important. However, when processing
large amounts of data, value accuracy becomes
also important. Since it directly shows indepen-
dent of the recall if extracted expressions are nor-
malized correctly, it is reported, too.

4.2 Evaluation Results and Discussion

As shown in Table 1, the results of our automat-
ically created resources are worse than those of
HeidelTime with manually developed resources.
For Spanish, German, French, and Portuguese,
high precision, moderate recall, and good normal-
ization results are achieved. In contrast, recall for
Chinese, Croatian, and Romanian are quite low,
precision is low for Romanian, and normalization
accuracy for Chinese, Vietnamese and Romanian.
Clearly, more work is necessary to achieve tempo-
ral tagging quality that can be considered as appli-
cable for other applications. In particular, issues
with morphology-rich languages and those with-
out white-space tokenization have to be addressed.

Nevertheless, the results look promising for
several languages taking into account that the
resources are developed without any language-
specific information, and that our approach has

been the first step towards more sophisticated tem-
poral tagging of all languages in the world. Note
that recall is much worse than precision for all lan-
guages and that the normalization of extracted ex-
pressions works quite well (value acc.).

4.3 Completeness Statistics
To estimate the quality of our automatically cre-
ated resources for languages without annotated
corpora, we create completeness statistics. As Fig-
ure 2 shows, the completeness differs significantly
between languages. However, Wiktionary trans-
lations exist for at least 75% and 50% of the pat-
terns for 34 and 83 languages, respectively, and
even for many languages with low overall cover-
age, important patterns such as month names and
date words are well-covered. Note that even for
languages with few translations, our approach can
be considered as baseline since temporal tagging
of most languages has not been addressed before.

5 Conclusions and Ongoing Work
In this paper, we presented our approach to auto-
matically extend the temporal tagger HeidelTime
to all languages in the world. We thus estab-
lish new temporal tagging baselines for many lan-
guages, and anyone working on any of those lan-
guages in the future can either use our resources
as a starting point or as a baseline for compari-
son. The resources for 200+ languages are avail-
able with HeidelTime 2.0 at http://github.
com/HeidelTime/heideltime.

Currently, we are improving the simplified En-
glish resources and the translation process by ex-
ploiting further resources such as Wikipedia. In
the future, we thus plan to constantly update Hei-
delTime’s automatically created resources.
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Abstract

We consider the task of named entity
recognition for Chinese social media. The
long line of work in Chinese NER has fo-
cused on formal domains, and NER for
social media has been largely restricted
to English. We present a new corpus of
Weibo messages annotated for both name
and nominal mentions. Additionally, we
evaluate three types of neural embeddings
for representing Chinese text. Finally, we
propose a joint training objective for the
embeddings that makes use of both (NER)
labeled and unlabeled raw text. Our meth-
ods yield a 9% improvement over a state-
of-the-art baseline.

1 Introduction

Named entity recognition (NER), and more gen-
erally the task of mention detection1, is an essen-
tial component of information extraction technolo-
gies: the first step before tasks such as relation
extraction (Bunescu and Mooney, 2005) and en-
tity linking (Dredze et al., 2010; Ratinov et al.,
2011). A long line of work has focused on NER
in both formal and informal domains (Collins and
Singer, 1999; McCallum and Li, 2003; Nadeau
and Sekine, 2007; Jin and Chen, 2008; He et al.,
2012a), with recent efforts turning towards social
media (Finin et al., 2010; Liu et al., 2011; Ritter et
al., 2011; Fromreide et al., 2014; Li et al., 2012;
Liu et al., 2012). While NER has included work
on several languages, work on social media NER
has largely focused on English language data.2

We consider NER on Chinese social media from
the popular Sina Weibo service, both because of

1Since we consider name and nominals, our work is closer
to mention detection. For simplicity, we use the term NER.

2Etter et al. (2013) considered Spanish Twitter, which is
quite similar to English from the standpoint of building mod-
els and features.

the popularity of the service (comparable in size
to Twitter and previously used in NLP research
(Ling et al., 2013)) and the challenges faced in
processing Chinese language data. One approach
is to utilize lexical embeddings to improve NER
systems (Collobert and Weston, 2008; Turian et
al., 2010; Passos et al., 2014), including for Twit-
ter (Cherry and Guo, 2015). However, the use
of embeddings for Chinese remains a challenge.
Unlike most languages, we cannot easily assign
an embedding to each Chinese word without au-
tomated segmentation, which may be unreliable,
especially when we want to model informal text.3

For this reason, state-of-the-art NER systems for
Chinese do not tag words; they instead tag charac-
ters directly (Mao et al., 2008). While work has
explored different embeddings for Chinese (Liu et
al., 2014; Sun et al., 2014; Qiu et al., 2014; Chen
et al., 2015), their inclusion in downstream tasks,
such as NER, remains untested.

We explore several types of embeddings for
Chinese text and their effect on Chinese social
media NER. Specifically, we make the following
contributions. 1) We present the first system for
NER on Chinese social media using a new cor-
pus based on Weibo messages. We consider both
name and nominal mentions, with the goal of sup-
porting downstream systems, such as coreference
resolution. Notably, our results reveal that the gap
between social media and traditional text for Chi-
nese is much larger than similar corpora for En-
glish, suggesting this task as an interesting area
of future work.4 2) We evaluate three types of
embeddings for Chinese text based on their inclu-
sion in a downstream task. We include results with
and without fine-tuning. 3) We present a joint ob-

3Word segmentation performance is much worse on social
media compared to formal text (Duan et al., 2012).

4Consider the overall F1 scores from Ritter et al. (2011),
Cherry and Guo (2015) and Fromreide et al. (2014) compared
to our best results in Table 2. This is despite the fact that Chi-
nese NER performance on formal texts is similar to English.
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jective that trains embeddings simultaneously for
both NER and language modeling. Joint training
yields better results than post-hoc fine-tuning.

2 NER for Chinese Social Media

Several SIGHAN shared tasks have focused on
Chinese NER (Zhang et al., 2006; Jin and Chen,
2008; He et al., 2012b; Zhu et al., 2003; Fang et
al., 2004; Zhang et al., 2006), though they have
been restricted to formal text, e.g. news. NER for
Chinese social media remains unexplored.5

As is the case for other languages, social me-
dia informality introduces numerous problems
for NLP systems, such as spelling errors, novel
words, and ungrammatical constructions. Chinese
presents additional challenges, since it uses lo-
gograms instead of alphabets, and lacks many of
the clues that a word is a name, e.g. capitaliza-
tion and punctuation marks. The lack of explicit
word boundaries further confuses NER systems.
These problems are worse in social media, which
has worse word segmentation. Additionally, typi-
cal Chinese corpora use exclusively traditional or
simplified characters, whereas social media mixes
them. Figure 1 demonstrates some challenges.

The baseline system for our task is our own
implementation of Mao et al. (2008), which is
the current state-of-the-art on the SIGHAN 2008
shared task (Jin and Chen, 2008). They use a CRF
tagger with a BIOSE (begin, inside, outside, sin-
gleton, end) encoding that tags individual charac-
ters, not words, since word segmentation errors
are especially problematic for NER (Zhang et al.,
2006). Features include many common English
NER features, e.g. character unigrams and bi-
grams, with context windows of size 5. See Mao
et al. (2008) for complete details on their system.

Mao et al. (2008) use a two pass approach, train-
ing a CRF first for mention detection and using
the resulting predictions as a feature for an NER
system. Furthermore, they make extensive use
of gazetteer features. For simplicity, we exclude
the first pass mention detection and the gazetteer
features, which make only small improvements to
their overall performance. We note that other im-
plementations of this system (Zhang et al., 2013)
have been unable to match the performance re-
ported in Mao et al. (2008). Similarly, our imple-
mentation yields results on SIGHAN 2008 similar

5Yang et al. (2014) consider a related problem of identi-
fying product mentions in Weibo messages.

有好多好多的话想对你说李巾凡想要瘦瘦瘦成李帆我是想切开云
朵的心
Have many many words to say to you Jinfan Li wanna thin thin thin to
Fan Li I am a heart that want to cut the cloud

美得呀～顾天池苦逼青年杨素晗闵日记肖立伟嘻嘻嘻嘻嘻嘻美啊
Beautiful Tianchi Gu bitter youth Suhan Yang Riji Min Liwei Xiao
hahahahahaha beautiful

看见前女友和她的新欢走在一起的时候，已经无处可躲了，只好
硬着 头皮上去打招呼哎呀，好久不见，你儿子都这么高了。
When saw ex-girl friend and her new partner coming across, nowhere
to hide, have to say hello, long time no see, your son grown up.

Figure 1: Examples of Weibos messages and translations
with named (red) and nominal (blue) mentions.

to those reported in Zhang et al. (2013).6 Overall,
we take this tagger as representative of state-of-
the-art for Chinese NER.

3 Embeddings for Chinese Text

Lexical embeddings represent words in a continu-
ous low dimensional space, which can capture se-
mantic or syntactic properties of the lexicon: sim-
ilar words would have similar low dimensional
vector representations. Embeddings have been
used to gain improvements in a variety of NLP
tasks. In NER specifically, several papers have
shown improvements by using pre-trained neu-
ral embeddings as features in standard NER sys-
tems (Collobert and Weston, 2008; Turian et al.,
2010; Passos et al., 2014). More recently, these
improvements have been demonstrated on Twitter
data (Cherry and Guo, 2015). Embeddings are es-
pecially helpful when there is little training data,
since they can be trained on a large amount of un-
labeled data. This is the case for new languages
and domains, the task we face in this paper.

However, training embeddings for Chinese is
not straightforward: Chinese is not word seg-
mented, so embeddings for each word cannot be
trained on a raw corpus. Additionally, the state-
of-the-art systems for downstream Chinese tasks,
such as NER, may not use words.

We present three types of Chinese embeddings
that will be trained on a large corpus of Weibo
messages. These embeddings will be used as fea-
tures in the NER system by adding a (real valued)
feature for each dimension of the embedding for
the current word/character.

Word Embeddings We train an embedding for
each word type, the standard approach in other
languages. We run a Chinese word segmentation

6Our implementation obtains an F1 of 88.63%.

549



system7 over the raw corpus of Weibo messages.
To create features, we first segment the NER data,
and then lookup the embedding that matches the
segmented word. Since the NER system tags char-
acters, we add the same word embedding features
to each character in the word.

Character Embeddings We learn an embed-
ding for each character in the training corpus (Sun
et al., 2014; Liu et al., 2014).This removes the de-
pendency on pre-processing the text, and better fits
our intended use case: NER tagging over charac-
ters. Since there are many fewer characters than
words, we learn many fewer embeddings. On the
one hand, this means fewer parameters and less
over-fitting. However, the reduction in parameters
comes with a loss of specificity, where we may
be unable to learn different behaviors of a charac-
ter in different settings. We explore a compromise
approach in the next section. These embeddings
are directly incorporated into the NER system by
adding embedding features for each character.

Character and Position Embeddings Charac-
ter embeddings cannot distinguish between uses of
the same character in different contexts, whereas
word embeddings fail to make use of characters
or character n-grams that are part of many words.
A compromise is to use character embeddings that
are sensitive to the character’s position in the word
(Chen et al., 2015). We first word segment the
corpus. For each character in each word, we add
a positional tag, e.g. the first/second/etc. charac-
ter in the word, yielding multiple embeddings per
character. We learn separate embeddings for each
positionally tagged character. To use these embed-
dings as features, we segment the NER text, obtain
position tags for each character, and add features
for the corresponding embedding.

These three methods lead to 179,809 word
embeddings, 10,912 character embeddings, and
24,818 character with position embeddings.

3.1 Fine Tuning

For each of the embeddings, we fine-tune pre-
trained embeddings in the context of the NER task.
This corresponds to initializing the embeddings
parameters using a pre-trained model, and then
modifying the parameters during gradient updates
of the NER model by back-propogating gradients.

7We use Jieba for segmentation: https://github.
com/fxsjy/jieba

This is a standard method that has been previously
explored in sequential and structured prediction
problem (Collobert et al., 2011; Zheng et al., 2013;
Yao et al., 2014; Pei et al., 2014).

3.2 Joint Training Objectives

Fine-tuning has a disadvantage: it can arbitrar-
ily deviate from the settings obtained from train-
ing on large amounts of raw text. Recent work
has instead tuned embeddings for a specific task,
while maintaining information learned from raw
text. Yu and Dredze (2014) use multi-part objec-
tives that include both standard unlabeled objec-
tives, such as skip-gram models in word2vec, and
task specific objectives. Jointly training the em-
beddings with the multi-part objectives allows the
fine-tuned embeddings to further influence other
embeddings, even those that do not appear in the
labeled training data. This type of training can
help improve OOVs (Yu and Dredze, 2015), an
important aspect of improving social media NER.

We propose to jointly learn embeddings for both
language models and the NER task. The modified
objective function (log-likelihood) for the CRF is
given by:

Ls(λ, ew)

=
1
K

∑
k

log
1

Z(x)k
+
∑
j

λjFj(yk,xk, ew)

 ,

where K is the number of instances, λ is the
weight vector, xk and yk are the words and la-
bels sequence for each instance, ew is the embed-
ding for a word/character/character-position rep-
resentation w, Z(x)k is the normalization fac-
tor for each instance, and Fj(yk,xk, ew) =∑n

i=1 fj(y
k
i−1, y

k
i ,x

k, ew, i) represents the fea-
ture function in which j denotes different feature
templates and i denotes the position index in a
sentence. This differs from a traditional CRF in
that the feature function depends on the additional
variables ew, which are the embeddings (as de-
fined above). As a result, the objective is no longer
log-linear, but log-bilinear 8.

8It is log-bilinear because the log-likelihood takes the
form f(x, y) = axy + bx+ cy, where x, y are variables and
a, b, c are coefficients. In this case, x is the feature weight
and y is the embedding; both of them are vectors. Taking the
partial derivative with respect to any one of the variables, one
gets a constant (wrt that variable). This satisfies the definition
of log-bilinear functions.
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The second term is the standard skip-gram lan-
guage model objective (Mikolov et al., 2013):

Lu(ew) =
1
T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j |wt), (1)

where

p(wi|wj) =
exp

(
eTwi

ewj

)
∑

i′ exp
(
eTwi′

ewj

) .
The first objective is notated Ls for “super-

vised” (trained on labeled NER data), and the sec-
ond is Lu, “unsupervised” (trained on raw text.)
Both objectives share the same variables ew. The
overall goal is to maximize their weighted sum:

arg max
ew

= Ls(λ, ew) + CLu(ew) (2)

where C is a tradeoff parameter.

3.3 Parameter Estimation
We pre-trained embeddings using word2vec
(Mikolov et al., 2013) with the skip-gram train-
ing objective and NEC negative sampling. Un-
less otherwise stated, we used word2vec’s default
parameter settings. All embeddings were 100-
dimensional, and we used the same embeddings
for the input and output parameters in the skip-
gram objective. We optimized the joint objective
(2) using an alternative optimization strategy: we
alternated 30 iterations of CRF training on the NE
labeled data and 5 multi-threaded passes through
both the labeled and unlabeled data for the skip-
gram objective. We avoided over-fitting using
early-stopping. For simplicity, we set C = 1 for
(2). The CRF was trained using stochastic gra-
dient descent with an L2 regularizer. All model
hyper-parameters were tuned on dev data.

We use the off-the-shelf tool word2vec
(Mikolov et al., 2013) to do skip-gram training
for language model, and implement our own CRF
model to modify the embeddings. We optimize
(2) by alternating the optimzation of each of the
two objectives.

4 Weibo NER Corpus

We constructed a corpus of Weibo messages an-
notated for NER. We followed the DEFT ERE
(Linguistics Data Consortium, 2014) 9 annotation

9See Aguilar et al. (2014) for a comparison of DEFT ERE
with other common standards.

Mentions
Entity Type Name Nominal Total
Geo-political 243 0 243
Location 88 38 126
Organization 224 31 255
Person 721 636 1,357

Table 1: Mention statistics for the Weibo NER corpus.

guidelines for entities, which includes four ma-
jor semantic types: person, organization, location
and geo-political entity. We annotated both name
and nominal mentions. Chinese pronoun mentions
can be easily recognized with a regular expression.
We used Amazon Mechanical Turk, using stan-
dard methods of multiple annotators and including
gold examples to ensure high quality annotations
(Callison-Burch and Dredze, 2010).

Our corpus includes 1,890 messages sampled
from Weibo between November 2013 and De-
cember 2014. Rather than selecting messages at
random, which would yield a small number of
messages with entities, we selected messages that
contained three or more (segmented) words that
were not in a fixed vocabulary of common Chi-
nese words. Initial experiments showed this gave
messages more likely to contain entities.

Table 1 shows statistics of the final corpus. We
divided the corpus into 7 folds, each with 127 mes-
sages, where each message corresponds to a single
instance. We use the first 5 folds for train, the 6th
for development, and the 7th for test. We make
our code and the annotated corpus available.10

We constructed an additional corpus of unla-
beled messages for training the embeddings. We
randomly selected 2,259,434 messages from the
same time period as above.

5 Experiments

We evaluate our methods under two settings: train-
ing on only name mentions, and training on both
name and nominal mentions. We re-train the Stan-
ford NER system (Finkel et al., 2005) as a base-
line; besides, we also evaluate our implementa-
tion of the CRF from Mao et al. (2008) as de-
scribed in §2 as Baseline Features. To this base-
line, we add each of our three embedding mod-
els: word, character, character+position (as de-
scribed in §3), and report results on the modified

10https://github.com/hltcoe/golden-horse
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Dev Test
Method Without Fine Tuning With Fine Tuning Without Fine Tuning With Fine Tuning

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1
Stanford 63.51 23.27 34.06 55.70 22.86 33.06
Baseline Features 63.51 27.17 38.06 56.98 25.26 35.00
+ word 65.71 26.59 37.86 70.97 25.43 37.45 56.82 25.77 35.46 64.94 25.77 36.90
+ character 53.54 30.64 38.97 58.76 32.95 42.22 56.48 31.44 40.40 57.89 34.02 42.86
+ character+position 60.87 32.37 42.26 61.76 36.42 45.82 61.90 33.51 43.48 57.26 34.53 43.09
Joint (cp) 57.41 35.84 44.13 57.98 35.57 44.09
Stanford 72.39 31.80 44.19 63.96 22.19 32.95
Baseline Features 71.94 33.22 45.45 60.16 23.87 34.18
+ word 69.66 33.55 45.29 70.67 35.22 47.01 59.40 25.48 35.67 60.68 22.90 33.26
+ character 58.76 32.95 42.22 66.88 35.55 46.42 58.28 28.39 38.18 55.15 29.35 38.32
+ character+position 73.43 34.88 47.30 69.38 36.88 48.16 65.91 28.06 39.37 62.33 29.35 39.91
Joint (cp) 72.55 36.88 48.90 63.84 29.45 40.38

Table 2: NER results for name mentions (top) and name + nominal mentions (bottom).

CRF model with and without fine-tuning. We also
report results for the joint method trained with the
character+position model (cp), which performed
the best on dev data for joint training.

General Results Table 2 shows results for both
dev (tuned) and test (held out) splits. First, we
observe that the results for the baseline are signif-
icantly below those for SIGHAN shared tasks as
well as the reported results on Twitter NER, show-
ing the difficulty of this task. In particular, recall
is especially challenging. Second, all embeddings
improve the baseline on test data, but the character
+ position model gets the best results. Fine-tuning
improves embedding results, but seems to over-
fit on dev data. Finally, our joint model does the
best in both conditions (name and name+nominal)
on test data, improving over fine-tuning, yielding
up to a 9% (absolute) improvement over a strong
baseline.

Effect of Embeddings We expect improve-
ments from embeddings to be larger when there
is less training data. Figure 2 shows F1 on dev
data for different amounts of training data, from
200 instances up to 1400, for the character + po-
sition embeddings versus the baseline model. We
see that for both settings, we see larger improve-
ments from embeddings for smaller training sets.

Error Analysis Since the results are relatively
low, we conducted an error analysis by randomly
sampling 150 error items and manually looking
through them. Among the 150 examples, 65 are
annotation errors, majorly cause by annotators ne-
glecting some mentions, this contributes 43% of
the errors. The second largest error source are
the person names: Chinese person names are very
flexible and nearly every character can be used
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Figure 2: Dev F1 for varying number of training instances.

in given names, this makes recognizing person
names challenging and contributes to 9% of our
errors. The following largest source of error are
transliterated foreign names, which contributes to
7% of the errors. Other sources including bound-
ary error, type error, name abbreviation, nick-
names, etc.

6 Conclusion

Our results show that NER for Chinese social me-
dia remains a challenging task, results lag be-
hind both formal Chinese text and English Twitter.
Nevertheless, our embeddings, combined with our
joint training objective, provide a large improve-
ment over a state-of-the-art model.
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Abstract

This paper presents a framework to model
the semantic representation of binary re-
lations produced by open information ex-
traction systems. For each binary relation,
we infer a set of preferred types on the
two arguments simultaneously, and gen-
erate a ranked list of type pairs which
we call schemas. All inferred types are
drawn from the Freebase type taxonomy,
which are human readable. Our system
collects 171,168 binary relations from Re-
Verb, and is able to produce top-ranking
relation schemas with a mean reciprocal
rank of 0.337.

1 Introduction

Open information extraction (or Open IE) is a task
of extracting all sorts of relations between named
entities or concepts from open-domain text cor-
pora, without restraining itself to specific rela-
tions or patterns. State-of-the-art Open IE sys-
tems (Carlson et al., 2010; Fader et al., 2011;
Schmitz et al., 2012; Nakashole et al., 2012) ex-
tract millions of binary relations with high preci-
sion from the web corpus. Each extracted relation
instance is a triple of the form〈arg1, rel, arg2〉,
where the relationrel is a lexical or syntactic pat-
tern, and both arguments are multi-word expres-
sions representing the argument entities or con-
cepts.

Whereas Open IE provides concrete relation in-
stances, we are interested in generalizing these
instances into more abstract semantic representa-
tions. In this paper, we focus on inferring the
schemas of binary relations.

For example, given the binary relation “play in”,
an Open IE system extracts many triples of the
form 〈X, play in, Y 〉. The following relation
triples are extracted in ReVerb:

〈Goel Grey, played in, Cabaret〉
〈Tom Brady, play in, National Football League〉

Informally, the goal of our system is to
automatically infer a set of schemas such as
〈t1, play in, t2〉, wheret1 andt2 are two seman-
tic types drawn from a standard knowledge base
such as WordNet (Miller, 1995), Yago (Suchanek
et al., 2007), Freebase (Bollacker et al., 2008), and
Probase (Wu et al., 2012), and each such schema
can be used to represent a set of “play in” relation
instances. For the above example, two possible
schemas for “play in” are:

〈film actor , play in, film〉
〈athlete, play in, sports league〉

The schema of a binary relation is useful in-
formation in NLP tasks, such as context-oriented
entity recognition and open domain question an-
swering. Suppose we are to recognize the enti-
ties in the sentence “Grangerplayed inthe NBA”.
“Granger” is a highly ambiguous term, while “the
NBA” is probably a sports league. Then with the
the above relation schemas for “play in”, the entity
recognizer knows that “Granger” is more likely to
be an athlete, which results in the correct linking
to “Danny Granger”, who is an NBA player, even
though the Open IE has never extracted such fact
before.

One relevant technique to achieve our goal is
selectional preference(SP) (Resnik, 1996; Erk,
2007; Ritter et al., 2010), which computes the
most appropriate types for a specific argument of
a predicate. SP is based on the idea of mutual in-
formation (Erk, 2007), which tends to select types
which areuniqueto the relation. In other words,
common types which can be used for many differ-
ent relations are less preferred. However, in Open
IE, many relations are related or even similar, e.g.,
play in, take part inandbe involved in. There’s
no reason for these relations not to share schemas.
Therefore in this paper, our problem is, given a re-
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lation and its instances, identify the smallest types
that can cover as many instances as possible. Our
approach first attempts to link the arguments in the
relation instances to a set of possible entities in a
knowledge base, hence generate a set of〈e1, e2〉
entity pairs. Then we select a pair of types〈t1, t2〉
that covers maximum number of entity pairs. We
resolve ties by selecting the smaller (more spe-
cific) types according to a type taxonomy inferred
from knowledge base.

This paper makes the following contributions:
i) we defined the schema inference problem for
binary relations from Open IE; ii) we developed
a prototype system based on Freebase and entity
linking (Lin et al., 2012; Ratinov et al., 2011;
Hoffart et al., 2011; Rao et al., 2013; Cai et al.,
2013), which simultaneously models the type dis-
tributions of two arguments for each binary rela-
tion; iii) our experiment on ReVerb triples showed
that the top inferred schemas receive decent mean
reciprocal rank (MRR) of 0.337, with respect to
the human labeled ground truth.

2 Problem Definition

A knowledge baseK is a 5-tuple〈E,Alist, T,
P, IsA〉, where:

- E is a finite set of entitiese ∈ E,

- Alist(e) = {n1, n2, ...} is a function which
returns a set of names (or aliases) of an entity,

- T is a finite set of typest ∈ T ,

- P is a finite set of relation instancesp(e1, e2),
wherep is a predicate inK.

- IsA is a finite set entity-type pairs(e, t),
representing the isA relation between entities
and types. An entity belongs to at least one
type.

An Open IE triple setS contains all relation in-
stances extracted by the IE system, of the form
〈a1, rel, a2〉, wherea1 anda2 are the arguments
of extracted relation patternrel. The set of argu-
ment pairs sharing the same relation patternrel is
denoted bySrel.

The problem is, for eachSrel, return a set of
type pairs (or schemas) fromT , 〈t1, t2〉, ordered
by the number of argument pairs covered inSrel.
If two schemas cover the same number of argu-
ment pairs fromSrel, the schema covering small-
est number of entities wins.

3 System

The workflow of our system is shown in Figure
Figure 1. The system takes Open IE relation tu-
ples as the input, then performs entity linking, re-
lation grouping and schema ranking to translate
them into final ranked list of schemas.

(1) Entity Linking: Relation arguments are
linked to entities in the knowledge base by fuzzy
string matching. Each entity in the knowledge
base has a unique identifier.

(2) Relation Grouping: Linked tuples shar-
ing similar relation patterns are grouped together.
Besides, each group has a representative relation
pattern, which is generated from all the patterns
within the group.

(3) Schema Ranking: For each linked tuple
in one relation group, argument entities are trans-
formed into types drawn from the knowledge base.
Then this procedure ranks type pairs (schemas) in
terms of how much Open IE tuples a type pair can
cover and how specific a type concept is.

3.1 Entity Linking

In the entity linking step, by matching arguments
to entities in the knowledge base, each relation
tuple is transformed into linked tuples,ltup =
〈e1, rel, e2〉, with linking scores.

We aim to support fuzzy matching between ar-
guments and entity aliases, so we take all the
aliases into consideration, and build an inverted in-
dex from words to aliases. Different words in one
alias cannot be treated equally. Intuitively, a word
is more important if it occurs in fewer aliases (n),
and vice versa. Based on the inverted index, we
use inverted document frequency score to approx-
imately model the weight of a wordw:

idf(w) = 1 / log(|{n : w ∈ n}|) (1)

Besides, stop words are removed from aliases,
treating their idf scores as 0. In order to measure
the probability of fuzzy matching from an argu-
ment (a) to an alias (n), we introduce the weighted
overlap score:

overlap(a, n) =

∑
w∈a∩n

idf(w)∑
w∈a∪n

idf(w)
(2)

We merge all the aliases of an entity together
to producing a similarity score of fuzzy matching
between an entity and an argument:

sim(e, a) = max
n∈Alist(e)

overlap(a, n) (3)
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Figure 1: System Architecture

In order to control the quality of candidate en-
tities, for an argument havingm words (with stop
words removed), we only keep entities that have
at least one alias matchingm− 1 words in the ar-
gument, and have a similarity score larger than a
threshold,τ . With similarity score computed, we
generate 10 best entity candidates respectively for
both the subject and the object ofrel.

Next, we model the joint similarity score (F )
of the relation tuple〈a1, rel, a2〉 with each entity
pair combination〈e1, e2〉 in two ways. One is a
naive methodwhich only considers the similarity
between arguments and corresponding entities:

F (a1, e1,a2, e2, rel) =
sim(e1, a1)× sim(e2, a2).

(4)

The other method takes predicate paths between
e1 ande2 into consideration. Let~w be the word
vector ofrel, and~p be a path of predicates con-
nectinge1 ande2 in at most 2 hops. Here we say
two entitiese1 ande2 are connected in 1 hop, if
there exists a predicatep, such thatp(e1, e2) (or
p(e2, e1)) is in the knowledge base.

Similarly, e1 and e2 are connected in 2 hops,
if there exists two predicatesp1, p2 and a transi-
tion entity e′, such thatp1(e1, e

′) (or p1(e′, e1))
andp2(e′, e2) (or p2(e2, e

′)) are in the knowledge
base.

We hence define the relatedness between~p and
~w in the form of a conditional probability accord-
ing to the Naive Bayes model:

P (~p | ~w) ≈
∏

p
P (p | ~w)

∝
∏

p
P (p)

∏
w

P (w | p),
(5)

and we follow the IBM alignment Model 1 (Yao
and Van Durme, 2014) to calculate the conditional
probability between predicates and relation words
P (~p | ~w). Based on the information above, we de-
fine a richer joint similarity score, considering all

valid paths betweene1 ande2:

F (a1, e1, a2,e2, rel) = sim(e1, a1)×
sim(e2, a2)×

∑
~p
P (~p |~w).

(6)

Due to the multiplications, the value ofP (~p |~w)
varies a lot among different entity pair candidates.
The large deviation makesP (~p |~w) the most im-
portant term in Eq. (6), especially in the case when
none of predicate paths are similar enough to the
relation words. Therefore, we trust the factor of
P (~p |~w) only when there exists a similar predicate
path. In practice, we use a thresholdρ to control
whether to use Eq. (6) or Eq. (4). We call this an
ensemble method. For each case of entity link-
ing, if there exists one candidate entity pair satis-
fying P (~p | ~w) > ρ, we use the ensemble method,
otherwise we fall back to the naive method for the
current case.

3.2 Relation Grouping

In the step of relation grouping, linked tuples with
similar relation patterns form a group. Each linked
tuple belongs to one unique group.

The idea is to simplify relation patterns by syn-
tactic transformations. If two patterns share the
same simplified pattern, we treat them as being
equivalent and put them into one group. First,
since adjectives, adverbs and modal verbs can
hardly change the type distribution of arguments
in a relation, we remove these words from a pat-
tern. Second, many relations from Open IE con-
tain verbs, which come in different tenses. We
transform all tenses into present tense. In addi-
tion, passive voice in a pattern, if any, is kept in
the transformed pattern. A simple example below
shows a group of relations:

〈X, resign from, Y〉
〈X, had resigned from, Y〉
〈X, finally resigned from, Y〉
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All linked tuples with the same simplified pat-
tern form a group. This pattern is selected as
the representative pattern, like the pattern“resign
from” in the above example.

3.3 Schema Ranking

Given a relation group, the step of schema rank-
ing produces a ranked list of relation schemas with
two constraints. Take “play in” as an example, the
ideal schemas will contain the pair〈actor, f ilm〉
and〈athlete, sports league〉

Each linked tuple〈e1, rel, e2〉 supports the
type pair〈t1, t2〉where(e1, t1), (e2, t2) ∈ IsA in
the knowledge base. We treat these pairs equally,
since it’s not trivial to tell which type is more re-
lated to the argument given the relation tuple as
context. Combining all tuples in one group, we de-
fine the support of a type pairtp in a group (using
the representative patternr to stand for the group):

supr(〈t1, t2〉) =
{(e1, t1) ∈ IsA, (e2, t2) ∈ IsA} (7)

A simple intuition is to rank schemas by the size
of the support. Since one entity belongs to mul-
tiple types, relation schemas with general types
will be ranked higher. However, two different
schemas may share the same support. For in-
stance, given the relation “X die in Y”, suppose
Open IE extractions and entity linking step returns
correct results, the schema〈person, location〉
and〈deceased person, location〉 have identical
supports. The latter one shows a more concrete
representation of the relation, becausedeceased
person covers small entities thanperson in the
knowledge base.

Therefore, the schemas cannot be ranked by us-
ing the support alone. Next, we aim to extract the
subsumption relations between types in the knowl-
edge base, building the taxonomy of types.

We first define all entities int as

cover(t) = {e | (e, t) ∈ IsA}. (8)

Intuitively, type t1 is subsumed int2, if all enti-
ties in t1 also belong tot2, that is,cover(t1) ⊆
cover(t2). This uses the idea ofstrict set inclu-
sion. For example, we can learn that the typeper-
sonsubsumes types such asactor, politician and
deceased person.

However, strict set inclusion doesn’t always
hold in the knowledge base. For example, enti-
ties in typeaward winnerare mostlyperson, but

there still has some organizations in it. The strict
method fails to find the subsumption relation be-
tweenaward winnerandperson, while this sub-
sumption actually holds with a large confidence.

To resolve this problem, we use arelaxed set
inclusion, where the setcover(t1) can be a subset
of another setcover(t2) to a certain degree. We
define the degree of the subsumption as the ratio
between the number of entities in the two sets:

deg(t1 ⊆ t2) =
|cover(t1) ∩ cover(t2)|

|cover(t1)| . (9)

If deg(t1 ⊆ t2) > ǫ, then t1 is subsumed by
t2, andǫ is a confidence parameter determined by
weight tuning. By scanning all types in the knowl-
edge base, all subsumption relations with enough
confidence are extracted, forming our type taxon-
omy.

With a type hierarchy computed by above re-
laxed set inclusion, we can define a schema
〈t1, t2〉 subsumes another schema〈t3, t4〉 if i) t1
subsumest3 andt2 subsumest4; ii) t1 subsumes
t3 andt2 = t4; or iii) t2 subsumest4 andt1 = t3.

If a schema (type pair)tp1 subsumes another
schematp2, and their supports (|supr(tp)|) are
approximately equal, we give the more specific
schematp2 a higher rank in the output list. Here
two supports are roughly equal if:

|supr(tp1)| − |supr(tp2)|
max(|supr(tp1)| , |supr(tp2)|) < λ (10)

Whereλ is a threshold determined in the experi-
ments.

4 Evaluation

Freebase (Bollacker et al., 2008) is a collabora-
tively generated knowledge base, which contains
more than 40 million entities, and more than 1,700
real types1. In our experiment, We use the 16 Feb.
2014 dump of Freebase as the knowledge base.

ReVerb (Fader et al., 2011) is an Open IE sys-
tem which aims to extract verb based relation in-
stances from web corpora. The release ReVerb
dataset contains more than 14 millions of relation
tuples with high quality. We observed that in Re-
Verb, some argument is unlikely to be an entity in
Freebase, for example:
〈Metro Manila, consists of, 12 cities〉,
1Freebase types are identified by type id, for example,

sports.pro athlete stands for “professional athlete”.
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where the object argument is not an entity but a
type. Since types are usually represented by low-
ercase common words, we remove the tuple if one
argument is lowercase, or if it is made up com-
pletely of common words in WordNet. In addition,
because date/time such as “Jan. 16th, 1981” often
occurs in the object argument while Freebase does
not have any such specific dates as entities, we use
SUTime (Chang and Manning, 2012) to recognize
dates as an virtual entity. After cleaning, the sys-
tem collects 3,234,208 tuples and 171,168 relation
groups.

The following parameters are tuned using a de-
velopment set:τ = 0.667, ǫ = 0.6, λ = 5% and
ρ = e−50. For relation grouping, we use Stanford
Parser (Klein and Manning, 2003) to perform POS
tagging, lemmatizing and parsing on relations.

We first evaluate the results of entity linking.
We randomly pick 200 relation instances from Re-
Verb, and manually labeled arguments with Free-
base entities. For both naive and ensemble strat-
egy, we evaluate the precision, recall, F1 and MRR
score on the labeled set. An output entity pair is
correct, if and only if both arguments are correctly
linked. Experimental results are listed in Table 1.

Table 1: Entity Linking Result
Strategy P R F1 MRR
Naive 0.371 0.327 0.348 0.377

Ensemble 0.386 0.340 0.361 0.381

For the evaluation of relation schema, we first
randomly pick 50 binary relations with support
larger than 500 from the system. For each relation,
we selected top 100 type pairs with the largest sup-
port, as what we evaluated. We assigned 3 human
annotators to label the fitness score of type pair
for the relation. The labeled score ranges from 0
to 3. Then we merge these 3 label sets, forming 50
gold standard rankings. When evaluating a rela-
tion schema list from our system, we calculate the
MRR score (Liu, 2009) by the top schemas in the
gold rankings.

For comparison, we use Pointwise Mutual In-
formation (Church and Hanks, 1990) as our base-
line model, which is used in other selectional pref-
erence tasks (Resnik, 1996). We define the associ-
ation score between relation and type pair as:

PMI(r, tp) = p(r, tp) log
p(r, tp)

p(r, ∗)p(∗, tp)
(11)

Wherep(r, tp) is the joint probability of relation

and type pair in the whole linked tuple set, and∗
stands for any relations or type pairs.

Table 2 shows the MRR scores by using both
baseline model (PMI) and our approach. As the re-
sult shows, our approach improves the MRR score
by 10.1%.

Table 2: End-to-end Schema Inference Results
Approach MRR Score

PMI Baseline 0.306
Our Approach 0.337

Finally, Table 3 shows some example binary re-
lations, and their schemas inferred by our system.
We can see that with a well-defined type hierarchy,
our system is able to extract both coarse-grained
and fine-grained type information from entities,
resulting in a informative type lists.

Table 3: Sample Relation Schemas
Relation Top Schemas

〈location, location〉
be find at 〈employer, location〉

〈organization, location〉
〈person, tv program〉

appear on 〈person, nominated work〉
〈person, winning work〉
〈person, nominated work〉

be the writer of 〈person, film〉
〈person, book subject〉

5 Conclusion

In summary, our work describes a data driven ap-
proach of relation schema inference. By max-
imizing the support of both arguments simulta-
neously, our system is able to generate human-
readable type pairs for a binary relation from Open
IE systems. Our experiments shows that the top
ranked relation schemas for each relation are ac-
curate according to human judges. The proposed
framework can be integrated with future Open IE
systems.
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Abstract

This paper studies Cumulative Citation
Recommendation (CCR) - given an entity
in Knowledge Bases, how to effectively
detect its potential citations from volume
text streams. Most previous approaches
treated all kinds of features indifferently to
build a global relevance model, in which
the prior knowledge embedded in docu-
ments cannot be exploited adequately. To
address this problem, we propose a la-
tent document type discriminative model
by introducing a latent layer to capture the
correlations between documents and their
underlying types. The model can better
adjust to different types of documents and
yield flexible performance when dealing
with a broad range of document types. An
extensive set of experiments has been con-
ducted on TREC-KBA-2013 dataset, and
the results demonstrate that this model can
yield a significant performance gain in rec-
ommendation quality as compared to the
state-of-the-art.

1 Introduction

Knowledge Bases (KBs), like Wikipedia, are
playing increasingly important roles in numerous
entity-based information retrieval tasks. Neverthe-
less, most KBs are hard to be up-to-date due to
their manual maintenances by human editors. As
reported in (Frank et al., 2012), there exists a me-
dian time lag of 356 days between the day a news
article is published and the time that the news is
cited in a Wikipedia article dedicated to the entity
concerned by the news. The time lag would be
reduced if relevant documents could be automati-
cally detected as soon as they are published online

∗This work was partially performed when the first author
was visiting Purdue University and Microsoft Research Asia.

†Corresponding Author

and then recommended to the editors. This task is
studied as Cumulative Citation Recommendation
(CCR). Formally, given a set of KB entities, CCR
is to filter relevant documents from a stream cor-
pus and evaluate their citation-worthiness to the
target entities.

A variety of supervised approaches (e.g., clas-
sification, learning to rank) have been employed
and achieved promising results (Wang et al., 2013;
Balog and Ramampiaro, 2013; Balog et al., 2013).
Nevertheless, most of them leverage all features
indiscriminately to build a global relevance model,
which leads to unsatisfactory performance. The
documents can offer some prior knowledge, which
is named as type in this paper. The type is the prior
knowledge embedded in the document that im-
pacts on the probability of its being recommended
to KBs. For instance, when dealing with a docu-
ment on “music” topic, we would like to have less
weights put on a politician entity because this doc-
ument is not likely to related to it, but more often
related to musicians or musical bands. Besides,
the source of a document impacts on the recom-
mendation strategies too. A document from news
agencies is more reliable and citable than the one
from social websites even if they state an identi-
cal story about the target KB entity. Hence we
consider two kinds of document features to model
the prior type knowledge: (1) topic-based features,
and (2) source-based features.

This paper proposes a latent document type dis-
criminative mixture model for CCR. We introduce
an intermediate latent layer to model latent docu-
ment types and define a joint distribution over the
document-entity pairs and latent document-types
on the observation data. The aim is to achieve a
discriminative mixture model that is expected to
outperform the global relevance model.

To the best of our knowledge, this is the first
research work that leverages prior knowledge em-
bedded in documents to improve CCR perfor-
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mance. An extensive set of experiments conducted
on TREC-KBA-2013 dataset has demonstrated the
effectiveness of the proposed mixture model.

2 Discriminative Models for CCR

Given a set of KB entities E = {eu|u =
1, · · · ,M} and a document collection D =
{dv|v = 1, · · · , N}, our objective is to es-
timate the conditional probability of relevance
P (r|e, d) with respect to an entity-document pair
(e, d). Each (e, d) is represented as a feature
vector f(e, d) = (f1(e, d), · · · , fK(e, d)), where
K is the dimension of the entity-document fea-
ture vector. Moreover, to model the hidden
document type, each document is represented
as an document-type feature vector g(d) =
(g1(d), · · · , gL(d)), where L indicates the dimen-
sion of the document-type feature vector.

2.1 Global Model
This paper utilizes logistic regression to estimate
the conditional probability P (r|e, d), where r(r ∈
{1,−1}) is a binary label indicating the relevance
of an entity-document pair (e, d). The value of r is
1 if the document d is related to the entity e, oth-
erwise r = −1. Formally, the parametric form
of P (r=1|e, d) is expressed as P (r=1|e, d) =
δ(
∑K

i=1ωifi(e, d)), where δ(x) is the standard lo-
gistic function, ωi is the combination parame-
ter for the ith feature. It is easy to derive that
for different values of r, the only difference in
P (r|e, d) is the sign within the logistic function.
Therefore, we adopt the general representation of
P (r|e, d)=δ(r∑K

i=1 ωifi(e, d)). This model is
denoted as GM in this paper. Several previous ap-
proaches can be deemed as global models adopt-
ing different classification functions such as deci-
sion trees (Wang et al., 2013) and Support Vector
Machine (SVM) (Bonnefoy et al., 2013).

2.2 Latent Document Type Model
In GM, a fixed set of combination weights (i.e.,
ω) are learned to optimize the overall performance
for all entity-document pairs. However, the best
combination strategy for a given pair is not al-
ways the best for the others since both the docu-
ments and entities are heterogeneous. Therefore,
we may benefit from developing a document type
dependent model in which we choose the com-
bination strategy individually for each document
type to optimize the performance for specific doc-
ument types. Since it is not feasible to determine

the proper combination strategy for each docu-
ment type, we need to classify documents into one
of several types. The combination strategy is then
tuned to optimize average performance for docu-
ments within the same type.

We propose a latent document type model
(LDTM) by introducing an intermediate layer
to capture the underlying type information in
documents. A latent variable z is utilized to
indicate which type the combination weights ωz
are drawn from. The choice of z is determined
by the document d. The joint probability of
relevance r and the latent variable z is represented
as P (r, z|e, d;α, ω)=P (z|d;α)P (r|e, d, z;ω),
where P (z|d;α) is the mixing coefficient, denot-
ing the probability of choosing the hidden type
z given document d, and α is the corresponding
parameter. P (r|e, d, z;ω) denotes the discrimi-
native component which takes a logistic function.
By marginalizing out z, we obtain

P (r|e, d;α, ω) =
Nz∑
z

P (z|d;α)δ
(
r

K∑
i=1

ωzifi(e, d)
) (1)

where ωzi is the weight for the ith entry in the
feature vector under the hidden variable z. We
adopt a soft-max function 1

Zd
exp(

∑L
j=1 α

z
jgj(d))

to model P (z|d;α), and Zd is the normalization
factor that scaled the exponential function to be
a probability distribution. In this representation,
each document d is denoted by a bag of document
type features (g1(d), · · · , gL(d)). By plugging the
soft-max function into Equation (1), we have

P (r|e, d;α, ω)=

1
Zd

Nz∑
z=1

exp
(Lz∑
j=1

αzjgj(d)
)
δ

(
r

K∑
i=1

ωzifi(e, d)
)

(2)

Suppose entity-document pairs in training set are
represented as T ={(du, ev)}, and R={ruv} de-
notes the corresponding relevance judgment of
(du, ev), where u = 1, · · · ,M and v = 1, · · · , N .
Assume training instances in T are independently
generated, the conditional likelihood of training
data is written as

P (R|T ) =
M∏
u=1

N∏
v=1

P (ruv|eu, dv) (3)
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2.3 Parameter Estimation
The parameters (i.e., ω and α) can be estimated
by maximizing the data log-likelihood L(ω, α),
which is the form of logarithm of Equation (3).
A typical parameter estimation method is to use
Expectation-Maximization (EM) algorithm by it-
erating E-step and M-step continuously until con-
vergence. The E-step is derived by computing the
posterior probability of z given du and ev, which
is denoted as P (z|du, ev).

P (z|du, ev) =

exp
(∑Lz

j=1αzjgj(du)
)
δ

(
ruv
∑K

i=1ωzifi(du, ev)
)

∑
zexp

(∑Lz
j=1αzjgj(du)

)
δ

(
ruv
∑K

i=1ωzifi(du, ev)
)

(4)

In M-step, we can obtain the following parame-
ter update rules.

ω∗z =

arg max
ωz

∑
uv

P (z|du, ev)log
(
δ
( K∑
i=1

ωzifi(du, ev)
))

α∗z = arg max
αz∑

u

(∑
v

P (z|du, ev)
)

log
(

1
Zdu

exp
( Lz∑
j=1

αzjgj(du)
))
(5)

To optimize Equation (5), we employ the
minFunc toolkit1 using Quasi-Newton strategy.
We adopt Akaike Information Criteria (AIC) to
determine the number of latent variables (Fang et
al., 2010), which is calculated as 2m − 2L(ω, α),
wherem is the number of parameters in the model.

LDTM holds two advantages over GM. (1) The
combination parameters vary across various docu-
ment types and hence lead to a gain of flexibility;
(2) It offers probabilistic semantics for the latent
document types and thus documents can be asso-
ciated with multiple types.

3 Features

This section presents the two types of fea-
tures used in the discriminative models. Entity-
document features (i.e., f(e, d)) are used in the
discriminative components of GM and LDTM. In

1http://www.cs.ubc.ca/˜schmidtm/
Software/minFunc.html

addition, LDTM requires document-type features
(i.e., g(e)) to learn the mixing coefficients in the
mixture component.

Since our goal is not to develop new entity-
document features, we adopt the identical entity-
document feature set proposed in our previous
work (Wang et al., 2013; Wang et al., 2015a; Wang
et al., 2015b), which has been proved effective.

In terms of document-type features, we consider
two kinds of prior knowledge embedded in doc-
uments to model the correlations between docu-
ments and their latent types.

Topic-based features One prior knowledge to
model a document’s latent type is its intrinsic top-
ics. As we have claimed, documents with one
or more obvious topics are more likely to be rec-
ommended to KB than those without any explicit
topic. We capture the underlying topics in docu-
ments with word co-occurrences. After removing
stop words, we represent each document as a fea-
ture vector with the bag-of-words model, where
word weights are determined by TF-IDF scheme.

Source-based features The source of a docu-
ment is another prior knowledge to evaluate the
probability of the document’s being recommended
to KBs. We leverage a “bag-of-sources” model to
represent each document as source-based feature
vector, and term weights are determined by binary
occurrence scheme. Please note that the sources
are organized hierarchically. For example, main-
stream news is a sub-source of news.

4 Experiments

4.1 Dataset
We utilize TREC-KBA-2013 dataset2 as our ex-
perimental dataset. The dataset is composed
of a temporally stream corpus and a target KB
entity set. The stream corpus contains nearly
1 billion documents crawled from 10 sources:
news, mainstream news, social, weblog, link-
ing, arxiv, classified, reviews, forum and meme-
tracker3. The corpus has been split with doc-
uments from October 2011 to February 2012 as
training instances and the remainder for evalua-
tion. We adopt the same training/test range setting
in our experiments. The entity set is composed of
121 Wikipedia entities and 20 Twitter entities.

2http://trec-kba.org/
kba-stream-corpus-2013.shtml

3http://www.memetracker.org/
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Each entity-document pair is labeled as one of
the 4 relevance levels: (i) Vital, timely informa-
tion about the entity’s current state, actions, or sit-
uation. This would motivate a change to an al-
ready up-to-date KB article. (ii) Useful, possibly
citable but not timely, e.g., background biography,
secondary source information. (iii) Neural, in-
formative but not citable, e.g., tertiary source like
Wikipedia article itself. and (iv) Garbage, no in-
formation about the target entity could be learned
from the document, e.g., spam. Annotation details
of the dataset are presented in Table 1.

Range Vital Useful Neutral Garbage
Train 2011.10 ∼ 2012.02 1696 2121 1030 1702
Test 2012.03 ∼ 2013.02 5630 11579 3379 10543

Table 1: Annotation details of TREC-KBA-2013
dataset.

4.2 Evaluation Scenarios
According to different granularity settings, we
evaluate the proposed models in two scenarios:
(i) Vital Only. Only vital entity-document pairs
are treated as positive instances. (ii) Vital + Use-
ful. Both vital and useful entity-document pairs
are treated as positive instances.

4.3 Comparison Methods
We conduct extensive comparisons with the fol-
lowing methods.

• Global Model (GM). The global discrimina-
tive model introduced in section 2.1.

• Source-based Latent Document Type Model
(src LDTM). A variant of LDTM that uti-
lizes source-based features as document-type
features.

• Topic-based Latent Document Type Model
(topic LDTM). A variant of LDTM that uti-
lizes topic-based features as document-type
features.

• Combination Latent Document Type Model
(combine LDTM). This approach utilizes
source-based and topic-based features to-
gether as document-type features. In our ex-
perimental setting, we simply union the two
feature vectors together into an integral fea-
ture vector.

For reference, we also include three top-ranked ap-
proaches in TREC-KBA-2013 track.

• BIT-MSRA (Wang et al., 2013). A global
random forests classification method, the first
place approach in TREC-KBA-2013 track.

• UDEL (Liu et al., 2013). An entity-centric
query expansion approach, the second place
approach in TREC-KBA-2013 track.

• Official Baseline (Frank et al., 2013). A
strong baseline in which human annotators
go through target entities and came up with a
list of keywords for filtering vital documents.

4.4 Results and Discussion
Improving precision is harder than improving re-
call for CCR (Frank et al., 2013). Therefore,
we care more about recommendation quality of
CCR. Precision and overall accuracy are adopted
as metrics to evaluate different approaches. All
the metrics are computed in the test pool of all
entity-document pairs. The results are reported
in Table 2. In comparison to the baselines listed

Methods
Vital Only Vital + Useful
P Accu P Accu

Official Baseline .171 .175 .540 .532
BIT-MSRA .214 .445 .589 .615

UDEL .169 .259 .573 .579
GM .218 .587 .604 .565

src LDTM .273 .763 .626 .607
topic LDTM .293 .755 .643 .609

combine LDTM .299 .751 .633 .611

Table 2: Overall results of evaluated methods.
Best scores are typeset boldface.

in the 2nd block of Table 2, our mixture models
achieve higher or competitive precision and ac-
curacy in both scenarios considerably. Compared
with the official baseline, our best mixture model
improves precision about 28%. In both scenarios,
the variants of LDTM outperform GM on preci-
sion and accuracy, which validates our motivations
that (i) introducing document latent types in mix-
ture model can enhance the recommendation qual-
ity, and (ii) source-based and topic-based features
can capture the hidden type information of docu-
ments.

Moreover, topic LDTM generally performs bet-
ter than src LDTM in both scenarios, which meets
our expectation because topic-based features have
far more dimensions than source-based features.
However, even if source-based feature vector
holds a few dimensions (10 in our experiments),
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src LDT improves the precision on the basis of
GM. Thus, the precision can be enhanced further
if we can develop more valuable features to repre-
sent the underlying document types. The combi-
nation variant of LDTM achieve the best precision
in Vital Only scenario and the best accuracy in
Vital + Useful scenario. The naı̈ve combination
strategy of two types of features can improve the
performance but not stable, so we need find better
combination strategies.

For all variant of the LDTM, the number of
latent types determined by AIC are reported in
Table 3. The optimal number of latent types in
Vital + Useful is more than that in Vital Only.
This reveals that the types of Vital documents for
entities have more restrictions than Useful docu-
ments, either by topics or by sources. In addition,
the optimal number of latent topics is more than
that of latent sources, which also follows our in-
tuition that topic-based features holding more di-
mensions than source-based features. Since we
employ a naı̈ve combination strategy for the two
types of features, the number of latent types of
combine LDTM is more close to topic LDTM,
which possesses more features than src LDTM.

Model Vital Vital + Useful
src LDTM 6 7

topic LDTM 9 15
combine LDTM 14 15

Table 3: Number of latent types determined by
AIC.

5 Related Work

There are three kinds of approaches developed
for CCR in previous work: query expansion (Liu
et al., 2013; Wang et al., 2013), classification
such as SVM (Kjersten and McNamee, 2012)
and Random Forest classifier (Bonnefoy et al.,
2013; Balog et al., 2013), and learning to rank
approaches (Wang et al., 2013; Balog and Ra-
mampiaro, 2013). Transfer learning is utilized
to transfer the keyword importance learned from
training pairs to query pairs (Zhou and Chang,
2013).

However, some highly supervised methods re-
quire training instances for each entity to build
a relevance model, limiting their scalabilities. A
compromised solution is to build a global dis-
criminative model with all features indifferently.

We spotlight document-type features and study the
impacts of them in discriminative mixture models.
Mixture model has been applied and proved effec-
tive in multiple information retrieval tasks, such
as expert search (Fang et al., 2010) and federated
search (Hong and Si, 2012). By learning flexible
combination weights for different types of training
instances, mixture model can outperform global
models with fixed weights for all instances.

6 Conclusion

Cumulative Citation Recommendation (CCR) is
an important task to automatically detect citation-
worthy documents from volume text streams for
knowledge base entities. We study CCR as a
classification problem and propose a latent docu-
ment type model (LDTM) through introducing a
latent layer in a discriminative model to capture
the correlations between documents and their in-
trinsic types. Two variants of LDTM are imple-
mented by modeling the latent types with doc-
ument source-based and topic-based features re-
spectively. Experimental results on TREC-KBA-
2013 dataset demonstrate that our mixture model
can improve CCR performance significantly, espe-
cially on precision and accuracy, revealing the ad-
vantage of LDTM in enhancing recommendation
quality of citation-worthy documents.

For future work, we wish to explore more use-
ful document-type features and apply more proper
combination strategies to improve the latent docu-
ment type model.
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Abstract

The enormous amount of information on the
Internet has raised the challenge of highlight-
ing new information in the context of already
viewed content. This type of intelligent inter-
face can save users time and prevent frustra-
tion. Our goal is to scale up novelty detec-
tion to large web properties like Google News
and Yahoo News. We present a set of light-
weight features for online novelty scoring and
fast nonlinear feature transformation methods.
Our experimental results on the TREC 2004
shared task datasets show that the proposed
method is not only efficient but also very pow-
erful, significantly surpassing the best system
at TREC 2004.

1 Introduction

The Internet supplies a wealth of news content with a
corresponding problem: finding the right content for
different users. Search engines are helpful if a user
is looking for something specific that can be cast as
a keyword query. If a user does not know what to
look for, recommendation engines can make personal-
ized suggestions for stories that may interest the user.
But both types of systems frequently represent content
that the user has already consumed, leading to delay
and frustration. Consequently, identifying novel infor-
mation has been an essential aspect of studies on news
information retrieval. Newsjunkie (Gabrilovich et al.,
2004), for instance, describes a system that personal-
izes a newsfeed based on a measure of information nov-
elty: the user can be presented custom tailored news
feeds that are novel in the context of documents that
have already been reviewed. This will spare the user
from hunting through duplicate and redundant content
for new nuggets of information. Identifying genuinely
novel information is also an essential aspect of update
summarization (Nenkova and McKeown, 2012; Gao et
al., 2013; Guo et al., 2013; Wang and Li, 2010; Ben-
tivogli et al., 2011). But the temporal dynamics of a
document stream are not generally the focus. Novelty
detection has also been studied in Topic Detection and
Tracking field for the First Story Detection task (Allan,
2002; Karkali1 et al., 2013; Karkali et al., 2014; Tsai

and Zhang, 2011) where the aim is to detect novel doc-
uments given previously seen documents. In this paper,
we examine a slightly different problem; we perform
novelty detection at the sentence level to highlight sen-
tences that contain novel information.

The novelty track in TREC was designed to serve
as a shared task for exactly this type of research: find-
ing novel, on-topic sentences from a news stream (Har-
man, 2002). There were four tasks in the novelty track
but we only focus on task 2 in this paper: “given rele-
vant sentences in all documents, identify all novel sen-
tences.” The track changed slightly from year to year.
The data of the first run in 2002 (Harman, 2002) used
old topics and judgments which proved to be problem-
atic due to the small percentage of relevant sentences.
TREC 2003 (Soboroff and Harman, 2003) included
50 new topics with an improved balance of relevant
and novel sentences and chronologically ordered docu-
ments. TREC 2004 (Soboroff and Harman, 2005) used
the same task settings and the same number of topics,
but made a major change through the inclusion of irrel-
evant documents.

Although the participants in the novelty track of
TREC and many followup studies have investigated a
wide ranging set of features and algorithms (Soboroff
and Harman, 2005), almost none were specifically fo-
cused on scalability. However, modern news aggrega-
tors are usually visited by millions of unique users and
consume millions of stories each day. Moreover, every
few minutes item churn takes place and the stories of
interest are likely to be the ones that appeared in the
last couple of hours. As real-time processing on a large
scale gains more attention (Osborne et al., 2014), we
investigate features that are both effective and efficient,
and so could be used in a scalable online novelty scor-
ing engine for making personalized newsfeeds on large
web properties like Google News and Yahoo News.

To achieve this goal, our contributions are two-fold.
First, we present a set of effective, light-weight fea-
tures: KL divergence with asymmetric smoothing, non-
linear transformation of unseen word count, relative
sentence position and word embedding-based similar-
ity. Note that we restrict ourselves to only surface-level
text features and algorithms that have time complexity
ofO(W ) whereW is the number of unique words seen
so far (previous studies often employed quite expensive
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features and algorithms that have time complexity of
at least O(WT ) where T is the number of sentences
so far). To fully comply with the online setting, we
also exclude very popular methods for measuring sim-
ilarity such as tf-idf, since we are not allowed to see
the entire corpus. Second, we propose efficient fea-
ture transformation methods: recursive feature averag-
ing and Deep Neural Network (DNN)-based nonlinear
transformation. We evaluate our system on task 2 of
the 2004 TREC novelty track. Interestingly, our exper-
iment results indicate that our light-weight features are
actually very powerful when used in conjunction with
the proposed feature transformation; we obtain a signif-
icant performance improvement over the best challenge
system.

The rest of this paper is structured as follows: Sec-
tion 2 presents a brief summary of related work. Sec-
tion 3 describes our algorithm and features. Section 4
outlines the experimental setup and reports the results
of comparative analysis with challenge systems. We
finish with some conclusions and future directions in
Section 5.

2 Related Work

There were 13 groups and 54 submitted entries for the
2004 TREC novelty track task 2. The participants used
a wide range of methods which can be roughly cate-
gorized into statistical and linguistic methods. Statisti-
cal methods included traditional information retrieval
models such as tf-idf and Okapi, and metrics such
as importance value, new sentence value, conceptual
fuzziness, scarcity measure, information weakness, un-
seen item count with a threshold optimized for detect-
ing novel sentences (Blott et al., 2004; Zhang et al.,
2004; Abdul-Jaleel et al., 2004; Eichmann et al., 2004;
Erkan, 2004; Schiffman and McKeown, 2004). Thresh-
olds are either learned on the 2003 data or determined
in an ad hoc manner. Some groups also used machine
learning algorithms such as SVMs by casting the prob-
lem as a binary classification (Tomiyama et al., 2004).
Many groups adopted a variety of preprocessing steps
including expansion of the sentences using dictionar-
ies, ontologies or corpus-based methods and named en-
tity recognition. Graph-based analysis has also been
applied where directed edges are established by cosine
similarity and chronological order. After this graph is
constructed, the eigenvector centrality score for each
sentence was computed by using a power method. The
sentences with low centrality scores were considered
as new (Erkan, 2004). Graph-based approaches were
further pursued by Gamon (2006) that drew a richer
set of features from graph topology and its changes,
resulting in a system that ties with the best system at
TREC 2004 (i.e. Blott et al. (2004)). On the other
hand, deep linguistic methods included parsing, coref-
erence resolution, matching discourse entities, search-
ing for particular verbs and verb phrases, standardiz-
ing acronyms, building a named-entity lexicon, and

Algorithm 1: Novelty scoring for a topical docu-
ment stream

Data: a document stream
Result: a document stream with novelty

annotation
Initialize a context C0;
while not at end of the document stream do

read a document;
split the document into sentences;
while not at end of the document do

read a sentence St;
perform preprocessing on St;
compute novelty score as the posterior
probability of a binary novelty random
variable Nt, p(Nt|St, Ct−1);
update the context Ct with Ct−1 and St;

end
compute a document-level score (e.g. average
out all sentence-level scores)

end

matching concepts to manually-constructed ontology
for topic-specific concepts (Amrani et al., 2004). The
difficulty of the novelty detection task is evident from
the relatively low score achieved by even the best sys-
tems at TREC 2004 (Soboroff and Harman, 2005). The
top scoring systems were mostly based on statistical
methods while deep linguistic approaches achieved the
highest precision at the cost of poor recall.

3 Method
For the purpose of this paper, we formulate task 2 of
the TREC novelty detection track as an online proba-
bilistic inference task. More specifically, we compute
the novelty score as the posterior probability of a binary
novelty random variable N :

p(Nt|St, Ct−1) =
1
Z

exp
∑
i

wifi(Nt, St, Ct−1)

(1)
in which the fi are feature functions, wi model param-
eters, St the sentence in focus and Ct−1 a context con-
taining information about previously seen sentences S1

through St−1 across documents.
The overall procedure is listed in Algorithm 1. The

algorithm takes as input documents which have been
clustered by topic and chronologically ordered. For
each sentence St in each document, basic preprocess-
ing is performed (e.g. simple tokenization, stopword
filtering and stemming (Porter, 1980)), then the infer-
ence is made whether St is novel given the context
Ct−1. Without the use of the context, the time com-
plexity of our algorithm would depend on the number
of sentences so far. Thus, the features and the model
for the context are important for efficiency. Note that
our method only takes time complexity of O(W ) for
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both context update and feature generation.

3.1 Features

KL divergence with asymmetric smoothing. KL
divergence has been successfully adopted to measure
the distance between a document and a set of docu-
ments (Gabrilovich et al., 2004; Gamon, 2006). We
use it to measure the distance between context C and
sentence S: ∑

w

pC(w) log
pC(w)
pS(w)

(2)

The intuition is that the more distant the distributions
are, the more likely it is that the sentence is novel.
Since KL divergence is asymmetric, both directions
are used as features, with and without scale normal-
ization. The computation of KL divergence requires
both pC and pS to be non-zero; while simple add-one
smoothing is employed in previous work, we adopt
novel asymmetric smoothing. We add a larger smooth-
ing factor s for already seen words than the factor u
for unseen words. The rationale behind this is that we
intensify the difference caused by unseen words and at-
tenuate the difference caused by seen words (Figure 1.)
Asymmetric smoothing with various smoothing factors
consistently showed better performance than symmet-
ric smoothing in our experiments.

Figure 1: KL divergence with symmetric (left) and
asymmetric (right) smoothing. Pink and blue corre-
spond to two distributions while light yellow and or-
ange to smoothing factors.

Nonlinear transformation of unseen word count.
One of the simplest metrics to measure novelty is the
plain count of unseen words. This measure, however,
does not necessarily reflect human perception of nov-
elty given the prevalence of nonlinearity in human per-
ception (Kingdom and Prins, 2009). Thus, we explored
the use of a simple nonlinear transformation of unseen
word counts instead of the plain count (Figure 2):

T (n) = (αn+ β)γ (3)

where n is the number of new words and α, β and γ are
parameters. In our experiments, the use of a nonlinear
transformation helped yield better results.

Figure 2: Nonlinear transformation of unseen word
count with parameters set via cross-validation on the
TREC training data: α = 0.5, β = 0 and γ = 1.5.

Relative position in a document. Relative position
of a sentence in a document is simple yet has been
proven effective for summarization. Relative position
is also closely related to novelty detection as follows:
1) There is in general a good chance that earlier sen-
tences are more novel than the later ones. 2) We found
a pattern that news articles coming in later are apt to
present novel information first and then a summary of
old information.

Word embedding-based similarity. Neural word em-
bedding techniques can be effective in capturing syn-
tactic and semantic relationships, and more computa-
tionally efficient than many other competitors (Socher
et al., 2012; Mikolov et al., 2013). As reported in (Tai
et al., 2015), a simple averaging scheme was found to
be very competitive to more complex models for rep-
resenting a sentence vector. These observations lead
us to adopt the following additional features derived
from word embeddings: 1) cosine similarity between
the mean vectors of the context C and sentence S, 2)
sigmoid function value for the dot product of the mean
vectors of the context C and sentence S. The mean
vectors of C and S are computed by taking the average
of the word vectors of each unique word in C and S,
respectively. We use word embedding with 100 dimen-
sions trained on Wikipedia using the word2vec toolkit
(https://code.google.com/p/word2vec).

3.2 Feature transformation

Recursive feature averaging. A large portion of the
novel sentences in the TREC 2004 data appear in con-
secutive runs of two or more (Schiffman and McKe-
own, 2004). Sequential labeling would be a natural ap-
proach to take advantage of this characteristic of the
problem, but the use of sequential labeling will make
time complexity depend on the number of sentences T .
Thus we came up with another way to exploit this char-
acteristic, recursively averaging over previous feature
vectors and augmenting the current feature vector with
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the average:

Rt = ηFt−1 + (1− η)Rt−1 (4)

F ′t = Ft :: Rt (5)

where F is a feature vector, R the average vector of
previous ones, F ′ the augmented feature vector, η the
weight of the last feature vector in averaging and ::
means concatenation.
DNN-based feature transformation. In order to bet-
ter capture non-trivial interactions between the features
described above, we adopt a DNN with a bottleneck.
DNNs with a bottleneck have been successfully ex-
plored for nonlinear feature transformation (Grézl et
al., 2007). The feature transformation is normally
achieved from narrow hidden layers that retain only
the information useful to classification. This leads us
to introduce bottleneck hidden layers between the in-
put layer and the Logistic Regression output layer (Fig-
ure 3.)

Figure 3: Flowchart for a bottleneck DNN. The dotted-
box represents bottleneck generating hidden layers.

4 Experiments and Results
Following the guidelines of task 2 for the TREC
2004 novelty detection track, we used the TREC 2003
dataset as training data and the TREC 2004 dataset
as test data. The training data includes 10,226 novel
sentences out of 15,557 sentences. The test data in-
cludes 3,454 novel ones out of 8,343 sentences. We
trained a DNN-based classifier and several logistic re-
gression classifiers (which are the same model with the
DNN model except without the hidden layers) using the
Theano toolkit (Bergstra et al., 2010) to verify the ef-
fectiveness of each feature and feature transformation.
We optimized all models by minimizing logloss with
the stochastic gradient decent algorithm with momen-
tum. We classified a sentence as novel if the posterior
probability is greater than 0.5. We performed a search
based on five-fold cross validation to identify optimal
values for the parameters defined in Section 3, and ob-
tained the following values: s = 10, u = 0.1, α = 0.5,
β = 0, γ = 1.5 and η = 0.5. For the DNN classi-
fier, we used a set of five bottleneck hidden layers. The
number of nodes for each hidden layer were set to 10,
5, 3, 5 and 10, respectively.

Comparative evaluation results in F-score (following
the TREC protocol) are shown in Table 1. In Table 1,
the first four entries refer to the best top systems from
TREC 2004 and followup studies, KLdiv to a system
using only KL divergence features, TransCount to a
system using only nonlinear transformation of unseen
word count features, RelPos to a system using only
relative position features, Word2Vec to a system using
only word embedding features, All to a system using
all features, All + Recursive to All with recursive fea-
ture averaging applied, All + DNN to All with DNN-
based feature transformation applied and All + Recur-
sive + DNN to All + Recursive with DNN-based fea-
ture transformation applied. The best result (in bold)
is significantly better than the best system results from
TREC 2004, while still being very computationally ef-
ficient and therefore scalable. In terms of individual
features, KLdiv (ties for 5th place at TREC 2004) and
TransCount (outperforms the 6th entry) showed very
strong results. Although RelPos and Word2Vec did not
yield good results, we found them complementary to
other features; performance was degraded to 0.621 and
0.624, respectively, when they were excluded from All
+ Recursive + DNN. The DNN-based feature transfor-
mation generally yielded better results. In particular,
it becomes very effective in conjunction with recursive
feature averaging. This result indicates that the DNN-
based transformation allows the system to capture the
non-trivial interactions between previous sentences and
the current one.

Systems F-score
Blott et al. (2004) / Gamon (2006) 0.622
Tomiyama et al. (2004) 0.619
Abdul-Jaleel et al. (2004) 0.618
Schiffman and McKeown (2004) 0.617
KLdiv 0.614
TransCount 0.611
RelPos 0.577
Word2Vec 0.577
All 0.615
All + Recursive 0.615
All + DNN 0.617
All + Recursive + DNN 0.625

Table 1: Performance breakdown. The best result is
significantly better than the other configurations (p <
0.01) based on the McNemar test. Since the systems’
output is not available, we are not able to calculate sta-
tistical significance against TREC systems.

5 Conclusions

We explored the space of light-weight features and
their nonlinear transformation with the goal of support-
ing online web-scale sentence novelty detection. The
experiment results show that these features are not only
efficient but also very powerful; a combination of these
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features with a simple, scalable classification approach
significantly surpassed the best challenge system at
TREC 2004. For future work, it would be interesting
to see if more sophisticated DNN training techniques
(e.g. unsupervised pre-training and different optimiza-
tion algorithms) would yield a better performance.
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Abstract

Community question answering, a recent
evolution of question answering in the
Web context, allows a user to quickly con-
sult the opinion of a number of people on
a particular topic, thus taking advantage
of the wisdom of the crowd. Here we
try to help the user by deciding automat-
ically which answers are good and which
are bad for a given question. In particular,
we focus on exploiting the output struc-
ture at the thread level in order to make
more consistent global decisions. More
specifically, we exploit the relations be-
tween pairs of comments at any distance
in the thread, which we incorporate in a
graph-cut and in an ILP frameworks. We
evaluated our approach on the benchmark
dataset of SemEval-2015 Task 3. Results
improved over the state of the art, confirm-
ing the importance of using thread level in-
formation.

1 Introduction

Community question answering (CQA) is a recent
evolution of question answering, in the Web con-
text, where users pose questions and then receive
answers from other users. This setup is very at-
tractive, as the anonymity on the Web allows users
to ask just about anything and then hope to get
some honest answers from a number of people. On
the negative side, there is no guarantee about the
quality of the answers as people of very different
background, knowledge, and with different moti-
vation contribute answers to a given question.

Unlike traditional question answering (QA), in
CQA answering takes the form of commenting in
a forum. Thus, many comments are only loosely
connected to the original question, and some are
not answers at all, but are rather interactions be-
tween users.

As question-comment threads can get quite
long, finding good answers in a thread can be time-
consuming. This has triggered research in trying
to automatically determine which answers might
be good and which ones are likely to be bad or ir-
relevant. One early work going in this direction is
that of Qu and Liu (2011), who tried to determine
whether a question is “solved” or not, given its as-
sociated thread of comments. As a first step in the
process, they performed a comment-level classi-
fication, considering four classes: problem, solu-
tion, good feedback, and bad feedback.

More recently, the shared task at SemEval 2015
on Answer Selection in CQA (Nakov et al., 2015),
whose benchmark datasets we will use below,
tackled the task of identifying good, potentially
useful, and bad comments within a thread. In that
task, the top participating systems used thread-
level features, in addition to the usual local fea-
tures that only look at the question–answer pair.
For example, the second-best team, HITSZ-ICRC,
used as a feature the position of the comment in
the thread (Hou et al., 2015). Similarly, our par-
ticipation, which achieved the third-best postition,
used features that try to describe a comment in the
context of the entire comment thread, focusing on
user interaction (Nicosia et al., 2015). Finally, the
fifth-best team, ICRC-HIT, treated the answer se-
lection task as a sequence labeling problem and
proposed recurrent convolution neural networks to
recognize good comments (Zhou et al., 2015b).

In a follow-up work, Zhou et al. (2015a) in-
cluded a long-short term memory in their convo-
lution neural network to learn the classification se-
quence for the thread. In parallel, in our recent
work (Barrón-Cedeño et al., 2015), we tried to ex-
ploit the dependencies between the thread com-
ments to tackle the same task. We did it by design-
ing features that look globally at the thread and
by applying structured prediction models, such as
Conditional Random Fields (Lafferty et al., 2001).
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Our goal in this paper goes in the same direction:
we are interested in exploiting the output structure
at the thread level to make more consistent global
assignments.

To the best of our knowledge, there is no work
in QA that identifies good answers based on the
selection of the other answers retrieved for a ques-
tion. This is mainly due to the loose dependencies
between the different answer passages in standard
QA. In contrast, we postulate that in a CQA set-
ting, the answers from different users in a com-
mon thread are strongly interconnected and, thus,
a joint answer selection model should be adopted
to achieve higher accuracy. In particular, we focus
on the relations between two comments at any dis-
tance in the thread. This is more general than pre-
vious approaches, which were either limited to se-
quential interactions or considered conversational
interactions only at the level of features.

We propose a model based on the idea that sim-
ilar comments should have similar labels. Below,
we apply graph-cut and we compare it to an inte-
ger linear programming (ILP) formulation for de-
coding under global constraints; we also provide
results with a linear-chain CRF. We show that the
CRF is ineffective due to long-distance relations,
e.g., a conversation in a thread can branch and then
come back later. On the contrary, the global infer-
ence models (either graph-cut or ILP) using the
similarity between pairs of comments manage to
significantly improve a strong baseline performing
local comment-based classifications.

2 The Task

We use the CQA-QL corpus from Subtask A of
SemEval-2015 Task 3 on Answer Selection in
CQA. The corpus contains data from the Qatar
Living forum,1 and is publicly available on the
task’s website.2 The dataset consists of ques-
tions and a list of answers for each question, i.e.,
question-answer threads. Each question, and each
answer, consist of a short title and a more de-
tailed description. There is also meta informa-
tion associated with both, e.g., ID of the user ask-
ing/answering the question, timestamp, category.
The task asks participants to determine for each
answer in the thread whether it is Good, Bad, or
Potentially useful for the given question.

1http://www.qatarliving.com/forum
2http://alt.qcri.org/semeval2015/task3/

Q: Can I obtain Driving License my QID is written Em-
ployee

A1 the word employee is a general term that refers to all the
staff in your company either the manager, secretary up
to the lowest position or whatever positions they have.
you are all considered employees of your company.

A2 your qid should specify what is the actual profession you
have. i think for me, your chances to have a drivers
license is low.

A3 dear richard, his asking if he can obtain. means he have
the driver license

A4 Slim chance . . .

Figure 1: Example from SemEval-2015 Task 3.

A simplified example is shown in Figure 1,3

where answers 2 and 4 are good, answer 1 is po-
tentially useful, and answer 3 is bad. In this paper,
we focus on a 2-class variant of the above Sub-
task A, which is closer to a real CQA application.
We merge Potential and Bad labels into Bad and
we focus on the 2-class problem: Good-vs-Bad.
Table 1 shows some statistics about the resulting
dataset used for development, training and testing.

Category Train Dev Test
Questions 2,600 300 329
Comments 16,541 1,645 1,976

Good 8,069 875 997
Bad 8,472 770 979

Table 1: Statistics about the CQA-QL dataset:
after merging Bad and Potential into Bad.

3 Our Proposed Solution

We model the pairwise relations between the com-
ments in the answer thread ({ci}ni=1) to produce a
better global assignment: we combine the predic-
tions of a Good-vs-Bad classifier at the comment
level with the output of a pairwise classifier, Same-
vs-Different, which takes two comments and pre-
dicts whether they should have the same label.

Each comment ci has an individual score siK ,
provided by the Good-vs-Bad classifier, for being
in class K ∈ {G,B} (i.e., G for Good and B
for Bad). Moreover, for each pair of comments
(ci, cj), we have an association score sij , an esti-
mate by the pairwise classifier about how likely it
is that the comments ci and cj will have the same
label. Next, we define two ways of doing global
inference using these two sources of information.

3http://www.qatarliving.com/moving-qatar/posts/can-i-
obtain-driving-license-my-qid-written-employee
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3.1 Graph Partition Approach
Here our goal is to find a partition P = (G,B)
that minimizes the following cost:

C(P ) = λ
[∑
ci∈G

siB+
∑
ci∈B

siG

]
+(1−λ)

∑
ci∈G,cj∈B

sij

The first part of the cost function discourages mis-
classification of individual comments, while the
second part encourages similar comments to be in
the same class. The mixing parameter λ ∈ [0, 1]
determines the relative strength of the two compo-
nents. Our approach is inspired by Pang and Lee
(2004), where they model the proximity relation
between sentences for finding subjective sentences
in product reviews, whereas we are interested in
global inference based on local classifiers.

The optimization problem can be efficiently
solved by finding a minimum cut of a weighted
undirected graph G = (V,E). The set of nodes
V = {v1, v2, · · · , vn, s, t} represent the n com-
ments in a thread, the source and the sink. We
connect each comment node vi to the source node
s by adding an edge w(vi, s) with capacity siG,
and to the sink node t by adding an edge w(vi, t)
with capacity siB . Finally, we add edges w(vi, vj)
with capacity sij to connect all pairs of comments.

Minimizing C(P ) amounts to finding a parti-
tion (S, T ), where S = {s}∪S′ and T = {t}∪T ′
for s /∈ S′, t /∈ T ′, that minimizes the cut capac-
ity, i.e., the net flow crossing from S to T . One
crucial advantage of this approach is that we can
use max-flow algorithms to find the exact solution
in polynomial time — near-linear in practice (Cor-
men et al., 2001; Boykov and Kolmogorov, 2004).

3.2 Integer Linear Programming Approach
Here we follow the inference with classifiers ap-
proach by Roth and Yih (2004), solved with Inte-
ger Linear Programming (ILP). We have one ILP
problem per question–answer thread. We define a
set of binary variables, whose assignment will uni-
vocally define the classification of all comments in
the thread. In particular, we define a pair of vari-
ables for each answer: xiG and xiB , 1 ≤ i ≤ n.
Assigning 1 to xiG means that comment ci in the
thread is classified as Good; assigning it 0 means
that ci is not classified as Good. The same applies
to the other classes (here, only Bad). Also, we
have a pair of variables for each pair of comments
(to capture the pairwise relations): xijS and xijD,
1 ≤ i < j ≤ n. Assigning 1 to xijS means that

ci and cj have the same label; assigning 0 to xijS
means that ci and cj do not have the same label.
The same interpretation holds for the other possi-
ble classes (in this case only Different).4

Let ciG be the cost of classifying ci as Good,
cijS be the cost of assigning the same labels to
ci and cj , etc. Following (Roth and Yih, 2004),
these costs are obtained from local classifiers by
taking log probabilities, i.e., ciG = − log siG,
cijS = − log sij , etc. The goal of the ILP prob-
lem is to find an assignmentA to all variables xiG,
xiB , xijS , xijD that minimizes the cost function:

C(A) = λ ·
N∑
i=1

(ciG · xiG + ciB · xiB) +

(1− λ) ·
N−1∑
i=1

N∑
j=i+1

(cijS · xijS + cijD · xijD)

subject to the following constraints: (i) All vari-
ables are binary; (ii) One and only one label is
assigned to each comment or pair of comments;
(iii) The assignments to the comment variables
and to the comment-pair variables are consistent:
xijD = xiG ⊕ xjG,∀i, j 1 ≤ i < j ≤ n.
λ ∈ [0, 1] is a parameter used to balance the con-
tribution of the two sources of information.

4 Local Classifiers

For classification, we use Maximum Entropy, or
MaxEnt, (Murphy, 2012), as it yields a probability
distribution over the class labels, which we then
use directly for the graph arcs and the ILP costs.

4.1 Good-vs-Bad Classifier
Our most important features measure the similar-
ity between the question (q) and the comment (c).
We compare lemmata and POS [1-4]-grams using
Jaccard (1901), containment (Lyon et al., 2001),
and cosine, as well as using some similarities from
DKPro (Bär et al., 2012) such as longest com-
mon substring (Allison and Dix, 1986) and greedy
string tiling (Wise, 1996). We also compute sim-
ilarity using partial tree kernels (Moschitti, 2006)
on shallow syntactic trees.

Forty-three Boolean features express whether
(i) c includes URLs or emails, the words “yes”,
“sure”, “no”, “neither”, “okay”, etc., as well as ‘?’
and ‘@’ or starts with “yes” (12 features); (ii) c
includes a word longer than fifteen characters (1);

4Setting a binary variable for each class label is necessary
to have an objective function that is linear on the labels.
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(iii) q belongs to each of the forum categories (26);
and (iv) c and q were posted by the same user (4).
An extra feature captures the length of c.

Four features explore whether c is close to a
comment by the user who asked the question, uq:
(i-ii) there is a comment by uq following c and
(not) containing an acknowledgment or (iii) con-
taining a question, or (iv) among the comments
preceding c there is one by uq asking a ques-
tion. We model dialogues by identifying conver-
sation chains between two users with three fea-
tures: whether c is at the beginning/middle/end
of a chain. There are copies of these features for
chains in which uq participates. Another feature
for cui checks whether the user ui wrote more than
one comment in the current thread. Three more
features fire for the first/middle/last comment by
ui. One extra feature counts the total number of
comments written by ui. Finally, there is a feature
modeling the position of c in the thread.

4.2 Same-vs-Different Classifier
We use the following types of features for a pair
of comments (ci, cj): (i) all the features from
the Good-vs-Bad classifier (i.e., we subtracted the
feature vectors representing the two comments,
|vi− vj |)5; (ii) the similarity features between the
two comments, sim(ci, cj); and (iii) the predic-
tion from the Good-vs-Bad classifiers on ci and cj
(i.e., the scores for ci and cj , the product of the
two scores, and five boolean features specifying
whether any of ci and cj are predicted as Good,
Bad, and whether their predictions are identical).

5 Experiments and Evaluation

We performed standard pre-processing, and we
further filtered user’s signatures. All parameters
(e.g., Gaussian prior for MaxEnt and the mixing
λ for the graph-cut and ILP) were tuned on the
development set. We also trained a second-order
linear-chain CRF to check the contribution of the
sequential relations between comments. We re-
port results on the official SemEval test set for all
methods. For the Same-vs-Different problem, we
explored a variant of training with three classes,
by splitting the Same class into Same-Good and
Same-Bad. At test time, the probabilities of these
two subclasses are added to get the probability of
Same and all the algorithms are run unchanged.

5Subtracting vectors is standard in preference learn-
ing (Shen and Joshi, 2003). The absolute value is necessary
to emphasize comment differences instead of preferences.

Classifier P R F1 Acc
baseline: Same 69.26
MaxEnt-2C 73.95 90.99 81.59 71.56
MaxEnt-3C 77.15 80.42 78.75 69.94

Table 2: Same-vs-Different classification. P, R,
and F1 are calculated with respect to Same.

Table 2 shows the results for the Same-vs-
Different classification. We can see that the two-
class MaxEnt-2C classifier works better than the
three-class MaxEnt-3C. MaxEnt-3C has more bal-
anced P and R, but loses in both F1 and accu-
racy. MaxEnt-2C is very skewed towards the ma-
jority class, but performs better due to the class
imbalance. Overall, it seems very difficult to learn
with the current features, and both methods only
outperform the majority-class baseline by a small
margin. Yet, while the overall accuracy is low,
note that the graph-cut/ILP inference allows us to
recover from some errors, because if nearby utter-
ances are clustered correctly, the wrong decisions
should be outvoted by correct ones.

The results for Good-vs-Bad are shown in Ta-
ble 3. On the top are the best systems at SemEval-
2015 Task 3. We can see that our MaxEnt classifier
is competitive: it shows higher accuracy than two
of them, and the highest F1 overall.6

System P R F1 Acc
Top-3 at SemEval-2015 Task 3

JAIST 80.23 77.73 78.96 79.10
HITSZ-ICRC 75.91 77.13 76.52 76.11
QCRI 74.33 83.05 78.45 76.97

Instance Classifiers
MaxEnt 75.67 84.33 79.77 78.43

Linear Chain Classifiers
CRF 74.89 83.45 78.94 77.53

Global Inference Classifiers
ILP 77.04 83.53 80.15 79.14‡
Graph-cut 78.30 82.93 80.55 79.80‡
ILP-3C 78.07 80.42 79.23 78.73
Graph-cut-3C 78.26 81.32 79.76 79.19†

Table 3: Good-vs-Bad classification. ‡ and †
mark statistically significant differences in accu-
racy compared to the baseline MaxEnt classifier
with confidence levels of 99% and 95%, respec-
tively (randomized test).

6This comparison is not strictly fair as the SemEval sys-
tems were trained to predict three classes, and here we
remapped them to two. We just want to show that our base-
line system is very strong.
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The CRF model is worse than MaxEnt on all
measures, which suggests that the sequential infor-
mation does not help. This can be because many
interactions between comments are long-distance
and there are gaps in the threads due to the anno-
tation procedure at SemEval (Nakov et al., 2015).

However, global inference with graph-cut and
ILP improves both F1 and accuracy, mostly due to
better recall. Graph-cut works better than ILP as it
has higher precision, which helps F1 and accuracy.

Both yield statistically significant improve-
ments over the MaxEnt classifier; they also im-
prove over the state-of-the-art JAIST system. Note
that the devtest-tuned values of λ for graph-cut
and ILP put much lower weight to the Same-vs-
Different component (values are 0.95 and 0.91, re-
spectively). Finally, as expected, using the predic-
tions of MaxEnt-2C in the global classifiers is bet-
ter than using those from MaxEnt-3C.

Q: I have a female friend who is leaving for a teaching job
in Qatar in January. What would be a useful portable
gift to give her to take with her?

A1 A couple of good best-selling novels. It’s hard to find
much here in Doha in the way of books.
Local: Good, Global: Good, Human: Good

A2 ipod to entertain herself in case of boredom... a lot of
patience for her students...
Local: Good, Global: Good, Human: Good

A3 Thanks, please keep suggestions coming, would like to
send her off with a useful gift.
Local: Bad, Global: Bad, Human: Bad

A6 Bacon. Nice bread, bacon, bacon, errmmm bacon and a
pork joint..
Local: Bad, Global: Good, Human: Good

A9 Couple of good novels, All time favorite movies, ..
Local: Bad, Global: Good, Human: Good

A11 Ditto on the books and dvd’s. Excedrin.
Local: Bad, Global: Bad, Human: Good

A12 Ditto on the bacon, pork sausage, pork chops, ham,..can
you tell we miss pork! I think getting a care package
together: her favorite perfume; shampoo; conditioner;
glycerin soaps; set of DVDs of her favorite TV series..
Oh, and did I mention she should pack PATIENCE?
Local: Bad, Global: Good, Human: Good

Figure 2: An excerpt of a thread with decisions
by local and global classifiers, and humans.

6 Discussion

We manually examined a number of examples
where our global classfier could successfully re-
cover from the errors made by the local classifier,
and where it failed to do so. In Figure 2, we show
the classification decisions of our local and global
(graph-cut) classifiers along with the human anno-
tations for an excerpt of a thread.

For example, consider answers A6, A9, and
A12, which were initially misclassified as Bad
by the local classifier, but later recovered by the
global classifier exploiting the pairwise informa-
tion. In this case, the votes received by these an-
swers from other Good answers in the thread for
being in the same class won against the votes re-
ceived from other Bad answers.

Now consider A11, which our method failed to
classify correctly as Good. Our investigation re-
vealed that in this case the votes from the Bad an-
swers won against the votes from the Good ones.
The accuracy of the pairwise classifier has proven
to be crucial for the performance of our over-
all framework. We probably need more informa-
tive features (e.g., textual entailment and semantic
similarity to capture the relation between books
and novels, movies and DVDs, etc.) in order to
improve the pairwise classification performance.

7 Conclusion and Future Work

We have investigated the use of thread-level in-
formation for answer selection in CQA. We have
shown that using a pairwise classifier that predicts
whether two comments should get the same label,
followed by a graph-cut (or ILP) global inference
improves significantly over a very strong baseline
as well as over the state of the art. We have fur-
ther shown that using a linear-chain CRF model
does not help, probably because many interactions
between comments are long distance.

In future work, we would like to improve the
pairwise classifiers with richer features, as this is
currently the bottleneck for improving the perfor-
mance in the global model. We further plan to test
our framework on other CQA datasets, including
on other languages.7 Last but not least, we are in-
terested in extending this research with even more
global information, e.g., by modeling global deci-
sion consistency across multiple threads.
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Shafiq Joty, and Walid Magdy. 2015. QCRI: An-
swer selection for community question answering -
experiments for Arabic and English. In Proceedings
of the 9th International Workshop on Semantic Eval-
uation, SemEval ’15, pages 203–209, Denver, CO.

Bo Pang and Lillian Lee. 2004. A sentimental educa-
tion: Sentiment analysis using subjectivity summa-
rization based on minimum cuts. In Proceedings of
the 42nd Annual Meeting on Association for Com-
putational Linguistics, ACL ’04, pages 271–278,
Barcelona, Spain.

Zhonghua Qu and Yang Liu. 2011. Finding problem
solving threads in online forum. In Proceedings of
5th International Joint Conference on Natural Lan-
guage Processing, IJCNLP ’11, pages 1413–1417,
Chiang Mai, Thailand.

Dan Roth and Wen-tau Yih. 2004. A linear program-
ming formulation for global inference in natural lan-
guage tasks. In Proceedings of the Eighth Confer-
ence on Computational Natural Language Learning,
CoNLL ’04, pages 1–8, Boston, MA.

Libin Shen and Aravind K. Joshi. 2003. An SVM
based voting algorithm with application to parse
reranking. In Proceedings of the Seventh Confer-
ence on Natural Language Learning, CONLL ’03,
pages 9–16, Edmonton, Canada.

Michael Wise. 1996. Yap3: Improved detection of
similarities in computer program and other texts. In
Proceedings of the Twenty-seventh SIGCSE Tech-
nical Symposium on Computer Science Education,
SIGCSE ’96, pages 130–134, New York, NY.

Xiaoqiang Zhou, Baotian Hu, Qingcai Chen, Buzhou
Tang, and Xiaolong Wang. 2015a. Answer se-
quence learning with neural networks for answer se-
lection in community question answering. In Pro-
ceedings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics, pages 713–718,
Beijing, China.

Xiaoqiang Zhou, Baotian Hu, Jiaxin Lin, Yang xiang,
and Xiaolong Wang. 2015b. ICRC-HIT: A deep
learning based comment sequence labeling system
for answer selection challenge. In Proceedings of
the 9th International Workshop on Semantic Evalu-
ation, SemEval ’15, pages 210–214, Denver, CO.

578



Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 579–584,
Lisbon, Portugal, 17-21 September 2015. c©2015 Association for Computational Linguistics.

Key Concept Identification for Medical Information Retrieval

Jiaping Zheng
College of Information
and Computer Sciences

University of Massachusetts
Amherst, MA

jzheng@cs.umass.edu

Hong Yu
Bedford VA Medical Center

Bedford, MA
Department of Quantitative Health Sciences

University of Massachusetts
Worcester, MA

hong.yu@umassmed.edu

Abstract

The difficult language in Electronic Health
Records (EHRs) presents a challenge to
patients’ understanding of their own con-
ditions. One approach to lowering the
barrier is to provide tailored patient ed-
ucation based on their own EHR notes.
We are developing a system to retrieve
EHR note-tailored online consumer ori-
ented health education materials. We ex-
plored topic model and key concept identi-
fication methods to construct queries from
the EHR notes. Our experiments show
that queries using identified key concepts
with pseudo-relevance feedback signifi-
cantly outperform (over 10-fold improve-
ment) the baseline system of using the full
text note.

1 Introduction

Allowing patients access to their own electronic
health records (EHRs) can enhance medical un-
derstanding and provide clinical relevant bene-
fits (Wiljer et al., 2006), including increased med-
ication adherence (Delbanco et al., 2012). How-
ever, EHR notes present unique challenges to the
average patients. Since these notes are not usually
targeted at the patients (Mossanen et al., 2014),
languages that may be difficult for non-medical
professionals to comprehend are prevalent, in-
cluding medical terms, abbreviations, and medi-
cal domain-specific language patterns. The valu-
able and authoritative information contained in the
EHR is thus less accessible to the patients, who ul-
timately stand to benefit the most from the infor-
mation.

To address the challenges, we are developing a
system to link medical notes to targeted education
materials from trusted resources. The textual nar-
ratives in the EHR notes are not conducive to ef-
fective and efficient query. We therefore explored

topic model and key concept identification meth-
ods to construct short queries from the EHR notes.

2 Related Work

Patent retrieval (Fujii et al., 2007) is similar to
this work, as the queries are usually long and
complex patent documents. Several methods
have been proposed to construct shorter queries
from the documents. For example, words in the
summary section of a patent document can be
ranked by TFIDF scores and extracted to form a
query (Xue and Croft, 2009). Sentences that are
similar to pseudo-relevant documents according to
a language model are also used to reduce query
length (Ganguly et al., 2011). Other similarity
measures such as Kullback-Leibler divergence are
used to extract terms, which are expanded to gen-
erate queries in the patent retrieval domain (Mahd-
abi et al., 2012). However, the patent retrieval do-
main is recall-driven, while in our scenario, pa-
tients are generally not expected to read relevant
education documents exhaustively.

Various methods have also been proposed to re-
trieve documents relevant to passages of text or
web documents. A model extended from CRF is
proposed to identify noun phrases and named en-
tities from a user-selected passage as queries (Lee
and Croft, 2012). Similarly, noun phrases in a ver-
bose query are also used as candidates for key con-
cepts (Bendersky and Croft, 2008). Other related
work that reduces long queries includes ranking all
subsets of the original query (Kumaran and Car-
valho, 2009). However, typical EHR notes are
longer than the passages and verbose queries in
these systems, which makes the graphical model
and other learning based models less efficient.
Moreover, parsers as required by Bendersky et
al. (2009) and Named Entity Recognizers for the
medical domain are less effective than the general
domain.
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TREC Clinical Decision Support Track1 is an
IR challenge to link medical cases to information
relevant for patient care. Unlike our system, this
task is designed to address the physicians’ infor-
mation needs of diagnosis, testing and treatment
for the patients.

3 Materials and Methods

3.1 Data

MedlinePlus2 provides current and reliable infor-
mation about over 900 health topics pages and
1000 medication pages to users in consumer-
oriented lay language. Additionally, the medi-
cal encyclopedia section includes over 7000 arti-
cles about diseases, tests, symptoms, injuries, and
surgeries. We include in this study the textual nar-
ratives in the “health topics”, “drugs, supplements,
and herbal information”, and “medical encyclope-
dia” sections of the MedlinePlus as the collection
of educational materials. There are a total of ap-
proximately 9400 articles in this collection, which
we designate as MedlinePlus. Table 3.1 summa-
rizes the characteristics of the collection.

We index the MedlinePlus documents with
Galago, an advanced open source search engine.
Galago implements the inference network retrieval
model (Turtle and Croft, 1991). This model cal-
culates the probability of the user’s information
needs being satisfied given a document in a di-
rected acyclic graph. This framework is applied
in many information retrieval tasks, and shown to
be successful (Metzler et al., 2004).

Twenty progress notes are randomly selected
from a corpus of de-identified EHR notes as the
EHR document collection. Each note contains on
average 261 tokens, with a standard deviation of
133. A physician read each note, and manually
identified relevant education materials from the
MedlinePlus documents. Each EHR note is linked
to 22 education material documents on average.
For example, Table 3.1 shows the summary of one
EHR note and some of its relevant MedlinePlus
documents. There are approximately 30 sentences
or 360 tokens in the actual document.

We adopted Mean Average Precision (MAP)
and Precision at 10 to evaluate the IR systems.

1http://www.trec-cds.org/
2http://www.nlm.nih.gov/medlineplus/

Summary of EHR Note

Patient remains in ICU with the following
problems: respiratory failure, hemodynam-
ics, renal failure, status post liver transplant,
atrial fib, infectious disease, nutrition.

Select Relevant Documents

Respiratory Failure
Deep Vein Thrombosis
Aspiration pneumonia
Pulmonary Hypertension
Kidney Failure
Atrial Fibrillation or Flutter
Liver Transplantation
Dialysis - Hemodialysis

Table 2: Example EHR Note and its relevant doc-
uments

3.2 IR Systems

We investigate several query generation ap-
proaches, whereby short queries are built from an
EHR note. In our queries, sequential dependence
model (Metzler and Croft, 2005) was used to cap-
ture the dependencies in a multi-word query term.
In this model, given a query, documents are ranked
based on features of documents containing a single
query term, two query terms sequentially appear-
ing in the query, and two query terms in any or-
der. This model has been shown to be effective in
many applications (Balasubramanian et al., 2007;
Cartright et al., 2011; Bendersky et al., 2009).

3.2.1 Baseline Approach
Our baseline approach issues each of the 20 test
EHR notes as the query to the MedlinePlus doc-
ument index and retrieves top 500 relevant doc-
uments. Although queries are not generally as
long as EHR notes, an average patient without ad-
equate medical knowledge may have difficulties
constructing effective queries. Thus, this baseline
can be considered as a proxy to how a patient ac-
tually conducts his own search in the real word.

3.2.2 LDA Models
We trained LDA topic models from over 6000 de-
identified EHR notes to identify prominent top-
ics from the test notes. The number of topics
are selected based on retrieval performance. LDA
models extract distributions over individual word
tokens for each topic. However, medical con-
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Document Type Documents (Tokens) Average Tokens (StdDev)

Health Topics 956 (141,185) 147.7 (37.6)
Medical Encyclopedia 7078 (5,126,101) 724.2 (363.7)
Drugs, Supplements, and Herbal Information 1332 (1,726,570) 1296.2 (992.8)
Total 9366 (6,993,856) 749.1 (565.9)

Table 1: MedlinePlus Collection

cepts often contain more than one token. We em-
ploy turbo topics (Blei and Lafferty, 2009) to find
phrases from these topics. This method builds sig-
nificant n-grams based on a language model of ar-
bitrary length expressions. Queries are then gener-
ated from the n-grams. We take the top 5 phrases
as queries from the topics that has a combined
probability of over 80%.

3.2.3 Learning-Based Key Concept
Identification

We also developed learning-based key concept
identification to build queries from EHR notes.
We employed Conditional Random Fields (CRF)
model (Lafferty et al., 2001) to identify key con-
cepts, which are most in need of explanation by
external education materials. These key con-
cepts can be considered in a broad sense topics,
as they also capture various aspects of the EHR
note content. We explored lexical, morpholog-
ical, UMLS (Bodenreider, 2004) semantic type,
and word embeddings as features. The word em-
beddings were induced from a combination of
Wikipedia articles in the Medicine category and
de-identified EHR progress notes.

Three CRF models are learned using differ-
ent training data. One uses Wikipedia articles.
Wikipedia, especially the Medicine category, is an
appealing resource for such information as the hu-
man curated links in them are naturally concepts
that are important. However, the number of ar-
ticles in the Medicine category outnumbers our
EHR notes substantially, we therefore restricted
the Wikipedia articles to the Diabetes category.
The paragraphs before the table of contents box
are used. Anchor texts in these paragraphs are
treated as key concepts. The second model uses
EHR notes. Training data for the model was gen-
erated from the retrieval gold standard. A phrase
in an EHR note would be annotated as a key con-
cept if it matches the title of one of the note’s
relevant MedlinePlus documents. Lastly, we aug-
mented the EHR corpus with Wikipedia articles,

System P@10 MAP Increase

1 Baseline 0% 0.0091 -
2 CHV 5% 0.0240 2.6
3 LDA 10% 0.0489 5.4
4 Key (Wiki) 16% 0.0851 9.4
5 Key (EHR) 16.5% 0.0879 9.7
6 Key (Wiki+EHR) 18% 0.1030 11.3

Table 3: System Performance

and compared its performance to the other CRF-
based models. Leave-one-out cross validation is
used in the last two models.

3.2.4 Query Expansion
We explored query expansion by incorporating
relevance feedback from pseudo-relevant docu-
ments. The initial queries are generated using
methods described previously. Among the top 20
retrieval results, those with a title that matches
one of the identified key concepts are considered
pseudo-relevant documents. This additional re-
quirement is to ensure that the expanded concepts
do not drift from the main topic of the medical
notes. From these documents, medical concepts
are extracted using MetaMap (Aronson and Lang,
2010). These concepts, with their synonyms pro-
vided by UMLS, are used as expansions.

4 Experiment Results

4.1 LDA Models
100 topics are learned from the de-identified EHR
note collection. This level of topic granularity
shows the best performance in our experiments.
The retrieval result is shown in Table 4, row 3. The
improvement over the baseline is 5.4 folds, and is
statistically significant using a paired Student’s t-
test (p < 0.05).

4.2 Key Concept Identification
The key concept identification performance of the
three CRF models is shown in Table 4.2. Retrieval
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Training Data

Wiki EHR Wiki+EHR

Precision 16.27% 35.92% 33.79%
Recall 26.88% 34.09% 33.18%
F1 18.74% 33.70% 32.54%

Table 4: Key concept identification performance

Training Data P@10 MAP

Wiki 20% (16%) 0.1067 (0.0851)
EHR 16% (16.5%) 0.0951 (0.0879)
Wiki+EHR 21% (18%) 0.1169 (0.1030)

Table 5: System performance with pseudo-
relevance feedback. Numbers in parentheses are
without pseudo-relevance feedback.

performance of these models are shown in Table 4,
rows 4 to 6. All systems showed a statistical sig-
nificant improvement over the baseline. The last
model’s improvement is also statistically signif-
icant over the LDA approach. Query expansion
methods further improved system performance, as
shown in Table 4.2.

5 Discussions

From the LDA model, Table 5 shows the top 10 n-
grams from 7 topics trained on the medical text. It
is clear that while topics like the first one capture
medical concepts, others like the second one do
not. The LDA results also highlight the noisy na-
ture of the EHR notes. Queries formed by includ-
ing the generic or noisy terms such as “continue
on” will not benefit retrieval results. Examining
the retrieval results, we found that when the promi-
nent topics include medical concepts, the top 10
results usually contain at least one relevant docu-
ment. When only generic topics are identified, rel-
evant documents are absent in the top 10 results.

The CRF models, on the other hand, are bet-
ter at capturing the concepts in the EHR notes.
All three models outperformed the LDA model.
One drawback of using models trained from title-
matching phrases is that the identified key con-
cepts fail to cover the scope of the medical con-
cepts contained in an EHR note. On average
only 23.6% of the concepts are annotated as key
phrases in each note. In the evaluation of the CRF
models for their key concept identification perfor-

Phrases with the highest probability

1 dialysis, hemodialysis, catheter, renal fail-
ure, renal, coumadin, line, picc line, dialy-
sis catheter, failure

2 job id, today, point, continue on, reason-
able, try to, continue, yesterday, left, right

3 continue, patient, job id, pain, patient has,
normal, patient s, white count, secondary
to, culture

4 liver, ascites, normal, tenderness, fluid,
stable, elevated, today, edema, chest

5 preliminary, patient, patient s, time, blood,
mmoll, patient has, routine, high, vial

6 diarrhea, abdominal, flagyl, stool, abdom-
inal pain, colitis, abdomen, difficile, fluid,
distended

7 bipap, pneumonia, year old, respiratory
failure, failure, minutes, requiring, en-
cephalopathy, ards, patient

Table 6: Top 10 n-grams from 7 topics using the
LDA model

mance, inclusion of Wikipedia data slightly de-
creased the F1 score when they were tested on
EHR notes. This can be attributed to the fact that
the Wikipedia articles outnumbered the EHR data
by 7 times. However, this data helped improve the
coverage of the key concepts. In one document,
the augmented model identified two more out of
the total eight key concepts.

Finally, to investigate the gap between medi-
cal language and lay language, we substituted the
medical concepts recognized by MetaMap with
their consumer-oriented counterparts created by
the Consumer Health Vocabulary (CHV) Initia-
tive (Zeng and Tse, 2006). Performance using the
substituted EHR notes as shown in Table 4, row 2
more than doubled. The gap highlights the issue
that patients may have difficulty finding relevant
health information without assistance due to vo-
cabulary mismatch.

6 Conclusions, Limitations and Future
Plan

We have shown that using full EHR notes is in-
effective at retrieving relevant education materi-
als. Identifying key concepts of an EHR note and
then using the key concepts as query terms re-
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sult in significantly improved performance (over
10-fold). Furthermore, a query expansion ap-
proach in which key concepts are complemented
by other medical concepts from pseudo-relevant
documents further improves the performance.

One limitation of our design is that only one
physician provided relevancy judgments. Addi-
tional annotators would provide a more rigorous
set of gold standard, allowing us to measure inter-
annotator agreement.

There are several directions we can explore in
our future research. Firstly, our key concept iden-
tification methods are not optimized for the re-
trieval results, but for the identification subtask
only. We hypothesize that directly optimizing the
key concept identifier for retrieval would lead to
better performance. We would also investigate do-
main adaptation techniques to learn key concept
identification models from other data sources.
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Abstract

We propose an image-mediated learning
approach for cross-lingual document re-
trieval where no or only a few parallel
corpora are available. Using the images
in image-text documents of each language
as the hub, we derive a common seman-
tic subspace bridging two languages by
means of generalized canonical correla-
tion analysis. For the purpose of evalu-
ation, we create and release a new doc-
ument dataset consisting of three types
of data (English text, Japanese text, and
images). Our approach substantially en-
hances retrieval accuracy in zero-shot and
few-shot scenarios where text-to-text ex-
amples are scarce.

1 Introduction

Cross-lingual document retrieval (CLDR) is the
task of finding relevant documents in one lan-
guage given a query document in another lan-
guage. While sufficiently large-scale corpora are
critical for parallel corpus-based learning meth-
ods, manually creating corpora requires huge hu-
man effort and is unrealistic in many cases.

A straightforward approach is to crawl bilin-
gual documents from the Web for use as train-
ing data. However, because most documents on
the Web are written in one language, it is not al-
ways easy to collect a sufficient number of multi-
lingual documents, especially those involving mi-
nor languages. Let us consider the multimedia
information in documents. We can, for exam-
ple, find abundant pairings of text and images,
e.g., text with the ALT property of <IMG> tags in
HTML, text with photos posted to social network-
ing sites, and articles on Web news posted with
images. Unlike text, an image is a universal rep-
resentation; we can easily understand the semantic

Learn relation indirectly

Language 1 Documents Language 2 Documents

images images

pairspairs

similarity

Image-Mediated Learning

Language1
Texts

Language2
Texts

Figure 1: Concept of image-mediated learning.
Our idea is to learn the relation between two lan-
guages indirectly by using images attached to text.
If two documents written in different languages
include images with similar image features, it is
likely that the texts contained in the two docu-
ments are similar. Based on this idea, we seek the
relation of texts written in different languages me-
diated by the similarity between images.

content of images regardless of our mother tongue.
Motivated by this observation, we expect that we
can learn the relation of two languages indirectly
through images, even if we do not have sufficient
bilingual text pairs (Figure 1).

Generally, traditional image recognition tech-
niques (or image features) are very poor com-
pared with those in the natural language process-
ing field. In recent years, however, deep learning
has resulted in a breakthrough in visual recogni-
tion and dramatically improved image recognition
accuracy in generic domains, which is rapidly ap-
proaching human recognition levels (Fang et al.,
2015). We expect that these state-of-the-art im-
age recognition technologies can effectively assist
CLDR tasks.

We show that hub images enable zero-shot
training of CLDR systems and improve retrieval
accuracy given only a few parallel text samples.
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2 Related Work

2.1 Multimodal Learning for CLDR

Multimodal learning, defined as a framework for
machine learning using inputs from multiple me-
dia or sensors, has played a key role in various
cross-modal applications. The most widely used
standard method for multimodal learning is canon-
ical correlation analysis (CCA) (Hotelling, 1936),
which projects multimodal data into a shared rep-
resentation. For example, CCA has been success-
fully used in image retrieval (tag to images) and
image annotation (image to tags) (Hardoon et al.,
2004; Rasiwasia et al., 2010; Gong et al., 2014). In
the context of CLDR, each language’s texts con-
stitute one modality. CCA has also commonly
been used for cross-lingual information retrieval
(Vinokourov et al., 2002; Li and Shawe-Taylor,
2004; Udupa and Khapra, 2010). Whereas CCA
can handle only two modalities, we need to con-
sider relations between three modalities because
we use images in addition to the two languages.
Therefore, we focus on an extension of CCA, gen-
eralized canonical correlation analysis (GCCA), to
handle more than two inputs (Kettenring, 1971).

2.2 Zero-Shot Learning for CLDR

Our core idea is to use another modality (image)
as a hub to indirectly learn the relevance between
two different languages. The work by Rupnik et
al. is probably the closest to ours (Rupnik et al.,
2012). In their study, they used a popular language
(e.g., English) with enough bilingual documents
shared with other languages as a hub to enhance
CLDR for minor languages with few direct bilin-
gual texts available. Nevertheless, this method
assumes that parallel corpora of the hub and tar-
get languages exist and therefore, its application is
limited to specific domains where manual transla-
tions are readily available, such as Wikipedia and
news sites. Contrarily, because we use images as
the hub, we can use documents closed with respect
to each language for training. Considering that
current generic Web documents are mostly closed
with respect to one language, yet equipped with
rich multimedia data, our setup is assumed to be
more reasonable.

Division English Images Japanese
1 [train-E/I] E1 I1 -
2 [train-I/J] - I2 J2

3 [train-E/J] E3 - J3

4 [test-E/J] E4 - J4

Table 1: Division of training and test data. Each
division of training dataset is missing one of the
three modalities.
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Figure 2: System overview

3 Our Approach

3.1 Overview of Image-Mediated Learning

We use the following notations for specifying each
non-overlapping data division.

1. [train-E/I]: Training documents consisting of
English text and images.

2. [train-I/J]: Training documents consisting of
images and Japanese text.

3. [train-E/J]: Training documents consisting of
English and Japanese text.

4. [test-E/J]: Test documents consisting of En-
glish and Japanese text.

We define IDs for each modality in each division
as given in Table 1. For example, E1 represents
features of English text in the [train-E/I] division.
Typical CLDR based on parallel corpora uses only
[train-E/J] for training and [test-E/J] for evalua-
tion. In the zero-shot learning scenario without
any [train-E/J] data, we use only [train-E/I] and
[train-I/J] for training. In the few-shot learning
scenario, we also use a small number of [train-E/J]
samples. We call this approach image-mediated
learning.

An overview of our system is depicted in Fig-
ure 2. We compress features by principal compo-
nent analysis (PCA) and train them by GCCA. For
testing, we compress features by PCA, project fea-
tures by GCCA, then, search the nearest neighbors
from Japanese to English in the joint space.

586



3.2 Feature Extraction

A convolutional neural network (CNN) is one of
the most successful deep learning methods for vi-
sual recognition. It is known that we can ob-
tain very good image features by taking activation
of hidden neurons in a network pre-trained by a
sufficiently large dataset (Donahue et al., 2013).
We apply the CNN model pre-trained using the
ILSVRC2012 dataset (Russakovsky et al., 2015)
provided by Caffe (Jia et al., 2014), a standard
deep learning software package in the field of vi-
sual recognition.

As the text feature for both English and
Japanese, we use the bag-of-words (BoW) rep-
resentation and term frequency-inverse document
frequency (TF-IDF) weighting. The MeCab
(Kudo et al., 2004) library is used to divide
Japanese text into words by morphological analy-
sis. No preprocessing approaches like eliminating
stop words and stemming, are used.

3.3 GCCA

GCCA is a generalization of CCA for any m
modalities (m = 3 in our case). Although sev-
eral slightly different versions of GCCA have been
proposed (Carroll, 1968; Rupnik et al., 2012;
Velden and Takane, 2012), we implement the sim-
plest one (Kettenring, 1971) because GCCA itself
is not the main focus of this study.

Let E, I , and J denote English, images,
and Japanese, respectively. For feature vector
xk, ∀k ∈ {E, I, J}, let zk = (xk − xk)hk de-
note its canonical variables. Σij denotes a covari-
ance matrix of modalities i and j where i, j ∈
{E, I, J}. Projection vectors hk are computed
such that they maximize the sum of correlations
between each pair of modalities obtained by solv-
ing the following generalized eigenvalue problem:

1
2

 0 ΣEI ΣEJ

ΣIE 0 ΣIJ

ΣJE ΣJI 0

h

= ρ

 ΣEE 0 0
0 ΣII 0
0 0 ΣJJ

h

(1)

where h = (hT
E ,hT

I ,hT
J )T . The canon-

ical axises h are normalized such that
1
3

∑3
k∈{E,I,J} hT

k Σkkhk = 1. Additionally,
we add a regularization term to the self covariance
matrices to prevent over-fitting; that is, we set
Σkk → Σkk +αI , where α is a parameter to avoid

the singularity issue.
Despite our training datasets having only two

of the three modalities as given in Table 1, we
can handle this situation naturally by computing
covariance matrices from the available data only.
For example, in the few-shot learning scenario,
we compute ΣEI using E1 and I1, and ΣEE us-
ing E1 and E3. In the zero-shot learning scenario,
because [train-E/J] is not available, we compute
ΣEE using E1 only and use a zero matrix for ΣEJ .

3.4 Nearest Neighbor Search in Joint Space

We can find relevant documents in another lan-
guage by computing the distances from the query
documents using the coupled canonical subspaces.
Having set Japanese as the query language, we
retrieve documents written in English. Nearest
neighbors are obtained as follows:

ĵ := arg min
j

d(zi
J , zj

E), (2)

where zi
J , zj

E are projected feature vectors of the
query and target documents, respectively, and d(·)
is a distance function, which in our case, is the
Euclidean distance.

4 Experiment

4.1 Pascal Sentence Dataset with Japanese
Translation

The UIUC Pascal Sentence Dataset (Rashtchian et
al., 2010) contains 1000 images, each of which
is annotated with five English sentences describ-
ing its content. This dataset was originally created
for the study of sentence generation from images,
which is one of the current hot topics in computer
vision. To establish a new benchmark dataset for
image-mediated CLDR, we included a Japanese
translation for each English sentence provided by
professional translators1, as shown in Figure 3. In
this experiment, we bundled the five sentences at-
tached to each image for use as one text document.
Therefore, in our setup, each of the 1000 docu-
ments in the dataset consists of three items: an im-
age, and the corresponding English and Japanese
text.

1Dataset is available at:
http://www.nlab.ci.i.u-tokyo.ac.jp/
dataset/pascal_sentence_jp/
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- A family on a boat with a cross on a river
- A happy couple with a young child wearing a 
life preserver sitting on a boat.
- A man, a woman, and a child sit on boat 
with a large cross on it.
- A man, women and small child sitting on top 
of a boat moving along the river.
- Family of three sitting on deck, child wearing 
red vest, brush and shoes are seen in the 
foreground.

- 川で十字架のあるボートに乗っている家族。
- ボートに座っている、救命具を着た幼い子ど
もと幸せなカップル。
- 男性、女性と子どもが大きな十字架のある
ボートに座っています。
- 川に沿って動いているボートの上部に座って
いる男性、女性と小さな子ども。
- ブラシと靴が前景に写されている、子どもが
赤いベストを着て、デッキに座っている三人
の家族。

︙

English Texts Images Japanese Texts

︙︙

- A black and white cow in a grassy field 
stares at the camera.
- A black and white cow standing in a grassy 
field.
- A black and white cow stands on grass 
against a partly cloudy blue sky.
- a cow is gazing over the grass he is about to 
graze
- Black and white cow standing in grassy field.

- 草地の黒と白の雌牛がカメラをじっと見てい
ます。
- 草地に立っている黒と白の雌牛。
- 一部曇った青空を背に黒と白の雌牛が草地に
立っています。
- 雌牛が食べようとしている草をじっと眺めて
います。
- 草地に立っている黒と白の雌牛。

Figure 3: Examples from the Pascal Sentence Dataset with Japanese translations: each image has about
five sentences describing it from different perspectives.

4.2 Evaluation

We randomly sampled data from the dataset for
each division in Table 1 without any overlap; we
ignored the modality of each document that was
not available in each data division (e.g., Japanese
text in [train-E/I]). We ran experiments with vary-
ing sample sizes for [train-E/I] and [train-I/J], that
is, 100, 200, 300, and 400. Furthermore, we grad-
ually increased the number of [train-E/J] samples
from 0 to 100 to emulate the few-shot learning sce-
nario. The size of the test data [test-E/J] was fixed
at 100. Following this setup, we performed image-
mediated CLDR based on GCCA, and compared
the results with those obtained by standard CLDR
using only [train-E/J] data with CCA. We eval-
uated the performance with respect to the top-1
Japanese to English retrieval accuracy in the test
data. Given that we used 100 test samples, the
chance rate was 1%. For each run, we conducted
50 trials randomly replacing data and used the av-
erage score. All features were compressed into
100 dimensions via PCA and α was set to 0.01.

The experimental results, illustrated in Figure 4,
clearly show that better accuracy is obtained with
a greater number of text-image data in both zero-
shot and few-shot scenarios. We can expect even
better zero-shot accuracy with more text-image
data, although, we cannot increase [train-E/I] and
[train-I/J] more than 400 each in the current setup
because of the restricted dataset size. We sum-
marized results in zero-shot scenario in Table 2
in several cases. Although both GCCA and CCA
show improved performance as the sample size
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Figure 4: Retrieval accuracy varying the num-
ber of [train-E/J] data. Each colored line shows
the performance of our method with a differ-
ent sample size of [train-E/I] and [train-I/J] data
(e.g., GCCA-400 denotes respective 400 samples
of [train-E/I] and [train-I/J] for GCCA). We used
image features extracted from GoogLeNet and text
features represented as bags-of-words.

of [train-E/J] increases, not surprisingly, GCCA
is gradually overtaken by CCA when we have
enough samples to learn the relevance between
English and Japanese texts directly. However, ac-
curacies of image-mediated learning in the cases
when [train-E/J] is scarce are higher than CCA
baseline. Hence, we confirmed that the image-
mediated model is also effective in the few-shot
learning scenario.
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Model Accuracy(%)
GCCA-400(BoW) 37.4± 3.8
GCCA-300(BoW) 27.6± 3.4
GCCA-200(BoW) 14.7± 3.2
GCCA-100(BoW) 9.8± 2.3
GCCA-400(TF-IDF) 42.0± 4.6
GCCA-300(TF-IDF) 31.6± 4.3
GCCA-200(TF-IDF) 17.2± 2.6
GCCA-100(TF-IDF) 11.8± 2.7

Table 2: Accuracy of zero-shot learning. Image
features are extracted from GoogLeNet and both
the bag-of-words (BoW) and the TF-IDF model
are used as text features.
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Figure 5: Retrieval accuracy using different image
features in image-mediated CLDR. The sample
size of both [train-E/I] and [train-I/J] is 400. Text
features are based on the bag-of-words model.

4.3 Effect of Image Features

We also verified the effect of the performance of
image features in our framework (see Figure 5
and Table 3). CNN has improved dramatically
over the last few years, and many new powerful
pre-trained networks are currently available. We
compared three different features extracted from
GoogLeNet (Szegedy et al., 2014), VGG 16 lay-
ers (Chatfield et al., 2014), and CaffeNet (Jia et al.,
2014; Krizhevsky et al., 2012). Additionally, we
tested the Fisher Vector (Perronnin et al., 2010),
which was the standard hand-crafted image fea-
ture before deep learning. We extracted features
from the pool5/7x7 s1 layer in GoogLeNet, fc6
layer in VGG, and fc6 layer in CaffeNet. For the
Fisher Vector, following the standard implemen-
tation, we compressed SIFT descriptors (Lowe,

Feature Accuracy(%)
CNN(GoogLeNet), BoW 37.4± 3.8
CNN(VGG), BoW 31.3± 3.5
CNN(CaffeNet), BoW 25.1± 3.4
FisherVector, BoW 10.8± 2.7
CNN(GoogLeNet), TF-IDF 42.0± 4.6
CNN(VGG), TF-IDF 37.8± 2.9
CNN(CaffeNet), TF-IDF 29.7± 4.4
FisherVector, TF-IDF 12.6± 2.7

Table 3: Accuracy of zero-shot learning in multi-
ple image features. The sample size of both [train-
E/I] and [train-I/J] is 400. Both the bag-of-words
(BoW) and the TF-IDF model are used as text fea-
tures.

1999) into 64 dimensions by PCA, and used a
Gaussian mixture model with 64 components. We
used four spatial grids for the final feature extrac-
tion. Overall, the order of performance of features
corresponds to that known in the image classifica-
tion domain (Russakovsky et al., 2015). This re-
sult indicates that when more powerful image fea-
tures are used, better performance can be achieved
in image-mediated CLDR.

5 Conclusion

We proposed an image-mediated learning ap-
proach to realize zero-shot or few-shot CLDR.
For evaluation, we created and released a new
dataset consisting of Japanese, English, and image
triplets, based on the widely used Pascal Sentence
Dataset. We showed that state-of-the-art CNN-
based image features can substantially improve
zero-shot CLDR performance. Considering that
image features have continued to improve rapidly
since the deep learning breakthrough and the uni-
versality of images in Web documents, this ap-
proach could become even more important in the
future.
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Abstract

In November 2014, the European Cen-
tral Bank (ECB) started to directly su-
pervise the largest banks in the Euro-
zone via the Single Supervisory Mecha-
nism (SSM). While supervisory risk as-
sessments are usually based on quantita-
tive data and surveys, this work explores
whether sentiment analysis is capable of
measuring a bank’s attitude and opinions
towards risk by analyzing text data. For
realizing this study, a collection consisting
of more than 500 CEO letters and outlook
sections extracted from bank annual re-
ports is built up. Based on these data, two
distinct experiments are conducted. The
evaluations find promising opportunities,
but also limitations for risk sentiment anal-
ysis in banking supervision. At the level of
individual banks, predictions are relatively
inaccurate. In contrast, the analysis of ag-
gregated figures revealed strong and sig-
nificant correlations between uncertainty
or negativity in textual disclosures and the
quantitative risk indicator’s future evolu-
tion. Risk sentiment analysis should there-
fore rather be used for macroprudential
analyses than for assessments of individ-
ual banks.

1 Introduction

From 2007 on, a global crisis struck the financial
markets and led to a severe slow-down of the real
economy. It was triggered by the collapsing US
subprime mortgage sector, where loans had been
issued to borrowers with poor credit ratings. Due
to the tight interconnectedness of the financial sys-
tem, problems quickly propagated in the global
banking system. Governments had to bail out im-
portant institutions like Northern Rock, but such

solutions could not be provided for every troubled
bank. In September 2008, the large investment
bank Lehman Brothers had to file bankruptcy. In
the aftermath of this event, further banks had to be
rescued in order to stabilize the financial system.
This deep financial crisis highlighted the necessity
of better financial regulation as well as more ef-
fective financial supervision in the future (Hodson
and Quaglia, 2009).

As a reaction to the crisis and its severe eco-
nomic consequences, EU institutions decided to
build up an European Banking Union (EBU). The
EBU consists of three pillars, one of them being
a new system of financial supervision, the Sin-
gle Supervisory Mechanism (SSM). Its goal is to
“promote long-term safety and soundness of credit
institutions and the stability of the financial sys-
tem within the Union and each Member State
[...]” (Council of the EU, 2013, p. 72).

For supervising over 120 of the largest banks
in the Eurozone, the SSM utilizes a range of in-
formation sources in order to detect vulnerabilities
and risks. The sources include mainly backward-
looking quantitative Key Risk Indicators (KRIs),
which are complemented with surveys in order to
include forward-looking information as well (Eu-
ropean Banking Authority, 2014). However, an-
other source of information seems to be largely
untapped, namely textual data published by the
banks. Publications like periodic reports, press re-
leases, and news published for investors also con-
tain forward-looking information. Analyzing this
readily available data would be more cost-efficient
in comparison to traditional approaches like sur-
veys. It could provide answers to questions like:
what does official communication by banks re-
veal about their expectations and attitudes towards
risk?

In this paper, we present a novel applica-
tion of sentiment analysis for exploring attitudes
and opinions about risk in textual disclosures by
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banks. In particular, this work (1) finds suitable
data sources, (2) identifies appropriate techniques
for risk sentiment analysis, and (3) analyzes risk
sentiment within the last decade in order to cover
the financial crisis of 2007-08 adequately. The de-
rived sentiment scores quantify uncertainty, nega-
tivity, and positivity in the analyzed documents.
All of them are interesting with regards to risk
sentiment analysis: uncertainty relates to risk in
a direct way since the latter are “uncertainties re-
sulting in adverse variations of profitability or in
losses” (Bessis, 2002, p. 11). Highly negative sen-
timent refers to current or future problems, and
too positive sentiment could represent overconfi-
dence. We find that sentiment scores reflect not
only the financial crisis, but also other major eco-
nomic events within the last decade.

In addition, we test for correlations between the
sentiment scores and a popular quantitative risk in-
dicator. It turns out that aggregated risk sentiment
in forward-looking documents is a leading indica-
tor for the actual risk figures, so it can be used
within predictive models.

The remainder of this paper, which is based on
the Master’s thesis of one of the authors (Nopp,
2015), is organized as follows: first, we give an
overview on related work in the field of risk sen-
timent analysis. The following section introduces
the chosen sources for text data and quantitative
figures. Afterwards, we give an overview on the
chosen methodologies and evaluate the experi-
mental results. The last section concludes.

2 Related Work

Sentiment analysis in general and its application
in the financial domain in particular gained a lot
of interest within the last decade. There is a num-
ber of studies which aim to identify risks by means
of text mining. A common question tackled by
researchers is whether corporate disclosures drive
stock price volatilities or future earnings of the re-
spective firm (Groth and Muntermann, 2011; Ko-
gan et al., 2009; Tsai and Wang, 2013). Hence,
they focus on the risk an investor takes if he or
she buys stocks of a company. Generally spo-
ken, these studies find significant correlations be-
tween sentiment extracted from corporate disclo-
sures and future volatilities. Other papers deal
with financial distress prediction, for example Ha-
jek and Olej (2013). As a baseline, they classify
companies based on financial indicators. It turned

out that the inclusion of sentiment indicators im-
proved financial distress prediction.

Among the text data sources for these studies
are mainly annual reports, but also news stories
or earning calls transcripts1. Kogan et al. (2009)
exclude irrelevant information from the annual re-
ports by focusing on a section which contains im-
portant forward-looking content.

In the related studies, authors work with simi-
lar approaches for extracting sentiment from texts.
Linguistic preprocessing generally involves to-
kenization, lemmatization, and removing non-
essential items like tables, exhibits, or digit se-
quences. In almost every study, the authors also
make use of term weighting schemes. With the
selected features and additional quantitative data,
the studies either employ machine learning algo-
rithms, or use the data for regression analyses.

Although none of the mentioned papers focuses
on risk sentiment analysis in the banking industry,
parts of their processing pipelines and approaches
can be reused for this work. With regards to the se-
lection of appropriate data sources, it can be con-
cluded that analyzing annual reports is very pop-
ular in this field of research. Hence, these data
should also be considered for the experiments of
this study. In contrast to the majority of the related
papers, we only use specific sections of the annual
reports, namely CEO letters and outlook sections
(see Section 3).

Regarding the machine learning algorithms and
the incorporation of quantitative indicators, the ap-
proaches of Groth and Muntermann (2011), Ko-
gan et al. (2009), and Hajek and Olej (2013) are a
good basis for the experiments of this study. All of
them define the document labels based on suitable
quantitative indicators. For labeling, the related
studies consider the fact that text data are forward-
looking, but quantitative indicators reflect the past.
Hence, the indicators are taken from one period
after publication of the text data. The labeled data
are then used for training machine learning algo-
rithms. Since the focus of our work lies on banks,
we make use of a specific quantitative risk indica-
tor which is not employed by related studies. In
the following section, we introduce this indicator
and the selected text data sources.

1Earning calls are regular events where managers report
about the company’s current situation and answer questions
from business analysts.
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3 Data Sources

Among this work’s aims is to test for relations be-
tween textual risk sentiment and quantitative risk
indicators. A careful selection of sources for both
types of data is crucial since irrelevant ones would
lead to biased conclusions.

Quantitative Risk Indicator. The selected
quantitative risk indicator has to represent fi-
nancial health and the general risk exposure of
a bank within a specific period or at a specific
point in time. Furthermore, the data have to be
(1) publicly accessible, (2) available for each
analyzed bank, (3) published at least annually,
and (4) comparable among the different banks.

A comparison of several quantitative risk in-
dicators based on expert interviews revealed that
only the Tier 1 Capital Ratio (T1) fulfills all cri-
teria. The T1 is one of the most important ratios
based on risk-weighted amount of the bank’s as-
sets. In particular, it refers to the bank’s Tier 1
capital as a percentage of its risk-weighted assets:

Tier 1 Capital Ratio =
Tier 1 Capital

Risk-Weighted Assets
(1)

Tier 1 capital is considered as the best form of
bank capital and has to fulfill several criteria mak-
ing it relatively secure. As Cannata et al. (2012,
p. 12) put it, this ratio “measures the ability of the
bank to absorb losses”. If the T1 is high, the bank
acts conservatively and with a high risk buffer. A
high ratio can be achieved by either increasing the
Tier 1 capital or by reducing the amount of risk-
weighted assets, i.e. reducing the amount of total
assets or replacing them with safer ones.

The T1 also played a major role during the 2014
EU-wide banking stress test, which was an impor-
tant part of the preparation phase for the Single
Supervisory Mechanism. The stress test had the
purpose to assess the resilience of large EU banks
in different macroeconomic scenarios, measured
by the impact on the T1.

Text Data Sources. In order to minimize noise
and to enhance the sentiment analysis validity, it is
crucial to work with the documents well adapted to
the task of risk sentiment analysis. Like the quan-
titative risk indicators, they need to be (1) publicly
accessible, (2) available for every analyzed bank,
and (3) published at least annually. In addition, for
this study, the documents need to be (4) written in

the English language, (5) directly published by the
bank, and (6) contain forward-looking and subjec-
tive information about the bank’s attitude and ex-
pectations towards risk.

These criteria are best fulfilled by two types of
document published in the banks’ annual reports,
namely CEO letters and outlook sections. The for-
mer are carefully crafted documents which con-
tain valuable information about the management’s
opinions about risk. Amernic et al. (2010) recog-
nize in their study from 2010 that the word choice
of managers strongly influences companies, and
CEO letters are a way for communicating their at-
titudes and values.

Outlook sections are usually a part of the man-
agement report, which is a textual summary of the
bank’s results, its business environment, and regu-
latory as well as internal developments. In their
outlook on the next year, banks write about the
expected macroeconomic environment, manage-
ment guidelines, and priorities for the next period.
These documents might be less subjective com-
pared to CEO letters, but they are usually more
comprehensive and contain interesting forward-
looking information.

Collection of Data. The annual reports for this
work were collected via a Bloomberg Terminal,
supplemented by direct downloads from bank
websites. In total, over 500 documents from 27
banks which published them between 2001 and
2013 were collected. The sample contains banks
from all 12 countries which have belonged to the
Eurozone at least since 2002. This promotes com-
parability of the data because the banks operated
in similar economic circumstances and with the
same currency.

Further data were retrieved from the online
database Bankscope: the bank’s country of resi-
dence, its full name, its size measured by total as-
sets, and its Tier 1 capital ratio at the end of each
year between 2001 and 2013. 31 % of the Tier 1
capital ratios could not be directly retrieved from
the database, so they had to be manually extracted
from the respective annual reports.

4 Methodologies

Two independent approaches are employed for the
risk sentiment analysis. First, a lexicon-based ap-
proach derives and analyzes negativity, positivity,
and uncertainty in publications by banks. The
second approach aims to predict the evolution of
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quantitative risk indicators by means of supervised
classification. The aim of both approaches is to
assess the potential of risk sentiment analysis in
banking supervision.

Creation of the Document Collection. The
original documents are provided as PDF files. For
building up the collection, they have to be parsed
in order to acquire plain text files containing the
required sections. One method for extracting the
relevant sections is to split the original PDF files
according to their bookmarks and to convert them
into plain text files afterwards. Another way is to
convert the PDF files already in the first step and
to extract the relevant sections by making use of
specific tokens. For example, a typical CEO let-
ter is delimited by the tokens Dear Shareholders
and Sincerely. If neither of these semi-automated
approaches is applicable, the extraction has to be
done manually2.

Table 4 gives an overview of the number of doc-
uments in the created collection. It shows that the
number of published outlook sections constantly
increased between 2002 and 2008. From 2009
on, the number was quite stable. The number of
CEO letters also increased over time, but only un-
til 2008, when some CEOs stopped writing letters
in the course of the financial crisis.

Year # of CEO letters # of outlooks
2002 15 14
2003 19 19
2004 17 20
2005 19 20
2006 19 21
2007 23 22
2008 25 23
2009 21 23
2010 20 23
2011 21 23
2012 20 23
2013 22 24
2014 22 23
Total 263 278

Table 1: An overview of the document collection.

4.1 Lexicon-based Approach
The first experiment is about analyzing sentiment
scores derived from the documents by incorpo-

2This was the case for around 20 % of the documents.

rating finance-specific word lists. The objective
of this experiment is to show how the language
of forward-looking disclosures by European banks
evolved within the last decade. The workflow con-
sists of the following steps: (1) pre-processing the
collected data, (2) the actual sentiment analysis
which derives the scores, (3) data consolidation,
and (4) data evaluation.

Sentiment Tagging. In the first step of the anal-
ysis, sentiment words in the textual data are
tagged. In particular, this study works with neg-
ative words (Fin-Neg), positive words (Fin-Pos),
and words related to uncertainty (Fin-Unc). All
of these word lists are provided by Loughran and
McDonald (2011). Such topic-specific word lists
are necessary because many words bear a different
sentiment if used in a financial context: according
to Loughran and McDonald (2011), almost three
quarters (73.8 %) of typically negative words can-
not be considered as negative when they appear in
financial texts. Kearney and Liu (2014) give the
examples tax and liability. These words appear in
the Harvard IV Negative Word List (H4N), but are
neutral when used in a financial context, e.g. in
an annual report. Table 2 lists some examples for
sentiment words in the financial context.

Positive efficient, stabilized, vibrant
Negative closure, postpone, threat
Uncertainty approximately, might, volatility

Table 2: Examples for opinion words in the finan-
cial context (Loughran and McDonald, 2011).

Term Weighting. All terms in a document are
normalized by

Nj =
1√∑m

i=0(GiLi,j)2
. (2)

This equation is based on Salton and Buck-
ley (1988) and accounts for documents of differ-
ent lengths. Gi is the global weight of term i and
Li,j the local weight of term i in document j. An
established method for the latter is given by the
following formula (Manning and Schütze, 1999,
p. 543):

Li,j =

{
1 + log(tfi ,j ) if tfi ,j ≥ 1
0 otherwise

(3)
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The term frequency is denoted as tfi,j . The most
popular global weight is the inverse document fre-
quency (IDF). In

Gi = log
(N
dfi

)
, (4)

the total number of documents is denoted by N ,
and dfi is the number of documents where term i
occurs at least once (Salton and Buckley, 1988).

Valence Shifting. In order to account for
negated sentiment words, the simple negation han-
dling algorithm proposed by Polanyi and Zae-
nen (2006) is implemented. If one of the three di-
rect predecessors of a sentiment word is a negation
word3, its sentiment score will be negated. This is
done by assigning −1 to the valence shifter vari-
able vi of term i. If there is no negation word
among the predecessors, vi is set to 1.

Calculating Sentiment Scores. The document-
level sentiment scores are calculated for three sen-
timent classes, namely uncertainty, positivity, and
negativity. In

sc,j =
∑
i∈c

Li,jGiNjvi, (5)

the term-level sentiment score is represented by
the product of the term weights Li,j and Gi, the
normalization factor Nj , and the valence shifter
vi. The document sentiment score sc,j is the sum
of the term sentiment scores which belong to the
document j and the sentiment class c.

Data Consolidation and Evaluation. After cal-
culating the sentiment scores, the data are filtered
and grouped in order to prepare them for the evalu-
ations. In particular, the data are filtered according
to specific countries and grouped by year respec-
tively by bank.

4.2 Supervised Classification

For the second experiment, the documents are la-
beled based on a quantitative risk measure, namely
the T1 dating to the end of the period referred to
in the CEO letters and outlook sections. These
data are then used for training supervised classi-
fication algorithms which aim to predict the indi-
cator’s evolution.

3The considered negation words are no, not, don’t, never,
none, and neither.

The experiment consists of three steps: (1) read-
ing and parsing the collected data as well as as-
signing the class labels, (2) linguistic preprocess-
ing and feature selection, and (3) classifying the
data with Naı̈ve Bayes (NB) and Support Vector
Machine (SVM).

Assigning the Class Labels. The Tier 1 capital
ratio is published by banks at least once a year.
Since it is actually a continuous measure, it al-
ways strongly depends on the previous year’s ra-
tio. Banking supervisors like the ECB are inter-
ested in the future evolution of the ratio: if it in-
creases, the bank acts in a less risky way, and vice
versa. Hence, appropriate labels for the supervised
classification task are UP for an increasing T1, and
DOWN for a decreasing one. We assume that the
T1 did not change notably if the difference to the
previous year is less than 0.2 percent points4. In
this case, no class label is assigned.

Preprocessing and Feature Selection. Linguis-
tic preprocessing comprises the removal of punc-
tuation, numbers, single characters, and stop
words. The remaining words are converted to
lower case. Furthermore, the terms are weighted
according to the term weighting strategy presented
in Section 4.1.

For feature selection, two approaches are fol-
lowed. The first one assumes that the sentiment
words used in the lexicon-based analysis are the
relevant features for this experiment. Hence, all
words which do not appear in the first experi-
ment’s dictionaries are removed. The second ap-
proach utilizes a Snowball Stemmer to ensure that
different versions of the same word are treated as
equal. Its feature selection strategy is based on
the concepts of document frequency (DF) and in-
formation gain (IG). For DF, tests showed that a
lower bound of 20 documents yields the best re-
sults. The objective of the IG measure is to iden-
tify those features which have the highest discrim-
inatory power in a classification problem. It mea-
sures the impurity of a dataset, i.e. its entropy. If
a feature is able to reduce the entropy in a data
set by a large amount, its information gain is high.
Such features have a relatively high ability to pre-
dict the corresponding class. For calculating the
information gain, one has to compute the entropies
given the presence or absence of a feature in a
data set and subtract the results from the entropy

4This affected 17 % of the data points in the sample.
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of the original data set (Aggarwal and Zhai, 2012,
p. 169).

Classification. The outcome of the previous
steps is a set of document vectors with associated
class labels. With these data, the classification al-
gorithms Naı̈ve Bayes (NB) and Support Vector
Machine (SVM) are trained. The latter is used
in its basic version, i.e. with a linear kernel. The
performance measures are determined by employ-
ing 10-fold cross validation, which helps to avoid
problems like overfitting.

While Naı̈ve Bayes works without parameters,
the linear SVM depends on the parameter C. Its
optimal value of 111 was determined by conduct-
ing an automated grid search.

5 Evaluation of the Experiments

Both experiments aim to capture attitudes and
opinions about risk by analyzing CEO letters and
outlook sections of Eurozone banks. In this sec-
tion, conclusions are drawn from the results of the
experiments.

5.1 Evaluation of the Lexicon-based
Approach

The outcome of the lexicon-based approach con-
sists of sentiment scores for each document repre-
senting the degrees of uncertainty, negativity, and
positivity.

Evolution of Sentiment Over Time. Figure 1
shows how sentiment in CEO letters has been
evolving since 2002. The evolution of sentiment in
outlook sections is not depicted, but is very similar
to that of CEO letters. The individual data points
represent the arithmetic mean of the document-
level sentiment scores for each year. In 2002 and
2003, CEO letters contained more negative sen-
timent than in the following years. Banks might
have emphasized that the recession following the
burst of the dot-com bubble was still not over
and that recovery had not yet arrived. Between
2003 and 2006, the letters became more positive
and less negative from year to year. The turn-
ing point was in 2006—from that time on, nega-
tivity in CEO letters rose and quadrupled within
three years. During the same period, positive sen-
timent scores decreased continuously. The summit
of these evolutions was in 2009, in the midst of
the financial crisis. The letters in 2010 had been
already much more optimistic, but negativity in-

creased in 2011 and 2012 again when CEOs rec-
ognized that the crisis was still not over.

The evolution of the uncertainty scores is simi-
lar to the negative sentiment scores. This observa-
tion is supported by a high correlation coefficient
of 0.93 between uncertainty and negativity scores.
Since 2012, uncertainty has been decreasing quite
sharply. This can potentially be attributed to an
important and often-cited speech by ECB presi-
dent Mario Draghi, who calmed the financial mar-
kets with the announcement to do “whatever it
takes to preserve the Euro. And believe me, it will
be enough”5.

Another observation is that the average uncer-
tainty scores are much lower than the average pos-
itivity and negativity scores. A plausible interpre-
tation thereof is that CEOs rather use clear state-
ments than uncertain language.

Do Sentiment Scores Predict Quantitative Risk
Measures? A comparison of the T1 average
evolution and the corresponding sentiment scores
reveals interesting relations, see Figure 2. The
correlation coefficients in Table 3 indicate that a
higher degree of uncertainty or negativity in the
documents is commonly followed by a higher in-
crease of the T1, and vice versa.

It is interesting to analyze the data by a regres-
sion model for predicting the T1 evolution. Table
4 shows such a model with negativity as the only
explaining variable. The coefficients can be inter-
preted as follows: if the average negativity score
rises by one unit, the T1 evolution increases by
0.9963 pp. If negativity is zero, the Tier 1 capital
ratio would decrease by the computed intercept,
which is -0.502 pp. Both coefficients are statisti-
cally significant if a 95 % confidence level is as-
sumed.

About 76 % of the average T1 evolution’s vari-
ation can be explained by the negativity score. A
model of similar quality could be constructed by
analyzing uncertainty in outlook sections. Hence,
sentiment scores can be considered as an addi-
tional leading indicator for the future evolution of
the Tier 1 capital ratio.

Limitations. A drawback of this regression
model is that it cannot model external shocks
which influence the T1 evolution, but are not ad-

5A transcript of this speech is available at
https://www.ecb.europa.eu/press/key/
date/2012/html/sp120726.en.html, accessed
April 20th, 2015.

596



Figure 1: Evolution of positivity, negativity, and uncertainty in CEO letters over time.
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Figure 2: Evolution of the Tier 1 capital ratio compared to negativity in outlook sections. The error bars
represent the standard deviation of the negativity scores.

Correlation coefficient Uncertainty Negativity Positivity
T1 evolution (CEO letters) 0.86 0.79 -0.69
T1 evolution (Outlooks) 0.85 0.89 0.12

Table 3: Correlation coefficients between T1 evolution and sentiment scores.

Variable Coeff. Std. Err. t-value P>t
Mean(Negativity score) 0.9963 0.1647 6.0478 0.0001
Intercept -0.5020 0.1883 -2.6651 0.0237

Table 4: Regression model based on negativity in outlook sections.
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Figure 3: Individual negativity scores in outlook
sections compared to the T1 evolution.

equately covered in the text data. Examples for
such shocks would be new regulations concern-
ing the minimum capital ratio or monetary pol-
icy actions by the ECB. A further limitation is in-
duced by the fact that our methodology makes use
of the bag of words (BoW) model, which ignores
the documents internal structure. Hence, it is not
possible to utilize information like word order and
grammar, although this definitely plays a role in
carefully crafted documents like CEO letters.

It should also be emphasized that the model is
based on figures aggregated by year. Applying it
on the data of individual banks could lead to in-
correct conclusions. This assumption is supported
by Figure 3, which compares negativity scores of
individual outlook sections with the associated T1
evolutions. Although it is still possible to identify
a positive relationship between the variables, the
variance is too big for satisfactory representation
by a regression model6. This observation is in line
with the relatively high standard deviations if the
figures are aggregated by year, see Figure 2.

5.2 Evaluation of the Supervised
Classification Approach

The supervised classification experiment aims to
assess whether this approach works better than the
lexicon-based approach in terms of predicting the
T1 evolution for individual banks based on their
CEO letters or outlook sections. The class la-
bels UP and DOWN have been assigned accord-
ing to the direction of the T1 evolution. Table
5 gives an overview of the experiments and lists

6If the regression model is built with non-aggregated data,
it explains only 6.6 % of the variation.

the respective performance measures. An analy-
sis of the data in the table reveals interesting re-
sults. First, feature selection based on document
frequency and information gain works better than
the approach based on word lists. Second, the clas-
sifiers trained with CEO letters yield better results
than the ones trained with outlook sections. Fi-
nally, three out of the four SVM results are not
meaningful due to the following reason: the pa-
rameter optimization of C suggests to choose a
very low value, which indeed maximizes the clas-
sifier accuracy—but these SVMs simply assign the
class UP to every instance. These classifiers can
be seen as a baseline for comparisons. However,
the remaining SVM clearly yields the best results
among the employed algorithms.

None of the classifiers based on the feature se-
lection method (1) is able to outperform the base-
line (assigning every instance to the UP class).
Both SVMs simply classify every instance as UP,
and the Naı̈ve Bayes classifiers also deliver unsat-
isfactory results. Feature selection based on docu-
ment frequency and information gain achieves bet-
ter results than the first one, but only when the
classifiers are trained with the CEO letter collec-
tion. Most likely, this can be explained with the
fact that outlook sections provide less terms with
discriminatory power than CEO letters. Naı̈ve
Bayes correctly classifies 75 % of the instances,
and the optimized SVM yields 79.2 %. The other
SVM performance measures can be interpreted as
follows: 81 % of the instances classified as UP
were indeed instances where the Tier 1 capital
ratio increased (= precision U). Furthermore, the
SVM correctly identified almost 92 % of the in-
stances which belong to the class UP (= recall U).

These results are better than the baseline and
demonstrate a noticeable potential for supervised
classification even at the level of individual bank
disclosures. Nevertheless, they are not good
enough for reliable predictions. However, the
aggregated classification data accurately predict
whether the majority of banks will increase or de-
crease their Tier 1 capital ratio in the following
year: for 12 out of 13 years, the algorithm cor-
rectly predicts the direction of the T1 evolution.
This finding is in line with the lexicon-based ap-
proach, where the aggregated data yielded much
better results than the individual ones.
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Feature selection Document type Classifier Accuracy Precision U Recall U Precision D Recall D

(1) based on topic-
specific sentiment
words

CEO letters
NB 0.703 0.741 0.889 0.500 0.263

SVM 0.703 0.703 1.000 n.a. 0.000

Outlook sections
NB 0.563 0.685 0.703 0.246 0.230

SVM 0.703 0.703 1.000 n.a. 0.000
(2) based on doc-
ument frequency
and information
gain

CEO letters
NB 0.750 0.774 0.911 0.636 0.368

SVM 0.792 0.810 0.919 0.718 0.491

Outlook sections
NB 0.704 0.704 1.000 n.a. 0.000

SVM 0.704 0.704 1.000 n.a. 0.000

Table 5: Overview of the results of the supervised classification experiment. Bold numbers indicate the
best results, U class UP, and D class DOWN.

6 Conclusion

This study explored how banking supervisors
could utilize sentiment analysis for risk assess-
ments. The analysis of potential document types
revealed that two sections in a bank’s annual re-
port are particularly well suited for this work,
namely CEO letters and outlook sections. The for-
mer represent the tone from the top and provide
subjective information about the bank’s current
and future situation. Outlook sections are exclu-
sively forward-looking and reveal opinions about
the near future. Furthermore, the Tier 1 capital
ratio (T1) is the best suited quantitative risk indi-
cator. The T1 sets the most secure forms of bank
capital in relation to its risk-weighted assets and is
widely used in banking supervision, e.g. as a key
ratio for the ECB’s stress test in fall 2014.

The lexicon-based analysis showed that senti-
ment scores reflect major economic events be-
tween 2002 and 2014 very well. In addition, there
is a strong correlation between uncertainty, neg-
ativity, and the Tier 1 capital ratio evolution over
time. Hence, the sentiment scores could be used in
regression models for predicting the T1 evolution.
However, the results are only meaningful if the fig-
ures are aggregated by year. Applying the model
on data of individual banks leads to inaccurate re-
sults. It should also be noted that this method is
not meant to be used as a stand-alone estimator for
the T1 evolution. Instead, it should be combined
with other estimation methods.

The supervised risk classification approach cor-
rectly classifies 79.2 % of the CEO letters. This
is not good if one considers that it is possible to
yield an accuracy of 70 % simply by assigning the
class UP to every instance. However, if the results
of the best SVM classifier are aggregated by year,
the data correctly predict for 12 out of 13 years
whether the majority of banks will increase or de-
crease their Tier 1 capital ratio.

The described systems have the potential to pro-
vide valuable insights for banking supervisors, in
particular because of the strong correlation be-
tween sentiment scores derived from textual data
and the T1. Because of the mentioned limitations,
these techniques should only be used for macro-
prudential analyses, i.e. the promotion of stability
in the whole financial system. Examples are pre-
dictions for the average Tier 1 capital ratio’s evolu-
tion in the whole Eurozone or in groups of coun-
tries. Another option is to improve existing risk
prediction frameworks.

For future research, it would be interesting
to validate the results by conducting the study
on a larger scale. One could incorporate data
from all European banks, or from other regions.
The approach could also be used for other docu-
ment types, for example analyst reports or inter-
nal memos, or in other industries. Regarding the
methodology, it would be interesting to see how
alternative algorithms or word lists would affect
the results.
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Abstract

Web reviews have been intensively studied
in argumentation-related tasks such as sen-
timent analysis. However, due to their fo-
cus on content-based features, many sen-
timent analysis approaches are effective
only for reviews from those domains they
have been specifically modeled for. This
paper puts its focus on domain indepen-
dence and asks whether a general model
can be found for how people argue in web
reviews. Our hypothesis is that people ex-
press their global sentiment on a topic with
similar sequences of local sentiment inde-
pendent of the domain. We model such
sentiment flow robustly under uncertainty
through abstraction. To test our hypoth-
esis, we predict global sentiment based on
sentiment flow. In systematic experiments,
we improve over the domain independence
of strong baselines. Our findings suggest
that sentiment flow qualifies as a general
model of web review argumentation.

1 Introduction
The web is full of user-generated reviews on prod-
ucts, services, and works of art, like those from
Amazon, TripAdvisor, and Rotten Tomatoes. Such
web reviews provide facts, positive opinions, and
negative opinions on different aspects. By that, the
reviews express, implicitly or explicitly, an overall
opinion on the topic in question. From an abstract
viewpoint, the argumentation of a web review can
thus be seen as a composition of local sentiments
used to justify some global sentiment.

Both local and global sentiment of reviews are
in the focus of numerous sentiment analysis ap-
proaches (cf. Section 2 for details). Many of these
approaches model reviews primarily with content-
based features, derived from the words in the re-
views. The use of words, however, varies strongly

across domains, as illustrated in Figure 1 for a
product, a hotel, and a movie review. As a con-
sequence, sentiment analysis suffers from domain
dependence (Wu et al., 2010), i.e., high effective-
ness is often achieved only in the domain an ap-
proach has been specifically modeled for. To adapt
to other domains, prior knowledge about these
domains or about domain-independent features is
needed (Prettenhofer and Stein, 2010).

This paper considers the question as to whether
the overall argumentation of web reviews can be
modeled in a general way in order to increase do-
main independence in sentiment analysis. We ob-
serve that people structure web reviews largely
sequentially—in contrast to the complex struc-
tures of many other argumentative texts. While the
reviewed aspects differ between domains, our as-
sumption is that the overall argumentation of a
web review is generally represented by a sequence
of local sentiments, called the review’s sentiment
flow (Mao and Lebanon, 2007). In particular, we
hypothesize that, under an adequate model, similar
sentiment flows express similar global sentiments,
also across domains. All reviews in Figure 1, for
instance, express neutral global sentiment starting
with positive, continuing with negative, and end-
ing with positive local sentiment.

Unlike in our previous approach (Wachsmuth et
al., 2014a), we analyze the major abstraction steps
when modeling sentiment flow to represent global
sentiment. A general model should abstract from
both content and other domain differences, such as
a review’s length or the density of local sentiment
in it. Based on web review corpora with known
sentiment flows, we empirically analyze several
model variants across three domains. Our results
offer clear evidence for the truth of our hypothe-
sis, indicating the generality of sentiment flow as
a model of web review argumentation.

The abstract nature of sentiment flow, however,
does not directly achieve domain independence, as
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Product review from Amazon Hotel review from TripAdvisor Movie review from Rotten Tomatoes

Global sentiment: neutral (3 out of 5) Global sentiment: neutral (3 out of 5) Global sentiment: neutral (2 out of 3)

Bought this based on previous reviews and is 
generally a good player. Setting it up seemed 
relatively straight forward and I've managed to 
record several times onto the hard drive 
without any problems. The picture quality is 
also very good and the main reason I bought it 
was the upscaling to match my TV - very 
impressive. Downsides are that if you have 
built-in freeview on your TV, it does get 
confused sometimes and will refuse to allow 
you to watch it through either TV or HDD 
player - I had to mess around with the settings 
several times to make it stop doing this. (Why 
did I buy it if I had freeview already? It was 
cheaper than to get one without) It is also very 
noisy and performs random updates in the 
night, which can be annoying. But in terms of 
function and ease of use it's very good.

[...] The film was intense and pulsating when it 
zoomed in on Heather's travails, but lost 
something when it brought unnecessary action 
into play, such as a child kidnapping and the 
problem of drugs being sold in school. There 
was no place to go in developing Heather's 
character by adding these major societal 
problems to Heather's story [...]. 
Solondz knows his subject well, [...] and the 
result is an unusual movie that focuses in on a 
subject very few filmmakers have chosen to do. 
It was unfortunate that Heather never evolved, 
so the cruelty we observed in the beginning of 
the film was also the way she was observed 
when the film ended; nevertheless, an honest 
effort was put forth by the filmmaker to see 
how school age children cope with their unique 
problems they have.

We stayed overnight at the Castle Inn in San 
Francisco in November. It was a fairly 
convenient to Alcatraz Island and California 
Academy of Science in Golden Gate Park. We 
were looking for a reasonably priced  
convenient location in SF that we did not have 
to pay for parking.  Very basic motel with 
comfortable beds, mini refrig and basic 
continental breakfast. It was within walking 
distance to quite a few restaurants (Miller's 
East Coast Deli-yummy!)  
I did find that the clerk at the desk was rather 
unfriendly, though helpful. The free parking 
spaces were extremely tight for our mini van. 
The noise was not too bad, being only 1 block 
from Van Ness Ave.  
If you are looking for a no frills, comfortable 
place to stay, Castle Inn was a good choice.

Figure 1. Example web reviews with neutral global sentiment from three domains, taken from the corpora described in Sec-
tion 5. Corpus annotations of positive and negative local sentiment are marked in light green and medium red, respectively.

the recognition of local sentiment in unknown re-
views may still be domain-dependent. We there-
fore also present a novel edit distance approach to
robustly compare flows, when local sentiment is
obtained using state-of-the-art techniques (Socher
et al., 2013). In systematic cross-domain exper-
iments with the given corpora, we classify global
sentiment based on sentiment flow without any do-
main adaptation. While not being perfectly effec-
tive, our approach improves over the domain ro-
bustness of strong baselines.

Altogether, the paper’s main contributions are:
1. Evidence that sentiment flow qualifies as a

general model of the overall argumentation of
web reviews across domains.

2. A domain-robust approach for the classifica-
tion of the global sentiment of web reviews.

2 Related Work
As surveyed by Pang and Lee (2008) and by Liu
(2012), numerous sentiment analysis approaches
have been proposed for different text types, lev-
els of granularity, sentiment scales, and domains.
We target at global text-level sentiment of web
reviews. While we distinguish three sentiment
classes here, our approach can be adapted to other
scales. Our goal is not to optimize sentiment anal-
ysis in a specific domain, but to find a model that
supports sentiment analysis across domains.

As common in text classification (Manning et
al., 2008), sentiment analysis often relies on words
and other content features, which tends to be prone
to domain dependence (Wu et al., 2010). Existing
domain adaptation techniques for sentiment analy-
sis require a few training texts from each target do-
main or a few domain-independent pivot features

to align domain-specific features (Prettenhofer and
Stein, 2010). Our model complements these tech-
niques and could be leveraged for pivot features.
In tasks like authorship attribution and argumenta-
tive zoning, non-topical words benefit domain in-
dependence (Menon and Choi, 2011; Ó Séaghdha
and Teufel, 2014). Instead, we focus on the local
sentiment on different aspects in a review here.

Aspect-based sentiment analysis extracts fine-
grained opinions from a review (Popescu and Et-
zioni, 2005). These aspects in turn impact the re-
view’s global sentiment (Wang et al., 2010). How-
ever, relevant aspects naturally tend to be domain-
specific, like the picture quality of HDD players
or the beds of hotels (cf. Figure 1). While weakly-
supervised approaches to extract aspects and local
sentiment exist (Brody and Elhadad, 2010; Lazari-
dou et al., 2013), it is not clear how to align aspects
from different domains. We ignore aspects here,
only preserving the local sentiment itself.

State-of-the-art approaches for classifying local
sentiment within a domain model the composition
of words, e.g., relying on deep learning (Socher
et al., 2013). We do not compete with such an
approach, but we use it to then predict global sen-
timent. Täckström and McDonald (2011) observe
that local and global sentiment correlate, aiming
for the opposite direction, though. In (Wachsmuth
et al., 2014b), we already compute frequent flows
of local sentiment, but we neither analyze their
generality, nor do we use them for prediction.

The idea of modeling sentiment flow was intro-
duced by Mao and Lebanon (2007) who classify
local sentiment based on neighboring local sen-
timent in a review. When inferring global senti-
ment from a flow, however, the authors model only
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single flow positions, not their ordering. In con-
trast, we capture the overall structure of reviews in
(Wachsmuth et al., 2014a) by measuring the simi-
larity of a given flow to known sentiment flow pat-
terns. We point out the domain robustness of sen-
timent flow there, but we still use domain-specific
local sentiment classifiers and we do not handle
some major domain differences of web reviews.
Both limitations are addressed in this paper, where
we align flows similar to how Persing et al. (2010)
align essay organizations.

We claim that sentiment flow models a review’s
argumentation, such that local sentiments ressem-
ble rhetorical moves. Comparable simplifications
are common for scientific argumentation (Teufel,
2014). Usually, argumentative texts are studied
more deeply, considering different types of argu-
ment components and their relations (Mochales
and Moens, 2011). Mining such structure is get-
ting increasing attention recently (Habernal et al.,
2014), also in the analysis of reviews (Villalba and
Saint-Dizier, 2012). To express global sentiment,
however, web reviews argue in simpler ways.

3 Web Review Argumentation
Argumentation refers to the exchange of opinions,
to defending positions, and to convincing others
of certain stances (van Eemeren et al., 2014). A
review is a written form of monological argumen-
tation, where an author structures a selection of ar-
guments in order to justify his or her conclusion on
a topic of discussion (Besnard and Hunter, 2008).
Reviews, in particular, discuss products, services,
works of art, or similar. The arguments in a review
correspond to objective facts, positive and nega-
tive opinions, and mixtures of these on the topic
as a whole or on specific aspects of the topic.

In this paper, we are interested in the overall
argumentation of reviews. Our assumption is that
the conclusion of a review’s overall argumentation
consists in its global sentiment. Global sentiment
is often explicitly reflected by an assigned overall
rating, at least for web reviews.

Many web reviews are written by people in an
ad-hoc fashion to quickly share opinions. As a re-
sult, unlike other argumentative texts, web reviews
often remain with a sequential structure (Villalba
and Saint-Dizier, 2012) and miss explicit relations
between the shared opinions. E.g., while the prod-
uct review and the hotel review in Figure 1 cover
opinions on several aspects, no deliberate structure
is found in their argumentation. However, the ex-

cerpt of the more professional movie review shows
that this is not always the case.

3.1 Domain Differences
In Figure 1, we categorize domains by source and
topical theme (e.g., Amazon products). Other gra-
nularities would be possible (e.g., consumer elec-
tronics) or other categorization schemes (e.g., user
vs. pro reviews). That being said, we speak of do-
mains only to roughly distinguish web reviews that
vary in how they argue for a conclusion.1 We ob-
serve major differences in three broad respects:

Content Especially topical web review domains
differ widely regarding the terms and phrases that
play a role in their argumentation. This includes
the aspects being discussed (e.g., “beds” of ho-
tels vs. the “subject” of movies) as well as the
words used to express sentiment and their explic-
itness (e.g., “yummy” vs. “an unusual movie”).

Form As sketched above, further differences refer
to the structure and style of web reviews. Some
are rather subtle, like a careful use of paragraph
breaks, whereas others are obvious, like a review’s
length. The movie review in Figure 1, for instance,
is actually over twice as long as the shown excerpt,
starting with an objective synopsis of the plot and
including “sub-reviews” of different aspects.2

Subjectivity Finally, the use of subjectivity varies
across web review domains: First, the density of
sentiment tends to be high in some cases, like ho-
tel reviews (cf. Figure 1), but low in others, like
movie reviews, where objective plot descriptions
and subjective opinions often alternate (the short-
ened excerpt in Figure 1 hides this to some extent).
Second, sentiment is sometimes very intense (as in
the product review in Figure 1), sometimes subtle.
And third, in some domains even single sentences
often contain mixed sentiment, whereas in others
opinions tend to be laid out across sentences.

We will empirically underpin most observations
in Section 5, where we analyze the domain inde-
pendence of the model described next.

4 Sentiment Flow as a General Model
In the following, we introduce our model of web
review argumentation. We discuss how to abstract
for generality and how to deal with uncertainty.

1In the end, this paper seeks for findings that generalize
from domains, making an exact distinction unnecessary.

2Also, many web reviews have explicit structure elements
like a title. To obtain a common ground, however, we con-
sider only the plain text of a web review’s body in this paper.
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Web review Local sentiment Sentiment flow

Overall argumentation Global sentimentrepresents
comprises represents

We stayed overnight at the Castle Inn in San 
Francisco in November. It was a fairly 
convenient to Alcatraz Island and California 
Academy of Science in Golden Gate Park. We 
were looking for a reasonably priced  
convenient location in SF that we did not have 
to pay for parking.  Very basic motel with 
comfortable beds, mini refrig and basic 
continental breakfast. It was within walking 
distance to quite a few restaurants (Miller's 
East Coast Deli-yummy!)  
I did find that the clerk at the desk was rather 
unfriendly, though helpful. The free parking 
spaces were extremely tight for our mini van. 
The noise was not too bad, being only 1 block 
from Van Ness Ave.  
If you are looking for a no frills, comfortable 
place to stay, Castle Inn was a good choice.

Figure 2. Modeling the overall argumentation of a web re-
view as a flow of positive (light green), neutral (dark gray),
and negative (medium red) local sentiments.

4.1 Modeling a Review by its Sentiment Flow
We propose a fairly simple argumentation model
based on the observation that many web reviews
are organized sequentially (cf. Section 3). As we
assume that the overall argumentation of a web re-
view represents global sentiment in the first place,
we fully abstract from the content of the facts and
opinions that serve as arguments. In particular, we
model the argumentation of a web review solely by
its sentiment flow, i.e., the sequence of local sen-
timents comprised in the review’s text. We do not
presume the granularity of local sentiment, but we
propose to distinguish positive, neutral, and nega-
tive local sentiment, which is the common ground
of related works (cf. Section 2).

Figure 2 illustrates how we model web review
argumentation. Our hypothesis is that similar sen-
timent flows are used across domains of web re-
views to express the same global sentiment. How-
ever, because of the domain differences described
in Section 3, we do not expect that the original
sentiment flows of web reviews generalize well.

4.2 Abstracting Flows for Generality
By concept, sentiment flow avoids to capture con-
tent and some facets of form like paragraph usage.
To abstract from the length of reviews, Mao and
Lebanon (2007) and our approach in (Wachsmuth
et al., 2014a) length-normalize sentiment flow via
interpolation. While this may preserve all infor-
mation, it does not account for sub-reviews and the
density of subjectivity. Here, we investigate more
informed ways of abstracting flows. In particular,
we consider three transformations of flows:
Change Deletion of repeating local sentiments.
The rationale is to reduce subjectivity differences
by focusing on changes of local sentiment.
NoLoops Deletion of repeating sequences of two
or more local sentiments. The rationale is to reduce
length differences by merging similar sub-reviews.

Original 
sentiment flow

After Change
transformation 

After NoLoops
transformation

After 2Class
transformation 

Figure 3. The original sentiment flow from Figure 2 and the
resulting flow for each of the three proposed transformations.

2Class Deletion of neutral local sentiments. The
rationale is to reduce length and subjectivity dif-
ferences emanating from objective descriptions.

Figure 3 exemplifies the three transformations.
They are not commutative, as can partly be seen
for the example. In Section 5, we test what combi-
nations of transformations lead to an adequate sen-
timent flow model. While more transformations
will benefit generality, the lost specificity may de-
crease the correlation with global sentiment.

4.3 Analyzing Flows under Uncertainty
Given an adequate sentiment flow model, we seek
to find out to what extent it enables domain-robust
sentiment analysis. This brings up two challenges
related to uncertainty: (1) The classification of lo-
cal sentiment in unknown reviews will not be free
of errors, and, (2) reviews may comprise flows for
which the global sentiment is unknown.

Classification errors are naturally problematic
for modeling sentiment flow. At least, some errors
are bypassed by the three transformations. E.g., if
one negative local sentiment in the original flow in
Figure 3 is misclassified as positive, the Change
transformation fixes this. If it is classified as neu-
tral, Change and 2Class together eliminate the ef-
fect. Moreover, errors can be countered by limit-
ing the impact of single positions in a flow.

In (Wachsmuth et al., 2014a), we learn to infer
global sentiment from the Manhattan distances be-
tween a sentiment flow and a set of common flows,
thereby analyzing the flow as a whole. The com-
mon flows are found in a preceding clustering step.
While we adopt the learning approach here, the
Manhattan distances imply that flows are similar
only if their changes are at similar positions.

Instead, we compare sentiment flows (modified
with zero to three transformations) based on their
normalized minimum edit distance (Cormen et al.,
2009). Analog to Persing et al. (2010), we incre-
mentally compute the edit distance using sequence
alignment. To this end, we specify costs for pos-
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Figure 4. Computation of the normalized edit distance of two
sentiment flows, resulting in (2 · 0 + 3 · 1/3) / 4 = 1/4.

sible edit operations, i.e., substitutions, insertions,
and deletions of single local sentiments. We map
positive local sentiment to the value 1.0, neutral to
0.5, and negative to 0.0. The cost is then provided
by a function d for any two values s and s′:

d(s, s′) =

{
|s− s′| If s′ substitutes s.

α+ (1−α) · |s−s′| If s′ is inserted
or deleted after s.

Here, α ∈ [0, 1] specifies some fixed cost (we set
α to 1/3 in Section 6). The intuition behind d is to
have a higher cost the more s and s′ differ. Still, in-
sertions and deletions are never free, as they affect
differences that remain after applying transforma-
tions to abstract from irrelevant differences.

Figure 4 illustrates the alignment of two flows
as a shortest-path search. We normalize the flows’
minimum edit distance by their maximum length.
Before we evaluate if the edit distance captures
flow similarity more robustly than the Manhattan
distance, we analyze what representation of senti-
ment flows proves most general. This will also re-
veal that the proposed abstractions reduce the need
to perform clustering for finding common flows.

5 Analysis of the Generality of the Model
We now report on experiments on corpora from
three domains that empirically analyze to what ex-
tent different sentiment flow variants qualify as
general models of web review argumentation.3

5.1 Ground-Truth Data with Sentiment Flow
We process three existing corpora with local senti-
ment annotations of complete texts. While the first
two are available online, we obtained the last from
the authors. Each corpus comprises English web
reviews from one broad topical domain. Table 1
lists some statistics of the three corpora, which in-
dicate clear domain differences.
Product Domain The Finegrained Sentiment
Data Set, Release 1 (Täckström and McDonald,
2011) contains 294 Amazon reviews, nearly bal-

3The source code that can be used to reproduce the exper-
iments is provided at http://www.arguana.com/software.

Corpus
domain

Sentences
per text

Tokens
per sent.

Local sentiment
positive neutral negative

Product 14.0 22.7 24.1% 41.5% 34.4%
Hotel 11.5 18.3 38.0% 20.3% 41.7%
Movie 28.8 30.3 17.6% 61.2% 21.2%

Table 1. Sentences, tokens, and annotated local sentiments
for the domains represented by the given web review corpora.

anced among five categories: books (59 reviews),
DVD (59), electronics (57), music (59), and video-
games (60). We use the first three for training and
the others for testing. Under the authors’ mapping
from Amazon star ratings to global sentiment, all
categories subsume 19 to 20 positive, neutral, and
negative reviews each. In each review, every sen-
tence is classified as positive, negative, neutral,
mixed, or irrelevant. To match the other corpora,
we merge the three latter into one neutral class.
Hotel Domain Our ArguAna TripAdvisor cor-
pus (Wachsmuth et al., 2014b) consists of 2 100
TripAdvisor reviews, 300 for seven hotel locations
each. Three locations belong to a predefined train-
ing set and two to a validation and a test set each.
For all locations, the reviews are evenly distributed
over the five TripAdvisor overall scores. In accor-
dance with the product corpus, we see score 4–5 as
positive global sentiment, 3 as neutral, and 1–2 as
negative. In each review, all main clauses together
with their subordinate clauses have been classified
as being positive, negative, or neutral.
Movie Domain Finally, the third corpus (Mao and
Lebanon, 2007) compiles 450 Rotten Tomatoes re-
views from the Cornell Movie Review Data scale
dataset v1.0 (Pang and Lee, 2005) that refer to two
authors. We use the 201 reviews of Scott Renshaw
for training and the 249 of Dennis Schwartz for
testing. The reviews lack punctuation, capitaliza-
tion, and their overall ratings. We recovered the
overall ratings from the original dataset based on
the rating scale 0–2, resulting in 178 positive, 139
neutral, and 133 negative reviews. In each review,
Mao and Lebanon (2007) classified all sentences
to be very positive, positive, neutral, negative, or
very negative, which we reduce to three classes.

5.2 Experimental Set-up
To find the most general model of web review ar-
gumentation across domains, we compare 16 sen-
timent flow variants using three measures:
Model Variants The original sentiment flow of all
corpus reviews can be directly derived from the
ground-truth data. In each model variant, the flow
is modified by a combination of zero to three of the
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Training
domain

Model variant
of sentiment flows

# Flows Aggregate recall Weighted precision W’d Hellinger distance
all 1% Product Hotel Movie Product Hotel Movie Product Hotel Movie

Product 2class-change-noloops 7 7 100.0 100.0 100.0 75.6 69.9 62.4 0.17 0.21 0.23
175 reviews 2class-noloops-change 11 7 90.8 96.0 98.0 74.1 71.0 64.6 0.17 0.26 0.28

change-noloops-2class 22 14 89.9 81.5 80.7 74.8 74.6 68.3 0.19 0.26 0.26
noloops-2class-change 11 8 89.9 86.1 86.9 73.8 72.3 66.2 0.16 0.24 0.27
2class-change 12 8 89.9 85.6 87.1 74.8 73.2 66.3 0.17 0.25 0.27
change-2class-noloops 37 20 85.7 85.8 76.9 78.4 74.1 72.5 0.19 0.26 0.33
noloops-change-2class 35 19 81.5 72.8 62.2 76.3 76.3 73.6 0.17 0.26 0.28
2class-noloops 49 24 77.3 62.9 60.0 81.5 80.8 76.7 0.27 0.27 0.31
change-2class 47 22 77.3 61.6 49.6 79.3 79.5 71.7 0.20 0.24 0.28
change-noloops 55 29 70.6 64.6 59.1 84.5 77.2 72.2 0.25 0.30 0.32
noloops-2class 67 24 62.2 48.2 36.7 85.1 82.7 78.8 0.18 0.25 0.22
noloops-change 78 29 55.5 52.0 30.9 89.4 79.7 77.0 0.16 0.28 0.23
change 93 30 49.6 43.5 27.3 89.8 82.6 75.6 0.18 0.25 0.22
2class 91 27 45.4 36.8 28.7 83.3 85.1 79.8 0.21 0.22 0.22
noloops 153 17 12.6 14.0 6.0 100.0 91.5 85.2 0.07 0.11 0.04
original 173 2 0.8 3.6 0.0 100.0 94.7 0.0 0.02 0.05 0.00

Hotel 2class-change-noloops 7 7 100.0 100.0 100.0 71.1 68.5 62.4 0.19 0.06 0.13
900 reviews 2class-noloops-change 20 14 99.7 98.8 99.8 72.0 69.3 64.8 0.25 0.08 0.17

change-noloops-2class 85 21 99.0 91.2 91.3 74.6 72.0 67.9 0.26 0.14 0.19
noloops-2class-change 27 15 100.0 98.3 99.6 72.4 69.8 65.2 0.26 0.10 0.17
2class-change 31 17 99.7 98.2 98.9 72.7 70.6 65.6 0.26 0.11 0.19
change-2class-noloops 91 22 92.9 91.7 85.3 75.5 72.5 72.7 0.23 0.14 0.26
noloops-change-2class 145 21 90.5 85.3 76.7 74.4 74.6 73.0 0.28 0.15 0.29
2class-noloops 246 19 85.0 77.2 75.6 78.0 81.0 75.6 0.27 0.20 0.27
change-2class 231 19 88.1 74.0 56.2 75.7 76.4 73.5 0.26 0.17 0.28
change-noloops 212 24 69.7 77.7 66.7 80.0 75.5 73.7 0.20 0.18 0.24
noloops-2class 398 14 64.6 55.3 44.0 81.6 82.5 77.8 0.19 0.15 0.26
noloops-change 343 17 48.0 64.0 38.0 81.6 77.9 77.8 0.19 0.15 0.21
change 426 14 36.1 52.3 24.7 83.0 77.7 77.5 0.18 0.14 0.16
2class 549 17 54.4 32.5 29.8 83.1 86.2 77.6 0.14 0.08 0.17
noloops 626 9 9.2 27.7 1.8 92.6 83.7 100.0 0.04 0.08 0.01
original 743 4 1.4 16.5 0.0 75.0 78.8 0.0 0.01 0.04 0.00

Movie 2class-change-noloops 6 6 97.3 94.5 99.6 71.7 70.3 58.9 0.26 0.10 0.19
201 reviews 2class-noloops-change 14 10 96.9 93.7 99.2 72.6 70.7 59.9 0.32 0.15 0.24

change-noloops-2class 44 17 96.6 85.4 91.6 75.4 73.9 62.7 0.34 0.22 0.32
noloops-2class-change 16 14 96.9 92.2 98.0 73.0 71.0 59.8 0.33 0.16 0.26
2class-change 19 15 96.9 90.8 98.0 73.3 72.1 61.1 0.33 0.18 0.28
change-2class-noloops 57 19 85.7 73.0 81.1 76.2 73.4 68.8 0.36 0.25 0.30
noloops-change-2class 84 19 82.0 63.0 72.7 77.6 72.3 71.8 0.34 0.25 0.27
2class-noloops 103 20 78.2 58.0 62.7 78.7 85.1 72.4 0.34 0.24 0.27
change-2class 107 20 57.5 34.4 40.6 72.8 76.2 72.3 0.33 0.22 0.22
change-noloops 94 17 66.7 41.6 66.7 81.6 81.0 70.5 0.35 0.21 0.33
noloops-2class 154 8 38.8 22.1 28.5 86.8 89.7 85.9 0.19 0.14 0.14
noloops-change 146 9 30.6 19.7 30.5 87.8 83.3 77.6 0.16 0.14 0.18
change 161 8 16.0 9.9 13.7 85.1 87.5 82.4 0.15 0.10 0.12
2class 182 5 21.8 11.1 8.0 90.6 96.6 95.0 0.08 0.06 0.03
noloops 200 5 0.3 0.6 0.4 100.0 91.7 100.0 0.01 0.01 0.00
original 200 0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 0.00

Table 2. Results on the generality of sentiment flow for all evaluated model variants on ground-truth data for each combination
of training and test domain. The most general variants in terms of both aggregated recall and weighted precision are marked in
bold. For illustration, # Flows lists the numbers of all flows in the training reviews and of those with a recall of at least 1%.

transformations from Section 4. All variants are
named according to the applied transformations.

Measures In (Wachsmuth et al., 2014b), we pro-
pose specific notions of the recall and precision of
a sentiment flow f in a given collection of reviews:
The recall Rf denotes the relative frequency of re-
views with flow f , while the precision Pf (s) with
respect to some global sentiment s denotes the rel-
ative co-occurrence of f with s. Here, we extend
these measures for complete models as follows.

We define the aggregate recall of a model on a
collection of reviews as the sum of the recall of the
set F of all its known sentiment flows:

Aggregate Recall(F ) =
∑
f∈F

Rf

With weighted precision, we denote the sum of
the maximum precision of each such flow in F ,
weighted with the recall of the flow:

Weighted Precision(F ) =
∑
f∈F

max
s
{Pf (s)} ·Rf

In addition, we assess how much two domains dif-
fer under a given model variant. To this end, we
measure the Hellinger distance Hf (in the range
[0, 1]) between the global sentiment distributions
of each flow f known for both domains:
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Model variant Domain Most common flow Rank Recall Positive Neutral Negative
change-2class-noloops Product (negative, negative) 1. 13.6 0.0 % 25.0 % 75.0 %

Hotel 9. 4.2 0.0 % 8.9 % 91.1 %
Movie 4. 6.7 0.0 % 0.0 % 100.0 %
Product (positive, negative, positive) 8. 3.4 34.1 % 65.9 % 0.0 %
Hotel 1. 10.5 45.1 % 49.6 % 5.3 %
Movie 14. 2.3 0.0 % 73.3 % 26.7 %
Product (negative, negative, positive, negative) 10. 3.4 0.0 % 33.3 % 66.7 %
Hotel 15. 2.2 0.0 % 16.7 % 83.3 %
Movie 1. 8.6 0.0 % 57.9 % 42.1 %

2class-noloops Product (negative, negative) 1. 15.3 7.6 % 29.6 % 62.8 %
Hotel 5. 4.4 0.0 % 8.5 % 91.5 %
Movie 1. 6.7 0.0 % 0.0 % 100.0 %
Product (positive, positive) 3. 12.8 86.8 % 8.8 % 4.4 %
Hotel 1. 7.6 87.8 % 12.2 % 0.0 %
Movie 10. 2.1 61.1 % 38.9 % 0.0 %

change-noloops Product (positive, neutral, positive) 1. 10.5 94.6 % 0.0 % 5.4 %
Hotel 6. 3.3 88.9 % 11.1 % 0.0 %
Movie 23. 1.3 100.0 % 0.0 % 0.0 %
Product (positive) 22. 1.1 50.9 % 49.1 % 0.0 %
Hotel 1. 6.6 83.1 % 14.1 % 2.8 %
Movie – – – – –
Product (neutral, negative) 2. 9.1 6.5 % 24.9 % 68.6 %
Hotel 5. 3.5 0.0 % 10.5 % 89.5 %
Movie 1. 7.6 8.6 % 0.0 % 91.4 %

Table 3. The most common flow in the training set of each evaluated domain for three of the 16 evaluated model variants. For
each flow, the recall rank, the recall, and the distribution over the three global sentiments within each domain are given.

Hf (p1,p2) =
1√
2
·
√∑

s

(
√

p1(s)−
√

p2(s))2

Here, p1 and p2 denote the global sentiment dis-
tributions of f . For weighted Hellinger distances,
we multiply the distance of each flow in F with
the sum of its recall in both domains.4

Experiments Given all 16 possible model variants
for all reviews, we analyze the generality of each
variant for every combination of domains. I.e., we
first determine the known sentiment flows on the
training set of one domain. Then, we compute the
aggregate recall, weighted precision, and weighted
Hellinger distance once for the in-domain test set
and once for both full out-of-domain corpora.5

5.3 Results on the Generality across Domains
Table 2 contains the number of known flows and
the experiment results for each domain combina-
tion. Model variants whose benefit seems limited
are not marked in bold: The bottom six have a low
aggregate recall in all domains, suggesting that
they do not generalize well. Most significantly, the
original flows from the movie training set are not

4We chose the Hellinger distance, as it applies to distribu-
tions with zero-probabilities (unlike alternatives like the KL-
divergence). Also, it is a true metric (Lebret and Collobert,
2014), allowing for relative comparisons. On the flipside, the
meaning of concrete distances is not clear by itself.

5Here, we use all occurring sentiment flows to evaluate a
model variant in its overall manifestation. In Section 6, we
consider only frequent flows in order to refrain from outliers.

found in any test domain. The top five achieve al-
most total recall, but much less precision than the
others, indicating that they abstract too much.

Among the five robust model variants (marked
in bold), change-2class-noloops has the highest
aggregate recall throughout, ranging from 73.0 to
92.9. Consistently, global sentiment is represented
best by change-noloops in the product domain and
by 2class-noloops in the other domains (with up to
85.1 weighted precision). Also, 2class-noloops is
third-best in terms of recall. While no clear “win-
ner” exists, this variant seems most promising for
modeling web review argumentation.

The weighted Hellinger distances show that the
domain differences of many variants are small. On
average, change-2class has the most stable global
sentiment distribution. Most distances are only
slightly higher out-of-domain than in-domain or
even lower. Hence, sentiment flows hardly vary
stronger across domains than within a domain.

5.4 The Most Common Sentiment Flows
To investigate what sentiment flows actually occur
in web reviews, we determined the flow with high-
est recall for the training set of each corpus. For
comparability, we balanced the flows in the train-
ing set before by weighting their occurrences ac-
cording to the distribution of global sentiment.6

6E.g., if 40% of all reviews are positive, 30% neutral, and
30% negative, then the occurrences of flows with positive
global sentiment are weighted by 0.75 and the others by 1.0.
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Table 3 shows the recall and the sentiment dis-
tribution of each such flow in all evaluated do-
mains exemplarily for three of the model variants
discussed above. While high-recall flows naturally
tend to be simple, we also observe more complex
flows, such as (negative, negative, positive, neg-
ative) in case of change-2class-noloops. Except
for the change-noloops flow (positive), which does
not occur at all in the movie training set, all shown
flows are common across domains, achieving a re-
call of over 2% in most cases. For 2class-noloops,
only two flows are listed, because (negative, nega-
tive) is the most common flow in both the product
and the movie domain. Regarding the distribution
of global sentiments, nearly all flows behave sim-
ilar across domains. The only exception is (posi-
tive, negative, positive) in change-2class-noloops,
which never turns out negative in product reviews
but never positive in movie reviews.

Altogether, we conclude that sentiment flow is
not a fully precise model of web review argumen-
tation, but it proves general with respect to global
sentiment. What remains to be checked is the ben-
efit of modeling sentiment flow under uncertainty.

6 Analysis of the Robustness of the Model
Finally, we evaluate how effectively and domain-
robustly sentiment flow predicts global sentiment,
when local sentiment is not given but classified. To
analyze the domain independence of our model,
no knowledge about target domains is used.

6.1 Sentiment Analysis Approaches
To classify sentiment flows, we build on the edit
distance approach presented in Section 4:
Model Variants As in Section 5, we look at all 16
possible variants of the proposed model. For each
variant, we determine all sentiment flows that rep-
resent at least 1% of all reviews in a given training
set. We learn a mapping from the edit distance be-
tween a review’s sentiment flow and each of these
flows to global sentiment. For robustness, we also
combine different model variants.

We compare the accuracy of the model variants
to previous approaches evaluated on the given cor-
pora. In addition, we analyze domain robustness
based on three baselines, which relate to the three
abstraction levels in Figure 2 (cf. Section 4):
Bag-of-Words (b1) The frequencies of all tokens
that occur in at least 5% of all training reviews.
Local Sentiment (b2) The frequencies of positive,
neutral, and negative local sentiment in a review as

well as the first and last local sentiment (analog to
Section 4, local sentiment is mapped to [0, 1]).

Sentiment Flow Patterns (b3) The Manhattan
distances to those sentiment flows obtained by our
clustering approach (Wachsmuth et al., 2014a).

All approaches are used as feature types in ma-
chine learning (with values normalized to [0, 1]).

6.2 Experimental Set-up
We tackle three-class sentiment analysis, which is
supposed to be particularly hard due to the fuzzy
nature of neutral sentiment (Täckström and Mc-
Donald, 2011). Given the three review corpora
described in Section 5, we proceed as follows:7

Local Sentiment For feature computations, we
split all reviews into tokens and sentences. Then,
we classify local sentiment with the algorithm of
Socher et al. (2013) from Stanford CoreNLP.8 The
algorithm was trained on subjective movie review
sentences. We found that its accuracy is limited to
around 50% on the given corpora, partly as it tends
to misclassify objective sentences. Still, we use it
to avoid any adaptation to the domains at hand.

Global Sentiment To determine global sentiment,
we perform supervised learning based on the fea-
ture types outlined above. In particular, we use the
default configuration of the random forest classi-
fier from Weka (Breiman, 2001; Hall et al., 2009)
without any parameter optimization.

Experiments Having classified local sentiment in
all reviews, we learn a random forest classifier on
each feature type and different feature sets for all
combinations of training and test domain. To pre-
vent class bias, the training sets are balanced with
duplicate oversampling. Since the size of the cor-
pora is limited, we evaluate in-domain accuracy on
the whole corpora using 10-fold cross-validation,
averaged over five runs. Afterwards, we test the
out-of-domain accuracy by applying the learned
classifier to the other complete corpora.

6.3 Results on the Domain Robustness
Table 4 lists accuracy results for all domain combi-
nations. In the movie domain, we obtain an over-
all accuracy of 71.8. On average, we thus succeed
over Pang and Lee (2005) who report about 75 on
the reviews of Scott Renshaw and 63 on those of
Dennis Schwartz. Similarly, we beat all our three-
class sentiment analysis results from (Wachsmuth,

7Again, see http://www.arguana.com/software for code.
8Stanford CoreNLP, http://nlp.stanford.edu/software

608



Training Feature types Product Hotel Movie
Product b1 Bag-of-words 49.0 45.9 32.4

b2 Local sentiment 51.7 50.4 39.3
b3 Sentiment flow patterns 46.8 57.5 47.8
All baseline features b1-3 51.9 58.8 49.8
v1 change-2class 46.0 46.6 41.3
v2 change-2class-noloops 48.7 46.9 38.4
v3 noloops-2class 48.7 50.1 43.6
v4 2class 52.0 53.8 44.9
v5 2class-noloops 48.0 50.4 42.4
All model variants v1-5 50.5 51.3 42.4
All flows (v1-5 + b3) 50.9 58.2 51.1
All sentiment (v1-5 + b2-3) 50.8 59.7 50.2
All features (v1-5 + b1-3) 54.2 60.0 48.7

Hotel b1 Bag-of-words 37.8 79.6 39.8
b2 Local sentiment 51.4 64.2 51.1
b3 Sentiment flow patterns 50.7 74.2 51.1
All baseline features b1-3 54.8 78.9 48.7
v1 change-2class 43.2 54.3 43.3
v2 change-2class-noloops 46.6 49.4 45.3
v3 noloops-2class 49.3 57.4 46.7
v4 2class 52.4 58.6 51.6
v5 2class-noloops 46.9 54.0 48.2
All model variants v1-5 53.4 69.0 54.7
All flows (v1-5 + b3) 53.8 75.5 53.6
All sentiment (v1-5 + b2-3) 57.1 75.6 51.8
All features (v1-5 + b1-3) 56.4 79.0 53.3

Movie b1 Bag-of-words 35.0 41.2 64.8
b2 Local sentiment 43.2 44.2 59.0
b3 Sentiment flow patterns 42.2 39.5 67.2
All baseline features b1-3 48.0 50.4 70.5
v1 change-2class 42.9 44.0 44.8
v2 change-2class-noloops 40.8 48.1 44.2
v3 noloops-2class 44.9 46.5 50.7
v4 2class – – –
v5 2class-noloops 44.2 44.7 55.9
All model variants v1-5 44.6 49.7 60.9
All flows (v1-5 + b3) 47.6 51.9 65.2
All sentiment (v1-5 + b2-3) 49.7 54.1 65.9
All features (v1-5 + b1-3) 48.0 52.3 71.8

Table 4. Accuracy of predicting 3-class global sentiment for
each combination of training and test domain using the base-
lines and/or a selection of the 16 evaluated model variants.

2015) in the hotel domain. In the product domain,
our approach fails to compete with Täckström and
McDonald (2011) who classify the global senti-
ment of 66.6% of all reviews correctly after train-
ing on large-scale product corpora. The small size
of the given corpus explains the limited in-domain
accuracy in Table 4; even some out-of-domain
classifiers perform better on the product reviews.
Still, the value 54.2 significantly improves over all
baselines under a paired t-test (p < 5%).

As expected, bag-of-words (b1) proves strong
in some in-domain tasks—achieving even the best
overall accuracy in the hotel domain (79.6)—but
it consistently fails out-of-domain. Although less
clear, similar observations can be made for b2.
This shows that a restriction to the distribution of
local sentiment is insufficient to tackle domain de-
pendence. The sentiment flow patterns are compa-
rably effective out-of-domain, but still suffer from
the domain change on the evaluated corpora.

For space reasons, we compare the baselines b1
to b3 only to a selection of five of the most effec-
tive model variants, v1 to v5. Alone, these variants
only occasionally do better than the sentiment flow
patterns (b3). However, their combination (v1–5)
clearly outperforms b3 in 4 out of 6 out-of-domain
experiments. A strong variant is 2class-noloops,
which already proved general in the results from
Section 5. In contrast, 2class (v4) appears contro-
versial. While it turns out being both effective and
domain-robust when training in the product and
hotel domain, no 2class sentiment flow represents
at least 1% of the movie corpus, emphasizing that
more abstraction is required for robustness.

Altogether, the bottom lines of each domain in
Table 4 provide clear evidence that our approach
improves domain robustness in sentiment analy-
sis: In all cases, the out-of-domain accuracy is best
when using our sentiment flow features v1–5. At
the same time, our results suggest that very high
effectiveness might require more adaptation to the
target domain. In this regard, modeling sentiment
flow serves as a promising basis to align more ef-
fective but domain-dependent features.

7 Conclusion
This paper puts the goal of domain independence
in the sentiment analysis of web reviews into the
focus. In particular, we hypothesize that an ab-
stract model of the local sentiment flow in a review
generally captures the review’s overall argumenta-
tion regarding global sentiment. In ground-truth
data from three domains, we have found clear ev-
idence for our hypothesis, indicating that people
write reviews in similar ways across domains.

On this basis, we have presented a novel learn-
ing approach, which predicts the global sentiment
of a review from the edit distance between the re-
view’s sentiment flow and a set of common flows.
While we determined common flows with cluster-
ing in previous work (Wachsmuth et al., 2014a),
instead here we rely on different flow abstractions
at the same time. Systematic experiments empha-
size that, in this manner, our approach achieves
domain robustness without any domain adaptation
even when the accuracy of the local sentiment in
the flows is limited.

However, our experiments also show that sen-
timent flow alone does not always suffice to pre-
dict global sentiment. In future sentiment analysis
approaches, sentiment flows may therefore rather
serve as pivot features for domain adaptation.
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Abstract

Open domain targeted sentiment is the
joint information extraction task that finds
target mentions together with the senti-
ment towards each mention from a text
corpus. The task is typically modeled as a
sequence labeling problem, and solved us-
ing state-of-the-art labelers such as CRF.
We empirically study the effect of word
embeddings and automatic feature combi-
nations on the task by extending a CRF
baseline using neural networks, which
have demonstrated large potentials for
sentiment analysis. Results show that the
neural model can give better results by
significantly increasing the recall. In ad-
dition, we propose a novel integration of
neural and discrete features, which com-
bines their relative advantages, leading to
significantly higher results compared to
both baselines.

1 Introduction

Targeted sentiment analysis has drawn growing re-
search interests over the past few years. Compared
with traditional sentiment analysis tasks, which
extract the overall sentiment of a document, a sen-
tence or a tweet, targeted sentiment analysis ex-
tracts the sentiment over given targeted entities
from a text, and therefore is practically more infor-
mative. An example is shown in Figure 1. There
are at least two practical scenarios:

(1) Certain entities of concern are specified, and
the requirement is to extract the sentiment to-
wards their mentions in a text. For exam-
ple, one can be interested in the sentiment
towards Google Inc., Microsoft and Face-
book in financial news texts, or the sentiment
towards Manchester United, Liverpool and
Chelsea in tweets.

So excited to meet my [baby Farah]+ !!!
[Baseball Warehouse]+ : easy to under-
stand information.
The [#Afghan #Parlaiment Speaker]−
should Resign .
Saw [Erykah Badu]− last night , vile
venue unfortunately .
[AW service]0 will be back at work .

Figure 1: Targeted sentiment analysis.

(2) No specified target is given, and the require-
ment is to find sentiments towards entities in
the open domain. For example, one might be
interested extracting the mentions to all per-
sons and organizations, together with the sen-
timents towards each mention, from a news
archive or a collection of novels.

There are two sub tasks in targeted sentiment
analysis, namely entity recognition and sentiment
classification for each entity mention which ap-
ply to both scenarios above. In scenario (1), en-
tity recognition is relatively trivial, and can typ-
ically be achieved by pattern matching. Partly
due to this reason, most previous work has ad-
dressed targeted sentiment analysis as a pure clas-
sification task, assuming that target mentions have
been given (Jiang et al., 2011; Chen et al., 2012;
Dong et al., 2014; Vo and Zhang, 2015). For
scenario (2), a named entity recognition (NER)
system can be used to extract targets, before the
same targeted sentiment classification algorithms
are applied. There has also been work that con-
centrates on extracting opinion targets (Jin et al.,
2009; Jakob and Gurevych, 2010). In both cases,
the data in Figure 1 can be used for training senti-
ment classifiers.

Mitchell et al. (2013) took a different ap-
proach, extracting named entities and their senti-
ment classes jointly. They model the joint task
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sentence: So excited to meet my baby Farah !!!

entity:
sentiment:

O O O O O B I O

Φ Φ Φ Φ Φ + + Φ

(a) pipeline or joint

sentence: So excited to meet my baby Farah !!!

collapsed: O O O O O B+ I+ O

(b) collapsed

Figure 2: Pipeline, joint and collapsed models for
open targeted sentiment analysis.

as an extension to the NER task, where an extra
sentiment label is assigned to each named entity,
in addition to the entity label. As a result, the
task can be solved using sequence labeling meth-
ods. As claimed by Mitchell et al. (2013), the
joint task is particularly suitable when no extra re-
sources are available for training separate syntac-
tic analyzers or name entity recognizers. Such sit-
uations can include tweets and low-resource lan-
guages/domains. Interestingly, because of con-
taining entity information, the annotation in Fig-
ure 1 suffices for training joint entity and senti-
ment labels even if it is the only resource available.

The annotations in Figure 1 can be transformed
into label sequences, as shown in Figure 2. Fig-
ure 2 consists of two types of labels, where the
B/I/O labels indicate span boundaries, and the +/-
/0 labels indicate sentiment classes. The two types
of labels can be assigned in a span→sentiment
pipeline, or jointly as a multi-label task. Alterna-
tively, as shown in Figure 2(b), the two types of la-
bels can be collapsed into a joint label, such as B+
and I-, indicating the beginning of a positive entity
and the middle of a negative entity, respectively.
The collapsed labels allow joint entity recognition
and sentiment classification to be achieved using a
standard sequence labeler.

Mitchell et al. (2013) compare a pipeline model,
a joint model and a collapsed model under the
same conditional random field (CRF) framework,
finding that the pipeline method outperforms the
joint model on a tweet dataset. Intuitively, the in-
teraction between entity boundaries and sentiment
classes might not be as strong as that between
more closely-coupled sources of information, such
as word boundaries and POS (Zhang and Clark,
2008), or named entities and constituents (Finkel
and Manning, 2009), for which joint models sig-
nificantly outperform pipeline models. On the

other hand, there do exist cases where entity
boundaries and sentiment classes reinforce each
other. For example, in a tweet such as ‘I like X.’,
the contextual pattern indicate both a positive sen-
timent and an entity in the place of X.

Recently, neural network models have been in-
creasingly used for sentiment analysis (Socher et
al., 2013; Kalchbrenner et al., 2014; dos San-
tos and Gatti, 2014), achieving highly competi-
tive results, which show large potentials of neu-
ral network models for this task. The main ad-
vantages of neural networks are two-fold. First,
neural models use real-valued hidden layers to au-
tomatically learn feature combinations, which can
capture complex semantic information that are dif-
ficult to express using traditional discrete man-
ual features. Second, neural networks take dis-
tributed word embeddings as inputs, which can be
trained from large-scale raw text, thus alleviating
the scarcity of annotated data to some extent. In
this paper, we exploit structured neural models for
open targeted sentiment.

We take the CRF model of Mitchell et al. (2013)
as the baseline, and explore two research ques-
tions. First, we make an empirical comparison be-
tween discrete and neural CRF models, and fur-
ther combine the strengths of each model via fea-
ture integration. Second, we compare the effects
of the pipeline, joint and collapsed models for
open targeted sentiment analysis under the neu-
ral model settings. Our experiments show that the
neural model gives competitive results compared
with the discrete baseline, with relatively higher
recalls. In addition, the integrated model signifi-
cantly improves over both the discrete and the neu-
ral models.

2 Related Work

Targeted sentiment analysis is closely related prior
work on aspect-oriented (Hu and Liu, 2004),
feature-oriented (Popescu and Etzioni, 2007) and
topic-oriented (Yi et al., 2003) sentiment analysis.
These related tasks are typically concentrated on
product review settings. In contrast, targeted sen-
timent analysis has a more general setting.

Recently, Wang et al. (2011) proposed a topic-
oriented model, which extracts sentiments towards
certain topics from tweets. Topics in their model
resemble targets in our work, although topics are
represented by hashtags, which exists in 14.6%
tweets and 27.5% subjective tweets (Wang et al.,
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2011). In contrast, targeted sentiment analysis
can identify all the mentions to target entities in
tweets, thereby having a larger coverage. The
drawback is that the identification of mentions is
subject to errors, and thus suffers a lower preci-
sion compared to hashtag matching.

Sequence labeling models have been used for
extracting opinions and target entities as a joint
task. Jin et al. (2009) use HMM to extract opinion-
baring expressions and opinion targets. Li et al.
(2010) improve the results by using CRF to iden-
tify the opinion expressions and targets jointly.
The task is sometimes referred to as fine-grained
sentiment analysis (Wiebe et al., 2005). It is differ-
ent from our setting in that the predicate-argument
relation between opinion-baring expressions and
target entities are not explicitly modeled.

Recently, Yang and Cardie (2013) use CRF to
extract opinion-baring expressions, opinion hold-
ers and opinion targets simultaneously. Their
method is also centralized on opinion-baring ex-
pressions and therefore in line with Jin et al.
(2009) and Li et al. (2010). In contrast, targeted
sentiment analysis directly studies entity mentions
and the sentiment on each mention, without ex-
plicitly modeling the way in which the opinion is
expressed. As a result, our task is more useful for
applications such as broad-stroke reputation man-
agement, but offer less fine-grained operational in-
sight. It requires less fine-grained manual annota-
tion.

As discussed in the introduction, targeted sen-
timent analysis falls into two main settings. The
first is targeted sentiment classification, assum-
ing that entity mentions are given. Most previous
work fall under this category (Jiang et al., 2011;
Chen et al., 2012; Dong et al., 2014). The sec-
ond is open domain targeted sentiment, which has
been discussed by Mitchell et al. (2013). The task
jointly extracts entities and sentiment classes, and
is analogous to joint entity and relation extraction
(Li and Ji, 2014) in that both are information ex-
traction tasks with multi-label outputs.

Our work is related to the line of work on us-
ing neural networks for sentiment analysis. Socher
et al. (2011) use recursive auto-encoders for senti-
ment analysis on the sentence level. They further
extend the method to a syntactic treebank anno-
tated with sentiment labels (Socher et al., 2013).
More recently, Kalchbrenner et al. (2014) use a
dynamic pooling network to include the structure
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Figure 3: Discrete CRF models for pipeline, joint
and collapsed targeted sentiment labeling.

of a sentence automatically, before classifying its
sentiment. Zhou et al. (2014) apply deep belief
networks for semi-supervised sentiment classifica-
tion. dos Santos and Gatti (2014) use deep convo-
lution neural networks with rich features to clas-
sify sentiments over tweets and movie reviews.
These methods use different models to represent
sentence structures, performing sentiment analysis
on the sentence level, without modeling targets.

Dong et al. (2014) perform targeted sentiment
classification by using a recursive neural network
to model the transmission of sentiment signal from
opinion baring expressions to a target. They as-
sume that the target mention is given, and perform
three-way sentiment classification. In contrast, we
apply a structural neural model for open domain
targeted sentiment analysis, identifying and clas-
sifying all targets in a sentence simultaneously.

3 Discrete CRF Baselines

As shown in Figure 2, the input ~x to our tasks is a
word sequence. Assuming no external resources,
there is no POS given to each input word xi. For
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the pipeline and collapsed tasks, there is a single
output label sequence ~y. For the joint task, there
are two label sequences ~y and ~z, for entity and sen-
timent labels, respectively. We take the models of
Mitchell et al. (2013) as our baseline, which are
standard CRFs with discrete manual features. To
facilitate comparison between the discrete base-
line and our neural models, we give a unified for-
mulation to all the models in this paper, introduc-
ing the neural and integrated models as extensions
to the discrete models.

The baseline CRF structures for pipeline, joint
and collapsed targeted sentiment analysis are
shown in Figure 3(a), 3(b) and 3(c), respectively.
In the figures, the input features are represented as
black and white circles, indicating that they take
0/1 binary values. The labels O, B and I indi-
cate a non-target, the beginning of a target, and
part of a target, respectively. The labels +, −,
0 and Φ indicate positive, negative, neutral and
NULL sentiments, respectively. The NULL sen-
timent is assigned to O entities automatically, and
modeled as a hidden variable in the pipeline and
joint CRFs.1 The collapsed labels take combined
meanings from their components.

The links between labels and inputs represent
output clique potentials:

Ψ(~x, yi) = exp
{
~θ · ~f(~x, yi)

}
,

where ~f(~x, yi), is a discrete manual feature vector,
and ~θ is the model parameter vector.

The links between labels represent edge clique
potentials:

Φ(~x, yi, yi−1) = exp
{
τ(yi, yi−1)

}
,

where τ(yi, yi−1) is the transition weight, which
is also a model parameter.

For both the pipeline and collapsed models, the
conditional probability of a label sequence given
an input sequence is:

P (~y|~x) =

|x|∏
i=1

Ψ(~x, yi)
|x|∏
j=1

Φ(~x, yi, yi−1)

Z(~x)
,

1Note the difference between neural and NULL senti-
ments. The former indicates that a target does not bare any
sentiment, and the latter simply means that the term is not a
part of a target.

surface features
word identity; word length; message length;
punctuation characters; has digit; has dash; is lower case;
is 3 or 4 letters; first letter capitalized; sentence position;
more than one letter capitalized; Jerboa features;

linguistic features
function words; can syllabify; curse words;
laugh words; words for good, bad, no, my;
intensifiers; slang words; abbreviations;
common verb endings; common noun endings;
subjective suffixes and prefixes;

cluster features
Brown cluster at length 3; Brown cluster at length 5;

sentiment features
is sentiment-bearing word; prior sentiment polarity;

Table 1: Discrete features.

where Z(~x) is the partition function:

Z(~x) =
∑
~y′

( |x|∏
i=1

Ψ(~x, y′i)
|x|∏
j=1

Φ(~x, y′i, y
′
i−1)

)
,

For the joint model, we apply a multi-label CRF
structure, where there are two separate sets of
output clique potentials Ψ1(~x, yi) and Ψ2(~x, zi)
and two separate sets of edge clique potentials
Φ1(~x, yi, yi−1) and Φ2(~x, zi, zi−1) for the label
sets {B, I,O} and {+,−, 0}, respectively. In
the Figure 3(b), there are also links between the
span label yi and the sentiment label zi for each
word xi. These links indicate label dependencies,
which are constraints for decoding. For example,
if yi = O, then zi must be φ.

We apply Viterbi decoding for all tasks, and
training is performed using a max-margin objec-
tive, which is discussed in Section 6. Our training
algorithm is different from that of Mitchell et al.
(2013), but gives similar discrete CRF accuracies
in our experiments. Wang and Mori (2009) also
applied a max-margin trainig strategy to train CRF
models. The set of features is taken from Mitchell
et al. (2013) without changes, as shown in Table
1. Here the cluster features refer to Brown word
clusters (Brown et al., 1992).

4 Neural Models

We extend the discrete baseline system with two
salient changes, which are illustrated in Figure 4.
First, the input discrete features are replaced with
continuous word embeddings. Each node in the
input takes a real value between 0 and 1, as repre-
sented by grey nodes in Figure 4. Second, a hidden
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Figure 4: Neural networks for pipeline, joint and
collapsed targeted sentiment labeling.

neural layer ~h is added between the input nodes ~x
and the label nodes yi.

Formally, the links between the input nodes ~x
and the hidden nodes ~hi for the node yi in Figure
4 represent a feature combination function:

~hi =tanh
(

W.(e(~xi−2)⊕ e(~xi−1)⊕ e(~xi)
⊕ e(~xi+1)⊕ e(~xi+2)) +~b

)
where e is the embedding lookup function, ⊕ is
the vector concatenation function, the matrix W
and vector ~b are model parameters and tanh is the
activation function.

The output clique potential of yi becomes:

Ψ(~x, yi) = exp
{
~σ · ~hi

}
where ~σ is a model parameter, and the edge clique
potentials remain the same as the baseline. By

B

◦
�

· · · · · ·
· · · · · ·

babymy Farah

step 1: entity

+

◦
�

· · · · · ·
· · · · · ·

baby (B)my (O) Farah (I)

step 2: sentiment

O I� �

Φ +� �

(a) pipeline

B

◦
�

· · · · · ·
· · · · · ·

babymy Farah

+
�

O I� �

Φ +� �

(b) joint

B+

◦
�

· · · · · ·
· · · · · ·

babymy Farah

O I� �

(c) collapsed

Figure 5: Integrated models for pipeline, joint and
collapsed targeted sentiment labeling.

using a hidden layer for automatic feature com-
binations, the neural model is free of manual fea-
tures, and can benefit from unsupervised embed-
dings. Decoding and training are performed using
the same algorithms as the baseline.

The major neural architectures in Figure 4 have
been explored as conditional neural fields by Peng
et al. (2009) and neural conditional random fields
by Do et al. (2010), and is connected to the
sentence-level likelihood neural networks of Col-
lobert et al. (2011), as pointed out by Wang and
Manning (2013b). The main differences between
our model and the prior work are in the multi-label
settings and training details.

5 Integrated Models

Gleaning different sources of information, neu-
ral features and discrete linear features comple-
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ments each other. As a result, a model that in-
tegrates both features can potentially achieve per-
formance improvements. Most work attempts to
add neural word embeddings into a discrete linear
model (Turian et al., 2010; Yu et al., 2013; Guo et
al., 2014), or add discreted features into a neural
model (Ma et al., 2014). We make a novel combi-
nation of the discrete models and the neural mod-
els by integrating both types of inputs into a same
CRF framework.2

The architectures of the integrated models are
shown in Figure 5. The main difference between
Figure 5 and Figure 3 is the input layer. The inte-
grated model takes both continuous word embed-
dings, which are shown in grey nodes, and dis-
crete manual features, which are shown in black
or white nodes, as the input.

A separate hidden layer is given to each type of
input nodes, with the hidden layer for the embed-
dings being the same as the neural baseline:

~hi =tanh
(

W · (e(~xi−2)⊕ e(~xi−1)⊕ e(~xi)
⊕ e(~xi+1)⊕ e(~xi+2)) +~b

)
The hidden nodes ~gi between the discrete features
and the node yi are:

~gi = tanh
(
~θ · ~f(~x, yi)

)
Finally, the output clique potential of yi becomes:

~Ψ(~x, yi) = exp
{
~σ · (~hi ⊕ ~gi)

}
The edge clique potentials remain the same as the
baseline models; the same training and decoding
algorithms are used.

6 Training

We use a max-margin objective to train our model
parameters Θ, which consist of ~θ, τ , W, ~b and ~σ
for each model. The objective function is defined
as:

L(Θ) =
1
N

N∑
n=1

l(~xn, ~yn,Θ) +
λ

2
‖ Θ ‖2,

2Wang and Manning (2013a) also investigated the inte-
gration of discrete and neural features in CRF models. They
compared the effect of integration without hidden layers (i.e.
Turian et al. (2010)) and with hidden layers (i.e. our meth-
ods) for NER and chunking, finding that the formal outper-
forms the latter. Our results are different from theirs, and a
hidden layer gives significant improvements to the targeted
sentiment analysis task.

where (~xn, ~yn)|Nn=1 are the set of training ex-
amples, λ is a regularization parameter, and
l(~xn, ~yn,Θ) is the loss function towards one ex-
ample (~xn, ~yn).

The loss function is defined as:

l(~xn, ~yn,Θ) = max
~y

(s(~xn, ~y,Θ) + δ(~y, ~yn))

− s(~xn, ~yn,Θ),

where s(~x, ~y,Θ) = logP (~y|~x) is the log proba-
bility of ~y, and δ(~y, ~yn) is the Hamming distance
between ~y and ~yn.

We use online learning to train model parame-
ters, updating the parameters using the AdaGrad
algorithm (Duchi et al., 2011). One thing to note
is that, our objective function is not differentiable
because of the loss function l(~xn, ~yn,Θ). Thus we
use sub-gradients for l(~xn, ~yn,Θ) instead, which
can be computed by the formula:

∂l(~xn, ~yn,Θ)
∂Θ

=
∂s(~xn, ~̂y,Θ)

∂Θ
− ∂s(~xn, ~yn,Θ)

∂Θ
,

where ~̂y is the predicted label sequence which cor-
responds to l(~xn, ~yn,Θ).

Maximum-likelihood training is a commonly
used alternative to max-margin training for neu-
ral networks. It has been applied to the models
of Do et al. (2010) and Collobert et al. (2011),
for example. However, our experiments show that
maximum-likelihood training cannot be applied to
open-domain targeted sentiment tasks. Although
giving comparable overall accuracies in both en-
tity and sentiment labels, it suffers from unbal-
anced sentiment labels, assigning the neutral sen-
timent to most entities. This problem can be ad-
dressed by imposing a polarity-sensitive cost to
the training, such as the sentence-level averaged
F1-score between positive, negative and neutral la-
bels. We skip these results due to space limita-
tions. In contrast, max-margin training does not
suffer from the label skew issue, thanks to the use
of Hamming loss in the objective function.

7 Experiments

7.1 Experimental Settings
Data: We use the data of Mitchell et al. (2013)3

to conduct all the experiments, which consist of
entity and sentiment annotations on both English
and Spanish tweets. Simple normalizations are

3http://www.m-mitchell.com/code/index.html
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Domain #Sent #Entities #+ #- #0
English 2,350 3,288 707 275 2,306
Spanish 5,145 6,658 1,555 1,007 4,096

Table 2: Experimental corpus statistics.

conducted to replace all usernames and URLs into
the special tokens 〈username〉 and 〈url〉, respec-
tively. Following Mitchell et al. (2013), we report
ten-fold cross-validation results. During training,
we split 10% of the training corpus as the devel-
opment corpus to tune hyper-parameters. Table 2
shows the corpus statistics.

Parameters: For all the neural models, we set
the hidden layer size |~h| for neural features to 200,
the hidden layer size |~g| for discrete features to
30, the initial learning rate for adagrad to 0.01 and
the regularization parameter λ to 10−8. English
and Spanish word embeddings are trained using
the word2vec tool4, with respective corpora of 20
minion random tweets crawled by tweet API5. The
size of word embeddings is 100. For English, there
are 8,061 unique words, for which 25% are out of
word embedding vocabulary (OOE) words, while
for Spanish, there are 14,648 unique words, for
which 15% are OOE words.

Metrics: We take full-span metrics for evalua-
tion, which is different from Mitchell et al. (2013),
who evaluate mainly the beginning of spans. We
measure the precision, recall and F-score of entity
recognition (Entity), targeted sentiment analysis
(SA) (both entity and sentiment), and targeted sub-
jectivity detection (Subjectivity) (both entity and
subjectivity, namely merging the + and - labels as
“1” label, and performing two-way 0/1 subjectiv-
ity classification on entities). For SA, an entity is
taken as correct only when the span and the sen-
timent are both correctly recognized. Similarly,
for Subjectivity, an entity is taken as correct only
when both the span and the subjectivity are cor-
rectly recognized.

Code: We make the C++ implementations of
the discrete, neural and combined models avail-
able and GPL, at https://github.com/
SUTDNLP/OpenTargetedSentiment.

7.2 Comparing Neural and Discrete Models

The main results on both the English and Span-
ish dataset are shown in Table 3, which are mea-

4https://code.google.com/p/word2vec/
5https://dev.twitter.com/
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Figure 6: Labeling accuracy comparisons.

sured on the pipeline, the joint and the collapsed
tasks, respectively. As can be seen from the ta-
ble, the neural models give higher F-scores than
the discrete CRF models on the English dataset,
while comparable overall F-scores on the Spanish
dataset. The gains on English are mostly attributed
to improved recalls, while the precision of the neu-
ral CRF models are relatively lower. A likely rea-
son for this observation is that the neural model
takes embedding inputs, which allow semantically
similar words to be represented with similar vec-
tors. As a result, the neural model can better cap-
ture patterns that do not occur in the training data.
In contrast, the discrete model is based on man-
ually defined binary features, which do not fire if
not contained in the training data. Because dis-
crete feature instantiation is based on exact match-
ing, the discrete model gives a relatively higher
precision.

To further contrast the discrete and neural mod-
els, we draw the per-word accuracies of sentiment
labels according to both models in Figure 6. In
the figure, each dot represents the accuracy of a
sentence, measured in the pipeline task. The dots
for both English and Spanish are scattered from
the reverse diagonal, showing that the two mod-
els make very different errors, which suggests that
model integration can lead to better accuracies.

7.3 The Integrated Model

As shown in Table 3, the integrated model com-
bines the relative advantages of both pure models,
improving the recall over the discrete model and
the precision over the neural model. In most cases,
it gives the best results in terms of both precision
and recall. For the English pipeline model, the
integrated model improves the entity recognition
F-score from 43.84% to 55.67% (significant with
p < 10−5 by pair-wise t-test) as compared to the
discrete baseline, namely Mitchell et al. (2013).
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Model
English Spanish

Entity SA Entity SA
P R F P R F P R F P R F

Pipeline
discrete 59.37 34.83 43.84 42.97 25.21 31.73 70.77 47.75 57.00 46.55 31.38 37.47
neural 53.64 44.87 48.67 37.53 31.38 34.04 65.59 47.82 55.27 41.50 30.27 34.98

integrated 60.69 51.63 55.67 43.71 37.12 40.06 70.23 62.00 65.76 45.99 40.57 43.04

Joint
discrete 59.55 34.06 43.30 43.09 24.67 31.35 71.08 47.56 56.96 46.36 31.02 37.15
neural 54.45 42.12 47.17 37.55 28.95 32.45 65.05 47.79 55.07 40.28 29.58 34.09

integrated 61.47 49.28 54.59 44.62 35.84 39.67 71.32 61.11 65.74 46.67 39.99 43.02

Collapsed
discrete 64.16 26.03 36.95 48.35 19.64 27.86 73.18 35.11 47.42 49.85 23.91 32.30
neural 58.53 37.25 45.30 43.12 27.44 33.36 67.43 43.2 52.64 42.61 27.27 33.25

integrated 63.55 44.98 52.58 46.32 32.84 38.36 73.51 53.3 61.71 47.69 34.53 40.00

Table 3: Main results.
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Figure 7: Effect of fine-tuning (+T — with fine-
tuning; -T — without fine-tuning).

The overall SA score is improved from 31.73% to
40.06% (p < 10−5). Similar improvements are
achieved to the other test datasets.

7.4 Fine-tuning Word Embeddings

In the experiments above, word embeddings are
fine-tuned for the neural models, but not for the
integrated models. By fine-tuning, embeddings of
in-vocabulary words are treated as model parame-
ters, and updated with other parameters in super-
vised training. This can improve the accuracy of
the model by significantly enlarging the parameter
space. However, it can make the embeddings of
OOV words less useful to the model, because the
hidden layers are tuned with adjusted embeddings.

Figure 7 shows the effectiveness of fine-tuning
on the neural and integrated models using the
Spanish data. Similar findings apply to the En-
glish data. The neural model heavily relies on
fine-tuning of embeddings, and a likely reason is
that manual discrete features offer sufficient pa-
rameters for capturing in-vocabulary patterns. On

the other hand, thanks to the rich discrete features
in parameter space, the integrated model does not
rely on fine-tuning of word embeddings, which
even caused slight overfitting and reduced the per-
formances. This makes the non-fine-tuned inte-
grated model potentially advantageous in handling
test data with many OOV words.

7.5 Comparing pipeline, joint and collapsed
models

Mitchell et al. (2013) find that for discrete CRF,
the pipeline task gives competitive overall perfor-
mances compared with the joint task. This sug-
gests a relatively weak connection between entity
boundary information and sentiment classes. We
re-examine the comparisons under the neural net-
work setting, where automatic feature combina-
tions can be useful in capturing more subtle cor-
relations between two sources of information.

As shown in Table 3, the overall results are sim-
ilar to those of Mitchell et al. (2013), with both
the neural and the integrated models demonstrat-
ing the same trends as the discrete baselines. A
more detail analysis, however, shows some rela-
tive strengths of the joint task. Table 4 give the
precision, recall and F-scores of subjectivity, and
those of SA excluding neutral sentiment labels on
the Spanish data. Findings on the English dataset
are consistent.

The latter metrics highlight sentiment polarities,
which can be relatively more useful. The joint task
gives better F-scores on both metrics, which sug-
gest that is a considerable choice for open targeted
sentiment. When there is external resource for en-
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Model
Subjectivity SA/0

P R F P R F
pipeline 47.92 42.26 44.84 42.93 18.02 25.14

joint 49.17 42.13 45.32 40.93 21.62 27.93
collapsed 49.63 35.94 41.63 42.10 15.62 22.49

Table 4: Results on subjectivity and polarity.

tity recognition, the pipeline can be a favorable
choice. On the other hand, although useful for
some joint sequence labeling task (Ng and Low,
2004), the collapsed task does not seem to address
the joint sentiment task as effectively. We find this
result empirical, but consistent across our datasets.

8 Conclusion

We explored open domain targeted sentiment
analysis using neural network models, which
gave competitive results when evaluated against
a strong discrete CRF baseline, with relatively
higher recalls. Given complementary error dis-
tributions by the discrete and neural CRFs, we
proposed a novel combination which significantly
outperformed both models. Under the neural set-
ting, we find that it is preferable to solve open tar-
geted sentiment as a pipeline or joint multi-label
task, but not as a joint task with collapsed labels.
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Abstract

A fundamental issue in opinion mining is
to search a corpus for opinion units, each
of which typically comprises the evalua-
tion by an author for a target object from
an aspect, such as “This hotel is in a
good location”. However, few attempts
have been made to address cases where
the validity of an evaluation is restricted
on a condition in the source text, such
as “for traveling with small kids”. In
this paper, we propose a method to ex-
tract condition-opinion relations from on-
line reviews, which enables fine-grained
analysis for the utility of target objects de-
pending the user attribute, purpose, and
situation. Our method uses supervised
machine learning to identify sequences of
words or phrases that comprise conditions
for opinions. We propose several features
associated with lexical and syntactic infor-
mation, and show their effectiveness ex-
perimentally.

1 Introduction

Reflecting the rapid growth in the use of opin-
ionated texts on the Web, such as comments on
news articles and customer reviews, opinion min-
ing has been explored to facilitate utilizing opin-
ions mainly for improving products and decision-
making purposes. While in a broad sense opin-
ion mining refers to a process to discover useful
knowledge latent in a corpus of opinionated texts,
fundamental issues involve modeling an unit of
opinions and searching the corpus for those units,
each of which typically comprises the evaluation
by an author for a target object from an aspect.
Other elements, such as when the opinion was sub-
mitted, can optionally be included in an opinion
unit. We take the following review sentence as an
example opinionated description.

(1) I think hotel A offers a reasonable price if you
take a family trip with small kids.

From the above example, existing methods (Pang
and Lee, 2008; Seki et al., 2009; Jin et al., 2009;
Zhao et al., 2010; He et al., 2011; Liu and Zhang,
2012; Liu et al., 2013; Yang and Cardie, 2013; Liu
et al., 2014) are intended to extract the following
quintuple as an opinion unit.

Target = “hotel A”, Aspect = “price”,
Evaluation (Polarity) = “reasonable”
(positive), Holder = “I (author)”, Time
= N/A

Depending on the application, “Evaluation” can be
any of a literal opinion word (e.g., “reasonable”),
a polarity (positive/negative), or a value for multi-
point scale rating.

Given those standardized units extracted from
a corpus, it is feasible to overview the distribu-
tion of values for each element or a combination
of elements. For example, those who intend to im-
prove the quality of hotel A may investigate repre-
sentative values for “Aspect” in the units satisfy-
ing “Target=hotel A & Polarity=negative”, while
those who look for accommodation may collect
the opinion units for one or more candidate ho-
tels and investigate the distribution of values for
“Polarity” on an aspect-by-aspect basis.

However, in the above example (1), the evalua-
tion for hotel A (“a reasonable price”) is valid for
“if you take a family trip with small kids”, and thus
it is not clear whether this evaluation is valid irre-
spective of the condition. For example, the price
may not be reasonable for a single customer in-
tending for business purposes. In this paper, we
shall call such a condition “condition for opinion
(CFO)”. We define CFO as a condition for which
an opinion unit has a polarity.

The existing methods for opinion mining, which
do not consider whether a target opinion is con-
ditional, potentially overestimate or underestimate
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the utility of hotel A and consequently decrease
the quality of opinion mining. We manually an-
alyzed the first 7 000 sentences in the Rakuten
Travel data, which consists of 348 564 Japanese
reviews for hotels in Japan (see Section 4 for de-
tails of this data) and found that 2 272 sentences
are opinions, of which 630 opinions are condi-
tional and thus the result for an existing method
includes up to 28% (630/2272) errors.

Motivated by the above discussion, in this pa-
per we propose a method to extract pairs of a CFO
and its corresponding opinion unit from online re-
views. This method provides two solutions to the
above problem. First, a passive solution is detect-
ing whether an opinion includes a CFO and, if any,
isolating that opinion from the target of opinion
mining. As a result, we can avoid potential errors
as much as possible but the coverage is decreased.

Second, an active solution is identifying the
span of each CFO in conditional opinions and
classify them according to semantic categories,
such as purpose, situation, and user attribute so
that finer-grained opinion mining can be realized.
For example, the distribution of positive and neg-
ative opinions can be available on a category-by-
category basis. However, in this paper we focus
only on the identification for CFOs and leave the
semantic classification future work.

To produce a practical model for CFOs, it is im-
portant to investigate them from a grammar point
of view. It can easily be predicted that a typical
grammatical unit for CFOs is a conditional clause
as in example (1). Additionally, restrictive mod-
ifiers in general can potentially be CFOs because
they restrict the validity of an opinion unit from a
specific perspective. A restrictive modifier com-
prises a word, phrase, or clause. The CFO in ex-
ample (1), which is a dependent clause functioning
as a condition, is also a restrictive modifier.

Example (2), which has the same meaning as
example (1), includes a CFO as a prepositional
phrase.

(2) Hotel A offers a reasonable price for taking
a family trip with small kids.

We denote CFOs and opinion words in bold and
italic faces, respectively. Examples (3) and (4)
also include a CFO as a prepositional phrase. Un-
like example (2), the validity of “reasonable” is re-
stricted from time and comparison points of view,
respectively.

(3) Hotel A offers a reasonable price during this
holiday season.

(4) Hotel A offers a reasonable price for a four
star hotel.

In example (5), which has a similar meaning to
example (1), the CFO is a dependent clause func-
tioning as a reason.

(5) Hotel A offers a reasonable price because we
take a family trip with small kids.

Finally, as in example (6), an opinion holder can
also be a CFO because the evaluation is restricted
from a perspective of that specific person.

(6) My mother regarded hotel A as a reasonable
choice.

If the restriction by a CFO is associated with a
user-related perspective, we call such CFOs “user-
restrictive CFOs (U-CFOs)”. In other words, tar-
get users to whom an opinion unit is relevant are
restricted by its corresponding U-CFO, although
those users may agree or disagree with the opin-
ion. The CFOs in examples (1), (2), and (5) are
U-CFOs because the target users are mainly those
who intend to travel with their children.

The CFO in example (3) is also U-CFO be-
cause the target users are those who intend to
travel during a specific holiday season. The CFO
in example (6) is also U-CFO because the opin-
ion holder (“my mother”) implies the opinion is
relevant mainly to adult females. However, opin-
ion holders who do not represent user-related per-
spectives, such as “I” without any profile, are not
U-CFOs.

The CFO in example (4) is not a U-CFO be-
cause the relevance of the opinion is not restricted
to specific customers. It may be argued that in ex-
ample (4) the target users are restricted to those
who are interested in the price. However, in exam-
ple (4) the price restricts the aspect of the opinion
unit, and should not be confused with U-CFOs and
even CFOs, which restrict the validity of the opin-
ion unit.

If we fully utilize U-CFOs, as discussed for the
active solution above, we need to classify U-CFOs
into semantic categories so that users can selec-
tively read relevant opinions. In other words, the
identification for U-CFOs facilitates predicting the
review helpfulness (O’Mahony and Smyth, 2010;
Moghaddam et al., 2012). Candidate categories
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include demographic and psychographic attributes
for target users (e.g., age and hobby) and situations
of target users (e.g., purpose, time, and place).
However, we leave the classification for U-CFOs
future work.

2 Related work

As described in Section 1, the fundamental meth-
ods for opinion mining include opinion extraction,
which identifies elements for opinion units (i.e.,
target, aspect, evaluation, holder, and time) (He
et al., 2011; Jin et al., 2009; Liu et al., 2013;
Seki et al., 2009; Yang and Cardie, 2013; Zhao
et al., 2010), and opinion classification, which de-
termines the non-literal evaluation of each opinion
unit based on bipolar categories (i.e., positive and
negative) (He et al., 2011; Meng et al., 2012) or
multipoint scale categories (Fu and Wang, 2010;
Moghaddam and Ester, 2013). However, none of
these methods intends to determine whether or not
an opinion is conditional and to extract their con-
dition.

Narayanan et al. (2009) proposed a method for
sentiment classification targeting conditional sen-
tences. Although a conditional opinion is a kind
of conditional sentence, their research is funda-
mentally different from our research. Narayanan
et al. (2009) targeted such a conditional sentence
that comprises a single opinion as a whole, and
intended to categorize its polarity into any of posi-
tive, negative, or neutral. Examples (7) and (8) are
such conditional sentences associated with neutral
and positive categories, respectively.

(7) Hotel A would not have survived if the price
was not reasonable.

(8) If you are looking for a hotel with a reason-
able price, stay at hotel A.

In example (7), although the subordinate clause in-
cludes the opinion word “reasonable”, none of the
subordinate clause, main clause, or entire sentence
is an opinion. In example (8), the entire sentence
is an unconditional opinion about the price for ho-
tel A, but the main and subordinate clauses are not
opinions independently. In contrast, the purpose
of our research is to identify conditional opinions,
in which the main and subordinate clauses are an
opinion and its condition, respectively.

Kim and Hovy (2006) proposed a method to
identify a reason for the evaluation in an opinion,

such as “the service was terrible because the staff
was rude”. Although as discussed in Section 1
reasons can be CFOs, their purpose is to identify
grounds that justify the evaluation and thus is dif-
ferent from our purpose.

As discussed in Section 1, our research
is related to predicting the review helpful-
ness (O’Mahony and Smyth, 2010; Moghaddam
et al., 2012). The method proposed by O’Mahony
and Smyth (2010) determines the helpfulness of a
product review independent of the user profile and
thus cannot recommend reviews based on user-
related attributes.

Moghaddam et al. (2012) used collaborative fil-
tering to predict the review helpfulness. The eval-
uation by a target user for past reviews is used
to model the user and predict the helpfulness for
unread reviews, which results in different predic-
tions depending on the user. An advantage of
collaborative filtering is its applicability to items
whose content is usually difficult to analyze, such
as videos. However, this advantage is diluted in
recommending review text, from which effective
features for user modeling, such as U-CFOs, can
be obtained by opinion mining.

3 Proposed method

The task in this paper is to extract condition-
opinion relations from reviews in Japanese. Cur-
rently, we assume that an opinion unit and its cor-
responding CFO are in the same sentence, and thus
perform the extraction on a sentence-by-sentence
basis. Given a sentence in reviews, we first search
for an opinion unit, and if found, we also search
for its corresponding CFO. Because in the first
process we rely on an existing method for the
opinion extraction, in this paper we focus only on
the extraction for CFOs.

As discussed in Section 1, because CFOs can be
different grammatical units, their length and struc-
ture are not standardized. We model the extraction
for CFOs as the BIO chunking, which labels each
token in a sentence as being the beginning (B), in-
side (I), or outside (O) of a span of interest. We
use “Other” to refer to “O” to avoid confusion be-
tween “O” and “0” (zero). To subdivide “B” and
“I” into U-CFOs and other CFOs, we use suffixes
“U” and “C”, respectively, such as “BU” denoting
the beginning of a U-CFO. We use “Cond” to refer
to any of BU, IU, BC, or IC.

Because we use the same method for both U-
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CFOs and other CFOs, the above distinction only
increases the number of categories to which each
token is classified. If the distinction of U-CFOs is
not important, the above suffixes can be omitted.

We regard Japanese bunsetsu phrases, which
consist of a content word and one or more postpo-
sitional particles, as tokens, and extract a sequence
of a BU-phrase and one or more IU-phrases, or
an independent BU-phrase as a condition. The
same method is used for BC/IC-phrases. However,
words and phrases in an opinion unit are classified
into its corresponding element. For example, an
aspect phrase is classified into the aspect category.

Given an input sequence of bunsetsu phrases,
x = x1 . . . xn, our task is to predict a se-
quence of labels, y = y1 . . . yn, where yi ∈
{BU, IU,BC, IC, Other, Target, Aspect,
OpinionWord}. However, because an opinion
unit in an input sentence has been identified in
advance, the task is a quinary classification with
respect to yi ∈ {BU, IU,BC, IC,Other}. We
use Conditional Random Fields (CRF) (Lafferty
et al., 2001) to train a classifier for categorizing
each bunsetsu phrase into any of the aforemen-
tioned five categories. We use a combination of
unigram and bigram models and calculate the con-
ditional probability, p(y|x), for linear-chain CRF
by Equation (1).

p(y|x) =
1

Zx
exp

(∑
i,k

λk ·fk(yi, x)+

∑
i,k

µk ·gk(yi−1, yi, x)
) (1)

Here, Zx denotes a normalization factor, and fk

and gk denote feature functions for unigram and
bigram models, respectively. Let xi,v denote a
feature value for xi. While in the unigram model
yi depends on either xi−1,v or xi,v, in the bigram
model yi depends on either a combination of xi,v

and yi−1 or that of xi−1,v and yi−1. Feature func-
tions are produced for any possible combinations
of the values for the variables used (xi,v, yi−1, and
yi in fk), and take 1 if the corresponding combi-
nation appears and 0 otherwise. We use the four
combinations “unigram xi,v”, “unigram xi−1,v”,
“bigram yi−1 xi,v”, and “bigram yi−1 xi−1,v” for
feature functions.

The question here is how CFOs and U-CFOs
can be modeled and what kind of features are
needed. We assume characteristics of CFOs, and
U-CFOs and partially exemplify their validity us-

ing Figure 1, which depicts an example input sen-
tence and information related to its constituent
bunsetsu phrases. In the upper part of Figure 1, a
rectangle and an arrow denote a bunsetstu phrase
and a syntactic dependency between two phrases,
respectively, and in each phrase we show Japanese
words based on the Hepburn system and their En-
glish translations in parentheses.

CFOs are associated with the following charac-
teristics.

(a) By definition, CFOs determine the validity of
the evaluation in an opinion unit, and thus
syntactically modify an opinion word. Con-
sequently, CFOs usually do not modify other
elements in an opinion unit, such as an as-
pect.

(b) Like a conjunction in a conditional clause in
English, such as “if”, a CFO in Japanese also
includes a clue expression, which is usually
a functional expression (Matsuyoshi et al.,
2006) in the tail phrase, such as “ni wa (“for”
in English)”.

(c) The distribution for parts of speech as the
head of CFOs is skewed and heads of CFOs
are usually a noun or verb.

Additionally, U-CFOs are associated with the
following characteristics.

(d) If a CFO is an opinion holder as in example
(6) in Section 1, it is usually a U-CFO, which
is the subject appearing at the beginning of a
target sentence.

(e) By definition, U-CFOs include expressions
related to user attributes, such as “nervosity”
in Figure 1.

In this paper, we propose thirteen features to
model CFOs and U-CFOs. In the bottom part of
Figure 1, for each phrase we show the values of the
thirteen features F1–F13 described below. These
features were developed for the above five charac-
teristics. F1–F5, F7–F10 and F13 are associated
with (a), (b) and (c), respectively, while F6 and
F11–F12 are associated with (d) and (e).

F1: Dependency distance to opinion word
CFOs, which affect the evaluation in that opinion,
usually syntactically modifies the opinion word.
Thus, there should be a pass of dependencies be-
tween a Cond-phrase and the opinion word, and a

625



!"#$%&'#('

!()'*+&,#"#

!""#$-&'

!*%"$#"%!&"#

$%,#.",$%,*$/'!"'

!0"1&/$"'()''#"+2($,*3"#

$",43&./'-('

!5/,"*'"#

6(*(6"+/'

!7+")"+"#

.&*&'#,'-&$

!*%($"'-%("#

'()*%$!&*($

!,$'*##"+%#,"#

(6(/8'

!9'*%,#."#

:' ;' <' ='

-./&0#

>' ?' @'

-./&0#12# 32# 32# 32#4!5&6.# -5%#%"#$7"08#

29:;-$$

*(*"6('

!2"+3"#

A' B'

-./&0#

''''''''''''''''''''''''''''''''''''''''C''$%,.&$%,D'!"#$%&'#('$(/(#'-&'$%,#.",$%,*$/'!"'$",43&./'-('6(*(6"+/'.&*&'#,'-&'*(*"6(')/.&,'!&*('(6(/8!

'''''''''''''''''''''''''''''''''''''''''''EF(-"2"+D'9'*%,#.'*%"'#(,$"'()'*+&,#',$'&##(3,#G'*%($"'-%('7+")"+'5/,"*'0"1&/$"'()'#"+2($,*38H'

$%,.&$%,D'

!F(-"2"+D'"#

I'

-./&0#

J:# :# ;# &$7"1*# <# <# ;# :# :# (7,#,(#'-(+!# K:#

J;# @# A# &$7"1*# ># =# :# ;# :# (7,#,(#'-(+!# K:#

J<# :# I# &$7"1*# :# :# :# :# :# (7,#,(#'-(+!# :#

J=# ;# :# &$7"1*# K:# K:# K:# K:# K:# (7,#,(#'-(+!# K:#

J># A# ># &$7"1*# ;# :# :# :# I# (7,#,(#'-(+!# I#

J?# I# I# &$7"1*# I# I# I# I# I# (7,#,(#'-(+!# I#

JA# #(*%,#G' #(*%,#G' &$7"1*# #(*%,#G# #(*%,#G# #(*%,#G# #,'-&# #(*%,#G# (7,#,(#'-(+!# #(*%,#G#

J@# #(*%,#G# #(*%,#G# &$7"1*# #(*%,#G# #(*%,#G# #(*%,#G# *(7,1# #(*%,#G# (7,#,(#'-(+!# #(*%,#G#

JB# #(*%,#G# #(*%,#G# &$7"1*# #,'-&# #,'-&# #,'-&# #,'-&# #(*%,#G# (7,#,(#'-(+!# #(*%,#G#

J:I# #(*%,#G# #(*%,#G# &$7"1*# *(7,1# *(7,1# *(7,1# *(7,1# #(*%,#G# (7,#,(#'-(+!# #(*%,#G#

J::# #(*%,#G' !"#$%&# &$7"1*# $%,#.",$%,*$/# #(*%,#G# #(*%,#G# .&*&# #(*%,#G# (7,#,(#'-(+!# #(*%,#G#

J:;# I' :# &$7"1*# :# I# I# :# I# (7,#,(#'-(+!# I#

J:<# 1(#4/#1L(#' #(/## &$7"1*# #(/## #(/## 2"+0# #(/## &!2"+0# (7,#,(#'-(+!# 2"+0#

Figure 1: Example of Japanese sentence and the feature value for each constituent bunsetsu phrase

phrase that leads to the opinion word via a smaller
number of dependency arrows is more likely to
be a Cond-phrase. We use the dependency dis-
tance (i.e., the number of dependencies) between
a phrase in question and the opinion word as the
value for feature F1. The value for a phrase is
−1 if there is no pass between that phrase and the
opinion word. We use “CaboCha” (Kudo and Mat-
sumoto, 2002) for dependency analysis purposes.

F2: Phrase distance to opinion word F1 is not
robust against errors of the dependency analysis.
To alleviate this problem, we approximate the de-
pendency distance by a phrase distance. In prac-
tice, we subtract the ID for a phrase in question
from that for the opinion word as the value for fea-
ture F2. If the opinion word consists of more than
one phrase, we take the minimum difference. Be-
cause in Japanese a modifier is usually followed
by its modifying object, a phrase with a negative
value for feature F2 is usually an Other-phrase.
For example, in the last phrase in Figure 1, which
cannot be a modifier for the opinion word, is an
Other-phrase.

F3: Dependency pass to aspect Because a CFO
rarely modifies an aspect, for the value of feature
F3 we take 0 if there is a pass of dependencies
between a phrase in question and an aspect and 1
otherwise.

F4: Phrase distance to aspect Similar to F1,
F3 is not robust against errors of the dependency
analysis. As in F2, we approximate the value of F4
by a phrase distance between a phrase including an
aspect and a phrase in question.

F5: Difference between values for F2 and
F1 A CFO usually consists of a sequence of
Cond-phrases where each phrase modifies the next
phrase, as in Figure 1. There is a tendency that as
the difference of values of F1 and F2 for a phrase
becomes smaller, that phrase is more likely to be
a Cond-phrase. In Figure 1, the values for Cond-
phrases #3–#6 are smaller than those for Other-
phrases #0–#1.

F6: Beginning of sentence The subject of an
opinion sentence is often its U-CFO because the
evaluation is valid only from the perspective of
that specific subject. For example, in “my daugh-
ter was pleased with toys in the room” the positive
evaluation is restricted by the daughter’s perspec-
tive. Thus, the value of feature F6 takes 1 for the
first phrase in a sentence excluding a conjunction,
and 0 otherwise.

F7: Clue expression Because a CFO often ends
with one or more specific particles or auxiliary
verbs, we use the existence of those clue expres-
sions in a phrase as the value for feature F7. We
use words in a dictionary of Japanese functional
expressions “Tsutsuji” (Matsuyoshi et al., 2006)
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as the clue expressions. Table 1 shows exam-
ples of entries for Tsutsuji. Each entry is repre-
sented in a hierarchy structure with nine abstrac-
tion levels. We firstly collected “Head words” in
the nineteen categories (e.g., resultative condition
and purpose in L2) associated with our purpose,
consulting “Meaning categories”. Then we col-
lected “Surface forms” corresponding to the col-
lected head words and identified their correspond-
ing surface forms to standardize different forms.
For example, for ID 1 and ID 3 in Table 1, “to sure
ba” and “nde” are regarded as identical to “to suru
to” and “node”, respectively. As a result, we col-
lected 388 words, such as “ba (if)” and “ni (for)”
and used their existence in a phrase in question as
value for F7.

F8: Semantic categories for clue expression
Because the data sparseness is a crucial problem
for F7, we use the existence of semantic categories
in Tsutsuji as the values of F8 for smoothing pur-
poses. For example, in Table 1, “to suru to” and
“ba” have the same feature values “resultative con-
dition”. If a clue expression belongs to more than
one semantic category as in “ni” of Table 1, the
feature value is a set of these categories.

F9: Dependency pass to phrase including clue
expression (Surface form) As described in F7
above, the last phrase in a CFO often includes one
or more clue expressions. In addition, a CFO often
consists of more than one phrase. Given those con-
ditions, a phrase that modifies a phrase contain-
ing a clue expression is also likely to be a Cond-
phrase. We use the existence of a dependency pass
between a phrase in question and a phrase contain-
ing a clue expression as the values of feature F9.

F10: Dependency pass to phrase including clue
expression (Category) As with F8, we use the
existence of semantic categories of Tsutsuji as the
values of feature F10.

F11: Restrictive words We use the existence
of words that are strongly associated with U-CFO
as the value for F11. We call such words re-
strictive words. We automatically produced a dic-
tionary of restrictive words from advertising slo-
gans for hotels, which often include descriptions
for target users, such as “Fjoshikai ya kappuru ni
osusume!!F (Recommended to girls get-together
and couples)”. First, we extracted words in the ad-
vertising slogan based on the following steps.

Abstraction levels
Entry

ID
L1:

Head word
L2:

Meaning categories ...
L9:

Surface forms
1 to suru to resultative

condition
... to sure ba

2 ba ... ba
3 node reason ... nde
4 ni purpose ... ni5 target ...

Table 1: Example entries for Tsutsuji

Step 1: Extracting sentences that match to a
regular expression “( | hito | mono | kata) ni ( | wa
| mo) osusume” (i.e., “recommended to” or “rec-
ommend to those who”).

Step 2: Collecting a sequence of content words
for each bunsetsu-phrase in the extracted sen-
tences.

For the above advertising slogan, we can col-
lect two restrictive words “joshikai (girls get-
together)” and “kappuru (couple)” by performing
those 2 steps.

Second, we collected a sequence of independent
words for bunsetsu phrases which comprises U-
CFO in an annotated corpus. We combined the ex-
tracted words from the advertising slogans an an-
notated corpora, discarded redundancy, and stan-
dardized similar words, such as “kanko suru (do
sightseeing) and “kanko (sightseeing)”. As a re-
sult, we collected 934 words.

Finally, we calculated a mutual information like
score, Score(r, u), between a restrictive word
r and labels u, Cond-phrases for U-CFOs (i.e.,
phrases labeled with either of BU or IU), by Equa-
tion 2.

Score(r, u) = P (r, u) log
P (r, u)

P (r)P (u)
(2)

P (r, u) denotes the probability that a phrase in-
cluding r is labeled with BU or IU in the annotated
corpus. P (r) denotes the probability that a phrase
including r appears in the annotated corpus while
P (u) denotes the probability that a phrase labeled
with BU or IU in the annotated corpus. If a phrase
includes a restrictive word r and Score(r, u) is
greater than threshold θ, the feature value is r, and
“nothing” otherwise.

F12: Existence of restrictive word Because the
data sparseness is a crucial problem for F11, we
integrate all the restrictive words for F11 into a
single category for smoothing purposes. The value
for F12 is the existence (1/0) of restrictive words.
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F13: Part of speech for head The likelihood
that a phrase in question is a Cond-phrases par-
tially depends on the part of speech for the head
in that phrase. For example, in Figure 1, a phrase
whose head is a noun or verb tends to be a Cond-
phrase

4 Experiments

To evaluate the effectiveness of our method, we
used the Rakuten Travel data1, which consists
of 348 564 Japanese reviews for hotels in Japan.
From this dataset, we selected 580 reviews and
manually identified elements for opinion units.
We removed sentences consisting only of opin-
ion unit such as “The location is good” from the
evaluation. As a result, 3 155 sentences remained,
which comprise our corpus. To evaluate the effec-
tiveness for identifying CFOs, we used the man-
ually annotated opinion elements as output of a
pseudo automatic method.

Given the above corpus, two annotators inde-
pendently identified U-CFOs or CFOs, if any,
for each opinion unit. For both annotations of
CFOs and U-CFOs, the Kappa value for the inter-
annotator agreement was 0.87, indicating strong
agreement. We show the details of our corpus in
Table 2. Using this corpus, we performed 10-fold
cross-validation and compared different methods
from different perspectives. Also, we determined
the threshold for Score (see Eq 2) by a develop-
ment set for each fold.

To evaluate the effectiveness of extracting U-
CFOs and CFOs independently, we first classified
bunsetsu phrases into any of BU, IU, BC, IC, or
Other. Then, for the U-CFO extraction we re-
garded phrases for BU and IU as the Cond-phrases
while for the CFO extraction we regarded phrases
for BU, IU, BC, and IC as the Cond-phrases.

We used “Partial match” and “Exact match”,
which denote different criteria for the correctness
of methods under evaluation. While in the partial
match each method was requested to only detect
whether or not a test sentence includes CFO, in
the exact match each method was also requested to
identify the span of each CFO. Also, we used dif-
ferent evaluation measures, namely precision (P),
recall (R), F-measure (F), and accuracy (A).

Rule-based method and SVM-based method
are used for comparison purposes. Rule-based

1https://alaginrc.nict.go.jp/resources/rakuten-
dataset/rakuten-outline.html

method first identifies a bunsetsu phrase whose de-
pendency distance to the opinion word is 1 and in-
cluding a clue expression (see Section 3), and also
identifies a sequence of the phrases from which
there is a dependency path to the above phrase as a
CFO. For example, in Figure 1 because phrase #6
includes a clue expression, a sequence of phrases
#3–#6 is extracted as a CFO. These rules are based
on features F1, F7 and F9. For the U-CFO extrac-
tion task, we regarded a sequence of Cond-phrases
extracted by the above method as U-CFO if that
sequence includes a restrictive word. For SVM,
the thirteen features F1–F13 proposed in Section 3
was used. We used LIBSVM (Chang and Lin,
2011) to train a classifier. Our method used CRF to
train a classifier with the thirteen features and four
patterns for feature functions. We used CRF++2

to train a classifier for each phrase and regularized
the parameters using L2-norm.

Figure 2 shows the relationship between val-
ues of regularization parameter and F-measure for
exact match. In Figure 2, “Rule”, “SVM”, and
“CRF” denote a rule-based method, SVM-based
method, and our method, respectively. The F-
measure for Rule, independent of the regulariza-
tion parameter, is a constant. While the F-measure
for SVM substantially varied depending on the pa-
rameter value, that for CRF did not vary that much.
Additionally, the F-measure for CRF was larger
than that for SVM irrespective of the parameter
value and matching criterion.

Table 3 shows results obtained with the optimal
value for the regularization parameter. Looking at
Table 3, one can see that CRF outperformed the
other methods in terms of F-measure and accu-
racy for both partial and exact matches. We used
the two-tailed paired t-test for statistical testing
and found that the differences of CRF and each of
the other methods in F-measure and accuracy were
statistically significant at the 1% level irrespective
of the configuration.

Figure 3 shows the effectiveness of the pro-
posed features for exact match. The horizontal
axis “w/o X” denotes a method without feature X.
The vertical axis denotes a ratio of each method to
our method. If a method without feature X takes
less than 1 for value of vertical axis, the feature X
is effective for extracting CFOs. Looking at Fig-
ure 3, one can see that our complete method out-
performed any variation of our method in terms of

2http://crfpp.googlecode.com/svn/trunk/doc/index.html
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Opinion sentence
# w/ CFO 799
# w/ U-CFO 526
# w/o CFO 1 257

# Non opinion sentence 1 099
# Total 3 155

(a) Sentence unit

# BU-phrase 571
# IU-phrase 741
# BC-phrase 307
# IC-phrase 632
# Other-phrase 16 584

Opinion
unit

# Opinion word 3 764
# Aspect 3 406
# Target 132

# Total 26 137

(b) Phrase unit

Table 2: Details of our corpus
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Figure 2: Relationship between values for regularization parameter and F-measure in exact match

Partial match Exact match
P R F A P R F A

Rule .576 .790 .664 .771 .294 .319 .300 .649
SVM .779 .842 .809 .885 .490 .500 .488 .789
CRF .889 .758 .818 .915 .592 .580 .583 .865

(a) CFO extraction

Partial match Exact match
P R F A P R F A

Rule .395 .692 .502 .740 .174 .187 .176 .663
SVM .622 .703 .659 .863 .319 .323 .315 .800
CRF .818 .643 .720 .917 .472 .462 .464 .892

(b) U-CFO extraction

Table 3: Results for different configurations (P: precision, R: recall, F: F-measure, A: accuracy)
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Figure 3: Effectiveness of proposed features for exact match
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F-measure. Thus, we conclude that each of our
thirteen features was independently effective for
extracting CFO and U-CFO in review sentences
and that when used together the improvement was
even greater.

For the U-CFO extraction, we analyzed the er-
rors by our method. The total number of errors
was 363 by condition unit. We describe causes of
the errors with example sentences, translated into
English by the authors. In those examples, dou-
ble and single underlines denote false positive and
false negative, respectively. For each cause, we
show the number of errors in parentheses.

E1 (124) Errors were due to F11 and F12 with
insufficient dictionary for restrictive words. Typi-
cally, low frequency words (e.g., pilgrimage) and
words related to miscellaneous activities during a
travel (e.g., charging a battery of a mobile phone)
were not included in our dictionary. While it is im-
portant to increase the vocabulary size of our dic-
tionary, identifying synonymous expressions with
partial matching (e.g., go to sleep / go to bed) is
also important.

E2 (53) Errors were due to dependency anal-
ysis, which often mistakenly recognizes sen-
tence boundaries in an informal writing style
and dependency relations in a sentence com-
prising a phrase, such as “the best location
for fully enjoying Asakusa”. In this example,
CaboCha mistakenly associated the adnominal
modifier “for fully enjoying Asakusa” with “loca-
tion (aspect)” instead of “best (opinion word)”. As
a result, F1 and F3 did not regard this modifier as
a U-CFO.

E3 (40) Restrictive modifiers that modify a non-
opinion segment were mistakenly extracted as
U-CFOs. For example, in “I used this hotel
for business and the meal was good”, “for busi-
ness” includes the clue expression “for” but does
not modifies the opinion unit.

E4 (39) Similar to E3 but errors were due to
restrictive words instead of clue expressions. In
the example for E3, the restrict word “business”
caused the error.

E5 (26) U-CFOs that consist of a large num-
ber of phrases were often not extracted due
to F5, such as “This hotel is acceptable
for one night to take the train at the Chuo station
next morning”.

E6 (25) Errors were due to irrelevant entries in
our restrictive word dictionary.

E7 (11) Due to the sparseness problem for re-
strictive words in the training data, U-CFOs and
CFOs were not correctly distinguished.

E8 (9) Errors were due to part-of-speech tag-
ging.

E9 (6) Errors were due to extracting modifiers
consisting of a personal pronoun without addi-
tional user-related attributes, such as “enough
for me” , as U-CFOs. We need to identify whether
an expression for a person is associated with user-
related attributes, such as “the bed is small for a
person who is tall”, which indicates a physical at-
tribute of a user.

Additionally, there are 65 errors for which we
have not found a reason.

5 Conclusion

Although a number of methods have been pro-
posed to search an opinionated corpus for opin-
ion units, few attempts have so far been made at
addressing cases where the validity of an evalua-
tion is restricted on a condition in the source text.
We proposed a method to identify such condi-
tions from sentences including opinion units. Our
method performs sequence labeling to determine
whether each phrase is a constituent of an condi-
tion for opinion. We proposed thirteen features as-
sociated with lexical and syntactic information of
Japanese, and showed their effectiveness using re-
views for hotels. The contributions of this paper
are introducing the notion of conditions for opin-
ions, which is language-independent, proposing a
method to extract condition-opinion relations from
opinionated corpora, and giving an insight into its
potential applications in opinion mining.
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Abstract

Understanding entailment and contradic-
tion is fundamental to understanding nat-
ural language, and inference about entail-
ment and contradiction is a valuable test-
ing ground for the development of seman-
tic representations. However, machine
learning research in this area has been dra-
matically limited by the lack of large-scale
resources. To address this, we introduce
the Stanford Natural Language Inference
corpus, a new, freely available collection
of labeled sentence pairs, written by hu-
mans doing a novel grounded task based
on image captioning. At 570K pairs, it
is two orders of magnitude larger than
all other resources of its type. This in-
crease in scale allows lexicalized classi-
fiers to outperform some sophisticated ex-
isting entailment models, and it allows a
neural network-based model to perform
competitively on natural language infer-
ence benchmarks for the first time.

1 Introduction

The semantic concepts of entailment and contra-
diction are central to all aspects of natural lan-
guage meaning (Katz, 1972; van Benthem, 2008),
from the lexicon to the content of entire texts.
Thus, natural language inference (NLI) — charac-
terizing and using these relations in computational
systems (Fyodorov et al., 2000; Condoravdi et al.,
2003; Bos and Markert, 2005; Dagan et al., 2006;
MacCartney and Manning, 2009) — is essential in
tasks ranging from information retrieval to seman-
tic parsing to commonsense reasoning.

NLI has been addressed using a variety of tech-
niques, including those based on symbolic logic,
knowledge bases, and neural networks. In recent
years, it has become an important testing ground

for approaches employing distributed word and
phrase representations. Distributed representa-
tions excel at capturing relations based in similar-
ity, and have proven effective at modeling simple
dimensions of meaning like evaluative sentiment
(e.g., Socher et al. 2013), but it is less clear that
they can be trained to support the full range of
logical and commonsense inferences required for
NLI (Bowman et al., 2015; Weston et al., 2015b;
Weston et al., 2015a). In a SemEval 2014 task
aimed at evaluating distributed representations for
NLI, the best-performing systems relied heavily
on additional features and reasoning capabilities
(Marelli et al., 2014a).

Our ultimate objective is to provide an empiri-
cal evaluation of learning-centered approaches to
NLI, advancing the case for NLI as a tool for
the evaluation of domain-general approaches to
semantic representation. However, in our view,
existing NLI corpora do not permit such an as-
sessment. They are generally too small for train-
ing modern data-intensive, wide-coverage models,
many contain sentences that were algorithmically
generated, and they are often beset with indeter-
minacies of event and entity coreference that sig-
nificantly impact annotation quality.

To address this, this paper introduces the Stan-
ford Natural Language Inference (SNLI) corpus,
a collection of sentence pairs labeled for entail-
ment, contradiction, and semantic independence.
At 570,152 sentence pairs, SNLI is two orders of
magnitude larger than all other resources of its
type. And, in contrast to many such resources,
all of its sentences and labels were written by hu-
mans in a grounded, naturalistic context. In a sepa-
rate validation phase, we collected four additional
judgments for each label for 56,941 of the exam-
ples. Of these, 98% of cases emerge with a three-
annotator consensus, and 58% see a unanimous
consensus from all five annotators.

In this paper, we use this corpus to evaluate
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A man inspects the uniform of a figure in some East
Asian country.

contradiction
C C C C C

The man is sleeping

An older and younger man smiling. neutral
N N E N N

Two men are smiling and laughing at the cats play-
ing on the floor.

A black race car starts up in front of a crowd of
people.

contradiction
C C C C C

A man is driving down a lonely road.

A soccer game with multiple males playing. entailment
E E E E E

Some men are playing a sport.

A smiling costumed woman is holding an um-
brella.

neutral
N N E C N

A happy woman in a fairy costume holds an um-
brella.

Table 1: Randomly chosen examples from the development section of our new corpus, shown with both
the selected gold labels and the full set of labels (abbreviated) from the individual annotators, including
(in the first position) the label used by the initial author of the pair.

a variety of models for natural language infer-
ence, including rule-based systems, simple lin-
ear classifiers, and neural network-based models.
We find that two models achieve comparable per-
formance: a feature-rich classifier model and a
neural network model centered around a Long
Short-Term Memory network (LSTM; Hochreiter
and Schmidhuber 1997). We further evaluate the
LSTM model by taking advantage of its ready sup-
port for transfer learning, and show that it can be
adapted to an existing NLI challenge task, yielding
the best reported performance by a neural network
model and approaching the overall state of the art.

2 A new corpus for NLI

To date, the primary sources of annotated NLI cor-
pora have been the Recognizing Textual Entail-
ment (RTE) challenge tasks.1 These are generally
high-quality, hand-labeled data sets, and they have
stimulated innovative logical and statistical mod-
els of natural language reasoning, but their small
size (fewer than a thousand examples each) limits
their utility as a testbed for learned distributed rep-
resentations. The data for the SemEval 2014 task
called Sentences Involving Compositional Knowl-
edge (SICK) is a step up in terms of size, but
only to 4,500 training examples, and its partly
automatic construction introduced some spurious
patterns into the data (Marelli et al. 2014a, §6).
The Denotation Graph entailment set (Young et
al., 2014) contains millions of examples of en-
tailments between sentences and artificially con-
structed short phrases, but it was labeled using
fully automatic methods, and is noisy enough that
it is probably suitable only as a source of sup-

1http://aclweb.org/aclwiki/index.php?
title=Textual_Entailment_Resource_Pool

plementary training data. Outside the domain of
sentence-level entailment, Levy et al. (2014) intro-
duce a large corpus of semi-automatically anno-
tated entailment examples between subject–verb–
object relation triples, and the second release of
the Paraphrase Database (Pavlick et al., 2015) in-
cludes automatically generated entailment anno-
tations over a large corpus of pairs of words and
short phrases.

Existing resources suffer from a subtler issue
that impacts even projects using only human-
provided annotations: indeterminacies of event
and entity coreference lead to insurmountable in-
determinacy concerning the correct semantic la-
bel (de Marneffe et al. 2008 §4.3; Marelli et al.
2014b). For an example of the pitfalls surround-
ing entity coreference, consider the sentence pair
A boat sank in the Pacific Ocean and A boat sank
in the Atlantic Ocean. The pair could be labeled
as a contradiction if one assumes that the two sen-
tences refer to the same single event, but could
also be reasonably labeled as neutral if that as-
sumption is not made. In order to ensure that our
labeling scheme assigns a single correct label to
every pair, we must select one of these approaches
across the board, but both choices present prob-
lems. If we opt not to assume that events are
coreferent, then we will only ever find contradic-
tions between sentences that make broad univer-
sal assertions, but if we opt to assume coreference,
new counterintuitive predictions emerge. For ex-
ample, Ruth Bader Ginsburg was appointed to the
US Supreme Court and I had a sandwich for lunch
today would unintuitively be labeled as a contra-
diction, rather than neutral, under this assumption.

Entity coreference presents a similar kind of in-
determinacy, as in the pair A tourist visited New
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York and A tourist visited the city. Assuming
coreference between New York and the city justi-
fies labeling the pair as an entailment, but with-
out that assumption the city could be taken to refer
to a specific unknown city, leaving the pair neu-
tral. This kind of indeterminacy of label can be re-
solved only once the questions of coreference are
resolved.

With SNLI, we sought to address the issues of
size, quality, and indeterminacy. To do this, we
employed a crowdsourcing framework with the
following crucial innovations. First, the exam-
ples were grounded in specific scenarios, and the
premise and hypothesis sentences in each exam-
ple were constrained to describe that scenario from
the same perspective, which helps greatly in con-
trolling event and entity coreference.2 Second, the
prompt gave participants the freedom to produce
entirely novel sentences within the task setting,
which led to richer examples than we see with the
more proscribed string-editing techniques of ear-
lier approaches, without sacrificing consistency.
Third, a subset of the resulting sentences were sent
to a validation task aimed at providing a highly re-
liable set of annotations over the same data, and at
identifying areas of inferential uncertainty.

2.1 Data collection

We used Amazon Mechanical Turk for data col-
lection. In each individual task (each HIT), a
worker was presented with premise scene descrip-
tions from a pre-existing corpus, and asked to
supply hypotheses for each of our three labels—
entailment, neutral, and contradiction—forcing
the data to be balanced among these classes.

The instructions that we provided to the work-
ers are shown in Figure 1. Below the instructions
were three fields for each of three requested sen-
tences, corresponding to our entailment, neutral,
and contradiction labels, a fourth field (marked
optional) for reporting problems, and a link to an
FAQ page. That FAQ grew over the course of
data collection. It warned about disallowed tech-
niques (e.g., reusing the same sentence for many
different prompts, which we saw in a few cases),
provided guidance concerning sentence length and

2 Issues of coreference are not completely solved, but
greatly mitigated. For example, with the premise sentence
A dog is lying in the grass, a worker could safely assume that
the dog is the most prominent thing in the photo, and very
likely the only dog, and build contradicting sentences assum-
ing reference to the same dog.

We will show you the caption for a photo. We will not
show you the photo. Using only the caption and what
you know about the world:

• Write one alternate caption that is definitely a
true description of the photo. Example: For the
caption “Two dogs are running through a field.”
you could write “There are animals outdoors.”

• Write one alternate caption that might be a true
description of the photo. Example: For the cap-
tion “Two dogs are running through a field.” you
could write “Some puppies are running to catch a
stick.”

• Write one alternate caption that is definitely a
false description of the photo. Example: For the
caption “Two dogs are running through a field.”
you could write “The pets are sitting on a couch.”
This is different from the maybe correct category
because it’s impossible for the dogs to be both
running and sitting.

Figure 1: The instructions used on Mechanical
Turk for data collection.

complexity (we did not enforce a minimum length,
and we allowed bare NPs as well as full sen-
tences), and reviewed logistical issues around pay-
ment timing. About 2,500 workers contributed.

For the premises, we used captions from the
Flickr30k corpus (Young et al., 2014), a collection
of approximately 160k captions (corresponding to
about 30k images) collected in an earlier crowd-
sourced effort.3 The captions were not authored
by the photographers who took the source images,
and they tend to contain relatively literal scene de-
scriptions that are suited to our approach, rather
than those typically associated with personal pho-
tographs (as in their example: Our trip to the
Olympic Peninsula). In order to ensure that the la-
bel for each sentence pair can be recovered solely
based on the available text, we did not use the im-
ages at all during corpus collection.

Table 2 reports some key statistics about the col-
lected corpus, and Figure 2 shows the distributions
of sentence lengths for both our source hypotheses
and our newly collected premises. We observed
that while premise sentences varied considerably
in length, hypothesis sentences tended to be as

3 We additionally include about 4k sentence pairs from
a pilot study in which the premise sentences were instead
drawn from the VisualGenome corpus (under construction;
visualgenome.org). These examples appear only in the
training set, and have pair identifiers prefixed with vg in our
corpus.
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Data set sizes:
Training pairs 550,152
Development pairs 10,000
Test pairs 10,000

Sentence length:
Premise mean token count 14.1
Hypothesis mean token count 8.3

Parser output:
Premise ‘S’-rooted parses 74.0%
Hypothesis ‘S’-rooted parses 88.9%
Distinct words (ignoring case) 37,026

Table 2: Key statistics for the raw sentence pairs
in SNLI. Since the two halves of each pair were
collected separately, we report some statistics for
both.

short as possible while still providing enough in-
formation to yield a clear judgment, clustering at
around seven words. We also observed that the
bulk of the sentences from both sources were syn-
tactically complete rather than fragments, and the
frequency with which the parser produces a parse
rooted with an ‘S’ (sentence) node attests to this.

2.2 Data validation

In order to measure the quality of our corpus,
and in order to construct maximally useful test-
ing and development sets, we performed an addi-
tional round of validation for about 10% of our
data. This validation phase followed the same
basic form as the Mechanical Turk labeling task
used to label the SICK entailment data: we pre-
sented workers with pairs of sentences in batches
of five, and asked them to choose a single label
for each pair. We supplied each pair to four an-
notators, yielding five labels per pair including the
label used by the original author. The instructions
were similar to the instructions for initial data col-
lection shown in Figure 1, and linked to a similar
FAQ. Though we initially used a very restrictive
qualification (based on past approval rate) to se-
lect workers for the validation task, we nonethe-
less discovered (and deleted) some instances of
random guessing in an early batch of work, and
subsequently instituted a fully closed qualification
restricted to about 30 trusted workers.

For each pair that we validated, we assigned a
gold label. If any one of the three labels was cho-
sen by at least three of the five annotators, it was

LHS RHS
0 0 0
1 1 39 1
2 42 1011 1/2/00
3 156 7980 3
4 1095 29471 4
5 3882 61196 5
6 12120 74094 6
7 26514 93600 7
8 37434 85851 8
9 44028 61359 9
10 49245 46711 10
11 50919 33241 11
12 48363 22844 12
13 43314 15994 13
14 38121 11047 14
15 33183 7601 15
16 27621 5312 16
17 23250 3732 17
18 20247 2631 18
19 18513 1878 19
20 16386 1325 20
21 13746 911 21
22 12066 642 22
23 9183 449 23
24 7131 357 24
25 6198 217 25
26 5007 168 26
27 3963 138 27
28 3438 84 28
29 2631 67 29
30 1959 46 30
31 1956 26 31
32 1434 31 32
33 1086 23 33
34 912 16 34
35 897 19 35
36 774 8 36
37 453 12 37
38 618 4 38
39 291 5 39
40 330 2 40
41 249 4 41
42 180 2 42
43 225 1 43
44 162 1 44
45 108 1 48
46 87 1 51
47 60 2 55
48 36 1 56
49 90 1 60
50 21 1 62
51 66
52 51
53 36
54 24
55 63
56 18
57 15
58 6
59 27
60 6
61 3
62 3
63 3
64 6
65 3
66 3
67 6
68 6
69 18
70 15
71 3
72 15
73 3
75 15
79 3
82 15
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Figure 2: The distribution of sentence length.

chosen as the gold label. If there was no such con-
sensus, which occurred in about 2% of cases, we
assigned the placeholder label ‘-’. While these un-
labeled examples are included in the corpus dis-
tribution, they are unlikely to be helpful for the
standard NLI classification task, and we do not in-
clude them in either training or evaluation in the
experiments that we discuss in this paper.

The results of this validation process are sum-
marized in Table 3. Nearly all of the examples
received a majority label, indicating broad con-
sensus about the nature of the data and categories.
The gold-labeled examples are very nearly evenly
distributed across the three labels. The Fleiss
κ scores (computed over every example with a
full five annotations) are likely to be conservative
given our large and unevenly distributed pool of
annotators, but they still provide insights about the
levels of disagreement across the three semantic
classes. This disagreement likely reflects not just
the limitations of large crowdsourcing efforts but
also the uncertainty inherent in naturalistic NLI.
Regardless, the overall rate of agreement is ex-
tremely high, suggesting that the corpus is suffi-
ciently high quality to pose a challenging but real-
istic machine learning task.

2.3 The distributed corpus

Table 1 shows a set of randomly chosen validated
examples from the development set with their la-
bels. Qualitatively, we find the data that we col-
lected draws fairly extensively on commonsense
knowledge, and that hypothesis and premise sen-
tences often differ structurally in significant ways,
suggesting that there is room for improvement be-
yond superficial word alignment models. We also
find the sentences that we collected to be largely
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General:
Validated pairs 56,951
Pairs w/ unanimous gold label 58.3%

Individual annotator label agreement:
Individual label = gold label 89.0%
Individual label = author’s label 85.8%

Gold label/author’s label agreement:
Gold label = author’s label 91.2%
Gold label 6= author’s label 6.8%
No gold label (no 3 labels match) 2.0%

Fleiss κ:
contradiction 0.77
entailment 0.72
neutral 0.60
Overall 0.70

Table 3: Statistics for the validated pairs. The au-
thor’s label is the label used by the worker who
wrote the premise to create the sentence pair. A
gold label reflects a consensus of three votes from
among the author and the four annotators.

fluent, correctly spelled English, with a mix of
full sentences and caption-style noun phrase frag-
ments, though punctuation and capitalization are
often omitted.

The corpus is available under a CreativeCom-
mons Attribution-ShareAlike license, the same li-
cense used for the Flickr30k source captions. It
can be downloaded at:
nlp.stanford.edu/projects/snli/

Partition We distribute the corpus with a pre-
specified train/test/development split. The test
and development sets contain 10k examples each.
Each original ImageFlickr caption occurs in only
one of the three sets, and all of the examples in the
test and development sets have been validated.

Parses The distributed corpus includes parses
produced by the Stanford PCFG Parser 3.5.2
(Klein and Manning, 2003), trained on the stan-
dard training set as well as on the Brown Corpus
(Francis and Kucera 1979), which we found to im-
prove the parse quality of the descriptive sentences
and noun phrases found in the descriptions.

3 Our data as a platform for evaluation

The most immediate application for our corpus is
in developing models for the task of NLI. In par-

System SNLI SICK RTE-3

Edit Distance Based 71.9 65.4 61.9

Classifier Based 72.2 71.4 61.5

+ Lexical Resources 75.0 78.8 63.6

Table 4: 2-class test accuracy for two simple
baseline systems included in the Excitement Open
Platform, as well as SICK and RTE results for a
model making use of more sophisticated lexical
resources.

ticular, since it is dramatically larger than any ex-
isting corpus of comparable quality, we expect it to
be suitable for training parameter-rich models like
neural networks, which have not previously been
competitive at this task. Our ability to evaluate
standard classifier-base NLI models, however, was
limited to those which were designed to scale to
SNLI’s size without modification, so a more com-
plete comparison of approaches will have to wait
for future work. In this section, we explore the per-
formance of three classes of models which could
scale readily: (i) models from a well-known NLI
system, the Excitement Open Platform; (ii) vari-
ants of a strong but simple feature-based classi-
fier model, which makes use of both unlexicalized
and lexicalized features, and (iii) distributed repre-
sentation models, including a baseline model and
neural network sequence models.

3.1 Excitement Open Platform models

The first class of models is from the Excitement
Open Platform (EOP, Padó et al. 2014; Magnini
et al. 2014)—an open source platform for RTE re-
search. EOP is a tool for quickly developing NLI
systems while sharing components such as com-
mon lexical resources and evaluation sets. We
evaluate on two algorithms included in the dis-
tribution: a simple edit-distance based algorithm
and a classifier-based algorithm, the latter both in
a bare form and augmented with EOP’s full suite
of lexical resources.

Our initial goal was to better understand the dif-
ficulty of the task of classifying SNLI corpus in-
ferences, rather than necessarily the performance
of a state-of-the-art RTE system. We approached
this by running the same system on several data
sets: our own test set, the SICK test data, and the
standard RTE-3 test set (Giampiccolo et al., 2007).
We report results in Table 4. Each of the models
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was separately trained on the training set of each
corpus. All models are evaluated only on 2-class
entailment. To convert 3-class problems like SICK
and SNLI to this setting, all instances of contradic-
tion and unknown are converted to nonentailment.
This yields a most-frequent-class baseline accu-
racy of 66% on SNLI, and 71% on SICK. This is
intended primarily to demonstrate the difficulty of
the task, rather than necessarily the performance
of a state-of-the-art RTE system. The edit dis-
tance algorithm tunes the weight of the three case-
insensitive edit distance operations on the train-
ing set, after removing stop words. In addition
to the base classifier-based system distributed with
the platform, we train a variant which includes in-
formation from WordNet (Miller, 1995) and Verb-
Ocean (Chklovski and Pantel, 2004), and makes
use of features based on tree patterns and depen-
dency tree skeletons (Wang and Neumann, 2007).

3.2 Lexicalized Classifier
Unlike the RTE datasets, SNLI’s size supports ap-
proaches which make use of rich lexicalized fea-
tures. We evaluate a simple lexicalized classifier
to explore the ability of non-specialized models to
exploit these features in lieu of more involved lan-
guage understanding. Our classifier implements 6
feature types; 3 unlexicalized and 3 lexicalized:

1. The BLEU score of the hypothesis with re-
spect to the premise, using an n-gram length
between 1 and 4.

2. The length difference between the hypothesis
and the premise, as a real-valued feature.

3. The overlap between words in the premise
and hypothesis, both as an absolute count and
a percentage of possible overlap, and both
over all words and over just nouns, verbs, ad-
jectives, and adverbs.

4. An indicator for every unigram and bigram in
the hypothesis.

5. Cross-unigrams: for every pair of words
across the premise and hypothesis which
share a POS tag, an indicator feature over the
two words.

6. Cross-bigrams: for every pair of bigrams
across the premise and hypothesis which
share a POS tag on the second word, an in-
dicator feature over the two bigrams.

We report results in Table 5, along with abla-
tion studies for removing the cross-bigram fea-
tures (leaving only the cross-unigram feature) and

System SNLI SICK
Train Test Train Test

Lexicalized 99.7 78.2 90.4 77.8
Unigrams Only 93.1 71.6 88.1 77.0
Unlexicalized 49.4 50.4 69.9 69.6

Table 5: 3-class accuracy, training on either our
data or SICK, including models lacking cross-
bigram features (Feature 6), and lacking all lexical
features (Features 4–6). We report results both on
the test set and the training set to judge overfitting.

for removing all lexicalized features. On our large
corpus in particular, there is a substantial jump in
accuracy from using lexicalized features, and an-
other from using the very sparse cross-bigram fea-
tures. The latter result suggests that there is value
in letting the classifier automatically learn to rec-
ognize structures like explicit negations and adjec-
tive modification. A similar result was shown in
Wang and Manning (2012) for bigram features in
sentiment analysis.

It is surprising that the classifier performs as
well as it does without any notion of alignment
or tree transformations. Although we expect that
richer models would perform better, the results
suggest that given enough data, cross bigrams with
the noisy part-of-speech overlap constraint can
produce an effective model.

3.3 Sentence embeddings and NLI

SNLI is suitably large and diverse to make it pos-
sible to train neural network models that produce
distributed representations of sentence meaning.
In this section, we compare the performance of
three such models on the corpus. To focus specif-
ically on the strengths of these models at produc-
ing informative sentence representations, we use
sentence embedding as an intermediate step in the
NLI classification task: each model must produce
a vector representation of each of the two sen-
tences without using any context from the other
sentence, and the two resulting vectors are then
passed to a neural network classifier which pre-
dicts the label for the pair. This choice allows us to
focus on existing models for sentence embedding,
and it allows us to evaluate the ability of those
models to learn useful representations of mean-
ing (which may be independently useful for sub-
sequent tasks), at the cost of excluding from con-
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3-way softmax classifier

200d tanh layer

200d tanh layer

200d tanh layer

100d premise 100d hypothesis

sentence model
with premise input

sentence model
with hypothesis input

Figure 3: The neural network classification archi-
tecture: for each sentence embedding model eval-
uated in Tables 6 and 7, two identical copies of
the model are run with the two sentences as input,
and their outputs are used as the two 100d inputs
shown here.

sideration possible strong neural models for NLI
that directly compare the two inputs at the word or
phrase level.

Our neural network classifier, depicted in Fig-
ure 3 (and based on a one-layer model in Bow-
man et al. 2015), is simply a stack of three 200d
tanh layers, with the bottom layer taking the con-
catenated sentence representations as input and the
top layer feeding a softmax classifier, all trained
jointly with the sentence embedding model itself.

We test three sentence embedding models, each
set to use 100d phrase and sentence embeddings.
Our baseline sentence embedding model simply
sums the embeddings of the words in each sen-
tence. In addition, we experiment with two simple
sequence embedding models: a plain RNN and an
LSTM RNN (Hochreiter and Schmidhuber, 1997).

The word embeddings for all of the models are
initialized with the 300d reference GloVe vectors
(840B token version, Pennington et al. 2014) and
fine-tuned as part of training. In addition, all
of the models use an additional tanh neural net-
work layer to map these 300d embeddings into
the lower-dimensional phrase and sentence em-
bedding space. All of the models are randomly
initialized using standard techniques and trained
using AdaDelta (Zeiler, 2012) minibatch SGD un-
til performance on the development set stops im-
proving. We applied L2 regularization to all mod-
els, manually tuning the strength coefficient λ for
each, and additionally applied dropout (Srivastava
et al., 2014) to the inputs and outputs of the sen-

Sentence model Train Test

100d Sum of words 79.3 75.3
100d RNN 73.1 72.2
100d LSTM RNN 84.8 77.6

Table 6: Accuracy in 3-class classification on our
training and test sets for each model.

tence embedding models (though not to its internal
connections) with a fixed dropout rate. All mod-
els were implemented in a common framework for
this paper, and the implementations will be made
available at publication time.

The results are shown in Table 6. The sum
of words model performed slightly worse than
the fundamentally similar lexicalized classifier—
while the sum of words model can use pretrained
word embeddings to better handle rare words, it
lacks even the rudimentary sensitivity to word or-
der that the lexicalized model’s bigram features
provide. Of the two RNN models, the LSTM’s
more robust ability to learn long-term dependen-
cies serves it well, giving it a substantial advan-
tage over the plain RNN, and resulting in perfor-
mance that is essentially equivalent to the lexical-
ized classifier on the test set (LSTM performance
near the stopping iteration varies by up to 0.5%
between evaluation steps). While the lexicalized
model fits the training set almost perfectly, the gap
between train and test set accuracy is relatively
small for all three neural network models, suggest-
ing that research into significantly higher capacity
versions of these models would be productive.

3.4 Analysis and discussion

Figure 4 shows a learning curve for the LSTM and
the lexicalized and unlexicalized feature-based
models. It shows that the large size of the corpus
is crucial to both the LSTM and the lexicalized
model, and suggests that additional data would
yield still better performance for both. In addi-
tion, though the LSTM and the lexicalized model
show similar performance when trained on the cur-
rent full corpus, the somewhat steeper slope for
the LSTM hints that its ability to learn arbitrar-
ily structured representations of sentence mean-
ing may give it an advantage over the more con-
strained lexicalized model on still larger datasets.

We were struck by the speed with which the
lexicalized classifier outperforms its unlexicalized
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Figure 4: A learning curve showing how the
baseline classifiers and the LSTM perform when
trained to convergence on varied amounts of train-
ing data. The y-axis starts near a random-chance
accuracy of 33%. The minibatch size of 64 that
we used to tune the LSTM sets a lower bound on
data for that model.

counterpart. With only 100 training examples, the
cross-bigram classifier is already performing bet-
ter. Empirically, we find that the top weighted
features for the classifier trained on 100 examples
tend to be high precision entailments; e.g., playing
→ outside (most scenes are outdoors), a banana
→ person eating. If relatively few spurious entail-
ments get high weight—as it appears is the case—
then it makes sense that, when these do fire, they
boost accuracy in identifying entailments.

There are revealing patterns in the errors com-
mon to all the models considered here. Despite
the large size of the training corpus and the distri-
butional information captured by GloVe initializa-
tion, many lexical relationships are still misana-
lyzed, leading to incorrect predictions of indepen-
dent, even for pairs that are common in the train-
ing corpus like beach/surf and sprinter/runner.
Semantic mistakes at the phrasal level (e.g., pre-
dicting contradiction for A male is placing an
order in a deli/A man buying a sandwich at a
deli) indicate that additional attention to composi-
tional semantics would pay off. However, many of
the persistent problems run deeper, to inferences
that depend on world knowledge and context-
specific inferences, as in the entailment pair A race
car driver leaps from a burning car/A race car
driver escaping danger, for which both the lex-
icalized classifier and the LSTM predict neutral.
In other cases, the models’ attempts to shortcut

this kind of inference through lexical cues can lead
them astray. Some of these examples have quali-
ties reminiscent of Winograd schemas (Winograd,
1972; Levesque, 2013). For example, all the mod-
els wrongly predict entailment for A young girl
throws sand toward the ocean/A girl can’t stand
the ocean, presumably because of distributional
associations between throws and can’t stand.

Analysis of the models’ predictions also yields
insights into the extent to which they grapple with
event and entity coreference. For the most part, the
original image prompts contained a focal element
that the caption writer identified with a syntac-
tic subject, following information structuring con-
ventions associating subjects and topics in English
(Ward and Birner, 2004). Our annotators generally
followed suit, writing sentences that, while struc-
turally diverse, share topic/focus (theme/rheme)
structure with their premises. This promotes a
coherent, situation-specific construal of each sen-
tence pair. This is information that our models
can easily take advantage of, but it can lead them
astray. For instance, all of them stumble with the
amusingly simple case A woman prepares ingre-
dients for a bowl of soup/A soup bowl prepares a
woman, in which prior expectations about paral-
lelism are not met. Another headline example of
this type is A man wearing padded arm protec-
tion is being bitten by a German shepherd dog/A
man bit a dog, which all the models wrongly di-
agnose as entailment, though the sentences report
two very different stories. A model with access
to explicit information about syntactic or semantic
structure should perform better on cases like these.

4 Transfer learning with SICK

To the extent that successfully training a neural
network model like our LSTM on SNLI forces that
model to encode broadly accurate representations
of English scene descriptions and to build an en-
tailment classifier over those relations, we should
expect it to be readily possible to adapt the trained
model for use on other NLI tasks. In this section,
we evaluate on the SICK entailment task using a
simple transfer learning method (Pratt et al., 1991)
and achieve competitive results.

To perform transfer, we take the parameters of
the LSTM RNN model trained on SNLI and use
them to initialize a new model, which is trained
from that point only on the training portion of
SICK. The only newly initialized parameters are
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Training sets Train Test

Our data only 42.0 46.7
SICK only 100.0 71.3
Our data and SICK (transfer) 99.9 80.8

Table 7: LSTM 3-class accuracy on the SICK
train and test sets under three training regimes.

softmax layer parameters and the embeddings for
words that appear in SICK, but not in SNLI (which
are populated with GloVe embeddings as above).
We use the same model hyperparameters that were
used to train the original model, with the excep-
tion of the L2 regularization strength, which is
re-tuned. We additionally transfer the accumula-
tors that are used by AdaDelta to set the learn-
ing rates. This lowers the starting learning rates,
and is intended to ensure that the model does not
learn too quickly in its first few epochs after trans-
fer and destroy the knowledge accumulated in the
pre-transfer phase of training.

The results are shown in Table 7. Training
on SICK alone yields poor performance, and the
model trained on SNLI fails when tested on SICK
data, labeling more neutral examples as contradic-
tions than correctly, possibly as a result of subtle
differences in how the labeling task was presented.
In contrast, transferring SNLI representations to
SICK yields the best performance yet reported for
an unaugmented neural network model, surpasses
the available EOP models, and approaches both
the overall state of the art at 84.6% (Lai and Hock-
enmaier, 2014) and the 84% level of interannota-
tor agreement, which likely represents an approx-
imate performance ceiling. This suggests that the
introduction of a large high-quality corpus makes
it possible to train representation-learning models
for sentence meaning that are competitive with the
best hand-engineered models on inference tasks.

We attempted to apply this same transfer evalu-
ation technique to the RTE-3 challenge, but found
that the small training set (800 examples) did not
allow the model to adapt to the unfamiliar genre of
text used in that corpus, such that no training con-
figuration yielded competitive performance. Fur-
ther research on effective transfer learning on
small data sets with neural models might facilitate
improvements here.

5 Conclusion

Natural languages are powerful vehicles for rea-
soning, and nearly all questions about meaning-
fulness in language can be reduced to questions of
entailment and contradiction in context. This sug-
gests that NLI is an ideal testing ground for the-
ories of semantic representation, and that training
for NLI tasks can provide rich domain-general se-
mantic representations. To date, however, it has
not been possible to fully realize this potential due
to the limited nature of existing NLI resources.
This paper sought to remedy this with a new, large-
scale, naturalistic corpus of sentence pairs labeled
for entailment, contradiction, and independence.
We used this corpus to evaluate a range of models,
and found that both simple lexicalized models and
neural network models perform well, and that the
representations learned by a neural network model
on our corpus can be used to dramatically improve
performance on a standard challenge dataset. We
hope that SNLI presents valuable training data and
a challenging testbed for the continued application
of machine learning to semantic representation.
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Abstract

This paper introduces the task of question-
answer driven semantic role labeling
(QA-SRL), where question-answer pairs
are used to represent predicate-argument
structure. For example, the verb “intro-
duce” in the previous sentence would be
labeled with the questions “What is in-
troduced?”, and “What introduces some-
thing?”, each paired with the phrase from
the sentence that gives the correct answer.
Posing the problem this way allows the
questions themselves to define the set of
possible roles, without the need for prede-
fined frame or thematic role ontologies. It
also allows for scalable data collection by
annotators with very little training and no
linguistic expertise. We gather data in two
domains, newswire text and Wikipedia
articles, and introduce simple classifier-
based models for predicting which ques-
tions to ask and what their answers should
be. Our results show that non-expert anno-
tators can produce high quality QA-SRL
data, and also establish baseline perfor-
mance levels for future work on this task.

1 Introduction

Semantic role labeling (SRL) is the widely stud-
ied challenge of recovering predicate-argument
structure for natural language words, typically
verbs. The goal is to determine “who does what to
whom,” “when,” and “where,” etc. (Palmer et al.,
2010; Johansson and Nugues, 2008). However,
this intuition is difficult to formalize and funda-
mental aspects of the task vary across efforts, for
example FrameNet (Baker et al., 1998) models a
large set of interpretable thematic roles (AGENT,
PATIENT, etc.) while PropBank (Palmer et al.,
2005) uses a small set of verb-specific roles

UCD finished the 2006 championship as Dublin champions , 
by beating St Vincents in the final .

finished

beating

Who finished something? - UCD 

What did someone finish? - the 2006 championship

What did someone finish something as? - Dublin champions

How did someone finish something? - by beating St Vincents in the final

Who beat someone? - UCD

When did someone beat someone? - in the final

Who did someone beat? - St Vincents

Figure 1: QA-SRL annotations for a Wikipedia
sentence.

(ARG0, ARG1, etc.). Existing task definitions can
be complex and require significant linguistic ex-
pertise to understand,1 causing challenges for data
annotation and use in many target applications.

In this paper, we introduce a new question-
answer driven SRL task formulation (QA-SRL),
which uses question-answer pairs to label verbal
predicate-argument structure. For example, for the
sentence in Figure 1, we can ask a short ques-
tion containing a verb, e.g. “Who finished some-
thing?”, and whose answer is a phrase from the
original sentence, in this case “UCD.” The answer
tells us that “UCD” is an argument of “finished,”
while the question provides an indirect label on
the role that “UCD” plays. Enumerating all such
pairs, as we will see later, provides a relatively
complete representation of the original verb’s ar-
guments and modifiers.

The QA-SRL task formulation has a number of
advantages. It can be easily explained to non-
expert annotators with a short tutorial and a few
examples. Moreover, the formulation does not
depend on any pre-defined inventory of semantic
roles or frames, or build on any existing gram-

1The PropBank annotation guide is 89 pages (Bonial et
al., 2010), and the FrameNet guide is 119 pages (Ruppen-
hofer et al., 2006). Our QA-driven annotation instructions
are 5 pages.
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mar formalisms. Nonetheless, as we will show, it
still represents the argument and modifier attach-
ment decisions that have motivated previous SRL
definitions, and which are of crucial importance
for semantic understanding in a range of NLP
tasks, such as machine translation (Liu and Gildea,
2010) and coreference resolution (Ponzetto and
Strube, 2006). The annotations also, perhaps sur-
prisingly, capture other implicit arguments that
cannot be read directly off of the syntax, as was re-
quired for previous SRL approaches. For example,
in “It was his mother’s birthday, so he was going
to play her favorite tune”, annotators created the
QA pair “When would someone play something?
His mother’s birthday” which describes an im-
plicit temporal relation. Finally, QA-SRL data can
be easily examined, proofread, and improved by
anyone who speaks the language and understands
the sentence; we use natural language to label the
structure of natural language.

We present a scalable approach for QA-SRL an-
notation and baseline models for predicting QA
pairs. Given a sentence and target word (the verb),
we ask annotators to provide as many question-
answer pairs as possible, where the question
comes from a templated space of wh-questions2

and the answer is a phrase from the original sen-
tence. This approach guides annotators to quickly
construct high quality questions within a very
large space of possibilities. Given a corpus of QA-
SRL annotated sentences, we also train baseline
classifiers for both predicting a set of questions to
ask, and what their answers should be. The ques-
tion generation aspect of QA-SRL is unique to our
formulation, and corresponds roughly to identify-
ing what semantic role labels are present in pre-
vious formulations of the task. For example, the
question “Who finished something” in Figure 1
corresponds to the AGENT role in FrameNet. Ta-
ble 1 also shows examples of similar correspon-
dences for PropBank roles. Instead of pre-defining
the labels, as done in previous work, the questions
themselves define the set of possibilities.

Experiments demonstrate high quality data an-
notation with very little annotator training and es-
tablish baseline performance levels for the task.
We hired non-expert, part-time annotators on Up-
work (previously oDesk) to label over 3,000 sen-
tences (nearly 8,000 verbs) across two domains

2Questions starting with a wh-word, such as who, what,
when, how, etc.

(newswire and Wikipedia) at a cost of approxi-
mately $0.50 per verb. We show that the data is
high quality, rivaling PropBank in many aspects
including coverage, and easily gathered in non-
newswire domains.3 The baseline performance
levels for question generation and answering re-
inforce the quality of the data and highlight the
potential for future work on this task.

In summary, our contributions are:

• We introduce the task of question-answer
driven semantic role labeling (QA-SRL), by
using question-answer pairs to specify ver-
bal arguments and the roles they play, without
predefining an inventory of frames or seman-
tic roles.

• We present a novel, lightweight template-
based scheme (Section 3) that enables the
high quality QA-SRL data annotation with
very little training and no linguistic expertise.

• We define two new QA-SRL sub-tasks, ques-
tion generation and answer identification, and
present baseline learning approaches for both
(Sections 4 and 5). The results demonstrate
that our data is high-quality and supports the
study of better learning algorithms.

2 Related Work

The success of syntactic annotation projects such
as the Penn Treebank (Marcus et al., 1993) has led
to numerous efforts to create semantic annotations
for large corpora. The major distinguishing fea-
tures of our approach are that it is not tied to any
linguistic theory and that it can be annotated by
non-experts with minimal training.

Existing SRL task formulations are closely re-
lated to our work. FrameNet (Baker et al., 1998)
contains a detailed lexicon of verb senses and the-
matic roles. However, this complexity increases
the difficulty of annotation. While the FrameNet
project is decades old, the largest fully anno-
tated corpus contains about 3,000 sentences (Chen
et al., 2010). We were able to annotate over
3,000 sentences within weeks. PropBank (Kings-
bury and Palmer, 2002), NomBank (Meyers et al.,
2004) and OntoNotes (Hovy et al., 2006) circum-
vent the need for a large lexicon of roles, by defin-

3Our hope is that this approach will generalize not only
across different domains in English, as we show in this paper,
but also to other languages. We will leave those explorations
to future work.
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Sentence CoNLL-2009 QA-SRL

(1) Stock-fund managers , meantime ,
went into October with less cash on
hand than they held earlier this year .

A0 they Who had held something? Stock-fund managers / they
AM-TMP year When had someone held something? earlier this year

What had someone held? less cash on hand
Where had someone held something? on hand

(2) Mr. Spielvogel added pointedly : “
The pressure on commissions did n’t
begin with Al Achenbaum . ”

A0 Spielvogel Who added something? Mr. Spielvogel
A1 did What was added? “ The pressure on commissions did n’t

begin with Al Achenbaum . ”
AM-MNR pointedly How was something added? pointedly

(3) He claimed losses totaling $ 42,455
– and the IRS denied them all .

A0 IRS Who denied something? IRS
A1 them What was denied? losses / them

(4) The consumer - products and
newsprint company said net rose to $
108.8 million , or $ 1.35 a share , from
$ 90.5 million , or $ 1.12 a share , a
year ago .

A1 net What rose? net
A3 $/ago What did something rise from? $ 90.5 million , or $ 1.12 a share
A4 to What did something rise to? $ 108.8 million , or $ 1.35 a share

When did something rise? a year ago

(5) Mr. Agnew was vice president of
the U.S. from 1969 until he resigned in
1973 .

A0 he Who resigned from something? Mr. Agnew
AM-TMP in When did someone resign from some-

thing?
1973

What did someone resign from? vice president of the U.S.
(6) Mr. Gorbachev badly needs a
diversion from the serious economic
problems and ethnic unrest he faces at
home .

A0 Gorbachev Who needs something? Gorbachev/he
A1 diversion What does someone need? a diversion from the serious economic

problems and ethnic unrest he faces at
home

AM-ADV badly How does someone need something? badly
What does someone need something
from?

the serious economic problems and eth-
nic unrest he faces at home .

(7) Even a federal measure in June
allowing houses to add research fees to
their commissions did n’t stop it .

A0 houses What added something? houses
A1 fees What was added? research fees
A2 to

When was something added? June
(8) This year , Mr. Wathen says the firm
will be able to service debt and still
turn a modest profit .

A0 firm Who will service something? the firm
A1 debt What will be serviced? debt

When will something be serviced? this year
(9) Clad in his trademark black velvet
suit , the soft - spoken clarinetist
announced that . . . and that it was his
mother ’s birthday , so he was going to
play her favorite tune from the record .

A0 he Who would play something? the soft - spoken clarinetist / he
A1 tune What would be played? her favorite tune from the record

When would someone play something? his mother ’s birthday

Table 1: Comparison between CoNLL-2009 relations and QA-SRL annotations. While closely related
to PropBank predicate-argument relations, QA pairs also contain information about within-sentence co-
reference (Ex 3, 5, 6, 9), implicit or inferred relations (Ex 4, 7, 8, 9) and roles that are not defined in
PropBank (Ex 1, 5). Annotation mistakes are rare, but for example include missing pronouns (Ex 5) and
prepositional attachment errors (Ex 6).

ing the core semantic roles in a predicate-specific
manner. This means that frames need to be created
for every verb, and it requires experts to distin-
guish between different senses and different roles.

Our work is also related to recent, more gen-
eral semantic annotation efforts. Abstract Mean-
ing Representation (Banarescu et al., 2013) can
be viewed as an extension of PropBank with ad-
ditional semantic information. Sentences take 8-
13 minutes to annotate—which is slower than
ours, but the annotations are more detailed. Uni-
versal Cognitive Conceptual Annotation (UCCA)
(Abend and Rappoport, 2013) is an attempt to cre-
ate a linguistically universal annotation scheme by
using general labels such as argument or scene.
The UCCA foundational layer does not distin-
guish semantic roles, so Frogs eat herons and
Herons eat frogs will receive identical annotation
— thereby discarding information which is po-
tentially useful for translation or question answer-
ing. They report similar agreement with Prop-

Bank to our approach (roughly 90%), but an-
notator training time was an order-of-magnitude
higher (30-40 hours). The Groningen Meaning
Bank (Basile et al., 2012) project annotates text by
manually correcting the output of existing seman-
tic parsers. They show that some annotation can
be crowdsourced using “games with a purpose”
— however, this does not include its predicate-
argument structure, which requires expert knowl-
edge of their syntactic and semantic formalisms.
Finally, Reisinger et al. (2015) study crowdsourc-
ing semantic role labels based on Dowty’s proto-
roles, given gold predicate and argument men-
tions. This work directly complements our focus
on labeling predicate-argument structure.

The idea of expressing the meaning of natural
language in terms of natural language is related
to natural logic (MacCartney and Manning, 2007),
in which they use natural language for logical in-
ference. Similarly, we model predicate-argument
structure of a sentence with a set of question-
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Field Description Example of Values No. Values
WH* Question words (wh-words) who, what, when, where, why, how, how much 7
AUX Auxiliary verbs is, have, could, is n’t 36
SBJ Place-holding words for the subject position someone, something 2
TRG* Some form of the target word built, building, been built ≈ 12
OBJ1 Place-holding words for the object position someone, something 2
PP Frequent prepositions (by, to, for, with, about)

and prepositions (unigrams or bigrams) that oc-
cur in the sentence

to, for, from, by ≈ 10

OBJ2 Similar to OBJ1, but with more options someone, something, do, do something, doing
something

9

Table 2: Fields in our question annotation template, with descriptions, example values, and the total
number of possible values for each. WH* and TRG* are required; all other fields can be left empty.

WH* AUX SBJ TRG* OBJ1 PP OBJ2
Who built something ?
What had someone said ?
What was someone expected to do ?
Where might something rise from ?

Table 3: Four example questions written with our question annotation template.

answer pairs. While existing work on natural logic
has relied on small entailment datasets for train-
ing, our method allows practical large-scale anno-
tation of training data.

Parser evaluation using textual entailment
(Yuret et al., 2010) is a method for evaluating syn-
tactic parsers based on entailment examples. In
a similar spirit to our work, they abstract away
from linguistic formalisms by using natural lan-
guage inference. We focus on semantic rather
than syntactic annotation, and introduce a scal-
able method for gathering data that allows both
training and evaluation. Stern and Dagan (2014)
applied textual entailment to recognize implicit
predicate-argument structure that are not explicitly
expressed in syntactic structure.

3 QA-based Semantic Dataset

This section describes our annotation process in
more detail, and discusses agreement between our
annotations and PropBank. Table 1 shows exam-
ples provided by non-expert annotators.4

3.1 Annotation Task Design

We annotate verbs with pairs of questions and an-
swers that provide information about predicate-
argument structure. Given a sentence s and a ver-
bal predicate v in the sentence, annotators must
produce a set of wh-questions that contain v and
whose answers are phrases in s.

4Our dataset is freely available at:
https://dada.cs.washington.edu/qasrl .

To speed annotation and simplify downstream
processing, we define a small grammar over possi-
ble questions. The questions are constrained with
a template with seven fields, q ∈ WH × AUX ×
SBJ × TRG × OBJ1 × PP × OBJ2, each asso-
ciated with a list of possible options. Descriptions
for each field are shown in Table 2. The gram-
mar is sufficiently general to capture a wide-range
of questions about predicate-argument structure—
some examples are given in Table 3.

The precise form of the question template is a
function of the verb v and sentence s, for two of
the fields. For the TRG field, we generate a list of
inflections forms of v using the Wiktionary dictio-
nary. For the PP field, the candidates are all the
prepositions that occurred in the sentence s, and
some frequently-used prepositions - by, to, for,
with, and about. We also include preposition bi-
grams (e.g., out for) from s.

Answers are constrained to be a subset of the
words in the sentence but do not necessarily have
to be contiguous spans. We also allow questions to
have multiple answers, which is useful for annotat-
ing graph structured dependencies such as those in
examples 3 and 6 in Table 1.

3.2 Data Preparation

We annotated over 3000 sentences (nearly 8,000
verbs) in total across two domains: newswire
(PropBank) and Wikipedia. Table 4 shows the
full data statistics. In the newswire domain,
we sampled sentences from the English training
data of CoNLL-2009 shared task (Hajič et al.,
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Dataset Sentences Verbs QAs
newswire-train 744 2020 4904
newswire-dev 249 664 1606
newswire-test 248 652 1599
Wikipedia-train 1174 2647 6414
Wikipedia-dev 392 895 2183
Wikipedia-test 393 898 2201

Table 4: Annotated data statistics.

2009), excluding questions and sentences with
fewer than 10 words. For the Wikipedia do-
main, we randomly sampled sentences from the
English Wikipedia, excluding questions and sen-
tences with fewer than 10 or more than 60 words.

In each sentence, we need to first identify
the candidates for verbal predicates. In princi-
ple, a separate stage of annotation could iden-
tify verbs—but for simplicity, we instead used
POS-tags. We used gold POS-tags for newswire,
and predicted POS-tags (using Stanford tagger
(Toutanova et al., 2003)) in Wikipedia. Annota-
tors can choose to skip a candidate verb if they
are unable to write questions for it. Annotators
skipped 136 verbs (3%) in Wikipedia data and 50
verbs (1.5%) in PropBank data.

3.3 Annotation Process
For annotation, we hired 10 part-time, non-expert
annotators from Upwork (previously oDesk) and
paid $10 per hour for their work. The average
cost was $0.58 per verb ($1.57 per sentence) for
newswire text and $0.45 per verb ($1.01 per sen-
tence) on the Wikipedia domain. The annotators
are given a short tutorial and a small set of sam-
ple annotations (about 10 sentences). Annotators
were hired if they showed good understanding of
English and our task. The entire screening process
usually took less than 2 hours.

Writing QA pairs for each sentence takes 6 min-
utes on average for Wikipedia and 9 minutes on
newswire, depending on the length and complex-
ity of the sentence and the domain of the text.

3.4 Agreement with Gold PropBank Data
(CoNLL-2009)

PropBank is the most widely used annotation of
predicate-argument structure. While our anno-
tation captures different information from Prop-
Bank, it is closely related. To investigate the sim-
ilarity between the annotation schemes, we mea-
sured the overlap between the newswire domain

All Roles Core Adjuncts
Precision 81.4 85.9 59.9
Recall 86.3 89.8 63.6

Table 5: Agreement with gold PropBank (CoNLL-
2009) for all roles, core roles, and adjuncts. Preci-
sion is the percentage of QA pairs covering exactly
one PropBank relation. Recall is the percentage
of PropBank relations covered by exactly one QA
pair.

(1241 sentences) of our QA-SRL dataset and the
PropBank dataset.

For each PropBank predicate that we have an-
notated with our scheme, we compute the agree-
ment between the PropBank arguments and the
QA-SRL answers. We ignore modality, reference,
discourse and negation roles, as they are outside
the scope of our current annotation. An annotated
answer is judged to match the PropBank argument
if either (1) the gold argument head is within the
annotated answer span, or (2) the gold argument
head is a preposition and at least one of its chil-
dren is within the answer span.

We measure the macro-averaged precision and
recall of our annotation against PropBank, with
the proportion of our QA-pairs that are match a
PropBank relation, and the proportion of Prop-
Bank relations covered by our annotation. The re-
sults are shown in Table 5, and demonstrate high
overall agreement with PropBank. Agreement for
core arguments 5 is especially strong, showing
much of the expert linguist annotation in Prop-
Bank can be recovered with our simple scheme.
Agreement for adjuncts is lower, because the an-
notated QAs often contain inferred roles, espe-
cially for why, when and where questions (See ex-
amples 4, 7 and 8 in Table 1). These inferred roles
are typically correct, but outside of the scope of
PropBank annotations; they point to exciting op-
portunities for future work with QA-SRL data. On
the other hand, the adverbial arguments in Prop-
Bank are sometimes neglected by annotators, thus
becoming a major source of recall loss.

Table 6 shows the overlap between our anno-
tated question words and PropBank argument la-
bels. There are many unsurprising correlations—
who questions are strongly associated with Prop-

5In PropBank, A0-A5 are the core arguments. In QA-
SRL, the core arguments include QA pairs with a question
that starts with Who or What.
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Figure 2: Inter-annotator agreement measured on 100 newswire sentences and 108 Wikipedia sentences,
comparing the total number of annotators to the number of unique QA pairs produced and the number of
agreed pairs. A pair is considered agreed if two or more annotators produced it.

WHO WHAT WHEN WHEREWHY HOW HOW
MUCH

A0 1575 414 3 5 17 28 2
A1 285 2481 4 25 20 23 95
A2 85 364 2 49 17 51 74
A3 11 62 7 8 4 16 31
A4 2 30 5 11 2 4 30
A5 0 0 0 1 0 2 0
ADV 5 44 9 2 25 27 6
CAU 0 3 1 0 23 1 0
DIR 0 6 1 13 0 4 0
EXT 0 4 0 0 0 5 5
LOC 1 35 10 89 0 13 11
MNR 5 47 2 8 4 108 14
PNC 2 21 0 1 39 7 2
PRD 1 1 0 0 0 1 0
TMP 2 51 341 2 11 20 10

Table 6: Co-occurrence of wh-words in QA-SRL
annoations and role labels in PropBank.

Bank agents (A0), and where and when ques-
tions correspond to PropBank temporal and loca-
tive roles, respectively. Some types of questions
are divided much more evenly among PropBank
roles, such as How much. These cases show how
our questions can produce a more easily inter-
pretable annotation than PropBank labels, which
are predicate-specific and can be difficult to un-
derstand without reference to the frame files.

Together, these results suggest that non-experts
can annotate much of the information contained in
PropBank, and produce a more easily interpretable
annotation.

3.5 Inter-Annotator Agreement

To judge the reliability of the data, we measured
agreement on a portion of the data (100 sentences
in the newswire domain and 108 sentences in the

Wikipedia domain) annotated by five annotators.
Measuring agreement is complicated by the fact

that the same question can be asked in multiple
ways—for example “Who resigned?” and “Who
resigned from something?”—and annotators may
choose different, although usually highly overlap-
ping, answer spans. We consider two QA pairs to
be equivalent if (1) they have the same wh-word
and (2) they have overlapping answer spans. In
this analysis, Who and What are considered to be
the same wh-word.

Figure 2 shows how the number of different
QA pairs (both overall and agreed) increases with
number of annotations. A QA pair is considered to
be agreed upon if it is proposed by at least two of
the five annotators. After five annotators, the num-
ber of agreed QA pairs starts to asymptote. A sin-
gle annotator finds roughly 80% of the agreed QA
pairs that are found by five annotators, suggesting
that high recall can be achieved with a single stage
of annotation. To further improve precision, future
work should explore a second stage of annotation
where annotators check each other’s work, for ex-
ample by answering each other’s questions.

4 Question Generation

Given a sentence s and a target verb v, we want
to automatically generate a set of questions con-
taining v that are answerable with phrases from
s. This task is important because generating
answerable questions requires understanding the
predicate-argument structure of the sentence. In
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essence, questions play the part of semantic roles
in our approach.6

We present a baseline that breaks down ques-
tion generation into two steps: (1) we first use a
classifier to predict a set of roles for verb v that
are likely present in the sentence, from a small,
heuristically defined set of possibilities and then
(2) generate one question for each predicted role,
using templates extracted from the training set.

Mapping Question Fields to Semantic Roles
To generate questions, we first have to decide the
primary role we want to target; each question’s an-
swer is associated with a specific semantic role.
For example, given the sentence UCD finished the
2006 championship and target verb finished, we
could ask either: (Q1) Who finished something?
or (Q2) What did someone finish?. Q1 targets the
role associated with the person doing the finish-
ing, while Q2 focuses on the thing being finished.
To generate high quality questions, it is also often
necessary to refer to roles other than the primary
role, with pronouns. For example, Q2 uses “some-
one” to refer to the finisher.

Although it is difficult to know a priori the ideal
set of possible roles, our baseline uses a simple
discrete set, and introduces heuristics for identi-
fying the roles a question refers to. The roles R
include:

R ={R0,R1,R2,R2[p], w, w[p]}
w ∈{Where,When,Why,How,HowMuch}
p ∈Prepositions

We then normalize the annotated questions by
mapping its fields WH, SBJ, OBJ1 and OBJ2 to
the roles r ∈ R, using a small set of rules listed
in Table 7. In our example, the WH field of the
Q1 (Who) and the SBJ of Q2 (someone) are both
mapped to role R0. The WH of Q2 (What) and the
OBJ1 of Q1 (something) are mapped to role R1.
Some roles can be subclassed with prepositions.
For example, the WH field of the question What
did something rise from? is mapped to R2[from].

In most cases, R0 is related to the A0/AGENT
roles in PropBank/FrameNet, and R1/R2 are re-
lated to A1/PATIENT roles. Since our questions
are defined in a templated space, we are able to do

6The task also has applications to semi-automatic annota-
tion of sentences with our scheme, if we could generate ques-
tions with high enough recall and only require annotators to
provide all the answers. We leave this important direction to
future work.

wh ∈ {Who, What} ∧ voice = active
WH → R0

SBJ = φ

OBJ1 → R1

OBJ2 → R2[p]

WH → R1

SBJ → R0

OBJ1 = φ

OBJ2 → R2[p]

WH → R2[p]

SBJ → R0

OBJ1 → R1

OBJ2 = φ
wh ∈ {Who, What} ∧ voice = passive

WH → R1

SBJ = φ

OBJ1 → R2

OBJ2 → R2[p]

WH → R2

SBJ → R1

OBJ1 = φ

OBJ2 → R2[p]
wh ∈ {When, Where, Why, How, HowMuch} ∧ voice = active

WH → wh[p]

SBJ → R0

OBJ1 → R1

OBJ2 = φ

WH → wh

SBJ → R0

OBJ1 → R1

OBJ2 → R2[p]
wh ∈ {When, Where, Why, How, HowMuch} ∧ voice = passive

WH → wh[p]

SBJ → R1

OBJ1 → R2

OBJ2 = φ

WH → wh

SBJ → R1

OBJ1 → R2

OBJ2 → R2[p]

Table 7: Mapping question fields to roles in R.
The mapping is based on whether certain question
fields are empty and the voice of the verb in the
question (active or passive). φ indicates that a field
is either an empty string or equals “do/doing”. If
a question is in passive voice and contains the
preposition “by”, then OBJ2 is tagged with R0 in-
stead, as in What is built by someone?

this mapping heuristically with reasonable accu-
racy. In the future, we might try to induce the set
of possible roles given each target verb, follow-
ing the semantic role induction work of Titov and
Klementiev (2012) and Lang and Lapata (2011),
or use crowdsourcing to label proto-roles, follow-
ing Reisinger et al. (2015).

Predicting Question Roles Given this space of
possible roles, our first step in generation is to de-
termine which roles are present in a sentence, and
select the pronouns that could be used to refer to
them in the resulting questions. We formulate this
task as a supervised multi-label learning problem.
We define the set of possible labels L by combin-
ing the roles inR with different pronoun values:

L ={role:val | role ∈ R}
val ∈{φ, someone, something, do something,

doing something}

For example, to support the generation of the
questions Who finished something? and What did
someone finish?, we need to first predict the labels
R0:someone and R1:something. Adjunct roles,
such as When and How, always take an empty pro-
noun value.

649



Question Abstract Question
WH SBJ Voice OBJ1 OBJ2

Who finished something? R0 / active R1 /
What did someone finish? R1 R0 active / /

Table 8: Example surface realization templates
from abstract questions.

For each sentence s and verb v, the set of posi-
tive training samples corresponds to the set of la-
bels in the annotated questions, and the negative
samples are all the other labels in Ltrain, the sub-
set of labels appeared in training data.7 We train a
binary classifier for every label in Ltrain using L2-
regularized logistic regression by Liblinear (Fan et
al., 2008), with hyper-parameter C = 0.1. Fea-
tures of the binary classifiers are listed in Table
10. For each sentence s and verb v in the test data,
we take the k highest-scoring labels, and generate
questions from these.

Question Generation After predicting the set of
labels for a verb, we generate a question to query
each role. First, we define the concept of an ab-
stract question, which provides a template that
specifies the role to be queried, other roles to in-
clude in the question, and the voice of the verb.
Abstract questions can be read directly from our
training data.

We can map an abstract question to a sur-
face realization by substituting the slots with
the pronoun values of the predicted labels. Ta-
ble 8 shows the abstract questions we could use
to query roles R0 and R1; and the generated
questions, based on the set of predicted labels
{R0:someone,R1:something}.

Therefore, to generate a question to query a role
r ∈ R, we simply return the most frequent ab-
stract question that occurred in training data that
matches the role being queried, and the set of other
predicted labels.

Experiments Native English speakers manually
evaluated 500 automatically generated questions
(5 questions per verb). Annotators judged whether
the questions were grammatical 8 and answerable
from the sentence.

We evaluated the top k questions produced by

7We pruned the negative samples that contain prepositions
that are not in the sentence or in the set of frequently-used
prepositions (by, to, for, with, about).

8Some automatically generated questions are ungrammat-
ical because of label prediction errors, such as Who sneezed
someone?, where the label R1:someone shouldn’t be pre-
dicted.

Newswire Wikipedia
Ans. Gram. Ans. Gram.

prec@1 66.0 84.0 72.0 90.0
prec@3 51.3 78.7 53.3 86.0
prec@5 38.4 77.2 40.0 82.0

Table 9: Manual evaluation results for question
generation in two domains, including the averaged
number of distinct questions that are answerable
given the sentence (Ans.) and the averaged num-
ber of questions that are grammatical (Gram.).

our baseline technique. The results in Table 9
show that our system is able to produce questions
which are both grammatical and answerable. The
average number of QA pairs per verb collected
by human annotator is roughly 2.5, demonstrating
significant room for improving these results.

5 Answer Identification

The goal of the answer identification task is to pre-
dict an answer a given sentence s, target verb v
and a question q. Our annotated answers can be
a series of spans, so the space of all possible an-
swers is 2|s|. To simplify the problem, we trans-
form our span-based answer annotation to answer
head words, thus reducing the answer space to |s|.
We model whether a word is the head of an answer
as a binary classification problem.

Each training sample is a tuple 〈s, v, q, a,±1〉.
The answer head a is extracted from the k-best de-
pendency parses and the annotated answer span.
Given a dependency tree, if any word in the an-
notated answer span has a parent coming from
outside the span, then it is considered an answer
head. Therefore, a gold question-answer pair can
be transformed into multiple positive training sam-
ples. The negative samples come from all the
words in the sentence that are not an answer head.
For learning, we train a binary classifier for every
word in the sentence (except for the verb v).

Experiments We use L2-regularized logistic re-
gression by Liblinear (Fan et al., 2008) for binary
classification. Features are listed in Table 10.

The performance of our answer identification
approach is measured by accuracy. For evaluation,
given each test sentence s, verb v and question q,
we output the word with highest predicted score
using the binary classifier. If the predicted word
is contained inside the annotated answer span, it is
considered a correct prediction. We also use the
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Feature Class Question Generation Answer Identification

Predicate Token, Predicted POS-tag, Lemma extracted from Wiktionary
Dependency parent and edge label, dependency children and edge label

Question Question role label, Wh-word, Preposition
Answer Word / Syntactic parent and edge label, Left/Right-most syntactic children,

Predicate-Answer / Relative position (left or right), Syntactic relation, Syntactic path

Table 10: Indicator features that are included in our role classifiers for question generation (Section 4)
and the answer identification classifier (Section 5). Many come from previous work in SRL (Johansson
and Nugues, 2008; Xue and Palmer, 2004). To mitigate syntactic errors, we used 10-best dependency
parses from the Stanford parser (Klein and Manning, 2003).

Newswire Wikipedia
Classifier 78.7 82.3
Random 26.3 26.9

Table 11: Answer identification accuracy on
newswire and Wikipedia text.

baseline method that predicts a random syntactic
child from the 1-best parse for each question.

In each of the two domains, we train the bi-
nary classifiers on the training set of that domain
(See Table 4 for dataset size). Table 11 shows
experiment results for answer identification. Our
classifier-based method outputs a correct answer
head for 80% of the test questions, establishing a
useful baseline for future work on this task.

6 Discussion and Future Work

We introduced the task of QA-SRL, where
question-answer pairs are used to specify
predicate-argument structure. We also presented a
scalable annotation approach with high coverage,
as compared to existing SRL resources, and intro-
duced baselines for two core QA-SRL subtasks:
question generation and answering.

Our annotation scheme has a number of advan-
tages. It is low cost, easily interpretable, and can
be performed with very little training and no lin-
guistic expertise. These advantages come, in large
part, from the relatively open nature of the QA-
SRL task, which does not depend on any linguis-
tic theory of meaning or make use of any frame or
role ontologies. We are simply using natural lan-
guage to annotate natural language.

Although we studied verbal predicate-argument
structure, there are significant opportunities for fu-
ture work to investigate annotating nominal and
adjectival predicates. We have also made few
language-specific assumptions, and believe the an-
notation can be generalized to other languages—
a major advantage over alternative annotation

schemes that require new lexicons to be created
for each language.

The biggest challenge in annotating sentences
with our scheme is choosing the questions. We in-
troduced a method for generating candidate ques-
tions automatically, which has the potential to en-
able very large-scale annotation by only asking the
annotators to provide answers. This will only be
possible if performance can be improved to the
point where we achieve high recall question with
acceptable levels of precision.

Finally, future work will also explore applica-
tions of our annotation. Most obviously, the anno-
tation can be used for training question-answering
systems, as it directly encodes question-answer
pairs. More ambitiously, the annotation has the
potential to be used for training parsers. A joint
syntactic and semantic parser, such as that of
Lewis et al. (2015), could be trained directly on
the annotations to improve both the syntactic and
semantic models, for example in domain transfer
settings. Alternatively, the annotation could be
used for active learning: we envisage a scheme
where parsers, when faced with ambiguous attach-
ment decisions, can generate a human-readable
question whose answer will resolve the attach-
ment.
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Kiddon, Victoria Lin, and Swabha Swayamdipta
for their helpful comments on the paper. We
would also like to thank our freelance workers on
oDesk/Upwork for their annotation and the anony-
mous reviewers for their valuable feedback.

651



References
Omri Abend and Ari Rappoport. 2013. Universal con-

ceptual cognitive annotation (ucca). In Proceedings
of the 51st Annual Meeting of the Association for
Computational Linguistics, pages 228–238.

Collin F Baker, Charles J Fillmore, and John B Lowe.
1998. The berkeley framenet project. In Proceed-
ings of the 17th International Conference on Com-
putational Linguistics, volume 1, pages 86–90. As-
sociation for Computational Linguistics.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the Linguistic
Annotation Workshop.

Valerio Basile, Johan Bos, Kilian Evang, and Noortje
Venhuizen. 2012. Developing a large semantically
annotated corpus. In Proceedings of the 2012 In-
ternational Conference on Language Resources and
Evaluation, volume 12, pages 3196–3200.

Claire Bonial, Olga Babko-Malaya, Jinho D Choi, Jena
Hwang, and Martha Palmer. 2010. Propbank an-
notation guidelines. Center for Computational Lan-
guage and Education Research, CU-Boulder.

Desai Chen, Nathan Schneider, Dipanjan Das, and
Noah A Smith. 2010. Semafor: Frame argument
resolution with log-linear models. In Proceedings of
the 5th International Workshop on Semantic Evalua-
tion, pages 264–267. Association for Computational
Linguistics.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. Liblinear: A
library for large linear classification. The Journal of
Machine Learning Research, 9:1871–1874.
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Padó, Jan Štěpánek, et al. 2009. The conll-2009
shared task: Syntactic and semantic dependencies
in multiple languages. In Proceedings of the Thir-
teenth Conference on Computational Natural Lan-
guage Learning: Shared Task, pages 1–18. Associa-
tion for Computational Linguistics.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. Ontonotes:
the 90% solution. In Proceedings of the Hu-
man Language Technology Conference of the North
American Chapter of the Association of Compu-
tational Linguistics, pages 57–60. Association for
Computational Linguistics.

Richard Johansson and Pierre Nugues. 2008.
Dependency-based semantic role labeling of prop-
bank. In Proceedings of the 2008 Conference on
Empirical Methods in Natural Language Process-
ing, pages 69–78. Association for Computational
Linguistics.

Paul Kingsbury and Martha Palmer. 2002. From tree-
bank to propbank. In Proceedings of the 2002 In-
ternational Conference on Language Resources and
Evaluation. Citeseer.

Dan Klein and Christopher D Manning. 2003. Ac-
curate unlexicalized parsing. In Proceedings of the
41st Annual Meeting on Association for Computa-
tional Linguistics, volume 1, pages 423–430. Asso-
ciation for Computational Linguistics.

Joel Lang and Mirella Lapata. 2011. Unsupervised se-
mantic role induction via split-merge clustering. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, volume 1, pages 1117–1126.
Association for Computational Linguistics.

Mike Lewis, Luheng He, and Luke Zettlemoyer. 2015.
Joint a* ccg parsing and semantic role labeling. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing.

Ding Liu and Daniel Gildea. 2010. Semantic role
features for machine translation. In Proceedings
of the 23rd International Conference on Computa-
tional Linguistics, pages 716–724. Association for
Computational Linguistics.

Bill MacCartney and Christopher D Manning. 2007.
Natural logic for textual inference. In Proceedings
of the ACL-PASCAL Workshop on Textual Entail-
ment and Paraphrasing, pages 193–200. Associa-
tion for Computational Linguistics.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large anno-
tated corpus of english: The penn treebank. Compu-
tational Linguistics, 19(2):313–330.

Adam Meyers, Ruth Reeves, Catherine Macleod,
Rachel Szekely, Veronika Zielinska, Brian Young,
and Ralph Grishman. 2004. The nombank project:
An interim report. In HLT-NAACL 2004 workshop:
Frontiers in corpus annotation, pages 24–31.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated cor-
pus of semantic roles. Computational Linguistics,
31(1):71–106.

Martha Palmer, Daniel Gildea, and Nianwen Xue.
2010. Semantic role labeling. Synthesis Lectures
on Human Language Technologies, 3(1):1–103.

Simone Paolo Ponzetto and Michael Strube. 2006.
Exploiting semantic role labeling, wordnet and
wikipedia for coreference resolution. In Proceed-
ings of the Human Language Technology Confer-
ence of the North American Chapter of the Associ-
ation of Computational Linguistics, pages 192–199.
Association for Computational Linguistics.

Drew Reisinger, Rachel Rudinger, Francis Ferraro,
Craig Harman, Kyle Rawlins, and Benjamin Van

652



Durme. 2015. Semantic proto-roles. Transac-
tions of the Association for Computational Linguis-
tics, 3:475–488.

Josef Ruppenhofer, Michael Ellsworth, Miriam RL
Petruck, Christopher R Johnson, and Jan Schef-
fczyk. 2006. Framenet ii: Extended theory and
practice.

Asher Stern and Ido Dagan. 2014. Recognizing im-
plied predicate-argument relationships in textual in-
ference. Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies.

Ivan Titov and Alexandre Klementiev. 2012. A
bayesian approach to unsupervised semantic role in-
duction. In Proceedings of the 13th Conference of
the European Chapter of the Association for Com-
putational Linguistics, pages 12–22. Association for
Computational Linguistics.

Kristina Toutanova, Dan Klein, Christopher D Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology,
volume 1, pages 173–180. Association for Compu-
tational Linguistics.

Nianwen Xue and Martha Palmer. 2004. Calibrating
features for semantic role labeling. In Proceedings
of the 2004 Conference on Empirical Methods in
Natural Language Processing, pages 88–94.

Deniz Yuret, Aydin Han, and Zehra Turgut. 2010.
Semeval-2010 task 12: Parser evaluation using tex-
tual entailments. In Proceedings of the 5th Inter-
national Workshop on Semantic Evaluation, pages
51–56. Association for Computational Linguistics.

653



Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 654–664,
Lisbon, Portugal, 17-21 September 2015. c©2015 Association for Computational Linguistics.

Name List Only? Target Entity Disambiguation in Short Texts

Yixin Cao1, Juanzi Li1, Xiaofei Guo1, Shuanhu Bai2, Heng Ji3, Jie Tang1

1 Tsinghua National Laboratory for Information Science and Technology
Dept. of Computer Science and Technology, Tsinghua University, China 100084

2 Sina Corporation, China 100084
3 Dept. of Computer Science, Rensselaer Polytechnic Institute, USA 12180
{caoyixin2011,lijuanzi2008,sophiaguo.thu,jery.tang}@gmail.com

shuanhu@staff.sina.com.cn, jih@rpi.edu

Abstract

Target entity disambiguation (TED), the
task of identifying target entities of the
same domain, has been recognized as a
critical step in various important applica-
tions. In this paper, we propose a graph-
based model called TremenRank to collec-
tively identify target entities in short texts
given a name list only. TremenRank prop-
agates trust within the graph, allowing for
an arbitrary number of target entities and
texts using inverted index technology. Fur-
thermore, we design a multi-layer direct-
ed graph to assign different trust levels to
short texts for better performance. The
experimental results demonstrate that our
model outperforms state-of-the-art meth-
ods with an average gain of 24.8% in accu-
racy and 15.2% in the F1-measure on three
datasets in different domains.

1 Introduction

Currently, a growing number of people prefer to
express their views and comments online. These
messages, which are updated at the rate of mil-
lions per day, become a potentially rich source of
information. From such a large number of texts,
entity disambiguation is a critical step when ex-
tracting text information from these messages, and
for various applications, such as natural language
processing and knowledge acquisition (Dredze et
al., 2010). Take the application of customer feed-
back analysis (CFA) as an example. An enterprise
is typically interested in public reviews of its own
products as well as those of its competitors’; the
identification of these entities is thus critical for
further analysis.

The product names comprise a list of entities
to be identified. We refer to these entities of the
same domain as target entities, and the identifica-

tion process is called target entity disambigua-
tion (Wang et al., 2012). All of target entities (e.g.,
car brands) share a common domain, which we re-
fer to as the target domain. The target domain is
the only constraint to target entities, which implies
that the entities are in a specific domain, rather
than being general things. In the case of entity
recognition from short texts, the disambiguation
can be performed on the document level. Given a
collection of short documents, our goal is to deter-
mine which documents contain the target entities.

Challenge and Related Work
In contrast to traditional entity disambiguation

tasks, TED in short texts can require as little in-
formation as a name list. There are three types of
information that are utilized in Named Entity Dis-
ambiguation related tasks: knowledge resources,
the context in which a target word occurs and sta-
tistical information (Navigli, 2009). However, the
lack of the first two types of information makes
this problem more challenging.

Knowledge Sparsity A large number of meth-
ods focus on using knowledge bases (KBs) like
Wikipedia or YAGO to enrich the named enti-
ties (e.g., in-links and out-links) (Hoffart et al.,
2011; Bunescu and Pasca, 2006; Milne and Wit-
ten, 2008; Kulkarni et al., 2009; Han et al., 2011;
Mihalcea and Csomai, 2007; Shen et al., 2012).
These methods compared the context of the enti-
ties and their reference pages in the KBs through a
similarity measurement. However, we tested 32 d-
ifferent names of General Motors (GM) car brand-
s, and only four of the brands exist in Wikipedi-
a. This circumstance is not unusual. For another
larger dataset that included 2468 stock names, we
found only 340 of them had their reference pages
in Wikipedia. Thus, the methods that rely heavily
on KBs might not be appropriate here.

Shortness of the Texts The context in which a
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target entity occurs plays an important role in dis-
ambiguation. (Cassidy et al., 2012; Li et al., 2013)
applied the underlying topical coherence informa-
tion to a set of mentions for entity linking. In
(Wang et al., 2012), mentionRank leverages some
additional features, such as co-mention; however,
people prefer to share their comments in brief or
even informal words on social media platforms,
such as Twitter, which becomes increasingly im-
portant as an information source. We have count-
ed 350,498 microblogs, 37,379 tweets and 34,018
text snippets in various domains in Chinese and
English from Twitter, Sina Weibo and Google. Af-
ter preprocessing, their average length are 16, 5
and 11 words, respectively. To alleviate the short-
ness issue, additional information has been used
to expand the context, such as the user’s interest
(Shen et al., 2013) and related documents (Guo et
al., 2013). Such information is still sparse or un-
available in this case, and thus, the existing meth-
ods might not be suitable.

Large Scale Hundreds of millions of tweets are
posted daily on Twitter (Liu et al., 2013). When
scaling to a large document collection, the disam-
biguation task becomes increasingly important as
the ambiguity increases (Cucerzan, 2007). Men-
tionRank, the only state-of-the-art method for T-
ED, is a graph-based model that focuses on a s-
mall set of entities (e.g., 50 or 100 entities) and
conducts experiments on thousands of documents
(Wang et al., 2012). However, the graph has a
quadratic growth as the number of documents in-
creases. In our experiments, a dataset that includ-
ed 2,468 target entities and 350,498 microblogs
generated a directed graph with billions of edges,
which required more computer memory than was
available even when using a sparse matrix. There-
fore, the scalability remains a challenge.

Contributions
To address these challenges, we propose a

collective method called TremenRank to disam-
biguate the target entities simultaneously. The
main idea is to propagate trust within a graph
based on our observations that true mentions are
more similar in context than false mentions in a
specific domain. Specifically, inverted indexes is
used to construct the graph locally that allows for
an arbitrary number of target entities and docu-
ments. Furthermore, a multi-layer directed graph
is designed to assign different trust levels to doc-

uments, which significantly improves the perfor-
mance. The contributions of our work can be sum-
marized as follows:

• We propose a novel graph-based method,
TremenRank, to collectively identify target
entities in short texts. This method construct-
s the graph locally to avoid storing the entire
graph in memory, which provides a linear s-
cale up with respect to the number of target
entities and documents.

• We design a multi-layer directed (MLD)
graph for modeling short texts that pos-
sess different trust levels during propaga-
tion, which significantly improves the perfor-
mance.

• We conduct a series of experiments on three
practical datasets from different domains.
The experimental results demonstrate that
TremenRank has a similar performance to
the state-of-the-art when addressing the TED
problem at a large scale, and the use of MLD
graph significantly improves our method.

2 Problem Definition

Example Suppose that GM wants to collect tweets
that talk about its cars. As shown in Figure 1, we
take (i) a list of car brands (target entities), and (i-
i) a collection of tweets (i.e., short texts) as inputs.
“Car” is the target domain, and “Sonic” appears
in documents d1 and d2, which can be character-
ized as two mentions and the latter is a true men-
tion. The goal is to find as many true mentions as
possible.

Our method models the collection of documents
as a directed graph and outputs a trust score for
each document via propagation. The trust score
indicates the likelihood of a document containing
a true mention. For flexibility, the trust scores
lie within the range of 0 to 1 and are globally
comparable; thus, we can obtain the top-k doc-
uments or choose an appropriate cut-off value to
balance the precision and recall for different ap-
plication requirements. For example, in the appli-
cation of CFA, a company expects a higher recall
to achieve a comprehensive understanding of its
product, whereas a recommendation system must
provide as many precise microblogs as possible.

Formally, the problem of TED in short texts is
defined as follows:
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Entity

Sonic

Express

Spark

There is too much sonic

I drive Chevrolet Sonic today

Late night thoughts express life

I recently added Spark and
Chevrolet Express to inventory

Don’t drink and drive Spark

Mentions in short texts

Target Entity

A single spark can start a
prairie fire

d1 r1:0.1

Input Output

d2 r2:0.9

d3 r3:0.1

d4 r4:0.9

d5 r5:0.1

d6 r6:0.8

Figure 1: Illustration of TED. True mentions are
shown as solid arrows, and the underlined words
are their overlapping context.

Target Entity Disambiguation in Short Texts
Given a list of target entities E = {ei|i =
1, . . . ,m}, and a collection of text documents
D = {dj |j = 1, . . . , n}, Edj = {ej1, . . . , ejk} is
the set of target entities contained in dj . The goal
is to output the trust score rj ∈ [0, 1] for each doc-
ument dj ∈ D. All the target entities in Edj share
the same trust score rj .

All of the mentions in one document have the
same score because they share a common context.
In the graph, the context similarity between doc-
uments is computed and used as the edges nor-
mally, where the width of the context window that
surround the target entity in the document is typ-
ically chosen to be 10, 20 or 50 words. Howev-
er, the documents considered here are limited in
length, and a user seldom changes the topic in so
few words; thus, we regard the entire document as
the context of its target entities. When multiple
target entities occur in one document, all of them
are more likely to refer to the entities in the target
domain. Thus, the trust score for the document is
higher, as indicated by d4 (Figure 1).

The only constraint for the target entities is that
they are in the same target domain. This constraint
is reasonable in practice. The majority of applica-
tions identify a set of entities in one domain at a
time. For example, a computer company focuses
its attentions on the brands in the computer area,
whereas an investment company is mainly inter-
ested in stocks. Additionally, even if the target
domain is general and contains several small do-
mains, an intuitive solution is to split it into sev-
eral subproblems, where each subproblem focuses

on the target entities in one small domain. Then,
the task can be achieved by solving the subprob-
lems individually.

3 Our Approach

TremenRank is a graph-based method that identi-
fies target entities collectively. It propagates trust
scores on the graph where each vertex denotes one
document and an edge indicates the similarity be-
tween them. Considering the large scale of the
problem, we obtain the neighbors of one vertex
when propagating by searching two indexes in-
stead of storing the entire graph in memory. This
approach allows an arbitrary number of target en-
tities and documents to be processed. To further
improve the performance, a multi-layer directed
graph is designed to treat the documents at differ-
ent trust levels based on prior estimations.

3.1 Hypotheses
The documents within a domain share the char-
acteristic of unitary similarity. This characteristic
implies that all of the true mentions have a sim-
ilar context due to the target domain constraint
and that false mentions are distinct because their
meanings belong to diversified domains. We in-
vestigated the ambiguity of 2468 stock names (tar-
get entities in experiments), and manually labeled
301 of those names. As shown in Figure 2, there
are many different meanings for these names out-
side of the target domain, such as plant, bank, me-
dia and animal. The distribution of meanings are
long-tailed; thus, we gathered a group of meanings
together (the class “others”).

Based on the statistical results, we can make the
following hypotheses:

• The context of true mentions are similar to
one another.
• The context of a false mention is different

from any of the true mention.
• False mentions have distinct contexts across

different entities.

For example, the true mentions in d2, d4 and d6

(Figure 1) describe car brands of GM and share
common pieces of text: “drive” or “Chevrolet”.
However, “sonic”, “express” and “spark” in d1,
d3 and d5 are all false mentions; in their contexts,
they refer to sound, giving opinions, and a small
amount of fire, respectively. These false mentions
are different in context from one another and from
any true mention.
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The assumptions resemble the main insight of
MentionRank except the co-mention (multiple en-
tities occur in one document). Co-mention sel-
dom happens in short texts, and can be treated
as the same because they share a common con-
text. In conclusion, the assumptions suggest that
a collective method could perform better than a
method that disambiguates entities separately, be-
cause more comprehensive information on the en-
tities from multiple “collaborators” (i.e., the men-
tions have similar contexts) has been used (Chen
and Ji, 2011; Kulkarni et al., 2009; Pennacchiotti
and Pantel, 2009; Will et al., 2010; Fernandez et
al., 2010; Cucerzan, 2011; Guo et al., 2011; Han
and Sun, 2011; Ratinov et al., 2011; Kozareva et
al., 2011; Dalton and Dietz, 2013).

Te
ch

Fo
od

Lo
cat

ion
Med

ia
Ho

use Ba
nk
Ot
he
rs

To
ur

An
im
al

Av
iat

ion
Ph

ras
e

Un
ive

rsi
ty

Pla
nt

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Figure 2: Statistics on the ambiguity in stocks.

3.2 Graph-based Method

Based on these assumptions, we build a graph to
represent the documents and their relations, and
we perform a TrustRank-like algorithm on the
graph. We are given a graph G = (V, E) that con-
sists of a set V ofN documents (vertices) and a set
E of directed edges, where each edge (di, dj) ∈ E
denotes that di points to dj , and o(di) is the out-
neighbors of di.

3.2.1 Similarity Measurement

We constructed the edges of the graph accord-
ing to the similarity relations between docu-
ments. Most similarity measurements (Artiles et
al., 2010; Miller, 1995) could be used in the pro-
posed method. After some exploration, we found
that Jaccard similarity performs better. It can be
efficiently calculated through simple set opera-
tions:

ωJij = J(di, dj) =

∣∣Wdi
⋂Wdj

∣∣∣∣Wdi
⋃Wdj

∣∣ (1)

where ωJij denotes the weight of edge (di, dj) us-
ing Jaccard similarity, andWdi is the set of words
contained in di. ωij varies from 0 to 1, where a val-
ue closer to 1 indicates that its two nodes are more
similar. We link only similar nodes by choosing an
appropriate threshold η. In other words, we have
(di, dj) ∈ E , only if ωJij > η. This is the founda-
tion to construct the graph locally using inverted
indexes.

3.2.2 Inverted Index

When the scale becomes excessively large, such
as the 350,000 pieces in our dataset, the number
of edges will increase into the billions, produc-
ing computational and storage-based difficulties.
Considering that the propagation begins with doc-
ument di and that we are required to find all of
its out-neighbors o(di) through a traversal of the
entire dataset, then the complexity is O(n2). Al-
ternatively, we can represent the entire graph with
a matrix; however, its billions of elements would
be difficult to store and calculate.

To address the large scale problem, we con-
struct the graph locally via inverted index tech-
nology. During propagation, the neighbors of
the documents are obtained by searching the in-
dexes in real time. Two types of indexes are
used: the document-to-word index and the word-
to-document index. The former index recordsWdi

of each document di ∈ D; the latter index record-
s the occurrence of each word Dwk = {dj |wk ∈
W}, where W = {w1, . . . , wN} is the word dic-
tionary. Combining these two indexes, the total
out-neighbors of a document can be obtained in
constant time as follows:

1. Obtain all of the wordsWdi of di via search-
ing the document-to-word index.

2. Find the occurrences of each word wk ∈
Wdi in the word-to-document index: Ddi =
{dj | ∪wt∈Wdi Dwt}. Each document dj ∈
Ddi shares at least one common word with
di.

3. Count the frequency of dj , which indicates
the number of overlapping words between di
and dj . Then, the frequency fij = |Wdi ∩
Wdj |, i 6= j and Equation 1 becomes:
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ωJij =
fij

|Wdi |+ |Wdj | − fij
(2)

4. Calculate the similarity weight. We obtain
the out-neighbors o(di) = {dj |ωJij ≥ η}.

3.2.3 Trust Propagation
Similar to TrustRank, an individual documen-
t propagates the trust score to its neighbors and
those who have more neighbors will receive more
trust. Intuitively, trust attenuates along the edge.
There are several ways for attenuation to take
place, such as trust dampening, trust splitting, and
a combination of them (Gyöngyi et al., 2004). For
example, each document di ∈ D has a trust score
ri, and its out-neighbors obtain α · ri (or ri

|o(di)| )
through trust dampening (or splitting). We adopt
the third method, in which a document dampens
its split trust with the attenuation coefficient α.

The final trust score is determined by two parts:
the trust from a document’s neighbors and its pri-
or estimation. Then, TremenRank can iteratively
propagate via the following function:

ri = α ·
∑
o(di)

rj
|o(dj)| + (1− α) · T (di) (3)

where T (di) is the prior estimation of the docu-
ment di and is a constant during iterative propaga-
tion. Here we simply assign a uniform distribution
to all of the documents T (di) = 1

|D| . A more pre-
cise estimation will be discussed later.

At the beginning of the propagation, we initial-
ize the trust scores of the documents with the pri-
or estimation. Then, the trust scores of the docu-
ments are updated iteratively until convergence1.
True mentions receive high scores because they
are likely to connect with more trustworthy doc-
uments and thus receive more trust through the
first term in Equation 3. In contrast, false men-
tions are dissimilar to most other documents; thus,
their scores gradually attenuate (the second term
in Equation 3). These scores are globally compa-
rable. One can normalize the final scores by di-
viding them by the largest score, but the relative
ordering of the documents will not change. Thus,
one document that is more likely to contain any

1We select the attenuation coefficient α = 0.85 and the
number of iterations to be 20, which have been regarded as
the standards in the PageRank literature(Page et al., 1999;
Krishnan and Raj, 2006). Our experiments also show that 20
iterations are sufficient to achieve convergence.

true mention will receive a higher trust score and
be ranked higher.

3.3 Multi-layer Directed Graph

During propagation, all of the documents are ini-
tialized with the same trust score and attenuate
their trust at the same level. However, different
documents should be treated differently. For ex-
ample, the tweet “I drive a big car suburban” is
more trustworthy than “doctors use GMC report
system to process harmful patients”, because the
former tweet contains the credible context feature
“car”, which is the name of the target domain. The
latter clearly irrelevant text should not be trusted or
even be regarded as noise. In this subsection, we
first discuss how to make more precise prior esti-
mation of documents based on some of the charac-
teristics of the target domain. Additionally, based
on the prior estimation, an MLD graph is built to
assign different trust levels to the documents.

3.3.1 Prior Estimation
Ideally, a true mention is similar to true mentions
only. To take advantage of the approximate isola-
tion of true mentions, we first extract a set of true
mentions to start the propagation. The documents
that contain these true mentions are called seeds.

Formally, the entire set of documents D
is divided into two groups: (i) the seed set
Ds = {d1, . . . , ds}, and (ii) a subset D∗ =
{ds+1, . . . , dn}. We estimate a prior trust score
for each document via the function T :

T (di) =

{
1−ε
|D∗| di ∈ D∗,
ε
|Ds| di ∈ Ds.

(4)

where |Ds| and |D∗| represent the size of the two
sets for normalization. ε ∈ (0, 1] is used for s-
moothing and indicates the likelihood that we can
trust the seeds that actually contain true mentions.
In the experiments, we set ε = 0.9 based on the
accuracy of the seeds extraction method.

There are several methods for extracting seed-
s, such as manual annotation and pattern-based
method. Patterns could be easily derived from the
characteristics of the target domain, such as the
domain name, product type or unique ID2. These
methods can typically identify entities with a high
accuracy, but their low recall limits the portion of

2The exact patterns used in our datasets are detailed in
Section 4
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true mentions that can be found. We use the result-
s of the pattern-based method as our seeds, which
have an accuracy higher than 90%. We do not
present the experimental results here due to space
limitations.

3.3.2 Graph Construction
The similarity measurement does not consider di-
rections, and thus, the documents are mutually
connected. In this section, we construct a layered
structure in the graph, where each layer denotes a
document trust level that contains any true men-
tion. Thus, we define that the propagation direc-
tion from the high trust level to the low trust level.

Figure 3 shows an example of an MLD graph.
The blue nodes of the seeds in the top layer are
the most trustworthy, and the other white nodes in
the higher layer are less similar to the seeds which
implies that they are at lower trust levels. Thus, as
we move farther away from the seeds, trust atten-
uates at a constant speed α along with the layers.
The nodes in the same layer are also connected.

α

𝒅𝟏
𝟎

. . . Layer-1

Layer-2

.
.
.

Seeds

. . .

. . .

𝒅𝟒
𝟏

𝒅𝟔
𝟐

𝒅𝟐
𝟎 𝒅𝟑

𝟎

𝒅𝟓
𝟏

𝒅𝟕
𝟐 𝒅𝟖

𝟐

α

𝒅1
0

𝒅2
0

𝒅3
0

Figure 3: Example of an MLD graph.

The construction algorithm3 is presented in Al-
gorithm 1, where Dl = {dli|l ≥ 0} is the set of
nodes in layer l, and the nodes in D̄ = {d̄j |d̄j /∈
Dl, l ≥ 0} are not connected. To simplify our no-
tation, the seeds are set to be in layer 0. Note that
(∩l≥0D

l) ∩ D̄ = D.
TremenRank is different from the standard

TrustRank and MentionRank in several respect-
s. First, TremenRank is designed to process short
texts at a large scale. Second, through a well-
designed MLD graph, we consider documents to
consist of different trust levels rather than be repre-
sented by a unified distribution. Third, TrustRank

3A key parameter for the structure of MLD Graph is η,
which will be discussed in Section 4.2.

Algorithm 1: Construction of an MLD graph.

Input: Ds, D∗, η, indexesWD,DW
Output: G
Initialize seeds in layer l = 0, D̄ = D∗;
foreach layer l ≥ 0 do

Find the out-neighbors of Dl from D̄;
foreach document dli ∈ Dl do

put o(dli) in the next layer Dl+1;
update D̄ = D̄ −Dl+1;

end
if |D̄| = 0 or |Dl+1| = 0 then

break;
else

l = l + 1;
end

end

randomly samples a set of seeds and checks them
manually, which limits the number of seeds avail-
able; however, the proposed method extracts the
seeds automatically and uses large amounts of
seeds to produce better prior estimations. Final-
ly, disambiguation occurs at the document level in
the proposed method; we assign the same scores
to the entities that occur in one document, because
they typically share common context features in
short texts.

4 Empirical Evaluation

4.1 Data Preparation

Because there is no publicly available benchmark
dataset for TED, we constructed three datasets of
different domains: Stock, Car and Herb4. Al-
l of these datasets came from the needs of real-life
projects.

1. Stock - We collected 2,468 stock names
from a stock exchange website, and identified their
candidate mentions by string matching from Sina
Weibo (Counterpart of Twitter in China). Each s-
tock has a unique ID, which has little ambiguity.
Thus, we used this regular expression pattern to
extract seeds.

2. Car - We collected 32 car brands of General
Motors and a group of tweets that contain at least
one mention of these brands via the Twitter API. In
the seeds extraction step, we use the domain name
“car” as the patterns.

4All of the dataset related sources used in this study are
listed at http://newsminer.org/TEDs.
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3. Herb - We randomly selected 1,119 Chinese
herb names and collected 40 pieces of text descrip-
tions in the search results per entity from Google.
To extract the seeds, we simply added the domain
name to the key words (e.g., “UÁ(Worms)¥ú
�(Chinese Medical Herb)”).

Table 1: Statistics on the datasets.
E D #edges Positive(%)

Stock 2,468 350,498 2.049B 43
Car 32 37,379 4.91M 7
Herb 1,119 34,018 9.66M 68

Table 1 shows some of the statistics of the
datasets created. We chose these datasets because
(i) the identification of entities in these domains
meets the practical requirements of many applica-
tions, (ii) the target entities are ambiguous and (iii)
there is little information in the existing KBs. Be-
fore applying TremenRank, we preprocessed the
plain texts through word segmentation, low fre-
quency words filtering and stop words filtering.

4.2 Experiment

Baseline Methods TED in short texts is a relative-
ly new problem, and there are few specific meth-
ods for solving it. To validate the performance of
TremenRank and the improvement produced by
the MLD graph, we selected the baseline from
three different perspectives: (i) a context-based
method that identifies target entities separately; (i-
i) a classic supervised method SVM to classify a
document by whether it contains any true mention-
s; and (iii) the only state-of-the-art MentionRank
for TED, which is a collective ranking method.

• The Context-based method mines a fre-
quent item set of true mentions and identi-
fies the documents that contain more frequent
items.

• SVM classifies the documents into two class-
es: documents that are in the target domain
and those that are not. Using context word-
s as features, we train and test SVM on the
labeled set with a 10-fold cross validation.

• MentionRank is a graph-based method that
disambiguates at the entity level. Difficult to
apply to the entire large datasets directly, it
has been applied to the labeled set.

Evaluation Metrics The performance of the dis-
ambiguation task is typically evaluated by accura-
cy, but in TEDs we are also interested in precision,
recall and the F1-measure because different appli-
cations focus on different aspects. For example, in
the application of CFA, a company expects a high-
er recall to collect as many reviews as possible,
while in financial news recommendations, users
prefer to read more accurate microblogs. Because
the entire dataset is too large to evaluate direct-
ly, we randomly sampled 800 mentions for each
dataset and labelled them manually to calculate the
performance metrics5.

Results and Analysis
The overall performances of TremenRank and

those of the baseline methods on all of the datasets
are shown in Table 2. The following is indicated
in the results:

• TremenRank+MLD outperforms all of the
baselines with all of the datasets, because it
collectively identifies target entities and treats
the documents differently based on a precise
prior estimation.

• The collective methods tend to perform bet-
ter. Although, on the Car dataset, SVM
achieves the second best performance, the
use of MLD graph in TremenRank outper-
forms all of the methods tested. This is
because false mentions that occupy a large
proportion of the dataset produce too much
noise, whose negative impacts can be reduced
through the train set in the supervised method
or a precise prior estimations.

• Compared with MentionRank, TremenRank
processes a larger number of entities and
documents while achieving a similar per-
formance. Combined with a MLD graph,
TremenRank shows significant improve-
ments including an average gain of 24.8% in
accuracy and 15.2% in the F1-measure on the
three datasets.

We also investigate the influence of the main el-
ements in TremenRank below.

Similarity Threshold Different similarity thresh-
olds result in various structures of the MLD graph,
and have a great impact on the performance of our

5A detailed explanation about these metrics can be found
in http://en.wikipedia.org/wiki/Precision and Recall.
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Table 2: Overall results on the three datasets
Method Stock Car Herb

Accu Prec Recall F-score Accu Prec Recall F-score Accu Prec Recall F-score
Context 0.704 0.332 0.545 0.410 0.733 0.333 0.256 0.476 0.670 0.200 0.074 0.108
SVM 0.746 0.377 0.998 0.547 0.839 0.371 0.923 0.529 0.567 0.988 0.564 0.718

MentionRank 0.458 0.424 0.828 0.561 0.464 0.301 0.715 0.423 0.644 0.691 0.824 0.752
TremenRank 0.477 0.424 0.803 0.555 0.542 0.310 0.720 0.433 0.737 0.736 0.827 0.779

TremenRank+MLD 0.683 0.575 0.844 0.684 0.827 0.624 0.731 0.673 0.800 0.774 0.908 0.836
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Figure 5: Influence of Seed Scale

method. In this subsection, we study a heuristical
method that help choose the best eta according t-
wo factors (Both of them can be obtained before
propagation). Figure 4 presents the experimental
results for different values of η on the dataset of
Herb. The performance of TremenRank is showed
on the top, and the bottom is the corresponding
graph structure represented by two factors: the
graph coverage and the number of layers. We
can see that precision increases until it becomes
steady with the growth of η, and other measure-
ments reach their peaks when η = 0.1.

This is in accordance with the change of the
graph structure. On one hand, the number of lay-
ers l declines sharply when η is less than 0.1, this
indicates little difference in the trust level of doc-
uments in the propagation. On the other hand, our
method has no effect on the vertices outside of the
graph, so the performance is directly proportional
to the graph coverage rate. Therefore, a proper η
should ensure a high coverage as well as adequate
layers. In experiments, we choose η as 0.1, 0.15,
0.1 for the datasets of Stock, Car and Herb respec-
tively.

Influence of the Seed Scale As the basis of the
prior estimation, the seeds have significant influ-

ence on the performance of the proposed method
via the MLD graph. Intuitively, a larger set of
seeds should lead to a more precise estimation and
thus better performance. In the experiments on the
Car and Herb datasets, we split their seed set into
ten parts, and add one part each time. As Fig-
ure 5 shows, when increasing the percentage of
the seeds gradually, the performance has an over-
all upward trend (e.g., a 14.6% and 4.4% gain in
the F1-measure for the Car and Herb datasets, re-
spectively). This trend occurs because the poten-
tial context features of the seeds utilized for prop-
agation increase as the absolute number of seed
documents rises. For example, the tweet “Cadil-
lac Uber airport is classy” obtains a low score of
0.013 with 50% of the seeds, whereas it is identi-
fied successfully with the score of 0.588 when all
of the seeds are used for propagation because more
context features are introduced, such as “airport”
and “Uber”. Thus, the proposed method achieves
better performance as the seed set grows. This ar-
rangement is helpful for a company that seldom
changes its business area and then accumulates
seeds continuously to improve performance.

Robustness to Noise Because seeds play an im-
portant role in the MLD graph, we further test the
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robustness of our method with respect to the qual-
ity of the seeds. We randomly sample documents
outside of the seed set (considered as noise) to re-
place 20% of the seeds on all the datasets; these re-
sults are shown in Figure 6. The introduced noise
only leads to a limited decrease in performance
(average 1.3%, 1% and 1% in the F1), which is
much better than when only using TremenRank
(Table 2). More specifically, the experiments that
use artificial noise occasionally achieve a high-
er recall (e.g., on the Stock dataset); this result
could occur because the unknown true mentions
add some useful edges to the graph, which is help-
ful when finding more true mentions of the target
entities.

Cut-off Value According to the globally compa-
rable trust scores, we can (i) rank all of the doc-
uments, and trade off the performance metrics by
choosing an appropriate cut-off value γ for various
applications, or (ii) rank the documents of an indi-
vidual entity separately and obtain its top-k men-
tions.

In the experiments, we set γ as different per-
centage of the ranked documents. As Figure 7
shows, the recommendation system could use γ =
30% to achieve a 93.2% precision and a 64.2% re-
call, or a company could use γ = 60% for more
reviews that have a relatively high precision.

Efficiency We implemented TremenRank in Java
and ran it on a single PC with the Windows 8.1 64-
bit operation system. With an Intel(R) Core(TM)
i3-3240 (3.40GHz) CPU and 4GB memory, our
program converges within 5 iterations, and on-
ly consumes approximately 700MB of memory

when running steadily. The overall identification
times of the Stock, Car and Herb datasets are 12h,
5min and 18min, respectively. The computation
time increases exponentially with the increase of
the amount of data due to the excessive computa-
tions required to search the indexes, which can be
optimized in future work.

5 Conclusions and Future Work

In this paper, we addressed a new and increasing-
ly important problem in social content analysis in
a challenging scenario: disambiguation of a list
of homogenous entities in short texts using names
only. We proposed a graph-based method called
TremenRank to identify target entities collective-
ly; this method can also hold an arbitrary number
of target entities and documents. The performance
of this method can be further improved via a well-
designed MLD graph. The experimental results
show that the proposed method has a significant
improvement compared to other approaches.

In the future, we are interested in refining the
prior estimation by using the ontology and extend-
ing this work to detect the target entities that are
not in a list while performing the disambiguation
task.
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Abstract 

Knowledge Base Population (KBP) tasks, such 

as slot filling, show the particular importance 

of entity-oriented automatic relevant document 

acquisition. Rich, diverse and reliable relevant 

documents satisfy the fundamental require-

ment that a KBP system explores the nature of 

an entity. Towards the bottleneck problem be-

tween comprehensiveness and definiteness of 

acquisition, we propose a collaborative archiv-

ing method. In particular we introduce topic 

modeling methodologies into entity biography 

profiling, so as to build a bridge between 

fuzzy and exact matching. On one side, we 

employ the topics in a small-scale high-quality 

relevant documents (i.e., exact matching re-

sults) to summarize the life slices of a target 

entity (i.e., biography), and on the other side, 

we use the biography as a reliable reference 

material to detect new truly relevant docu-

ments from a large-scale partially complete 

pseudo-feedback (i.e., fuzzy matching results). 

We leverage the archiving method to enhance 

slot filling systems. Experiments on KBP cor-

pus show significant improvement over state-

of-the-art. 

1 Introduction 

Entity archiving is an entity-oriented document 

retrieval task. Towards a target entity of a specif-

ic type, such as the ones discussed in this paper, 

a person or an organization, the goal of entity 

archiving is to search and collect all relevant 

documents from large-scale data sets under lim-

ited prior knowledge of the entity. We limit our 

study to the regular English entity archiving, in 

which the prior knowledge contains the com-

monly used full name (formatted by English enti-

ty naming criteria) along with a gold-standard 

reference document, such as a news story on 

President “George W. Bush”. 

Entity archiving plays a fundamental role in 

KBP tasks. It narrows down the range of the data 

source for knowledge discovery to small-scale 

closely related documents. Such documents, on 

one hand, contain informative content on a target 

entity, which is extremely favorable for back-

ground knowledge extraction. On the other hand, 

the documents provide definitive evidence for 

verifying the claimed identity of the entity. 

As for KBP slot filling and verification tasks 

(Surdeanu and Ji, 2014), the archived relevant 

documents to an entity provide sufficient con-

texts (provenances) of the concrete instances 

(fillers) of the entity attributes (slots). See Figure 

1, in which both the provenances support filler 

extraction, meanwhile the provenance 1 addi-

tionally provides the evidence to verify the fillers 

(e.g., is episcopalism the true religion of Bush?). 

 
 

 

 

 

 

 

 

 

 

 

Figure 1: Use of entity archiving in slot filling 

The main challenges of entity archiving are as 

 Global data (e.g., all web docu-
ments) on PERSON entities 

KBP Slot Filling task 
Target entity: George W. Bush 

Slots: Title, Religion, Nation, etc. 

Filler Extraction 

Provenance 1-George Walker 

Bush is an American politician 

and businessman. 

Title: Politician & Businessman 

Nation: American 

Provenance 2-Bush left his fami-

ly’s Episcopal Church to join his 

wife’s United Methodist Church. 

Religion: United Methodist (True) 

Religion: Episcopal (False) 

 
Relevant docs. to 
George W. Bush 

Relevant docs. to 
George H.W. Bush 

Others. 

665



 

follows: 1) it is difficult to retrieve all relevant 

documents through exact matching at the level of 

entity name, because an entity can be mentioned 

in various forms, such as alternate names and 

abbreviations; 2) in contrast, fuzzy matching in-

troduces a large amount of noise into retrieval 

results (see the examples in Figure 1), although it 

is capable of recalling an overwhelming majority 

of relevant documents; 3) inadequate prior 

knowledge makes it difficult to generate a full 

profile of an entity; 4) although pseudo-feedback 

is helpful to enrich the prior knowledge, tradi-

tional entity profiling (e.g., bag-of-words) meth-

ods establish vague boundaries among different 

life slices of an entity. For example, they are in-

capable of distinguishing the slice of the 

“Church Scientologist in Sea Organization” of 

Mark Fisher
1
 from the freelance career as the 

“Corporate liaison to Miscavige”. As a result it 

is difficult to enhance the independent effects of 

different slices on the entity-document relevance 

determination. 

To solve these problems, we propose a collab-

orative entity archiving (CEA) method. It em-

ploys the exact-matching based document re-

trieval to obtain a few high-quality reference 

documents, and leverages fuzzy matching for 

high-speed acquisition of adequate candidate 

documents (section 3). In addition, CEA uses the 

reference documents as prior knowledge to mod-

el the topic-level biography of an entity, and 

identifies the truly relevant documents from the 

candidates based on biography-document rele-

vance (section 4). Experiments show that CEA 

has substantial advantages over traditional re-

trieval methods (section 5.1). We apply CEA to 

state-of-the-art slot filling systems. Experimental 

results show that CEA provides consistent gains 

(section 5.2). 

2 Related Work 

 Entity Search 

One research topic similar to entity archiving is 

entity search. Entity search aims to seek, collect, 

and rank entities associated with specific infor-

mation needs (Balog et al, 2011). The TREC En-

terprise track featured an expert finding task (Ba-

log et al, 2008a): given a topic, return a ranked 

list of experts on the topic. In response to this 

problem, there have been considerable efforts on 

content based retrieval models, as well as feature 

                                                 
1 Mark Fisher: a PERSON query name in Slot Filing evalu-

ation of 2014, ID=SF14_ENG_031 

selection, such as proximity (Petkova and Croft, 

2007), document priors (Hu et al, 2006; Zhu et al, 

2010), expert-document associations (Balog and 

De-Rijke, 2008) and external evidence (Serdyu-

kov and Hiemstra, 2008).  

Since INEX was launched in 2002, which is 

an entity ranking task specific to structured data 

and multimedia (Demartini et al, 2010), struc-

tured features have been widely used in entity 

search, such as the most recent studies on Wik-

ipedia links and categories (Vercoustre et al, 

2008; Zhu et al, 2008; Jiang et al, 2009; We-

erkamp et al, 2009; Kaptein and Kamps, 2009; 

Balog et al, 2011) and web link structure (Balog 

et al, 2008b; You et al, 2011; Blanco et al, 2011; 

Neumayer et al, 2012; Bron et al, 2013). 

 Slot Filling 

The goal of slot filling is to seek and extract the 

concrete instances (fillers) specific to multiple 

entity attributes (slots) from a large-scale textual 

data set (Ji et al., 2010 and 2011; Surdeanu, 2013; 

Surdeanu and Ji, 2014).  The quality of the fillers 

largely depends on the performance of entity ar-

chiving and information extraction. 

Related studies on archiving mainly employed 

traditional retrieval techniques, including query 

expansion and string matching (Ji and Grishman, 

2011). A few studies involved document ranking 

and prioritizing by using probability model (Byr-

ne and Dunnion, 2010; Roth et al, 2014) and sta-

tistical language model (Chrupala et al, 2010). 

For filler extraction, great efforts were made 

to generate effective patterns and structure per-

ceptrons by supervised learning and reasoning 

(Chen et al, 2010; Grishman and Min, 2010; Gao 

et al, 2010; Surdeanu et al, 2011; Louis et al, 

2011; Kisiel et al, 2013). And effective feature 

selection and distant-supervision based classifi-

ers have been explored (Lehmann et al, 2010; 

Artiles et al, 2011; Sun et al, 2011; Roth and 

Klakow, 2013; Roth et al, 2014). Recently active 

learning (Angeli et al, 2014), truth-finding (Yu et 

al,   2014) as well, scanning (Yu et al., 2015) and 

ensemble learning (Viswanathan et al., 2015) 

were introduced to this field. 

 Brief Summary 

In all, entity search concentrates on the analysis 

of a single specific aspect of an entity, which is 

of interest or related to a domain. In the expert 

finding task, only academic careers of person 

entities (potential experts) are of concern in enti-

ty-document relevance determination. By con-

trast, for the sake of comprehensive understand-

ing of an entity, entity archiving necessarily 
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takes multiple and diverse aspects into account, 

such as a person’s career, family, religion, social-

ity, academics, etc. Due to the difference in goals, 

entity search techniques cannot be used directly 

to solve entity archiving problems. 

The performance of conventional retrieval 

techniques was generally limited due to the lack 

of precise modeling of the characteristics of an 

entity. Sparse prior knowledge and absence of 

effective profiling methods cause difficulties in 

characterizing the entity. The rest of the paper 

will be about knowledge acquisition and partition, 

as well as the collaborative method, along with a 

topic-level biographical profiling method. 

3 Prior Knowledge Acquisition 

We use string matching based retrieval methods 

to acquire relevant documents. It is worth con-

sidering that the acquired documents are not 

straightforwardly defined as the final entity ar-

chiving results. As we will show in this section, 

some of them are reliable, while others are full of 

noise. Instead, we regard them as the prerequisite 

knowledge for a coarse-to-fine processing. 

In the retrieval phase, a query Q is formulated 

as the full name of the target entity, while a doc-

ument D is represented as a string of words. D is 

determined to be relevant only if it contains some 

words that match Q. Accordingly we name such 

words as entity mentions. Both Q and D are pre-

processed by tokenization and stop-word filter-

ing. Other commonly used preprocessing steps 

(stemming and lemmatization) are disabled be-

cause they may cause confusion between entity 

mentions and common words. Table 1 shows the 

examples where the underlined words in <1> 

denotes an entity mention but <2> does not. 

Mark Fisher (PER)                  <ID: SF14_ENG_031 > 

<1> Mark Fisher, Sea Org member 

After stemming: mark fish 

<2>How to mark fishing landmarks? 

After stemming: mark fish 

3
rd

 Guard Division (ORG)      <ID: SF14_ENG_085 > 

<1>The 3
rd

 Guard Division of People’s Liberation 

Army of China. 

After lemmatization: guard divide 

<2>The 24 guards divide up into 2 groups. 

After lemmatization: guard divide 

Table 1: Inappropriate use of preprocessing 

We employ two matching methods for the rel-

evance determination: exact and fuzzy matching. 

Exact matching (EM) requires that a sequence 

of successive words in D exactly matches Q. By 

EM, entity archiving regards a full entity name 

as an indivisible word-order-fixed unit. Accord-

ingly it only acquires the documents which con-

tain the entity mentions in the form of complete-

ly-preserved full name.  

Fuzzy matching (FM) relaxes the conditions to 

a large extent, allowing Q to be split into nonad-

jacent words. In particular, it supports the change 

in word order as well as partial match. By FM, 

entity archiving is able to retrieve documents that 

contain the entity mentions in the form of sepa-

rated, pruned and/or reordered names. Table 2 

shows some examples of using these matching 

methods, where the mark “•” denotes the availa-

ble methods for a certain form of entity mention. 

Mark Fisher (PER)                   <ID: SF14_ENG_031 > 

Mark Fisher, Sea Org member.                           (exact) 

Availability: EM (•) FM (•)  

Mark, husband of Julie Fisher.                     (separation) 

Fisher had been Miscavige’s aide for 7 years.(pruning) 

Fisher’s first name, Mark, is impressive due to his in-

conceivable career change.                             (reordering) 

Availability: EM (  ) FM (•)  

Table 2: Examples of string matching results 

EM and FM have substantially different ad-

vantages and disadvantages in entity archiving. 

Table 3 shows the performance of EM and FM 

based entity archiving on KBP corpus (Surdeanu, 

2013). We will introduce the corpus in details in 

Section 5. EM yields precise archiving results 

because the constraint conditions are helpful to 

reduce uncertainty in string matching. In contrast 

FM-based archiving is able to match entity name 

mentions with various forms, and thus it achieves 

higher recall. 

 Precision Recall F-measure 

EM 72.5 52.6 61.0 

FM 10.8 86.8 19.2 

Table 3: Effects of EM and FM on archiving 

However FM generally introduces much noise, 

namely those mistakenly retrieved irrelevant 

documents. The documents are recalled because 

some pseudo entity mentions they contain can 

easily satisfy the constraints of fuzzy matching. 

See examples of the pseudo mentions in Table 4. 

As a result, FM yields a very low precision score. 

Mark Fisher (PER)                  <ID: SF14_ENG_031 > 

PlantWeb is a mark of the Fisher-Rosemount group of 

companies.                                                                                                          (separation) 

Deutsche Mark was the currency in Germany  (pruning) 

Iconic Fisher-Price mark.                                                                                   (reordering) 

Table 4: Examples of pseudo entity mentions 

obtained by using FM 
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Undoubtedly it is helpful for global optimiza-

tion of entity archiving to make full use of the 

advantages of EM and FM. In view of the above-

mentioned investigation, we partition the string 

matching results into two parts, exact and fuzzy 

ones, which are used as reliable prior knowledge 

(named reference source) and unrefined prior 

knowledge (candidate source) respectively. Most 

documents in the reference are truly related to 

the target entity but the scale is not big (see Re-

call of EM in Table 3), while the candidate is 

full of both true answers and noise (see Precision 

and Recall of FM in Table 3), respectively. As 

we will show in the next section, the final archiv-

ing results are generated by synthesizing the 

sources in a collaborative coarse-to-fine way. 

4 Collaborative Entity Archiving (CEA) 

We propose a Collaborative Entity Archiving 

approach (CEA for short). CEA synthesizes the 

reference source and candidate source in a col-

laborative manner (section 4.1) through a biog-

raphy-document relevance determination method 

(section 4.2 and 4.3). In addition, CEA involves 

mention disambiguation and query expansion in 

pre-processing to optimize the quality of both 

sources (section 4.4) 

4.1 Overall Framework of CEA 

CEA models the biography of an entity by using 

the topics in the reference source, in which, each 

topic serves as the description of a slice of life of 

the target entity (life slice for short), as shown in 

Figure 2. The Life slice means an episode in the 

whole story of the entity, which may represent an 

event, state or scenario at a certain moment, such 

as a person’s birth or an organization’s estab-

lishment. 

 

 

 

 

 

 

 

 
 
 

Figure 2: Framework of collaborative archiving 

CEA pulls out a document from the candidate 

source, one by one, and measures the biography-

document relevance at the topic level. By using a 

relevance threshold as the discrimination factor, 

CEA either preserves the document if it is rele-

vant, or filters otherwise. Meanwhile, CEA adds 

the newly found relevant documents to the refer-

ence source, and updates the biography by re-

shaping life slices (i.e., topics). CEA iteratively 

goes through the process of biography formula-

tion, biography-document relevance measure-

ment and determination until a condition is satis-

fied. Finally CEA selects all the preserved doc-

uments in the reference source as the final output. 

Figure 2 shows the framework. 

4.2 Biography-Document Relevance Models 

We design a generative approach to estimate the 

biography-document relevance r, which calcu-

lates the conditional probability that a candidate 

document D generates the biography B: 

 ( | )r P B D                             (1) 

In total we leverage three probabilistic models 

for modeling B and D, including relevance model, 

topic model and context-level topic model. Then 

we introduce Hellinger Distance (Lindsay, 1994) 

into relevance measurement. 

 Relevance Model (RM) 

Generally, Relevance Model (RM) (Huang and 

Croft, 2009) refers to the probability distribution 

over all words conditioned on their occurrences 

in a set of previously-known relevant documents 

(or high-quality pseudo-relevant documents), i.e., 

, ( | )w V P w R  , where V is the vocabulary, R is 

the document set, and P(w|R) can be estimated by 

TF-IDF. RM is often used in combination with 

Document Model (DM). Similar to RM, DM re-

fers to the probability distribution over words in 

a particular document, i.e., , ( | )w V P w D  . The 

relevance between R and D is normally deter-

mined by the agreement of RM and DM. The 

agreement can be estimated with Hellinger Dis-

tance between the models:  

2
( | ) ( ( | ) ( | ))

w V

H RM DM P w R P w D



   (2) 

RM is a widely-used probabilistic model for 

information retrieval. It determines the relevance 

of a document to an object in accordance with 

homogeneousness in content between the docu-

ment and the relevant documents of the object.  

For an entity, in our case, we generate RM on 

the reference source, and regard it as the proba-

bilistic model of a macro-level all-embracing 

biography B over the prior knowledge R. For a 

candidate document D, the biography-document 

relevance r is measured with Hellinger Distance 

between RM and DM: P(B|D)=H(RM|DM). We 

D D D D D 

T T T T T T 

T T T 

D 

Documents in 
Reference Source 

A document in 
Candidate Source 

 
Relevance 

Topic 

Topic 

 Biography 

Topic-level 

Biography-Document 
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EM 

Biography Modeling 

FM 

Reference Source 

Candidate Source 

Document Modeling 

D 

D 

Expand refer-

ence source  
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will demonstrate the effect of RM heavily relies 

on the quality of reference source in experiments. 

 Topic Model (TM) 

Empirically, RM is coarse-grained. It mixes up 
different, separate and incoherent life slices of an 

entity. A more serious problem is that RM as-
signs uneven weights to life slices, giving exces-
sive weights to the words about the popular slic-
es, but low or even zeroth weights to the unpopu-
lar ones. A popular slice is defined as the slice of 
greater concern, which is normally frequently 

mentioned in the reference source, such as the 
slice of “the career of George W. Bush as the 
President” (high weight) versus “his childhood” 
(low weight). As a result, the RM based biog-
raphy-document relevance is only helpful to 
identify and recall the documents relevant to the 

popular slices but not to the unpopular ones. 

As a modification, we employ Topic Model 

(TM) for biography modeling. We define a topic 

in the reference source as an independent fine-

grained representation for a microscopic life slice. 

Accordingly we treat the biography as a bucket 

of topics. We leverage Latent Dirichlet Alloca-

tion (LDA) (Blei et al, 2003; Wei and Croft, 

2006) for topic discovery and modeling in the 

reference source. A topic is modeled as a proba-

bility distribution over all words in lexicon con-

ditioned on the association of the words with the 

topic, denoted as w V  , P(w|tR), in which tR 

refers to a topic in the reference source, repre-

senting a life slice s. Table 5 shows partial topic 

models (slices) in the reference source of Mark 

Fisher, where the highlighted probability values 

by a box reveal the words that well characterize a 

topic (slice). In the same way, we survey the top-

ics tC in the candidate source, modeled as 

w V  , P(w|tC). It is worth noting that those top-

ics (tC) may represent anything, namely the slices 

of the target entity or namesakes, related or unre-

lated events, etc. It means they are full of noise. 

Mark Fisher (Slice Modeling) <ID: SF14_ENG_031> 

Slice 1(s1), topic ts1: political career  

 ( | ) 0.003   ( | ) 8 5 ( | ) 8 5   ( | ) 4 51 1 1 1
...

" " " "      " " "  "

P w t P w t E P w t E P w t Es s s s

Parliament screenwriter film Bear Fisher

       
 
 
 

 

Slice 2(s2), topic ts2: artistic career 

 ( | ) 6 -5   ( | ) 0.003 ( | ) 0.001  ( | ) 3 52 2 2 2
...

" " " "      " " "  "

P w t E P w t P w t P w t Es s s s

Parliament screenwriter film Bear Fisher

     
 
 
 

 

Slice 3(s3), topic ts3: family 

 ( | ) 9 -5   ( | ) 1 -5 ( | ) 5 -6   ( | ) 0.0013 3 3 3 
...

" " " "      " " "  "

P w t E P w t E P w t E P w ts s s s

Parliament screenwriter film Bear Fisher

    
 
 
 

 

Table 5: Example of life slice modeling by TM  

In practice, given a target entity, its reference 

source (exact matching results) is a subset of the 

candidate source (fuzzy matching results). We 

picked the reference source out of the candidate 

to parse topics independently, forming the set of 

tR. Meanwhile, we parse topics in the candidate 

source to form the set of tC. Benefitting from the 

separate treatment, some of the truly related top-

ics (tR) to the entity (correct slices) can be col-

lected along with less noise. Using the topics as 

references, we detect the relevant documents in 

the candidate source in terms of the topic-level 

biography-document relevance P(B|D). 

Given a document D in the candidate source, 

we transform P(B|D) into the combination of 

topic-document relevance of all topics in the ref-

erence source. We measure the topic-document 

relevance with the conditional probability P(tR|D) 

that the topic tR occurs in the document D. Ac-

cordingly, P(B|D) is estimated by: 

( | ) ( | )

log( ) log ( | )

R

R

R

t

R

t

r P B D P t D

r P t D

 






               (3) 

where, we incorporate the log likelihood into the 

numerical calculation for the sake of nonzero 

joint probability.  

Due to the separate topic modeling procedures 

for the reference and candidate sources, the 

probability P(tR|D)  ̶  a topic tR in the reference 

source occurs in a candidate document D  ̶  can-

not be obtained directly. To solve the problem, 

we introduce the joint probability of topic-topic 

relevance between topics (tR) in reference and 

topics (tC) in candidate (see the mode in Figure 2) 

into the probability calculation: 

,  ( | ) ( | ) ( | )

C C

R R R R C C

t T

t T P t D P t t P t D



     (4) 

where TR is the set of all topics in the reference 

source while TC is the candidate. The topic-topic 

relevance P(tR|tC) is approximated by Hellinger 

distance estimation between the topic models of 

tR and tC. As a whole, we measure the biography-

document relevance as: 
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We employ the toolkit GibbsLDA++
2
 in topic 

modeling, which is an implementation of LDA 

using Gibbs sampling (Porteous et al, 2008). 

GibbsLDA++ makes it easy to parse the topics in 

a document set as well as estimate topic models 

P(w|t). Besides, GibbsLDA++ offers the proba-

bility over topics in generating a specific docu-

ment, facilitating the estimation of P(tC|D) in 

equation (5). Table 6 shows the operating param-

eters what we set in experiments, where the ones 

{α, β} were set as the default values while the 

iterative number num is an empirical value. 

α= 1 num= 200 

β= 0.1 Nt←HDP 

Table 6: Operating parameters of GibbsLDA++ 

The necessary precondition for GibbsLDA++ 

in topic partition is to define the number Nt of 

potential topics in a set of documents. We exe-

cute the Hierarchical Dirichlet Processes (Teh et 

al, 2005), abbr., HDP, to predict Nt. HDP is simi-

lar to current hierarchical information organiza-

tion methods, such as the hierarchical clustering 

(Kummamuru et al, 2004), unsupervised and 

coarse-to-fine grained. Hence HDP is useful in 

exploring the basic rules of topic partition in an 

automatic way, such as number and granularity. 

We employ HDP to estimate the number (Nt) of 

all possible topics in reference source and candi-

date separately, acquiring two Nt for each target 

entity, one per source. 

 Context-level Topic Model (CTM) 

In consideration of the reliability of contexts in 

representing closely-related life slices to the enti-

ty, we use the contexts around entity mentions to 

improve the slice-oriented topic modeling. 

SEN: A sentence where an entity mention occurs 

NEB: Left and right neighbor sentences of SEN 

DEP: Words dependent on entity mention 

SYN: Words in maximum syntactic subtree in SEN 

Context 1: SEN 

Context 2: DEP + SYN 

Context 3: SEN + left NEB + Right NEB 

Table 7: Instructions of various types of contexts 

A context consists of the words co-occurring 

with an entity mention in a radius-fixed text span 

or syntactic or dependent structure (see instruc-

tions in Table 7). Given a target entity, the entity 

mention in the reference source is its full name. 

The union of all contexts in the source defines 

the vocabulary VR that most probably represent 

                                                 
2 http://gibbslda.sourceforge.net/ 

the slices of the entity. In the candidate source, 

on the contrary, the entity mention can be a reor-

dered, separated or pruned entity name, as well 

as abbreviation or alias, such as GWB (abbr.) and 

Dubya (alias) of George W. Bush. Different from 

the cases in reference, the vocabulary VC ob-

tained from the contexts in candidate are closely 

related to diverse entities or other objects with 

the same name (see Table 2&4).  

CTM measures the biography-document rele-

vance in the same way with TM, estimating the 

topic-level P(B|D) by equation (5). The only dif-

ference lies in the available words in topic model 

P(w|t). For the ones not included in VR and VC, 

CTM assigns a weight zero in topic model no 

matter what GibbsLDA++ does. 

4.3 Unsupervised Threshold Estimation 

For each target entity, CEA measures the biog-

raphy-document relevance for all documents in 

the candidate source. In the light of the relevance 

scores, CEA ranks the documents and sets a clear 

threshold θ to cut off the long tail in the ranking 

list, in other words, filtering the documents that 

have a relevance score lower than θ. The pre-

served documents will be added to the reference 

source for both biography reformulation and ar-

chiving result output. 

We estimate the threshold by learning density 

distribution of documents over relevance scores 

(Arampatzis et al, 2009). Density means the 

number of documents that have similar relevance 

scores. The distribution is produced by densities 

within all interval ranges of relevance score. Our 

empirical findings show that the density distribu-

tion fits a mixture of two Gaussians, where the 

highly relevant documents and the irrelevant 

ones distribute in two separate Gaussian peaks 

respectively. Accordingly we define the thresh-

old as the range of relevance score at the extreme 

point between the peaks, as shown in Figure 3. 

 

Figure 3: Extremum detection for threshold se-

lection. (Note: Y-axis indicates the density in a 

specific interval range of relevance score) 

In order to detect the extreme point, we firstly 

use a cubic polynomial function to approximate 
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the density distribution. Second, we go through 

the integral solution of the function in every fine-

grained interval range of relevance score (inter-

val is set as max(r)/100). We finally detect the 

extremum between peaks. The threshold is ini-

tialized during runtime exclusively for each tar-

get entity, without training. It is re-estimated 

every time when the biography is reformulated.  

4.4 Termination Criterion for Iteration 

CEA identifies relevant documents in candidate 

source and moves them to reference. Then CEA 

reshapes statistical models (RM, TM or CTM) 

over the updated sources. In terms of the re-

formed models, CEA starts a new round of rele-

vance determination, data movement, and statis-

tical modeling. CEA keeps it going until meeting 

any of the following termination criterions: 

 T1: No more new topic occurs in the refer-

ence source (Nt doesn’t change). 

 T2: The number of the documents in Peak1 

(Figure 3) begins to increase continuously. 

T2 is triggered if T1 loses its efficacy. The in-

validation happens when some general slices (i.e., 

general topics) are mistakenly introduced into the 

reference source, causing large-scale irrelevant 

document to be recalled and moved to reference. 

It will dramatically increase the number (Nt) of 

topics in a long term in the iterative procedure, 

driving CEA to capture more irrelevant docu-

ments. Thus Peak1 will be enlarged continuously. 

However, if as expected, Peak1 should be nar-

rowed with increasing the iteration times because: 

 Fewer new related slices appear. 

 The number of documents related to the 

slices is less than that in previous iterations.  

4.5 Optimization of EM and FM 

In the preprocessing phase, we improve the pre-

cision of EM because higher-quality EM results 

can offer more reliable reference documents for 

biography modeling. In addition, we expand que-

ries for FM to recall a larger number of relevant 

documents. It is helpful to minimize the loss of 

relevant documents before proceeding to CEA.  

To improve EM, we focus on identifying the 

common words that completely match the full 

name of the target entity. The words normally 

are elusive and easily treated as a correct entity 

name, called deceptive name, see that in (1). 

(1) Countrywide Financial  <ORG> 

True: Countrywide Financial Corporation. 

Deceptive: Bank of America purchased the fail-

ing countrywide financial for $4.1 billion. 

To reduce EM errors caused by deceptive names, 

we use name tagging (Miller et al, 2004) to dis-

tinguish deceptive names and true names. Fur-

ther, we filter the documents that are mistakenly 

retrieved based on the match between a decep-

tive name and the full-entity-name based query Q.  

We leverage an Alternate Name Table (ANT) 

for query expansion. ANT is a mapping table 

between entity name and alternate name. An al-

ternate name is either generated according to the 

naming conventions (Burman et al, 2011), such 

as abbreviation, suffixation and revivification. 

Some alternative names were extracted from 

knowledge base through redirect links (Nia et al, 

2014), such as nicknames in Wikipedia dumps. 

For an entity, we reformulate query Q by the 

combination of the pre-assigned full entity name 

and all possible alternate names in ANT, see (2). 

(2) Initial Q: Countrywide Financial Corporation. 

Expanded: Countrywide Financial+Corporation 

+Corp. +Company +Co. +Ltd. +Co Ltd. +CFC. 

We use the expanded query for FM to increase 

the number of relevant documents in the candi-

date source, regardless of whether or not it will 

introduce a larger scale of new noises. 

5 Experiments 

We evaluate our methods on KBP 2013 corpus. 

The corpus contains 2.1M texts collected from 

web pages, newswires and discussion forums. 

From this corpus, a slot filling system is required 

to find fillers for 41 types of slots that represent 

the attributes of the target entities. There are 25 

slot types of person and 16 slot types of organi-

zation, such as a Person’s birth date and an Or-

ganization’s founder (Ji et al., 2010 and 2011). 

KBP 2013 includes 100 target entities and 

ground-truth fillers and provenances, where the 

ground-truth data was obtained by manual verifi-

cation and annotation on the pool of system out-

puts. The provenances contain the IDs of docu-

ments relevant to target entities and fine-grained 

text spans which illustrate the eligibility of fillers.  

In total there are 1,851 gold standard relevant 

documents available for the evaluation of entity 

archiving. However the data is far from enough 

because it only covers a small portion of all rele-

vant documents in the pool. Most are excluded 

since KBP annotators ignore relevant documents 

in which there isn’t any filler for the assigned 

slots or, although exists, the fillers were inexact-

ly identified by Slot Filling systems. Therefore, 

we manually went over the pool and extracted 

4,405 relevant documents as our ground-truth. 
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Sources 

 
Archiving 

Before Optimization of EM & FM (%) After Optimization of EM & FM (%) 

Micro-Average Macro-Average Micro-Average Macro-Average 
P R F P R F P R F P R F 

EM 65.4 40.1 49.7 72.5 52.6 61.0 78.8 24.6 37.5 81.1 46.9 59.4 
FM   9.4 74.6 16.7 10.8 86.8 19.2   6.3 92.9 11.8  6.9 94.2 12.9 
Baseline 29.1 50.6 36.9 36.1 62.9 45.9 22.6 33.3 26.9 25.1 52.6 34.0 
CEA(RM) 49.7 86.5 63.1 62.3 85.8 72.2 59.5 84.3 69.7 64.9 87.4 74.5 
CEA(TM) 52.6 87.7 65.8 63.2 86.1 72.9 60.6 82.9 70.0 65.7 85.8 74.4 
CEA(CTM1) 63.9 81.7 71.7 69.7 82.7 75.7 65.1 75.6 70.0 69.8 84.4 76.4 
CEA(CTM2) 63.9 81.7 71.7 69.7 82.7 75.7 65.1 75.6 70.0 69.8 84.4 76.4 
CEA(CTM3) 61.8 84.3 71.4 68.1 83.8 75.1 66.2 71.2 68.6 70.6 77.7 74.0 

Table 8: Archiving results (CTM1, 2 &3 are CTM using different types of contexts, context1, 2 &3 in Table 7) 

5.1 Archiving Results and Analysis 

We evaluate the entity archiving methods by mi-

cro and macro Precision (P), Recall (R) and F 

metrics. Table 8 shows the main results. 

 Overall Archiving Results 

Overall, the proposed CEA methods perform 

much better than the string matching based entity 

archiving methods (i.e., EM and FM).  

In addition the methods outperform a random-

sampling based CEA (baseline), which randomly 

selects a certain number of documents (candi-

dates) from the candidate source to combine with 

reference source straightforwardly (for final ar-

chiving results generation). The sampling num-

ber is set to be the same as the number of candi-

dates eventually archived by RM-based CEA. 

Random RM TM CTM1 CTM2 CTM3 

5,901 5,901 5,578 3,866 3.866 4,243 

5,158 5,158 4,943 4,032 4,032 3,655 

Table 9: The number of candidates added to ref-

erence source for archiving results generation 

(the second row indicates the number before op-

timizing EM and FM, while the third row indi-

cates after optimization) 

Table 9 shows the number of candidates ar-

chived from the candidate source by all kinds of 

CEA methods. It demonstrates that the biog-

raphy-based CEAs yield higher precision (Table 

8) after introducing the same or smaller number 

of candidates in the reference source, revealing 

the positive effect of biography modeling on en-

tity-oriented document relevance determination. 

 Reliability versus Comprehensiveness 

CEA achieves higher precision by using the op-

timized EM results as reference source. It 

demonstrates the importance of reliable prior 

knowledge for entity understanding as well as 

detecting relevant documents. However, the ref-

erence source causes lower recall scores of all 

CEA methods. The reason lies in reduction of 

prior knowledge. As shown in Table 8, the re-

fined reference source (i.e., optimized EM results) 

covers only 24.6% of all relevant documents, 

which is far less than the coverage before opti-

mization (nearly 40%).  

The reduced prior knowledge provides fewer 

available life slices of an entity for constructing 

an informative biography, inevitably resulting in 

missing some relevant documents. In order to 

confirm this, we regard the 41 KBP slot types as 

some readily-made visible life slices, and use the 

manual annotations of the slot fillers to verify 

whether a life slice appears in a relevant docu-

ment. For example, the filler “Corporate liaison 

of the slot Title reveals the slice of freelance ca-

reer of Mark Fisher. Then we figure out the cov-

erage rate of life slices for both the original ref-

erence source and the refined. 

Figure 4 exhibits the coverage rates for 5 most 

frequently occurred life slices. The coverage rate 

is calculated by the number of reference sources 

that contain a specific life slice versus 100, i.e., 

the number of reference sources for the 100 KBP 

entities (one per entity). It can be found that the 

refined reference sources miss lots of life slices. 

 

 

 

 

Figure 4: Coverage rates of life slices (for top 5) 

 Comparison among Biography Models 

RM is biased towards the popular life slices in 

biography modeling. The reasons are as follow-

ing: 1) RM gives greater weights to the high-

frequency words, and 2) popular slices are of 

much greater public interest and hence frequently 

mentioned in relevant documents. However, 

some entities not only share similar names but 

similar popular slices, such as the religious voca-

tion of different church scientologists. Therefore 
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RM is extremely likely to acquire the documents 

related to the namesakes if they have similar 

popular background as the target entity, causing 

a greater loss of precision.  

Table 10 shows the top highly-weighted words 

in RM for the target Mark Fisher (a church sci-

entologist), along with 2 namesakes who occur 

most frequently in the incorrect archiving results. 

Keywords in RM The most similar entities 

church 

committee 

religious 

Sea Org 

policy 

Miles Mark Fisher 
Church historian, Educa-
tor, Baptist minister and 
writer 

Mark Fisher 
Senior Pastor 

Table 10: Entities of similar background 

By contrast, TM independently represents dif-

ferent life slices and combines the effects of the 

slices on biography-document relevance deter-

mination, evenly and exhaustively. Comprehen-

sive and unbiased measurement of every known 

life slices is helpful in disambiguating entities 

that have similar backgrounds (definitely not the 

same in all). As a result, TM improves the preci-

sion. And the context-based TM goes further.  

5.2 Slot Filling Results and Analysis 

We apply our entity archiving methods to two 

top-ranked slot filling systems in the evaluation 

of KBP 2013, including LSV (Roth and Klakow, 

2013) and Blender (Yu et al 2013).  

The LSV incorporates a string matching based 

entity archiving and a SVM classifier based filler 

extraction. LSV’s archiving model expands que-

ries by using suffixes and Wikipedia anchor texts, 

and uses mutual information based relevance 

measure in document ranking and filtering.  

Blender employs a hybrid retrieval model for 

archiving relevant documents. It combines Bool-

ean and VSM models and expands query by an 

alternate name table similar to ours. For filler 

extraction, Blender implements truth finding 

over conflicting claims from multiple rule-based 

extraction systems. 

Methods P R F 

LSV’s archiving 53.0 88.2 66.2 

Blender’s archiving 54.6 71.7 62.0 

Table 11: Archiving performance of LSV &BLD 

Table 11 shows entity archiving performances 

of LSV and Blender (Macro-Average P, R and F). 

All CEA methods perform better than the both. 

With the aim to optimize provenances of fillers, 

we modify the slot filling systems by substituting 

their archiving methods with ours. Table 12 ex-

hibits the performance gains after replacement. 

               Slot Filling 
Archiving 

LSV (%) Blender (%) 

P R F P R F 

Original system 40.8 30.0 34.6 34.1 22.1 26.8 

Mod. (RM)
CEA

 42.1 30.0 35.0 35.6 23.9 28.6 

Mod. (TM)
CEA

 42.2 30.6 35.5 35.6 23.9 28.6 

Mod. (CTM3)
CEA

 42.7 29.3 34.7 36.0 23.8 28.7 

Table 12: Slot filling performance gains 

Both LSV and Blender achieve significant 

gains. The most interesting finding is on the dif-

ferent performance gains. It should reveal the 

fact that the well-supervised classification based 

filler extraction of LSV has a better capability of 

noise resistance, while by contrast, the truth-

finding in Blender is capable of identifying valid 

fillers if the quality of archiving results is high, 

otherwise easily makes mistake.  

6 Conclusion 

We doubt that it is easy to maintain the stability 

of current entity-oriented knowledge acquisition 

methods, including ours, in dealing with ordinary 

entities. Most target entities now in use for the 

evaluation are made to stand as “out of the ordi-

nary”, such as well-known enterprises, celebri-

ties or domain experts. As a result, a corpus con-

tains abundant relevant documents of the entities 

but less about the little-known namesakes. It 

greatly reduces the interference of namesakes 

and thus the difficulty of the task. 

In future work, we will make the task critical 

for success by employing the little known name-

sakes as targets. In addition to verifying the ro-

bustness of the CEA method, we will work on 

the relationship among entities (ACE entity rela-

tion types, Doddington et al, 2004) and related 

events (e.g., causal, temporal and sub-event rela-

tions), by which to build graph-based biography. 
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Abstract

ListNet is a well-known listwise learning
to rank model and has gained much atten-
tion in recent years. A particular problem
of ListNet, however, is the high computa-
tion complexity in model training, main-
ly due to the large number of object per-
mutations involved in computing the gra-
dients. This paper proposes a stochastic
ListNet approach which computes the gra-
dient within a bounded permutation sub-
set. It significantly reduces the computa-
tion complexity of model training and al-
lows extension to Top-k models, which is
impossible with the conventional imple-
mentation based on full-set permutation-
s. Meanwhile, the new approach utilizes
partial ranking information of human la-
bels, which helps improve model quality.
Our experiments demonstrated that the s-
tochastic ListNet method indeed leads to
better ranking performance and speeds up
the model training remarkably.

1 Introduction

Learning to rank aims to learn a model to re-
rank a list of objects, e.g., candidate documents
in document retrieval. Recent studies show that
listwise learning delivers better performance in
general than traditional pairwise learning (Liu,
2009), partly attributed to its capability of learning
human-labelled scores as a full rank list. A poten-
tial disadvantage of listwise learning, however, is
the high computation complexity in model train-
ing, which is mainly caused by the large number
of permutations of the objects to rank.

A typical listwise learning method is the List-
Net model proposed by Cao et al. (2007). This
model has been utilized to tackle many ranking
problems, e.g. modeling the hiring behavior in on-

line labor markets (Kokkodis et al., 2015), rank-
ing sentences in document summarization (Jin et
al., 2010), improving detection of musical con-
cepts (Yang et al., 2009) and ranking the results
in video search (Yang and Hsu, 2008). Basical-
ly, ListNet implements the rank function as a neu-
ral network (NN), with the objective function set
to be the cross entropy between two probability
distributions over the object permutations, one de-
rived from the human-labelled scores and the other
derived from the model prediction (network out-
put). In order to deal with the high computation
complexity associated with the large number of
permutations, Cao et al. (2007) proposed a Top-k
approach, which clusters the permutations by the
first k objects, so the number of distinct probabili-
ties that need to evaluate in model training reduces
from n! to n!

(n−k)! , where n is the number of objects
in the list.

To ensure efficiency, k = 1 was selected in the
seminal paper (Cao et al., 2007) and in the open
source implementation of RankLib (Dang, 2013).
This Top-1 approach is a harsh approximation to
the full listwise learning and may constrain the
power of the ListNet method. We therefore seek
to extend the Top-1 approximation to Top-k ( k >
1) models.

The major obstacle for the Top-k extension is
the large number of permutations, or more pre-
cisely, permutation classes in the Top-k setting. A
key idea of this paper is that the rank information
involved in the permutation classes is highly re-
dundant and so a small number such permutation
classes are sufficient to convey the rank informa-
tion required to train the model. Meanwhile, the
partial rank information associated with the sub-
set of permutation classes may represent more de-
tailed knowledge for model training, leading to
better ListNet models.

Based on these two conjectures, we propose a s-
tochastic ListNet method, which samples a subset
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of the permutation classes (object lists) in mod-
el training and based on this subset to train the
ListNet model. Three methods are proposed to
conduct the sampling. In the uniform distribution
method, the candidate objects are selected follow-
ing a uniform distribution; in the fixed distribution
method, the candidate objects are selected follow-
ing a distribution derived from the human-labeled
scores; in the adaptive distribution method, the
candidates are selected following a distribution de-
fined by the rank function, i.e., the neural network
output. Experimental results demonstrated that the
stochastic ListNet method can significantly reduce
the computation cost in model training. In fact,
if the size of the permutation subset is fixed, the
computation complexity is bounded, which allows
training Top-k models where k is large. Mean-
while, better performance was obtained with the
stochastic ListNet approach, probably due to the
learning of partial rank information.

The contributions of the paper are three-fold:
(1) proposes a stochastic ListNet method that sig-
nificantly reduces the training complexity and de-
livers better ranking performance; (2) investigates
Top-k models based on the stochastic ListNet, and
studies the impact of a large k; (3) provides an
open source implementation based on RankLib.

The rest of the paper is organized as follows.
Section 2 introduces some related works, and Sec-
tion 3 presents the stochastic ListNet method. Sec-
tion 4 presents the experiments, and the paper is
concluded by Section 6.

2 Related Work

This work is an extension of the Top-k List-
Net method proposed by Cao et al. (2007). The
novelty is that we propose a stochastic learing
method which not only speeds up the model train-
ing but also produces stronger models. The code
is based on the Top-1 ListNet implementation of
RankLib (Dang, 2013).

Another related work is the SVM-based pair-
wise learning to rank model based on stochastic
gradient descent (SGD) (Sculley, 2009). In this
approach, training instances (queries) are selected
randomly and for each query, a number of object
pairs are sampled from the object list. These pairs
are used to train the SVM model. In the stochas-
tic ListNet method proposed in this paper, the ran-
domly selected training samples are permutation
classes (object lists) rather than pairs of objects,

and a set of object lists rather than a single pair
forms a training sample.

3 Methods

3.1 Review of ListNet
The ListNet approach proposed by Cao et al.
(2007) trains a neural network which predicts the
scores z(i) of a list of candidate objects x(i) given
a query q(i), formulated by z(i) = fw(x(i)), where
fw stands for the scoring function defined by the
NN. The objective function is given by:

L =
∑
i

L(y(i), z(i))

=
∑
i

∑
∀g∈Gk

Py(i)(g)log(Pz(i)(g)) (1)

where y(i) denotes the human-labelled scores, and
Gk is the set of permutation classes defined by:

Gk = {Gk(j1, j2, ..., jk)|jt = 1, 2, ..., n,
s.t. ju 6= jv for ∀u 6= v} (2)

where n is the number of candidate objects, jt
is the object ranked at the t-th position, and
Gk(j1, j2, ..., jk) is a permutation class which in-
volves all the permutations whose first k object-
s are exactly (j1, j2, ..., jk). Following Cao et al.
(2007), the probability of Gk(j1, j2, ..., jk) can be
computed by:

Ps(G (j1, j2, ..., jk)) =
k∏
t=1

esjt∑n
l=t e

sjl
. (3)

where sjt is the score of object at position jt(t =
1, 2, , , k) at a certain permutation. By this defi-
nition of permutation probability, Eq. (1) defines
a cross entropy between the distributions over
permutations (precisely, permutation classes) de-
rived from the human-labelled scores and the NN-
predicted scores. Therefore, optimizing the objec-
tive function Eq. (1) with respect to the NN model
fw leads to a scoring function that approximates
the human-labelled ranking.

3.2 Stochastic Top-k ListNet
A particular difficulty of the Top-k ListNet method
is that it requires very demanding computation in
model training. Refer to Eq. (2), the permu-
tation set Gk involves n!

(n−k)! members, and for
each member, computing its probability involves
(2n−k+1)k

2 summations plus k multiplications and
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divisions. To let the algorithm practical, k=1 was
selected in (Cao et al., 2007), as well as the pub-
lic toolkit RankLib (Dang, 2013). Although this is
a good solution and reduces computation dramat-
ically, we argue that this approach largely buries
the power of ListNet. In fact, setting k=1 effec-
tively marginalizes all the probabilities over the
candidate objects of a permutation class except the
top one. By this approximation, Eq. (3) reduces to
a softmax over the candidate objects, which mean-
s that it actually focuses on how the probabilities
are distributed over individual objects, rather than
how the probabilities are distributed over objec-
t lists. This potentially loses much rank informa-
tion involved in the human labels.

Another disadvantage of the Top-1 model is that
it learns the rank information of the full list, but
ignores the rank information of partial sequences,
which may lead to ineffective learning. As an ex-
ample, considering an object list where the score
of the most relevant object is much higher than the
scores of others, then the learning is dominated
by the highest score, and largely throws away the
rank information conveyed by the scores of other
objects. It would be quite helpful if the rank infor-
mation involved in partial sequences of the candi-
date objects can be learned. Top-k models place
distributions over object lists (in length k), and so
can learn partial sequences of objects.

We are interested in how to learn Top-k (k > 1)
models while keeping the computation tractable.
To achieve the goal, we propose a stochastic List-
Net approach, which samples a small set of the
Top-k permutation classes (object lists), and train
the Top-k model based on this small set instead
of the full set of permutation classes. As a com-
parison, the full set of permutation classes of the
Top-k model is n!

(n−k)! , which is computationally
prohibitive if k > 1. With stochastic ListNet, a
subset of the permutation classes that involves on-
ly l members are randomly selected. Training the
Top-k model based on this subset greatly reduces
the computation cost, even with a large k. In fact,
the subset approach imposes a bound of the com-
putation cost that is largely determined by the the
size of the subset (l), while independent of the to-
tal number of objects n and the model order k.

Interestingly, the stochastic approach offers not
only quick learning, but also a chance of learning
partial ranks. This is obvious because only a sub-
set of the object lists are selected in model train-

ing, and so the rank information involved in the
subset of the permutation classes can be learned.
With the Top-1 model, partial ranks reduces to par-
tial sequences since each object list involves only
one object. As we have discussed, learning partial
sequences is an advantage of Top-k models with
k > 1. This means that stochastic Top-1 List-
Net possesses some advantages of Top-k ListNet,
while the computation cost is much lower.

3.3 Sampling methods for stochastic ListNet

The training process of stochastic ListNet start-
s from sampling l permutation classes, or object
lists. For each object list, k objects are sampled
following a particular distribution. As mentioned
in Section 1, three distributions are studied in this
paper: uniform distribution, fixed distribution and
adaptive distribution. They are presented as fol-
lows.

Uniform distribution sampling: In this
method, all the k objects of a particular object list
are sampled with an equal probability. This sam-
pling method is simple but biased towards irrele-
vant candidates, since there are much more irrele-
vant objects than relevant ones in the training data.
A re-sampling approach is proposed to remedy the
bias, as will be discussed in Section 4.

Fixed distribution sampling: In this method,
the objects are sampled following a distribution
proportional to the human-labelled scores. For in-
stance, in the LETOR dataset that is used in this s-
tudy, each candidate object (document) is labelled
as 2 (very relevant), 1 (relevant) or 0 (irrelevan-
t). These scores are normalized by softmax and
are used as the probability distribution when sam-
pling objects. Because the probabilities of relevant
objects are larger than those of irrelevant object-
s, more relevant objects would be selected by this
sampling approach in model training.

Adaptive distribution sampling: The fixed
distribution sampling mentioned above relies on
human-labelled scores, which may be impacted by
label errors. Moreover, the absolute values of hu-
man labels are not good measures of object rel-
evance. To solve these problems, we choose the
outputs of the ‘current’ neural network as the rel-
evance scores, and sample the objects according
to these scores. Note that the network outputs are
natural measures of object relevance based on the
present ranking model. As the model (the neural
network) keeps updated during model training, the
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relevance scores are accordingly changed. In each
iteration, the relevance scores are re-calculated,
and the sampling is based on the new scores in the
next iteration.

3.4 Gradients with linear networks
Cao et al. (2007) optimized the ListNet model by
gradient descent. For each query, the learn rule is
formuated by:

w = w − η∆w

where η is the learning rate, and w denotes the pa-
rameters of the model fw. ∆w denotes the gradi-
ent and it can be computed as follows:

∆w =
∑
∀g∈Gk

∂Pz(i)(fw)(g)

∂w

Py(i)(g)
Pz(i)(fw)(g)

.

For simplicity, a linear NN model was used by Cao
et al. (2007). This has been adopted in our study as
well, written by z(i) = fw(x(i)

j ) = wTx
(i)
j , where

x
(i)
j denotes the feature vector of the j-th object of

the i-th query. In the case of the Top-1 model, it
shows that:

∆w =
∑
j

[σ(z(i), j)− σ(y(i), j)]x(i)
j

where σ(s, j) is the j-th value of the softmax func-
tion of the score vector s, given by:

σ(s(i), j) =
es

(i)
j∑n(i)

t=1 e
s
(i)
t

.

In the case of the Top-k model, the gradien-
t(Derivative of cross entropy between Pz(i) and
Py(i) when k >= 2) is a bit complex, but still man-
ageable:

∆w =
∑
g∈Gk

[(
k∏
t=1

σ̂(y(i), t))·

(
k∑

f=1

{x(i)
jf
−

n(i)∑
v=f

σ̂(z(i), v)x(i)
jv
})]

(4)

where σ̂(·) defines a ‘partial’ softmax(The partial
softmax means that the σ(s, f) has a similar for-
m as softmax, however when computing the value
for each f, the denominator is not the summation
from 1 to n, instead a partial sequence from f to
n.), given by:

σ̂(s(i), f) =
e
s
(i)
jf∑n(i)

t=f e
s
(i)
jt

.

3.5 Stochastic Top-k ListNet algorithm
We present the stochastic Top-k ListNet algorith-
m, by employing the techniques described above.
The gradient descent (GD) approach is adopted.
All the training samples are processed sequentially
in an iteration. The training runs several iterations
until the convergence criterion is reach. Another
detail is that the learning rate is multiplied by 0.1
whenever the objective function is worse than the
previous iteration. The procedure is illustrated in
Algorithm 1, where L(t) denotes value of the ob-
jective function after the t-th iteration.

Algorithm 1 Stochastic Top-k ListNet
Require:

Input:
D = {(q(1), x(1), y(1)), ..., (q(m), x(m), y(m))}:
training data
T: number of iterations
η: learning rate

Procedure:
1: Randomly initialize w
2: for t = 1 to T do
3: for i = 1 to m do
4: select the i-th training instance

(q(i), x(i), y(i)) ∈ D
5: Sample the permutation classes Gk
6: Compute ∆w according to Eq. (4)
7: Update fw: w = w − η∆w
8: end for
9: if L(t) < L(t− 1) then

10: η = 0.1η
11: end if
12: end for

4 Experiments

4.1 Data
The proposed stochastic Top-k ListNet method is
tested on the document retrieval task based on the
MQ2008 dataset of LETOR 4.0 (Liu et al., 2007).
This database was released in early 2007 and has
been widely used in learning to rank studies. It
contains queries and corresponding candidate doc-
uments. The human-labelled scores are among
three values {0, 1, 2}, representing little, medium,
and strong relevance between queries and candi-
date documents, respectively. The training set,
validation set and test data all contain 784 queries.
The document features used in this study include
term frequency, inverse document frequency, B-
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M25, and language model scores for IR. Some
new features proposed recently are also included,
such as HostRank, feature propagation, and topi-
cal PageRank.

4.2 Experiment Setup

In our experiments, we consider Top-k model-
s where k = 1, 2, 3, and 4. Although any k is
possible with the proposed stochastic ListNet, we
will show that simply increasing the model order
k does not improve performance. The P@1 and
P@10 performance is used as the evaluation met-
ric.

Specially, for all the three distribution sam-
pling methods, the sampling process involves t-
wo steps: pre-selection and re-sampling. The pre-
selection step samples a list of documents fol-
lowing three distributions mentioned above, and
in the re-sampling step, document lists including
more relevant documents are retained with a high-
er probability. For example, denoting the pre-
selected document list by (v1,v2,...,vk) where k is
the length of the list, and denoting the correspond-
ing human-labelled scores by (s1, s2,...,sk), the
probability that the list is retained is given by∑k

i=1 si
kS

where S is the maximum value of the human-
labelled scores, which is 2 in our case. The re-
sampling approach is designed to encourage doc-
ument lists containing more relevant documents,
which is the most important for the uniform distri-
bution sampling.

In stochastic Top-k ListNet, the learning rate is
set as 10−3 for k = 1, and 10−5 for k > 1. These
values are set to achieve the best performance on
the validation set. Another important parameter of
the stochastic Top-k ListNet approach is the num-
ber of samples of the document lists (or the size
of subset of permutation classes selected), denoted
by l. Various settings of l are experimented with in
this study. To eliminate randomness in the results,
all the experiments are repeated 20 times and the
averaged performance is reported.

4.3 Experimental results

The P@1 results on the test dataset with different
orders of Top-k ListNet are reported in Figure 1
to Figure 4. In each figure, the number of docu-
ment lists varies from 5 to 500. For comparison,
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Figure 1: The P@1 performance on the test data
with the Top-1 ListNet utilizing the three sampling
approaches. The size of the permutation subset
varies from 50 to 500.
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Figure 2: The P@1 performance on the test data
with the Top-2 ListNet utilizing the three sampling
approaches. The size of the permutation subset
varies from 5 to 500.
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Figure 3: The P@1 performance on the test data
with the Top-3 ListNet utilizing the three sampling
approaches. The size of the permutation subset
varies from 5 to 500.

the results with the conventional ListNet are al-
so presented. Note that the re-sampling approach
was not applied to the Top-1 model as we found
it caused performance reduction. This is perhaps
because the sampling space is small with the Top-
1 model, and so re-sampling tends to cause over-
emphasis on relevant documents.
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Figure 4: The P@1 performance on the test data
with the Top-4 ListNet utilizing the three sampling
approaches. The size of the permutation subset
varies from 5 to 500.

From these results, we first observe that s-
tochastic ListNet with either fixed or adaptive dis-
tribution sampling tends to outperform the conven-
tional ListNet approach, particularly with a large
k. This confirms our argument that rank informa-
tion can be learned from a subset of the permu-
tation classes that are randomly selected, and the
partial rank learning can lead to even better per-
formance than the full rank learning, the case of
conventional ListNet. This is an interesting result
and demonstrates the stochastic ListNet is both
faster and better than the conventional ListNet. It
is also seen that the adaptive distribution sampling
performs slightly better than the fixed distribution
sampling. This is not surprising as the adaptive
distribution sampling uses a more reasonable rel-
evance score (neural network output) to balance
relevant and irrelevant documents. The uniform
distribution sampling performs a little worse than
the other two sampling methods, probably caused
by the less informative uniform distribution.

Another observation is that in all the four fig-
ures, the performance of the stochastic ListNet
methods increases with more samples of the ob-
ject lists. However if there are too many samples,
the performance starts to decrease. This can be
explained by the fact that the sampling prefers rel-
evant documents which are more informative. A
larger sample set often includes more informative
documents; however if the set is too large, many ir-
relevant documents will be selected and the perfor-
mance is reduced. In the case that the number of
samples is very large (500 for example for Top-1),
the stochastic ListNet falls back to the convention-
al ListNet, and their performance becomes similar.

Comparing the results with different k, it can
be seen that a larger k leads to a better perfor-

mance with stochastic ListNet. This confirms that
high-order Top-k models can learn more ranking
information. However, this is not necessarily the
case with the conventional ListNet. For example,
the Top-2 model does not offer better performance
than the Top-1 model. This is perhaps because
high-order Top-k models consider a large num-
ber of document lists and most of them are not
informative, which leads to ineffective learning.
Remind that the conventional ListNet is a special
case of the stochastic ListNet with a very large
sample set, and we have discussed that an over
large sample set actually reduces performance.

The averaged training time and the performance
in precession are presented in Table 1. For pre-
cession, both P@1 and P@10 results are report-
ed, though we focus on P@1 since it is more con-
cerned for applications such as QA. Note that for
stochastic ListNet, the optimal number of samples
(document lists) has been selected according to the
P@1 performance on the validate set.

From these results, it can be seen that the con-
ventional Top-1 ListNet is rather fast, however the
Top-2 model is thousands of times slower. With
k > 2, the training time becomes prohibitive and
so they are not listed in the Table. This is expected
since the conventional ListNet considers the full
set of permutations which is a huge number with
a large k. With the stochastic ListNet, the training
time is dramatically reduced. Even with a large k,
the computation cost is still manageable, because
the computation is mostly determined by the num-
ber of object lists, rather than the value of k. When
comparing the three sampling methods, it can be
found the convergence speed of the uniform distri-
bution approach is the slowest, probably due to the
ineffective selection for relevant documents. The
adaptive distribution sampling is the fastest, prob-
ably attributed to the collaborative update of the
model and the distribution.

As for the P@1 performance, the stochastic
ListNet method generally outperforms its non-
stochastic counterpart, particularly with the adap-
tive distribution sampling. For example, the best
P@1 results obtained on the test data with the s-
tochastic Top-1 ListNet is 0.4127, which outper-
forms the conventional Top-1 ListNet (0.4119).
This advantage of stochastic ListNet, as we ar-
gued, is largely attributed to its capability of learn-
ing partial rank information with samples of par-
tial sequences of the rank list.
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Comparing the results with different k values,
it can be seen that a larger k tends to offer better
P@1 performance on the training set, with either
the conventional ListNet or the stochastic ListNet.
For example, with the conventional ListNet, the
results are 0.4101 vs. 0.4119 with the Top-1 and
Top-2 models respectively. However, the perfor-
mance gap is rather marginal, and the advantage
with the large k does not propagate to the results
on the test data (as has been seen in Figure 1 and
Figure 2). This indicates that for the conventional
ListNet, the Top-1 model is not the only choice in
the sense of computation complexity, but also the
best choice in the sense of P@1 performance.

For stochastic ListNet, the performance im-
proves with k increases. In contrast to the con-
ventional ListNet, this improvement propagates to
the results on the test data. For example, with the
adaptive distribution sampling, the P@1 results on
the training set are 0.4102 vs. 0.4184 with the
Top-1 and Top-3 models respectively, and the re-
sults on the test data are 0.4121 vs. 0.4177 respec-
tively.

Nevertheless, the P@1 performance improve-
ment with a large k is rather marginal, and an
over large k simply reduces the performance. To
make it clear, we vary the value of k from 1 to
100 and plot the P@1 results in Figure 5). It can
be seen that larger k (> 4) does not offer any
merit but causes performance instability, particu-
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Figure 5: The P@1 performance on the test data
with the stochastic Top-k ListNet approach, where
k varies from 1 to 100.

larly with the adaptive sampling approach. As we
have discussed, with the stochastic ListNet, par-
tial rank information can be learned with simple
Top-k models, even the Top-1 model. This capa-
bility of partial rank learning with simple models
reduces the necessity of employing complex Top-k
models. This is a highly valuable conclusion, and
it suggests that a simple Top-1 or Top-2 model is
sufficient for the ListNet method, if the stochas-
tic method is applied. Considering the trade-off
between computation cost and model strength, we
recommend stochastic Top-2 ListNet which deliv-
ers better P@1 performance than the Top-1 model
consistently, with sufficiently fast computing. If
more computation is affordable, stochastic Top-3
ListNet can be used to obtain better performance.

Finally, we highlight that the conclusions ob-

P@1 P@10
Model Top-k Sampling Time (s) Train Val. Test Train Val. Test

C-ListNet k=1 - 2.509 0.4101 0.4107 0.4119 0.2684 0.2684 0.2676
S-ListNet k=1 UDS 0.753 0.4097 0.4106 0.4120 0.2680 0.2683 0.2676
S-ListNet k=1 FDS 0.391 0.4094 0.4090 0.4127 0.2679 0.2681 0.2676
S-ListNet k=1 ADS 0.375 0.4102 0.4097 0.4121 0.2680 0.2682 0.2677
C-ListNet k=2 - 2275.5 0.4119 0.4043 0.4043 0.2678 0.2674 0.2674
S-ListNet k=2 UDS 2.898 0.4140 0.4143 0.4130 0.2682 0.2686 0.2681
S-ListNet k=2 FDS 2.410 0.4145 0.4144 0.4164 0.2684 0.2688 0.2684
S-ListNet k=2 ADS 2.013 0.4162 0.4168 0.4145 0.2686 0.2689 0.2687
S-ListNet k=3 UDS 4.358 0.4167 0.4204 0.4152 0.2686 0.2681 0.2680
S-ListNet k=3 FDS 3.997 0.4137 0.4205 0.4131 0.2687 0.2695 0.2685
S-ListNet k=3 ADS 3.483 0.4184 0.4196 0.4177 0.2692 0.2697 0.2689
S-ListNet k=4 UDS 6.161 0.4145 0.4226 0.4104 0.2686 0.2694 0.2687
S-ListNet k=4 FDS 5.773 0.4145 0.4232 0.4150 0.2690 0.2695 0.2686
S-ListNet k=4 ADS 4.358 0.4149 0.4247 0.4164 0.2692 0.2700 0.2689

Table 1: Averaged training time (in seconds), P@1 and P@10 on training, validation (Val.) and test
data with different Top-k methods. ‘C-ListNet’ stands for conventional ListNet, ‘S-ListNet’ stands for
stochastic ListNet.
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tained from the P@1 results and the P@10 re-
sults perfectly match. In fact, the P@10 results
look more consistent between training and test da-
ta, and the advantage of the stochastic approach
seems more clear, particularly with the adaptive
sampling. This is not surprising as the optimiza-
tion goal of ListNet is essentially to form a good
rank that involves multiple candidates, and so
P@10 is apt to measure the superiority of a bet-
ter rank approach.

5 Discussion

An interesting observation with the stochastic
ListNet approach is that sampling more relevan-
t documents improves performance. This can be
explained by the data imbalance between relevan-
t and irrelevant documents, i.e., there are much
more irrelevant documents than relevant docu-
ments in the training data. This imbalance lead-
s to biased models that tend to classify all docu-
ments as irrelevant. The re-sampling approach can
be regarded as a way of balancing the two classes,
and the fixed and adaptive distribution sampling
can be regarded as another way to achieve the
goal. Note that in the fixed distribution sampling,
the distribution is solely dependent on the human-
labeled scores. These scores are good measures
of the rank of relevance but not good measures of
the relevance itself. A possible way to solve this
problem is to learn a scoring function that map-
s human-labelled scores to more reasonable mea-
sures of document relevance, though we took a d-
ifferent way that employs the network outputs as
the relevance measures, which is what the adaptive
distribution sampling method does. Note that the
network output is a natural measure of documen-
t relevance, so the adaptive distribution sampling
works the best in our experiments.

Another related issue is the harsh labelling of
the AM2008 dataset. In this dataset, documents
are labelled by only three values {0, 1, 2}, which
is rather imprecise and the rank information is very
limited. This harsh labeling is another reason why
the uniform distribution sampling does not work:
by uniform distribution sampling, there is a large
probability that the sampled object lists involve
documents that are all labelled by 0. This lead-
s to an inefficient learning. Another consequence
of the harsh labeling is that the power of compli-
cated ranking models is largely constrained. For
example, with the Top-k (k > 1) ListNet model,

many of the k documents in a candidate list are la-
belled as the same score, resulting in limited rank
information for the Top-k model to learn. This is
why Top-k models did not exhibit much superi-
ority to the Top-1 model in our experiments. We
argue that top-k models would provide more con-
tributions with more thorough labels (e.g., scores
in real values). This is an ongoing research of our
group.

Finally, we highlight that the stochastic ap-
proach is not limited to the ListNet model, but any
model for listwise learning. It is well known that
listwise learning outperforms pairwise learning,
due to it is capability of learning full ranks (Li-
u, 2009). However learning full ranks requires
unaffordable computation and so is infeasible in
practice, even with the Top-k approximation. Our
work demonstrated that learning full ranks can be
approximated by learning partial ranks, and a lim-
ited number samples of such partial ranks is suf-
ficient to convey the rank information. This s-
tochastic learning is very fast, and even delivers
better performance. It can be regarded as a gener-
al framework that treats both the pair-wise learn-
ing and the full rank learning as two special cases.
In fact, if the set of partial ranks involves all the
permutation classes, it reduces to the convention-
al listwise learning, and if the set of partial ranks
involves all object pairs, it resembles the pairwise
learning. A wide range of listwise learning meth-
ods can benefit from the idea of stochastic learning
provided in this paper.

6 Conclusion

This paper proposed a stochastic ListNet method
to speed up the training of ListNet models and im-
prove the ranking performance. The basic idea is
to approximate the full rank learning by learning a
small number of partial ranks. Three sampling ap-
proaches were proposed to select the partial ranks,
and Top-k ListNet models with various complexi-
ty (k values) were investigated.

Our preliminary results on the MQ2008 dataset
confirmed that the stochastic ListNet approach can
dramatically speeds up the model training, and
more interestingly, it can produce better ranking
performance than the conventional ListNet. Espe-
cially, the adaptive distribution sampling method
delivered the best P@1 performance. An appeal-
ing observation is that the simple Top-2 model is
very effective and more complex Top-k models
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seem not very necessary, considering the trade-off
between training complexity and model strength.
This observation, however, is purely based on the
MQ2008 dataset. As have been discussed, more
detailed human labels may require more complex
models, for which the stochastic method proposed
in this paper is essential to conduct the model
training. For the future work, we plan to study
Top-k ListNet models with other databases and ap-
ply the stochastic learning approach to other list-
wise learning to rank methods.
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Abstract

Elementary-level science exams pose sig-
nificant knowledge acquisition and rea-
soning challenges for automatic question
answering. We develop a system that rea-
sons with knowledge derived from text-
books, represented in a subset of first-
order logic. Automatic extraction, while
scalable, often results in knowledge that
is incomplete and noisy, motivating use of
reasoning mechanisms that handle uncer-
tainty.

Markov Logic Networks (MLNs) seem a
natural model for expressing such knowl-
edge, but the exact way of leveraging
MLNs is by no means obvious. We in-
vestigate three ways of applying MLNs to
our task. First, we simply use the extracted
science rules directly as MLN clauses and
exploit the structure present in hard con-
straints to improve tractability. Second,
we interpret science rules as describing
prototypical entities, resulting in a drasti-
cally simplified but brittle network. Our
third approach, called Praline, uses MLNs
to align lexical elements as well as define
and control how inference should be per-
formed in this task. Praline demonstrates
a 15% accuracy boost and a 10x reduction
in runtime as compared to other MLN-
based methods, and comparable accuracy
to word-based baseline approaches.

1 Introduction

We consider the problem of answering questions
in standardized science exams (Clark et al., 2013),
which are used as a benchmark for developing
knowledge acquisition and reasoning capabilities.
The 4th grade science exam dataset from Clark et
al. (2013) tests for a wide variety of knowledge

and its application to specific scenarios. In partic-
ular we focus on a subset that test students’ un-
derstanding of various kinds of general rules and
principles (e.g., gravity pulls objects towards the
Earth) and their ability to apply these rules to
reason about specific situations or scenarios (e.g.,
which force is responsible for a ball to drop?).

Answering these questions can be naturally for-
mulated as a reasoning task given the appropri-
ate form of knowledge. Prior work on reasoning
based approaches has largely relied on manually
input knowledge (Lenat, 1995). We present an in-
vestigation of a reasoning approach that operates
over knowledge automatically extracted from text.

In order to effectively reason over knowledge
derived from text, a QA system must handle in-
complete and potentially noisy knowledge, and
allow for reasoning under uncertainty. We cast
QA as a reasoning problem in weighted-first order
logic. While many probabilistic formalisms ex-
ist, we use Markov Logic Networks for the ease of
specification of weighted rules. MLNs have been
adopted for many NLP tasks (Singla and Domin-
gos, 2006a; Kok and Domingos, 2008; Poon and
Domingos, 2009). Recently, Beltagy et al. (2013)
and Beltagy and Mooney (2014) have shown that
MLNs can be used to reason with rules derived
from natural language. While MLNs appear to be
a natural fit, it is a priori unclear how to effectively
formulate the QA task as an MLN problem. We
find that unique characteristics of this domain pose
new challenges in efficient inference. Moreover, it
is unclear how MLNs might perform on automat-
ically extracted noisy rules and how they would
fare against simpler baselines that do not rely as
much on structured logical representations.

Our goal is to build a high accuracy reasoning-
based QA system that can answer a question in
near real time. To this end, we investigate three
MLN-based formulations: (1) A natural formula-
tion that is intuitive but suffers from inefficient in-
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ference (e.g., over 10 minutes on 31% of the ques-
tions); (2) an extension that improves efficiency by
using prototypical constants, but is brittle to vari-
ation in structure; and (3) a formulation with im-
proved flexibility to handle variation in text and
structure that is 15% more accurate and 10x faster
than the other approaches.

Despite significant improvements over two nat-
ural MLN formulations, the best reasoning-based
configuration still does not outperform a simpler
word-based baseline. We surmise that without ef-
fective salience models on text-derived rules, rea-
soning is unable to leverage the systematic ad-
vantages of the MLN-based models. The im-
proved flexibility in the MLN-based models es-
sentially appears to approximate word-based ap-
proaches due to the noisy and incomplete nature of
the input knowledge. Nevertheless, the reasoning
based method shows improved performance when
adding multiple rules, which provides a principled
way to inject additional knowledge and control in-
ference for further improvements.

2 Background: QA Task

Following Clark et al. (2014), we formulate QA
as a reasoning task over knowledge derived from
textual sources. A multiple choice question with
k answer options is turned into k true-false ques-
tions, each of which asserts some known facts (the
setup) and posits a query . The reasoning task is
to determine whether the query is true given the
setup and the input knowledge.

The input knowledge is derived from 4th-grade
science texts and augmented with a web search for
terms appearing in the texts. Much of this knowl-
edge is in terms of generalities, expressed natu-
rally as IF-THEN rules. We use the representation
and extraction procedures of Clark et al. (2014),
recapitulated briefly here for completeness.

Rule Representation: The generalities in text
convey information about classes of entities and
events. Following the neo-davidsonian reified rep-
resentation (Curran et al., 2007), we encode infor-
mation about events (e.g, falling) and entities (e.g.,
ball or stone) using variables. Predicates such
as agent , cause, function, towards, and in define
semantic relationships between variables. Rather
than committing to a type ontology, the variables
are associated with their original string represen-
tation using an isa predicate.

The “if” or antecedent part of the rule is se-
mantically interpreted as being universally quanti-
fied (omitted below for conciseness) whereas ev-
ery entity or event mentioned only in the “then”
or consequent part of the rule is treated as
existentially quantified. Both antecedent and
consequent are interpreted as conjunctions. For
example, “Growing thicker fur in winter helps
some animals to stay warm” translates into:

isa(g, grow), isa(a, some animals),
isa(f, thicker fur), isa(w, the winter),
agent(g, a), object(g, f), in(g, w)
⇒ ∃s, r : isa(s, stays), isa(r,warm),

enables(g, s), agent(s, a), object(s, r) (1)

Question Representation: The question repre-
sentation is computed similarly except that we use
fixed constants (represented as block letters) rather
than variables. For example, consider the ques-
tion: “A fox grows thick fur as the season changes.
This helps the fox to (A) hide from danger (B) at-
tract a mate (C) find food (D) keep warm?” The
T/F question corresponding to option (D) trans-
lates into:

setup :isa(F, fox), isa(G, grows), isa(T,
thick fur), agent(G,F ), object(G,T )

query :isa(K, keep warm), enables(G,K),
agent(K,F )

Lexical Reasoning: Since entity and event vari-
ables hold textual values, reasoning must accom-
modate lexical variability and textual entailment.
For example, the surface forms “thick fur” and
“thicker fur” are semantically equivalent. Also,
the string “fox” entails “some animal”. We use a
lexical reasoning component based on textual en-
tailment to establish lexical equivalence or entail-
ment between variables.

Most Likely Answer as Inference: Given KB
rules and the question as input, we formulate a
probabilistic reasoning problem by adding lexical
reasoning probabilities and incorporating uncer-
tainties in derived rules. Given setup facts S and k
answer optionsQi, we seek the most likely answer
option: arg maxi∈{1,...,k} Pr[Qi | S,KB ]. This is
a Partial MAP computation which is known to be
#P-hard (Park, 2002). Hence methods such as In-
teger Linear Programming are not directly appli-
cable.
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2.1 Challenges

Reasoning with text-derived knowledge presents
challenges that expose the brittleness and rigidity
inherent in pure logic-based frameworks. Text-
derived rules are incomplete and include lexical
items as logical elements, making rule application
in a pure logical setting extremely brittle: Many
relevant rules cannot be applied because their pre-
conditions are not fully satisfied due to poor align-
ment. For example, naive matching of rule (1)
with the facts in the setup would not conclude
the query since the rule requires “in the winter”
to be true. A robust inference mechanism must
allow for rule application with partial evidence.
Further, a single text-derived rule may be insuf-
ficient to answer a question. For example, “An-
imals grow thick fur in winter” and “Thick fur
helps keep warm” may need to be chained.

3 Probabilistic Formulations

Statistical Relational Learning (SRL) mod-
els (Getoor and Taskar, 2007) are a natural fit for
QA reasoning. They provide probabilistic seman-
tics over knowledge in first-order logic, thereby
handling uncertainty in lexical reasoning and
incomplete matching. While there are many SRL
formalisms including Stochastic Logic Programs
(SLPs) (Muggleton, 1996), ProbLog (Raedt et
al., 2007), and PRISM (Sato and Kameya, 2001),
we use Markov Logic Networks (MLNs) for
their ease of specification and ability to naturally
handle potentially cyclic rules.

Markov Logic Networks (MLNs) are rela-
tional models represented using weighted first-
order logic rules. The rules provide a template
for generating a Markov network by grounding the
variables to all the constants in the rules. Each rule
fi forms a clique in the ground network and its
weight wi determines the potential for the clique.
Since all cliques generated by grounding the same
clause have the same weight, the probability of a
given assignment is calculated as:

P (X = x) =
1
Z

exp

(∑
i

wini(x)

)

where ni(x) is the number of times the ith for-
mula is satisfied by the world x and Z is a normal-
ization constant. Intuitively, a rule with a positive
weight is more likely to be true than false.Higher
the weight of a rule, more likely it is to be true.

We explore three MLN formulations:
a) First-order MLN: Given a question and rel-

evant first-order KB rules, we convert them into an
MLN program and let MLN inference automati-
cally handle rule chaining. While a natural first-
order formulation of the QA task, this struggles
with long conjunctions and existentials in rules, as
well as relatively few atoms and little to no sym-
metries. This results in massive grounding sizes,
not remedied easily by existing solutions such as
lazy, lifted, or structured inference. We exploit
the structure imposed by hard constraints to vastly
simplify groundings and bring them to the realm
of feasibility, but performance remains poor.

b) Entity Resolution MLN: Instead of reason-
ing with rules that express generalities over classes
of individuals, we replace the variables in the
previous formulation with prototypical constants.
This reduces the number of groundings, while re-
taining the crux of the reasoning problem defined
over generalities. Combining this idea with exist-
ing entity resolution approaches substantially im-
proves scalability. However, this turns out to be
too brittle in handling lexical mismatches, espe-
cially in the presence of differences in parse struc-
tures

c) Praline MLN: Both of the above MLNs rely
on exactly matching the relations in the KB and
question representation, making them too sensitive
to syntactic differences. In response, PRobabilis-
tic ALignment and INferencE (Praline) performs
inference using primarily the string constants but
guided by the edge or relational structure. We
relax the rigidity in rule application by explicitly
modeling the desired QA inference behavior in-
stead of relying on MLN’s semantics.

3.1 First-Order MLN Formulation

For a set R of first-order KB rules, arguably
the most natural way to represent the QA task
of computing Pr[Qi | S,R] as an MLN pro-
gram M is to simply add R essentially verba-
tim as first-order rules in M . For all existen-
tially quantified variables, we introduce a new do-
main constant. Predicates of M are those in R,
along with a binary entails predicate represent-
ing the lexical entailment blackbox, which allows
M to probabilistically connect lexically related
constants such as “thick fur” and “thicker fur” or
“fox” and “some animals”. entails is defined to
be closed-world and is not necessarily transitive.
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Evidence: Soft evidence for M consists
of entails relations between every or-
dered pair of entity (or event) strings, e.g.,
entails(fox, some animals). Hard evidence for
M comprises grounded atoms in S.

Query: The query atom in M is result(), a new
zero-arity predicate result() that is made equiva-
lent to the conjunction of the predicates in Qi that
have not been included in the evidence. We are
interested in computing Pr[result() = true].

Semantic Rules: In addition to KB science
rules, we add semantic rules that capture the in-
tended meaning of our predicates, such as ev-
ery event has a unique agent, cause(x, y) →
effect(y, x), etc. Semantic predicates also en-
force natural restrictions such as non-reflexivity,
!r(x, x), and anti-symmetry, r(x, y)→!r(y, x).

Finally, to help bridge lexical gaps more, we
use a simple external lexical alignment algo-
rithm to estimate how much does the setup en-
tail antecedentr of each KB rule r, and how much
does consequentr entail query . These are then
added as two additional MLN rules per KB rule.

Our rules have a specific first-order logic form:

∀x1, .., xk
∧
i

Ri(xi1 , xi2)

→ ∃xk+1, .., xk+m
∧
j

Rj(xj1 , xj2)

Existentials spanning conjunctions in the conse-
quent of this rule form can neither be directly fed
into existing MLN systems nor naively translated
into a standard form without incurring an expo-
nential blowup. We introduce a new “existential”
predicate Eαj (x1, . . . , xk, xk+j) for each existen-
tial variable xk+j in each such rule α. This predi-
cate becomes the consequent of α, and hard MLN
rules make it equivant to the original consequent.

3.1.1 Boosting Inference Efficiency.
A bottleneck in using MLN solvers out-of-the-box
for this QA formulation is the prohibitively large
grounded network size. For example, 34 out of
108 runs timed out during MLN grounding phase
after 6 minutes. On average, the ground networks
in these runs were of the order of 1.4×106 ground
clauses. Such behavior has also been observed,
perhaps to a lesser degree, in related NLP tasks
such as RTE (Beltagy and Mooney, 2014) and STS
(Beltagy et al., 2014).

Existing techniques address large grounding
size by focusing on relevant atoms (Singla and
Domingos, 2006b; Shavlik and Natarajan, 2009)
or grouping atoms into large classes of inter-
changeable atoms (de Salvo Braz et al., 2005;
Gogate and Domingos, 2011; Venugopal and
Gogate, 2012). Our QA encoding has very few
atoms (often under 500) but very long clauses and
highly asymmetric structure. This makes existing
methods ineffective. For example, lazy inference
in Alchemy-11 reduced ∼70K ground clauses to
∼56K on a question, while our method, described
next, brought it down to only 951 clauses. Fur-
ther, Lifted Blocked Gibbs and Probabilistic Theo-
rem Proving, as implemented in Alchemy-2, were
slower than basic Alchemy-1.

We utilize the combinatorial structure imposed
by the set H of hard constraints (e.g., semantic
rules, definition style rules, some science rules)
present in the MLN, and use it to simplify the
grounding of both hard and soft constraints. Im-
portantly, this does not alter the first-order MLN
semantics. The approach thus embraces hard
clauses rather than relaxing them, as is often done
in probabilistic inference techniques, especially
when avoiding infinite energy barriers in MCMC
based methods. Assuming an arbitrary constraint
ordering in H , let Fi denote the first i constraints.
Starting with i = 1, we generate the propositional
grounding Gi of Fi, use a propositional satisfia-
bility (SAT) solver to identify the set Bi of back-
bone variables of Gi (i.e., variables that take a
fixed value in all solutions to Gi), freeze values of
the corresponding atoms in Bi, increment i, and
repeat until G|H| has been processed. Although
the end result can be described simply as freez-
ing atoms corresponding to the backbone variables
in the grounding of H , the incremental process
helps us control the intermediate grounding size
as a propositional variable is no longer generated
for a frozen atom. Once the freezing process is
complete, the full grounding of H is further sim-
plified by removing frozen variables. Finally, the
soft constraints S are grounded much more effi-
ciently by taking frozen atoms into account. Our
approach may also be seen as an extension of a
proposal by Papai et al. (2011).

1http://alchemy.cs.washington.edu
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3.2 Entity Resolution Based MLN

Representing generalities as quantified rules de-
fined over classes of entities or events appears to
be a natural formulation, but is also quite inef-
ficient leading to large grounded networks. De-
spite the drastically reduced number of groundings
by our inference approach, the first-order MLN
formulation still timed out on 31% of the ques-
tions. Hence we consider an alternative formula-
tion that treats generalities as relations expressed
over prototypical entities and events. This formu-
lation leverages the fact that elementary level sci-
ence questions can often be answered using rela-
tively simple logical reasoning over exemplar ob-
jects and homogeneous classes of objects. The
only uncertainty present in our system is what’s
introduced by lexical variations and extraction er-
rors, which we handle with probabilistic equality.

KB Rules and Question: We define rules over
prototypical entity/event constants, rather than
first-order variables. These constants are tied to
their respective string representations, with the un-
derstanding that two entities behave similarly if
they have lexically similar strings. For example,

agent(Grow ,Animals), object(Grow ,Fur)⇒
enables(Grow ,StayWarm)

What was a first-order rule in FO-MLN is now al-
ready fully grounded! Entities/events in the ques-
tion are also similarly represented by constants.
Note that the efficiency boost using hard con-
straints (Section 3.1.1) is orthogonal to using pro-
totypical constants and can be applied here as well.

Equivalence or Resolution Rules: Using a sim-
ple probabilistic variant of existing Entity/Event
Resolution frameworks (Singla and Domingos,
2006a; Kok and Domingos, 2008), we ensure that
(a) two entities/events are considered similar when
they are tied to lexically similar strings and (b)
similar entities/events participate in similar rela-
tions w.r.t. other entities/events. This defines soft
clusters or equivalence classes of entities/events.
We use a probabilistic sameAs predicate which is
reflexive, symmetric, and transitive, and interacts
with the rest of the MLN as follows:

isa(x, s), entails(s, s′)→ isa(x, s′).
isa(x, s), isa(y, s)→ sameAs(x, y).

w : isa(x, s), !isa(y, s)→ !sameAs(x, y)

r(x, y), sameAs(y, z)→ r(x, z).

r in the last rule refers to any of the MLN pred-
icates other than entails and isa . The sameAs
predicate, as before, is implemented in a typed
fashion, separately for entities and events. We will
refer to this formulation as ER-MLN.

Partial Match Rules: Due to lexical variability,
often not all conjuncts in a rule’s antecedent are
present in the question’s setup. To handle incom-
plete matches, for each KB derived MLN rule of
the form (∧ki=1Li) → R, we also add k soft rules
of the formLi → R. This adds flexibility, by help-
ing “fire” the rule in a soft manner. This differs
from FO-MLN which uses an external alignment
system to find parts of the antecedent mentioned
in the setup, L′ and creates one rule L′ ⇒ R.

Comparison with FO-MLN: Long KB rules
and question representation now no longer have
quantified variables, only the binary or ternary
rules above do. These mention at most 3 variables
each and thus have relatively manageable ground-
ings. On the other hand, as discussed in the next
section, ER-MLN can fail on questions that have
distinct entities with similar string representations
(e.g. two distinct plants in a question would map
to the same entity). Further, it fails to apply valid
rules in the presence of syntactic differences such
as agent(Fall,Things) generated by “things fall
due to gravity” and object(Dropped,Ball) for “a
student dropped a ball”. Although “drop” entails
“fall” and “ball” entails “object”, ER-MLN cannot
reliably bridge the structural difference involving
object and agent , as these two relationships typi-
cally aren’t equivalent. Despite these limitations,
ER-MLN provides a substantial scalability advan-
tage over FO-MLN on a vast majority of the ques-
tions that remain within its scope.

3.3 PRobabilistic ALignment and INferencE
ER-MLN handles some of the word-level lexi-
cal variation via resolution and soft partial match
rules that break long antecedents. However, it is
still rigid in two respects:

(1) ER-MLN primarily relies on the predicates
(also referred to as links or edges) for inference.
As a result, even if the words in the antecedent
and setup have high entailment scores, the rule
will still not “fire” if the edges do not match.

(2) As entities bound to lexically equivalent
strings are forced to “behave” identically, ER-
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MLN fails on questions that involve two different
entities that are bound to equivalent string repre-
sentations. Consider the question: “A student puts
two identical plants in the same type and amount
of soil. She puts one of these plants near a sunny
window and the other in a dark room. This exper-
iment tests how the plants respond to (A) light (B)
air (C) water (D) soil.” The entities correspond-
ing to the two plants will be bound to equivalent
string representations and hence will be treated as
the same entity. To avoid this, we do not force the
entailment-based clusters of constants to behave
similarly. Instead, as discussed below, we use the
clusters to guide inference in a softer manner.

To introduce such flexibility, we define an MLN
to directly control how new facts are inferred given
the KB rules. The flexibility to control inference
helps address two additional QA challenges:

Acyclic inference: While knowledge is ex-
tracted from text as a set of directed rules each
with an antecedent and a consequent , there is no
guarantee that the rules taken together are acyclic.
For example, a rule stating “Living things → de-
pend on the sun” and “Sun→ source of energy for
living things” may exist side-by-side. Successful
inference for QA must avoid feedback loops.

False unless proven: While MLNs assume
atoms not mentioned in any rule to be true with
probability 0.5, elementary level science reason-
ing is better reflected in a system that assumes all
atoms to be false unless stated in the question or
proven through the application of a rule. This is
similar to the semantics of Problog (Raedt et al.,
2007) and PRISM (Sato and Kameya, 2001).

While acyclic inference and false unless proven
can be handled by setting high negative priors in
MLNs, inference behavior is susceptible to varia-
tions in these weights. By using hard rules to con-
trol the direction of inference, we can explicitly
enforce these constraints.

We introduce a unary predicate called holds
over string constants to capture the probability of
a string constant being true given the setup is true
(∀x ∈ setup, holds(x) = true) and the KB rules
hold. Instead of using edges for inference, we
use them as factors influencing alignment: similar
constants have similar local neighborhoods. With
n string constants, this reduces the number of un-
observed groundings fromO(n2) edges in the ER-
MLN to O(n) existence predicates. For the exam-

ple rule (1), Praline can be viewed as using the
following rule for inference:

holds(Grow), holds(Animals), holds(Fur),
holds(Winter)⇒ holds(Stays), holds(Warm)

If we view KB rules and question as a labeled
graphG (Figure 1), alignment between string con-
stants corresponds to node alignment in G. The
nodes and edges of G are the input to the MLN,
and the holds predicate on each node captures the
probability of it being true given the setup. We
now use MLNs (as described below) to define the
inference procedure for any such input graph G.

Evidence: We represent the graph struc-
ture of G using predicates node(nodeid)
and edge(nodeid ,nodeid , label). We use
setup(nodeid) and query(nodeid) to represent
the question’s setup and query , resp. Similarly,
we use inLhs(nodeid) and inRhs(nodeid) to
represent rules’ antecedent and consequent , resp.

Graph Alignment Rules: Similar to the previ-
ous approaches, we use entailment scores between
words and short phrases to compute the alignment.
In addition, we also expect aligned nodes to have
similar edge structures:

aligns(x, y), edge(x, u, r),edge(y, v, s)
⇒ aligns(u, v)

That is, if node x aligns with y then their chil-
dren/ancestors should also align. We create copies
of these rules for edges with the same label, r = s,
with a higher weight and for edges with different
labels, r 6= s, with a lower weight.

Inference Rules: We use MLNs to define the
inference procedure to prove the query using the
alignments from aligns . We assume that any node
y that aligns with a node x that holds , also holds:

holds(x), aligns(x, y)⇒ holds(y) (2)

For example, if the setup mentions “fox”, all
nodes that entail “fox” also hold. As we also
use the edge structure during alignment, we would
have a lower probability of “fox” in “fox finds
food” to align with “animal” in “animal grows fur”
as compared to “animal” in “animal finds food”.

We use KB rules to further infer new facts
that should hold based on the rule structure. We
compute lhsHolds , the probability of the rule’s
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Figure 1: KB rule and question as a graph where blue:setup; green:query ; orange:antecedent ;
purple:consequent ; dotted lines: alignments. lhsHolds combines individual probabilities of antecedent
nodes and rhsHolds captures the probability of the consequent .

antecedent holding, and use it to infer rhsHolds ,
the probability of the consequent . Similar to ER-
MLN, we break the rule into multiple small rules.2

w :holds(x), inLhs(x, r)⇒ lhsHolds(r)
w :!holds(x), inLhs(x, r)⇒!lhsHolds(r)

lhsHolds(r)⇒ rhsHolds(r).
rhsHolds(r), inRhs(r, x)⇒ holds(x).

Acyclic inference: We use two pred-
icates, proves(nodeid ,nodeid) and
ruleProves(rule, rule), to capture the infer-
ence chain between nodes and rules, resp. To
ensure acyclicity in inference, we add transi-
tive clauses over these predicates and disallow
reflexivity, i.e., !proves(x, x), and update rule (2):

wp :proves(x, y), holds(x)⇒ holds(y)
wa :aligns(x, y)⇒ proves(x, y)

We capture inference direction between rules by
checking consequent and antecedent alignments:

proves(x, y), inrhs(x, r1), inlhs(y, r2)
⇒ ruleProves(r1, r2).

False unless proven: To ensure that nodes hold
only if they can be proven from setup, we add
bidirectional implications to our rules. An alter-
native is to introduce a strong negative prior on
holds and have a higher positive weight on all
other clauses that conclude holds . However, the
performance of our MLNs was very sensitive to
the choice of the weight. We instead model this
constraint explicitly. Figure 1 shows a sample in-
ference chain using dotted lines.

2An intuitive alternative for the 2nd clause doesn’t cap-
ture the intending meaning, −w :!holds(x), inLhs(x, r) ⇒
lhsHolds(r)

Praline defines a meta-inference procedure that
is easily modifiable to enforce desired QA infer-
ence behavior, e.g. w : aligns(x, y), setup(x) ⇒
!query(y) would prevent a term from the setup to
align with the query . Further, by representing the
input KB and question as evidence, we can define
a single static first-order MLN for all the questions
instead of a compiled MLN for every question.
This opens up the possibility of learning weights
of this static MLN, which would be challenging
for the previous two approaches.3

4 Empirical Evaluation

We used Tuffy 0.44 (Niu et al., 2011) as the
base MLN solver5 and extended it to incorpo-
rate the hard-constraint based grounding reduc-
tion technique discussed earlier, implemented us-
ing the SAT solver Glucose 3.06 (Audemard and
Simon, 2009) exploiting its “solving under as-
sumptions” capability for efficiency. We used a
10 minute timelimit, including a max of 6 minutes
for grounding. Marginal inference was performed
using MC-SAT (Poon and Domingos, 2006), with
default parameters and 5000 flips per sample to
generate 500 samples for marginal estimation.

We used a 2-core 2.5 GHz Amazon EC2 linux
machine with 16 GB RAM. We selected 108
elementary-level science questions (non-diagram,
multiple-choice) from 4th grade New York Re-
gents exam as our benchmark (Dev-108) and used
another 68 questions from the same source as a
blind test set (Unseen-68)7.

3In this work, we have set the weights manually.
4http://i.stanford.edu/hazy/tuffy
5Alchemy 1.0 gave similar results.
6http://www.labri.fr/perso/lsimon/glucose
7http://allenai.org/content/data/Ariscienceexams.txt
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Question MLN #Answered Exam #MLN #Atoms #Ground Runtime
Set Formulation (some / all) Score Rules Clauses (all)

Dev-108
FO-MLN 106 / 82 33.6% 35 384∗ 524∗ 280 s
ER-MLN 107 / 107 34.5% 41 284 2,308 188 s
PRALINE 108 48.8% 51 182 219 17 s

Unseen-68
FO-MLN 66 33.8% - - - 288 s
ER-MLN 68 31.3% - - - 226 s
PRALINE 68 46.3% - - - 17 s

Table 1: QA performance of various MLN formulations. #MLN-Rules, #GroundClauses, and Runtime
per multiple-choice question are averaged over the corresponding dataset. #Answered column indicates
questions where at least one answer option didn’t time out (left) and where no answer option timed out
(right). Of the 432 Dev MLNs (108 × 4), #Atoms and #GroundClauses for FO-MLN are averaged over
the 398 MLNs where grounding finished; 34 remaining MLNs timed out after processing 1.4M clauses.

The KB, representing roughly 47,000 sen-
tences, was generated in advance by processing
the New York Regents 4th grade science exam
syllabus, the corresponding Barron’s study guide,
and documents obtained by querying the Inter-
net for relevant terms. Given a question, we
use a simple word-overlap based matching algo-
rithm, referred to as the rule selector, to retrieve
the top 30 matching sentences to be considered
for the question. Textual entailment scores be-
tween words and short phrases were computed us-
ing WordNet (Miller, 1995), and converted to “de-
sired” probabilities for soft entails evidence. The
accuracy reported for each approach is computed
as the number of multiple-choice questions it an-
swers correctly, with a partial credit of 1/k in case
of a k-way tie between the highest scoring options
if they include the correct answer.

4.1 MLN Formulation Comparison

Table 1 compares the effectiveness of our three
MLN formulations: FO-MLN, ER-MLN, and Pra-
line. For each question and approach, we generate
an MLN program for each answer option using the
most promising KB rule for that answer option.

In the case of FO-MLN, Tuffy exceeded the 6
minute time limit when generating groundings for
34 of the 108× 4 MLNs for the Dev-108 question
set, quitting after working with 1.4 × 106 clauses
on average, despite starting with only around 35
first-order MLN rules. In the remaining MLNs,
where our clause reduction technique successfully
finished, the ground network size reduced dramat-
ically to 524 clauses and 384 atoms on average.

Tuffy finished inference for all 4 answer options
for 82 of the 108 questions; for other questions, it
chose the most promising answer option among
the ones it finished processing. Overall, this re-

sulted in a score of 33.6% with an average of 280
seconds per multiple-choice question on Dev-108,
and similar performance on Unseen-68.

ER-MLN, as expected, did not result in any
timeouts during grounding. The number of ground
clauses here, 2,308 on average, is dominated not
by KB rules but by the binary and ternary en-
tity resolution clauses involving the sameAs pred-
icate. ER-MLN was roughly 33% faster than FO-
MLN, but overall achieved similar exam scores.

Praline resulted in a 10x speedup over ER-
MLN, explained in part by much smaller ground
networks with only 219 clauses on average. It
boosted exam performance by roughly 15%, push-
ing it up to 48.8% on Dev-108 and 46.3% on
Unseen-68 (statistically significantly better than
FO-MLN with p-value< 0.05). This demonstrates
the value that the added flexibility and control Pra-
line brings.

4.2 Praline: Improvements and Ablation

We evaluate Praline when using multiple KB rules
as a chain or multiple inference paths. Simply
using the top two rules for inference turns out to
be ineffective as they are often very similar. In-
stead, we use incremental inference where we add
one rule, perform inference to determine which
additional facts now hold and which setup facts
haven’t yet been used, and then use this infor-
mation to select the next best rule. This, as the
Chain=2 entries in the first row of Table 2 show,
improves Praline’s accuracy on both datasets. The
improvement comes at the cost of a modest run-
time increase from 17 seconds per question to 38.

Finally, we evaluate the impact of Praline’s ad-
ditional rules to handle acyclicity (Acyclic) and
the false unless proven (FUP) constraint. As Table
2 shows, Praline’s accuracy drops upon removing
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One rule Chain=2
MLN Dev-108 Unseen Dev-108 Unseen

Praline 48.8% 46.3% 50.3% 52.7%
-Acyclic 44.7% 36.0% 43.6% 30.9%
-FUP 35.0% 30.9% 42.1% 29.4%
-FUP -Acyclic 37.3% 34.2% 36.6% 24.3%

Table 2: QA performance of Praline MLN
variations.

Dev-108 Unseen-68 Dev-170 Unseen-176

Praline 50.3% 52.7% 33.2% 36.6%
Word-based 57.4% 51.5% 40.3% 43.3%

Table 3: QA performance: Praline vs. word-based.

either of these constraints, highlighting their im-
portance. Specifically, when using only one KB
rule, dropping FUP clauses has a bigger influence
that dropping Acyclic constraint clauses. With a
single rule, there is still a possibility of cyclic in-
ference within a rule, leading to a small drop in
score there as well. When chaining multiple rules,
however, the possibility of incorrect cyclic infer-
ence is higher and we see a correspondingly larger
drop in score when dropping Acyclic constraints.

4.3 Comparison to baseline approaches

Table 3 compares Praline to a baseline word-based
method on two question sets. The new set here is
from 4th and 5th grade, with 170 Dev and 176 un-
seen questions. The word-based approach calcu-
lates the entailment score, using the same methods
as for the soft entails evidence earlier, between
the words in the T/F question and words in a rule
in the KB. It then uses the maximum entailment
score from all selected rules as the confidence
measure i.e. maxr∈R entailment(q, r). While the
scores of the two approaches are statistically sim-
ilar (p-value > 0.05), the simple word-based ap-
proach does have a slight edge over Praline. Au-
tomatic extraction of knowledge from text pro-
vides additional information (e.g., rule structure)
that MLNs are capable of exploiting. However,
we found this additional flexibility to not pay off
with the current knowledge-base and questions.

5 Conclusions

Reasoning with automatically extracted knowl-
edge presents significant challenges. Our
investigation of MLN-based formulations for
elementary-level science exams highlights two
key issues: 1) Natural translations of text de-

rived knowledge into first-order representations
are highly inefficient, resulting in large ground
networks. 2) When the logical elements in the
rules largely mirror the constructs in the source
text, reasoning is hampered because of structural
variability. In response, we proposed, Praline, an
alignment based solution that is both efficient and
accurate. Praline reasons with prototypical con-
stants, and provides greater flexibility in how in-
ference is performed and is therefore more robust
to structural mismatches.

MLNs provided a flexible, structured frame-
work to define inference for the QA task, while
also providing reasoning chains used to arrive at
an answer. While models such as MLNs seem
a perfect fit for textual reasoning tasks such as
RTE and QA, their performance on these tasks is
still not up to par with textual feature-based ap-
proaches (Beltagy and Mooney, 2014). We con-
jecture that the increased flexibility of complex
relational models results in increased susceptibil-
ity to noisy input, and the systematic advantages
of MLN models are difficult to exploit with text-
derived rules. Automatically learning weights of
these models may allow leveraging their flexibil-
ity to address these issues, but weight learning re-
mains challenging with only distant supervision.

We hope our datasets, knowledge bases, and
MLN models8 will help push NLP and SRL com-
munities towards designing improved structured
reasoning QA systems.
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Abstract

Linking named mentions detected in a
source document to an existing knowl-
edge base provides disambiguated entity
referents for the mentions. This al-
lows better document analysis, knowl-
edge extraction and knowledge base pop-
ulation. Most of the previous research
extensively exploited the linguistic fea-
tures of the source documents in a su-
pervised or semi-supervised way. These
systems therefore cannot be easily ap-
plied to a new language or domain. In
this paper, we present a novel unsuper-
vised algorithm named Quantified Col-
lective Validation that avoids excessive
linguistic analysis on the source docu-
ments and fully leverages the knowledge
base structure for the entity linking task.
We show our approach achieves state-
of-the-art English entity linking perfor-
mance and demonstrate successful de-
ployment in a new language (Chinese)
and two new domains (Biomedical and
Earth Science). Experiment datasets
and system demonstration are available
at http://tw.rpi.edu/web/doc/
hanwang_emnlp_2015 for research
purpose.

1 Introduction and Motivation

The entity linking (EL) task aims at analyzing
each named entity mention in a source document
and linking it to its referent in a knowledge base
(KB). Consider the following example: “One day
after released by the Patriots, Florida born Cald-
well visited the Jets. ...... The New York Jets
have six receivers on the roster: Cotchery, Coles,
...”. Here “Caldwell” is an ambiguous mention

∗These authors contributed equally to this work.

because not only are there thousands of people
with different professions named “Caldwell”, but
even if as an American football player, as most
people would recognize it from the context, there
are several “Caldwell”s who are/were associated
with either “the Patriots” or “the Jets”. An EL
system should be able to disambiguate the men-
tion by carefully examining the context and then
identify the correct KB referent, which is Reche
Caldwell in this case.

Although EL has attracted a lot of community
attention in the recent years, most research efforts
have been focused on developing systems only ef-
fective for generic English corpora. When these
systems are migrated to a new language or do-
main, their performance will usually suffer from
a noticeable decline due to the following reasons:

1) State-of-the-art EL systems have developed
comprehensive linguistic features from the source
documents to generate advanced representations
of the mentions and their context. While this
methodology has been proved rewarding for a
resource-rich language such as English, it prevents
the systems from being adopted to a new language,
especially to one with limited linguistic resources.
One can imagine that it would be very difficult,
if not impossible, for an English EL system that
benefits from the part-of-speech tagging, depen-
dency parsing, and named entity recognition to be
deployed to a new language such as Chinese that
has quite different linguistic characteristics.

2) The current EL approaches mostly target at
people, organizations, and geo-political entities
which are widely present in a general KB such
as Wikipedia. However, domain-specific EL tends
to pay more attention to entities beyond the above
three types. For instance, in the biomedical sci-
ence domain, protein is a major class of entities
that greatly interest scientists. Conventional EL
systems are very likely to fail in linking protein
mentions in the text due to the lack of labeled
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training data. Moreover, their reliance on general
reference KBs seems insufficient for a specific do-
main. Take “A20”, a type of protein as an example.
Wikipedia has more than a few items listed un-
der the name of “A20” and their types range from
aircrafts to roads. This diversified information in-
evitably introduces noise for a biomedical EL ap-
plication.

One potential solution to tackle these limita-
tions is, instead of concentrating on the source
documents, to conduct more deliberate study on
the KB. Structured KBs such as DBpedia1 typi-
cally offer detailed descriptions about entities, a
large collection of named relations between enti-
ties, and a growing number of multi-lingual en-
tity surface forms. By embracing these ready-
for-use information and linked structures, we will
be able to obtain sufficient contextual information
for disambiguation without generating a full list
of linguistic features from the source documents,
and therefore eliminate the language dependency.
Moreover, currently there exist numerous pub-
licly available domain ontology repositories such
as BioPortal2 and OBO Foundry3 which provide
significantly more domain knowledge than general
KBs for EL to leverage. By incorporating these
domain ontologies, we can easily increase the en-
tity coverage and reduce noise for deploying EL in
various new domains.

In order to make the most of the KB structure,
the mention context should be matched against
the KB such that the relevant KB information
can be extracted. A collective way of aligning
co-occurred mentions to the KB graph has been
proved to be a successful strategy to better rep-
resent the source context (Pennacchiotti and Pan-
tel, 2009; Fernández et al., 2010; Cucerzan, 2011;
Han et al., 2011; Ratinov et al., 2011; Dalton and
Dietz, 2013; Zheng et al., 2014; Pan et al., 2015).
We take a further step to consider quantitatively
differentiating entity relations in the KB in or-
der to evaluate entity candidates more precisely.
Meanwhile, we jointly validate these candidates
by aligning them back to the source context and in-
tegrating multiple ranking results. This novel EL
framework deeply exploits the KB structure with a
light weight representation of the source context,
and thus enables a smooth migration to new lan-

1http://wiki.dbpedia.org
2http://bioportal.bioontology.org
3http://www.obofoundry.org

guages and domains.
The main novel contributions of this paper are

summarized as follows: 1) We design an unsuper-
vised EL algorithm, namely, Quantified Collec-
tive Validation (QCV) that builds KB entity can-
didate graphs with quantified relations for the pur-
pose of collective disambiguation and inference.
2) We develop a procedure of building language
and domain independent EL systems by incorpo-
rating various ontologies into the QCV compo-
nent. 3) We demonstrate that our system is able
to achieve state-of-the-art performance in English
EL, and it can also produce promising results for
Chinese EL as well as EL in Biomedical Science
and Earth Science.

2 Baseline Collective EL

As a baseline, we adopt a competitive unsuper-
vised collective EL system (Zheng et al., 2014)
utilizing structured KBs. It defines entropy based
weights for the KB relations, and embeds them in
a two-step candidate ranking process to produce
the EL results.

Structured KB Terminologies: In a structured
KB, a fact is usually expressed in the form of a
triple: (eh, r, et) where eh, et are called the head
entity and the tail entity, respectively, and r is the
relation between eh and et.

Entropy Based KB Relation Weights: The goal
is to leverage various levels of granularity of KB
relations. The calculation of the relation weight
H(r) is given in Equation (1):

H(r) = −
∑

et∈Et(r)

P (et) log(P (et)) (1)

where Et(r) is the tail entity set for r in the KB,
and P (et) is the probability of et appearing as the
tail entity for r in the KB.

Salience Ranking: As the first ranking step, we
examine the candidates without the context and
prefers those with higher importance in the KB.
Equation (2) computes the salience score Sa(c) for
a candidate c:

Sa(c) =
∑

r∈R(c),et∈Et(r)

H(r)
Sa(et)
L(et)

(2)

whereR(c) is the relation set for c in the KB;H(r)
is given by Equation (1); Et(r) is the tail entity
set with c being the head entity and r being the
connecting relation in the KB; L(et) denotes the
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cardinality of the tail entity set with et being the
head entity in the KB. Sa(c) is recursively com-
puted until convergence.

Collective Ranking: The similarity SimF (m, c)
between a candidate c and its mentionm is defined
using Equation (3) as the final ranking score:

SimF (m, c) = α · JS(m, c) · Sa(c)
+ β ·

∑
r∈R(c)

H(r) ·
∑

n∈Et(r)∩C(m)

Sa(n) (3)

where JS(m, c) is the Jaccard similarity between
the string surface forms of m and c; Sa(c) and
Sa(n) are both evaluated by Equation (2); C(m)
denotes the candidate set for mention m; α and β
are hyperparameters.

3 Quantified Collective Validation

Incorporating the KB relation weighing mecha-
nism of the baseline system, our QCV algorithm
constructs a number of candidate graphs for a
given set of collaborative mentions, and then per-
forms a two-level ranking followed by a collective
validation on those candidate graphs to acquire the
linking results. Because this procedure minimally
relies on linguistic analysis of the source docu-
ments while mainly uses the KB structure which
by nature keeps detached from any specific lan-
guage or domain, we claim that QCV comes with
language and domain independence.

3.1 Candidate Graph Construction
The KB entity candidate graphs are constructed
based on a mention context graph and a KB graph.
We will introduce them in order as follows.

Mention Context Graph: To avoid abusing lin-
guistic knowledge from the source documents, we
construct a mention context graph Gm simply in-
volving mention co-occurrence. Figure 1 depicts
a constructed Gm for the Caldwell example at
the beginning of Section 1. In this figure, men-
tions “New York Jets”, “Cotchery” and “Coles”
are brought into Gm through the coreference be-
tween “Jets” and “New York Jets” since the three
of them are outside the context window of “Cald-
well”, “Florida”, “Patriots”, and “Jets”. Gm con-
tains a set of vertices representing the mentions
extracted from the source document and a set of
undirected edges. There will be an edge between
two mention vertices if both of them fall into a
context window with width wm in the source doc-
ument. Ideally, wm should cover a single dis-

course according to the one sense per discourse
assumption (Gale et al., 1992), but for simplic-
ity we heuristically set wm to be 7-sentence wide
as a hyperparameter. Two mention vertices will
be connected via a dashed edge if they are coref-
erential but are not located in the same context
window. Here we determine the coreference by
performing substring matching and abbreviation
expansion. The dashed edge indicates the out-
of-context coreferential mention together with its
neighbors will be indirectly included in Gm as
extended context to later facilitate the candidate
graph collective validation. Note that all of these
loose settings comply with our intention of gener-
ating a light-weight source context representation
born with domain and language independence.

Caldwell

Florida

Patriots Jets New York Jets

Cotchery

Coles

Figure 1: Mention context graph for the Caldwell
example.

KB Graph: A structured KB such as DBpedia
can be represented as a weighted graph Gk that
consists of a set of vertices representing the en-
tities and a set of directed edges labeled with re-
lations between entities. The weights of relations
are computed using Equation (1). In order to fur-
ther enrich the KB relations, we add a type of re-
lation named “wiki link” between two entities if
one of them appears in the Wikipedia article of the
other. Figure 2 presents a subgraph of the DBpe-
dia KB graph containing the relevant entities in the
Caldwell example.

Candidate Graph: The candidate graph is a
set of graphs Gic (i = 1, 2, ...) used for com-
puting ranking scores for the KB entity candi-
dates. For each of the mentions extracted from
the source context, we first select a list of entity
candidates from Gk with heuristic rules such as
fuzzy string matching, synonyms, Wikipedia redi-
rect, etc. Then we pick one candidate for each of
the mentions to constitute the vertices of a Gic. In
each Gic, we add an edge between two vertices if
they are connected in Gk by some relation r and
their mentions are connected in Gm. The edge la-
bel r from Gk is transferred to Gic. Upon comple-
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New York Jets

Reche Caldwell

Florida

New England Patriots

Andre Caldwell Jim Caldwell 
(American Football)

James Caldwell 
(clergyman)

Patriots     
(American Revolution)

birth place
0.93

birth place
0.93

wiki link
0.21

former team
0.61

wiki link
0.21

wiki link
0.21

Newcastle Jets FC

Jet aircraftwiki link
0.21

Florida, Ohio

Florida City, Florida

… …

…

Patriot Act …

Jerricho Cotchery
wiki link

0.21

former team
0.61

Laveranues Coles

former team
0.61

birth place
0.93

wiki link
0.21

Danny Coles

…

Figure 2: KB graph for the Caldwell example.

tion, every Gic represents a collective linking solu-
tion to the given mention set. Figure 3 shows three
of the constructed candidate graphs for the Cald-
well example. One can see that the first two graphs
are very likely to be good solutions since they in-
herit many of the relation edges from GK , while
the third one is probably a poor collection as the
candidates barely connect to one another. In the
next section, we will more formally reveal how to
rank these candidate graphs to obtain the optimal
linking results.

New York Jets

Reche Caldwell

Florida New England Patriots

A

wiki link

birth place former team

Jerricho Cotchery Laveranues Coles

former team former team

New York Jets

Andre Caldwell

Florida New England Patriots

B

wiki link

birth place wiki link

Jerricho Cotchery Laveranues Coles

former team former team

Newcastle Jets FC

James Caldwell 
(clergyman)

Florida City, Florida
Patriots         

(American Revolution)

C

wiki link

Jerricho Cotchery Danny Coles

Figure 3: Candidate graphs for the Caldwell ex-
ample.

3.2 Candidate Ranking

With the constructed candidate graphs, QCV per-
forms two levels of ranking. First, it uses Equa-
tion (2) to compute the candidates’ salience scores
as a priori ranking. Then it compares each can-
didate graph with the mention context graph, and
evaluates their vertex set similarity for context
similarity ranking. Finally, by considering the re-
lation weights in the candidate graphs as well as
previous ranking scores, QCV collectively vali-
dates all the candidates and assembles the linking
results. Below we will focus on introducing the
context similarity ranking and the collective vali-
dation since the salience ranking resembles that of
our baseline system.

Context Similarity Ranking: As shown in Fig-
ure 3, among the constructed candidate graphs,
some of them contain many connected vertices
while some are otherwise quite disconnected. In-
tuitively we would like to measure this structure
difference by comparing each candidate graph Gic
with its mention context graph Gm. Granted, we
can only assert co-occurrence between two con-
nected mentions in Gm, but it should be of great
probability that two co-occurring mentions have
their entity referents connected by some relation
in the KB. In other words, the more a Gic is struc-
turally similar to its Gm, the better the candidates
in this Gic represent their mentions in Gm. There-
fore, we define the context similarity Sm(mc, c)
between a candidate c and its mention mc using
Jaccard similarity in Equation (4):

Sm(mc, c) =
|ΘGm(mc) ∩ΘGi

c(c)|
|ΘGm(mc) ∪ΘGi

c(c)| (4)
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where ΘGm(mc) and ΘGi
c(c) denote mc’s neigh-

bor set in Gm and c’s neighbor set in Gic, re-
spectively. The intersection takes the candidates
of those mentions in ΘGm(mc) that appear in
ΘGi

c(c), and the union is equivalent to ΘGm(mc)
due to the way we constructGic. We rankGic using
the summation of the context similarity of every c
in Gic. Note that our baseline system uses Jaccard
similarity to achieve approximate string match be-
tween the surface forms of a mention and a can-
didate, while we alternatively use it to capture the
graph’s structural similarity. After ranking with
the context similarity, those Gic with more con-
nected vertices such as Figure 3A and Figure 3B
will get closer to the top of the ranked candidate
graph list.

Candidate Graph Collective Validation: Be-
sides the salience, the context similarity provides
another ranking score for each candidate c in Gic,
and it promotes those candidates remaining con-
nected in Gic. However, it fails to differenti-
ate how two candidates are connected. In Fig-
ure 3A, Reche Caldwell is a former player
of New England Patriots, and in Fig-
ure 3B, Andre Caldwell’s Wikipedia article
includes a hyperlink pointing to New England
Patriots. The former seems a “tighter” rela-
tion than the latter. Although these two distinct
relations imply that these two candidate pairs are
related with different relation types, the context
similarity rankings for these two candidate graphs
are identical. Based on this observation, assuming
that a “tighter” relation between two candidates is
more likely to be an appropriate representation of
the relation between their co-occurring mentions
in the source context, we propose a novel valida-
tion step that not only considers the two previous
ranking scores of each candidate but also quantita-
tively examines the relations between candidates.
We transfer the calculated relation weights from
Gk to Gic as positive indicators of how tightly two
candidates are related, and then define the com-
posite graph weight W (Gic) for each Gic in Equa-
tion (5) as the final ranking metric:

W (Gic) =
∑

c∈V (Gi
c)

Sa(c)Sm(mc, c) +
∑

r∈E(Gi
c)

H(r) (5)

where V (Gic) andE(Gic) are the vertex set and the
edge set of Gic; Sa(c), Sm(mc, c), and H(r) are
given by Equation (2), Equation (4), and Equa-
tion (1), respectively. With this composite graph

weight, since the relation “former team” has a
greater weight than “wiki link”, the candidate
graph in Figure 3A outweighs that in Figure 3B,
and therefore is ranked to the top.

4 Experiments

In this section, we first show QCV’s performance
on generic English corpora and compare it with
our baseline together with other state-of-the-art
EL systems. Then we move to a new language
(Chinese) and two new domains (Biomedical Sci-
ence and Earth Science) to demonstrate the lan-
guage and domain independent nature of our algo-
rithm.

4.1 EL on Generic English Corpora

For this evaluation, we used the TAC-KBP2013
EL dataset1, which contains 2,190 mentions ex-
tracted from English newswire, web blogs, and
discussion forums. We selected a subset of 1,090
linkable mentions that have entity referents in the
KB for our experiment. DBpedia 3.9, which was
generated from the Wikipedia dump in early 2013
and includes more than 4 million entities and more
than 470 million facts2, was used as our KB. We
followed the KBP EL track using B-Cubed+ (Ji
et al., 2011) as the evaluation metric. Table 1
presents the results of QCV, our baseline system,
as well as the top 3 supervised participant sys-
tems3and the top 3 unsupervised participant sys-
tems3 of the TAC-KBP2013 EL track.

System B3+ F1

Supervised 1st 0.7244

Supervised 2nd 0.7214

Supervised 3rd 0.7184

Unsupervised 1st 0.6324

Unsupervised 2nd 0.5764

Unsupervised 3rd 0.5734

Baseline (unsupervised) 0.697
QCV (unsupervised) 0.749

Table 1: Performance on the TAC-KBP2013 EL
Dataset (1,090 linkable mentions).

1http://www.nist.gov/tac/2013/KBP/data.html
2http://wiki.dbpedia.org/services-resources/datasets/data-

set-39
3Due to NIST policy, the names of the TAC-KBP2013

participant systems are not revealed.
4http://www.nist.gov/tac/publications/2013/papers.html
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As shown in Table 1, QCV not only substan-
tially outperforms the best unsupervised systems
but also beats the best supervised systems from
the KBP participants. In order to understand this
notable advancement, we broke down our system
into components and evaluated them accumula-
tively using the same dataset as above. The ex-
periment results are summarized in Table 2.

Components B3+ P B3+R B3+ F1

SR 0.680 0.598 0.636
SR + CS 0.699 0.624 0.659
SR + CS + CV 0.789 0.712 0.749

Table 2: QCV Performance by Component.

In Table 2, SR, CS, and CV correspond to the
Salience Ranking, the Context Similarity Rank-
ing, and the Collective Validation in our QCV
algorithm, respectively. It can be seen that SR
already outperforms the best KBP unsupervised
systems from Table 1. This is mainly attributed
to the engagement of the entropy based relation
weights which injects the impact of different re-
lations into the entity salience. Notwithstanding
being somewhat effective, SR solely depends on
the KB and plays its role without the source con-
text. It should be straightforward that the sys-
tem performance gets improved after enabling CS
since the source context has been incorporated.
However, it was a little puzzling that the perfor-
mance boost by enabling CS turned out to be rel-
atively small. We took a careful look at the in-
termediate experiment results and discovered that
although CS did not produce a lot more correct
linking results than SR did, it did promote a great
number of good candidates to the top of the rank-
ing list. For example, in the Caldwell case, CS
successfully raised the rankings of the context-
related candidates such as Reche Caldwell,
Andre Caldwell, and Jim Caldwell, de-
spite the fact that it delivered Andre Caldwell
instead of Reche Caldwell as the final linking
result. This convincingly implies that CS is able to
well capture the context of the target mentions, but
meanwhile it is deficient in recognizing the subtle
contextual difference among similar candidates.
In Table 2 there is a significant performance gain
after enabling CV. As described in Section 3.2, CV
collectively validates the candidates of the target
mention “Caldwell” and the mentions in its con-
text such as “Florida”, “Patriots”, and “Jets” by

integrating their SR and CS scores as well as the
weights of the KB relations between them. There-
fore this improvement is reasonably substantial.

By investigating the remaining errors, we iden-
tified several potential causes: 1) Our system occa-
sionally could not capture enough context for the
target mention. This happened more frequently
for web blogs and discussion forums, where the
language was informal and casual. Without any
linguistic analysis on the source documents, it
was difficult for us to extract additional context
words. 2) Our simple coreference rules some-
times failed to work correctly and introduced false
candidates, which, without clear context to dis-
ambiguate, could lead to linking errors. 3) Our
KB had limited knowledge about some entities in
a way that certain relations were missing. This
kept us from creating necessary links in the can-
didate graphs and further effectively validating the
graphs.

4.2 EL on Generic Chinese Corpora

Using Chinese as a case study, we evaluate the lan-
guage portability of our approach. We used the
TAC-KBP2012 Chinese EL dataset1, and selected
a subset of 1,240 linkable mentions out of the total
2,122 mentions extracted from Chinese newswire,
web blogs, and discussion forums. For KB, we
still used DBpedia because it contains multilingual
surface forms for its entities. For instance, the en-
tity Barack Obama has surface forms in over 30
languages including the Chinese one: “贝拉克·奥
巴马”. This cross-lingual surface form mapping
naturally provides us with a convenient translation
tool. Table 3 shows the linking performance com-
parison among QCV, our baseline system, and the
top 3 participant systems of the KBP Chinese EL
track. Again, we employed the B-Cubed+ met-
ric.

System B3+ F1

Clarke et al. (2012) (supervised) 0.493
Monahan and Carpenter (2012) (supervised) 0.660
Fahrni et al. (2012) (supervised) 0.736
Baseline (unsupervised) 0.648
QCV (unsupervised) 0.671

Table 3: Performance on the TAC-KBP2012 Chi-
nese EL Dataset (1240 linkable mentions).

As shown in Table 3, the best performance is
1http://www.nist.gov/tac/2012/KBP/data.html
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achieved by Fahrni et al. (2012), a supervised sys-
tem using over 20 fine-tuned features and many
linguistic resources. In contrast, our QCV is an
unsupervised approach without using any labeled
data or linguistic resources. During the error anal-
ysis, we found that in this dataset multiple men-
tions are often the variants of the surface form of
a single KB entity. For example, “奥巴马” and
“欧巴马”, being just different Chinese transliter-
ations, both refer to “Obama”. This fact tends to
result in a low recall for our system because one
or more of the mention variants may not exist in
the KB. We decided to heuristically apply a sub-
string matching in addition to the Wikipedia redi-
rection mapping to boost the recall. However, as
one can imagine, this simple strategy will impair
the system precision due to the introduced noise.
Take “奥巴马” again for example. If we only
match its second and third characters, “欧巴马”
will be correctly picked, but “巴马镇” (a small
town in China) will also be falsely included. For-
tunately, our QCV algorithm was able to select and
rank candidates complying with the source con-
text. Consequently most of this kind of noise got
filtered out, and we thus could produce balanced
precision and recall.

We acknowledge that, without performing
deeper linguistic analysis on the source docu-
ments, the cross-language surface form mapping
of the KB plays a crucial role in our approach. One
can replace it with any machine translation prod-
uct which, however, is not always available espe-
cially for a low-resource language. We should take
advantage of the existing KBs where such cross-
lingual mapping has already been widely created.
The latest DBpedia provides localized versions in
125 languages1, for instance.

4.3 EL in Biomedical Science

To demonstrate the domain portability of our ap-
proach, we first take the biomedical science do-
main as a case study. We conducted our ex-
periment using the evaluation dataset created by
Zheng et al. (2014) which contains 208 linkable
mentions extracted from several biomedical pub-
lications. We built our KB with over 300 domain
ontologies downloaded from BioPortal. Table 4
compares the linking accuracy of QCV and our
baseline system.

As shown in Table 4, our approach achieves

1http://wiki.dbpedia.org/about

System Correct Total Accuracy
Baseline 173 208 83.17%

QCV 177 208 85.10%

Table 4: Biomedical Science EL Performance.

similar performance to our baseline system which
is the state-of-the-art to our knowledge. However,
we were curious why QCV did not improve the
baseline system in the biomedical domain as much
as it did in the general domain. After some in-
depth analysis of the experiment results, we dis-
covered that in this dataset the candidates of the
related mentions (i.e. those mentions within the
same context window) mostly have similar rela-
tions in the KB. In other words, for each men-
tion, the candidate entity types are not as diverse
as those in the general domain. As a consequence,
the collective validation step in QCV does not take
much effect since the weights of the involved re-
lations are quite close to one another. On such a
dataset, the context similarity ranking will play a
major part for the disambiguation, and QCV will
not be able to function at its full power. Nonethe-
less, from the results we can see that our approach
can be efficiently and effectively adapted to this
new domain.

4.4 EL in Earth Science

Now we move to another new domain, Earth Sci-
ence. As far as we know, we are the first to study
EL in this domain. In order to create an evaluation
dataset, our domain expert selected three scientific
papers about Early Triassic discovery, Global Stra-
totype Section, and Triassic crisis, which are three
different aspects of Earth Science related discov-
ery, and then identified 296 mentions that can be
linked to DBpedia entities. Table 5 presents the
linking accuracy comparison between QCV and
our baseline system. We can see that QCV pro-
vided significant gains.

System Correct Total Accuracy
Baseline 221 296 74.66%

QCV 236 296 79.73%

Table 5: Earth Science EL Performance.

The linking errors were mainly caused by the
following reasons: 1) As a general KB, DBpe-
dia has introduced certain noise for our domain-
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specific EL. For example, in Geology, the term
“Beds” mostly refers to “Geology Bed”, which is
a division of a geologic formation. But in general,
“Beds” usually means the beds people sleep on.
Much more common in the KB, the latter had such
a significantly higher salience score than the for-
mer that the final ranking score of our system got
biased. 2) Some relations between Earth Science
related entities are not clearly defined in DBpe-
dia. For instance, in geology time scale, the period
“Chattian” is immediately preceded by the period
“Rupelian”. An explicit relation such as “preceded
by” should be inserted between these two period
entities. Instead, only a vague “wiki link” relation
is present in our KB. This directly diminishes the
differentiating power of our system on the KB re-
lations.

It is worth mentioning that there exists a large
number of well established ontologies for different
sub-domains of Earth Science. SWEET ontolo-
gies1, for example, widely capture Earth and En-
vironmental terminologies. By adopting these on-
tologies, we will be able to considerably improve
our domain EL performance, and the benefits of
EL in the domain will further get revealed.

4.5 System Complexity

We indexed our KB and ontologies in the format of
triples using Apache Lucene2 such that retrieving
entity candidates of a mention is O(1). We pre-
computed all the entropy-based relation weights
and entity salience scores with complexities of
O(nr · ne) and O(ne · k), respectively, where nr
is the number of KB relations, ne is the number
of KB entities, and k is the number of iterations it
took for the salience score to get converged. For
the final QCV score computation, the upper bound
of the computing time to link all the mentions in a
document is O(nm · nc · nnc · nnm), where nm is
the number of linkable mentions in the document,
nc is the number of candidates for each mention,
and nnc is the number of neighbor nodes of a can-
didate, and nnm is the number of neighbors of a
mention.

5 Related Work

In recent years, collective inference methods for
EL have become increasingly popular. Many ef-
forts have been devoted to encoding linguistic fea-

1http://sweet.jpl.nasa.gov
2https://lucene.apache.org/

tures from the source documents in order to pre-
cisely select collaborator mentions for collective
inference. These features include topic model-
ing (Xu et al., 2012; Cassidy et al., 2012), re-
lation constraint (Cheng and Roth, 2013), coref-
erential chaining (Nguyen et al., 2012; Huang et
al., 2014), and dependency restriction (Ling et al.,
2014). Some recent work utilized multi-layer lin-
guistic analysis integration to capture contextual
properties for better mention collection (Pan et al.,
2015). While many of these approaches have been
proved to be effective, the dependency on deep
linguistic knowledge makes it difficult to migrate
them to a new language or domain. In contrast to
these methods, we establish a very loose setting
for the mention selection, and rely on the quanti-
fied information computed from the structured KB
to collectively evaluate and validate the entity can-
didates. Since the KB is relatively universal to
languages and domains, our approach inherently
is language and domain independent.

Recent cross-lingual EL approaches can be di-
vided into two types. The first type (McNamee et
al., 2011; Cassidy et al., 2011; McNamee et al.,
2012; Guo et al., 2012; Miao et al., 2013) trans-
lated entity mentions and source documents from
the new language into English and then ran En-
glish mono-lingual EL to link to English KB. The
second type (Monahan et al., 2011; Fahrni et al.,
2011; Fahrni et al., 2012; Monahan and Carpenter,
2012; Clarke et al., 2012; Fahrni et al., 2013) de-
veloped EL systems on the new language and used
cross-lingual KB links to map the link results back
to English KB. While the bottleneck of the former
method usually is on translation errors, the latter
approach heavily relies on the linguistic resources
and the KB of the new language. In comparison,
our system mainly uses the English KB and a men-
tion surface form mapping that can either come
from translation or cross-lingual KB links, and re-
quires minimal linguistic resources from the new
language.

There is a limited amount of research work
in the literature that focused solely on domain-
specific EL (Zheng et al., 2014). In the biomed-
ical domain, a few studies have been found on
EL-related tasks such as scientific name discov-
ery (Akella et al., 2012), gene name normaliza-
tion (Hirschman et al., 2005; Fang et al., 2006;
Dai et al., 2010), biomedical named entity recog-
nition (Usami et al., 2011; Van Landeghem et al.,
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2012) and concept mention extraction (Tsai et al.,
2013). The baseline system (Zheng et al., 2014)
in this paper is the work most similar to ours in
a sense of collectively aligning mentions to struc-
tured KBs. However, our system differs by inte-
grating a context similarity ranking and a candi-
date validation to conduct a two-way collective in-
ference with better performance.

6 Conclusions and Future Work

Language and domain independence is a new re-
quirement to EL systems and this capability is par-
ticularly welcome by low-resource language re-
lated applications and domain scientists. In this
paper we demonstrated a high-performance EL
approach that can be easily migrated to new lan-
guages and domains due to the minimal reliance
on linguistic analysis and the deep utilization of
structured KBs. In the future, we plan to improve
the source document processing such that the sys-
tem can better extract the mention context without
involving extensive linguistic knowledge. We are
also experimenting with our collective validation
algorithm to incorporate the impact of more dis-
tant KB entities other than just the neighbors.
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Abstract

Representation learning of knowledge
bases aims to embed both entities and
relations into a low-dimensional space.
Most existing methods only consider
direct relations in representation learning.
We argue that multiple-step relation paths
also contain rich inference patterns be-
tween entities, and propose a path-based
representation learning model. This model
considers relation paths as translations
between entities for representation learn-
ing, and addresses two key challenges: (1)
Since not all relation paths are reliable,
we design a path-constraint resource allo-
cation algorithm to measure the reliability
of relation paths. (2) We represent relation
paths via semantic composition of relation
embeddings. Experimental results on
real-world datasets show that, as com-
pared with baselines, our model achieves
significant and consistent improvements
on knowledge base completion and re-
lation extraction from text. The source
code of this paper can be obtained from
https://github.com/mrlyk423/
relation_extraction.

1 Introduction

People have recently built many large-scale
knowledge bases (KBs) such as Freebase, DBpe-
dia and YAGO. These KBs consist of facts about
the real world, mostly in the form of triples, e.g.,
(Steve Jobs, FounderOf, Apple Inc.). KBs are
important resources for many applications such as
question answering and Web search. Although
typical KBs are large in size, usually containing
thousands of relation types, millions of entities
and billions of facts (triples), they are far from

∗Corresponding author: Z. Liu (liuzy@tsinghua.edu.cn)

complete. Hence, many efforts have been invested
in relation extraction to enrich KBs.

Recent studies reveal that, neural-based repre-
sentation learning methods are scalable and ef-
fective to encode relational knowledge with low-
dimensional representations of both entities and
relations, which can be further used to extract
unknown relational facts. TransE (Bordes et al.,
2013) is a typical method in the neural-based ap-
proach, which learns vectors (i.e., embeddings) for
both entities and relations. The basic idea behind
TransE is that, the relationship between two enti-
ties corresponds to a translation between the em-
beddings of the entities, that is, h + r ≈ t when
the triple (h, r, t) holds. Since TransE has issues
when modeling 1-to-N, N-to-1 and N-to-N rela-
tions, various methods such as TransH (Wang et
al., 2014) and TransR (Lin et al., 2015) are pro-
posed to assign an entity with different represen-
tations when involved in various relations.

Despite their success in modeling relational
facts, TransE and its extensions only take di-
rect relations between entities into considera-
tion. It is known that there are also substan-
tial multiple-step relation paths between entities
indicating their semantic relationships. The re-
lation paths reflect complicated inference pat-
terns among relations in KBs. For example, the
relation path h

BornInCity−−−−−−−−→ e1
CityInState−−−−−−−−→

e2
StateInCountry−−−−−−−−−−−→ t indicates the relation

Nationality between h and t, i.e., (h,
Nationality, t).

In this paper, we aim at extending TransE to
model relation paths for representation learning of
KBs, and propose path-based TransE (PTransE).
In PTransE, in addition to direct connected rela-
tional facts, we also build triples from KBs us-
ing entity pairs connected with relation paths.
As shown in Figure 1, TransE only considers
direct relations between entities, e.g., h r−→ t,
builds a triple (h, r, t), and optimizes the objec-
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tive h + r = t. PTransE generalizes TransE
by regarding multiple-step relation paths as con-
nections between entities. Take the 2-step path
h

r1−→ e1
r2−→ t for example as shown in Figure 1.

Besides building triples (h, r1, e1) and (e1, r2, t)
for learning as in TransE, PTransE also builds a
triple (h, r1 ◦ r2, t), and optimizes the objective
h + (r1 ◦ r2) = t, where ◦ is an operation to join
the relations r1 and r2 together into a unified rela-
tion path representation.

TransE PTransE

KB

Triples

Objectives

Figure 1: TransE and PTransE.

As compared with TransE, PTransE takes rich
relation paths in KBs for learning. There are two
critical challenges that make PTransE nontrivial to
learn from relation paths:

Relation Path Reliability. Not all relation
paths are meaningful and reliable for learning. For
example, there is often a relation path h Friend−−−−−→
e1

Profession−−−−−−−−→ t, but actually it does not indicate
any semantic relationship between h and t. Hence,
it is inappropriate to consider all relation paths in
our model. In experiments, we find that those re-
lation paths that lead to lots of possible tail enti-
ties are mostly unreliable for the entity pair. In
this paper, we propose a path-constraint resource
allocation algorithm to measure the reliability of
relation paths. Afterwards, we select the reliable
relation paths for representation learning.

Relation Path Representation. In order to take
relation paths into consideration, relation paths
should also be represented in a low-dimensional
space. It is straightforward that the semantic
meaning of a relation path depends on all relations
in this path. Given a relation path p = (r1, . . . , rl)
, we will define and learn a binary operation func-
tion (◦) to obtain the path embedding p by re-
cursively composing multiple relations, i.e., p =
r1 ◦ . . . ◦ rl.

With relation path selection and representation,
PTransE learns entity and relation embeddings by

regarding relation paths as translations between
the corresponding entities. In experiments, we
select a typical KB, Freebase, to build datasets
and carry out evaluation on three tasks, including
entity prediction, relation prediction and relation
extraction from text. Experimental results show
that, PTransE significantly outperforms TransE
and other baseline methods on all three tasks.

2 Our Model

In this section, we introduce path-based TransE
(PTransE) that learns representations of entities
and relations considering relation paths. In TransE
and PTransE, we have entity set E and relation
set R, and learn to encode both entities and re-
lations in Rk. Given a KB represented by a set of
triples S = {(h, r, t)} with each triple composed
of two entities h, t ∈ E and their relation r ∈ R.
Our model is expected to return a low energy score
when the relation holds, and a high one otherwise.

2.1 TransE and PTransE
For each triple (h, r, t), TransE regards the relation
as a translation vector r between two entity vectors
h and t. The energy function is defined as

E(h, r, t) = ||h + r− t||, (1)

which is expected to get a low score when (h, r, t)
holds, and high otherwise.

TransE only learns from direct relations be-
tween entities but ignores multiple-step relation
paths, which also contain rich inference patterns
between entities. PTransE take relation paths into
consideration for representation learning.

Suppose there are multiple relation paths
P (h, t) = {p1, . . . , pN} connecting two entities
h and t, where relation path p = (r1, . . . , rl) indi-
cates h r1−→ . . .

rl−→ t. For each triple (h, r, t), the
energy function is defined as

G(h, r, t) = E(h, r, t) + E(h, P, t), (2)

whereE(h, r, t) models correlations between rela-
tions and entities with direct relation triples, as de-
fined in Equation (1). E(h, P, t) models the infer-
ence correlations between relations with multiple-
step relation path triples, which is defined as

E(h, P, t) =
1
Z

∑
p∈P (h,t)

R(p|h, t)E(h, p, t), (3)

where R(p|h, t) indicates the reliability of the re-
lation path p given the entity pair (h, t), Z =
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∑
p∈P (h,t)R(p|h, t) is a normalization factor, and

E(h, p, t) is the energy function of the triple
(h, p, t).

For the energy of each triple (h, p, t), the com-
ponent R(p|h, t) concerns about relation path reli-
ability, and E(h, p, t) concerns about relation path
representation. We introduce the two components
in detail as follows.

2.2 Relation Path Reliability
We propose a path-constraint resource allocation
(PCRA) algorithm to measure the reliability of a
relation path. Resource allocation over networks
was originally proposed for personalized recom-
mendation (Zhou et al., 2007), and has been suc-
cessfully used in information retrieval for measur-
ing relatedness between two objects (Lü and Zhou,
2011). Here we extend it to PCRA to measure the
reliability of relation paths. The basic idea is, we
assume that a certain amount of resource is associ-
ated with the head entity h, and will flow following
the given path p. We use the resource amount that
eventually flows to the tail entity t to measure the
reliability of the path p as a meaningful connection
between h and t.

Formally, for a path triple (h, p, t), we compute
the resource amount flowing from h to t given the
path p = (r1, . . . , rl) as follows. Starting from h
and following the relation path p, we can write the
flowing path as S0

r1−→ S1
r2−→ . . .

rl−→ Sl, where
S0 = h and t ∈ Sl.

For any entity m ∈ Si, we denote its direct pre-
decessors along relation ri in Si−1 as Si−1(·,m).
The resource flowing to m is defined as

Rp(m) =
∑

n∈Si−1(·,m)

1
|Si(n, ·)|Rp(n), (4)

where Si(n, ·) is the direct successors of n ∈ Si−1

following the relation ri, andRp(n) is the resource
obtained from the entity n.

For each relation path p, we set the initial re-
source in h as Rp(h) = 1. By performing re-
source allocation recursively from h through the
path p, the tail entity t eventually obtains the re-
source Rp(t) which indicates how much informa-
tion of the head entity h can be well translated. We
use Rp(t) to measure the reliability of the path p
given (h, t), i.e., R(p|h, t) = Rp(t).

2.3 Relation Path Representation
Besides relation path reliability, we also need to
define energy functionE(h, p, t) for the path triple

(h, p, t) in Equation (2). Similar with the en-
ergy function of TransE in Equation (1), we will
also represent the relation path p in the embedding
space.

United 

State

Californi

a

San 

Francisco

Steve 

Jobs

Composition

BornInCity CityInState StateInCountry

Figure 2: Path representations are computed by se-
mantic composition of relation embeddings.

The semantic meaning of a relation path con-
siderably relies on its involved relations. It is thus
reasonable for us to build path embeddings via se-
mantic composition of relation embeddings. As
illustrated in Figure 2, the path embedding p is
composed by the embeddings of BorninCity,
CityInState and StateInCountry.

Formally, for a path p = (r1, . . . , rl), we define
a composition operation ◦ and obtain path embed-
ding as p = r1 ◦ . . .◦rl. In this paper, we consider
three types of composition operation:

Addition (ADD). The addition operation ob-
tains the vector of a path by summing up the vec-
tors of all relations, which is formalized as

p = r1 + . . .+ rl. (5)

Multiplication (MUL). The multiplication op-
eration obtains the vector of a path as the cumula-
tive product of the vectors of all relations, which
is formalized as

p = r1 · . . . · rl. (6)

Both addition and multiplication operations are
simple and have been extensively investigated in
semantic composition of phrases and sentences
(Mitchell and Lapata, 2008).

Recurrent Neural Network (RNN). RNN is a
recent neural-based model for semantic composi-
tion (Mikolov et al., 2010). The composition op-
eration is realized using a matrix W:

ci = f(W [ci−1; ri]), (7)

where f is a non-linearity or identical function,
and [a; b] represents the concatenation of two vec-
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tors. By setting c1 = r1 and recursively perform-
ing RNN following the relation path, we will fi-
nally obtain p = cn. RNN has also been used
for representation learning of relation paths in KBs
(Neelakantan et al., 2015).

For a multiple-step relation path triple (h, p, t),
we could have followed TransE and define the
energy function as E(h, p, t) = ||h + p − t||.
However, since we have minimized ||h + r − t||
with the direct relation triple (h, r, t) to make sure
r ≈ t−h, we may directly define the energy func-
tion of (h, p, t) as

E(h, p, t) = ||p−(t−h)|| = ||p−r|| = E(p, r),
(8)

which is expected to be a low score when the
multiple-relation path p is consistent with the di-
rect relation r, and high otherwise, without using
entity embeddings.

2.4 Objective Formalization

We formalize the optimization objective of
PTransE as

L(S) =
∑

(h,r,t)∈S

[
L(h, r, t)+

1

Z

∑
p∈P (h,t)

R(p|h, t)L(p, r)
]
.

(9)

Following TransE, L(h, r, t) and L(p, r) are
margin-based loss functions with respect to the
triple (h, r, t) and the pair (p, r):

L(h, r, t) =
∑

(h′,r′,t′)∈S−
[γ + E(h, r, t)− E(h′, r′, t′)]+,

(10)

and

L(p, r) =
∑

(h,r′,t)∈S−
[γ + E(p, r)− E(p, r′)]+, (11)

where [x]+ = max(0, x) returns the maximum be-
tween 0 and x, γ is the margin, S is the set of valid
triples existing in a KB and S− is the set of invalid
triples. The objective will favor lower scores for
valid triples as compared with invalid triples.

The invalid triple set with respect to (h, r, t) is
defined as

S− = {(h′, r, t)}∪{(h, r′, t)}∪{(h, r, t′)}. (12)

That is, the set of invalid triples is composed of
the original valid triple (h, r, t) with one of three
components replaced.

2.5 Optimization and Implementation Details

For optimization, we employ stochastic gradient
descent (SGD) to minimize the loss function. We
randomly select a valid triple from the training set
iteratively for learning. In the implementation, we
also enforce constraints on the norms of the em-
beddings h, r, t. That is, we set

‖h‖2 ≤ 1, ‖r‖2 ≤ 1, ‖t‖2 ≤ 1. ∀h, r, t.
(13)

There are also some implementation details that
will significantly influence the performance of
representation learning, which are introduced as
follows.

Reverse Relation Addition. In some cases, we
are interested in the reverse version of a relation,
which may not be presented in KBs. For exam-
ple, according to the relation path e1

BornInCity−−−−−−−−→
e2

CityOfCountry←−−−−−−−−−− e3 we expect to infer the fact
that (e1,Nationality, e3). In this paper, how-
ever, we only consider the relation paths follow-
ing one direction. Hence, we add reverse relations
for each relation in KBs. That is, for each triple
(h, r, t) we build another (t, r−1, h). In this way,
our method can consider the above-mentioned
path as e1

BornInCity−−−−−−−−→ e2
CityOfCountry−1−−−−−−−−−−−−→ e3

for learning.
Path Selection Limitation. There are usually

large amount of relations and facts about each en-
tity pair. It will be impractical to enumerate all
possible relation paths between head and tail en-
tities. For example, if each entity refers to more
than 100 relations on average, which is common
in Freebase, there will be billions of 4-step paths.
Even for 2-step or 3-step paths, it will be time-
consuming to consider all of them without limita-
tion. For computational efficiency, in this paper
we restrict the length of paths to at most 3-steps
and consider those relation paths with the reliabil-
ity score larger than 0.01.

2.6 Complexity Analysis

We denote Ne as the number of entities, Nr as
the number of relations and K as the vector di-
mension. The model parameter size of PTransE
is (NeK + NrK), which is the same as TransE.
PTransE follows the optimization procedure in-
troduced by (Bordes et al., 2013) to solve Equa-
tion (9). We denote S as the number of triples
for learning, P as the expected number of relation
paths between two entities, and L as the expected
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length of relation paths. For each iteration in opti-
mization, the complexity of TransE is O(SK) and
the complexity of PTransE isO(SKPL) for ADD
and MUL, and O(SK2PL) for RNN.

3 Experiments and Analysis

3.1 Data Sets and Experimental Setting
We evaluate our method on a typical large-scale
KB Freebase (Bollacker et al., 2008). In this pa-
per, we adopt two datasets extracted from Free-
base, i.e., FB15K and FB40K. The statistics of the
datasets are listed in Table 1.

Table 1: Statistics of data sets.

Dataset #Rel #Ent #Train #Valid # Test
FB15K 1,345 14,951 483,142 50,000 59,071
FB40K 1,336 39,528 370,648 67,946 96,678

We evaluate the performance of PTransE and
other baselines by predicting whether testing
triples hold. We consider two scenarios: (1)
Knowledge base completion, aiming to predict the
missing entities or relations in given triples only
based on existing KBs. (2) Relation extraction
from texts, aiming to extract relations between en-
tities based on information from both plain texts
and KBs.

3.2 Knowledge Base Completion
The task of knowledge base completion is to com-
plete the triple (h, r, t) when one of h, t, r is miss-
ing. The task has been used for evaluation in (Bor-
des et al., 2011; Bordes et al., 2012; Bordes et
al., 2013). We conduct the evaluation on FB15K,
which has 483, 142 relational triples and 1, 345 re-
lation types, among which there are rich inference
and reasoning patterns.

In the testing phase, for each testing triple
(h, r, t), we define the following score function for
prediction

S(h, r, t) = G(h, r, t) +G(t, r−1, h), (14)

and the score function G(h, r, t) is further defined
as

G(h, r, t) =||h + r− t||+
1
Z

∑
p∈P (h,t)

Pr(r|p)R(p|h, t)||p− r||.

(15)

The score function is similar to the energy func-
tion defined in Section 2.1. The difference is that,

here we consider the reliability of a path p is also
related to the inference strength given r, which is
quantified as Pr(r|p) = Pr(r, p)/Pr(p) obtained
from the training data.

We divide the stage into two sub-tasks, i.e., en-
tity prediction and relation prediction.

3.2.1 Entity Prediction
In the sub-task of entity prediction, we follow the
setting in (Bordes et al., 2013). For each test-
ing triple with missing head or tail entity, vari-
ous methods are asked to compute the scores of
G(h, r, t) for all candidate entities and rank them
in descending order.

We use two measures as our evaluation metrics:
the mean of correct entity ranks and the proportion
of valid entities ranked in top-10 (Hits@10). As
mentioned in (Bordes et al., 2013), the measures
are desirable but flawed when an invalid triple
ends up being valid in KBs. For example, when
the testing triple is (Obama, PresidentOf,
USA) with the head entity Obama is missing, the
head entity Lincoln may be regarded invalid for
prediction, but in fact it is valid in KBs. The eval-
uation metrics will under-estimate those methods
that rank these triples high. Hence, we can filter
out all these valid triples in KBs before ranking.
The first evaluation setting was named as “Raw”
and the second one as “Filter”.

For comparison, we select all methods in (Bor-
des et al., 2013; Wang et al., 2014) as our base-
lines and use their reported results directly since
the evaluation dataset is identical.

Ideally, PTransE has to find all possible relation
paths between the given entity and each candidate
entity. However, it is time consuming and imprac-
tical, because we need to iterate all candidate en-
tities in |E| for each testing triple. Here we adopt
a re-ranking method: we first rank all candidate
entities according to the scores from TransE, and
then re-rank top-500 candidates according to the
scores from PTransE.

For PTransE, we find the best hyperparameters
according to the mean rank in validation set. The
optimal configurations of PTransE we used are
λ = 0.001, γ = 1, k = 100 and taking L1 as
dissimilarity. For training, we limit the number of
epochs over all the training triples to 500.

Evaluation results of entity prediction are
shown in Table 2. The baselines include RESCAL
(Nickel et al., 2011), SE (Bordes et al., 2011),
SME (linear) (Bordes et al., 2012), SME (bilinear)
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Table 2: Evaluation results on entity prediction.

Metric Mean Rank Hits@10 (%)
Raw Filter Raw Filter

RESCAL 828 683 28.4 44.1
SE 273 162 28.8 39.8

SME (linear) 274 154 30.7 40.8
SME (bilinear) 284 158 31.3 41.3

LFM 283 164 26.0 33.1
TransE 243 125 34.9 47.1
TransH 212 87 45.7 64.4
TransR 198 77 48.2 68.7

TransE (Our) 205 63 47.9 70.2
PTransE (ADD, 2-step) 200 54 51.8 83.4
PTransE (MUL, 2-step) 216 67 47.4 77.7
PTransE (RNN, 2-step) 242 92 50.6 82.2
PTransE (ADD, 3-step) 207 58 51.4 84.6

(Bordes et al., 2012), LFM (Jenatton et al., 2012),
TransE (Bordes et al., 2013) (original version and
our implementation considering reverse relations),
TransH (Wang et al., 2014), and TransR (Lin et al.,
2015).

For PTransE, we consider three composition op-
erations for relation path representation: addition
(ADD), multiplication (MUL) and recurrent neu-
ral networks (RNN). We also consider relation
paths with at most 2-steps and 3-steps. With the
same configurations of PTransE, our TransE im-
plementation achieves much better performance
than that reported in (Bordes et al., 2013).

From Table 2 we observe that: (1) PTransE
significantly and consistently outperforms other
baselines including TransE. It indicates that rela-
tion paths provide a good supplement for repre-
sentation learning of KBs, which have been suc-
cessfully encoded by PTransE. For example, since
both George W. Bush and Abraham Lincoln were
presidents of the United States, they exhibit simi-
lar embeddings in TransE. This may lead to con-
fusion for TransE to predict the spouse of Laura
Bush. In contrast, since PTransE models rela-
tion paths, it can take advantage of the relation
paths between George W. Bush and Laura Bush,
and leads to more accurate prediction. (2) For
PTransE, the addition operation outperforms other
composition operations in both Mean Rank and
Hits@10. The reason is that, the addition opera-
tion is compatible with the learning objectives of
both TransE and PTransE. Take h r1−→ e1

r2−→ t for
example. The optimization objectives of two di-
rect relations h + r1 = e1 and e1 + r2 = t can
easily derive the path objective h + r1 + r2 = t.
(3) PTransE of considering relation paths with at
most 2-step and 3-step achieve comparable results.

This indicates that it may be unnecessary to con-
sider those relation paths that are too long.

As defined in (Bordes et al., 2013), relations in
KBs can be divided into various types according
to their mapping properties such as 1-to-1, 1-to-
N, N-to-1 and N-to-N. Here we demonstrate the
performance of PTransE and some baselines with
respect to different types of relations in Table 3.
It is observed that, on all mapping types of re-
lations, PTransE consistently achieves significant
improvement as compared with TransE.

3.2.2 Relation Prediction
Relation prediction aims to predict relations given
two entities. We also use FB15K for evaluation.
In this sub-task, we can use the score function of
PTransE to rank candidate relations instead of re-
ranking like in entity prediction.

Since our implementation of TransE has
achieved the best performance among all base-
lines for entity prediction, here we only com-
pare PTransE with TransE due to limited space.
Evaluation results are shown in Table 4, where
we report Hits@1 instead of Hits@10 for com-
parison, because Hits@10 for both TransE and
PTransE exceeds 95%. In this table, we report
the performance of TransE without reverse rela-
tions (TransE), with reverse relations (+Rev) and
considering relation paths for testing like that in
PTransE (+Rev+Path). We report the performance
of PTransE with only considering relation paths (-
TransE), only considering the part in Equation (1)
(-Path) and considering both (PTransE).

The optimal configurations of PTransE for re-
lation prediction are identical to those for entity
prediction: λ = 0.001, γ = 1, k = 100 and taking
L1 as dissimilarity.

From Table 4 we observe that: (1) PTransE out-
performs TransE+Rev+Path significantly for rela-
tion prediction by reducing 41.8% prediction er-
rors. (2) Even for TransE itself, considering re-
lation paths for testing can reduce 17.3% errors
as compared with TransE+Rev. It indicates that
encoding relation paths will benefit for predict-
ing relations. (3) PTransE with only considering
relation paths (PTransE-TransE) gets surprisingly
high mean rank. The reason is that, not all entity
pairs in testing triples have relation paths, which
will lead to random guess and the expectation of
rank of these entity pairs is |R|/2. Meanwhile,
Hits@1 of PTransE-TransE is relatively reason-
able, which indicates the worth of modeling rela-
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Table 3: Evaluation results on FB15K by mapping properties of relations. (%)

Tasks Predicting Head Entities (Hits@10) Predicting Tail Entities (Hits@10)
Relation Category 1-to-1 1-to-N N-to-1 N-to-N 1-to-1 1-to-N N-to-1 N-to-N

SE 35.6 62.6 17.2 37.5 34.9 14.6 68.3 41.3
SME (linear) 35.1 53.7 19.0 40.3 32.7 14.9 61.6 43.3

SME (bilinear) 30.9 69.6 19.9 38.6 28.2 13.1 76.0 41.8
TransE 43.7 65.7 18.2 47.2 43.7 19.7 66.7 50.0
TransH 66.8 87.6 28.7 64.5 65.5 39.8 83.3 67.2
TransR 78.8 89.2 34.1 69.2 79.2 37.4 90.4 72.1

TransE (Our) 74.6 86.6 43.7 70.6 71.5 49.0 85.0 72.9
PTransE (ADD, 2-step) 91.0 92.8 60.9 83.8 91.2 74.0 88.9 86.4
PTransE (MUL, 2-step) 89.0 86.8 57.6 79.8 87.8 71.4 72.2 80.4
PTransE (RNN, 2-step) 88.9 84.0 56.3 84.5 88.8 68.4 81.5 86.7
PTrasnE (ADD, 3-step) 90.1 92.0 58.7 86.1 90.7 70.7 87.5 88.7

tion paths. As compared with TransE, the inferior
of PTransE-TransE also indicates that entity repre-
sentations are informative and crucial for relation
prediction.

Table 4: Evaluation results on relation prediction.

Metric Mean Rank Hits@1 (%)
Raw Filter Raw Filter

TransE (Our) 2.8 2.5 65.1 84.3
+Rev 2.6 2.3 67.1 86.7
+Rev+Path 2.4 1.9 65.2 89.0

PTransE (ADD, 2-step) 1.7 1.2 69.5 93.6
-TransE 135.8 135.3 51.4 78.0
-Path 2.0 1.6 69.7 89.0

PTransE (MUL, 2-step) 2.5 2.0 66.3 89.0
PTransE (RNN, 2-step) 1.9 1.4 68.3 93.2
PTransE (ADD, 3-step) 1.8 1.4 68.5 94.0

3.3 Relation Extraction from Text
Relation extraction from text aims to extract re-
lational facts from plain text to enrich existing
KBs. Many works regard large-scale KBs as dis-
tant supervision to annotate sentences as training
instances and build relation classifiers according to
features extracted from the sentences (Mintz et al.,
2009; Riedel et al., 2010; Hoffmann et al., 2011;
Surdeanu et al., 2012). All these methods reason
new facts only based on plain text. TransE was
used to enrich a text-based model and achieved a
significant improvement (Weston et al., 2013), and
so do TransH (Wang et al., 2014) and TransR (Lin
et al., 2015). In this task, we explore the effective-
ness of PTransE for relation extraction from text.

We use New York Times corpus (NYT) released
by (Riedel et al., 2010) as training and testing data.
NYT aligns Freebase with the articles in New York
Times, and extracts sentence-level features such

as part-of-speech tags, dependency tree paths for
each mention. There are 53 relations (including
non-relation denoted as NA) and 121, 034 training
mentions. We use FB40K as the KB, consisting all
entities mentioned in NYT and 1, 336 relations.

In the experiments, we implemented the text-
based model Sm2r presented in (Weston et al.,
2013). We combine the ranking scores from
the text-based model with those from KB rep-
resentations to rank testing triples, and gener-
ate precision-recall curves for both TransE and
PTransE. For learning of TransE and PTransE,
we set the dimensions of entities/relations embed-
dings k = 50, the learning rate λ = 0.001, the
margin γ = 1.0 and dissimilarity metric as L1.
We also compare with MIMLRE (Surdeanu et al.,
2012) which is the state-of-art method using dis-
tant supervision. The evaluation curves are shown
in Figure 3.
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Figure 3: Precision-recall curves of Sm2r, TransE
and PTransE combine with Sm2r.
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From Figure 3 we can observe that, by combin-
ing with the text-based model Sm2r, the precision
of PTransE significantly outperforms TransE espe-
cially for the top-ranked triples. This indicates that
encoding relation paths is also useful for relation
extraction from text.

Note that TransE used here does not consider
reverse relations and relation paths because the
performance does not change much. We analyze
the reason as follows. In the task of knowledge
base completion, each testing triple has at least
one valid relation. In contrast, many testing triples
in this task correspond to non-relation (NA), and
there are usually several relation paths between
two entities in these non-relation triples. TransE
does not encode relation paths during the training
phase like PTransE, which results in worse perfor-
mance for predicting non-relation when consider-
ing relation paths in the testing phase, and com-
pensates the improvement on those triples that do
have relations. This indicates it is non-trivial to
encode relation paths, and also confirms the effec-
tiveness of PTransE.

3.4 Case Study of Relation Inference

We have shown that PTransE can achieve high per-
formance for knowledge base completion and re-
lation extraction from text. In this section, we
present some examples of relation inference ac-
cording to relation paths.

According to the learning results of PTransE,
we can find new facts from KBs. As shown in
Figure 4, two entities Forrest Gump and English
are connected by three relation paths, which give
us more confidence to predict the relation between
the two entities to LanguageOfFilm.

Forrest 
Gump

Robert 
Zemeckis

United 
States

Norway

Paramount 
Pictures

English

Release Region

Director

Official Language

Official Language

Country

Company

Language of Film

Language

Figure 4: An inference example in Freebase.

4 Related Work

Recent years have witnessed great advances of
modeling multi-relational data such as social net-
works and KBs. Many works cope with rela-
tional learning as a multi-relational representation
learning problem, encoding both entities and re-
lations in a low-dimensional latent space, based
on Bayesian clustering (Kemp et al., 2006; Miller
et al., 2009; Sutskever et al., 2009; Zhu, 2012),
energy-based models (Bordes et al., 2011; Chen et
al., 2013; Socher et al., 2013; Bordes et al., 2013;
Bordes et al., 2014), matrix factorization (Singh
and Gordon, 2008; Nickel et al., 2011; Nickel et
al., 2012) . Among existing representation mod-
els, TransE (Bordes et al., 2013) regards a relation
as translation between head and tail entities for
optimization, which achieves a good trade-off be-
tween prediction accuracy and computational effi-
ciency. All existing representation learning meth-
ods of knowledge bases only use direct relations
between entities, ignoring rich information in re-
lation paths.

Relation paths have already been widely con-
sidered in social networks and recommender sys-
tems. Most of these works regard each relation and
path as discrete symbols, and deal with them us-
ing graph-based algorithms, such as random walks
with restart (Tong et al., 2006). Relation paths
have also been used for inference on large-scale
KBs, such as Path Ranking algorithm (PRA) (Lao
and Cohen, 2010), which has been adopted for ex-
pert finding (Lao and Cohen, 2010) and informa-
tion retrieval (Lao et al., 2012). PRA has also been
used for relation extraction based on KB structure
(Lao et al., 2011; Gardner et al., 2013). (Nee-
lakantan et al., 2015) further learns a recurrent
neural network (RNN) to represent unseen rela-
tion paths according to involved relations. We
note that, these methods focus on modeling rela-
tion paths for relation extraction without consid-
ering any information of entities. In contrast, by
successfully integrating the merits of modeling en-
tities and relation paths, PTransE can learn supe-
rior representations of both entities and relations
for knowledge graph completion and relation ex-
traction as shown in our experiments.

5 Conclusion and Future Work

This paper presents PTransE, a novel representa-
tion learning method for KBs, which encodes re-
lation paths to embed both entities and relations
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in a low-dimensional space. To take advantages
of relation paths, we propose path-constraint re-
source allocation to measure relation path reliabil-
ity, and employ semantic composition of relations
to represent paths for optimization. We evaluate
PTransE on knowledge base completion and re-
lation extraction from text. Experimental results
show that PTransE achieves consistent and signif-
icant improvements as compared with TransE and
other baselines.

In future, we will explore the following research
directions: (1) This paper only considers the infer-
ence patterns between direct relations and relation
paths between two entities for learning. There are
much complicated patterns among relations. For
example, the inference form Queen(e) Inference=====⇒
Female(e) cannot be handled by PTransE. We
may take advantages of first-order logic to encode
these inference patterns for representation learn-
ing. (2) There are some extensions for TransE,
e.g., TransH and TransR. It is non-trivial for them
to adopt the idea of PTransE, and we will explore
to extend PTransE to these models to better deal
with complicated scenarios of KBs.
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Abstract

This paper addresses the problem of
corpus-level entity typing, i.e., inferring
from a large corpus that an entity is a
member of a class such as “food” or
“artist”. The application of entity typ-
ing we are interested in is knowledge base
completion, specifically, to learn which
classes an entity is a member of. We pro-
pose FIGMENT to tackle this problem.
FIGMENT is embedding-based and com-
bines (i) a global model that scores based
on aggregated contextual information of
an entity and (ii) a context model that first
scores the individual occurrences of an en-
tity and then aggregates the scores. In
our evaluation, FIGMENT strongly out-
performs an approach to entity typing that
relies on relations obtained by an open in-
formation extraction system.

1 Introduction

Natural language understanding (NLU) is not pos-
sible without knowledge about the world – partly
so because world knowledge is needed for many
NLP tasks that must be addressed as part of NLU;
e.g., many coreference ambiguities can only be re-
solved based on world knowledge. It is also true
because most NLU applications combine a vari-
ety of information sources that include both text
sources and knowledge bases; e.g., question an-
swering systems need access to knowledge bases
like gazetteers. Thus, high-quality knowledge
bases are critical for successful NLU.

Unfortunately, most knowledge bases are in-
complete. The effort required to create knowledge
bases is considerable and since the world changes,
it will always continue. Knowledge bases are
therefore always in need of updates and correc-
tions. To address this problem, we present an in-
formation extraction method that can be used for

knowledge base completion. In contrast to most
other work on knowledge base completion, we fo-
cus on fine-grained classification of entities as op-
posed to relations between entities.

The goal of knowledge base completion is to
acquire knowledge in general as opposed to de-
tailed analysis of an individual context or sen-
tence. Therefore, our approach is corpus-level:
We infer the types of an entity by considering the
set of all of its mentions in the corpus. In contrast,
named entity recognition (NER) is context-level or
sentence-level: NER infers the type of an entity
in a particular context. As will be discussed in
more detail in the following sections, the problems
of corpus-level entity typing vs. context/sentence-
level entity typing are quite different. This is
partly because the objectives of optimizing ac-
curacy on the context-level vs. optimizing accu-
racy on the corpus-level are different and partly
because evaluation measures for corpus-level and
context-level entity typing are different.

We define our problem as follows. Let K be a
knowledge base that models a set E of entities, a
set T of fine-grained classes or types and a mem-
bership function m : E × T 7→ {0, 1} such that
m(e, t) = 1 iff entity e has type t. LetC be a large
corpus of text. Then, the problem we address in
this paper is corpus-level entity typing: For a given
pair of entity e and type t determine – based on the
evidence available inC – whether e is a member of
type t (i.e., m(e, t) = 1) or not (i.e., m(e, t) = 0)
and update the membership relation m of K with
this information.

We investigate two approaches to entity typing:
a global model and a context model.

The global model aggregates all contextual in-
formation about an entity e from the corpus and
then based on that, makes a classification deci-
sion on a particular type t – i.e., m(e, t) = 0 vs.
m(e, t) = 1.

The context model first scores each individual
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context of e as expressing type t or not. A final de-
cision on the value of m(e, t) is then made based
on the distribution of context scores. One diffi-
culty in knowledge base completion based on text
corpora is that it is too expensive to label large
amounts of text for supervised approaches. For
our context model, we address this problem using
distant supervision: we treat all contexts of an en-
tity that can have type t as contexts of type t even
though this assumption will in general be only true
for a subset of these contexts. Thus, as is typi-
cal for distant supervision, the labels are incorrect
in some contexts, but we will show that the label-
ing is good enough to learn a high-quality context
model.

The global model is potentially more robust
since it looks at all the available information at
once. In contrast, the context model has the advan-
tage that it can correctly predict types for which
there are only a small number of reliable contexts.
For example, in a large corpus we are likely to
find a few reliable contexts indicating that “Barack
Obama” is a bestselling author even though this
evidence may be obscured in the global distri-
bution because the vast majority of mentions of
“Obama” do not occur in author contexts.

We implement the global model and the con-
text model as well as a simple combination of
the two and call the resulting system FIGMENT:
FIne-Grained eMbedding-based Entity Typing. A
key feature of FIGMENT is that it makes exten-
sive use of distributed vector representations or
embeddings. We compute embeddings for words
as is standard in a large body of NLP literature,
but we also compute embeddings for entities and
for types. The motivation for using embeddings
in these cases is (i) better generalization and (ii)
more robustness against noise for text types like
web pages. We compare the performance of FIG-
MENT with an approach based on Open Informa-
tion Extraction (OpenIE).

The main contributions of this paper can be
summarized as follows.

• We address the problem of corpus-level en-
tity typing in a knowledge base completion
setting. In contrast to other work that has fo-
cused on learning relations between entities,
we learn types of entities.

• We show that context and global models for
entity typing provide complementary infor-

mation and combining them gives the best re-
sults.

• We use embeddings for words, entities and
types to improve generalization and deal with
noisy input.

• We show that our approach outperforms a
system based on OpenIE relations when the
input corpus consists of noisy web pages.

In the following, we first discuss related work.
Then we motivate our approach and define the
problem setting we adopt. We then introduce our
models in detail and report and analyze experi-
mental results. Finally, we discuss remaining chal-
lenges and possible future work and present our
conclusions.

2 Related work

Named entity recognition (NER) is the task of
detecting and classifying named entities in text.
While most NER systems (e.g., Finkel et al.
(2005)) only consider a small number of entity
classes, recent work has addressed fine-grained
NER (Yosef et al., 2012; Ling and Weld, 2012).
These methods use a variety of lexical and syn-
tactic features to segment and classify entity men-
tions. Some more recent work assumes the seg-
mentation is known and only classifies entity men-
tions. Dong et al. (2015) use distributed repre-
sentations of words in a hybrid classifier to clas-
sify mentions to 20 types. Yogatama et al. (2015)
classify mentions to more fine-grained types by
using different features for mentions and embed-
ding labels in the same space. These methods
as well as standard NER systems try to maxi-
mize correct classification of mentions in individ-
ual contexts whereas we aggregate individual con-
texts and evaluate on accuracy of entity-type as-
signments inferred from the entire corpus. In other
words, their evaluation is sentence-level whereas
ours is corpus-level.

Entity set expansion (ESE) is the problem
of finding entities in a class (e.g., medications)
given a seed set (e.g., {“Ibuprofen”, “Maalox”,
“Prozac”}). The standard solution is pattern-based
bootstrapping (Thelen and Riloff, 2002; Gupta and
Manning, 2014). ESE is different from the prob-
lem we address because ESE starts with a small
seed set whereas we assume that a large number
of examples from a knowledge base (KB) is avail-
able. Initial experiments with the system of Gupta
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and Manning (2014) showed that it was not per-
forming well for our task – this is not surprising
given that it is designed for a task with properties
quite different from entity typing.

More closely related to our work are the OpenIE
systems NNPLB (Lin et al., 2012) and PEARL
(Nakashole et al., 2013) for fine-grained typing
of unlinkable and emerging entities. Both sys-
tems first extract relation tuples from a corpus and
then type entities based on the tuples they occur
in (where NNPLB only uses the subject position
for typing). To perform typing, NNPLB propa-
gates activation from known members of a class
to other entities whereas PEARL assigns types to
the argument slots of relations. The main differ-
ence to FIGMENT is that we do not rely on re-
lation extraction. In principle, we can make use
of any context, not just subject and object posi-
tions. FIGMENT also has advantages for noisy
text for which relation extraction can be challeng-
ing. This will be demonstrated in our evaluation
on web text. Finally, our emphasis is on making
yes-no decisions about possible types (as opposed
to just ranking possibilities) for all entities (as op-
posed to just emerging or unlinkable entities). Our
premise is that even existing entities in KBs are of-
ten not completely modeled and have entries that
require enhancement. We choose NNPLB as our
baseline.

The fine-grained typing of entities performed
by FIGMENT can be used for knowledge base
completion (KBC). Most KBC systems focus on
relations between entities, not on types as we
do. Some generalize the patterns of relation-
ships within the KB (Nickel et al., 2012; Bordes
et al., 2013) while others use a combination of
within-KB generalization and information extrac-
tion from text (Weston et al., 2013; Socher et al.,
2013; Jiang et al., 2012; Riedel et al., 2013; Wang
et al., 2014). Neelakantan and Chang (2015) ad-
dress entity typing in a way that is similar to FIG-
MENT. Their method is based on KB information,
more specifically entity descriptions in Wikipedia
and Freebase. Thus, in contrast to our approach,
their system is not able to type entities that are not
covered by existing KBs. We infer classes for en-
tities from a large corpus and do not assume that
these entities occur in the KB.

Learning embeddings for words is standard in
a large body of NLP literature (see Baroni et al.
(2014) for an overview). In addition to words, we

also learn embeddings for entities and types. Most
prior work on entity embeddings (e.g., Weston et
al. (2013), Bordes et al. (2013)) and entity and
type embeddings (Zhao et al., 2015) has mainly
used KB information as opposed to text corpora.
Wang et al. (2014) learn embeddings of words and
entities in the same space by replacing Wikipedia
anchors with their corresponding entities. For our
global model, we learn entity embedding in a sim-
ilar way, but on a corpus with automatically anno-
tated entities. For our context model, we learn and
use type embeddings jointly with corpus words
to improve generalization, a novel contribution of
this paper to the best of our knowledge. We learn
all our embeddings using word2vec (Mikolov et
al., 2013).

Our problem can be formulated as multi-
instance multi-label (MIML) learning (Zhou and
Zhang, 2006), similar to the formulation for re-
lation extraction by Surdeanu et al. (2012). In
our problem, each example (entity) can have sev-
eral instances (contexts) and each instance can
have several labels (types). Similar to Zhou and
Zhang (2006)’s work on scene classification, we
also transform MIML into easier tasks. The global
model transforms MIML into a multi-label prob-
lem by merging all instances of an example. The
context model solves the problem by combining
the instance-label scores to example-label scores.

3 Motivation and problem definition

3.1 Freebase

Large scale KBs like Freebase (Bollacker et al.,
2008), YAGO (Suchanek et al., 2007) and Google
knowledge graph are important NLP resources.
Their structure is roughly equivalent to a graph in
which entities are nodes and edges are relations
between entities. Each node is also associated
with one or more semantic classes, called types.
These types are the focus of this paper.

We use Freebase, the largest available KB, in
this paper. In Freebase, an entity can belong to
several classes, e.g., “Barack Obama” is a mem-
ber of 37 types including “US president” and “au-
thor”. One notable type is also defined for each
entity, e.g., “US-president” for “Obama” since it is
regarded as his most prominent characteristic and
the one that would be used to disambiguate refer-
ences to him, e.g., to distinguish him from some-
body else with the same name.

There are about 1500 types in Freebase, or-
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ganized by domain; e.g., the domain “food” has
types like “food”, “ingredient” and “restaurant”.
Some types like “location” are very general, some
are very fine-grained, e.g., “Vietnamese urban dis-
trict”. There are types that have a large number of
instances like “citytown” and types that have very
few like “camera sensor”. Entities are defined as
instances of types. They can have several types
based on the semantic classes that the entity they
are referring to is a member of – as in the above
example of Barack Obama.

The types are not organized in a strict taxon-
omy even though there exists an included type re-
lationship between types in Freebase. The reason
is that for a user-generated KB it is difficult to
maintain taxonomic consistency. For example, al-
most all instances of “author” are also instances of
“person”, but sometimes organizations author and
publish documents. We follow the philosophy of
Freebase and assume that the types do not have a
hierarchical organization.

3.2 Incompleteness of knowledge base

Even though Freebase is the largest publicly avail-
able KB of its kind, it still has significant coverage
problems; e.g., 78.5% of persons in Freebase do
not have nationality (Min et al., 2013).

This is unavoidable, partly because Freebase is
user-generated, partly because the world changes
and Freebase has to be updated to reflect those
changes. All existing KBs that attempt to model a
large part of the world suffer from this incomplete-
ness problem. Incompleteness is likely to become
an even bigger problem in the future as the number
of types covered by KBs like Freebase increases.
As more and more fine-grained types are added,
achieving good coverage for these new types us-
ing only human editors will become impossible.

The approach we adopt in this paper to address
incompleteness of KBs is extraction of informa-
tion from large text corpora. Text can be argued
to be the main repository of the type of knowledge
represented in KBs, so it is reasonable to attempt
completing them based on text. There is in fact
a significant body of work on corpus-based meth-
ods for extracting knowledge from text; however,
most of it has addressed relation extraction, not
the acquisition of type information – roughly cor-
responding to unary relations (see Section 2). In
this paper, we focus on typing entities.

3.3 Entity linking
The first step in extracting information about en-
tities from text is to reliably identify mentions
of these entities. This problem of entity linking
has some mutual dependencies with entity typing.
Indeed, some recent work shows large improve-
ments when entity typing and linking are jointly
modeled (Ling et al., 2015; Durrett and Klein,
2014). However, there are constraints that are im-
portant for high-performance entity linking, but
that are of little relevance to entity typing. For ex-
ample, there is a large literature on entity linking
that deals with coreference resolution and inter-
entity constraints – e.g., “Naples” is more likely
to refer to a US (resp. an Italian) city in a context
mentioning “Fort Myers” (resp. “Sicily”).

Therefore, we will only address entity typing
in this paper and consider entity linking as an in-
dependent module that provides contexts of en-
tities for FIGMENT. More specifically, we build
FIGMENT on top of the output of an existing en-
tity linking system and use FACC1,1 an automatic
Freebase annotation of ClueWeb (Gabrilovich et
al., 2013). According to the FACC1 distributors,
precision of annotated entities is around 80-85%
and recall is around 70-85%.

3.4 FIGER types
Our goal is fine-grained typing of entities, but
types like “Vietnamese urban district” are too fine-
grained. To create a reliable setup for evaluation
and to make sure that all types have a reasonable
number of instances, we adopt the FIGER type set
(Ling and Weld, 2012) that was created with the
same goals in mind. FIGER consists of 112 tags
and was created in an attempt to preserve the di-
versity of Freebase types while consolidating in-
frequent and unusual types through filtering and
merging. For example, the Freebase types “dish”,
“ingredient”, “food” and “cheese” are mapped to
one type “food”. See (Ling and Weld, 2012) for
a complete list of FIGER types. We use “type” to
refer to FIGER types in the rest of the paper.

4 Global, context and joint models

We address a problem setting in which the fol-
lowings are given: a KB with a set of entities
E, a set of types T and a membership function
m : E × T 7→ {0, 1} such that m(e, t) = 1 iff
entity e has type t; and a large annotated corpus C

1lemurproject.org/clueweb12/FACC1
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in which mentions of E are linked. As mentioned
before, we use FACC1 as our corpus.

In this problem setting, we address the task of
corpus-level fine-grained entity typing: we want to
infer from the corpus for each pair of entity e and
type t whether m(e, t) = 1 holds, i.e., whether
entity e is a member of type t.

We use three scoring models in FIGMENT:
global model, context model and joint model. The
models return a score S(e, t) for an entity-type
pair (e, t). S(e, t) is an assessment of the extent to
which it is true that the semantic class t contains
e and we learn it by training on a subset of E. The
trained models can be applied to large corpora and
the resulting scores can be used for learning new
types of entities covered in the KB as well as for
typing new or unknown entities – i.e., entities not
covered by the KB. To work for new or unknown
entities, we would need an entity linking system
such as the ones participating in TAC KBP (Mc-
Namee and Dang, 2009) that identifies and clus-
ters mentions of them.

4.1 Global model

The global model (GM) scores possible types of
entity e based on a distributed vector representa-
tion or embedding ~v(e) ∈ Rd of e. ~v(e) can be
learned from the entity-annotated corpus C.

Embeddings of words have been widely used in
different NLP applications. The embedding of a
word is usually derived from the distribution of its
context words. The hypothesis is that words with
similar meanings tend to occur in similar contexts
(Harris, 1954) and therefore cooccur with similar
context words. By extension, the assumption of
our model is that entities with similar types tend
to cooccur with similar context words.

To learn a score function SGM(e, t), we use a
multilayer perceptron (MLP) with one shared hid-
den layer and an output layer that contains, for
each type t in T, a logistic regression classifier that
predicts the probability of t:

SGM(e, t) = Gt

(
tanh

(
Winput~v(e)

))
where Winput ∈ Rh×d is the weight matrix from
~v(e) ∈ Rd to the hidden layer with size h. Gt
is the logistic regression classifier for type t that
is applied on the hidden layer. The shared hid-
den layer is designed to exploit the dependen-
cies among labels. Stochastic gradient descent

(SGD) with AdaGrad (Duchi et al., 2011) and
minibatches are used to learn the parameters.

4.2 Context model
For the context model (CM), we first learn a scor-
ing function Sc2t(c, t) for individual contexts c in
the corpus. Sc2t(c, t) is an assessment of how
likely it is that an entity occurring in context c has
type t. For example, consider the contexts c1 = “he
served SLOT cooked in wine” and c2 = “she loves
SLOT more than anything”. SLOT marks the oc-
currence of an entity and it also shows that we do
not care about the entity mention itself but only its
context. For the type t = “food”, Sc2t(c1, t) is high
whereas Sc2t(c2, t) is low. This example demon-
strates that some contexts of an entity like “beef”
allow specific inferences about its type whereas
others do not. We aim to learn a scoring function
Sc2t that can distinguish these cases.

Based on the context scoring function Sc2t, we
then compute the corpus-level CM scoring func-
tion SCM that takes the scores Sc2t(ci, t) for all
contexts of entity e in the corpus as input and re-
turns a score SCM(e, t) that assesses the appropri-
ateness of t for e. In other words, SCM is:

SCM(e, t) = g(Ue,t) (1)

where Ue,t = {Sc2t(c1, t), . . . , Sc2t(cn, t)} is the
set of scores for t based on the n contexts c1 . . . cn
of e in the corpus. The function g is a sum-
mary function of the distribution of scores, e.g.,
the mean, median or maximum. We use the mean
in this paper.

We now describe how we learn Sc2t. For train-
ing, we need contexts that are labeled with types.
We do not have such a dataset in our problem set-
ting, but we can use the contexts of linked entities
as distantly supervised data. Specifically, assume
that entity e has n types. For each mention of e in
the corpus, we generate a training example with n
labels, one for each of the n types of e.

For training Sc2t, a context c of a mention is
represented as the concatenation of two vectors.
One vector is the average of the embeddings of
the 2l words to the left and right of the mention.
The other vector is the concatenation of the em-
beddings of the 2k words to the left and right of
the mention. E.g., for k = 2 and l = 1 the
context c is represented as the vector: Φ(c) =[
x−2, x−1, x+1, x+2, avg(x−1, x+1)

]
where xi ∈

Rd is the embedding of the context word at posi-
tion i relative to the entity in position 0.
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We train Sc2t on context representations that
consist of embeddings because our goal is a robust
model that works well on a wide variety of genres,
including noisy web pages. If there are other enti-
ties in the contexts, we first replace them with their
notable type to improve generalization. We learn
word and type embeddings from the corpus C by
replacing train entities with their notable type.

The next step is to score these examples. We use
an MLP similar to the global model to learn Sc2t,
which predicts the probability of type t occurring
in context c:

Sc2t(c, t) = Gt

(
tanh

(
WinputΦ(c)

))
where Φ(c) ∈ Rn is the feature vector of the con-
text c as described above, n = (2k + 1) ∗ d and
Winput ∈ Rh×n is the weight matrix from input to
hidden layer with h units. Again, we use SGD
with AdaGrad and minibatch training.

4.3 Joint model
Global model and context model have comple-
mentary strengths and weaknesses.

The strength of CM is that it is a direct model
of the only source of reliable evidence we have:
the context in which the entity occurs. This is also
the way a human would ordinarily do entity typ-
ing: she would determine if a specific context in
which the entity occurs implies that the entity is,
say, an author or a musician and type it accord-
ingly. The order of words is of critical importance
for the accurate assessment of a context and CM
takes it into account. A well-trained CM will also
work for cases for which GM is not applicable. In
particular, if the KB contains only a small number
of entities of a particular type, but the corpus con-
tains a large number of contexts of these entities,
then CM is more likely to generalize well.

The main weakness of CM is that a large pro-
portion of contexts does not contain sufficient in-
formation to infer all types of the entity; e.g.,
based on our distant supervised training data, we
label every context of “Obama” with “author”,
“politician” and Obama’s other types in the KB.
Thus, CM is trained on a noisy training set that
contains only a relatively small number of infor-
mative contexts.

The main strength of GM is that it bases its de-
cisions on the entire evidence available in the cor-
pus. This makes it more robust. It is also more
efficient to train since its training set is by a factor

of |M | smaller than the training set of CM where
|M | is the average number of contexts per entity.

The disadvantage of GM is that it does not work
well for rare entities since the aggregated repre-
sentation of an entity may not be reliable if it is
based on few contexts. It is also less likely to
work well for non-dominant types of an entity
which might be swamped by dominant types; e.g.,
the author contexts of “Obama” may be swamped
by the politician contexts and the overall context
signature of the entity “Obama” may not contain
enough signal to infer that he is an author. Finally,
methods for learning embeddings like word2vec
are bag-of-word approaches. Therefore, word or-
der information – critical for many typing deci-
sions – is lost.

Since GM and CM models are complementary,
a combination model should work better. We
test this hypothesis for the simplest possible joint
model (JM), which adds the scores of the two in-
dividual models:

SJM(e, t) = SGM(e, t) + SCM(e, t)

5 Experimental setup and results

5.1 Setup
Baseline: Our baseline system is the OpenIE sys-
tem no-noun-phrase-left-behind (NNPLB) by Lin
et al. (2012) (see Section 2). Our reimplementa-
tion performs on a par with published results.2 We
use NNPBL as an alternative way of computing
scores S(e, t). Scores of the four systems we com-
pare – NNPBL, GM, CM, JM – are processed the
same way to perform entity typing (see below).

Corpus: We select a subset of about 7.5 mil-
lion web pages, taken from the first segment of
ClueWeb12,3 from different crawl types: 1 million
Twitter links, 120,000 WikiTravel pages and 6.5
million web pages. This corpus is preprocessed
by eliminating HTML tags, replacing all numbers
with “7” and all web links and email addresses
with “HTTP”, filtering out sentences with length
less than 40 characters, and finally doing a simple
tokenization. We merge the text with the FACC1
annotations. The resulting corpus has 4 billion
tokens and 950,000 distinct entities. We use the
2014-03-09 Freebase data dump as our KB.

2The precision of our implementation on the dataset of
three million relation triples distributed by (Lin et al., 2012) is
60.7% compared to 59.8% and 61% for tail and head entities
reported by Lin et al. (2012).

3http://lemurproject.org/clueweb12
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Entity datasets: We consider all entities in the
corpus whose notable types can be mapped to one
of the 112 FIGER types, based on the mapping
provided by FIGER. 750,000 such entities form
our set of entities. 10 out of 112 FIGER types have
no entities in this set.4

We run the OpenIE system Reverb (Fader et
al., 2011) to extract relation triples of the form
<subject, relation, object>. Since NNPLB only
considers entities in the subject position, we filter
out triples whose subject is not an entity. The size
of the remaining set of triples is 4,000,000. For
a direct comparison with NNPLB, we divide the
750,000 entities into those that occur in subject po-
sition in one of the extracted triples (about 250,000
subject entities or SE) and those that do not (about
500,000 non-subject entities or NSE). We split SE
50:20:30 into train, dev and test sets. The average
and median number of FIGER types of the training
entities are 1.8 and 2, respectively. We use NSE
to evaluate performance of FIGMENT on entities
that do not occur in subject position.5

Context sampling: For Sc2t, we create train’,
dev’ and test’ sets of contexts that correspond to
train, dev and test sets of entities. Because the
number of contexts is unbalanced for both entities
and types and because we want to accelerate train-
ing and testing, we downsample contexts. For the
set train’, we use the notable type feature of Free-
base: For each type t, we take contexts from the
mentions of those entities whose notable type is t.
Recall, however, that each context is labeled with
all types of its entity – see Section 4.2.

Then if the number of contexts for t is larger
than a minimum, we sample the contexts based on
the number of training entities of t. We set the
minimum to 10,000 and constrain the number of
samples for each t to 20,000. Also, to reduce the
effect of distant supervision, entities with fewer
distinct types are preferred in sampling to provide
discriminative contexts for their notable types. For
test’ and dev’ sets, we sample 300 and 200 random
contexts, respectively, for each entity.

System setup: As the baseline, we apply
NNPLB to the 4 million extracted triples. To learn
entity embeddings for GM, we run word2vec
(skipgram, 200 dimensions, window size 5) on

4The reason is that the FIGER mapping uses Freebase
user-created classes. The 10 missing types are not the notable
type of any entity in Freebase.

5The entity datasets are available at http:
//cistern.cis.lmu.de/figment

a version of the corpus in which entities have
been replaced by their Freebase IDs, based on the
FACC1 annotation. We then train MLP with num-
ber of hidden units h = 200 on the embeddings of
training entities until the error on dev entities stops
decreasing.

Our reasoning for the unsupervised training
setup is that we do not use any information about
the types of entities (e.g., no entities annotated by
humans with types) when we run an unsupervised
algorithm like word2vec. In a real-world appli-
cation of FIGMENT to a new corpus, we would
first run word2vec on the merger of our corpus
and the new corpus, retrain GM on training entities
and finally apply it to entities in the new corpus.
This scenario is simulated by our setup.

Recall that the input to CM consists of 2k unit
embeddings and the average of 2l unit embeddings
where we use the term unit to refer to both words
and types. We set k to 4 and l to 5. To learn em-
beddings for units, we first exclude lines contain-
ing test entities, and then replace each entity with
its notable type. Then, we run word2vec (skip-
gram, 100 dimensions, window size 5) on this new
corpus and learn embeddings for words and types.

Using the embeddings as input representations,
we train Sc2t on train’ until error on dev’ stops de-
creasing. We set the number of hidden units to
300. We then apply the trained scoring function
Sc2t to test’ and get the scores Sc2t(c, t) for test’
contexts. As explained in Section 4.2, we compute
the corpus-level scores SCM(e, t) for each entity by
averaging its context-level scores (see Equation 1).

Ranking evaluation: This evaluation shows
how well the models rank types for entities. The
ranking is based on the scores S(e, t) produced by
the different models and baselines. Similar to the
evaluation performed by Lin et al. (2012), we use
precision at 1 (P@1) and breakeven point (BEP,
Boldrin and Levine (2008)). BEP is F1 at the point
in the ranked list at which precision and recall have
the same value.

Classification evaluation: This evaluation
demonstrates the quality of the thresholded assign-
ment decisions produced by the models. These
measures more directly express how well FIG-
MENT would succeed in enhancing the KB with
new information since for each pair (e, t), we have
to make a binary decision about whether to put it
in the KB or not. We compare our decisions with
the gold KB information.
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all types head types tail types
NNPLB .092 .246 .066
CM .406 .662 .268
GM .533 .725 .387
JM .545 .734 .407

Table 2: Type macro average F1 for all, head and
tail types

Our evaluation measures are (i) accuracy: an
entity is correct if all its types and no incorrect
types are assigned to it; (ii) micro average: F1

of all type-entity assignment decisions; (iii) entity
macro average F1: F1 of types assigned to an en-
tity, averaged over entities; (iv) type macro aver-
age F1: F1 of entities assigned to a type, averaged
over types.

The assignment decision is made based on
thresholds, one per type, for each S(e, t). We se-
lect the threshold that maximizes F1 of entities as-
signed to the type on dev.

5.2 Results

Table 1 presents results for the ranking evaluation
as well as for the first three measures of the clas-
sification evaluation. MFT is the most frequent
type baseline that ranks types according to their
frequency in train. We also show the results for
head entities (frequency higher than 100) and tail
entities (frequency less than 5). The performance
of the systems is in this order: JM > GM > CM
> NNPLB > MFT.

Table 2 shows the results of the fourth classi-
fication measure, type macro average F1, for all,
head (more than 3000 train entities, 11 types), and
tail (less than 200 train entities, 36 types) types.
The ordering of models for Table 2 is in line with
Table 1: JM > GM > CM > NNPLB > MFT.

We can easily run FIGMENT for non-subject
entities (NSE) exactly the same way we have run
it for subject entities. We test our JM on the 67,000
NSE entities with a frequency of more than 10.
The top ranked type returned for 73.5% of enti-
ties was correct. Thus, due to our ability to deal
with NSE, we can type an additional 50,000 enti-
ties correctly.

6 Analysis

Effect of window size in CM: Table 3 explores
the effect of using different context sizes. Recall
that CM was trained with 2k = 8 for the concatena-

2k 0 2 4 6 8 10 12 14
h 50 100 200 250 300 400 450 450

micro .576 .613 .672 .673 .668 .674 .680 .674
P@1 .663 .685 .687 .718 .694 .744 .722 .742

Table 3: Effect of the context size 2k in CM (2k:
context size, h: number of hidden units in MLP)

tion and 2l = 10 for the average window size. We
change 2k from 0 to 14 while keeping 2l = 10. The
number of hidden units used in each model is also
reported. The table shows that CM can leverage
larger context sizes well.

Poor results of NNPLB: NNPLB is mostly
hampered by Reverb, which did not work well on
the noisy web corpus. As a result, the quality of
the extracted relations – which NNPLB entity typ-
ing is based on – is too low for reliable typing
decisions. The good results of NNPLB on their
non-noisy published relation triples confirm that.
On the three million relation triples, when map-
ping Freebase types to FIGER, P@1 of NNPLB
is .684; when limiting entities to those with more
than 10 relations, the results improve to .776.

GM performs better than CM and JM per-
forms best: The fact that GM outperforms CM
shows that decisions based on one global vector
of an entity work better than aggregating multiple
weak decisions on their contexts. That is clear-
est for tail entities – where one bad context can
highly influence the final decision – and for tail
types, which CM was not able to distinguish from
other similar types. However, the good results of
the simple JM confirm that the score distributions
in CM do help. As an example, consider one of
the test entities that is an “author”. GM and CM
wrongly predict “written work” and “artist”, re-
spectively, but JM correctly outputs “author”.

Errors of CM: Many CM errors are caused by
its simple input representation: it has to learn all
linguistic abstractions that it wants to rely on from
the training set. One manifestation of this problem
is that CM confuses the types “food” and “restau-
rant”. There are only few linguistic contexts in
which entities of these types can be exchanged for
each other. On the other hand, the context words
they cooccur with in a bag-of-words (BOW) sense
are very similar. Thus, this indicates that CM pays
too much attention to BOW information and that
its representation of contexts is limited in terms of
generalization.
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all entities head entities tail entities
P@1 BEP acc mic mac P@1 BEP acc mic mac P@1 BEP acc mic mac

MFT .101 .406 - - - .111 .410 - - - .097 .394 - - -
NNPLB .365 .480 .000 .099 .096 .378 .503 .000 .114 .109 .368 .474 .000 .086 .084
CM .694 .734 .299 .668 .635 .713 .751 .385 .738 .702 .608 .661 .118 .487 .452
GM .805 .856 .426 .733 .688 .869 .899 .489 .796 .769 .665 .757 .299 .578 .510
JM .816 .860 .435 .743 .699 .874 .900 .500 .803 .776 .688 .764 .306 .601 .532

Table 1: Ranking and classification results for SE entities. P@1 and BEP are ranking measures. Accuracy
(acc), micro (mic) and macro (mac) are classification measures.

Assumptions that result in errors: The per-
formance of all models suffers from a number of
assumptions we made in our training / evaluation
setup that are only approximately true.

The first assumption is that FACC1 is correct.
But it has a precision of only 80-85% and this
caused many errors. An example is the lunar crater
“Buffon” in Freebase, a “location”. Its predicted
type is “athlete” because some FACC1 annotations
of the crater link it to the Italian goalkeeper.

The second assumption of our evaluation setup
is the completeness of Freebase. There are about
2,600 entities with the single type “person” in SE
test. For 62% of the errors on this subset, the top
predicted type is a subtype of person: “author”,
“artist” etc. We manually typed a random subset
of 50 and found that the predicted type is actually
correct for 44 of these entities.

The last assumption is the mapping from Free-
base to FIGER. Some common Freebase types like
“award-winner” are not mapped. This negatively
affects evaluation measures for many entities. On
the other hand, the resulting types do not have a
balanced number of instances. Based on our train-
ing entities, 11 types (e.g., “law”) have less than
50 instances while 26 types (e.g., “software”) have
more than 1000 instances. Even sampling the con-
texts could not resolve this problem and this led to
low performance on tail types.

7 Future work

The performance of FIGMENT is poor for tail
types and entities. We plan to address this in the
future (i) by running FIGMENT on larger corpora,
(ii) by refining the FIGER type set to cover more
Freebase entities, (iii) by exploiting a hierarchy
over types and (iv) by exploring more complex in-
put representations of the context for the CM.

FIGMENT’s context model can in principle be
based on any system that provides entity-type as-

sessment scores for individual contexts. Thus,
as an alternative to our scoring model Sc2t(c, t),
we could use sentence-level entity classification
systems such as FIGER (Ling and Weld, 2012)
and (Yogatama et al., 2015)’s system. These sys-
tems are based on linguistic features different from
the input representation we use, so a comparison
with our embedding-based approach is interesting.
Our assumption is that FIGMENT is more robust
against noise, but investigation is needed.

The components of the version of FIGMENT
we presented, in particular, context model and
global model, do not use features derived from the
mention of an entity. Our assumption was that
such features are less useful for fine-grained en-
tity typing. However, there are clearly some types
for which mention-based features are useful (e.g.,
medications or organizations referred to by abbre-
viations), so we will investigate the usefulness of
such features in the future.

8 Conclusion

We presented FIGMENT, a corpus-level system
that uses contextual information for entity typing.
We designed two scoring models for pairs of en-
tities and types: a global model that scores based
on aggregated context information and a context
model that aggregates the scores of individual con-
texts. We used embeddings of words, entities and
types to represent contextual information. Our
experimental results show that global model and
context model provide complementary informa-
tion for entity typing. We demonstrated that, com-
paring with an OpenIE-based system, FIGMENT
performs well on noisy web pages.
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Abstract

We present KB-UNIFY, a novel approach
for integrating the output of different
Open Information Extraction systems into
a single unified and fully disambiguated
knowledge repository. KB-UNIFY con-
sists of three main steps: (1) disambigua-
tion of relation argument pairs via a sense-
based vector representation and a large
unified sense inventory; (2) ranking of se-
mantic relations according to their degree
of specificity; (3) cross-resource relation
alignment and merging based on the se-
mantic similarity of domains and ranges.
We tested KB-UNIFY on a set of four
heterogeneous knowledge bases, obtain-
ing high-quality results. We discuss and
provide evaluations at each stage, and re-
lease output and evaluation data for the use
and scrutiny of the community1.

1 Introduction

The breakthrough of the Open Information Ex-
traction (OIE) paradigm opened up a research
area where Web-scale unconstrained Information
Extraction systems are developed to acquire and
formalize large quantities of knowledge. How-
ever, while successful, to date most state-of-the-
art OIE systems have been developed with their
own type inventories, and no portable ontologi-
cal structure. In fact, OIE systems can be very
different in nature. Early approaches (Etzioni et
al., 2008; Wu and Weld, 2010; Fader et al., 2011)
focused on extracting a large number of relations
from massive unstructured corpora, mostly rely-
ing on dependencies at the level of surface text.
Systems like NELL (Carlson et al., 2010) com-
bine a hand-crafted taxonomy of entities and re-
lations with self-supervised large-scale extraction

1http://lcl.uniroma1.it/kb-unify

from the Web, but they require additional process-
ing for linking and integration (Dutta et al., 2014).

More recent work has focused, instead, on
deeper language understanding, especially at the
level of syntax and semantics (Nakashole et al.,
2012; Moro and Navigli, 2013). By leveraging
semantic analysis, knowledge gathered from un-
structured text can be adequately integrated and
used to enrich existing knowledge bases, such
as YAGO (Mahdisoltani et al., 2015), FREEBASE

(Bollacker et al., 2008) and DBPEDIA (Lehmann
et al., 2014). A large amount of reliable struc-
tured knowledge is crucial for OIE approaches
based on distant supervision (Mintz et al., 2009;
Riedel et al., 2010), even when multi-instance
multi-learning algorithms (Surdeanu et al., 2012)
or matrix factorization techniques (Riedel et al.,
2013; Fan et al., 2014) come into play to deal
with noisy extractions. For this reason a recent
trend of research has focused on Knowledge Base
(KB) completion (Nickel et al., 2012; Bordes et
al., 2013), exploiting the fact that distantly super-
vised OIE and structured knowledge can comple-
ment each other. However, the majority of integra-
tion approaches nowadays are not designed to deal
with many different resources at the same time.

We propose an approach where the key idea is to
bring together knowledge drawn from an arbitrary
number of OIE systems, regardless of whether
these systems provide links to some general-
purpose inventory, come with their own ad-hoc
structure, or have no structure at all. Knowledge
from each source, in the form of 〈subject, predi-
cate, object〉 triples, is disambiguated and linked
to a single large sense inventory. This enables us
to discover alignments at a semantic level between
relations from different KBs, and to generate a
unified, fully disambiguated KB of entities and
semantic relations. KB-UNIFY achieves state-
of-the-art disambiguation and provides a general,
resource-independent representation of semantic
relations, suitable for any kind of KB.
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The remainder of this paper is structured as fol-
lows: Section 2 reviews relevant related work;
Sections 3, 4, 5 and 6 describe in detail each stage
of the approach; Sections 7 and 8 describe the ex-
periments carried out and the results obtained; and
finally Section 9 summarizes our findings and dis-
cusses potential directions for future work.

2 Related Work

The integration of knowledge drawn from dif-
ferent sources has received much attention over
the last decade. Among the most notable examples
are resources like BabelNet (Navigli and Ponzetto,
2012), UBY (Gurevych et al., 2012) and YAGO

(Mahdisoltani et al., 2015). While great effort
has been put into aligning knowledge at the con-
cept level, most approaches do not tackle the prob-
lem of integrating heterogeneous knowledge at the
relation level, nor do they exploit effectively the
huge amount of information harvested with OIE
systems, even when this information is unambigu-
ously linked to a structured resource, as in (Nakas-
hole et al., 2012), or (Moro and Navigli, 2013).
In fact, as the number of resources increases, KB
alignment is already becoming an emergent re-
search field: Dutta et al. (2014) describe a method
for linking arguments in NELL triples to DBPE-
DIA by combining First Order Logic and Markov
Networks; Grycner and Weikum (2014) seman-
tify PATTY’s pattern synsets and connect them
to WordNet verbs; Lin et al. (2012) propose a
method to propagate FREEBASE types across RE-
VERB and deal with the problem of unlinkable
entities. All these approaches achieve very com-
petitive results in their respective settings, but un-
like the approach being proposed here, they limit
the task to 1-to-1 alignments. A few contributions
have tried to broaden the scope and include dif-
ferent resources at the same time, but with rather
different goals from ours. For example, Riedel et
al. (2013) propose a universal schema that inte-
grates structured data with OIE data by learning
latent feature vectors for entities and relations; the
KNOWLEDGE VAULT (Dong et al., 2014) uses a
graph-based probabilistic framework where prior
knowledge from existing resources (e.g. FREE-
BASE) improves Web extractions by predicting
their reliability. However, in both cases the main
objective is distantly supervised extraction from
unstructured text, rather than KB unification. A re-
cent trend of research focuses on learning embed-
ding models for structured knowledge and their

application to tasks like relation extraction and KB
completion (Socher et al., 2013; Weston et al.,
2013; Bordes et al., 2013). These approaches,
however, leverage embeddings at surface level,
which are suboptimal for our task, as will be dis-
cussed in Section 3. Since we require a com-
mon semantic framework for KB unification, we
use vector representations based on word senses,
which are mapped to a very large sense inventory.
This shared sense inventory, then, constitutes the
common ground in which disambiguation, align-
ment and final unification occurs.

3 Knowledge Base Unification: Overview

KB-UNIFY takes as input a set of KBs K =
{KB1, ...,KBn} and outputs a single, unified and
fully disambiguated KB, denoted as KB∗. For
our purposes we can define a KB KBi as a triple
〈Ei, Ri, Ti〉, where Ei is a set of entities, Ri is
a set of semantic relations, and Ti is a set of
triples (facts) 〈ed, r, eg〉 with subject and object
ed, eg ∈ Ei and predicate r ∈ Ri. Depending
on the nature of each KBi, entities in Ei might
be disambiguated and linked to an external in-
ventory (e.g. the entity Washington linked to the
Wikipedia page GEORGE WASHINGTON), or un-
linked and only available as ambiguous mentions
(e.g. the bare word washington might refer to the
president, the city or the state). We can thus par-
tition K into a subset of linked resources KD, and
one of unlinked resources KU . In order to align
very different and heterogeneous KBs at the se-
mantic level, KB-UNIFY exploits:

• A unified sense inventory S, which acts as
a superset for the inventories of individual
KBs. We choose BabelNet (Navigli and
Ponzetto, 2012) for this purpose: by merg-
ing complementary knowledge from different
resources (e.g. Wikipedia, WordNet, Wiki-
data and Wiktionary, among others), Babel-
Net provides a wide coverage of entities and
concepts whilst at the same time enabling
convenient inter-resource mappings for KBi
in KD. For instance, each Wikipedia page (or
Wikidata item) has a corresponding synset in
BabelNet, which enables a one-to-one map-
ping between BabelNet’s synsets and entries
in, e.g., DBPEDIA or FREEBASE;

• A vector space model VS that enables a se-
mantic representation for every item in S.
Current distributional models, like word em-
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Figure 1: Unification algorithm workflow

beddings (Mikolov et al., 2013), are not suit-
able to our setting: they are constrained to
surface word forms, and hence they inher-
ently retain ambiguity of polysemous words
and entity mentions. We thus leverage
SENSEMBED (Iacobacci et al., 2015), a novel
semantically-enhanced approach to embed-
dings. SENSEMBED is trained on a large
annotated corpus and produces continuous
representations for individual word senses
(sense embeddings), according to an under-
lying sense inventory.

Figure 1 illustrates the workflow of our KB uni-
fication approach. Entities coming from any
KBi ∈ KD can be directly (and unambiguously)
mapped to the corresponding entries in S via Ba-
belNet inter-resource linking (Figure 1(a)): in the
above example, the entity Washington linked to
the Wikipedia page GEORGE WASHINGTON is in-
cluded in the BabelNet synset Washington4

bn.
In contrast, unlinked (and potentially ambiguous)
entities need an explicit disambiguation step (Fig-
ure 1(b)) connecting them to appropriate entries,
i.e. synsets, in S: this is the case, in the above
example, for the ambiguous mention washington
that has to be linked to either the president, the
city or the state. Therefore, our approach com-
prises two successive stages:

• A disambiguation stage (Section 5) where
all KBi ∈ K are linked to S, either by
inter-resource mapping (Figure 1(a)) or dis-
ambiguation (Figure 1(b)), and all Ei are
merged into a unified set of entities E∗. As
a result of this process we obtain a set KS

comprising all the KBs in K redefined using
the common sense inventory S;

• An alignment stage (Section 6, Figure 1(c))
where, for each pair of KBs KBS

i ,KB
S
j ∈

KS , we compare any relation pair 〈ri, rj〉,

ri ∈ RSi and rj ∈ RSj , in order to identify
cross-resource alignments and merge rela-
tions sharing equivalent semantics into rela-
tion clusters (relation synsets). This process
yields a unified set of relation synsets R∗.
The overall result is KB∗ = 〈E∗, R∗, T ∗〉,
where T ∗ is the set of all disambiguated
triples redefined over E∗ and R∗.

4 Background

The disambiguation stage of our approach is
based on the interplay between two core compo-
nents: a vector space model VS , as introduced
in Section 3, which provides an unambiguous se-
mantic representation for each item in S; and a
Word Sense Disambiguation/Entity Linking sys-
tem, working on the same sense inventory S,
which discovers and disambiguates concepts and
entity mentions within a given input text. In this
section we briefly describe our choice for these
two components: SENSEMBED (Iacobacci et al.,
2015) and BABELFY (Moro et al., 2014).

SENSEMBED is a knowledge-based approach
for obtaining latent continuous representations of
individual word senses. Unlike other sense-based
embeddings approaches, like (Huang et al., 2012),
which address the inherent polysemy of word-
level representations relying solely on text cor-
pora, SENSEMBED exploits the structured knowl-
edge of a large sense inventory along with the dis-
tributional information gathered from text corpora.
In order to do this, SENSEMBED requires a sense-
annotated corpus; for each target word sense, then,
a representation is computed by maximizing the
log likelihood of the word sense with respect to
its context within the annotated text, similarly to
the word-based embeddings model. Following Ia-
cobacci et al. (2015), we trained SENSEMBED us-
ing the English Wikipedia and, as sense inventory,
BabelNet.

BABELFY2 is a joint state-of-the-art approach
to multilingual Entity Linking and Word Sense
Disambiguation. Given the BabelNet lexical-
ized semantic network as underlying structure,
BABELFY first models each concept in the net-
work through its corresponding semantic signa-
ture by leveraging a graph random walk algorithm.
Then, given an input text, the generated seman-
tic signatures are used to construct a subgraph

2http://babelfy.org

728



of the semantic network representing the mean-
ing of the content words in that text. BABELFY

then searches this subgraph for the intended sense
of each content word, by means of a densest-
subgraph heuristic that identifies high-coherence
interpretations. Given its unified approach that
covers concepts and named entities alike, and its
flexibility in disambiguating both bag-of-words
and proper text, BABELFY constitutes the most
convenient choice for linking relation triples to a
high-coverage sense inventory like BabelNet.

5 Disambiguation

In the disambiguation phase (Figure 1(b)), all
KBi ∈ KU are linked to the unified sense in-
ventory S and added to the set of redefined KBs
KS . As explained in Section 3, while each KB
in KD can be unambiguously redefined via Babel-
Net inter-resource links and added to KS , KBs in
KU require an explicit disambiguation step. Given
KBi ∈ KU , our disambiguation module (Figure
2) takes as input its set of unlinked triples Ti and
outputs a set TSi ⊆ Ti of disambiguated triples
with subject-object pairs linked to S. The triples in
TSi , together with their corresponding entity sets
and relation sets, constitute the redefined KBS

i

which is then added to KS . However, applying
a straightforward approach that disambiguates all
triples in isolation might lead to very imprecise re-
sults, due to the lack of available context for each
individual triple. We thus devised a disambigua-
tion strategy that comprises three successive steps:

1. We identify a set of high-confidence seeds
from Ti (Section 5.1), i.e. triples 〈ed, r, eg〉
where subject ed and object eg are highly
semantically related, and disambiguate them
using the senses that maximize their similar-
ity in our vector space VS ;

2. We use the seeds to generate a ranking of

Figure 2: Disambiguation algorithm workflow

the relations in Ri according to their degree
of specificity (Section 5.2). We represent
each r ∈ Ri in our vector space VS and as-
sign higher specificity to relations whose ar-
guments are closer in VS ;

3. We finally disambiguate the remaining non-
seed triples in Ti (Section 5.3) starting from
the most specific relations, and jointly using
all participating argument pairs as context.

5.1 Identifying Seed Argument Pairs
The first stage of our disambiguation approach

aims at extracting reliable seeds from Ti, i.e.
triples 〈ed, r, eg〉 where subject ed and object eg
can be confidently disambiguated without addi-
tional context. In order to do this we leverage
the sense embeddings associated with each can-
didate disambiguation for ed and eg. We consider
all the available senses for both ed and eg in S,
namely sd = {s1d, ..., smd } and sg = {s1g, ..., sm

′
g },

and the corresponding sets of sense embeddings
vd = {v1

d, ..., v
m
d } and vg = {v1

g , ..., v
m′
g }. We

then select, among all possible pairs of senses, the
pair 〈s∗d, s∗g〉 that maximizes the cosine similarity
between the corresponding embeddings 〈v∗d, v∗g〉:

〈v∗d, v∗g〉 = argmaxvd∈vd, vg∈vg

vd · vg
‖vd‖ ‖vg‖ (1)

For each disambiguated triple 〈s∗d, r, s∗g〉, the co-
sine similarity value associated with 〈v∗d, v∗g〉 rep-
resents the disambiguation confidence ζdis. We
rank all such triples according to their confidence,
and select those above a given threshold δdis. The
underlying assumption is that, for high-confidence
subject-object pairs, the embeddings associated
with the correct senses s∗d and s∗g will be closest
in VS compared to any other candidate pair. In-
tuitively, the more the relation r between ed and
eg is semantically well defined, the more this as-
sumption is justified. As an example, consider the
triple 〈Armstrong, worked for, NASA〉: among all
the possible senses for Armstrong (the astronaut,
the jazz musician the cyclist, etc.) and NASA (the
space agency, the racing organization, a Swedish
band, etc.) we expect the vectors corresponding to
the astronaut and the space agency to be closest in
the vector space model VS .

5.2 Relation Specificity Ranking
The assumption that, given an ambiguous

subject-object pair, correct argument senses are
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the closest pair in the vector space (Section 5.1) is
easily verifiable for general relations (e.g. is a, is
part of ). However, as a semantic relation becomes
specific, its arguments are less guaranteed to be
semantically related (e.g. is a professor in the uni-
versity of ) and a disambiguation approach based
exclusively on similarity is prone to errors. On
the other hand, specific relations tend to narrow
down the scope of possible entity types occurring
as subject and object. In the above example, is a
professor in the university of requires entity pairs
with professors as subjects and cities as objects.
Our disambiguation strategy should thus vary ac-
cording to the specificity of the relations taken into
account. In order to consider this observation in
our disambiguation pipeline, we first need to es-
timate the degree of specificity for each relation
in the relation set Ri of the target KB to be dis-
ambiguated. Given Ri and a set of seeds from the
previous stage (Section 5.1), we apply a specificity
ranking policy and sort relations in Ri from the
most general to the most specific. We compute the
generality Gen(r) of a given relation r by looking
at the spatial dispersion of the sense embeddings
associated with its seed subjects and objects. Let
vD (vG) be the set of sense embeddings associated
with the domain (range) seed arguments of r. For
both vD and vG, we compute the corresponding
centroid vectors µD and µG as:

µk =
1
|vk|

∑
v∈vk

v

‖v‖ , k ∈ {D,G} (2)

Then, the variances σ2
D and σ2

G are given by:

σ2
k =

1
|vk|

∑
v∈vk

(1− cos (v, µk))
2 (3)

with k ∈ {D,G} as before. We finally compute
Gen(r) as the average of σ2

D and σ2
G. The result

of this procedure is a relation specificity ranking
that associates each relation r with its general-
ity Gen(r). Intuitively, we expect more general
relations to show higher variance (hence higher
Gen(r)), as their subjects and objects are likely
to be rather disperse throughout the vector space;
instead, arguments of very specific relations are
more likely to be clustered together in compact re-
gions, yielding lower values of Gen(r).

5.3 Disambiguation with Relation Context

In the third step, both the specificity ranking
and the seeds are exploited to disambiguate the

remaining triples in Ti. To do this we leverage
BABELFY (Moro et al., 2014) (introduced in Sec-
tion 4). As we observed in Section 5.2, spe-
cific relations impose constraints on their subject-
object types and tend to show compact domains
and ranges in the vector space. Therefore, given
a triple 〈ed, r, eg〉, knowing that r is specific en-
ables us to put together all the triples in Ti where
r occurs, and use them to provide meaningful con-
text for disambiguation. If r is general, instead, its
subject-object types are less constrained and addi-
tional triples do not guarantee to provide semanti-
cally related context.

At this stage, our algorithm takes as input the
set of triples Ti, along with the associated disam-
biguation seeds (Section 5.1), the specificity rank-
ing (Section 5.2) and a specificity threshold δspec.
Ti is first partitioned into two subsets: T speci , com-
prising all the triples for which Gen(r) < δspec,
and T geni = Ti \ T speci . We then employ two dif-
ferent disambiguation strategies:

• For each distinct relation r occurring in
T speci , we first retrieve the subset T speci,r ⊂
T speci of triples where r occurs, and then dis-
ambiguate T speci,r as a whole with BABELFY.
For each triple in T speci,r , context is provided
by all the remaining triples along with the
disambiguated seeds extracted for r.

• We disambiguate the remaining triples in
T geni one by one in isolation with BABELFY,
providing for each triple only the predicate
string r as additional context.

6 Cross-Resource Relation Alignment

After disambiguation (Section 5) each KB in
K is linked to the unified sense inventory S and
added to KS . However, eachKBS

i ∈ KS still pro-
vides its own relation set RSi ⊆ Ri. Instead, in the
unified KB∗, relations with equivalent semantics
should be considered as part of a single relation
synset even when they come from different KBs.
Therefore, at this stage, we apply an alignment al-
gorithm to identify pairs of relations from different
KBs having equivalent semantics. We exploit the
fact that each relation r is now defined over entity
pairs linked to S, and we generate a semantic rep-
resentation of r in the vector space VS based on
the centroid vectors of its domain and range. Due
to representing the semantics of relations on this
common ground, we can compare them by com-
puting their domain and range similarity in VS . We
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first consider each KBS
i ∈ KS and, for each rela-

tion ri in RSi , we compute the corresponding cen-
troid vectors µrid and µrig using formula (2). Then,
for each pair of KBs 〈KBS

i ,KB
S
j 〉 ∈ KS × KS ,

we compare all relation pairs 〈ri, rj〉 ∈ RSi × RSj
by computing the cosine similarity between do-
main centroids sD and between range centroids
sG:

sk =
µrik · µ

rj
k

‖µrik ‖ ‖µ
rj
k ‖

(4)

where µrk denotes the centroid associated with re-
lation r and k ∈ {D,G}. The average of sD and
sG gives us an alignment confidence ζalign for the
pair 〈ri, rj〉. If confidence is above a given thresh-
old δalign then ri and rj are merged into the same
relation synset. Relations for which no alignment
is found are turned into singleton relation synsets.
As a result of this alignment procedure we obtain
the unified set of relations R∗.

7 Experimental Setup

The setting for our experimental evaluation was
the following:

• We used BabelNet 3.03 as our unified sense
inventory for the unification procedure as
well as the underlying inventory for both BA-
BELFY and SENSEMBED. Currently, Babel-
Net contains around 14M synsets and repre-
sents the largest single multilingual reposi-
tory of entities and concepts;

• We selected PATTY (Nakashole et al., 2012)
and WISENET (Moro and Navigli, 2013)
as linked resources. We used PATTY with
FREEBASE types and pattern synsets derived
from Wikipedia, and WISENET 2.0 with
Wikipedia relational phrases;

• We selected NELL (Carlson et al., 2010) and
REVERB (Fader et al., 2011) as unlinked
resources. We used KB beliefs updated to
November 2014 for the former, and the set
of relation instances from ClueWeb09 for the
latter.

Comparative statistics in Table 1 show that the
input KBs are rather different in nature: NELL

is based on 298 predefined relations and contains
beliefs for about 2 million entities. The distri-
bution of entities over relations is however very

3http://babelnet.org

KU KD

NELL REVERB PATTY WISENET

# relations 298 1 299 844 1 631 531 245 935
# triples 2 245 050 14 728 268 15 802 946 2 271 807
# entities 1 996 021 3 327 425 1 087 907 1 636 307

Table 1: Statistics on the input KBs

(a)

(b)

Figure 3: Precision (left) and coverage (right) of disam-
biguated seeds at different values of δdis for (a) the whole set
of triples in PATTY and (b) the subset of ambiguous triples

skewed, with 80.33% of the triples being instances
of the generalizations relationship. In con-
trast, REVERB contains a highly sparse relation
set (1,299,844 distinct relations) and more than
3 million distinct entities. PATTY features the
largest (and, together with WISENET, sparsest)
set of triples, with 1,631,531 distinct relations and
less than 10 triples per relation on average.

8 Experiments

8.1 Disambiguation
We tested our disambiguation approach exper-

imentally in terms of both disambiguated seed
quality (Section 8.1.1) and overall disambiguation
performance (Section 8.1.2). We created a de-
velopment set by extracting a subset of 6 million
triples from the largest linked KB in our experi-
mental setup, i.e. PATTY. Triples in PATTY are
automatically linked to YAGO, which is in turn
linked to WordNet and DBPEDIA. Since both re-
sources are also linked by BabelNet, we mapped
the original triples to the BabelNet sense inventory
and used them to tune our disambiguation module.
We also provide two baseline approaches: (1) di-
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SENSEMBED Baseline
ζdis 0.5-0.7 0.7-0.9 0.9-1.0 0.5-0.7 0.7-0.9 0.9-1.0

PATTY .980 .980 1.000 .793 .780 1.000
WISENET .958 .960 .973 .726 .786 .791

NELL .955 .995 1.000 .800 .770 .885
REVERB .930 .940 .950 .775 .725 .920

Table 2: Disambiguation precision for all KBs

δspec = 0.8 δspec = 0.5 δspec = 0.3
all only seeds all only seeds all only seeds

PATTY 62.15 26.60 52.49 24.06 40.75 21.41
WISENET 60.00 37.46 54.44 22.26 53.58 16.62

NELL 76.97 62.98 50.95 20.71 44.70 4.36
REVERB 41.20 38.57 25.14 23.70 13.37 12.75

Table 3: Coverage results (%) for all KBs

rect disambiguation on individual triples with BA-
BELFY alone (without the seeds) and (2) direct
disambiguation of the seeds only (without BA-
BELFY).

8.1.1 Results: Disambiguated Seeds
We tuned our disambiguation algorithm by

studying the quality of the disambiguated seeds
(Section 5.1) extracted from the surface text triples
of PATTY. Figure 3 shows precision and cover-
age for increasing values of the confidence thresh-
old δdis. We computed precision by checking
each disambiguated seed against the correspond-
ing linked triple in the development set, and cov-
erage as the ratio of covered triples. We analyzed
results for both the whole set of triples in PATTY

(Fig. 3a) and the subset of ambiguous triples (Fig.
3b), i.e. those triples whose subjects and objects
have at least two candidate senses each in the Ba-
belNet inventory. In both cases, precision of dis-
ambiguated seeds increases rapidly with δdis, sta-
bilizing above 90% with δdis > 0.25. Coverage
displays the opposite behavior, decreasing expo-
nentially with more confident outcomes, from 6
million triples to less than a thousand (for seeds
with confidence δdis > 0.95). As a result, we
chose δdis = 0.25 as optimal threshold value
throughout the rest of the evaluations.

In addition, we manually evaluated the disam-
biguated seeds extracted from both linked KBs
(PATTY and WISENET) and unlinked KBs (NELL

and REVERB). For each KB, we extracted up to
three random samples of 150 triples according to
different levels of confidence ζdis: the first sam-
ple included extraction with 0.5 ≤ ζdis < 0.7,
the second with 0.7 ≤ ζdis < 0.9, and the third
with ζdis ≥ 0.9. Each sample was evaluated by
two human judges: for each disambiguated triple

KB-UNIFY Dutta et al. Baseline
all only seeds (α = 0.5)

Precision .852 .957 .931 .749
Recall .875 .117 .799 .608
F-score .864 .197 .857 .671

Table 4: Disambiguation results over NELL gold standard

〈ed, r, eg〉, we presented our judges with the sur-
face text arguments ed, eg and the relation string r,
along with the two BabelNet synsets correspond-
ing to the disambiguated arguments s∗d, s

∗
g, and we

asked whether the association of each subject and
object with the proposed BabelNet synset was cor-
rect. We then estimated precision as the average
proportion of correctly disambiguated triples. For
each sample we compared disambiguation preci-
sion using SENSEMBED, as in Section 5.1, against
the first baseline with BABELFY alone. Results,
reported in Table 2, show that our approach consis-
tently outperforms the baseline and provides high
precision over all samples and KBs.

8.1.2 Results: Disambiguation with Relation
Context

We then evaluated the overall disambiguation
output after specificity ranking (Section 5.2) and
disambiguation with relation context using BA-
BELFY (Section 5.3). We analyzed three config-
urations of the disambiguation pipeline, namely
δspec ∈ {0.8, 0.5, 0.3}. We ran the algorithm over
both linked and unlinked KBs of our experimen-
tal setup, and computed the coverage for each KB
as the overall ratio of disambiguated triples. Re-
sults are reported in Table 3 and compared to the
coverage obtained from the disambiguated seeds
only: context-aware disambiguation substantially
increases coverage over all KBs. Table 3 also
shows that a restrictive δspec results in lower cover-
age values, due to the increased number of triples
disambiguated without context.

Finally, we evaluated the quality of disam-
biguation on a publicly available dataset (Dutta
et al., 2014) comprising manual annotations for
NELL. This dataset provides a gold standard
of 1200 triples whose subjects and objects are
manually assigned a proper DBpedia URI. We
again used BabelNet’s inter-resource links to ex-
press DBpedia annotations with our sense inven-
tory and then sought, for each annotated triple in
the dataset, the corresponding triple in our disam-
biguated version of NELL with δdis = 0.25 and
δspec = 0.8. We then repeated this process con-
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Figure 4: Average argument similarity against Gen(r)

NELL REVERB PATTY WISENET

Precision .660 .715 .625 .750
Cohen’s kappa - .430 .620 .600

Table 5: Specificity ranking evaluation

sidering only the disambiguated seeds instead of
the whole disambiguation pipeline. In line with
(Dutta et al., 2014), we computed precision, recall
and F-score for each setting. Results are reported
in Table 4 and compared against those of Dutta et
al. (2014) and against our first baseline with BA-
BELFY alone. KB-UNIFY achieves the best result,
showing that a baseline based on state-of-the-art
disambiguation is negatively affected by the lack
of context for each individual triple. In contrast,
an approach that relies only on the disambiguated
seeds affords very high precision, but suffers from
dramatically lower coverage.

8.2 Specificity Ranking

We evaluated the specificity ranking (Section
5.2) generated by KB-UNIFY for all KBs of our
experimental setup. First of all, we empirically
validated our scoring function Gen(r) over each
resource: for each relation we computed the aver-
age cosine similarity among all its domain argu-
ments s̄D and among all its range arguments s̄G.
We then plotted the average s̄ of s̄D and s̄G against
Gen(r) for each relation r (Figure 4). As observed
in Section 5.2, the average similarity among do-
main and range arguments decreases for increas-
ing values of Gen(r), indicating that more gen-
eral relations allow less semantically constrained
subject-object types. We then used human judge-
ment to assess the quality of our specificity rank-
ings. First, each ranking was split into four quar-

NELL

High Gen(r) agent created
at location

Low Gen(r) person in economic sector
restaurant in city

REVERB

High Gen(r) is for
is in

Low Gen(r) enter Taurus in
carry oxygen to

PATTY

High Gen(r) located in
later served to

Low Gen(r) starting pitcher who played
league coach for

WISENET

High Gen(r) include
is a type of

Low Gen(r) lobe-finned fish lived during
took part in the Eurovision contest

Table 6: Examples of general and specific relations for all
KBs

tiles, and two human evaluators were presented
with a sample from the top quartile (i.e. a relation
falling into the most general category) and a sam-
ple from the bottom quartile (i.e. a relation falling
into the most specific category). We shuffled each
relation pair, showed it to our human judges, and
then asked which of the two relations they consid-
ered to be the more specific. Ranking precision
was computed by considering those pairs where
human choice agreed with the ranking. Finally,
we computed inter-annotator agreement on each
specificity ranking (except for NELL, due to the
small sample size) with Cohen’s kappa coefficient
(Cohen, 1968). Results for each ranking are re-
ported in Table 5, while some examples of general
and specific relations for each KB are shown in
Table 6. Disagreement between human choice and
ranking is higher in NELL (where the set of rela-
tions is quite small compared to other KBs) and in
PATTY (due to a sparser set of relations, biased
towards very specific patterns). Inter-annotator
agreement is instead lower for REVERB, where
unconstrained Web harvesting often results in am-
biguous relation strings.

8.3 Alignment

Due to the novelty of our approach, and hence
the lack of widely accepted gold standards and
testbeds, we evaluated our cross-resource relation
alignment algorithm (Section 6) by exploiting hu-
man judgement once again. Given the results of
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PATTY-WISENET PATTY-REVERB NELL-REVERB

δalign 0.7 0.9 0.7 0.9 0.7 0.9

Prec. .68 .80 .58 .74 .61 .75
# Align. 128k 1.2k 47k 643 2.6k 88

PATTY-NELL WISENET-NELL WISENET-REVERB

δalign 0.7 0.9 0.7 0.9 0.7 0.9

Prec. .66 1.00 .70 .84 .59 .87
# Align. 2.6k 57 381 34 9.9k 169

Table 7: Cross-resource alignment evaluation

PATTY-WISENET ζalign
portrayed ’s character 0.84
debuted in first appeared in 0.86

PATTY-REVERB ζalign
language in is spoken in 0.81
mostly known for plays the role of 0.70

NELL-REVERB ζalign
bookwriter is a novel by 0.88
personleadscity is the mayor of 0.60

NELL-PATTY ζalign
worksfor was hired by 0.72
riveremptiesintoriver tributary of 0.89

NELL-WISENET ζalign
animaleatfood feeds on 0.72
teamhomestadium play their home games at 0.88

REVERB-WISENET ζalign
has a selection of offers 0.82
had grown up in was born and raised in 0.85

Table 8: Examples of cross resource relation alignments

Section 8.1, we considered the top 10k frequent
relations for each KB and ran the algorithm over
each possible pair of KBs with two different con-
figurations: δalign = 0.7 and δalign = 0.9. From
each pair of KBs 〈KBi,KBj〉 we obtained a list
of candidate alignments, i.e. pairs of relations
〈ri, rj〉 where ri ∈ KBi and rj ∈ KBj . From
each list we then extracted a random sample of
150 candidate alignments. We showed each align-
ment4 〈ri, rj〉 to two human judges, and asked
whether ri and rj represented the same relation.
The problem was presented in terms of paraphras-
ing: for each pair, we asked whether exchanging
ri and rj within a sentence would have changed
that sentence’s meaning. In line with Section 8.2
we computed precision based on the agreement
between human choice and automatic alignments.
Results are reported in Table 7. Our alignment al-
gorithm shows high precision in all pairings where
δalign = 0.9. Alignment reliability decreases for
lower δalign, as relation pairs where ri is a gener-
alization of rj (or vice versa) tend to have similar
centroids in VS . The same holds for pairs where ri
is the negation of rj (or vice versa). Even though
we could have utilized measures based on rela-

4In the case of relation synsets, such as PATTY and
WISENET, we selected up to three random relation strings
from each synset.

tion string similarity (Dutta et al., 2015) to reduce
wrong alignments in these cases, by relying on a
purely semantic criterion we removed any prior as-
sumption on the format of input KBs. Some exam-
ples of alignments are shown in Table 8.

To conclude, we report statistics regarding the
unified KB∗ produced from the initial set of re-
sources in our experimental setup (cf. Section
7). We validated our thresholds for high-precision,
and selected δdis = 0.25, δspec = 0.8 and δalign
= 0.8. Our alignment algorithm produced 56,673
confident alignments, out of which 2,207 relation
synsets were derived, with an average size of 16.82
individual relations per synset. As a result, we ob-
tained a unified KB∗ comprising 24,221,856 dis-
ambiguated triples defined over 1,952,716 distinct
entities and 2,675,296 distinct relations.

9 Conclusion and Future Work

We have presented KB-UNIFY, a novel, gen-
eral approach for disambiguating and seamlessly
unifying KBs produced by different OIE sys-
tems. KB-UNIFY represents entities and relations
using a shared semantic representation, leverag-
ing a unified sense inventory together with a
semantically-enhanced vector space model and a
disambiguation algorithm. This enables us to dis-
ambiguate unlinked resources (like NELL and RE-
VERB) with high precision and coverage, and to
discover relation-level cross-resource alignments
effectively. One of the key features of our strat-
egy is its generality: by representing each KB on
a common ground, we need no prior assumption
on the nature and format of the knowledge it en-
codes. We tested our approach experimentally on
a set of four very different KBs, both linked and
unlinked, and we evaluated disambiguation and
alignment results extensively at every stage, ex-
ploiting both human evaluations and public gold
standard datasets (when available). This work
opens compelling avenues for future work. We
plan to further exploit sense-enhanced unified rep-
resentations of relations in various ways: provid-
ing an ontological structure for the unified KB,
exploring complementary approaches for captur-
ing semantic relation alignments, and incorporat-
ing multilinguality.
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Abstract

Out-of-vocabulary name errors in speech
recognition create significant problems for
downstream language processing, but the
fact that they are rare poses challenges
for automatic detection, particularly in an
open-domain scenario. To address this
problem, a multi-task recurrent neural net-
work language model for sentence-level
name detection is proposed for use in com-
bination with out-of-vocabulary word de-
tection. The sentence-level model is also
effective for leveraging external text data.
Experiments show a 26% improvement in
name-error detection F-score over a sys-
tem using n-gram lexical features.

1 Introduction

Most spoken language processing or dialogue sys-
tems are based on a finite vocabulary, so occa-
sionally a word used will be out of the vocabu-
lary (OOV), in which case the automatic speech
recognition (ASR) system chooses the best match-
ing in-vocabulary sequence of words to cover that
region (where acoustic match dominates the deci-
sion). The most difficult OOV words to cover are
names, since they are less likely to be covered by
morpheme-like subword fragments and they often
result in anomalous recognition output, e.g.

REF: what can we get at Litanfeeth
HYP: what can we get it leaks on feet

While these errors are rare, they create major prob-
lems for language processing, since names tend to
be important for many applications. Thus, it is of
interest to automatically detect such error regions
for additional analysis or human correction.

Named entity recognition (NER) systems have
been applied to speech output (Palmer and Osten-
dorf, 2005; Sudoh et al., 2006), taking advantage

of local contextual cues to names (e.g. titles for
person names), but as illustrated above, neighbor-
ing words are often affected, which obscures lexi-
cal cues to name regions. Parada et al. (2011) re-
duce this problem somewhat by applying an NER
tagger to a word confusion network (WCN) based
on a hybrid word/fragment ASR system.

In addition to the problem of noisy context, au-
tomatic name error detection is challenging be-
cause name errors are rare for a good recognizer.
To learn the cues to name errors, it is neces-
sary to train from the output of the target rec-
ognizer, so machine learning is faced with infre-
quent positive examples for which training data is
very sparse. In addition, in an open domain sys-
tem, automatically-learned lexical context features
from one domain may be useless in another.

In this paper, we address these general problems
– detecting rare events in an open-domain task –
specifically for name error detection. Prior work
addressed the problem of skewed priors by artifi-
cially increasing the error rate by holding names
out of the vocabulary (Chen et al., 2013) or by
factoring the problem into sentence-level name de-
tection and OOV word detection (He et al., 2014)
(since OOV errors in general are more frequent
than name errors). Sentence-level features are also
shown to be more robust than local context in di-
rect name error prediction (Marin, 2015). While
these techniques provide some benefit, the use of
discrete lexical context cues is sensitive to the lim-
ited amount of training data available.

Our work leverages the factored approach, but
improve performance by using a continuous-space
sentence representation for predicting presence of
a name. Specifically, we modify a recurrent neu-
ral network (RNN) language model (LM) to pre-
dict both the word sequence and a sentence-level
name indicator. Combining the LM objective with
name prediction provides a regularization effect
in training that leads to improved sentence-level
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name prediction. The continuous-space model is
also effective for leveraging external text resources
to improve generalization in the open-domain sce-
nario.

The overall framework for speech recognition
and baseline name error detection system is out-
lined in Section 2, and the multi-task (MT) RNN
approach for sentence-level name prediction is in-
troduced in Section 3. Experimental results for
both sentence-level name detection and name error
detection are presented in Section 4, demonstrat-
ing the effectiveness of the approach on test data
that varies in its match to the training data. As
discussed in Section 5, the sentence-level model
is motivated by similar models for other applica-
tions. The paper summarizes key findings and dis-
cusses potential areas for further improvement in
Section 6.

2 System Overview and Tasks

The name error detection task explored in this
work is a component in a bidirectional speech-
to-speech translation system for English to/from
Iraqi Arabic with human-computer dialogue inter-
action for error resolution (Ayan et al., 2013), de-
veloped during the DARPA BOLT project. The
training data consists of a range of topics associ-
ated with activities of military personnel, includ-
ing traffic control, military training, civil affairs,
medical checkups, and so on. However, the sys-
tem is expected to handle open-domain tasks, and
thus the evaluation data covers a broader range of
topics, including humanitarian aid and disaster re-
lief, as well as more general topics such as sports,
family and weather. The dialogues often contain
mentions of names and places, many of which are
OOV words to the ASR system. As illustrated in
the previous section, ASR hypotheses necessarily
have errors in OOV regions, but because specific
names are infrequent, even in-vocabulary names
can have these types of error patterns. Therefore,
developing a robust name error detector for ASR
hypotheses is an important component of the sys-
tem to resolve errors and ambiguity.

Detecting OOV errors requires combining ev-
idence of recognizer uncertainty and anomalous
word sequences in a local region. For name er-
rors, lexical cues to names are also useful, e.g. a
person’s title, location prepositions, or keywords
such as “name”. The baseline system for this work
uses structural features extracted from a confusion

network of ASR hypotheses plus ASR word con-
fidence to represent recognizer uncertainty, and
word n-gram context to the left and right of the
target confusion network slot. These features are
combined in a maximum entropy (ME) classifier
trained to predict name errors directly. This is
the same as the baseline used in (He et al., 2014;
Marin, 2015; Marin et al., 2015), but with a differ-
ent ASR system.

Training a classifier to predict whether a sen-
tence has a name is easier than direct name error
prediction, because the positive class is less rare,
and it does not require recognizer output so more
data can be used (e.g. speech transcripts with-
out recognizer output, or written text). In addi-
tion, since the words abutting the name are less
reliable in a recognition hypothesis, the informa-
tion lost by working at the sentence level is mini-
mal. The idea of using sentence-level name pre-
diction is proposed in (He et al., 2014), but in
that work the sentence name posterior is a fea-
ture in the ME model (optionally with word cues
learned by the sentence-level predictor). In our
work, the problem is factored to use the acous-
tic confusibility and local word class features for
OOV error prediction, which is combined with the
sentence-level name posterior for name error pre-
diction. In other words, only two features (poste-
riors) are used in training with the sparse name er-
ror prediction data. An ME classifier is then used
to combine the two features to predict the word-
level name error. The word-level OOV detector is
another ME binary classifier; the full set of fea-
tures used for the word-level OOV detector can be
found in (Marin, 2015).

The main innovation in this work is that we
propose to use a multi-task RNN model for the
sentence-level name prediction, where the train-
ing objective takes into account both the language
modeling task and the sentence-level name predic-
tion task, as described in the next section.

3 Multi-task Recurrent Neural Network

The RNN is a powerful sequential model and
has proven to be useful in many natural lan-
guage processing tasks, including language mod-
eling (Mikolov et al., 2010) and word similarity
(Mikolov et al., 2013c). It also achieves good re-
sults for a variety of text classification problems
when combined with a convolutional neural net-
work (CNN) (Lai et al., 2015). In this paper, we
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Figure 1: The structure of the proposed MT RNN
model, which predicts both the next word o(t) and
whether the sentence contains a name y(t) at each
time step.

propose an MT RNN for the sentence-level name
prediction task, which augments the word predic-
tion in the RNN language model with an addi-
tional output layer for sentence-level name pre-
diction. Formally, the MT RNN is defined over
t = 1, . . . , n for a sentence of length n as:

x(t) = Mz(t),
h(t) = f (Wx(t) +Rh(t− 1)) ,
o(t) = s (Uh(t) + b1) ,
y(t) = s (V h(t) + b2) .

where z(t) ∈ RV is the 1-of-V encoding of the
t-th word in the sentence; x(t) ∈ Rd is the d-
dimensional continuous word embedding corre-
sponding to the t-th word; h(t) ∈ Rk is a k-
dimensional embedding that summarizes the word
sequence through time t; and o(t) and y(t) are re-
spectively the output layers for the language mod-
eling task and the sentence-level prediction task.
The parameters of the model (learned in multi-task
training) include: M ∈ Rd×V , which is usually
referred to as the word embedding matrix; projec-
tion matrices U ∈ RV×d and V ∈ R2×d; and bias
terms b1,b2 ∈ Rd. f and s are respectively the
sigmoid and softmax functions. Note that the word
sequence associated with a sentence includes start
and end symbols.

The structure of the proposed MT RNN is
shown in Fig. 1. At each time step, the hidden
vector is used to predict both the next word and
a sentence-level indicator of the presence of a
name, providing a probability distribution for both

variables. Thus, the hidden vector ht provides
a continuous representation of the word history
that emphasizes words that are important for pre-
dicting the presence of a name. The vector at
time n can be thought of as a sentence embed-
ding. The sentence-level output yt differs from the
word-dependent label predictor typically used in
named entity detection (or part-of-speech tagging)
in that it is providing a sequentially updated pre-
diction of a sentence-level variable, rather than a
word-level indicator that specifies the location of
a named entity in the sentence. The final predic-
tion yn is used as a feature in the name error de-
tection system. The sentence-level output yt does
not always converge to yn gradually nor is it al-
ways monotonic, since the prediction can change
abruptly (either positively or negatively) as new
words are processed. The sentence-level variable
provides a mechanism for capturing long distance
context, which is particularly useful for speech ap-
plications, where both the name of interest and the
words in its immediate context may be in error.

The training objective is the combination of the
log-likelihood of the word sequence and that of the
sentence-level name prediction:

n∑
t=1

[(1− λ) logP (w(t)|h(t)) + λ logP (y(t)|h(t))] , (1)

where h(t) = [w(1), . . . , w(t − 1)] and λ is the
weight on the log-likelihood of the sentence-level
name labels.

Another way to train the model is to predict
the sentence-level name label only at the end of
the sentence, rather than at every time step. Pre-
liminary experiment results show that this model
has inferior performance. We argue that train-
ing with only the sentence-final name label output
can result in unbalanced updates, i.e., information
from the language modeling task is used more of-
ten than that from the sentence-level name predic-
tion task, implying that balancing the use of infor-
mation sources is an important design choice for
multi-task models.

The training objective is optimized using
stochastic gradient descent (SGD). We also exper-
iment with AdaGrad (Duchi et al., 2011), which
has shown to be more stable and converge faster
for non-convex SGD optimization. Since language
model training requires a normalization opera-
tion each time over the whole vocabulary (~60K)
which is computationally intensive, we further
speed up training by using noise contrastive esti-
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mation (NCE) (Mnih and Teh, 2012). For all mod-
els using NCE, we fix the number of negative sam-
ples to 50.

All the weights are randomly initialized in the
range of [−0.1, 0.1]. The hidden layer size k is
selected from {50, 100, 200} and the task mixing
weight λ is select in {0.2, 0.4, 0.6, 0.8}, based on
development set performance. We set the initial
learning rate to 1 and 0.1 for SGD with and with-
out Adagrad respectively. In our experiments, we
observe that models trained with AdaGrad achieve
better performance, so we only report the mod-
els with AdaGrad in this paper. At each training
epoch, we validate the objective on the develop-
ment set. The learning rate is reduced after the
first time the development set loglikelihood de-
creases, and the whole training procedure termi-
nates when the development set loglikelihood de-
creases for the second time.

4 Experiments

4.1 Data

There are two types of datasets used in this pa-
per: the BOLT dataset and a collection of Reddit
discussions. The first dataset was collected dur-
ing the DARPA TRANSTAC and BOLT projects.
The ASR hypotheses of totally 7088 spoken sen-
tences makes up of the training dataset (BOLT-
Train) for both sentence-level name prediction and
word-level name error detection. There are two
development sets: Dev1 and Dev2. Dev1 is used
for parameter tuning for all models, and Dev2 is
used for training the ME-based word-level name
error detector using the word-level OOV posterior
and sentence-level name posterior. For RNN mod-
els, we tune the hidden layer size and the multi-
task weight λ; for the ME-based word-level name
error detector, we tune the regularization param-
eter. Two test sets are used to evaluate sentence-
level name prediction (Test1) and word-level name
error detection (Test2), based on the BOLT phase
2 and 3 evaluations, respectively.

As shown in Table 1, the BOLT topics are cate-
gorized into three domains: TRANSTAC, HADR
and General. The BOLT-Train, Dev1 and Dev2
sets contain only speech from the TRANSTAC do-
main, whereas the Test1 and Test2 sets contain
all three domains. Detailed data split statistics
and domain information are summarized in Ta-
ble 2. Note that there are very few positive sam-
ples of name errors (roughly 1%), whereas for the

Domain Topics
TRANSTAC Traffic Control, Facilities Inspection,

Civil Affairs, Medical, Combined
Training, Combined Operations

HADR Humanitarian Aid, Disaster Relief

General Family, Gardening, Sports, Pets,
Books, Weather, Language, Phone

Table 1: Topics in different domains.

Target Class BOLT-
Train

Dev1 Dev2 Test1 Test2

name sentences 7.6 7.5 8.2 8.1 14.0

name errors 0.8 1.1 0.9 0.7 0.8

OOVs 1.7 1.8 1.8 1.8 1.7

Table 2: Data splits and statistics, including the
percentage of sentences containing names (name
sentences), the percentage of hypothesized words
that are name errors (name errors), and the per-
centage of words that are OOVs (OOVs).

sentence-level name prediction task and the word-
level OOV prediction task, the data skewness is
somewhat less severe (roughly 8% sentences with
names in most of our data sets).

In order to address the issue of domain mis-
match between the training data and the broad-
domain subsets of the test data, we collect text
from Reddit.com which is a very active discus-
sion forum where users can discuss all kinds
of topics. Reddit has thousands of user-created
and user-moderated subreddits, each emphasiz-
ing a different topic. For example, there is a
general ASKREDDIT subreddit for people to ask
any questions, as well as subreddits targeted for
specific interests, like ASKMEN, ASKWOMEN,
ASKSCIENCE, etc. Although the Reddit discus-
sions are different from BOLT data, they have
a conversational nature and names are often ob-
served within the discussions. Therefore, we hy-
pothesize that they can help improve sentence-
level name prediction in general. We collect data
from 14 subreddits that cover different kinds of
topics (such as politics, news, book suggestions)
and vary in community size. The Stanford Name
Entity Recognizer (Finkel et al., 2005) is used to
detect names in each sentence, and a sentence-
level name label is assigned if there are any names
present.1 The data are tokenized using Stanford

1The Stanford Name Entity Recognizer achieves 82.3%
F-score on the references of Dev1. Thus, it is expected to
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Model TRANSTAC HADR General All
BOW + ME 52.9 32.5 11.1 40.8
RNN + ME 11.2 21.7 30.5 15.0
SG + ME 14.7 12.6 16.3 14.6
ST RNN 40.3 37.5 37.8 39.3
MT RNN 59.8 52.0 23.8 51.1

Table 3: F-scores on Test1 for sentence-level name
prediction for models trained on BOLT data.

CoreNLP tools (Manning et al., 2014) and are low-
ered cased after running the Stanford Name Entity
Recognizer. In total, we obtain 135K sentences
containing at least one name and 360K sentences
without names.

4.2 Sentence-level Name Prediction
To evaluate the effectiveness of the proposed MT
RNN model, we first apply it to the sentence-
level name prediction task on ASR hypotheses.
For this task, each sample corresponds to a hy-
pothesized sentence generated by the ASR system
and a ground-truth label indicating whether there
are names in that sentence. We compare the MT
RNN with four contrasting models for predicing
whether a sentence includes a name.

• BOW + ME. An ME classifier using a bag-of-
words (BOW) sentence representation.

• SG + ME. An ME classifier is used with the sen-
tence embedding as features, where the embed-
ding uses the skip-gram (SG) model (Mikolov
et al., 2013a) to get word-level embeddings
(with window size 10) and sentence embeddings
are composed by averaging embeddings of all
words in the sentence.

• RNN + ME. A simple RNN LM is trained (i.e.,
λ in (1) is set to 0), and the hidden layer for
the last word in a sentence provides a sentence-
level embedding that is used in an ME classifier
trained to predict the sentence-level name label.

• ST RNN. A single-task (ST) RNN model is
trained to directly predict the sentence-level
name for each word (i.e., λ in (1) is set to 1).

All models are trained on either BOLT-Train or
BOLT-Train + Reddit, and tuned on Dev1 includ-
ing the dimension of embeddings, `2 regulariza-
tion parameters for the ME classifiers, and so on.

The domain-specific F-scores on Test1 are sum-
marized in Table 3 for training only with the BOLT

give useful labels for the Reddit data.

Figure 2: F-scores on Test1 for sentence-level
name prediction for models trained with and with-
out Reddit data. The number in the parenthesis
indicates the portion of the domain in the data.

data. The proposed MT RNN achieves the best re-
sults on the TRANSTAC and HADR domains, and
it has significant overall performance improve-
ment over all baseline models. Not surprisingly,
the two approaches that used unsupervised learn-
ing to obtain a sentence-level embedding (SG +
ME, RNN + ME) have the worst performance on
the TRANSTAC and HADR domains, with both
having very low precision (6-18%), with best pre-
cision on the general domain. The BOW + ME and
the ST RNN have similar performance in terms of
overall F-score, but the BOW + ME model is much
better on the TRANSTAC domain, whereas the ST
RNN achieves the best results on the General do-
main. The main failing of the BOW + ME model is
in recall on the General domain, though it also has
relatively low recall on the HADR domain. Note
that the General domain only accounts for 10% of
the Test1 set, so the ST RNN gets lower F-score
overall compared with the MT RNN, which per-
forms best on the other two domains (90% of the
Test1 set). On all domains, the MT RNN greatly
improves precision compared to the ST RNN (at
the expense of recall), and it improves recall com-
pared to the BOW + ME approach (at the expense
of precision).

In order to study the effectiveness of using ex-
ternal data, we also train all models on an enlarged
training set including extra name-tagged sentences
from Reddit. The improvement for each domain
due to also using the Reddit data is shown in Fig. 2
for the three best configurations. (There is no ben-
efit in the unsupervised learning cases.) Com-
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pared with training only on the BOLT data, all
three of these models get substantial overall per-
formance improvement by utilizing the external
domain training data. Since the external training
data covers mostly topics in the General domain,
the performance gain in that domain is most sig-
nificant. For the MT RNN and BOW + ME clas-
sifiers, the additional training data primarily ben-
efits recall, particulary for the General domain.
In contrast, the ST RNN sees an improvement in
precision for all domains. One reason that the
added training text also benefits the models on the
TRANSTAC domain is that over 90% of the words
in the speech recognizer vocabulary are not seen
in the small set of name-labeled speech training
data, which means that the embeddings for these
words are random in the RNNs trained only this
data and the BOW + ME classifier will never use
these words.

4.3 Word-level Name Error Detection
We next assess the usefulness of the resulting MT
RNN model for word-level name error detection
on ASR hypotheses. Here, several word-level
name error detection approaches are compared, in-
cluding direct name error prediction and factored
name/OOV prediction approaches.

• OOV thresholding. This system simply uses
the OOV prediction, but with the posterior
threshold tuned for word-level name error based
on the Dev1 set.

• Word Context. This is the baseline ME sys-
tem described in Section 2 and also used as a
baseline in (He et al., 2014; Marin et al., 2015),
which directly predicts the word-level name er-
ror using WCN structural features, current word
Brown class, and up-to trigram left and right
word context information.

• Word Class. This system, from (Marin et
al., 2015), also directly predicts the word-level
name error, but replaces the word n-gram fea-
tures with a smaller number of word class fea-
tures to address the sparse training problem. The
word classes are based on seed words learned
from sentence-level name prediction which are
expanded to classes using a nearest neighbor
distance with RNN embeddings trained on the
BOLT data.

• Word Context + OOV. This system uses an `2
regularized ME classifier to predict the word-
level name error using two posteriors as fea-

tures: a word-dependent posterior from the
Word Context system and one from the OOV de-
tection system.

• MT RNN + OOV. This system also uses an `2
regularized ME classifier to predict the word-
level name error using two posteriors as fea-
tures: the same word-dependent OOV posterior
as above, and the posterior from the sentence-
level name prediction using the MT RNN model
described in Section 4.2, which is constant for
all positions in the sentence.

All of the above models are trained on BOLT-Train
and tuned on Dev1. The ME classifier used in the
Word Context + OOV and the MT RNN + OOV
systems are trained on Dev2, with regularization
weights and decision boundaries tuned on Dev1.

Name error detection results (F-scores) are
summarized in Table 4. The three systems that
use discrete, categorical lexical context features
(word or word class context) in direct name er-
ror prediction have worse results than the OOV
thresholding approach overall, as well as on the
TRANSTAC subset. Presumably this is due to
over-fitting associated with the lexical context fea-
tures. The factored MT RNN + OOV system,
which uses a continuous-space representation of
lexical context, achieves a gain in overall perfor-
mance compared to the other systems and a sub-
stantial gain in performance on the TRANSTAC
domain on which it is trained. Using the Red-
dit data further improves the overall F-score, with
a slight loss on the TRANSTAC subset but sub-
stantial gains in the other domains. Although the
performance improvement in the general domain
is relatively small compared with sentence-level
name prediction, utilizing external data makes the
resulting representation more transferable across
different domains and tasks. The best MT RNN
+ OOV system obtains 26% relative improvement
over the baseline Word Context system (or 17%
improvement over the simple OOV thresholding
approach).

Looking at performance trade-offs in precision
and recall, we find that the use of the RNN systems
mainly improves precision, though there is also a
small gain in recall overall. The added training
data benefits recall for all domains, with a small
loss in precision for the TRANSTAC and HADR
sets. The use of the OOV posterior improves pre-
cision but limits recall, particularly for the general
domain where recall of the OOV posterior alone
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Model TRANSTAC HADR General All

OOV thresholding 41.6 31.2 16.5 30.9
Word Context 37.6 29.0 16.3 28.6
Word Class 33.6 35.9 11.9 27.9

Word Context + OOV 40.2 26.0 14.4 28.4
MT RNN + OOV 47.9 32.8 13.5 34.1
MT RNN† + OOV 46.4 37.5 18.0 36.2

Table 4: F-scores on Test2 for word-level name
error prediction. MT RNN is trained on BOLT-
Train, whereas MT RNN† is trained on BOLT-
Train + Reddit.

is only 18% vs. 25% for the word context model
with the OOV posterior information.

To better understand some of the challenges
of this task, consider the following examples
(R=reference, H=hypothesis):

R1: i’m doing good my name is captain
rodriguez

H1: i’m doing good my name is captain
road radios

R2: well it’s got flying lizards knights and
zombies and shit

H2: well it’s gotta flying lives there it’s nights and
some bees and shia

R3: i live in a city called omaha
H3: i live in a city called omar

ASR tokens associated with name errors are un-
derlined and italicized; tokens associated with
non-name OOV errors are simply underlined.
Name errors have a similar character to OOV erors
in that they often have anomalous word sequences
in the region of the OOV word (examples 1 and
2), which is why the OOV posterior is so useful.
However, too much reliance on the OOV posterior
leads to wrongly detecting general OOV errors as
name errors (‘lizards’ and ‘zombies’ in example
2) and missed detection of name errors where the
confusion network cues indicate a plausible hy-
pothesis (‘omaha’ in example 3). Examples 1 and
3 illustrate the importance of lexical cues to names
(‘name . . . captain’, ‘city called’), but word-based
cues are unreliable for the systems trained only on
the small amount of domain-specific data. Lever-
aging the reddit data allowed the MT RNN system
to detect the error in example 1 (HADR domain)
that was missed by the word context system. Ex-
ample 3 was only detected by the word context
system when no OOV posterior is used. Though
this example was from the General domain, city
names represent an important error class in the

TRANSTAC data, so the term ‘city’ is learned as
a useful cue.

4.4 Sentence Embedding

As discussed in Section 3, we postulate that by
modeling words in a sentence in sequential order
and simutaneously predicting sentence categorical
information, the resulting hidden vector of the last
word should be a good representation of the whole
sentence, i.e., a sentence embedding. To provide
support for this hypothesis and show the impact
of external data, we present the sentence embed-
dings learned by the different RNN variants on
Test2 using the t-Distributed Stochastic Neighbor
Embedding (t-SNE) visualization (van der Maaten
and Hinton, 2008) in Fig. 3. Four models are com-
pared, including three RNNs trained on the BOLT
data, and the MT RNN model trained on BOLT +
Reddit data. Note the visualization method t-SNE
does not take the label information into account
during the learning.

As we can see in Fig. 3a, the positive and neg-
ative sentence embeddings learned by RNN LM
are randomly scattered in the space, indicating
that embeddings learned via unsupervised train-
ing (e.g., solely on word context) may fail to cap-
ture the sentence-level indicators associated with
a particular task, in this case presence of a name.
When the results are ploted in terms of domains,
the embeddings are similarly broadly scattered –
there is no obvious topic representation in the em-
beddings.

When comparing Fig. 3b to Fig. 3a, which is
associated with the RNN using a sentence-final
name indicator, we can see that a lot of posi-
tive vectors have moved to the bottom-left of the
space, though there is still a relatively large over-
lap between positive and negative embeddings. In
Fig. 3c, corresponding to the word-level MT RNN,
there forms a separable subgroup of positive em-
beddings and the overlapping seems to be reduced
as well in contrast to Figs. 3a and 3b. Finally, most
of the positive sentence embeddings produced by
the MT RNN model trained with external Red-
dit data gather at the botton-left of Fig. 3d. In
general, the overlap between positive and nega-
tive sentences decreases from single task models
to multi-task model. The external data make the
proposed model produce more well-shaped group-
ings of sentence embeddings.
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(d) MT RNN using extra Reddit data.

Figure 3: t-SNE visualization of sentence embeddings learned from different RNN models.

5 Related Work

Recently, due to the success of continuous repre-
sentation methods, much work has been devoted to
studying methods for learning word embeddings
that capture semantic and syntactic meaning. Al-
though these word embeddings are shown to be
successful in some word-level tasks, such as word
analogy (Mikolov et al., 2013b; Jeffery Penning-
ton, 2014) and semantic role labeling (Collobert
and Weston, 2008), it is still an open question how
best to compose the word embeddings effectively
and make use of them for text understanding.

Recent work on learning continuous sentence
representations usually compose the word em-
beddings using either a convolutional neural net-
work (CNN), a tree-structured recursive NN, or a
variant of an RNN. A typical CNN-based struc-
ture composes word embeddings in a hierachical
fashion (alternating between convolutional layers
and pooling layers) to form the continuous sen-
tence representation for sentence-level classifica-

tion tasks (Kim, 2014; Kalchbrenner et al., 2014;
Lai et al., 2015). These models usually build up
the sentence representation directly from the lexi-
cal surface representation and rely on the pooling
layer to capture the dependencies between words.
Another popular method for continuous sentence
representation is based on the recursive neural net-
work (Socher et al., 2012; Socher et al., 2013;
Tai et al., 2015). These models use a tree struc-
ture to compose a continuous sentence represen-
tation and have the advantages of capturing more
fine-grained sentential structure due to the use of
parsing trees. Note that the RNN-based sequen-
tial modeling used in this paper can be viewed as
a linearized tree-structure model.

In this paper, we train the neural network model
with a multi-task objective reflecting both the
probability of the sequence and the probability that
the sequence contains names. The general idea of
multitask learning dates back to (Caruana, 1997),
and is shown to be effective recently for neu-
ral network models in different natural language
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processing tasks. Collobert and Weston (2008)
propose a unified deep convolutional neural net-
work for different tasks by using a set of task-
independent word embeddings together with a set
of task-specific word embeddings. For each task,
it uses a unique neural network with its own lay-
ers and connections. Liu et al. (2015) propose a
different neural network structure for search query
classification and document retrieval where lower-
level layers and connections are all shared but the
high-level layers are task-specific. For tasks con-
sidered in (Collobert and Weston, 2008) and (Liu
et al., 2015), training samples are task-dependent.
Thus, both models are trained following the SGD
manner by alternating tasks for each training sam-
ples with task-dependent training objectives. In
this paper, we combine the language modeling
task with the sentence-level name prediction task,
and each training sample has labels for both tasks.
Therefore, the SGD training can be done with the
weighted sum of the task-specific objectives for
each training sample, and the language model ob-
jective can be thought of as a regularization term.
Similar settings of multitask learning for neural
network models are employed in phoneme recog-
nition for speech (Seltzer and Droppo, 2013) and
speech synthesis (Wu et al., 2015) as well, but both
of them use equal weights for all tasks.

6 Conclusion

In this paper, we address an open domain rare
event detection problem, specifically, name er-
ror detection on ASR hypotheses. To alleviate
the data skewness and domain mismatch prob-
lems, we adopt a factored approach (sentence-
level name prediction and OOV error prediction)
and propose an MT RNN for sentence-level name
prediction. The factored model is shown to be
more robust to the sparse training problem. For
the problem of sentence-level name prediction,
the proposed method of combining the language
modeling and sentence-level name prediction ob-
jectives in an MT RNN achieves the best results
among studied models for the domain represented
by the training data as well as in the open-domain
scenario. Visualization of sentence-level embed-
dings show how both the multi-task and the word-
level name label update are important for achiev-
ing good results. The use of unrelated external
training text (which can only be used in sentence-
level name prediction) improves all models, par-

ticularly for the highly-mismatched general do-
main data.

The improvement in performance associated
with using the external text is much smaller on the
word-level name error detection task than on the
sentence-level name prediction. This seems to be
due to the high weight learned for the word-level
posterior. For future work, it is worthwhile look-
ing into whether continuous word and sentence
representations can be combined in the name er-
ror detector to achieve further improvement.

In this work, we proposed a model for learn-
ing sentence representations that might be use-
ful for other sentence classification tasks, such
as review and opinion polarity detection, ques-
tion type classification and so on. As discussed
in Section 5, there are other models that have
been found useful for obtaining continuous sen-
tence embeddings. It would be of interest to in-
vestigate whether other structures are more or less
sensitive to data skew and/or useful for incorporat-
ing multi-domain training data.
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Abstract

Distantly supervised approaches have be-
come popular in recent years as they allow
training relation extractors without text-
bound annotation, using instead known
relations from a knowledge base and a
large textual corpus from an appropri-
ate domain. While state of the art dis-
tant supervision approaches use off-the-
shelf named entity recognition and clas-
sification (NERC) systems to identify re-
lation arguments, discrepancies in domain
or genre between the data used for NERC
training and the intended domain for the
relation extractor can lead to low perfor-
mance. This is particularly problematic
for “non-standard” named entities such as
album which would fall into the MISC
category. We propose to ameliorate this
issue by jointly training the named entity
classifier and the relation extractor using
imitation learning which reduces struc-
tured prediction learning to classification
learning. We further experiment with
Web features different features and com-
pare against using two off-the-shelf su-
pervised NERC systems, Stanford NER
and FIGER, for named entity classifica-
tion. Our experiments show that imita-
tion learning improves average precision
by 4 points over an one-stage classification
model, while removing Web features re-
sults in a 6 points reduction. Compared to
using FIGER and Stanford NER, average
precision is 10 points and 19 points higher
with our imitation learning approach.

1 Introduction

Factual answers to queries such as “What albums
did The Beatles release?” are commonly stored in

knowledge bases and can then be accessed by an
information retrieval system, a commercial exam-
ple for this being Google’s knowledge vault (Xin
et al., 2014). In order to keep knowledge bases up
to date should new facts emerge, and to quickly
adapt to new domains, there is a need for flexi-
ble and accurate information extraction (IE) ap-
proaches which do not require manual effort to be
developed for new domains. A popular approach
for creating IE methods to extract such relations
is distant supervision (Craven and Kumlien, 1999;
Mintz et al., 2009) which is a method for learn-
ing relation extractors using relations stored in a
knowledge base combined with raw text to auto-
matically generate training data.

An important first step in distant supervision is
to identify named entities (NEs) and their types
to determine if a pair of NEs is a suitable candi-
date for the relation. As an example, the album
relation has a Musical Artist and an Album as ar-
guments. Existing works use supervised named
entity recognisers and classifiers (NERC) with ei-
ther a small set of types such as the Stanford NER
system (Manning et al., 2014), or fine-grained NE
types (Ling and Weld, 2012; Liu et al., 2014).
However, supervised NERCs typically focus on
recognising persons, locations and organisations
and perform poorly for other types of NEs, e.g. we
find that Stanford NER only recognises 43% of all
MISC NEs in our corpus. In addition, they do not
always perform well if they are trained on a dif-
ferent type of text or for a different domain (Der-
czynski et al., 2015). This issue becomes more im-
portant as focus is shifting from using curated text
collections such as Wikipedia to texts collected
from the Web via search queries (Web-based dis-
tant supervision) which can provide better cover-
age (West et al., 2014).

In order to ameliorate this issue, we propose to
recognise NEs with simple heuristics, then use the
imitation learning algorithm DAGGER (Ross et al.,
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2011) to learn the NEC component jointly with re-
lation extraction (RE), without requiring explicitly
labeled data for NERC. Instead, training signal is
obtained by assessing the predictions of the rela-
tion extraction component. In this paper we make
the following contributions:

1. We learn jointly training a named entity clas-
sifier and a relation extractor for Web-based
distant supervision. Our method does not rely
on hand-labeled training data and is appli-
cable to any domain, which is shown in our
evaluation on 18 different relations.

2. We compare different methods for this pur-
pose: (1) we use imitation learning to train
separate classifiers for NEC and RE jointly;
(2) we aggregate NEC features and RE
features and train a one-stage classification
model; (3) we train a one-stage classification
model with only RE features; (4) we classify
NEs with two supervised off-the-shelf NEC
systems (Stanford NER and FIGER) and use
the NE types as features in RE to achieve a
soft NE type constraint.

3. We explore the effects of using different
NEC and RE features, including Web fea-
tures such as links and lists on Web pages,
and show that Web-based features improve
average precision by 7 points. We further find
that high-precision, but low-frequency fea-
tures perform better than low-precision and
high-frequency features.

4. Our experiments show that joint learning of
NEC and RE with imitation learning outper-
forms one-stage classification models by 4
points in average precision, and models based
on Stanford NER and FIGER by 19 and 10
points respectively.

2 Distant Supervision

Distantly supervised RE is defined as automati-
cally labelling a corpus with properties, P , and re-
sources,R, where resources stand for entities from
a knowledge base,KB, to train a classifier to learn
to predict binary relations. The distant supervision
paradigm is defined as (Mintz et al., 2009):

If two entities participate in a relation, any sen-
tence that contains those two entities might ex-
press that relation.

In general relations are of the form (s, p, o) ∈

R × P × R, consisting of a subject, a predicate
and an object; during training, we only consider
statements which are contained in a knowledge
base, i.e. (s, p, o) ∈ KB ⊂ R × P × R. In
any single extraction we consider only those sub-
jects in a particular class C ⊂ R, i.e. (s, p, o) ∈
KB ∩C × P ×R. Each resource r ∈ R has a set
of lexicalisations, Lr ⊂ L. Lexicalisations are re-
trieved from the KB, where they are represented
as the name or alias, i.e. less frequent name of a
resource.

3 Approach Overview

The input to the approach is a KB which con-
tains entities and is partly populated with relations,
the task is to complete the knowledge base. As
an example, consider a KB about musical artists
and their albums, which contains names of mu-
sical artists, and albums for some of them. The
task is then to find albums for the remaining musi-
cal artists. Queries are automatically formulated
containing C, s and o, e.g. “Musical Artist al-
bum ‘The Beatles”’ and we obtain Web pages us-
ing a search engine. For each sentence on the Web
pages retrieved which contains s, all candidates
for C are identified using NER heuristics (Sec-
tion 4.2). Next, the distant supervision assump-
tion is applied to all such sentences containing s
(e.g. “Michael Jackson”) and a candidate for that
relation (e.g. “Music & Me”). If the candidate
is an example of a relation according to the KB,
it is used as a positive example, and if not, as a
negative example. The examples are then used to
train a model to recognise if the candidate is of
the right type for the relation (NEC) and if it is of
the correct relation (RE). The model is applied to
the sentences of all the incomplete entries in the
KB. Since different sentences could predict differ-
ent answers to the query, all predictions are com-
bined for the final answer.

4 Named Entity Recognition and
Relation Extraction

The input to the learning task is a collection of
training examples for a specific relation. The ex-
amples are sentences containing the subject of the
relation and one further NE identified using simple
heuristics. The examples are labeled as true (rela-
tion is contained in knowledge base) or as false
(relation is not contained in the knowledge base).

We model the task in two binary classifica-

748



Figure 1: Overview of approach

tion stages: named entity classification (NEC) and
relation extraction (RE). Existing approaches as-
sume that named entity recognition and classifica-
tion is done as part of the pre-processing. How-
ever, this is not possible domains for which NE
classifiers are not readily available. To amelio-
rate this issue, existing approaches — e.g Mintz et
al. (2009) — perform NEC to provide additional
features for relation extraction. We use two such
baselines with off-the-shelf NECs and add the NE
labels to the relation features. The first baseline
(Stanf) is with the Stanford NER 7-class (Time,
Location, Organization, Person, Money, Percent
and Date) model, the second (FIGER) is with the
fine-grained FIGER (Ling and Weld, 2012).

An alternative approach is to simply add NEC
features to relation extraction features, which we
call one-stage model (OS) here. NEC features are
typically morphological features extracted from
the NE mention and features to model its con-
text, whereas relation features typically model the
path between the subject and object of the rela-
tion. While NEC features may be useful to deter-
mine if the NE has the correct type for the rela-
tion, such features are usually less sparse and also
not directly related to the relation extraction task.
Consider the following sentence, containing an ex-
ample of the relation director:

“One of director <o>Steven Spielberg</o>’s
greatest heroes was <o>Alfred Hitchcock</o>,
the mastermind behind <s>Psycho</s>.

This sentence contains two relation candidates,
“Steven Spielberg” and “Alfred Hitchcock”, be-
tween which the decision for the final prediction
has to be made. Both of the candidates are direc-
tors, but only one of them is the director of “Psy-
cho”. Because the context around “Steven Spiel-
berg” is stronger (preceded by “director”), NEC
features alone are more likely to indicate that as
the correct candidate and also likely overpower re-
lation features for the final prediction, as the latter
tend to be sparser.

Ideally, we would like to train two models, one
for NEC and one for RE, which would be applied
in sequence. If the NEC stage concludes that the
candidate is of the correct type for the relation, the
RE stage determines whether the relation between
the two entities is expressed. If the NEC stage con-
cludes that the entity is not of the correct type, then
the RE stage is not reached. However, distant su-
pervision only provides positive labels for NEC,
since if a sentence is labeled as false we do not
know if it is due to the candidate not being of the
correct type, or the relation not being true for the
two entities. To overcome this, we learn models
for the two stages, NEC and RE, jointly using the
imitation learning algorithm DAGGER (Ross et al.,
2011), as described in the next section.
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4.1 Imitation Learning

Imitation learning1 algorithms such as SEARN

(Daumé III et al., 2009) and DAGGER (Ross et
al., 2011) have been applied successfully to a va-
riety of structured prediction tasks due to their
flexibility in incorporating features and their abil-
ity to learn with non-decomposable loss functions.
Sample applications include biomedical event ex-
traction (Vlachos and Craven, 2011), dynamic fea-
ture selection (He et al., 2013), and machine trans-
lation (Grissom II et al., 2014).

Imitation learning algorithms for structured pre-
diction decompose the prediction task into a se-
quence of actions; these actions are predicted by
classifiers which are trained to take into account
the effect of their predictions on the whole se-
quence by assessing their effect using a (possibly
non-decomposable) loss function on the complete
structure predicted. The dependencies between
the actions are learnt via appropriate generation of
training examples.

The ability to learn by assessing only the final
prediction and not the intermediate steps is very
useful in the face of missing labels, such as in the
case of the labels for the NEC stage. Recall that
the action sequence in our case consists of one
NEC action and possibly one RE action, depen-
dent on whether the NEC action is true, i.e. the en-
tity is of the appropriate type for the relation. Fol-
lowing Vlachos and Clark (2014), for each train-
ing instance, we obtain supervision for the NEC
stage by taking both options for this stage, true or
false, obtaining the prediction from the RE stage
in the former case and then comparing the out-
comes against the label obtained from distant su-
pervision. Thus the NEC stage is learned so that
it enhances the performance of RE. In parallel, the
RE stage is learned using only instances that actu-
ally reach this stage. The process is iterated so that
the models learned adjust to each other. For more
details on this we refer the reader to Vlachos and
Clark (2014).

4.2 Relation Candidate Identification

To extract relations among NEs, the latter have to
be detected first. Most distantly supervised ap-
proaches use supervised NER systems for this,
which, especially for relations involving MISC
NEs, achieve a low recall. High recall for NE

1Also referred to as search-based structured prediction or
learning to search.

identification is more important than high preci-
sion, since precision errors can be dealt with by
the NEC stage. For a relation candidate identi-
fication stage with higher recall we instead rely
on POS-based heuristics for detecting NEs2 and
HTML markup. We use the following POS heuris-
tics:

• Noun phrases: Sequences of N tags
• Capitalised phrases: Those can be distinct

from noun phrases, e.g. some album titles are
capitalised verb phrases.

We further consider as relation candidates words
which contain the following HTML markup:

• Phrases from HTML markup: All se-
quences of words marked as: <ahref>
(links), <li> (list elements), <h1> or
<h2> or <h3> (headers and subheaders, i.e.
titles), <strong> or <b> (bold), <em>
(emphasised), <i> (italics)

Different relation candidate identification strate-
gies are then applied depending on the coarse NE
types of objects of relation as defined in the KB
(Table 2).

• PER: All capitalised noun phrases. We allow
for a maximum of two characters to be sur-
rounded by quotes to capture alternative first
names, e.g. “Jerome David ‘J. D.’ Salinger”.
• LOC: All capitalised noun phrases.
• ORG: All capitalised phrases and phrases

from HTML markup. The latter is to capture
ORG names which are not capitalised, e.g.
the school “Woodrow Wilson School of Pub-
lic and International Affairs” or the record la-
bel “Sympathy for the Record Industry”.
• MISC: As for ORG, we use all capitalised

phrases and phrases from HTML markup.
MISC NEs are even more varied than ORG
NEs and it is difficult to find the right balance
between recognising most of them and gener-
ating unecessary candidates.

To assess how useful these strategies are, we
randomly sample 30 instances of each Freebase
class per coarse NE type of the object and manu-
ally examine all sentences which contain the sub-
ject of the relation. We used precision, i.e. how
many of the relation candidates are appropriate

2The Stanford POS tagger uses Penn Treebank POS
tags, see http://www.ling.upenn.edu/courses/
Fall_2003/ling001/penn_treebank_pos.html
for a list of tags
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NE type Model R P F1
PER heuristic 0.976 0.1287 0.227
PER Stanford 0.774 0.1781 0.29
LOC heuristic 0.963 0.1176 0.21
LOC Stanford 0.889 0.1611 0.272727273
ORG heuristic 0.95 0.0265 0.0516
ORG Stanford 0.8 0.0505 0.095
MISC heuristic 0.854 0.0496 0.0938
MISC Stanford 0.427 0.053 0.0943

Table 1: Results for POS-based candidate identifi-
cation strategies compared to Stanford NER

for the relation, and recall to compare the relation
candidate identification strategies described above
against the identification of candidates by Stanford
NER (ignoring the NE label). As shown in Ta-
ble 1, while supervised identification of NE labels
achieves a higher precision for all NE types, the
recall is higher for all NE types using POS-based
heuristics. The simple heuristics are especially
helpful for MISC NEs, for which recall is twice
as high compared to Stanford NER and precision
only marginally higher. If we were to use the NE
label to enforce hard constraints, recall would be
reduced even further: 88% of all PER entities are
correctly identified as persons, compared to 58%
for locations and 87% for organisations. MISC NE
are identified as PER (45%), LOC (40%) or ORG
(15%). Overall, precision is not as important for
candidate identification as recall, since choosing
correct entities among the candidates can be dealt
with in a NEC stage.

4.3 NEC features
For the one-stage and imitation learning model,
we use the following Web features based on
HTML markup, both as local features if the
entity mention contains the markup, and as global
features if a mention somewhere else in the
document with the same lexicalisation contains
that markup: is link, is list element, is header or
subheader, is bold, is emphasised, is italics, is
title, is in title.

In addition, the following NEC features are ex-
tracted, based on Nadeau et al. (2007) and Hoff-
mann et al. (2011):
Word features (mentfeats):

• Object occurrence
• Sequence and BOW of occurrence
• Sequence and bag of POS of occurrence

• Number of words, characters and digits of
object
• Ends with period, is roman number, contains

apostrophe, hyphen, ampersand, possessive
• Digit and capitalisation pattern

Context features, as 1-grams (1cont) and 2-grams,
2 words to left and right of occurrence (2cont):
BOW, sequence, bag of POS, POS sequence.

4.4 RE Features

The following features are used for RE, based on
Hoffman et al (2011) and Mintz et al. (2009):

• 1cont and 2cont features
• Flag indicating which entity came first in sen-

tence
• Sequence of POS tags and bag of words

(BOW) between the subject and the object
occurrence

Parsing features as full sequences (parse):

• Dependency path between subject and object,
POS tags of words on that path
• Lemmas on dependency path, same with

NNP and CD tokens substituted by POS tags

4.5 Supervised NEC Features for RE

For the baselines with off-the-shelf NECs, sen-
tences are preprocessed with the two NEC systems
Stanford NER and FIGER. NE labels are then used
in addition to the RE features listed in Section 4.4.
For the Stanf baseline, Stanford NER 7-class la-
bels are added as RE features. Those are: Time,
Location, Organization, Person, Money, Percent,
Date. FIGER classifies NEs according to 112
types, most of which are subtypes of Person, Orga-
nization, Location, Product, Art, Event and Build-
ing. Some of the types are relation types we eval-
uate (see Table 2 for relation types): educational
institution, city, director, actor and author. Since
FIGER performs multi-label classification, it an-
notates some of the relation candidates with more
than one NE label. In that case, we add all NE
labels returned as features, though more experi-
ments on how best to integrate multiple NE labels
as features could be performed, as shown by Liu
et al. (2014).
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Musical Artist Politician
Relation type NE type Relation type NE type
album MISC birthplace LOC
record label ORG educational institution ORG
track MISC spouse PER

Business Educational Institution
Relation type NE type Relation type NE type
employees PER mascot MISC
founders PER city LOC

Film Book
Relation type NE type Relation type NE type
director PER author PER
producer PER characters MISC
actor PER
character MISC

River
Relation type NE type
origin LOC
mouth LOC

Table 2: Relation types and corresponding coarse
NE types

5 Evaluation

5.1 Corpus

To create a corpus3 for Web RE, seven Free-
base classes and two to four of their relations
are selected (Table 2). The selected classes are
subclasses of PER (Musical Artist, Politician),
LOC (River), ORG (Business (Operation)), Ed-
ucation(al Institution)) or MISC (Film, Book).
To avoid noisy training data, we only use enti-
ties which have values for all of those properties,
which resulted in 1800 to 2200 entities per class.
For each entity, 10 Web pages were retrieved via
the Google Search API using the search pattern
“‘subject entity” class name relation name’, e.g.
“‘The Beatles” Musical Artist Origin’. In total, the
corpus consists of around one million pages drawn
from 76,000 different websites. Text content is ex-
tracted from HTML pages using the Jsoup API4

and processed with Stanford CoreNLP5.

5.2 Models and Metrics

We evaluate the following models: imitation
learning (IL) as described in Section 4.1, a one-
stage model (OS), a one-stage model with rela-
tion features only (RelOnly), and using Stanford

3The resources for experiments documented in this pa-
per are available online via http://tinyurl.com/
o8ykn4y

4http://jsoup.org
5http://nlp.stanford.edu/software/corenlp.shtml

Model R-top P-top F1-top R-all P-all P-avg
RelOnly 0.1943 0.404 0.255 0.223 0.309 0.373

Stanf 0.233 0.436 0.304 0.268 0.329 0.398
FIGER 0.228 0.497 0.298 0.251 0.413 0.483

OS 0.269 0.58 0.356 0.288 0.486 0.552
IL 0.246 0.600 0.329 0.271 0.521 0.588

Table 3: Results for best model for each relation,
macro average over all relations.

(Stanf) and FIGER (FIGER) NE labels as fea-
tures (Section 4). For all models we use lin-
ear classifiers learned with passive-aggressive up-
dates (Crammer et al., 2006). For imitation learn-
ing, we use the learning algorithm DAGGER (Ross
et al., 2011), which requires two parameters: the
learning rate, i.e. how quickly the learning algo-
rithm moves away from the optimal policy, and
the number of iterations. We found empirically
that the best learning rate for our prediction task is
0.25 and that the best number of iterations is 12.

The output of the models is a score for each re-
lation example and stage, i.e. for the one-stage
model, the output is one score and for the imita-
tion learning model, there is a score each for the
NEC stage and the RE stage. The default for de-
ciding whether the relation label should be true or
false depends on stage thresholds, which are 0 by
default. Instead of using the default thresholds, we
automatically pick thresholds for all models on 1/3
of the training set, which we set aside as a develop-
ment set, then retrain on the whole training set and
predict relations based on the learnt thresholds.

We use the metrics first best precision (P-top),
first best recall (R-top), first best F1 (F1-top), all
precision (P-all), all recall (P-all), and all average
precision (P-avg). For top, only the top-ranked
answer is considered, whereas for all all answers
are returned until either the correct one is found
or they are exhausted. Finally, in the all mode we
evaluated precision at all recall points by varying
the thresholds used in the respective classifiers and
we report average precision (P-avg) (Manning et
al., 2008). This evaluation measure provides an
assessment of how well a system trades precision
for recall. The number of all results for computing
recall is the number of all relation tuples in the
KB.
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Relation RelOnly Stanf FIGER OS IL
F1-top P-avg F1-top P-avg F1-top P-avg F1-top P-avg F1-top P-avg

Musical Artist : album 0.071 0.175 0.079 0.109 0.116 0.203 0.158 0.409 0.115 0.569
Musical Artist : record label 0.090 0.182 0.100 0.345 0.179 0.636 0.404 0.758 0.376 0.926

Musical Artist : track 0.093 0.109 0.053 0.175 0.104 0.400 0.118 0.471 0.114 0.367
Politician : birthplace 0.410 0.594 0.514 0.541 0.496 0.609 0.585 0.709 0.516 0.548

Politician : educational institution 0.321 0.387 0.330 0.426 0.366 0.560 0.419 0.719 0.381 0.831
Politician : spouse 0.148 0.197 0.152 0.197 0.082 0.309 0.218 0.319 0.150 0.181

Business : employees 0.059 0.090 0.097 0.153 0.082 0.325 0.149 0.291 0.133 0.493
Business : founders 0.341 0.256 0.462 0.332 0.404 0.542 0.448 0.663 0.429 0.693
Education : mascot 0.148 0.362 0.195 0.483 0.226 0.500 0.225 0.506 0.206 0.585

Education : city 0.630 0.705 0.711 0.740 0.701 0.770 0.724 0.847 0.690 0.872
Film : director 0.383 0.548 0.445 0.603 0.358 0.554 0.439 0.601 0.387 0.612
Film : producer 0.149 0.384 0.209 0.395 0.164 0.387 0.198 0.355 0.227 0.400

Film : actor 0.246 0.576 0.308 0.633 0.351 0.609 0.342 0.684 0.312 0.732
Film : character 0.093 0.123 0.093 0.117 0.180 0.195 0.194 0.298 0.173 0.319
Book : author 0.629 0.852 0.703 0.852 0.781 0.878 0.773 0.867 0.781 0.885

Book : characters 0.224 0.127 0.193 0.127 0.262 0.328 0.268 0.315 0.231 0.355
River : origin 0.175 0.328 0.232 0.493 0.160 0.351 0.256 0.406 0.228 0.550
River : mouth 0.336 0.594 0.423 0.564 0.347 0.529 0.488 0.709 0.479 0.668

Table 4: Results for best model for each relation, highest P-avg in bold

6 Results and Discussion

6.1 Comparison of Models

Overall results in Table 3 show that both of our
models (IL and OS) outperform the baselines with
off-the-shelf supervised NEC (Stanf, FIGER) for
all metrics. Detailed results for different relations
(Table 4) show that IL outperforms both OS and
Base in terms of average precision. FIGER re-
sults fall in between Stanf and OS results. For
some relations, there is a dramatic improvement
by using fine-grained FIGER NE features over
coarse-grained Stanford NE features; occasionally
FIGER even outperforms OS, as for the relation
author. This is because FIGER has a correspond-
ing NE type (see Section 4.5).
For most relations, including those whose objects
are of type MISC, IL shows a significant improve-
ment in terms of F1 or average precision over OS
(Table 5). This confirms our hypothesis that sepa-
rating the NEC and relation extraction stages using
imitation learning can achieve a higher precision
and recall for non-standard relations than prepro-
cessing sentences with a supervised NEC model.
Furthermore, we show that it can also be useful
for most standard relations. The main relations for
which Stanf, FIGER or OS can have a benefit over
IL are those for which entities are easy to classify,
specifically LOC NEs, but also PER NEs. This
is because, if NEs are easy to classify, a separate
NEC is less likely to be useful.

6.2 Imitation Learning vs One-Stage

To give more insight into why IL is overall more
successful than OS, common errors made by OS
are shown here, along with an explanation of how
those errors are prevented by using IL. One exam-
ple of IL predicting correctly but OS incorrectly is
from the following sentence, expressing the direc-
tor relation:

“In 2010 he appeared in a leading role
in <o>Alicia Duffy</o>’s <s>All Good
Children</s>.

In that example, the NEC features extracted for
<o>Alicia Duffy</o> are not very strong indi-
cators, since neither the object string itself nor the
surrounding context give any direct indication for
the director relation. The RE features, which are
based on the dependency path, are a stronger indi-
cator. Since in the OS model all features are com-
bined, the NEC features overpower the RE fea-
tures. The IL model, on the other hand, learns a
permissive NEC as a first stage, which filters NEs
with respect to if they are generally appropriate for
the relation or not, and then leaves the RE to the
second stage.

Another example is a sentence for which OS in-
correctly predicts the relation author, whereas IL
correctly predicts “false”:

“<o>Laura</o> and Mary went to school for
the first time in Pepin rather than Walnut Grove,
which is not included in <s>Little House in the
Big Woods</s>.”
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Relation NEC Features Rel Features
Musical Artist : album 2cont + 1cont + mentfeats + web parse

Musical Artist : record label 2cont + 1cont + mentfeats + web parse + 2contword
Musical Artist : track parse + 2cont + 1cont + mentfeats parse
Politician : birthplace 2cont + 1cont + mentfeats + web parse

Politician : educational institution parse + cont + ment parse
Politician : spouse parse + 2cont + 1cont + web parse

Business : employees 2cont + 1cont + mentfeats + web parse + 2contword
Business : founders parse + cont + ment parse
Education : mascot parse + 2contwordpos parse + cont

Education : city parse + cont + ment parse + 2contwordpos
Film : director 2cont + 1cont + mentfeats + web parse + 2contword
Film : producer parse + cont parse + 2contwordpos

Film : actor parse + 2cont + web parse + 2contwordpos
Film : character parse + cont + ment parse + 2contword
Book : author 2cont + 1cont + mentfeats + web parse

Book : characters parse + cont + ment parse
River : origin 2cont + 1cont + mentfeats + web parse + 2contword
River : mouth 2cont + 1cont + mentfeats + web parse

Table 5: Best feature combination for IL

NEC Features Rel Features P-top R-top F1-top P-all R-all P-avg
2cont parse 0.215 0.399 0.28 0.253 0.316 0.381

2cont + 1cont + mentfeats parse 0.239 0.456 0.313 0.275 0.378 0.441
2cont + 1cont + mentfeats + web parse 0.248 0.51 0.322 0.276 0.431 0.502

2cont + web parse 0.204 0.375 0.264 0.244 0.289 0.35
2cont parse + 2contwordpos 0.236 0.43 0.305 0.275 0.338 0.402

2cont + 1cont + mentfeats parse + 2contwordpos 0.239 0.456 0.313 0.275 0.378 0.441
2cont + 1cont + mentfeats + web parse + 2contwordpos 0.248 0.518 0.324 0.275 0.421 0.486

2cont + web parse + 2contwordpos 0.24 0.402 0.3 0.279 0.305 0.371
2cont parse + 2contword 0.215 0.394 0.278 0.258 0.309 0.372

2cont + 1cont + mentfeats parse + 2contword 0.231 0.453 0.295 0.266 0.352 0.43
2cont + 1cont + mentfeats + web parse + 2contword 0.25 0.54 0.325 0.284 0.433 0.505

2cont + web parse + 2contword 0.223 0.395 0.285 0.263 0.305 0.373

Table 6: Imitation learning results for different NE and relation features, macro average over all relations.

For this example, OS relation features have
small positive weights, which then overall lead
to a positive prediction. For IL, the first
stage predicts “false”, since the one-token string
<o>Laura</o> is not a likely candidate for au-
thor.

6.3 Comparison of Features
All different feature groups have an overall posi-
tive effect on the results (see Table 6). While low
precision, high frequency features improve recall
(1cont), they do not always improve precision.
Both OS and IL benefit from high precision, low
frequency features, e.g. for author and mouth, the
best results are achieved with only sparse parsing
features for RE.
Web features improve performance for 10 out of
18 relations. For n-ary relations the is list ele-
ment feature is very useful because Web pages

about musical artist, films or books often contain
lists with their attributes, e.g. a Web page about
a musical artist typically contains a list with their
albums. For relations with persons as objects, is
link and is bold is useful because Web pages often
highlight persons or provide links to Web pages
with more information about them. As an exam-
ple, for the author relation, the strongest positive
Web feature is is in title and the strongest nega-
tive feature is is list element. This makes sense
since a book is frequently mentioned with its au-
thor and one of the most important attributes of
a book, whereas lists on Web pages about books
mention less important attributes, such as the char-
acters.

6.4 Overall Comparison
Overall, we showed that using an off-the-shelf
NEC as a pre-processing step for distant super-
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vision as done by existing works often causes er-
rors which can be prevented by instead separat-
ing NEC and RE with imitation learning. We also
showed that using Web features increases preci-
sion for NEC. Finally, it is worth noting that the
recall for some of the relations is quite low be-
cause they only infrequently occur in text, espe-
cially in the same sentence as the subject of the
relation. These issues can be overcome by per-
forming coreference resolution (Augenstein et al.,
2014; Koch et al., 2014), by retrieving more Web
pages or improving the information retrieval com-
ponent of the approach (West et al., 2014) and
by combining extractors operating on sentences
with other extractors for semi-structured content
on Web pages (Carlson et al., 2010).

7 Related Work

One of the first papers to introduce distant su-
pervision was Mintz et al. (2009), which aims at
extracting relations between entities in Wikipedia
for the most frequent relations in Freebase. Most
distant supervision research focuses on addressing
the disadvantages of heuristic labelling, namely
reducing false positive training data (Hoffmann
et al., 2011; Surdeanu et al., 2012; Riedel et al.,
2010; Riedel et al., 2013; Yao et al., 2010; Alfon-
seca et al., 2012; Roth and Klakow, 2013; Taka-
matsu et al., 2012; Xu et al., 2013) and deal-
ing with false negatives due to missing entries in
the knowledge base (Min et al., 2013), as well as
combining distant supervision with active learning
(Angeli et al., 2014)
Distant supervision has been researched for dif-
ferent domains, including newswire (Riedel et
al., 2010; Riedel et al., 2013), Wikipedia (Mintz
et al., 2009; Nguyen and Moschitti, 2011), the
biomedical domain (Craven and Kumlien, 1999;
Roller and Stevenson, 2014), the architecture do-
main (Vlachos and Clark, 2014) and the Web (Xin
et al., 2014; Augenstein et al., 2014; Augenstein
et al., 2015).
To date, there is very little research on improv-
ing NERC for distant supervision to extract rela-
tions between non-standard entities such as musi-
cal artists and albums. Some research has been
done on improving distant supervision by using
fine-grained named entity classifiers (Ling and
Weld, 2012; Liu et al., 2014) and on using named
entity linking for distant supervision (Koch et al.,
2014). Liu et al. (2014) train a supervised fine-

grained NERC on Wikipedia and show that us-
ing those types as entity contraints improves pre-
cision and recall for a distantly supervised RE
on newswire. However, they assume that labeled
training data is available, making it unsuitable for
applying distant supervision to domains with rela-
tions involving non-standard entity types.
Vlachos and Clark (2014) also proposed a dis-
tantly supervised approach for joint learning of
NEC and RE with imitation learning for the archi-
tecture domain. However, they only used two re-
lations in their experiments which involved rather
standard entity types and they did not compare
against using off-the shelf NEC systems.

8 Conclusion and Future Work

In this paper, we proposed a method for extract-
ing non-standard relations with distant supervi-
sion that learns a NEC jointly with relation ex-
traction using imitation learning. Our proposed
imitation learning approach outperforms models
with supervised NEC for relations involving non-
standard entities as well as relations involving per-
sons, locations and organisations. We achieve an
increase of 4 points in average precision over a
simple one-stage classification model, and an in-
crease in 10 points and 19 points over baselines
with FIGER and Stanford NE labels. We further
demonstrate that using specialised Web features,
such as appearances of entities in lists and links to
other Web pages, improves average precision by 7
points, which other Web search-based relation ex-
traction approaches could also benefit from (Xin
et al., 2014; Augenstein et al., 2014).
In future work, the proposed approach could be
combined with other approaches to solve typical
issues arising in the context of distant supervision,
such as dealing with overlapping relations (Hoff-
mann et al., 2011), improving heuristic labelling
of sentences (Takamatsu et al., 2012) or deal-
ing with incomplete knowledge bases (Min et al.,
2013).
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Abstract

A key challenge introduced by the re-
cent SpaceEval shared task on spatial re-
lation extraction is the identification of
MOVELINKs, a type of spatial relation in
which up to eight spatial elements can
participate. To handle the complexity of
extracting MOVELINKs, we combine two
ideas that have been successfully applied
to information extraction tasks, namely
tree kernels and multi-pass sieves, propos-
ing the use of an expanding parse tree
as a novel structured feature for train-
ing MOVELINK classifiers. Our approach
yields state-of-the-art results on two key
tasks in SpaceEval.

1 Introduction

Spatial relation extraction is the task of determin-
ing the relation among a set of spatial elements.
Although it has thus far received much less atten-
tion than temporal relation extraction, there has
been a surge of interest in it in recent years, as
evidenced by the organization of the three shared
tasks on spatial relation extraction, namely the
spatial role labeling tasks in 2012 (Kordjamshidi
et al., 2012) and 2013 (Kolomiyets et al., 2013),
as well as this year’s SpaceEval task (Pustejovsky
et al., 2015). The task has also evolved over the
years, with new types of spatial elements and/or
spatial relations being defined in each shared task.
For instance, while the first two shared tasks have
focused on extracting spatial relations between
stationary objects, SpaceEval examines for the
first time spatial relations on objects in motion.

Extracting spatial relations on objects in mo-
tion, or MOVELINKs, is very challenging. The
challenge stems in part from the fact that a
MOVELINK involves two mandatory participants
(with roles mover and trigger) and up to six op-
tional participants (with other semantic roles). As

Figure 1: A MOVELINK example.

an example, consider the MOVELINK that can be
extracted from the sentence “John walked from
Boston to Cambridge”. As shown in Figure 1, this
MOVELINK involves six spatial elements: “John”
as the mover, “walked” as the trigger, “Boston”
as the source, “Cambridge” as the goal, and
“from” and “to” as the motion signals.

Given the complexity of MOVELINKs, any ap-
proach that attempts to jointly identify all the spa-
tial elements involved in a MOVELINK and their
roles is computationally infeasible. On the other
extreme, one can tackle the task by identifying
each element involved in a MOVELINK indepen-
dently of the other elements. In fact, this is roughly
the approach adopted by our participating sys-
tem in SpaceEval (D’Souza and Ng, 2015), which
achieved the best results in one of the SpaceE-
val tasks involving MOVELINK extraction. Specif-
ically, this system trains one classifier for each
optional role r to identify the filler for r in a
MOVELINK independently of the other optional
roles. Although this approach has achieved state-
of-the-art performance, it is arguably not ideal: in-
tuitively, dependencies exist among elements of
different roles, and not capturing them may harm
system performance.

Our goal in this paper is to advance the state
of the art in spatial relation extraction, focusing
on the extraction of MOVELINKs by addressing
the aforementioned weakness. The key question
is: how can we capture the dependencies among
the spatial elements involved without sacrificing
computational tractability? To address this ques-
tion, we combine two ideas that have been suc-
cessfully applied to a variety of information ex-
traction tasks, namely multi-pass sieves (Raghu-

758



nathan et al., 2010; Lee et al., 2013) and tree
kernels (Moschitti, 2004; Moschitti, 2006). Re-
call that a sieve-based approach is composed of a
pipeline of sieves ordered by precision, where the
decisions made by earlier sieves can be exploited
by later sieves in order to incrementally construct
a complex structure. When applied to MOVELINK

identification, we can create a sieve for identifying
each role, so that (1) spatial elements correspond-
ing to different roles are incrementally added to a
MOVELINK, and (2) earlier attachment decisions
can be exploited as additional contextual informa-
tion by later sieves. Hence, compared to a joint
approach, a sieve-based approach achieves com-
putational tractability by modeling partial, rather
than full dependencies among the spatial elements.

While a sieve-based approach allows us to ex-
ploit additional contextual information provided
by earlier sieves, we still have to specify how we
encode such contextual information. Motivated by
the successful application of tree kernels to rela-
tion extraction (e.g., Zelenko et al. (2003), Cu-
lotta and Sorensen (2004), Bunescu and Mooney
(2005), Zhou et al. (2007)), we propose to (1)
encode the syntactic context in which the spa-
tial elements extracted by the sieves appear us-
ing a syntactic parse tree, and then (2) employ the
tree as an (additional) structured feature for train-
ing the classifier associated with each sieve. This
novel combination of sieves and tree-based struc-
tured features results in what we call an expand-
ing parse tree. Specifically, as a spatial element
for a MOVELINK is extracted by a (role-specific)
sieve, it will be added to the structured feature for
the classifier associated with the following sieve.
In other words, the parse tree corresponding to
the structured feature will keep expanding as we
move along the sieves in the pipeline. This con-
trasts with previous applications of tree kernels,
where a structured feature is created from a static
parse subtree for extracting exactly two arguments
involved in a relation. To our knowledge, this is
the first attempt to combine sieves and parse trees
to create expanding trees to extract complex rela-
tions involving multiple arguments.

2 Corpus and Task Definition

In this section, we introduce our corpus and the
spatial relation extraction task. Owing to space
limitations, we will only discuss those aspects that
are relevant to the SpaceEval tasks we focus on.

2.1 The SpaceEval Corpus

We use as our corpus the SpaceEval training cor-
pus, which is a subset of ISO-SpaceBank (Puste-
jovsky and Yocum, 2013). The corpus consists
of 59 travel narratives annotated with seven types
of spatial elements (Table 1) and three types of
spatial relations (Table 2), following the ISO-
Space (2012) annotation specifications. Different
types of spatial elements have different attributes.
The only attribute that is relevant to our work is
semantic type, which is one of the attributes of a
spatial entity. Semantic type expresses the type of
the relation it triggers and can take one of three
values: topological, directional, or both.

What is missing in Table 2 about spatial rela-
tions is that each element participating in a re-
lation has a role. Each QSLINK/OLINK involves
exactly three elements participating as trajector
(the object of interest), landmark (the ground-
ing location), and trigger (the relation indicator).
On the other hand, a MOVELINK has two fixed
participants and up to six optional participants.
The two mandatory MOVELINK participants are
mover (object in motion) and trigger (verb de-
noting motion). Five of the optional participants
express different aspects of the mover in space,
namely, source (the spatial element at the begin-
ning of the motion path), midpoint (the spatial
elements along the motion path), goal (the spatial
element at the end of the motion path), path (the
spatial element that reflects the path of motion),
and landmark (the grounding location). The
sixth optional participant, motion signal, con-
nects the spatial aspect to the mover. Note that
all spatial relations are intra-sentential.

2.2 The Spatial Relation Extraction Task

Given a set of n spatial elements, the spatial rela-
tion extraction task aims to (1) determine whether
the elements form a spatial relation of a par-
ticular type, and if so, (2) classify the roles of
each participating element. For example, from
the sentence “The cup is on the table”, two re-
lations can be extracted: QSLINK(cuptrajector,
tablelandmark, ontrigger) and OLINK(cuptrajector,
tablelandmark, ontrigger). As another exam-
ple, from the sentence “John walked from
Boston to Cambridge”, a MOVELINK with partici-
pants Johnmover, walkedtrigger, frommotion signal,
Bostonsource, tomotion signal, and Cambridgegoal
can be extracted.

759



Type Description
place A geographic entity or region (e.g., lakes, mountains) or an administrative entity (e.g., towns, countries)
path A location where the focus is on the potential for traversal (e.g., road)
spatial entity A spatially relevant entity that is neither a place nor a path (e.g., car)
non-motion event An event that does not involve movement but is directly related to another spatial element
motion event A species of event that involves movement (e.g., arrived)
motion signal A particle, preposition, verb, or adverb that encodes path or manner information about a motion event
spatial signal A preposition/prepositional phrase that reveals the relationship between two locations (e.g., north of)

Table 1: Seven types of spatial elements in SpaceEval.

Relation Description
QSLINK Exists between stationary spatial elements with a regional connection. E.g., in “The cup is on the table”, the

regions of “cup” and “table” are externally connected and hence they are involved in a QSLINK.
OLINK Exists between stationary spatial elements expressing their relative or absolute orientations. E.g., in the above

sentence, “cup” and “table” are involved in an OLINK, which conveys that “cup” is oriented above “table”.
MOVELINK Exists between spatial elements in motion. E.g., in “John walked from Boston to Cambridge”, there is a

MOVELINK involving mover “John”, motion verb “walked”, source “Boston”, and goal “Cambridge”.

Table 2: Three types of spatial relations in SpaceEval.

3 Related Work

Broadly speaking, existing spatial relation extrac-
tion systems have adopted either a pipeline ap-
proach or a joint approach to these subtasks. Given
a set of spatial elements, a pipeline spatial relation
extraction system (1) extracts the triggers, (2) de-
termines whether a spatial relation exists between
each extracted trigger and each of the remaining
spatial elements, and (3) classifies the role of each
non-trigger in each pair of spatially-related ele-
ments (Kordjamshidi et al., 2011; Bastianelli et al.,
2013; Kordjamshidi and Moens, 2015).

The major weakness of pipeline approaches is
that errors in trigger identification can propagate
to the relation classification component, whose
errors can in turn propagate to the role labeling
component. To address this weakness, Roberts
et al. (2012; 2013) investigated joint approaches.
Given a set of spatial elements with an assign-
ment of roles to each element, a joint spatial re-
lation extraction system uses a binary classifier
to determine whether these elements form a spa-
tial relation with the roles correctly assigned to all
participating elements. In other words, the clas-
sifier will output a 1 if and only if (1) the ele-
ments in the set form a relation and (2) their roles
in the relation are correct. The systems participat-
ing in SpaceEval all seem to be in favor of joint
approaches (D’Souza and Ng, 2015; Nichols and
Botros, 2015; Salaberri et al., 2015).

4 Baseline System

To ensure that we have a state-of-the-art baseline
system for spatial relation extraction, we employ
our SpaceEval participating system (D’Souza and

Ng, 2015), which achieved the best results on task
3a in the official SpaceEval evaluation.1

This Baseline system performs joint role la-
beling and relation classification using an ensem-
ble of classifiers. Specifically, it trains one clas-
sifier for extracting QSLINKs and OLINKs, and
seven classifiers for extracting MOVELINKs. Cre-
ating these eight classifiers permits (1) separating
the treatment of MOVELINKs from QSLINKs and
OLINKs (because the former involves objects in
motion while the latter involve stationary objects);
and (2) simplifying the extraction of MOVELINKs
(because its optional participants are extracted in-
dependently of each other by these classifiers).

4.1 Training the Baseline Classifiers

In this subsection, we describe how we train
the Baseline classifiers, which include one clas-
sifier for identifying QSLINKs and OLINKs (Sec-
tion 4.1.1) and seven classifiers for identifying
MOVELINKs (Section 4.1.2).

4.1.1 The LINK Classifier
We collapse QSLINKs and OLINKs to a single re-
lation type, LINK, identifying these two types of
links using the LINK classifier. To understand why
we can do this, recall from Section 2.1 that in QS-
LINKs and OLINKs, the trigger has to be a spatial
signal element having a semantic type attribute. If
its semantic type is topological, it triggers a QS-
LINK; if it is directional, it triggers an OLINK; and

1Since the official annotated test data is not available to
us, we cannot compare our results with the shared task sys-
tems’ official results, but comparing against a state-of-the-art
baseline will enable us to determine whether our approach is
better than the best existing spatial relation extraction system.
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if it is both, it triggers both relation types. Hence,
if a LINK is identified by our classifier, we can sim-
ply use the semantic type of the relation’s trigger
to determine whether the relation is a QSLINK, an
OLINK, or both.

We create training instances for training a LINK

classifier as follows. Following the joint ap-
proach described above, we create one training
instance for each possible role labeling of each
triplet of distinct spatial elements in each sen-
tence in a training document. The role labels
assigned to the spatial elements in each triplet
are subject to the following constraints: (1) each
triplet contains a trajector, a landmark, and
a trigger; (2) neither the trajector nor the
landmark are of type spatial signal or motion
signal; and (3) the trigger is a spatial signal.
These role constraints are derived from the data
annotation scheme. Note that a LINK may have
at most one implicit participant. For instance, the
relation LINK(balloontrajector, uptrigger) extracted
from the sentence “The balloon went up” has an
implicit landmark. To allow for implicit partic-
ipants, from each training instance we have cre-
ated thus far, we create three additional training
instances, where exactly one of the three partici-
pants has the value IMPLICIT.

A training instance is labeled as positive if and
only if the elements in the triplet form a rela-
tion and their roles are correct. As an example,
for the QSLINK and OLINK sentence in Table 2,
exactly one positive instance, LINK(cuptrajector,
tablelandmark, ontrigger), will be created.

Each instance is represented using the 31 fea-
tures, which can be broadly divided into seven
types: lexical, grammatical, semantic, positional,
distance, entity attributes, and entity roles.2 We
train the LINK classifier using the SVM learning
algorithm as implemented in the SVMlight soft-
ware package (Joachims, 1999). To optimize clas-
sifier performance, we tune two parameters, the
regularization parameter C and the cost-factor pa-
rameter J , to maximize F-score on the develop-
ment data.3 Since joint tuning of these parameters
is computationally expensive, we employ a hill-
climbing algorithm to find a local maximum, al-

2Space limitations preclude a description of these fea-
tures. See D’Souza and Ng (2015) for details.

3C is chosen from the set {0.01, 0.05, 0.1, 0.5, 1.0, 10.0,
50.0, 100.0}, and J is chosen from the set {0.01, 0.05, 0.1,
0.5, 1.0, 2.0, 4.0, 6.0}. All other learning parameters are set
to their default values. In particular, a linear kernel is used.

tering one parameter at a time to optimize F-score
by holding the other parameter fixed.

4.1.2 The Seven MOVELINK Classifiers
If we adopted the aforementioned joint method
as is for extracting MOVELINKs, each instance
would correspond to an octuple of the form
(triggeri, moverj , sourcek, midpointm, goaln,
landmarko, pathp, motion signalr), where
each participant in the octuple is either a dis-
tinct spatial element with a role or the NULL el-
ement (if it is not present in the relation). How-
ever, generating role permutations for octuples
from all spatial elements in a sentence is com-
putationally infeasible. For this reason, we sim-
plify MOVELINK extraction as follows. First,
we decompose the MOVELINK octuple into seven
smaller tuples including one pair and six triplets.
These seven tuples are: [1] (triggeri, moverj);
[2] (triggeri, moverj , sourcek); [3] (triggeri,
moverj , midpointm); [4] (triggeri, moverj ,
goaln); [5] (triggeri, moverj , landmarko); [6]
(triggeri, moverj , pathp); and [7] (triggeri,
moverj , motion signalr). Then, we create seven
separate classifiers for identifying these seven
MOVELINK tuples, respectively.

Using this decomposition for MOVELINK in-
stances, we can generate instances for each clas-
sifier using the aforementioned joint approach as
is. For instance, to train classifier [1], we gener-
ate pairs of the form (triggeri, moverj), where
triggeri and moverj are spatial elements pro-
posed as a candidate trigger and a candidate
mover, respectively. Positive training instances
are those (triggeri, moverj) pairs annotated as
being part of a MOVELINK in the training data,
while the rest of the candidate pairs are negative
training instances. The instances for training the
remaining six classifiers are generated similarly.

As in the LINK classifier, we enforce global role
constraints when creating training instances for
the MOVELINK classifiers. Specifically, the roles
assigned to the spatial elements in each training
instance of each MOVELINK classifier are subject
to six constraints: (1) the trigger has type motion
event; (2) the mover has type place, path, spa-
tial entity, or non-motion event; (3) the source, the
goal, and the landmark can be NULL or have type
place, path, spatial entity, or non-motion event;
(4) the midpoint can be NULL or have type place,
path, or spatial entity; (5) the path can be NULL

or have type path; and (6) the motion signal can
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be NULL or have type motion signal.
Our method for decomposing the octuple by

role can be justified as follows. Since trigger and
mover are mandatory MOVELINK participants, we
have a classifier for classifying this core aspect
of a MOVELINK. The next six classifiers, [2]
to [7], aim to improve the core MOVELINK ex-
traction by exploiting the contextual dependencies
with each of its unique spatial aspects, namely
source, midpoint, goal, landmark, path, and
motion signal.

As an example, for the MOVELINK sentence
in Table 2, we will create three positive in-
stances: (Johnmover, walkedtrigger) for classi-
fier [1], (Johnmover, walkedtrigger, Bostonsource)
for classifier [2], and (Johnmover, walkedtrigger,
Cambridgegoal) for classifier [4].

We represent each training instance using the 31
features that were used to train the LINK classi-
fier. We train each of the MOVELINK classifiers
using SVMlight. We tune the C and J parameters
to maximize F-score on the development data us-
ing the hill-climbing algorithm described earlier.4

4.2 Applying the Baseline Classifiers

After training, we apply the resulting classifiers to
classify the test instances, which are created in the
same way as the training instances. As noted be-
fore, each LINK extracted from a test document
by the LINK classifier is further qualified as QS-
LINK, OLINK, or both based on the semantic type
of its trigger. The MOVELINKs are extracted from
a test document by combining the outputs from the
seven MOVELINK classifiers.

There is a caveat, however: different
MOVELINK classifiers can make conflicting
decisions. For instance, classifier [1] might mis-
classify (Johnmover, walkedtrigger) as negative,
whereas classifier [2] might correctly classify
(Johnmover, walkedtrigger, Bostonsource) as pos-
itive. To resolve these conflicting decisions, we
give preference to positive decisions, meaning that
in this case we will posit “John” and “walked”
as having the roles of mover and trigger
respectively. There are two more sources of
conflicts. First, a spatial element may be assigned
different roles for a given MOVELINK by different
classifiers. Second, the global constraint that each
MOVELINK can have at most one source, at most

4See Footnote 3 for the set of values of C and J used for
parameter tuning.

one goal, and at most one landmark can be
violated. To resolve these conflicts, we select for
each spatial element the role that was predicted
with highest confidence by the SVM classifiers
subject to the global constraint.5

5 Our Multi-Pass Sieve Approach

In this section, we describe two methods for em-
ploying sieves for extracting spatial relations.

5.1 Using Sieves without Trees

To motivate our first method, recall that the Base-
line resolves conflicting decisions in a heuristic
manner. For instance, it prefers positive to nega-
tive decisions, effectively favoring recall over pre-
cision for spatial relation extraction. It is not
clear whether this ad-hoc decision is good or
not. As another example, when more than one
role is assigned to the same spatial element in a
MOVELINK, it favors the role associated with the
highest SVM confidence. This, however, is also
an ad-hoc decision: recall that each classifier’s pa-
rameters are tuned independently of the others, so
different confidence values assigned by different
classifiers are not directly comparable.

Employing sieves for spatial relation extrac-
tion obviates the need for such ad-hoc decisions.
In our implementation, we have eight sieves,
each of which corresponds to exactly one of the
eight classifiers employed by the Baseline. Re-
call from the introduction that these sieves are
ordered as a pipeline. So, whenever a con-
flict arises, earlier sieves’ decisions have prece-
dence over later sieves’ decisions. Returning
to the conflicting decisions mentioned before, if
sieve 1 misclassifies (Johnmover, walkedtrigger)
as negative, whereas sieve 2 correctly classifies
(Johnmover, walkedtrigger, Bostonsource) as posi-
tive, then we will posit that no MOVELINK exists
between “John” and “walked” because we have
more confidence in sieve 1’s decision than sieve
2’s decision. As another example, if two classi-
fiers assign different roles to the same spatial ele-
ment, then we will choose the role assigned by the
classifier associated with the earlier sieve.

Given the above discussion, it should be clear
that the ordering of the sieves is important. Typ-
ically, sieves are ordered by precision, with the
hope of reducing the number of erroneous deci-

5We use the distance from the hyperplane as a measure of
an SVM classifier’s confidence.
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sions passed from the earlier sieves to the later
sieves (e.g., Raghunathan et al. (2010), Lee et al.
(2013), Chambers et al. (2014)). Motivated by this
observation, we order the sieves as follows. We
set sieve 0 to be the LINK classifier and sieve 1 to
be the (trigger, mover) classifier, and then order
the remaining sieves by precision. Specifically, we
compute the precision of each sieve on the devel-
opment data, then add sieves into the pipeline in
decreasing order of precision.

5.2 Using Sieves with Trees

Next, we describe our second method for applying
sieves to spatial relation extraction. To motivate
this method, recall that one important property of
a sieve-based approach is that later sieves can ex-
ploit earlier sieves’ decisions when making their
own decisions. However, our first method of using
sieves makes limited use of the decisions made by
earlier sieves. In particular, while each sieve ex-
ploits the knowledge of whether a spatial element
has been assigned a role by an earlier sieve, it does
not exploit the knowledge of what the role is.

Our second method exploits the role decisions
made by earlier sieves, but another question arises:
how can we encode these role decisions so that
they can be best exploited by later sieves? One
possibility is to employ them as additional fea-
tures for training the classifiers associated with
later sieves. Motivated by previous work on tree
kernels for relation extraction, we employ parse
trees as a structured feature to encode the syntac-
tic relationships among the roles extracted so far
for a given MOVELINK.

We create the structured feature as follows. To
strike a better balance between having a rich repre-
sentation of the context surrounding a spatial rela-
tion and improving the learner’s ability to general-
ize, we extract a subtree from a parse tree and use
it as the value of the structured feature. Specif-
ically, given relation candidate triplet (e1,e2,e3),
where spatial elements e1, e2, and e3 are posited
in roles r1, r2, and r3, respectively, and the asso-
ciated syntactic parse tree T , we extract our parse
subtree from T as follows. First, we identify the
smallest subtree that covers all three spatial ele-
ments and call its root r. Second, for each path
from each spatial element to r, we include in the
parse subtree all the nodes that lie on the path
and their immediate children. Third, we simplify
the subtree by removing the POS nodes above

(a) (b)

Figure 2: Syntactic parse trees for two example
sentences containing MOVELINKs.

each spatial element, effectively attaching it to its
grandparent. Finally, for better generalization, we
replace each spatial element with its role.

Since this subtree centers on a spatial relation,
we call it a spatial relation centered tree (SRCT).
As mentioned before, we will use SRCTs in com-
bination with our sieve-based approach. This re-
sults in a novel application of structured features:
to our knowledge, all trees that were previously
used as structured features were static. By con-
trast, SRCTs expand as we move along the sieve
pipeline. We will discuss examples of how to cre-
ate SRCTs below.

Creating training instances with structured fea-
tures is straightforward. Recall that a structured
feature is used as an additional feature when train-
ing each classifier. In other words, it will be
used in combination with the original 31 features.
The training instance creation method used by the
Baseline remains unchanged. All we need to do
is to add a SRCT as a structured feature to each
training instance.

Consider the sentence “John walked from
Boston to Cambridge”, whose parse tree is shown
in Figure 2(a). Since only one MOVELINK can
be extracted from it, only one positive training
instance will be created for each classifier. As-
sume that sieve 1 contains the (trigger, mover)
classifier; sieve 2 contains the (trigger, mover,
motion signal) classifier; and sieve 3 contains
the (trigger, mover, goal) classifier. Figure 3(a)
shows the SRCTs used in the corresponding posi-
tive instances, while Figure 3(b) shows the SRCTs
associated with randomly chosen negative in-
stances used to train the classifiers in these sieves.

To train a classifier on instances containing
the original 31 features and SRCTs, we employ
SVMlight−TK (Moschitti, 2004; Moschitti, 2006),
which (1) trains an SVM classifier using the 31
features with a linear kernel; (2) trains an SVM
classifier using only the SRCTs with a convolution
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(a) SRCTs associated with positive training instances in sieves
1, 2, and 3.

(b) SRCTs associated with randomly chosen negative training
instances in sieves 1, 2, and 3.

Figure 3: SRCTs associated with training in-
stances created for the sentence in Figure 2a.

kernel; and (3) combines these two kernels using a
composite kernel. Specifically, we define compos-
ite kernel Kc for combining linear kernel Kl and
convolution kernel Kt as follows:

Kc(F1, F2) = Kl(F1, F2) + T ·Kt(T1, T2),

where F1 and F2 are the set of 31 features from
two training instances, T1 and T2 are their SRCTs,
and T is the combination parameter. We em-
ploy the hill-climbing algorithm described before
to tune the C, J and T parameters to maximize
F-score on the development data.6

The test instances with structured features are
created in the same way as the training instances,
with one notable difference. Note that roles are
used to create structured features. While they are
available in training, they are not available in the
test documents. Hence, to create SRCTs for a test
instance, we have to employ the roles predicted by
preceding sieves. This is precisely how we exploit
the role decisions made by earlier sieves in later
sieves. This also explains why the SRCTs expand:
more and more roles will be attached to a SRCT
as it passes through the sieve pipeline.

As an example, consider the test sentence “He
biked to Maine from Cambridge”, whose parse
tree is shown in Figure 2(b). Figure 4(a) shows
the SRCTs generated when each sieve makes the
correct decisions. Specifically, sieve 1 correctly
identifies “He” as the mover and “biked” as the
trigger. The roles (correctly) extracted by sieve 1
(shown in boxes) are incorporated into the SRCT
created in sieve 2. Similarly, the motion signals

6To tune T , we attempted values between 0 and 2 in in-
crements of 0.2. To tune C and J , we attempted the values
specified in Footnote 3.

(a) SRCTs associated with correctly classified test instances in
sieves 1, 2, and 3.

(b) SRCTs associated with incorrectly classified test instances
in sieves 1, 2, and 3.

Figure 4: SRCTs associated with test instances for
the sentence in Figure 2b.

(correctly) extracted by sieve 2 are incorporated
into the SRCT created in sieve 3. Figure 4(b)
shows the SRCTs generated for misclassified in-
stances. Assume that sieve 1 misclassifies the test
instance underlying the SRCT (as positive). As we
can see, this mistake is propagated to the SRCTs
generated in later sieves.

Note that the precision of a sieve may change
with the addition of SRCTs. For this reason, the
sieves need to be reordered using the algorithm de-
scribed in the previous subsection.

6 Evaluation

6.1 Experimental Setup

SpaceEval tasks. We evaluate our approach in
tasks 1d and 3a of SpaceEval. These two tasks
evaluate a system’s ability to extract (trajector,
landmark, trigger) triplets in QSLINKs and
OLINKs as well as (trigger, mover) pairs in
MOVELINKs using gold spatial elements (1d) and
automatically extracted spatial elements (3a). To
extract the spatial elements needed for task 3a, we
follow Bastianelli et al.’s (2013) sequence labeling
approach, except that we train the sequence labeler
using a CRF rather than an HMM.7

Dataset. Since the annotated test set used in
SpaceEval’s official evaluation is not available

7We train two CRF models using CRF++ (https://
taku910.github.io/crfpp/), one to extract motion
signals and the other to extract the remaining six types of
spatial elements (see Table 1). The reason is that motion sig-
nal is the only type of spatial element that can overlap with
other types. When predicting spatial signals, we also pre-
dict their semantic types, since the LINK classifier needs this
attribute to distinguish between QSLINKs and OLINKs (see
Section 4.1.1). To increase recall, we use the 10-best outputs
returned by the CRFs as candidate spatial elements.
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QSLINK OLINK MOVELINK OVERALLFalse True False True False True
R P F R P F R P F R P F R P F R P F R P F

Baseline 99.5 99.4 99.5 46.9 48.9 47.9 100 99.4 99.7 50.3 100 66.9 91.3 99.8 95.3 84.8 61.5 71.3 78.8 84.8 81.7
Sieve 99.5 99.4 99.5 46.9 48.9 47.9 100 99.4 99.7 50.3 100 66.9 94.7 99.8 97.2 79.4 72.1 75.5 78.5 86.6 82.3

+ SRCTs 99.8 99.4 99.6 43.1 66.4 52.3 100 99.4 99.7 43.7 100 60.8 97.1 99.8 98.4 77.3 82.3 79.7 76.8 91.2 83.4

(a) Results obtained using gold spatial elements.
QSLINK OLINK MOVELINK OVERALLFalse True False True False True

R P F R P F R P F R P F R P F R P F R P F
Baseline 99.8 99.9 99.9 28.5 11.5 16.4 100 99.9 100 31.2 100 47.5 92.3 50.0 64.9 54.0 17.1 26.0 67.6 63.1 65.3
Sieve 99.8 99.9 99.9 28.5 11.5 16.4 100 99.9 100 31.2 100 47.5 96.1 50.0 65.8 42.5 25.3 31.7 66.4 64.4 65.4

+ SRCTs 99.8 99.9 99.9 28.3 12.9 17.8 100 99.9 100 31.2 100 47.5 94.7 50.0 65.5 56.2 24.5 34.2 68.4 64.6 66.4

(b) Results obtained using extracted spatial elements.

Table 3: Results for extracting spatial relations.

to us at the time of writing, we conduct our
evaluation on the SpaceEval training corpus,
which contains 1890 spatial relations (886 QS-
LINKs, 225 OLINKs, and 779 MOVELINKs) and
1139 MOVELINK optional roles (95 sources, 65
midpoints, 310 goals, 77 landmarks, 100 paths,
and 492 motion signals). We partition the 59
narratives in the corpus into five folds and report
five-fold cross-validation results. In each fold ex-
periment, we employ three folds for training, one
fold for development, and one fold for testing.

Evaluation metrics. To evaluate the results for
the two SpaceEval tasks, we employ the official
SpaceEval scoring program, which reports results
in terms of recall, precision, and F-score on the
three types of spatial relations in isolation and in
combination. To evaluate the results for extracting
MOVELINK optional roles, we compute the recall,
precision, and F-score for each role.

6.2 Results and Discussion

Tables 3a and 3b show the spatial relation ex-
traction results for three systems — the Base-
line (row 1), our Sieve approach without SRCTs
(row 2), and our Sieve approach with SRCTs
(row 3) — obtained using gold and extracted spa-
tial elements, respectively.

The official scoring program reports spatial re-
lation extraction results in terms of recall (R),
precision (P), and F-score (F). For QSLINKs
and OLINKs, it reports results on (1) extracting
spatially-related (trajector, landmark, trigger)
triplets (see the “True” columns) and (2) identify-
ing that no spatial relation exists among a (can-
didate trajector, candidate landmark, candidate
trigger) triplet (see the “False” columns). For
MOVELINKs, it reports results on (1) extracting
spatially-related (trigger, mover) pairs (see the

“True” columns) and (2) identifying that no spa-
tial relation exists between a (candidate trigger,
candidate mover) pair (see the “False” columns).
Since the pairs/triplets without links considerably
outnumber those with links, the OVERALL scores
are dominated by the performances on “False”,
which, as expected, are high.

Of particular interest are the MOVELINK scores
under the “True” columns. When gold spatial el-
ements are used, Sieve significantly outperforms
Baseline (p < 0.001) owing to substantial gains
in precision with smaller losses in recall.8 Adding
SRCTs to Sieve further boosts performance signif-
icantly (p < 0.005). As we can see, Sieve+SRCTs
outperforms Baseline by 8.4% absolute F-score on
extracting (trigger, mover) pairs. With respect
to the OVERALL score, which also takes into ac-
count QSLINKs and OLINKs, Sieve+SRCTs out-
performs Baseline significantly by 1.7% absolute
F-score. Similar trends can be observed for the
results obtained using extracted spatial elements.
Note that Baseline and Sieve have the same QS-
LINK and OLINK results because the LINK classi-
fier is associated with the first sieve.

Tables 4a and 4b show the results on extract-
ing MOVELINK optional roles using gold and
extracted spatial elements, respectively. When
gold elements are used, Sieve insignificantly out-
performs Baseline on source, midpoint, and
motion signal. When used with SRCTs, Sieve
insignificantly outperforms Baseline on source,
midpoint, path, and motion signal. Overall,
Sieve+SRCTs insignificantly outperforms Base-
line by 3.0% absolute F-score.9 While the results

8All statistical significance tests are paired t-tests, with p
set to 0.05 unless otherwise stated.

9A closer examination of the results reveals why the im-
provement is insignificant: since many roles occur infre-
quently in the corpus, the parameters learned from the devel-
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source midpoint goal landmark path motion-signal OVERALL
R P F R P F R P F R P F R P F R P F R P F

Baseline 34.7 37.1 35.9 43.1 26.9 33.1 46.1 73.7 56.8 19.5 31.9 24.2 44.0 62.0 51.5 72.6 67.4 69.9 54.4 59.9 57.0
Sieve 29.5 62.2 40.0 30.8 39.2 34.5 43.6 79.4 56.3 13.0 37.0 19.2 36.0 69.2 47.4 67.5 74.8 71.0 49.3 71.1 58.2

+ SRCTs 23.2 100 37.6 30.8 71.4 43.0 41.3 85.3 55.7 5.2 66.7 9.6 40.0 85.1 54.4 64.0 84.5 72.8 46.5 84.5 60.0

(a) Results obtained using gold spatial elements.
source midpoint goal landmark path motion signal OVERALL

R P F R P F R P F R P F R P F R P F R P F
Baseline 25.3 12.0 16.3 35.4 8.9 14.3 38.7 15.2 21.8 18.2 2.5 4.4 14.0 12.9 13.4 27.7 24.0 25.7 29.1 13.3 18.2
Sieve 10.5 23.3 14.5 20.0 20.2 20.2 30.3 24.1 26.9 5.2 3.3 4.1 10.0 20.0 13.3 27.4 25.3 26.3 23.4 22.1 22.7

+ SRCTs 15.8 51.7 24.2 16.9 34.4 22.7 32.3 25.4 28.4 5.2 8.3 6.4 12.0 18.5 14.6 28.1 22.9 25.2 24.6 23.9 24.3

(b) Results obtained using extracted spatial elements.

Table 4: Results for extracting MOVELINK optional roles.

obtained using extracted elements exhibit different
trends, Sieve+SRCTs’s OVERALL improvement
of 6.1% absolute F-score over Baseline is signifi-
cant (p < 0.001).

Table 5 shows the results of these systems on
extracting entire MOVELINKs, where a MOVELINK

is considered correctly extracted if all of its partic-
ipating elements and their roles are correct. Note
that none of the SpaceEval tasks employ this strin-
gent but informative evaluation measure. As we
can see, Sieve+SRCTs insignificantly outperforms
Baseline by 2.3–3.0% absolute F-score, regardless
of whether gold or extracted elements are used.

6.3 Error Analysis

In this subsection, we analyze the errors made by
the best-performing system, Sieve+SRCTs, with
respect to the extraction of MOVELINKs given our
focus on this type of spatial relation.

Extracting (mover, trigger) pairs. The major
source of recall error stems from the system’s in-
ability to extract movers that are unseen in the
training data. This error could be addressed using
a named entity recognizer and WordNet categories
related to people, places, animals, etc. The major
source of precision error arises from missing gold
annotations. Consider the sentence “I found my-
self biking...” Our system correctly extracted “bik-
ing” as the trigger and “I” as the mover, but was
considered wrong because “myself”, not “I”, was
annotated as the mover in the gold standard.

Extracting optional roles. A major source of
recall/precision error stems from the system’s in-
ability to exploit contextual cues that are reli-
able indicators of a particular role. For instance,
a statistical analysis of the training data reveals
that sources are commonly preceded by prepo-
sitions such as “from” and “or”, whereas goals

opment data are not necessarily the same as those that yield
the best results on the test data.

Gold Extracted
R P F R P F

Baseline 40.6 50.4 45.0 21.7 15.3 18.0
Sieve 40.7 50.4 45.0 20.9 14.9 17.4

+ SRCTs 40.5 59.0 48.0 23.3 18.0 20.3

Table 5: Results for extracting entire MOVELINKs
using gold and extracted elements.

are commonly associated with verbs such as “re-
turn”, “visit”, “arrive”, and “reach”. This prob-
lem could be addressed by encoding these cues
explicitly as additional features for training the
role-specific classifiers. Another source of recall
error can be attributed to the lack of background
knowledge. Consider the sentence “We had only
70 more km to Cluj taking this way, but if get-
ting back to Ciucea and on to Cluj the normal way
would have been 25 km longer”. Despite correctly
extracting “Cluj” as the goal, the system failed
to extract “Ciucea” as the midpoint. This prob-
lem could be alleviated by exploiting geographi-
cal knowledge concerning these cities in external
knowledge sources such as Wikipedia.

7 Conclusions

We have examined the under-studied task of spa-
tial relation extraction, focusing on spatial rela-
tions of objects in motion. Our approach exploited
expanding parse trees, which resulted from a novel
combination of multi-pass sieves and tree ker-
nels, achieving state-of-the-art results on two key
SpaceEval tasks. To facilitate comparison with fu-
ture work on this task, we released the source code
of our spatial relation extraction system.10
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Abstract

Characters are fundamental to literary
analysis. Current approaches are heav-
ily reliant on NER to identify characters,
causing many to be overlooked. We pro-
pose a novel technique for character detec-
tion, achieving significant improvements
over state of the art on multiple datasets.

1 Introduction

How many literary characters appear in a novel?
Despite the seeming simplicity of the question,
precisely identifying which characters appear in a
story remains an open question in literary and nar-
rative analysis. Characters form the core of many
computational analyses, from inferring prototypi-
cal character types (Bamman et al., 2014) to iden-
tifying the structure of social networks in literature
(Elson et al., 2010; Lee and Yeung, 2012; Agar-
wal et al., 2013; Ardanuy and Sporleder, 2014;
Jayannavar et al., 2015). These current approaches
have largely assumed that characters can be reli-
ably identified in text using standard techniques
such as Named Entity Recognition (NER) and that
the variations in how a character is named can be
found through coreference resolution. However,
such treatment of character identity often over-
looks minor characters that serve to enrich the so-
cial structure and serve as foils for the identities of
major characters (Eder et al., 2010).

This work provides a comprehensive exami-
nation of literary character detection, with three
key contributions. First, we formalize the task
with evaluation criteria and offer two datasets, in-
cluding a complete, manually-annotated list of all
characters in 58 literary works. Second, we pro-
pose a new technique for character detection based

on inducing character prototypes, and in compar-
isons with three state-of-the-art methods, demon-
strate superior performance, achieving significant
improvements in F1 over the next-best method.
Third, as practical applications, we analyze liter-
ary trends in character density over 20 decades
and revisit the character-based literary hypothesis
tested by Elson et al. (2010).

2 Related Work

Character detection has primarily been performed
in the context of mining literary social networks.
Elson et al. (2010) extract character mentions
from conversational segments, using the Stan-
ford CoreNLP NER system to discover character
names (Manning et al., 2014). To account for vari-
ability in character naming, alternate forms of a
name are generated using the method of Davis et
al. (2003) and merged together as a single char-
acter. Furthermore, the set of aliases for a char-
acter is expanded by creating coreference chains
originating from these proper names and merging
all coreferent expressions. Agarwal et al. (2013)
also rely on the CoreNLP NER and coreference
resolution systems for character detection; how-
ever for literary analysis, they use gold character
mentions that have been marked and resolved by a
team of trained annotators, highlighting the diffi-
culty of the task.

He et al. (2013) propose an alternate approach
for identifying speaker references in novels, using
a probabilistic model to identify which character
is speaking. However, to account for the multiple
aliases used to refer to a character, the authors first
manually constructed a list of characters and their
aliases, which is the task proposed in this work and
underscores the need for automated methods.

Two approaches mined social interaction net-
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works without relying on dialogue, unlike the
methods of Elson et al. (2010) and He et al. (2013).
Lee and Yeung (2012) build social networks by
recognizing characters from explicit markers (e.g.,
kinship) and implicit markers (e.g., physical collo-
cation). Similarly, Agarwal and Rambow (2010)
build character networks using tree kernels on
parse trees to identify interacting agents.

In the two most-related works, Bamman et al.
(2014) and Ardanuy and Sporleder (2014), char-
acter names are extracted and clustered under a set
of constraints. In the BookNLP system developed
by Bamman et al. (2014), NER-identified names
are retained and merged based on animacy, deter-
mined through dependencies with ”sentient” lem-
mas from a small dictionary (including for exam-
ple, say and smile), and gender, assigned through
pronomial resolution and a dictionary of gender-
specific honorifics. Ardanuy and Sporleder (2014)
similarly use NER to identify character name men-
tions. These names are grouped through the appli-
cation of a series of deterministic rules, beginning
with recognizing gender constraints, where gen-
der assignments are based off of gender-specific
honorifics and names. If a gender can’t be as-
signed, then one is derived from the majority count
of gender-specific pronouns (e.g. he, herself) ap-
pearing in the immediate context of the name men-
tions. The extracted names are then clustered,
while respecting the gender impositions, based on
a sieve of name variant heuristics. In the final step,
any remaining ambiguous referents , i.e., those
that can be matched to multiple characters, are
assigned to the more prominent character in the
story. The authors achieve F1-scores > 0.9 for ex-
tracting the 10 most relevant characters in a small
collection of novels, but the performance on all
characters is unknown.

3 Detecting Characters

We propose an eight stage pipeline for detecting
characters, which builds a graph where nodes are
names and edges connect names belonging to the
same character. The vertices in the graph are ini-
tially populated by running NER over the corpus
and also incorporating names following an hon-
orific. Second, coreference resolution is run to
identify names that occur together in a corefer-
ence chain and edges are added where two nodes’
names co-occur in a chain. Stanford CoreNLP
is used for both NER and co-reference. Third,
we apply a series of name variation rules to link

Mr. Bennet

Bennet Elizabeth Bennet

Miss Bennet Mr. Bennet

Bennet Elizabeth Bennet

Miss Bennet

Figure 1: Resolving names in a character graph. The circles
represent individual names and the thin and thick lines denote
edges and anti-edges, respectively.

names potentially referring to the same charac-
ter (e.g., by removing an honorific). Fourth, a
gazetteer of 1859 hypocorisms for 560 names is
used to link variations (e.g., Tim and Timmy).

Stages 2–4 potentially introduce edges connect-
ing names of different characters. Therefore, in
the fifth stage, three heuristics are applied to add
prohibitions on merging two names into the same
character. Two vertices cannot be merged if (1)
the inferred genders of both names differ, (2) both
names share a common surname but different first
names, or (3) the honorific of both names differ,
e.g., “Miss” and “Mrs.” Similarly, the sixth stage
inserts prohibitions by extracting pairs of names
from the novel where (1) both names appear con-
nected by a conjunction, (2) one name appears as
the speaker mentioning the other name in direct
speech, and (3) both names appear together in a
quotation.

Together, Stage 1–6 are applied by first linking
all nodes by edges and following, identifying pairs
prohibited from being connected and remove the
edges along the shortest path between those two
nodes, effectively creating two new disconnected
components in the name graph. Figure 1 illustrates
this transformation on a simple character graph.

Next, the seventh step attempts to identify char-
acters whose names may not be recognized by
NER. For example, many minor characters do not
appear as named entities and instead have general
role-based referents such as “the governor” or “the
archbishop.” However, despite the lack of proper
names, such characters behave and interact in sim-
ilar ways as major characters, including having di-
alogue. Therefore, to discover such characters,
we adopt a bootstrapping technique aimed at un-
covering prototypical character behaviors from the
novels themselves, inspired by the semantic predi-
cate work of Flati and Navigli (2013). The Project
Gutenberg fiction corpus was dependency parsed
to identify all verbs in a dependency relation with
nouns, where each noun was categorized as (a) a
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named entity (b) having its first sense in Word-
Net refer to an animate entity (Fellbaum, 1998), or
(c) neither of the above. All verbs associated with
these were then ranked according to their ratio of
types (a) and (c) to identify verbs strongly asso-
ciated with character-like behaviors, which avoids
including the behavior of nouns in (b) which may
refer to minor characters. Ultimately, 2,073 verbs-
and-dependency pairs with a ratio of �0.25 were
retained as predicates selecting for character-like
entities, after limited experimental testing showed
this threshold extracted sensible verbs such as “re-
joice,” “accost,” and “frown.” Using this set of
predicates, nouns appearing with the verb in the
appropriate dependency relation are added as char-
acters. We prohibit adding names contained in a
small stop list of 22 generic nouns (e.g., “man”).

Finally, the eighth and last stage removes nodes
that are disconnected from the rest of the graph
and represent a name that is a portion of one or
more names for other nodes. These nodes are typ-
ically ambiguous first or last names. Thus, the re-
maining set of nodes are merged to create sets of
names, each associated with a different character.

4 Experiments

Given a literary novel, our objective is to produce
a list of characters, where each character may be
associated with one or more names.

Datasets Two datasets are used. The first is
a manually-annotated collection of 58 works with
complete lists of all characters and their possible
referents in texts. Of these works, 56 were gener-
ated as a part of an on-going longitudinal study of
author style for all Sherlock Holmes stories writ-
ten by Sir Arthur Conan Doyle. The remaining
two works are the full length novels Pride and
Prejudice by Jane Austen and The Moonstone by
Wilkie Collins. Characters and their alias were
manually coded by expert annotators, with multi-
ple passes to ensure completeness. The Moonstone
was treated as truly held-out test data and results
were only generated once prior to submission.

The second dataset consists of 30 novels listed
on Sparknotes (sparknotes.com) and their cor-
responding lists of characters, with supplemental
naming variations of these characters provided by
our annotators. These character lists often contain
only the major characters in a novel; for example,
their list for Pride and Prejudice contains only 17
characters, where as our manually-annotated list
identifies 73 characters. Nevertheless, the Spar-

knotes data serves as a baseline of those characters
any method should be able to detect.

Evaluation Character recognition systems
produce a list of sets, each containing the names
associated with one character, denoted E =
{E1, . . . , En} where Ei is a set of names for a
character. These lists are evaluated against a gold
standard list, denoted G, containing all naming
variations for each character. To evaluate, we for-
malize the problem as finding a maximum bipar-
tite matching where the sets of names in E and
those in G constitute the two node types. For
precision, matching is measured in the purity of
an extracted set of names, Ei, with respect to the
gold-standard names, Gj : 1 � |Ei�Gj |

|Ei| ; simply, a
match is maximal when the set of extracted names
is a subset of the gold standard names, with penal-
ties for including wrong names. Recall uses a
looser definition of matching with the aim of mea-
suring whether a character Gj was found at all;
matching is measured as a binary function that is
1 if Ei \Gj 6= ; and 0 otherwise.

Comparison Systems The task of character
recognition has largely been subsumed into the
task of extracting the social network of novels.
Therefore, three state-of-the-art systems for social
network extraction were selected: the method de-
scribed in Elson et al. (2010), BookNLP (Bamman
et al., 2014), and the method described in Ardanuy
and Sporleder (2014). For each method, we follow
their procedures for identifying the characters in
the social network, which produces sets of one or
more aliases associated with each identified char-
acter. As a baseline, we use the output of Stanford
NER, where every name is considered a separate
character; this baseline represents the upper-bound
in recall from any system using only NER to iden-
tify character names.

Experiment 1: Accuracy Table 1 shows the
results for the manually-annotated and SparkNotes
corpora. The Sherlock Holmes corpus presents a
notable challenge due to the presence of many mi-
nor characters, which are not detected by NER. An
error analysis for our approach revealed that while
many characters were extracted, the coreference
resolution did not link a characters’ different ref-
erents together and hence, each name was reported
as a separate character, which caused a drop in per-
formance. Nevertheless, our system provided the
highest performance for character recognition.

The Pride and Prejudice novel presents a dif-

771



Sherlock Holmes Stories Pride and Prejudice The Moonstone SparkNotes
System Precision Recall F1 Precision Recall F1 Precision Recall F1 Recall

NER Baseline 0.3327 0.6535 0.4332 0.3910 0.8356 0.5328 0.2460 0.5441 0.3388 0.6762
Elson et al. (2010) 0.3757 0.6042 0.4485 0.3100 0.5205 0.3886 0.2612 0.4931 0.3415 0.4723

BookNLP (Bamman et al., 2014) 0.6084 0.4832 0.5219 0.4855 0.5205 0.5024 0.3662 0.4706 0.4119 0.5880
Ardanuy and Sporleder (2014) 0.5744 0.4719 0.5181 0.4610 0.5108 0.4846 0.3623 0.4691 0.4088 0.5898

This work 0.5109 0.6099 0.5404 0.7245 0.7945 0.7579 0.3673 0.5735 0.4478 0.5990

Table 1: Accuracy of character detection on different portions of the two datasets.

Precision Recall F1
Sherlock Holmes Stories 0.5910 0.5335 0.5608

Pride and Prejudice 0.7635 0.6879 0.7237
The Moonstone 0.3943 0.4613 0.4294

Table 2: Accuracy of proposed system without stage 7.

ferent set of challenges due to multiple charac-
ters sharing the same last name or the same first
name. Here, coreference resolution frequently cre-
ates incorrect links between the similar names of
different characters, creating a drop in precision
for most systems. Our precision value particularly
benefited from the heuristics for distinguishing
characters by gender and stringent name-merging
constraints. BookNLP and the approach of Ar-
danuy and Sporleder (2014) performed quite sim-
ilarly in identifying characters, which is expected
given the overlap in rules applied by both systems.

Moonstone contains a unique novel structure
with multiple first-person narrators, group-based
characters (e.g., “the jugglers”) that present a chal-
lenge to co-reference systems, and 419 different
names for the 78 unique characters. An error anal-
ysis of our system revealed that majority of mis-
takes were due to the multiple names for a charac-
ter not being merged into a single identity. Never-
theless, our system performs best of those tested.

For the SparkNotes data, the NER baseline
achieves the highest recall, indicating that many
of the major character names listed in SparkNotes’
data can be directly found by NER. Nevertheless,
in reality, the baseline’s performance is offset by
its significantly lower precision, as shown in its
performance on the other novels; indeed the base-
line grossly overestimates the number of charac-
ters for the SparkNotes novels, reporting 339 char-
acters per novel on average.

Table 2 shows our system’s performance with-
out stage 7, which involved the extraction of minor
characters. Stage 7 overall improves recall with
a slight hindrance to precision. For the Sherlock
Holmes corpus, stage 7 is slightly detrimental to
overall performance, which as we stipulated ear-
lier is caused by missing co-referent links.

Finally, returning to the initially-posed question
of how many characters are present, we find that

despite the detection error in our method, the over-
all predicted number of characters is quite close
to the actual: for Sherlock Holmes stories, the
number of characters was estimated within 2.4
on average, for Pride and Prejudice our method
predicted 72 compared with 73 actual charac-
ters, and for The Moonstone our method predicted
87 compared with 78. Thus, we argue that our
procedure can provide a reasonable estimate for
the total number of characters. (For compari-
son, BookNLP, the next best system, extracted 69
and 72 characters for Pride and Prejudice and The
Moonstone, respectively, and within 1.2, on aver-
age, on the Sherlock Holmes set.)

Experiment 2: Literary Theories Elson et al.
(2010) analyze 60 novels to computationally test
literary theories for novels in urban and rural set-
tings (Williams, 1975; Moretti, 1999). Recently,
Jayannavar et al. (2015) challenged this analy-
sis, showing their improved method for social net-
work extraction did not support the same conclu-
sions. While our work focuses only on character
detection, we are nevertheless able to test the re-
lated hypothesis of whether the number of char-
acters in novels with urban settings is more than
those in rural. Character detection was run on
the same novels from Elson et al. (2010) and we
found no statistically-significant difference in the
mean number of characters in urban and rural set-
tings, even when accounting for text size. Thus,
our work raises questions about how these char-
acter interact and whether the setting influences
the structure of the social network, despite simi-
lar numbers of characters.

Experiment 3: Historical Trends As a sec-
ond application of our technique, we examine his-
torical trends in how many characters appear in a
novel. All fiction novels listed on Project Guten-
berg were compiled and publication dates were au-
tomatically extracted for 1066 and manually en-
tered for an additional 637. This set was combined
with a corpus of 6333 novels, including works
such as To The Lighthouse by Virginia Woolf, not
available on Project Gutenberg. Books were then
partitioned into the decade in which they were au-
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Figure 2: Distributions of the size-normalized number of characters per novel per decade.

thored. We limit our focus to trends starting in
1800 to 1990, when at least 11 books are available
for each decade.

To account for variability in novel length, we
normalize the novel’s number of characters by its
number of tokens. Figure 2 shows the box-and-
whisker plot of the normalized number of char-
acters per novel, where the box denotes the first
and third quartile and the bar denotes the me-
dian. Surprisingly, we did not observe any signif-
icant change in the relative number of characters
per novel, despite the underlying socio-economic
changes that accompanied this time period. While
novels written before 1850 had slightly more char-
acters on average, this effect may be due to the
smaller number of works available from this pe-
riod. However, our finding raises many questions
about whether the social networks for these char-
acters obey similar trends in their size and density.

5 Conclusion

Although a fundamental task to character analysis,
identifying the number of characters in a literary
novel presents a significant challenge to current
state of the art. To lay the foundation towards solv-
ing the task, we provide three contributions: (1)
an annotated corpus of 58 books, (2) an evaluation
framework for measuring performance on the task,
(3) a new state-of-the-art method for character ex-
traction. Furthermore, to promote future work we
make all software and data available upon request.
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Abstract

This paper introduces a convolutional sen-
tence kernel based on word embeddings.
Our kernel overcomes the sparsity issue
that arises when classifying short docu-
ments or in case of little training data. Ex-
periments on six sentence datasets showed
statistically significant higher accuracy
over the standard linear kernel with n-
gram features and other proposed models.

1 Introduction

With the proliferation of text data available on-
line, text categorization emerged as a prominent
research topic. Traditionally, words (unigrams)
and phrases (n-grams) have been considered as
document features and subsequently fed to a clas-
sifier such as an SVM (Joachims, 1998). In the
SVM dual formulation that relies on kernels, i. e.
similarity measures between documents, a linear
kernel can be interpreted as the number of ex-
act matching n-grams between two documents.
Consequently, for short documents or when lit-
tle training data is available, sparsity issues due
to word synonymy arise, e. g., the sentences ‘John
likes hot beverages’ and ‘John loves warm drinks’
have little overlap and therefore low linear kernel
value (only 1) in the n-gram feature space, even
with dependency tree representations and down-
ward paths for n-grams as illustrated in Figure 1.

We propose to relax the exact matching between
words by capitalizing on distances in word embed-
dings. We smooth the implicit delta word kernel,
i. e. a Dirac similarity function between unigrams,
behind the traditional linear document kernel to
capture the similarity between words that are dif-
ferent, yet semantically close. We then aggregate
these word and phrase kernels into sentence and
documents kernels through convolution resulting
in higher kernel values between semantically re-
lated sentences (e. g., close to 7 compared to 1

John

likes

beverages

hot
(a) ‘John likes hot beverages’

≈ John

loves

drinks

warm
(b) ‘John loves warm drinks’

Figure 1: Dependency tree representations of se-
mantically related sentences yet with little overlap.

with bigram downward paths in Figure 1). Ex-
periments on six standard datasets for sentiment
analysis, subjectivity detection and topic spotting
showed statistically significant higher accuracy for
our proposed kernel over the bigram approaches.
Our main goal is to demonstrate empirically that
word distances from a given word vector space can
easily be incorporated in the standard kernel be-
tween documents for higher effectiveness and lit-
tle additional cost in efficiency.

The rest of this paper is structured as follows.
Section 2 reviews the related work. Section 3 gives
the detailed formulation of our kernel. Section 4
describes the experimental settings and the results
we obtained on several datasets. Finally, Section 5
concludes our paper and mentions future work.

2 Related work

Siolas and d’Alché Buc (2000) pioneered the idea
of semantic kernels for text categorization, cap-
italizing on WordNet (Miller, 1995) to propose
continuous word kernels based on the inverse of
the path lengths in the tree rather than the com-
mon delta word kernel used so far, i. e. exact
matching between unigrams. Bloehdorn et al.
(2006) extended it later to other tree-based simi-
larity measures from WordNet while Mavroeidis
et al. (2005) exploited its hierarchical structure to
define a Generalized Vector Space Model kernel.
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In parallel, Collins and Duffy (2001) devel-
oped the first tree kernels to compare trees based
on their topology (e. g., shared subtrees) rather
than the similarity between their nodes. Culotta
and Sorensen (2004) used them as Dependency
Tree Kernels (DTK) to capture syntactic similar-
ities while Bloehdorn and Moschitti (2007) and
Croce et al. (2011) used them on parse trees
with respectively Semantic Syntactic Tree Ker-
nels (SSTK) and Smoothing Partial Tree Kernels
(SPTK), adding node similarity based on Word-
Net to capture semantic similarities but limiting to
comparisons between words of the same POS tag.

Similarly, Gärtner et al. (2003) developed graph
kernels based on random walks and Srivastava et
al. (2013) used them on dependency trees with
Vector Tree Kernels (VTK), adding node simi-
larity based on word embeddings from SENNA
(Collobert et al., 2011) and reporting improve-
ments over SSTK. The change from WordNet to
SENNA was supported by the recent progress in
low-dimension Euclidean vector space representa-
tions of words that are better suited for computing
distances between words. Actually, in our exper-
iments, word2vec by Mikolov et al. (2013a) led
to better results than with SENNA for both VTK
and our kernels. Moreover, it possesses an addi-
tional additive compositionality property obtained
from the Skip-gram training setting (Mikolov et
al., 2013b), e. g., the closest word to ‘Germany’ +
‘capital’ in the vector space is found to be ‘Berlin’.

More recently, for short text similarity, Song
and Roth (2015) and Kenter and de Rijke (2015)
proposed additional semantic meta-features based
on word embeddings to enhance classification.

3 Formulation

We denote the embedding of a word w by w.

3.1 Word Kernel (WK)
We define a kernel between two words as a poly-
nomial kernel over a cosine similarity in the word
embedding space:

WK(w1, w2) =
[
1
2

(
1 +

〈w1,w2〉
‖w1‖‖w2‖

)]α
(1)

where α is a scaling factor. We also tried Gaus-
sian, Laplacian and sigmoid kernels but they led
to poorer results in our experiments. Note that a
delta word kernel, i. e. the Dirac function 1w1=w2 ,
leads to a document kernel corresponding to the
standard linear kernel over n-grams.

3.2 Phrase Kernel (PhK)
Next we define a kernel between phrases consist-
ing of several words. In our work, we considered
two types of phrases: (1) co-occurrence phrases
defined as contiguous sequences of words in the
text; and (2) syntactic phrases defined as down-
ward paths in the dependency tree representation,
e. g., respectively ‘hot beverages’ and ‘beverages
hot’ in Figure 1. With this dependency tree in-
volved, we expect to have phrases that are syntac-
tically more meaningful. Note that VTK consid-
ers random walks in dependency trees instead of
downward paths, i. e. potentially taking into ac-
count same nodes multiple times for phrase length
greater than two, phenomenon known as tottering.

Once we have phrases to compare, we may con-
struct a kernel between them as the product of
word kernels if they are of the same length l. That
is, we define the Product Kernel (PK) as:

PK(p1, p2) =
l∏

i=1

WK(w1
i , w

2
i ) (2)

where wji is the i-th word in phrase pj of length l.
Alternatively, in particular for phrases of different
lengths, we may embed phrases into the embed-
ding space by taking a composition operation on
the constituent word embeddings. We considered
two common forms of composition (Blacoe and
Lapata, 2012): vector addition (+) and element-
wise multiplication (�). Then we define the Com-
position Kernel (CK) between phrases as:

CK(p1, p2) = WK(p1,p2) (3)

where pj , the embedding of the phrase pj , can be
obtained either by addition (pj =

∑l
i=1 wj

i ) or by
element-wise multiplication (pj =

⊙l
i=1 wj

i ) of its
word embeddings. For CK, we do not require the
two phrases to be of the same length so the kernel
has a desirable property of being able to compare
‘Berlin’ with ‘capital of Germany’ for instance.

3.3 Sentence Kernel (SK)
We can then formulate a sentence kernel in a sim-
ilar way to Zelenko et al. (2003). It is defined
through convolution as the sum of all local phrasal
similarities, i. e. kernel values between phrases
contained in the sentences:

SK(s1, s2) =
∑

p1∈φ(s1),
p2∈φ(s2)

λ1
ε λ2

η PhK(p1, p2) (4)
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where φ(sk) is the set of either statistical or syn-
tactic phrases (or set of random walks for VTK)
in sentence sk, λ1 is a decaying factor penaliz-
ing longer phrases, ε= max{|p1|, |p2|} is the max-
imum length of the two phrases, λ2 is a distortion
parameter controlling the length difference η be-
tween the two phrases (η = ||p1| − |p2||) and PhK
is a phrase kernel, either PK, CK+ or CK�.

Since the composition methods we consider are
associative, we employed a dynamic programming
approach in a similar fashion to Zelenko et al.
(2003) to avoid duplicate computations.

3.4 Document Kernel

Finally, we sum sentence kernel values for all pairs
of sentences between two documents to get the
document kernel. Once we have obtained all doc-
ument kernel valuesKij between documents i and
j, we may normalize them by

√
KiiKjj as the

length of input documents might not be uniform.

4 Experiments

We evaluated our kernel with co-occurrence and
syntactic phrases on several standard text catego-
rization tasks.

4.1 Datasets

We considered four tasks: (1) binary sentiment
analysis with a movie review dataset of 10,662
sentences (PL05) (Pang and Lee, 2005) and a
product review dataset (Amazon) of 2,000 multi-
line documents for 4 different product groups
(Blitzer et al., 2007) (we will report the average ef-
fectiveness over the 4 sub-collections); (2) ternary
sentiment analysis with the SemEval 2013 Task
B dataset (Twitter) containing 12,348 tweets clas-
sified as positive, neutral or negative (Nakov et
al., 2013); (3) binary subjectivity detection with a
dataset of 10,000 sentences (PL04) (Pang and Lee,
2004) and another of 11,640 sentences (MPQA)
(Wiebe et al., 2005); and (4) seven-class topic
spotting with a news dataset (News) of 32,602
one-line news summaries (Vitale et al., 2012).

4.2 Experimental settings

In all our experiments, we used the FANSE parser
(Tratz and Hovy, 2011) to generate dependency
trees and the pre-trained version of word2vec1, a
300 dimensional representation of 3 million En-
glish words trained over a Google News dataset

1https://code.google.com/p/word2vec

of 100 billion words using the Skip-gram model
and a context size of 5. While fine-tuning the em-
beddings to a specific task or on a given dataset
may improve the result for that particular task or
dataset (Levy et al., 2015), it makes the expected
results less generalizable and the method harder
to use as an off-the-shelf solution – re-training the
neural network to obtain task-specific embeddings
requires a certain amount of training data, admit-
tedly unlabeled, but still not optimal under our sce-
nario with short documents and little task-specific
training data available. Moreover, tuning the hy-
perparameters to maximize the classification accu-
racy needs to be carried out on a validation set and
therefore requires additional labeled data. Here,
we are more interested in showing that distances
in a given word vector space can enhance classi-
fication in general. As for the dependency-based
word embeddings proposed by Levy and Goldberg
(2014), we do not think they are better suited for
the problem we are tackling. As we will see in the
results, we do benefit from the dependency tree
structure in the phrase kernel but we still want the
word kernel to be based on topical similarity rather
than functional similarity.

To train and test the SVM classifier, we used
the LibSVM library (Chang and Lin, 2011) and
employed the one-vs-one strategy for multi-class
tasks. To prevent overfitting, we tuned the pa-
rameters using cross-validation on 80% of PL05
dataset (α = 5, λ1 = 1 for PK since there is no
need for distortion as the phrases are of the same
length by definition, and λ1 = λ2 = 0.5 for CK)
and used the same set of parameters on the remain-
ing datasets. We performed normalization for our
kernel and baselines only when it led to perfor-
mance improvements on the training set (PL05,
News, PL04 and MPQA).

We report accuracy on the remaining 20% for
PL05, on the standard test split for Twitter (25%)
and News (50%) and from 5-fold cross-validation
for the other datasets (Amazon, PL04 and MPQA).
We only report accuracy as the macro-average F1-
scores led to similar conclusions (and except for
Twitter and News, the class label distributions
are balanced). Results for phrase lengths longer
than two were omitted since they were marginally
different at best. Statistical significance of im-
provement over the bigram baseline with the same
phrase definition was assessed using the micro
sign test (p < 0.01) (Yang and Liu, 1999).
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Table 1: Accuracy results on the test set for PL05 (20%), standard test split for Twitter (25%) and News
(50%) and from 5-fold CV for the other datasets (Amazon, PL04 and MPQA). Bold font marks the best
performance in the column. * indicates statistical significance at p < 0.01 using micro sign test against
the bigram baseline (delta word kernel) of the same column and with the same phrase definition.

phrase phrase phrase word
PL05 Amazon Twitter News PL04 MPQA

definition kernel length kernel

co-occurrence PK 1 delta 0.742 0.768 0.623 0.769 0.904 0.754
co-occurrence PK 2 delta 0.739 0.765 0.611 0.766 0.907 0.754

syntactic PK 2 delta 0.748 0.791 0.646 0.767 0.910 0.757
random walk PK 2 poly 0.799 0.810 0.698 0.802 0.927 0.797

co-occurrence PK 1 poly 0.789* 0.797 0.776* 0.806* 0.923* 0.793*

co-occurrence PK 2 poly 0.784* 0.798 0.762* 0.801* 0.926* 0.794*

co-occurrence CK+ 2 poly 0.796* 0.778 0.613 0.792* 0.917* 0.796*

co-occurrence CK� 2 poly 0.801* 0.783 0.757* 0.793* 0.918* 0.794*

syntactic PK 2 poly 0.796* 0.813* 0.808* 0.805* 0.927* 0.796*

syntactic CK+ 2 poly 0.794* 0.780 0.741* 0.788* 0.918* 0.794*

syntactic CK� 2 poly 0.797* 0.774 0.744* 0.792* 0.918* 0.794*

4.3 Results

Table 1 presents results from our convolutional
sentence kernel and the baseline approaches. Note
again that a delta word kernel leads to the typi-
cal unigram and bigram baseline approaches (first
three rows). The 3rd row corresponds to DTK (Cu-
lotta and Sorensen, 2004) and the 4th one to VTK
(Srivastava et al., 2013) – the difference with our
model on the 9th row lies in the function φ(·) that
enumerates all random walks in the dependency
tree representation following Gärtner et al. (2003)
whereas we only consider the downward paths.

Overall, we obtained better results than the n-
gram baselines, DTK and VTK, especially with
syntactic phrases. VTK shows good performance
across all datasets but its computation was more
than 700% slower than with our kernel. Regarding
the phrase kernels, PK generally produced better
results than CK, implying that the semantic lin-
earity and ontological relation encoded in the em-
bedding is not sufficient enough and treating them
separately is more beneficial. However, we be-
lieve CK has more room for improvement with
the use of more accurate phrase embeddings such
as the ones from Le and Mikolov (2014), Yin and
Schütze (2014) and Yu and Dredze (2015).

There was little contribution to the accuracy
from non-unigram features, indicating that large
part of the performance improvement is credited to
the word embedding resolving the sparsity issue.

0 1000 2000 3000 4000 5000 6000 7000 8000
Number of training examples
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Figure 2: Test accuracy vs. number of training
examples for our kernel and the bigram baseline.

This can be well observed with the following ex-
periment on the number of training examples. Fig-
ure 2 shows the accuracy on the same test set (20%
of the dataset) when the learning was done on 1%
to 100% of the training set (80% of the dataset)
for the bigram baseline and our bigram PK phrase
kernel, both with dependency tree representation,
on PL04. We see that our kernel starts to plateau
earlier in the learning curve than the baseline and
also reaches the maximum baseline accuracy with
only about 1,500 training examples.

4.4 Computational complexity
Solving the SVM in the primal for the baselines
requires O(NnL) time where N is the number
of training documents, n is the number of words
in the document and L is the maximum phrase
length considered. The computation of VTK re-
duces down to power series computation of the
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adjacency matrix of the product graph, and since
we require kernel values between all documents, it
requires O(N2(n2d + n4L)) time where d is the
dimension of the word embedding space.

Our kernel is the sum of phrase kernels (PhK)
starting from every pair of nodes between two sen-
tences, for all phrase lengths (l) and distortions
(λ2) under consideration. By storing intermedi-
ate values of composite vectors, a phrase kernel
can be computed in O(d) time regardless of the
phrase length, therefore the whole computation
process has O(N2n2L2d) complexity. Although
our kernel has the squared terms of the baseline’s
complexity, we are tackling the sparsity issue that
arises with short text (small n) or when little train-
ing data is available (small N ). Moreover, we
were able to get better results with only bigrams
(small L). Hence, the loss in efficiency is accept-
able considering significant gains in effectiveness.

5 Conclusion

In this paper, we proposed a novel convolutional
sentence kernel based on word embeddings that
overcomes the sparsity issue, which arises when
classifying short documents or when little training
data is available. We described a general frame-
work that can encompass the standard n-gram
baseline approach as well as more relaxed ver-
sions with smoother word and phrase kernels. It
achieved significant improvements over the base-
lines across all datasets when taking into account
the additional information from the latent word
similarity (word embeddings) and the syntactic
structure (dependency tree).

Future work might involve designing new ker-
nels for syntactic parse trees with appropriate sim-
ilarity measures between non-terminal nodes as
well as exploring recently proposed phrase em-
beddings for more accurate phrase kernels.
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Abstract

Cooking recipes exist in abundance; but
due to their unstructured text format, they
are hard to study quantitatively beyond
treating them as simple bags of words.
In this paper, we propose an ingredient-
instruction dependency tree data structure
to represent recipes. The proposed rep-
resentation allows for more refined com-
parison of recipes and recipe-parts, and is
a step towards semantic representation of
recipes. Furthermore, we build a parser
that maps recipes into the proposed rep-
resentation. The parser’s edge prediction
accuracy of 93.5% improves over a strong
baseline of 85.7% (54.5% error reduction).

1 Introduction

Cooking recipes are a specific genre of how-to in-
structions which have been gaining interest in re-
cent years as they may allow us to discover in-
sights into culinary and cultural preferences. Most
of the work studying recipes relies on simple in-
gredient bag-of-word representations. While such
representations may suffice for many purposes,
they fail to capture much of the recipes’ internal
structure. A smaller number of efforts focus on se-
mantic representations of cooking recipes with an
eye toward more complex and deep understand-
ing. Natural language processing (NLP) tech-
niques have been used to interpret cooking instruc-
tions; however, the results have not been as suc-
cessful as other language genres due to the unique
aspects of cooking recipes.

This paper makes two contributions. First, we
propose an ingredient-instruction dependency tree
representation of recipe structure. This represen-
tation abstracts textual recipes more expressively
than bag-of-word representations; and it allows for
more nuanced comparisons of recipes. Second,
we present a cooking recipe parser that maps text
recipes into our proposed ingredient-instruction

tree structures. The overall accuracy of predicting
edges of our ingredient-instruction trees is 93.5%,
beating a strong baseline of 85.7%, and achieving
a relative error reduction of 54.5%.

We present next some related work (Section 2)
followed by a discussion of the structure of recipes
and our representation (Section 3). Section 4 de-
tails the recipe parser design, implementation and
evaluation.

2 Related Work

There have been many efforts on the processing of
cooking recipes using models that range from bags
of words to complex semantic representations.

Among the approaches to studying recipes as
ingredient bags of words, Ahn et al. (2011) con-
structed a data-driven flavor network relating in-
gredients together. Jain et al. (2015) adopted Ahn
et al. (2011)’s framework to further analyze culi-
nary practices of specific cultures. Nedovic (2013)
examined underlying ingredient groupings from
their recipe co-occurrences, using topic modeling
techniques (latent Dirichlet allocation), and fur-
ther improvised novel ingredient combinations us-
ing deep belief networks.

Among the structured representation ap-
proaches, Tasse and Smith (2008) proposed
MILK (Minimal Instruction Language for the
Kitchen), a formal language to describe actions
required in directive cooking instructions. They
used MILK in developing CURD (Carnegie
Mellon University Recipe Database), a corpus of
manually annotated recipes. Mori et al. (2014)
also manually annotated the procedural flow of
Japanese cooking recipes using directed acyclic
graphs (DAGs) where graph nodes correspond
to food ingredients, cooking instruments, and
actions. Tasse and Smith (2008) had limited
success in parsing into MILK; and Mori et al.
(2014) did not report on parsing experiments.

Other studies explored different machine learn-
ing and NLP techniques to processing recipes.
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Text Recipe SIMMR
ingredients inst9

inst8

inst7

inst6

inst4

inst1

inst0

ing0
french
bread

inst3

inst2

ing1
ricotta

ing2
cottage

ing3
cream
cheese

ing4
sugar

ing5
vanilla

inst5

ing6
egg

ing7
milk

0 6 (2 inch thick) slices French bread
1 1/4 cup ricotta cheese
2 1/4 cup cottage cheese, whipped
3 2 tablespoons lowfat cream cheese
4 2 teaspoons white sugar
5 2 teaspoons vanilla extract
6 3 cups egg substitute
7 1/4 cup evaporated milk

instructions
0 Cut a pocket in each slice of bread.
1 Open carefully
2 In a large bowl, combine the ricotta,

cottage cheese and cream cheese.
3 Add the sugar and flavoring extract

and beat until smooth.
4 Spread the mixture evenly into each

bread pocket.
5 Beat together the egg substitutes and milk.
6 Dip the slices of bread in the egg mixture.
7 Heat a nonstick pan over medium-high heat.
8 Coat with cooking spray.
9 Cook the toast on each side for about 3

to 4 minutes per side until golden brown.

Figure 1: Example of a text recipe for Surprise-inside French Toast and its SIMMR representation.
ing<index> and inst<index> refer to specific ingredients and instructions, respectively.

Mori et al. (2012) applied word segmentation,
named entity recognition, and syntactic analy-
sis to extract predicate-argument structures from
Japanese recipe instructions as part of an effort
to develop complete recipe flow representations.
Malmaud et al. (2014) proposed a Markov Deci-
sion Process, in which the context of ingredients
and tools is propagated along the temporal order
of cooking instructions.

Most recently, Abend et al. (2015) proposed an
edge-factored model to determine the likely tem-
poral order of events based solely on the identity
of their predicates and arguments. They demon-
strated their approach on recipe text, under the
simplifying assumption that such text is also tem-
porally ordered.

In this paper, we present an ingredient-
instruction dependency tree representation of
recipe structure, which we call SIMMR (Simpli-
fied Ingredient Merging Map in Recipes). The
SIMMR representation captures the high-level
flow of ingredients but without modeling the se-
mantics in each individual instruction unlike other
efforts (Tasse and Smith, 2008; Mori et al., 2012;
Mori et al., 2014). We create a corpus in our rep-
resentation by converting the recipes in the CURD
corpus (Tasse and Smith, 2008) from MILK to
SIMMR. We also develop a parser to generate
SIMMR trees from input recipes.

3 Recipe Representation

3.1 Text Recipes

The prototypical text recipe consists of two parts:
an ingredient list that declares the food items to
process, and a set of instructions that mostly de-
scribe the transformations of the ingredients or the
actions using the kitchen tools. The instructions
relocate, process, combine, and separate ingredi-
ents, as well as heat or cool utensils in the recipes.
For the most part, the output produced from one
instruction feeds as input into another instruction.
The list of ingredients can be generalized as spe-
cial fetch instructions whose output feeds as input
to one of the cooking instructions.

3.2 SIMMR

Our proposed representation is SIMMR: Simpli-
fied Ingredient Merging Map in Recipes. SIMMR
represents a recipe as a dependency tree whose
leaves (terminal nodes) are the recipe ingredients,
and whose internal nodes are the recipe instruc-
tions. Figure 1 exemplifies the SIMMR tree of a
recipe for Surprise-inside French Toast. Indices
for all ingredients and instructions are provided
here to illustrate mapping between the different
parts of the text recipe and its SIMMR tree. The
subtree headed by inst2 indicates that ingredients
#1, #2 and #3 (three cheeses) are inputs to instruc-
tion #2, whose output is then an input to instruc-
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tion #3, together with ingredients #4 and #5 (sugar
and vanilla). The SIMMR tree provides additional
insights into the structure of recipes, suggesting
in the case of this example, that multiple actions
can take place in different orders without changing
the recipe so long as the order of combinations is
not changed. Some instructions simply transforms
their input to produce their output, e.g. instruc-
tions #1, #7, #8 and #9.

3.3 From MILK to SIMMR

We use MILK commands from the CMU CURD
database (Tasse and Smith, 2008) to construct
a database of SIMMR trees. The MILK lan-
guage is a lot more expressive that SIMMR. For
example, instruction #2 in Figure 1 translates
into create tool(t0, “large bowl”); combine(ing1,
ing2, ing3, ing9, “cheeses”, “”); and put(ing9,
t0). These details of ingredient processing are ab-
stracted away in SIMMR. To accomplish SIMMR
instruction and ingredient linking, we process
MILK instructions in order, tracing with MILK id
numbers when each ingredient or its transformed
or combined form at one instruction node is called
for by a subsequent instruction node. The MILK
intermediate names for instruction outputs (e.g.,
“cheeses” above) are not adopted in SIMMR. Ad-
ditionally, food items that appear in instructions
but are not part of the recipe ingredient list text are
not included in SIMMR although MILK assigns
ingredient ids to them. For example, instruction
#8 mentions cooking spray, which is not on the in-
gredient list. As a result inst8 looks like it has no
ingredients coming into it other than the output of
inst7.

We assume in SIMMR that at most one output is
produced from each instruction. One MILK com-
mand, separate, violates this assumption. For ex-
ample, the instruction drain off the fat, and place
the mixture into a slow cooker is MILK-tagged
with a separate command to dispose fat, and re-
tain the mixture. We ignore the separate command
which occurs in 3% of all recipes (and 1.3% of the
time involves disposing of a separated ingredient,
such as draining off fat).

Instructions that do not interact with food, such
as those calling for preheating the oven or lining
the baking sheets, are considered to take the ingre-
dient mixture of the cooking instruction immedi-
ately prior and produce the same output.

4 Recipe Parser

In this section, we present our SIMMR tree recipe
parser. The input and output of the parser cor-
respond to the left hand and right hand sides of
Figure 1. We split the parsing process into two
phases: first we link ingredients to instructions
where the ingredients are first used; then we link
instructions to other instructions, where the tar-
get instruction uses the source instruction’s output.
We present the different challenges and solutions
employed in each phase below and present evalu-
ation results.

4.1 Experimental Setup
4.1.1 Data
We use a total of 260 recipes downloaded from
CMU Recipe Database. MILK tags are used to
construct the SIMMR trees as mentioned above.
The dataset is randomly split (along recipe bound-
aries) into training, development, and test sets with
ratios of 50%, 20%, and 30%, respectively. The
development set is used for tuning parameters. We
report here on the test set only. We preprocess
the data using standard NLP packages to tokenize,
stem, and POS tag the words (De Marneffe et al.,
2006; Bird et al., 2009; De Smedt and Daelemans,
2012). We further remove stop words and quantity
measures.1

4.1.2 Metrics
The evaluation metric is the accuracy of predict-
ing edges in the SIMMR tree. This is compara-
ble to the attachment score in dependency pars-
ing. The overall accuracy of the task is computed
at the edge level (counting all edges in the data
set), and at the recipe level (average accuracy over
all recipes).

4.2 Ingredient-Instruction Linking
4.2.1 Challenges
There are several characteristics of recipe text that
do not reveal explicit linking of ingredients to in-
structions that first use them. The ingredients are
sometimes referred to by their qualifiers or onto-
logical classes. For example, the ingredient 1 (15
oz) can sliced peaches, drained may be referred
to in the instruction as canned fruit. In addition,

1Since we start from the MILK representations, the set
of ingredients and instructions are clearly identified in each
recipe. However, we do not expect this to be the case when
starting from raw text recipes, which need to be processed to
segment the different ingredients and instructions. We do not
attempt this step in this paper and leave it as future work.
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Edge-level Recipe-level
Accuracy Accuracy

Baseline 84.3 84.8
SVMrank 95.3 95.8

Table 1: Performance of different learning models
for ingredient-instruction linking

a number of ingredients are sometimes referred to
as a group entity without specific mentions, e.g.,
Add the remaining ingredients, or mix together the
dry ingredients.

4.2.2 Baseline
For each instruction, in order, we compute all the
maximum stemmed n-gram chunk matches against
all ingredients. For each matching token chunk of
the instruction, if it matches only one ingredient,
we link the ingredient to the instruction and mark
the ingredient as used. Otherwise, we compute the
Levenshtein distance between the unstemmed sur-
face text of both the ingredient candidate matches
and the instruction token chunk, and take the high-
est matching ingredient. Once an ingredient is
used, it is no longer available for linking with sub-
sequent instructions.

4.2.3 Features and Linking
For each ingredient-instruction edge, we provide
1,136 features to classify whether the edge exists
or not. The following are some of the most impor-
tant features we use:

• The baseline decision for the ingredient-
instruction edge.
• The number of distinct unigram matches.
• The largest match size.
• The sum of the relative frequency (in the list

of instructions) of every word in the largest
match (henceforth SRFM).
• The degree of similarity between SRFM and

the instruction relative position (InstRP) in
the instruction list. The intuition for this fea-
ture is that if an ingredient is mentioned more
often in the recipe, its first mention is likely
to be in an earlier instruction. This feature is
computed as (1− |SRFM − InstRP |).
• The degree of similarity between the ingredi-

ent relative position (IngRP) in the ingredient
list and the InstRP. This feature captures an
observation that earlier listed ingredients are
used by earlier instructions. We compute the
feature as (1− |IngRP − InstRP |).

• To model the first word of each instruction
(i.e., the directive verb such as heat or mix),
we use a binary term vector whose vocab-
ulary is constructed from all the instruction
first words in the training data.
• We model the maximum ingredient-

instruction word match using a binary
term vector whose vocabulary covers
non-directive recipe words (NDRW). We
construct the NDRW vocabulary by taking
the union of the set of words from the
compiled food item list of Ahn et al. (2011)
and the non-first words of the instructions in
the training data.
• If there is a match, we model its surround-

ing words using a similar binary term vector
(NDRW vocabulary). If there is no match,
the vector will be empty.
• We use a binary term vector (NDRW vocabu-

lary also) to model the non-first words in the
instruction.

We train using Linear SVMrank (Joachims,
2006).2 The test set results are shown in Table 1.
Ranking edges using SVMrank and then picking
the best one significantly outperforms the baseline.

4.2.4 Linking Errors
Among the linking errors, three patterns appear.
First, stemming reduces the specificity of some of
the terms, e.g., one prediction links baking powder
to an action bake for 30 minutes. Second, our ap-
proach does not handle negated mentions, e.g. the
instruction mix together the dry ingredients, ex-
cept the candies is incorrectly linked to ingredi-
ent candy. Finally, the ingredients flour and butter
are specifically part of many erroneous links be-
cause they are often used in small quantities to fa-
cilitate the cooking process such as board flouring
and pan greasing. MILK does not always account
for this trivial use of these ingredients and neither
does SIMMR.

4.3 Instruction-Instruction Linking
4.3.1 Challenges
Although cooking instructions are written with an
implied temporal order, they are not linked in a
linear chain. Rather, the instructions describe dif-
ferent cooking stages, where the output of apply-

2We also experimented Linear SVM and Gaussian Kernel
SVM (Pedregosa et al., 2011). We used the distance from
the hyperplane to select the best edge among the set of edges
connecting an ingredient. However, these techniques under-
performed compared to SVMrank.
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ing a number of instructions waits until other in-
structions are finished to be used again, e.g., the
output of instruction #1 in Figure 1 waits until in-
structions #2 and #3 are done. Sometimes stage
switching is explicitly stated as in Set aside the
flour mixture, and combine eggs and oil together;
however, this is not the common case. Further-
more, the waiting output of an earlier stage may
be referred to collectively or using the main ingre-
dient which makes linking harder, e.g., referring
to the output of an instruction combining chicken,
salt and pepper as chicken.

4.3.2 Baseline
We link the instructions in a linear chain. In
the training set, 89% of the instruction-instruction
links are to the immediate neighbor.

4.3.3 Features and Linking
For each possible instruction-instruction edge, we
provide 1,573 features to classify if the edge exists
or not. The features group into three categories.

First are words that suggest cooking stage
switching, e.g., ingredient mixture words such as
mixture, dough, and batter, or the simple men-
tion of new containers and utensils. They are
represented as binary features indicating whether
the words appear in either or both instructions
along the considered edge, as well as in imme-
diate neighboring instructions. Logic operations
(and, or) are further applied to all pairs of these
features. Another feature in this group is a binary
verb conjugation feature that marks the presence
of a past participle verb in the target instruction
and a non-past-participle form of the same verb in
the source instruction. The intuition here is that an
instruction that asks to chop an ingredient would
be followed later by an instruction containing the
word chopped when referring to the ingredient.

The second group consists of features that en-
code whether the n previous or future instructions
has m linked ingredients, where n ranges from 1
to 3 and m ranges from 0 to 4.

Finally, the third group deals with term vec-
tors describing the source and target instructions,
as well as, the instructions’ first words (the direc-
tives). The term vector vocabularies used are the
same as those discussed above in the ingredient-
instruction linking section.

We additionally consider decoupling the fea-
tures for the case of immediate neighboring in-
structions from the further apart instructions. In
the decoupled mode, we effectively double the
number of features for each edge with nils used

Edge-level Recipe-level
Accuracy Accuracy

Baseline 87.6 89.5
SVMrank 90.5 92.0

SVMrank - decoupled 91.3 92.4

Table 2: Performance of different learning models
for instruction-instruction linking

to fill in the gaps. This allows us to learn different
models for adjacent and apart instructions. The re-
sults are in Table 2 and show that decoupling fea-
tures in SVMrank is our best setting.

Examining the weights learned for adjacent and
long-distance edge features gives some interesting
insights. One example is that the verb conjuga-
tion feature has a higher weight for long-distance
edges compared to adjacent edges. This is un-
derstandable as most adjacent pairs of instructions
would not exhibit this feature to express cooking
progress: it is redundant to state, cook the pasta,
and immediately refer to that pasta as the cooked
pasta.

4.3.4 Linking Errors
As the distance between linked instructions in-
creases, the likelihood of error also increases:
while long-distance (i.e., non-adjacent) links con-
stitute 12.3% of the reference, they are 91.7% of
the errors. We expect that more training examples
of long-distance linking can help address this is-
sue.

4.4 Overall Accuracy
The overall edge-level accuracy of constructing
the full SIMMR tree is 93.5%, outperforming a
baseline of 85.7%, and achieving error reduction
of 54.5%.

5 Conclusions and Future Work

We proposed a new ingredient-instruction depen-
dency tree representation to capture the internal
structure of cooking recipes, and built a parser for
it. Our overall parsing accuracy is 93.5%, outper-
forming a strong baseline of 85.7%.

We will make our SIMMR database, and our
SIMMR parser publicly available. Further, we
plan to build on SIMMR to get closer to the MILK
representation. We also plan on parsing a large
corpus of text recipes to provide structural features
on a large scale that will allow us to discover new
patterns of similarity across and within cuisines,
as well as generate new recipes.
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and Albert-László Barabási. 2011. Flavor network
and the principles of food pairing. Scientific reports,
1.

Steven Bird, Ewan Klein, and Edward Loper.
2009. Natural language processing with Python.
”O’Reilly Media, Inc.”.

Marie-Catherine De Marneffe, Bill MacCartney,
Christopher D Manning, et al. 2006. Generat-
ing typed dependency parses from phrase structure
parses. In Proceedings of LREC, volume 6, pages
449–454.

Tom De Smedt and Walter Daelemans. 2012. Pattern
for python. The Journal of Machine Learning Re-
search, 13(1):2063–2067.

Anupam Jain, Ganesh Bagler, et al. 2015. Spices form
the basis of food pairing in indian cuisine. arXiv
preprint arXiv:1502.03815.

Thorsten Joachims. 2006. Training linear svms in lin-
ear time. In Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery
and data mining, pages 217–226. ACM.

Jon Malmaud, Earl J Wagner, Nancy Chang, and Kevin
Murphy. 2014. Cooking with semantics. ACL 2014,
page 33.

Shinsuke Mori, Tetsuro Sasada, Yoko Yamakata, and
Koichiro Yoshino. 2012. A machine learning ap-
proach to recipe text processing. In Proc. of the 1st
Cooking with Computer Workshop, pages 29–34.

Shinsuke Mori, Hirokuni Maeta, Yoko Yamakata, and
Tetsuro Sasada. 2014. Flow graph corpus from
recipe texts. In Proceedings of the Nineth Interna-
tional Conference on Language Resources and Eval-
uation, pages 2370–2377.

V Nedovic. 2013. Learning recipe ingredient space
using generative probabilistic models. In Proceed-
ings of Cooking with Computers Workshop (CwC),
volume 1, pages 13–18.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learn-
ing in Python. Journal of Machine Learning Re-
search, 12:2825–2830.

Dan Tasse and Noah A Smith. 2008. Sour cream: To-
ward semantic processing of recipes. Technical re-
port, Technical Report CMU-LTI-08-005, Carnegie
Mellon University, Pittsburgh, PA.

786



Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 787–792,
Lisbon, Portugal, 17-21 September 2015. c©2015 Association for Computational Linguistics.

TSDPMM: Incorporating Prior Topic Knowledge into Dirichlet Process
Mixture Models for Text Clustering

Linmei Hu†, Juanzi Li†, Xiaoli Li‡, Chao Shao†, Xuzhong Wang§
† Dept. of Computer Sci. and Tech., Tsinghua University, China
‡ Institute for Infocomm Research(I2R), A*STAR, Singapore

§ State Key Laboratory of Math. Eng. and Advanced Computing, China
{hulinmei1991, lijuanzi2008}@gmail.com

xlli@i2r.a-star.edu.sg, {birdlinux, koodoneko}@gmail.com

Abstract

Dirichlet process mixture model (DPM-
M) has great potential for detecting the
underlying structure of data. Extensive
studies have applied it for text cluster-
ing in terms of topics. However, due to
the unsupervised nature, the topic cluster-
s are always less satisfactory. Considering
that people often have some prior knowl-
edge about which potential topics should
exist in given data, we aim to incorpo-
rate such knowledge into the DPMM to
improve text clustering. We propose a
novel model TSDPMM based on a new
seeded Pólya urn scheme. Experimen-
tal results on document clustering across
three datasets demonstrate our proposed
TSDPMM significantly outperforms state-
of-the-art DPMM model and can be ap-
plied in a lifelong learning framework.

1 Introduction

Dirichlet process mixture model (DPMM) (Neal,
2000) has been used in detecting the underlying
structure in data. For example, (Vlachos et al.,
2008; Vlachos et al., 2009) applied it to lexical-
semantic verb clustering. (Wang et al., 2011;
Huang et al., 2013; Yin and Wang, 2014) applied
it for text clustering in terms of their topics. While
DPMM achieved some promising results, it can
still sometimes produce unsatisfactory topic clus-
ters due to its unsupervised nature.

On the other hand, people often have prior
knowledge about what potential topics should ex-
ist in a given text corpus. Take an earthquake event
corpus as an example. The topics, such as “ca-
sualties and damages”, “rescue” and “government
reaction”, called prior topics, are expected to oc-
cur in the corpus according to our common knowl-
edge (e.g., the topics automatically learned from

previous events using topic modeling (Ahmed and
Xing, 2008)) or external resources (e.g., table of
contents at Wikipedia event pages 1). Similarly, in
academic fields, “call for papers (CFP)” of confer-
ences 2 lists main topics that conference organizers
would like to focus on. Clearly, these prior topic-
s can be represented as sets of words, which are
available in many real-world applications. They
can serve as weakly supervised information to en-
hance the unsupervised DPMM for text clustering.

Standard DPMM (Neal, 2000; Ranganathan,
2006) lacks a mechanism for incorporating pri-
or knowledge. Some existing work (Vlachos et
al., 2008; Vlachos et al., 2009) added knowledge
of observed instance-level constraints (must-links
and cannot-links between documents) to DPMM.
(Ahmed and Xing, 2008) proposed recurrent Chi-
nese Restaurant Process to incorporate previous
documents with known topic clusters. We focus
on incorporating topic-level knowledge, which is
more challenging, as seed/prior topics could be la-
tent rather than observable.

Particularly, we construct our novel TSDPM-
M (Topic Seeded DPMM) based on a principled
seeded Pólya urn (sPU) scheme. Our model inher-
its the nonparametric property of DPMM and has
additional technical merits. Importantly, our mod-
el is encouraged but not forced to find evidences of
seed topics. Therefore, it has freedom to discover
new topics beyond prior topics, as well as to detect
which prior topics are not covered by current da-
ta. It is thus convenient to observe topic variations
between prior topics and newly mined topics. Ex-
perimental results on document clustering across
three corpora demonstrate that our model effec-
tively incorporates prior topics, and significantly
outperforms state-of-the-art DPMM model. Par-
ticularly, our TSDPMM can be applied in a life-
long learning framework which enables the prior

1e.g., http://en.wikipedia.org/wiki/2010 Chile earthquake
2e.g., https://nips.cc/Conferences/2014/CallForPapers
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topic knowledge to evolve as more and more data
are observed.

2 Topic Seeded DPMM

In this section, we first introduce the standard
DPMM model for document clustering in terms
of topics. Then we describe how to incorporate
seed/prior topics into the model using a seeded
Pólya urn (sPU) scheme, which gives us our novel
TSDPMM model (Topic Seeded DPMM). Finally,
we present the model inference.

2.1 DPMM

The DPMM (Antoniak, 1974) as a non-parametric
model assumes the given data is governed by an
infinite number of components where only a frac-
tion of these components are activated by the da-
ta. Figure 1 illustrates the DPMM graphical model
and its generative process of a document xi. First,
we sample a topic θi = {θij}j=|V |

j=1 (a multinomial
distribution over words belonging to the vocabu-
lary V ) for the document xi according to a Dirich-
let Process (DP) G ∼ DP (α, G0), where α > 0
is a concentration parameter and the base measure
G0 = Dir(β⃗) can be considered as a prior distri-
bution for θ. Consider the document xi as a bag of
words, given the topic θi, the generative distribu-
tion F is a given likelihood function parameterized
by θ. We define F as p(xi|θi) =

∏|xi|
j=1 p(xij |θi),

where xij is the jth word in xi. Note that the DP-
MM assumes each document can be assigned to
one topic cluster only.

Figure 1: Graphical Representation of DPMM.

The DP process of DPMM, according to which
topic θi for a document xi is drawn, can be ex-
plained by the popular metaphor of Pólya urn (PU)
scheme (Blackwell and MacQueen, 1973), equiv-
alent to the Chinese Restaurant Process (Ahmed
and Xing, 2008). The PU scheme works on balls

(documents) and colors (topics). It starts with an
empty urn. With probability proportional to α, we
draw θi ∼ G0, and add a ball of this color to the
urn. With probability proportional to i − 1 (i.e.,
the current number of balls in the urn), we draw
a ball at random from the urn, observe its color θi

and replace the ball with two balls of the same col-
or. In this way, we draw topic θi for document xi.
As shown in the process, the prior probability of
assigning a document to a topic is proportional to
the number of documents already assigned to the
topic. As a result, the DPMM exhibits the “rich
get richer” property.

2.2 TSDPMM: Incorporating Seed Topics

In this section, we describe our proposed algorith-
m to incorporate prior seed topics into the DPM-
M. A prior/seed topic k is represented by a vec-
tor N⃗

(0)
k (word frequencies under the topic). We

can obtain the prior topics represented by N⃗
(0)
k

from past learning of topic models or external re-
sources such as Wikipedia and “CFP”. Assuming
we have K(0) prior topics, we use the parame-
ter α⃗(0) = {α(0)

k }K(0)

k=1 to control our confidence
about how likely each prior topic exists. Let us
go back to Pólya urn (PU) scheme, where a prior
topic can be taken as a known color. We extend
the PU scheme to incorporate prior topics, which
gives the sPU (seeded Pólya Urn) scheme. The
sPU scheme can be described as follows:

• We start with an urn with α
(0)
k balls of each

known color k ∈ {1, ..., K(0)}.

• With a probability proportional to α, we draw
θi ∼ G0 and add a ball of this color to the urn.

• With probability proportional to i − 1 +∑K(0)

k=1 α
(0)
k , we draw a random ball from the

urn, and replace the ball with two balls of the
same color.

As shown in the above process, instead of start-
ing with an empty urn in DPMM, we assume that
the urn already has certain balls of known colors.
In this way, we incorporate the prior seed topic-
s. The number of initial balls (documents) α

(0)
k

controls how likely the topic k exists. We can use
different values of α

(0)
k for prior topics with dif-

ferent confidence levels. This sPU scheme gives
our novel model TSDPMM (Topic Seeded DPM-
M) incorporating prior topics. The TSDPMM has

788



similar graphical representation as DPMM (Fig-
ure 1), except the introduction of hyper-parameter
α⃗(0). We then present a collapsed gibbs sampling
algorithm for model inference as follows.

TSDPMM Inference. The model inference is
described in detail in Algorithm 1. It first ini-
tializes all documents with random topic clusters.
Then it iteratively updates the topic cluster assign-
ments of documents according to the conditional
probabilities (Eq.1) until convergence. Eq.1 can
be derived as:

p(zi|Z⃗−i, X⃗) ∝ p(zi|Z⃗−i, α, α⃗(0))p(xi|X⃗−i, Z⃗, β⃗)
(1)

where zi is the topic assignment of observation xi,
X⃗ is the given document corpus, and Z⃗−i are X⃗−i

are the set of topic assignments and the corpus ex-
cluding the ith observation xi, respectively.

Algorithm 1: Collapsed Gibbs Sampling

Input: Document dataset X⃗ = {xi}m
i=1, prior

topics {N⃗ (0)
k }K(0)

k=1 , parameter α⃗(0)

Output: Topic assignments Z⃗ of all
documents

Initialize the topic assignments Z⃗ based on
prior topics randomly;
repeat

Select a document xi ∈ X⃗ randomly
Fix the other topic assignments Z⃗−i

Assign a new value to
zi:zi ∼ p(zi|Z⃗−i, X⃗)(Eq. 1)

until Convergence;

In Eq.1, the first item p(zi=k|Z⃗−i, α, α⃗(0)) de-
notes a prior probability of zi=k, which is pro-
portional to the number of documents already as-
signed to it. If k is a prior topic, it is propor-
tional to nk,−i + α

(0)
k , where nk,−i is the num-

ber of documents of topic k excluding the cur-
rent document xi. If k is an existing (not pri-
or) topic, it is proportional to nk,−i. If k is a
new topic, the probability is proportional to α.
The second item p(xi|X⃗−i, Z⃗−i, zi = k, β⃗) is
the likelihood of xi given X⃗−i, Z⃗−i and zi=k.
They can be derived as p(xi|X⃗−i, Z⃗−i, zi =

k, β⃗) ∝ p(X⃗|Z⃗,β⃗)

p(X⃗−i|Z⃗−i,β⃗)
where p(X⃗|Z⃗, β⃗) =∫

p(X⃗|Z⃗, Θ)p(Θ|β⃗)dΘ. As p(Θ|β⃗) is a Dirich-
let distribution and p(X⃗|Z⃗, Θ) is a multinomial

distribution, we can get p(X⃗|Z⃗)=
∏K

k=1
∆(N⃗k+β⃗)

∆(β⃗)
,

where N⃗k = {Nk,w}V
w=1 and Nk,w is the number

of occurrences of word w in the kth topic. Here,
we adopt the function ∆ in (Heinrich, 2009), and

we have ∆(β⃗) =
∏V

w=1 Γ(β)

Γ(
∑V

w=1)β
and ∆(N⃗k + β⃗) =∏V

w=1 Γ(Nk,w+β)

Γ(
∑V

w=1(Nk,w+β))
. Finally, we can derive:

p(zi = k|Z⃗−i, X⃗)

∝


(nk,−i + α(0)) · ∆(N⃗.,i+N⃗k,−i+N⃗

(0)
k +β⃗)

∆(N⃗k,−i+N⃗
(0)
k +β⃗)

prior

nk,−i · ∆(N⃗.,i+N⃗k,−i+β⃗)

∆(N⃗k,−i+β⃗)
existing

α · ∆(N⃗.,i+β⃗)

∆(β⃗)
new ,

where N⃗k,−i is a vector with the word counts for
all the documents assigned to topic k excluding xi,
N⃗.,i and N⃗

(0)
k are vectors with word counts in doc-

ument xi and in all the documents assigned to k
in prior knowledge respectively. According to this
equation, documents are likely to go into clusters
which are bigger and give higher likelihood of the
documents. When the Gibbs sampler converges,
we obtain topic cluster assignments of all the doc-
uments. Different from DPMM inference process
in which topics are removed when no documents is
assigned to them, TSDPMM inference can retain
prior topics all the time due to the initial number
of documents α⃗(0), making it able to track prior
topics, as well as to detect new topics.

3 Experiments

We evaluate our proposed TSDPMM model for
document clustering on 3 datasets where each
cluster corresponds to a topic. We implement both
DPMM and TSDPMM models — their source
codes are available at https://github.com/
newsminer/DPMM_and_TSDPMM.

3.1 Datasets
We collect machine learning conference NIPS
datasets composed of paper titles and abstracts
from 2012 to 2014 – each year includes 342, 360
and 411 documents respectively. They are named
as NIPS-12, NIPS-13 and NIPS-14.

We also employ the standard benchmark news
datasets, including 20 Newsgroups 3 and Reuters-
21578. As news is often timely reported, we
choose three continuous days with the largest
number of documents in 20 Newsgroups (i.e. 11,
12 and 13 May) and Reuters-21578 (i.e. 3, 4 and
5 March) for our experiments. These datasets are

3http://people.csail.mit.edu/jrennie/20Newsgroups/
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denoted as 20N-1, 20N-2, 20N-3 (including 103,
96, 106 documents) and Reu-1, Reu-2, Reu-3 ( in-
cluding 282, 249, 207 documents), respectively.

For all the datasets, we conduct the following
preprocessing: (1) Convert letters into lowercase;
(2) Remove non-Latin characters and stop words;
(3) Remove words with document frequency < 2.

3.2 Experimental Setup

We take the standard DPMM as our baseline
method and compare it with our proposed TSDP-
MM model using different prior knowledge ob-
tained with different manners.

For NIPS datasets, we use two kinds of prior
knowledge: one is the topics learned by DPMM
from previous year’s dataset; the other one is from
an external resource “CFP” 4 (10 topics, same for
each year). We name them as TSDPMM-P and
TSDPMM-E respectively. As the topic descrip-
tions in “CFP” are sparse, we repeat each topic
description by ten times and then represent a topic
with the words with word frequencies in its de-
scription text.

For both 20 Newsgroups and Reuters datasets,
we use prior knowledge learned by DPMM from
the previous day’s dataset. Furthermore, to test
if we can improve the results continuously by ap-
plying TSDPMM, every time when we model a
new dataset, we incorporate prior topics learned
by TSDPMM from previous day’s dataset, similar
to lifelong learning (Chen and Liu, 2014; Thrun,
1998). We call this model as TSDPMM-L.

Parameter Setting. Following a previous work
(Vlachos et al., 2009), we set the hyper-parameters
α=1, α⃗(0)={1.0}, β⃗ ={1.0}. We run Gibbs sam-
pler for 100 iterations and stop the iteration once
the log-likelihood of the training data converges.

Evaluation. The widely used NMI (normal-
ized mutual information) measure (Dom, 2002),
has been employed to evaluate document cluster-
ing results. The higher a value of NMI, the better
a clustering result is. However, NMI needs true
class labels for documents, and can only be ap-
plied to our benchmark news datasets. For NIPS
datasets without true labels, we use the measure of
perplexity, as defined in (Blei et al., 2003), to test
per-word likelihood of the datasets. The lower the
perplexity, the better a model fits the data.

4https://nips.cc/Conferences/2014/CallForPapers

3.3 Results
Table 1 shows the average perplexity values of
five runs of 3 models on NIPS datasets. It shows
that both TSDPMM-P and TSDPMM-E, lever-
aging prior topics from previous learning and
“CFP” significantly outperform DPMM. In ad-
dition, TSDPMM-E achieves lower performance
than TSDPMM-P due to its lower quality of prior
topics directly obtained from “CFP”, compared to
higher quality topics from past learning. We may
improve “CFP” knowledge by extending it with
related texts from search engines or Wikipedia us-
ing keywords in “CFP” in future work.

An insight of our clustering results on NIPS-14
dataset suggests that most prior topics in 2013 are
covered again in 2014 (consistent topics), except
a few missing topics such as “lasso for Bayesian
networks”. Additionally, some newly evolved top-
ics in 2014, e.g. “monte carlo particle filtering”
and “nash games”, are successfully discovered by
our proposed model.

Models NIPS-12 NIPS-13 NIPS-14
DPMM 321.7 317.1 362.9

TSDPMM-P 290.1 298.7 346.8
TSDPMM-E 307.5 315.6 360.1

Table 1: Average perplexity of different models on
NIPS.

Table 2 illustrates the average NMI values of
five runs of DPMM, TSDPMM and TSDPMM-L
on news datasets. The results show that TSDP-
MM using prior topics learnt by DPMM outper-
forms DPMM (on average +5.8%; p <0.025 with
t-test). Additionally, TSDPMM-L, which continu-
ously uses prior topics learnt by TSDPMM from
previous dataset, further outperforms TSDPMM
(on average +3.2%; p <0.025 with t-test). Note
TSDPMM-L uses TSDPMM results of 20N-1 and
Reu-1 as prior knowledge for the first time, so
there are no TSDPMM-L results for the first days
in Table 2 for 20N-1 and Reu-1 respectively.

3.4 Discussion
The experimental results across 3 datasets have
demonstrated that our proposed models can im-
prove DPMM model by incorporating prior top-
ic knowledge, and the higher-quality knowledge
will lead to better results. By applying our TS-
DPMM in a lifelong continuous learning frame-
work, namely TSDPMM-L, can further improve
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Models 20N-1 20N-2 20N-3 Reu-1 Reu-2 Reus-3
DPMM 0.610 0.537 0.590 0.509 0.647 0.653

TSDPMM 0.645 0.610 0.681 0.648 0.654 0.655
TSDPMM-L ― 0.681 0.697 ― 0.689 0.656

Table 2: Average NMI of different models on news datasets.

text clustering due to the better prior topic knowl-
edge obtained in the evolving environment.

4 Related Work

Our work is related to papers (Vlachos et al.,
2008; Vlachos et al., 2009), which added supervi-
sion (instance-level must-links or cannot-links be-
tween documents) to the DPMM. (Ahmed and X-
ing, 2008) proposed recurrent Chinese Restauran-
t Process to incorporate previous documents with
known topic clusters. However, our work is very
different as we focus on how to incorporate latent
topic-level prior knowledge. We model prior top-
ics as known colors that have a certain probability
proportional to α

(0)
k to be assigned to a document.

In addition, our inference mechanism subsequent-
ly takes the prior knowledge into consideration for
automatically assigning topics to documents.

Some existing studies such as (Ramage et al.,
2009; Andrzejewski et al., 2009; Jagarlamudi et
al., 2012; Andrzejewski et al., 2011) worked on
incorporating prior lexical or domain knowledge
into LDA. Different from all these work, we focus
on the nonparametric model DPMM and propose
to incorporate the prior topic knowledge obtained
in multiple ways.

5 Conclusion

In this paper, we propose a novel problem of in-
corporating prior topics into DPMM model and
address it through a simple yet principled seeded
Pólya urn scheme. We show that the topic knowl-
edge can be obtained in multiple ways. Exper-
iments on document clustering across 3 dataset-
s demonstrate our proposed model can effectively
incorporate the prior topic knowledge and signifi-
cantly enhance the standard DPMM for text clus-
tering. In future work, we will study how to dis-
cover overlapping clusters, i.e., allowing one doc-
ument to be grouped into multiple topic cluster-
s. We will also explore how to incorporate prior
knowledge about topic relations (such as causation
and correlation) into topic modeling.

Acknowledgments

The work is supported by 973 Program
(No. 2014CB340504), NSFC-ANR (No.
61261130588), Tsinghua University Initiative
Scientific Research Program (No. 20131089256),
Science and Technology Support Program (No.
2014BAK04B00), and THU-NUS NExT Co-Lab.

References
Amr Ahmed and Eric P Xing. 2008. Dynamic non-

parametric mixture models and the recurrent chinese
restaurant process: with applications to evolutionary
clustering. In SDM, pages 219–230. SIAM.

David Andrzejewski, Xiaojin Zhu, and Mark Craven.
2009. Incorporating domain knowledge into topic
modeling via dirichlet forest priors. In Proceedings
of the 26th Annual ICML, pages 25–32. ACM.

David Andrzejewski, Xiaojin Zhu, Mark Craven, and
Benjamin Recht. 2011. A framework for incorpo-
rating general domain knowledge into latent dirich-
let allocation using first-order logic. In Proceedings-
IJCAI, volume 22, page 1171.

Charles E Antoniak. 1974. Mixtures of dirichlet pro-
cesses with applications to bayesian nonparametric
problems. The annals of statistics, pages 1152–
1174.

David Blackwell and James B MacQueen. 1973. Fer-
guson distributions via pólya urn schemes. The an-
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Abstract

Recently, neural network based sentence
modeling methods have achieved great
progress. Among these methods, the re-
cursive neural networks (RecNNs) can ef-
fectively model the combination of the
words in sentence. However, RecNNs
need a given external topological struc-
ture, like syntactic tree. In this paper,
we propose a gated recursive neural net-
work (GRNN) to model sentences, which
employs a full binary tree (FBT) struc-
ture to control the combinations in re-
cursive structure. By introducing two
kinds of gates, our model can better model
the complicated combinations of features.
Experiments on three text classification
datasets show the effectiveness of our
model.

1 Introduction

Recently, neural network based sentence modeling
approaches have been increasingly focused on for
their ability to minimize the efforts in feature en-
gineering, such as Neural Bag-of-Words (NBoW),
Recurrent Neural Network (RNN) (Mikolov et al.,
2010), Recursive Neural Network (RecNN) (Pol-
lack, 1990; Socher et al., 2013b; Socher et al.,
2012) and Convolutional Neural Network (CNN)
(Kalchbrenner et al., 2014; Hu et al., 2014).

Among these methods, recursive neural net-
works (RecNNs) have shown their excellent abil-
ities to model the word combinations in sentence.
However, RecNNs require a pre-defined topolog-
ical structure, like parse tree, to encode sentence,
which limits the scope of its application. Cho et al.
(2014) proposed the gated recursive convolutional
neural network (grConv) by utilizing the directed
acyclic graph (DAG) structure instead of parse tree

∗Corresponding author.

cannot agree with youI more agree with youI morecannot

Figure 1: Example of Gated Recursive Neural
Networks (GRNNs). Left is a GRNN using a di-
rected acyclic graph (DAG) structure. Right is a
GRNN using a full binary tree (FBT) structure.
(The green nodes, gray nodes and white nodes
illustrate the positive, negative and neutral senti-
ments respectively.)

to model sentences. However, DAG structure is
relatively complicated. The number of the hidden
neurons quadraticly increases with the length of
sentences so that grConv cannot effectively deal
with long sentences.

Inspired by grConv, we propose a gated recur-
sive neural network (GRNN) for sentence model-
ing. Different with grConv, we use the full binary
tree (FBT) as the topological structure to recur-
sively model the word combinations, as shown in
Figure 1. The number of the hidden neurons lin-
early increases with the length of sentences. An-
other difference is that we introduce two kinds of
gates, reset and update gates (Chung et al., 2014),
to control the combinations in recursive structure.
With these two gating mechanisms, our model can
better model the complicated combinations of fea-
tures and capture the long dependency interac-
tions.

In our previous works, we have investigated
several different topological structures (tree and
directed acyclic graph) to recursively model the
semantic composition from the bottom layer to the
top layer, and applied them on Chinese word seg-
mentation (Chen et al., 2015a) and dependency
parsing (Chen et al., 2015b) tasks. However, these
structures are not suitable for modeling sentences.
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Figure 2: Architecture of Gated Recursive Neural
Network (GRNN).

In this paper, we adopt the full binary tree as the
topological structure to reduce the model com-
plexity.

Experiments on the Stanford Sentiment Tree-
bank dataset (Socher et al., 2013b) and the TREC
questions dataset (Li and Roth, 2002) show the ef-
fectiveness of our approach.

2 Gated Recursive Neural Network

2.1 Architecture

The recursive neural network (RecNN) need a
topological structure to model a sentence, such as
a syntactic tree. In this paper, we use a full binary
tree (FBT), as showing in Figure 2, to model the
combinations of features for a given sentence.

In fact, the FBT structure can model the com-
binations of features by continuously mixing the
information from the bottom layer to the top layer.
Each neuron can be regarded as a complicated
feature composition of its governed sub-sentence.
When the children nodes combine into their parent
node, the combination information of two children
nodes is also merged and preserved by their par-
ent node. As shown in Figure 2, we put all-zero
padding vectors after the last word of the sentence
until the length of 2⌈logn

2 ⌉, where n is the length of
the given sentence.

Inspired by the success of the gate mechanism
of Chung et al. (2014), we further propose a gated
recursive neural network (GRNN) by introducing
two kinds of gates, namely “reset gate” and “up-
date gate”. Specifically, there are two reset gates,
rL and rR, partially reading the information from

Gate z

Gate rL Gate rR

h2j
(l-1) h2j+1

(l-1)

hj
^(l)

hj
(l)

Figure 3: Our proposed gated recursive unit.

left child and right child respectively. And the up-
date gates zN , zL and zR decide what to preserve
when combining the children’s information. Intu-
itively, these gates seem to decide how to update
and exploit the combination information.

In the case of text classification, for each given
sentence xi = w

(i)
1:N(i) and the corresponding class

yi, we first represent each word w
(i)
j into its corre-

sponding embedding w
w

(i)
j

∈ Rd, where N(i) in-

dicates the length of i-th sentence and d is dimen-
sionality of word embeddings. Then, the embed-
dings are sent to the first layer of GRNN as inputs,
whose outputs are recursively applied to upper lay-
ers until it outputs a single fixed-length vector.
Next, we receive the class distribution P(·|xi; θ)
for the given sentence xi by a softmax transforma-
tion of ui, where ui is the top node of the network
(a fixed length vectorial representation):

P(·|xi; θ) = softmax(Ws × ui + bs), (1)

where bs ∈ R|T |, Ws ∈ R|T |×d. d is the dimen-
sionality of the top node ui, which is same with
the word embedding size and T represents the set
of possible classes. θ represents the parameter set.

2.2 Gated Recursive Unit

GRNN consists of the minimal structures, gated
recursive units, as showing in Figure 3.

By assuming that the length of sentence is n, we
will have recursion layer l ∈ [1, ⌈logn

2 ⌉+1], where
symbol ⌈q⌉ indicates the minimal integer q∗ ≥ q.
At each recursion layer l, the activation of the j-
th (j ∈ [0, 2⌈logn

2 ⌉−l)) hidden node h(l)
j ∈ Rd is

computed as

h(l)
j =

{
zN ⊙ ĥ

l

j + zL ⊙ hl−1
2j + zR ⊙ hl−1

2j+1, l > 1,

corresponding word embedding, l = 1,

(2)
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where zN , zL and zR ∈ Rd are update gates
for new activation ĥl

j , left child node hl−1
2j and

right child node hl−1
2j+1 respectively, and ⊙ indi-

cates element-wise multiplication.
The update gates can be formalized as:

z =

 zN

zL

zR

 =

 1/Z
1/Z
1/Z

⊙ exp(U

 ĥ
l

j

hl−1
2j

hl−1
2j+1

), (3)

where U ∈ R3d×3d is the coefficient of update
gates, and Z ∈ Rd is the vector of the normaliza-
tion coefficients,

Zk =
3∑

i=1

[exp(U

 ĥl
j

hl−1
2j

hl−1
2j+1

)]d×(i−1)+k, (4)

where 1 ≤ k ≤ d.
The new activation ĥl

j is computed as:

ĥl
j = tanh(Wĥ

[
rL ⊙ hl−1

2j

rR ⊙ hl−1
2j+1

]
), (5)

where Wĥ ∈ Rd×2d, rL ∈ Rd, rR ∈ Rd. rL and
rR are the reset gates for left child node hl−1

2j and
right child node hl−1

2j+1 respectively, which can be
formalized as:[

rL

rR

]
= σ(G

[
hl−1

2j

hl−1
2j+1

]
), (6)

where G ∈ R2d×2d is the coefficient of two reset
gates and σ indicates the sigmoid function.

Intuiativly, the reset gates control how to select
the output information of the left and right chil-
dren, which result to the current new activation ĥ.
By the update gates, the activation of a parent neu-
ron can be regarded as a choice among the the cur-
rent new activation ĥ, the left child, and the right
child. This choice allows the overall structure to
change adaptively with respect to the inputs.

This gate mechanism is effective to model the
combinations of features.

2.3 Training
We use the Maximum Likelihood (ML) criterion
to train our model. Given training set (xi, yi) and
the parameter set of our model θ, the goal is to
minimize the loss function:

J(θ) = − 1
m

m∑
i=1

log P(yi|xi; θ) +
λ

2m
∥θ∥2

2, (7)

Initial learning rate α = 0.3
Regularization λ = 10−4

Dropout rate on input layer p = 20%

Table 1: Hyper-parameter settings.

where m is number of training sentences.
Following (Socher et al., 2013a), we use the di-

agonal variant of AdaGrad (Duchi et al., 2011)
with minibatchs to minimize the objective.

For parameter initialization, we use random ini-
tialization within (-0.01, 0.01) for all parameters
except the word embeddings. We adopt the pre-
trained English word embeddings from (Collobert
et al., 2011) and fine-tune them during training.

3 Experiments

3.1 Datasets

To evaluate our approach, we test our model on
three datasets:

• SST-1 The movie reviews with five classes
in the Stanford Sentiment Treebank1 (Socher
et al., 2013b): negative, somewhat negative,
neutral, somewhat positive, positive.

• SST-2 The movie reviews with binary classes
in the Stanford Sentiment Treebank1 (Socher
et al., 2013b): negative, positive.

• QC The TREC questions dataset2 (Li and
Roth, 2002) involves six different question
types.

3.2 Hyper-parameters

Table 1 lists the hyper-parameters of our model. In
this paper, we also exploit dropout strategy (Sri-
vastava et al., 2014) to avoid overfitting. In ad-
dition, we set the batch size to 20. We set word
embedding size d = 50 on the TREC dataset
and d = 100 on the Stanford Sentiment Treebank
dataset.

3.3 Experiment Results

Table 2 shows the performance of our GRNN on
three datasets.

1http://nlp.stanford.edu/sentiment
2http://cogcomp.cs.illinois.edu/Data/

QA/QC/
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Methods SST-1 SST-2 QC
NBoW (Kalchbrenner et al., 2014) 42.4 80.5 88.2
PV (Le and Mikolov, 2014) 44.6∗ 82.7∗ 91.8∗

CNN-non-static (Kim, 2014) 48.0 87.2 93.6
CNN-multichannel (Kim, 2014) 47.4 88.1 92.2
MaxTDNN (Collobert and Weston, 2008) 37.4 77.1 84.4
DCNN (Kalchbrenner et al., 2014) 48.5 86.8 93.0
RecNTN (Socher et al., 2013b) 45.7 85.4 -
RAE (Socher et al., 2011) 43.2 82.4 -
MV-RecNN (Socher et al., 2012) 44.4 82.9 -
AdaSent (Zhao et al., 2015) - - 92.4
GRNN (our approach) 47.5 85.5 93.8

Table 2: Performances of the different models. The result of PV is from our own implementation based
on Gensim.

Competitor Models Neural Bag-of-Words
(NBOW) model is a simple and intuitive method
which ignores the word order. Paragraph Vector
(PV) (Le and Mikolov, 2014) learns continuous
distributed vector representations for pieces of
texts, which can be regarded as a long term
memory of sentences as opposed to short memory
in recurrent neural network. Here, we use the
popular open source implementation of PV in
Gensim1. Methods in the third block are CNN
based models. Kim (2014) reports 4 different
CNN models using max-over-time pooling, where
CNN-non-static and CNN-multichannel are more
sophisticated. MaxTDNN sentence model is
based on the architecture of the Time-Delay
Neural Network (TDNN) (Waibel et al., 1989;
Collobert and Weston, 2008). Dynamic convo-
lutional neural network (DCNN) (Kalchbrenner
et al., 2014) uses the dynamic k-max pooling
operator as a non-linear sub-sampling function, in
which the choice of k depends on the length of
given sentence. Methods in the fourth block are
RecNN based models. Recursive Neural Tensor
Network (RecNTN) (Socher et al., 2013b) is an
extension of plain RecNN, which also depends
on a external syntactic structure. Recursive
Autoencoder (RAE) (Socher et al., 2011) learns
the representations of sentences by minimizing
the reconstruction error. Matrix-Vector Recursive
Neural Network (MV-RecNN) (Socher et al.,
2012) is a extension of RecNN by assigning a
vector and a matrix to every node in the parse
tree. AdaSent (Zhao et al., 2015) adopts recursive
neural network using DAG structure.

1https://github.com/piskvorky/gensim/

Moreover, the plain GRNN which does not in-
corporate the gate mechanism cannot outperform
the GRNN model. Theoretically, the plain GRNN
can be regarded as a special case of GRNN, whose
parameters are constrained or truncated. As a re-
sult, GRNN is a more powerful model which out-
performs the plain GRNN. Thus, we mainly focus
on the GRNN model in this paper.

Result Discussion Generally, our model is bet-
ter than the previous recursive neural network
based models (RecNTN, RAE, MV-RecNN and
AdaSent), which indicates our model can better
model the combinations of features with the FBT
and our gating mechanism, even without an exter-
nal syntactic tree.

Although we just use the top layer outputs as
the feature for classification, our model still out-
performs AdaSent.

Compared with the CNN based methods
(MaxTDNN, DCNN and CNNs), our model
achieves the comparable performances with much
fewer parameters. Although CNN based methods
outperform our model on SST-1 and SST-2, the
number of parameters2 of GRNN ranges from 40K
to 160K while the number of parameters is about
400K in CNN.

4 Related Work

Cho et al. (2014) proposed grConv to model sen-
tences for machine translation. Unlike our model,
grConv uses the DAG structure as the topological
structure to model sentences. The number of the

2We only take parameters of network into account, leav-
ing out word embeddings.
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internal nodes is n2/2, where n is the length of the
sentence. Zhao et al. (2015) uses the same struc-
ture to model sentences (called AdaSent), and uti-
lizes the information of internal nodes to model
sentences for text classification. Unlike grConv
and AdaSent, our model uses full binary tree as
the topological structure. The number of the in-
ternal nodes is 2n in our model. Therefore, our
model is more efficient for long sentences. In ad-
dition, we just use the top layer neurons for text
classification.

Moreover, grConv and AdaSent only exploit
one gating mechanism (update gate), which cannot
sufficiently model the complicated feature com-
binations. Unlike them, our model incorporates
two kind of gates and can better model the feature
combinations.

Hu et al. (2014) also proposed a similar archi-
tecture for matching problems, but they employed
the convolutional neural network which might be
coarse in modeling the feature combinations.

5 Conclusion

In this paper, we propose a gated recursive neu-
ral network (GRNN) to recursively summarize the
meaning of sentence. GRNN uses full binary tree
as the recursive topological structure instead of an
external syntactic tree. In addition, we introduce
two kinds of gates to model the complicated com-
binations of features. In future work, we would
like to investigate the other gating mechanisms for
better modeling the feature combinations.
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Abstract

This paper addresses text categorization
problem that training data may derive
from a different time period from the test
data. We present a learning framework
which extends a boosting technique to
learn accurate model for timeline adapta-
tion. The results showed that the method
was comparable to the current state-of-the-
art biased-SVM method, especially the
method is effective when the creation time
period of the test data differs greatly from
the training data.

1 Introduction

Text categorization supports and improves several
tasks such as creating digital libraries, informa-
tion retrieval, and even helping users to interact
with search engines (Mourao et al., 2008). A
growing number of machine learning (ML) tech-
niques have been applied to the text categorization
task (Xue et al., 2008; Gopal and Yang, 2010).
Each document is represented using a vector of
features/terms (Yang and Pedersen, 1997; Hassan
et al., 2007). Then, the documents with category
label are used to train classifiers. Once category
models are trained, each test document is classi-
fied by using these models. A basic assumption
in the categorization task is that the distributions
of terms between training and test documents are
identical. When the assumption does not hold,
the classification accuracy is worse. However, it
is often the case that the term distribution in the
training data is different from that of the test data
when the training data may drive from a different
time period from the test data. Manual annotation
of tagged new data is very expensive and time-
consuming. The methodology for accurate clas-
sification of the new test data by making the max-
imum use of tagged old data is needed in learning
techniques.

In this paper, we present a method for text cat-
egorization that minimizes the impact of tempo-
ral effects. Our approach extends a boosting tech-
nique to learn accurate model for timeline adap-
tation. We used two types of labeled training
data: One is the same creation time period with
the test data. Another is different creation time
period with the test data. We call the former same-
period training, and the latter diff-period train-
ing data. For the same-period training data, the
learner shows the same behavior as the boosting.
In contrast, for diff-period training data, once they
are wrongly predicted by the learned model, these
data would be useless to classify test data. We
decreased the weights of these data by applying
Gaussian function in order to weaken their im-
pacts.

2 Related Work

The analysis of temporal aspects is a practical
problem as well as the process of large-scale
heterogeneous data since the World-Wide Web
(WWW) is widely used by various sorts of peo-
ple. It is widely studied in many text process-
ing tasks. One attempt is concept or topic drift
dealing with temporal effects (Klinkenberg and
Joachims, 2000; Kleinberg, 2002; Lazarescu et
al., 2004; Folino et al., 2007; Song et al., 2014).
Wang et al. developed the continuous time dy-
namic topic model (cDTM) (Wang et al., 2008).
He et al. proposed a method to find bursts, peri-
ods of elevated occurrence of events as a dynamic
phenomenon instead of focusing on arrival rates
(He and Parker, 2010). They used Moving Aver-
age Convergence/Divergence (MACD) histogram
which was used in technical stock market analysis
(Murphy, 1999) to detect bursts.

Another attempt is domain adaptation. The goal
of this attempt is to develop learning algorithms
that can be easily ported from one domain to an-
other (Daumé III, 2007; Sparinnapakorn and Ku-

799



bat, 2007; Glorot et al., 2011; Siao and Guo,
2013). Domain adaptation is particularly inter-
esting in Natural Language Processing (NLP) be-
cause it is often the case that we have a collec-
tion of labeled data in one domain but truly de-
sire a model that can work well for another do-
main. Lots of studies addressed domain adapta-
tion in NLP tasks such as part-of-speech tagging
(Siao and Guo, 2013), named-entity (Daumé III,
2007), and sentiment classification (Glorot et al.,
2011) are presented. One approach to domain
adaptation is to use transfer learning. The transfer
learning is a learning technique that retains and ap-
plies the knowledge learned in one or more tasks
to efficiently develop an effective hypothesis for a
new task. The earliest discussion is done by ML
community in a NIPS-95 workshop1, and more re-
cently, transfer learning techniques have been suc-
cessfully applied in many applications. Blitzer
et al. proposed a method for sentiment classi-
fication using structural correspondence learning
that makes use of the unlabeled data from the tar-
get domain to extract some relevant features that
may reduce the difference between the domains
(Blitzer et al., 2006). Several authors have at-
tempted to learn classifiers across domains us-
ing transfer learning in the text classification task
(Raina et al., 2006; Dai et al., 2007; Sparinna-
pakorn and Kubat, 2007). Raina et al. proposed
a transfer learning algorithm that constructs an in-
formative Bayesian prior for a given text classi-
fication task (Raina et al., 2006). They reported
that a 20 to 40% test error reduction over a com-
monly used prior in the binary text classification
task. Dai et al. presented a method called TrAd-
aBoost which extends boosting-based learning al-
gorithms (Dai et al., 2007). Their experimental
results show that TrAdaBoost allows knowledge
to be effectively transferred from the old data to
the new one. All of these approaches aimed at
utilizing a small amount of newly labeled data to
leverage the old data to construct a high-quality
classification model for the new data. However,
the temporal effects are not explicitly incorporated
into their models.

To our knowledge, there have been only a few
previous work on temporal-based text categoriza-
tion. Mourao et al. investigated the impact of
temporal evolution of document collections on

1http://socrates.acadiau.ca/courses/comp/dsilver/
NIPS95 LTL/transfer.workshop.1995.html.

the document classification (Mourao et al., 2008).
Salles et al. presented an approach to classify doc-
uments in scenarios where the method uses infor-
mation about both the past and the future, and this
information may change over time (Salles et al.,
2010). They address the drawbacks of which in-
stances to select by approximating the Temporal
Weighting Function (TWF) using a mixture of two
Gaussians. However, their method needs tagged
training data across full temporal range of training
documents to construct TWF.

There are three novel aspects in our method.
Firstly, we propose a method for text categoriza-
tion that minimizes the impact of temporal effects
in a learning technique. Secondly, from manual
annotation of data perspective, the method allows
users to annotate only a limited number of newly
training data. Finally, from the perspective of ro-
bustness, the method is automated, and can be
applied easily to a new domain, or different lan-
guages, given sufficient old labeled documents.

3 Learning Timeline Difference

Our learning model, Timeline Adaptation by
Boosting (TABoost) is based on AdaBoost (Fre-
und and Schapire, 1997). AdaBoost aims to boost
the accuracy of a weak learner by adjusting the
weights of training instances and learn a classi-
fier accordingly. The TABoost uses two types of
training data, same-period and diff-period train-
ing data. The assumption is that the quantity of
the same-period data is limited, while diff-period
training data is abundant. The TABoost aims at
utilizing the diff-period training data to make up
the deficit of a small amount of the same-period
to construct a high-quality classification model for
the test data. Similar to the TrAdaBoost presented
by (Dai et al., 2007), TABoost is the same behav-
ior as boosting for the same-period training data.
In contrast, once diff-period training instances are
wrongly predicted, we assume that these instances
do not contribute to the accurate test data classifi-
cation, and the weights of these instances decrease
in order to weaken their impacts. The difference
between TrAdaBoost and TABoost is a weight-
ing manner, i.e. TABoost is a continuous time-
line model, and it weights these instances by ap-
plying Gaussian function in order to weaken their
impacts. TABoost is illustrated in Figure 1.

The training data set Tr is partitioned into two
labeled sets Trdp, and Trsp. Trdp in Figure 1
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Input {
The diff-period data Trdp, the same-

period data Trsp, and the maximum
number of iterations N .}

Output {
hf (x) =

∑N
t=1 αtht(xi).

}
Initialization {

w1 = (w1
1, · · · , w1

n+m).
}
TABoost {
For t = 1,· · ·,N

1. Set Pt = wt/ (
∑n+m

k=1 wt
i).

2. Train a weak learner on the combined
training set Trdp and Trsp with the
distribution Pt, and create weak hy-
pothesis ht: X → {−1, +1}

3. Calculate the error of ht on the com-
bined training set Trdp and Trsp:

εt =
∑n+m

i=1
wt

i ·|ht(xi)−c(xi)|∑n+m

i=1
wt

i

.

4. Chose αt = 1
2 In(1−εt

εt
)

5. Update the new weight vector:

wt+1
i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

wt
iexpF (δ)αt|ht(xi)−c(xi)|,

1 ≤ i ≤ n

wt
iexp−αt|ht(xi)−c(xi)|,

n + 1 ≤ i ≤ n + m

}

Figure 1: Flow of the algorithm

shows the diff-period training data that Trdp =
{(xdp

i , c(xdp
i ))}, where xdp

i ∈ Xdp (i = 1, · · ·, n),
and Xdp refers to the diff-period instance space.
Similarly, Trsp represents the same-period train-
ing data that Trsp = {(xsp

i , c(xsp
i ))}, where xsp

i ∈
Xsp (i = 1, · · ·, m), and Xsp refers to the same-
period instance space. n and m are the number of
documents in Trdp and Trsp, respectively. c(xi)
returns a label for the input instance xi. The com-
bined training set Tr = {(xi,c(xi))} is given by:

xi =

{
xdp

i i = 1, · · · , n
xsp

i i = n + 1, · · · , n + m

In each iteration round shown in Figure 1, if a

diff-period training instance is wrongly predicted,
the instance may be useless to classify test data
correctly. We decrease its training weight to re-
duce the effect. To do this, we assume a standard
lognormal distribution (Crow, 1988), i.e. F (δ)
= 1√

2π
exp(− δ2

2 ). δ in F (δ) represents time dif-
ference between diff-period training and test data.
For instance, if the training data is 1999, and test
data is 2000, δ equals to 1. Similarly, if the train-
ing data is 2000, and test data is 1999, δ is −1.
The greater the time difference value, the smaller
the training weight. We fit the model according
to the temporal range of the data. As shown in
Figure 1, we decrease its training weight wt

i to re-
duce its effect through multiplying its weight by
expF (δ)αt|ht(xi)−c(xi)|.

We used the Support Vector Machines (SVM)
as a learner. We represented each training and test
document as a vector, each dimension of a vec-
tor is a noun word appeared in the document, and
each element of the dimension is a term frequency.
We applied the algorithm shown in Figure 1. Af-
ter several iterations, a learner model is created by
linearly combining weak learners, and a test doc-
ument is classified by using a learner.

4 Experiments

We evaluated our TABoost by using the Mainichi
Japanese newspaper documents.

4.1 Experimental setup

We choose the Mainichi Japanese newspaper
corpus from 1991 to 2012. The corpus con-
sists of 2,883,623 documents organized into 16
categories. We selected 8 categories, “Inter-
national(Int)”, “Economy(Eco)”, “Home”, “Cul-
ture”, “Reading”, “Arts”, “Sports”, and “Local
news(Local)”, each of which has sufficient num-
ber of documents. All documents were tagged
by using a morphological analyzer Chasen (Mat-
sumoto et al., 2000) and selected noun words. The
total number of documents assigned to these cate-
gories are 787,518. For each category within each
year, we divided documents into three folds: 2%
of documents are used as the same-period training
data, 50% of documents are the diff-period train-
ing data, and the remains are used to test our clas-
sification method.2

2When the creation time period of the training data is the
same as the test data, we used only the same-period training
data.
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Table 1: The error rates across categories

Cat TAB s SVM TrAdaB b-SVM TAB
Int 0.409 0.467 0.326 0.253 0.329
Eco 0.368 0.429 0.243 0.228 0.208
Home 0.475 0.649 0.312 0.460 0.172
Culture 0.468 0.848 0.440 0.559 0.196
Reading 0.358 0.520 0.298 0.357 0.337
Arts 0.402 0.684 0.330 0.588 0.331
Sports 0.226 0.212 0.107 0.075 0.123
Local 0.586 0.305 0.400 0.156 0.303
M-Avg 0.411 0.514 0.307 0.334 0.257

We used LIBLINEAR (Fan et al., 2008) as a
basic learner in the experiments. We compared
our method, TABoost with four baselines: (1)
TABoost with the same-period training data only
(TAB s), (2) SVM, (3) TrAdaBoost (Dai et al.,
2007), and (4) biased-SVM (Liu et al., 2003) by
SVM-light (Joachims, 1998). TAB s is the same
behavior as boosting. TrAdaBoost (TrAdaB) is
presented by (Dai et al., 2007). Biased-SVM
(b-SVM) is known as the state-of-the-art SVMs
method, and often used for comparison (Elkan and
Noto, 2008). Similar to SVM, for biased-SVM,
we used the first two folds as a training data, and
classified test documents directly, i.e. we used
closed data. We empirically selected values of
two parameters, “c” (trade-off between training er-
ror and margin) and “j”, i.e. cost (cost-factor, by
which training errors on positive instances) that
optimized result obtained by classification of test
documents. Similar to (Liu et al., 2003), “c” is
searched in steps of 0.02 from 0.01 to 0.61. “j”
is searched in steps of 5 from 1 to 200. As a re-
sult, we set c and j to 0.01 and 10, respectively. To
make comparisons fair, all five methods including
our method are based on linear kernel. Throughout
the experiments, the number of iterations is set to
100. We used error rate as an evaluation measure
(Dai et al., 2007).

4.2 Results

Categorization results for 8 categories (48% of
the test documents, i.e. 378,008 documents) are
shown in Table 1. Each value in Table 1 shows
macro-averaged error rate across 22 years. “M-
Avg” refers to macro-averaged error rate across
categories. The results obtained by biased-SVM
show minimum error rate obtained by varying the
parameters, “c” and “j”.

As can be seen clearly from Table 1, the overall
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Figure 2: Performance against temporal distance

performance obtained by TAB was the best among
the five methods. The macro average error rates
with TrAdaB and TAB were lower to those ob-
tained by b-SVM, although b-SVM in Table 1 was
the result obtained by using the closed data. In
contrast, SVM did not work well. This demon-
strates that once the training data drive from a dif-
ferent time period from the test data, the distri-
butions of terms between training and test docu-
ments are not identical. The results obtained by
TAB s were worse than those obtained by TrAd-
aBoost, b-SVM, and TAB. This shows that (i) the
same-period training data we used is not sufficient
to train a model alone, and (ii) TAB demonstrates
a good transfer ability.

Figure 2 illustrates error rate against the tempo-
ral difference between diff-period training and test
data. Both training and test data are the documents
from 1991 to 2012. For instance, “10” of the x-
axis in Figure 2 indicates that the test documents
are created 10 years later than the training docu-
ments. We can see from Figure 2 that the result
obtained by TAB was the best in all of the tempo-
ral distances. There are no significant differences
among three methods, bSVM, TrAdaB, and TAB
when the test and training data are the same time
period. The performance of these methods includ-
ing SVM drops when the creation time of the test
data differs greatly from the diff-period training
data. However, the performance of TAB was still
better to those obtained by other methods. This
demonstrates that the algorithm with continuous
timeline model works well for categorization.

Figure 3 shows the error rate against the number
of iterations. Each curve shows averaged error rate
under time period between same-period and diff-
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period training data. For example, “diff 10” indi-
cates that the difference time period between same
and diff training data is ± 10 years. We can see
from Figure 3 that all curves except for “diff 20”
drop rapidly and converge around 10 iterations.
“diff 20” converges around 20 iterations. This was
the same behaviour as TrAdaBoost, i.e. TrAd-
aBoost converges around 20 iterations. The fast
convergence is not particularly surprising because
we used a small number of same-period (2%) and
a large number of diff-period (50%) training data.
It is necessary to examine how the ratio between
same-period and diff-period training data affects
overall performance for further quantitative eval-
uation, although a main contribution of TAB is in
situations using by both of a small amount of la-
beled new data which is not sufficient to train a
model alone, and a large amount of old data.

5 Conclusion

We have presented a method for text catego-
rizaiton that minimizes the impact of temporal ef-
fects. The results using Japanese Mainichi News-
paper corpus show that it works well for cate-
gorization, especially when the creation time of
the test data differs greatly from the training data.
There are a number of interesting directions for
future work. The rate of convergence of TAB
(O(

√
Inn/N)) is slow which can also be found in

(Dai et al., 2007). Here, n is the number of train-
ing data, and N is the number of iterations. In
the future, we will try to extend the framework to
address this issue. We used Japanese newspaper
documents in the experiments. For quantitative
evaluation, we need to apply our mehtod to other
data such as ACM-DL and a large, heterogeneous

collection of web content in addition to the experi-
ment to examine the performance agasint the ratio
between same-period and diff-period training data.
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Abstract

Improving the search and browsing ex-
perience in PubMedr is a key compo-
nent in helping users detect information
of interest. In particular, when explor-
ing a novel field, it is important to pro-
vide a comprehensive view for a specific
subject. One solution for providing this
panoramic picture is to find sub-topics
from a set of documents. We propose a
method that finds sub-topics that we refer
to as themes and computes representative
titles based on a set of documents in each
theme. The method combines a thematic
clustering algorithm and the Pool Adja-
cent Violators algorithm to induce signifi-
cant themes. Then, for each theme, a title
is computed using PubMed document ti-
tles and theme-dependent term scores. We
tested our system on five disease sets from
OMIMr and evaluated the results based
on normalized point-wise mutual informa-
tion and MeSHr terms. For both perfor-
mance measures, the proposed approach
outperformed LDA. The quality of theme
titles were also evaluated by comparing
them with manually created titles.

1 Introduction

PubMed1, currently a collection of about 25 mil-
lion bibliographic records, has grown exponen-
tially in size. With the abundance and diversity
of information in PubMed many queries retrieve
thousands of documents making it difficult for
users to browse the results and identify the infor-
mation most relevant to their topic of interest. The
query ‘cystic fibrosis’, for example, retrieves pa-
pers that discuss different aspects of the disease,
including its clinical features, treatment options,

1http://pubmed.gov

diagnosis, etc. A possible solution to this problem
is to automatically group the retrieved documents
into meaningful thematic clusters or themes (these
terms are used interchangeably). However, clus-
tering alone does not solve the problem entirely,
as a significant amount of human post-processing
is required to infer the topic of the cluster.

There exists a vast collection of probabilistic
clustering methods. One common problem among
most of them is that different results are obtained
depending on the cluster initialization, suggesting
that some clusters are unstable or weak. How-
ever, there is no obvious way to effectively and
efficiently evaluate the quality of clusters. In this
paper, we combine EM-based thematic cluster-
ing (Kim and Wilbur, 2012) with the Pool Adja-
cent Violators (PAV) algorithm (Ayer et al., 1955;
Wilbur et al., 2005). PAV is an isotonic regression
algorithm which we use as a method for convert-
ing a score into a probability. Here, we show how
PAV can be applied to evaluate the quality of clus-
ters.

Another issue that motivated this research is that
most existing algorithms produce clusters that are
not self-descriptive. Presenting meaningful titles
can significantly improve the user perception of
clustering results. To that end, we utilize PubMed
document titles and cluster-related term scores to
automatically obtain a title for each theme. The
method results in thematic clusters of documents
with cluster titles.

Studies similar to our approach are ASI (Adap-
tive Subspace Iteration) (Li et al., 2004) and
SKWIC (Simultaneous Keyword Identification
and Clustering of text documents) (Frigui and
Nasraoui, 2004). Both perform document clus-
tering and cluster-dependent keyword identifica-
tion simultaneously. SKWIC can only produce
hard clustering, while ASI is computationally very
expensive as it heavily depends on matrix opera-
tions. A study by Hammouda et al. (2005) sug-
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gests automatic keyphrase extraction from a clus-
ter of documents as a surrogate to providing a clus-
ter title, but they treat document clustering and
cluster-dependent keyword extraction as separate
problems.

Topic modeling (Hofmann, 1999; Blei et al.,
2003; Blei and Lafferty, 2005) is the most pop-
ular and an alternative approach that has a simi-
lar underlying goal of discovering hidden thematic
structure of a document collection and organizing
the collection according to the discovered topics.
Topic models are based upon the idea that docu-
ments are mixtures of topics, where a topic is a
probability distribution over words (Steyvers and
Griffiths, 2007). However, topic modeling is not a
document clustering scheme in nature. Although a
list of keywords that represent a topic is available,
the title of the cluster may not be evident.

2 Methods

We here describe the EM-based clustering algo-
rithm, and show how PAV is incorporated with
it to yield the PAV-EM thematic clustering tech-
nique. We further present a cluster summarization
method to induce theme titles.

2.1 Theme definition
Let D be a document set and let T be the set of
terms in D. Let R denote the relation between el-
ements of T andD. tRdmeans t ∈ d. We define a
theme as a subject that is described by non-empty
sets U ⊆ T and V ⊆ D, where all the elements
of U have a high probability of occurring in all the
element of V . An EM framework is used to ex-
tract subject terms for a theme (Wilbur, 2002). In
addition to the observed dataR, a theme is defined
by the latent indicator variables zd, {zd}d∈D. The
parameters are

Θ = U(‖U‖ = nU ), {pt, qt}t∈U , {rt}t∈T , (1)

where nU is the size of the set U . For any t ∈ U ,
pt is the probability that for any d ∈ V , tRd. qt
is the probability that for any d ∈ D − V , tRd.
For any t ∈ T , rt is the probability that for any
d ∈ D, tRd. Assuming all relations tRd are in-
dependent of each other, the goal is to obtain the
highest probabilities

p(R, {zd}|Θ) = p(R|{zd},Θ)p({zd}|Θ). (2)

E-step (expectation step) evaluates the expectation
of the logarithm of Eqn. 2. M-step (maximization

Algorithm 1 PAV-EM algorithm
Let D be the dataset, where d ∈ D.
Give a value for the parameter q.

Set X = ∅.
for i← 1, n do

Create q random clusters.
Run the theme clustering algorithm.
For each cluster C and d with pzCd ,
X ← X ∪ {< pzCd , 1, 1 >}2 if d ∈ C,
X ← X ∪ {< pzCd , 1, 0 >} if d /∈ C.

Obtain the PAV function, PAV (pzCd ), over X .

Set S = ∅, where S is the output cluster set.
repeat

Create q random clusters for {d|d /∈ ∪S}.
Run the theme clustering algorithm.
Select any cluster C, where
C ′ = {d|d ∈ C,PAV (pzCd ) > 0.9}
satisfies |C ′| > 10.
S ← S ∪ {C ′}.

until no more changes in S.

step) maximizes this expectation over the parame-
ters Θ. For each term, t, we define a quantity αt
which is the difference between the contribution
coming from t depending on whether ut = 1 or
ut = 0. The maximization is completed by choos-
ing the nU largest αt’s and setting ut = 1 for each
of them and ut = 0 for all others. Details of this
theme extraction scheme can be found in Wilbur
(2002).

2.2 PAV-EM thematic clustering

In thematic clustering, a document is assigned to
a theme that has the highest probability to the
document (Kim and Wilbur, 2012). Although
this approach shows a reasonable performance for
theme-based document clustering, the dynamic
nature of random initialization and multiple sub-
jects described in a document may create many
weak themes. Moreover, there is no clear guide-
line to distinguish strong and weak themes. Thus,
we here propose a method that extracts strong
themes more effectively. In the EM-based theme
extraction scheme, the log odds score pzCd indi-
cates the extent to which a document d is cou-
pled with a specific theme C. If a cluster in-

2The second and the third arguments in the bracket are the
weight and the probability estimate of the data, respectively.
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cludes a reasonable number of documents that
have high pzCd s, it indicates that the cluster rep-
resents a strong theme. Therefore, we can obtain
strong themes by collecting these clusters.

Let the probability p(score) be a monoton-
ically non-decreasing function of score. The
PAV algorithm (Ayer et al., 1955; Wilbur et al.,
2005) is a regression method to derive from the
data that monotonically non-decreasing estimate
of p(score) which assigns maximal likelihood to
the data. For our approach, score = pzCd .

Algorithm 1 shows the theme clustering process
using the PAV algorithm. For the given dateset D
and the initial number of clusters q, theme cluster-
ing is performed n times, and an isotonic regres-
sion function is learned by applying the PAV algo-
rithm. Note that q is an initial guess for the number
of clusters and it is not guaranteed to remain the
same in the output set. For our experiments, we
set q = 50 and n = 100. After the PAV algorithm
is applied, theme clustering is performed. At each
iteration, we select any cluster in which there are
more than 10 documents with PAV scores higher
than 0.9. Unselected documents are re-used for
clustering in the next iteration. This procedure is
repeated until there are no more changes in the se-
lected cluster set S.

2.3 Theme summarization
After obtaining themes (document clusters and
their subject terms), we summarize each theme by
choosing a text segment from PubMed document
titles. A title should cover as many subject terms
as possible, but also it should be well-formed, i.e.
be descriptive enough and humanly understand-
able. To achieve this goal, we first extract all pos-
sible candidates from document titles as follows:

(i) Extract all possible candidates as n-grams,
where n = 1, ..., 20. Noun phrases are
treated as units and must be totally inside or
outside a candidate.

(ii) Check POS tags for starting and ending
words in a candidate. Starting with a con-
junction, verb, preposition and symbol is not
allowed. Ending with a conjunction, verb,
preposition, symbol, determiner, adjective or
certain pronouns is not allowed.

(iii) Discard any candidates that start or end with
‘-’ or ‘.’. The candidates including certain
characters such as ‘/’, ‘;’, ‘:’ are also re-
moved.

(iv) Check grammatical dependency relations.
We discard candidates for which the head
word of a preposition does not appear in the
same candidate as the proposition. Also, we
validate the case, ‘between A and B’, so that
A and B are not separated.

Next, for each candidate, a score is calculated
by

score(candi) = log
∏
t∈U (tftαt)∏
t/∈U tft

, (3)

where tft is the term frequency of the term t.
However, an ideal title should have enough words
to be descriptive, hence we subtract (len(candi)−
5)2 from score(candi), where len(candi) is the
number of words in candi, and choose the top
score as a title.

3 Experimental Results

We applied our method to the five disease
sets, “cystic fibrosis”, “deafness”, “DiGeorge
syndrome”, “autism” and “hypertrophic car-
diomyopathy” from OMIM3. These sets con-
sist of 3000, 3000, 956, 2917 and 1997
PubMed documents, respectively, and are avail-
able at http://www.ncbi.nlm.nih.gov/
CBBresearch/Wilbur/IRET/PAVEM.

For evaluating PAV-EM and comparing with the
topic modeling method, latent Dirichlet allocation
(LDA) (Blei et al., 2003), both approaches were
performed 10 times for each disease set and scores
were averaged over all runs. Mallet4 was used to
run LDA. The same tokenization was applied to
LDA and PAV-EM. The number of topics given for
LDA was 50 and the recommended optimization
parameter was used for producing LDA topics.

Table 1 presents average runtimes5 for LDA
and PAV-EM. LDA and PAV-EM spent 15.2 and
13.3 seconds on average for processing the small-
est set, “DiGeorge syndrome”. However, in larger
sets, e.g. “autism”, it took 46.9 and 31.3 seconds
for LDA and PAV-EM, respectively. We also ran
another implementation6 of LDA, which was 30
times slower than Mallet. While PAV-EM and

3http://www.ncbi.nlm.nih.gov/omim
4http://mallet.cs.umass.edu
5Both methods were tested on a single linux server. The

processing times reported do not include the preprocessing
stages done by Mallet and our implementation.

6http://www.cs.princeton.edu/˜blei/
lda-c
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Dataset LDA PAV-EM
Set 1 25.7 18.4
Set 2 36.5 24.7
Set 3 15.2 13.3
Set 4 46.9 31.3
Set 5 30.3 19.2

Table 1: Average runtimes for LDA and PAV-EM
in seconds. Sets 1, 2, 3, 4 and 5 are “cystic fibro-
sis”, “deafness”, “DiGeorge syndrome”, “autism”
and “hypertrophic cardiomyopathy”, respectively.

Method
Topic terms

Top 5 Top 10
LDA 2.8906 10.9760

PAV-EM 4.0322 14.6213

Table 2: NMPI scores for LDA and PAV-EM.

LDA can be implemented in parallel computa-
tion7, this indicates that PAV-EM may be more ef-
ficient to obtain themes for a larger set of PubMed
documents.

The PAV-EM algorithm automatically learns
themes from unlabeled PubMed documents, hence
the performance measures that are used in super-
vised learning cannot be applied to our setup. Re-
cent studies have shown more interest in topic co-
herence measures (Chang et al., 2009; Newman et
al., 2010; Mimno et al., 2011), which capture the
semantic interpretability of topics based on subject
terms. Table 2 shows the topic coherence scores
measured by normalized point-wise mutual infor-
mation (NPMI). For both top 5 and top 10 sub-
ject terms, PAV-EM achieves better NMPI scores
than LDA. NPMI is known to be strongly corre-
lated with human ratings (Aletras and Stevenson,
2013; Röder et al., 2015) and is defined by

NPMI =
N∑
i=2

i−1∑
j=1

log p(ti,tj)+ε
p(ti)p(tj)

− log (p(ti, tj) + ε)
, (4)

where p(ti, tj) is the fraction of documents con-
taining both terms ti and tj , and N indicates the
number of top subject terms. ε = 1

D is the smooth-
ing factor, where D is the size of the dataset.

MeSH (Medical Subject Headings) is a con-
trolled vocabulary for indexing and searching
biomedical literature (Lowe and Barnett, 1994).

7A parallel implementation of LDA appears in Wang et
al. (2009)

MeSH Method Prec. Recall F1

Top 1
LDA 0.4529 0.3827 0.4125

PAV-EM 0.3842 0.5303 0.4427

Top 3
LDA 0.3935 0.3931 0.3925

PAV-EM 0.3388 0.5239 0.4086

Table 3: Classification performance based on top
significant MeSH terms appearing in themes.

MeSH terms assigned to an article are often used
to indicate the topics of the article, thus these
terms can be used to identify how well documents
are grouped by topics. In each cluster, p-values
of MeSH terms are calculated using the hypergeo-
metric distribution (Kim and Wilbur, 2001), and
the top N significant MeSH terms are used to
calculate precision, recall and F1. Table 3 com-
pares PAV-EM with LDA8 for the MeSH term-
based performance. In the table, PAV-EM pro-
vides higher recall and F1 for top 1 and top 3
MeSH terms. Higher recall has an advantage in
our task because the theme summarization pro-
cess uses a consensus among PubMed documents
to reach a theme title.

The next experiment was performed to compare
machine generated titles with manually labeled ti-
tles. Although human judgements are subjective,
it is not uncommon to collect human judgements
for evaluating topic modeling methods (Mei et al.,
2007; Chang et al., 2009; Xie and Xing, 2013). To
validate the performance of the theme summariza-
tion approach, we first chose 500 documents from
each disease set, and produced themes and titles.
For each topic, five strongest themes were chosen,
and they were shown to three human annotators
with extracted subject terms. Table 4 shows an
example of the proposed approach and the man-
ual annotation for the “hypertrophic cardiomyopa-
thy” set. Among 25 themes, our approach cor-
rectly identified 21 theme titles. We assumed that
a machine-generated title was correct if it included
any of manually annotated titles.

4 Conclusion

This study was inspired by an EM-based thematic
clustering approach. In this probabilistic frame-
work, theme terms are iteratively selected and
documents are assigned to a most likely theme.
The number of themes is dynamically adjusted

8For LDA, each document was assigned to the highest
scoring topic.
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Proposed approach Annotator 1 Annotator 2 Annotator 3
cardiac myosin binding pro-
tein c

myosin binding protein c cardiac myosin binding pro-
tein c

cardiac myosin binding pro-
tein c

ptpn11 mutations in leopard
syndrome

ptpn11 mutations in leopard
syndrome

ptpn11 mutations in leopard
syndrome

ptpn11 mutations in leopard
syndrome

cytochrome c oxidase cytochrome c oxidase mitochondrial cytochrome-
c-oxidase deficiency

mitochondrial cytochrome
c oxidase deficiency

friedreich ataxia and dia-
betes mellitus

friedreich ataxia friedreich ataxia friedreich ataxia

hepatitis c virus infection hepatitis c virus role of hepatitis c virus in
cardiomyopathies

hepatitis c virus infection

Table 4: Comparison of the titles generated from the proposed approach and manual annotation for the
“hypertrophic cardiomyopathy” set.

by probabilistic evidence from documents. The
PAV algorithm is utilized to measure the quality of
themes. After themes are identified, subject term
weights and PubMed document titles are used to
form humanly understandable titles. The experi-
mental results show that our approach provides a
useful overview of a set of documents. In addition,
the method may allow for a new way of brows-
ing by semantically clustered documents as well as
searching with context-based query suggestions.
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Abstract

Wikipedia is the largest collection of ency-
clopedic data ever written in the history of
humanity. Thanks to its coverage and its
availability in machine-readable format, it
has become a primary resource for large-
scale research in historical and cultural
studies. In this work, we focus on the
subset of pages describing persons, and
we investigate the task of recognizing bi-
ographical sections from them: given a
person’s page, we identify the list of sec-
tions where information about her/his life
is present. We model this as a sequence
classification problem, and propose a su-
pervised setting, in which the training data
are acquired automatically. Besides, we
show that six simple features extracted
only from the section titles are very infor-
mative and yield good results well above a
strong baseline.

1 Introduction

In the last years, several projects have started
to address the mechanisms behind cultural de-
velopment, borrowing techniques and algorithms
from computer science and natural language pro-
cessing to serve historical investigation. Efforts
such as BiographyNet1, Pantheon2 or the Aus-
trian Prosopographical Information System3 prove
an increasing interest in automatically extracting
biographical descriptions from large amounts of
data and combining them in a more general pic-
ture, taking advantage of the availability of such
descriptions on the web. Wikipedia has been

1http://www.biographynet.nl
2http://pantheon.media.mit.edu/

treemap/country_exports/IQ/all/-4000/
2010/H15/pantheon

3http://www.oeaw.ac.at/acdh/de/node/
188

the main source of information for research in
this direction despite its many biases, for in-
stance its well-known English, Western and gen-
der bias (Wikipedia Contributors, 2014). In fact,
Wikipedia coverage both in terms of pages and in
terms of languages, as well as the structured in-
formation that can be leveraged through DBpedia,
has made it the primary resource for large-scale
analyses on biographies. However, the lack of a
consistent template for describing persons’ lives
led to the creation of a plethora of page types,
where biographical information is displayed in di-
verse ways.

Based on a random sample of 100 persons’
pages, we noticed that only 20% of them includes
a section called Biography or Life, typically con-
taining a set of subsections describing the main
periods in a person’s life from birth to death (see
for instance https://en.wikipedia.org/
wiki/Leonard_Bernstein). The other
pages in our sample do not follow a pre-defined
pattern and present the person’s biography in
one or several sections at the same level of the
other ones (see for instance https://en.
wikipedia.org/wiki/Judy_Holliday,
with the Filmography and Discography sections
at the same level of Early Life and Career).
Given this high variability, it is very difficult to
extract all and only those sections that describe a
biography, and that build all together in sequence
the description of a person’s life. This depends
also on the different types of non-biographical
sections available, which in the case of promi-
nent persons typically include main themes,
reception, style, influences, legacy, work titles,
etc. (see for instance Will to power, Eternal
return, Perspectivism, Critique on mass culture
in https://en.wikipedia.org/wiki/
Friedrich_Nietzsche).

In this work, we present a simple methodology
that, given a person’s page in Wikipedia, recog-
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nizes all sections that deal with his/her life even if
no Biography section is present. The problem is
modeled as a classification task using Conditional
Random Fields, which are particularly suitable for
our study because the biographical sections tend
to follow a chronological order and present typical
sequential patterns (for instance, the section Early
Life is often followed by Early Career). While
a simple token-based baseline is very difficult to
beat when the task is performed at section level
(i.e. deciding whether a section is biographical or
not), our method performs best when the evalu-
ation is performed at page level, recognizing all
sections that describe a person’s life. This is cru-
cial if the task under investigation is meant as a
preliminary step towards the automatic extraction
of all events that compose a person’s biography.

2 Related Work

To our knowledge, this is the first attempt to ex-
tract biographical sections from Wikipedia. Other
past works focused on the recognition of biograph-
ical sentences (Biadsy et al., 2008; Zhou et al.,
2004; Biryukov et al., 2005). However the two
tasks have different goals: in our case, we aim
at extracting all biographical sections, so that all
events of a person’s life from birth to death are
present. The other approach, instead, is used to
generate biography summaries, which was a task
of the DUC2004 evaluation exercise4. Besides,
while approaches for sentence selection look for
textual features such as typical unigrams or bi-
grams that characterize biographical descriptions
(Filatova and Prager, 2005), we adopt a much sim-
pler approach by considering only section titles.

Other works focused on the analysis of typical
events in selected articles from Wikipedia biogra-
phies by looking for a particular list of predefined
events (Bamman and Smith, 2014). Our approach
may complement such works by introducing a pre-
processing step that extracts all and only the sec-
tions describing the biographies, upon which event
extraction experiments can be performed. This
would increase both the precision and the recall
of the extracted information.

3 Experimental Setup

In this section we detail the data used for our ex-
periments and the classification task.

4http://duc.nist.gov/duc2004/

3.1 Data set

Since our goal is to distinguish between biograph-
ical and non biographical sections, we focus only
on Wikipedia pages describing persons. We de-
rive our development, training and test data from
the Pantheon data set (Yu et al., 2015), freely
available for download.5 The data set includes a
list of 11,340 notable individuals with the link to
their Wikipedia page in multiple languages, plus
a number of additional information such as date
and place of birth, category and language editions,
which we do not consider for our study. Only the
persons whose Wikipedia page is translated in at
least 25 languages are included in Pantheon, as a
proxy of prominent world personalities.

For each person in the list, we download the
corresponding Wikipedia page in English and pre-
process it using TheWikiMachine library6. Over-
all, we collect 11,075 pages, while 265 pages
could not be retrieved because of problems with
the links (mainly redirection links). We randomly
select 100 pages as development set, 500 pages
for test and the remaining 10,475 for building the
training set.

For each page in the development and test set,
we ask an annotator to assign a yes/no label to
each section, to mark if it describes part of the
person’s life or not. We involve also a second
annotator to label manually the development set
(100 pages containing 834 sections). We compute
Cohen’s Kappa, which corresponds to 0.88. As
a rule of thumb, this is considered an almost per-
fect agreement, which shows the clear-cut differ-
ence between biographical and non-biographical
sections. The annotators use the Wikipedia origi-
nal page to decide whether a section is biograph-
ical or not, therefore they can see both title and
content of sections.

For the training set, we devise a novel method-
ology to acquire it completely automatically. We
first extract from our collection of 10,475 pages
the subset of pages containing a section called Life
or Biography, which amount to 2,547. We con-
sider such pages as a gold standard, since the pres-
ence of Life or Biography shows that their editors
paid attention to the structure of the page, distin-
guishing between what belonged to the person’s
biography and what not. Therefore, all subsec-

5http://thedata.harvard.edu/dvn/dv/
pantheon

6https://bitbucket.org/fbk/twm-lib
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Biographical
information

Non biographical
information

}
}

Early life and education
Early scienti�c work
Ferme générale and marriage
Oxygen theory of combustion
Gunpowder Commission
Pioneer of stoichiometry
Chemical nomenclature
Elementary Treatise of Chemistry
Physiological work
Final days and execution
Legacy
Selected writings
Notes
Further reading
External links

B-SEC
I-SEC
I-SEC
I-SEC
I-SEC
I-SEC
I-SEC
I-SEC
I-SEC
I-SEC
O
O
O
O
O

Training set

Figure 1: Extraction of training instances,
from the Wikipedia page of Antoine Lavoisier
(https://en.wikipedia.org/wiki/Antoine_
Lavoisier). Sections are annotated in IOB2
format.

tions of Life or Biography are included as positive
examples in the training set, because we assume
that they all have biographical content. Instead,
the remaining sections in the same pages repre-
sent our negative examples (see Figure 1). For the
negative cases, we do not consider subsections be-
cause this level of detail is not needed for the clas-
sification, i.e. non-biographical sections contain
only non-biographical subsections, and the clas-
sification of the first level is enough to propagate
the corresponding label to the lower levels. Over-
all, the training set includes 2,547 sequences of
sections (22,499 sections in total: 6,861 positive,
15,638 negative).

3.2 Classification experiment

We cast the problem as a supervised learning clas-
sification task, with the goal to label sequences of
Wikipedia sections as describing a person’s biog-
raphy or not. As discussed in the introduction,
we use Conditional Random Fields, since they are
particularly suitable for sequence labelling (Laf-
ferty et al., 2001). We use the implementation
provided by CRFsuite7 (Okazaki, 2007) for both
training and classification tasks. The algorithm pa-
rameters are tuned on the development set.

In order to compare our approach with a non-
sequential one, we perform the classification task
also using Support Vector Machines (Vapnik,
1998). We use YAMCHA8, a tool developed for

7http://www.chokkan.org/software/
crfsuite/

8http://chasen.org/˜taku/software/
yamcha/

chunking tasks, in which SVMs are easily com-
bined with different context window sizes and dy-
namic features (Kudo and Matsumoto, 2001).

Since this work is only a preliminary step
towards the automatic identification and extrac-
tion of biographical information from Wikipedia,
we first experiment with the simplest approach.
Therefore, we consider a small set of shallow fea-
tures extracted only from section titles, and we ig-
nore the content of the sections. Our six features
are: the whole title, the tokens (lowercased), the
bigrams, the first token of the section title, the first
bigram, the position of the section with respect to
the other sections in the same page (first, last, in-
side). We also use a sliding window of size 1 (both
with CRF and SVM), so that the features extracted
from the previous and the next sections are also
considered to classify the current one. We exper-
imented with window sizes > 1 on the develop-
ment set, but they led to worse results.

Other features we implemented include the last
word of the section, and a binary feature indicat-
ing whether the section title contains a year which
is included between the date of birth and date of
death of the person of interest. However, both
pieces of information led to a performance drop on
the development set, so we did not include them in
the final feature set.

3.3 Baseline

To assess the performance of our system, we com-
pare it with a baseline approach considering only
the most frequent words in section titles. As
shown in the evaluation (Section 4), this is in-
deed a very strong baseline. We identify the four
most frequent tokens included in section titles, i.e.
“Biography”, “Life”, “Death” and “Career”, and
we extract all sections that contain at least one
of them (ignoring upper/lowercase). Finally, we
consider as a positive example the smallest se-
quence of consecutive sections containing all of
them. For instance, giving the sequence “Early
life”, “Career”, “Presidency”, “Death”, “Legacy”,
“Awards”, and “References”, the first four sections
are selected by the baseline as biographical sec-
tions: even if the “Presidency” word is not in-
cluded in the tokens set, it is added as a conse-
quence of its inclusion between “Early life” and
“Death”, both containing a token from the most
frequent set.
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4 Evaluation

We evaluate our system based on two different
metrics, accounting for both exact and partial
matches.

• In the Exact setting, a true positive is scored
when all and only those sections with bio-
graphical information in a Wikipedia page
are extracted. This measure is useful to un-
derstand how often it is possible to extract
the complete and exact biographical text con-
cerning a person.

• The Intersection measure, instead, assigns a
score between 0 and 1 for every predicted
sequence of sections based on how much it
overlaps with the gold standard sequence (Jo-
hansson and Moschitti, 2013).

Evaluation results are reported in Table 1. The
CRF-based approach outperforms the baseline in
both configurations, with the highest improve-
ment in the exact setting (+0.111 F1). Compared
with the classification performance obtained with
SVMs, CRFs yield better results only in the exact
setting, while the intersection-based performance
does not show substantial differences. In general,
CRFs achieves a better precision but a lower re-
call than SVMs. If we look at the average length
(in sections) of the false positive sequences, it is
3.72 for SVMs and 2.71 for CRFs. This differ-
ence confirms the behaviour of the SVM-based ap-
proach, which tends to overestimate the amount of
biographical sections that should be tagged in se-
quence.

The results in Table 1 show also that a sim-
ple baseline relying on the four most frequent to-
kens in section titles achieves surprisingly good re-
sults, especially with the intersection-based met-
rics. This means that this basic approach tends
to recognize correctly at least some of the sec-
tions describing a person’s biography, because
they present some recurrent patterns in their ti-
tles. In general, we observe that section titles alone
are good indicators of their content, also with-
out the need of more complex features. Although
Wikipedia editors are free to name the sections and
decide how to arrange them, there are some pat-
terns that can be easily recognized automatically,
especially by means of CRF.

P R F1
CRFsuite
Exact 0.694 0.662 0.677
Intersection 0.933 0.863 0.897
Yamcha SVM
Exact 0.605 0.630 0.617
Intersection 0.857 0.942 0.898
Baseline
Exact 0.584 0.548 0.566
Intersection 0.882 0.809 0.844

Table 1: Classification results using the Exact and
Intersection settings

5 Discussion

We manually inspected the output of the classi-
fier to identify possible issues. Apart from sin-
gle classification mistakes, mainly due to unusual
section titles that do not appear in the training set
(such as “Anathematization” in Pope Honorius I
page)9, we found that some wrong classifications
depended on specific types of persons in our data
set. In particular, the classifier tends to assign a
positive label to sections in the pages of mytho-
logical characters, even if they cannot have a bi-
ography because they did not exist. For instance,
in the page of Apollo10 there are sections entitled
“Birth”, “Youth”, “Consorts and Children”, which
led the classifier to label them as biographical. Al-
though mythological characters were included in
the original Pantheon data set, we believe that they
should be discarded, for instance by filtering them
out a priori based on their Wikipedia categories.

Other false positives were found in pages of
historical characters whose life was uncertain and
was transmitted by others. For instance, the page
of the geographer Pytheas11 reports what the Ro-
man author Pliny told about him, as well as what
was said by other sources. These sections are very
similar to those found in biographies, and are la-
belled as such.

We also performed additional experiments in
order to investigate the impact of the size of the
training data on the classification task. In particu-
lar, we extended our training data by creating new
training sets based on 25,000, 50,000, 75,000 and
100,000 Wikipedia pages. These were obtained by

9https://en.wikipedia.org/wiki/Pope_
Honorius_I

10https://en.wikipedia.org/wiki/Apollo
11https://en.wikipedia.org/wiki/Pytheas
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ranking all pages with the PERSONDATA metadata
according to the number of languages in which
they are available, and then looking for the Biog-
raphy and Life sections in the n top-ranked ones.
Our evaluation shows that increasing the training
size does not lead to a better performance, with an
improvement of 0.01 with 100,000 pages over the
results in Table 1 at the cost of a significant drop
in processing speed.

6 Conclusions and Future Work

In this work we presented a simple yet effective
approach to extract sequences of biographical sec-
tions from Wikipedia persons’ pages. We model
this task as a sequence classification problem us-
ing CRF and show that the section title alone con-
veys enough information to achieve a good classi-
fication result both in a supervised setting and with
a rule-based baseline. Our contribution is three-
fold: i) we introduce the novel task of annotat-
ing the sequence of all sections describing a per-
son’s biography. This can be used as a preliminary
step towards the extraction of all events character-
izing a person’s life; ii) we shed light on the reg-
ularities in Wikipedia persons’ pages. Although
Wikipedia is seen as a resource lacking consis-
tency, with a flawed structure, our results show
that at least persons’ pages often present recurring
patterns that are consistent across different biogra-
phies. The fact that only the most prominent fig-
ures have been included in the Pantheon data set
is only a partial explanation of the good quality of
such pages, because the English pages in our data
set are often a reduced version of more extensive
and edited pages in other languages. Finally, iii)
we present an original approach to automatically
acquire training data, using the pages with a Biog-
raphy or Life section as gold data.

In the future, we plan to compare our approach
based on section titles with more sophisticated ap-
proaches considering also the sections’ content, to
assess whether the latter improves over our sim-
ple methodology. Besides, we will build upon the
outcome of this study by extracting the event se-
quence in a person’s life starting from the com-
plete biographies retrieved from Wikipedia.

The ongoing work is available as an open source
project on GitHub12 and is released under the
GPLv3 license. In the project wiki one can find

12https://github.com/dkmfbk/biographies

the dataset, the gold annotation and all the mate-
rial needed to replicate the experiments.
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Abstract
This paper presents a new algorithm to
automatically solve algebra word prob-
lems. Our algorithm solves a word prob-
lem via analyzing a hypothesis space con-
taining all possible equation systems gen-
erated by assigning the numbers in the
word problem into a set of equation sys-
tem templates extracted from the training
data. To obtain a robust decision surface,
we train a log-linear model to make the
margin between the correct assignments
and the false ones as large as possible.
This results in a quadratic programming
(QP) problem which can be efficiently
solved. Experimental results show that our
algorithm achieves 79.7% accuracy, about
10% higher than the state-of-the-art base-
line (Kushman et al., 2014).

1 Introduction

An algebra word problem describes a mathemat-
ical problem which can be typically modeled by
an equation system, as demonstrated in Figure 1.
Seeking to automatically solve word problems is
a classical AI problem (Bobrow, 1964). The word
problem solver is traditionally created by the rule-
based approach (Lev et al., 2004; Mukherjee and
Garain, 2008; Matsuzaki et al., 2013). Recently,
using machine learning techniques to construct the
solver has become a new trend (Kushman et al.,
2014; Hosseini et al., 2014; Amnueypornsakul
and Bhat, 2014; Roy et al., 2015). This is based
on the fact that word problems derived from the
same mathematical problem share some common
semantic and syntactic features due to the same
underlying logic. Our method follows this trend.1

To solve a word problem, our algorithm ana-
lyzes all the possible ways to assign the numbers

1Our code is available at http://pan.baidu.com/
s/1dD336Sx

 

 

 Our method Kushman’s method 

Word 
problem 

An amusement park sells 2 kinds of tickets. Tickets for 
children cost $ 1.50. Adult tickets cost $ 4. On a certain day, 
278 people entered the park. On that same day the admission 
fees collected totaled $ 792. How many children were admitted 
on that day? How many adults were admitted? 

Template 
1 2 1

2 1 3 2 4

0

0

u u n

n u n u n
 

1 1

1 2 1

2 2

2 1 3 2 4

0

0

u u n

n u n u n
 

Assignment 

1 2 3 4

2,1.5, 4, 278, 792

, , ,n n n n
 

1 1 2 2

1 2 3 4 1 2 1 2

2,1.5, 4, 278, 792,

, , , , , , ,

nouns

n n n n u u u u

 

Possible 
Assignment 5 4 3 2 120 417 5 4 3 2 10022520  

 

Figure 1: Comparison between our algorithm and
(Kushman et al., 2014). Nouns are boldfaced.

in the word problem to a set of equation system
templates. Kushman et al. (2014) also consider
filling the equation system templates to generate
the candidate equations. But Kushman’s template
contains number slots (e.g. n1, n2, n3, n4 in Fig-
ure 1) and unknown slots (e.g. u1

1, u2
1, u1

2, u2
2

in Figure 1). They separately consider assigning
nouns into the unknown slots and numbers into
the number slots, as demonstrated in Figure 1. As
filling the unknown slots is closely related to the
number slots assignment, we only consider assign-
ing the number slots, and design effective features
to describe the relationship between numbers and
unknowns. This scheme significantly reduces the
hypothesis space, as illustrated in Figure 1, which
benefits the learning and inference processes.

We use a log-linear model to describe the tem-
plate selection and number assignment. To learn
the model parameters of such problem, maxi-
mizing the log-likelihood objective is generally
adopted (Kwiatkowski et al., 2010; Kushman et
al., 2014). The key difficulty of this method is
that calculating the gradient of the objective func-
tion needs to sum over exponentially many sam-
ples. Thus, it is essential to approximate the gra-
dient. For instance, Kushman et al. (2014) use
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beam search to approximately calculate the gra-
dient. This method can not exploit all the training
samples. Thus the resulting model may be sub-
optimal. Motivated by the work (Taskar et al.,
2005; Li, 2014), we adopt the max-margin objec-
tive. This results in a QP problem and opens the
way toward an efficient learning algorithm (Koller
and Friedman, 2009).

We evaluate our algorithm on the benchmark
dataset provided by (Kushman et al., 2014). The
experimental results show that our algorithm sig-
nificantly outperforms the state-of-the-art base-
line (Kushman et al., 2014).

2 Problem Formulation

Our word problem solver is constructed by train-
ing a log-linear model to find the correct mapping
from a word problem to an equation.
Notations: Let X denote the set of training word
problems, and T denote the set of equation sys-
tem templates abstracted from X as (Kushman et
al., 2014). xi is the i-th word problem in X .
Assume Tj is the j-th equation system template

in T , and NTj =
{
n1
Tj
, n2

Tj
, · · · , nmTj

}
is the

set of number slots of Tj , where m represents
the size of NTj . Denote the numbers in xi by
Nxi =

{
n1
xi
, n2

xi
, · · · , nlxi

}
, where l represents

the size of Nxi . Assuming l ≥ m, we further de-
fine πijk a sequence of m numbers chosen from
Nxi without repetition. Given πijk, we can map
Tj to an equation system eijk by filling the num-
ber slots NTj of Tj sequently with the numbers in
πijk. Solving eijk, we can obtain the correspond-
ing solution sijk. To simplify the notation, we de-
fine yijk = (Tj , πijk, eijk, sijk) the k-th derivation
give xi and Tj , and let Yi denote the set of all pos-
sible yijk given xi and T . Therefore, to correctly
solve xi is to find the correct yijk ∈ Yi.
Probabilistic Model: As (Kushman et al., 2014),
we use the log-linear model to define the probabil-
ity of yijk ∈ Yi given xi:

p(yijk|xi; θ) =
eθ·φ(xi,yijk)∑

y′
ijk∈Yi

eθ·φ(xi,y′
ijk)

(1)

where θ is the parameter vector of the model, and
φ (xi, yijk) denotes the feature function. We adopt
the max-margin objective (Vapnik, 2013) to di-
rectly learn the decision boundary for the correct
derivations and the false ones.

3 Learning and Inference

3.1 Learning
Using (1), we obtain the difference between the
log-probability of a correct derivation ycijk ∈ Yi
and a false one yfijl ∈ Yi as:

lnP
(
ycijk|xi; θ

)− lnP
(
yfijl|xi; θ

)
=θ ·

(
φ
(
xi, y

c
ijk

)− φ(xi, yfijl)) (2)

Note that the subtraction in (2) cancels the denom-
inator of (1) which contains extensive computa-
tion. To decrease the generalization error of the
learned model, we would like the minimal gap be-
tween the correct derivations and the false ones as
large as possible. In practice, we may not find a
decision hyperplane to perfectly separate the cor-
rect and the false derivations. Generally, this can
be solved by introducing a slack variable ξijkl ≥
0 (Bishop, 2006) for each constraint derived from
(2). Define ϕ

(
xi, y

c
ijk, y

f
ijl

)
= φ

(
xi, y

c
ijk

)
−

φ
(
xi, y

f
ijl

)
. For ∀ xi ∈ X , the resulting optimiza-

tion problem is:

arg min
1
2
‖θ‖2 + C

∑
i,j,k,l

ξijkl (3)

s.t. θ · ϕ
(
xi, y

c
ijk, y

f
ijl

)
≥ 1− ξijkl, ξijkl ≥ 0

The parameter C is used to balance the slack vari-
able penalty and the margin. This is a QP problem
and has been well studied (Platt, 1999; Fan et al.,
2008).

According to the Karush-Kuhn-Tucker (KKT)
condition, only a part of the constraints is active
for the solution of (3) (Bishop, 2006). This leads
to an efficient learning algorithm called constraint
generation (Koller and Friedman, 2009; Felzen-
szwalb et al., 2010). Specifically, an initial model
is trained by a randomly selected subset of the
constraints. Next this model is used to check the
constraints and at most N false deviations that are
erroneously classified by this model are collected
for each word problem. These constraints are then
added to train a new model. This process repeats
until converges. Our experimental results show
that this process converges fast.

3.2 Inference
When we obtain the model parameter θ, the infer-
ence can be performed by finding the maximum
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Single slot features
Relation between numbers and the question
sentence.
Position of a number w.r.t a comparative word.
Context of a number.
Is one or two?
Is a multiplier?
Is between 0 and 1?
Slot pair features
Relation between two numbers.
Context similarity between two numbers.
Does there exist coreference relationship?
Are two numbers both multipliers?
Are two numbers in the same sentence or con-
tinuous sentences?
Information of raw path and dependency path
between two numbers
One number is larger than another.
Solution features
Is integer solution?
Is positive solution?
Is between 0 and 1?

Table 1: Features used in our algorithm.

value of (1). This can be simplified by computing

arg max
yijk∈Yi

θ · φ(xi, yijk) (4)

As we only consider assigning the number slots of
the templates in T , generally, the size of the possi-
ble assignments per word problem is bearable, as
shown in the Table 2. Thus we simply evaluate all
the yijk ∈ Yi. The one with the largest score is
considered as the solution of xi.

4 Features

A feature vector φ (xi, yijk) is calculated for each
word problem xi and derivation yijk pair. As
Kushman (2014), a feature is associated with a sig-
nature related to the template of yijk. We extract
three kinds of features, i.e., single slot features,
slot pair features and solution features. Unless
otherwise stated, single slot and slot pair features
are associated with the slot and slot pair signature
of the equation system template, respectively, and
solution features are generated for the signature of
the equation system template. Table 1 lists the fea-
tures used in our algorithm. The detailed descrip-
tion is as follows.

4.1 Single Slot Features

To reduce the search space, we only consider the
assignment of the number slots of the template. It
seems that our algorithm will lose the information
about the unknown. But such information can be
recovered by the features that include the infor-
mation of the question sentence. Specifically, we
associate a number with all the nouns in the same
sentence sorted by the length of the dependence
path between them. For instance, [$, tickets, chil-
dren] is the sorted noun list for 1.5 in Figure 1.
Assume the n-th noun of the nouns associated to a
given number is the first noun that appears in the
question sentence. We quantify the relationship
between a number and a queried entity by the re-
ciprocal of n. For instance, in Figure 1, “children”
appears in the question sentence, and it is the third
noun associated to 1.5. So the value of this feature
is 1/3. A larger value of this feature means a num-
ber more likely relates to the queried entity. The
maximum value of this feature is 1. Thus we intro-
duce a feature to indicate whether this special case
occurs. We also use a feature to indicate whether
a number appears in the question sentence.

The comparative meaning is sensitive to both
the comparative words and the position of a num-
ber relative to them. For example, “one number
is 3 less than twice another” is different to “one
number is 3 more than twice another”, but equal to
“twice a number is 3 more than another”. To ac-
count for this, we use the comparative words cou-
pled with the position of a number relative to them
as features.

On the other hand, we use the lemma, part of
speech (POS) tag and the dependence type related
to the word within a widow [-5, +5] around a num-
ber as features. Besides, if the POS tag or the
named entity tag of a number is not labeled as a
general number, we also import these tags together
with the first noun and the dependence type related
to the number as features.

Additionally, the numbers 1 and 2 are usually
used to indicate the number of variables, such as
“the sum of two numbers”. To capture such usage,
we use a feature to denote whether a number is
one or two as (Kushman et al., 2014). Since such
usage appears in various kinds of word problems,
this feature does not contain the slot signature. We
also generate features to indicate whether a num-
ber belongs to (0, 1), and whether it is a multiplier,
such as twice, triple.
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4.2 Slot Pair Features
Assume n1 and n2 are two numbers in a word
problem. Suppose NP1 and NP2 are the lists of
nouns associated to n1 and n2 (described in sec-
tion 4.1), respectively. We evaluate the relation-
ship r (n1, n2) between n1 and n2 by:

max
nouni

1∈NP1,

nounj
2∈NP2

s.t. nouni
1=nounj

2

 2

ord
(
nouni1

)
+ ord

(
nounj2

)


where ord(·) denotes the index of a noun
in NPi (i = 1, 2), starting from 1. A larger
r (n1, n2) means n1 and n2 are more related. The
maximum value of r (n1, n2) is 1, which occurs
when the first nouns of NP1 and NP2 are equal.
We use a feature to indicate whether r (n1, n2) is
1. This feature helps to import some basic rules
of the arithmetic operation, e.g., the units of sum-
mands should be the same.

If two slots are symmetric in a template (e.g.,
n2 and n3 in Figure 1), the contexts around both
numbers are generally similar. Assume CT1 and
CT2 are two sets of certain tags within a window
around n1 and n2, respectively. Then we calculate
the contextual similarity between n1 and n2 by:

sim (ST1, ST2) =
|ST1 ∩ ST2|
|ST1 ∪ ST2|

In this paper, the tags include the lemma, POS tag
and dependence type, and the window size is 5.

Besides, we exploit features to denote whether
there exists coreference relationship between any
elements of the sentences where n1 and n2 locate,
and whether two numbers are both multipliers. Fi-
nally, according to (Kushman et al., 2014), we
generate features related to the raw path and de-
pendence path between two numbers, and use the
numeric relation between them as a feature to im-
port some basic arithmetic rules, such as the posi-
tive summands are smaller than their sum. We also
include features to indicate whether two numbers
are in the same sentence or continuous sentences.

4.3 Solution Features
Many word problems are math problems about the
real life. This background leads the solutions of
many word problems have some special numerical
properties, such as the positive and integer prop-
erties used by (Kushman et al., 2014). To capture
such fact, we introduce a set of features to describe
the solution properties.

5 Experiments

Dataset: The dataset used in our experiment is
provided by (Kushman et al., 2014). Equiva-
lent equation systme templates are automatically
merged. The word problems are parsed by (Man-
ning et al., 2014). The version of the parser is the
same as (Kushman et al., 2014). The performance
of our algorithm is evaluated by comparing each
number of the correct answer with the calculated
one, regardless of the ordering. We report the av-
erage accuracy of 5-fold cross-validation.
Learning: We use liblinear (Fan et al., 2008) to
solve the QP problem. The parameter C in (3)
is set to 0.01 in all the following experiments. We
randomly select 300 false derivations of each word
problem to form the initial training set. We add at
most 300 false derivations for each word problem
during the constraint generation step, and use 5-
fold cross-validation to avoid overfitting. We stop
iterating when the cross-validation error becomes
worse or the training error converges or none new
constraints are generated.
Supervision Level: We consider the learning with
two different levels of supervision. In the first
case, the learning is conducted by providing the
equation and the correct answer of every training
sample. In the second case, the correct answer is
available for every training sample but without the
equation. Instead, all the templates are given, but
the correspondence between the template and the
training sample is not available. During learning,
the algorithm should evaluate every derivation of
each template to find the true one.
Results: Table 2 lists the learning statistics for our
algorithm and (Kushman et al., 2014). We can ob-
serve that the number of possible alignments per
word problem of our algorithm is much smaller
than (Kushman et al., 2014). However, the num-
ber of all the false alignments is still 80K. Us-
ing the constraint generation algorithm (Koller and
Friedman, 2009), only 9K false alignments are
used in the quadratic programming. We trained
our model on a Intel i5-3210M CUP and 4G RAM
laptop. Kushman’s algorithm (2014) needs much
more memory than our algorithm and can not run
on a general laptop. Therefore, we tested their al-
gorithm on a workstation with Intel E5-2620 CPU
and 128G memory. As shown in Table 2, their al-
gorithm takes more time than our algorithm.

Table 3 lists the accuracy of our algorithm and
Kushman’s algorithm (2014). It is clear that our
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Mean negative samples 80K
Mean negative samples used in learning 9K
Mean time for feature extraction 22m
Mean training time 7.3m
Mean feature extraction and training
time of (Kushman et al., 2014)

83m

# Alignments per problem of (Kushman
et al., 2014)

4M

# Alignments per problem of our algo-
rithm

1.9K

Table 2: Learning statistics.

Algorithm Accuracy
Our algorithm fully supervised 79.7%
Our algorithm weakly supervised 72.3%
Kushman’s algorithm (2014) fully
supervised

68.7%

Table 3: Algorithm comparison.

Feature Ablation Accuracy
Without single slot features 70.4%
Without slot pair features 69.3%
Without solution features 71.8%

Table 4: Ablation study for fully supervised data.

algorithm obtains better result. The result of the
weakly supervised data is worse than the fully su-
pervised one. But this result is still higher than
Kushman’s fully supervised result.

Table 4 gives the results of our algorithm with
different feature ablations. We can find that all the
features are helpful to get the correct solution and
none of them dramatically surpasses the others.
Discuss: Although our algorithm gives a better re-
sult than (Kushman et al., 2014), there still exist
two main problems that need to be further investi-
gated, as demonstrated in Table 5. The first prob-
lem is caused by our feature for semantic repre-
sentation. Our current lexicalized feature can not
generalize well for the unseen words. For exam-
ple, it is hard for our algorithm to relate the word
“forfeits” to “minus”, if it does not appear in the
training corpus. The second problem is caused by
the fact that our algorithm only considers the sin-
gle noun as the entity of a word problem. Thus
when the entity is a complicated noun phrase, our
algorithm may fail.

Problem Example
Lexicalized
features can
not gener-
alize well
for unseen
words.

A woman is paid 20 dollars for
each day she works and forfeits
a 5 dollars for each day she is
idle. At the end of 25 days she
nets 450 dollars. How many
days did she work?

Can not deal
with compli-
cated noun
phrases.

The probability that San
Francisco plays in the next
super bowl is nine times the
probability that they do not
play in the next super bowl.
The probability that San
Francisco plays in the next
super bowl plus the probabil-
ity that they do not play is 1.
What is the probability that
San Francisco plays in the
next super bowl?

Table 5: The problems of our algorithm.

6 Conclusion and Future work

In this paper, we present a new algorithm to learn
to solve algebra word problems. To reduce the
possible derivations, we only consider filling the
number slots of the equation system templates,
and design effective features to describe the rela-
tionship between numbers and unknowns. Addi-
tionally, we use the max-margin objective to train
the log-linear model. This results in a QP prob-
lem that can be efficiently solved via the constraint
generation algorithm. Experimental results show
that our algorithm significantly outperforms the
state-of-the-art baseline (Kushman et al., 2014).

Our future work will focus on studying the per-
formance of applying nonlinear kernel function to
the QP problem (3), and using the word embed-
ding vector (Bengio et al., 2003; Mikolov et al.,
2013) to replace current lexicalized features. Be-
sides, we would like to compare our algorithm
with the algorithms designed for specific word
problems, such as (Hosseini et al., 2014).
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Abstract

We present an unsupervised method to
find lexical variations in Roman Urdu
informal text. Our method includes a
phonetic algorithm UrduPhone, a feature-
based similarity function, and a clustering
algorithm Lex-C. UrduPhone encodes ro-
man Urdu strings to their phonetic equiv-
alent representations. This produces an
initial grouping of different spelling vari-
ations of a word. The similarity function
incorporates word features and their con-
text. Lex-C is a variant of k-medoids clus-
tering algorithm that group lexical varia-
tions. It incorporates a similarity thresh-
old to balance the number of clusters and
their maximum similarity. We test our sys-
tem on two datasets of SMS and blogs and
show an f-measure gain of up to 12% from
baseline systems.

1 Introduction

Urdu is the national language of Pakistan and one
of the official languages of India. It is written in
Perso-Arabic script. However in social media and
short text messages (SMS), a large proportion of
Urdu speakers use roman script (i.e., the English
alphabet) for writing, called Roman Urdu.

Roman Urdu lacks standard lexicon and usu-
ally many spelling variations exist for a given
word, e.g., the word zindagi [life] is also written as
zindagee, zindagy, zaindagee and zndagi. Specifi-
cally, the following normalization issues arise: (1)
differently spelled words (see example above), (2)
identically spelled words that are lexically differ-
ent (e.g., bahar can be used for both [outside]
and [spring], and (3) spellings that match words
in English (e.g, had [limit] for the English word
‘had’). These inconsistencies cause a problem of
data sparsity in basic natural language processing

tasks such as Urdu word segmentation (Durrani
and Hussain, 2010), part of speech tagging (Saj-
jad and Schmid, 2009), spell checking (Naseem
and Hussain, 2007), machine translation (Durrani
et al., 2010), etc.

In this paper, we propose an unsupervised
feature-based method that tackles above men-
tioned challenges in discovering lexical variations
in Roman Urdu. We exploit phonetic and string
similarity based features and incorporate contex-
tual features via top-k previous and next words’
features. For phonetic information, we develop an
encoding scheme for Roman Urdu, UrduPhone,
motivated from Soundex. Compared to other
available phonetic-based schemes that are mostly
limited to English sounds only, UrduPhone maps
Roman Urdu homophones effectively. Unlike pre-
vious work on short text normalization (see Sec-
tion 2), we do not have information about stan-
dard word forms in the dataset. The problem be-
comes more challenging as every word in the cor-
pus is a candidate of every other word. We present
a variant of the k-medoids clustering algorithm
that forms clusters in which every word has at
least a specified minimum similarity with the clus-
ter’s centroidal word. We conduct experiments on
two Roman Urdu datasets: an SMS dataset and
a blog dataset and evaluate performance using a
gold standard. Our method shows an f-measure
gain of up to 12% compared to baseline methods.
The dataset and code are made available to the re-
search community.

2 Previous Work

Normalization of short text messages and tweets
has been in focus (Sproat et al., 2001; Wei et al.,
2011; Clark and Araki, 2011; Roy et al., 2013;
Chrupala, 2014; Kaufmann and Kalita, 2010;
Sidarenka et al., 2013; Ling et al., 2013; Desai
and Narvekar, 2015; Pinto et al., 2012). However,
most of the work is limited to English or to other
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resource-rich languages. In this paper, we focus on
Roman Urdu, an under-resourced language, that
does not have any gold standard corpus with stan-
dard word forms. Therefore, we are restricted to
the task of finding lexical variations in informal
text. This is a rather more challenging problem
since in this case every word is a possible varia-
tion of every other word in the corpus.

Researchers have used phonetic, string, and
contextual knowledge to find lexical variations in
informal text.1 Pinto et al. (2012; Han et al.
(2012; Zhang et al. (2015) used phonetic-based
methods to find lexical variations. Han et al.
(2012) also used word similarity and word con-
text to enhance performance. Wang and Ng (2013)
used normalization operations e.g., missing word
recovery and punctuation correction to improve
normalization process. Irvine et al. (2012) used
manually prepared training data to build an au-
tomatic normalization system. Contractor et al.
(2010) used string edit distance to find candidate
lexical variations. Yang and Eisenstein (2013)
used an unsupervised approach with log linear
model and sequential Monte Carlo approximation.

We propose an unsupervised method to find lex-
ical variations. It uses string edit distance like
Contractor et al. (2010), Sound-based encoding
like Pinto et al. (2012) and context like Han et al.
(2012) combined in a discriminative framework.
However, in contrast, it does not use any corpus of
standard word forms to find lexical variations.

3 Our Method

The lexical variations of a lexical entry usually
have high phonetic, string-based, and contextual
similarity. We integrate a phonetic-based encod-
ing scheme, UrduPhone, a feature-based similarity
function, and a clustering algorithm, Lex-C.

3.1 UrduPhone

Several sound-based encoding schemes for words
have been proposed in literature such as Soundex
(Knuth, 1973; Hall and Dowling, 1980), NYSIIS
(Taft, 1970), Metaphone (Philips, 1990), Caver-
phone (Wang, 2009) and Double Metaphone.2

These schemes encode words based on their sound
1Spell correction is also considered as a variant of text

normalization (Damerau, 1964; Tahira, 2004; Fossati and
Di Eugenio, 2007). Here, we limit ourselves to the previous
work on short text normalization.

2http://en.wikipedia.org/wiki/
Metaphone

which in turn serves as grouping words of similar
sounds (lexical variations) to one code. However,
most of the schemes are designed for English and
European languages and are limited when apply to
other family of languages like Urdu.

In this work, we propose a phonetic encoding
scheme, UrduPhone, tailored for Roman Urdu.
The scheme is derived from the Soundex algo-
rithm. It groups consonants on the basis of com-
mon homophones in Urdu and English. It is differ-
ent from Soundex in two particular ways:3 Firstly,
UrduPhone generates encoding of length six com-
pared to length four in Soundex. This enables
UrduPhone to avoid mapping different forms of
a root word to same code. For example, musku-
rana [smiling] and mshuraht [smile] encode to
one form MSKR in Soundex but in UrduPhone,
they have different encoding which are MSKRN,
MSKRHT respectively. Secondly, we introduce
consonant groups which are mapped differently in
Soundex. We do this by analyzing Urdu alpha-
bets that map to a single roman form e.g. words
samar [reward], sabar [patience] and saib [apple],
all start with different Urdu alphabets that have
identical roman representation: s. In UrduPhone,
we map all such cases to a single form.4

3.2 Similarity Function

The similarity between two words wi and wj is
computed by the following similarity function:

S(wi, wj) =

∑F
f=1 α

(f) × σ(f)
ij∑F

f=1 α
(f)

Here, α(f) > 0 is the weight given to feature f ,
σ

(f)
ij ∈ [0, 1] is the similarity contribution made by

feature f , and F is the total number of features.
In the absence of additional information, and as
used in the experiments in this work, all weights
can be taken equal to one. The similarity function
returns a value in the interval [0, 1] with larger
values signifying higher similarity.

We use two types of features in our method:
word features and contextual features. Word fea-
tures can be based on phonetics and/or string sim-
ilarity. The phonetic similarity between words wi
and wj is 1 (i.e., σij = 1) if both words have the
same UrduPhone ID or encoding; otherwise, their

3Due to limited space, we limit the description of Urdu-
Phone to its comparison with Soundex.

4A complete table of UrduPhone mappings is provided in
the supplementary material.
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similarity is zero. The string similarity between
words wi and wj is defined as follows:

σij =
lcs(wi, wj)

min[len(wi), len(wj)]× edist(wi, wj)

Here, lcs(wi, wj) is the length of the longest com-
mon subsequence in words wi and wj and len(wi)
is the length of word wi. edist(wi, wj) returns the
edit distance between words except when the edit
distance is 0, in which case it returns 1.

Contextual features include top-k frequently oc-
curring previous and next words’ features. Let
ai1, a

i
2, . . . , a

i
5 and aj1, a

j
2, . . . , a

j
5 be the word IDs

for the top-5 frequently occurring words preceding
word wi and wj , respectively. Then, the similarity
between words is given by (Hassan et al., 2009)

σij =
∑5

k=1 ρk∑5
k=1 k

Here, ρk is zero if aik does not have a match in
aj∗ (i.e., in the context of word wj); otherwise,
ρk = 5 − max[k, l] − 1 where aik = ajl and l is
the highest rank (smallest integer) at which a pre-
vious match had not occurred. Instead of word IDs
in ai’s, UrduPhone IDs or string similarity based
cluster IDs can be used to reduce sparsity and im-
prove matches among similar words.

3.3 Lex-C: Clustering Algorithm

We develop a new clustering algorithm, called
Lex-C, for discovering lexical variations in infor-
mal text. This algorithm is a modified version of
the k-medoids algorithm (Han, 2005). It incorpo-
rates an assignment similarity threshold, t > 0, for
controlling the number of clusters and their simi-
larity. In particular, it ensures that all words in
a cluster have a similarity greater than or equal
to this threshold. It is important to note that the
poular k-means algorithm is known to be effective
for numeric datasets only which is not true in our
case, and it cannot utilize our specialized similar-
ity function for lexical variation discovery.

Specifically, Lex-C starts from an initial clus-
tering based on UrduPhone or string similarity.
It finds the centroidal word, wkc , for cluster k as
the word with which the sum of similarities of all
other words in the cluster is a maximum. Then,
each non-centroidal word is assigned to the clus-
ter k if S(wi, wkc ) is a maximum among all clusters
and S(wi,W k

c ) ≥ t. If the latter condition is not

satisfied (i.e., S(wi, wkc ) < t) then instead of as-
signing wordwi to cluster k, it starts a new cluster.
These two steps are repeated until convergence.

4 Experimental Evaluation

We empirically evaluate UrduPhone and our com-
plete method involving Lex-C separately on two
real-world datasets. Performance is reported with
B-Cubed precision, recall, and f-measure (Bagga
and Baldwin, 1998; Hassan et al., 2015) on a gold
standard dataset. These performance measures are
based on element-wise comparisons between pre-
dicted and actual clusters that are then aggregated
over all elements in the clustering. This avoided
the issue of 100% precision with low recall (all
words belong to separate clusters) and 100% re-
call with low precision (all words belong to one
cluster).

4.1 Dataset and Gold Standard

The first dataset, Web dataset, is scraped from Ro-
man Urdu websites on news5, poetry6, SMS7 and
blog8. The second dataset, SMS dataset, is ob-
tained from chopaal, an internet based group SMS
service9. For evaluation, we use a manually an-
notated database of Roman Urdu variations (Khan
and Karim, 2012). Table 1 shows statistics of the
datasets in comparison with the gold standard.

Dataset Web SMS

Unique words 22,044 28,908
Overlap with Gold Standard 12,600 13,087
UrduPhone IDs 3,952 3,599

Table 1: Datasets and gold standard statistics.
Overlap with gold standard = number of words ap-
pearing in gold standard; UrduPhone IDs = num-
ber of distinct UrduPhone encodings.

4.2 UrduPhone Evaluation

We compare UrduPhone with Soundex and its
variants.10 These algorithms are used to group
words based on their encoding and then evalu-
ated against the gold standard. Table 2 shows

5http://www.shashca.com,http://stepforwardpak.com/
6https://hadi763.wordpress.com/
7http://www.replysms.com/
8http://roman.urdu.co/
9http://chopaal.org

10We use NLTK-Trainer’s phonetic library http://
bit.ly/1OJGL9Q
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the results on Web dataset. UrduPhone out-
performs Soundex, Caverphone, and Metaphone
while Nysiis’s f-measure is comparable to that of
UrduPhone. We observe that Nysiis produces a
large number of single word clusters (out of 6,943
clusters produced 5,159 have only one word). This
gives high precision but recall is low. UrduPhone
produces fewer clusters (and fewer one word clus-
ters) with high recall.

Algorithm Pre Rec Fme

Soundex 0.30 0.97 0.46
Metaphone 0.49 0.80 0.64
Caverphone 0.31 0.92 0.46
Nysiis 0.63 0.69 0.66
UrduPhone 0.51 0.94 0.67

Table 2: Comparison of UrduPhone with other al-
gorithms on Web dataset

4.3 Lex-C Evaluation

We compared Lex-C with k-means and EM clus-
tering algorithms. With both of these algorithms
we used the same feature set (i.e., word features,
phonetic features, and contextual features), How-
ever, their performance lagged the performance of
our approach. The primary reason for this is that
our feature space is not continuous while k-means
and EM algorithms work best for continuous fea-
ture spaces.

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Experiments

P
re

c
is

io
n

, 
R

e
c

a
ll

 &
 F

−
M

e
a

s
u

re

 

 

−3000

−2000

−1000

0

1000

P
re

d
ic

te
d

 −
 A

c
tu

a
l 

C
lu

s
te

rs

Precision

Recall

FMeasure

Cluster Difference

Figure 1: Performance results for Web dataset

4.4 Performance of our Method

We conduct extensive experiments to evaluate the
performance of our method. We vary initial clus-
terings (UrduPhone encoding or string similarity
based clustering); evaluate various combinations
of phonetic, string, and contextual features; and
consider different previous/next top-5 words’ fea-
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Figure 2: Performance results for SMS dataset

ID Initial Word Context-1 Context-2

1 – UPhone – –
2 – String – –

3 String String Word ID –
4 String String Cluster ID –
5 String UPhone Cluster ID –
6 UPhone UPhone Cluster ID –
7 UPhone UPhone Word ID –
8 UPhone UPhone UPhone ID Word ID
9 UPhone UPhone UPhone ID Cluster ID

Table 3: Details of experiments’ settings where
Initial is initial clustering based on String or Urdu-
Phone (UPhone)

tures (word ID, cluster ID, and/or UrduPhone ID).
Table 3 gives details of each experiment setting.

Figures 1 and 2 show results of selected ex-
periments for Web and SMS datasets respectively.
The x-axis shows the experiment (Exp.) IDs while
the left y-axis gives the precision, recall, and f-
measure and the right y-axis shows the difference
between the number of predicted and actual clus-
ters. Exp. 1 and 2 are baselines corresponding
to UrduPhone encoding (UPhone ID) and string
similarity based word clustering (Cluster ID) re-
spectively. The remaining experiments have dif-
ferent initial clustering, word features, and up to
two contextual features. In these results, the simi-
larity threshold t is selected such that the number
of discovered clusters is as close as possible to the
number of actual clusters in the gold standard for
each dataset. This is done to make the results com-
parable across different settings.

Compared to baselines, our method shows a
gain of up to 12% and 8% in Web and SMS
datasets respectively. The best performances are
obtained when UrduPhone is used as a feature
and UrduPhone IDs are used to define the context
(Exp. 8 and 9). In particular, when both Urdu-
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Phone IDs and word IDs/cluster IDs are used for
contextual information (i.e, with two sets of top-5
previous and next words’ features) the f-measure
is consistently high.

We analyzed the performance of Exp. 8 (best
settings for Web dataset) with varying t and
showed it in Figure 3. It is observed that the value
of t controls the number of clusters smoothly, and
precision increases with the number of clusters
and f-measure reaches a peak when number of
clusters is close to that in the gold standard.
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Figure 3: Effect of varying threshold t on Web
dataset (experiment 8)

5 Conclusion
We proposed an unsupervised method for finding
lexical variations in Roman Urdu. We presented a
phonetic encoding scheme UrduPhone for Roman
Urdu, and developed a feature-based clustering al-
gorithm Lex-C. Our experiments are evaluated on
a manually developed gold standard. The results
confirmed that our method outperforms baseline
methods. We made the datasets and algorithm
code available to the research community.
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Abstract

Distributed word representations are very
useful for capturing semantic information
and have been successfully applied in a
variety of NLP tasks, especially on En-
glish. In this work, we innovatively de-
velop two component-enhanced Chinese
character embedding models and their bi-
gram extensions. Distinguished from En-
glish word embeddings, our models ex-
plore the compositions of Chinese char-
acters, which often serve as semantic in-
dictors inherently. The evaluations on
both word similarity and text classification
demonstrate the effectiveness of our mod-
els.

1 Introduction

Due to its advantage over traditional one-hot rep-
resentation, distributed word representation has
demonstrated its benefit for semantic representa-
tion in various NLP tasks. Among the existing ap-
proaches (Huang et al, 2012; Levy and Goldberg,
2014; Yang and Eisenstein, 2015), the continu-
ous bag-of-wordsmodel (CBOW) and the continu-
ous skip-gram model (SkipGram) remain the most
popular ones that one can use to build word embed-
dings efficiently (Mikolov et al, 2013a; Mikolov
et al, 2013b). These two models learn the dis-
tributed representation of a word based on its con-
text. The context defined by the window of sur-
rounding words may unavoidably include certain
less semantically-relevant words and/or miss the
wordswith important and relevantmeanings (Levy
and Goldberg, 2014).
To overcome this shortcoming, a line of research

deploys the order information of the words in the
contexts by either deriving the contexts using de-
pendency relations where the target word partici-
pates (Levy and Goldberg, 2014; Yu and Dredze,

2014; Bansal et al, 2014) or directly keeping the
order features (Ling et al, 2015). As to another
line, Luong et al (2013) captures morphological
composition by using neural networks and Qiu
et al (2014) introduces the morphological knowl-
edge as both additional input representation and
auxiliary supervision to the neural network frame-
work. While most previous work focuses on En-
glish, there is a little work on Chinese. Zhang et
al (2013) extracts the syntactical morphemes and
Cheng et al (2014) incorporates the POS tags and
dependency relations. Basically, the work in Chi-
nese follows the same ideas as in English.
Distinguished from English, Chinese characters

are logograms, of which over 80% are phono-
semantic compounds, with a semantic component
giving a broad category of meaning and a phonetic
component suggesting the sound1. For example,
the semantic component 亻 (human) of the Chi-
nese character他 (he) provides the meaning con-
nected with human. In fact, the components of
most Chinese characters inherently bring with cer-
tain levels of semantics regardless of the contexts.
Being aware that the components of Chinese char-
acters are finer grained semantic units, then an im-
portant question arises before slipping to the appli-
cations of word embeddings—would it be better to
learn the semantic representations from the charac-
ter components in Chinese?
We approach this question from both the prac-

tical and the cognitive points of view. In prac-
tice, we expect the representations to be optimized
for good generalization. As analyzed before, the
components are more generic unit inside Chinese
characters that provides semantics. Such inher-
ent information somehow alleviates the shortcom-
ing of the external contexts. From the cognitive
point of view, it has been found that the knowl-
edge of semantic components significantly corre-

1http://en.wikipedia.org/wiki/Radical_
(Chinese_characters)
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late to Chinese word reading and sentence compre-
hension (Ho et al, 2003).
These evidences inspire us to explore novel

Chinese character embedding models. Different
from word embeddings, character embeddings re-
late Chinese characters that occur in similar con-
texts with their component information. Chinese
characters convey the meanings from their compo-
nents, and beyond that, the meanings of most Chi-
nese words also take roots in their composite char-
acters. For example, the meaning of the Chinese
word摇篮 (cradle) can be interpreted in terms of
its composite characters摇 (sway) and篮 (basket).
Considering this, we further extend character em-
beddings from uni-gram models to bi-gram mod-
els.
At the core of our work is the exploration of

Chinese semantic representations from a novel
character-based perspective. Our proposed Chi-
nese character embeddings incorporate the finer-
grained semantics from the components of char-
acters and in turn enrich the representations inher-
ently in addition to utilizing the external contexts.
The evaluations on both intrinsic word similarity
and extrinsic text classification demonstrate the ef-
fectiveness and potentials of the new models.

2 Component-Enhanced Character
Embeddings

Chinese characters are often composed of smaller
and primitive components called radicals or
radical-like components, which serve as the most
basic units for building character meanings. Dat-
ing back to the 2nd century AD, the Han dynasty
scholar Shen XU organizes his etymological dic-
tionary shuō wén jiě zì (word and expression) by
selecting 540 recurring graphic components that
he called bù (means “categories”). Bù is nearly
the same as what we call radicals today2. Most
radicals are common semantic components. Over
time, some original radicals evolve into radical-
like components. Nowadays, a Chinese character
often contains exactly one radical (rarely has two)
and several other radical-like components. In what
follows, we refer to as components both radicals
and radical-like components.
Distinguished from English, these composite

components are unique and inherent features in-
side Chinese characters. A lot of times, they allow

2http://en.wikipedia.org/wiki/Radical_
(Chinese_characters)

us to assumingly understand or infer the meanings
of characters without any context. In other words,
the component-level features inherently bring with
additional information that benefits semantic rep-
resentations of characters. For example, we know
that the characters你 (you),他 (he),伙 (compan-
ion),侣 (companion), and们 (people) all have the
meanings related to human because of their shared
component 亻 (human), a variant of the Chinese
character人 (human). This kind of component in-
formation is intrinsically different from the con-
texts deriving by dependency relations and POS
tags. It motivates us to investigate the component-
enhanced Chinese character embedding models.
While Sun et al (2014) utilizes radical information
in a supervised fashion, we build our models in a
holistic unsupervised and bottom-up way.
It is important to note the variation of a radical

inside a character. There are two types of varia-
tions. The main type is position-related. For ex-
ample, the radical of the Chinese character水 (wa-
ter) is itself, but it becomes 氵 as the radical of
池 (pool). The original radicals are stretched or
squeezed so that they can fit into the general Chi-
nese character shape of a square. The second vari-
ation type emerges along with the history of char-
acter simplification when traditional characters are
converted into simplified characters. For instance,
食 (eat) is written as 飠 when it forms as a part
of some traditional characters, but is written as饣
in simplified characters. To cope with these vari-
ations and recover the semantics, we match all the
radical variants back into their original forms. We
extract all the components to build a component
list for each Chinese character. With the assump-
tion that a character’s radical often bring more im-
portant semantics than the rest3, we regard the rad-
ical of a character as the first component in its com-
ponent list.
Let a sequence of characters D = {z1, . . . , zN}

denotes a corpus of N characters over the char-
acter vocabulary V . And z, c, e, K, T, M, |V | de-
note the Chinese character, the context charac-
ter, the component list, the corresponding em-
bedding dimension, the context window size, the
number of components taken into account for
each character, and the vocabulary size, respec-
tively. We develop two component-enhanced
character embedding models, namely charCBOW

3Inside a character, its radical often serves as the semantic-
component while its other radical-like components may be
phonetics.
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and charSkipGram.
charCBOW follows the original continuous

bag-of-words model (CBOW) proposed by
(Mikolov et al, 2013a). We predict the central
character zi conditioned on a 2(M+1)TK-
dimensional vector that is the concatena-
tion of the remaining character-level contexts
(ci−T , . . . , ci−1, ci+1, . . . , ci+T ) and the compo-
nents in their component lists. More formally,
we wish to maximize the log likelihood of all the
characters as follows,

L =
∑

zn
i ∈D

log p(zi|hi),

hi = cat(ci−T , ei−T , . . . , ci+T , ei+T )

where hi denotes the concatenation of the
component-enhanced contexts. We make predic-
tion using a 2KT (M+1)|V |-dimensional matrix
O. Different from the original CBOW model,
the extra parameter introduced in the matrix O
allows us to maintain the relative order of the
components and treat the radical differently from
the rest components.
The development of charSkipGram is straight-

forward. We derive the component-enhanced con-
texts as (⟨ci−T , ei−T ⟩, . . . , ⟨ci+T , ei+T ⟩) based on
the central character zi. The sum of log probabili-
ties given zi is maximized:

L =
∑
zi∈D

T∑
j=−T
j ̸=0

(
log p(cj+i|zi) + log p(ej+i|zi)

)

Figure 1 illustrates the two component-
enhanced character embedding models. It is easy
to extend charCBOW and charSkipGram to their
corresponding bi-character extensions. Denote
the zi, ci and ei in charCBOW and charSkipGram
as uni-character zui, cui and eui, the bi-character
extensions are the models fed by bi-character
formed zbi, cbi and ebi.

3 Evaluations

We examine the quality of the proposed two Chi-
nese character embedding models as well as their
corresponding extensions on both intrinsic word
similarity evaluation and extrinsic text classifica-
tion evaluation.
Word Similarity. As the widely used public
word similarity datasets like WS-353 (Finkelstein
et al, 2001), RG-65 (Rubsenstein and Goode-
nough, 1965) are built for English embeddings,
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Figure 1: Illustrations of two component-
enhanced character embedding models.

we start from developing appropriate Chinese syn-
onym sets. Two candidate choices are Chinese
dictionaries HowNet (Dong and Dong, 2006) and
HIT-CIR’s Extended Tongyici Cilin (denoted as
E-TC)4. As HowNet contains less modern words,
such as 谷歌 (Google), we select E-TC as our
benchmark for word similarity evaluation.
Text Classification. We use Tencent news ti-
tles as our text classification dataset5. A total of
8,826 titles of four categories (society, entertain-
ment, healthcare, and military) are extracted. The
lengths of titles range from 10 to 20 words. We
train ℓ2-regularized logistic regression classifiers
using the LIBLINEAR package (Fan et al, 2008)
with the learned embeddings.
To build the component-enhanced character em-

beddings, we employ the GB2312 character set

4http://ir.hit.edu.cn/demo/ltp/Sharing_
Plan.htm

5http://www.datatang.com/data/44341
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Table 1: Word Similarity Results of Embedding Models

Model
Spearman’s rank correlation (%)

A B C D E F G H I J K L
CBOW 33.2 25.2 32.2 27.8 36.5 37.6 43.2 40.2 37.3 39.5 44.2 40.4
SkipGram 35.9 26.7 33.8 29.9 36.6 40.2 45.3 44.3 39.0 41.2 46.9 43.0
charCBOW 34.0 23.2 34.1 26.7 37.8 49.2 48.1 44.5 40.2 42.0 48.0 43.2
charSkipGram 33.8 22.6 33.1 25.2 37.2 47.5 48.0 43.0 38.8 40.9 46.5 41.8
CBOW-bi 37.0 27.8 34.2 29.2 38.1 43.2 50.3 48.2 43.5 46.3 50.9 45.2
SkipGram-bi 38.2 29.0 34.0 29.4 38.9 44.9 50.2 49.3 45.6 48.4 51.3 47.4
charCBOW-bi 36.0 25.3 36.8 31.2 40.2 54.3 55.7 49.7 45.3 48.9 53.2 47.7
charSkipGram-bi 35.7 24.6 33.4 30.5 39.7 53.3 53.9 48.2 33.2 47.1 52.0 45.7

Table 2: Text Classification Results of Embedding Models

Model
Society Entertainment Healthcare Military

P R F P R F P R F P R F
CBOW-bi 43.0 28.0 33.9 48.2 32.7 39.0 47.6 29.5 36.4 57.6 40.8 47.8
SkipGram-bi 47.2 31.1 37.5 49.8 34.0 40.4 48.4 32.7 39.0 58.8 42.3 49.2
charCBOW-bi 57.4 37.4 45.2 62.2 42.0 50.1 59.2 45.3 51.3 70.3 51.0 59.1
charSkipGram-bi 50.3 34.6 41.0 57.6 34.5 43.2 57.3 42.5 48.8 67.8 48.3 56.4
CBOW-combine 46.2 29.0 35.6 50.3 35.0 41.3 51.0 33.6 40.5 62.2 45.7 52.7
SkipGram-combine 50.9 34.6 41.2 51.4 37.2 43.2 52.1 35.6 42.3 62.1 49.0 54.8
charCBOW-combine 62.2 39.8 48.5 66.7 46.6 54.9 62.2 50.2 55.6 74.4 53.8 62.4
charSkipGram-combine 54.4 38.2 44.9 59.2 36.5 45.2 62.0 47.9 54.0 73.4 53.5 61.9

and extract all their component lists. It is easy
to obtain the first components (i.e., the radicals),
as they are readily available in the online Xinhua
Dictionary6. For the rest radical-like components,
we extract them by matching the patterns like “从
(from)+X” in the Xinhua dictionary. Such a pat-
tern indicates that a character has a component of
X. We also enrich the component lists by matching
the pattern “X is only seen” in Hong Kong Com-
puter Chinese Basic Component Reference7 .
It is observed that nearly 65% Chinese charac-

ters have only one component (their radicals), and
95% Chinese characters have two components (in-
cluding their radicals). Thus, we decide to main-
tain up to two extracted components to build the
character embeddings according to the frequency
of their occurrences. To cope with the radical vari-
ation problem, we transform 24 radical variants to
their origins, such as 亻 to 人 (human), 扌 to 手
(hand), 氵 to水 (water) and辶 to辵 (foot). The
complete list of the transformations is provided in

6http://xh.5156edu.com/
7http://www.ogcio.gov.hk/tc/business/tech_

promotion/ccli/cliac/glyphs_guidelines.htm

Appendix for easy reference.
We adopt Chinese Wikipedia Dump8 to train

our models as well as the original CBOW and
SkipGram, implemented in the Word2Vec tool9 for
comparison. The corpus in total contains 232,894
articles. In preprocessing, we remove pure digit
words and non-Chinese characters, and ignore the
words less than 10 occurrences during training.
We set the context window size T as 2 and use 5
negative samples experimentally. All the embed-
ding dimensions K are set to 50.
In the word similarity evaluation, we compute

the Spearman’s rank correlation (Myers and Well,
1995) between the similarity scores based on the
learned embedding models and the E-TC similar-
ity scores computed by following Tian and Zhao
(2010). The bi-character embeddings are concate-
nation of the composite character embeddings. For
the text classification evaluation, we average the
composite single character embeddings for each
bi-gram. And each bi-gram overlaps with the pre-
vious one. The titles are represented by averaging

8http://download.wikipedia.com/zhwiki/
9https://code.google.com/p/word2vec/
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the embeddings of their composite grams10.
Table 1 presents the word similarity evaluation

results of the eight embedding models mentioned
above, where A–L denote the twelve categories in
E-TC. The first four rows are the results with the
uni-character inputs, and the last four rows corre-
spond to the bi-character embeddings results.
We can see that both CBOW and CBOW-bi per-

form worse than the corresponding SkipGram and
SkipGram-bi. This result is consistent with the
finding in the previous work (Pennington et al,
2014; Levy and Goldberg, 2014; Levy et al, 2015).
To some extent, CBOW and its extension CBOW-
bi are the most different among the eight (the first
four models in Table 1 and the first four models in
Table 2). They tie together the characters in each
context window by representing the context vector
as the sum of their characters’ vectors. Although
they have a potential of deriving better representa-
tions (Levy et al, 2015), they lose some particular
information from each unit of input in the average
operations.
Although the performance on twelve differ-

ent categories varies, in overall charCBOW,
charSkipGram and their extensions consistently
better correlate to E-TC. It provides the evidence
that the component information in Chinese char-
acters is of significance. Clearly, the bi-character
models achieve higher rank correlations. These re-
sults are not surprised. As amatter of fact, a major-
ity of Chinesewords are compounds of two charac-
ters. Thus, in many cases two characters together
is equivalent to a Chinese word. Considering the
superiority of the bi-character models, we only ap-
ply them in the text classification evaluations.
The results shown in the first four rows of Ta-

ble 2 are similar to those in the word similarity
evaluation. Please notice the significant improve-
ment of charCBOW and charCBOW-bi. We con-
jecture this as a hint of the importance of the or-
der information, which is introduced by the extra
parameter in the output matrixes. Their better per-
formances verify our assumption that the radicals
are more important than non-radicals. This is also
attributed to the benefit from the order of the char-
acters in the contexts.
Actually, we also conduct an additional experi-

ment to combine the uni-gram and the bi-gram em-
beddings for text classification and notice in aver-

10We do not compare the uni-formed characters with bi-
formed compound characters. The word pairs that cannot be
found in the vocabulary are removed.

age about 8.4% of gain over the bi-gram embed-
dings alone. The detailed results are presented in
the last four rows of Table 2.

4 Conclusions and Future Work

In this paper, we propose two component-
enhanced Chinese character embedding models
and their extensions to explore both the internal
compositions and the external contexts of Chinese
characters. Experimental results demonstrate their
benefits in learning rich semantic representations.
For the future work, we plan to devise embed-
ding models based together on the composition of
component-character and of character-word. The
two types of compositions will serve in a coordi-
nate fashion for the distributional representations.
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Appendix

As mentioned in Section 3, we present the com-
plete list of transformations of the variant and orig-
inal forms of 24 radicals. The meaning columns
provide the corresponding meanings of the com-
ponents in the left.

transform meaning transform meaning
艹 → 艸 grass 扌 → 手 hand
亻 → 人 human 氵 → 水 water
刂 → 刀 knife 車 → 车 vehicle
犭 → 犬 dog 攵 → 攴 hit
灬 → 火 fire 纟 → 糸 silk
钅 → 金 gold 耂 → 老 old
麥 → 麦 wheat 牜 → 牛 cattle
饣 → 食 eat 飠 → 食 eat
礻 → 示 memory 忄 → 心 heart
罒 → 网 nest 王 → 玉 jade
讠 → 言 speak 衤 → 衣 cloth
月 → 肉 body 辶 → 辵 walk
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Abstract

Multi-label text categorization is a type of
text categorization, where each document
is assigned to one or more categories. Re-
cently, a series of methods have been de-
veloped, which train a classifier for each
label, organize the classifiers in a partially
ordered structure and take predictions pro-
duced by the former classifiers as the latter
classifiers’ features. These predictions-as-
features style methods model high order
label dependencies and obtain high per-
formance. Nevertheless, the predictions-
as-features methods suffer a drawback.
When training a classifier for one label, the
predictions-as-features methods can mod-
el dependencies between former labels and
the current label, but they can’t model de-
pendencies between the current label and
the latter labels. To address this problem,
we propose a novel joint learning algorith-
m that allows the feedbacks to be propa-
gated from the classifiers for latter labels
to the classifier for the current label. We
conduct experiments using real-world tex-
tual data sets, and these experiments il-
lustrate the predictions-as-features models
trained by our algorithm outperform the o-
riginal models.

1 Introduction

The multi-label text categorization is a type of text
categorization, where each document is assigned
to one or more categories simultaneously. The
multi-label setting is common and useful in the re-
al world. For example, in the news categorization
task, a newspaper article concerning global warm-
ing can be classified into two categories simul-
taneously, namely environment and science. For
another example, in the task of classifying mu-

sic lyrics into emotions, a song’s lyrics can deliv-
er happiness and excitement simultaneously. The
research about the multi-label text categorization
attracts increasing attention (Srivastava and Zane-
Ulman, 2005; Katakis et al., 2008; Rubin et al.,
2012; Nam et al., 2013; Li et al., 2014).

Recently, a series of predictions-as-features
style methods have been developed, which train a
classifier for each label, organize the classifiers in
a partially ordered structure and take prediction-
s produced by the former classifiers as the latter
classifiers’ features. These predictions-as-features
style methods model high order label dependen-
cies (Zhang and Zhang, 2010) and obtain high
performance. Classifier chain (CC) (Read et al.,
2011) and multi-label Learning by Exploiting lA-
bel Dependency (Lead) (Zhang and Zhang, 2010)
are two famous predictions-as-features method-
s. CC organizes classifiers along a chain and
LEAD organizes classifiers in a Bayesian net-
work. Besides, there are other works on extend-
ing the predictions-as-features methods (Zaragoza
et al., 2011; Gonçalves et al., 2013; Sucar et al.,
2014). In this paper, we focus on the predictions-
as-features style methods.

The previous works of the predictions-as-
features methods focus on learning the partial-
ly ordered structure. They neglect a draw-
back. When training a classifier for one label,
predictions-as-features methods can model depen-
dencies between former labels and the current la-
bel, but they can’t model dependencies between
the current label and the latter labels. Consider
the case of three labels. We organize classifiers
in a partially ordered structure shown in figure 1.
When training the classifier for the second label,
the feature (the bold lines in figure) consists of the
origin feature and the prediction for the first la-
bel. The information about the third label can’t
be incorporated. It means that we only model the
dependencies between the first label and the sec-
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Figure 1: When training the classifier for the sec-
ond label, the feature (the bold lines) consists of
only the origin feature and the prediction for the
first label. In this time, it is impossible to model
the dependencies between the second label and the
third label.

ond label and that the dependencies between the
second label and the third label is missing.

To address this problem, we propose a nov-
el joint learning algorithm that allows the feed-
backs to be propagated from the classifiers for
latter labels to the classifier for the current la-
bel, so that the information about the latter labels
can be incorporated. It means that the proposed
method can model, not only the dependencies be-
tween former labels and current label as the usual
predictions-as-features methods, but also the de-
pendencies between current label and latter labels.
With not missing dependencies. Hence, the pro-
posed method will improve the performance. Our
experiments illustrate the models trained by our al-
gorithm outperform the original models. You can
find the code of this paper online 1.

The rest of this paper is organized as follows.
Section 2 presents the proposed method. We con-
duct experiments to demonstrate the effectiveness
of the proposed method in section 3. Section 4
concludes this paper.

2 Joint Learning Algorithm

2.1 Preliminaries

Let X denote the document feature space, and
Y = {0, 1}m denote label space with m label-
s. A document instance xxx ∈ X is associated
with a label vector yyy = (y1, y2, ..., ym), where
yi = 1 denotes the document has the i-th label
and 0 otherwise. The goal of multi-label learn-
ing is to learn a function h : X → Y . In gener-

1https://github.com/rustle1314/Joint_
Learning_Predictions_as_Features_for_
Multi_Label_Classification

al, h consists of m functions, one for a label, i.e.,
h(xxx) = [h1(xxx),h2(xxx), ...,hm(xxx)].

In the predictions-as-features methods, the clas-
sifiers are organized in a partially ordered structure
and take predictions produced by the former clas-
sifiers as features. We can describe the classifier
in the predictions-as-features method as follows.

hj : xxx, hk∈pajpajpaj
(xxx)→ yj (1)

where pajpajpaj denotes the set of parents of the j-th
classifiers in the partially ordered structure.

2.2 Architecture and Loss
In this subsection, we introduce architecture and
loss function of our joint learning algorithm. As
a motivating example, we employ logistic regres-
sion as the base classifier in the predictions-as-
features methods. The classification function is
the sigmoid function, as shown in Eq.(2).

pj = hj(xxx, pk∈pajpajpaj
)

=
exp([xxx, pk∈pajpajpaj

]TWjWjWj)
1 + exp([xxx, pk∈pajpajpaj

]TWjWjWj)
(2)

where pj denotes the probability the document has
the j-th label,WjWjWj denotes the weight vector of the
j-th model and [xxx, pk∈pajpajpaj

] denotes the feature vec-
tor x extended with predictions [pk∈pajpajpaj

] produced
by the former classifiers.

The joint algorithm learns classifiers in the par-
tially ordered structure jointly by minimizing a
global loss function. We use the sum of negative
log likelihood losses of all classifiers as the global
loss function.

L(yyy,h(x)h(x)h(x)) =
m∑
j=1

`(pj , yj)

= −
m∑
j=1

(yjlog(pj) + (1− yj)log(1− pj))

(3)

The joint algorithm minimizes this global loss
function, as Eq.(4) shows.

h∗h∗h∗ = argmin
hhh
L(yyy,h(x)h(x)h(x)) (4)

Minimizing this global loss function is inequiv-
alent to minimizing the loss function of each base
classifier separately, since minimizing the global
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loss function results in feedbacks from latter clas-
sifiers. In the predictions-as-features methods, the
weights of the k-th classifier are the factors of not
only the k-th classifier but also the latter classi-
fiers. Consequently, when minimizing the global
loss function, the weights of the k-th classifier are
updated according to not only the loss of the k-th
classifier but also the losses of the latter classifiers.
In other words, feedbacks are propagated from the
latter classifiers to the k-th classifier.

The predictions-as-features models trained by
our proposed joint learning algorithm can model
the dependencies between former labels and cur-
rent label, since they take predictions by the for-
mer classifiers to extend the latter classifiers’ fea-
tures, as the usual predictions-as-features methods
do. Besides, they can also model the dependencies
between current label and latter labels due to the
feedbacks incorporated by the joint learning algo-
rithm.

Here, we employ logistic regression as the mo-
tivating example. If we want to employ other clas-
sification models, we use other classification func-
tion and other loss function. For example, if we
want to employ L2 SVM as base classifiers, we
resort to the linear classification function and the
L2 hinge loss function.

We employ the Back propagation Through
Structure (BTS) (Goller and Kuchler, 1996) to
minimize the global loss function. In BTS, par-
ent node is computed with its child nodes at the
forward pass stage; child node receives gradient
as the sum of derivatives from all its parents.

3 Experiments

3.1 Datasets
We perform experiments on four real world da-
ta sets: 1) the first data set is Slashdot (Read et
al., 2011). The Slashdot data set is concerned
about predicting multiple labels given science and
technology news titles and partial blurbs mined
from Slashdot.org. 2) the second data set is Med-
ical (Pestian et al., 2007). This data set involves
the assignment of ICD-9-CM codes to radiology
reports. 3) The third data set is Enron. The enron
data set is a subset of the Enron Email Dataset, as
labelled by the UC Berkeley Enron Email Analy-
sis Project2. It is concerned about classifying e-
mails into some categories. 4) the fourth data set

2http://bailando.sims.berkeley.edu/
enron_email.html

dataset n d m

slashdot 3782 1079 22
medical 978 1449 45
enron 1702 1001 53

tmc2007 28596 500 22

Table 2: Multi-label data sets and associated statis-
tics.

is Tmc2007 (Srivastava and Zane-Ulman, 2005).
It is concerned about safety report categorization,
which is to label aviation safety reports with re-
spect to what types of problems they describe.

Table 2 shows these multi-label data sets and as-
sociated statistics. n denotes the size of the entire
data set, d denotes the number of the bag-of-words
features, m denotes the number of labels. These
data sets are available online 3.

3.2 Evaluation Metrics
We use three common used evaluation metrics.
The Hamming loss is defined as the percentage of
the wrong labels to the total number of labels.

Hammingloss =
1
m
|h(xxx)∆yyy| (5)

where ∆ denotes the symmetric difference of two
sets, equivalent to XOR operator in Boolean logic.

The multi-label 0/1 loss is the exact match mea-
sure as it requires any predicted set of labels h(xxx)
to match the true set of labels S exactly. The 0/1
loss is defined as follows:

0/1loss = I(h(xxx) 6= yyy) (6)

Let pj and rj denote the precision and recall for
the j-th label. The macro-averaged F score is a
harmonic mean between precision and recall, de-
fined as follows:

Fscore =
1
m

m∑
i=j

2 ∗ pj ∗ rj
pj + rj

(7)

3.3 Method Setup
In this paper, we focus on the predictions-as-
features style methods, and use CC and LEAD as
the baselines. Our methods are JCC and JLEAD.
JCC(JLEAD) is CC(LEAD) trained by our join-
t algorithm and we compare JCC(JLEAD) to C-
C(LEAD) respectively. Put it another way, C-
C/LEAD provide the partial order structure of

3http://mulan.sourceforge.net/
datasets.html and http://mlkd.csd.auth.
gr/multilabel.html
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Dataset BR CC LEAD JCC JLEAD
hamming loss (lower is better)

slashdot 0.046± 0.002 0.043± 0.001 0.045± 0.001◦ 0.043± 0.001 0.043± 0.001
medical 0.013± 0.001 0.013± 0.001• 0.012± 0.000◦ 0.011± 0.000 0.010± 0.001
enron 0.052± 0.001 0.053± 0.002• 0.052± 0.001◦ 0.049± 0.001 0.049± 0.001

tmc2007 0.063± 0.002 0.058± 0.001 0.058± 0.001 0.057± 0.001 0.057± 0.001
0/1 loss (lower is better)

slashdot 0.645± 0.013 0.637± 0.015• 0.631± 0.017◦ 0.610± 0.014 0.614± 0.011
medical 0.398± 0.034 0.377± 0.032• 0.379± 0.033◦ 0.353± 0.030 0.345± 0.030
enron 0.856± 0.016 0.848± 0.017 0.853± 0.017 0.848± 0.018 0.850± 0.017

tmc2007 0.698± 0.004 0.686± 0.006 0.689± 0.009 0.684± 0.006 0.681± 0.006
F score (higher is better)

slashdot 0.345± 0.016 0.354± 0.015• 0.364± 0.015◦ 0.385± 0.017 0.383± 0.017
medical 0.403± 0.012 0.416± 0.013• 0.426± 0.011◦ 0.444± 0.009 0.446± 0.013
enron 0.222± 0.014 0.224± 0.019 0.225± 0.018 0.223± 0.017 0.222± 0.015

tmc2007 0.524± 0.007 0.531± 0.009• 0.508± 0.017◦ 0.547± 0.007 0.546± 0.006

Table 1: Performance (mean±std.) of each approach in terms of different evaluation metrics. •/◦
indicates whether JCC/JLEAD is statistically superior to CC/LEAD respectively (pairwise t-test at 5%
significance level).

classifiers, and train these classifiers one by one.
JCC/LEAD train classifiers jointly in the partial
order structure provided by CC/LEAD.

For LEAD and JLEAD, we use the Banjo
(Bayesian ANalysis with Java Objects) (Smith et
al., 2006) package as the Bayesian structure learn-
ing tool. Besides, we also perform experiments
with Binary Relevance (BR), which is the baseline
for the predictions-as-features methods. BR trains
a classifier for a label independently, which does-
n’t model dependencies. The base classifier of all
of them is set to logistic regression without regu-
larization. Experiments are performed in ten-fold
cross validation with pairwise t-test at 5% signifi-
cance level.

3.4 Performance

We reports the detailed results in terms of different
evaluation metrics on different data sets in table 1.
As shown in this figures, CC and LEAD outperfor-
m BR, which shows the values of the prediction-
as-features methods. JCC and JLEAD wins over
CC and LEAD respectively, which shows the val-
ues of the proposed joint learning algorithm.

The improvements are much smaller on the En-
ron data set than other data sets. In fact, BR, the
original prediction-as-features methods and our
proposed methods share similar performance on
the Enron data set. The reason may be that the
label dependencies in the Enron dataset is weak.
The label dependencies weakness can be validat-
ed by the fact that the modeling-correlation C-
C and LEAD can’t obtain much higher perfor-
mance than the not-modeling-correlation BR. Due

Criteria JCC against
CC

JLEAD against
LEAD

hamming loss 2/2/02/2/02/2/0 3/1/03/1/03/1/0
0/1 loss 2/2/02/2/02/2/0 2/2/02/2/02/2/0
F-score 3/1/03/1/03/1/0 3/1/03/1/03/1/0
Total 7/5/07/5/07/5/0 8/4/08/4/08/4/0

Table 3: The win/tie/loss results for the joint learn-
ing algorithm against the original predictions-as-
features methods in terms of different evaluation
metrics (pairwise t-test at 5% significance level).

to the weak label dependencies, the modeling-
correlation-better JCC(JLEAD) can’t obtain much
higher performance than CC(LEAD).

We summarize the detailed results into Table 3.
JCC is significantly superior to CC in 7/12 cas-
es, tie in 5/12 cases, inferior in zero case. JLEAD
is significantly superior to LEAD in 8/12 cases,
tie in 4/12 cases, inferior in zero case. The re-
sults indicates that our proposed joint algorithm
can improve the performance of the predictions-
as-features methods.

3.5 Time

The training time (mean) of each approach is
showed detailed in table 4. First, we find the train-
ing time is related to the number of labels. The
training time on the Tmc2007 dataset (28596 in-
stances, 500 features and 22 labels) is less than
that on the Enron dataset (1702 instances, 1001
features and 53 labels). This is very easy to un-
derstand. We train more classifiers with respect
to more labels, which leads to more training time.
Second, LEAD/JLEAD have slightly less training
time than CC/JCC. The Bayesian network struc-
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Dataset CC JCC LEAD JLEAD
slashdot 63.85 85.63 52.17 73.85
medical 134.11 142.51 115.33 128.78
enron 234.28 257.89 196.87 218.95

tmc2007 153.70 169.52 145.80 158.56

Table 4: The average training time (in seconds) of
each approach

ture learning tool limits that a node has five parent
nodes at most. Hence, the partially order struc-
ture of LEAD/JLEAD is much simpler. Third, the
training time of the joint algorithm is slightly more
than that of the original methods. Some time is
spent on back-propagating feedbacks from latter
classifiers.

4 Conclusion

The multi-label text categorization is a common
and useful text categorization. Recently, a se-
ries of predictions-as-features style methods have
been developed, which model high order label de-
pendencies and obtain high performance. The
predictions-as-features methods suffer from the
drawback that they methods can’t model depen-
dencies between current label and the latter labels.
To address this problem, we propose a novel joint
learning algorithm that allows the feedbacks to be
propagated from the latter classifiers to the curren-
t classifier. Our experiments illustrate the models
trained by our algorithm outperform the original
models.
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Eduardo Corrêa Gonçalves, Alexandre Plastino, and
Alex A Freitas. 2013. A genetic algorithm for op-

timizing the label ordering in multi-label classifier
chains. In Tools with Artificial Intelligence (ICTAI),
2013 IEEE 25th International Conference on, pages
469–476. IEEE.

Ioannis Katakis, Grigorios Tsoumakas, and Ioannis
Vlahavas. 2008. Multilabel text classification for
automated tag suggestion. In Proceedings of the
ECML/PKDD.

Li Li, Longkai Zhang, and Houfeng Wang. 2014.
Muli-label text categorization with hidden compo-
nents. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1816–1821, Doha, Qatar, October.
Association for Computational Linguistics.

Jinseok Nam, Jungi Kim, Iryna Gurevych, and Jo-
hannes Fürnkranz. 2013. Large-scale multi-label
text classification-revisiting neural networks. arXiv
preprint arXiv:1312.5419.

John P Pestian, Christopher Brew, Paweł Matykiewicz,
DJ Hovermale, Neil Johnson, K Bretonnel Cohen,
and Włodzisław Duch. 2007. A shared task involv-
ing multi-label classification of clinical free text. In
Proceedings of the Workshop on BioNLP 2007: Bio-
logical, Translational, and Clinical Language Pro-
cessing, pages 97–104. Association for Computa-
tional Linguistics.

Jesse Read, Bernhard Pfahringer, Geoff Holmes, and
Eibe Frank. 2011. Classifier chains for multi-label
classification. Machine learning, 85(3):333–359.

Timothy N Rubin, America Chambers, Padhraic S-
myth, and Mark Steyvers. 2012. Statistical topic
models for multi-label document classification. Ma-
chine Learning, 88(1-2):157–208.

V Anne Smith, Jing Yu, Tom V Smulders, Alexander J
Hartemink, and Erich D Jarvis. 2006. Computation-
al inference of neural information flow networks. P-
LoS computational biology, 2(11):e161.

Ashok N Srivastava and Brett Zane-Ulman. 2005. Dis-
covering recurring anomalies in text reports regard-
ing complex space systems. In Aerospace Confer-
ence, 2005 IEEE, pages 3853–3862. IEEE.

L Enrique Sucar, Concha Bielza, Eduardo F Morales,
Pablo Hernandez-Leal, Julio H Zaragoza, and Pe-
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Abstract

We present a general framework for com-
paring multiple groups of documents. A
bipartite graph model is proposed where
document groups are represented as one
node set and the comparison criteria are
represented as the other node set. Using
this model, we present basic algorithms to
extract insights into similarities and differ-
ences among the document groups. Fi-
nally, we demonstrate the versatility of
our framework through an analysis of NSF
funding programs for basic research.

1 Introduction and Motivation

Given multiple sets (or groups) of documents, it is
often necessary tocompare the groups to identify
similarities and differences along different dimen-
sions. In this work, we present a general frame-
work to perform such comparisons for extraction
of important insights. Indeed, many real-world
tasks can be framed as a problem of comparing
two or moregroups of documents. Here, we pro-
vide two motivating examples.

1. Program Reviews. To better direct research
efforts, funding organizations such as the National
Science Foundation (NSF), the National Institutes
of Health (NIH), and the Department of Defense
(DoD), are often in the position of reviewing re-
search programs via their artifacts (e.g., grant ab-
stracts, published papers, and other research de-
scriptions). Such reviews might involve identify-
ing overlaps across different programs, which may
indicate a duplication of effort. It may also involve
the identification of unique, emerging, or dimin-
ishing topics. A “document group” here could be
defined either as a particular research program that
funds many organizations, the totality of funded
research conducted by a specific organization, or

all research associated with a particular time pe-
riod (e.g., fiscal year). In all cases, the objective is
to draw comparisonsbetween groups by compar-
ing the document sets associated with them.

2. Intelligence. In the areas of defense and in-
telligence, document sets are sometimes obtained
from different sources or entities. For instance, the
U.S. Armed Forces sometimes seize documents
during raids of terrorist strongholds.1 Similarities
between two document sets (each captured from a
different source) can potentially be used to infer a
non-obvious association between the sources.

Of course, there are numerous additional examples
across many domains (e.g., comparing different
news sources, comparing the reviews for several
products, etc.). Given the abundance of real-world
applications as illustrated above, it is surprising,
then, that there are no existing general-purpose ap-
proaches for drawing such comparisons. While
there is some previous work on the comparison
of document sets (referred to ascomparative text
mining), these existing approaches lack the gener-
ality to be widely applicable across different use
case scenarios with different comparison criteria.
Moreover, much of the work in the area focuses
largely on the summarization of shared or un-
shared topics among document groups (e.g., Wan
et al. (2011), Huang et al. (2011), Campr and
Ježek (2013), Wang et al. (2012), Zhai et al.
(2004)). That is, the problem of drawingmulti-
faceted comparisons among the groups themselves
is not typically addressed. This, then, motivates
our development of ageneral-purpose model for
comparisons of document sets along arbitrary di-
mensions. We use this model for the identification
of similarities, differences, trends, and anomalies
among largegroups of documents. We begin by

1http://en.wikipedia.org/wiki/
Document_Exploitation_(DOCEX)
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formally describing our model.

2 Our Formal Model for
Comparing Document Groups

As input, we are given several groups of doc-
uments, and our task is to compare them. We
now formally define these document groups and
the criteria used to compare them. LetD =
{d1, d2, . . . , dN} be a document collection com-
prising the totality of documents under considera-
tion, whereN is the size. LetDP be a partition of
D representing the document groups.

Definition 1 A document group is a subset DP
i ∈

DP (where index i ∈ {1 . . . |DP |}).

Each document group inDP , for instance,
might represent articles associated with either
a particular organization (e.g., university), a re-
search funding source (e.g., NSF or DARPA pro-
gram), or a time period (e.g., a fiscal year). Docu-
ment groups are compared usingcomparison cri-
teria, DC , a family of subsets ofD.

Definition 2 A comparison criterion is a subset
DC

i ∈ DC (where index i ∈ {1 . . . |DC |}).

Intuitively, each subset ofDC represents a set
of documents sharing some attribute. Our model
allows great flexibility in howDC is defined. For
instance,DC might be defined by the named en-
tities mentioned within documents (e.g., each sub-
set contains documents that mention a particular
person or organization of interest). For the present
work, we defineDC by topics discovered using la-
tent Dirichlet allocation or LDA (Blei et al., 2003).

LDA Topics as Comparison Criteria. Proba-
bilistic topic modeling algorithms like LDA dis-
cover latent themes (i.e., topics) in document col-
lections. By using these discovered topics as
the comparison criteria, we can compare arbitrary
groups of documents by the themes and subject
areas comprising them. LetK be the number
of topics or themes inD. Each document in
D is composed of a sequence of words:di =
〈si1, si2, . . . , siNi〉, where Ni is the number of
words indi andi ∈ {1 . . . N}. V =

⋃N
i=1 f(di) is

the vocabulary ofD, wheref(·) takes a sequence
of elements and returns a set. LDA takesK and
D (including its components such asV ) as input
and produces two matrices as output, one of which
is θ. The matrixθ ∈ RN×K is the document-
topic distribution matrix and shows the distribu-
tion of topics within each document. Each row

of the matrix represents a probability distribution.
DC is constructed usingK subsets of documents,
each of which represent a set of documents per-
taining largely to the same topic. That is, for
t ∈ {1 . . . K} and i ∈ {1 . . . N}, each subset
DC

t ∈ DC is comprised of all documentsdi where
t = argmaxx θix.2 Having defined the document
groupsDP and the comparison criteriaDC , we
now construct a bipartite graph model used to per-
form comparisons.

A Bipartite Graph Model. Our objective is to
compare thedocument groups in DP based on
DC . We do so by representingDP and DC as
a weighted bipartite graph,G = (P,C,E,w),
whereP andC are disjoint sets of nodes,E is the
edge set, andw : E → Z+ are the edge weights.
Each subset ofDP is represented as a node inP ,
and each subset ofDC is represented as a node
in C. Let α : P → DP and β : C → DC

be functions that map nodes to the document sub-
sets that they represent. Then, the edge setE is
{(u, v) | u ∈ P, v ∈ C,α(u)∩β(v) 6= ∅}, and the
edge weight for any two nodesu ∈ P andv ∈ C
is w((u, v)) = |α(u) ∩ β(v)|. Concisely, each
weighted edge in G between a document group
(in P ) and a topic (inC) represents the number
of documents shared among the two sets. Fig-
ure 1 shows a toy illustration of the model. Each
node inP is shown in black and represents a sub-
set ofDP (i.e., a document group). Each node in
C is shown in gray and represents a subset ofDC

(i.e., a document cluster pertaining primarily to the
same topic). Each edge represents the intersection
of the two subsets it connects. In the next section,
we will describe basic algorithms on such bipartite
graphs capable of yielding important insights into
the similarities and differences among document
groups.

3 Basic Algorithms Using the Model

We focus on three basic operations in this work.

Node Entropy. Let ~w be a vector of weights for
all edges incident to some nodev ∈ E. Theen-
tropy H of v is: H(v) = −∑

i pi log|~w|(pi), where
pi = wi∑

j wj
andi, j ∈ {1 . . . |~w|}. A similar for-

mulation was employed in Eagle et al. (2010). In-
tuitively, if v ∈ P , H(v) measures the extent to
which the document group is concentrated around

2 DC is also a partition ofD, when defined in this way.
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Figure 1: [Toy Illustration of Bipartite Graph Model.]

Each black node (i.e., node∈ P ) represents a document

group. Each gray node (i.e., node∈ C) represents a clus-

ter of documents pertaining primarily to the same topic.

a small number of topics (lower values ofH(v)
mean more concentrated). Similarly, ifv ∈ C, it is
the extent to which a topic is concentrated around
a small number of document groups.

Node Similarity. Given a graphG, there are many
ways to measure the similarity of two nodes based
on their connections. Such measures can be used
to infer similarity (and dissimilarity) among doc-
ument groups. However, existing methods are not
well-suited for the task of document group com-
parison. The well-known SimRank algorithm (Jeh
and Widom, 2002) ignores edge weights, and nei-
ther SimRank nor its extension, SimRank++ (An-
tonellis et al., 2008), scale to larger graphs. Sim-
Rank++ and ASCOS (Chen and Giles, 2013) do
incorporate edge weights but in ways that are
not appropriate for document group comparisons.
For instance, both SimRank++ and ASCOS in-
corporate magnitude in the similarity computa-
tion. Consider the case where document groups
are defined as research labs. ASCOS and Sim-
Rank++ will measure large research labs and small
research labs as less similar when in fact they may
publish nearly identical lines of research. Finally,
under these existing methods, document groups
sharing zero topics in common could still be con-
sidered similar, which is undesirable here. For
these reasons, we formulate similarity as follows.
Let NG(·) be a function that returns the neighbors
of a given node inG. Given two nodesu, v ∈ P ,
let Lu,v = NG(u) ∪ NG(v) and letx : I → Lu,v

be the indexing function forLu,v.3 We construct
two vectors,~a and~b, whereak = w(u, x(k)),
bk = w(v, x(k)), andk ∈ I. Each vector is es-

3I is the index set ofLu,v.

sentially a sequence of weights for edges between
u, v ∈ P and each node inLu,v. Similarity of two
nodes is measured using the cosine similarity of

their corresponding sequences,~a·~b‖~a‖‖~b‖ , which we

compute using a functionsim(·, ·). Thus, doc-
ument groups are considered more similar when
they have similar sets of topics in similar propor-
tions. As we will show later, this simple solution,
based on item-based collaborative filtering (Sar-
war et al., 2001), is surprisingly effective at infer-
ring similarity among document groups inG.

Node Clusters. Identifying clusters of related
nodes in the bipartite graphG can show how doc-
ument groups form larger classes. However, we
find that G is typically fairly dense. For these
reasons, partitioning of the one-mode projection
of G and other standard bipartite graph cluster-
ing techniques (e.g., Dhillion (2001) and Sun et
al. (2009)) are rendered less effective. We instead
employ a different tack and exploit the node sim-
ilarities computed earlier. We transformG into a
new weighted graphGP = (P,EP , wsim) where
EP = {(u, v) | u, v ∈ P, sim(u, v) > ξ}, ξ
is a pre-defined threshold, andwsim is the edge
weight function (i.e., wsim = sim). Thus,GP is
the similarity graph of document groups.ξ = 0.5
was used as the threshold for our analyses. To
find clusters inGP , we employ the Louvain al-
gorithm, a heuristic method based on modularity
optimization (Blondel et al., 2008). Modularity
measures the fraction of edges falling within clus-
ters as compared to the expected fraction if edges
were distributed evenly in the graph (Newman,
2006). The algorithm initially assigns each node
to its own cluster. At each iteration, in a local and
greedy fashion, nodes are re-assigned to clusters
with which they achieve the highest modularity.

4 Example Analysis: NSF Grants

As a realistic and informative case study, we uti-
lize our model to characterize funding programs
of the National Science Foundation (NSF). This
corpus consists of 132,372 grant abstracts describ-
ing awards for basic research and other support
funded by the NSF between the years 1990 and
2002 (Bache and Lichman, 2013).4 Each award is
associated with both a program element (i.e., fund-
ing source) and a date. We definedocument

4Data for years 1989 and 2003 in this publicly available
corpus were partially missing and omitted in some analyses.
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groups in two ways: by program element and by
calendar year. For comparison criteria, we used
topics discovered with the MALLET implementa-
tion of LDA (McCallum, 2002) usingK = 400 as
the number of topics and200 as the number of iter-
ations. All other parameters were left as defaults.
The NSF corpus possesses unique properties that
lend themselves to experimental evaluation. For
instance, program elements are not only associ-
ated with specific sets of research topics but are
named based on the content of the program. This
provides a measure of ground truth against which
we can validate our model. We structure our anal-
yses around specific questions, which now follow.

Which NSF programs are focused on specific
areas and which are not? When definingdoc-
ument groups as program elements (i.e., each NSF
program is a node inP ), node entropy can be
used to answer this question. Table 1 shows ex-
amples of program elements most and least as-
sociated with specific topics, as measured by en-
tropy. For example, the program1311 Linguistics
(low entropy) is largely focused on a singlelin-
guistics topic (labeled by LDA with words such
as “language,” “languages,” and “linguistic”). By
contrast, theAustralia program (high entropy) was
designed to support US-Australia cooperative re-
search across many fields, as correctly inferred by
our model.

Low Entropy Program Elements
Program Primary LDA Topic

1311 Linguistics language languages linguistic
4091 Network Infrastructure network connection internet

High Entropy Program Elements
Program Primary LDA Topic

5912 Australia (many topics & disciplines)
9130 Research in Minority Instit. (many topics & disciplines)

Table 1:[Examples of High/Low Entropy Programs.]

Which research areas are growing/emerging?
When definingdocument groups as calendar years
(instead of program elements), low entropy nodes
in C are topics concentrated around certain years.
Concentrations in later years indicate growth. The
LDA-discovered topicnanotechnology is among
the lowest entropy topics (i.e., an outlier topic with
respect to entropy). As shown in Figure 2, the
number ofnanotechnology grants drastically in-
creased in proportion through 2002. This result is
consistent with history, as the National Nanotech-
nology Initiative was proposed in the late 1990s to
promote nanotechnology R&D.5 One could also

5http://en.wikipedia.org/wiki/

measure such trends using budget allocations by
incorporating the award amounts into the edge
weights ofG.
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Figure 2: [Uptrend in Nanotechnology.] Our model cor-

rectly identifies the surge in nanotechnology R&D beginning

in the late 1990s.

Given an NSF program, to which other pro-
grams is it most similar? As described in Section
3, when each node inP represents an NSF pro-
gram, our model can easily identify the programs
most similar to a given program. For instance, Ta-
ble 2 shows the top three most similar programs
to both theTheoretical Physics andEcology pro-
grams. Results agree with intuition. For each
NSF program, we identified the topn most sim-
ilar programs ranked by oursim(·, ·) function,
wheren ∈ {3, 6, 9}. These programs were man-
ually judged for relatedness, and the Mean Av-
erage Precision (MAP), a standard performance
metric for ranking tasks in information retrieval,
was computed. We were unsuccessful in evaluat-
ing alternative weighted similarity measures men-
tioned in Section 3 due to their aforementioned
issues with scalability and the size of the NSF
dataset. (For instance, the implementations of AS-
COS (Antonellis et al., 2008) and SimRank (Jeh
and Widom, 2002) that we considered are avail-
able here.6) Recall that oursim(·, ·) function is
based on measuring the cosine similarity between
two weight vectors,~a and~b, generated from our
bipartite graph model. As a baseline for compar-
ison, we evaluated two additional similarity im-
plementations using these weight vectors. The
first measures the similarity between weight vec-
tors using weighted Jaccard similarity, which is∑

k min(ak ,bk)∑
k max(ak ,bk) (denoted asWtd. Jaccard). The sec-

ond measure is implemented by taking the Spear-
man’s rank correlation coefficient of~a and~b (de-

National_Nanotechnology_Initiative
6https://github.com/hhchen1105/

networkx_addon
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noted asRank). Figure 3 shows the Mean Average
Precision (MAP) for each method and each value
of n. With the exception of the difference between
Cosine and Wtd. Jaccard for MAP@3, all other
performance differentials were statistically signif-
icant, based on a one-way ANOVA and post-hoc
Tukey HSD at a 5% significance level. This, then,
provides some validation for our choice.

1245 Theoretical Physics 1182 Ecology

1286 Elementary Particle Theory 1128 Ecological Studies
1287 Mathematical Physics 1196 Environmental Biology
1284 Atomic Theory 1195 Ecological Research

Table 2: [Similarity Queries.] Three most similar pro-

grams to theTheoretical Physics andEcology programs.
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Figure 3:[Mean Average Precision (MAP).]Cosine sim-

ilarity outperforms alternative approaches.

How do NSF programs join together to form
larger program categories? As mentioned, by
using the similarity graphGP constructed fromG,
clusters of related NSF programs can be discov-
ered. Figure 4, for instance, shows a discovered
cluster of NSF programs all related to the field of
neuroscience. Each NSF program (i.e., node) is
composed of many documents.

Figure 4:[Neuroscience Programs.]A discovered cluster

of program elements all related toneuroscience.

Which pairs of grants are the most similar in
the research they describe?Although the focus
of this paper is on drawing comparisons among
groups of documents, it is often necessary to
draw comparisons amongindividual documents,
as well. For instance, one may wish to identify
pairs of grants fromdifferent programs describing

highly similar lines of research. One common ap-
proach to this is to measure the similarity among
low-dimensional representations of documents re-
turned by LDA (Blei et al., 2003). We employ
the Hellinger distance metric for this. Unfortu-
nately, identifying the set ofmost similar docu-
ment pairs in this way can be computationally ex-
pensive, as the number of pairwise comparisons
scales quadratically with the size of the corpus. To
address this, our bipartite graph model can be ex-
ploited as ablocking heuristic using either the doc-
ument groups or the comparison criteria. In the
latter case, one can limit the pairwise comparisons
to only those documents that reside in the same
subset ofDC . For the former case,node similar-
ity can be used. Instead of comparing each docu-
ment with every other document, we can limit the
comparisons to only those document groups of in-
terest that are deemed similar by our model. As
an illustrative example, the program1271 Compu-
tational Mathematics and the program2865 Nu-
meric, Symbolic, and Geometric Computation are
inferred as being highly similar. Between these
groups, the following two grants are easily iden-
tified as being the most similar with a Hellinger
similarity score of0.73 (only titles are shown due
to space constraints):

• Grant #1: Analyses of Structured Computational

Problems and Parallel Iterative Algorithms

(Discusses parallel iterative methods for solutions to

large sparse/dense systems of linear equations.)

• Grant #2: Sparse Matrix Algorithms on Distributed

Memory Multiprocessors

As can be seen, despite some differences in ter-
minology, the two lines of research are related, as
matrices (studied in Grant #2) are used to com-
pactly represent and work with systems of linear
equations (studied in Grant #1).

5 Conclusion

We have presented a bipartite graph model for
drawing comparisons among largegroups of docu-
ments. We showed how basic algorithms using the
model can identify trends and anomalies among
the document groups. As an example analysis, we
demonstrated how our model can be used to better
characterize and evaluate NSF research programs.
For future work, we plan on employing alterna-
tive comparison criteria in our model such as those
derived from named entity recognition and para-
phrase detection.
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els for Comparative Summarization. In Ivan Haber-
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Abstract

Cross-document co-reference resolution
(CCR) computes equivalence classes over
textual mentions denoting the same entity
in a document corpus. Named-entity link-
ing (NEL) disambiguates mentions onto
entities present in a knowledge base (KB)
or maps them to null if not present in
the KB. Traditionally, CCR and NEL have
been addressed separately. However, such
approaches miss out on the mutual syn-
ergies if CCR and NEL were performed
jointly.
This paper proposes C3EL, an unsuper-
vised framework combining CCR and NEL
for jointly tackling both problems. C3EL
incorporates results from the CCR stage
into NEL, and vice versa: additional global
context obtained from CCR improves the
feature space and performance of NEL,
while NEL in turn provides distant KB fea-
tures for already disambiguated mentions
to improve CCR. The CCR and NEL steps
are interleaved in an iterative algorithm that
focuses on the highest-confidence still un-
resolved mentions in each iteration. Ex-
perimental results on two different corpora,
news-centric and web-centric, demonstrate
significant gains over state-of-the-art base-
lines for both CCR and NEL.

1 Introduction
With the advent of large knowledge bases (KB)
like DBpedia, YAGO, Freebase, and others, enti-
ties (people, places, organizations, etc.) along with
their attributes and relationships form the basis of
smart applications like search, analytics, recom-
mendations, question answering, and more. The
major task that arises in both the KB construc-
tion process and the entity-centric applications in-
volves precise recognition, resolution, and link-
ing of named entities distributed across web pages,
news articles, and social media.

Named Entity Recognition (NER) deals with the
identification of entity mentions in a text and their
classification into coarse-grained semantic types
(person, location, etc.) (Finkel et al., 2005; Nadeau

& Sekine, 2007; Ratinov & Roth, 2009). This in-
volves segmentation of token sequences to obtain
mention boundaries, and mapping relevant token
spans to pre-defined entity categories. For exam-
ple, NER on the text Einstein won the Nobel
Prize identifies the mentions “Einstein” and “No-
bel Prize” and marks them as person and misc type,
respectively.

Named Entity Linking (NEL)1 involves the dis-
ambiguation of textual mentions, based on context
and semantic information, and their mapping to
proper entities in a KB (Bunescu & Paşca, 2006;
Cucerzan, 2007; Milne & Witten, 2008; Hoffart
et al., 2011; Ratinov et al., 2011; Cornolti et al.,
2013). For example, in the above text, the mention
“Einstein” is linked to the physicist Albert Einstein.

Entity Co-reference Resolution (CR) (Haghighi
& Klein, 2010; Ng, 2010; Lee et al., 2013) is
essentially a clustering task to identify mentions
(and anaphoras) within a document referring to the
same entity, thus computing equivalence classes or
mention groups. For example, mentions Albert
Einstein and Nobel laureate Einstein both
refer to the same entity German physicist Albert
Einstein, but are different from the mention Hans
Albert Einstein.

When CR is extended to an entire text cor-
pus, in order to generate equivalence classes of
co-referring mentions across documents, the task
is known as Cross-document Co-reference Resolu-
tion (CCR) (Bagga & Baldwin, 1998; Culotta et
al., 2007; Singh et al., 2011; Dutta & Weikum,
2015). Note that CCR is not the same as merely
concatenating all documents in the corpus and uti-
lizing existing CR methods. The linguistic diver-
sity across documents and high computational cost
for huge numbers of mentions in the corpus would
typically make such a CR-based simulation per-
form poorly. Neither CR nor CCR links mention
groups to corresponding KB entities. Thus, they
represent both in-KB entities and out-of-KB enti-
ties (e.g., long-tail or emerging entities that do not
have a Wikipedia article) in the same way.

1Named Entity Disambiguation (NED) and “Wikification”
are often used to denote the same task. The latter may be more
broadly used, though, to include the disambiguation of com-
mon nouns and phrases onto concepts, whereas NED restricts
itself to noun phrases that denote individual entities.
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State-of-the-Art and its Limitations: Established
CR methods rely on rule-based methods or super-
vised learning techniques on syntactic paths be-
tween mentions, semantic compatibility, and other
linguistic features (Haghighi & Klein, 2009), with
additional use of distant features from KBs (Lee
et al., 2013). Modern cluster-ranking (Rahman
& Ng, 2011) and multi-sieve methods (Ratinov
& Roth, 2012) involve incremental expansion of
mention groups by considering semantic types
and Wikipedia categories. CCR methods utilize
transitivity-aware clustering techniques (Singh et
al., 2011), by considering mention-mention sim-
ilarities (Bagga & Baldwin, 1998) along with
features extracted from external KBs (Dutta &
Weikum, 2015).

NEL methods often harness the semantic sim-
ilarity between mentions and entities and also
among candidate entities for different mentions (in
Wikipedia or other KBs) for contextualization and
coherence disambiguation (Hoffart et al., 2011;
Milne & Witten, 2008; Kulkarni et al., 2009; Rati-
nov et al., 2011). However, in the absence of
CR mention groups, NEL has limited context and
is bound to miss out on certain kinds of difficult
cases.

Although NER, CR, CCR and NEL involve
closely related tasks and their tighter integration
has been shown to be promising (Chen & Roth,
2013; Zheng et al., 2013), they have mostly been
explored in isolation. Recently, several joint mod-
els have been proposed for CR-NER (Haghighi &
Klein, 2010; Singh et al., 2013), CR-NEL (Hajishirzi
et al., 2013), and NER-CR-NEL (Durrett & Klein,
2014). However, to the best of our knowledge, no
method exists for jointly handling CCR and NEL
on large text corpora.

1.1 Approach and Contributions
This paper proposes the novel C3EL (Cross-
doCument Co-reference resolution and Entity
Linking) framework for jointly modeling cross-
document co-reference resolution (CCR) and link-
age of mention groups to entities in a knowledge
base (NEL).
Example: To illustrate the potential synergies
between CCR and NEL, consider the 3 docu-
ments in Figure 1 containing 9 mentions (on the
left) with candidate entities from a KB (on the
right). CCR alone would likely miss the co-
reference relation between Logan (Doc 1) and its
alias Wolverine (Doc 2), leaving NEL with the
difficult task of disambiguating “Logan” in a doc-
ument with sparse and highly ambiguous context
(Doc 1). On the other hand, NEL alone would
likely map Australia (Doc 3) to the country (not
the movie) and could easily choose the wrong link
for mention “Hugh”. Moreover, the presence of
Ava Eliot as an out-of-KB mention complicates
the task.

However, if we could more freely interleave

When Hugh played Logan,
Ava Eliot was always with him.

Hugh Grant
Hugh Jackman

Wolverine 
(character)

Ava Gardner

AustraliaAustralia (film)

Eva Green

Mount Logan
Logan Thomas

Hugh Hefner

Nicole Kidman
Nicole Murphy

Hurricane Nicole
Nicolas Cage

Doc 1

Doc 2

Doc 3

Knowledge Base

When Hugh played Wolverine,
his daughter Ava 
accompanied him on the set. 

Hugh and Nicole
played together in Australia.

Input Corpus

Figure 1: Joint CCR-NEL Example (Green KB en-
tries connected via arrows denote the correct entity linkage for
the mention co-reference groups; while the red ones represent
alternative incorrect candidates with similar surface forms)

CCR and NEL and could iterate them several
times, we would be in a much stronger position.
An initial NEL step for the easiest mention, namely
“Wolverine”, maps it to the character of X-Men
movies. This indicates that the three “Hugh” men-
tions could all be the same actor, and are thus eas-
ily merged into a co-reference group using CCR.
We now have enough cues for NEL to choose the
right entity for the “Hugh” mention group, which
in turn enables the proper mapping of “Australia”
to the movie. Finally, it becomes clear that men-
tions “Ava Eliot” and “his daughter Ava” should be
merged into the same group and represented as an
out-of-KB entity mapped to null.

The above example clearly demonstrates that
interleaving CCR and NEL is highly beneficial.
However, appropriate choices for the ordering of
CCR and NEL steps are usually not obvious at all.
The proposed C3EL algorithm solves this prob-
lem: automatically determining an efficient inter-
leaving of CCR and NEL.
Approach: C3EL iteratively aggregates interme-
diate information obtained from alternating steps
of CCR and NEL, thus forming a feedback loop
for propagating mention features and entity knowl-
edge. Intuitively, co-referring mentions obtained
via CCR generate global context for improved
NEL performance, while mentions linked to KB
entities (by NEL) provide distant semantic features
with additional cues for CCR. C3EL couples sev-
eral building blocks like unsupervised hierarchi-
cal clustering, context summaries for mentions and
distant KB features for entities, drawing inspiration
from the CCR-only method of (Dutta & Weikum,
2015). Mention linking to the KB (NEL) is per-
formed using distant knowledge and co-occurring
mentions.

In a nutshell, the major contributions of this pa-
per are:
• the C3EL framework for joint computation of

cross-document co-reference resolution (CCR)
and entity linking to a KB (NEL), based on
propagating information across iterative CCR
and NEL steps;
• techniques for considering co-occurring men-

tions in context summaries and for harnessing
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context-based keywords for link validation in
NEL, improving accuracy on out-of-KB enti-
ties;
• an experimental evaluation with two different

corpora, one based on news articles and one
based on web pages, demonstrating substantial
gains for both CCR and NEL over state-of-the-
art methods.

2 C3EL: Joint CCR-NEL Framework

Given an input corpus C of n documents, C =
{D1, D2, · · · , Dn} with entity mentions EM =
{m11,m12, · · · ,m21,m22, · · · } (mij ∈ Di),
C3EL aims to jointly compute:

• CCR: an equivalence relation over EM with
equivalence classesEi, such thatEi ∩i 6=j Ej =
∅ and ∪i Ei = EM , and
• NEL: linking each of the classes Ei to entities

present in a KB or map it to null if there is no
proper entity in the KB.

To this end, C3EL consists of 3 algorithmic
stages: (i) Pre-Processing, (ii) Interleaved NEL and
CCR, and (iii) Finalization.

2.1 Pre-Processing Stage

HTML pages in the input corpusC are transformed
into plain text using standard tools like jsoup.
org. Recognition and markup of mentions are per-
formed using the Stanford CoreNLP toolkit (nlp.
stanford.edu), and a coarse-grained lexical
type for each mention (e.g., person, location, orga-
nization, etc.) is obtained from the Stanford NER
Tagger (Finkel et al., 2005). The multi-pass sieve
algorithm for single-document CR (Raghunathan
et al., 2010; Lee et al., 2011; Lee et al., 2013) then
computes mention co-reference chains per docu-
ment, and a head mention is chosen for each of the
mention groups (chains). The head mention is typ-
ically represented by the most explicit denotation
of the entity (e.g., person’s full name with title, lo-
cation name with country, etc.).

For each of the mention groups Mi, C3EL then
constructs a context summary using:

• Sentences – all sentences in the document that
contain mentions of group Mi; and
• Co-occurrence – all sentences for other men-

tion groups that contain mentions co-occurring
in any of the sentences of Mi (as obtained
above).

Formally, for each mention groupMi, let S(Mi) =
{sentence(mj) |mj ∈ Mi} represent the set
of extracted sentences, where sentence(mj) de-
notes the sentences in which mention mj occurs.
Also, let the co-occurring mention set of Mi be
Co(Mi) = {m′ |m′ ∈ S(Mi) ∧ m′ /∈ Mi}. The

context summary of Mi is defined as:

CS(Mi) = S(Mi) ∪
 ⋃
m′∈Co(Mi)

S(m′)


The context summaries intentionally do not in-

clude any distant KB features for mentions. The
intuition is to minimize potential noise from overly
speculative mappings to the KB at this initial stage.

2.2 Interleaved NEL & CCR Approach
After the preliminary CR step on each document
and the construction of context summaries, C3EL
now performs an initial NEL step for each of the
mention groups Mi, using the extracted sentences
S(Mi) as inputs to NEL. It obtains the best match-
ing entity, the confidence of the match, and its
corresponding Wikipedia page. Off-the-shelf NEL
software (like WikipediaMiner or Illinois-Wikifier)
is used for mention-entity mapping based on prior
popularity of the named-entities (from the KB) and
textual similarity between S(Mi) (context of the
mention group) and the entity descriptions in KB.

For each Mi, the entity link obtained (from
NEL) is then “validated” using a similarity mea-
sure between features from the context summary,
CS(Mi) (including co-occurring mentions) and
distant KB labels – forming the link validation pro-
cedure of C3EL. This explicit use of co-occurring
mentions’ (Co(Mi)) contexts helps to better iden-
tify out-of-KB entities compared to direct full-
fledged NEL using the entire input text (shown in
Section 3). Also the use of NEL on S(Mi) alone,
makes C3EL “light-weighted”.

The mappings between the mention groups and
KB entries are then classified, on the basis of
the NEL confidence scores, into Strong Evidence
(SE), Weak Evidence (WE), and No Evidence (NE)
classes. For mention groups placed in SE, the
KB features (obtained previously) are appended to
their context summaries, while mentions strongly
linked to same KB entities are considered to be co-
referring and hence grouped together (performing
implicit CCR).

Considering our example (Figure 1), we now
outline the iterative steps of C3EL interleaving
NEL & CCR.
1. During Iteration 1, C3EL performs:
• NEL: The initial NEL step maps the unam-

biguous mentions, Wolverine to the X-Men
movie character and Australia to the country,
with high confidence. However, link validation
fails for “Australia” as there is very low similar-
ity between the mention context features (e.g.,
Hugh, Wolverine, etc.) and the distant KB la-
bels extracted from its Wikipedia page (e.g.,
Commonwealth, population, etc.); thus the link
is dropped and the mention is added to NE. So
only the mention “Wolverine” is added to the
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SE class and enriched with KB features (e.g.,
alias Logan).
On the other hand, the 3 “Hugh” mentions ex-
hibit low NEL confidence due to the high am-
biguity of this first name and are therefore clas-
sified into WE. The remaining mentions have
extremely low NEL confidence (due to sparse
contextual information) and are added to NE.
• CCR: The WE and NE classes are fed sep-

arately to the CCR procedure. Based on
the context summary similarities between men-
tions, C3EL performs hierarchical clustering
to group together the “Hugh” mentions (in
the WE class) and creates a co-referring men-
tion group with the individual mentions’ con-
text summaries concatenated. This merging
of summaries grows and strengthens captured
contexts, which propagates across documents.
This concludes the first iteration of C3EL.

2. The above results are provided to the second
Iteration:
• NEL: The context summary of the “Hugh”

mention group in WE now provides definitive
cues to correctly map it to the actor Hugh Jack-
man with high confidence, thus placing it in the
SE class.
• CCR: The ensuing CCR step groups together

“Ava Eliot” and “Ava” (in NE) using co-
occurrence context of the co-referring Hugh
mentions.

3. Subsequent NEL iterations (on WE and NE)
identify “Ava” as an out-of-KB entity and cor-
rectly links “Australia” to the movie using CCR-
generated mention-group contexts and link valida-
tion. CCR finally groups together “Logan” with
“Wolverine” based on context similarity with dis-
tant KB features. This process of alternating CCR
and NEL is repeated until all mention groups are
strongly connected to KB entities (placed in SE),
or no changes are made anymore.

The NEL and CCR procedures are performed
separately on the different mention types (like
PER, LOC, etc.), since different mention types
rarely co-refer. We next present the internal work-
ing details of the NEL and CCR stages of C3EL.

2.2.1 Named-Entity Linking (NEL) Stage
In its NEL procedure, C3EL disambiguates men-
tions to entities in the YAGO knowledge base
(yago-knowledge.org). We perform NEL on
the sentences (S(Mi)) of a mention group, us-
ing named-entity popularity statistics and context,
to obtain the best matching entity, its confidence
score, and the corresponding Wikipedia page (from
sameAs link in YAGO). Assume a mention group
Mi to be mapped to an entity ei with a confidence
score of φ(Mi, ei).
A. Link Validation: For each mention group (e.g.,
Hugh), we extract distant KB labels such as se-

mantic types or categories (e.g., actor), title (e.g.,
Golden Globe winner), alias (e.g., Wolverine), lo-
cation, and gender (for person) from the Wikipedia
page infoboxes. The similarity of these features
to keywords obtained from the context summary
CS(Mi) is computed using IR-style term frequen-
cies within a document (tf) and inverse document
frequencies within the corpus (idf). We utilize the
bag-of-words model based tf × idf -weighted co-
sine similarity measure. If the similarity score is
above a threshold, τ , the NEL result is accepted,
otherwise it is discarded – thus avoiding noisy link-
age of sparse mentions to prominent KB entries.
This subtle introduction of controlled distant su-
pervision within the C3EL framework enables ef-
ficient detection of out-of-KB mentions.
B. Classification: To sift out well-known and
long-tail entities from new ones, and prevent
“noisy” interactions among the contexts of in-
KB and out-of-KB mentions (with similar surface
forms), mention groups Mi (linked to ei with score
φ(Mi, ei)) are classified into 3 classes by 2 thresh-
old parameters, δs and δw, as:
• Strong Evidence (SE): For φ(Mi, ei) ≥ δs,

mention group Mi exhibits high linkage con-
fidence with ei and is placed in SE. If two
or more mentions in SE are independently
mapped to the same KB entity, they co-refer
transitively and are hence grouped together
with their context summaries merged (implicit
CCR). Distant KB features for mentions in SE
are extracted and appended to CS(Mi), provid-
ing additional cues for later steps.
• Weak Evidence (WE): Mention groups with
δw ≤ φ(Mi, ei) < δs are placed in this class.
They mostly represent long-tail in-KB entities
(sparsely represented in KB) with limited se-
mantic information (for detection) but might
also be new/emerging entities absent from KB.
• No Evidence (NE): φ(Mi, ei) < δw represents

mentions groups that have been mapped to null
(or have near-zero match confidence) or have
failed link validation during the NEL proce-
dure. These entities are most likely to be out-
of-KB and are allocated to this class.

2.2.2 Cross-Document CR (CCR) Stage
The CCR stage of C3EL adopts the sampling-
based hierarchical clustering approach of (Dutta
& Weikum, 2015), to obtain co-referring mention
clusters.
A. Similarity Measure: To infer whether two
mention groups represent the same entity, the simi-
larity between the context summaries are computed
based on (i) tf-idf -weighted bag-of-words cosine
distance, and (ii) partial-match scores of multi-
word keyphrases in bounded text windows (Taneva
et al., 2011). The context summaries (with stop-
words removed) are re-interpreted as, (i) bag of
words, and (ii) bag of keyphrases, to extract fea-
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ture vectors for similarity computation. Finally,
the mixture model of bag-of-words (BoW) and
keyphrases (KP) of (Dutta & Weikum, 2015) is
used to assign feature weights using tf-idf measure.
B. Hierarchical Clustering: s mention groups
are uniformly randomly sampled and their sim-
ilarities to the other groups (using context sum-
mary) are computed. A similarity-weighted graph
with the mention groups as nodes and edge weights
representing mention-mention similarities is con-
structed. Bisection-based hierarchical balanced
min-edge-cut graph partitioning (Buluc et al.,
2013) is performed, using the METIS soft-
ware (Karypis & Kumar, 1999)2, to partition non-
coreferent mentions groups. The Bayesian Infor-
mation Criterion (BIC) (Schwarz, 1978; Hour-
dakis et al., 2010), a Bayesian variant of Minimum
Description Length (Grünwald, 2007), is used as
the cluster split stopping criterion, and the context
summaries within each final cluster are merged.

CCR aims to process heterogeneous corpora that
go beyond a single domain and style, such as Web
collections.

2.3 Finalization Stage
For the remaining mention groups in WE, we fi-
nally perform threshold based disambiguation of
mention clusters using the context summaries. For
each mention groupMi ∈WE, we compute (1) its
context summary similarities (as in Section 2.2.2)
to all other mention groups Mj in SE by also using
distance features from the weakly linked KB enti-
ties, and (2) textual overlap between the mention
group representatives. Mi is concatenated with the
best matching entity Mk (in SE) if the similarity
score is above a threshold θ; else Mi is marked as
an out-of-KB entity (mapped to null) and is placed
in theNE class. This helps in reducing propagated
CR errors like erroneous mention boundary detec-
tion (in NER), omissions in co-reference chain, etc.
(leading to “phantom” out-of-KB entities).

The obtained mention groups represent the final
equivalence classes of co-referring mentions across
documents – capturing both in-KB entities (with
links to the KB) in the SE class and out-of-KB
entities (mapped to null) in the NE class.

3 Experimental Evaluation
In this section, we empirically study the perfor-
mance of C3EL against various state-of-the-art
methods. We analyze the individual gains in CCR
and NEL due to the joint modeling.
Datasets: We use the following 2 publicly avail-
able corpora:

• EventCorefBank (ECB) corpus3 (Bejan &
Harabagiu, 2010): contains 482 news and Web
articles (classified into 43 topics) with a total

2
glaros.dtc.umn.edu/gkhome/metis/metis/overview

3
faulty.washington.edu/bejan/data/ECB1.0.tar.gz

of 5447 mentions corresponding to 1068 dis-
tinct named-entities. Entity co-reference an-
notations (across documents within each topic
cluster) were provided by (Lee et al., 2012),
and we performed manual examination of the
annotations for KB linking of the entities to
Wikipedia entries, if present; thus providing
ground truth for both CCR and NEL.
• ClueWeb2009 FACC1 dataset4 (Gabrilovich

et al., 2013): provides machine automated
entity-linkage annotations of the ClueWeb09
corpus (ca. 1 Billion crawled Web pages) with
Freebase entries5. The corpus contains many
topical domains and highly diverse documents
from news, movie reviews, people home pages
to blogs and other social media posts. We ran-
domly select 500K documents containing 4.64
Million mentions associated with 1.29 Million
distinct entities to form our corpus. For NEL
ground-truth construction, we link the entities
to their Wikipedia pages (using Freebase’s “on
the web” property). Since no explicit anno-
tations of inter-document entity co-references
exists, we consider two mentions (in different
documents) to co-refer if they are linked with
the same Freebase entity.

Evaluation: To assess the output quality of C3EL
we use the following established metrics:
• B3 F1 score (Bagga & Baldwin, 1998): mea-

sures the F1 score as the harmonic mean of av-
erage precision and recall computed over all
mention groups in the final equivalence classes.
Precision (for a mention group) represents the
ratio of the number of correctly reported co-
references (or linking) to the actual number;
while recall computes the fraction of the gold-
standard annotations correctly identified.
• φ3 − CEAF score (Luo, 2005): provides

an alternate F1 score computed as in the B3

measure; but calculates precision and recall of
mention groups using the best 1-to-1 mapping
(i.e., mapping with maximum mention overlap)
between the resultant equivalence classes and
those in the ground truth. Normalization with
the number of mentions for each of the resul-
tant classes yields the φ4-CEAF score.

We consider only the 3 most notable mention
types: person (PER), location (LOC), and orga-
nization (ORG) – accounting for 99.7% of enti-
ties present in the ECB corpus and 96.3% of our
ClueWeb09 corpus. All experiments were con-
ducted on a 4 core Intel i5 2.50 GHz processor with
8GB RAM running Ubuntu 12.04 LTS.
3.1 Parameter Tuning & Sensitivity Study
Validation of entity linkage to KB and their subse-
quent classification into confidence classes (as de-

4
lemurproject.org/clueweb09/FACC1

5Human analysis of a subset of the annotations generated revealed a preci-
sion of 80− 85% (Gabrilovich et al., 2013)
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Approach P R B3 φ3 φ4

EECR 74.9 55.5 63.7 - 33.7
CROCS 73.11 75.28 74.18 67.35 -
C3EL 79.52 82.91 81.18 73.89 53.3

Table 2: CCR performance (%) comparison on ECB

scribed in Section 2) during the NEL step ofC3EL
are based on 3 parameters: confidence thresholds
(δs and δw) and validation threshold (τ ); the values
of which can be tuned based on cross-validation
approach with train and test data subsets. Using
the “gold annotations” of the train-set (30% of to-
tal data), parameter values providing the best preci-
sion score are individually learnt using line search
with small step size.

In our experimental setup, we systematically
vary the parameter values and observe its effects
on C3EL for the training data. With increase in
δs, the number of mentions mapped to the Strong
Evidence (SE) class decreases. This in turn limits
the influx of external KB features, thus degrading
CCR performance as observed in Table 1(a). While
for low values of δs, even weak mention links are
placed in SE, leading to a decrease in precision due
to noisy KB feature inclusion. On the other hand,
a high δw value increases the number of mentions
in the NE class, while low values tends to accu-
mulate mentions in the WE class. This adversely
affects the detection of out-of-KB entities due to
noise from other co-occurring similar KB mentions
(refer Table 1(b)) during clustering in CCR step.

The effect of τ on C3EL has be shown in Ta-
ble 1(c). Similar to the behavior induced by δs,
we observe that a high τ limits entity linking and
possible KB feature inclusion, while an extremely
low value (near to zero) allows for noisy feature
incorporation – both situations leading to lowered
CCR efficiency. However, since τ prevents gross
mis-alignment of mentions to KB entities, a wide
range of small value (0.1− 0.35) is seen to provide
comparable performance.

Hence, for our remaining experimental study we
set δs = 0.11 and δw = 0.06 (as in (Hoffart et al.,
2014)), while τ is set to 0.1, and threshold for the
finalization stage θ = 2× δs = 0.22.

3.2 CCR Performance Results
We initially benchmark the performance improve-
ment in cross-document co-reference resolution
(CCR) procedure by C3EL against two compet-
ing approaches:
(1) state-of-the art sampling based hierarchical
clustering method, CROCS (Dutta & Weikum,
2015); and
(2) iterative joint entity-event CCR, EECR (Lee
et al., 2012).

Table 2 tabulates the results obtained on the ECB
dataset. We observe C3EL to decisively outper-
form both the existing methods, providing a B3

F1 improvement of around 7% over CROCS and
17% over EECR. We further attain around 6%
φ3−CEAF score enhancement over CROCS, and

Approach P (%) R (%) B3 (%) φ3 (%)
CROCSG 79.9 83.33 81.58 74.11
C3ELG 84.74 89.9 87.24 80.5

Table 3: CCR results on ECB
Type Approach P (%) R (%) B3 (%)

PER CROCSG 71.8 74.15 72.96
C3ELG 84.85 82.73 83.78

LOC CROCSG 78.23 85.41 81.66
C3ELG 81.41 94.31 87.29

ORG CROCSG 85.73 87.89 86.8
C3ELG 88.52 91.82 90.14

Table 4: CCR results on ECB for mention types

a significant 20% improved φ4 − CEAF score
compared to EECR.
A. Gold Results: Errors introduced during the pre-
processing stage of C3EL (e.g., mention omission,
tag mis-classification, intra-document CR errors,
etc., by the Stanford CoreNLP toolkit) propagate
to subsequent computing stages and adversely im-
pacts the overall system performance. To provide
an unbiased viewpoint of the actual performance
of C3EL, we manually provided “exact” men-
tions, mention tags, and intra-document CR men-
tion chains for the ECB corpus; thereby obtaining
gold performance results. From Table 3 we ob-
serve a 6% F1 points improvement (for both B3 &
CEAF-φ3) in C3EL compared to CROCS.
B. Mention Categorization: Person mention type
(PER) provides the greatest challenge for CCR sys-
tems (compared to other types like LOC, ORG,
etc.) due to associated nicknames, titles, and varied
surface forms (abbreviations, spellings, etc.). We
thus evaluate the CCR performance of C3EL (and
compare it with CROCS) on the ECB data, with
“exact” input mentions, for the different mention
categories. Table 4 validates that our joint mod-
eling provides better global information cues, re-
porting a B3 F1 score enhancement of around 11%
over CROCS for PER mentions; along with im-
proved results for the other mention types as well.
C. Large Data: To study the robustness of C3EL
and the effects of large datasets on CCR, we
performed evaluations on the ClueWeb09-FACC1
dataset. Similar to the ECB dataset, C3EL ex-
hibits a B3 F1 score improvement of nearly 10%
and a φ3-CEAF F1 improvement of 12% over
CROCS (refer Table 5).

The above experimental results showcase that
a combined approach helps overcome challenges
faced in CCR by entity linkage and corresponding
distant KB feature extraction; improving the over-
all accuracy.

3.3 Named-Entity Linking (NEL) Results
We now benchmark the performance of named-
entity linking (NEL) procedure for C3EL against
the state-of-the-art open-source AIDA software
(github.com/yago-naga/aida). We sepa-
rately inspect the precision of mention linking for
prominent entities (in-KB) as well as new/emerging
(out-of-KB) entities, and characterize the links as
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Datasets δs (B3 F1) δw (P) τ (B3 F1)
0.01 0.05 0.10 0.15 0.20 0.01 0.02 0.04 0.06 0.08 0.03 0.10 0.20 0.35 0.50

ECB 79.3 82.2 84.2 83.5 81.0 73.1 75.3 77.3 78.7 78.4 76.9 81.2 81.2 81.1 79.2
ClueWeb 70.1 77.2 81.5 81.0 78.7 78.2 81.1 83.6 85.1 85.1 70.3 79.1 78.2 78.8 76.4

(a) (b) (c)
Table 1: C3EL performance (a) in CCR with δs, (b) in out-of-KB NEL with δw, and (c) in CCR with τ

Approach P (%) R (%) B3 (%) φ3 (%)
CROCS 68.66 70.96 69.79 62.85
C3EL 75.76 81.42 78.49 74.13

Table 5: CCR results on ClueWeb09-FACC1

Approach Within-KB Out-of-KB Overall
C I U C I P (%)

AIDA 86.5 13.5 0.0 63.9 36.1 83.4
C3EL 85.4 14.4 0.2 79.0 21.0 84.9

Table 6: NEL performance (%) comparison on ECB

Correct (C), Incorrect (I), or Unlinked (U). The
results on the ECB corpus are reported in Table 6.
C3EL attains comparable performance (∼ 85%
precision) to that of AIDA for well-known entity-
mentions present in KB; albeit with a few mentions
remaining unlinked due to our cautious link val-
idation (using τ ) approach. However, the use of
τ reduces aggressive KB linking to provide a sig-
nificant 15% improvement (over AIDA) in precise
detection of new/emerging entities absent in KB.
Overall, an 1.5% precision gain is observed by the
joint formulation.
A. Large Data: The diverse nature of the web-
scale ClueWeb09 dataset clearly portrays the per-
formance gains in NEL procedure due to CCR gen-
erated information integration. For entities present
in the KB, we observe an accuracy improvement of
0.5% over AIDA (refer Table 7). Similar to that of
the ECB data, C3EL attains a significant ∼ 14%
improvement in the detection of new/emerging en-
tities not represented in KB. For the 1 million men-
tions, C3EL provides around 4% overall perfor-
mance improvements.

Using a bootstrap re-sampling t-test (as in (Dur-
rett & Klein, 2014)), we observed high statistical
significance (p < 0.01) for Out-of-KB and Overall
NEL, whereas the difference for Within-KB NEL
is not statistically significant. Coping with Out-of-
KB entities is essential for joint CCR+NEL, and
an improved NEL performance using propagated
information from CCR using semantics along with
link validation enables highly efficient detection of
new or emerging entities.
3.4 Comparison with Joint Models
Traditional CR methods fail to cope with the het-
erogeneity of mentions and contexts across mul-
tiple documents, and some form of clustering or
joint reasoning over all mentions is thus mandatory.
These methods have quadratic or cubic (some-
times even exponential) complexity, and hence run-
ning CR+NEL on a concatenated super-document
works only for small corpora, and would be pro-
hibitively expensive for large corpora, even in of-
fline processing mode (Singh et al., 2011).

However, to study the behavior of existing CR-
NEL joint models under “small” CCR environ-

Approach Within-KB Out-of-KB Overall
C I U C I P (%)

AIDA 88.5 10.6 1.0 69.6 30.4 84.6
C3EL 89.0 9.8 1.2 83.7 16.3 88.1

Table 7: NEL results (%) on ClueWeb09-FACC1 (statistical
significance p < 0.01 for Out-of-KB entities)

ments, we compare C3EL with:
(1) multi-sieve based NECo (Hajishirzi et al.,
2013)6; and
(2) conditional random field based BER (Durrett
& Klein, 2014) 7.

Three topic clusters from the ECB corpus with
3, 4, and 5 articles respectively were selected, and
the documents within each cluster were merged to
form 3 “super-articles” (one per topic), forming a
simulated CR setting. NECo and BER were then
used to perform CR and NEL on these 3 articles,
and the results compared with that obtained by
C3EL on the original documents. We repeatedly
sample 12 articles across 3 topic clusters, and ex-
ecute the approaches to report the micro-averaged
results across 5 independent runs.

From Table 8(a) we observe that the algorithms
exhibit comparable co-reference resolution perfor-
mance; thus validating propagation of global se-
mantics in C3EL due to the joint formulation.
However, such CR methods using multi-sieves and
CRF do not scale beyond few documents (upon
concatenation), and require at least 4× more run-
time compared to C3EL. Hence, CCR cannot be
efficiently tackled by simply employing CR meth-
ods on a “super-document”.

However, harnessing of non-local mention fea-
tures (via CCR) and efficient detection of new
mentions using link validation enables C3EL to
achieve a gain of around 5% in NEL compared to
others (see Table 8(b)). For both procedures, we
observed statistically significant improvements of
C3EL over BER and NECo with p < 0.05, using
the bootstrap re-sampling t-test.

To further study the effect of larger corpus, we
sampled 25 documents (with co-referring men-
tions) from the ClueWeb09 dataset and performed
analysis among the algorithms. As previously, we
observed significant computational complexity for
traditional CR methods when applied to CCR set-
ting making them far slower (6− 7×) than C3EL.
Table 9 reports the CCR and NEL averaged results
obtained across 5 independent runs. We attained
comparable performance in CCR with around 3%
improvement in NEL. All the algorithms are seen
to achieve high NEL results due to the large pres-
ence of well-known (in-KB) entities.

6
cs.washington.edu/research-projects/nlp/neco

7
nlp.cs.berkeley.edu/projects/entity.shtml
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Approach P (%) R (%) B3 (%) Approach C (%) I (%) U (%)
NECo 87.77 82.09 84.84 NECo 89.13 10.87 0.0
BER 88.30 86.53 87.41 BER 89.89 10.11 0.0
C3EL 87.54 88.11 87.82 C3EL 93.2 4.61 2.19

(a) (b)
Table 8: Joint “Simulated” results on ECB subset for (a) CCR, and (b) NEL (statistical significance p < 0.05)

Approach P (%) R (%) B3 (%) Approach C (%) I (%) U (%)
NECo 81.14 79.65 80.39 NECo 94.71 5.29 0.0
BER 84.36 83.01 83.68 BER 95.27 4.73 0.0

C3EL 83.52 85.56 84.53 C3EL 98.23 1.5 0.27
(a) (b)

Table 9: Joint “Simulated” results on ClueWeb09 subset for (a) CCR, and (b) NEL

3.5 Algorithmic Baseline Study

We explore the performance of variants of C3EL
(on both corpora) ablating various system compo-
nents (see Table 10). Explicitly, we consider:

• Co-occurring Mentions: Removal of cooc-
currence mentions context from the context
summaries constructed, reduces semantic in-
formation and adversely affects both NEL and
CCR procedures. We thus observe a sharp de-
crease in CCR performance and also a degra-
dation in entity linking.
• Link Validation: Filtering of mention linking

to KB entities using link validation step (with
threshold τ ) in C3EL enables corroboration of
mention context keywords with the linked en-
tity features. This leads to enhanced detection
of new or emerging entities by reducing induc-
tion of noise during the CCR phase. Removal
of this process permits aggressive entity linking
and introduces noise, affecting new/emerging
entity detection. We observe (from Table 10)
nearly 20% reduction of precision (on both
datasets) in identification of out-of-KB entity-
mentions compared to C3EL.
• NEL Categorization: The differentiation of

mentions (into classes) confidently mapped to
KB entity reduces the collusion of “strong”
linked mentions with other “noisy” mention
contexts. This reduces incorrect grouping of
different mentions with similar surface forms,
contexts, etc., thereby improving precision of
the CCR process. Use of a single NEL classi-
fication approach is observed to degrade CCR
results, which in turn increases spurious entity
linkage, decreasing NEL efficiency (Table 10).
• Distant KB features: As observed in (Baker,

2012; Zheng et al., 2013), extracted external
KB features provide global and enhanced infor-
mation cues promoting CR. We similarly ob-
serve CCR to attain the lowest F1 scores (com-
pared to other baselines) when KB features
are ignored. This in turn affects the linking
of (some) well-known entities due to reduced
context, leading to incorrect or low confidence
NEL. Since no feature inclusion is performed
for out-of-KB mentions, no effect is observed.

We observe that a joint formulation encompass-
ing multiple information sources (along with noise
filtering) enables mutually enhanced CCR and
NEL within the proposed iterative feedback based
framework, C3EL.

4 Related Work

Co-reference Resolution (CR): Traditional intra-
document CR methods involve syntactic and se-
mantic feature combination for identifying the best
antecedent (preceding name or phrase) for a men-
tion. CR methods employ rules or supervised
learning techniques based on linguistic features
such as syntactic paths and mention distances to
assess semantic compatibility (Haghighi & Klein,
2009; Raghunathan et al., 2010; Rahman & Ng,
2011), while syntactic features are derived by deep
parsing of sentences and noun group parsing. Se-
mantic features from background knowledge re-
sources like encyclopedia were used in (Daumé &
Marcu, 2005; Ponzetto & Strube, 2006; Ng, 2007).
The use of Wikipedia and structured knowledge
bases (such as YAGO) to obtain mention-type re-
lation and fine-grained mention attributes was ex-
plored by (Haghighi & Klein, 2009; Rahman &
Ng, 2011). An overview of CR methods is given
in (Ng, 2010).

Recent methods involve the use of multi-phase
sieve, applying a cascade of rules for narrow-
ing down the antecedent candidates for a men-
tion (Raghunathan et al., 2010). Cluster ranking
functions have also been proposed (Rahman & Ng,
2011; Zheng et al., 2013) to extend this paradigm
for incrementally expanding and merging mention
groups with preceding candidate clusters using re-
latedness features (Ratinov & Roth, 2012) and dis-
tant knowledge inclusion (Durrett & Klein, 2013).
Person name disambiguation, a specific variation
of CR, dealing with only person names, titles, nick-
names, and other surface form variations was intro-
duced in (Chen & Martin, 2007).
Distant Knowledge Labels: For obtaining seman-
tic features, additional knowledge resources such
as Wikipedia, YAGO, and FrameNet have been
considered (Rahman & Ng, 2011; Baker, 2012).
CR methods with confidence-thresholds were pro-
posed in (Ratinov & Roth, 2012; Lee et al., 2013),
and (Zheng et al., 2013) generalized these tech-
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Baseline
ECB Dataset ClueWeb09-FACC1 Dataset

CCR result NEL results CCR result NEL results
Within-KB Out-of-KB Within-KB Out-of-KB

P R B3 C I U C I P R B3 C I U C I
Ignored Mention
Co-occurrence 72.5 74.4 73.4 80.2 19.6 0.2 74.4 25.6 69.3 72.2 70.7 83.8 14.6 1.6 80.6 19.4
Link Validation

(τ ) ignored 79.0 81.4 80.2 85.5 14.5 0.0 62.8 37.2 74.8 81.0 77.8 88.9 10.1 1.0 69.8 30.2
Removed NEL
Classification 73.2 80.7 76.8 83.9 15.9 0.2 76.1 23.9 70.1 77.6 73.6 86.1 12.3 1.6 79.5 20.5
Distant KB

feature dropped 68.9 73.1 70.9 82.8 17.0 0.2 79.0 21.0 66.4 72.9 69.5 85.4 13.0 1.6 83.7 16.3
C3EL

(Complete) 79.5 82.9 81.18 85.4 14.4 0.2 79.0 21.0 75.8 81.4 78.5 88.3 10.1 1.6 83.7 16.3

Table 10: CCR and NEL results (%) of C3EL for different baseline variations

niques by ranking the matching entities for dis-
tant labeling. However, such prior methods utilize
distance labels of the current mention and consid-
ers all matching mentions making the procedure
expensive. On the other hand, we extract distant
features for the strongly matching (best) candidate
only, reducing the performance overhead.
Cross-Document CR (CCR): Early approaches
towards CCR involved the use contextual infor-
mation from input documents for IR-style similar-
ity measures (e.g., tf×idf score, KL divergence,
etc.) over textual features (Bagga & Baldwin,
1998; Gooi & Allan, 2004). Probabilistic graph-
ical models jointly learning the mappings of men-
tions to equivalent classes (co-referring mentions)
using features similar to local CR techniques were
studied in (Culotta et al., 2007; Singh et al., 2010;
Singh et al., 2011), A clustering approach coupled
with statistical learning of parameters was stud-
ied in (Baron & Freedman, 2008). However, such
methods fail to cope with large corpora, and hence
a “light-weight” streaming variant of CCR was in-
troduced by (Rao et al., 2010).

Co-occurring mentions context have been har-
nessed for disambiguating person names for CR
in (Mann & Yarowsky, 2003; Niu et al., 2004; Chen
& Martin, 2007; Baron & Freedman, 2008). How-
ever, these methods do not use KB and depend
on information extraction (IE) methods, witness-
ing substantial noise due to IE quality variance. A
CCR framework combining co-occurring mention
context with distant KB features embedded in an
active hierarchical clustering procedure (Dutta &
Weikum, 2015) was recently shown to perform ef-
ficiently, and provides inspiration for parts of our
proposed C3EL approach.
Named Entity Linking (NEL): Named entity res-
olution and linking stems from SemTag (Dill et
al., 2003), and similar frameworks like GLOW,
WikipediaMiner, AIDA, and others (Milne & Wit-
ten, 2008; Ratinov et al., 2011). A collection
of entity disambiguation models was presented
in (Kulkarni et al., 2009). Other NEL approaches
utilize the notion of semantic similarity of enti-
ties to corresponding Wikipedia pages (Milne &
Witten, 2008), while co-referent mention graph
construction modeling mention co-occurrences and
context similarity from outgoing hyperlinks in
Wikipedia was used by (Hoffart et al., 2011). An
integer linear programming (ILP) formulation also

based on Wikipedia page similarities was presented
in (Ratinov et al., 2011). However, none of these
methods involve the incorporation of CR results
for NEL. The first study on the benefits of CR for
NEL was by (Ratinov & Roth, 2012); but a joint
model was not proposed, instead attributes from
Wikipedia categories were used as features. An
overview and evaluation of different NEL methods
has been given by (Hachey et al., 2013).
Joint Models: Jointly solving CR for entities and
events utilizing cluster construction based on fea-
ture semantic dependencies was devised in (Lee et
al., 2012). The use of CR as a pre-processing step
for subsequent NEL procedure using an ILP for-
mulation was proposed by (Chen & Roth, 2013).
Recently, (Hajishirzi et al., 2013) proposed a joint
model for CR and NEL using the Stanford multi-
pass cluster update CR system with automatic link-
ing of mentions to Wikipedia. An integrated belief
propagation-based framework for CR, NER, and
relation extraction was developed in (Singh et al.,
2013). Subsequently, the model was enhanced by
the use of structured conditional random fields, to
solve CR, NER, and NEL in combination (Durrett
& Klein, 2014). Other works involving joint for-
mulation of NER and NEL use uncertainty of men-
tion boundaries along with segmentation informa-
tion extracted from Wikipedia (Sil & Yates, 2013).
However, to the best of our knowledge, this work
provides the first approach to jointly tackle CCR
and NEL across documents in an entire corpus.

5 Conclusions

This paper presented the novel C3EL frame-
work for joint computation of cross-document co-
reference resolution (CCR) and named-entity link-
ing (NEL). Our approach utilizes: (1) context sum-
maries including co-occurring mention groups al-
lowing for global context and feature propagation,
and (2) link validation for NEL using distant KB
features. This is embedded in an interleaved CCR
and NEL model allowing for global semantics and
feature propagation. The iterative approach en-
ables information feedback between CCR (pro-
vides corpus-wide cues) and NEL (providing dis-
tant KB features). Experimental results on news
and web data demonstrate improved performance
of both CCR and NEL compared to prior methods.
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Abstract

We present a novel model for the task
of joint mention extraction and classifi-
cation. Unlike existing approaches, our
model is able to effectively capture over-
lapping mentions with unbounded lengths.
The model is highly scalable, with a time
complexity that is linear in the number of
words in the input sentence and linear in
the number of possible mention classes.
Our model can be extended to additionally
capture mention heads explicitly in a joint
manner under the same time complexity.
We demonstrate the effectiveness of our
model through extensive experiments on
standard datasets.

1 Introduction

One of the essential goals in natural language pro-
cessing (NLP) is the development of effective sys-
tems that can capture the underlying semantics
conveyed by human languages. An important step
towards such a goal is the development of practi-
cal systems that can efficiently extract useful shal-
low semantic information such as entities and at
the same time identify their semantic classes (e.g.,
person, organization, etc).

Such a task is often known as named entity
recognition and classification (NERC), one of
the standard tasks in information extraction (IE).
While such a task focuses on the extraction and
classification of entities in the texts which are
named, recently researchers also showed inter-
est in a closely related task – mention extraction
and classification/typing. Unlike a named entity,
a mention is typically defined as a reference to
an entity in natural language text that can be ei-
ther named, nominal or pronominal (Florian et al.,
2004). The task of mention detection and track-
ing has received substantial attention, largely due

to its important role in conducting several down-
stream tasks, such as relation extraction (Mintz et
al., 2009), entity linking (Guo et al., 2013), and
coreference resolution (Chang et al., 2013).

While most existing work on named entity
recognition and mention extraction and classifi-
cation have been effective, there remain several
key limitations associated with existing models. In
fact, one can view these problems as instances of
the more general problem of semantic tagging –
the task of assigning appropriate semantic tags to
certain text spans for a given input sentence. Un-
like part-of-speech (POS) tagging, which has been
extensively studied in the past few decades by the
community, such a semantic tagging task presents
several additional new challenges. First, a men-
tion can consist of multiple words, so its length
can be arbitrarily long. Second, the mentions can
overlap with one another. Popular models used for
POS tagging, such as linear-chain conditional ran-
dom fields (Lafferty et al., 2001) or semi-Markov
conditional random fields (Sarawagi and Cohen,
2004) have difficulties coping with these issues.
While approaches on addressing these issues ex-
ist, current algorithms typically suffer from high
time complexity (Finkel and Manning, 2009) and
are therefore difficult to scale to large datasets.
On the other hand, the problem of designing ef-
ficient and scalable models for mention extraction
and classification from natural language texts be-
comes increasingly important in this era where a
large volume of textual data is becoming available
on the Web every day – users need systems which
are able to scale to extremely large datasets to sup-
port efficient semantic analysis for timely decison-
making.

In this paper, we tackle the above-mentioned is-
sue by introducing a novel model for joint mention
extraction and classification. We make the follow-
ing major contributions in this work:

• We propose a model that is able to effectively

857



handle overlapping mentions with unbounded
lengths.
• The learning and inference algorithms of our

proposed model have a time complexity that is
linear in the number of words in the input sen-
tence and also linear in the number of possi-
ble semantic classes/types, making our model
scalable to extremely large datasets.
• Our model can additionally capture mentions’

head information in a joint manner under the
same time complexity.

Our system and code are available for download
from http://statnlp.org/research/ie/.

2 Related Work

Existing work has been largely focused on the
task of named entity recognition and classifica-
tion (NERC). The survey of (Nadeau and Sekine,
2007) is a comprehensive study of this topic.

Most prior work took a supervised learning ap-
proach. Zhou and Su (2002) presented a system
for recognizing named entities using an HMM-
based approach. Florian et al. (2003) presented a
system for named entity recognition by combining
different classifiers. McDonald and Pereira (2005)
used conditional random fields for extracting gene
and protein mentions from biomedical texts. Rati-
nov and Roth (2009) presented a systematic anal-
ysis over several issues related to the design of a
named entity recognition and classification system
where issues such as chunk representations and
the choice of inference algorithms were discussed.
Researchers also looked into semi-supervised and
unsupervised approaches for such a task (Cuc-
chiarelli and Velardi, 2001; Etzioni et al., 2005).
Additional efforts on addressing the NERC prob-
lem under a multilingual or cross lingual setting
also exist (Florian et al., 2004; Che et al., 2013;
Wang et al., 2013).

As pointed out by Finkel and Manning (2009),
named entities are often nested. This fact was of-
ten ignored by the community largely due to tech-
nical reasons. They therefore proposed to use a
constituency parser with a O(n3) time complexity
(n is the number of words in the input sentence)
to handle nested entities, and showed its effective-
ness across several datasets. Alex et al. (2007) also
presented several approaches by building models
on top of linear-chain conditional random fields
for recognizing nested entities in biomedical texts.
Hoffmann et al. (2011) looked into a separate

issue, which is to identify overlapping relations
amongst entities.

Named entity recognition and classification still
remains a popular topic in the field of statistical
natural language processing. Ritter et al. (2011)
looked into recognizing entities from social me-
dia data that involves informal and potentially
noisy texts. Pasupat and Liang (2014) looked
into the issue of zero-shot entity extraction from
Web pages with natural language queries where
minimal supervision was used. Neelakantan and
Collins (2014) looked into the problem of auto-
matically constructing dictionaries with minimal
supervision for improved named entity extraction.
Li and Ji (2014) presented an approach to perform
the task of extraction of mentions and their rela-
tions in a joint and incremental manner.

3 Approach

3.1 Mentions and Their Combinations

Typically, a mention that appears in a natural lan-
guage sentence consists of a contiguous sequence
of natural language words. Consider a sentence
that consists of n words where each word is in-
dexed with its position in the sentence. A men-
tion m can be uniquely represented with a tuple
〈bm, em, τ〉, where bm and em are the indices of
the first and last word of the mention, respectively,
and τ is its semantic class (type).

We can see that for a given sentence consisting
of n words, there are altogether tn(n + 1)/2 pos-
sible different mention candidates, where t is the
total number of possible mention types. Now, for
each such candidate in the given sentence, it can
be either a mention, or not a mention. This leads
to a total number of 2tn(n+1)/2 possible mention
combinations. This number is prohibitively large
even for small values of n and t, which prevents us
from exhaustively enumerating all of them during
learning and inference.

One approach to performing inference over
such a large space is to introduce compact rep-
resentations that are able to encode exponentially
many mentions that would enable tractable infer-
ence algorithms to be employed. We discuss in the
next section our novel mention hypergraph repre-
sentation proposed for such a purpose.

3.2 Mention Hypergraphs

Central to our approach is the introduction of
the novel mention hypergraphs that allow us to

858



A A

E E

T1

Tj

Tm

T1

Tj

Tm

X X

X

Ij Ij

...

...

...

...

...

...

...

...

k k + 1

Figure 1: The (partial) hypergraph for representing all possi-
ble combinations of mention occurrences. Links that belong
to the same hyperedge are highlighted with the same color,
and different hyperedges are highlighted with different col-
ors, e.g., the green link that connects two I nodes forms a
single hyperedge, while the two brown links that connect two
I nodes and one X node form a separate single hyperedge.

compactly represent exponentially many possible
combinations of potentially overlapping, length-
unbounded mentions of different types.

A hypergraph is a generalization of a conven-
tional graph, whose edges (a.k.a. hyperedges) can
connect two or more nodes. In this work, we con-
sider a special class of hypergraphs, where each
hyperedge consists of a designated parent node
and an ordered list of child nodes. Hypergraphs
have also been used in other fields, such as syntac-
tic parsing (Klein and Manning, 2001), semantic
parsing (Lu, 2015) and machine translation (Cme-
jrek et al., 2013).

Our mention hypergraphs consist of five types
of nodes which are used to compactly represent
many mentions of different semantic types and
boundaries, namely, A nodes, E nodes, T nodes, I
nodes, and X nodes. A partial mention hypergraph
is depicted in Figure 1. We describe the definition
of each type of nodes next.

• A nodes. These nodes are used to sequentially
arrange mentions with different left bound-
aries. Specifically, each A node at position
k (the k-th word), or Ak, is used to com-
pactly represent all such mentions in the sen-
tence whose left boundaries are exactly at or
strictly after k.

• E nodes. The node Ek is used to compactly
represent all possible mentions (possibly of
length zero) whose left boundaries are exactly
at the current position k.

• T nodes. The node Tk
j is used to compactly

represent all mentions (possibly of length
zero) whose left boundaries are exactly at po-
sition k, and have the mention type j.
• I nodes. The node Ikj is used to compactly

represent all incomplete mentions which con-
tain the current word at position k as part of
the mention, and have the mention type j.
• X nodes. These are the “terminal” nodes indi-

cating the completion of a path. No additional
node will be attached to such nodes as a child.

There are also various hyperedges that con-
nect different nodes in the mention hypergraph.
We use 〈α← β1, . . . , βn〉 to denote a hyperedge
which connects a parent node α and child nodes
β1, . . . , βn. Each hyperedge essentially provides
one possible way of re-expressing the semantics
conveyed by the parent node using the child nodes.
For example, as shown in Figure 1, the hyperedge
connecting the parent node Ak and the child nodes
Ek,Ak+1 explains the fact that any mention cov-
ered by Ak either has a left boundary that is “ex-
actly at k” (Ek), or “exactly at or strictly after
k + 1” (Ak+1).

Similarly, for each I node, there exist 3 hyper-
edges that connect it to other child nodes. The top
hyperedge (in green) encodes the fact that the cur-
rent word appears in the middle of a mention; the
bottom hyperedge (in yellow) encodes the fact that
the current word appears in a mention as the last
word; the middle hyperedge (in brown) encodes
the fact that both cases can occur at the same time
(i.e., the current word belongs to multiple over-
lapping mentions of the same type). We have the
following theorem:
Theorem 3.1 Any combination of mentions in a
sentence can be represented with exactly one sub-
hypergraph of the complete mention hypergraph.

Proof For each mention, there exists a unique
path in the mention hypergraph to represent it. For
any combination of mentions, there exist unique
paths in the mention hypergraph to represent such
a combination. These paths altogether form a
unique sub-hypergraph of the original hypergraph.

For example, consider the following sentence:
“he also talked with the egyptian president .” This
sentence contains three mentions. The first is “he”
with type PER, the second is “the egyptian pres-
ident’’ with type PER, and the third mention is
“egyptian” with type GPE. Figure 2 gives the sub-
hypergraph structure showing how these mentions
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Figure 2: An example sub-hypergraph structure for jointly representing all the three mentions that appear in the sentence “He
also talked with the Egyptian president .” For simplicity and the ease of illustration, we assume there are only two possible
mention types: PER and GPE.

are jointly represented. The mention hypergraph
defined over the input sentence contains exponen-
tially many such sub-hypergraph structures.

We note that the converse of Theorem 3.1 is not
true. In certain cases, it is possible for two differ-
ent overlapping mention combinations to share the
same mention hypergraph.

A B C D

[ PER ]

[ PER ]

[GPE]

A A A A

E E E E

T2 T2 T2 T2

T1 T1 T1 T1

I2 I2 I2 I2

I1

X X X

X X

X X

X

Figure 3: An example illustrating the converse of Theorem
3.1 is not true.

For example, consider a toy example sentence A
B C D shown in Figure 3, both B C and A B C D are
mentions of the same type PER (i.e. one is strictly
contained by the other. We call such combinations
type-I combinations). The above sub-hypergraph
shows how to encode such a combination. How-
ever, if both A B C and B C D are mentions of the
same type PER (i.e., two mentions overlap but no
one is contained by the other. We call such com-

binations type-II combinations), such a combina-
tion shares the same representation as the above
sub-hypergraph. Note that such an ambiguity hap-
pens only when two overlapping mentions have
the same type, and one mention is strictly con-
tained by the other and their boundaries are all dif-
ferent. In practice, however, we found that in the
two datasets that we used for evaluations, if two
mentions overlap with one another, they almost al-
ways form a type-I combination, and type-II com-
binations are very rare. Empirically, as we will see
later in our experiments, our model is effective in
handling overlapping mentions.

3.3 Log-Linear Modeling
Following the conditional random fields (Lafferty
et al., 2001), we adopted a log-linear approach for
such a joint mention extraction and typing task.
Specifically, for a given input sentence x, the prob-
ability of predicting a possible output y (a mention
sub-hypergraph that represents a particular combi-
nation of mentions) is given as follows:

p(y|x) =
exp(wT f(x,y))∑
y′ exp(wT f(x,y′))

(1)

where f(x,y) is the feature vector defined over the
input-output pair (x,y), and the weight vector w
gives the parameters of the model.

Our objective is to minimize the regularized
negative joint log-likelihood of the dataset:

L(w) =
∑
i

log
∑
y′

exp(wT f(xi,y′))

−
∑
i

wT f(xi,yi) + λwTw (2)
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where (xi,yi) refers to the i-th training instance,
and the last term is a L2 regularization term with λ
being a positive scalar (fixed to 0.01 in this work).

The gradient of the above objective function is:

∂L(w)
∂wk

=
∑
i

Ep(y′|xi)[fk(xi,y′)]

−
∑
i

fk(xi,yi) + 2λwk (3)

where wk is the weight of the k-th feature fk.
We note that unlike many recent latent-variable

approaches to structured prediction (Petrov and
Klein, 2007; Blunsom et al., 2008), we are able to
represent each of our outputs y with a single fully-
observed structure. Thus, our objective function
essentially defines a standard regularized softmax
regression model, and is therefore convex (Boyd
and Vandenberghe, 2004), where a global opti-
mum can be found.

The objective function defined in Equation 2
can be optimized with standard gradient-based
methods. We used L-BFGS (Liu and Nocedal,
1989) as our optimization method.

3.4 Algorithms

In order to solve the optimization problem de-
scribed above, one needs to compute the values
of the gradient scores in Equation 3. Computa-
tion of the second and third terms in this equa-
tion is straightforward. The first term in Equa-
tion 3 involves the computation of an expecta-
tion of feature values over all possible mention
combinations for a given input sentence. Follow-
ing classic dynamic programming algorithms used
in graphical models, we develop analogous effi-
cient dynamic programming algorithms that work
on hypergraphs and generalize the conventional
forward-backward/inside-outside algorithm to ef-
ficiently compute such values.

Time Complexity At each time step k, we need
to compute scores for m I nodes, m T nodes, 1 E
node, and 1 A node. Hence, the overall time com-
plexity for our algorithm is in O(mn) (assuming
computation of the feature scores at each node in-
volves a constant time), where m is the total num-
ber of possible mention types, and n is the total
number of words in the given sentence. 1

1Note that the time complexity for the linear chain CRF is
in O(m2n) due to their first-order assumption.

3.5 Features
The features that we use are inspired by the work
of (Carreras et al., 2002). Specifically, we consider
the following features defined over the inputs:

• Words (and POS tags, if available) that appear
around the current word (with position infor-
mation), with a window of size 3.
• Word n-grams (and POS n-grams, if available)

that contain the current word (with position in-
formation), for n = 2, 3, 4.
• Bag of words around the current word, with a

window of size 5.
• Word pattern features 2.

Note that these are the indicator functions de-
fined over the inputs. The final set of features are
defined over (x,y) tuples, which is obtained as a
cross-product between the above indicator func-
tions and the following indicator function:

• The type of the node (such as T or I).

In addition, we also introduce the following fea-
ture defined over the output structure only:

• The number of such hyperedges that exactly
connect one T node and one I node.

We call this feature mention penalty. This fea-
ture learns a global preference of the number of
mentions that should appear in any input sentence.

3.6 Joint Modeling of Mention Heads
One additional assumption for the mention extrac-
tion and typing task is that each mention comes
with a head. A head is strictly a substring of the
mention and provides important information about
the mention. It is possible to extend our model
to support joint modeling of mention heads, while
still maintaining the same time complexity.

Due to space limitations, we could only give
a relatively brief description of this extension in
this section. The idea is to replace the I nodes
with three different types of nodes, namely Ij–B
nodes (used to represent words that appear within
a mention of type j and before its head), Ij–W
nodes (used to represent words that appear within
the head of a mention of type j), and Ij–A nodes
(used to represent words that appear within a men-
tion of type j and after its head). The hyperedges
also need to be established accordingly in order
to properly model all possible mention and head

2all-caps, all-digits, all-alphanumeric, contains-digits,
contains-dots, contains-hyphen, initial-caps, lonely-initial,
punctuaion-mark, roman-number, single-character, URL.
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ACE2004 ACE2005
TRAIN DEV TEST TRAIN DEV TEST

Documents 356 41 46 370 43 51
Sentences 6,799 829 879 7,336 958 1,047

with o.l. mentions 2,683 (39%) 293 (35%) 373 (42%) 2,683 (37%) 340 (35%) 330 (32%)
Mentions 22,207 2,511 3,031 24,687 3,217 3,027

length > 6 1,439 (6%) 179 (7%) 199 (7%) 1,343 (5%) 148 (5%) 160 (6%)
max length 57 35 43 49 30 27

Table 1: Corpora statistics for the ACE2004 and ACE2005 datasets.

ACE2004 ACE2005
DEV TEST DEV TEST

P R F P R F P R F P R F
CRF (BIO) 69.6 42.8 53.0 70.0 40.3 51.2 69.8 45.3 55.0 67.6 43.7 53.1
CRF (BILOU) 70.7 42.6 53.1 71.8 40.8 52.1 71.1 45.5 55.5 69.5 44.5 54.2
CRF (CC) 77.9 49.1 60.2 78.4 46.4 58.3 76.8 52.0 62.0 74.8 49.1 59.3
Semi-CRF (c=6) 75.4 44.1 55.6 76.1 41.4 53.6 75.3 48.5 59.0 72.8 45.0 55.6
Semi-CRF (c=∞) 66.8 44.8 53.7 66.7 42.0 51.5 69.7 48.9 57.5 67.5 46.1 54.8
MH 79.6 50.0 61.4 79.2 46.8 58.9 79.3 50.6 61.8 76.9 47.7 58.9
MH (F ) 70.0 59.2 63.8 70.0 56.9 62.8 67.5 61.8 64.5 66.3 59.2 62.5

Table 2: Results on ACE2004 and ACE2005. The last two rows give the results of this work.

combinations. Since in such a new hypergraph, at
each time step, only a constant number (2) of addi-
tional nodes are involved, the time complexity for
learning and inference with such a model remains
the same, which is in O(mn).

3.7 Optimization of F measure

One standard evaluation metric for named entity
recognition is the F (F1) measure. In our task,
the F measure is defined as the harmonic mean
of the precision (P ) and recall (R) scores, where
precision is the ratio between the number of cor-
rectly predicted mentions and the total number of
predicted mentions, and recall is the ratio between
the number of correctly predicted mentions and
the total number of gold mentions. We will also
adopt these metrics in our evaluations later. Un-
fortunately, the model only optimizes its objec-
tive function defined in Equation 2, which is the
negative (regularized) joint log-likelihood. Previ-
ous work showed it was possible to optimize the
F measure in a log-linear model (Suzuki et al.,
2006). Culotta and McCallum (2004) also pro-
posed a method for optimizing information extrac-
tion performance based on confidence estimation.
Their work is based on linear-chain CRF and es-
timate the confidence of extracted fields based on
marginal probabilities. The technique is not di-
rectly applicable to our task where a hypergraph
representation is used to encode overlapping men-
tions. In this work, we used a very simple and
intuitive technique for optimizing the F measure.
The idea is to further tune the weight of a single
parameter – mention penalty based on the devel-
opment set, after the training process completes.

This is based on the observation that by increas-
ing the value of the mention penalty, we are essen-
tially forcing our model to predict more mentions.
Therefore the recall is a monotonic function with
respect to the mention penalty. Based on this fact,
we use a simple search algorithm with a fixed step
size (we set it to 0.01) to determine the optimal
value of the modified mention penalty so that the
F measure of the development set is optimized.

4 Experiments

In this section, we present empirical evaluations.
Our main experiments were conducted on the stan-
dard ACE2004 and ACE2005 datasets which
contain overlapping mentions. Two additional ex-
periments on the GENIA and CONLL2003 dataset
were also conducted .

4.1 Results on ACE

Our primary experiments were conducted based
on the English portion of the ACE2004 dataset3

and the ACE2005 dataset4. Following previous
work, for ACE2004, we considered all documents
from arabic treebank, bnews, chinese treebank,
and nwire, and for ACE2005, we considered all
documents from bc, bn, nw, and wl . We randomly
split the documents for each dataset into three por-
tions: 80% for training, 10% for development, and
the remaining 10% for evaluations. The statistics
of the datasets are summarized in Table 15. We

3https://catalog.ldc.upenn.edu/LDC2005T09
4https://catalog.ldc.upenn.edu/LDC2006T06
5Exact train/dev/test splits information can be found on

http://statnlp.org/research/ie/.
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can observe that overlapping mentions are com-
mon – over 30% of the sentences contain overlap-
ping mentions (see row 3 of the table). Mentions
can also be very long – over 5% of the mentions
consist of more than 6 words, and the longest men-
tion consists of 57 words.

We compared our system’s performance with
those of several baseline approaches. We first
built two simple baseline approaches based on se-
quence labelling models using the conditional ran-
dom fields (CRFs). Such approaches can not han-
dle overlapping mentions. To train such mod-
els, whenever two mentions overlap with one an-
other in the training set, we remove the mention
that is shorter in length. Following (Ratinov and
Roth, 2009), we considered the BIO (Begin, In-
side, Outside) approach and the BILOU (Begin,
Inside, Last, Outside, Unit) approach for design-
ing the output labels. Results show the BILOU ap-
proach yields better results. Similar observations
were reported in Ratinov and Roth (2009).

In the work of (Alex et al., 2007), the authors
proposed several approaches for building mod-
els to handle nested named entities in biomedi-
cal texts. Their best results were obtained from a
cascaded approach where they built one model for
each named entity class. Outputs from one model
can then served as the inputs to the next model
for predicting the named entity class of a differ-
ent type. One fundamental limitation of such an
approach is that it being unable to handle overlap-
ping mentions of the same type. Nevertheless, this
approach worked very well on both datasets. The
results are shown in the row of “CRF (CC)”.6

Another class of models that is often used in in-
formation extraction are the semi-Markov condi-
tional random fields (semi-CRFs) (Sarawagi and
Cohen, 2004). Semi-CRF models are able to cap-
ture the non-Markovian properties of mentions.
However, they are unable to handle nested or over-
lapping mentions. We thus used the same method
as discussed above to exclude certain mentions
for training. Such semi-CRF models typically as-
sume there is a length restriction for the mentions
– each mention can consist of up to c words – in
order to scale linearly. When such a restriction
is lifted, the time complexity of such models be-
comes quadratic in the number of words in the in-

6For all such linear chain CRF-related experiments, we
used the CRF++ toolkit (https://code.google.com/p/crfpp/)
with L-BFGS, which gives us the most competitive re-
sults over several different CRF implementations (see:
http://www.chokkan.org/software/crfsuite/benchmark.html).

7 TYPES 14 TYPES 28 TYPES
#f w/s #f w/s #f w/s

CRF 3.6M 1219 13.6M 305 51.9M 76
MH 4.2M 1532 8.4M 733 16.9M 430

Table 3: The decoding time and the number of features
change as we increase the number of possible types. (#f:
number of features created (in millions). w/s: number of
words processed per second.) Experiments are conducted on
the ACE 2004 dataset.

put sentence. We train two models: one with a
length restriction, where c = 6, and the other with-
out a length restriction (c = ∞). For features de-
fined over the inputs, besides the Markovian fea-
tures described in Sec 3.5, we also used the sur-
face forms of complete mention spans as features.
The results of these two models are reported in the
fourth and fifth row of Table 2, respectively. Inter-
estingly, imposing the length restriction appears to
be helpful for precision, and as a result it makes a
positive contribution towards the final F measure.

Our basic model (MH: mention hypergraph)
that optimizes the negative joint log likelihood is
able to obtain the best precision across these two
datasets. When the model is further augmented
with the F measure optimization step described in
Sec 3.7 (MH (F )) it consistently yields the best
results in terms of both recall score and F measure
across these two datasets.

4.1.1 Running Time

We also conducted controlled experiments to re-
port the actual execution time of our model and
make a comparison with the linear-chain CRF
model (BILOU approach). The experiments are
all conducted on the ACE2004 dataset on the same
machine. To make a proper comparison here,
we implemented the linear-chain CRF model us-
ing Java (the same language is used when imple-
menting our model), and employed the same data
structures for creating features as well as the same
learning and inference routines used by our men-
tion hypergraph model.

To understand how the features and speed
change as we increase the number of mention
types (i.e., semantic types), we also conducted ex-
periments where we increase the number of possi-
ble mention types. Specifically, we created sub-
types from each original type annotated in the
dataset. For example, we randomly replaced the
type “GPE” by sub-types “GPE1” or “GPE2” in
the dataset. This gave us 14 different mention
types. Similarly, we could randomly replace the
type “GPE” by sub-types “GPE1” – “GPE4”, re-
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ACE2004 ACE2005
DEV TEST DEV TEST

P R F P R F P R F P R F
CRF (CC-S) 57.0 35.9 44.1 52.7 31.2 39.2 56.5 38.3 45.6 54.2 35.5 42.9
CRF (CC-F) 51.5 32.5 39.9 47.4 28.0 35.2 53.3 36.1 43.1 51.3 33.6 40.6
CRF (CC-L) 64.4 40.6 49.9 61.6 36.4 45.8 66.6 45.1 53.8 65.3 42.8 51.7
CRF (CC-CC) 63.6 40.5 49.5 60.8 36.1 45.3 65.9 44.8 53.3 64.2 42.0 50.7
MH (L) 66.7 41.9 51.5 64.7 38.2 48.1 70.5 45.0 55.0 69.2 43.0 53.0
MH (Joint) 78.6 47.4 59.1 79.0 44.1 56.6 79.2 48.7 60.3 70.1 45.1 54.8
MH (Joint F ) 73.9 52.4 61.3 74.4 50.0 59.8 70.2 57.4 63.2 63.4 53.8 58.3

Table 4: Results on joint mention boundary, type, and head prediction on ACE2004 and ACE2005.

sulting in 28 different mention types in total. Our
purpose of doing so is to understand how the mod-
els behave when the number of possible mention
types becomes large. We found that training on the
entire training set of ACE2004 using the linear-
chain CRF model with a large number of men-
tion types was very expensive due to the extremely
large number of features involved. We instead
trained the models on the development set and pre-
sented decoding time on the test set.

Table 3 shows the results. We empirically cap-
tured the relationship between the speed of each
system (average number of words processed per
second) and the number of mention types. Specif-
ically, we found that as we linearly increased the
number of mention types, for the linear-chain CRF
model, the number of features grew quadratically
and the speed dropped quadratically, whereas for
our model, the number of features grew linearly
and the speed dropped linearly. This indicates
that our model is more scalable to large, practical
datasets with a large number of fine-grained men-
tion types.

4.1.2 Joint Modeling of Heads
We also conducted experiments on these two
datasets for the task of joint modeling of mention
boundaries, types and heads. We used the same
training and tuning methodology for optimizing
the F measure. In such experiments, we adopted
a very strict evaluation criterion: a predicted men-
tion is regarded as correct iff and only if its bound-
aries, type and head all exactly match those of the
gold standard.

We compared our system’s results with those of
several baseline approaches based on CRF where
the cascaded BILOU approach described above
was always used. Specifically, we considered ap-
proaches that always regarded the complete span
(CC-S), the first word (CC-F), and the last word
(CC-L) as the predicted mention’s head, respec-
tively. We also considered a cascaded approach
(CC-CC) where we first predicted mentions, and

then predicted their heads by following a simi-
lar approach used for predicting overlapping men-
tions discussed above. The first four rows of Ta-
ble 4 give the results of these baseline approaches.
We can observe that always predicting the last
word as the head gives the best performance. In-
spired by this, we performed a simple approach
by training a model presented in the previous sec-
tion without considering head information. When
making predictions, we always regarded the last
word of each predicted mention as its head. The
results for such an approach are given in the fifth
row of Table 4. The sixth row shows the results ob-
tained by optimizing our model’s objective func-
tion. The last row gives the results obtained by
tuning the mention penalty based on the develop-
ment set. As seen, our joint models significantly
outperformed all those baseline approaches. We
are not aware of any prior work in the literature
that performs joint modeling of mention bound-
aries, types, and heads.

4.2 Additional Experiments
We also additionally evaluated on the GENIA

dataset (v3.02) whose focus was on biomedical
related named entity recognition and classifica-
tion, where the entities may overlap with one an-
other. Furthermore, to see how our model works
on datasets where mentions do not overlap with
one another, we also conducted evaluations on the
standard CONLL2003 NER dataset.

4.2.1 Results on GENIA

We followed the description of Finkel and Man-
ning (2009) to set up our experiments on the GE-
NIA dataset. Specifically, we used the first 90% of
the sentences as the training data and the remain-
ing 10% as the evaluation data. We also adhered
to the paper’s prescription of collapsing all DNA
subtypes into DNA; RNA subtypes into RNA; and
all protein subtypes into protein. We kept cell line
and cell type, and removed all other entities.

To optimize the F measure, we further split the
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P R F
Semi-CRF 76.2 61.7 68.2
F & M (2009) 75.4 65.9 70.3
MH (F ) 72.5 65.2 68.7
Table 5: Results on the GENIA dataset

training set into two portions. We trained a model
using the first 90% of the training data, and used
the remaining 10% for development. For features,
no POS and no bag-of-words features are used.

We compared our model’s performance with
that of a model based on a constituency parser pro-
posed by (Finkel and Manning, 2009), as well as
the semi-CRF model reported there. The results
are shown in Table 5. Our model yields a better
F measure than the semi-CRF model, but gives a
lower performance than the model of (Finkel and
Manning, 2009). We note that, however, these
results are not directly comparable. Specifically,
both of these two previous models relied on an ad-
ditional 200 million words from PubMed abstracts
to learn word clusters as additional features, which
we do not have access to.

One distinctive advantage of our model is the
efficiency and scalability. The model of (Finkel
and Manning, 2009) had a time complexity that is
cubic in the number of words in the input sentence.
In contrast, our model scales linearly as the length
of the input sentence increases. 7

4.2.2 Results on CONLL2003
To understand how well our model works on
datasets where mentions or entities do not overlap
with one another, we conducted additional experi-
ments on the standard dataset used in the CONLL
2003 shared task (Tjong Kim Sang and De Meul-
der, 2003), where the named entities strictly do
not overlap with one another. We compared our
system’s performance against that of a baseline
version of the state-of-the-art Illinois NER sys-
tem (Ratinov and Roth, 2009). Their system per-
formed sequential prediction over the input words
and adopted the BILOU approach. Their full
model also incorporates external knowledge re-
sources (e.g., gazetteers and word class).

In order to make a proper comparison with the
baseline version of their model, besides the gen-
eral features we mentioned earlier, we also fol-

7In our experiments, for this dataset our model tagged
over 5,000 words/second. In (Finkel and Manning, 2009),
the authors mentioned that their model tagged about 38
words/second, and the semi-CRF model tagged about 45
words/second. However, we note these numbers are not di-
rectly comparable due to the advancement of CPU speed.

DEV TEST
P R F P R F

Illinois (b) - - 89.3 - - 83.7
MH 94.7 83.0 88.5 91.4 76.5 83.3
MH (F ) 91.4 86.7 89.2 87.3 80.7 83.8

Table 6: Results on the CONLL2003. Illinois (b): baseline
version of (Ratinov and Roth, 2009).

lowed (Ratinov and Roth, 2009) in incorporat-
ing word’s prefixes and suffixes (of length up to
5) as features, and normalized words referring to
months, dates and numbers. Table 6 shows that
our system gives an F measure that is compara-
ble to that of the baseline version of their system,
where no external resources are used.

This additional experiment showed that while
our model is designed for handling more real-
istic scenarios where mentions can overlap, it
yields a performance competitive to a state-of-the-
art system which only handles datasets with non-
overlapping mentions.

5 Conclusions

In this work, we have introduced a novel model
for the task of joint modeling of mention bound-
aries, types, as well as their heads. Unlike many
previous research efforts for mention extraction
and classification, our novel mention hypergraph
representations for compactly representing expo-
nentially many possible mentions enables a men-
tion’s boundaries, type and head information to be
jointly learned in a single framework. The model
scales linearly with respect to the number of words
in the input sentence, and performs exact learning
where a unique global optimum can be found. Em-
pirically, we have demonstrated the effectiveness
of such a model across several standard datasets.

Future work include explorations of efficient al-
gorithms for other information extraction tasks,
such as joint mention and relation extraction (Li
and Ji, 2014) and event extraction (Li et al., 2013).
Our system and code can be downloaded from
http://statnlp.org/research/ie/.
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Abstract

We propose FINET, a system for detect-
ing the types of named entities in short
inputs—such as sentences or tweets—with
respect to WordNet’s super fine-grained
type system. FINET generates candidate
types using a sequence of multiple extrac-
tors, ranging from explicitly mentioned
types to implicit types, and subsequently
selects the most appropriate using ideas
from word-sense disambiguation. FINET
combats data scarcity and noise from ex-
isting systems: It does not rely on supervi-
sion in its extractors and generates training
data for type selection from WordNet and
other resources. FINET supports the most
fine-grained type system so far, includ-
ing types with no annotated training data.
Our experiments indicate that FINET out-
performs state-of-the-art methods in terms
of recall, precision, and granularity of ex-
tracted types.

1 Introduction

Named entity typing (NET) is the task of detecting
the type(s) of a named entity in context. For in-
stance, given “John plays guitar on the stage”, our
goal is to infer that “John” is a guitarist or a mu-
sician and a person. We propose FINET, a system
for detecting the types of named entities in short
inputs—such as sentences or tweets—with respect
to WordNet’s super fine-grained type system (16k
types of organizations, persons and locations).

Named entity typing is a fundamental building
block for many natural-language processing tasks.
NET is at the heart of information extraction meth-
ods for finding types for entities in a knowledge

base1 (KB) (Mitchell et al., 2015). Likewise, NET
aids named entity disambiguation by reducing the
candidate space for a given entity mention. Entity
types are an important resource for entity-based
retrieval or aggregation tasks, such as semantic
search (Hoffart et al., 2014) or question answer-
ing (Yahya et al., 2013). Finally, type information
helps to increase the semantic content of syntactic
patterns (Nakashole et al., 2012) or in open infor-
mation extraction (Lin et al., 2012).

The extraction of explicit types has been studied
in the literature, most prominently in the context
of taxonomy induction (Snow et al., 2006). Ex-
plicit types occur, for example, in phrases such as
“Steinmeier, the German Foreign Minister, [...]”
or “Foreign Minister Steinmeier.” These explicit
types are often extracted via patterns, such as the
well-known Hearst patterns (Hearst, 1992), and
subsequently integrated into a taxonomy. Pattern-
based methods often have high precision but low
recall: Types are usually mentioned when a named
entity is introduced or expected to be unknown to
readers, but often are not explicitly stated. The
NET problem differs from taxonomy induction in
that (1) the type system is prespecified, (2) types
are disambiguated, and (3) types are associated
with each occurrence of named entity in context.

Our FINET system makes use of explicit type
extractions whenever possible. But even when
types are not explicitly mentioned, sentences may
give clues to the correct type. These clues range
from almost explicit to highly implicit. For exam-
ple, in “John plays soccer”, the type soccer player
is almost explicit. The sentence “Pavano never
even made it to the mound,” however, only implic-
itly indicates that “Pavano” is a baseball player. A

1In this paper, we refer to WordNet as a type system and
to a collection of entities and their types as a KB.
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key challenge in NET is to extract such implicit,
context-aware types to improve recall.

One way to extract implicit types is by training
a supervised extractor on labeled data, in which
each entity is annotated with appropriate types.
The key problem of this approach is that training
data is scarce; this scarcity is amplified for fine-
grained type systems. To address this problem,
many existing systems generate training data by
exploiting KBs as a resource (Yosef et al., 2012).
A popular approach is to train an extractor on a
corpus of sentences (e.g., on Wikipedia), in which
each named entity is associated with all its types in
a KB. The key problem with such an approach is
that the so-obtained type information is oblivious
to the context in which the entity was mentioned.
For example, in the sentences “Klitschko is known
for his powerful punches” and “Klitschko is the
Mayor of Kiew,” “Klitschko” will be associated
with all its types, e.g., boxer, politician and mayor.
As a consequence, the labels in the training data
can be misleading and negatively affect the ex-
tractors. Moreover, such learned extractors are of-
ten biased towards prominent types but perform
poorly on infrequent types, and they are generally
problematic when types are correlated (e.g., most
presidents are also graduates and authors).

FINET addresses the above problems by first
generating a set of type candidates using multiple
extractors and then selecting the most appropriate
type(s). To generate candidates, we make use of a
sequence of extractors that range from explicit to
highly implicit. Implicit extractors are only used
when more explicit extractors fail to produce a
good type. Our extractors are based on patterns,
mention text, and verbal phrases. To additionally
extract highly implicit types, we use word vec-
tors (Mikolov et al., 2013) trained on a large unla-
beled corpus to determine the types of similar enti-
ties that appear in similar contexts. This extractor
is comparable to KB methods discussed above, but
is unsupervised, and takes as candidates the types
frequent within the related entities and contexts.

After type candidates have been generated, the
final step of FINET selects the types that best fit
the context. In this step, we leverage previous
work on word sense disambiguation (WSD) and
resources such as WordNet glosses, and, if avail-
able, manually annotated training data.

FINET leverages ideas from existing systems
and extends them by (1) handling short inputs (2)
supporting a very fine-grained type hierarchy, and

Extractor Stopping Condition

Pattern-based (final) Always stop
Pattern-based (non-final) KB-lookup
Mention-based KB-lookup
Verb-based KB-lookup
Corpus-based > 50% of score in 6 10 types

Table 1: Extractors and their stopping conditions

(3) producing types that focus on the entity con-
text. Existing systems are unable to extract more
than a couple of hundred types. Hyena (Yosef et
al., 2012), the system with the most fine-grained
type system so far, focuses only on a subset of
505 types from WordNet. Hyena lacks important
types such as president or businessman, and in-
cludes soccer player but not tennis player. Instead
of restricting types, FINET operates on the the en-
tire WordNet hierarchy with more than 16k types
for persons, organizations, and locations.

We evaluated FINET on a number of real-world
datasets. Our results indicate that FINET signifi-
cantly outperforms previous methods.

2 Candidate Generation

In this phase, we collect candidate types for each
entity. We first preprocess the input (Sec. 2.1) and
then apply a (i) pattern-based extractor (Sec. 2.2),
(ii) a mention-based extractor (Sec. 2.4), (iii) a
verb-based extractor (Sec. 2.5), and (iv) a corpus-
based extractor (Sec. 2.6). The extractors are or-
dered by decreasing degree of explicitness.

Each extractor has a stopping condition, which
we check whenever the extractor produced at least
one type. When the stopping condition is met, we
directly proceed to the type selection phase. The
reasoning behind this approach is to bias FINET
towards the most explicit types. When the con-
dition is not met, we enrich the set of candidate
types of the extractor with their hypernyms; we
expect types to be overly specific and want to al-
low the selection phase to be able to select a more
general type. We then also run subsequent extrac-
tors. Tab. 1 displays a summary of the extractors
and stopping conditions.

All so-found type candidates are passed to the
candidate selection phase (Sec. 3).

2.1 Preprocessing

Preprocessing consists of 5 steps: (i) dependency
parsing (Socher et al., 2013); (ii) co-reference (Re-
casens et al., 2013); (iii) named entity recogni-
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tion (NER) (Finkel et al., 2005) with the detection
of coarse-grained types (i.e., person, organization,
location); (iv) clause identification (Del Corro and
Gemulla, 2013); (v) word and multi-word expres-
sion recognition (Del Corro et al., 2014).

FINET restricts its candidates to the hyponmys
of the coarse-grained (CG) type of the NER sys-
tem. Named entities with the same CG type in
a coordinating relation (e.g., “Messi and Ronaldo
are soccer players”) and identical mentions share
the candidate set; the latter is reasonable in short
input.

FINET extractors operate either on the sentence
or the clause level. A clause is a part of a sen-
tence that expresses a statement and is thus a suit-
able unit for automatic text processing (Del Corro
and Gemulla, 2013). Finally, we identify multi-
word explicit type mentions such as Prime Minis-
ter or Secretary of Housing and Urban Develop-
ment (Del Corro et al., 2014).

2.2 Pattern-based extractor

Our pattern-based extractor targets explicit type
mentions. These are commonly used to intro-
duce entities when they first appear (“US Presi-
dent Barack Obama”) or when their mention does
not refer to the most prominent entity (“Barack
Obama, father of the US President”). Following
previous work (Hearst, 1992), we use a set of pat-
terns to look for expressions that may refer named
entity types. We refer to those expressions as lex-
ical types (e.g., “father”). Once lexical types have
been identified, we collect as candidate types the
WordNet synsets to which they refer (e.g., 〈father-
1〉, . . . , 〈father-8〉, the eight senses of “father”).

Our extractor makes use of both syntactic pat-
terns, which operate on the dependency parse, and
regular expression patterns, which operate on the
text. Syntactic patterns are preferable in that they
do not rely on continuous chunks of text and can
skip non-relevant information. However, mistakes
in the dependency parse may lower recall. To cope
with this, we additionally include regular expres-
sions for some syntactic patterns. Fig. 1 shows
an example of a syntactic pattern and a related
regular-expression pattern. Both produce lexical
type “president” from “Barack Obama, president
of the US,” but only the syntactic pattern applies
to “Barack Obama, the current US president.”

Tab. 2 gives an overview of our patterns. Most
of them also have a symmetric version (e.g., “The
president, Barack Obama” and “Barack Obama,

NAMED ENTITY , (modifier) NOUN (modifier) ,

appos
mod mod

(a) A syntactic pattern

NAMED ENTITY , NOUN

(b) A regular expression pattern

Figure 1: Patterns capturing appositions

Pattern Example

Final patterns
Hearst I {Presidents} such as [Obama] (and) [Bush]
Hearst II {Presidents} like [Obama] (and) [Bush]
Hearst III Obama (and) other {presidents}
Hearst IV {Presidents} including [Obama] (and) [Bush]
Apposition [Obama], (the) {president}
Copular [Obama] is (the) {president}
Noun modifier {President} [Barack Obama]
Among [Joe Biden] among (other) {vice presidents}
Enough [Messi] is enough (of) a {player}
As [Messi] as {player}
Non-final patterns
Location {City} of [London]
Poss. + transf. [Shakespeare]’s {productions}
by-prep + transf. {productions} by [Shakespeare]

Table 2: Patterns for explicit type extraction

the president”), which is not displayed. We divide
our patterns into final and non-final. Final patterns
generally have high precision and extract the lexi-
cal type exactly as it occurs. When a final pattern
produces a lexical type, we add the correspond-
ing types to the candidate set and go directly to
the type selection phase, i.e., we do not consider
any other extractor. For non-final patterns, how-
ever, we expect erroneous extractions and proceed
differently; we perform a KB lookup for all lex-
ical types. The KB lookup (described in the next
section) both prunes and expands the candidate set
using a KB, and acts as a stopping condition. (FI-
NET can also be run without using KB lookups.)

We treat a pattern as non-final if it may or may
not denote a lexical type (e.g. “the president of
Argentina” vs. “the city of Buenos Aires”) or if
a verb-noun transformation is required to obtain
the lexical type (e.g. “Shakespeare’s productions”
to “producer”). To perform the transformations,
we use WordNet’s derivationally related forms,
which connect semantically related morphologi-
cal variations of verbs and nouns. For instance,
the noun “production” is connected to the verb
“produce,” which in turn is connected to the noun
“producer”. These variations can be exploited to
extract explicit types. We treat such transforma-
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tions as non-final because we may make mistakes.
Moreover, WordNet is highly incomplete in terms
of derivational forms. For instance, we may not
be able to reach all the possible senses for “pro-
ducer” from “production,” and from “works” in
“works by Schumann”, we cannot reach “musi-
cian” or “artist,” but we reach “worker” and there
is no synset of “worker” that specifically denotes
an artist.

2.3 Exploiting a knowledge base

Most of our extractors (optionally) leverage a
knowledge base to (1) prune candidate types, (2)
find additional candidates, and (3) decide whether
to consider subsequent extractors. To do so, we
extract from a KB a repository of (entity men-
tion, type)-pairs.2 We use the KB conservatively,
i.e., we consider KB evidence only if the extracted
types match the ones in the KB.

The KB is leveraged via a KB lookup. Each KB
lookup takes as input an entity mention e and a set
T of candidate types found by the extractor (lexi-
cal or disambiguated). We first replace each lexi-
cal type in T by the set of the corresponding types
from WordNet. Afterwards, for each type t ∈ T ,
we check whether there is one or more matching
types (e, tKB) in the KB for the given mention.
Type tKB matches t if it is either identical, a hy-
pernym, or a hyponym of t. For each match, the
KB lookup outputs t. If tKB is a hyponym of t, we
additionally output tKB , that is, a type more spe-
cific than the one found by the extractor. We leave
the decision of whether t or tKB is a more suit-
able type to the type selection phase. For example,
for e = “Messi” and t = 〈player-1〉, we output
〈player-1〉 and 〈soccer player-1〉 (a hyponym).

The KB lookup is successful if it outputs at least
one type. Then we add the resulting types to the
candidate set and go directly to the type selection
phase. A KB lookup fails if no matching type
was found. We then proceed differently: if a KB
lookup fails, we add the complete set T to the can-
didate set and continue to the next extractor.

As mentioned above, FINET can also be run
without any KB lookups; the corresponding ex-
tractors then do not have a stopping condition. In
Sec. 4, we experimented with both variants and
found that KB lookups generally helped.

2We used Yago2 (Hoffart et al., 2013). Our repository
contained roughly 9M entity mentions and 20M pairs.

2.4 Mention-based extractor
Our second extractor aims to extract type candi-
dates from the entity mention. This is particu-
larly effective for organizations, which often con-
tain the lexical type in their name (e.g., “Johnson
& Wales University” or “Republican House”).

Given an entity mention, we check if any of the
words or expressions in the name corresponds to
a lexical type in WordNet. If so, we consider the
corresponding types as potential candidates. For
instance, for “Imperial College London”, we ex-
tract “college” and obtain types 〈college-1〉 and
〈college-2〉 (both matching the CG type) from
WordNet. We then perform a KB lookup.

We extend the above procedure for entities
tagged as location. Since the set of (named-entity)
locations is quite static and known, we assume that
the KB contains all locations and their possible
types (our experiments strengthened this assump-
tion). If a mention of a location (e.g., “Berlin”) oc-
curs in the repository, we add all the corresponding
types from the repository to the candidate set (e.g.,
〈city-1〉) and move to the type selection phase.

2.5 Verb-based extractor
Verbs have been widely exploited to determine
the types or roles of its arguments: A verb sense
imposes a restriction on the type of its argu-
ments (Quirk et al., 1985; Levin, 1993; Hanks,
1996; Baker et al., 1998; Palmer et al., 2005;
Kipper et al., 2008). For instance, from “Ted
Kennedy was elected to Congress,” we infer that
“Ted Kennedy” is a person who can be elected.
Corresponding types include 〈representative-1〉,
〈representative-2〉, or 〈politician-1〉. Our verb-
based extractor leverages this insight to extract
types. The extractor operates at the clause level.

A simple way to infer lexical types for entities
acting as subjects or objects of a clause is nomi-
nalization, i.e., the transformation of the verb into
deverbal nouns (e.g., “play” into “player”). To
exploit it, we apply a set of morphological trans-
formations to the verb (Quirk et al., 1985), which
depend on the grammatical function of the entity,
i.e., subject or object. If the entity mention acts as
a subject, we try adding the suffixes “-er,”, “-or,”
and “-ant” to the verb’s lemma. If the mention acts
as an object, we use suffixes “-ee” and “-ed”. To
obtain candidate types, we again use derivation-
ally related forms (DER). We consider as poten-
tial candidates all types referred to by one of the
deverbal nouns and connected to a sense of the
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verb via DER. For instance, given “Messi plays in
Barcelona,” we collect for “Messi” all the senses
of “player” that are connected to some sense of
“play” (〈player-1〉, 〈musician-1〉 and 〈actor-1〉).

We also explore WordNet in a way that is not
restricted to morphological variations of the verb.
For instance, in “John committed a crime,” “com-
mit” is a synonym of “perpetrate,” which in turn
can be varied to “perpetrator”. We consider the
morphological variations of all synonyms of the
verb. Moreover, if the named entity is the subject
of the clause, and if the clause contains a direct ob-
ject, we form a new lexical type by adding the di-
rect object as a noun modifier of the deverbal noun
(e.g., From “Messi plays soccer”, we form “soccer
player”). If it exists in WordNet, we consider the
respective types as potential candidates as well.

A more indirect way of exploiting the verb-type
semantic concordance is via a corpus of frequent
(verb, type)-pairs, where the type refers to possi-
ble types of the verb’s subject or object. As stated
above, the set of argument types compatible with a
verb is limited. For instance, “treat” is usually fol-
lowed by 〈condition-1〉, 〈disease-1〉, or 〈patient-
1〉. FINET, uses the corpora of Flati and Nav-
igli (2013) and Del Corro et al. (2014). Given a
verb and an entity, we search for frequent candi-
date types (depending on whether the entity acts
as a subject or object). For example, from “Messi
was treated in the hospital,” we obtain 〈patient-1〉.

Once potential candidates have been collected,
we perform a KB lookup to decide how to proceed.

2.6 Corpus-based extractor

Our final extractor leverages a large unlabeled cor-
pus to find entities that co-occur in similar con-
texts. It is based on the distributional hypothe-
sis (Sahlgren, 2008): similar entities tend to oc-
cur in similar contexts. For example, “Messi” and
“Cristiano Ronaldo” may both be mentioned in
the context of soccer. Thus entity mentions sim-
ilar to “Messi” in a sport context are likely to in-
clude soccer players. Our extractor is related to
semi-supervised KB methods in that it propagates
types of named entity mentions that may appear in
a similar context. It differs in that it is unsuper-
vised, does not require manually or automatically
generated training data, and in the way context is
modeled and candidates are generated.

Our corpus-based extractor makes use of word
vectors (Rumelhart et al., 1988) trained on a large
unlabeled corpus. A word vector is a semantic rep-

resentation of a phrase and represents the semantic
context in which the phrase occurs. Phrases that
are semantically related, and thus appear in similar
contexts, are close to each other in the word vec-
tor space. For instance, if “Messi” and “Cristiano
Ronaldo” tend to co-occur with a similar sets of
words, their word vectors are close. We also may
expect “Arnold Schwarzenegger” to be close to
both actors and politicians, since it occurs in both
contexts. In our work, we use word2vec (Mikolov
et al., 2013), which provides a model trained on
Google News to predict related words or phrases
for a query specified as a set of phrases. Given an
integer k, word2vec outputs the set of k phrases
that are most similar to the query.

Our corpus-based extractor uses (1) the input
sentence to construct a set of relevant queries and
(2) the word2vec results and a KB. To construct a
query for a given entity mention, we focus on the
part of the sentence directly related to the entity.
This relevant part consists of the clause in which
the entity occurs and the subordinate clauses that
do not contain another entity. Since word2vec is
most effective when queries are short, we con-
struct a set of small queries, each consisting of
the named entity mention and some context in-
formation. We construct a query for each noun
phrase (of length at most 2) and for each other en-
tity mention. If the named entity occurs as sub-
ject or object, we also take the corresponding verb
and the head of the object or subject. For exam-
ple, the queries for “Maradona expects to win in
South Africa” are {“Maradona”, “South Africa”}
and {“Maradona”, “expect”, “win”}.

For each query, we retrieve the 100 most re-
lated phrases with their similarity score and union
the results. We filter them using our KB and re-
tain only those phrases that correspond to entity
mentions (with the correct CG types). We then
enrich each mention by the set of their possible
types from the KB. Here we exclude widespread
but irrelevant implicit types such as 〈male-1〉,
〈female-1〉, 〈adult-1〉, 〈commoner-1〉, 〈friend-1〉,
or 〈alumnus-1〉. We also include the types cor-
responding to the entity mention (with score 1).
If there is sufficient evidence that some of the
so-obtained types are most prominent, we take
these types as candidates. In our example, query
{“Maradona” “South Africa”}, all of the top-15
persons (e.g., “Diego Maradona”, “Carlos Alberto
Parreira”, “Dunga”, “Beckenbauer”) share type
〈coach-1〉; a strong indication that Maradona may
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also be of type 〈coach-1〉. To select prominent
types we traverse the results until we collect 50%
of the total score. We take all so-collected types
as candidates. If no more than 10 different types
were added this way, we directly go to the type
selection phase.

3 Type Selection

The type selection phase selects the most appro-
priate type from the set of candidates of a given
named entity. We use techniques from WSD, but
adapt them to our setting. WSD aims to disam-
biguate a word or phrase (e.g., a noun) with re-
spect to a type system as WordNet; e.g., from
“player” to 〈player-1〉. The main difference be-
tween WSD and our type selection is that our goal
is to decide between a set of types for an entity
mention; e.g., from “Messi” to 〈soccer player-1〉.
Our type selection step can be used as-is; it is not
trained on any domain- or corpus-specific data.

3.1 Obtaining context
All WSD systems take a set of candidate types and
contextual information as input. The key chal-
lenge lies in the construction of candidate types
(Sec. 2) as well as context. For each entity, we
consider entity-oblivious context (from the input
sentence) as well as entity-specific context (using
lexical expansions).

We take all words in the sentence as entity-
oblivious context. To construct entity-specific
context, we make use of lexical expansions, which
have been successfully applied in WSD (Miller et
al., 2012). Its goal is to enrich contextual informa-
tion to boost disambiguation. In our case, it also
helps to differentiate between multiple entities in
a sentence. We build the entity-specific context
using word vectors. As in the corpus-based ex-
tractor, we construct a set of queries for the entity
but in this case we take as context all so-obtained
words that do not correspond to a named entity.
For instance, the entity-specific context for the
entity mention “Maradona” for query “Maradona
South Africa” is: “coach”, “cup”, “striker”, “mid-
fielder”, and “captain”. The full context for
“Maradona” in “Maradona expects to win in South
Africa” additionally includes the entity-oblivious
context “expects”, “win”, “South Africa”.

3.2 Selecting types
WSD systems fall into two classes: unsupervised,
which rely on background knowledge such as

WordNet (Ponzetto and Navigli, 2010), and super-
vised, which require training data (Zhong and Ng,
2010). Here we take a combination, i.e., we lever-
age WordNet and manually annotated data.

We train a Naive Bayes classifier to select the
most appropriate type given its context. We repre-
sent context by a bag of lemmatized words. This
allows us to automatically generate training data
from WordNet (and use manually labeled data).
Since WordNet provides information for each of
the relevant types, this approach combats the data
sparsity that arises with supervised systems. The
context for each individual WordNet type consists
of all words appearing in the type’s gloss and the
glosses of its neighbors (Banerjee and Pedersen,
2003). We also include for each type the neigh-
bors from Ponzetto and Navigli (2010) and the
corresponding verbs from Del Corro and Gemulla
(2013). Finally, we add all words in sentences con-
taining the type in SemCor3 (Landes et al., 1998)
and Ontonotes 5.0 (Hovy et al., 2006).

We trained one classifier per CG type. To
train the classifier, we create a single training
point for each corresponding WordNet type and
use the type’s context as features. To map the
CG types from our NER system to WordNet, we
considered as persons all descendants of 〈person-
1〉, 〈imaginary being-1〉, 〈characterization-3〉,
and 〈operator-2〉 (10584 in total); as locations
all descendants of 〈location-1〉, 〈way-1〉, and
〈landmass-1〉 (3681 in total); and as organizations
all descendants of 〈organization-1〉 and 〈social
group-1〉 (1968 in total). This approach of han-
dling CG types suffers to some extent from Word-
Net’s incompleteness, esp. with respect to persons
and organizations. For instance, phrase “spon-
sored by Coca-Cola” implies that “Coca-Cola” is
a “sponsor,” but in WordNet, only persons can be
sponsors. Nevertheless, this approach worked well
in our experiments.

4 Experiments

We conducted an experimental study on multiple
real-word datasets to compare FINET with two
state-of-the-art approaches. FINET is used as-is;
it does not require training or tuning for any spe-
cific dataset. All datasets, detected types, labels,
and our source code are publicly available.4

3http://web.eecs.umich.edu/˜mihalcea/
downloads.html

4http://dws.informatik.uni-mannheim.
de/en/resources/software/finet/
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4.1 Experimental Setup

Methods. Hyena (Yosef et al., 2012) is a repre-
sentative supervised method that uses a hierarchi-
cal classifier. Its features include the words in the
named entity mention, in sentence and paragraph,
and POS tags. It performs basic co-reference res-
olution and marks entity mentions connected to
a type in the KB using a binary feature. Sim-
ilar to Ling and Weld (2012), Hyena is trained
on Wikipedia entities, each being annotated with
its corresponding WordNet types from YAGO.
Hyena’s type system is restricted to 505 Word-
Net types with top categories 〈artifact-1〉, 〈event-
1〉, 〈person-1〉, 〈location-1〉, and 〈organization-
1〉. Hyena outperformed a number of previous sys-
tems (Fleischman and Hovy, 2002; Rahman and
Ng, 2010; Ling and Weld, 2012). We used Hyena
via its web service (Yosef et al., 2013).

Pearl (Nakashole et al., 2013) is a semi-
supervised system that leverages a repository of
300k relational patterns (Nakashole et al., 2012).
Subjects and objects of each pattern carry type
information. Pearl types named entity mentions
by the most likely type according to its pattern
database. Pearl’s type system is based on around
200 “interesting” WordNet types. We ran Pearl in
its hard setting, which performed best.

FINET. We ran FINET in two configurations:
(1) with KB lookup, (2) without the KB lookup.
This allows us to estimate the extent to which re-
ferring to a KB helps. Note that the corpus-based
extractor makes use of the KB in both settings.

Datasets. We used three different datasets rep-
resenting real-world use cases. We created two
datasets, New York Times and Twitter, and sam-
pled a subset of the CoNLL data, which provides
gold annotations for CG types. We did not con-
sider datasets such as FIGER (Ling and Weld,
2012) or BBN (Weischedel and Brunstein, 2005)
because they are not suitable for very fine-grained
typing.

New York Times consists of 500 random sen-
tences from the New York Times corpus (Sand-
haus, 2008), year 2007; we selected only sen-
tences that contained at least one named entity ac-
cording to the Stanford CoreNLP 4.4.1 tool.

CoNLL. We sampled 500 sentences from
CoNLL (Tjong Kim Sang and De Meulder, 2003),
a collection of newswires with manually annotated
entities with CG types labels. We directly used the
annotations in our evaluation. The sentences tend

to be short and sometimes non-verbal (e.g., “Jim
Grabb ( U.S. ) vs. Sandon Stolle ( Australia )”).
Most entities are prominent and likely to be found
in our KB (and the one of existing methods).

Twitter. We collected the first 100 tweets with
named entities retrieved by the Twitter API.

Type system. FINET’s type system consists of
more than 16k types with top categories persons,
locations and organizations. We used the map-
ping between these top categories and WordNet
described in Sec. 3.2. Hyena and Pearl use 505
and 200 WordNet types, resp., which is signif-
icantly smaller. To compare the performance
across different granularities, we classified each
type as coarse-grained (CG), fine-grained (FG)
or super fine-grained (SFG). The CG types were
〈artifact-1〉, 〈event-1〉, 〈person-1〉, 〈location-1〉
and 〈organization-1〉. The FG types were those
included in Pearl. All remaining types were con-
sidered SFG.

Labeling. All extractions by all systems were
independently evaluated by two labelers. We
adopted a pessimistic view, i.e., we treat an ex-
traction as correct only if it was labeled correct by
both labelers. The Cohen’s kappa measure ranged
0.54–0.86, indicating a substantial agreement.

4.2 Results

Description of Tab. 3. Our results are summa-
rized in Tab. 3. When a method did not produce
a type of the considered granularity but a more
fine-grained type, we selected its closest hyper-
nym. For each configuration, the table shows the
number of named entities for which types have
been extracted, the total number of extracted types
(more than one distinct type per named entity for
some methods), the total number of correct types,
and the precision (P ). The number of named en-
tities for which types have been found and the to-
tal number of correct extractions can be seen as a
loose measure of recall. It is difficult to estimate
recall directly for FG and SFG types since some
entities may be associated with either no or mul-
tiple such types. To gain more insight, we show
the number of correct distinct types, and the aver-
age depth (shortest path from 〈entity-1〉 in Word-
Net) for both correct FG and correct SFG types.
Finally, we list the Cohen’s kappa inter-annotator
agreement measure for each method.
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System Coarse-Grained (CG) Fine-Grained (FG) Super Fine-Grained (SFG) Distinct Avg. Depth Cohen’s

Enti- Total Correct Enti- Total Correct Enti- Total Correct types FG SFG kappa
ties types types (P) ties types types (P) ties types types (P)

New York Times (500 sentences)

FINET 992 992 872 (87.90) 616 631 457 (72.42) 319 329 233 (70.82) 191 5.96 7.25 0.60
FINET (w/o KB l.) 992 992 872 (87.90) 598 613 436 (71.13) 294 304 204 (67.11) 174 5.98 7.18 0.58
Hyena 895 1076 779 (72.40) 770 1847 522 (28.26) 518 775 160 (20.65) 127 5.79 6.98 0.74
Pearl (hard) 15 15 5 (33.33) 2 2 0 – – – (–) 1 – – 0.54

CoNLL (500 sentences)

FINET 1355 1355 1355 (1.0) 1074 1086 876 (80.66) 668 679 510 (75.11) 136 6.09 7.38 0.62
FINET (w/o KB l.) 1355 1355 1355 (1.0) 1075 1087 869 (79.94) 661 672 498 (66.13) 134 6.06 7.35 0.62
Hyena 1162 1172 1172 (1.0) 1064 2218 1329 (59.92) 719 944 268 (28.39) 103 5.89 6.57 0.69
Pearl (hard) 18 18 18 (1.0) 8 11 5 (45.45) – – – (–) 7 5.6 – 0.74

Twitter (100 tweets)

FINET 135 135 123 (91.11) 103 104 69 (66.35) 54 54 33 (61.11) 40 6.25 7.64 0.58
FINET (w/o KB l.) 135 135 123 (91.11) 104 105 65 (61.90) 56 56 30 (53.57) 40 6.14 7.6 0.55
Hyena 125 146 105 (71.91) 117 280 75 (26.79) 91 129 21 (16.28) 42 6.11 6.19 0.67
Pearl (hard) 10 10 5 (50.00) 3 4 1 (25.00) – – – (–) 3 6 – 0.86

Table 3: Summary of results

Discussion. First note that Pearl extracted sig-
nificantly fewer types than any other system. Pearl
does not support SFG. For CG and FG, we conjec-
ture that its database, which was generated from
Wikipedia, did not reflect the syntactic structure
of the sentences in our datasets. This finding
strengthens the case for the use of heterogeneous
sources in semi-supervised methods.

Hyena performed better than Pearl and in many
cases extracted the largest number of types. Hyena
tended to extract multiple types per named entity
and mostly at least one FG type. This more recall-
oriented approach, and its context-unaware use of
supervision, significantly reduced its precision.

FINET had significantly higher precision across
all settings, especially for SFG types (almost three
times more than Hyena). One reason for this is that
FINET is conservative: We provide more than one
type per named entity only if the types were ex-
plicit. In all other cases, our type selection phase
produced only a single type. FINET extracted
the largest number of correct SFG types on each
dataset. Hyena extracted more FG types, but with
a significantly lower precision. The average depth
of correct FG and SFG types in FINET was higher
than that of Pearl and Hyena. FINET also tended
to use more distinct correct types (191 in NYT
vs. 127 for Hyena). Again, this more fine-grained
typing stemmed from FINET’s use of multiple ex-
tractors, many of which do not rely on supervision.

Note that FINET also has higher precision for
CG. As stated, FINET makes use of the Stanford
NER to extract CG types (except in CoNLL, were
we used the manual labels), and respects these

types for its FG and SFG extractions. Hyena has
lower precision for CG types because it sometimes
outputs multiple CG types for a single named en-
tity. To ensure a fair comparison, for CoNLL we
indirectly used the gold labels for Pearl and Hyena
by discarding all types with an incorrect CG type.

FINET’s extractors. Tab. 4 shows individual
influence of each of FINET’s extractors in the
NYT dataset with KB lookups. The table shows
the number of entities typed by each extractor and
the precision of the resulting types after type selec-
tion. The mention-based extractor was the most
precise and also fired most often, mainly due to
locations. The pattern-based extractor also had
a good precision and tended to fire often. The
first three extractors, the more explicit ones, gen-
erated more than half of the extracted types; this
indicates that explicit type extractors are impor-
tant. There were also a substantial fraction of im-
plicit types, covered by the corpus-based extrac-
tor. The verb-based extractor had the lowest preci-
sion, mostly because of the noisiness and incom-
pleteness of its underlying resources (such as the
(verb,type)-repository). We expect overall preci-
sion to increase if this extractor is removed. How-
ever, this would hinder FINET to infer types from
verbs. Instead, we believe a better direction is to
improve the underlying resources.

Error analysis. One source of error for FINET
were incorrect CG labels. When CG labels were
correct (by Stanford NER), the precision of FI-
NET for FG types increased to more than 70% for
all datasets. When FG labels were correct, the pre-
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Last used extractor Entities P

Pattern-based 180 71.11
Mention-based 219 82.65
Verb-based 47 48.94
Corpus-based 205 64.39

Table 4: Per-extractor performance NYT

cision of SFG labels exceeded 90%.
Incompleteness of and noise in our underlying

resources also affected precision. For example,
some types in WordNet have missing hypernyms,
which reduced recall; e.g., sponsor in WordNet is a
person but cannot be an organization. WordNet is
also biased towards US types (e.g., supreme court
only refers to the US institution). Our repositories
of verbs and their argument types are incomplete
and noisy as well. Finally, errors in the KB af-
fected both KB lookups and our corpus-based ex-
tractor. One example of such errors are tempo-
ral discrepancies; e.g., a person who used to be a
〈player-1〉may now be a 〈coach-1〉. The KB types
are also noisy, e.g., many soccer players in Yago2
are typed as 〈football player-1〉 and the United
Nations is typed as a 〈nation-1〉.

Finally, the type selection phase of FINET in-
troduced mistakes (i.e., even when the correct type
was a candidate, type selection failed to select it).
This is especially visible in the verb-based extrac-
tor, which may produce a large number of candi-
dates and thus makes type selection difficult.

Hyena mainly suffered from the general prob-
lems of supervised systems. For instance, since
〈graduate-1〉 or 〈region-1〉 are highly frequent in
the KB, many persons (locations) were incorrectly
typed as 〈graduate-1〉 (〈region-1〉). Errors in the
KB also propagate in supervised system, which
may lead to “contradictory” types (i.e., an entity
being typed as both 〈person-1〉 and 〈location-1〉).
5 Related Work

The NET problem is related to taxonomy induc-
tion (Snow et al., 2006; Wu et al., 2012; Shi et
al., 2010; Velardi et al., 2013) and KB construc-
tion (Lee et al., 2013; Paulheim and Bizer, 2014;
Mitchell et al., 2015), although the goals are dif-
ferent. Taxonomy induction aims to produce or
extend a taxonomy of types, whereas KB con-
struction methods aim to find new types for the
entities present in a KB. In both cases, this is done
by reasoning over a large corpus. In contrast, we
are interested in typing each named entity mention

individually using an existing type system. FI-
NET draws from ideas used in taxonomy induc-
tion or KB construction. Existing systems are ei-
ther based on patterns or the distributional hypoth-
esis; these two approaches are discussed and com-
pared in (Shi et al., 2010). In FINET, we make
use of patterns (such as the ones of Hearst (1992))
in most of our extractors and of the distributional
hypothesis in our corpus-based extractor.

Yahya et al. (2014) developed a semi-
supervised method to extract facts such as “presi-
dent”(“Barack Obama”, “US”), in which the rela-
tion acts as a type. FINET differs in that it supports
implicit types and produces disambiguated types.

A number of NET systems have been proposed
which make use of a predefined type hierarchy.
Lin et al. (2012) proposes a semi-supervised sys-
tem that uses relational patterns to propagate type
information from a KB to entity mentions. Sim-
ilarly, the subsequent Pearl system (Nakashole et
al., 2013) is based on a corpus of typed relation
patterns. An alternative approach is taken by su-
pervised methods, which train classifiers based on
linguistic features (Fleischman and Hovy, 2002;
Rahman and Ng, 2010; Ling and Weld, 2012).
Both Yosef et al. (2013) and Ling and Weld (2012)
use Wikipedia and a KB to generate automatic
training data. FINET is less reliant on a KB or
training data than the above methods, which im-
proves both precision (no bias against KB types)
and recall (more fine-grained types supported).

Our type selection phase is based on
WSD (Navigli, 2012), a classification task
where words or phrases are disambiguated against
senses from some external resource such as
WordNet. Supervised WSD systems (Dang and
Palmer, 2005; Dligach and Palmer, 2008; Chen
and Palmer, 2009; Zhong and Ng, 2010) use a
classifier to assign such senses, mostly relying on
manually annotated data. KB methods (Agirre
and Soroa, 2009; Ponzetto and Navigli, 2010;
Miller et al., 2012; Agirre et al., 2014; Del Corro
et al., 2014) use of a background KB instead.

6 Conclusion

We presented FINET, a system for fine-grained
typing of named entities in context. FINET gener-
ates candidates using multiple extractors, ranging
from explicitly mentioned to implicit types, and
subsequently selects the most appropriate. Our ex-
perimental study indicates that FINET has signifi-
cantly better performance than previous methods.
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Abstract

Extracting named entities in text and link-
ing extracted names to a given knowledge
base are fundamental tasks in applications
for text understanding. Existing systems
typically run a named entity recognition
(NER) model to extract entity names first,
then run an entity linking model to link ex-
tracted names to a knowledge base. NER
and linking models are usually trained sep-
arately, and the mutual dependency be-
tween the two tasks is ignored. We pro-
pose JERL, Joint Entity Recognition and
Linking, to jointly model NER and link-
ing tasks and capture the mutual depen-
dency between them. It allows the in-
formation from each task to improve the
performance of the other. To the best of
our knowledge, JERL is the first model to
jointly optimize NER and linking tasks to-
gether completely. In experiments on the
CoNLL’03/AIDA data set, JERL outper-
forms state-of-art NER and linking sys-
tems, and we find improvements of 0.4%
absolute F1 for NER on CoNLL’03, and
0.36% absolute precision@1 for linking
on AIDA.

1 Introduction

In applications of complex Natural Language Pro-
cessing tasks, such as automatic knowledge base
construction, entity summarization, and question
answering systems, it is essential to first have high
quality systems for lower level tasks, such as part-
of-speech (POS) tagging, chunking, named en-
tity recognition (NER), entity linking, and parsing
among others. These lower level tasks are usually
decoupled and optimized separately to keep the
system tractable. The disadvantage of the decou-
pled approach is that each lower level task is not

aware of other tasks and thus not able to leverage
information provided by others to improve perfor-
mance. What is more, there is no guarantee that
their outputs will be consistent.

This paper addresses the problem by building
a joint model for Entity Recognition and Disam-
biguation (ERD). The goal of ERD is to extract
named entities in text and link extracted names to
a knowledge base, usually Wikipedia or Freebase.
ERD is closely related to NER and linking tasks.
NER aims to identify named entities in text and
classify mentions into predefined categories such
as persons, organizations, locations, etc. Given a
mention and context as input, entity linking con-
nects the mention to a referent entity in a knowl-
edge base.

Existing ERD systems typically run a NER to
extract entity mentions first, then run an entity
linking model to link mentions to a knowledge
base. Such a decoupled approach makes the sys-
tem tractable, and both NER and linking models
can be optimized separately. The disadvantages
are also obvious: 1) errors caused by NER will
be propagated to linking and are not recoverable
2) NER can not benefit from information available
used in entity linking; 3) NER and linking may
create inconsistent outputs.

We argue that there is strong mutual depen-
dency between NER and linking tasks. Consider
the following two examples:

1. The New York Times (NYT) is an American
daily newspaper.
2. Clinton plans to have more news conferences
in 2nd term. WASHINGTON 1996-12-06

Example 1 is the first sentence from the
Wikipedia article about “The New York Times”.
It is reasonable but incorrect for NER to identify
“New York Times” without “The” as a named en-
tity, while entity linking has no trouble connect-
ing “The New York Times” to the correct entity.
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Example 2 is a news title where our NER classi-
fies “WASHINGTON” as a location, since a lo-
cation followed by a date is a frequent pattern
in news articles it learned, while the entity link-
ing prefers linking this mention to the U.S. pres-
ident “George Washington” since another presi-
dent’s name “Clinton” is mentioned in the con-
text. Both the entity boundaries and entity types
predicted by NER are correlated to the knowledge
of entities linked by entity linking. Modeling such
mutual dependency is helpful in resolving incon-
sistency and improving performance for both NER
and linking.

We propose JERL, Joint Entity Recognition and
Linking, to jointly model NER and linking tasks
and capture the mutual dependency between them.
It allows the information from each task to im-
prove the performance of the other. If NER is
highly confident on its outputs of entity boundaries
and types, it will encourage entity linking to link
an entity which is consistent with NER’s outputs,
and vice versa. In other words, JERL is able to
model how consistent NER and linking’s outputs
are, and predict coherent outputs. According to
our experiments, this approach does improve the
end to end performance. To the best of our knowl-
edge, JERL is the first model to jointly optimize
NER and linking tasks together completely .

Sil (2013) also proposes jointly conducting
NER and linking tasks. They leverage existing
NER/chunking systems and Freebase to over gen-
erate mention candidates and leave the linking al-
gorithm to make final decisions, which is a re-
ranking model. Their model captures the depen-
dency between entity linking decisions and men-
tion boundary decisions with impressive results.
The difference between our model and theirs is
that our model jointly models NER and linking
tasks from the training phrase, while their model
is a combined one which depends on an existing
state-of-art NER system. Our model is more pow-
erful in capturing mutual dependency by consider-
ing entity type and confidences information, while
in their model the confidence of outputs is lost
in the linking phrase. Furthermore, in our model
NER can naturally benefit from entity linking’s
decision since both decisions are made together,
while in their model, it is not clear how the linking
decision can help the NER decision in return.

Joint optimization is costly. It increases the
problem complexity, is usually inefficient, and

requires the careful consideration of features of
multiple tasks and mutual dependency, making
proper assumptions and approximations to enable
tractable training and inference. However, we
believe that joint optimization is a promising di-
rection for improving performance for NLP tasks
since it is closer to how human beings process text
information. Experiment result indicates that our
joint model does a better job at both NER and
linking tasks than separate models with the same
features, and outperforms state-of-art systems on
a widely used data set. We found improvements
of 0.4% absolute F1 for NER on CoNLL’03 and
0.36% absolute precision@1 for linking on AIDA.
NER is a widely studied problem, and we believe
our improvement is significant.

The contributions of this paper are as follows:
1. We identify the mutual dependency between
NER and linking tasks, and argue that NER and
linking should be conducted together to improve
the end to end performance.
2. We propose the first completely joint NER and
linking model, JERL, to train and inference the
two tasks together. Efficient training and inference
algorithms are also presented.
3. The JERL outperforms the best NER record
on the CoNLL’03 data set, which demonstrates
how NER could be improved further by leverag-
ing knowledge base and linking techniques.

The remainder of this paper is organized as fol-
lows: the next section discusses related works on
NER, entity linking, and joint optimization; sec-
tion 3 presents our Joint Entity Recognition and
Linking model in detail; section 4 describes ex-
periments, results, and analysis; and section 5 con-
cludes.

2 Related Work

The NER problem has been widely addressed by
symbolic, statistical, as well as hybrid approaches.
It has been encouraged by several editions of eval-
uation campaigns such as MUC (Chinchor and
Marsh, 1998), the CoNLL 2003 NER shared task
(Tjong Kim Sang and De Meulder, 2003) and ACE
(Doddington et al., 2004). Along with the im-
provement of Machine Learning techniques, sta-
tistical approaches have become a major direc-
tion for research on NER, especially after Condi-
tional Random Field is proposed by Lafferty et al.
(2001). The well known state-of-art NER systems
are Stanford NER (Finkel et al., 2005) and UIUC
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NER (Ratinov and Roth, 2009). Liang (2005)
compares the performance of the 2nd order lin-
ear chain CRF and Semi-CRF (Sarawagi and Co-
hen, 2004) in his thesis. Lin and Wu (2009) clus-
ter tens of millions of phrases and use the result-
ing clusters as features in NER reporting the best
performance on the CoNLL’03 English NER data
set. Recent works on NER have started to focus
on multi-lingual named entity recognition or NER
on short text, e.g. Twitter.

Entity linking was initiated with Wikipedia-
based works on entity disambiguation (Bunescu
and Pasca, 2006; Cucerzan, 2007). This task is
encouraged by the TAC 2009 KB population task1

first and receives more and more attention from the
research community (Hoffart et al., 2011; Ratinov
et al., 2011; Han and Sun, 2011). Linking usu-
ally takes mentions detected by NER as its input.
Stern et al. (2012) and Wang et al. (2012) present
joint NER and linking systems and evaluate their
systems on French and Chinese data sets. Sil and
Yates (2013) take a re-ranking based approach and
achieve the best result on the AIDA data set. In
2014, Microsoft and Google jointly hosted “En-
tity Recognition and Disambiguation Challenge”
which focused on the end to end performance of
linking system 2.

Joint optimization models have been studied at
great length. E.g. Dynamic CRF (McCallum
et al., 2003) has been proposed to conduct Part-
of-Speech Tagging and Chunking tasks together.
Finkel and Manning (2009) show how to model
parsing and named entity recognition together. Yu
et al. (2011) work on jointly entity identifica-
tion and relation extraction from Wikipedia. Sil’s
(2013) work on jointly NER and linking is de-
scribed in the introduction section of this paper.
It is worth noting that joint optimization does not
always work. The CoNLL 2008 shared task (Sur-
deanu et al., 2008) was intended to encourage
jointly optimize parsing and semantic role label-
ing, but the top performing systems decoupled the
two tasks.

3 Joint Entity Recognition and Linking

Named entity recognition is usually formalized as
a sequence labeling task, in which each word is
classified to not-an-entity or entity labels. Condi-
tional Random Fields (CRFs) is one of the popu-

1http://www.nist.gov/tac/2014/KBP/
2http://web-ngram.research.microsoft.com/ERD2014/

Figure 1: The factor graph of JERL model

lar models used. Most features used in NER are
word-level (e.g. a word sequence appears at po-
sition i or whether a word contains exactly four
digits). It is hard, if not impossible, to encode
entity-level features (such as ”entity length” and
”correlation to known entities”) in traditional CRF.
Entity linking is typically formalized as a ranking
task. Features used for entity linking are at entity-
level inherently (such as entity prior probability;
whether there are any related entity names or dis-
criminative keywords occurring in the context).

The main challenges of joint optimization be-
tween NER and linking are: how to combine a se-
quence labeling model and a ranking model; and
how to incorporate word-level and entity-level fea-
tures. In a linear chain CRF model, each word’s
label is assumed to depend on the observations
and the label of its previous word. Semi-CRF
carefully relaxes the Markov assumption between
words in CRF, and models the distribution of seg-
mentation boundaries directly. We further extend
Semi-CRF to model entity distribution and mu-
tual dependency over segmentations, and name it
Joint Entity Recognition and Linking (JERL). The
model is described below.

3.1 JERL

Let x = {xi} be a word sequence containing |x|
words. Let s = {sj} be a segmentation assign-
ment over x, where segment sj = (uj , vj) con-
sist of a start position uj and an end position vj .
All segments have a positive length and are adja-
cent to each other, so every (uj , vj) always satis-
fies 1 ≤ uj ≤ vj ≤ |x| and uj+1 = vj + 1. Let
y = {yj} be labels in a fixed label alphabet Y
over a segmentation assignment s. Here Y is the
set of types NER to predict. xsj = (xuj . . . xvj )
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is the corresponding word sequence to sj , and
Esj = {ej,k} is a set of entities in the knowl-
edge base (KB), which may be referred by word
sequence xsj in the entity linking task. Each en-
tity ej,k is associated with a label yej,k ∈ {0, 1}.
Label yej,k takes 1 iff xsj referring to entity ej,k,
and 0 otherwise. If xsj does not refer to any entity
in the KB, yej,0 takes 1, which is analogous to the
NIL3 identifier in entity linking.

Based on the preliminaries and notations, Fig-
ure 1 shows the factor graph (Kschischang et al.,
2001) of JERL. There are similar factor nodes for
every (uj , vj , yej,k), we only show the first one
(uj , vj , yej,0) for clarity.

Given x, let a = (s,y,ye) be a joint assign-
ment, and g(x, j,a) be local functions for xsj ,
namely features, each of which maps an assign-
ment a to a measurement gk(x, j, a) ∈ <. Then
G(x,a) =

∑|s|
j=1 g(x, j,a) is the factor graph

defining a probability distribution of assignment
a conditioned on word sequence x.

Then JERL, conditional probability of a over x,
is defined as:

P (a|x,w) =
1

Z(x)
ew·G(x,a) (1)

where w is the weight vector corresponding to G
will be learned later, and Z(x) is the normaliza-
tion factor Z(x) =

∑
a∈A e

w·G(x,a), in which A
is the union of all possible assignments over x.

JERL is a probabilistic graphical model. More
specificly, as shown in Figure 1, there are three
groups of local functions and one constrain intro-
duced. Each of them take a different role in JERL,
as described below:

Features defined on x, sj , yj , yj−1 are written
as gner(x, sj , yj , yj−1). These functions model
segmentation and entity types’ distribution over x.
Actually, every local features used in NER can be
formulated in this way, and thus can be included in
JERL. We thus refer to them as “NER features”.

Features defined on x, sj , yej,k are written as
gel(x, sj , yej,k) and are called “linking features”.
These features model joint probabilities of word
sequence xsj and linking decisions ykj,k = 1(0 ≤
k ≤ |Esj |) given context x. JERL incorporates all
linking features in this way.

Features defined on yj , yej,k are written as
gcr(yj , yej,k). These features model “mutual de-

3In the entity linking task, if a given mention refers to
an entity which is not in the knowledge base, linking system
should return a special identifier “NIL”.

pendency” between NER and linking’s outputs.
For each entity ej,k, there is additional informa-
tion available in the knowledge base, e.g. cate-
gories information, popularity and relationship to
other entities. These features encourage predicting
coherent outputs for NER and linking.

There is one constrain for each yej that the cor-
responding xsj can refer to only one entity ej,k ∈
Esj or NIL. This is equivalent to

∑|Esj |
k=0 y

e
j,k = 1.

Based on the above description, G(x,a)
in equation 1 is the sum of conjunction
(gner, gel, gcr) over s, and can be rewritten as,

G(x,a) =
∑|s|

j=1( gner(x, sj , yj , yj−1)

,
∑|Ej |

k=0 g
el(x, sj , yej,k)

,
∑|Ej |

k=0 g
cr(x, yj , yej,k) )

In summary, JERL jointly models the NER
and linking, and leverages mutual dependency be-
tween them to predict coherent outputs. Previ-
ous works (Cucerzan, 2007; Ratinov et al., 2011;
Sil and Yates, 2013) on linking argued that en-
tity linking systems often suffer because of errors
involved in mention detection phrase, especially
false negative errors, and try to mitigate it via over-
generating mention candidates. From the mention
generation perspective, JERL actually considers
every possible assignment and is able to find the
optimal a.

3.2 Parameter Estimation

We describe how to conduct parameter estima-
tion for JERL in this section. Given independent
and identically distributed (i.i.d.) training data
T = {(xt,at)}Nt=1, the goal of parameter estima-
tion is to find optimal w∗ to maximize the joint
probability of the assignments {at} over {xt}.

w∗ = argmaxw∈<|G|
N∏
t=1

P (at|xt,w)

We use conditional log likelihood with `2 norm as
the objective function in training,

L(T ,w) =
∑

t logP (at|xt,w)− 1
2σ2 ||w||22

The above function is concave, adding regulariza-
tion to ensure that it has exactly one global opti-
mum. We adopt a limited-memory quasi-Newton
method (Liu and Nocedal, 1989) to solve the opti-
mization problem.
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The gradient of L(T ,w) is derived as,

∂L
∂w

=
∑
t

(G(xt,at)

−
∑
a′
G(xt,a

′)P (a′|xt,w))− w

σ2

(2)

As shown in Figure 1, our model’s factor graph is
a tree, which means the calculation of the gradient
is tractable.

Inspired by the forward backward algorithm
(Sha and Pereira, 2003) and Semi-CRF (Sarawagi
and Cohen, 2004), we leverage dynamic program-
ming techniques to compute the normalization
factor Zw and marginal probability P (a′j|xt,w)
when w is given.(Sutton and McCallum, 2006)
The parameter estimation algorithm is abstracted
in Algorithm 1.

Algorithm 1: JERL parameter estimation

input : training data T = {(xt,at)}Nt=1

output: the optimal w

w ← 0;
while weight w is not converged do

Z ← 0;
w′ ← 0;
for t← 1 to N do

calculate αt,βt according to eq.3;
calculate Zt according to eq.4
calculate w′t according to eq.2, 5;
Z ← Z + Zt;
w′ ← w′ +w′t;

end
update w to maximize log likelihood
L(T ,w) under (Z,w′) via L-BFGS;

end

Let αi,y (i ∈ [0, |x|], y ∈ Y) be the sum of po-
tential functions of all possible assignments over
(x1 . . . xi) whose last segmentation’s labels are y.
Then αi,y can be calculated recursively from i = 0
to i = |x| as below.

We first define base cases as α0,y = 1|{y∈Y}.
When i ∈ (0, |x|]:

αi,y =
L∑
d=1

∑
y′∈Y

αi−d,y′ψneri−d+1,i,y,y′

(
∑

ye
j∈Y e∗

j

ψel.cri−d+1,i,y,ye
j
)

(3)

where L is the max segmentation length in Semi-
CRF, and Y e∗

j is all valid assignments for yej
which satisfies

∑|Esj |
k=0 y

e
j,k = 1. The ψneruj ,vj ,yj ,yj−1

and ψel.cruj ,vj ,yj ,ye
j

are precomputed ahead as below,

ψneruj ,vj ,yj ,yj−1
= ew

ner·gner(x,sj ,yj ,yj−1)

ψel.cruj ,vj ,yj ,ye
j

=
|Ej |∏
k=0

ew
elgel(x,sj ,y

e
j,k)+wcrgcr(yj ,y

e
j,k)

wherewner,wel andwcr are weights for gner, gel

and gcr in w accordingly.
The value of Zw can then be written as

Zw(x) =
∑
y

α|x|,y (4)

Define βi,y (i ∈ [0, |x|], y ∈ Y) as the sum
of potential functions of all possible assignments
over (xi+1 . . . x|x|) whose first segmentation’s la-
bels are y. βi,y is calculated in a similar way, ex-
cept they are calculated from i = |x| to left i = 0.

Once we get {αi,j} and {βi,j}, the
marginal probability of arbitrary assignment
aj = (sj , yj ,yej ), where sj = (uj , vj), can be
calculated as below:

P (sj , yj |x,w) =
(
∑

y′∈Y αuj−1,y′ψ
ner
uj ,vj ,yj ,y′)βvj ,yj

Zw(x)

and

P (aj |xt,w) =

P (sj , yj |x,w)
ψel.cruj ,vj ,yj ,ye

j∑
ye
′ ∈Y e∗

j
ψel.cruj ,vj ,yj ,ye

′

(5)

3.3 Inference
Given a new word sequence x and model weights
w trained on a training set, the goal of in-
ference is to find the best assignment, a∗ =
argmaxaP (a|x,w) for x. We extend the Viterbi
algorithm to exactly infer the best assignment. The
inference algorithm is shown in Algorithm 2.

Let φ(uj , vj , yj , yj−1) be the product of poten-
tials depending on (sj , yj , yj−1) as,

φ(uj , vj , yj , yj−1) =

ψneruj ,vj ,yj ,yj−1
(
∑

ye
j∈Y e∗

j

ψel.cruj ,vj ,yj ,ye
j
) (6)
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Algorithm 2: JERL inference
input : one word sequence x and weights w
output: the best assignment a over x

// shrink JERL graph to a Semi-CRF graph;
for u← 1 to |x| do

for v ← u+ 1 to |x| do
for (y, y′) ∈ Y × Y do

calculate φu,v,y,y′ // see eq.6;
end

end
end
// infer the best assignment of (s∗, y∗);
for i← 1 to |x| do

for y ∈ Y do
calculate Vi,y // see eq.7;

end
end
(s∗, y∗)← argmax(Vi,y);
// infer the best assignment of {yej };
for j ← 1 to |s∗| do

yej ← argmax(P (|x,w, s∗j ,y∗j ))
end
a∗ ← (s∗,y∗,ye∗);

and let V (i, y) denotes the largest value of (w ·
G(x,a′)) where a′ could be any possible par-
tial assignment starting from x1 to xi. The best
(s∗,y∗) are derived during the following recur-
sive calculation,

Vi,y =
maxy′∈Y,d∈[1,L]

(Vi−d,y′ + φ(i−d+1, i, y, y
′)) i > 0

0 i = 0
−∞ i < 0

(7)

where L is the maximum segmentation length for
Semi-CRF.

Once (s∗,y∗) are found, the corresponding
ye∗j = argmax{ye

′ ∈Y e∗
j }(ψ

el.cr
u∗j ,v

∗
j ,y
∗
j ,y

e
′
) is also the

optimal one. Then a∗ = (s∗,y∗,ye∗) is the best
assignment for the given x and w.

4 Experiments

In our experiments, we first construct two base-
line models JERLner and JERLel, which use exact
NER and EL feature sets used in JERL. Then eval-
uate JERL and the two baseline models against
several state-of-art NER and linking systems. Af-
ter that, we evaluate JERL under different feature

CoNLL’03 Training Dev set Test
Articles 946 216 231

Sentences 14,987 3,466 3,684
Tokens 203,621 51,362 46,435
Entities 23,499 5,942 5,648

NIL Entities 4,857 1,129 1,133

Table 1: Overview of CoNLL’03/AIDA data set

settings to analysis the contributions of each fea-
tures set, and show some examples we find. We
also compare the training speed under different
settings.

4.1 Data set
We take the CoNLL’03/AIDA English data set
to evaluate the performance of NER and linking
systems. CoNLL’03 is extensively used in prior
work on NER evaluation (Tjong Kim Sang and
De Meulder, 2003). The English data is taken
from Reuters news articles published between Au-
gust 1966 and August 1997. Four types of en-
tities persons (PER), organizations (ORG), loca-
tions (LOC), and miscellaneous names (MISC) are
annotated. Hoffart et al. (2011) hand-annotated
all proper nouns with corresponding entities wiht
YAGO2, Freebase and Wikipedia IDs. This data
is referenced as AIDA here. To the best of our
knowledge, this data set is the biggest data set
which has been labeled for both NER and linking
tasks. It becomes a really good starting point for
our work. Table 1 contains of an overview of the
CoNLL’03/AIDA data set.

For entity linking, we take Wikipedia as the ref-
erent knowledge base. We use a Wikipedia snap-
shot dumped in May 2013, which contains around
4.8 million articles. We also align our Wikipedia
dump with additional knowledge bases, Freebase
and Satori (a Microsoft internal knowledge base),
to enrich the information of these entities.

4.2 Evaluation Metrics
We follow the CoNLL’03 metrics to evaluate NER
performance by precision, recall, and F1 scores,
and follow Hoffart’s (2011) experiment setting
to evaluate linking performance by micro preci-
sion@1. Since the linking labels of CONLL’03
were annotated in 2011, it is not completely con-
sistent with the Wikipedia dump we used in the
case. We only consider mention entity pairs where
the ground truth are known, and ignore around
20% of NIL mentions in the ground truth.
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Category Features
Word unigram / bigram
Lower cased unigram / bigram
Word shape unigram / bigram
Stemmed unigram / bigram
POS unigram / bigram

NER Chunk unigram / bigram
Words in the 4 left/right window
Character n-grams, n ≤ 4
Brown clusters
WordNet clusters
Dictionaries
Alternative names
Entity priors
Entity name priors

Linking Entity priors over names
Context scores
Geo distance
Related entities

Mutual Type-category correlation

Table 2: JERL feature list

4.3 JERL Implementation
Table 2 shows features used in our models. JERL
uses all features in the three categories, while
JERLner and JERLel use only one corresponding
category. All three models are trained on the train
and development set, and evaluated on the test set
of CoNLL’03/AIDA.

4.3.1 NER
Features in the NER category are relevant to NER.
We considered the most commonly used features
in literatures (Finkel et al., 2005; Liang, 2005;
Ratinov and Roth, 2009). We collect several
known name lists, like popular English first/last
names for people, organization lists and so on
from Wikipedia and Freebase. UIUC NER’s lists
are also included. In addition, we extract entity
name lists from the knowledge base we used for
entity linking, and construct 655 more lists. Al-
though those lists are noisy, we find that statisti-
cally they do improve the performance of our NER
baseline by a significant amount.

4.3.2 Linking
Features in linking category are relevant to entity
linking. An entity can be referred by its canoni-
cal name, nick names, alias, and first/last names.
Those names are defined as alternative names for
this entity. We collect all alternative names for all

known entities and build a name to entity index.
This index is used to select entity candidates for
any word sequence, also known as surface form.
Following previous work by Han and Sun (2011),
we calculate entity priors and entity name priors
from Wikipedia. Context scores are calculated
based on discriminative keywords. Geo distance
and related entities capture the relatedness among
entities in the given context.

4.3.3 Mutual
Features in this category capture the mutual de-
pendency between NER and linking’s outputs. For
each entity in a knowledge base, there is category
information available. We aggregate around 1000
distinct categories from multiple sources. One en-
tity can have multiple categories. For example,
London is connected to 29 categories. We use all
combinations between NER types and categories
as features in JERL, and let the model learn the
correlation of each combination. This encourages
coherent NER and EL decisions, which is one of
the key contributions of our work.

4.3.4 Non-local features
Features capturing long distance dependency be-
tween hidden labels are classified as non-local
features. Those features are very helpful in im-
proving NER system performance but are costly.
Since this is not the focus of this paper, we take
a simple approach to incorporate non-local fea-
tures. We cache history results of previous sen-
tences in a 1000 words window, and adopt sev-
eral heuristic rules for personal names. This ap-
proach contributes 0.2 points to the final NER F1

score. Non-local features are also considered in
linking (Ratinov et al., 2011; Han et al., 2011).
We try several features, which has been proved to
be helpful in TAC data set. However, the gain on
CoNLL’03/AIDA data set is not obvious, we do
not optimize linking globally.

Lastly, based on preliminary studies and exper-
iments, we set the maximum segmentation length
to 6 and max candidate count per segmentation to
5 for efficient training and inference.

4.4 State-of-Art systems

We take three state-of-art NER systems: NereL
(Sil and Yates, 2013), UIUC NER (Ratinov and
Roth, 2009) and Stanford NER (Finkel et al.,
2005). NereL firstly over generates mentions and
decomposes them to sets of connected compo-

885



Dataset System Prec. Recall F1

Stanford 95.1 78.3 85.9
UIUC 91.2 90.5 90.8

CoNLL’03 NereL 86.8 89.5 88.2
JERLner 90.0 89.9 89.9
JERL 91.5 91.4 91.2

Table 3: NER evaluation results

nents, then trains a maximum-entropy model to
re-rank different assignments. UIUC NER uses
a regularized averaged perceptron model and ex-
ternal gazetteers to achieve strong performance.
In Addition, NereL also uses UIUC NER to gen-
erate mentions. Stanford NER uses Conditional
Random Fields and Gibbs sampling to incorporate
non-local features into its model.

For entity linking systems, NereL, Kul09
(Kulkarni et al., 2009) and Hof11 (Hoffart et al.,
2011) are compared with our models. NereL
achieves the best precision@1. Kul09 formulates
the local compatibility and global coherence in en-
tity linking, and optimizes the overall entity as-
signment for all entities in a document via a lo-
cal hill-climbing approach. Hof11 unifies the prior
probability of an entity being mentioned, the simi-
larity between context and entity, and the coher-
ence between entity candidates among all men-
tions in a dense graph.

4.5 Results
Table 3 shows the performance of different NER
systems on the CoNLL’03 testb data set. We re-
fer the numbers of state-of-art systems reported by
Sil and Yates (2013). Stanford NER achieves the
best precision, but its recall is low. UIUC reports
the (almost) best recorded F1. JERLner considers
features only in the NER category, which could
be treated as a pure NER system implemented in
Semi-CRF. Actually CRF-based implementation
with a similar feature set has comparable perfor-
mance. Our baseline JERLner is strong enough.
We argue that that it is mainly because of the ad-
ditional dictionaries derived from the knowledge
base. JERL further pushes the F1 to 91.2, which
outperforms UIUC by 0.4 points in F1 score. To
the best of our knowledge, it is the best F1 on
CoNLL’03 since 2009. The reason our model
can outperform state-of-art systems is that, it has
more knowledge about entities via incorporate en-
tity linking techniques. If an entity can be linked
to a well known entity via entity linking in high

Dataset System Precision@1
Kul09 76.74
Hof11 81.91

CoNLL’03 Nerel 84.22
JERLel 81.49
JERL 84.58

Table 4: Linking evaluation results

# Feature set description NER F1

0 JERLner (baseline) 89.9
1 + candidate 88.7
2 + candidate + linking 89.9
3 + candidate + mutual 90.6
4 + candidate + mutual + linking 91.2

Table 5: JERL features analysis

confidence, its mention boundary and entity type
are confirmed implicitly.

Table 4 shows the performance of different en-
tity linking systems on the AIDA test set. Kul09
and Hof11 use only the correct mentions detected
by the Stanford NER as input, and thus their re-
call is bound by the recall of NER. NereL uses
its overgeneration techniques to generate mention
candidates, and outperforms Hoff11 in both preci-
sion and recall. Our baseline model JERLel is also
evaluated on Stanford NER generated mentions,
which has comparable performance with Kul09
and Hof11. JERL achieves precision@1 84.58
which is better than NereL.

We run 15 trials for both NER and linking’s ex-
periments and report the average numbers above.
The standard deviations are 0.11% and 0.08% for
NER and linking separately, which pass the stan-
dard t-test with confidence level 5%, demonstrat-
ing the significance of our results.

In order to investigate how different features
contribute to the overall gain. We compare
JERLner with four different feature sets. Table
5 summaries the results. In the trial “+candidate”,
JERL expands every possible segmentation with
corresponding entity list and builds its factor graph
without any linking and mutual features. This ver-
sion’s F1 drops to 88.7 which indicates the created
structure is quite noisy. In the “+candidate +link-
ing” trial, only linking features are enabled and
the F1 is comparable to the baseline. On the other
side, in the “+candidate +mutual” trial when mu-
tual features are enabled the F1 increases to 90.6.
If we combine both linking and mutual features,
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Category PER LOC ORG Other
people.person 3.65 0.817 1.260 -1.782
location.city -0.187 0.712 0.491 -0.188
sports.team -0.180 2.382 3.595 -2.019

Table 6: Learned mutual dependency

Setting NER Linking Training
MSL MRC F1 prec@1 time (min)

4 5 87.9 76.74 195
5 5 90.8 84.01 234
6 1 90.8 80.13 37
6 3 91.0 83.21 109
6 5 91.2 84.58 280

Table 7: Training time under different settings

JERL achieves the reported performance. The re-
sult indicates that mutual features are the deter-
mining factor to the performance gain.

Table 6 shows weights of learned mutual depen-
dency of three categories ”people.person”, ”loca-
tion.city”, and ”sports.team”. The bigger a weight
is, the more consistent this combination would
be. From the weights, we find several interest-
ing things. If an entity belongs to any of the
three categories, it is less likely to be predicted
as non-an-entity by NER. If an entity belongs to
the category of ”people.person”, it more likely
to be predicted as PER. When an entity belongs
to the category ”location.city” or ”sports.team”,
NER may predict it as ORG or LOC. This is be-
cause in the CoNLL’03/AIDA data set, there are
many sports teams mentioned by their city/country
names. JERL successfully models such unex-
pected mutual dependency.

Table 7 compares the performance and training
time under different settings of max segmentation
length (MSL) and max referent count (MRC). We
use machines with Intel Xeon E5620 @ 2.4GHz
CPU (8 cores / 16 logical processors) and 48GB
memory. We run every setting 10 times and report
the averages. As MSL and MRC increasing, the
performance is slightly better, but the training time
increased a lot. MSL has linear impact on training
time, while MRC affects training time more.

5 Conclusion and Future Work

In this paper, we address the problem of joint opti-
mization of named entity recognition and linking.
We propose a novel model, JERL, to jointly train

and infer for NER and linking tasks. To the best of
our knowledge, this is the first model which trains
two tasks at the same time. The joint model is able
to leverage mutual dependency of the two tasks,
and predict coherent outputs. JERL outperforms
the state-of-art systems on both NER and linking
tasks on the CoNLL’03/AIDA data set.

For future works, we would like to study how
to leverage existing partial labeled data, either for
NER or for linking only, in joint optimization, and
incorporate more NLP tasks together for multi-
tasks joint optimization.
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Abstract

We ask how much information a human
translator adds to an original text, and we
provide a bound. We address this ques-
tion in the context of bilingual text com-
pression: given a source text, how many
bits of additional information are required
to specify the target text produced by a hu-
man translator? We develop new compres-
sion algorithms and establish a benchmark
task.

1 Introduction

Text compression exploits redundancy in human
language to store documents compactly, and trans-
mit them quickly. It is natural to think about com-
pressing bilingual texts, which have even more re-
dundancy:

“From an information theoretic point of
view, accurately translated copies of the
original text would be expected to con-
tain almost no extra information if the
original text is available, so in princi-
ple it should be possible to store and
transmit these texts with very little ex-
tra cost.” (Nevill and Bell, 1992)

Of course, if we look at actual translation data
(Figure 1), we see that there is quite a bit of unpre-
dictability. But the intuition is sound. If there were
a million equally-likely translations of a short sen-
tence, it would only take us log2(1m) = 20 bits to
specify which one.

By finding and exploiting patterns in bilingual
data, we want to provide an upper bound for this
question: How much information does a human
translator add to the original? We do this in
the context of building a practical compressor for
bilingual text.

上个星期的战斗至少夺取12个人的生命。
At least 12 people were killed in the battle last week.
Last week’s fight took at least 12 lives.
The fighting last week killed at least 12.
The battle of last week killed at least 12 persons.
At least 12 people lost their lives in last week’s fighting.
At least 12 persons died in the fighting last week.
At least 12 died in the battle last week.
At least 12 people were killed in the fighting last week.
During last week’s fighting, at least 12 people died.
Last week at least twelve people died in the fighting.
Last week’s fighting took the lives of twelve people.

Figure 1: Eleven human translations of the same
source sentence (LDC2002T01).

We adopt the same scheme used in mono-
lingual text compression benchmark evaluations,
such as the Hutter Prize (Hutter, 2006), a com-
petition to compress a 100m-word extract of En-
glish Wikipedia. A valid entry is an executable, or
self-extracting archive, that prints out Wikipedia,
byte-for-byte. Decompression code, dictionaries,
and/or other resources must be embedded in the
executable—we cannot assume that the recipient
of the compressed file has access to those re-
sources. This view of compression goes by the
name of algorithmic information theory (or Kol-
mogorov complexity).

Any executable is permitted. For example, if
our job were to compress the first million digits
of π, then we might submit a very short piece of
code that prints those digits. The brevity of that
compression would demonstrate our understand-
ing of the sequence. Of course, in our application,
we will find it useful to develop generic algorithms
that can compress any text.

Our approach will be as follows. Given a bilin-
gual text (file1 and file2), we develop this com-
pression interface:

% compress file1 > file1.exe

% bicompress file2 file1 > file2.exe

The second command compresses file2 while
looking at file1. We take the size of file1.exe
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Spanish English
Uncompressed size 324.9 Mb 294.5 Mb
Word tokens 57,068,133 54,364,566
Vocabulary size 195,314 140,340
Distinct word cooc 93,184,127
Segment pairs 1,965,734
Ave. segment length 29.0 27.7
(word tokens)
Longest segment 809 880
(word tokens)

Figure 2: Large Europarl Spanish/English corpus.

as the amount of information in the original text.
We bound how much information the translator
adds to the original by:
|file2.exe| / |file1.exe|

We can say that bilingual compression is more ef-
fective that monolingual compression if:
|file2.exe| < |file3.exe|, where
% compress file2 > file3.exe

Our decompression interface is:
% file1.exe > file1

% file2.exe file1 > file2

The second command decompresses file2 while
looking at (uncompressed) file1.

The contributions of this paper are:
1. We provide a new quantitative bound for how

much information a translator adds to an orig-
inal text.

2. We present practical software to compress
bilingual text with compression rates that ex-
ceed the previous state-of-the-art.

3. We set up a public benchmark bilingual text
compression challenge to stimulate new re-
searchers to find and exploit patterns in bilin-
gual text. Ultimately, we want to feed those
ideas into practical machine translation sys-
tems.

2 Data

We propose the widely accessible Spanish/English
Europarl corpus v7 (Koehn, 2005) as a benchmark
for bilingual text compression (Figure 2). Por-
tions of this large corpus have been used in pre-
vious compression work (Sánchez-Martı́nez et al.,
2012). The Spanish side is in UTF-8. For En-
glish, we have removed accent marks and further
eliminated all but the 95 printable ASCII charac-
ters (Brown et al., 1992), plus newline.

Our task is to compress the data “as is”: un-

Spanish English
Uncompressed size 32.3 Mb 29.3 Mb
Word tokens 5,682,667 5,426,131
Vocabulary size 73,726 45,423
Distinct word cooc 21,231,874
Segment pairs 196,573
Ave. segment length 28.9 27.6
(word tokens)
Longest segment 733 682
(word tokens)

Figure 3: Small Europarl Spanish/English corpus.

tokenized, but already segment aligned. We also
include a tokenized version with 334 manually
word-aligned segment pairs (Lambert et al., 2005)
distributed throughout the corpus.

For rapid development and testing, we have ar-
ranged a smaller corpus that is 10% the size of the
full corpus (Figure 3).

3 Monolingual compression

Compression captures patterns in data. Language
modeling also captures patterns, but at first blush,
these two areas seem distinct. In compression, we
seek a small executable that prints out a text, while
in language modeling, we seek an executable that
assigns low perplexity to held-out test data.1 Ac-
tually, the two areas have much more in common,
as a review of compression algorithms reveals.

Huffman coding. A well-known compression
technique is to create a binary Huffman tree whose
leaves are characters in the text,2 and whose edges
are labeled 0 or 1 (Huffman and others, 1952). The
tree is arranged so that frequent characters have
short binary codes (edge sequences). It is very im-
portant that the Huffman tree for a particular text
be included at the beginning of the compressed
file, so that decompression knows how to process
the compressed bit string.

Adaptive Huffman. Actually, we can avoid
shipping the Huffman tree inside the compressed
file, by building the tree adaptively, as the com-
pressor processes the input text. If we start with a
uniform distribution, the first few characters may
not compress very well, but soon we will converge
onto a good tree and good compression. It is very

1File size has advantages, as perplexity computations are
often buggy, and they usually gloss over how probability is
apportioned to out-of-vocabulary items.

2Or other symbols, such as words, bytes, or unicode se-
quences.
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Figure 4: Arithmetic coding.

important that the decompressor exactly recapitu-
late the same sequence of Huffman trees that the
compressor made. It can do this by counting char-
acters as it outputs them, just as the compressor
counted characters as it consumed them.

Adaptive compression can also nicely accom-
modate shifting topics in text, if we give higher
counts to recent events. By its single-pass nature,
it is also good for streaming data.

Arithmetic coding. Huffman coding exploits
a predictive unigram distribution over the next
character. If we use more context, we can make
sharper distributions. An n-gram table is one way
to map contexts onto predictions.

How do we convert good predictions into good
compression? The solution is called arithmetic
coding (Rissanen and Langdon Jr., 1981; Witten
et al., 1987). Figure 4 sketches the technique.
We produce context-dependent probability inter-
vals, and each time we observe a character, we
move to its interval. Our working interval be-
comes smaller and smaller, but the better our pre-
dictions, the wider it stays. A document’s com-
pression is the shortest bit string that fits inside the
final interval. In practice, we do the bit-coding as
we navigate probability intervals.

Arithmetic coding separates modeling and com-
pression, making our job similar to language mod-
eling, where we use try to use context to predict
the next symbol.

3.1 PPM

PPM is the most well-known adaptive, predic-
tive compression technique (Cleary and Witten,
1984). PPM updates character n-gram tables (usu-
ally n=1..5) as it compresses. In a given context,
an n-gram table may predict only a subset of char-
acters, so PPM reserves some probability mass for

an escape (ESC), after which it executes a hard
backoff to the (n-1)-gram table. In PPMA, P(ESC)
is 1/(1+D), where D is the number of times the
context has been seen. PPMB uses q/D, where q
is the number of distinct character types seen in
the context. PPMC uses q/(q+D), aka Witten-Bell.
PPMD uses q/2D.

PPM* uses the shortest previously-seen deter-
ministic context, which may be quite long. If
there is no deterministic context, PPM* goes to
the longest matching context and starts PPMD. In-
stead of the longest context, PPMZ rates all con-
texts between lengths 0 and 12 according to each
context’s most probable character. PPMZ also im-
plements an adaptive P(ESC) that combines con-
text length, number of previous ESC in the con-
text, etc.

We use our own C++ implementation of PPMC
for monolingual compression experiments in this
paper. When we pass over a set of characters in
favor of ESC, we remove those characters from
the hard backoff.

3.2 PAQ

PAQ (Mahoney, 2005) is a family of state-of-the-
art compression algorithms and a perennial Hutter
Prize winner. PAQ combines hundreds of mod-
els with a logistic unit when making a prediction.
This is most efficient when predictions are at the
bit-level instead of the character-level. The unit’s
model weights are adaptively updated by:

wi ← wi + ηxi(correct− P(1)), where
xi = ln(Pi(1)/(1− Pi(1))
η = fixed learning rate
Pi(1) = ith model’s prediction

PAQ models include a character n-gram model
that adapts to recent text, a unigram word model
(where word is defined as a subsequence of char-
acters with ASCII > 32), a bigram model, and a
skip-bigram model.

4 Bilingual Compression: Prior Work

Nevill and Bell (1992) introduce the concept but
actually carry out experiments on paraphrase cor-
pora, such as different English versions of the
Bible.

Conley and Klein (2008) and Conley and Klein
(2013) compress a target text that has been word-
aligned to a source text, to which they add a lem-
matizer and bilingual glossary. They obtain a 1%-
6% improvement over monolingual compression,
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without counting the cost of auxiliary files needed
for decompression.

Martı́nez-Prieto et al. (2009), Adiego et al.
(2009), Adiego et al. (2010) rewrite bilingual text
by first interleaving source words with their trans-
lations, then compressing this sequence of bi-
words. Sánchez-Martı́nez et al. (2012) improve
the interleaving scheme and include offsets to
enable decompression to reconstruct the original
word order. They also compare several character-
based and word-based compression schemes for
biword sequences. On Spanish-English Europarl
data, they reach an 18.7% compression rate on
word-interleaved text, compared to 20.1% for con-
catenated texts, a 7.2% improvement.

Al-Onaizan et al. (1999) study the perplexity
of learned translation models, i.e., the probabil-
ity assigned to the target corpus given the source
corpus. They observed iterative training to im-
prove training-set perplexity (as guaranteed) but
degrade test-set perplexity. They hypothesized
that an increasingly tight, unsmoothed translation
dictionary might exclude word translations needed
to explain test-set data. Subsequently, research
moved to extrinsic evaluation of translation mod-
els, in the context of end-to-end machine transla-
tion.

Foster et al. (2002) and others have used predic-
tion to propose auto-completions to speed up hu-
man translation. As we have seen, prediction and
compression are highly related.

5 Predictive Bilingual Compression

Our algorithm compresses target-language file2

while looking at source-language file1:
% bicompress file2 file1 > file2.exe

To make use of arithmetic coding, we consider
the task of predicting the next target character,
given the source sentence and target string so far:3

P(ej |f1 . . . fl, e1 . . . ej−1)
If we are able to accurately predict what a human
translator will type next, then we should be able to
build a good machine translator. Here is an exam-
ple of the task:

Spanish: Pido que hagamos un
minuto de silencio.

English so far: I should like to ob

3We predict e from f in this paper, reversed from Brown
et al. (1993), who predict f from e.

Absolute Relative
offsets offsets

Uncompressed 105.3 Mb 88.9 Mb
Huffman coding 36.6 Mb 24.4 Mb
PPMC 12.4 Mb 13.2 Mb

Figure 5: Compressing a file of (unidirectional)
automatic Viterbi word alignments computed from
our large Spanish/English corpus (sentences less
than 50 words).

5.1 Word alignment

Let us first work at the word level instead of
the character level. If we are predicting the jth
English word, and we know that it translates fi
(“aligns to fi”), and if fi has only a handful of
translations, then we may be able to specify ej
with just a few bits. We may therefore suppose that
a set of Viterbi word alignments may be useful for
compression (Conley and Klein, 2008; Sánchez-
Martı́nez et al., 2012).

We consider unidirectional alignments that link
each target position j to a single source position
i (including the null word at i = 0). Such align-
ments can be computed automatically using EM
(Brown et al., 1993), and stored in one of two for-
mats:

Absolute: 1 2 5 5 7 0 3 6 . . .
Relative: +1 +1 +3 0 +2 null -4 +3 . . .

In order to interpret the bits produced by the
compressor, our decompressor must also have ac-
cess to the same Viterbi alignments. Therefore, we
must include those alignments at the beginning of
the compressed file. So let’s compress them too.

How compressible are alignment sequences?
Figure 5 gives results for Viterbi alignments de-
rived from our large parallel Spanish/English cor-
pus. First, some interesting facts:
• Huffman works better on relative offsets, be-

cause the common “+1” gets a short bit code.
• PPMC’s use of context makes it impressively

insensitive to alignment format.
• PPMC beats Huffman on relative offsets.

This would not happen if relative offset inte-
gers were independent of one another, as as-
sumed by (Brown et al., 1993) and (Vogel et
al., 1996). Bigram statistics bear this out:

P(+1 | -2) = 0.20 P(+1 | +1) = 0.59
P(+1 | -1) = 0.20 P(+1 | +2) = 0.49
P(+1 | 0) = 0.52

So this small compression experiment already
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suggests that translation aligners might want to
model more context than just P(offset).

However, the main point of Figure 5 is that the
compressed alignment file requires 12.4 Mb! This
is too large for us to prepend to our compressed
file, for the sake of enabling decompression.

5.2 Translation dictionary

Another approach is to forget Viterbi alignments
and instead exploit a probabilistic translation dic-
tionary table t(e|f). To predict the next target
word ej , we admit the possibility that ej might be
translating any of the source tokens. IBM Model 2
(Brown et al., 1993) tells us how to do this:

Given f1 . . . fl:
1. Choose English length m ε(m|l)
2. For j = 1..m, choose alignment aj a(aj |j, l)
3. For j = 1..m, choose translation ej t(ej |faj )

which, via the “IBM trick” implies:
P(e1 . . . em|f1 . . . fl) =
ε(m|l)∏m

j=1

∑l
i=0 a(i|j, l)t(ej |fi)

In compression, we must predict English words in-
crementally, before seeing the whole string. Fur-
thermore, we must predict P(STOP ) to end the
English sentence. We can adapt IBM Model 2 to
make incremental predictions:

P(STOP |f1 . . . fl, e1 . . . ej−1) ∼
P(STOP |j, l) =
ε(j − 1|l)/∑max

k=j−1 ε(k|l)
P(ej |f1 . . . fl, e1 . . . ej−1) ∼
P(ej |f1 . . . fl) =

[1− P(STOP |j, l)]∑l
i=0 a(i|j, l)t(ej |fi)

We can train t, a, and ε on our bilingual text us-
ing EM (Brown et al., 1993). However, the t-table
is still too large to prepend to the compressed En-
glish file.

5.3 Adaptive translation modeling

Instead, inspired by PPM, we build up transla-
tion tables in RAM, during a single pass of our
compressor. Our decompressor then rebuilds these
same tables, in the same way, in order to interpret
the compressed bit string.

Neal and Hinton (1998) describe online EM,
which updates probability tables after each train-
ing example. Liang and Klein (2009) and Leven-
berg et al. (2010) apply online EM to a number of
language tasks, including word alignment. Here
we concentrate on the single-pass case.

We initialize a uniform translation model, use it
to collect fractional counts from the first segment

pair, normalize those counts to probabilities, use
those new probabilities to collect fractional counts
from the second segment pair, and so on. Because
we pass through the data only once, we hope to
converge quickly to high-quality tables for com-
pressing the bulk of the text.

Unlike in batch EM, we need not keep sepa-
rate count and probability tables. We only need
count tables, including summary counts for nor-
malization groups, so memory savings are signif-
icant. Whenever we need a probability, we com-
pute it on the fly. To avoid zeroes being immedi-
ately locked in, we invoke add-λ smoothing every
time we compute a probability from counts:4

t(e|f) = count(e,f)+λt

count(f)+λt|VE |

a(i|j, l) = count(i,j,l)+λa

count(j,l)+λa(l+1)

where |VE | is the size of the English vocabulary.
We determine |VE | via a quick initial pass through
the data, then include it at the top of our com-
pressed file.

In batch EM, we usually run IBM Model 1 for
a few iterations before Model 2, gripped by an
atavistic fear that the a probabilities will enforce
rigid alignments before word co-occurrences have
a chance to settle in. It turns out this fear is jus-
tified in online EM! Because the a table initially
learns to align most words to null, we smooth it
more heavily (λa = 102, λt = 10−4).

We also implement a single-pass HMM align-
ment model (Vogel et al., 1996). In the IBM mod-
els, we can either collect fractional counts after we
have compressed a whole sentence, or we can do
it word-by-word. In the HMM model, alignment
choices are no longer independent of one another:

Given f1 . . . fl:
1. Choose English length m w/prob ε(m|l)
2. For j = 1..m:

2a. set aj to null w/prob p1, or

2b. choose non-null aj w/prob (1− p1)o(aj − ak)

3. For j = 1..m, choose translation ej w/prob t(ej |faj )

In the expression o(aj − ak), k is the maximum
English index (k < j) such that ak 6= 0. The
relative offset o-table learns to encourage adjacent
English words to align to adjacent Spanish words.

Batch HMM performs poorly under uniform
initialization, with two causes of failure. First,
EM training sets o(0) too high, leading to absolute
alignments like “1 2 2 2 5 5 5 5 . . . ”. We avoid

4In their online EM Model 1 aligner, Liang and Klein
(p.c.) skirt the smoothing issue by running an epoch of batch
EM to initialize a full set of probabilities before starting.
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Against silver standard (Batch EM) Against gold standard (Human)
IBM1 IBM2 HMM IBM1 IBM2 HMM

Batch EM 100.0 100.0 100.0 55.4 66.3 70.2
Online EM Full data 82.2 81.7 89.5 54.9 63.4 70.0

First 50% 81.4 79.5 88.9 54.9 62.3 70.6
Last 50% 83.0 83.9 90.0 54.9 64.5 69.4
Reordered 83.7 83.3 88.1 56.8 65.4 69.5

Figure 6: Word alignment f-scores. Batch EM for IBM 1 is run for 5 iterations; Batch IBM2 adds
5 further iterations of IBM2; Batch HMM adds a further 5 iterations of HMM. Online EM is single-
pass. Against the silver standard, alignments are unidirectional; against gold, they are bidirectional and
symmetrized with grow-dial-final (Koehn et al., 2003). First and last 50% report on different portions of
the corpus. Reordered is on segment pairs ordered short to long. All runs exclude segment pairs with
segments longer than 50 words.

this with a standard schedule of 5 IBM1 iterations,
5 IBM2 iterations, then 5 HMM iterations. How-
ever, HMM still learns a very high value for p1,
aligning most tokens to null, so we fix p1 = 0.1
for the duration of training.

Single-pass, online HMM suffers the same two
problems, both solved when we smooth differen-
tially (λo = 102, λt = 10−4) and fix p1 = 0.1.

Two quick asides before we examine the effec-
tiveness of our online methods:
• Translation researchers often drop long seg-

ment pairs that slow down HMM model pro-
cessing. In compression, we cannot drop any
of the text. Therefore, if the source segment
contains more than 50 words, we use only
monolingual PPMC to compress the target.
This affects 26.5% of our word tokens.
• We might assist an online aligner by permut-

ing our n segment pairs to place shorter, less
ambiguous ones at the top. However, we
would have to communicate the permutation
to the decompressor, at a prohibitive cost of
log2(n!)/(8 · 106) = 4.8 Mb.

We next look at alignment accuracy (f-score) on
our large Spanish/English corpus (Figure 6). We
evaluate against both a silver standard (Batch EM
Viterbi alignments5) and a gold standard of 334
human-aligned segment pairs distributed through-
out the corpus. We see that online methods gener-
ate competitive translation dictionaries. Because
single-pass alignment is significantly faster than
traditional multi-pass, we also investigate its im-
pact on an overall Moses pipeline for phrase-based

5We confirm that our Batch HMM implementation gives
f-scores (f=70.2, p=80.4, r=62.3) similar to GIZA++ (f=71.2,
p=85.5, r=61.0), and its differently parameterized HMM.

Alignment Test Set Bleu
speed Europarl News

Batch HMM 1230.78 min 30.2 26.2
Online HMM 711.87 min 30.0 25.3

Figure 7: Fast, single-pass HMM alignment
yields competitive Spanish-English Moses phrase-
based translation accuracy, as measured by Bleu
(Papineni et al., 2002). In-domain (Europarl)
and out-of-domain (SMAT-07 News Commen-
tary) tune/test sets each consist of approximately
1000 sentences, all longer than 50 words to avoid
overlap with training.

machine translation (Koehn et al., 2007). Figure 7
shows that we can achieve competitive translation
accuracy using fast, single-pass alignment, speed-
ing up the system development cycle. For this use
case, we can get an additional +0.3 alignment f-
score (just as fast) if we print Viterbi alignments
in a second pass instead of during training.

5.4 Word tokenization

We now want our continuously-improving trans-
lation model (TM) to predict target text, and to
combine its predictions with PPM’s. For that to
happen, our TM will need to predict the exact text,
including spurious double-spaces, how parenthe-
ses combine with quotation marks, and so on.

We devise a tokenization scheme that records
spacing information in the word tokens, which al-
lows us to recover the original text uniquely. First,
we identify word tokens as subsequences of [a-zA-
Z]*, [0-9]*, and [other]*, appending to each token
the number of spaces following it (e.g., “...@2”).
Next, we remove all “@1”, which leaves unique
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recoverability intact. Finally, we move any suffix
on an alpha-numeric word i to become a prefix on
a non-alpha-numeric word i+ 1. This reduces the
vocabulary size for TM learning. An example:
"String-theory?" he asked.

<=>
S@0 "@0 String@0 -@0 theory@0 ?@0 "@1
he@2 asked@0 .@0

<=>
S@0 "@0 String@0 -@0 theory@0 ?@0 "
he@2 asked@0 .@0

<=>
S@0 "@0 String @0-@0 theory @0?@0 "
he@2 asked @0.@0

5.5 Predicting target words

Under this tokenization scheme, we now ask our
TM to give us a probability distribution over pos-
sible next words. The TM knows the entire
source word sequence f1...fl and the target words
e1...ej−1 seen so far. As candidates, we consider
target words that can be produced, via the current
t-table, from any (non-NULL) source words with
probability greater than 10−4.

For HMM, we compute a prediction lattice that
gives a distribution over possible source alignment
positions for the current word we are predicting.
Intuitively, the prediction lattice tells us “where we
currently are” in translating the source string, and
it prefers translations of source words in that vicin-
ity. We efficiently reuse the lattice as we make
predictions for each subsequent target word.

To make the TM’s prediction more accurate,
we weight its prediction for each word with a
smoothed, adapted English bigram word language
model (LM). This discourages the TM from trying
to predict the first character of a word by simply
using the most frequent source words. We found
that exponentiating the LM’s score by 0.2 before
weighting keeps it from overpowering the HMM
predictions.

5.6 Predicting target characters

To convert word predictions into character predic-
tions, we combine scores for words that share the
next character. For example, if the TM predicts
”monkey 0.4, car 0.3, cat 0.2, dog 0.1”, then we
have ”P(c) 0.5, P(m) 0.4, P(d) 0.1”. Addition-
ally, we restrict ourselves to words prefixed by the
portion of ej already observed. The TM predicts
the space character when a predicted word fully
matches the observed prefix.

We also adjust PPM to produce a full distribu-
tion over the 96 possible next characters. PPM

File Compression
size rate bpb

Uncompressed 324.9 Mb 100.0% 8.00
Huffman coding 172.8 Mb 53.2% 4.26
PPMC 51.4 Mb 15.8% 1.26

Figure 8: Compression of the Spanish side of the
bilingual corpus. bpb = bits per byte.

File Compression
size rate bpb

Uncompressed 294.5 Mb 100.0% 8.00
Huffman coding 160.7 Mb 54.6% 4.37
PPMC 48.5 Mb 16.5% 1.32
Bilingual (this paper) 35.0 Mb 11.9 % 0.95
Shannon monolingual 1.61
Shannon bilingual 0.51

Figure 9: Main results. Compression of the En-
glish side of the bilingual corpus. Bilingual com-
pression improves results. For Shannon game
studies, bpb are estimated as cross-entropies of n-
gram models fitted to human guess sequences.

normally computes a distribution over only char-
acters previously seen in the current context (plus
ESC). We now back off to the lowest context for
every prediction.

We interpolate PPM and TM probabilities:
P(ek|f1 . . . fl, e1 . . . ek−1) =
µ PPPM (ek|e1 . . . ek−1)+
(1− µ) PTM (ek|f1 . . . fl, e1 . . . ek−1)

We adjust µ dynamically based on the relative con-
fidence of the models:

µ = max(PPM)2.5

max(PPM)2.5+max(HMM)2.5

Here, max(model) refers to the highest probabil-
ity assigned to any character in the current context
by the model. This yields better compression rates
than simply setting µ to a constant. When the TM
is unable to extend a word, we set µ = 1.

6 Results

Figure 8 shows that monolingual PPM compresses
the Spanish side of our corpus to 15.8% of the
original. Figure 9 (Main results) shows results for
the English side of the corpus. Monolingual PPM
compresses to 16.5%, while our HMM-based
bilingual compression compresses to 11.9%.6

We can say that a human translation is charac-
terized by an additional 0.95 bits per byte on top of
the original, rather than the 1.32 bits per byte we

6For this result, we divide the English corpus into two
pieces and compress them in parallel, and we further increase
the sentence length threshold from 50 to 60, incurring a speed
penalty. Our fictional Weissman score is 0.676.
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File Compression
size rate bpb

Uncompressed 619.4 Mb 100.0% 8.00
Huffman coding 336.8 Mb 54.4% 4.35
PPMC 101.6 Mb 16.4% 1.31
Bilingual (this paper) 86.4 Mb 13.9% 1.12
(Sánchez-Martı́nez different 20.1% 1.61
et al., 2012) PPMDI corpus
(Sánchez-Martı́nez different 18.7% 1.50
et al., 2012) bilingual corpus

Figure 10: Compression of Spanish plus English.
All methods are run on a single file of Spanish
concatenated with English, except for “Bilingual
(this paper),” which records the sum of (1) Span-
ish compression and (2) English-given-Spanish
compression. Comparative numbers copied from
Sánchez-Martı́nez et al (2012) are for a different
subset of Europarl data.

would need if the English were independent text.
Assuming our Spanish compression is good, we
can also say that the human translator produces at
most 68.1% (35.0/51.4) of the information that the
original Spanish author produced. Intuitively, we
feel this bound is high and should be reduced with
better translation modeling.

Figure 9 also reports our Shannon game exper-
iments in which bilingual humans guessed subse-
quent characters of the English text. As suggested
by Shannon, we upper-bound bpb as the cross-
entropy of a unigram model over a human guess
sequence (e.g., 1 1 2 5 17 1 1 . . . ), which records
how many guesses it took to identify each subse-
quent English character, given context. For a 502-
character English sequence, a team of four bilin-
guals working together gave us an upper-bound
bpb of 0.51. This team had access to the original
Spanish, plus a Google translation. Monolinguals
guessing on the same data (minus the Spanish and
Google translation) yielded an upper-bound bpb of
1.61. These human-level models indicate that hu-
man translators are actually only adding ∼ 32%
more information on top of the original, and that
our current translation models are only capturing
some fraction of this redundancy.7

Figure 10 shows compression of the entire
bilingual corpus, allowing us to compare with
the previous state-of-the-art (Sánchez-Martı́nez et
al., 2012), which compresses a single, word-
interleaved bilingual corpus. It shows how PPMC

7Machine models can also generate guess sequences, and
we see that entropy of a 30m-character PPMC guess sequence
(1.43) upper-bounds actual PPMC bpb (1.28).

does on a concatenated Spanish/English file.
Uncompressed English (294.5 Mb) is 90.6% the

size of uncompressed Spanish (324.9 Mb). Huff-
man narrows this gap to 93.0%, and PPM nar-
rows it further to 94.4%, consistent with Behr et
al. (2003) and Liberman (2008). Spanish redun-
dancies like adjective-noun agreement and bal-
anced question marks (“¿ . . . ?”) may remain un-
exploited.

7 Conclusion

We have created a bilingual text compression chal-
lenge web site.8 This web site contains standard
bilingual data, specifies what a valid compression
is, and maintains benchmark results.

There are many future directions to pursue.
First, we would like to develop and exploit better
predictive translation modeling. We have so far
adapted machine translation technology circa only
1996. For example, the HMM alignment model
cannot “cross off” a source word and stop trying to
translate it. Also possible are phrase-based trans-
lation, neural nets, or as-yet-unanticipated pattern-
finding algorithms. We only require an executable
that prints the bilingual text.

Our current method requires segment-aligned
input. To work with real-life bilingual corpora,
the compressor should take care of segment align-
ment, in a way that allows decompression back to
the original text. Similarly, we are currently re-
stricted to texts written in the Latin alphabet, per
our definition of “word.”

More broadly, we would also like to import
more compression ideas into NLP. Compression
has so far appeared sporadically in NLP tasks
like native language ID (Bobicev, 2013), text in-
put methods (Powers and Huang, 2004), word
segmentation (Teahan et al., 2000; Sornil and
Chaiwanarom, 2004; Hutchens and Alder, 1998),
alignment (Liu et al., 2014), and text categoriza-
tion (Caruana & Lang, unpub. 1995).

Translation researchers may also view bilingual
compression as an alternate, reference-free evalu-
ation metric for translation models. We anticipate
that future ideas from bilingual compression can
be brought back into translation. Like Brown et
al. (1992), with their gauntlet thrown down and
fury of competitive energy, we hope that cross-
fertilizing compression and translation will bring
fresh ideas to both areas.

8www.isi.edu/natural-language/compression
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Abstract

This paper proposes a novel hierarchical
recurrent neural network language model
(HRNNLM) for document modeling. Af-
ter establishing a RNN to capture the co-
herence between sentences in a documen-
t, HRNNLM integrates it as the sentence
history information into the word level
RNN to predict the word sequence with
cross-sentence contextual information. A
two-step training approach is designed, in
which sentence-level and word-level lan-
guage models are approximated for the
convergence in a pipeline style. Examined
by the standard sentence reordering sce-
nario, HRNNLM is proved for its better
accuracy in modeling the sentence coher-
ence. And at the word level, experimen-
tal results also indicate a significant low-
er model perplexity, followed by a practi-
cal better translation result when applied
to a Chinese-English document translation
reranking task.

1 Introduction

Deep Neural Network (DNN), a neural network
with multiple layers, has been proven powerful in
many different domains, such as visual recogni-
tion (Kavukcuoglu et al., 2010) and speech recog-
nition (Dahl et al., 2012), ever since Hinton et al.
(2006) formulated an efficient training method for
it.

In addition to the applications mentioned above,
many neural network based methods have also
been applied to natural language processing (NLP)
tasks with great success. For example, Collobert et
al. (2011) propose a generalized DNN framework
for a variety of fundamental NLP tasks, including
part-of-speech tagging (postag), chunking, named

∗Contribution during internship at Microsoft Research.

entity recognition (NER), and semantic role label-
ing.

DNN is successfully introduced to do word-
level language modeling, aka., to predict the next
word given the history words. Bengio et al. (2003)
propose a feedforward neural network to train a
word-level language model with a limited n-gram
history. To leverage as much history as possible,
Mikolov et al. (2010) apply recurrent neural net-
work to word-level language modeling. The mod-
el absorbs one word each time, keeps the informa-
tion in a history vector, and predicts the next word
with all the word history in the vector.

Word-level language model can only learn the
relationship between words in one sentence. For
sentences in one document which talks about one
or several specific topics, the words in the next
sentence are chosen partially in accordance with
the previous sentences. To model this kind of co-
herence of sentences, Le and Mikolov (2014) ex-
tend word embedding learning network (Mikolov
et al., 2013) to learn the paragraph embedding as
a fixed-length vector representation for paragraph
or sentence. Li and Hovy (2014) propose a neu-
ral network coherence model which employs dis-
tributed sentence representation and then predict
the probability of whether a sequence of sentences
is coherent or not.

In contrast to the methods mentioned above
which learn the word relationship in or between
the sentences separately, we propose a hierar-
chical recurrent neural network language model
(HRNNLM) to capture the word sequence across
the sentence boundaries at the document level.
HRNNLM is essentially a combination of a word-
level language model and a sentence-level lan-
guage model, both of which are recurrent neu-
ral networks. The word-level recurrent neural
network follows (Mikolov et al., 2010). The
sentence-level language model is another recur-
rent neural network that takes sentence represen-

899



tation as input, and predicts the words in the next
sentence. Similar to (Mikolov et al., 2010), the
hidden layer in the sentence-level recurrent neural
network contains the sentence history information.
The hidden layer containing the history informa-
tion of previous sentences is then linked as an in-
put to the word-level recurrent neural network to
predict the next word together with the word-level
history vector. This allows the language model to
predict the next word probability distribution be-
yond the words in the current sentence.

We propose a two-step training approach to op-
timize the parameters of HRNNLM. In the first
step, we train the sentence-level language model-
s independently . And then, we connect the hid-
den layer of the sentence-level language model to
the input of word-level RNNLM and train the two
models jointly until converged. At sentence level,
we evaluate our model with a sentence ordering
task and the result shows our method can outper-
form a maximum entropy based and another state-
of-the-art solution. At word level, we compare our
method with the conventional recurrent neural net-
work based language model, finding the perplexity
is reduced significantly. We also apply our method
to rank machine translation output and conduct ex-
periments on a Chinese-English document transla-
tion task, yielding a better translation results com-
pared with a state-of-the-art baseline system.

The rest of this paper is organized as follows:
Section 2 introduces work related to applying neu-
ral network to document modeling and SMT. Sec-
tion 3 introduces the general framework for doc-
ument modeling. Our sentence-level language
model and its training is described in Section 4,
and the overall HRNNLM and its training is pre-
sented in Section 5. Section 6 presents our exper-
iments and their results. Finally, we conclude in
Section 7.

2 Related work

In this section, we introduce previous efforts on
applying neural network to model words coher-
ence across sentence boundaries as well as works
on improving machine translation performance at
discourse level.

Mikolov and Zweig (2012) propose a RNN-
LDA model to implement a context dependent lan-
guage model. They augment the contextual infor-
mation into the conventional RNNLM via a real-
valued input vector, which is the probability distri-

bution computed by LDA topics for using a block
of preceding text. They train a Latent Dirichlet Al-
location (LDA) model using documents consisting
of about 10 sentences long text from Penn Tree-
bank (PTB) training data. Their approach outper-
forms RNNLM in perplexity on PTB data with a
limited context history over topics instead of com-
plete information of preceding sentences.

Le and Mikolov (2014) extend the Continu-
ous Bag-of-Words Model (CBOW) and Continu-
ous Skip-gram Model (Skip-gram) (Mikolov et al.,
2013) by introducing a paragraph vector. In their
method, the paragraph vector is learnt in a simi-
lar way of word vector model, and there will be
N × P parameters, if there are N paragraphs and
each paragraph is mapped to P dimensions. Dif-
ferent from them, the sentence vectors of our mod-
el are learnt with nearly unlimited sentence his-
tory based on a RNN framework, in which, bag
of words in the sentence are used as input. The
sentence vector is no longer related with the sen-
tence id, but only based on the words in the sen-
tence. And our sentence vector also integrates n-
early all the history information of previous sen-
tences, while their model cannot.

Li and Hovy (2014) implement a neural net-
work model to predict discourse coherence qual-
ity in essays. In their work, recurrent (Sutskever
et al., 2011) and recursive (Socher et al., 2013)
neural networks are both examined to learn dis-
tributed sentence representation given pre-trained
word embedding. The distributed sentence repre-
sentation is assigned to capture both syntactic and
semantic information. With a slide window of the
distributed sentence representation, a neural net-
work classifier is trained to evaluate the coherence
of the text. Successful as it is in scoring the co-
herence for a given sequence of sentences, this
method is attempted to discriminate the different
word order within a sentence.

An attempt of introducing RNN into convolu-
tional neural network (CNN) is investigated by (X-
u and Sarikaya, 2014) for spoken language un-
derstanding (SLU). To alleviate more contextual
information, they apply a CNN with Jordan-type
(Jordan, 1997) recurrent connections. The recur-
rent connections send the distribution of the last
softmax layer’s output to the current input layer
as additional features. Aimed to improve SLU
domain classification, their model is essentially a
kind of document representation with certain text
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information, neglecting the coherence information
between sentences.

Following the thread modeling the word se-
quence relationship within and across sentences,
we propose a hierarchical recurrent neural net-
work language model consist of a sentence-level
language model and a word-level language model.
This overall network is trained to capture the co-
herence between sentences and predict words se-
quence with preceding sentence contexts.

For statistical machine translation (SMT) in
which we checked out model as a scenario, DNN
has also been revealed for certain good results in
several components. Yang et al. (2013) adapt and
extend the CD-DNN-HMM (Dahl et al., 2012)
model to the HMM-based word alignment model.
In their method, they use bilingual word embed-
ding to capture the lexical translation information
and modeling the context with surrounding word-
s. Liu et al. (2014) propose a recursive recurrent
neural network (R2NN) for end-to-end decoding
to help improve translation quality. And Cho et
al. (2014) propose a RNN Encoder-Decoder which
is a joint recurrent neural network model at the
sentence level as conventional SMT decoder does.
However, at the discourse level, there is little re-
port on applying DNN to boost the translation re-
sult of a document.

3 Document Language Modeling

Statistical language model assigns a probability to
a natural language sequence. Conventional lan-
guage models only focus on the word sequence
within a sentence. For sentences in one documen-
t talking about one or several specific topics, the
adjacent sentences should be in a coherent order.
Therefore, the words in the next sentence are also
dependent on the preceding sentences. To mod-
el the coherence of sentences in the document D,
which contains N sentences S1, S2, S3, ..., SN ,
we need to maximize the objective as follow:

p(D) =p(S1, S2, ..., SN )
=p(S1) · p(S2|S1) · p(S3|S1, S2)

...p(SN |S1, S2, ..., SN−1)
(1)

For the sentence Sk containing words w1, w2, w3,
..., wT , p(Sk|S1, S2, ..., Sk−1) is defined as:

p(Sk|S1, S2, ..., Sk−1)
= p(w1, w2, ..., wT |S1, ..., Sk−1)
= p(w1|S1, ..., Sk−1) · p(w2|w1, S1, ..., Sk−1)
...p(wT |w1, w2, ..., wT−1, S1, ..., Sk−1)

(2)
As a special case of approximation to this, clas-
sical n-gram language model keep only sever-
al words as history, discarding any information
across the sentence boundaries. Recurrent neural
network language model (Mikolov et al., 2010) us-
es a hidden layer which employs a real-valued vec-
tor recurrently as network’s input to keep as many
history as possible. This makes RNNLM be able
to extend for capturing history beyond a sentence.

To prevent the potential exponential decay
of the history, the history length in RNN
can not be too long. Here we approximate
the history information of previous sentences,
p(Sk|S1, S2, ..., Sk−1), by the following:

p(Sk|S1, S2, ..., Sk−1) =
p(BoWSk

|BoWS1 , ..., BoWSk−1
) · p(Sk|BoWSk

)
(3)

where BoWSk
denotes the bag of words for the

sentence Sk. The document is thus generated in
two steps.

• Given the previous sentences BoWS1 , ...,
BoWSk−1

(treating them as bag of words here),
first generate the words which will show in the
next sentence without considering their order
with p(BoWSk

|BoWS1 , ..., BoWSk−1
)

• Generate the words one by one with
p(Sk|BoWSk

).

The first phase actually completes sentence-level
language modeling, and the second addresses the
word-level language modeling. Because recurrent
neural network has a natural advantage in process-
ing sequential data, we investigate how to model
the whole process under a unified framework of
recurrent neural network.

4 Sentence-level Language Model

In this section, we describe how to leverage re-
current neural network for sentence-level language
modeling. Mikolov et al. (2010) demonstrate a re-
current neural network language model (RNNLM)
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for word ordering. It overcomes the limitations of
classical language model in capturing only a fixed-
length history, yielding a significant performance
improvements in terms of perplexity reduction and
speech recognition accuracy. Here we adept this
framework for a RNN based sentence-level lan-
guage modeling, i.e. RNNSLM.

4.1 Model
A conventional language model reads a word each
time, keeps several words as history and then pre-
dict the probability distribution of the next word.
Similar to this, our sentence-level language model
reads a sentence which is a bag of words repre-
sentation. And then it stores the sentence history
which captures coherence of sentences in a real-
valued history vector. With the history vector, our
model can predict which words are most likely to
appear in the next sentence. All these will be mod-
eled by a recurrent neural network.
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Figure 1: Recurrent Neural Network for Sentence-
level Language Modeling

As shown in Figure 1, similar to the convention-
al recurrent neural network, for the sentence j, our
network has two input layers xsj and hsj−1. xsj

is the current sentence representation, and hsj−1

is the history information vector before sentence
j. The model has a hidden layer hsj , which will
combine the history information of hsj−1 and the
current sentence input xsj , and an output layer
ysj+1, which generates the probabilities of the
words in the sentence j + 1. The layers are com-
puted as follows:

hsj = f(Us · hsj−1 + Ws · xsj) (4)

ysj+1 = g(Vs · hsj) (5)

where Ws, Us and Vs denote the weight matrix.

f(z) is a HTanh function:

f(zj) =


−1 zj < −1
z −1 < zj < 1
1 zj > 1

(6)

and g(z) is a softmax function:

g(zj) =
ezj∑
k ezk

(7)

The output layer ysj+1 is a 1×V vector that repre-
sents probability distribution of words in the next
sentence given the current sentence xsj and pre-
vious history hsj−1, where V denotes vocabulary
size.

To emphasize coherence between the adjacen-
t sentences, we further add some bigram-like bag
of words feature to the output layer. As mentioned
in (Mikolov, 2012), this is kind of maximum en-
tropy feature which can be derived by a two-layer
neural network. Some experiments show that per-
plexity significantly decreases after adding these
features. Following (Mikolov, 2012), where, the
maximum entropy bigram features are added to
our RNNSLM by a direct connection between the
feature input array and output layer ysj+1. Fol-
lowing (Mahoney, 2000), we map bigram maxi-
mum entropy features to a fixed-length array to re-
duce the memory complexity of direct connections
with feature hashing. Then the output layer can be
computed as follow:

ysj+1(t) = g(Vs(t) · hsj +
∑

w∈xsj

Dhash(w,t))

(8)

where (t) denotes the t-th row of a vector or a ma-
trix. D denotes that the hash array contains feature
weights and hash(wi, wj) denotes the hash func-
tion for mapping bigram features to a fixed-length
array. For a output ysj+1, multiple connections
may be activated according to the words in sen-
tence xsj .

4.2 Training

The training objective of our RNNSLM is to find
the best parameters for predicting the words of
next sentence. Formally, given the next sentence
Sk containing words w1, w2, w3, ..., wT . The
training objective according to (Mikolov et al.,
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2013) can be denoted by:

log(p(BoWSk
|BoWS1 , ..., BoWSk−1

))

=
1
T

T∑
t=1

logp(wt|BoWS1 , ..., BoWSk−1
)

(9)

For weight matrix Ws, Us, Vs and hash feature
weight D, the parameter are trained similar to the
conventional recurrent neural network. The learn-
ing rate α is set to 0.1 at the start of the training
as suggested in (Mikolov et al., 2010). After each
epoch, it can be determined by the training loss of
network. If the loss decreases significantly, train-
ing continues with the same learning rate. Other-
wise, if the loss increases, the training will be ex-
ecuted with a new learning rate α/2. The training
process will be terminated after about 30 epochs.

4.3 Initialization

All elements in weight matrix Ws and Us are ini-
tialized by randomly sampling from a uniform dis-
tribution [− 1

K1
, 1

K1
], where K1 is the size of the

input layer. Elements in weight matrix Vs are ini-
tialized by randomly sampling from a uniform dis-
tribution [− 1

K2
, 1

K2
], where K2 denotes the size of

the hidden layer. The hash feature weight array D
is initialized as 0.

For the initialization of hs0, it can be set to a
vector of the same values, which is 0.1.

5 Hierarchical Recurrent Neural
Network

In the previous section, we propose a RNNSLM
which models the coherence between sentences
but ignores the word sequence within a sentence.
Ideally, a perfect document model should not only
capture the information between sentences but al-
so the information with sentence. So we propose
a hierarchical recurrent neural network language
model (HRNNLM) to fulfill this issue.

5.1 Model

A hierarchical recurrent neural network consists of
two independent recurrent neural network. For a
conventional word-level language model, it pre-
dict the next word only using the word history
within the sentence. To capture the longer his-
tory, we integrate the sentence history into the
word-level language model from sentence-level
language model, which forms a hierarchical recur-
rent neural network.

 !" !"#$
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Sentence j     Sentence j+1

Document J

Figure 2: Hierarchical recurrent neural network

As illustrated Figure 2, the upper part is the un-
folded illustration of conventional recurrent neural
network based language model. It takes one word
wi each time with the previous history informa-
tion hwi−1 together and predicts the probability of
the next word p(wi+1) with the information kep-
t in the history vector hwi. The lower part is our
RNNSLM, which takes the bag of words represen-
tation of a sentence xsj each time with the history
information of previous sentences hsj−1 together
and predicts the bag of words in the next sentence
p(sj+1) with the information kept in hsj .

We integrate these two recurrent neural net-
works together by adding connections between the
sentence-level history vector hsj−1 and word level
history vector hwi. So while predicting the nex-
t word wi+1 of the current sentence, our model
will consider the current word wi, history of previ-
ous sentences hsj−1 and history of previous words
hwi−1. The new word-level history vector hwi is
computed as:

hwi = f(Uw · hwi−1 + Ww · xwi + Usw · hsj−1)
(10)

where f(z) is a HTanh function. For HRNNLM,
we also add a bigram hash feature, similar as we
do for RNNSLM.

5.2 Training
The HRNNLM can be trained from scratch fol-
lowing Mikolov et al. (2010) with a dual objec-
tive. But this is not without problem. Beginning
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of training phase, the sentence history is unstable
since the parameters of sentence-level language
model are kept updating. Consequently, the train-
ing of HRNNLM will be also unstable and hard to
converge with unstable sentence history.

In this paper, we approximate the whole training
of HRNNLM by a two-step training method. We
first train a RNNSLM until it converges. Then we
connect the hidden layer of RNNSLM to the hid-
den layer of RNNWLM. To increase the training
speed, all the parameters of RNNSLM are fixed
while training HRNNLM. We only update the ran-
dom initialized parameters in HRNNLM, though
ideally the gradient of the sentence history vector
could change and the RNNSLM could be updated
again. The learning rate α is set to 0.1 and the up-
dating of learning rate is the same as suggested in
Section 4.2. All the parameters can be initialize as
suggested in Section 4.3.

6 Experiments

We evaluate the sentence-level performance of
HRNNLM by the common coherence evaluation
of sentence ordering task, its word-level perfor-
mance by perplexity measure. We also apply
our HRNNLM to SMT reranking task in an open
Chinese-English translation dataset. The trans-
lation performance index is the IBM version of
BLEU-4 (Papineni et al., 2002).

6.1 Sentence Ordering

We follow (Barzilay and Lapata, 2008) to evaluate
our sentence-level language model via a sentence
ordering task with test set 2010 (tst2010), 2011
(tst2011) and 2012 (tst2012) from IWSLT 2014,
totaling 37 English documents. 20 random permu-
tations of sentences for each document are gener-
ated. Each permutation and its original document
are combined as an article pair. Our goal is to find
the original one among all the article pairs.

The training data for sentence-level language
model is the 1,414 English documents from the
parallel corpus also provided by the IWSLT 2014
spoken language translation task. 90% of the doc-
uments are for training and the rest are reserved
for validation. The size of the hidden layer is set
to 30 and hash array size is 107.

We define the log probability of a given docu-
ment as its coherence score. The document with
the higher score is regarded as the original docu-
ment.

We provide two baselines for sentence order-
ing. One is the state-of-the-art recursive neural
network based method proposed by (Li and Hov-
y, 2014). We implement their model trained and
tested with our data. The other is a maximum en-
tropy classifier trained with bag of words features
of adjacent sentences which can generate a coher-
ent probability of adjacent sentences. The docu-
ment with the higher sum of log probability for
each adjacency sentences is regarded as the origi-
nal document. Table 1 shows the accuracy of our
system and baseline.

Setting Accuracy
Recursive 91.39%

ME system 91.89%
Our system 95.68%

Table 1: Accuracy of the sentence ordering task
for each system

From Table 1 we can see that the maximum
entropy model and the recursive neural network
model has almost the same performance. Com-
pared with the baseline systems, the proposed
HRNNLM achieves significant improvement with
nearly 4.3% improvement in term of accuracy.
The experimental result shows that the HRNNLM
can model document coherence and capture cross-
sentence information.

6.2 Word-level Model Perplexity
We compare the word level performance of
HRNNLM with the most popular RNNLM in
terms of model perplexity. For a fair compari-
son, we follow (Mikolov et al., 2010) and train
the model also on 90% of the 1.414 English docu-
ments form IWSLT 2014, totaling about 3M word-
s. Then we train our model with the same hidden
layer size and hash array size as the baseline sys-
tem. The perplexity of these two models is eval-
uated on held-out documents, about 370K words.
The results are shown in Table 2.

Setting Perplexity
RNNLM-30 183

HRNNLM-30 174

Table 2: Perplexity of the different language mod-
el

According to Table 2, it is reasonable to claim
that, by integrating history information of previous
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sentences, the model perplexity decreased signif-
icantly. Empirically, this confirms the hypothesis
that the words selection for the next sentence is
dependent on its preceding sentences in the same
document.

6.3 Spoken Language Translation

The conventional SMT systems translate sen-
tences independently, without considering the co-
herence of the sentences in the same document. In
order to learn translation coherence between sen-
tences, we apply the HRNNLM to machine trans-
lation reranking task.

6.3.1 Data Setting and Baselines
The data comes from the IWSLT 2014 spoken lan-
guage translation task. The training data consists
of 1,414 documents on TED talks, and contain-
s 179k sentence pairs, about 3M Chinese words,
and 3.3M English words. The language model for
SMT is a 4-gram language model trained with the
English documents in the training data. The devel-
opment set is specified by IWSLT as dev2010, and
the test set contains 37 documents from tst2010,
tst2011 and tst2012.

The IWSLT 2014 baseline system is built upon
the open-source machine translation toolkit Moses
at the default configuration, proposed by (Cetto-
lo et al., 2012). We also train a decoder, which
is an in-house Bracketing Transduction Grammar
(BTG) (Wu, 1997) in a CKY-style decoder with
a lexical reordering model trained with maximum
entropy (Xiong et al., 2006). The decoder uses
commonly used features, such as translation prob-
abilities, lexical weights, a language model, word
penalty, and distortion probabilities.

6.3.2 Rerank System
Our reranking system is a linear model with sev-
eral features, including the SMT system final s-
cores, sentence-level language model scores, and
HRNNLM scores. It should be noted all these fea-
tures are actually employed by the SMT model ex-
cept for the HRNNLM score. Since Minimum Er-
ror Rate Training (MERT) (Och, 2003) is the most
general method adopted in SMT systems for tun-
ing, the feature weights are fixed by MERT.

For our reranking system, to score the transla-
tion of one sentence we need the translation re-
sults of all the previous sentences in the documen-
t. Our SMT decoder generates 10-best results of
all the sentences of the documents and the rerank-

ing system select the best translation result for the
first sentence at first. With the translation of first
sentence, we score all the translation candidates of
the second sentence and select the best one as the
result. Following this procedure, we can get the
translation results for all the sentences in the doc-
ument.

6.3.3 Results

The HRNNLM focus on exploiting longer context,
esp. cross-sentence word dependencies. Therefor
the translation data for IWSLT 2014 is organized
as documents instead of sentences for our rerank
system. We hope HRNNLM will enable a context-
sensitive reranking process, capturing the syntac-
tic and logic relationships between the sentences
in the same document.

Setting tst2010 tst2011 tst2012
IWSLT 11.12 13.34 -
Baseline 12.40 15.09 13.52

SMT + Rerank 12.55 15.23 13.70

Table 3: BLEU scores of SMT systems. The I-
WSLT is a public baseline which issued by the or-
ganizer of IWSLT 2014, as described in (Cettolo
et al., 2012).

The translation performance comparison is
shown in Table 3. From Table 3, we can find
that the rerank system improves SMT performance
consistently. For a single sentence without the
context information, there are several appropriate
translations and it is hard to tell which one is bet-
ter. When considering the context of a document
(previous sentences for our model), some transla-
tion candidates may not be coherent with the oth-
ers which should not be selected. Our model can
generate the most coherent translation results by
considering previous sentence history.

For example, we have the following two Chi-
nese sentence in one document together with their
correct translation:
我拍摄过的冰山,有些冰是非常年
轻 - -几千年年龄
Some of the ice in the icebergs that I pho-
tograph is very young - - a couple thou-
sand years old.
有些冰超过十万年
And some of the ice is over 100,000 years
old.
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Chinese word “ 有些” means “some” in En-
glish. But when it is used in parallelism sentences,
it means “some of” instead of “some”. The tradi-
tional SMT system translates the italics part with-
out considering the context. The translation result
for this kind of system is:

Some ice more than 100,000 years.
For our system, the HRNNLM can take previ-

ous sentence as context and learn the parallelism
between the two sentences. It can select the best
translation “some of” for 有些, and the output of
our system is:

Some of the ice more than 100,000 years.
We also calculate the BLEU increase ratio of

our system on document level. The ratio is de-
fined as 1

N #(BleuDrerank > BleuDbaseline),
where N denotes the number of documents, and
#(BleuDrerank > BleuDbaseline) denotes the
number of documents for which document level
BLEU score of reranking system is higher than the
baselines. The results are shown in Table 4.

tst2010 tst2011 tst2012
72.73% 71.43% 75%

Table 4: Experimental results to test BLEU in-
crease ratio after reranking

From Table 4, we can find that, for all the three
test data sets, our reranking system can achieve
better performance for more than 70% documents.

7 Conclusion and Future Work

In this paper, we propose a hierarchical recurren-
t neural network language model for document
modeling. We first built a RNNSLM to capture
the information between sentences. Then we in-
tegrate the hidden layer of RNNSLM into the in-
put layer of word-level language model to form
a hierarchical recurrent neural network. This en-
ables the model be able to capture both in-sentence
and cross-sentence information in a unified RN-
N. Compared with conventional language models,
our model can perceive a longer history than other
language models and captures the context patterns
in the previous sentences. At sentence level, we
examine our model with sentence ordering task.
At word level, we test the model perplexity. We
also conduct a SMT rerank experiment on IWSLT
2014 data set. All these experimental results show
that our hierarchical recurrent neural network has
a satisfying performance.

In the future, we will explore better sentence
representation such as distributed sentence repre-
sentation as input for our sentence-level language
model to better model document coherence. We
can even update the gradient from different RNN
to get a better performance.
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Abstract

Neural networks have been shown to
improve performance across a range of
natural-language tasks. However, design-
ing and training them can be complicated.
Frequently, researchers resort to repeated
experimentation to pick optimal settings.
In this paper, we address the issue of
choosing the correct number of units in
hidden layers. We introduce a method for
automatically adjusting network size by
pruning out hidden units through `∞,1 and
`2,1 regularization. We apply this method
to language modeling and demonstrate its
ability to correctly choose the number of
hidden units while maintaining perplexity.
We also include these models in a machine
translation decoder and show that these
smaller neural models maintain the signif-
icant improvements of their unpruned ver-
sions.

1 Introduction

Neural networks have proven to be highly ef-
fective at many tasks in natural language. For
example, neural language models and joint lan-
guage/translation models improve machine trans-
lation quality significantly (Vaswani et al., 2013;
Devlin et al., 2014). However, neural networks can
be complicated to design and train well. Many de-
cisions need to be made, and performance can be
highly dependent on making them correctly. Yet
the optimal settings are non-obvious and can be
laborious to find, often requiring an extensive grid
search involving numerous experiments.

In this paper, we focus on the choice of the
sizes of hidden layers. We introduce a method
for automatically pruning out hidden layer units,
by adding a sparsity-inducing regularizer that en-
courages units to deactivate if not needed, so that

they can be removed from the network. Thus, af-
ter training with more units than necessary, a net-
work is produced that has hidden layers correctly
sized, saving both time and memory when actually
putting the network to use.

Using a neural n-gram language model (Bengio
et al., 2003), we are able to show that our novel
auto-sizing method is able to learn models that are
smaller than models trained without the method,
while maintaining nearly the same perplexity. The
method has only a single hyperparameter to adjust
(as opposed to adjusting the sizes of each of the
hidden layers), and we find that the same setting
works consistently well across different training
data sizes, vocabulary sizes, and n-gram sizes. In
addition, we show that incorporating these mod-
els into a machine translation decoder still results
in large BLEU point improvements. The result is
that fewer experiments are needed to obtain mod-
els that perform well and are correctly sized.

2 Background

Language models are often used in natural lan-
guage processing tasks involving generation of
text. For instance, in machine translation, the lan-
guage model helps to output fluent translations,
and in speech recognition, the language model
helps to disambiguate among possible utterances.

Current language models are usually n-gram
models, which look at the previous (n− 1) words
to predict the nth word in a sequence, based
on (smoothed) counts of n-grams collected from
training data. These models are simple but very
effective in improving the performance of natural
language systems.

However, n-gram models suffer from some lim-
itations, such as data sparsity and memory usage.
As an alternative, researchers have begun explor-
ing the use of neural networks for language mod-
eling. For modeling n-grams, the most common
approach is the feedforward network of Bengio et
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al. (2003), shown in Figure 1.
Each node represents a unit or “neuron,” which

has a real valued activation. The units are orga-
nized into real-vector valued layers. The activa-
tions at each layer are computed as follows. (We
assume n = 3; the generalization is easy.) The two
preceding words, w1, w2, are mapped into lower-
dimensional word embeddings,

x1 = A:w1

x2 = A:w2

then passed through two hidden layers,

y = f(B1x1 + B2x2 + b)
z = f(Cy + c)

where f is an elementwise nonlinear activation
(or transfer) function. Commonly used activation
functions are the hyperbolic tangent, logistic func-
tion, and rectified linear units, to name a few. Fi-
nally, the result is mapped via a softmax to an out-
put probability distribution,

P (wn | w1 · · ·wn−1) ∝ exp([Dz + d]wn).

The parameters of the model are A, B1, B2, b,
C, c, D, and d, which are learned by minimizing
the negative log-likelihood of the the training data
using stochastic gradient descent (also known as
backpropagation) or variants.

Vaswani et al. (2013) showed that this model,
with some improvements, can be used effectively
during decoding in machine translation. In this pa-
per, we use and extend their implementation.

3 Methods

Our method is focused on the challenge of choos-
ing the number of units in the hidden layers of a
feed-forward neural network. The networks used
for different tasks require different numbers of
units, and the layers in a single network also re-
quire different numbers of units. Choosing too few
units can impair the performance of the network,
and choosing too many units can lead to overfit-
ting. It can also slow down computations with the
network, which can be a major concern for many
applications such as integrating neural language
models into a machine translation decoder.

Our method starts out with a large number of
units in each layer and then jointly trains the net-
work while pruning out individual units when pos-
sible. The goal is to end up with a trained network

words
w1, w2

input
embeddings

x1,x2

hidden
y

hidden
z

output
P (w3 | w1w2)

D

C

B1 B2

A

Figure 1: Neural probabilistic language model
(Bengio et al., 2003), adapted from Vaswani et al.
(2013).

that also has the optimal number of units in each
layer.

We do this by adding a regularizer to the ob-
jective function. For simplicity, consider a single
layer without bias, y = f(Wx). Let L(W) be
the negative log-likelihood of the model. Instead
of minimizing L(W) alone, we want to mini-
mize L(W) + λR(W), where R(W) is a con-
vex regularizer. The `1 norm, R(W) = ‖W‖1 =∑

i,j |Wij |, is a common choice for pushing pa-
rameters to zero, which can be useful for prevent-
ing overfitting and reducing model size. However,
we are interested not only in reducing the number
of parameters but the number of units. To do this,
we need a different regularizer.

We assume activation functions that satisfy
f(0) = 0, such as the hyperbolic tangent or rec-
tified linear unit (f(x) = max{0, x}). Then, if we
push the incoming weights of a unit yi to zero, that
is, Wij = 0 for all j (as well as the bias, if any:
bi = 0), then yi = f(0) = 0 is independent of the
previous layers and contributes nothing to subse-
quent layers. So the unit can be removed without
affecting the network at all. Therefore, we need a
regularizer that pushes all the incoming connec-
tion weights to a unit together towards zero.

Here, we experiment with two, the `2,1 norm
and the `∞,1 norm.1 The `2,1 norm on a ma-

1In the notation `p,q , the subscript p corresponds to the
norm over each group of parameters, and q corresponds to
the norm over the group norms. Contrary to more common
usage, in this paper, the groups are rows, not columns.
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x1

x2

x1

x2

`2 `∞

Figure 2: The (unsquared) `2 norm and `∞ norm
both have sharp tips at the origin that encourage
sparsity.

trix W is

R(W) =
∑
i

‖Wi:‖2 =
∑
i

∑
j

W 2
ij

 1
2

. (1)

(If there are biases bi, they should be included as
well.) This puts equal pressure on each row, but
within each row, the larger values contribute more,
and therefore there is more pressure on larger val-
ues towards zero. The `∞,1 norm is

R(W) =
∑
i

‖Wi:‖∞ =
∑
i

max
j
|Wij |. (2)

Again, this puts equal pressure on each row, but
within each row, only the maximum value (or val-
ues) matter, and therefore the pressure towards
zero is entirely on the maximum value(s).

Figure 2 visualizes the sparsity-inducing behav-
ior of the two regularizers on a single row. Both
have a sharp tip at the origin that encourages all
the parameters in a row to become exactly zero.

4 Optimization

However, this also means that sparsity-inducing
regularizers are not differentiable at zero, mak-
ing gradient-based optimization methods trickier
to apply. The methods we use are discussed in
detail elsewhere (Duchi et al., 2008; Duchi and
Singer, 2009); in this section, we include a short
description of these methods for completeness.

4.1 Proximal gradient method

Most work on learning with regularizers, includ-
ing this work, can be thought of as instances of
the proximal gradient method (Parikh and Boyd,
2014). Our objective function can be split into two
parts, a convex and differentiable part (L) and a

convex but non-differentiable part (λR). In prox-
imal gradient descent, we alternate between im-
proving L alone and λR alone. Let u be the pa-
rameter values from the previous iteration. We
compute new parameter values w using:

v← u− η∇L(u) (3)

w← arg max
w

(
1
2η
‖w − v‖2 + λR(w)

)
(4)

and repeat until convergence. The first update is
just a standard gradient descent update on L; the
second is known as the proximal operator for λR
and in many cases has a closed-form solution. In
the rest of this section, we provide some justifica-
tion for this method, and in Sections 4.2 and 4.3
we show how to compute the proximal operator
for the `2 and `∞ norms.

We can think of the gradient descent update (3)
on L as follows. Approximate L around u by the
tangent plane,

L̄(v) = L(u) +∇L(u)(v − u) (5)

and move v to minimize L̄, but don’t move it too
far from u; that is, minimize

F (v) =
1
2η
‖v − u‖2 + L̄(v).

Setting partial derivatives to zero, we get

∂F

∂v
=

1
η

(v − u) +∇L(u) = 0

v = u− η∇L(u).

By a similar strategy, we can derive the second
step (4). Again we want to move w to minimize
the objective function, but don’t want to move it
too far from u; that is, we want to minimize:

G(w) =
1
2η
‖w − u‖2 + L̄(w) + λR(w).

Note that we have not approximated R by a tan-
gent plane. We can simplify this by substituting
in (3). The first term becomes

1
2η
‖w − u‖2 =

1
2η
‖w − v − η∇L(u)‖2

=
1
2η
‖w − v‖2 −∇L(u)(w − v)

+
η

2
‖∇L(u)‖2
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and the second term becomes

L̄(w) = L(u) +∇L(u)(w − u)
= L(u) +∇L(u)(w − v − η∇L(u)).

The ∇L(u)(w − v) terms cancel out, and we can
ignore terms not involving w, giving

G(w) =
1
2η
‖w − v‖2 + λR(w) + const.

which is minimized by the update (4). Thus, we
have split the optimization step into two easier
steps: first, do the update for L (3), then do the
update for λR (4). The latter can often be done
exactly (without approximating R by a tangent
plane). We show next how to do this for the `2
and `∞ norms.

4.2 `2 and `2,1 regularization
Since the `2,1 norm on matrices (1) is separable
into the `2 norm of each row, we can treat each
row separately. Thus, for simplicity, assume that
we have a single row and want to minimize

G(w) =
1
2η
‖w − v‖2 + λ‖w‖+ const.

The minimum is either at w = 0 (the tip of
the cone) or where the partial derivatives are zero
(Figure 3):

∂G

∂w
=

1
η

(w − v) + λ
w
‖w‖ = 0.

Clearly, w and v must have the same direction and
differ only in magnitude, that is, w = α v

‖v‖ . Sub-
stituting this into the above equation, we get the
solution

α = ‖v‖ − ηλ.
Therefore the update is

w = α
v
‖v‖

α = max(0, ‖v‖ − ηλ).

4.3 `∞ and `∞,1 regularization
As above, since the `∞,1 norm on matrices (2) is
separable into the `∞ norm of each row, we can
treat each row separately; thus, we want to mini-
mize

G(w) =
1
2η
‖w − v‖2 + λmax

j
|xj |+ const.

‖w‖ > 0 ‖w‖ = 0

Figure 3: Examples of the two possible cases for
the `2 gradient update. Point v is drawn with a hol-
low dot, and point w is drawn with a solid dot.

before `∞ prox. op. `1 projection

Figure 4: The proximal operator for the `∞ norm
(with strength ηλ) decreases the maximal compo-
nents until the total decrease sums to ηλ. Projec-
tion onto the `1-ball (of radius ηλ) decreases each
component by an equal amount until they sum
to ηλ.

Intuitively, the solution can be characterized as:
Decrease all of the maximal |xj | until the total de-
crease reaches ηλ or all the xj are zero. See Fig-
ure 4.

If we pre-sort the |xj | in nonincreasing order,
it’s easy to see how to compute this: for ρ =
1, . . . , n, see if there is a value ξ ≤ xρ such that
decreasing all the x1, . . . , xρ to ξ amounts to a to-
tal decrease of ηλ. The largest ρ for which this is
possible gives the correct solution.

But this situation seems similar to another op-
timization problem, projection onto the `1-ball,
which Duchi et al. (2008) solve in linear time
without pre-sorting. In fact, the two problems can
be solved by nearly identical algorithms, because
they are convex conjugates of each other (Duchi
and Singer, 2009; Bach et al., 2012). Intuitively,
the `1 projection of v is exactly what is cut out
by the `∞ proximal operator, and vice versa (Fig-
ure 4).

Duchi et al.’s algorithm modified for the present
problem is shown as Algorithm 1. It partitions the
xj about a pivot element (line 6) and tests whether
it and the elements to its left can be decreased to a
value ξ such that the total decrease is δ (line 8). If
so, it recursively searches the right side; if not, the
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left side. At the conclusion of the algorithm, ρ is
set to the largest value that passes the test (line 13),
and finally the new xj are computed (line 16) – the
only difference from Duchi et al.’s algorithm.

This algorithm is asymptotically faster than that
of Quattoni et al. (2009). They reformulate `∞,1
regularization as a constrained optimization prob-
lem (in which the `∞,1 norm is bounded by µ) and
provide a solution inO(n log n) time. The method
shown here is simpler and faster because it can
work on each row separately.

Algorithm 1 Linear-time algorithm for the proxi-
mal operator of the `∞ norm.

1: procedure UPDATE(w, δ)
2: lo, hi← 1, n
3: s← 0
4: while lo ≤ hi do
5: select md randomly from lo, . . . , hi
6: ρ← PARTITION(w, lo,md, hi)
7: ξ ← 1

ρ

(
s+

∑ρ
i=lo |xi| − δ

)
8: if ξ ≤ |xρ| then
9: s← s+

∑ρ
i=lo |xi|

10: lo← ρ+ 1
11: else
12: hi← ρ− 1
13: ρ← hi
14: ξ ← 1

ρ (s− δ)
15: for i← 1, . . . , n do
16: xi ← min(max(xi,−ξ), ξ)
17: procedure PARTITION(w, lo,md, hi)
18: swap xlo and xmd
19: i← lo + 1
20: for j ← lo + 1, . . . , hi do
21: if xj ≥ xlo then
22: swap xi and xj
23: i← i+ 1
24: swap xlo and xi−1

25: return i− 1

5 Experiments

We evaluate our model using the open-source
NPLM toolkit released by Vaswani et al. (2013),
extending it to use the additional regularizers as
described in this paper.2 We use a vocabulary size
of 100k and word embeddings with 50 dimen-
sions. We use two hidden layers of rectified linear
units (Nair and Hinton, 2010).

2These extensions have been contributed to the NPLM
project.

We train neural language models (LMs) on two
natural language corpora, Europarl v7 English and
the AFP portion of English Gigaword 5. After tok-
enization, Europarl has 56M tokens and Gigaword
AFP has 870M tokens. For both corpora, we hold
out a validation set of 5,000 tokens. We train each
model for 10 iterations over the training data.

Our experiments break down into three parts.
First, we look at the impact of our pruning method
on perplexity of a held-out validation set, across a
variety of settings. Second, we take a closer look
at how the model evolves through the training pro-
cess. Finally, we explore the downstream impact
of our method on a statistical phrase-based ma-
chine translation system.

5.1 Evaluating perplexity and network size

We first look at the impact that the `∞,1 regular-
izer has on the perplexity of our validation set. The
main results are shown in Table 1. For λ ≤ 0.01,
the regularizer seems to have little impact: no hid-
den units are pruned, and perplexity is also not af-
fected. For λ = 1, on the other hand, most hidden
units are pruned – apparently too many, since per-
plexity is worse. But for λ = 0.1, we see that we
are able to prune out many hidden units: up to half
of the first layer, with little impact on perplexity.
We found this to be consistent across all our exper-
iments, varying n-gram size, initial hidden layer
size, and vocabulary size.

Table 2 shows the same information for 5-gram
models trained on the larger Gigaword AFP cor-
pus. These numbers look very similar to those on
Europarl: again λ = 0.1 works best, and, counter
to expectation, even the final number of units is
similar.

Table 3 shows the result of varying the vocabu-
lary size: again λ = 0.1 works best, and, although
it is not shown in the table, we also found that the
final number of units did not depend strongly on
the vocabulary size.

Table 4 shows results using the `2,1 norm (Eu-
roparl corpus, 5-grams, 100k vocabulary). Since
this is a different regularizer, there isn’t any rea-
son to expect that λ behaves the same way, and
indeed, a smaller value of λ seems to work best.

5.2 A closer look at training

We also studied the evolution of the network over
the training process to gain some insights into how
the method works. The first question we want to
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2-gram 3-gram 5-gram
λ layer 1 layer 2 ppl layer 1 layer 2 ppl layer 1 layer 2 ppl

0 1,000 50 103 1,000 50 66 1,000 50 55
0.001 1,000 50 104 1,000 50 66 1,000 50 54
0.01 1,000 50 104 1,000 50 63 1,000 50 55
0.1 499 47 105 652 49 66 784 50 55
1.0 50 24 111 128 32 76 144 29 68

Table 1: Comparison of `∞,1 regularization on 2-gram, 3-gram, and 5-gram neural language models. The
network initially started with 1,000 units in the first hidden layer and 50 in the second. A regularization
strength of λ = 0.1 consistently is able to prune units while maintaining perplexity, even though the final
number of units varies considerably across models. The vocabulary size is 100k.

λ layer 1 layer 2 perplexity
0 1,000 50 100
0.001 1,000 50 99
0.01 1,000 50 101
0.1 742 50 107
1.0 24 17 173

Table 2: Results from training a 5-gram neural LM
on the AFP portion of the Gigaword dataset. As
with the smaller Europarl corpus (Table 1), a reg-
ularization strength of λ = 0.1 is able to prune
units while maintaining perplexity.

vocabulary size
λ 10k 25k 50k 100k

0 47 60 54 55
0.001 47 54 54 54
0.01 47 58 55 55
0.1 48 62 55 55
1.0 61 64 65 68

Table 3: A regularization strength of λ = 0.1 is
best across different vocabulary sizes.

λ layer 1 layer 2 perplexity
0 1,000 50 100
0.0001 1,000 50 54
0.001 1,000 50 55
0.01 616 50 57
0.1 199 32 65

Table 4: Results using `2,1 regularization.
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Figure 5: Number of units in first hidden layer over
time, with various starting sizes (λ = 0.1). If we
start with too many units, we end up with the same
number, although if we start with a smaller number
of units, a few are still pruned away.

answer is whether the method is simply remov-
ing units, or converging on an optimal number of
units. Figure 5 suggests that it is a little of both:
if we start with too many units (900 or 1000), the
method converges to the same number regardless
of how many extra units there were initially. But
if we start with a smaller number of units, the
method still prunes away about 50 units.

Next, we look at the behavior over time of dif-
ferent regularization strengths λ. We found that
not only does λ = 1 prune out too many units, it
does so at the very first iteration (Figure 6, above),
perhaps prematurely. By contrast, the λ = 0.1
run prunes out units gradually. By plotting these
curves together with perplexity (Figure 6, below),
we can see that the λ = 0.1 run is fitting the model
and pruning it at the same time, which seems
preferable to fitting without any pruning (λ =
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Figure 6: Above: Number of units in first hid-
den layer over time, for various regularization
strengths λ. A regularization strength of ≤ 0.01
does not zero out any rows, while a strength of 1
zeros out rows right away. Below: Perplexity over
time. The runs with λ ≤ 0.1 have very similar
learning curves, whereas λ = 1 is worse from the
beginning.

neural LM
λ none Europarl Gigaword AFP

0 (none)
23.2

24.7 (+1.5) 25.2 (+2.0)
0.1 24.6 (+1.4) 24.9 (+1.7)

Table 5: The improvements in translation accuracy
due to the neural LM (shown in parentheses) are
affected only slightly by `∞,1 regularization. For
the Europarl LM, there is no statistically signifi-
cant difference, and for the Gigaword AFP LM, a
statistically significant but small decrease of−0.3.

0.01) or pruning first and then fitting (λ = 1).
We can also visualize the weight matrix itself

over time (Figure 7), for λ = 0.1. It is striking
that although this setting fits the model and prunes
it at the same time, as argued above, by the first
iteration it already seems to have decided roughly
how many units it will eventually prune.

5.3 Evaluating on machine translation

We also looked at the impact of our method on
statistical machine translation systems. We used
the Moses toolkit (Koehn et al., 2007) to build a
phrase based machine translation system with a
traditional 5-gram LM trained on the target side
of our bitext. We augmented this system with neu-
ral LMs trained on the Europarl data and the Gi-
gaword AFP data. Based on the results from the
perplexity experiments, we looked at models both
built with a λ = 0.1 regularizer, and without regu-
larization (λ = 0).

We built our system using the newscommentary
dataset v8. We tuned our model using newstest13
and evaluated using newstest14. After standard
cleaning and tokenization, there were 155k paral-
lel sentences in the newscommentary dataset, and
3,000 sentences each for the tuning and test sets.

Table 5 shows that the addition of a neural
LM helps substantially over the baseline, with im-
provements of up to 2 BLEU. Using the Europarl
model, the BLEU scores obtained without and
with regularization were not significantly differ-
ent (p ≥ 0.05), consistent with the negligible per-
plexity difference between these models. On the
Gigaword AFP model, regularization did decrease
the BLEU score by 0.3, consistent with the small
perplexity increase of the regularized model. The
decrease is statistically significant, but small com-
pared with the overall benefit of adding a neu-
ral LM.
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1 iteration 5 iterations 10 iterations

Figure 7: Evolution of the first hidden layer weight matrix after 1, 5, and 10 iterations (with rows sorted
by `∞ norm). A nonlinear color scale is used to show small values more clearly. The four vertical blocks
correspond to the four context words. The light bar at the bottom is the rows that are close to zero, and
the white bar is the rows that are exactly zero.

6 Related Work

Researchers have been exploring the use of neu-
ral networks for language modeling for a long
time. Schmidhuber and Heil (1996) proposed a
character n-gram model using neural networks
which they used for text compression. Xu and
Rudnicky (2000) proposed a word-based proba-
bility model using a softmax output layer trained
using cross-entropy, but only for bigrams. Bengio
et al. (2003) defined a probabilistic word n-gram
model and demonstrated improvements over con-
ventional smoothed language models. Mnih and
Teh (2012) sped up training of log-bilinear lan-
guage models through the use of noise-contrastive
estimation (NCE). Vaswani et al. (2013) also
used NCE to train the architecture of Bengio et
al. (2003), and were able to integrate a large-
vocabulary language model directly into a ma-
chine translation decoder. Baltescu et al. (2014)
describe a similar model, with extensions like a
hierarchical softmax (based on Brown clustering)
and direct n-gram features.

Beyond feed-forward neural network lan-
guage models, researchers have explored using
more complicated neural network architectures.
RNNLM is an open-source implementation of a
language model using recurrent neural networks
(RNN) where connections between units can form
directed cycles (Mikolov et al., 2011). Sunder-
meyer et al. (2015) use the long-short term mem-
ory (LSTM) neural architecture to show a per-
plexity improvement over the RNNLM toolkit.
In future work, we plan on exploring how our
method could improve these more complicated
neural models as well.

Automatically limiting the size of neural net-
works is an old idea. The “Optimal Brain Dam-
age” (OBD) technique (LeCun et al., 1989) com-
putes a saliency based on the second derivative of
the objective function with respect to each parame-
ter. The parameters are then sorted by saliency, and
the lowest-saliency parameters are pruned. The
pruning process is separate from the training pro-
cess, whereas regularization performs training and
pruning simultaneously. Regularization in neural
networks is also an old idea; for example, Now-
land and Hinton (1992) mention both `22 and `0
regularization. Our method develops on this idea
by using a mixed norm to prune units, rather than
parameters.

Srivastava et al. introduce a method called
dropout in which units are directly deactivated at
random during training (Srivastava et al., 2014),
which induces sparsity in the hidden unit activa-
tions. However, at the end of training, all units
are reactivated, as the goal of dropout is to re-
duce overfitting, not to reduce network size. Thus,
dropout and our method seem to be complemen-
tary.

7 Conclusion

We have presented a method for auto-sizing a neu-
ral network during training by removing units us-
ing a `∞,1 regularizer. This regularizer drives a
unit’s input weights as a group down to zero, al-
lowing the unit to be pruned. We can thus prune
units out of our network during training with min-
imal impact to held-out perplexity or downstream
performance of a machine translation system.

Our results showed empirically that the choice
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of a regularization coefficient of 0.1 was robust to
initial configuration parameters of initial network
size, vocabulary size, n-gram order, and training
corpus. Furthermore, imposing a single regularizer
on the objective function can tune all of the hidden
layers of a network with one setting. This reduces
the need to conduct expensive, multi-dimensional
grid searches in order to determine optimal sizes.

We have demonstrated the power and efficacy
of this method on a feed-forward neural network
for language modeling though experiments on per-
plexity and machine translation. However, this
method is general enough that it should be applica-
ble to other domains, both inside natural language
processing and outside. As neural models become
more pervasive in natural language processing, the
ability to auto-size networks for fast experimen-
tation and quick exploration will become increas-
ingly important.
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Abstract

We investigate dual decomposition for
joint MAP inference of many strings.
Given an arbitrary graphical model, we de-
compose it into small acyclic sub-models,
whose MAP configurations can be found
by finite-state composition and dynamic
programming. We force the solutions of
these subproblems to agree on overlap-
ping variables, by tuning Lagrange multi-
pliers for an adaptively expanding set of
variable-length n-gram count features.

This is the first inference method for ar-
bitrary graphical models over strings that
does not require approximations such as
random sampling, message simplification,
or a bound on string length. Provided that
the inference method terminates, it gives
a certificate of global optimality (though
MAP inference in our setting is undecid-
able in general). On our global phonolog-
ical inference problems, it always termi-
nates, and achieves more accurate results
than max-product and sum-product loopy
belief propagation.

1 Introduction

Graphical models allow expert modeling of com-
plex relations and interactions between random
variables. Since a graphical model with given pa-
rameters defines a probability distribution, it can
be used to reconstruct values for unobserved vari-
ables. The marginal inference problem is to com-
pute the posterior marginal distributions of these
variables. The MAP inference (or MPE) prob-
lem is to compute the single highest-probability
joint assignment to all the unobserved variables.

Inference in general graphical models is NP-
hard even when the variables’ values are finite dis-
crete values such as categories, tags or domains. In
this paper, we address the more challenging setting

∗This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 1423276.

where the variables in the graphical models range
over strings. Thus, the domain of the variables is
an infinite space of discrete structures.

In NLP, such graphical models can deal with
large, incompletely observed lexicons. They could
be used to model diverse relationships among
strings that represent spellings or pronunciations;
morphemes, words, phrases (such as named enti-
ties and URLs), or utterances; standard or variant
forms; clean or noisy forms; contemporary or his-
torical forms; underlying or surface forms; source
or target language forms. Such relationships arise
in domains such as morphology, phonology, his-
torical linguistics, translation between related lan-
guages, and social media text analysis.

In this paper, we assume a given graphical
model, whose factors evaluate the relationships
among observed and unobserved strings.1 We
present a dual decomposition algorithm for MAP
inference, which returns a certifiably optimal so-
lution when it converges. We demonstrate our
method on a graphical model for phonology pro-
posed by Cotterell et al. (2015). We show that the
method generally converges and that it achieves
better results than alternatives.

The rest of the paper is arranged as follows: We
will review graphical models over strings in sec-
tion 2, and briefly introduce our sample problem
in section 3. Section 4 develops dual decompo-
sition inference for graphical models over strings.
Then our experimental setup and results are pre-
sented in sections 5 and 6, with some discussion.

2 Graphical Models Over Strings

2.1 Factor Graphs and MAP Inference
To perform inference on a graphical model (di-
rected or undirected), one first converts the model
to a factor graph representation (Kschischang et
al., 2001). A factor graph is a finite bipartite

1In some task settings, it is also necessary to discover the
model topology along with the model parameters. In this pa-
per we do not treat that structure learning problem. However,
both structure learning and parameter learning need to call
inference—such as the method presented here—in order to
evaluate proposed topologies or improve their parameters.
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zrizajgn eɪʃən dæmn

rεzɪgn#eɪʃən rizajn#z dæmn#eɪʃəndæmn#z

r,εzɪgn’eɪʃn riz’ajnz d,æmn’eɪʃnd’æmz

resignation resigns damns damnation

1) Underlying morphemes    
                                   Concatenation 

2) Underlying words   
                                     Phonology

3) Surface words

Figure 1: A fragment of the factor graph for the directed graphical model of Cotterell et al. (2015), displaying a possible
assignment to the variables (ellipses). The model explains each observed surface word as the result of applying phonology
to a concatenation of underlying morphemes. Shaded variables show the observed surface forms for four words: resignation,
resigns, damns, and damnation. The underlying pronunciations of these words are assumed to be more similar than their surface
pronunciations, because the words are known to share latent morphemes. The factor graph encodes what is shared. Each
observed word at layer 3 has a latent underlying form at layer 2, which is a deterministic concatenation of latent morphemes at
layer 1. The binary factors between layers 2 and 3 score each (underlying,surface) pair for its phonological plausibility. The
unary factors at layer 1 score each morpheme for its lexical plausibility. See Cotterell et al. (2015) for discussion of alternatives.

graph over a set X = {X1, X2, . . .} of variables
and a set F of factors. An assignment to the vari-
ables is a vector of values x = (x1, x2, . . .). Each
factor F ∈ F is a real-valued function of x, but it
depends on a given xi only if F is connected to Xi

in the graph. Thus, a degree d-factor scores some
length-d subtuple of x. The score of the whole
joint assignment simply sums over all factors:

score(x) def=
∑
F∈F

F (x). (1)

We seek the x of maximum score that is con-
sistent with our partial observation of x. This
is a generic constraint satisfaction problem with
soft constraints. While our algorithm does not de-
pend on a probabilistic interpretation of the fac-
tor graph,2 it can be regarded as peforming max-
imum a posteriori (MAP) inference of the unob-
served variables, under the probability distribution
p(x) def= (1/Z) exp score(x).

2.2 The String Case

Graphical models over strings have enjoyed some
attention in the NLP community. Tree-shaped
graphical models naturally model the evolution-
ary tree of word forms (Bouchard-Côté et al.,
2007; Bouchard-Côté et al., 2008; Hall and Klein,
2010; Hall and Klein, 2011). Cyclic graphical

2E.g., it could be used for exactly computing the separa-
tion oracle when training a structural SVM (Tsochantaridis et
al., 2005; Finley and Joachims, 2007). Another use is mini-
mum Bayes risk decoding—computing the joint assignment
having minimum expected loss—if the loss function does not
decompose over the variables, but a factor graph can be con-
structed that evaluates the expected loss of any assignment.

models have been used to model morphological
paradigms (Dreyer and Eisner, 2009; Dreyer and
Eisner, 2011) and to reconstruct phonological un-
derlying forms of words (Cotterell et al., 2015).

The variables in such a model are strings of un-
bounded length: each variable Xi is permitted to
range over Σ∗ where Σ is some fixed, finite al-
phabet. As in previous work, we assume that a
degree-d factor is a d-way rational relation, i.e.,
a function of d strings that can be computed by
a d-tape weighted finite-state machine (WFSM)
(Mohri et al., 2002; Kempe et al., 2004). Such a
machine is called an acceptor (WFSA) if d = 1
or a transducer (WFST) if d = 2.3

Past work has shown how to approximately
sample from the distribution over x defined by
such a model (Bouchard-Côté et al., 2007), or ap-
proximately compute the distribution’s marginals
using variants of sum-product belief propaga-
tion (BP) (Dreyer and Eisner, 2009) and expecta-
tion propagation (EP) (Cotterell and Eisner, 2015).

2.3 Finite-State Belief Propagation
BP iteratively updates messages between factors
and variables. Each message is a vector whose el-
ements score the possible values of a variable.

Murphy et al. (1999) discusses BP on cyclic
(“loopy”) graphs. For pedagogical reasons, sup-
pose momentarily that all factors have degree ≤ 2
(this loses no power). Then BP manipulates only
vectors and matrices—whose dimensionality de-
pends on the number of possible values of the vari-

3Finite-state software libraries often support only these
cases. Accordingly, Cotterell and Eisner (2015, Appendix
B.10) explain how to eliminate factors of degree d > 2.
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ables. In the string case, they have infinitely many
rows and columns, indexed by possible strings.

Dreyer and Eisner (2009) represented these in-
finite vectors and matrices by WFSAs and WF-
STs, respectively. They observed that the simple
linear-algebra operations used by BP can be im-
plemented by finite-state constructions. The point-
wise product of two vectors is the intersection of
their WFSAs; the marginalization of a matrix is
the projection of its WFST; a vector-matrix prod-
uct is computed by composing the WFSA with the
WFST and then projecting onto the output tape.
For degree > 2, BP’s rank-d tensors become d-
tape WFSMs, and these constructions generalize.

Unfortunately, except in small acyclic models,
the BP messages—which are WFSAs—usually
become impractically large. Each intersection
or composition involves a cross-product construc-
tion. For example, when finding the marginal
distribution at a degree-d variable, intersecting d
WFSA messages having m states each may yield
a WFSA with up to md states. (Our models in
section 6 include variables with d up to 156.)
Combining many cross products, as BP iteratively
passes messages along a path in the factor graph,
leads to blowup that is exponential in the length of
the path—which in turn is unbounded if the graph
has cycles (Dreyer and Eisner, 2009), as ours do.

The usual solution is to prune or otherwise ap-
proximate the messages at each step. In particu-
lar, Cotterell and Eisner (2015) gave a principled
way to approximate the messages using variable-
length n-gram models, using an adaptive variant
of Expectation Propagation (Minka, 2001).

2.4 Dual Decomposition Inference

In section 4, we will present a dual decomposition
(DD) method that decomposes the original com-
plex problem into many small subproblems that
are free of cycles and high degree nodes. BP can
solve each subproblem without approximation.4

The subproblems “communicate” through La-
grange multipliers that guide them towards agree-
ment on a single global solution. This information
is encoded in WFSAs that score possible values
of a string variable. DD incrementally adjusts the
WFSAs so as to encourage values that agree with

4Such small BP problems commonly arise in NLP. In par-
ticular, using finite-state methods to decode a composition of
several finite-state noisy channels (Pereira and Riley, 1997;
Knight and Graehl, 1998) can be regarded as BP on a graph-
ical model over strings that has a linear-chain topology.

the variable’s average value across subproblems.
Unlike BP messages, the WFSAs in our DD

method will be restricted to be variable-length
n-gram models, similar to Cotterell and Eisner
(2015). They may still grow over time; but DD of-
ten halts while the WFSAs are still small. It halts
when its strings agree exactly, rather than when it
has converged up to a numerical tolerance, like BP.

2.5 Switching Between Semirings

Our factors may be nondeterministic WFSMs. So
when F ∈ F scores a given d-tuple of string val-
ues, it may accept that d-tuple along multiple dif-
ferent WFSM paths with different scores, corre-
sponding to different alignments of the strings.

For purposes of MAP inference, we define F to
return the maximum of these path scores. That is,
we take the WFSMs to be defined with weights
in the (max,+) semiring (Mohri et al., 2002).
Equivalently, we are seeking the “best global solu-
tion” in the sense of choosing not only the strings
xi but also the alignments of the d-tuples.5

To do so, we must solve each DD subprob-
lem in the same sense. We use max-product BP.
This still applies the Dreyer-Eisner method of sec-
tion 2.3. Since these WFSMs are defined in the
(max,+) semiring, the method’s finite-state oper-
ations will combine weights using max and +.

MAP inference in our setting is in general com-
putationally undecidable.6 However, if DD con-
verges (as in our experiments), then its solution is
guaranteed to be the true MAP assignment.

In section 6, we will compare DD with (loopy)
max-product BP and (loopy) sum-product BP.
These respectively approximate MAP inference
and marginal inference over the entire factor
graph. Marginal inference computes marginal
string probabilities that sum (rather than maxi-
mize) over the choices of other strings and the
choices of paths. Thus, for sum-product BP, we
re-interpret the factor WFSMs as defined over the
(logadd,+) semiring. This means that the expo-
nentiated score assigned by a WFSM is the sum of
the exponentiated scores of the accepting paths.

5This problem is more specifically called MPE inference.
6The trouble is that we cannot bound the length of the la-

tent strings. If we could, then we could encode them using a
finite set of boolean variables, and solve as an ILP problem.
But that would allow us to determine whether there exists a
MAP assignment with score ≥ 0. That is impossible in gen-
eral, because it would solve Post’s Correspondence Problem
as a simple special case (see Dreyer and Eisner (2009)).
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Figure 2: To apply dual decomposition, we choose to decom-
pose 1 into one subproblem per surface word. Dashed lines
connect two or more variables from different subproblems
that correspond to the same variable in the original graph.
The method of Lagrange multipliers is used to force these
variables to have identical values. An additional unary factor
attached to each subproblem variable (not shown) is used to
incorporate its Lagrangian term.

3 A Sample Task: Generative Phonology

Before giving the formal details of our DD
method, we give a motivating example: a recently
proposed graphical model for morphophonology.
Cotterell et al. (2015) defined a Bayesian network
to describe the generative process of phonological
words. Our Figure 1 shows a conversion of their
model to a factor graph and explains what the vari-
ables and factors mean.

Inference on this graph performs unsupervised
discovery of latent strings. Given observed surface
representations of words (SRs), inference aims to
recover the underlying representations (URs) of
the words and their shared constituent morphemes.
The latter can then be used to predict held-out SRs.

Notice that the 8 edges in the first layer of Fig-
ure 1 form a cycle; such cycles make BP inexact.
Moreover, the figure shows only a schematic frag-
ment of the graphical model. In the actual exper-
iments, the graphical models have up to 829 vari-
ables, and the variables representing morpheme
URs are connected to up to 156 factors (because
many words share the same affix).

To handle the above challenges without ap-
proximation, we want to decompose the original
problem into subproblems where each subproblem
can be solved efficiently. In particular, we want
the subproblems to be free of cycles and high-
degree nodes. In our phonology example, each
observed word along with its correspondent latent
URs forms an ideal subproblem. This decomposi-
tion is shown in Figure 2.

While the subproblems can be solved efficiently
in isolation, they may share variables, as shown
by the dashed lines in Figure 2. DD repeatedly
modifies and re-solves the subproblems until they
agree on their shared variables.

4 Dual Decomposition

Dual decomposition is a general technique for
solving constrained optimization problems. It has
been widely used for MAP inference in graphi-
cal models (Komodakis et al., 2007; Komodakis
and Paragios, 2009; Koo et al., 2010; Martins et
al., 2011; Sontag et al., 2011; Rush and Collins,
2014). However, previous work has focused on
variables Xi whose values are in R or a small fi-
nite set; we will consider the infinite set Σ∗.

4.1 Review of Dual Decomposition
To apply dual decomposition, we must partition
the original problem into a union of K subprob-
lems, each of which can be solved exactly and ef-
ficiently (and in parallel). For example, our exper-
iments partition Figure 1 as shown in Figure 2.

Specifically, we partition the factors into K sets
F1, . . . ,FK . Each factor F ∈ F appears in ex-
actly one of these sets. This lets us rewrite the
score (1) as

∑
k

∑
F∈Fk F (x). Instead of simply

seeking its maximizer x, we equivalently seek

argmax
x1,...,xK

K∑
k=1

( ∑
F∈Fk

F (xk)
)

s.t. x1 = · · · = xK

(2)

If we dropped the equality constraint, (2)
could be solved by separately maximizing∑

F∈Fk F (xk) for each k. This “subproblem” is
itself a MAP problem which considers only the
factors Fk and the variables X k adjacent to them
in the original factor graph. The subproblem ob-
jective does not depend on the other variables.

We now attempt to enforce the equality con-
straint indirectly, by adding Lagrange multipli-
ers that encourage agreement among the subprob-
lems. Assume for the moment that the variables in
the factor graph are real-valued (each xki is in R).
Then consider the Lagrangian relaxation of (2),

max
x1,...,xK

K∑
k=1

( ∑
F∈Fk

F (xk) +
∑
i

λki · xki
)

(3)

This can still be solved by separate maximizations.
For any choices of λki ∈ R having (∀i)∑k λ

k
i =

0, it upper-bounds the objective of (2). Why? The
solution to (2) achieves the same value in (3), yet
(3) may do even better by considering solutions
that do not satisfy the constraint. Our goal is to
find λki values that tighten this upper bound as
much as possible. If we can find λki values so that
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the optimum of (3) satisfies the equality constraint,
then we have a tight bound and a solution to (2).

To improve the method, recall that subproblem
k considers only variables X k. It is indifferent to
the value ofXi ifXi /∈ X k, so we just leave xki un-
defined in the subproblem’s solution. We treat that
as automatically satisfying the equality constraint;
thus we do not need any Lagrange multiplier λki to
force equality. Our final solution x ignores unde-
fined values, and sets xi to the value agreed on by
the subproblems that did consider Xi.7

4.2 Substring Count Features

But what do we do if the variables are strings? The
Lagrangian term λki ·xki in (3) is now ill-typed. We
replace it with λki · γ(xki ), where γ(·) extracts a
real-valued feature vector from a string, and λki
is a vector of Lagrange multipliers.

This corresponds to changing the constraint in
(2). Instead of requiring x1

i = · · · = xKi for each
i, we are now requiring γ(x1

i ) = · · · = γ(xKi ),
i.e., these strings must agree in their features.

We want each possible string to have a unique
feature vector, so that matching features forces the
actual strings to match. We follow Paul and Eisner
(2012) and use a substring count feature for each
w ∈ Σ∗. In other words, γ(x) is an infinitely long
vector, which maps each w to the number of times
that w appears in x as a substring.8

Computing λki · γ(xki ) in (3) remains possi-
ble because in practice, λki will have only finitely
many nonzeros. This is so because our feature
vector γ(x) has only finitely many nonzeros for
any string x, and the subgradient algorithm in sec-
tion 4.3 below always updates λki by adding mul-
tiples of such γ(x) vectors.

We will use a further trick below to prevent
rapid growth of this finite set of nonzeros. Each
variable Xi maintains an active set of features,
Wi. Only these features may have nonzero La-
grange multipliers. While the active set can grow
over time, it will be finite at any given step.

Given the Lagrange multipliers, subproblem k
of (3) is simply MAP inference on the factor graph
consisting of the variables X k and factors Fk as
well as an extra unary factor Gki at each Xi ∈ X k:

7Without this optimization, the Lagrangian term λk
i · xk

i

would have driven xk
i to match that value anyway.

8More precisely, the number of times that w appears in
BOS x EOS, where BOS, EOS are distinguished boundary sym-
bols. We allow w to start with BOS and/or end with EOS,
which yields prefix and suffix indicator features.

Gki (x
k) def= λki · γ(xki ) (4)

These unary factors penalize strings according to
the Lagrange multipliers. They can be encoded
as WFSAs (Allauzen et al., 2003; Cotterell and
Eisner, 2015, Appendices B.1–B.5), allowing us to
solve the subproblem by max-product BP as usual.
The topology of the WFSA for Gki depends only
onWi, while its weights come from λki .

4.3 Projected Subgradient Method
We aim to adjust the collection λ of Lagrange
multipliers to minimize the upper bound (3). Fol-
lowing Komodakis et al. (2007), we solve this con-
vex dual problem using a projected subgradient
method. We initialize λ = 0 and compute (3) by
solving the K subproblems. Then we take a step
to adjust λ, and repeat in hopes of eventually sat-
isfying the equality condition.

The projected subgradient step is

λki := λki + η ·
(
µi − γ(xki )

)
(5)

where η > 0 is the current step size, and µi is the
mean of γ(xk

′
i ) over all subproblems k′ that con-

sider Xi. This update modifies (3) to encourage
solutions xk such that γ(xki ) comes closer to µi.

For each i, we update all λki at once to preserve
the property that (∀i)∑k λ

k
i = 0. However, we

are only allowed to update components of the λki
that correspond to features in the active setWi. To
ensure that we continue to make progress even af-
ter we agree on these features, we first expandWi

by adding the minimal strings (if any) on which the
xki do not yet all agree. For example, we will add
the abc feature only when the xki already agree on
their counts of its substrings ab and bc.9

Algorithm 1 summarizes the whole method. Ta-
ble 1 illustrates how one active setWi (section 4.3)
evolves, in our experiments, as it tries to enforce
agreement on a particular string xi.

4.4 Past Work: Implicit Intersection
Our DD algorithm is an extension of one that Paul
and Eisner (2012) developed for the simpler im-
plicit intersection problem. Given many WFSAs
F1, . . . , FK , they were able to find the string x
with maximum total score

∑K
k=1 Fk(x). (They ap-

plied this to solve instances of the NP-hard Steiner
9In principle, we should check that they also (still) agree

on a, b, and c, but we skip this check. Our active set heuristic
is almost identical to that of Paul and Eisner (2012).
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Algorithm 1 DD for graphical models over strings
1: initialize the active setWi for each variable Xi ∈ X
2: initialize λk

i = 0 for each Xi and each subproblem k
3: for t = 1 to T do . max number of iterations
4: for k = 1 to K do . solve all primal subproblems
5: if any of the λk

i have changed then
6: run max-product BP on the acyclic graph de-

fined by variablesX k and factorsFk andGk
i

7: extract MAP strings: ∀i with Xi ∈ X k, xk
i

is the label of the max-scoring accepting path
in the WFSA that represents the belief at Xi

8: for each Xi ∈ X do . improve dual bound
9: if the defined strings xk

i are not all equal then
10: Expand active feature setWi . section 4.3
11: Update each λk

i . equation (5)
12: Update each Gk

i from Θi,λ
k
i . see (4)

13: if none of the Xi required updates then
14: return any defined xk

i (all are equal) for each i
15: return {x1

i , . . . , x
K
i } for each i . failed to converge

string problem, i.e., finding the string x of mini-
mum total edit distance to a collection ofK ≈ 100
given strings.) The naive solution to this problem
would be to find the highest-weighted path in the
intersection F1 ∩ · · · ∩ FK . Unfortunately, the in-
tersection of WFSAs takes the Cartesian product
of their state sets. Thus materializing this inter-
section would have taken time exponential in K.

To put this another way, inference is NP-hard
even on a “trivial” factor graph: a single variable
X1 attached to K factors. Recall from section 2.3
that BP would solve this via the expensive inter-
section above. Paul and Eisner (2012) instead ap-
plied DD with one subproblem per factor. We
generalize their method to handle arbitrary factor
graphs, with multiple latent variables and cycles.

4.5 Block Coordinate Update

We also explored a possible speedup for our algo-
rithm. We used a block coordinate update vari-
ant of the algorithm when performing inference on
the phonology problem and observed an empiri-
cal speedup. Block coordinate updates are widely
used in Lagrangian relaxation and have also been
explored specifically for dual decomposition.

In general, block algorithms minimize the ob-
jective by holding some variables fixed while up-
dating others. Sontag et al. (2011) proposed a so-
phisticated block method called MPLP that con-
siders all values of variable Xi instead of the ones
obtained from the best assignments for the sub-
problems. However, it is not clear how to apply
their technique to string-valued variables. Instead,
the algorithm we propose here is much simpler—it

Iter# x1
i x2

i x3
i x4

i ∆Wi

1 ε ε ε ε ∅
3 g g g g ∅
4 gris griz griz griz {s, z, is, iz, s$ z$ }
5 gris grizo griz griz {o, zo, o$ }

14 griz grizo griz griz ∅
17 griz griz griz griz ∅
18 griz griz grize griz { e, ze, e$ }
19 gris griz griz griz ∅
31 griz griz griz griz ∅

Table 1: One variable’s active set as DD runs. This variable is
the unobserved stem morpheme shared by the Catalan words
gris, grizos, grize, grizes. The second column shows
the current set of solutions from the 4 subproblems having
copies of this variable. The third column shows the new sub-
strings that are then added to the active set, to try to enforce
agreement via their Lagrange multipliers. The table does not
show iterations in which these columns have not changed.
However, those iterations still update the Lagrange multipli-
ers to more strongly encourage agreement (if needed). Al-
though agreement is achieved at iterations 1, 3, and 17, it
is then disrupted—the subproblems’ solutions change be-
cause of Lagrange-multiplier pressures on their other vari-
ables (suffixes that do not agree yet). At iteration 31, the vari-
able returns to agreement on griz, and never changes again.

divides the primal variables into groups and up-
dates each group’s associated dual variables in
turn, using a single subgradient step (5). Note that
this way of partitioning the dual variables has the
nice property that we can still use the projected
subgradient update we gave in (5) and preserve the
property that (∀i)∑k λ

k
i = 0.

In the graphical model for generative phonol-
ogy, there are two types of underlying morphemes
in the first layer: word stems and word affixes. Our
block coordinate update algorithm thus alternates
between subgradient updates to the dual variables
for the stems and the dual variables for the affixes.
Note that when performing block coordinate up-
date on the dual variables, the primal variables are
not held constant, but rather are chosen by opti-
mizing the corresponding subproblem.

5 Experimental Setup

5.1 Datasets

We compare DD to belief propagation, using the
graphical model for generative phonology dis-
cussed in section 3. Inference in this model aims to
reconstruct underlying morphemes. Since our fo-
cus is inference, we will evaluate these reconstruc-
tions directly (whereas Cotterell et al. (2015) eval-
uated their ability to predict novel surface forms
using the reconstructions).

Our factor graphs have a similar topology to the
pedagogical fragment shown in Figure 1. How-
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ever, they are actually derived from datasets con-
structed by Cotterell et al. (2015), which are avail-
able with full descriptions at http://hubal.cs.
jhu.edu/tacl2015/. Briefly:

EXERCISE Small datasets of Catalan, English,
Maori, and Tangale, drawn from phonology
textbooks. Each dataset contains 55 to 106
surface words, formed from a collection of
16 to 55 morphemes.

CELEX Larger datasets of German, English, and
Dutch, drawn from the CELEX database
(Baayen et al., 1995). Each dataset contains
1000 surface words, formed from 341 to 381
underlying morphemes.

5.2 Evaluation Scheme
We compared three types of inference:

DD Use DD to perform exact MAP inference.
SP Perform approximate marginal inference by

sum-product loopy BP with pruning (Cot-
terell et al., 2015).

MP Perform approximate MAP inference by
max-product loopy BP with pruning. DD and
SP improve this baseline in different ways.

DD predicts a string value for each variable. For
SP and MP, we deem the prediction at a variable
to be the string that is scored most highly by the
belief at that variable.

We report the fraction of predicted morpheme
URs that exactly match the gold-standard URs
proposed by a human (Cotterell et al., 2015). We
also compare these predicted URs to one another,
to see how well the methods agree.

5.3 Parameterization
The model of Cotterell et al. (2015) has two fac-
tor types whose parameters must be chosen.10

The first is a unary factor Mφ. Each underlying-
morpheme variable (layer 1 of Figure 1) is con-
nected to a copy of Mφ, which gives the prior dis-
tribution over its values. The second is a binary
factor Sθ. For each surface word (layer 3), a copy
of Sθ gives its conditional distribution given the
corresponding underlying word (layer 2). Mφ and
Sθ respectively model the lexicon and the phonol-
ogy of the specific language; both are encoded as
WFSMs.

10The model also has a three-way factor, connecting layers
1 and 2 of Figure 1. This represents deterministic concatena-
tion (appropriate for these languages) and has no parameters.

Mφ is a 0-gram generative model: at each step
it emits a character chosen uniformly from the al-
phabet Σ with probability φ, or halts with proba-
bility 1−φ. It favors shorter strings in general, but
φ determines how weak this preference is.
Sθ is a sequential edit model that produces a

word’s SR by stochastically copying, inserting,
substituting, and deleting the phonemes of its UR.
We explore two ways of parameterizing it.

Model 1 is a simple model in which θ is a scalar,
specifying the probability of copying the next
character of the underlying word as it is transduced
to the surface word. The remaining probability
mass 1−θ is apportioned equally among insertion,
substitution and deletion operations.11 This mod-
els phonology as “noisy concatenation”—the min-
imum necessary to account for the fact that surface
words cannot quite be obtained as simple concate-
nations of their shared underlying morphemes.

Model 2 is a replication of the much more
complicated parametric model of Cotterell et al.
(2015), which can handle linguistic phonology.
Here the factor Sθ is a contextual edit FST (Cot-
terell et al., 2014). The probabilities of competing
edits in a given context are determined by a log-
linear model with weight vector θ and features that
are meant to pick up on phonological phenomena.

5.4 Training
When evaluating an inference method from sec-
tion 5.2, we use the same inference method both
for prediction and within training.

We train Model 1 by grid search. Specifically,
we choose φ ∈ [0.65, 1) and θ ∈ [0.25, 1) such
that the predicted forms maximize the joint score
(1) (always using the (max,+) semiring).

For Model 2, we compared two methods for
training the φ and θ parameters (θ is a vector):

Model 2S Supervised training, which observes
the “true” (hand-constructed) values of the
URs. This idealized setting uses the best pos-
sible parameters (trained on the test data).

Model 2E Expectation maximization (EM),
whose E step imputes the unobserved URs.

EM’s E step calls for exact marginal inference,
which is intractable for our model. So we substi-
tute the same inference method that we are test-

11That is, probability mass of (1− θ)/3 is divided equally
among the |Σ| possible insertions; another (1 − θ)/3 is di-
vided equally among the |Σ|−1 possible substitutions; and
the final (1− θ)/3 is allocated to deletion.
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ing. This gives us three approximations to EM,
based on DD, SP and MP. Note that DD specif-
ically gives the Viterbi approximation to EM—
which sometimes gets better results than true EM
(Spitkovsky et al., 2010). For MP (but not SP), we
extract only the 1-best predictions for the E step,
since we study MP as an approximation to DD.

As initialization, our first E step uses the trained
version of Model 1 for the same inference method.

5.5 Inference Details

We run SP and MP for 20 iterations (usually the
predictions converge within 10 iterations). We run
DD to convergence (usually< 600 iterations). DD
iterations are much faster since each variable con-
siders d strings, not d distributions over strings.
Hence DD does not intersect distributions, and
many parts of the graph settle down early because
discrete values can converge in finite time.12

We follow Paul and Eisner (2012, section 5.1)
fairly closely. In particular: Our stepsize in (5) is
η = α/(t + 500), where t is the iteration num-
ber; α = 1 for Model 2S and α = 10 otherwise.
We proactively include all 1-gram and 2-gram sub-
string features in the active sets Wi at initializa-
tion, rather than adding them only as needed. At it-
erations 200, 400, and 600, we proactively add all
3-, 4-, and 5-gram features (respectively) on which
the counts still disagree; this accelerates conver-
gence on the few variables that have not already
converged. We handle negative-weight cycles as
Paul and Eisner do. If we had ever failed to con-
verge within 2000 iterations, we would have used
their heuristic to extract a prediction anyway.

Model 1 suffers from a symmetry-breaking
problem. Many edits have identical probability,
and when we run inference, many assignments
will tie for highest scoring configuration. This
can prevent DD from converging and makes per-
formance hard to measure. To break these ties,
we add “jitter” separately to each copy of Mφ

in Figure 1. Specifically, if Fi is the unary fac-
tor attached to Xi, we expand our 0-gram model
Fi(x) = log((p/|Σ|)|x| · (1 − p)) to become
Fi(x) = log(

∏
c∈Σ p

|x|c
c,i · (1 − p)), where |x|c

denotes the count of character c in string x, and
pc,i ∝ (p/|Σ|) · exp εc,i where εc,i ∼ N(0, 0.01)
and we preserve

∑
c∈Σ pc,i = p.

12A variable need not update λ if its strings agree; a sub-
problem is not re-solved if none of its variables updated λ.

(a) Tangale (b) Catalan

(c) Maori (d) English

Figure 3: The primal-dual curve of NVDD v.s. BCDD on 4
EXERCISE languages. BCDD always converges faster.

6 Experimental Results

6.1 Convergence and Speed of DD

As linguists know, reconstructing an underlying
stem or suffix can be difficult. We may face insuf-
ficient evidence or linguistic irregularity—or reg-
ularity that goes unrecognized because the phono-
logical model is impoverished (Model 1) or poorly
trained (early EM iterations on Model 2). DD
may then require extensive negotiation to resolve
disagreements among subproblems. Furthermore,
DD must renegotiate as conditions change else-
where in the factor graph (Table 1).

DD converged in all of our experiments. Note
that DD (section 4.3) has converged when all the
equality constraints in (2) are satisfied. In this
case, we have found the true MAP configuration.

In section 4.5, we discussed a block coordi-
nate update variation (BCDD) of our DD algo-
rithm. Figure 3 shows the convergence behavior
of BCDD against the naive projected subgradi-
ent algorithm (NVDD) on the four EXERCISE lan-
guages under Model 1. The dual objective (3) al-
ways upper-bounds the primal score (i.e., the score
(1) of an assignment derived heuristically from
the current subproblem solutions). The dual de-
creases as the algorithm progresses. When the two
objectives meet, we have found an optimal solu-
tion to the primal problem. We can see in Figure 3
that our DD algorithm converges quickly on the
four EXERCISE languages and BCDD converges
consistently faster than NVDD. We use BCDD in
the remaining experiments.

When DD runs fast, it is competitive with the
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DD SP MP Gold
DD 92.74% 90.55% 96.92%
SP 95.22% 94.63%
MP 90.63%

(a) The 4 EXERCISE languages under Model 1

DD SP MP Gold
DD 88.05% 85.19% 89.66%
SP 92.64% 85.71%
MP 83.46%

(b) The 3 CELEX languages under Model 1

DD SP MP Gold
DD 96.53% 100% 98.67%
SP 96.53% 96.05%
MP 98.67%

(c) The 3 CELEX languages under Model 2S (EXERCISE
dataset gives 100% everywhere)

DD SP MP Gold
DD 92.43% 89.39% 98.18%
SP 96.73% 95.42%
MP 90.74%

(d) The 4 EXERCISE languages under Model 2E

Table 2: Pairwise agreement (on morpheme URs) of DD, SP,
MP and the gold standard, for each group of inference prob-
lems. Boldface is highest accuracy (agreement with gold).

other methods. It is typically faster on the EXER-
CISE data, and a few times slower on the CELEX
data. But we stop the other methods after 20 it-
erations, whereas DD runs until it gets an exact
answer. We find that this runtime is unpredictable
and sometimes quite long. In the grid search for
training Model 1, we observed that changes in the
parameters (φ, θ) could cause the runtime of DD
inference to vary by 2 orders of magnitude. Sim-
ilarly, on the CELEX data, the runtime on Model
1 (over 10 different N = 600 subsets of English)
varied from about 1 hour to nearly 2 days.13

6.2 Comparison of Inference
For each language, we constructed several differ-
ent unsupervised prediction problems. In each
problem, we observe some size-N subset of the
words in our dataset, and we attempt to predict the
URs of the morphemes in those words. For each
CELEX language, we took N = 600, and used
three of the size-N training sets from (Cotterell
et al., 2015). For each EXERCISE language, we
took N to be one less than the dataset size, and
used all N + 1 subsets of size N , again similar to
(Cotterell et al., 2015). We report the unweighted
macro-average of all these accuracy numbers.

13Note that our implementation is not optimized; e.g., it
uses Python (not Cython).

We compare DD, SP, and MP inference on
each language under different settings. Table 2
shows aggregate results, as an unweighted aver-
age over multiple languages and training sets. We
present various additional results at http://cs.
jhu.edu/˜npeng/emnlp2015/, including a per-
language breakdown of the results, runtime num-
bers, and significance tests.

The results for Model 1 are shown in Tables 2a
and 2b. As we can see, in both datasets, dual
decomposition performed the best at recovering
the URs, while MP performed the worst. Both
DD and MP are doing MAP inference, so the dif-
ferences reflect the search error in MP. Interest-
ingly, DD agrees more with SP than with MP, even
though SP uses marginal inference.

Although the aggregate results on the EXER-
CISE dataset show a large improvement of DD
over both of the BP algorithms, the gain all comes
from the English language. SP actually does better
than DD on Catalan and Maori, and MP also gets
better results than DD on Maori, tying with SP.

For Model 2S, all inference methods achieved
100% accuracy on the EXERCISE dataset, so we
do not show a table. The results on the CELEX
dataset are shown in Table 2c. Here both DD and
MP performed equally well, and outperformed
BP—a result like (Spitkovsky et al., 2010). This
trend is consistent over all three languages: DD
and MP always achieve similar results and both
outperform SP. Of course, one advantage of DD
in the setting is that it actually finds the true MAP
prediction of the model; the errors are known to be
due to the model, not the search procedure.

For Model 2E, we show results on the EXER-
CISE dataset in Table 2d. Here the results resemble
the pattern of Model 1.

7 Conclusion and Future Work

We presented a general dual decomposition algo-
rithm for MAP inference on graphical models over
strings, and applied it to an unsupervised learn-
ing task in phonology. The experiments show that
our DD algorithm converges and gets better results
than both max-product and sum-product BP.

Techniques should be explored to speed up the
DD method. Adapting the MPLP algorithm (Son-
tag et al., 2011) to the string-valued case would be
a nontrivial extension. We could also explore other
serial update schemes, which generally speed up
message-passing algorithms over parallel update.
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Abstract

In this paper we present the first ever,
to the best of our knowledge, dis-
course parser for multi-party chat dia-
logues. Discourse in multi-party dia-
logues dramatically differs from mono-
logues since threaded conversations are
commonplace rendering prediction of the
discourse structure compelling. Moreover,
the fact that our data come from chats ren-
ders the use of syntactic and lexical in-
formation useless since people take great
liberties in expressing themselves lexically
and syntactically. We use the dependency
parsing paradigm as has been done in
the past (Muller et al., 2012; Li et al.,
2014). We learn local probability distri-
butions and then use MST for decoding.
We achieve 0.680 F1 on unlabelled struc-
tures and 0.516 F1 on fully labeled struc-
tures which is better than many state of the
art systems for monologues, despite the in-
herent difficulties that multi-party chat di-
alogues have.

1 Introduction

Discourse parsing is a difficult, multifaceted prob-
lem involving the understanding and modeling
of various semantic and pragmatic phenomena as
well as understanding the structural properties that
a discourse graph can have. Unsurprisingly, most
extant theories and computational approaches pos-
tulate an extremely simplified version of discourse
structure. One of the most widely cited theories,
Rhetorical Structure Theory (RST) (Mann and
Thompson, 1987; Mann and Thompson, 1988;
Taboada and Mann, 2006), requires that only adja-
cent discourse units be connected together with a
discourse relation. Another widely cited approach,
the Penn Discourse Treebank (PDTB) (Prasad et

al., 2008), focuses on decisions about the dis-
course connectives that label the attachment of po-
tentially arbitrary text spans but does not make
any claims as to what the overall discourse struc-
ture of the resulting annotation looks like. Further,
all computational work on the PDTB takes the at-
tachments as given in discourse parsing tasks. In
both cases, the attachment problem, finding which
discourse units are attached to which, is vastly
simplified, though this has enabled researchers to
explore various approaches for discourse parsing
(Marcu, 2000; Sagae, 2009; Hernault et al., 2010;
Joty et al., 2012).

Our paper’s main contribution is to provide a
discourse parsing model for multi-party chat di-
alogue (i.e. typed online dialogue), trained on a
large corpus we have developed annotated with
full discourse structures. We study attachment
problem in detail for this genre, without using the
simplifying hypotheses mentioned above that we
know to be inadequate. In the following section,
we describe the Settlers of Catan game and our
corpus in more detail and discuss some problem-
atic structures for discourse parsing from our cor-
pus. We motivate our choice of a particular dis-
course theory, the Segmented Discourse Repre-
sentation Theory (SDRT), as the underlying the-
oretical model for our annotations. In section 4
we present our parsing approach, which consists
of building a local probability distribution model
which serves as input to a series of decoder mech-
anisms. We present and discuss the results we
obtain in section 5, while related work and con-
clusions are presented in sections 6 and 7 respec-
tively.

2 What’s so special about multi party
dialogue?

Multi-party dialogue or multi-party chat involves
multiple interlocutors that may address one or
more interlocutors during their turn. For example,
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a person might pose a question that concerns all
the participants; and once everybody has replied,
that same person might reply to all of them with a
single comment (e.g. thanking them) or with a sin-
gle acknowledgment. Figure 1 provides an exam-
ple from our corpus. In turn 234, gotwood4sheep
asks a question and makes an underspecified of-
fer to all the players. He then gets back nega-
tive responses to his question from inca, Cheshire-
CatGrin and dmm; and then he broadcasts in 239
an acknowledgment of all the negative responses.
That is, we have 235, 236 & 238 all attached to
234 as answers to the question in 234; and we have
239 that is attached to 235, 236 & 238 as an ac-
knowledgment of the contents of those turns. A
graphical representation is shown on the right of
the same picture.

The presence of such structures makes a pow-
erful case that the general framework guiding the
annotation of multi-party dialogues should take
non-tree-like graphs as the basic form of discourse
structures. This will require then rethinking the
task of discourse parsing when attempting to learn
such structures. In particular, the following ques-
tions present themselves: 1) how many non-tree-
like structures are there? 2) what are the con-
straints on discourse graphs, if they are not trees?
3) how far can traditional tree-based decoding
mechanisms get us in dealing with such data?

Another complicated phenomenon in multi-
party chat dialogues is the presence of crossing de-
pendencies. Many theories of discourse structure
like RST, given that they allow attachment only of
adjacent spans will perforce not allow structures
with crossing dependencies. Also theories that
postulate a simple right frontier constraint, ac-
cording to which only elements on the right fron-
tier of a discourse structure (whether graph or tree)
will in general not generate structures with cross-
ing dependencies. However, crossing dependen-
cies are commonplace in multi-party chat. Several
subgroups of interlocutors can and do momentar-
ily form and carry on a discussion amongst them-
selves, forming thus multiple concurrent discus-
sion threads. Since, though, what is being written
is publicly available to all involved parties, it can
be the case that participants of one thread might
reply or comment to something said to another
thread. Figure 2 contains an example from our
corpus.

There are at least three threads in this excerpt,

and we have given them different fonts to aid
the reader. The intuitive attachments in this ex-
cerpt involve the following crossing dependen-
cies: (165, 168), (167,170), (176, 178), (177,
179), (175, 181), (177,182), and (180,183). We
note also the lack of standard discourse markers
such as those found in the PDTB or RST manu-
als, “personalized” orthography, the lack of elabo-
rate syntactic structure and the frequent presence
of sentence fragments, all of which means we
cannot rely on sentential syntax to aid with dis-
course parsing (syntax is very useful in monologue
discourse parsing, as witnessed by the dramati-
cally higher scores for intra-sentential discourse
parsing (Joty et al., 2015)). Multi-party dialogue
presents a discourse parsing problem free of syn-
tactic crutches.

The phenomena we have just described are just
some of the complications that appear in the dis-
course representation of multi-party dialogues, un-
fortunately rendering discourse theories based on
attaching only adjacent units unsuitable for the
representation of multi-party dialogues. In order
to be able to capture the discourse phenomena
present in our chat corpus, we have decided to
use the Segmented Discourse Representation The-
ory (SDRT) (Asher and Lascarides, 2003). This
theory not only allows long distance attachments,
which (Ginzburg, 2012) finds attested in multi-
logue, but also has semantics capable of deal-
ing with fragments or non sentential utterances
(Schlangen, 2003), which are frequent in our cor-
pus. Also, it can model non-tree like structures,
like that shown in Figure 1, which account for at
least 9% of the links in our corpus. Such struc-
tures make theories that model discourse struc-
tures with rooted trees, like Rhetorical Structure
Theory (RST) (Mann and Thompson, 1987) or
simple dialogue models where attachments are al-
ways made to Last—cf. (Schegloff, 2007; Poesio
and Traum, 1997)—unsuitable.

A final feature of discourse annotations that
multi-party dialogue and monologue share is the
presence of complex discourse units or CDUs.
CDUs are in fact subgraphs of the discourse graph
that have a rhetorical function or bear some dis-
course relation to another constituent. Examples
are easy to come by. Consider the following ex-
ample:

(1) gw: Do you have a sheep?
th: I do, if you give me an ore
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234 18:55:02:745 gotwood4sheep anyone got wheat for a sheep?
235 18:55:10:047 inca sorry, not me
236 18:55:18:787 CheshireCatGrin nope. you seem to have lots of sheep!
237 18:55:23:428 gotwood4sheep yup baaa
238 18:55:32:308 dmm i think i’d rather hang on to my wheat i’m afraid
239 18:55:47:845 gotwood4sheep kk I’ll take my chances then...

234

235 236 238

239

QAP QAP QAP

ACK ACK ACK

Figure 1: Dialogue excerpt showing the need for general graphs instead of trees.

165 lj anyone want sheep for clay?
166 gw got none, sorry :(
167 gw so how do people know about the league?
168 wm no
170 lj i did the trials
174 tk i know about it from my gf
175 gw [yeah me too,]a

[are you an Informatics student then, lj?]b
176 tk did not do the trials
177 wm has anyone got wood for me?
178 gw [I did them]a [because a friend did]b
179 gw lol william, you cad
180 gw afraid not :(
181 lj no, I’m about to start math
182 tk sry no
183 gw my single wood is precious
184 wm what’s a cad?

Figure 2: Example of interleaved threads

th: or a wood.

Clearly, th’s two turns combine to form a CDU that
is then related by a conditional discourse relation
to I do. That is you give me an ore and or a wood
form together the antecedent to the conditional
that he expresses. In order to reflect this semantic
dependency, SDRT creates collections of Elemen-
tary Discourse Units (EDUs) forming a coherent
discourse unit (called Complex Discourse Unit,
CDU) and link it to any other discourse unit. The
end result of this process is the creation of a hyper-
graph or, equivalently, a graph with two types of
edges. Thus, our general conception of a discourse
structure for a discourse D = {e1, . . . , en}, where
ei are the EDUs of D, is a tuple (V,E1, E2, `),
where V is a set of nodes or discourse units in-
cluding {e1, . . . , en}, E1 ⊆ V × V a set of edges
representing discourse relations and E2 ⊆ V × V
a set of edges that represents parthood in the sense
that if (x, y) ∈ E2, then x is a discourse unit that
is an element of the CDU y. ` : E1 → Relations
is a function that assigns each arc a discourse rela-
tion type. Our corpus contains many instances of
CDUs, some of which are quite large, encompass-
ing an entire question answering session like that

seen in Figure 1.

3 The STAC corpus

The corpus that we use was collected from an on-
line version of the game The Settlers of Catan.
Settlers is a multi-party, win-lose game in which
players use resources such as wood and sheep to
build roads and settlements. In the standard on-
line version, players interact solely through the
game interface, making trades and building roads,
etc., without saying a word. In our online version,
players were asked to discuss and negotiate their
trades via a chat interface before finalizing them
non-linguistically via the game interface. As a re-
sult, players frequently chatted not only to nego-
tiate trades, but to discuss numerous topics, some
unrelated to the task at hand.

The Settlers corpus is ideal for studying mul-
tilogue. First, while the chats maintain the ad-
vantage of written text (no need for transcrip-
tion), they approximate spoken communication.
We have to deal with many sentence fragments,
non-standard orthography and sometimes lack of
syntax. Second, they manifest phenomena partic-
ular to multilogue, such as multiple conversation
threads and non-tree-like structures.

The corpus consists of 59 games out of which
36 games have so far been annotated for discourse
structure in the style of SDRT. Each game consists
of several dialogues representing a single turn of
the game. Each dialogue is treated as a separate
document. About 10% of our corpus was held out
for evaluation purposes while the rest was kept for
training. Detailed statistics on the number of dia-
logues, EDUs and relations contained in each sub-
corpus can be found in table 1.

The dialogues in our corpus have an average
size of 10 EDUs with 8 speaker turns, though the
longest has 156 EDUs and 119 turns. The vast
majority of our discourse connections thus lie be-
tween turns. All dialogues also have a dialogue act

930



Total Training Testing

Dialogues 1091 968 123
EDUs 10677 9545 1132
Relations 11348 10158 1190

Table 1: Dataset overview

style annotation in which each EDU is assigned a
particular type (it can be an offer or counter-offer,
an acceptance or refusal, or other) (Sidner, 1994a;
Sidner, 1994b). The dialogue act annotations have
been used to train an automatic classifier for EDUs
(Cadilhac et al., 2013). This large annotation ef-
fort was carried out by 4 annotators who had no
special knowledge of linguistics, but who received
training over 22 negotiation dialogues with 560
turns. Because annotating full discourse structures
is a very complex task (using an exact match cri-
terion of success, the inter annotator agreement
score was a Kappa of 0.72 attachment on struc-
tures, 0.58 on labelling (Afantenos et al., 2012a)),
experts made several passes over the annotations
from the naive annotators, improving the data and
debugging it.

The discourse graphs in our development cor-
pus exhibited several interesting properties. First
of all they are DAGs with a unique root, one unit
that has no incoming edges. Secondly, the graphs
are weakly connected in almost all cases: i.e., ev-
ery discourse unit in it is connected to some other
discourse unit. Thirdly, our graphs are reactive in
the sense that speakers’ contributions are reactions
and attach anaphorically to prior contributions of
other speakers. This means that edges between the
contributions of different speakers are always ori-
ented in one direction. This is a general feature of
dialogue, as we explain in the next section.

4 Model

4.1 Dependency Structures

For a given discourse graph for SDRT of the form
(V,E1, E2, `), we have as yet no general and re-
liable method to calculate edges in E2; and no
such method has been presented in the literature.
In order to perform constrained decoding over lo-
cal probability distributions, we have opted for a
strategy first presented in Muller et al. (2012) for
SDRT. The strategy involves transforming hyper-
graphs into dependency graphs. We transform our
full graphs (V,E1, E2, `) into dependency struc-

tures (V ′, E1, `), with V ′ ⊂ V the set of EDUs
in V by replacing any attachment to a CDU with
an attachment to the CDU’s head—the textually
first EDU within the CDU which has no incoming
links. Our transformation in effect sets E2 in our
general definition of a graph to ∅. In the case that
we have a discourse relation between two EDUs,
this relation is kept intact since it already repre-
sents a dependency arc. In case a discourse rela-
tion has one or two CDUs as arguments, the CDUs
need to be replaced with their recursive head. In
order to calculate the recursive head we identify
all the DUs with no incoming links; if they are
CDUs we recursively apply the algorithm until we
get an EDU. If there is more than one EDU with
no incoming links we pick the leftmost, i.e. the
one firstly introduced in the text.

Hirao et al. (2013) and Li et al. (2014) later fol-
lowed a similar strategy for the creation of depen-
dency structures for RST. Every single nucleus-
satellite relation was transformed into a depen-
dency relation with the governor being the EDU
representing the nucleus and the dependent be-
ing the satellite. For relations between non-EDU
higher spans, the recursive head was used. It is un-
clear how Li et al. (2014) deal with binary multi-
nucleus relations like CONTRAST for example; it
is not clear how to calculate the recursive head of
the span.1 In such cases an arbitrary decision—
like always taking as the nucleus the leftmost or
the rightmost span—has to be taken. In the SDRT
annotations, however, every edge in the graph is
already directed and so such arbitrary decisions
can be avoided.

Ideally, what one then wants is to learn a func-
tion

h : XEn 7→ YG
where XEn is the domain of instances represent-
ing a collection of EDUs for each dialogue and YG
is the set of all possible SDRT graphs. However,
given the complexity of this task and the fact that
it would require an amount of training data that
we currently lack in the community, we aim at the
more modest goal of learning a function

h : XE2 7→ YR
where the domain of instancesXE2 represents fea-
tures for a pair of EDUs and YR represents the

1Although Li et al. (2014) do explain how to treat n-
ary multinuclear relations, following others (Hernault et al.,
2010, for example).
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set of SDRT relations. The upshot of this is that
we are building a local sort of model that learns
relations between individual EDUs with a certain
probability but that it does not learn a local or even
global structure.

One of the drawbacks of this approach, how-
ever, is that it does not guarantee an object that is
well formed. Learning a probability distribution
over EDUs and then choosing the most probable
relation or attachment for each pair of EDUs po-
tentially leads to structures that contain cycles. To
avoid this, we can’t blindly choose the most prob-
able relation or attachment decision for each pair
of EDUs. Instead, we should use this probability
distribution as an input to a decoding mechanism.

4.2 Local probability distributions

We used a regularized maximum entropy (short-
ened as MaxEnt) model (Berger et al., 1996). In
MaxEnt, we estimate the parameters of an expo-
nential model of the following form:

P (r|p) =
1

Z(c)
exp

(
m∑
i=1

wifi(p, r)

)

where p represents the current pair of EDUs and
r the learnt label (i.e. the type of relation, or a
binary attachment value between the two EDUs).
Each pair of EDUs p is encoded as a vector of m
indicator features fi (see table 2 for more details).
There is one weight/parameter wi for each feature
fi that predicts its classification behavior. Finally,
Z(c) is a normalization factor over the different
class labels, which guarantees that the model out-
puts probabilities. In MaxEnt, the values for the
different parameters ŵ are obtained by maximiz-
ing the log-likelihood of the training data T with
respect to the model (Berger et al., 1996):

ŵ = argmax
w

T∑
i

logP (r(i)|p(i))

4.3 The turn constraint

Given our observations about the structure of di-
alogues in our corpus, we hypothesize that a di-
alogue is fundamentally sequential: first one per-
son talks and then others react to them or ignore
them, but the discourse links that do occur be-
tween speaker turns are reactive. In other words,
a turn can’t be anaphorically and rhetorically de-
pendent on a turn that comes after it. Thus, the

nature of dialogue imposes an essential and im-
portant constraint on the attachment process that is
not present for monologue or single-authored text,
where an EDU may be dependent upon any EDU,
later in the ordering or not: in dialogue there are
no “backwards” rhetorical links such that an EDU

in turn n by speaker a is rhetorically and anaphor-
ically dependent upon an EDU in turn n + m of
speaker b with a 6= b. We call this the Turn Con-
straint. Within a turn, however, just as in mono-
logue (as is evident from a study of most styles of
discourse annotations of text), backwards links are
allowed.

Given this observation, we decided to split our
local model into two different ones. The first one
concerns the learning of a model for intra-turn ut-
terances,2 while the second models inter-turn ut-
terances. The intra-turn model considers as in-
put during learning all pairs of EDUs (i, j) with
i 6= j. The inter-turn model on the other hand
does not contain any backward links during learn-
ing. In other words it takes as input all pairs of
EDUs (i, j) with i < j. We apply the turn con-
straint not only during learning of the local mod-
els, but also during decoding. This practice is also
followed—at the sentence level—for monologues
(Wellner and Pustejovsky, 2007; Joty et al., 2012;
Joty et al., 2013), though our turn constraint, we
believe, is firmly supported not only by our data
but also by a good theoretical model of dialogue.

4.4 Decoders

The local probability distributions obtained are
used as decoder inputs. We have experimented
with several decoders. As a baseline measure
we have included what we call a LOCAL decoder
which creates a simple classifier out of the raw lo-
cal probability distribution. In the case of MaxEnt,
for example, this decoder selects

r̂ = argmax
r

(
1

Z(c)
exp

(
m∑
i=1

wifi(p, r)

))

with r representing a relation type or a binary at-
tachment value. We also used the baseline LAST,
where each EDU is attached to the immediately
preceding EDU in the linear, textual order.

2EDUs are considered as belonging to the same turn if
they are by the same speaker without any interjection from
an other speaker. In other words any consecutive EDU by the
same speaker is considered as belonging to the same turn.
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Maximum Spanning Trees To answer our
questions, “how many non-tree-like structures are
there?" and "how far can tree decoding algorithms
get us in multi-party dialogue?", our first decoder
is the classic Maximum Spanning Trees (MST)
algorithm— used by McDonald et al. (2005) for
syntactic dependency parsing as well as by Muller
et al. (2012) and Li et al. (2014) for discourse
parsing—tweaking it in order to produce struc-
tures that are closer to the ones specific to multi-
party dialogue. We are looking for:

T ∗ = argmax
T a spanning tree of G

∑
e∈E(T )

w(e)

w(e) = log
(

p(e)
1− p(e)

)
G being the complete graph of possible edges

returned by the classifiers ; E(D) representing the
edges of D. The weight function w computes the
log-odds of the probability returned by the model.

We used Chu-Liu-Edmonds version of the MST
algorithm (Chu and Liu, 1965; Edmonds, 1967),
which requires a specific node to be the root, i.e.
a node without any incoming edges, of the initial
complete graph. For each dialogue, we made an
artificial node as the root with special dummy fea-
tures. At the end of the procedure, this node points
the real root of the discourse graph.

Combining intra- and inter-turn models with
the turn constraint As described above, we
learn a separate local model for intra- and inter-
turn EDUs. We also use the turn constraint during
decoding. For the intra-turn decoding, we have
experimented with various options. One concerns
the creation of a classifier out of the local prob-
ability distribution. Another intra-turn decoder is
Last, which always takes the last EDU for attach-
ment. Finally we also used MST.

We used the exact same decoding approaches
for inter-turn decoding. With the structure for the
inter-turn EDUs produced separately, we replace
those structures with their heads. The detection of
a structure’s head, be it intra- or inter-turn, uses the
same trick as McDonald et al. (2005) did for syn-
tactic parsing: inserting a dummy node as a fake
head which contains only outgoing links enabling
us essentially to learn the real head of our struc-
tures. Our best overall model used Last to link
EDUs inside the turn together with MST and the
turn constraint for predicting the global structure.

Category Description

Positional Speaker initiated the dialogue
- First utterance of the speaker

in the dialogue
- Position in dialogue
- Distance between EDUs
- EDUs have the same speaker

Lexical Ends with exclamation mark
- Ends with interrogation mark
- Contains possessive pronouns
- Contains modal modifiers
- Contains words in lexicons
- Contains question words
- Contains a player’s name
- Contains emoticons
- First and last words

Parsing Subject lemmas given by syntactic
dependency parsing

- Dialogue act according
to predicting model

Table 2: Feature set description. Pair features are
italicized.

5 Experiments and Results

To train our local models, we extracted features for
every pair of EDUs in a given dialogue. Our fea-
tures concern the pair of EDUs as well as features
related to each EDU specifically. The feature set,
detailed in Table 2, can be summarized as follows:

• Positional features: (related to) the non-
linguistic context of the pair;

• Lexical features: single words3 and punctua-
tion present in the EDUs;

• Parsing features: dependency4 and dialogue
act5 tagging.

Table 3 shows our results on our unseen test
corpus, which contains a randomly selected 10%
of dialogues in our corpus. The best configura-
tion was selected after performing ten-fold cross
validation on the training corpus. The reported re-
sults implement the turn-constraint during training

3We use a number of lexicons (opinion markers, quanti-
fiers, etc.), each corresponding to a feature

4Provided by the Stanford CoreNLP pipeline (Manning et
al., 2014).

5The prediction model of Cadilhac et al. (2013) generates
EDU tags such as Offer, Refusal, etc.
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for the local models. In other words, training in-
stances for the local models include only forward
links.

We used two baselines. The first one, Last, sim-
ply attaches every EDU to its previous one. This is
a very strong baseline in discourse parsing (Muller
et al., 2012, for example). The second baseline
is essentially the local classifier without any fur-
ther decoding; in other words, we simply select
the class with the highest probability both for at-
tachment and labeling. Attaching to last gives us
an F-score of 0.584 for attachment and 0.391 when
we add the relations as well. Using only classifica-
tion from the local probability distribution without
decoding gives 0.541 for attachment and 0.446 for
attachments and relations.

The best results for the global parsing problem
exploited the turn constraint both during learn-
ing the local model and during decoding. Within
a turn, our discourse structures are simple and
largely linear; the best intra-turn results came from
using Last. Most of our interlocutors did not create
elaborate discourse structures with long-distance
attachments within the same turn. The inter-turn
level was a different story, as the figures show.
For inter-turn and the global problem, MST us-
ing the heads of the intra-turn substructures com-
puted with Last, produced the best results. The
F1 score for unlabeled structures is at 0.671 while
for labelled structures we have 0.516. To enable
a comparison with RST style parsing where ex-
act arguments for discourse relations are not com-
puted, the undirected attachment F1 score = 0.68
for the global parsing problem.

Despite the inherent difficulty of discourse pars-
ing on multi-party chat dialogues (simultaneous,
multiple discussion threads, lack of syntax) our re-
sults are close to or better than the current state of
the art for discourse parsing on monologue. There
are two approaches currently that use dependency
parsing strategies for discourse, thoroughly de-
scribed in the next section. Li et al. (2014) report
an accuracy of 0.7506 for unlabelled structures
and 0.4309 for the full labelled structures. Muller
et al. (2012) report 0.662 for unlabelled structure
and 0.361 for labelled structures. We outperform
both systems for full labelled structures, and de-
spite our non-tree-like structures beat or are close
to these on unlabelled attachments. Though com-
parisons across different corpora are difficult, the
numbers suggest that our results are more than

competitive. Our results also suggest that one can
get quite far with tree-based decoding algorithms,
though we know that in principle MST cannot do
better than 91% even with a perfect local model (a
model in which an arc is giving probability 1 just
in case it occurs in the gold standard annotation).

6 Related Work

To date, discourse parsing has almost exclu-
sively been applied to monologue. Multi-party
chat dialogues have never been considered be-
fore. Baldridge and Lascarides (2005) predicted
tree discourse structures for 2 party “directed” di-
alogues from the Verbmobil corpus by training a
PCFG that exploited the structure of the under-
lying task. Elsner and Charniak (2010), Elsner
and Charniak (2011) are presenting a combination
of local coherence models initially provided for
monologues showing that those models can satis-
factorily model local coherence in chat dialogues.
Nonetheless they do not present a full-fledged dis-
course parsing model. Our data required a more
open domain approach and a more sophisticated
approach to structure.

Our use of dependency parsing for learning dis-
course structure has a few antecedents in the litera-
ture on monologue. One of the first papers to intro-
duce this technique is Muller et al. (2012), work-
ing with a small French language corpus, ANN-
ODIS (Afantenos et al., 2012a). They use a simi-
lar approach to us, including the classic version of
the MST decoder. They also used an A∗ search as
another decoding mechanism but it gave the same
results as MST. As we have said, our results better
theirs both on attachment and full labeled struc-
tures. In the context of RST, Hirao et al. (2013)
and Li et al. (2014) transform RST trees into de-
pendency structures; we have discussed their in
section 4.1. Li et al. (2014) use both the Eisner
algorithm (Eisner, 1996) as well as the MST algo-
rithm from McDonald et al. (2005). As we men-
tioned, our labelled scores are higher than theirs,
though we are cautious of making comparisons
across such different corpora.

Most work on discourse parsing focuses on the
task of discourse relation labeling between pairs of
discourse units—e.g., Marcu and Echihabi (2002)
Sporleder and Lascarides (2005) and Lin et al.
(2009). This corresponds to our local model. As
we have shown in this paper, this setting makes
an unwarranted assumption, as it assumes inde-
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Method Undirected Attachment Directed Attachment Full Labelled Structure
prec rec F1 prec rec F1 prec rec F1

LAST 0.602 0.566 0.584 0.602 0.566 0.584 0.403 0.379 0.391
LOCAL 0.698 0.488 0.574 0.623 0.478 0.541 0.513 0.394 0.446

INTRA-TURN 0.837 0.955 0.892 0.808 0.922 0.861 0.489 0.558 0.521
INTER-TURN 0.617 0.516 0.562 0.616 0.514 0.561 0.492 0.411 0.448

GLOBAL 0.697 0.663 0.680 0.688 0.655 0.671 0.529 0.503 0.516

Table 3: Evaluation results.

pendence of local attachment decisions. There is
also work on discourse structure within a single
sentence; e.g., Soricut and Marcu (2003) makes
use of dynamic programming along with a stan-
dard bottom-up chart parsing, while Sagae (2009)
uses shift-reduce algorithm for intra-sentential dis-
course analysis. Such approaches do not apply to
our data, as most of the structure in our dialogues
lies beyond the sentence level.

As for document-level discourse parsers, Subba
and Di Eugenio (2009) use a transition-based ap-
proach, following the paradigm of Sagae (2009).
duVerle and Prendinger (2009) and Hernault et
al. (2010) both rely on locally greedy methods.
Like us, they treat attachment prediction and re-
lation label prediction as independent problems.
Feng and Hirst (2012) extend this approach by
additional feature engineering but is restricted to
sentence-level parsing. Finally, Joty et al. (2012)
present a sentence-level discourse parser that uses
Conditional Random Fields to capture label inter-
dependencies and chart parsing for decoding. Joty
et al. (2013) and Joty et al. (2015) extend this ap-
proach on the level of documents and have the best
results non-dependency based discourse parsing,
with an F1 of 0.689 on unlabelled structures and
0.5587 on labelled structures. Our scores are very
close to Joty et al.’s, however, and achieved with
much simpler methods than theirs.

7 Conclusions

As far as we know, this is the first paper to deal
with discourse parsing in multi-party chat dia-
logues. We believe that such data will be useful for
other discourse parsing tasks like analyzing fora
with multi-threads. We have used the STAC cor-
pus (Afantenos et al., 2012b) for our data. To sim-
plify the parsing task, we transformed our SDRT
structures into dependency ones. We used two
different local probability distribution models as
input to several decoding mechanisms, including
one based on the Maximum Spanning Tree al-

gorithm, and an enhanced version of it in order
to produce structures closer to the ones we ob-
serve. We obtain the best results using the en-
hanced version of the MST algorithm. In future
work, we plan to investigate ILP constraints in
greater depth to develop a plausible alternative to
MST on DAGs.

References
Stergos Afantenos, Nicholas Asher, Farah Bena-

mara, Myriam Bras, Cecile Fabre, Mai Ho-Dac,
Anne Le Draoulec, Philippe Muller, Marie-Paul
Pery-Woodley, Laurent Prevot, Josette Rebeyrolles,
Ludovic Tanguy, Marianne Vergez-Couret, and
Laure Vieu. 2012a. An empirical resource for
discovering cognitive principles of discourse or-
ganisation: the ANNODIS corpus. In Nico-
letta Calzolari, Khalid Choukri, Thierry Declerck,
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Abstract

We introduce a new approach to argumen-
tation mining that we applied to a parallel
German/English corpus of short texts an-
notated with argumentation structure. We
focus on structure prediction, which we
break into a number of subtasks: relation
identification, central claim identification,
role classification, and function classifica-
tion. Our new model jointly predicts dif-
ferent aspects of the structure by combin-
ing the different subtask predictions in the
edge weights of an evidence graph; we
then apply a standard MST decoding algo-
rithm. This model not only outperforms
two reasonable baselines and two data-
driven models of global argument struc-
ture for the difficult subtask of relation
identification, but also improves the results
for central claim identification and func-
tion classification and it compares favor-
ably to a complex mstparser pipeline.

1 Introduction

Argumentation mining is a task that has drawn
increased interest in the last years. In its full-
fledged version, it seeks to automatically recog-
nize the structure of argumentation in a text by
identifying and connecting the central claim of the
text, supporting premises, possible objections, and
counter-objections to these objections.1

A variety of applications can profit from ac-
cess to the argumentative structure of text, includ-
ing the retrieval of relevant court decisions from
legal databases (Palau and Moens, 2011), auto-
matic document summarization systems (Teufel
and Moens, 2002), the analysis of scientific papers
in biomedical text mining (Teufel, 2010; Liakata

1A comprehensive overview of the research field is given
in (Peldszus and Stede, 2013).

et al., 2012), or essay scoring. Importantly, argu-
ment analysis can also be an extension of opinion
mining applications.

To make argumentation structures available for
these applications, their robust automatic recogni-
tion is required, a task that is very challenging:
argumentative strategies and styles vary across
text genres and languages; classifying arguments
might require domain knowledge; furthermore, ar-
gumentation can often rely on implicitly conveyed
messages.

The full-fledged task can be decomposed into
several subtasks:

• Segmentation: splitting the text into elemen-
tary discourse units (EDUs as used in gen-
eral kinds of discourse parsing, typically sen-
tences or clauses)

• Identification of argumentative discourse
units (ADUs): discarding argumentatively ir-
relevant EDUs, joining adjacent EDUs to
form larger ADUs

• ADU type classification: determining the
type of argumentative unit; different schemes
have been proposed, involving stance, evi-
dence types, rhetorical status, argumentative
function

• Relation identification: building a connected
tree- or graph-structure to represent argumen-
tative relations between the ADUs

• Relation type classification: determining the
type of argumentative relation (e.g. support-
ing versus attacking relations or more fine-
grained types)

In this paper, we address the last three subtasks:
Given a text segmented into relevant ADUs, iden-
tify the argumentation structure. We will work
with a bilingual corpus of short texts that have
been generated in a text production experiment.
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The next section describes related work. In sec-
tion 3, we present the dataset used in our experi-
ments. Section 4 gives a more detailed description
of the task. The baselines and the models are pre-
sented in section 5. We then report the result of
our experiments in section 6 and close with some
concluding remarks.

2 Related Work

In our discussion of related work, we focus on the
three subtasks addressed in this paper:

ADU type classification: One typical clas-
sification task concerns the properties of a seg-
ment in the argumentation structure: Burstein and
Marcu (2003) trained classifiers for identifying
thesis and conclusion statements in student es-
says, using additional automatic discourse parse
features and cue words, resulting in an average F-
score of 53% for thesis and 80% for conclusion
segments. For legal texts, Palau and Moens (2011)
demonstrated in their influential work how to clas-
sify the segment of a text into premises and con-
clusions, obtaining an F-score of 68% and 74% for
the two classes. More recently, Stab and Gurevych
(2014) classified segments in student essays into
the classes major claim (of the text), claim (of the
paragraph), premise and irrelevant. The macro av-
erage F-score for all classes is 73%, the F-score for
the claim of the paragraph 54% and for the major
claim 63%.

Besides structural segment-wise classification
tasks, there is also work on more semantic tasks:
The rhetorical status of a segment is classified in
the argumentative zoning approaches (Teufel and
Moens, 2002; Teufel and Kan, 2011; Liakata et al.,
2012), where certain coarse-grained patterns of ar-
gumentation in scholarly papers can be captured.
Park and Cardie (2014) focus on supporting seg-
ments and classify which type of evidence is pre-
sented in it. Finally, stance classification (Hasan
and Ng, 2013) might be of interest to identify pos-
sible objections, although it is typically applied on
full comments and not on single segments.

Relation identification: Much less prior work
can be found for the process of building argumen-
tation structures. Palau and Moens (2011) used a
hand-written context-free grammar to predict ar-
gumentation trees on legal documents, achieving
an accuracy of 60%. Only recently, data-driven
approaches have been applied. Lawrence et al.
(2014) construct tree structures on philosophical

texts using unsupervised methods based on topical
distance between the segments. The relations in
the tree are neither labeled not directed. Unfortu-
nately, the method was evaluated on only a few an-
notated items, which is why we cannot comment
on the results. Finally, Stab and Gurevych (2014)
present a supervised data-driven approach for re-
lation identification. They predict attachment for
support-graphs spanning over paragraphs of En-
glish essays and obtain a macro F1 score of 72%,
and an F1 score of 52% for positive attachment.
No decoding is used to optimize global predictions
per text.

Relation type classification: The only study
on explicitly classifying argumentative relations
we are aware of is (Feng and Hirst, 2011). They
classify pairs of premise and conclusion from
newswire text into a set of five frequently used
argumentation schemes in the sense of Walton et
al. (2008). In one-against-others classification, the
system yields best average accuracies of over 90%
for two schemes, while for the other three schemes
the results are between 63% and 70%.

To the best of our knowledge, no data-driven
model of argumentation structure has been pro-
posed yet that would optimize argumentation
structure globally for the complete input text, as
it is done in other discourse parsing tasks, e.g. in
(Muller et al., 2012).

3 Dataset

Texts: We use the arg-microtext corpus (Peldszus
and Stede, to appear), a freely available2 parallel
corpus of 112 short texts with 576 ADUs. The
texts are authentic discussions of controversial is-
sues. They were originally written in German
and have been professionally translated to English,
preserving the segmentation and if possible the us-
age of discourse markers. The texts have been col-
lected in a controlled text generation experiment,
with the result that all of them fulfill the follow-
ing criteria: (i) The length of each text is about 5
ADUs (henceforth: segments). (ii) One segment
explicitly states the central claim. (iii) Each seg-
ment is argumentatively relevant. (iv) At least one
objection to the central claim is considered.

Scheme: The argumentation structure of
every text has been annotated according to a
scheme (Peldszus and Stede, 2013) based on Free-
man’s theory of argumentation structures (Free-

2https://github.com/peldszus/arg-microtexts
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[e1] Of course there are a
number of programmes in public

broadcasting that are not
worth the licencing fee,

[e2] and others, such as
“Musikantenstadl” and soap
operas, are only interesting

to certain audiences.

1

[e3] Nevertheless, everybody
should contribute to the
funding of the public

broadcasters in equal measure,

2

[e4] for we need general and
independent media.

3

[e5] After all we want to get
our viewof the world neither
through the lens of the

government nor through that of
rich media entrepreneurs.

4

5

Figure 1: An example text and its reduced ar-
gumentation structure: Text segments, proponent
(round) and opponent (box) nodes, supporting
(arrow-head) and attacking (circle-head) relations.

man, 1991; Freeman, 2011), that has been proven
to yield reliable structures in annotation experi-
ments (Peldszus, 2014). The argumentation struc-
ture of a text is defined as a graph with the text seg-
ments as nodes. Each node is associated with one
argumentative role: the proponent who presents
and defends the central claim, or the opponent who
critically questions the proponent’s claims. Edges
between the nodes represent argumentative rela-
tions, and each edge is of one specific argumen-
tative function: support or attack. The scheme al-
lows to discriminate between “rebutting” attacks,
targeting another node and thereby challenging its
acceptability, and “undercutting” attacks, target-
ing an edge and thereby challenging the accept-
ability of the inference from the source to the tar-
get node. It can also represent linked support,
where multiple premises jointly support a claim.

Transformation: The annotated graph struc-
tures can be quite complex, especially when they
involve undercutting relations and linked support.
For the purpose of this study, we thus reduce the
graphs to a simpler tree-like representation. All re-
lations pointing to edges are rewritten to point to
the source node of the original target edge, which
enables the use of standard graph algorithms (like
MST). Also, this is a loss-less mapping, given that
every segment has only one outgoing arc (as gen-
erally done in argumentation models). Further-
more, the set of relation types is reduced to the
simple binary distinction between support and at-
tack. We think this is a reasonable simplification

that facilitates comparisons with slightly differ-
ent approaches/datasets (we are not aware of any
dataset that makes use of the full granularity pro-
posed in our scheme).

An example text from the corpus in its reduced
form is shown in Figure 1. Text boxes are EDUs,
each of which constitutes also an ADU. Proponent
ADUs are round nodes, opponent ADUs are box
nodes. Supporting relations have a normal arrow-
head, while attacking relations have a circle arrow-
head.

All statistics on the annotated argumentation
structures apply equally for the German and the
English version of the parallel corpus.

4 Task

Identifying the structure of argumentation accord-
ing to our scheme involves choosing one segment
as the central claim of the text, deciding how the
other segments are related to the central claim and
to each other, identifying the argumentative role of
each segment, and finally the argumentative func-
tion of each relation.

Our prior experiments on automating the recog-
nition of argumentation structure approached the
problem as a segment-wise classification task
(Peldszus, 2014). Formulating the task this way
was successful for the recognition of argumenta-
tive role and function of a segment. For the au-
tomation of the structure building however, the
segment-wise classification of attachment with
only a small context window around the target seg-
ment proved to be a very hard task. This is due to
the long-distance dependencies frequently found
in argumentation graphs. For example, 46% of
the relations marked in the corpus used for this
study involve non-adjacent segments. For longer
texts this number might increase further: Stab and
Gurevych (2014) report a rate of 63% of non-
adjacent relations in their corpus.

In this study we therefore frame the task of at-
tachment classification as a binary decision, where
the classifier, when given a pair of a source and a
target segment, chooses whether or not to estab-
lish a relation from the source to the target. Since
these relations can hold not only between adjacent
but between arbitrary segments of the text, all pos-
sible combinations of segments are required to be
tested. Consequently, the class distribution is very
skewed.

• attachment (at): Is there an argumentative
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connection between the source and the target
segment? In the corpus, a relation has been
annotated for 464 segment pairs, no relation
has been annotated for the combinatorially
remaining 2000 pairs of segments.

In this paper we first address only the task of at-
tachment classification, and then the prediction of
the full graph, involving all other levels:

• central claim (cc): Is the current segment the
central claim of the text? In our data 112 of
the 576 segments are central claims.

• role (ro): Does the current segment present a
claim of the proponent or the opponent? In
our data 451 of the 576 segments are pro-
ponent segments and 125 are opponent seg-
ments.

• function (fu): Has the current segment a sup-
porting or an attacking function? In our data,
290 segments are supports, 174 are attacks
and 112 are the central claim and thus have
no own function.

5 Models

We compare two heuristic baseline models and
different data-driven models that we developed,
each of them trained and evaluated separately on
both language versions of the corpus. All models
are evaluated on the basis of 10 iterations of 5x3-
fold nested cross validation (CV). The outer 5-fold
CV is for evaluation only, i.e. to ensure that the
model is trained only on training data and tested
only on test data. If a model requires hyperpa-
rameters to be tuned or multiple passes, then this
is achieved via one (or multiple) inner 3-fold CV
over the training data only. The folding is strati-
fied, randomly distributing the texts of the corpus
while aiming to reproduce the overall label distri-
bution in both training and test set.

5.1 Baseline: attach to first

In the English-speaking school of essay writing
and debating, there is the tendency to state the cen-
tral claim of a text or a paragraph in the very first
sentence, followed by supporting arguments. It is
therefore a reasonable baseline to assume that all
segments attach to the first segment. In our cor-
pus, the first segment is the central claim in 50 of
the 112 texts (44.6%).

This baseline (BL-first) will not be able to cap-
ture serial argumentation, where one more general
argument is supported or attacked by a more spe-
cific one. However, it will cover convergent argu-
mentation, where separate arguments are put for-
ward in favor of the central claim (given that it is
expressed in the first segment). It will always pro-
duce flat trees. In our corpus, 176 of the 464 rela-
tions (37.9%) attach to the first segment.

5.2 Baseline: attach to preceding
A typically very strong baseline in discourse pars-
ing is attaching to the immediately preceding seg-
ment (Muller et al., 2012). Possibly, this holds
more for corpora with relations often or always
being adjacent, as in rhetorical structure trees.
Since argumentation structures often exhibit non-
adjacent relations (see above), this heuristic might
be easier to beat in our scenario.

This baseline (BL-preced.) will always pro-
duce chain trees and thus cover serial argumen-
tation, but not convergent argumentation. In our
corpus, 210 of all 464 relations (45.3%) attach to
the preceding segment.

5.3 Learned attachment without decoding
We train a linear log-loss model (simple) us-
ing stochastic gradient descent (SGD) learning,
with elastic net regularization, the learning rate
set to optimal decrease and class weight adjusted
according to class distribution (Pedregosa et al.,
2011). The following hyper parameters are tuned
in the inner CV: the regularization parameter al-
pha, the elastic net mixing parameter and the num-
ber of iterations. We optimize macro averaged F1-
score.

For each text segment, we extract binary fea-
tures for lemma, pos-tags, lemma- and pos-tag-
based dependency-parse triples and the main verb
morphology (Bohnet, 2010), and discourse con-
nectives (Stede, 2002), furthermore simple statis-
tics like relative segment position, segment length
and punctuation count. For each pair of text seg-
ments, we extract relative distance between the
segments and their linear order (is the source be-
fore or after the target). The feature vector for
each pair then contains both the pair features and
the segment features for source and target segment
and their adjacent segments.3

3We experimented with several features, some of which
were dismissed from the final evaluation runs due to lacking
impact: sentiment values and the presence of negation for
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5.4 Learned attachment with MST decoding

The simple model just described might be able
to learn which segment pairs actually attach, i.e.,
correspond to some argumentative relation in the
corpus. However it is not guaranteed to yield
predictions that can be combined to a tree struc-
ture again. A more appropriate model would en-
force global constraints on its predictions. In the
simple+MST model, this is achieved by a mini-
mum spanning tree (MST) decoding, which has
first been applied for syntactic dependency parsing
(McDonald et al., 2005a; McDonald et al., 2005b)
and later for discourse parsing (Baldridge et al.,
2007; Muller et al., 2012). First, we build a fully-
connected directed graph, with one node for each
text segment. The weight of each edge is the at-
tachment probability predicted by the learned clas-
sifier for the corresponding pair of source and tar-
get segment. We then apply the Chu-Liu-Edmonds
algorithm (Chu and Liu, 1965; Edmonds, 1967)
to determine the minimum spanning tree, i.e., the
subgraph connecting all nodes with minimal total
edge cost (in our case highest total edge probabil-
ity). This resulting tree then represents the best
global attachment structure for a text given the
predicted probabilities.

5.5 Joint prediction with MST decoding

All models presented in the previous subsections
have in common that they do not rely on other fea-
tures of the argumentation graph. However, it is
fair to assume that knowledge about the argumen-
tative role and function of a segment or its like-
liness to be the central claim might improve the
attachment classification. Consequently, our next
model considers not only the predicted probability
of attachment for a segment pair, but also the pre-
dicted probabilities of argumentative role, func-
tion and of being the central claim for each seg-
ment. The predictions of all levels are combined
in one evidence graph.

Additional segment-wise base classifiers: We
train base classifiers for the role, function and cen-
tral claim level using the same learning regime as
described in Section 5.3. Contrary to the attach-
ment classification, the items are not segment pairs
but single segments. We thus extract all segment-
based features as described above for the target
segment and its adjacent segments.

segments, and distance measures between pairs of segments
in terms of word-overlap, td-idf and LDA distributions.

Combining segment and segment-pair pre-
dictions: Our goal in this model is to combine
the predicted probabilities of all levels in one edge
score, so that the MST decoding can be applied as
before. Figure 2 depicts the situation before and
after the combination, first with separate predic-
tion for segments and segment pairs and then with
the combined edge scores.

The evidence graph is constructed as follows:
First, we build a fully connected multigraph over
all segments with as many edges per segment-pair
as there are edge types. In our scenario there are
two edge types, supporting and attacking edges.
Then we translate the segment-wise predictions
into level-specific edge scores.

The edge-score for the central claim level cci,j
is equal to the probability of the edge’s source not
being the central claim, which is capturing the in-
tuition that central claims are unlikely to have out-
going edges:

cci,j = p(cci = no) (1)

The edge-score for the argumentative function
level fui,j is equal to the probability of the source
being the corresponding segment for the edge
type:

fui,j =

{
p(fui = sup) for sup. edges
p(fui = att) for att. edges (2)

The edge-score for the argumentative role level
roi,j is also determined by the edge type. Attack-
ing edges involve a role switch (proponent or op-
ponent would not attack their own claims), while
supporting edges preserve the role (proponent or
opponent will only support their own claims):

roi,j =


p(roi = pro)× p(roj = pro)+
p(roi = opp)× p(roj = opp) for sup. edges

p(roi = pro)× p(roj = opp)+
p(roi = opp)× p(roj = pro) for att. edges

(3)

Finally, of course the edge-score for the attach-
ment level ati,j is equal to the probability of at-
tachment between the segment pair:

ati,j = p(ati,j = yes) (4)

The combined score of an edge wi,j is then de-
fined as the weighted sum of the level-specific
edge score:

wi,j =
φ1roi,j + φ2fui,j + φ3cci,j + φ4ati,j∑

φn

(5)
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Figure 2: An example evidence graph before (left) and after (right) the predicted probabilities of the
different levels have been combined in a single edge score.

In our implementation, the combined evidence
graphs can be constructed without a weighting,
and then be instantiated with a specific weighting
to yield the combined edge scores wi,j .

Procedure: As before, we first tune the hyper-
parameters in the inner CV, train the model on the
whole training data and predict probabilities on all
items of the test set. Also, we predict all items in
the training data “as unseen” in a second inner CV
using the best hyperparameters. This procedure is
executed for every level. Using the predictions of
all four levels, we then build the evidence graphs
for training and test set.

Finding the right weighting: We evaluate two
versions of the evidence graph model. The first
version (EG equal) gives equal weight to each
level-specific edge score. The second version (EG
best) optimizes the weighting of the base classi-
fiers with a simple evolutionary search on all evi-
dence graphs of the training set, i.e. it searches for
a weighting that maximizes the average level eval-
uation score of the decoded argumentation struc-
tures in the training set. Finally, all evidence
graphs of the test set are instantiated with the se-
lected weighting (the equal one or the optimized
one) and evaluated.

5.6 Comparison: MST parser
Finally, we compare our models to the well-known
mstparser4, which was also used in the discourse
parsing experiments of Baldridge et al. (2007).
The mstparser applies 1-best MIRA structured
learning, a learning regime that we expect to be
superior over the simple training in the previous
models. In all experiments in this paper, we use
10 iterations for training, the non-projective 1-best
MST decoding, and no second order features. The

4http://sourceforge.net/projects/mstparser/

base mstparser model (MP) evaluated here uses
the same features as above, as well as its own
features extracted from the dependency structure.
Second, we evaluate a pre-classification scenario
(MP+p), where the predictions of the base classi-
fiers trained in the above models for central claim,
role and function are added as additional features.
We expect this to improve the central claim iden-
tification as well as the edge labeling.

For the full task involving all levels, we com-
bine the mstparser with an external edge labeler,
as the internal edge labeler is reported to be weak.
In this setting (MP+r), we replace the edge la-
bels predicted by the mstparser with the pre-
dictions of the base classifier for argumentative
function. Furthermore, the combination of pre-
classification, mstparser and external relation la-
beler (MP+p+r) is evaluated. Finally, we evaluate
a scenario (MPε+p+r) where the mstparser has ac-
cess only to its own features and to those of the
pre-classification, but not to the features described
in Section 5.3, and the external relation labeller
is used. In this scenario, the mstparser exclusively
serves as a meta-model on the base classifier’s pre-
dictions.

6 Results

All results are reported as average and standard
deviation over the 50 folds resulting from 10 iter-
ations of (the outer) 5-fold cross validation. We
use the following metrics: macro averaged F1,
F1 for positive attachment, and Cohen’s Kappa κ.
For significance testing, we apply the Wilcoxon
signed-rank test on the macro averaged F1 scores
and assume a significance level of α=0.01.

6.1 Attachment task

Table 1 shows the results in the attachment task.
The rule-based baseline scores are equal for both
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BL-first BL-preced. simple simple+MST EG equal EG best MP MP+p

F1 macro .618±.041 .662±.025 .679±.025 .688±.032 .712±.026 .710±.028 .724±.030 .728±.033
attach F1 .380±.067 .452±.039 .504±.038 .494±.053 .533±.042 .530±.044 .553±.048 .559±.053
κ .236±.081 .325±.050 .365±.048 .377±.064 .424±.052 .421±.055 .449±.060 .456±.066

trees 100% 100% 15.4% 100% 100% 100% 100% 100%

BL-first BL-preced. simple simple+MST EG equal EG best MP MP+p

F1 macro .618±.041 .662±.025 .663±.030 .674±.036 .692±.034 .693±.031 .707±.035 .720±.034
attach F1 .380±.067 .452±.039 .478±.049 .470±.058 .501±.056 .502±.052 .524±.056 .546±.056
κ .236±.081 .325±.050 .333±.059 .347±.071 .384±.068 .386±.063 .414±.070 .440±.069

trees 100% 100% 11.6% 100% 100% 100% 100% 100%

Table 1: Results for the attachment task: for German (above) and English (below), best values high-
lighted.

German English

total graphs 1120 100.0% 1120 100.0%

rooted 1091 97.4% 1088 97.1%
cycle free 1059 94.6% 995 88.8%
full span 908 81.1% 864 77.1%
out degree 298 26.6% 283 25.3%

trees 173 15.4% 120 10.7%

Table 2: Number and percentage of valid trees for
the “simple” attachment model

languages, since they rely only on the annotated
structure of the parallel corpus. Here, attach-to-
first is the lower bound, attach-to-preceding is a
more competitive baseline, as we had hypothe-
sized in section 5.2.

The learned classifier (simple) beats both base-
lines in both languages, although the improvement
is much smaller for English than for German. In
general, the classifier lacks precision compared to
recall: It predicts too many edges. As a result,
the graph constructed from the predicted edges for
one text very often does not form a tree. In Table 2,
we give a summary of how often tree constraints
are fulfilled, showing that without decoding, valid
trees can only be predicted for 15.4% of the texts
in German and for 10.7% of the texts in English.
The most frequently violated constraint is “out de-
gree”, stating that every node in the graph should
have at most one outgoing edge. Note that all other
models, the baselines as well as the MST decoding
models, are guaranteed to predict tree structures.

The simple+MST model yields slightly lower
F1-scores for positive attachment than without de-
coding, trading off a loss of 10 points in recall of
the over-optimistic base classifier against a gain
of 5 in precision. However, the output graphs are

constrained to be trees now, which is rewarded by
a slight increase in the summarizing metrics macro
F1 and κ.

The evidence graph models (EG equal & EG
best) clearly outperform the simple and sim-
ple+MST model, indicating that the attachment
classification can benefit from jointly predicting
the four different levels. Note, that the EG model
with equal weighting scores slightly better than the
one with optimized weighting for German but not
for English. However, this difference is not signif-
icant (p>0.5) for both languages, which indicates
that the search for an optimal weighting is not nec-
essary for the attachment task.

The overall best result is achieved by the mst-
parser model. We attribute this to the superior
structured learning regime. The improvement of
MP over EP equal and best is significant in both
languages (p<0.008). Using pre-classification fur-
ther improves the results, although difference is
neither significant for German (p=0.4) nor for En-
glish (p=0.016).

6.2 Full task

Until now, we only focused on the attachment task.
In this subsection we will present results on the
impact of joint prediction for all levels.

The results in Table 3 show significant improve-
ments of the EG models over the base-classifiers
on the central claim, the function and the attach-
ment levels (p<0.0001). This demonstrates the
positive impact of jointly predicting all levels. The
EG models achieve the best scores in central claim
identification and function classification, and the
second best result in role identification. The dif-
ferences between EG equal and EG best are not
significant on any level, which again indicates that

944



simple EG equal EG best MP MP+p MP+r MP+p+r MPε+p+r

cc maF1 .849±.035 .879±.042 .890±.037 .825±.055 .855±.055 .825±.055 .855±.055 .854±.053
κ .698±.071 .759±.085 .780±.073 .650±.111 .710±.110 .650±.111 .710±.110 .707±.105

ro maF1 .755±.049 .737±.052 .734±.046 .464±.042 .477±.047 .656±.054 .669±.062 .664±.053
κ .511±.097 .477±.103 .472±.092 .014±.049 .022±.063 .315±.106 .340±.122 .330±.105

fu maF1 .703±.046 .735±.045 .736±.043 .499±.054 .527±.047 .698±.054 .723±.052 .723±.050
κ .528±.068 .573±.066 .570±.063 .293±.056 .326±.056 .522±.076 .557±.075 .560±.073

at maF1 .679±.025 .712±.026 .710±.028 .724±.030 .728±.033 .724±.030 .728±.033 .724±.029
κ .365±.048 .424±.052 .421±.055 .449±.060 .456±.066 .449±.060 .456±.066 .448±.059

simple EG equal EG best MP MP+p MP+r MP+p+r MPε+p+r

cc maF1 .817±.045 .860±.051 .869±.053 .780±.063 .831±.059 .780±.063 .831±.059 .823±.063
κ .634±.090 .720±.103 .737±.107 .559±.126 .661±.118 .559±.126 .661±.118 .647±.122

ro maF1 .750±.045 .721±.051 .720±.047 .482±.053 .475±.047 .620±.064 .638±.057 .641±.062
κ .502±.090 .445±.098 .442±.092 .024±.068 .015±.060 .243±.126 .280±.114 .285±.122

fu maF1 .671±.049 .707±.048 .710±.050 .489±.062 .514±.059 .642±.057 .681±.057 .677±.059
κ .475±.074 .529±.070 .530±.072 .254±.058 .296±.063 .440±.081 .491±.083 .486±.083

at maF1 .663±.030 .692±.034 .693±.031 .707±.035 .720±.034 .707±.035 .720±.034 .713±.033
κ .333±.095 .384±.068 .386±.063 .414±.070 .440±.069 .414±.070 .440±.069 .427±.066

Table 3: Results for the full task: for German (above) and English (below), best values highlighted.

we can dispense with the extra step of optimizing
the weighting and use the simple equal weighting.
These result are consistent across both languages.

The pure labeled mstparser model (MP) per-
forms worse than the base classifiers on all lev-
els except for the attachment task. Adding pre-
classification yields significant improvements on
all levels but role identification. Using the ex-
ternal relation labeler drastically improves func-
tion classification and indirectly also role identifi-
cation. The combined model (MP+p+r) yields best
results for all mstparser models, but is still sig-
nificantly outperformed by EG equal in all tasks
except attachment classification. There, the mst-
parser models achieve best results, the improve-
ment of MP+p+r over EG equal is significant for
English (p<0.0001) and for German (p=0.001).
Interestingly, the meta-model (MPε+p+r) which
has access to its own features and to those of the
pre-classification, but not to the features described
in Section 5.3, performs nearly as good as or equal
to the combined model (MP+p+r).

The only level not benefiting from any MST
model in comparison with the base classifier is the
role classification: In the final MST, the role of
each segment is only implicitly represented, and
can be determined by following the series of the
role-switches of each argumentative function from
the segment to the root. The loss of accuracy for
predicting the argumentative role is much smaller

for German than for English, probably due to the
better attachment classification in the first place.

Finally, note that the EG best model gives the
highest total score when summed over all levels,
followed by EG equal and then MP+p+r.

Projecting further improvements: We have
shown that joint prediction of all levels in the ev-
idence graph models helps to improve the clas-
sification on single levels. To measure exactly
how much a level contributes to the predictions of
other levels, we simulate better base classifiers and
study their impact. To achieve this, we artificially
improved the classification of one target level by
overwriting a percentage of its predictions with
ground truth. The overwritten predictions where
drawn randomly, corresponding to the label dis-
tribution of the target level. E.g. for a 20% im-
provement on the argumentative function level, the
predictions of 20% of the true “attack”-items were
set to attack and the predictions of 20% of the true
“support”-items were set to support, irrespective
of whether the classifier already chose the correct
label.

The results of the simulations are presented in
Figure 3 for English only, due to space constraints.
The results for German exhibit the same trends.
The figure plots the κ-score on the y-axis against
the percentage of improvement on the x-axis. Ar-
tificially improved levels are drawn as a dashed
line. As the first plot shows, function classifica-
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Figure 3: Simulations of the effect of better base classifiers in the EG equal model for English: dashed
levels artificially improved, x = number of predictions overwritten with ground truth; y = average κ score
in 10 iterations of 5fold CV.

tion is greatly improved by a better role classifica-
tion (due to the logical connection between them),
whereas the other levels are unaffected. In con-
trast, all levels would benefit from a better function
classification, most importantly even the attach-
ment classification. Potential improvements in the
central claim identification mostly affect function
classification (as these classification tasks partly
overlap: central claims will not be assigned a func-
tion they cannot have). Finally, a combined im-
provement on the logically coupled task of role
and function identification, would even more help
the attachment classification. It might thus be use-
ful to work on a better joint role and function clas-
sifier in near future.

Evidence combination: As pointed out by one
reviewer, combining the evidence in an edge score
as a weighted sum, see (5), instead of a product of
probabilities might be inadequate and could result
in a model that optimizes the highest scored but
not the most probable structure. We compared the
EG equal against an EG model with a product of
probability. The model scores are nearly identical
and do not show a significant difference.

7 Summary and Outlook

We introduced a new approach to argumenta-
tion mining that we applied to a parallel Ger-
man/English corpus of 112 short texts. For the
purposes of automatic mining, the original more
fine-grained annotation in the corpus was reduced
to a slightly simplified scheme consisting of sup-
port and attack relations among argumentative dis-
course units. We did not address the segmenta-
tion step here but focused on structure prediction,
which we broke into a number of subtasks. Our

new evidence graph model jointly predicts differ-
ent aspects of the structure by combining the dif-
ferent subtask predictions in the edge weights of
an evidence graph; we then apply a standard MST
decoding algorithm. This model not only out-
performs two reasonable baselines and two sim-
ple models for the difficult subtask of attach-
ment/relation identification, but also improves the
results for central claim identification and relation
classification, and it compares favorably to a 3-
pass mstparser pipeline.

To the best of our knowledge, this is the first
data-driven model of argumentation structure that
optimizes argumentation structure globally for the
complete sequence of input segments. Further-
more, it is the first model jointly tackling segment
type classification, relation identification and rela-
tion type classification.

Although a direct comparison with results from
related work on other corpora is not possible, we
can draw indirect comparisons. The first learned
model without decoding (simple) is similar to the
one presented by Stab and Gurevych (2014). Since
it is outperformed by our joint MST decoding
model on our data, we assume similar gains could
be accomplished on their student essay dataset.

Our next step is to apply the method to other
corpora and to more complex text, where the iden-
tification of non-participating segments (which are
irrelevant for the argumentation) needs to be ac-
counted for. Furthermore, we plan to investigate
structured models that not only jointly predict but
jointly learn the different aspects of the argumen-
tation graph.
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Abstract

Monolingual alignment is the task of pair-
ing semantically similar units from two
pieces of text. We report a top-performing
supervised aligner that operates on short
text snippets. We employ a large feature set
to (1) encode similarities among semantic
units (words and named entities) in context,
and (2) address cooperation and competi-
tion for alignment among units in the same
snippet. These features are deployed in a
two-stage logistic regression framework for
alignment. On two benchmark data sets,
our aligner achieves F1 scores of 92.1%
and 88.5%, with statistically significant er-
ror reductions of 4.8% and 7.3% over the
previous best aligner. It produces top re-
sults in extrinsic evaluation as well.

1 Introduction

Computer applications frequently require seman-
tic comparison between short snippets of natural
language text. Such comparisons are key to para-
phrase detection (Das and Smith, 2009; Madnani et
al., 2012), textual similarity identification (Agirre
et al., 2015; Sultan et al., 2015) and recognition
of textual entailment (Dagan and Glickman, 2004;
Padó et al., 2015). And they underpin applications
such as short answer grading (Mohler et al., 2011),
question answering (Hixon et al., 2015), machine
translation evaluation (Padó et al., 2009), and ma-
chine reading (de Marneffe et al., 2007).

A central problem underlying all text compari-
son tasks is that of alignment: pairing related se-
mantic units (i.e. words and phrases) across the
two snippets (MacCartney et al., 2008; Thadani
and McKeown, 2011; Thadani et al., 2012; Yao et
al., 2013a; Yao et al., 2013b; Sultan et al., 2014a).
Studies have shown that such tasks can benefit from
an explicit alignment component (Hickl and Bens-
ley, 2007; Sultan et al., 2014b; Sultan et al., 2015).

However, alignment is still an open research prob-
lem. We present a supervised monolingual aligner
that produces top results in several intrinsic and
extrinsic evaluation experiments. We pinpoint a set
of key challenges for alignment and design a model
with components targeted at each.

Lexical and phrasal alignments can both be rep-
resented as pairs of words – in the form of many-
to-many mappings among the two phrases’ com-
ponent words in the latter case. Thus without loss
of generality, we formulate alignment as a binary
classification task where given all word pairs across
two sentences, the goal is to assign each a class la-
bel in {aligned, not aligned}. However, this is not a
straightforward classification scenario where each
word pair can be treated independently – words in
the same snippet can play both mutually cooper-
ating and competing roles in complex ways. For
example, semantically similar words in a snippet
can be in competition for alignment with a word
in the other snippet, whereas words that constitute
a phrase can provide supporting evidence for one
another (e.g. in named entity alignments such as
Watson↔ John Hamish Watson). To han-
dle such interdependencies, we employ a two-stage
logistic regression model – stage 1 computes an
alignment probability for each word pair based
solely on its own feature values, and stage 2 assigns
the eventual alignment labels to all pairs following
a comparative assessment of stage 1 probabilities
of cooperating and competing pairs.

On two alignment data sets reported in (Brock-
ett, 2007) and (Thadani et al., 2012), our aligner
demonstrates respective F1 scores of 92.1% and
88.5%, with statistically significant error reduc-
tions of 4.8% and 7.3% over the previous best
aligner (Sultan et al., 2014a). We also present ex-
trinsic evaluation of the aligner within two text
comparison tasks, namely sentence similarity iden-
tification and paraphrase detection, where it demon-
strates state-of-the-art results.
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British 1

armor 2

crashed 3

into 4

a 5

jail 6

to 7

free 8

two 9

soldiers 10

arrested 11

by 12

Iraqi 13

police 14

. 15

1 2 3 4 5 6 7 8 9

Figure 1: A human-aligned sentence pair from
the MSR alignment corpus. The shaded
cells depict the alignment, which can also be
represented as the set of word index pairs
{(1, 1), (2, 2), (3, 3), (4, 3), (5, 4), . . . , (15, 9)}.

2 Alignment: Key Pieces of the Puzzle

We illustrate with examples key pieces of the align-
ment puzzle and discuss techniques used by exist-
ing aligners to solve them. We use the term ‘unit’
to refer to both words and phrases in a snippet.

Figure 1 shows a shortened version of sentence
pair 712 in the MSR alignment corpus dev set
(Brockett, 2007) with related units aligned by hu-
man annotators. Evident from these alignments is
the fact that aligned units are typically semantically
similar or related. Existing aligners utilize a variety
of resources and techniques for computing simi-
larity between units: WordNet (MacCartney et al.,
2008; Thadani and McKeown, 2011), PPDB (Yao
et al., 2013b; Sultan et al., 2014a), distributional
similarity measures (MacCartney et al., 2008; Yao
et al., 2013b) and string similarity measures (Mac-
Cartney et al., 2008; Yao et al., 2013a). Recent
work on neural word embeddings (Mikolov et al.,
2013; Baroni et al., 2014) have advanced the state
of distributional similarity, but remain largely un-
explored in the context of alignment.

Lexical or phrasal similarity does not entail align-
ment, however. Consider function words: the align-
ment (5, 4) in Figure 1 exists not just because
both units are the word a, but also because they
modify semantically equivalent units: jail and
police station. The influence of context on
content word alignment becomes salient particu-

larly in the presence of competing words. In Fig-
ure 1, (soldiers(10), troops(2)) are not
aligned despite the two words’ semantic equiva-
lence in isolation, due to the presence of a compet-
ing pair, (armor(2), troops(2)), which is
a better fit in context.

The above examples reveal a second aligner re-
quirement: the ability to incorporate context into
similarity calculations. Existing supervised align-
ers use various contextual features within a learning
algorithm for this purpose. Such features include
both shallow surface measures (e.g., the relative
positions of the tokens being aligned in the respec-
tive sentences, similarities in the immediate left
or right words) (MacCartney et al., 2008; Thadani
and McKeown, 2011; Yao et al., 2013a) and syn-
tactic measures like typed dependencies (Thadani
and McKeown, 2011; Thadani et al., 2012). Sul-
tan et al. (2014a) design an unsupervised model
that more directly encodes context, via surface and
dependency-based neighbors which allow contex-
tual similarity to be represented as a weighted sum
of lexical similarity. But their model lacks a key
structural advantage of supervised models: to be
able to use an arbitrarily large feature set to robustly
encode lexical and/or contextual similarity.

The third and final key component of an aligner
is a mechanism to combine lexical/phrasal and con-
textual similarities to produce alignments. This
task is non-trivial due to the presence of cooperat-
ing and competing units. We first discuss compet-
ing units: semantically similar units in one snippet,
each of which is a potential candidate for alignment
with one or more units in the other snippet. At least
three different possible scenarios of varying diffi-
culty exist concerning such units:

• Scenario 1: No competing units. In Figure 1,
the aligned pair (British(1), UK(1))
represents this scenario.

• Scenario 2: Many-to-one competition: when
multiple units in one snippet are similar to
a single unit in the other snippet. In Fig-
ure 1, pairs (armors(2), troops(2))
and (soldiers(10), troops(2)) are
in such competition.

• Scenario 3: Many-to-many competition:
when similar units in one snippet have multi-
ple potential alignments in the other snippet.

Groups of mutually cooperating units can also
exist where one unit provides supporting evidence
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for the alignment of other units in the group. Ex-
amples (besides named entities) include individual
words in one snippet that are grouped together in
the other snippet (e.g., state of the art↔
state-of-the-art or headquarters in
Paris↔ Paris-based).

We briefly discuss the working principles of ex-
isting aligners to show how they respsond to these
challenges. MacCartney et al. (2008), Thadani
and McKeown (2011) and Thadani et al. (2012)
frame alignment as a set of phrase edit (insertion,
deletion and substitution) operations that transform
one snippet into the other. Each edit operation is
scored as a weighted sum of feature values (in-
cluding lexical and contextual similarity features),
and an optimal set of edits is computed. Yao et
al. (2013a; 2013b) take a sequence labeling ap-
proach: input snippets are considered sequences
of units and for each unit in one snippet, units in
the other snippet are considered potential labels.
A first order conditional random field is used for
prediction. Sultan et al. (2014a) treat alignment as
a bipartite matching problem and use a greedy al-
gorithm to perform one-to-one word alignment. A
weighted sum of two words’ lexical and contextual
similarities serves as the pair’s edge weight.

Noticeable in the designs of the supervised align-
ers is a lack of attention to the scenarios competing
units can pose – alignment of a unit depends only
on its own feature values. While the unsupervised
aligner by Sultan et al. (2014a) employs techniques
to deal with such scenarios, it allows only one-to-
one alignment, which fundamentally limits the set
of reachable alignments.

3 Approach

We primarily focus on word alignment, which Yao
et al. (2013b) report to cover more than 95% of
all alignments in multiple human-annotated cor-
pora. Named entities are the only phrasal units we
consider for alignment; in a later section we dis-
cuss how our techniques can be extended to general
phrasal alignment.

Figure 2 shows our two-stage logistic regres-
sion model. We address the first two challenges,
namely identifying lexical and contextual simi-
larities, in stage 1 of the model. Given input
text snippets T (1) = (T (1)

1 , ..., T
(1)
n ) and T (2) =

(T (2)
1 , ..., T

(2)
m ) where T (t)

k is the k-th word of snip-
pet T (t), the goal of this stage is to assign each
word pair of the form (T (1)

i , T
(2)
j ) an alignment

𝒇𝑖𝑗
(1)

𝒇11
(1)

𝒇𝑛𝑚
(1)
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Figure 2: Two-stage logistic regression for align-
ment. Stage 1 computes an alignment probability
φij for each word pair based on local features f (1)

ij

and learned weights θ(1)
tij

(see Section 4.1). Stage
2 assigns each pair a label Aij ∈ {aligned, not
aligned} based on its own φ, the φ of its cooperat-
ing and competing pairs, a max-weighted bipartite
matching Mφ with all φ values as edge weights,
the semantic similaritiesSw of the pair’s words and
words in all cooperating pairs, and learned weights
θ

(2)
tij

for these global features.

probability φij , based on the pair’s lexical and con-
textual similarity features. We discuss our stage 1
features in Section 4.1.

We categorize each word along two different di-
mensions: (1) whether or not it is part of a named
entity, and (2) which of the following groups it
belongs to: content words, function words, and
punctuation marks. This distinction is important
because, (1) certain features apply only to certain
types of words (e.g., acronymy applies only to
named entities; punctuation marks do not partici-
pate in dependency relationships), and (2) certain
features can be more important for certain types of
words (e.g., the role of a function word depends
heavily on its surrounding words and therefore con-
textual features can be more important for function
words). Combined, the two above dimensions form
a domain of six possible values which can be repre-
sented as the Cartesian product {non-named entity,
named entity} × {content word, function word,
punctuation mark}. Each member of this set is a
word type in our model; for instance, named entity
function word is a word type.

This notion of types is then extended to word
pairs in T (1) × T (2): the type of pair (T (1)

i , T
(2)
j )

is the union of the types of T (1)
i and T (2)

j . Given
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the pair’s stage 1 feature vector f (1)
ij and the stage

1 weight vector θ(1)
tij

for its type tij , we compute its
stage 1 alignment probability φij as:

φij =
1

1 + e
−θ(1)

tij
·f (1)

ij

The weight vector θ(1)
t for word pair type t is

derived by minimizing the L1-regularized loss:

J(θ(1)
t ) = − 1

Nt

Nt∑
p=1

[
y

(p)
t log(φ(p)

t ) +

(1− y(p)
t ) log(1− φ(p)

t )
]

+ λ‖θ(1)
t ‖1

where Nt is the number of word pairs of type t
over all sentence pairs in the training data, y(p)

t is
the gold label for pair p of type t (1 = aligned,
0 = not aligned), and φ(p)

t is its stage 1 alignment
probability.

Stage 2 of the model assigns the final alignment
label Aij ∈ {0, 1} to (T (1)

i , T
(2)
j ). Like stage 1, it

uses L1-regularized logistic regression to compute
an alignment probability for each word pair, but
additionally assigns a final 0/1 label using a 0.5
threshold. Stage 2 factors in the stage 1 probabil-
ities of cooperating and competing pairs as well
as a maximum-weighted matching Mφ between
T (1) and T (2), where word pairs in T (1) × T (2)

are weighted by their stage 1 φ values. Such global
knowledge is useful in addressing cooperation and
competition among words. We describe our stage
2 features in Section 4.2.

The two stages are trained separately, each as
n standard logistic regression models where n is
the number of word pair types for which at least
one instance per class is observed in the training
data. The stage 1 models are first trained and used
to make predictions for each training sentence pair
(for each training pair, all other training pairs are
used to train the model). Given all the stage 1 align-
ment probabilities and the other stage 2 features,
the stage 2 models are then trained. At test time,
the two sets of trained models (i.e. stage 1 and
2 models) are successively applied to each input
sentence pair.

4 Features

As mentioned above, we train a separate model
for each individual word pair type. Our feature

set is largely the same across word pair types, with
some differences. In the two following sections, we
discuss these features and indicate the associated
word pair types. We assume alignment of the two
words T (1)

i ∈ T (1) and T (2)
j ∈ T (2).

4.1 Stage 1: Assessing Pairs Individually

4.1.1 Word Similarity Features
Our first feature combines neural word embed-
dings, used previously for word similarity predic-
tion (Mikolov et al., 2013; Baroni et al., 2014),
with a paraphrase database (Ganitkevitch et al.,
2013). Our feature is the output of a ridge regres-
sion model trained on human annotations of word
similarity (Radinsky et al., 2011; Halawi et al.,
2012; Bruni et al., 2014) with two features: the
cosine similarity between the neural embedding
vectors of the two words (using a publicly avail-
able set of 400-dimensional word vectors (Baroni
et al., 2014)), and the presence/absence of the word
pair in the PPDB XXXL database. This regression
model produces similarities (sim henceforth) in
[0, 1], though we only consider similarities above
0.5 as lower scores are often noisy. To deal with
single-letter spelling errors, we consider T (1)

i and
T

(2)
j to be an exact match if exactly one of the two

is correctly spelled and their Levenshtein distance
is 1 (words of length ≥ 3 only).

We also use the following semantic and string
similarity features: a boolean feature that is 1 iff
one of T (1)

i and T (2)
j is hyphenated and the other

is identical to a hyphen-delimited part of the first,
the same feature for highly similar (sim ≥ 0.9)
words, two features that show what proportion of
the characters of one word is covered by the other
if the latter is a prefix or a suffix of the former and
zero otherwise (length < 3 words are discarded).

For named entities, we (1) consider acronymy
as exact match, (2) use membership in two lists of
alternative country names and country-nationality
pairs (from Wikipedia) as features, and (3) include
a feature that encodes whether T (1)

i and T (2)
j be-

long to the same named entity (determined by one
mention containing all words of the other, e.g.,
Einstein and Albert Einstein).

4.1.2 Contextual Features
Effective identification of contextual similarity
calls for a robust representation of word context in
a sentence. Our contextual features are based on
two different sentence representations. The word-
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Günter Grass won the Nobel Prize.

nn nsubj

det

nn

dobj

Günter Grass won the Nobel Prize.

nsubj det

dobj

Figure 3: Word and entity-based representations
of a sentence. Words in the same named entity are
grouped together in the latter representation.

based representation treats each individual word
as a semantic unit whereas the entity-based rep-
resentation (1) groups together words in a multi-
word named entity, and (2) treats non-name words
as individual entities. Figure 3 shows an exam-
ple. The two representations are complementary –
the entity-based representation can capture equiva-
lences between mentions of different lengths of a
named entity, while the word-based representation
allows the use of similarity resources for named
entity words. Non-name words are treated iden-
tically. For simplicity we only discuss our word-
based features below, but each feature also has an
entity-based variant.

Dependency-based context. These features ap-
ply only if neither of T (1)

i and T (2)
j is a punctuation

mark. We compute the proportion of identical and
highly similar (sim ≥ 0.9) parents and children of
T

(1)
i and T (2)

j in the dependency trees of T (1) and
T (2) (Stanford collapsed dependencies (de Marn-
effe et al., 2006)). Equivalent dependency types
(Sultan et al., 2014a) are included in the above
computation, which encode semantic equivalences
between typed dependencies (e.g., nsubjpass and
dobj). We employ separate features for identicality
and similarity. Similar features are also computed
for a dependency neighborhood of size 2 (parents,
grandparents, children and grandchildren), where
we consider only content word neighbors.

Dependency neighbors of T (1)
i and T

(2)
j that

are less similar (0.9 > sim ≥ 0.5; e.g., (gas,
energy) or (award, winner)) can also con-
tain useful semantic information for an aligner. To
accommodate this relatively large range of word
similarities, rather than counting such pairs, we find
a maximum-weighted bipartite matching of T (1)

i

and T (2)
j neighbors in a neighborhood of size 2 us-

ing the primal-dual algorithm (content words only),
where word similarities across the two neighbor-
hoods serve as edge weights. We use as a feature
the sum of similarities between the matched neigh-
bors, normalized by the total number of content
words in the two neighborhoods.

Surface-form context. We draw several contex-
tual features from nearby words of T (1)

i and T (2)
j

in the surface forms of T (1) and T (2): (1) whether
the left and/or the right word/lemma is identical ,
(2) whether the two are highly similar (sim ≥ 0.9),
(3) the longest common word/lemma sequence con-
taining T (1)

i and T (2)
j such that at least one word in

the sequence is a content word, (4) proportion of
identical and highly similar (sim ≥ 0.9) words in
a neighborhood of 3 content words to the left and
3 content words to the right; we use two versions
of this feature, one compares neighbors only in the
same direction (i.e. left with left, right with right)
and the other compares neighbors across the two di-
rections, (5) similarly to dependency-based context,
similarity in a max-weighted matching of all neigh-
bors with sim ∈ [0.5, 0.9) in the above [−3, 3]
window. For punctuation mark pairs, we use an
additional feature indicating whether or not they
both mark the end of their respective sentences.

4.2 Stage 2: Cooperation and Competition

We consider two groups of mutually cooperating
words in a sentence: (1) words that belong to the
same named entity, and (2) words in a sentence
that are joined together to form a larger word in
the other sentence (e.g., state-of-the-art).
Speaking in terms of T (1)

i , the goal is to be able to
use any evidence present for a (T (1)

k , T
(2)
j ) align-

ment also as evidence for a (T (1)
i , T

(2)
j ) alignment

if T (1)
i and T (1)

k both belong to such a group. We
call T (1)

i and T
(1)
k mutually cooperating words

with respect to T
(2)
j in such cases. Any word

T
(1)
l ∈ T (1) which is not a cooperating word for
T

(1)
i is a competing word: a word that can poten-

tially make (T (1)
i , T

(2)
j ) a less viable alignment by

having a larger stage 1 alignment probability in
(T (1)
l , T

(2)
j ). We call a pair (T (1)

k , T
(2)
j ) a cooper-

ating (competing) pair for (T (1)
i , T

(2)
j ) if T (1)

k is a

cooperating (competing) word for T (1)
i with respect

to T (2)
j . With a reversal of word order and appro-

priate substitution of indexes, the above discussion
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equally holds for T (2)
j .

Given sets of stage 1 probabilities Φcop
ij and

Φcmp
ij of cooperating and competing pairs for

the pair (T (1)
i , T

(2)
j ), we employ three features

to deal with scenario 2 of Section 2: (1)
max(φij ,max(Φcop

ij )): the greater of the pair’s
own stage 1 alignment probability and the high-
est among all cooperating pair probabilities, (2)
max(Φcmp

ij ): the highest of all competing pair
probabilities, and (3) a binary feature indicating
which of the two above is larger.

To address scenario 3, we construct a weighted
bipartite graph: nodes represent words in T (1) and
T (2) and the weight of each edge represents the
stage 1 alignment probability of a word pair in
T (1) × T (2). We find a max-weighted bipartite
matchingMφ of word pairs in this graph. For each
word pair, we employ a feature indicating whether
or not it is in Mφ. The presence of (T (1)

i , T
(2)
j )

and (T (1)
k , T

(2)
l ) in Mφ, where all four words are

similar, is a potential indicator that (T (1)
i , T

(2)
l ) and

(T (1)
k , T

(2)
j ) are no longer viable alignments.

Low recall has traditionally been the primary
weakness of supervised aligners (as we later show
in Table 1). Our observation of the aligner’s be-
havior on the dev set of the MSR alignment cor-
pus (Brockett, 2007) suggests that this happens
primarily due to highly similar word pairs being
left unaligned even in the absence of competing
pairs because of relatively low contextual evidence.
Consequently, aligner performance suffers in sen-
tences with few common or similar words. To
promote high recall, we employ the higher of a
word pair’s own lexical similarity and the lexical
similarity of the cooperating pair with the highest
stage 1 probability as a stage 2 feature.

The stage 2 feature set is identical across word
pair types, but as in stage 1, we train individual
models for different pair types.

5 Experiments

5.1 System Evaluation

We report evaluation on two alignment data sets
and extrinsic evaluation on two tasks: sentence
similarity identification and paraphrase detection.

5.1.1 Alignment
We adopt the evaluation procedure for aligners re-
ported in prior work (MacCartney et al., 2008;
Thadani and McKeown, 2011; Yao et al., 2013a).

Aligner P % R % F1 % E %

M
S
R

MacCartney et al. (2008) 85.4 85.3 85.3 21.3
Thadani & McKeown (2011) 89.5 86.2 87.8 33.0
Yao et al. (2013a) 93.7 84.0 88.6 35.3
Yao et al. (2013b) 92.1 82.8 86.8 29.1
Sultan et al. (2014a) 93.7 89.8 91.7 43.8
Our Aligner 95.4 89.0 92.1 47.3

E
D
B
+
+

Thadani et al. (2012) 76.6 83.8 79.2 12.2
Yao et al. (2013a) 91.3 82.0 86.4 15.0
Yao et al. (2013b) 90.4 81.9 85.9 13.7
Sultan et al. (2014a) 93.5 82.5 87.6 18.3
Our Aligner 92.1 85.2 88.5 18.3

Table 1: Performance on two alignment data sets.
Improvements in F1 are statistically significant.

Data. The MSR alignment corpus (Brockett,
2007) contains 800 dev and 800 test sentence pairs
from the PASCAL RTE 2006 challenge. Each pair
is aligned by three human annotators; Fleiss Kappa
agreement of about 0.73 (“substantial agreement”)
is reported on both sets. Following prior work, we
only consider the sure alignments, take the majority
opinion on each word pair, and leave out three-way
disagreements.

The Edinburgh++ corpus (Thadani et al., 2012)
contains 714 training and 306 test sentence pairs.
Each test pair is aligned by two annotators and the
final gold alignments consist of a random but even
selection of the two sets of annotations.

Evaluation metrics. Our primary evaluation
metrics are macro-averaged precision (P), recall
(R) and F1 score. A fourth metric E measures the
proportion of sentence pairs for which the system
alignments are identical to the gold alignments.

Model setup. For each corpus, we train our
model using the dev set and evaluate on the test set.
We use the logistic regression implementation of
Scikit-learn (Pedregosa et al., 2011) and use leave-
one-out cross-validation on the dev pairs to set the
regularization parameter C.

Results. Table 1 shows the performance of dif-
ferent aligners on the two test sets. Our aligner
demonstrates the best overall performance in terms
of both F1 and E. Wilcoxon signed-rank tests
(with Pratt’s treatment for zero-difference pairs)
show that the improvements in F1 over the previous
best aligner (Sultan et al., 2014a) are statistically
significant at p < 0.01 for both test sets.

5.1.2 Identification of Sentence Similarity
Given two input sentences, the goal in this task,
known also as Semantic Textual Similarity (STS),
is to output a real-valued semantic similarity score.
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System Pearson’s r Rank
Han et al. (2013) 73.7 1
Yao et al. (2013a) 46.2 66
Sultan et al. (2014a) 67.2 7
Our Aligner 67.8 4

Table 2: STS results. Performances of past systems
are reported by Sultan et al. (2014a).

Data. To be able to directly compare with past
aligners, we select three data sets (headlines: pairs
of news headlines; OnWN, FNWN: gloss pairs)
from the 2013 *SEM STS corpus (Agirre et al.,
2013), containing 1500 sentence pairs in total. Sul-
tan et al. (2014a) reports the performance of two
state-of-the-art aligners on these pairs.

Evaluation metric. At SemEval, STS systems
output a similarity score in [0, 5]. For each individ-
ual test set, the Pearson product-moment correla-
tion coefficient (Pearson’s r) is computed between
system scores and human annotations. The final
evaluation metric is a weighted sum of r’s over
all test sets, where the weight assigned to a set is
proportional to its number of pairs.

Method. Being a logistic regression model,
stage 2 of our aligner assigns each word pair an
alignment probability. For STS, we compute a
length-normalized sum of alignment probabilities
of content word pairs across the two sentences. We
include all pairs with probability > 0.5; the re-
maining pairs are included in decreasing order of
their probabilities and already included words are
ignored. Following (Sultan et al., 2014a), we nor-
malize by dividing with the harmonic mean of the
numbers of content words in the two sentences.

Results. Table 2 shows the performance of dif-
ferent aligners on the three STS 2013 test sets. We
also show the performance of the contest-winning
system (Han et al., 2013). Our STS system demon-
strates a weighted correlation of 67.8%, which is
better than similar STS systems based on the two
previous best aligners. The difference with the next
best aligner is statistically significant at p < 0.05
(two-sample one-tailed z-test). Overall, our system
outperforms 86 of the 89 participating systems.

5.1.3 Paraphrase Detection
Given two input sentences, the goal in this task is
to determine if their meanings are the same.

Data. The MSR paraphrase corpus (Dolan et al.,
2004) contains 4076 dev and 1725 test sentence
pairs; a paraphrase label (true/false) for each pair

System A % P % R % F 1 %

Madnani et al. (2012) 77.4 79.0 89.9 84.1
Yao et al. (2013a) 70.0 72.6 88.1 79.6
Yao et al. (2013b) 68.1 68.6 95.8 79.9
Sultan et al. (2014a) 73.4 76.6 86.4 81.2
Our Aligner 73.2 75.3 88.8 81.5

Table 3: Paraphrase results. Performances of past
systems are taken from (Sultan et al., 2014a).

is provided by human annotators.
Evaluation Metrics. We report performance in

terms of: (1) accuracy in classifying the sentences
into true and false classes (A), and (2) true class
precision (P ), recall (R) and F1 score.

Method. Following prior aligners (MacCartney
et al., 2008; Yao et al., 2013b; Sultan et al., 2014a),
we output a true decision for a test sentence pair iff
the length-normalized alignment score for the pair
exceeds a threshold derived from the dev set.

Results. The top row of Table 3 shows the best
result by any system on the MSR test set. Among
all aligners (all other rows), ours achieves the best
F1 score and the second best accuracy.

We report paraphrase detection results primarily
to allow comparison with past aligners. However,
this simplistic application to a complex task only
gives a ballpark estimate of an aligner’s quality.

Model P % R % F1 % E %

M
S
R Two-Stage Model 95.4 89.0 92.1 47.3

Stage 1 Only 92.9 85.6 89.1 28.0

E
D
B
+
+ Two-Stage Model 92.1 85.2 88.5 18.3

Stage 1 Only 93.0 79.0 85.4 13.7

Table 4: Performance with and without stage 2.

5.2 Ablation

We perform ablation tests to find out how important
(1) the two-stage framework, and (2) the different
features are for our aligner.

5.2.1 Results without Stage 2
Stage 1 of our aligner can operate as an aligner by
itself by mapping each alignment probability to a
0/1 alignment decision based on a threshold of 0.5.
From a design perspective, this is an aligner that
does not address scenarios 2 and 3 of Section 2.

The performance of the aligner with and without
stage 2 is shown in Table 4. On each test set, the F1

and E scores increase with the addition of stage 2.
On the MSR test set, performance improves along
all dimensions. On the Edinburgh++ test set, the
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MSR EDB++
Features P % R % F1 % P % R % F1 %

All Features 95.4 89.0 92.1 92.1 85.2 88.5
- Lexical 95.1 82.8 88.5 90.9 84.0 87.3
- Resources 96.0 87.0 91.3 92.2 84.3 88.1
- Contextual 89.0 79.2 83.9 89.9 66.3 76.3
- Dependency 95.3 88.2 91.6 91.9 84.9 88.3
- Surface 94.4 85.6 89.8 90.6 76.9 83.2
- Word-Based 94.6 87.7 91.0 92.0 85.1 88.4
- Entity-Based 95.5 89.0 92.1 92.1 85.1 88.5

Table 5: Results without different stage 1 features.

MSR EDB++
Features P % R % F1 % P % R % F1 %

All Features 95.4 89.0 92.1 92.1 85.2 88.5
- φ values 87.3 90.7 88.9 86.4 86.9 86.7
- Matching 95.3 87.9 91.5 92.3 84.6 88.3
- Word Sim 95.5 88.4 91.8 92.7 84.7 88.5

Table 6: Results without different stage 2 features.

precision drops a little, but this effect is offset by a
larger improvement in recall. These results show
that stage 2 is central to the aligner’s success.

5.2.2 Without Different Stage 1 Features
We exclude different stage 1 features (which fall
into one of two groups: lexical and contextual) and
examine the resulting model’s performance. Table
5 shows the results. The subtraction sign represents
the exclusion of the corresponding feature.

Without any lexical feature (i.e., if the model re-
lies only on contextual features), both precision and
recall decrease, resulting in a considerable overall
performance drop. Exclusion of word similarity
resources (i.e. embeddings and PPDB) improves
precision, but again harms overall performance.

Without any contextual features, the model suf-
fers badly in both precision and recall. The extreme
overall performance degradation indicates that con-
textual features are more important for the aligner
than lexical features. Leaving out surface-form
neighbors results in a larger performance drop than
when dependency-based neighbors are excluded,
pointing to a more robust role of the former group
in representing context. Finally, our entity-based
representation of context neither helps nor harms
system performance, but relying only on entity-
based neighbors has detrimental effects. Factoring
in semantic similarities of named entities should
improve the utility of these features.

5.2.3 Without Different Stage 2 Features
Table 6 shows the aligner’s performance after the
exclusion of different stage 2 features. Leaving out
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Figure 4: % distribution of aligned word pair types;
nne: non-named entity, ne: named entity, c: content
word, f : function word, p: punctuation mark.

MSR EDB++
Pair Type P % R % F1 % P % R % F1 %

{nne-c, nne-c} 95.7 84.3 89.7 92.2 89.2 90.7
{nne-c, nne-f} 100.0 2.7 5.3 61.4 7.7 13.6
{nne-c, ne-c} 89.2 66.7 76.3 71.9 43.4 54.1
{nne-f, nne-f} 90.7 86.0 88.3 93.4 86.5 89.8
{nne-p, nne-p} 99.4 99.2 99.3 93.0 91.5 92.2
{ne-c, ne-c} 96.2 97.8 97.0 90.9 94.2 92.6

Table 7: Performance on different word pair types.

the stage 1 alignment probabilities harms overall
performance the most by causing a large drop in
precision. Exclusion of the maximum-weighted
bipartite matching feature results in worse recall
and overall performance. The lexical similarity
feature improves overall results only on the MSR
test set but increases recall on both test sets.

5.3 Error Analysis

We examine the aligner’s performance on different
word pair types. Figure 4 shows the % distribution
of word pair types with at least 20 aligned instances
in at least one test set. These six types account for
more than 99% of all alignments in both test sets.

Table 7 shows the results. We ignore punctua-
tion mark pairs in the following discussion. Per-
formance is worst on the two rarest types: {nne-c,
nne-f} and {nne-c, ne-c}, due primarily to very
low recall. A relatively low availability of posi-
tive examples in the training sets (in the hundreds,
in contrast to thousands of examples for each of
the other three types) is a primary factor affect-
ing classifier performance on these two pair types.
The {nne-c, nne-f} pairs, nonetheless, are intrin-
sically the most difficult type for a word aligner
because they occur frequently as part of phrasal
alignments. On {nne-c, ne-c} pairs, errors also oc-
cur due to failure in recognition of certain named
entity types (e.g., acronyms and multiword named
entities) and the aligner’s lack of world knowledge
(e.g., in daughter↔ Chelsea).
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Low recall remains the primary issue, albeit to a
much lesser extent, for {nne-c, nne-c} and {nne-f,
nne-f} pairs. For the former, two major sources
of error are: (1) inability to utilize contextual ev-
idence outside the local neighborhood examined
by the aligner, and (2) failure to address one-to-
many alignments. Low recall for the latter follows
naturally, as function word alignment is heavily
dependent on related content word alignment. On
{ne-c, ne-c} pairs the aligner performs the best, but
still suffers from the two above issues.

6 Related Work

We mentioned major standalone monolingual align-
ers and briefly discussed their working principles
in Section 2. There are, however, at least two ad-
ditional groups of related work which can inform
future research on monolingual alignment. First,
alignment is often performed in the context of ex-
trinsic tasks, e.g., textual entailment recognition
(Wang and Manning, 2010), question answering
(Heilman and Smith, 2010), discourse generation
(Roth and Frank, 2012) and redundancy detection
(Thadani and McKeown, 2008). Such systems may
contain useful design elements yet to be utilized by
standalone aligners. Second, a large body of work
exists in the bilingual alignment literature (Och and
Ney, 2003; Blunsom and Cohn, 2006; Chang et al.,
2014), elements of which (such as the machine
learning models) can be useful for monolingual
aligners (see (Yao et al., 2013a) for an example).

7 Conclusions and Future Work

We present a two-stage classification framework
for monolingual alignment that demonstrates top
results in intrinsic and extrinsic evaluation experi-
ments. While our work focuses primarily on word
alignment, given a mechanism to compute phrasal
similarity, the notion of cooperating words can be
exploited to extend our model for phrasal align-
ment. Another important future direction is the con-
struction of a robust representation of context, as
our model currently utilizes contextual information
only within a local neighborhood of a predefined
size and therefore fails to utilize long-distance se-
mantic relationships between words. Incorporating
a single background model which is trained on all
word pair types might also improve performance,
especially on types that are rare in the training data.
Finally, studying the explicit requirements of dif-
ferent extrinsic tasks can shed light on the design

of a robust aligner.
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Matthieu Perrot, and Édouard Duchesnay. 2011.
Scikit-learn: Machine Learning in Python. Journal
of Machine Learning Research, vol. 12, pages 2825-
2830.

958



Kira Radinsky, Eugene Agichtein, Evgeniy
Gabrilovich, and Shaul Markovitch. 2011. A
Word at a Time: Computing Word Relatedness
using Temporal Semantic Analysis. In Proceedings
of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computa-
tional Natural Language Learning, pages 337-346,
Hyderabad, India.

Michael Roth and Anette Frank. 2012. Aligning Pred-
icates across Monolingual Comparable Texts using
Graph-based Clustering. In Proceedings of the 20th
International Conference on World Wide Web, pages
pages 171182, Jeju Island, Korea.

Md Arafat Sultan, Steven Bethard, and Tamara Sum-
ner. 2014a. Back to Basics for Monolingual Align-
ment: Exploiting Word Similarity and Contextual
Evidence. Transactions of the Association for Com-
putational Linguistics, 2 (May), pages 219-230.

Md Arafat Sultan, Steven Bethard, and Tamara Sumner.
2014b. DLS@CU: Sentence Similarity from Word
Alignment. In Proceedings of the 8th International
Workshop on Semantic Evaluation, pages 241-246,
Dublin, Ireland.

Md Arafat Sultan, Steven Bethard, and Tamara Sumner.
2015. DLS@CU: Sentence Similarity from Word
Alignment and Semantic Vector Composition. In
Proceedings of the 9th International Workshop on
Semantic Evaluation, pages 148-153, Denver, Col-
orado, USA.

Kapil Thadani and Kathleen McKeown. 2008. A
Framework for Identifying Textual Redundancy.
In Proceedings of the 22nd International Confer-
ence on Computational Linguistics, pages 873880,
Manchester, UK.

Kapil Thadani and Kathleen McKeown. 2011. Opti-
mal and Syntactically-Informed Decoding for Mono-
lingual Phrase-Based Alignment. In Proceedings
of the 49th Annual Meeting of the Association for
Computational Linguistics, pages 254-259, Portland,
Oregon, USA.

Kapil Thadani, Scott Martin, and Michael White. 2012.
A Joint Phrasal and Dependency Model for Para-
phrase Alignment. In Proceedings of COLING
2012, pages 1229-1238, Mumbai, India.

Mengqiu Wang and Christopher D. Manning. 2010.
Probabilistic Tree-Edit Models with Structured La-
tent Variables for Textual Entailment and Ques-
tion Answering. In Proceedings of the 23rd Inter-
national Conference on Computational Linguistics,
pages 11641172, Beijing, China.

Xuchen Yao, Benjamin Van Durme, Chris Callison-
Burch, and Peter Clark. 2013a. A Lightweight and
High Performance Monolingual Word Aligner. In
Proceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics, pages 702-
707, Sofia, Bulgaria.

Xuchen Yao, Benjamin Van Durme, Chris Callison-
Burch, and Peter Clark. 2013b. Semi-Markov
Phrase-based Monolingual Alignment. In Proceed-
ings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing, pages 590-600,
Seattle, Washington, USA.

959



Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 960–970,
Lisbon, Portugal, 17-21 September 2015. c©2015 Association for Computational Linguistics.

Semantic Role Labeling with Neural Network Factors

Nicholas FitzGerald‡∗ Oscar Täckström† Kuzman Ganchev† Dipanjan Das†
‡Department of Computer Science and Engineering, University of Washington

† Google, New York
nfitz@cs.uw.edu

{oscart,kuzman,dipanjand}@google.com

Abstract

We present a new method for semantic role
labeling in which arguments and seman-
tic roles are jointly embedded in a shared
vector space for a given predicate. These
embeddings belong to a neural network,
whose output represents the potential func-
tions of a graphical model designed for
the SRL task. We consider both local
and structured learning methods and ob-
tain strong results on standard PropBank
and FrameNet corpora with a straightfor-
ward product-of-experts model. We fur-
ther show how the model can learn jointly
from PropBank and FrameNet annotations
to obtain additional improvements on the
smaller FrameNet dataset.

1 Introduction

Semantic role labeling (SRL) is the task of iden-
tifying the semantic arguments of a predicate and
labeling them with their semantic roles. A key chal-
lenge in this task is sparsity of labeled data: a given
predicate-role instance may only occur a handful
of times in the training set. Most existing SRL
systems model each semantic role as an atomic
unit of meaning, ignoring finer-grained semantic
similarity between roles that can be leveraged to
share context between similar labels, both within
and across annotation conventions.

Low-dimensional embedding representations
have been shown to be successful in overcoming
sparsity and representing label similarity across a
wide range of tasks (Weston et al., 2011; Sriku-
mar and Manning, 2014; Hermann et al., 2014;
Lei et al., 2015). In this paper, we present a new
model for SRL that embeds candidate arguments
and semantic roles (in context of a predicate frame)
in a shared vector space. A feed-forward neural

∗Work carried out during an internship at Google.

network is learned to capture correlations of the re-
spective embedding dimensions to create argument
and role representations. The similarity of these
two representations, as measured by their dot prod-
uct, is used to score possible roles for candidate
arguments within a graphical model. This graphical
model jointly models the assignment of semantic
roles to all arguments of a predicate, subject to
structural linguistic constraints.

Our model has several advantages. Compared
to linear multiclass classifiers used in prior work,
vector embeddings of the predictions overcome the
assumption of modeling each semantic role as a
discrete label, thus capturing fine-grained label sim-
ilarity. Moreover, since predictions and inputs are
embedded in the same vector space, and features
extracted from inputs and outputs are decoupled,
our approach is amenable to joint learning of multi-
ple annotation conventions, such as PropBank and
FrameNet, in a single model. Finally, as with other
neural network approaches, our model obviates the
need to manually engineer feature conjunctions.

Our underlying inference algorithm for SRL
follows Täckström et al. (2015), who presented
a dynamic program for structured SRL; it is tar-
geted towards the prediction of full argument spans.
Hence, we present empirical results on three span-
based SRL datasets: CoNLL 2005 and 2012 data
annotated with PropBank conventions, as well as
FrameNet 1.5 data. We also evaluate our system
on the dependency-based CoNLL 2009 shared task
by assuming single word argument spans, that rep-
resent semantic dependencies, and limit our ex-
periments to English. On all datasets, our model
performs on par with a strong linear model base-
line that uses hand-engineered conjunctive features.
Due to random parameter initialization and stochas-
ticity in the online learning algorithm used to train
our models, we observed considerable variance in
performance across datasets. To resolve this vari-
ance, we adopt a product-of-experts model that
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John stole my car .

steal.V
Theft

Perpetrator Goods

Mary lifted a purse .

lift.V
Theft

Perpetrator Goods

(a)

John stole my car .

steal.V
steal.01

A0 A1

Mary lifted a purse .

lift.V
lift.02

A0 A1

(b)

Figure 1: FrameNet (a) and PropBank (b) annota-
tions for two sentences.

combines multiple randomly-initialized instances
of our model to achieve state-of-the-art results on
the CoNLL 2009 and FrameNet datasets, while
coming close to the previous best published results
on the other two. Finally, we present even stronger
results for FrameNet data (which is scarce) by
jointly training the model with PropBank-annotated
data.

2 Background

In this section, we briefly describe the SRL task
and discuss relevant prior work.

2.1 Semantic Role Labeling

SRL annotations rely on a frame lexicon containing
frames that could be evoked by one or more lexical
units. A lexical unit consists of a word lemma con-
joined with its coarse-grained part-of-speech tag.1

Each frame is further associated with a set of pos-
sible core and non-core semantic roles which are
used to label its arguments. This description of a
frame lexicon covers both PropBank and FrameNet
conventions, but there are some differences out-
lined below. See Figure 1 for example annotations.

PropBank defines frames that are essentially
sense distinctions of a given lexical unit. The set of
PropBank roles consists of seven generic core roles
(labeled A0-A5 and AA) that assume different se-
mantics for different frames, each associating with
a subset of the core roles. In addition, there are 21
non-core roles that encapsulate further arguments
of a frame, such as temporal (AM-TMP) and locative
(AM-LOC) adjuncts. The non-core roles are shared
between all frames and assume similar meaning.
In contrast, a FrameNet frame often associates
with multiple lexical units and the frame lexicon

1We borrow the term “lexical unit” from the frame seman-
tics literature. The CoNLL 2005 dataset is restricted to verbal
lexical units, while the CoNLL 2009 and 2012 datasets con-
tains both verbal and nominal lexical units. FrameNet has
lexical units of several coarse syntactic categories.

contains several hundred core and non-core roles
that are shared across frames. For example, the
FrameNet frame Theft could be evoked by the verbs
steal, pickpocket, or lift, while PropBank has dis-
tinct frames for each of them. The Theft frame also
contains the core roles Goods and Perpetrator that
additionally belong to the Commercial_transaction
and Committing_crime frames respectively.

A typical SRL dataset consists of sentence-level
annotations that identify (possibly multiple) target
predicates in each sentence, a disambiguated frame
for each predicate, and the associated argument
spans (or single word argument heads) labeled with
their respective semantic roles.

2.2 Related Work
SRL using PropBank conventions (Palmer et al.,
2005) has been widely studied. There have been
two shared tasks at CoNLL 2004-2005 to identify
the phrasal arguments of verbal predicates (Car-
reras and Màrquez, 2004; Carreras and Màrquez,
2005). The CoNLL 2008-2009 shared tasks in-
troduced a variant where semantic dependencies
are annotated rather than phrasal arguments (Sur-
deanu et al., 2008; Hajič et al., 2009). Similar
approaches (Das et al., 2014; Hermann et al., 2014)
have been applied to frame-semantic parsing us-
ing FrameNet conventions (Baker et al., 1998). We
treat PropBank and FrameNet annotations in a com-
mon framework, similar to Hermann et al. (2014).

Most prior work on SRL rely on syntactic parses
provided as input and use locally estimated classi-
fiers for each span-role pair that are only combined
at prediction time.2 This is done by picking the
highest scoring role for each span, subject to a set
of structural constraints, such as avoiding overlap-
ping arguments and repeated core roles. Typically,
these constraints have been enforced by integer lin-
ear programming (ILP), as in Punyakanok et al.
(2008). Täckström et al. (2015) interpreted this
as a graphical model with local factors for each
span-role pair, and global factors that encode the
structural constraints. They derived a dynamic pro-
gram (DP) that enforces most of the constraints
proposed by Punyakanok et al. and showed how
the DP can be used to take these constraints into
account during learning. Here, we use an identical
graphical model, but extend the model of Täck-
ström et al. by replacing its linear potential func-

2Some recent work have successfully proposed joint mod-
els for syntactic parsing and SRL instead of a pipeline ap-
proach (Lewis et al., 2015).
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tions with a multi-layer neural network. A similar
use of non-linear potential functions in a structured
model was proposed by Do and Artières (2010)
for speech recognition, and by Durrett and Klein
(2015) for syntactic phrase-structure parsing.

Feature-based approaches to SRL employ hand-
engineered linguistically-motivated feature tem-
plates to represent the semantic structure. Some
recent work has focused on low-dimensional repre-
sentations that reduce the need for intensive feature
engineering and lead to better generalization in
the face of data sparsity. Lei et al. (2015) employ
low-rank tensor factorization to induce a compact
representation of the full cross-product of atomic
features; akin to this work, they represent seman-
tic roles as real-valued vectors, but use a different
scoring formulation for modeling potential argu-
ments. Moreover, they restrict their experiments
to CoNLL 2009 semantic dependencies. Roth and
Woodsend (2014) improve on the state-of-the-art
feature-based system of Björkelund et al. (2010) by
adding distributional word representations trained
on large unlabeled corpora as features.

Collobert and Weston (2007) use a neural net-
work and do not rely on syntactic parses as input.
While they use non-standard evaluation, they report
accuracy similar to the ASSERT system (Pradhan
et al., 2005), to which we compare in Table 4. Very
recently, Zhou and Xu (2015) proposed a deep bidi-
rectional LSTM model for SRL that does not rely
on syntax trees as input; their approach achieves
the best results on CoNLL 2005 and 2012 corpora
to date, but unlike this work, they do not report re-
sults on FrameNet and CoNLL 2009 dependencies
and do not investigate joint learning approaches
involving multiple annotation conventions.

For FrameNet-style SRL, Kshirsagar et al.
(2015) recently proposed the use of PropBank-
based features, but their system performance falls
short of the state of the art. Roth and Lapata (2015)
proposed another approach exploring linguistically
motivated features tuned towards the FrameNet lex-
icon, but their performance metrics are significantly
worse than our best results.

The inspiration behind our approach stems from
recent work on bilinear models (Mnih and Hin-
ton, 2007). There have been several recent studies
representing input observations and output labels
with distributed representations, for example, in the
WSABIE model for image annotation (Weston et
al., 2011), in models for embedding labels in struc-

tured graphical models (Srikumar and Manning,
2014), and in techniques to learn joint embeddings
of predicate words and their semantic frames in a
vector space (Hermann et al., 2014).

3 Model

Our model for SRL performs inference separately
for each marked predicate in a sentence. It assumes
that the predicate has been automatically disam-
biguated to a semantic frame drawn from a frame
lexicon, and the semantic roles of the frame are
used for labeling the candidate arguments in the
sentence. Formally, we are given a sentence x in
which a predicate t, with lexical unit `, has been
marked. Assuming that the semantic frame f of the
predicate has already been identified (see §4.2 for
this step), we seek to predict the set of spans that
correspond to its overt semantic arguments and to
label each argument with its semantic role. Specif-
ically, we model the problem as that of assigning
each span s ∈ S , from an over-generated set of can-
didate argument spans S , to a semantic role r ∈ R.
The set of semantic roles R includes the special
null role ∅, which is used to represent non-overt
arguments. Thus, our algorithm performs the SRL
task in one step for a single predicate frame. For
the span-based SRL task, in a sentence of n words,
there could be O(n2) potential arguments. For sta-
tistical and computational reasons we prune the set
of spans S using a set of syntactically-informed
heuristics from prior work (see §4.2).

3.1 Graphical Model

We make use of a graphical model that represents
global assignment of arguments to their semantic
roles, subject to linguistic constraints (Punyakanok
et al., 2008; Täckström et al., 2015). Under this
graphical model, we assume a parameterized po-
tential function that assigns a real-valued com-
patibility score g(s, r;θ) to each span-role pair
(s, r) ∈ S ×R, where θ denotes the model param-
eters. Below, we consider two types of potential
functions. As a baseline, similar to most prior work,
one could use a simple linear function of discrete
input features gL(s, r;θ) = θ> · φ(r, s, x, t, `, f),
where φ(·) denotes a feature function. In this work,
we instead propose a multi-layer feed-forward neu-
ral network potential function, specified in §3.2.
Given these local factors, we employ the dynamic
program of Täckström et al. to enforce global con-
straints on the inferred output.
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Figure 2: Neural network architecture.

Let R|S| denote the set of all possible assign-
ments of semantic roles to argument spans (si, ri)
for si ∈ S that satisfy the constraints. Given a
potential function g(s, r) , g(s, r;θ), the proba-
bility of a joint assignment r ∈ R|S|, subject to the
constraints, is given by

p(r | x, t, `, f) = exp

∑
si∈S

g(si, ri)−A(S)

 ,

(1)

where the log-partition function A(S) sums over
all satisfying joint role assignments:

A(S) = log
∑

r′∈R|S|
exp

∑
si∈S

g(si, r′i)

 . (2)

3.2 Neural Network Potentials
Our approach replaces the standard linear poten-
tial function gL(s, r;θ) with the real-valued output
of a feed forward neural network with non-linear
hidden units. The network structure is outlined in
Figure 2. The frame f and role r are initially en-
coded using a one-hot encoding as if and ir. In
other words, if and ir have all zeros except for one
position at f and r respectively. These are passed
through fully connected linear layers to give ef
and er. We call these linear layers the embedding
layers since if selects the embedding of the frame
f and ir for r. Next, ef and er are passed through
a fully connected rectified linear layer (Nair and
Hinton, 2010), to obtain the final frame-role repre-
sentation v(f,r). For the candidate span, the process
is similar. Atomic features φ(s, x, t, `) for the ar-
gument span s are extracted first. (These features
are the non-conjoined features used in the linear

• first word of s • tag of the first word of s
• last word of s • tag of the last word of s
• head word of s • tag of the head word of s
• bag of words in s • bag of tags in s
• cluster of s’s head • linear distance of s from t
• t’s children words • word cluster of s’s head
• dependency path between s’s head and t
• subcategorization frame of s
• position of s w.r.t. t (before, after, overlap or same)
• predicate use voice (active, passive, or unknown)
•whether the subject of t is missing (missingsubj)
• position of s w.r.t. t (before, after, overlap or same)
•word, tag, dependency label and cluster of the words

immediately to the left and right of s

Table 1: Span features φ(s, x, t, `) in Figure 2.

model of Täckström et al.; see Table 1 for the list).
These are next passed through a fully-connected
linear embedding layer to get the span embedding
es, which is subsequently passed through a fully
connected rectified linear layer to obtain vs, the
final span representation. The final output is the
dot product of vs and v(f,r):

gNN(s, r;θ) = v>s · v(f,r) . (3)

The weights of all the layers constitute the param-
eters θ of the neural network. We initialize θ ran-
domly, with the exception of embedding parame-
ters corresponding to words, which are initialized
from pre-trained word embeddings (see §4.4 for
details). We train the network as described in §3.3.3

Note that unlike typical linear models, the atomic
span features are not explicitly conjoined with each
other, the frame or the role. Instead the hidden
layers learn to emulate span feature conjunctions
and frame and role feature conjunctions in paral-
lel.4 Moreover, note that span vs and frame-role
v(f,r) representations are decoupled in this model.
This decoupling is important as it allows us to train
a single model in a multitask setting. We demon-
strate this by successfully combining PropBank
and FrameNet training data, as described in §5.

3.3 Parameter Estimation

We consider two methods for parameter estimation.

3Various other network structures are worth investigating,
such as concatenating the span, frame and role representa-
tions and passing them through fully connected layers. This
treatment, for example, has been used by Chen and Manning
(2014) for syntactic parsing. We leave these explorations to
future work.

4We found that adding feature conjunctions to the net-
work’s input layer did not improve performance in practice.
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Local Estimation In local estimation, we treat
each span-role assignment pair (s, r) ∈ S×R as an
individual binary decision problem and maximize
the corresponding log-likelihood of the training
set.5 Denote by zs,r ∈ {0, 1} the decision vari-
able, such that zs,r = 1 iff span s is assigned role
r. By passing the potential gNN(s, r;θ) through
the logistic function, we obtain the log-likelihood
l(zs,r;θ) , log p(zs,r | x, t, `, f) of an individual
training example. Here,

p(zs,r | x, t, `, f) =


1

1+e−gNN(s,r;θ) if zs,r = 1
e−gNN(s,r;θ)

1+e−gNN(s,r;θ) if zs,r = 0

Thus, the gold role for a given span according to
the training data serves as the positive example,
while all the other potential roles serve as negatives.
To maximize the log-likelihood, we use Adagrad
(Duchi et al., 2011). This requires the gradient of
the log-likelihood with respect to the parameters θ,
which can be derived using the chain rule.

Structured Estimation In structured estimation,
we instead learn a globally normalized probabilis-
tic model that takes the structural constraints into
account during training. This method is closely
related to the linear approach of Täckström et al.
(2015), as well as to the fine-tuning of a neural
CRF described by Do and Artières (2010).

We train the model by maximizing the log-
likelihood of the training data, again using Adagrad.
From Equation (1), we have that the log-likelihood
l(r;θ) , log p(r | x, t, `, f) of a single (struc-
tured) training example (r,S, x) is given by

l(r;θ) =
∑
si∈S

g(si, ri)−A(S) . (4)

By application of the chain rule, the gradient of the
log-likelihood factorizes as

∂l(r;θ)
∂θ

=
∂l(r;θ)
∂gNN

∂gNN

∂θ
, (5)

where we have used the shorthand gNN for brevity.
It is easy to show that the first term ∂l(r;θ)/∂gNN

factors into the marginals over edges in the DP
lattice, which can be computed with the forward-
backward algorithm (recall that the potentials are in

5An alternate way to locally train the neural network would
be to treat the scores as potentials in a multiclass logistic
regression model and optimize log-likelihood, as is done with
the locally-trained linear model from Täckström et al. (2015),
but we did not investigate this alternative in this work.

simple correspondence with the edge scores in the
DP lattice, see Täckström et al. (2015, §4) for de-
tails). Again, the chain rule can be used to compute
the gradient ∂gNN/∂θ with respect to the parame-
ters of each layer in the network.

3.4 Product of Experts

As we will observe in Tables 2 to 5, random initial-
ization of the neural network parameters θ causes
variance in the performance over different runs.
We found that using a straightforward product-of-
experts (PoE) model (Hinton, 2002) at inference
time reduces this variance and results in signifi-
cantly higher performance. This PoE model is a
very simple ensemble, being the factor-wise sum
of the potential functions from K independently
trained neural networks:

gPoE(s, r;θ) =
K∑
j=1

g
(j)
NN (s, r,θ) . (6)

where g(j)
NN (s, r,θ) is the score from model j.

4 Experimental Setup

In this section we describe the datasets used, the re-
quired preprocessing steps, the baselines compared
to and the details of our experimental setup.

4.1 Datasets and Significance Testing

We evaluate our approach on four standard datasets.
For span-based SRL using PropBank conventions
(Palmer et al., 2005), we evaluate on both the
CoNLL 2005 shared task dataset (Carreras and
Màrquez, 2005), and the larger CoNLL 2012
dataset derived from the OntoNotes 5.0 corpus
(Weischedel et al., 2011). We also evaluate our
model on the CoNLL 2009 shared task dataset (Ha-
jič et al., 2009), that annotates roles for semantic
dependencies, rather than full argument spans. For
the CoNLL datasets, we use the standard training,
development and test sets. For frame-semantic
parsing using FrameNet conventions (Baker et al.,
1998), we follow Das et al. (2014) and Hermann et
al. (2014) in using the full-text annotations of the
FrameNet 1.5 release and follow their data splits.

We use the standard evaluation scripts for each
task and use a paired bootstrap test (Efron and Tib-
shirani, 1994) to assess the statistical significance
of the results. For brevity, we only give the p-values
for the observed differences between our best and
second best models on each of the test sets.
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4.2 Preprocessing and Frame Identification

All datasets are preprocessed with a part-of-speech
tagger and a syntactic dependency parser, both
trained on the CoNLL 2012 training split, after
converting the constituency trees to Stanford-style
dependencies (De Marneffe and Manning, 2013).
The tagger is based on a second-order conditional
random field (Lafferty et al., 2001) with standard
emission and transition features; for parsing, we
use a graph-based parser with structural diversity
and cube-pruning (Zhang and McDonald, 2014).

On the WSJ development set (section 22), the la-
beled attachment score of the parser is 90.9% while
the part-of-speech tagger achieves an accuracy of
97.2%. On the CoNLL 2012 development set, the
corresponding scores are 90.2% and 97.3%. Both
the tagger and the parser, as well as the SRL mod-
els use word cluster features (see Table 1). Specif-
ically, we use the clusters with 1000 classes from
Turian et al. (2010), which are induced with the
Brown algorithm (Brown et al., 1992). To gener-
ate the candidate arguments S (see §3.2) for the
CoNLL 2005 and 2012 span-based datasets, we
follow Täckström et al. (2015) and adapt the algo-
rithm of Xue and Palmer (2004) to use dependency
syntax. For the dependency-based CoNLL 2009
experiments, we modify our approach to assume
single length spans and treat every word of the sen-
tence as a candidate argument. For FrameNet, we
follow the heuristic of Hermann et al. (2014).

As mentioned in §3, we automatically disam-
biguate the predicate frames. For FrameNet, we
use an embedding-based model described by Her-
mann et al. (2014). For PropBank, we use a multi-
class log-linear model, since Hermann et al. did not
observe better results with the embedding model.

To ensure a fair comparison with the closest lin-
ear model baseline, we ensured that the prepro-
cessing steps, the argument candidate generation
algorithm for the span-based datasets and the frame
identification methods are identical to Täckström
et al. (2015, §3.2, §6.2-§6.3).

4.3 Baseline Systems

In addition to comparing to Täckström et al. (2015),
whose setup is closest to ours, we also compare to
prior state-of-the-art systems from the literature.

For CoNLL 2005, we compare to the best non-
ensemble and ensemble systems of Surdeanu et al.
(2007), Punyakanok et al. (2008) and Toutanova et
al. (2008). The ensemble variants of these systems

use multiple parses and multiple SRL systems to
leverage diversity. In contrast to these ensemble
systems, our product-of-experts model uses only a
single architecture and one syntactic parse; the con-
stituent models differ only in random initialization.
We also compare with the recent deep bidirectional
LSTM model of Zhou and Xu (2015).

For CoNLL 2012, we compare to Pradhan et al.
(2013), who report results with the (non-ensemble)
ASSERT system (Pradhan et al., 2005), and to the
model of Zhou and Xu (2015).

For CoNLL 2009, we compare to the top
system from the shared task (Zhao et al.,
2009), two state-of-the-art systems that employ a
reranker (Björkelund et al., 2010; Roth and Wood-
send, 2014), and the recent tensor-based model
of Lei et al. (2015). We also trained the linear
model of Täckström et al. on this dataset (their
work omitted this experiment), as a baseline.

Finally, for the FrameNet experiments, we com-
pare to the state-of-the-art system of Hermann et
al. (2014), which combines a frame-identification
model based on WSABIE (Weston et al., 2011) with
a log-linear role labeling model.

4.4 Hyperparameters and Initialization

There are several hyperparameters in our model
(§3.2). First, the span embedding dimension of es
was fixed to 300 to match the dimension of the pre-
trained GloVe word embeddings from Pennington
et al. (2014) that we use to initialize the embed-
dings of the word-based features in φ(s, x, t, `).
Preliminary experiments showed random initial-
ization of the word-based embeddings to be in-
ferior to pre-trained embeddings. The remain-
ing model parameters were randomly initialized.
The frame embedding dimension was chosen from
{100, 200, 300, 500}, while the hidden layer di-
mension was chosen from {300, 500}. For Prop-
Bank, we fixed the role embedding dimension
to 27, which is the number of semantic roles in
PropBank datasets (ignoring the AA role, that ap-
pears with negligible frequency). For FrameNet,
the role embedding dimension was chosen from
{100, 200, 300, 500}. In the Adagrad algorithm,
the mini-batch size was fixed to 100 for local esti-
mation (§3.3). For structured estimation (§3.3), a
batch size of one was used, since each structured in-
stance contains multiple local factors. The learning
rate was chosen from {0.1, 0.2, 0.5, 1.0} for local
learning and from {0.01, 0.02, 0.05, 0.1} for struc-
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WSJ Dev WSJ Test Brown Test

Method P R F1 Comp. P R F1 Comp. P R F1 Comp.

Surdeanu (Single) – – – – 79.7 74.9 77.2 52.0 – – – –
Surdeanu (Ensemble) – – – – 87.5 74.7 80.6 51.7 81.8 61.3 70.1 34.3
Toutanova (Single) – – 77.9 57.2 – – 79.7 58.7 – – 67.8 39.4
Toutanova (Ensemble) – – 78.6 58.7 81.9 78.8 80.3 60.1 – – 68.8 40.8
Punyakanok (Single) – – – – 77.1 75.5 76.3 – – – – –
Punyakanok (Ensemble) 80.1 74.8 77.4 50.7 82.3 76.8 79.4 53.8 73.4 62.9 67.8 32.3
Täckström (Local) 81.3 74.8 77.9 52.4 82.6 76.4 79.3 54.3 74.0 66.8 70.2 38.4
Täckström (Struct.) 81.2 76.2 78.6 54.4 82.3 77.6 79.9 56.0 74.3 68.6 71.3 39.8
Zhou 79.7 79.4 79.6 – 82.9 82.8 82.8 – 70.7 68.2 69.4 –

This work (Local) 81.4 75.6 78.4 53.7 82.3±0.4 76.8±0.5 79.4±0.1 55.1±0.6 74.1±0.6 68.0±0.7 70.9±0.3 39.1±0.8

This work (Struct.) 80.7 76.1 78.3 54.1 81.8±0.5 77.3±0.3 79.4±0.2 55.6±0.5 73.8±0.7 68.8±0.6 71.2±0.3 40.5±0.8

This work (Local, PoE) 82.0 76.6 79.2 55.2 82.9 77.8 80.3∗ 56.7 75.2 69.1 72.0 40.8
This work (Struct., PoE) 81.2 76.7 78.9 55.1 82.5 78.2 80.3∗ 57.3∗ 74.5 70.0 72.2∗∗ 41.3

Table 2: PropBank-style SRL results on CoNLL 2005 data. Bold font indicates the best system using a
single or no syntactic parse, while the best scores among all systems are underlined. Results from prior
work are taken from the respective papers, and ‘–’ indicates performance metrics missing in the original
publication. Statistical significance was assessed for F1 and Comp. on the WSJ and Brown test sets with
p < 0.01 (∗) and p < 0.05 (∗∗).

Excluding predicate senses Including predicate senses

WSJ Dev WSJ Test Brown Test WSJ Test Brown Test

CoNLL-2009 1st place – 82.1 69.8 86.2 74.6
Björkelund et al., 2010 + reranking 80.5 82.9 70.9 86.9 75.7
Roth and Woodsend, 2014 + reranking – 82.1 71.1 86.3 75.9
Lei et al. 2015 81.0 82.5 70.8 86.6 75.6
Täckström et al. 2015 (Local) 81.4 83.0 71.2 86.9 74.8
Täckström et al. 2015 (Struct.) 82.4 83.7 72.3 87.3 75.5

This work (Local) 81.2±0.2 82.7±0.3 71.9±0.4 86.7±0.2 75.2±0.3

This work (Struct) 82.3±0.1 83.6±0.1 71.9±0.3 87.3±0.1 75.2±0.2

This work (Local, PoE) 82.4 83.8 72.8 87.5 75.9
This work (Struct., PoE) 83.0∗ 84.3∗ 72.4 87.8∗ 75.5

Table 3: PropBank-style semantic dependency SRL results (labeled F1) on the CoNLL 2009 data set.
Bold font indicates the best system. Statistical significance was assessed with p < 0.01 (∗).

tured learning.6 All hyperparameters were tuned
on the respective development sets for each dataset
with a straightforward grid-search procedure. In
the product-of-experts setup, we train K = 10
models, each with a different random seed, and
combine them at inference time (see Equation (6)).

5 Empirical Results

Table 2 shows results on the CoNLL 2005 devel-
opment set and the WSJ and Brown test sets. Our
individual neural network models are on par with
the best linear single-system baselines that use care-
fully chosen feature combinations, but has variance
across reruns. On the WSJ test set, the product-

6We observed a strong interaction between learning rate
and mini-batch size. Since the number of factors per frame
structure is much larger than 100, lower learning rates are
better suited for structured estimation.

of-experts model featuring neural networks trained
with structured learning achieves higher F1-score
than all non-ensemble baselines, except the LSTM
model of Zhou and Xu. It is on par and at times
better than ensemble baselines that use diverse syn-
tactic parses. The PoE model outperforms all base-
lines on the Brown test set, exhibiting its gener-
alization power on out-of-domain text. Overall,
using structured learning improves recall at a slight
expense of precision when compared to local learn-
ing, leading to an increase in the complete argu-
ment structure accuracy (Comp. in the tables).

Table 3 shows results on the CoNLL 2009 task.
Following Lei et al. (2015), we present results us-
ing the official evaluation script, along with addi-
tional metrics that do not count frame predictions.
Note that the linear baseline of Täckström et al.
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CoNLL 2012 Development

Method P R F1 Comp.

Täckström (Local) 80.6 77.1 78.8 59.0
Täckström (Struct.) 80.5 77.8 79.1 60.1
Zhou – – 81.1 –

This work (Local) 80.4 77.3 78.8 59.0
This work (Struct) 80.6 77.8 79.2 59.8
This work (Local, PoE) 81.0 78.3 79.6 60.6
This work (Struct., PoE) 81.0 78.5 79.7 60.9

CoNLL 2012 Test

Method P R F1 Comp.

Pradhan 81.3 70.5 75.5 51.7
Pradhan, revised 78.5 76.6 77.5 55.8
Täckström (Local) 80.9 77.7 79.2 60.9
Täckström (Struct.) 80.6 78.2 79.4 61.8
Zhou – – 81.3 –

This work (Local) 80.6±0.3 77.8±0.2 79.2±0.1 60.8±0.3

This work (Struct.) 80.9±0.2 78.4±0.2 79.6±0.1 61.7±0.2

This work (Local, PoE) 81.3 78.8 80.0 62.4
This work (Struct., PoE) 81.2 79.0 80.1∗ 62.6∗

Table 4: PropBank-style SRL results on the
CoNLL 2012 development and test sets. Results
from prior work are taken from the respective pa-
pers, and ‘–’ indicates performance metrics miss-
ing in the original publication. Significance was
assessed for F1 and Comp. on the test set with
p < 0.01 (∗).

outperforms most prior work, including ones that
employs rerankers, except on the Brown test set.
Our neural network model performs even better,
achieving state-of-the-art results on all metrics.

Table 4 shows the results on the span-based
CoNLL 2012 data. The trends observed on the
CoNLL 2005 data hold here as well, with struc-
tured training yielding an increase in precision at
the cost of a small drop in recall. This leads to im-
provements in both F1 score and complete structure
accuracy. The product-of-experts model trained
with structured learning here yields results better
than the ASSERT system (Pradhan et al., 2013),
but akin to CoNLL 2005, our system falls short in
comparison to Zhou and Xu’s F1-score. In contrast
to the smaller CoNLL 2005 data, even our sin-
gle (non-PoE) model outperforms the linear model
of Täckström et al. (2015) on the CoNLL 2012
data. We hypothesize that the relative abundance
of the latter counteracts the risk for overfitting of
the larger number of parameters in our model.

Finally, Table 5 shows the results on FrameNet
data, which is very small in size. Here, structured
learning does not help and in fact leads to a small

FrameNet Development

Method P R F1 Comp.

Hermann 78.3 64.5 70.8 –
Täckström (Local) 80.7 62.9 70.7 31.2
Täckström (Struct.) 79.6 64.1 71.0 33.3

This work (Local) 78.6 64.6 70.9 32.0
This work (Struct.) 79.6 63.9 70.9 31.8
This work (Local, PoE) 79.0 65.0 71.3 33.1
This work (Struct., PoE) 79.0 64.4 71.0 32.3
This work (Local, PoE, Joint) 79.4 65.8 72.0 34.5
This work (Struct., PoE, Joint) 78.8 65.4 71.5 33.5

FrameNet Test

Method P R F1 Comp.

Hermann 74.3 66.0 69.9 –
Täckström (Local) 76.1 64.9 70.1 33.0
Täckström (Struct.) 75.4 65.8 70.3 33.8

This work (Local) 73.9±0.6 66.4±0.4 69.9±0.3 33.4±0.6

This work (Struct.) 74.8±0.2 65.5±0.2 69.9±0.1 33.0±0.3

This work (Local, PoE) 74.3 66.9 70.4 33.9
This work (Struct., PoE) 74.6 66.3 70.2 33.3
This work (Local, PoE, Joint) 75.0 67.3 70.9∗∗ 35.4∗
This work (Struct., PoE, Joint) 74.2 67.2 70.5 34.2

Table 5: Joint frame and argument identification
results for FrameNet. Statistical significance was
assessed for F1 and Comp. on the test set with
p < 0.01 (∗) and p < 0.05 (∗∗).

drop in performance. Our locally-trained neural
network model performs comparably to the linear
model of Täckström et al. (2015). However we
achieve significant improvements in both F1-score
and full structure accuracy by training our model
with a dataset composed of both FrameNet and
CoNLL 2005 data.7 The ability to train in this mul-
titask setting is a unique capability of our approach,
and yields state-of-the-art results for FrameNet.

Figure 4 shows the effect of adding increasing
amount of CoNLL 2005 data to supplement the
FrameNet training corpus in this multitask setting.
The Y -axis plots F1-score on the development data
averaged across runs for the local non-PoE model.
With increasing amount of PropBank data, perfor-
mance increases in small steps, and peaks when
all the data is added. This shows that with more
PropBank data we could further improve perfor-
mance on the FrameNet task; we leave further ex-
ploration of multitask learning of predicate argu-
ment structures, including multilingual settings, to
future work.

7The joint model does not improve results for PropBank.
This is likely due to the much larger CoNLL 2005 training set,
compared to the FrameNet data (39,832 training sentences in
the former as opposed to 3,256 sentences in the latter).
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projections (Van der
Maaten and Hinton,
2008) of joint Prop-
Bank and FrameNet
(boxed) embeddings
of frames (a) and
frame-role pairs (b).
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Figure 4: F1 score on the FrameNet development
data averaged over runs versus the percentage of
CoNLL 2005 data used to append the FrameNet
training corpus. For this plot, we used the locally
trained non-PoE model.

5.1 Qualitative Analysis of Embeddings

Figure 3 shows example embeddings from the
model trained jointly on FrameNet and PropBank
annotations. Figure 3a shows the proximity of
the learned embeddings ef of frames from both
FrameNet and PropBank. Figure 3b shows the em-
beddings for frame-role pairs v(f,r) (the output of
the hidden rectified linear layer). Here, we fix the
FrameNet frame Travel and the similar PropBank
frames commute.01, tour.01 and travel.01 are visual-
ized along with their semantic roles. We observe
that the model learns very similar embeddings for
the semantically related roles across both datasets.
Note that there is a clear separation of the agentive
roles from the others for both conventions and how
the FrameNet and PropBank counterparts of each
type of role are proximate in vector space.

6 Conclusion

We presented a neural network model for seman-
tic role labeling that learns to embed both inputs
and outputs in the same vector space. We consid-
ered both local and structured training methods for
the network parameters from supervised SRL data.
Empirically, our approach achieves state-of-the-art
results on two standard datasets with a product of
experts model, while approaching the performance
of a recent deep recurrent neural network model on
two other datasets. By training the model jointly
on both FrameNet and PropBank data, we achieve
the best result to date on the FrameNet test set. Fi-
nally, qualitative analysis indicates that the model
represents semantically similar annotations with
proximate vector-space embeddings.
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Abstract

Relational phrases (e.g., “got married to”)
and their hypernyms (e.g., “is a relative
of”) are central for many tasks including
question answering, open information ex-
traction, paraphrasing, and entailment de-
tection. This has motivated the develop-
ment of several linguistic resources (e.g.
DIRT, PATTY, and WiseNet) which sys-
tematically collect and organize relational
phrases. These resources have demonstra-
ble practical benefits, but are each limited
due to noise, sparsity, or size. We present a
new general-purpose method, RELLY, for
constructing a large hypernymy graph of
relational phrases with high-quality sub-
sumptions using collective probabilistic
programming techniques. Our graph in-
duction approach integrates small high-
precision knowledge bases together with
large automatically curated resources, and
reasons collectively to combine these re-
sources into a consistent graph. Using
RELLY, we construct a high-coverage,
high-precision hypernymy graph consist-
ing of 20K relational phrases and 35K hy-
pernymy links. Our evaluation indicates
a hypernymy link precision of 78%, and
demonstrates the value of this resource for
a document-relevance ranking task.

1 Introduction

One of the many challenges in natural lan-
guage understanding is interpreting the multi-
word phrases that denote relationships between
entities. Semantically organizing the complex re-
lationships between diverse phrases is crucial to
applications including question answering, open
information extraction, paraphrasing, and entail-
ment detection (Yahya et al., 2012; Fader et al.,

2011; Madnani et al., 2012; Dagan et al., 2005).
For example, a corpus containing the phrase
“George Burns was married to Gracie Allen” al-
lows us to answer the query “Who was the spouse
of George Burns?” However, “Jay Z is in a re-
lationship with Beyoncé” provides insufficient in-
formation to determine whether the couple is mar-
ried. To capture the knowledge found in text, rela-
tional phrases need to be systematically organized
with lexical links like synonymy (“married to” and
“spouse of”) and hypernymy (“in a relationship”
generalizing “married to”).

Many projects address the challenge of under-
standing relational phrases, but existing linguis-
tic resources are often limited to synonymy, suffer
from low precision, or have low coverage. Sys-
tems such as DIRT (Lin and Pantel, 2001), RE-
SOLVER (Yates and Etzioni, 2009), and WiseNet
(Moro and Navigli, 2012) have used sophisticated
clustering techniques to determine synonymous
phrases, but do not provide subsumption informa-
tion. The PATTY (Nakashole et al., 2012) project
goes beyond clustering and introduces a subsump-
tion hierarchy, but suffers from sparsity and con-
tains few hypernymy links. The HARPY (Gryc-
ner and Weikum, 2014) project extended PATTY,
generating 600K hypernymy links, but with low
precision. Berant et al. (2011) introduced en-
tailment graphs that provided a high-quality sub-
sumption hierarchy. This method required parti-
tioning the graph and the largest component con-
sisted of 120 relations. A number of manually-
curated relational taxonomies such as WordNet
(Fellbaum, 1998), VerbNet (Kipper et al., 2008),
and FrameNet (Baker et al., 1998) also offer high-
precision hierarchies with limited coverage.

In this paper, we introduce RELLY, a method
for producing a hypernymy graph that has both
high coverage and precision. We build on pre-
vious work, integrating the high-precision knowl-
edge in resources such as YAGO (Suchanek et al.,
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2007) and WordNet with noisy statistical informa-
tion from OpenIE projects PATTY and HARPY.
RELLY maintains a consistent graph by includ-
ing collective global constraints such as transitiv-
ity, asymmetry, and acyclicity. Scalability is of-
ten a concern when employing collective reason-
ing over large corpora, but our system can pro-
duce graphs with over 100K edges on conven-
tional hardware. As a result, we produce a large,
complete, and high-precision hypernym graph that
includes alignments and type information.

RELLY leverages probabilistic soft logic (PSL)
(Bach et al., 2015), a popular probabilistic mod-
eling framework, to collectively infer hypernymy
links at scale. PSL uses continuously-valued vari-
ables and evidence, allowing easy integration of
uncertain statistical information while encoding
dependencies between variables using a first-order
logic syntax. We define a PSL model with rules
that combine statistical features, semantic infor-
mation, and structural constraints. Statistical fea-
tures, such as argument overlap and alignments
to WordNet verbs senses, allow RELLY to learn
from large text collections. Semantic informa-
tion, such as type information for relation argu-
ments, improves precision of the resulting infer-
ences. Structural constraints, such as transitivity
and acyclicity, enforce a complete and consistent
set of edges. Using this PSL model, we learn rule
weights with a small amount of training data and
then perform joint inference over all hypernymy
links in the graph.

We highlight three major contributions of our
work. First, we introduce RELLY, a scalable
method for integrating statistical and semantic sig-
nals to produce a hypernymy graph. RELLY is ex-
tensible and can easily incorporate additional in-
formation sources and features. Second, we gener-
ate a complete and precise hypernymy graph over
20K relational phrases and 35K hypernymy links.
We have publicly released this hypernymy graph
as a resource for the NLP community. Third, we
present a thorough empirical evaluation to mea-
sure the precision of the hypernymy graph as well
as demonstrate its usefulness in a real-world docu-
ment ranking task. Our results show a high preci-
sion (0.78) and superior performance in document
ranking compared to state-of-the-art models such
as word2vec (Mikolov et al., 2013).

2 Background

Before describing the details of RELLY, we be-
gin with necessary background information on the
task of semantically organizing relational phrases,
as well as the probabilistic soft logic modeling lan-
guage which we use to develop our hypernymy
graph construction method.

2.1 Relational Phrases

Relational phrases are textual representations of
relations which occur between named entities
(e.g., “Terry Pratchett”) or noun phrases (e.g., “the
great writer”). Nakashole et al. (2012) identify re-
lational phrases with the semantic type signature
of the relation, i.e. the fine-grained lexical types
of left- and right-hand side arguments. For ex-
ample, “Terry Pratchett published his new novel
The Colour of Magic” is an instance of the re-
lational phrase “<person> published his * ADJ
novel <book>.” In this case, the left-hand ar-
gument (the domain of the relation) has the type
<person> and the right-hand argument (the range
of the relation) has the type <book>.

Several projects from the Open Information
Extraction community have addressed the task
of finding synonyms of relational phrases us-
ing clustering algorithms. The biggest collec-
tion of relational phrases and their synonyms is
currently the PATTY project (Nakashole et al.,
2012), with around 350,000 semantically typed
relational phrases. Prominent alternatives are
WiseNet (Moro and Navigli, 2012), which offers
40,000 synsets of relational phrases, PPDB (Gan-
itkevitch et al., 2013), which contains over 220
million paraphrase pairs, as well as DIRT and Ver-
bOcean (Lin and Pantel, 2001; Chklovski and Pan-
tel, 2004) which inspired the approach and results
pursued here.

Relational phrases can be further organized into
a hierarchical structure according to their hyper-
nymy (subsumption) relationships. For example,
“<person> moves to <country>” is a hypernym
of the relational phrase “<musician> emigrates to
<country>.” Of the aforementioned collections,
only PATTY attempts to automatically create a
subsumption hierarchy for the extracted relational
phrases. The authors of the HARPY system ar-
gue that the sparseness of PATTY’s graph comes
from the lack of general phrases in the source
corpus. As a solution, they propose using the
WordNet verb hierarchy (which contains general
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verb senses) to construct a similar hierarchy with
PATTY’s relational phrases. The graph obtained
by HARPY consists of around 600,000 hyper-
nymy links for around 20,000 relational phrases.
However, the final graph was not evaluated for pre-
cision; rather, the evaluation was instead concen-
trated on the alignment between verb senses and
relations.

In this paper we will make use of several con-
cepts that are closely related to hypernymy, which
we define below. Note that although the following
definitions concern verbs, we also apply them to
relational phrases:

• hypernym: the verb Y is a hypernym of the
verb X if Y is more general than X . To per-
ceive is a hypernym of to listen (Bai et al.,
2010).

• troponym: the verb Y is a troponym of the verb
X if doing Y is doing X , in some manner. To
lisp is a troponym of to talk (Bai et al., 2010).
Troponym is a verb counterpart for hyponym,
which applies to nouns. In this work we use
these two terms interchangeably.

• entailment: the verb Y is entailed by X if, by
doing X , you must be doing Y . To sleep is
entailed by to snore (Bai et al., 2010).

2.2 Probabilistic Soft Logic

Our approach is based on probabilistic soft logic
(PSL), a popular statistical relational learning sys-
tem which we briefly describe here. PSL is a tem-
plating language for a class of graphical models
known as hinge-loss Markov random fields. PSL
models are specified using rules in first-order logic
syntax, expressing dependencies between interre-
lated variables. For example, the PSL rule

w : HYPERNYM(P1, P2) ∧ HYPERNYM(P2, P3)
⇒ HYPERNYM(P1, P3)

expresses the transitivity of hypernyms: if phrase
P1 is a hypernym of phrase P2 and P2 is a hyper-
nym of P3, then P1 is a hypernym of P3. Rules are
weighted (w) to indicate their importance in the
model, and weight learning in PSL allows these
weights to be learned from training data.

Each rule is ground by substituting the variables
in the rule with constants, e.g. ”married to” and
”relative of” for P1 and P2. However, unlike pre-
vious approaches such as Markov logic networks,
the atoms in each logical rule take values in the

[0,1] continuous domain. In addition to provid-
ing a natural way of incorporating uncertainty and
similarity into models, continuous-valued vari-
ables allow the inference objective to be formu-
lated as convex optimization making MAP infer-
ence extremely efficient, with empirical perfor-
mance that scales linearly with the number of
ground rules.

3 Hypernymy Graph Construction

In this section we detail RELLY, our system for
constructing a hypernymy graph. RELLY incor-
porates semantic and statistical information from
sources such as YAGO, WordNet, PATTY, and
HARPY, and uses PSL to combine and reason
over these sources. For each source, we in-
troduce a PSL predicate (Table 1). The predi-
cates are divided into three categories: statisti-
cal (continuous-valued features arising from sta-
tistical methods), semantic (binary predicates ac-
quired from knowledge bases) and output (the tar-
get variables). We relate these predicates with a
series of rules which combine alignment links, ar-
gument similarity, and hierarchical information.
The collection of rules defines the PSL model,
which we describe in Section 3.1 and Table 2.

In the resulting hypernymy graph, an edge from
a relational phraseR1 to a relational phraseR2 de-
notes thatR1 is more specific thanR2, i.e. R2 is a
hypernym of R1. For example, there is an edge
from R1 =“<musician> emigrates to <coun-
try>” toR2 = “<person>moves to<country>.”
In the PSL model the strength of this edge is rep-
resented by the confidence score of the predicate
hyponym(R1, R2).

3.1 PSL Rules

The PSL rules that define the model are shown in
Table 2. Each of the rules is additionally supplied
with a weight which describes its importance in
the model. The weights are learned from a small
hand-crafted hierarchy of relational phrases. The
full PSL model combines multiple statistical and
semantic signals into the hypernymy graph.

Our model includes rules to encode signals that
provide evidence for hypernymy, as well as rules
to encode consistency in the graph. One statistical
signal for phrase subsumption is argument over-
lap. If the arguments to a relational phrase R1
are also found as arguments to another relational
phrase R2, R1 and R2 may be synonymous or
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Table 1: PSL predicates;
R1, R2 are relational phrases, V b1, V b2 WordNet verb senses and TL1, TR1, T1, T2 YAGO types

PSL predicate Type Description

weedsInclusion(R1, R2) statistical degree of inclusion of sets of argument pairs of re-
lations defined as |ArgsR1|

|ArgsR1∩ArgsR2| (Weeds and Weir,
2003)

pattySubsumption(R1, R2) statistical PATTY subsumption (Nakashole et al., 2012)
harpy(R1, V b1) statistical alignment links between relational phrases and Word-

Net verb senses (Grycner and Weikum, 2014)
wordnetHyponym(V b1, V b2) semantic hyponymy link between WordNet verb senses
lType(R1, TL1) semantic left (domain) type of arguments of a relational phrase
rType(R1, TR1) semantic right (range) type of arguments of a relational phrase
yagoHyponym(T1, T2) semantic T1 is a subtype of T2 in YAGO hierarchy
candidateHyponym(R1, R2) output relational phrase R1 is more specific than R2 (without

enforcing consistent argument types)
hyponym(R1, R2) output relational phrase R1 is more specific than R2

R2 may be a hypernym of R1. We use two mea-
sures of argument overlap, weedsInclusion and
pattySubsumption, in rules 1 and 2, respectively,
to capture the relationship between argument over-
lap and subsumption. Another signal, used in rule
3, is the alignment between relational phrases and
WordNet verb senses. If relational phrasesR1 and
R2 are aligned to WordNet verb senses V b1 and
V b2 which are in a hyponymy relationship, then
this is evidence that R1 is more specific than R2.
An example of using HARPY alignment links and
WordNet hierarchy is shown in Figure 1.

We encode local consistency requirements us-
ing Rules 4–6. Rule 4 (types compatibility) is a
constraint to restrict hypernymy links to be be-
tween relations whose types are compatible, i.e
they are identical or the types of the more specific
relation are subtypes of the types of the more gen-
eral relation. Rules 5 and 6 create a transitive clo-
sure of both WordNet and YAGO hierarchies. As a
result of these rules, we can use indirect hyponyms
(in rule 3) or indirect subtypes (in rule 4).

Finally, rules 7, 8 and 9 shape the structure of
the output graph with collective global constraints.
Rule 7 (asymmetry) removes bidirectional links,
rule 8 (transitivity) creates a transitive closure of
the graph and rule 9 (acyclicity) prevents the cre-
ation of small cycles in the graph.

3.2 RELLY Overview

RELLY has four stages: data pre-processing, rule
weight learning, inference, and thresholding.

  

<person> created a <artifact> make.03

create_verbally.01

<person> wrote a poem <artifact> write.01
HARPY alignment

HARPY alignment

WordNet
hierarchy

WordNet
hierarchy

hyponym

Figure 1: HARPY alignment usage

First, in the data pre-processing stage, we as-
sign confidence scores of 0 or 1 for the binary-
valued semantic predicates in the PSL model.
For example, the wordnetHyponym(V b1, V b2)
confidence score is set to 1 if there is a hy-
ponymy link between verb senses V b1 and V b2
and 0 otherwise. In other cases, the confidence
is set to a similarity score of a feature which
is represented by a predicate. For example, the
weedsInclusion(R1, R2) confidence is equal to
the Weeds inclusion score between relations R1
and R2.

In the next stage the weights of the PSL rules
described in Table 2 are learned from a small
handcrafted graph of relational phrases. The
weight learning is performed using an EM al-
gorithm. Later, the most-probable explanation
(MPE) state of the output predicates is inferred.

Finally, we export the inferred confidence
scores of the predicate hyponym and perform ad-
ditional cleaning. Whenever two links contradict
each other (e.g. we have both hyponym(R1, R2)
and hyponym(R2, R1)) we remove the link with
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Table 2: PSL rules

Id Feature PSL rule
1 Weeds inclusion weedsInclusion(R1, R2)⇒ candidateHyponym(R1, R2)
2 Patty subsumption pattySubsumption(R1, R2)⇒ candidateHyponym(R1, R2)
3 Harpy alignment wordnetHyponym(V b1, V b2) ∧ harpy(R1, V b1) ∧ harpy(R2, V b2)

⇒ candidateHyponym(R1, R2)
4 Types candidateHyponym(R1, R2) ∧ lType(R1, TL1) ∧ rType(R1, TR1)

compatibility ∧lType(R2, TL2) ∧ rType(R2, TR2) ∧ yagoHyponym(TL1, TL2)
∧yagoHyponym(TR1, TR2)⇒ hyponym(R1, R2)

5 WordNet wordnetHyponym(V b1, V b2) ∧ wordnetHyponym(V b2, V b3)
hierarchy ⇒ wordnetHyponym(V b1, V b3)

6 Yago hierarchy yagoHyponym(T1, T2) ∧ yagoHyponym(T2, T3)
⇒ yagoHyponym(T1, T3)

7 Asymmetry hyponym(R1, R2)⇒ ¬hyponym(R2, R1)
8 Transitivity hyponym(R1, R2) ∧ hyponym(R2, R3)⇒ hyponym(R1, R3)
9 Acyclicity hyponym(R1, R2) ∧ hyponym(R2, R3)⇒ ¬hyponym(R3, R1)

the lower confidence score. If both predicates have
the same confidence score we exclude them both
from the final graph. Additionally, we only con-
sider links with a confidence score above an em-
pirically chosen threshold of 0.2.

4 Evaluation

In our experiments, we use a large corpus of rela-
tional phrases to construct a hypernymy graph us-
ing RELLY. We evaluate RELLY using both intrin-
sic and extrinsic evaluation. In the intrinsic evalua-
tion, we asked human annotators to judge the rela-
tionship between two relational phrases and com-
pared results from several hypernymy graphs. In
the extrinsic evaluation, we used the hypernymy
graph for a real-world document ranking task and
measured the mean reciprocal rank (MRR) for a
number of methods. In both evaluations, the hy-
pernymy graph constructed by RELLY demon-
strates significantly better performance than com-
peting algorithms.

4.1 Dataset
We use RELLY to build a hypernymy graph with
data from the PATTY and HARPY projects. The
input to our system consists of 20,812 relational
phrases and the associated argument types ex-
tracted from the English-language Wikipedia web-
site using the PATTY system. For simplicity, we
only include relational phrases that contain exactly
one verb (e.g. “took the throne”), excluding noun
phrases (e.g. “member of”) and phrases contain-
ing multiple verbs (e.g. “hit and run”). The verb

“to be” and modal verbs were not considered in
the dataset. We also include HARPY alignments
to the corresponding verb senses in WordNet for
each phrase in the corpus. Additionally, we use
a subset of the type-subsumption hierarchy from
YAGO consisting of 144 types and 323 subsump-
tion relationships.

During graph inference, RELLY evaluated
7.9M possible hypernymy links using 9.7M
ground logical rules and constraints. Ultimately,
RELLY produced 35,613 hypernymy links be-
tween relational phrases with confidence scores
above 0.2. The hypernymy graph consisted of
3,730 roots. Running RELLY on a multi-core
2.27GHz server with 64GB of RAM required ap-
proximately 20 hours. For comparison, PATTY
produced 8,162 subsumption links out of 350,569
phrases with approximately 2,300 roots.

4.2 Intrinsic Evaluation

In our intrinsic evaluation, we assess the precision
of hypernymy links inferred by RELLY and com-
pare with the precision of hypernymy graphs of
PATTY and HARPY. In this evaluation, we mea-
sure precision for both the most confident hyper-
nymy links in the system (precision@100) and the
precision of a random sample of 100 hypernymy
links. Each set of hypernymy links were presented
to several human annotators for labeling.

To measure precision@100, we choose the top
100 hypernymy links using the confidence scores
reported by PSL. We similarly choose the top 100
links from PATTY using the PATTY subsumption
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score. Since HARPY does not provide confidence
scores, we were unable to compute precision@100
for HARPY.

For each of the three systems, we used the full
set of hypernymy links they produce, which con-
sisted of 8K links from PATTY, 600K links from
HARPY and 35K links from RELLY. We ran-
domly sampled 100 hypernymy links from each
of these systems.

We presented the selected hypernymy links to
several human annotators. The labeling task re-
quired the annotator to judge the relationship be-
tween two relational phrases in a hypernymy link.
For each relational phrase, we provided annota-
tors with type information about the phrase argu-
ments (domain and range) and examples of sen-
tences that use the relational phrase. Based on
this information, annotators could make one of
four judgments: (1) the phrases are unrelated;
(2) the phrases are synonymous; (3) the first
phrase is more specific than the second phrase;
(4) the second phrase is more specific than the
first phrase. This evaluation task had good inter-
annotator agreement, with a Cohen’s Kappa of
0.624. Separately, the precision@100 dataset had
Cohen’s Kappa of 0.708 and the randomly sam-
pled dataset had Cohen’s Kappa of 0.521.

We show the results of the intrinsic evaluation in
Table 3 with 0.9-confidence Wilson score interval
(Brown et al., 2001). In comparison to HARPY
and PATTY, RELLY has higher precision for both
precision@100 and random evaluations. Precision
in RELLY is comparable to PATTY, but RELLY
has more than four times as many hypernym links.
HARPY has far more hypernymy links, but with a
precision of 0.43, we find that many of these links
are incorrect.

Table 4 includes example hypernymy links from
RELLY. There are examples where PATTY’s sub-
sumption is a dominant signal (“<person> pub-
licly accused <person>”⇒ “<person> accused
<person>”). We also observe YAGO type hier-
archy influence (“<athlete> played for <team>”
⇒ “<person> played for <organization>”), as
well as the influence of combined WordNet hierar-
chy with HARPY alignments (“<person> marry
daughter <person>” ⇒ “<person> joins <per-
son>”). The advantage of RELLY is that it com-
putes the final graph jointly and incorporates tran-
sitivity, asymmetry and acyclicity rules. It leads
to less semantic drift in longer hypernymy chains

Table 3: Intrinsic evaluation

Prec. Range Cvg.

precision@100

RELLY 0.87 0.81 - 0.92 35K
PATTY 0.83 0.76 - 0.90 8K

random sample

RELLY 0.78 0.71 - 0.84 35K
PATTY 0.75 0.68 - 0.82 8K
HARPY 0.43 0.35 - 0.52 600K

(e.g. Figure 2) compared with PATTY where
“<organization> merged <organization>” can
lead to “<team> beat <team>”.

  

<organization> acquires <organization>

<organization> purchased share <organization>

<organization> bought half of <company>

<company> bought half of <company>

<company> later bought half of <company>

Figure 2: Chain of hypernymy

4.3 Ablation Study

Two advantages of RELLY that we have high-
lighted are easily incorporating new information
sources and collectively enforcing global con-
straints. To analyze the influence of these sys-
tem components, we performed an ablation study
where we omitted PSL rules corresponding to
specific model features. Using this approach,
we quantify the importance of these features to
RELLY’s performance.

First, we demonstrate the value of type informa-
tion in determining hypernymy. The YAGO type
hierarchy allows RELLY to detect hypernymy
links between relational phrases where types do
not match exactly, but are compatible through
type subsumption. When the YAGO type hierar-
chy rules are omitted from the model, coverage
is reduced dramatically; the resulting hypernymy
graph contains only 12,000 hypernymy links in
contrast to the 35,000 links in the original model.
Additionally, removing YAGO type information
harms precision, with a precision of 0.75 ± 0.09
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Table 4: Example RELLY hypernymy links

Hyponym relational phrase Hypernym relational phrase
Domain Text pattern Range Domain Text pattern Range

head of state abdicated in favor of sovereign person resigns as person
person publicly accused person person accused person
person marry daughter person person joins person
person had paid person person interacted with person
athlete played for team person played for organization

Table 5: Results for Entailment graphs induction

Prec. Rec. F1

Berant et al. (2011) 0.422 0.434 0.428
PSL 0.461 0.435 0.447

with 0.9-confidence Wilson score interval for a
random sample of 100 examples.

Next, we show how global constraints on the
hypernymy graph such as anti-symmetry and
acyclicity improve the quality of the hypernymy
graph. Since the relational phrases generated
by PATTY are clustered to find synonymous re-
lations, these global constraints prevent RELLY
from merging clusters. When the anti-symmetry
and acyclicity rules were removed from the model,
the resulting hypernymy graph included approxi-
mately 500 additional hypernymy links, while 10
existing links were removed. We manually evalu-
ated the newly introduced links, and found that the
majority of links were false positives.

4.4 Entailment Graph Induction

We compared the performance of PSL against the
Integer Linear Programming (ILP) formulation by
(Berant et al., 2011). The comparison was per-
formed on the task of creating entailment graphs
as described in (Berant et al., 2011). This task is
strongly related to finding hypernyms of relational
phrases. The experiments were executed on the
dataset of 10 manually annotated graphs. In to-
tal this dataset contains 3,427 positive and 35,585
negative examples. Our model uses the transi-
tivity rule (entails(A,B) ∧ entails(B,C) ⇒
entails(A,C)). We also include the local en-
tailment scores (score(A,B) ⇒ entails(A,B))
which were released by (Berant et al., 2011). Ta-
ble 5 presents micro-averaged precision, recall and
F1 scores for this comparison.

PSL was much faster than the other exact meth-

ods used for this problem. To compare efficiency
we measured the run-time of our method. With-
out any graph decomposition it took on average
232 seconds. The experiments were performed
on a multi-core 2.67GHz server with 32GB of
RAM. The methods reported in (Berant et al.,
2012), which did not utilize graph decomposition
method, had run-time above 5000 seconds.

4.5 Extrinsic Evaluation

The ultimate goal of producing a high-quality hy-
pernymy graph is to deepen our understanding of
natural language and improve performance on the
many NLP applications. One such application is
document retrieval, where billions of queries are
performed each day through search engines. In our
extrinsic evaluation, we demonstrate how a hyper-
nymy graph can improve performance on a docu-
ment ranking and retrieval task.

We consider a task where an input query
document is compared to a corpus of docu-
ments with the aim of finding the most relevant
related documents. To isolate the evaluation
to relational phrases, we anonymize the doc-
uments, by replacing all named entities and
noun phrases with placeholders. For example,
the sentence “The villain has already
fled to the Republica de Isthmus”
is anonymized to “* has already fled
to *.” Anonymized retrieval has potential appli-
cations in security and for sensitive documents.

We collected a dataset consisting of movie plot
summaries from two different websites, Wikipedia
and the Internet Movie Database (IMDB). We
chose plot synopses from 25 James Bond movies
and 23 movies based on the Marvel Comics char-
acters. For each plot synopsis, we have two plot
descriptions: one from Wikipedia and another
from IMDB. Given a query in the form of an
anonymized plot description from one website, the
task is to rank the anonymized plot descriptions
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from the other dataset using relational phrase sim-
ilarity. For example, given a query plot description
of “Iron Man” from Wikipedia, rank plot descrip-
tions from IMDB with the goal of maximizing
the ranking of the corresponding “Iron Man” plot
summary. We evaluate the quality of these rank-
ings using the mean reciprocal rank (MRR) score,
MRR = 1

|Q|
∑|Q|

i=1
1

ranki
. Here, Q is the number of

documents in the collection (i.e. 2*48 = 96) and
ranki is the position of the counterpart document
in the ranking of document i.

As baseline algorithms, we use a unigram
word2vec model and a bigram model. In the uni-
gram word2vec model documents are represented
by the average of the 300-dimensional word vec-
tors trained on part of Google News dataset (about
100 billion words) (Mikolov et al., 2013). We
could not use the bigram word2vec model because
of the frequent occurrence of the placeholder sym-
bol. In the bigram model, documents are rep-
resented by vectors in the bag-of-bigrams model
with bigram frequency weights. The similarity
measure in both cases is the cosine similarity mea-
sure.

As the first of our approaches we proposed a
solution purely based on relational phrases. In
the relational phrases model we extract relational
phrases from a text and we map them to their
synsets from PATTY (clusters of synonyms). A
phrase is mapped to a synset if the Jaccard simi-
larity between tokens of extracted relation and to-
kens of one of the phrases in the synset is above
a threshold. Next we represent the document as
a vector of the relational phrase synsets weighted
by the frequency of the synset in the document
(bag-of-relational phrases). The similarity score
between two documents is the cosine similarity
between two vectors representing two documents.
The ranking is created based on the similarity
scores. In the relational phrases + hypernyms
model we add hypernyms of the extracted rela-
tional phrases to the document vector (based on
the hypernymy graph). Hypernyms are addition-
ally weighted by the confidence score produced by
the algorithm described in the Section 3. In the
second approach we combine relational phrases
models with the best of the baselines. The similar-
ity score is then equal to λsim1+(1−λ)sim2. The
λ parameter is trained on a different dataset (2*8
plot descriptions of Harry Potter movies). Train-
ing was performed by maximization of the MRR

Table 6: Extrinsic evaluation (Bond & Marvel)

MRR score

word2vec 0.26

bigram 0.55

relational phrases 0.28
+ hypernyms 0.25
+ bigrams 0.58
+ hypernyms + bigrams 0.60

score using grid search. We consider the combina-
tion of the bigram model with relational phrases,
as well as the combination of the bigram model
with relational phrases + hypernyms.

The results of the experiment are presented in
Table 6. The best MRR score was obtained by re-
lational phrases + hypernyms + bigrams model.
The number of samples, 96, was large enough for
statistical significance. We performed a paired t-
test for MRR between each of these methods.
The obtained p-values were below 0.05.

5 Related Work

The biggest sources of hypernyms, subsumptions,
and hierarchical structure can be found in exist-
ing knowledge bases. Examples of these are Free-
base (Bollacker et al., 2008), YAGO, DBPedia
(Lehmann et al., 2014), and Google Knowledge
Vault (Dong et al., 2014). However, these knowl-
edge bases are mainly concentrated on named enti-
ties and noun phrases, and the variety of relations
between entities is much smaller. Relations and
information about them are underrepresented.

Open Information Extraction systems try to
solve this problem by extracting new relations
from natural text. These new relations do not
necessarily follow the standard schema of knowl-
edge bases. Additionally, these systems often or-
ganize the newly extracted relations by clustering
or hierarchy construction. A first attempt to ex-
tract and cluster similar relations was presented in
DIRT. This work was followed by projects such
as ReVerb, PATTY, WiseNet, NELL (Carlson et
al., 2010), and RESOLVER (Yates and Etzioni,
2009). PATTY and WiseNet also introduced se-
mantic types to their concept of relational phrases.
All of these systems rely on the co-occurrence of
arguments of clustered relations. A different ap-
proach was presented in PPDB, where the authors
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cluster phrases based on the similarity of transla-
tions to other languages.

Of these systems, only PATTY attempted to cre-
ate a hierarchy of relations and the result was very
sparse. HARPY aimed to overcome this problem
by disambiguating and aligning relational phrases
with WordNet, and performing a simple recon-
struction of the WordNet hierarchy on top of rela-
tional phrases from PATTY. A very similar prob-
lem was addressed in the entailment graph project
(Levy et al., 2014). The authors automatically
created graphs of entailments between proposi-
tions, using Integer Linear Programing as one of
the main components. Propositions can be en-
coded as triples of form (subject, relation, ob-
ject). Edges in the entailment graph occur between
these triples, whereas edges connect typed rela-
tions in PATTY and HARPY. Moreover, the rela-
tions in the propositions were mainly limited to
single verbs, whereas in our case we also consider
longer relational phrases. Relations with semantic
types were also used in typed entailment graphs
(Berant et al., 2011). However, the type hierarchy
was not considered there, which prevented from
creating links between two relations with different
semantic types. The input dataset was also smaller
– the biggest graph consisted of 118 relations.

Although there is a scarcity of automatically
created taxonomies of relations, there exist several
manually curated taxonomies. Manually crafted
verb or relation hierarchies are available in Word-
Net, VerbNet and FrameNet. WordNet has 13,767
verb synsets, which are organized into a hierarchy
with 13,239 hypernymy links.

Automatic construction of taxonomies of
named entities or noun phrases has received much
more attention than organization of verbs or rela-
tions. In (Snow et al., 2006), the WordNet taxon-
omy was extended by 10,000 novel noun synsets
with hypernym-hyponym links. In (Bansal et al.,
2014), the authors reconstructed WordNet’s noun
hypernymy/hyponymy hierarchy from scratch us-
ing a probabilistic graphical model formulation.
Another method of organizing noun phrases was
proposed in (Mehdad et al., 2013), where an en-
tailment graph of noun phrases was constructed.

Building a hypernymy graph for relational
phrases is strongly related with the textual entail-
ment task (Dagan et al., 2010). This concept was
introduced in the Recognizing Textual Entailment
(RTE) shared task (Dagan et al., 2005). Instead of

short typed relational phrases, the input data are
two texts – the entailing text T and the hypothesis
text H . According to (Dagan et al., 2005)’s defi-
nition, “T entails H if, typically, a human reading
T would infer that H is most probably true.”

In RELLY, we use probabilistic soft logic (PSL)
as the main ingredient of our approach. PSL was
successfully used for numerous other applications
including knowledge graph construction (Pujara
et al., 2013), trust in social networks (Huang et
al., 2012b), ontology alignment (Broecheler and
Getoor, 2009), and social group modeling (Huang
et al., 2012a).

6 Conclusion

This paper presents RELLY, a scalable method for
integrating statistical and semantic signals to pro-
duce a hypernymy graph of relational phrases. We
used RELLY to create a hypernymy graph that has
both high coverage and precision, as shown in our
evaluation. RELLY is extensible and can easily in-
corporate additional information sources and fea-
tures. The hypernymy graph of relational phrases
could potentially be useful for many problems of
natural language processing and information re-
trieval. For example, we applied the hypernymy
graph to a document-relevance task, which we
used to evaluate RELLY extrinsically. As a future
work, RELLY can incorporate more information
sources and statistical signals and be expanded
to infer multi-verb or noun relational phrases.
The RELLY resource is publicly available at
www.mpi-inf.mpg.de/yago-naga/patty/.
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Abstract

We present an unsupervised hard EM ap-
proach to automatically mapping instruc-
tional recipes to action graphs, which de-
fine what actions should be performed on
which objects and in what order. Recov-
ering such structures can be challenging,
due to unique properties of procedural lan-
guage where, for example, verbal argu-
ments are commonly elided when they can
be inferred from context and disambigua-
tion often requires world knowledge. Our
probabilistic model incorporates aspects
of procedural semantics and world knowl-
edge, such as likely locations and selec-
tional preferences for different actions.
Experiments with cooking recipes demon-
strate the ability to recover high quality
action graphs, outperforming a strong se-
quential baseline by 8 points in F1, while
also discovering general-purpose knowl-
edge about cooking.

1 Introduction

Instructional language describes how to achieve a
wide variety of goals, from traveling successfully
to a desired location to cooking a particular dish
for dinner. Despite the fact that such language is
important to our everyday lives, there has been rel-
atively little effort to design algorithms that can
automatically convert it into an actionable form.
Existing methods typically assume labeled train-
ing data (Lau et al., 2009; Maeta et al., 2015) or
access to a physical simulator that can be used to
test understanding of the instructions (Branavan et
al., 2009; Chen and Mooney, 2011; Bollini et al.,
2013). In this paper, we present the first approach
for unsupervised learning to interpret instructional
recipes using text alone, with application to cook-
ing recipes.

Given a recipe, our task is to segment it into
text spans that describe individual actions and con-
struct an action graph whose nodes represent ac-
tions and edges represent the flow of arguments
across actions, for example as seen in Fig. 1. This
task poses unique challenges for semantic anal-
ysis. First, null arguments and ellipses are ex-
tremely common (Zwicky, 1988). For example,
sentences such as “Bake for 50 minutes” do not
explicitly mention what to bake or where. Second,
we must reason about how properties of the phys-
ical objects are changed by the described actions,
for example to correctly resolve what the phrase
“the wet mixture” refers to in a baking recipe. Al-
though linguistic context is important to resolving
both of these challenges, more crucial is common
sense knowledge about how the world works, in-
cluding what types of things are typically baked or
what ingredients could be referred to as “wet.”1

These challenges seemingly present a chicken
and egg problem — if we had a high quality se-
mantic analyzer for instructions we could learn
common sense knowledge simply by reading large
bodies of text. However, correctly understand-
ing instructions requires reasoning with exactly
this desired knowledge. We show that this con-
flict can be resolved with an unsupervised learn-
ing approach, where we design models to learn
various aspects of procedural knowledge and then
fit them to unannotated instructional text. Cook-
ing recipes are an ideal domain to study these
two challenges simultaneously, as vast amounts of
recipes are available online today, with significant
redundancy in their coverage that can help boot-
strap the overall learning process. For example,
there are over 400 variations on “macaroni and
cheese” recipes on allrecipes.com, from “chipotle

1The goal of representing common sense world knowl-
edge about actions and objects also drives theories of frame
semantics (Fillmore, 1982) and script knowledge (Schank
and Abelson, 1977). However, our focus is on inducing this
style of knowledge automatically from procedural texts.
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a52a51
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v3: press

v4: lay

v5: bake implicit
   preposition

implicit
object

ground beef …

over the topbacon

implicit
object

into loaf pan

a11

a21

a31 a32

e1

e2

e3

e4

e5

Ingredients
2 pounds ground beef
2 1/2 cups crushed butter-flavored crackers
1 small onion, chopped
2 eggs
3/4 cup ketchup
1/4 cup brown sugar
2 slices bacon

Preheat the oven to 350 degrees F (175 degrees C).
In a medium bowl, mix together ground beef, crushed 
crackers, onion, eggs, ketchup, and brown sugar until 
well blended. 
Press into a 9x5 inch loaf pan. 
Lay the two slices of bacon over the top.
Bake for 1 hour, or until cooked through.  

(recipe condensed)

Amish Meatloaf (http://allrecipes.com/recipe/amish-meatloaf/) 
s1s11

s1s21 s6s21

s1s32

s1s42s1s41

s1s31

s1s51 s1s52

Figure 1: An input recipe (left) and a partial corresponding output action graph (right). Each rectangle
(ei) represents an action. The leftmost oval (vi) in each action is the action’s verb and the following
ovals (aij) represents the verb’s arguments. The yellow ovals represent foods; the grey ovals represent
locations. Argument ovals with dotted boundaries are implicit, i.e., not present in text. The inner white
ovals (skij) are string spans. The red dashed lines represent connections to string spans from their origi-
nating verb or raw ingredient. The string spans also connect to their associated verb in the action diagram
to model the flow of ingredients. For example, there is a directed path from each raw ingredient to the
implicit object of bake, representing that the object being baked is composed of all of the raw ingredients.

macaroni and cheese,” to “cheesy salsa mac.”
We present two models that are learned with

hard EM algorithms: (1) a segmentation model to
extract the actions from the recipe text, and (2) a
graph model that defines a distribution over the
connections between the extracted actions. The
common sense knowledge is encoded in the sec-
ond model which can, for example, prefer graphs
that model implicit verb arguments when they
better match the learned selectional preferences.
The final action graph is constructed with a local
search algorithm, that allows for global reasoning
about ingredients as they flow through the recipe.

Experiments demonstrate the ability to recover
high quality action graphs, gaining up to 8 points
in F1 over a strong baseline where the ingredients
flow sequentially through the verbs. The learned
models are also highly interpretable, specifying
for example that “dough” likely contains “flour”
and that “add” generally requires two food argu-
ments, even if only one is mentioned in the sen-
tence.

2 Task Definition

Procedural text such as a recipe defines a set of
actions, i.e. predicates, applied to a set of objects,
i.e. arguments. A unique challenge in procedu-
ral text understanding is to recover how different

arguments flow through a chain of actions; the re-
sults of intermediate actions (e.g., “Boil the pasta
until al dente.”) provide the inputs for future ac-
tions (e.g., “Drain.”). We represent these corre-
spondences with an action graph. In this section,
we first describe our structured representation of
recipe text, then we define how components of the
recipe connect. Finally, we will show how given
a recipe and a set of connections we can construct
an action graph that models the flow of ingredi-
ents through the recipe. Fig. 1 provides a detailed
running example for the section.

2.1 Recipe R

A recipe R is a piece of text that describes a list
of instructions and a (possibly-empty) set of raw
ingredients that are required to perform the in-
structions. The first step is to segment the text
into a list of verb-argument tuples, called actions,
ER = {e1 = (v1,a1), . . . , en = (vn,an)}. Sec. 6
will describe an unsupervised approach for learn-
ing to segment recipes. Each action ei pairs a verb
vi with a list of arguments ai, where aij is the jth

argument of verb vi. In Fig. 1, each row contains
an action with a verb in the white oval and its ar-
guments in the yellow and gray ovals.

Each argument is a tuple aij = (tsynij , tsemij , Sij)
with a syntactic type tsyn(a) ∈ T syn =
{DOBJ,PP}, a semantic type tsem(a) ∈
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T sem = {food, location, other}, and a list of
text string spans Sij = {s1ij , . . . , s|Sij |

ij }, where
skij is the kth span in the jth argument of verb vi.
In Fig. 1, the spans of each argument are repre-
sented by the white ovals inside of the argument
ovals. For example, a21 contains a span for each
raw ingredient being mixed in the second action
(e.g., s121 =“ground beef,” s621 =“brown sugar”).
The syntactic type determines whether the argu-
ment is the direct object or a prepositional phrase
argument of the verb in the recipe text. All other
syntactic constructs are ignored and left for future
work. The semantic types include food, location,
and other. In Fig. 1, yellow ovals represent foods
and gray ovals represent locations. Arguments of
other semantic types are marked as other (e.g.,
“Mash using a fork”).

We also augment the set of arguments for each
verb to include implicit arguments with empty
string spans. This allows making connections to
arguments that the author does not mention explic-
itly (e.g., the elided direct object of “bake” in e5).
Every verb is assigned one implicit PP argument,
and, if a verb has no argument with syntactic type
DOBJ , an implicit direct object. These argu-
ments have indeterminate semantic types, which
are to be determined based on how they connect
to other actions. For example, in Fig. 1, when the
implicit object of “bake” is connected to the out-
put of the “lay” action, it is inferred to be of type
food since that is what is created by the “lay” ac-
tion. However, when the implicit PP argument
of “bake” is connected to the output of the “pre-
heat” action, it is inferred to be a location since
“preheat” does not generate a food.

2.2 Connections C

Given a segmented recipe, we can build graph con-
nections. A connection identifies the origin of a
given string span as either the output of a previ-
ous action or as a new ingredient or entity being
introduced into the recipe. A connection is a six-
tuple (o, i, j, k, tsyn, tsem) indicating that there is
a connection from the output of vo to the argu-
ment span skij with syntactic type tsyn ∈ T syn

and semantic type tsem ∈ T sem. We call o the
origin index and i the destination index. For ex-
ample, in Fig. 1, the connection from the output of
the “press” verb (e3) to “over the top” (s142) would
be (3, 4, 2, 1, PP, food). If a span introduces raw
ingredient or new location into the recipe, then

o = 0; in Fig. 1, this occurs for each of the spans
that represent raw ingredients as well as “oven”
and “into loaf pan.”

Given a recipeR, a set of connectionsC is valid
for R if there is a one-to-one correspondence be-
tween spans in R and connections in C, and if
the origin indexes of connections in C are 0 or
valid verb indexes in R, ∀(o, i, j, k, tsyn, tsem) ∈
C, o ∈ {Z | 0 ≤ o ≤ |ER|}.

2.3 Action graph G

A recipe R and a set of connections C define
an action graph, which is a directed graph G =
(V,E). Each raw ingredient, verb, and argu-
ment span is represented by a vertex in V . Each
argument span vertex is connected to its asso-
ciated verb vertex, and each connection c =
(o, i, j, k, tsyn, tsem) adds a corresponding edge
to E. Edges from connections with seman-
tic type food propagate ingredients through the
recipe; edges from connections with semantic type
location propagate a location. Fig. 1 shows an ac-
tion graph. By following the edges, we can tell
that the implicit food entity that is being baked
in the final action has been formed from the set
of ingredients in the mixing action and the bacon
from e4 and that the baking action occurs inside
the oven preheated in e1.

3 Probabilistic connection model

Our goal is, given a segmented recipe R, to deter-
mine the most likely set of connections, and thus
the most likely action graph. We model (1) a prior
probability over C, P (C) (Sec. 3.1), and (2) the
probability of seeing a segmented recipe R given
a set of connections C, P (R|C) (Sec. 3.2). The
most likely set of connections will maximize the
joint probability: P (R|C)P (C). A summary of
this model is presented in Fig. 2, and the details
are described in the this section.

3.1 Connections prior model

The probability of a set of connections C depends
on features of the incoming set of connections for
each action. Let a destination subset di ⊆ C be
the subset of C that contains all connections that
have i as the destination index. In Fig. 1, d3 con-
tains the connection from v2 to the implicit object
as well as a connection to “into loaf pan” with an
origin index of 0. Using the chain rule, the proba-
bility ofC is equal to the product of the probability
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• Input: A set of connections C and a recipe R segmented (Sec. 6) into its actions {e1 = (v1,a1), . . . , en = (vn,an)}
• The joint probability of C and R is P (C,R) = P (C)P (R|C), each defined below:

1. Connections Prior (Sec. 3.1): P (C) =
∏

i P (di|d1, . . . ,di−1)
Define di as the list of connections with destination index i. Let cp = (o, i, j, k, tsyn, tsem) ∈ di. Then,

• P (di|d1, . . . ,di−1) = P (vs(di))
∏

cp∈di
P (1(o→ sk

ij)|vs(di),d1, . . . ,di−1, c1, . . . , cp−1)

(a) P (vs(di)): multinomial verb signature model (Sec. 3.1.1)
(b) P (1(o → sk

ij)|vs(di),d1, . . . ,di−1, c1, . . . , cp−1): multinomial connection origin model, conditioned on
the verb signature of di and all previous connections (Sec. 3.1.2)

2. Recipe Model (Sec. 3.2): P (R|C) =
∏

i P (ei|C, e1, . . . , ei−1)
For brevity, define hi = (e1, . . . , ei−1).
• P (ei|C,hi) = P (vi|C,hi)

∏
j P (aij |C,hi) (Sec. 3.2)

Define argument aij by its types and spans, aij = (tsyn
ij , tsem

ij , Sij).
(a) P (vi|C,hi) = P (vi|gi): multinomial verb distribution conditioned on verb signature (Sec. 3.2)
(b) P (aij |C,hi) = P (tsyn

ij , tsem
ij |C,hi)

∏
sk

ij∈Sij
P (sk

ij |tsyn
ij , tsem

ij , C,hi)

i. P (tsyn
ij , tsem

ij |C,hi): deterministic argument types model given connections (Sec. 3.2.1)
ii. P (sk

ij |tsyn
ij , tsem

ij , C,hi): string span model computed by case (Sec. 3.2.2):
A. tsem

ij =food and origin(sk
ij) 6=0: IBM Model 1 generating composites (Part-composite model)

B. tsem
ij =food and origin(sk

ij)=0: naı̈ve Bayes model generating raw food references (Raw food model)
C. tsem

ij = location: model for generating location referring expressions (Location model)

Figure 2: Summary of the joint probabilistic model P (C,R) over connection set C and recipe R.

of each of the destination subsets:

P (C) =
∏
i

P (di|d1, . . . ,di−1).

The probability of each destination subset de-
composes into two distributions, a verb signature
model and a connection origin model:

P (di|d1, . . . ,di−1) = P (vs(di))

×
∏
cp∈di

P (1(o→ skij)|vs(di),di−1
1 , cp−1

1 ).

We define each of these distributions below.

3.1.1 Verb signature model
A destination subset di deterministically defines a
verb signature gi for verb vi based on the syntac-
tic and semantic types of the connections in di as
well as whether or not each connection has a non-
zero origin index. If the origin index is 0 for all
connections in di, we call vi a leaf. (In Fig, 1,
v1 (preheat) and v2 (mix) are leafs.) The formal
definition of a verb signature is as follows:

Definition 1 The verb signature gi for a verb vi
given a destination set di consists of two parts:

1. type: {tsyn | ∃(o, i, j, k, tsyn, food) ∈ di}
2. leaf: true iff (o, i, j, k, tsyn, tsem) ∈ di ⇒
o = 0

For example, in Fig. 1, the signature for the
“mix” action is g2 = ({DOBJ}, true) and

the signature for the “lay” action is g4 =
({DOBJ,PP}, false). Given that there are two
syntactic types (i.e., DOBJ and PP ) and each
verb signature can either be labeled as a leaf or
not, there are eight possible verb signatures.

We define a deterministic function that re-
turns the verb signature of a destination subset:
vs(di) = gi. P (vs(di)) is a multinomial distri-
bution over the possible verb signatures.

3.1.2 Connection origin model
We define 1(o→ skij) as an indicator function that
is 1 if there is a connection from the action with in-
dex o to the span skij . The probability that a string
span has a particular origin depends on (1) the verb
signature of the span’s corresponding verb, and (2)
the previous connections. If, for example, gi has
leaf= true, then the origin of skij must be 0. If an
origin has been used in a previous connection, it is
much less likely to be used again.2

We assume that a destination subset is a list of
connections: if cp ∈ di, we define cp−1

1 as the con-
nections that are prior to cp in the list. Similarly,
di−1

1 is the set of destination sets (d1, . . . ,di−1).
The connection origin model is a multinomial dis-
tribution that defines the probability of an origin
for a span conditioned on the verb signature and
all previous connections:

P (1(o→ skij)|vs(di),di−1
1 , cp−1

1 ),
2A counterexample in the cooking domain is separating

egg yolks from egg whites to be used in separate components,
only to be incorporated again in a later action.
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where cp = (o, i, j, k, tsyn, tsem).

3.2 Recipe model

Given a set of connections C for a recipe R, we
can determine how the actions of the recipe inter-
act and we can calculate the probability of gen-
erating a set of recipe actions ER = {e1 =
(v1,a1), . . . , en = (vn,an)}. Intuitively, R is
more likely given C if the destinations of the con-
nections are good text representations of the ori-
gins. For example, a string span “oven” is much
more likely to refer to the output of the action
“Preheat the oven” than “Mix flour and sugar.”

We define the history hi of an action to be the
set of all previous actions: hi = (e1, . . . , ei−1).
The probability of a recipe R given a set of con-
nections C can be factored by the chain rule:

P (R|C) =
∏
i

P (ei|C,hi).

Given C and a history hi, we assume the verb and
arguments of an action are independent:

P (ei|C,hi) = P (vi|C,hi)
∏
j

P (aij |C,hi).

Since the set of connections deterministically de-
fines a verb signature gi for a verb vi, we can sim-
plify P (vi|C,hi) to the multinomial distribution
P (vi|gi). For example, if gi defines the verb to
have an ingredient direct object, then the probabil-
ity of “preheat” given that signature will be lower
than the probability of “mix.”

The probability of an argument aij =
(tsynij , tsemij , Sij) given the connections and history
decomposes as follows:

P (aij |C,hi) = P (tsynij , tsemij |C,hi)
× P (Sij |tsynij , tsemij , C,hi).

3.2.1 Argument types model

The first distribution, P (tsynij , tsemij |C,hi), ensures
that the syntactic and semantic types of the argu-
ment match the syntactic and semantic type of the
incoming connections to spans of that argument.
The probability is 1 if all the types match, 0 oth-
erwise. For example, in Fig. 1, this distribution
would prevent a connection from the “preheat” ac-
tion to the food argument a42, i.e., “over the top,”
since the semantic types would not match.

3.2.2 String span models
The second distribution, P (Sij |tsynij , tsemij , C,hi),
models how likely it is to generate a particular
string span given the types of its encompassing ar-
gument, the connections, and history. We assume
the probability of each span is independent:

P (Sij |tsyn
ij , t

sem
ij , C,hi) =

∏
sk

ij∈Sij

P (sk
ij |tsyn

ij , tsem
ij , C,hi).

We break this distribution into three cases. To
help describe the separate cases we define the
function origin(s, C) to determine the origin in-
dex of the connection in C to the span s. That is,
origin(skij , C)=o⇔ ∃(o, i, j, k, tsyn, tsem) ∈ C.

Part-composite model When the encompassing
argument is a food and the origin is a previous verb
(i.e., P (skij |tsynij , tsemij = food, origin(skij) 6=
0, C,hi)), then the probability of the span depends
on the ingredients that the span represents given
the connections in C. For example, “dressing” is
more likely given ingredients “oil” and “vinegar”
than given “chicken” and “noodles”. We use IBM
Model 1 (Brown et al., 1993) to model the prob-
ability of a composite destination phrase given a
set of origin food tokens. Let food(skij , C) be the
set of spans in food arguments such that there is
a directed path from those arguments to skij . IBM
Model 1 defines the probability of a span given the
propagated food spans, P (skij |food(skij , C)).3

Raw food model When the encompassing ar-
gument is a food but the origin index is 0
(i.e., P (skij |tsynij , tsemij = food, origin(skij) =
0, C,hi)), then there is no flow of ingredients into
the span. A span that represents a newly intro-
duced raw ingredient (e.g., “bacon” in e4 of Fig. 1)
should have a high probability. However, spans
that denote the output of actions (e.g, ‘batter,” “ba-
nana mixture”) should have low probability. We
use a naı̈ve Bayes model over the tokens in the
span P (s|is raw) =

∏
` P (w`|is raw) where w` is

the `th token in s (e.g., “mixture” would have a
very low probability but “flour” would be likely).

Location model When the encompassing ar-
gument is a location (i.e., tsemij = location),

3IBM Model 1 cannot handle implicit arguments. In this
case, we model the probability of having an implicit food ar-
gument given the length of the connection (i.e., implicit food
arguments nearly deterministically connect to the previous
action). The probability of non-empty string spans is scaled
accordingly to ensure a valid probability distribution.
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Figure 3: The three types of search operators. For
swaps, one of the origins can be 0.

P (Sij |tsynij , tsemij , C,h) models the appropriate-
ness of the origin action’s location for the destina-
tion. If the string span is not implicit, the model
deterministically relies on string match between
the span and the location argument of the verb
at the origin index. For example, the probability
of “the preheated oven” conditioned on an origin
with location “oven” is 1, but 0 for an origin with
location “bowl.” If the span skij is empty, we use
a multinomial model P (loc(origin(skij , C))|vi)
that determines how likely it is that an action vi
occurs in the location of the origin verb. For ex-
ample, baking generally happens in an oven and
grilling on a grill, but not vice versa. For example,
in Fig. 1, the probability of the location span of
“bake” is determined by P (“oven” | “bake”).

4 Local Search

Connections among actions and arguments iden-
tify which ingredients are being used by which
action. For example, in Fig. 1, we know that we
are baking something that contains all the ingre-
dients introduced in e2 and e4 because there is a
path of connections from the introduction of the
raw ingredients to the implicit object of “bake”. We
cannot make decisions about the origins of argu-
ments independently; the likelihood of each edge
depends on the other edges. Identifying the most
likely set of connections is, therefore, intractable.

We adopt a local search approach to infer the
best set of connections.4 We initialize the set of

4Similar local search methods have been shown to work
well for other NLP tasks, including recent work on depen-

Algorithm 1 Pseudocode for learning P (C,R)
Input: Initialized P (C,R), recipe datasetR
Repeat until convergence:

E-step: Update C ←− arg maxC P (C,R)
for each R ∈ R using local search (Sec. 4)
M-step: Update parameters of P (C,R)
using action graphs generated in E-step

Return P (C,R)

connections using a sequential algorithm that con-
nects the output of each event to an argument of
the following event, which is a strong baseline as
shown in Sec. 8. We score potential local search
operators that can be applied to the current set of
connections C and make a greedy selection that
improves P (C,R) the most until no search opera-
tor can improve the probability. We constrain the
search so all verbs have a direct object (i.e., im-
plicit direct objects connect to a previous action).

We employ three types of search operators (see
Fig. 3 for details). OP ADD changes the origin in-
dex of a connection in C from 0 to the index of
an event. OP 2SWAP swaps the origin indexes of
two connections. This works even if one of the
origin indexes is 0. OP 3SWAP rotates the origin
indexes of three connections. This works even if
one of the origin indexes is 0. For efficiency rea-
sons, we only allow 3-way swaps with destination
indexes within 4 events of each other.

5 Learning

We use hard EM to learn the probabilistic mod-
els. Pseudocode is given in Alg. 1. At each itera-
tion, we use our local search algorithm and the cur-
rent probabilistic models to annotate each recipe
in the data set with its most likely set of connec-
tions C (Sec. 4). Then, we re-estimate the param-
eters of the probabilistic models using the recipe-
connections pairs as training data. A small (33
recipes) development set was used to determine
when to stop the iterations. Experimental details
and model initialization are described in Sec. 7.

6 Segmentation

Our inference and learning algorithms assume as
input a recipe segmented into a set of eventsER =
{(v1,a1), . . . , (vn,an)}. We designed a segmen-
tation system that could be trained on our un-
annotated data set of mostly imperative sentences.

dency parsing (Zhang et al., 2014).
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Our system achieves an F1 score of 95.6% on the
task of identifying the correct verbs in the test set.5

Segmentation model We define a generative
model for recipes as:

P (R) = P (n)
n∏
i

P (vi)P (m | vi)
m∏
j=1

P (aij).

We first select a number of verbs n in the recipe
from a geometric distribution. Given the number
of verbs, we select a set of verbs V = {v1, . . . , vn}
using a multinomial distribution. For each verb vi,
we select a number of arguments m from a sep-
arate multinomial distribution that has the prob-
ability of 0, 1, 2, or 3+ arguments given the
verb, P (m | vi). For each argument, we gen-
erate a string using a bigram model, P (aij) =∏
` P (w`|w`−1), where w` is the `th word of aij .

Inference Given tokenized sentence T =
(w1, . . . , wk), we enumerate all possible segmen-
tations and choose the one with the highest prob-
ability. To keep this efficient, we use a closed set
of possible verbs and assume a closed set of words
(e.g., prepositions, adverbs) can only follow the
start token in the argument bigram model. Thus,
annotating the verbs in a sentence determines a
unique set of argument strings. Despite scoring
the segmentations for all possible sets of verbs, we
found the process to be very efficient in practice.

Learning For unsupervised learning, we again
employ a hard EM approach. We initialize our
models, segment all of the training data, re-
estimate the parameters, and iterate these steps un-
til performance on a development set converges.

We estimate the initial verb multinomial model
using counts from the first word of each sentence
in the dataset, which are normally verbs in imper-
ative sentences, and filter out any words that have
no verb synsets in WordNet (Miller, 1995). All
other models are initialized to be uniform.

7 Experimental Setup

Data Set We collected 2456 recipes (with over
23,000 sentences) from allrecipes.com by search-
ing for 20 dish names (e.g., including “banana
muffins”, and “deviled eggs”). We randomly sam-
pled, removed, and hand labeled 33 recipes for a

5Early efforts using a state-of-the-art parser could only
achieve an F1 score of 73.6% for identifying verbs, likely due
to a lack of imperative sentences in the training data. This
result motivated us to develop our segmentation system.

development set and 100 recipes for test. All mod-
els were trained on the unannotated recipes; the
dev set was used to determine the stopping point
for training. Each recipe in the test set has 13 ac-
tions on average.

Recipe pre-processing To pre-process each
recipe, we first use the segmentation system de-
scribed in Sec. 6. Then, we use a string classifi-
cation model to determine the semantic type (e.g.,
food, location, or other) of an argument based
on its spans. We identify spans as raw ingredients
based on string match heuristics (e.g., in Fig. 1, the
span “crushed crackers” represents the ingredients
“crushed butter-flavored crackers”). We stem all
words and ignore function words.

Sequential Baseline Because most connections
are sequential – i.e., argument spans are most of-
ten connected to the output of the previous verb
– sequential connections make a strong baseline;
we connect the output of each predicate to the first
available argument span of the following predi-
cate. If no argument exists, an implicit argument is
created. We run this baseline with and without first
identifying raw ingredients in the recipe; if raw in-
gredient spans are identified, the baseline will not
connect the previous event to those spans. Perfor-
mance suffers significantly if the raw ingredients
are not identified beforehand.

Evaluation metrics We report F-measure by
comparing the predicted connections from actions
to spans (i.e., where the origin index > 0) against
gold standard annotations. We don’t evaluate con-
nections to raw ingredients as we create those con-
nections during pre-processing (see Sec. 7).

Model initialization The verb signature model
(Sec. 3.2) is initialized by first identifying food
arguments using string overlap with the ingredi-
ent list. All other arguments’ types are considered
unknown, and partial counts were awarded to all
verb signatures consistent with the partial infor-
mation. The first verb in each recipe was assumed
to be the only leaf. The string classification model
for the pre-processing step was initialized by us-
ing the initialized verb signature model to identify
the types of DOBJ arguments. The string classi-
fication model was estimated using the argument
tokens given the types. We initialized the part-
composite model (Sec. 3.2.2) so that exact string
matches between ingredients and spans are given
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Algorithm Prec Rec F1
Automatic segmentations

Sequential baseline 55.7 52.7 54.1
Sequential baseline w/ ingredients 60.4 57.2 58.8
Our model before EM 65.8 62.7 64.2
Our model after EM 68.7 65.0 66.8

Oracle segmentations
Sequential baseline 67.8 65.2 66.5
Sequential baseline w/ ingredients 73.5 70.7 72.0
Our model before EM 77.1 74.8 75.9
Our model after EM 81.6 78.5 80.0

Table 1: Performance of our algorithm against the
sequential baselines.

Verb Top location tokens

bake oven - 55.4% min - 0.7%
mix bowl - 32.6% hand - 0.9%
press pan - 24.7% dish - 6.5%
stir bowl - 5.5% skillet - 2.0%
fry heat - 11.9% skillet - 10.2%
cool rack - 10.5% pan - 3.8%
boil water - 15.5% saucepan - 5.2%

Table 2: The top scoring location token for exam-
ple verbs. The percentage is the percent of times
the verb has that as a visible location token.

high probabilities and those without are given low
probabilities. Given the initialized string classifi-
cation model, the raw food model (Sec. 3.2.2) is
initialized counting whether or not tokens in food
arguments occur in the ingredient list. The proba-
bility of an implicit location (Sec. 3.2.2) is initial-
ized to a hand-tuned value using the dev set.

8 Results

Quantitative Results We trained our model for
four iterations of hard EM until performance con-
verged on the development set. Table 1 presents
our results on the test set. We compare our model
to the sequential baselines using both the output
of our segmentation system and oracle segmen-
tations. We perform significantly better than the
sequential baselines, with an increase in F1 of
8 points over the more competitive baseline us-
ing our segmentation system and an increase of 8
points using the oracle segmentations.

Qualitative Results We find that the learned
models demonstrate interpretable cooking knowl-
edge. Table 3 shows the top composite tokens
for different ingredients as learned by the part-
composite model (Sec. 3.2.2). The composite
tokens show parts of the ingredient (e.g., after
“eggs” can be split into “whites” or “yolks”) or

Verb Top verb signature (%)

add {DOBJ, PP} 58%
{DOBJ} 27%

combine {DOBJ}:leaf 68%
{DOBJ} 17%

bake {DOBJ} 95%
grease {}:leaf 75%
pour {DOBJ, PP} 68%

{DOBJ} 27%
reduce {PP} 90%

{DOBJ} 8%

Table 4: The top verb signatures for example
verbs. The syntactic types identify which argu-
ments of the verb are foods and “leaf” means no
arguments of the verb connect to previous actions.

composites that are likely to contain an ingredi-
ent (e.g., “flour” is generally found in “batter”
and “dough”). Unsurprisingly, the word “mixture”
is one of the top words to describe a combina-
tion of ingredients, regardless of the ingredient.
The model also learns modifiers that describe key
properties of ingredients (e.g., flour is “dry” but
bananas are “wet”) which is important when eval-
uating connections for sentences such as “Fold the
wet mixture into the dry ingredients.”

Table 2 shows the location preferences of verbs
learned by the location model (Sec. 3.2.2). Some
verbs show strong preferences on locations (e.g.,
“bake” occurs in an oven, “mix” in a bowl). The
top location for a “boil” action is in “water,” but in
other recipes “water” is an ingredient.

Finally, Table 4 shows learned verb signatures.
For example, “add” tends to be a non-leaf action,
and can take one or two food arguments (e.g.,
one food argument: “Heat the pan. Add onions.”
vs. two food arguments: “Add the wet mixture
to the dry mixture.”) We learn that the most likely
verb signature for “add” has two food arguments;
since over 74% of the occurrences of “add” in the
dataset only have one visible argument, the seg-
mentation alone is not enough to determine the
signature.

Errors Finally, we performed an error analysis
on the development set. 24% of the errors were
due to missing or incorrect actions caused by seg-
mentation errors. Among the actions that were
segmented correctly, 82% of the outgoing connec-
tions were sequential. Of those, our system missed
17.6% of the sequential connections and 18.3% of
the non-sequential connections.
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Ingredient Top composite tokens

eggs egg, yolk, mixture, noodles, whites, cook, top, potato, cold, fill
beef beef, mixture, grease, meat, excess, cook, top, loaf, sauce, ground
flour flour, mixture, dough, batter, top, crust, ingredients, sauce, dry, pie
noodles noodles, cook, mixture, egg, sauce, top, meat, drain, pasta, layer
chicken chicken, mixture, salad, cook, dressing, pasta, soup, breast, vegetables, noodles
pumpkin pumpkin, mixture, pie, filling, temperature, seeds, mash, oven, crust, dough
bananas banana, mixture, batter, muffin, bread, egg, wet, cup, ingredients, slice

Table 3: Examples of ingredients with their top inferred composite words.

9 Related work

Our work relates to a substantial body of research
that transforms natural language instructions into
actionable plans (Artzi and Zettlemoyer, 2013,
Chen and Mooney, 2011, Branavan et al., 2011,
Branavan et al., 2009, McMahon et al., 2006).
Most of these approaches do interactive learning
in virtual environments or simulations, while we
learn from the redundancy seen in the text of dif-
ferent instances of similar recipes.

There is also significant related work on su-
pervised learning for instructions. A recent se-
ries of studies have explored parsing of cook-
ing recipes (Mori et al., 2012; Mori et al., 2014;
Maeta et al., 2015). However, they assume anno-
tated data, study Japanese recipes, and make edge
connections independently without taking into ac-
count the flow of ingredients. Tasse and Smith
(2008) develops annotation for English recipes,
but do not mark connections from implicit roles,
and only studied segmentation models. Lau et
al. (2009) develop models to interpret how-to in-
structions, but also assume supervision, and do not
make connections between different actions.

Data-driven extraction of cooking knowledge
has been explored in the context of building a
cooking ontology (Gaillard et al., 2012; Nanba et
al., 2014). In contrast, our work induces prob-
abilistic cooking knowledge as part of unsuper-
vised learning process for understanding recipes.
Cooking knowledge is also closely related to
script knowledge, but most prior work focus on
newswire and children’s books rather than proce-
dural language (Fujiki et al., 2003; Chambers and
Jurafsky, 2009; Pichotta and Mooney, 2014; Bala-
subramanian et al., 2013) or rely on crowdsourced
descriptions to learn procedural knowledge (Reg-
neri et al., 2010; Regneri et al., 2011; Frermann
et al., 2014). There is work on related, but dis-
tinct, tasks that use recipes, including identifying
actionable refinements from online recipe reviews
(Druck and Pang, 2012) and extracting structured

information from ingredient lists (Greene, 2015)
Cooking recipes have also been studied in the

context of grounded language learning, e.g., to
build robots that can cook (e.g., Bollini et al.,
2013, Beetz et al., 2011), or to align cooking
videos to natural language descriptions of actions
(Regneri et al., 2013) or recipe texts (Malmaud et
al., 2014; Malmaud et al., 2015). Our work com-
plements these efforts by recovering fine-grained
procedural semantics from text alone.

Finally, detection and resolution of implicit ar-
guments is an instance of zero anaphora detec-
tion and resolution (Silberer and Anette, 2012,
Tetreault 2002, Whittemore et al., 1991, Palmer et
al., 1986). We present an empirical approach for
understanding these phenomena in instructions.

10 Conclusion

We presented unsupervised methods for segment-
ing and identifying latent connections among ac-
tions in recipe text. Our model outperformed a
strong linear baseline, while learning a variety of
domain knowledge, such as verb signatures and
probable ingredient components for different com-
posites. Future work includes learning a more
comprehensive model of locations (e.g., identify-
ing nested locations such as an oven and a pan in
the oven), enriching action graphs with greater se-
mantic coverage (e.g., durations, tools, amounts),
and training and evaluating on larger datasets. We
also plan to use our techniques to support related
tasks, such as instructional recipe generation.
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Abstract

Comparison is one of the most impor-
tant phenomena in language for express-
ing objective and subjective facts about
various entities. Systems that can under-
stand and reason over comparative struc-
ture can play a major role in the applica-
tions which require deeper understanding
of language. In this paper we present a
novel semantic framework for represent-
ing the meaning of comparative structures
in natural language, which models com-
parisons as predicate-argument pairs inter-
connected with semantic roles. Our frame-
work supports not only adjectival, but also
adverbial, nominal, and verbal compara-
tives. With this paper, we provide a novel
dataset of gold-standard comparison struc-
tures annotated according to our semantic
framework.

1 Introduction

Representing the meaning of text has long been
a focus in linguistics and deriving computational
models of meaning has been pursued by various
semantic tasks such as semantic parsing. Deep
semantic parsing (as opposed to shallow seman-
tic parsing, such as semantic role labeling) aims
to map a sentence in natural language into its cor-
responding formal meaning representation (Zelle
and Mooney, 1996; Berant and Liang, 2014).
There has been a renewed interest in deeper se-
mantic representations of natural language (Ba-
narescu et al., 2013) in NLP community. Open-
domain semantic representations enable inference
and reasoning, which is required for many lan-
guage understanding tasks such as reading com-
prehension tests and open-domain question an-
swering. Comparison is a common way for ex-
pressing differences in sentiment and other prop-

erties towards some entity. Comparison can hap-
pen in very simple structures such as ‘John is
taller than Sam’, or more complicated construc-
tions such as ‘The table is longer than the sofa is
wide’. So far the computational semantics of com-
paratives and how they affect the meaning of text
has not been studied effectively. That is, the dif-
ference between the existing semantic and syntac-
tic representation of comparatives is not distinc-
tive enough for enabling deeper understanding of
a sentence. For instance, the general logical form
representation of the sentence ‘John is taller than
Susan’ using the Boxer system (Bos, 2008) is the
following:

named(x0, john, per)
& named(x1, susan, nam)

&than(taller(x0), x1) (1)

The above meaning representation does not
fully capture the underlying semantics of the ad-
jective ‘tall’ and what it means to be ‘taller’. A hu-
man reader can easily infer that actually the height
of John is greater than the height of Susan. An-
other example to consider is the sentence ‘John is
tall’, which basically has the typical logical form
tall(john) –which is a very superficial represen-
tation for the meaning of the predicate ‘tall’. Like-
wise, a human reader can infer that defining some-
one as ‘tall’ in some domain of discourse entails
that this person is somehow ‘taller’ than some
other population (say their average), however, the
earlier typical logical form representation does not
enable such inferences.

In this paper we introduce a novel framework
for semantic representation and computational
analysis of the structure of comparison in natural
language. This framework enables deeper repre-
sentation of semantics of comparatives, including
all different types of comparison within compara-
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tives, superlatives, equatives, excessives, and as-
setives, and the way they are related to their cor-
responding semantic roles. Together with this pa-
per, we provide a dataset of gold-annotated com-
parative structures using our meaning representa-
tion, which enables training models on compar-
ison constructions. We propose a new approach
for automatic extraction of comparison structures
from a given text. A semantic representation of the
comparison expressed by the sentence ‘The equip-
ment is too old to be much of use to us.’ aug-
mented under our representation would be the fol-
lowing:

Throughout this paper we define a comparison
to be any statement comparing two or more enti-
ties, expressing some kind of measurement on a
scale, or indicating some degree of having a mea-
surable property. The details of these variations
will be discussed in Section 3.

2 Background

In this section we provide a linguistic background
on comparison constructions in language, which
provides the basis of our semantic framework (to
be presented in Section 3).

2.1 Comparative Structures in Language
Measurement in natural language is mainly ex-
pressed in sentences having comparative mor-
phemes such as more, less, -er, as, too, enough,
-est, etc1. Comparatives can be either adjectival,
adverbial, nominal, or verbal, i.e., the main com-
ponent of the sentence carrying out the measure-
ment can have either of these parts of speech.

Adjectival Comparatives: Canonical exam-
ples of comparative sentences contain adjectives,
e.g., ‘tall’ or ‘pretty’. Even within adjectival com-
paratives, there is a good deal of structural variety.
Consider the following examples:

(1) a. Mary is taller than Susan.
b. Mary is 3 inches taller than Susan.
c. Mary is taller than 5 feet.

1These morphemes are counted as the main comparison
operators. For easier representation, throughout this paper
we specify the smallest constituent containing any of these
morphemes as the comparison operator, which is italicized in
the sentences.

The comparative form of the adjective ‘tall’ in
sentence 1a is viewed as an expression denoting a
greater than (�) relation between two individuals,
‘Mary’ and ‘Susan’, on the scale of ‘tallness’. The
degree-theoretic analysis of such adjectives brings
up the notion of Gradable Adjectives: many adjec-
tives describe qualities that can be measured ac-
cording to degrees on scales, such as the scale of
‘size’, ‘beauty’, ‘age’, etc. These adjectives can be
used with comparative morphemes, indicating less
or more of a particular quality on a scale. Gradable
adjectives can express specific relations between
individuals on a scale, e.g., in sentence 1b Mary is
taller than Susan by a measure of 3 inches.

Comparison on the scale does not always in-
volve two individuals. For example consider sen-
tence 1c which denotes a comparison being made
between an individual and a specific point on the
scale of ‘tallness’. All the earlier examples are
among the simplest types of comparative struc-
tures using adjectives. Consider the following ex-
ample:

(2) Mary is taller than the bed is long.

In sentence 2 we have a case of subcompara-
tives, where we compare ‘Mary’ and ‘bed’ accord-
ing to two different dimensions: height and length.
Each dimension provides a degree, and the degrees
are ultimately related by the greater than (�) re-
lation. Scalability is known to be universal in lan-
guage and a wide variety of linguistic phenomena
can be explained in terms of degrees and scales
(Solt, 2015).

The Semantics of Scales: A fairly common
view (Kennedy, 2007) is that a scale S is a triple
of the following form:

S = 〈D,�, DIM〉 (2)

where D is a set of degrees, � is an ordering re-
lation on D, and DIM is the dimension of mea-
surement.2

Individuals are linked to degrees by measure
functions. A measure function µS is the func-
tion that maps an individual x to the degree on the
scale S that represents x’s measure with respect to
the dimension DIM . For example, the µHEIGHT
measure function is a function that maps individ-
uals to their respective heights. Under this model,
we represent the comparative structure of the sen-
tences 1a-1c as follows:

2To know more about the theory of scales and restrictions
on dimensions and degrees refer to (Solt, 2015).
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(3) a. µHEIGHT (Mary) � µHEIGHT (Susan)

b. µHEIGHT (Mary) � µHEIGHT (Susan) + 3”

c. µHEIGHT (Mary) � 5 feet

A generic comparative interpretation of some
degree of tallness underHEIGHT scale is as fol-
lows:

JtallK = λdλx.µHEIGHT (x) � d (3)

where d is the degree argument which is sup-
plied by some form of degree morpheme: a degree
modifier (e.g., too, very), a measure phrase (e.g.
1.7 inches), or simply comparative or superlative
morphology. Under this model, we can also rep-
resent the comparative structure of the sentence
‘Mary is tall’3, where there is no explicit degree
argument. A common assumption is that the de-
gree role is played by a phonologically null degree
morpheme called pos, which denotes a context-
dependent threshold or standard of comparison
(Kennedy, 2007; Heim, 2007). For instance, in
a specific context of adult men in north America
being ‘tall’ could be interpreted as being over 6
feet.

Non-canonical Comparatives: Comparative
structures can also be verbal, nominal, and adver-
bial. Consider the following verbal comparatives:

(4) a. The women ate more than men did.

b. The lake cooled more than 4 degrees.

It has been proposed (Wellwood et al., 2012)
that measure functions (µ) can be applied both to
individuals and to events, in the latter case mea-
suring either the event or an entity related to the
event. The comparative interpretation for the two
sentences 4a and 4b is as follows:

(5) a. µvolume(eat(women)) � µvolume(eat(men))

b. λe.µcoolness(e)(lake) � 4 degrees

where cool is a function that takes an event e and
an object x (here ‘lake’) and returns a degree rep-
resenting the amount to which x changes in cool-
ness as a result of participating in e. The underly-
ing scale of verbal comparatives is sometimes am-
biguous, e.g., in sentence 5a it is not clear whether
the women ate more in volume or in quantity.

Comparative structures can also be nominal.
Consider the following sentences:

3Such cases are called positive usage of the adjective.
The negative (also called antonym) usage would be ‘Mary
is short’.

(6) a. More juniors than seniors came to the
ceremony.

b. We bought more milk than wine.

The meaning of sentences presented above must
be stated with reference to degrees as well (Solt,
2015). Hence, the scale for the comparison sen-
tence 6a is the numerical counting by integers and
the scale for sentence 6b is something correspond-
ing to a mass dimension, here perhaps liquid vol-
ume. Adverbial comparatives share many of their
characteristics with the adjectival and verbal class,
which we do not develop further for brevity. For
example the sentence ‘Mary ran faster than Sam’
is an example of adverbial comparison, where the
implicit ‘speed’ attribute of the ‘running’ event as-
sociated with Mary and Sam is being compared.

2.2 Categories of Comparison
There are various ways for making comparisons,
each indicating different degrees of difference or
similarity. Following are the major categories for
degrees of comparison together with example sen-
tences4:

(7) Comparative
a. Mary is taller than Susan.
b. Dogs are more intelligent than rabbits.

(8) Superlative
a. Mary is the tallest girl in her class.
b. Dogs are the most intelligent among

pets.

(9) Equative
a. Mary is as tall as Bill.
b. Dogs are as intelligent as cats.

(10) Excessive
a. Mary is too short for basketball.
b. Dogs are too intelligent to be fooled.

(11) Assetive
a. Mary is tall enough to reach the shelf.
b. Dogs are intelligent enough to find

their way home.

3 Semantic Framework of Comparison

As discussed earlier, having a deep meaning rep-
resentation of comparison structures can help us

4As shown in example sentences of Table 1, there can
be non-adjectival comparisons in each of these categories as
well.
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build computational models of comparison in nat-
ural language and perform inferential tasks in var-
ious domains. Here we introduce a novel seman-
tic framework of comparison. This framework is
based on the linguistic interpretations presented in
Section 2, but formalized and adapted to suit our
semantic computational framework.

We model comparatives as inter-connected
predicate-argument structures, where predicates
are the main comparison operators (implicit and
explicit comparison morphemes), and arguments
are connected to the predicates via semantic roles
(relations). Our framework includes not only ex-
plicit comparisons, but also implicit ones in the
form of an evaluation or a measurement on a scale,
which will be explained throughout this section.
More detailed and complete list of the predicates,
semantic roles, and arguments can be found in the
supplementary material.

Predicates: Table 1 lists all the predicate oper-
ators under our framework. As the table shows,
there are four main types of predicates: compara-
tives, extremes, bases, and measurements. Most
of these types can be associated with operators
from any of our parts of speech: Adjective (JJ),
Adverb (RB), Noun (NN), and Verb (VB). The
predicate operator in each of the examples is ital-
icized. The comparatives type also includes the
operators < and =<, which are the opposite of the
operators > and >= presented in the table. It is
important to note that the ‘base positive’ predi-
cate is actually the implicit pos operator (as men-
tioned in Section 2.1; however, for easier repre-
sentation we specify it by marking its correspond-
ing adjective or adverb. The same thing happens
for measurement predicates. Also, our framework
captures the subtle difference between the mean-
ing of ‘Mary is [tall]positive’ and ‘Mary is 5 feet
[tall]measurement−explicit’. The earlier means that
Mary is tall according to some standard of tallness
in a context, while the latter means that Mary’s
height equals the degree of 5 feet.

Semantic Roles: Each predicate is character-
ized by its arguments and each argument is con-
nected to the predicates by a relation (semantic
role) type. Table 2 shows the possible semantic
role types for a predicate. Figure is the core role
for a comparison structure, i.e., any comparison
should have a role indicating the main entity which
is being evaluated/measured/compared on a scale.
The simplest form of comparative predicate, e.g.,

‘John is taller than Sam’, involves two main roles:
Figure (John) and Ground (Sam). The non-core
roles are mainly associated with non-comparative
comparisons

Arguments: Last but not least, each role points
to an argument, which can have various types, as
listed in Table 3. The most frequent argument type
is individual, as in ’John is taller than Sam’. The
other notable role is Phrase-value, which repre-
sents an interesting comparison phenomena. In the
corresponding example in the table, the speed of
John’s driving is explicitly being compared with
some point on the scale of speed to which ‘he
was allowed’. Such ground roles are classified as
phrase-value, where a verb phrase signifies a point
of comparison on scale, not an individual entity.
Figure 1 shows an example of predicate-argument
structure under the described semantic framework.

4 Predicting Comparison Structures

Given an input sentence, we want to predict the
predicate operators, their semantic roles, and ar-
guments. We decompose this problem into three
sub-problems:

• Labeling predicate candidates using a multi-
class classifier

• For each predicate, considering the set of all
possible argument spans:

– Use a classifier for predicting the role
type label

– Use a classifier for predicting the argu-
ment type label

Our overall approach, to be described in this
section, is similar to the works on joint inference
with global constraints for learning event relations
and process structures (Do et al., 2012; Berant et
al., 2014).

Predicting Predicates: The first step in com-
parison structure prediction is to identify and la-
bel the predicates. For this purpose we train a
multi-class classifier that labels all one-word con-
stituents in the sentence with any of predicate
types in Table 1 or None (indicating that the con-
stituent is not a predicate). The set of all possible
predicate labels is named P .

We used various features for training the predi-
cate classifier: we extract the lemma and POS tag
of the word, POS tag of children, siblings, par-
ent and root of the sentence in the dependency
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Predicate Type Subtype Examples

Comparatives:
Comparing against one or more entities.

>

• JJ: The car was more modern than I had imagined.
• RB: John ran faster than Susan.
• NN: More cookies than cakes were purchased.
• VB: Coffee is less consumed than tea.

>=

• JJ: Pizza is as expensive as pasta.
• RB: The men ran as fast as the women did.
• NN: That college hires as much professors as we do.
• VB: Athletes drink as much as others.

Superlative

• JJ: Mary is the tallest among her colleagues.
• RB: Mike talked the most loudly of the group.
• NN: The juniors found the most rock of all.
• VB: The fire fighters ran the most among others.

Extreme:
Indicating having enough or too much of
a quality or quantity.

Excessive

• JJ: Mary is too tall to fit in the chair.
• RB: Sam ran too fast to get caught.
• NN: There are too many students at the party.
• VB: The kid screamed too much.

Assetive

• JJ: Mary is smart enough to accept the offer.
• RB: The machine works steadily enough.
• NN: There are enough professors at the party.
• VB: Jack passed enough interviews to prove himself.

Polarity:
Base form expression of +/- quality.

Positive • JJ: Mary is tall.
• RB:John talks beautifully.

Negative • JJ: Susan is short.
• RB: Philip walks slowly.

Measurement:
Indicating a measurement on a scale.

Explicit • JJ: Mary is 5 feet tall.
• RB: Philip is driving 60mph fast.

Implicit • JJ: Mary is 5 feet.
• RB: Philip is driving 60mph.

Table 1: The predicate types defined under our framework.

Figure 1: A full annotation of a sample predicate-argument structure under the described semantic frame-
work.

tree, POS tag and lemma of two adjacent words,
similarity features from WordNet (Miller, 1995),
word polarity features, and most importantly ‘at-
tribute concepts’ for words which are adjectives
(Bakhshandeh and Allen, 2015). The ‘attribute
concepts’ are the different properties that an adjec-
tive can describe, for instance ‘height’ and ‘thick-
ness’ are the attributes of the adjective ‘gangling’.
Last but not least, we include the conjunction of
all these features.

Predicting Roles and Arguments: Given
the predicates, one should label the predicate-
argument role and predict the argument type. Here
we take an approach used for semantic role label-

ing (Punyakanok et al., 2008): given a predicate,
we collect all constituents in the sentence to build
a set of plausible candidate arguments. As a re-
sult, each predicate has a set of candidate argu-
ments which should be labeled with their argu-
ment types and be assigned with a semantic role
edge. Here we jointly train two logistic regres-
sion classifiers for predicting semantic role type
and argument type of a predicate-argument pair,
using argument identification features from (Pun-
yakanok et al., 2008) and using the structured av-
eraged Perceptron algorithm (Collins, 2002). The
role types can be any of the roles from table 2 or
None (set R), and the argument types can be any
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Relation Type Description Example

Figure The main role being compared to something
else.

- [Lara] is taller than the tree.

Ground The main role against which the figure is com-
pared.

- Lara is taller than the [tree].

Differencedegree The ‘plus’ and ‘times’ roles, signifying an
amount of difference on a degree.

- Sam is [twice] taller than Jim.

Domain The explicit expression of the domain/popula-
tion in which the comparison takes place

- Mary is the most intelligent among
[her classmates].

Reason The reason associated with the excessive and
assetive predicates

- John is too lazy [to wake up].

Measurementdegree The main indication of a measurement - Henry is [5 feet] tall.
Scale The scale on which the comparison takes place - The [height] of the chair equals the

[length] of the sofa.

Table 2: The role types under our framework.

Argument Type Subtype Example

Individual:
An entity being compared against others. - - [John] is a better performer than Susie.

Reference:
A referring entity, the actual antecedent of
which would be resolved in discourse-level.

- - John is 2" taller than [that].

Phrase:
Introduces a degree on scale. Value - John was driving faster than [he was

allowed].

Amount:
The expression of the amount in a measurement.

Value - Mary is [5 feet] tall.
- Mary is [twice] taller than Bill.

Very Low-Low - Mary is [a little bit] taller than John.
High-Very High - Mary is [a lot] taller than Bill.

Bound:
A bound/approximation being set on the amount
that is expressed.

Exact - Mary is [exactly] 5 feet tall.
Approximate - Sam was [about] three times faster

than others.
Lower - John walks [at least] twice faster than

you.
Higher - Mary is [at most] twice as smart as the

others.
Scale:
The scale on which the measurement is done.

Explicit - The [height] of the bridge is too low
for the van.

Implicit - Sam is more [available] than John is.

Table 3: The argument types under our framework.

of the ones from table 3 or None (set G). At the
end of this stage we have two scores: scp,j,r =
log Prp,j,r where p ∈ P is a predicate type, j is
a candidate argument, r ∈ R is a role type; and
scp,j,g = log Prp,j,g where g ∈ G.

Joint Inference: Given a sentence with its ex-
tracted predicates5, for each predicate labeled as
p, the goal is the following: find the best assign-
ment for the indicators y = {yp,j,r | p ∈ P, 1 <
j ≤ n, r ∈ R} and x = {xp,j,g | p ∈ P, 1 <
j ≤ n, g ∈ G}. Here n is the number of candidate
arguments for the given predicate. We model the
problem as an Integer Linear Programming (ILP).
We formulate the problem as follows:

5A constituent is a predicate if it is labeled with any p ∈ P
and p 6= None.

arg max
y,x

∑
1<j≤n

r∈R

scp,j,r yp,j,r +
∑

1<j≤n
g∈G

scp,j,g xp,j,g (4a)

s.t.
∑

r∈R,r 6=None

yp,j,r = 1 (4b)

∑
g∈G

yp,j,g = 1 (4c)

∑
1<j≤n

yp,j,r = 1 (4d)

yp,j,None = xp,j,None (4e)∑
1<j≤n

yp,j,F igure = 1. (4f)

The hard constraints 4b− 4c each indicate a re-
striction on the structure of the predicate-argument
relation and labels: each argument can have only
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one role and argument type (4b − 4c), each pred-
icate can only have one of each role type (4d), a
‘None’ role type should be matched with a ‘None’
argument type (4e), and each predicate should
have exactly one ‘Figure’ role (4f ). There are also
some other specific constraints such as the fact that
a predicate labeled with ‘comparative’ cannot have
a ‘Domain’ role type and vice verse.

5 Experimental Setup

5.1 Dataset Creation

In order to make our gold-annotated dataset we
used OntoNotes (Pradhan et al., 2007) release
5.0 corpus. OntoNotes covers various genres
such as conversations, news-wire, and Weblogs,
which provides distinctive variations of compari-
son structures in natural language. Furtheremore,
we think our annotations can potentially provide
augmentations on OntoNotes, so using the origi-
nal OntoNotes sentences can be beneficial.

One approach for pinpointing comparison sen-
tences is to mine for some known patterns and
train a classifier for distinguishing comparison
and non-comparison sentences (Jindal and Liu,
2006b). However, as demonstrated earlier, the va-
riety of comparison structures is so vast that be-
ing limited to some specific patterns or syntactic
structures will not serve our purpose. In order
to address this issue, we randomly selected 2000
sentences from OntoNotes which contained an ad-
jective, an adverb, or any of the comparison mor-
phemes. This set contained some non-comparison
sentences, such as ‘John admitted to the crime
too’.

In order to make the final set of comparison sen-
tences we performed the following task: we define
a comparative sentence as a sentence that contains
at least one predicate operator as defined in Sec-
tion 3. Hence, we provided three human experts
with a full predicate operator types table and asked
each of them to annotate any predicate operator
found in the given sentences. Then we retained
any sentences with at least one predicate operator
which was annotated by at least two of the three
judges. We further refined the set to include equal
number of predicate types. This resulted in 531
sentences.

After collecting the comparison sentences, we
asked the annotators to provide gold-standard an-
notation of predicate-argument structure of the
sentences. This involves the annotator to read

the annotation guideline and basically understand
the semantic framework for comparison structures
that we introduced in Section 3. Initially, we
ran a pilot study on a set of 50 sentences where
each sentence was annotated by two of the ex-
perts. We used pilot results for iterating over the
annotation schema and guideline and resolving is-
sues regarding low agreement predicates and ar-
gument types6, until getting to average agreement
κ = 0.80. We split the dataset into 30% and 70%
for testing and training respectively.

5.2 Evaluation
Here we evaluate the performance of our pro-
posed predicate-argument structure prediction.
We present the following two methods:

• ILP Method: Our full approach as described
in Section 4. Here we used the Gurobi7 op-
timization package for finding an exact solu-
tion for our ILP formalization.

• Baseline: A simple pattern-based method
which uses lexical patterns for predicting
predicate type and argument types. This
method uses the generic comparative mor-
phemes such as ‘er’, ‘est’, ‘more’ and ‘less’
for detecting any specific type of predicate.
For identifying predicate arguments it relies
on rules which use syntactic structure, e.g.,
for a ‘greater’ predicate identified by ‘er’
morpheme, the ‘left’ argument is always the
main subject of the sentence. This method
annotates anything not recognized by pat-
terns as ‘None’.

Here with compare their predictions on test
set to the gold standard annotations and compute
micro-averaged precision, recall and F1 score. For
this analysis we remove the ‘equative’ predicate
type, given its very low frequency in our training
set. Moreover, here we do not include the positive
and negative predicate types, as these take only
one role argument which is ‘figure’, making the
prediction task trivial.

Table 4 shows the results of predicate type pre-
diction. The final reported average in this table ex-
cludes the type ‘None’. The best performing cate-
gory in both methods is ‘superlative’, which is be-
cause of its more typical structure which makes it

6The disagreements were mainly on fine-grained predi-
cate types, which were resolved by collapsing some of the
types together.

7www.gurobi.com
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easier to be predicted. In general, the precision of
predicate prediction is very high in ILP method,
which is due to the fact that our predicates are
the comparison operators indicated by the com-
parison morphemes. The baseline performs con-
siderably weaker than ILP method for predicting
less and greater predicates. This is because pre-
dicting these types requires a more complicated
analysis where simple morphological and syntac-
tic patterns can result in many false positives.

Table 5 depicts the results of the role type pre-
diction. The weighted average in this table is
based on frequency, excluding the type ‘None’.
The precision on role prediction varies across
different types. Overall, the baseline performs
weakly on predicting role types, which is dues to
the complicated structure of roles.

The best prediction of ILP method is on scales,
which has benefited from the attribute concept fea-
ture. The weaker performing types have been
affected by the low-frequency occurrence in the
training set. There are many cases of very long
and complex sentences in our dataset. One major
reason behind some of the false predictions is in-
correct dependency parse for long sentences. One
notable issue here is that for easier prediction and
analysis, we had asked our annotators to mark only
the head words for phrasal arguments. This had of-
ten caused lower agreement among annotators and
hence worse predictions on the system trained on
the dataset. In future, we are going to switch to
span-based argument identification.

ILP Method Baseline
Predicate Type P R F1 P R F1
Assetive 100 46 63 100 26 41
Greater 90 82 86 54 68 60
Superlative 96 79 87 89 73 80
Excessive 100 43 60 100 24 38
Less 100 86 92 45 71 55
None 96 99 99 78 80 79
Average 97 67 79 77 52 68

Table 4: The evaluation results on predicate type
prediction.

6 Related Work

The syntax and semantics of comparison in lan-
guage have been studied in linguistics for a long
time (Bresnan, 1973; Cresswell, 1976; Von Ste-
chow, 1984). However, so far, computational
modeling of the semantics of comparison com-
ponents of natural language has not been devel-

ILP Method Baseline
Role Type P R F1 P R F1
Plus 67 31 42 11 17 13
Ground 34 56 42 6 23 9
Scale 81 28 41 63 20 30
Figure 25 44 32 3 29 5
Reason 50 12 20 33 7 11
Domain 50 25 33 26 24 25
Times 14 50 22 30 12 17
None 97 96 96 81 78 79
Weighted Average 76 42 54 24 18 20

Table 5: The evaluation result on role type predic-
tion.

oped as elaborately as needed. The main efforts
on computational aspects of comparatives have
been in the context of sentiment analysis. Jindal
and Liu (2006b) introduced the first approach for
the identification of sentences containing compar-
isons. Their system trains a Naive Bayes classi-
fier for labeling sentences as comparative or non-
comparative.

Later works progressed into identifying the
components of the comparisons: comparative
predicates and arguments. For example for the
sentence “Canon’s optics is better than those of
Sony and Nikon.”, the extracted relation should be:
(better, {optics}, {Canon}, {Sony, Nikon}). Jindal
and Liu (2006a) detect such arguments by labeling
sequential rules. Xu et al. (2011) use Conditional
Random Fields (Lafferty et al., 2001) to extract
relations between two entities, an attribute and a
predicate phrase. These works all provide a rudi-
mentary basis for computational analysis of com-
paratives, however, they lack depth and breadth as
they are limited to the limited comparison struc-
ture (Entity1, Entity2, aspect) expressed within
some sequential patterns. It is evident that the
framework of comparison proposed in this paper
goes beyond simple triplet annotation of compari-
son structures and is more representative of the lin-
guistics literature on comparatives and measure-
ments.

The most recent related work on comparatives
(Kessler, 2014) focuses on argument identification
task: given a comparative predicate, they find the
arguments corresponding to it. They train a classi-
fier for this task emphasizing on syntax informa-
tion. Most of the entities in their training data
are products (cameras, cars, and phones). An-
other recent work (Kessler and Kuhn, 2014) con-
centrates on the annotation of what they call multi-
word predicates (such as ‘more powerful’, where
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the comparison is not one-word such as ‘calmer’).
They show that annotating the modifier of com-
paratives (i.e., the adjectives) gives better results
in classification. Both these works share the major
shortcoming of the earlier works, as they are very
limited to their specific patterns and fail to enable
deeper representation and analysis of various com-
plex comparative structures.

7 Conclusion

Systems that can understand and reason over com-
paratives are crucial for various NLP applications
ranging from open-domain question answering to
product review analysis. Understanding compar-
atives requires a semantic framework which can
represent their underlying meaning. In this pa-
per we presented a novel semantic framework for
representing the meaning of various comparison
constructions in natural language. We mainly
modeled comparisons as predicate-argument pairs
which are connected via semantic roles. Our
framework supports all possible parts of speech
and variety of measurements and comparisons,
hence providing a unique computational represen-
tation of the underlying semantics of comparison.
Furthermore, we introduced an ILP-based method
for predicting the predicate-argument structure of
comparison sentences.

With this paper, we provide a novel dataset of
gold-standard annotations based on our seman-
tic framework. We are planning on expanding
our gold-standard annotations under this frame-
work for having more training data. Our semantic
framework on comparison constructions enables
us to do logical reasoning and inference over com-
paratives. In the future, we are planning to de-
sign a reading comprehension task where we use
this framework for answering comparison ques-
tions from a paragraph containing various inter-
related comparisons.

Last but not least, the works on broad-coverage
semantic parsing (Allen et al., 2008; Bos, 2008)
can all benefit from our semantic framework. We
will be extending the TRIPS logical form (Allen
et al., 2008) according to this framework and will
modify the grammar to generate the deeper repre-
sentations.
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Abstract

Sarcasm is generally characterized as a
figure of speech that involves the substi-
tution of a literal by a figurative mean-
ing, which is usually the opposite of the
original literal meaning. We re-frame the
sarcasm detection task as a type of word
sense disambiguation problem, where the
sense of a word is either literal or sar-
castic. We call this the Literal/Sarcastic
Sense Disambiguation (LSSD) task. We
address two issues: 1) how to collect a set
of target words that can have either literal
or sarcastic meanings depending on con-
text; and 2) given an utterance and a target
word, how to automatically detect whether
the target word is used in the literal or the
sarcastic sense. For the latter, we investi-
gate several distributional semantics meth-
ods and show that a Support Vector Ma-
chines (SVM) classifier with a modified
kernel using word embeddings achieves a
7-10% F1 improvement over a strong lex-
ical baseline.

1 Introduction

Recognizing sarcasm is important for understand-
ing people’s actual sentiments and beliefs. For
example, failing to recognize the following mes-
sage as being sarcastic “I love that I have to go
back to the emergency room”, will lead a senti-
ment and opinion analysis system to infer that the
author’s sentiment is positive towards the event
of “going to the emergency room”. Current ap-
proaches have framed the sarcasm detection task
as predicting whether a full utterance is sarcastic
or not (Davidov et al., 2010; González-Ibáñez et
al., 2011; Riloff et al., 2013; Liebrecht et al., 2013;
Maynard and Greenwood, 2014).

We propose a re-framing of sarcasm detection
as a type of word sense disambiguation problem:

given an utterance and a target word, identify
whether the sense of the target word is literal or
sarcastic. We call this the Literal/Sarcastic Sense
Disambiguation (LSSD) task. In the above utter-
ance, the word “love” is used in a sarcastic, non-
literal sense (the author’s intended meaning be-
ing most likely the opposite of the original literal
meaning - a negative sentiment, such as “hate”).
Two key challenges need to be addressed: 1) how
to collect a set of target words that can have a lit-
eral or a sarcastic sense, depending on context;
and 2) given an utterance containing a target word,
how can we determine whether the target word is
used in its literal sense (e.g., “I love to take a nice
stroll in the park every morning”), or in a sarcastic
sense (e.g., “I love going to the dentist.”).

To address the first challenge, we need to iden-
tify a set of words from sarcastic utterances, which
have a figurative/sarcastic sense (e.g., “love” in the
utterance “I love going to the dentist”). We pro-
pose a crowdsourcing task where Turkers in Ama-
zon Mechanical Turk (MTurk) platform are given
sarcastic utterances (tweets labeled with #sarcasm
or #sarcastic hashtags) and are asked to re-phrase
those messages so that they convey the author’s in-
tended meaning (“I love going to the dentist” can
be rephrased as “I hate going to the dentist” or
“I don’t like going to the dentist”). 1 Given this
parallel dataset, we use unsupervised alignment
techniques to identify semantically opposite words
(e.g., “love” ↔ “hate”, “brilliant” ↔ “stupid”,
“never”↔ “always”). The words from these pairs
that appear in the original sarcastic utterances are
then considered as our collection of target words
(e.g., “love”, “brilliant”, “never”) that can have
both a sarcastic and a literal sense depending on
the context (Section 2).

To address the second challenge, we compare
several distributional semantics methods generally
used in word sense disambiguation tasks (Sec-

1utterances and messages are used interchangeably.

1003



Target Sense Utterance
S . . . starting off the new year great

!!!!! sick in bed . . .
great L . . . you don’t need a record label to

have great music . . .
Lsent . . . i’m in love with this song great

job justin . . .
S yay something to be proud of 3rd

poorest in the NATION . . .
proud L im filipino with dark brown eye

and forever true and proud . . .
Lsent but i’m proud of all the beliebers

AROUND THE WORLD . . .

Table 1: Examples of Targets and their Senses

tion 3). We show that using word embeddings in
a modified SVM kernel achieves the best results
(Section 4). To collect training and test datasets
for each of the target words, we use Twitter mes-
sages that contain those words. For the sarcas-
tic sense (S), we use tweets that contain the target
word and are labeled with the #sarcasm or #sar-
castic hashtags. For the literal sense (L), we col-
lect tweets that contain the target word and are
not labeled with the #sarcastic or #sarcasm hash-
tags. Table 1 shows examples of two targets words
(“great” and “proud”) and their sarcastic sense (S)
and literal sense (L). In addition, for the literal
sense, we also consider a special case, where the
tweets are labeled with either positive or nega-
tive hashtags (e.g., #happy, #sad) as proposed by
Gonzalez et al. (2011). We denote these senti-
ment tweets as Lsent (Table 1). Gonzalez et al.
(2011) argue that it is harder to distinguish sar-
castic from non-sarcastic messages where the non-
sarcastic messages contain sentiment. Our results
support this argument (97% F1 measure for the
best result for S vs. L, compared to 84% F1 for
the best result for S vs. Lsent; Section 4).2

2 Collection of Target Words

To collect a set of target words that can have either
literal or sarcastic meaning depending on context,
we propose a two step approach: 1) a crowdsourc-
ing task to collect a parallel dataset of sarcastic
utterances and their re-phrasings that convey the
authors’ intended meaning; and 2) unsupervised
alignment techniques to detect semantically oppo-
site words/phrases.

Crowdsourcing Task. Given a sarcastic mes-
sage (SM), Turkers were asked to re-phrase the

2The datasets used in the experiments is available at
https://github.com/debanjanghosh/sarcasm wsd.

message so that the new message is likely to ex-
press the author’s intended meaning (IM). Exam-
ples of an original sarcastic message (1) and three
messages generated by the Turkers (2) is given be-
low:

(1) [SM] I am so happy that I am going
back to the emergency room.

(2) a. [IM1] I don’t like that I have to go to
the emergency room again.

b. [IM2] I am so upset I have to return to
the emergency room.

c. [IM3] I’m so unhappy that I am going
back to the emergency room.

From the above examples, we can see that align-
ing the sarcastic message (SM) to the re-phrasings
containing the author’s intended meaning gener-
ated by the Turkers (IM1, IM2, IM3) will al-
low us to detect that “happy” can be aligned to
“don’t like”, “upset”, and “unhappy”. Based on
this alignment, “happy” will be considered as a
target word for the LSSD task.

We used 1,000 sarcastic messages collected
from Twitter using the #sarcasm and #sarcastic
hashtags. The Turkers were provided with de-
tailed instructions of the task including a defini-
tion of sarcasm, the task description, and multi-
ple examples. In addition, for messages that con-
tain one or more sentences and where sarcasm is
related to only a part of the message, the Turk-
ers were instructed to consider the entire message
in their rephrasing. This emphasis was added to
avoid high asymmetry in the length between the
original sarcastic message and the rephrasing of
the intended meaning. For each original sarcas-
tic message (SM), we asked five Turkers to do the
rephrasing task. Each HIT contains 1 sarcastic
message, and Turkers were paid 5 cents for each
HIT. To ensure a high quality level, only quali-
fied workers were allowed to perform the task (i.e.,
more than 90% approval rate and at least 500 ap-
proved HITs). In this way, we obtained a dataset
of 5,000 SM-IM pairs.

Unsupervised Techniques to Detect Semanti-
cally Opposite Words/Phrases. We use two
methods for unsupervised alignment. First, we
use the co-training algorithm for paraphrase detec-
tion developed by Barzilay and McKeown (2001).
This algorithm is used for two specific reasons.
First, our dataset is similar in nature to the parallel
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monolingual dataset used in Barzilay and McK-
eown (2001), and thus lexical and contextual in-
formation from tweets can be used to extract the
candidate targets words for LSSD. For instance,
we can align the [SM] and [IM3] (from the above
examples), where except for the words happy and
unhappy, the majority of the words in the two
messages are anchor words and thus happy and
unhappy can be extracted as paraphrases via co-
training. To model contextual information, such
as part of speech tagging for the co-training algo-
rithm, we used Tweet NLP (Gimpel et al., 2011).
Second, Bannard and Callison-Burch (2005) no-
ticed that the co-training method proposed by-
Barzilay and McKeown (2001) requires identical
bounding substrings and has bias towards single
words while extracting paraphrases. This apparent
limitation, however, is advantageous to us because
we are specifically interested in extracting target
words. Co-training resulted in 367 extracted pairs
of paraphrases.

We also considered a statistical machine transla-
tion (SMT) alignment method - IBM Model 4 with
HMM alignment implemented in Giza++ (Och
and Ney, 2000). We used Moses software(Koehn
et al., 2007) to extract lexical translations by align-
ing the dataset of 5,000 SM-IM pairs. From
the set of 367 extracted paraphrases using Barzi-
lay and McKeown (2001)’s approach, we selected
only those paraphrases where the lexical transla-
tion scores φ (resulted after running Moses) are
≥ 0.8. After filtering via translation scores and
manual inspection, we obtained a set of 80 seman-
tically opposite paraphrases. Given this set of se-
mantically opposite words, the words that appear
in the sarcastic messages were consider our target
words for LSSD (70 target words after lemmatiza-
tion). They range from verbs, such as “love” and
“like”, adjectives, such as “brilliant”, “genius”,
and adverbs, such as “really”.

3 Literal/Sarcastic Sense Disambiguation

Our Literal/Sarcastic Sense Disambiguation
(LSSD) task is formulated as follows: given a
candidate utterance (i.e., a tweet) that contains a
target word t, identify whether the sense of t is
sarcastic (S) or literal (L). In order to be able to
solve this problem we need training and test data
for each target word that consists of utterances
where the target word is used either in the literal
sense or the sarcastic sense.

love(26802), like(14995), great(14495), good(11624),
really(9825), right(6771), fun(6603), best(6182),
better(5960), glad(5748), yeah(5504), nice(4443),
awesome(4196), excited(4027), always(3807),
happy(3098), cool(2705), amazing(1952), fa-
vorite(1883), perfect(1792), wonderful(1749), won-
der(1476), lovely(1424), super(1390), fantastic(1369),
joy(1176), cute(1007), beautiful(981), sweet(800),
hot(729), proud(703), shocked(645), interested(624),
brilliant(576), genius(481), attractive(449), mature(427)

Table 2: Target words and # of training instances
per sense

3.1 Data Collection

To collect training and test datasets for each of the
target words, we use Twitter messages that contain
those words. For the sarcastic sense (S), we use
tweets that contain the target word and are labeled
with the #sarcasm or #sarcastic hashtag. For the
literal sense (L), we collect tweets that contain the
target word and are not labeled with the #sarcastic
or #sarcasm hashtags. In addition, for the literal
sense we also consider a special case, where the
tweets are labeled with either positive or negative
sentiment hashtags (e.g., #happy, #sad). Thus, we
consider two LSSD tasks: S vs. L and S vs. Lsent,
and aim to collect a balanced dataset for each tar-
get word.

For the 70 target words (see Section 2), we col-
lected a total of 2,542,249 tweets via Twitter API .
We considered a setup where 80% of data is used
for training, 10% for development, and 10% for
test. We empirically set the number of minimum
training instances for each sense of the target word
to 400 without any upper restriction. This resulted
in 37 target words to be used in the LSSD exper-
iments. Table 2 shows all the target words and
their corresponding number of training instances
for each sense (S and L/Lsent). The size of train-
ing data ranges from 26,802 for the target word
“love” to 427 for the word “mature”. As we will
see in the results sections, however, the size of
the training data is not always the key factor in
the LSSD task, especially for the methods that use
word embeddings.

3.2 Learning Approaches

We consider two classical approaches used in
word sense disambiguation tasks: 1) distributional
approaches where each sense of a target word is
represented as a context vector derived from the
training data; and 2) classification approaches (S
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vs. L; S vs. Lsent) for each target word.

3.2.1 Distributional Approaches
The Distributional Hypothesis in linguistics is de-
rived from the semantic theory of language usage,
i.e., words that are used and occur in the same
contexts tend to purport similar meanings (Harris,
1954). Distributional semantic models (DSMs)
use vectors that represent the contexts (e.g., co-
occurring words) in which target words appear in
a corpus, as proxies for meaning representations.
Geometric techniques such as cosine similarity are
then applied to these vectors to measure the simi-
larity in meaning of corresponding words.

The DSMs are a natural approach to model our
LSSD task. For each target word t we build two
context-vectors that will represent the two senses
of the target word t using the training data: one for
the sarcastic sense S using the sarcastic training
data for t (~vs) and one for the literal sense L using
the literal sense training data for t (~vl).3 Given
a test message u containing a target word t, we
first represent the target word as a vector ~vu using
all the context words inside u. To predict whether
t is used in a literal or sarcastic sense in the test
message u we simply apply geometric techniques
(e.g., cosine similarity) between ~vu and the two
sense vectors ~vs and ~vl, choosing the one with the
maximum score.

To create the two sense vectors ~vs and ~vl for
each of the target words t, we use the posi-
tive pointwise mutual information model (PPMI)
(Church and Hanks, 1990). Based on t’s con-
text words ck in a window of 10 words, we sep-
arately computed PPMI for sarcastic and literal
senses using t’s training data. The size of the con-
text widow used in DSMs is generally between 5
and 10, and in our experiments we used a win-
dow of 10 words since tweets often include mean-
ingful words/tokens at the end of the tweets (e.g.,
interjections, such as “yay”, “ohh”; upper-case
words, such as, “GREAT”; novel hashtags, such
as “#notreally”, “#lolol”; emoticons, such as “:(”).
We sorted the context words based on the PPMI
scores and for each target word t we selected a
maximum of 1,000 context words per sense to ap-
proximate the two senses of the target word (i.e.,
the vectors ~vs and ~vl for each target word t consist
of a maximum of 1,000 words). Table 3 shows
some target words and their corresponding con-

3In the remaining of this section we will only mention L
and not Lsent for clarity and brevity.

Targets Senses Context Vector
S ignored, being, waking, work, sick,

#not
love L please, follow, ♥, her, :)

Lsent happy, family, blessed, cute, birth-
day

S work, tomorrow, homework, friday,
sleep

fun L hope, join, girl, game, friend
Lsent #friends, #family, weekend, amaz-

ing, #christmas
S working, snow, waking, studying,

sick
joy L yesterday, sweet, special, prayer,

laughter
Lsent wishing, warmth, love, christmas,

peace

Table 3: Target words and their context words

text words that were selected based on high PPMI
scores.

To predict whether t is used in a literal or sar-
castic sense in the test message u we simply apply
the cosine similarity to the ~vu (vector representa-
tion of the target word t in the test message u) and
the two sense vectors ~vs and ~vl of t, choosing the
one with the maximum score. All vector elements
are given by the tf-idf values of the corresponding
words. This approach, denoted as the “PPMI base-
line”, is the baseline for our DSM experiments.

Context Vectors with Word Embedding: The
above method considers that the context vectors
~vs and ~vl of each target word t contain the co-
occurring words selected by their PPMI values.
We enhance the representation of context vectors
to represent each word in the context vector by
its word embedding. We experiment with three
different methods of obtaining word embeddings:
Weighted Textual Matrix Factorization (WTMF)
(Guo and Diab, 2012b); word2vec that imple-
ments the skip-gram and continuous bag-of-words
models (CBOW) of Mikolov et al. (2013a), and
GloVe (Pennington et al., 2014), a log-bilinear re-
gression model based upon global word-word co-
occurrence count in the training corpora.

After removing the tweets that are used as test
sets, we build the three word embedding mod-
els in an unsupervised fashion with the remaining
2,482,763 tweets from our original data collection
(Section 3.1). In each of the three models, each
word w is represented by its d-dimensional vec-
tor ~w of real numbers, where d=100 for all of the
embedding algorithms in our experiments. For the
size of the embedding vectors, it is common to use
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100 or 300 dimensions, with larger dimensions for
larger datasets. Our current dataset is smaller than
the ones used in other applications of word embed-
dings (e.g., Pennington et al. (2014) have used bil-
lion tweets to create word embedding) so we opted
for 100 dimensional vectors. Below are the short
descriptions of the three word embedding models:

• Weighted Textual Matrix Factorization
(WTMF): Low-dimensional vectors have
been used in WSD tasks, since they are
computationally efficient and provide better
generalization than surface words. A dimen-
sion reduction method is Weighted Textual
Matrix Factorization (WTMF) (Guo and
Diab, 2012b), which is designed specifically
for short texts, and has been successfully
applied in WSD tasks (Guo and Diab,
2012a). WTMF models unobserved words,
thus providing more robust embeddings for
short texts such as tweets.

• word2vec Representation: We use both the
Skip-gram model and the Continuous Bag-
of-Words (CBOW) model (Mikolov et al.,
2013a; Mikolov et al., 2013c) as imple-
mented in the word2vec gensim python li-
brary. 4 Given a window size of n words
around a word w, the skip-gram model pre-
dicts the neighboring words given the current
word. In contrast, the CBOW model predicts
the current word w, given the neighboring
words in the window. We considered a con-
text window of 10 words.

• GloVe Representation: GloVe (Pennington et
al., 2014) is a word embedding model that
is based upon weighted least-square model
trained on global word-word co-occurrence
counts instead of the local context used by
word2vec.

Here, the LSSD task is similar to the baseline:
to predict whether the target word t in the test mes-
sage u is used in a literal or sarcastic sense, we
simply use a similarity measure between the ~vu
(vector representation of the target word t in the
test message u) and the two sense vectors ~vs and
~vl of t, choosing the one with the maximum score.
The difference from the baseline is twofold: First,
all vectors elements are word embeddings (i.e.,

4https://radimrehurek.com/gensim/models/word2vec.html

100-d vectors). Second, we use the maximum-
valued matrix-element (MVME) algorithm intro-
duced by Islam and Inkpen (2008), which has been
shown to be particularly useful for computing the
similarity of short texts. We modify this algorithm
to use word embeddings (MVMEwe). The idea
behind the MVME algorithm is that it finds a one-
to-one “word alignment” between two utterances
(i.e., sentences) based on the pairwise word sim-
ilarity. Only the aligned words contribute to the
overall similarity score.

Algorithm 1 MVMEwe
1: procedure MVMEwe(vs,vu)
2: vswords

← vs.elements()
3: vuwords

← vu.elements()
4: M [vswords

.size(), vuwords
.size()]← 0

5: for k ← 0, vswords
.size() do

6: ck ← vswords
[k]

7: ~ck ← getEmbedding(ck)
8: for j ← 0, vuwords

.size() do
9: wj ← vuwords

[j]
10: ~wj ← getEmbedding(wj)
11: M [k][j]← cosine(~ck, ~wj)
12: end for
13: end for
14: while True do
15: repeat
16: max← getMax(M)
17: Sim← Sim+max
18: rm, cm ← getRowCol(M,max)
19: . Remove rm row and cm column from M
20: remove(M, rm, cm)
21: until max > 0 Or M.size() > 0
22: end while
23: Return Sim
24: end procedure
25:

26: procedure GETEMBEDDING(word)
27: Return wemodel[word]
28: end procedure
29: procedure GETROWCOL(M,max)
30: row, col←M.indexOf(max)
31: Return row, col
32: end procedure

Algorithm 1 presents the pseudocode of
our modified algorithm for word embeddings,
MVMEwe. Let the total similarity between ~vs
and ~vu be Sim. For each context word ck from
~vs and each word wj from ~vu, we compute a ma-
trix where the value of the matrix element Mjk
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denotes the cosine similarity between the embed-
ded vectors ~ck and ~wj [lines 5 -13]. Next, we first
select the matrix cell that has the highest similarity
value in M (max) and add this to the Sim score
[lines 16-17]. Let the rm and cm be the row and
the column of the cell containingmax (maximum-
valued matrix element), respectively. Next, we re-
move all the matrix elements of the rm-th row and
the cm-th column from M [line 20]. We repeat
this procedure until we have traversed through all
the rows and columns of M or max = 0 [line 21].

3.2.2 Classification Approaches
The second approach for our LSSD task is to treat
it as a binary classification task to identify the sar-
castic or literal sense of a target word t. We have
two classification tasks: S vs. L and S vs. Lsent
for each of the 37 target words. We use the lib-
SVM toolkit (Chang and Lin, 2011). Development
data is used for tuning parameters.

SVM Baseline: The SVM baseline for LSSD
tasks uses n-grams and lexicon-based binary-
valued features that are commonly used in exist-
ing state-of-the-art sarcasm detection approaches
(González-Ibáñez et al., 2011; Tchokni et al.,
2014). They are derived from i) bag-of-words
(BoW) representations of words, ii) LIWC dic-
tionary (Pennebaker et al., 2001), and iii) a list
of interjections (e.g., “ah”, “oh”, “yeah”), punc-
tuations (e.g., “!”, “?”), and emoticons collected
from Wikipedia. CMU Tweet Tokenizer is em-
ployed for tokenization. 5 We kept unigrams
unchanged when all the characters are upper-
case (e.g., “NEVER” in “A shooting in Oakland?
That NEVER happens! #sarcasm”) but otherwise
words are converted to lower case. We also change
all numbers to a generic number token “22”. To
avoid any bias during experiments, we removed
the target words from the tweets as well as any
hashtag used to determine the sense of the tweet
(e.g., #sarcasm, #sarcastic, #happy, #sad).

SVM with MVMEwe Kernel: We propose a
new kernel kernelwe to compute the semantic
similarity between two tweets ur and us using the
MVMEwe method introduced for the DSM ap-
proach, and the three types of word embeddings
(WTMF, word2vec, and GloVe). The similarity
measure in the kernel is similar to the algorithm
MVMEwe described in Algorithm 1, but instead

5http://www.ark.cs.cmu.edu/TweetNLP/

of measuring the similarity between the sense vec-
tors of t (~vs, ~vl) and the vector representation of t
in test message ( ~vu), now we measure the similar-
ity between two tweets ur and us. For each k-th
index word wk in ur and l-th index word wl in
us we compute the cosine similarity between the
embedded vectors of the words and fill up a sim-
ilarity matrix M . We select the matrix cell that
has the highest similarity, add this similarity score
to the total similarity Sim, remove the row and
column from M that has highest similarity score,
and repeat the procedure (similar to Algorithm 1).
We noticed that MVMEwe algorithm carefully
chooses the best candidate word wl in us for the
wk word in ur since wl is the most similar word to
wk. The algorithm continues the same procedure
for all the remaining words in ur and us. The fi-
nal Sim is used as the kernel similarity between
ur and us. We augment this kernel kernelwe into
libSVM and during evaluation we run supervised
LSSD classification for each target word t sepa-
rately.

4 Results and Discussions

Tables 4 and 5 show the results for the LSSD
experiments using distributional approaches and
classification-based approaches, respectively. For
brevity, we only report the average Precision (P),
Recall (R), and F1 scores with their standard
deviation (SD) (given by ‘±’), and the targets
with maximum/minimum F1 scores. w2vsg and
w2vcbow represent the skip-gram and CBOW mod-
els implemented in word2vec, respectively.

Table 4 presents the results of distributional
approaches (Section 3.2.1). We observe that
the word embedding methods have better perfor-
mance than the PPMI baseline for both S vs. L
and S vs. Lsent disambiguation tasks. Also,
the average P/R/F1 scores for S vs. L are much
higher than for S vs. Lsent. Since all tweets with
Lsent sense were collected using sentiment hash-
tags (González-Ibáñez et al., 2011), they might be
lexically more similar to the S tweets than the L
tweets are and thus identifying the sense of a tar-
get word t between S vs. Lsent is a harder task. In
Table 4 we also observe that the average F1 scores
between WTMF, w2vsg, w2vcbow, and GloVe are
comparable and between 84%-86%, with w2vsg
and w2vcbow achieving slightly higher F1.

Table 5 outlines the LSSD experiments us-
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Expr. Senses Avg. P Avg. R Avg. F1 Max. F1(Target) Min. F1(Target)
S 73.5 ± 3.6 84.6 ± 6.0 78.5 ± 3.2 83.9(mature) 68.8(wonder)
L 83.1 ± 5.0 70.6 ± 5.5 76.1 ± 3.4 82.7(love) 68.3(nice)

PPMIbl S 67.8 ± 7.0 76.2 ± 13.6 70.4 ± 7.6 81.8(joy) 43.8(like)
Lsent 74.2 ± 7.1 62.7 ± 12.8 66.9 ± 6.6 78.6(joy) 47.1(interested)

S 83.0 ± 3.4 87.2 ± 5.4 84.9 ± 2.4 91.4(mature) 78.7(wonder)
L 87.5 ± 4.4 82.7 ± 4.5 84.9 ± 2.2 90.5(mature) 80.6(nice)

WTMF S 67.4 ± 5.5 86.5 ± 5.1 75.6 ± 3.9 84.4(joy) 65.8(interested)
Lsent 82.1 ± 5.8 58.9 ± 9.7 68.1 ± 7.2 81.5(joy) 50.0(genius)

S 83.7 ± 3.6 85.6 ± 5.6 84.5 ± 2.8 90.6(joy) 78.8(sweet)
L 86.3 ± 4.6 84.0 ± 4.3 85.0 ± 2.5 89.6(joy) 79.2(like)

GloVe S 70.7 ± 5.1 84.3 ± 5.0 76.8 ± 3.9 85.4(joy) 67.1(interested)
Lsent 80.7 ± 5.4 64.7 ± 8.5 71.5 ± 6.1 84.0(joy) 54.7(hot)

S 84.9 ± 3.3 87.0 ± 4.8 85.8 ± 2.6 90.9(mature) 80.7(like)
L 87.5 ± 4.1 85.1 ± 4.0 86.2 ± 2.5 90.7(mature) 80.2(like)

w2vsg S 70.8 ± 4.8 85.7 ± 5.1 77.4 ± 4.0 86.7(joy) 68.1(interested)
Lsent 82.2 ± 5.7 64.3 ± 7.8 71.9 ± 5.9 85.4(joy) 57.4(interested)

S 84.9 ± 3.2 86.7 ± 4.7 85.6 ± 2.5 90.9(mature) 80.7(like)
L 87.3 ± 4.0 85.1 ± 3.8 86.1 ± 2.4 90.7(mature) 80.2(like)

w2vcbow S 70.7 ± 4.8 85.8 ± 5.0 77.4 ± 4.0 86.4(joy) 68.6(attractive)
Lsent 82.0 ± 5.6 64.0 ± 7.7 71.7 ± 5.8 85.0(joy) 58.7(interested)

Table 4: Evaluation of distributional approaches (PMI and word embedding) for LSSD experiments

Expr. Senses Avg. P Avg. R Avg. F1 Max. F1(Target) Min. F1(Target)
S 87.0 ± 3.3 85.6 ± 3.1 86.3 ± 2.7 91.7(yeah) 75.4(sweet)
L 85.9 ± 2.8 87.1 ± 3.6 86.5 ± 2.8 91.8(yeah) 76.1(sweet)

SVMbl S 77.3 ± 4.6 78.2 ± 4.2 77.7 ± 3.8 85.5(love) 68.6(brilliant)
Lsent 77.8 ± 3.7 76.7 ± 6.4 77.1 ± 4.7 85.8(love) 64.6(attractive)

S 94.1 ± 2.2 94.6 ± 1.8 94.3 ± 1.8 97.3(brilliant) 88.3(joy)
L 94.6 ± 1.8 94.0 ± 2.3 94.3 ± 1.9 97.2(mature) 87.9(joy)

kernelWTMF S 79.0 ± 4.6 78.8 ± 4.4 78.8 ± 3.8 84.8(mature) 61.0(genius)
Lsent 78.8 ± 3.7 78.9 ± 4.9 78.8 ± 3.6 85.4(mature) 63.5(genius)

S 95.7 ± 1.6 97.4 ± 1.7 96.5 ± 1.1 99.1(mature) 92.9(glad)
L 97.4 ± 1.6 95.6 ± 1.7 96.5 ± 1.2 99.1(mature) 92.7(interested)

kernelGloV e S 79.5 ± 3.5 83.1 ± 3.0 81.2 ± 2.8 86.9(joy) 74.2(attractive)
Lsent 82.2 ± 3.0 78.3 ± 4.4 80.2 ± 3.4 86.6(joy) 69.2(attractive)

S 96.6 ± 1.1 98.5 ± 0.6 97.5 ± 0.4 99.2(cute) 93.8(interested)
L 98.5 ± 0.7 96.5 ± 1.2 97.5 ± 0.5 99.2(cute) 93.5(interested)

kernelw2vsg S 81.9 ± 3.8 88.1 ± 3.2 84.8 ± 3.0 88.8(love) 74.2(genius)
Lsent 87.0 ± 3.2 80.2 ± 4.7 83.4 ± 3.5 88.8(love) 73.3(genius)

S 96.4 ± 1.0 98.2 ± 1.1 97.3 ± 0.6 99.1(mature) 93.8(interested)
L 98.2 ± 1.1 96.3 ± 1.1 97.2 ± 0.7 99.1(mature) 93.5(interested)

kernelw2vcbow S 81.7 ± 3.8 88.6 ± 2.9 84.9 ± 2.8 89.5(love) 74.8(genius)
Lsent 87.4 ± 2.9 79.9 ± 4.8 83.4 ± 3.4 89.2(love) 74.4(genius)

Table 5: Evaluation of classification approaches (SVMbl and kernelwe) for LSSD experiments

ing the classification approaches (Section 3.2.2):
SVM baseline (SVMbl) and SVM using the
kernelwe with word embeddings (kernelWTMF ,
kernelGloV e, kernelw2vsg , and kernelw2vcbow

).
The classification approaches give better perfor-
mance compared to the distributional approaches.
The SVMbl is around 7-8 % higher than the
PPMIbl and comparable with the word embed-
dings used in distributional approaches (Table 4).
In addition, our new SVM kernel method using
word embeddings shows significantly better re-
sults when compared to the SVMbl (and distri-
butional approaches). For instance, for the S vs.
L task, the average F1 is 96-97%, which is more
than 10% higher than SVMbl. Similarly, for S

vs. Lsent task, F1 scores reported by the kernel
using word2vec embeddings are in the range of
83%-84% compared to 77% given by the SVMbl,
showing an absolute increase of 7%. As stated ear-
lier, MVME algorithm aligns similar word pairs
found in its inputs and this performs well for short
texts (i.e., tweets). Thus, the MVME algorithm
combined with word embedding in kernelwe re-
sults in very high F1. Among the word embedding
models, word2vec models give marginally better
results compared to GloVe and WTMF, and GloVe
outperforms marginally WTMF. Similar to Table
4, here, the average F1 scores for S vs. L task are
higher than the S vs. Lsent results.

In terms of the best and worst performing tar-
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gets, SVMbl prefers targets with more training
data (e.g., “yeah”, “love” vs. “sweet”, “attractive”;
see Table 2). In contrast, word embedding mod-
els for “joy” and “mature”, two targets with com-
paratively low number of training instances have
achieved very high F1 using both distributional
and classification approaches (Table 4 and 5). This
can be explained by the fact that for words, such as
“joy”, “mature”, “cute”, and “brilliant”, the con-
texts of their literal and sarcastic sense are quite
different, and DSMs and word embeddings are
able to capture the difference. For example, ob-
serve in the Table 3, negative sentiment words,
i.e., “sick”, “working”, “snow” are the context
words for targets “joy” and “love”, where as posi-
tive sentiment words, such as, “blessed”, “family”,
“christmas”, and “peace” are the context words for
L or Lsent senses. Overall, out of 37 targets, only
5 targets (“mature”, “joy”, “cute”, “love”, and
“yeah”) achieved “maximum” F1 scores in vari-
ous experimental settings (Tables 4 and 5) whereas
targets such as “interested”, “genius”, and “attrac-
tive” achieved low F1 scores.

In terms of variance in results, SVM results
show low SD (0-4%). For distributional ap-
proaches, SD is slightly higher (5-8%) for several
cases.

5 Related Work

Two lines of research are directly relevant to our
work: sarcasm detection in Twitter and applica-
tion of distributional semantics, such as word em-
bedding techniques to various NLP tasks. In con-
trast to current research on sarcasm and irony de-
tection (Davidov et al., 2010; Riloff et al., 2013;
Liebrecht et al., 2013; Maynard and Greenwood,
2014), we have introduced a reframing of this task
as a type of word sense disambiguation problem,
where the sense of a word is sarcastic or literal.
Our SVM baseline uses the lexical features pro-
posed in previous research on sarcasm detection
(e.g., LIWC lexicon, interjections, pragmatic fea-
tures) (Liebrecht et al., 2013; González-Ibáñez et
al., 2011; Reyes et al., 2013). Our analysis of tar-
get words where the sarcastic sense is the opposite
of the literal sense is related to the idea of “pos-
itive sentiment toward a negative situation” pro-
posed by Riloff et al. (2013) and recently studied
by Joshi et al. (2015). In our approach, we chose
distributional semantic approaches that learn con-
textual information of targets effectively from a

large corpus containing both literal and sarcastic
uses of words and show that word embedding are
highly accurate in predicting the sarcastic or lit-
eral sense of a word (Tables 4 and 5). This ap-
proach has the potential to capture more nuanced
cases of sarcasm, beyond “positive sentiment to-
wards a negative situation” (e.g., one of our target
words was “shocked” which is negative). How-
ever, our current framing is still inherently limited
to cases where sarcasm is characterized as a figure
of speech where the author means the opposite of
what she says, due to our approach of selecting the
target words.

Low-dimensional text representation, such as
WTMF, have been successful in WSD disam-
biguation research and in computing similarity be-
tween short texts (Guo and Diab, 2012a; Guo and
Diab, 2012b). word2vec and GloVe representa-
tions have provided state-of-the-art results on var-
ious word similarity and analogy detection task
(Mikolov et al., 2013c; Mikolov et al., 2013b;
Pennington et al., 2014). Word embedding based
models are also used for other NLP tasks such as
dependency parsing, semantic role labeling, POS
tagging, NER, question-answering (Bansal et al.,
2014; Collobert et al., 2011; Weston et al., 2015)
and our work on LSSD is a novel application of
word embeddings.

6 Conclusion and Future Work

We proposed a reframing of the sarcasm detec-
tion task as a type of word sense disambiguation
problem, where the sense of a word is its sarcas-
tic or literal sense. Using a crowdsourcing exper-
iment and unsupervised methods for detecting se-
mantically opposite phrases, we collected a set of
target words to be used in the LSSD task. We
compared several distributional semantics meth-
ods, and showed that using word embeddings in
a modified SVM kernel achieves the best results
(an increase of 10% F1 and 8% F1 for S vs. L
and S vs. Lsent disambiguation task, respectively,
against a SVM baseline). While the SVM base-
line preferred larger amounts of training data (best
performance achieved on the targets words with
higher number of training examples), the methods
using word embeddings seem to perform well on
target words where there might be an inherent dif-
ference in the contextual sarcastic and literal use of
a target word, even if the training data was smaller.

We want to investigate further the nature and
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size of training data useful for the LSSD task.
For example, to test the effect of larger training
dataset, we utilized pre-trained word vectors from
GloVe (trained with 2 Billion tweets, using 100 di-
mensions).6 For S vs. L disambiguation, the av-
erage F1 was 88.9%, which is 7% lower than the
result using GloVe on our training set of tweets
(much smaller) designed for the LSSD task. This
shows the training data utilized to create word em-
bedding models in GloVe probably do not contain
enough sarcastic tweets.

Regarding the size of the training data, recall
that the unsupervised alignment approach had ex-
tracted 70 target words (Section 2), although we
have used 37 target words as we did not have
enough training data for the remaining targets.
Thus, we plan to collect more training data for
these targets as well as more target words (espe-
cially for the S vs. Lsent task). In addition, we
plan to improve our unsupervised methods for de-
tecting semantically opposite meaning (e.g., us-
ing the IM-IM dataset in addition to the SM-IM
dataset).

One common criticism of research based on use
of hashtags as gold labels is that the training ut-
terances could be noisy. In other words, tweets
might be sarcastic but not have #sarcasm or #sar-
castic hashtags. We did a small manual validation
on a dataset of 180 tweets from the Lsent class us-
ing 3 annotators (we asked them to say whether
the tweet is sarcastic or not). For cases where all
3 coders agree none of them were considered sar-
castic, while when only 2 coders agree 1 tweet out
of 180 was considered sarcastic. In future, we plan
to perform additional experiments to study the is-
sue of noisy data. We hope that the release of our
datasets will stimulate other studies related to the
sarcasm detection problem, including addressing
the issue of noisy data.

We also plan to study the effect of hyper-
parameters in designing the DSMs. Recently,
Levy et al. (2015) have argued that parameter set-
tings have a large impact on the success of word
embedding models. We want to follow their ex-
periments to study whether parameter tuning in
PMI based disambiguation can improve its perfor-
mance.

6Downloaded from http://nlp.stanford.edu/projects/glove/
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Abstract

Taxonomy plays an important role in many
applications by organizing domain knowl-
edge into a hierarchy of is-a relations be-
tween terms. Previous works on the taxo-
nomic relation identification from text cor-
pora lack in two aspects: 1) They do not
consider the trustiness of individual source
texts, which is important to filter out in-
correct relations from unreliable sources.
2) They also do not consider collective
evidence from synonyms and contrastive
terms, where synonyms may provide ad-
ditional supports to taxonomic relations,
while contrastive terms may contradict
them. In this paper, we present a method
of taxonomic relation identification that
incorporates the trustiness of source texts
measured with such techniques as PageR-
ank and knowledge-based trust, and the
collective evidence of synonyms and con-
trastive terms identified by linguistic pat-
tern matching and machine learning. The
experimental results show that the pro-
posed features can consistently improve
performance up to 4%-10% of F-measure.

1 Introduction

Taxonomies which serve as backbone of struc-
tured knowledge are useful for many applica-
tions such as question answering (Harabagiu et
al., 2003) and document clustering (Fodeh et al.,
2011). Even though there are many hand-crafted,
well-structured taxonomies publicly available, in-
cluding WordNet (Miller, 1995), OpenCyc (Ma-
tuszek et al., 2006), and Freebase (Bollacker et
al., 2008), they are incomplete in specific domains,
and it is time-consuming to manually extend them
or create new ones. There is thus a need for auto-
matically extracting taxonomic relations from text
corpora to construct/extend taxonomies.

Previous works on the task of taxonomy con-
struction capture information about potential tax-
onomic relations between concepts, rank the can-
didate relations based on the captured information,
and integrate the highly ranked relations into a tax-
onomic structure. They utilize such information
as hypernym patterns (e.g. A is a B, A such as
B) (Kozareva et al., 2008), syntactic dependency
(Drumond and Girardi, 2010), definition sentences
(Navigli et al., 2011), co-occurrence (Zhu et al.,
2013), syntactic contextual similarity (Tuan et al.,
2014), and sibling relations (Bansal et al., 2014).

They, however, lack in the three following as-
pects: 1) Trustiness: Not all sources are trust-
worthy (e.g. gossip, forum posts written by
non-experts) (Dong et al., 2015). The trustiness
of source texts is important in taxonomic rela-
tion identification because evidence from unre-
liable sources can be incorrect. For example,
the invalid taxonomic relation between “American
chameleon” and “chameleon” is mistakenly more
popular in the Web than the valid taxonomic rela-
tion between “American chameleon” and “lizard”,
and statistical methods without considering the
trustiness may incorrectly extract the invalid rela-
tion instead of the latter. However, to the best of
our knowledge, no previous work considered this
aspect.

2) Synonyms: A concept may be expressed in
multiple ways, for example with synonyms. The
previous works mostly assumed that a term repre-
sents an independent concept, and did not combine
information about a concept, which is expressed
with multiple synonyms. The lack of evidence
from synonyms may hamper the ranking of can-
didate taxonomic relations. Navigli and Velardi
(2004) combined synonyms into a concept, but
only for those from WordNet, called synsets.

3) Contrastive terms: We observe that if two
terms are often contrasted (e.g. A but not B, A
is different from B) (Kim et al., 2006), they may
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not have a taxonomic relation.
In this paper, we present a method based on the

state-of-the-art method (Tuan et al., 2014), which
incorporates the trustiness of source texts and
the collective evidence from synonyms/contrastive
terms. Tuan et al. (2014) rank candidate tax-
onomic relations based on such evidence as hy-
pernym patterns, WordNet, and syntactic contex-
tual similarity, where the pattern matches and the
syntactic contexts are found from the Web by us-
ing a Web search engine. First, we calculate the
trustiness score of each data source with the four
following weights: importance (if it is linked by
many pages), popularity (if it is visited by many
users), authority (if it is from a creditable Web site)
and accuracy (if it has many facts). We integrate
this score to the work of (Tuan et al., 2014) so that
evidence for taxonomic relations from unreliable
sources is discarded.

Second, we identify synonyms of two terms (t1,
t2), whose taxonomic relation is being scrutinized,
by matching such queries as “t1 also known as”
against the Web to find t1’s synonyms next to the
query matches (e.g. t in “t1 also known as t”). We
then collect the evidence for all taxonomic rela-
tions between t′1 and t′2, where t′i is either ti or its
synonym (i ∈ {1, 2}), and combine them to calcu-
late the evidence score of the candidate taxonomic
relation between t1 and t2. Similarly, for each pair
of two terms (t1, t2), we collect their contrastive
evidence by matching such queries as “t1 is not a
type of t2” against the Web, and use them to pro-
portionally decrease the evidence score for taxo-
nomic relation between contrasting terms.

2 Related Work

The previous methods for identifying taxonomic
relations from text can be generally classified
into two categories: linguistic and statistical ap-
proaches. The former approach mostly exploits
lexical-syntactic patterns (e.g. A is a B, A such
as B) (Hearst, 1992). Those patterns can be man-
ually created (Kozareva et al., 2008; Wentao et al.,
2012) or automatically identified (Navigli et al.,
2011; Bansal et al., 2014). The pattern matching
methods show high precision when the patterns
are carefully defined, but low coverage due to the
lack of contextual analysis across sentences.

The latter approach, on the other hand, includes
asymmetrical term co-occurrence (Fotzo and Gal-
linari, 2004), clustering (Wong et al., 2007), syn-

tactic contextual similarity (Tuan et al., 2014), and
word embedding (Fu et al., 2014). The main idea
behind these techniques is that the terms that are
asymmetrically similar to each other with regard
to, for example, co-occurrences, syntactic con-
texts, and latent vector representation may have
taxonomic relationships. Such methods, however,
usually suffer from low accuracy, though show-
ing relatively high coverage. To get the balance
between the two approaches, Yang and Callan
(2009), Zhu et al. (2013) and Tuan et al. (2014)
combine both statistical and linguistic features in
the process of finding taxonomic relations.

Most of these previous methods do not consider
if the source text of evidence (e.g. co-occurrences,
pattern matches) is trustworthy or not and do not
combine evidence from synonyms and contrastive
terms as discussed earlier. Related to synonyms, a
few previous works utilize siblings for taxonomy
construction. Yang and Callan (2009) use siblings
as one of the features in the metric-based frame-
work which incrementally clusters terms to form
taxonomies. Wentao et al. (2012) also utilize such
sibling feature that, for example of the linguistic
pattern “A such as B1, B2, · · · and Bn”, if the
concept at the k-th position (e.g. Bk) from pat-
tern keywords (e.g. such as) is a valid sub-concept
(e.g. of A), then most likely its siblings from po-
sition 1 to position k-1 (e.g. B1, · · · , Bk−1) are
also valid sub-concepts. Bansal et al. (2014) in-
clude the sibling factors to a structured probabilis-
tic model over the full space of taxonomy trees,
thus helping to add more evidence to taxonomic
relations. Navigli and Velardi (2004) utilize the
synonym feature (i.e. WordNet synsets) for the
process of semantic disambiguation and concept
clustering as mentioned above, but not for the pro-
cess of inducing novel taxonomic relations.

3 Methodology

We briefly introduce (Tuan et al., 2014) in Section
3.1. We then explain how to incorporate trustiness
(Section 3.2) and collective evidence from syn-
onyms (Section 3.3) and from contrastive terms
(Section 3.4) into the work of (Tuan et al., 2014).

3.1 Overview of baseline (Tuan et al., 2014)

Tuan et al. (2014) follow three steps to construct a
taxonomy: term extraction/filtering, taxonomic re-
lation identification and taxonomy induction. Be-
cause the focus of this paper is on the second step,
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taxonomic relation identification, we use the same
methods for the first and third steps as in (Tuan et
al., 2014) and will not discuss them here.

Given each ordered pair of two terms t1 and t2
from the term extraction/filtering, the taxonomic
relation identification of (Tuan et al., 2014) calcu-
lates the evidence score that t1 is a hypernym of t2
(denoted as t1 � t2) based on the following three
measures:

String inclusion with WordNet (SIWN): This
measure is to check if t1 is a substring of t2, con-
sidering synonymy between words using WordNet
synsets. ScoreSIWN (t1, t2) is set to 1 if there is
such evidence; otherwise, it is set to 0.

Lexical-syntactic pattern (LSP): This measure
is to find how much more evidence for t1 � t2
is found in the Web than for t2 � t1. Specif-
ically, a list of manually constructed hypernym
patterns (e.g. “t2 is a t1”) is queried with a Web
search engine to estimate the number of evidence
for t1 � t2 from the Web. The LSP measure is
calculated as follows, where CWeb(t1, t2) denotes
the collection of search results:

ScoreLSP (t1, t2) = log(|CWeb(t1,t2)|)
1+log(|CWeb(t2,t1)|)

Syntactic contextual subsumption (SCS): The
idea of this measure is to derive the hypernymy
evidence for two terms t1 and t2 from their syntac-
tic contexts, particularly from the triples of (sub-
ject,verb,object). They observe that if the context
set of t1 mostly contains that of t2 but not vice
versa, then t1 is likely to be a hypernym of t2. To
implement this idea, they first find the most com-
mon relation (or verb) r between t1 and t2, and
use the queries “t1 r” and “t2 r” to construct two
corpora CorpusΓ

t1 and CorpusΓ
t2 for t1 and t2, re-

spectively. Then the syntactic context sets are cre-
ated from these contextual corpora using a non-
taxonomic relation identification method. The de-
tails of calculating ScoreSCS(t1, t2) can be found
in (Tuan et al., 2014).

They linearly combine the three scores as follows:

Score(t1, t2) = α× ScoreSIWN (t1, t2)

+ β × ScoreLSP (t1, t2) + γ × ScoreSCS(t1, t2)
(1)

If Score(t1, t2) is greater than a threshold value,
then t1 is regarded as a hypernym of t2. We use
the same values of α, β and γ as in (Tuan et al.,
2014).

3.2 Trustiness of the evidence data
We introduce our method of estimating the trusti-
ness of a given source text in Section 3.2.1 and ex-
plain how to incorporate it into the work of (Tuan
et al., 2014) in Section 3.2.2.

3.2.1 Collecting trustiness score of the
evidence data

Given a data source (e.g. Web page), we consider
four aspects of trustiness as follows:

• Importance: A data source may be important
if it is referenced by many other sources.

• Popularity: If a data source is accessed by
many people, it is considered popular.

• Authority: If the data is created by a trusted
agency, such as government and education
institute, it may be more trustful than others
from less trusted sources such as forums and
social media.

• Accuracy: If the data contains many pieces
of accurate information, it seems trustful.

Importance
To measure the importance of a Web page (d) as
data source, we use the Google PageRank score1

(ScorePageRank(d)) that is calculated based on
the number and quality of links to the page. The
PageRank scores have the scale from 0 to 9, where
the bigger score means more importance than the
lower one. Using this score, the importance of a
page is calculated as follows:

TrustImp(d) =
1

10− ScorePageRank(d)
(2)

Note that we use the non-linearity for PageR-
ank score rather than just normalizing PageRank
to 0-1. The reason is to vary the gaps between the
important sites (which usually have the PageRank
score value from 7-10) and majority unimportant
site (which usually have the PageRank score value
less than 5).

Popularity
We use Alexa’s Traffic Rank2 as the measure of
popularity, (ScoreAlexa(d)) which is based on the
traffic data provided by users in Alexa’s global
data panel over a rolling 3 month period. The
Traffic Ranks are updated daily. A site’s rank is

1http://searchengineland.com/what-is-google-pagerank-
a-guide-for-searchers-webmasters-11068

2http://www.alexa.com/
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based on a combined measure of unique visitors
and page views. Using this rank, the popularity of
a data source is calculated as follows:

TrustPop(d) =
1

log(ScoreAlexa(d) + 1)
(3)

We use log transform in the popularity score in-
stead of, for example, linear scoring because we
want to avoid the bias of the much large gap be-
tween the Alexa scores of different sites (e.g. one
site has Alexa score 1000, but the other may have
score 100,000)

Authority
We rank the authority of a data source based on the
internet top-level domain (TLD). We observe that
the pages with limited and registered TLD (e.g.
.gov, .mil, .edu) are often more credible than those
with open domain (e.g. .com, .net). Therefore,
the authority score of a data source is calculated
as follows:

TrustAuth(d) =

{
1 if TLD of d is .gov, .mil or .edu
0 otherwise

(4)

Note that there are some reasons we choose
such implementation of Authority in an elemen-
tary way. First, we tried finer categorization of
various domains, e.g. .int has score 1/3, .com has
score 1/4, etc. However, the experimental results
did not show much change of performance. In ad-
dition, there is controversy on which open TLD
domains are more trustful than the others, e.g. it is
difficult to judge whether a .net site is more trust-
ful than .org or not. Thus, we let all open TLD
domains have the same score.

Accuracy
If the data source contains many pieces of accu-
rate information, it is trustful. Inspired by the idea
of Dong et al. (2015), we estimate the accuracy of
a data source by identifying correct and incorrect
information in form of the triples (Subject, Predi-
cate, Object) in the source, where Subject, Predi-
cate and Object are normalized with regard to the
knowledge base Freebase. The extraction of the
triples includes six tasks: named entity recogni-
tion, part of speech tagging, dependency parsing,
triple extraction, entity linkage (which maps men-
tions of proper nouns and their co-references to
the corresponding entities in Freebase) and rela-
tion linkage. We use three information extraction

(IE) tools (Angeli et al. (2014), Manning et al.
(2014), MITIE3) for the first four tasks, and de-
velop a method similar to Hachey et al. (2013)
for the last two tasks of entity linkage and relation
linkage.

Since the IE tools may produce noisy or unre-
liable triples, we use a voting scheme for triple
extraction as follows: A triple is only considered
to be true if it is extracted by at least two extrac-
tors. After obtaining all triples in the data source,
we use the closed world assumption as follows:
Given subject s and predicate p, O(s, p) denotes
the set of such objects that a triple (s,p,o) is found
in Freebase. Now given a triple (s, p, o) found
in the data source, if o ∈ O(s, p), we conclude
that the triple is correct; but if o 6∈ O(s, p) and
|O(s, p)| > 0, we conclude that the triple is incor-
rect. If |O(s, p)| = 0, we do not conclude any-
thing about the triple, and the triple is removed
from the set of facts found in the data source.

Given a data source d, we define cf(d) as the
number of correct facts, and icf(d) as the number
of incorrect facts found in d. The accuracy of d is
calculated as follows:

TrustAccu(d) =
1

1 + icf(d)2
− 1

1 + cf(d)2
(5)

Combining trustiness scores
The final trustiness score of a data source is the
linear combination of the four scores as follows:

Trust(d) = α× TrustImp(d) + β × TrustPop(d)

+ γ × TrustAuth(d) + δ × TrustAccu(d)
(6)

To estimate the optimal combination for parame-
ters α, β, γ and δ, we apply linear regression algo-
rithm (Hastie et al., 2009). For parameter learning,
we manually list 50 websites as trusted sources
(e.g. stanford.edu, bbc.com, nasa.gov), and the
top 15 gossip websites listed in a site4 as untrusted
sources. Then we use the scores of their individual
pages by the four methods to learn the parameters
in Formula 6. The learning results are as follows:
α=0.46, β=0.46, γ=2.03, δ=0.61.

3.2.2 Integrating trustiness into taxonomic
relation identification methods

Given a data collection C, we define:

AvgTrust(C) =

∑
d∈C Trust(d)

|C|
3https://github.com/mit-nlp/MITIE
4http://www.ebizmba.com/articles/gossip-websites
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as the average trustiness score of all data in C.
We integrate the trustiness score to the three tax-

onomic relation identification methods described
in Section 3.1 as follows:

LSP method:
The LSP evidence score of the taxonomic relation
between t1 and t2 is recalculated as follows:

ScoreTrust
LSP (t1, t2) = ScoreLSP (t1, t2)×

(AvgTrust(CWeb(t1, t2)) +AvgTrust(CWeb(t2, t1)))
(7)

The intuition of Formula 7 is that the original
LSP evidence score is multiplied with the average
trustiness score of all evidence documents for the
taxonomic relation from the Web. If the number
of Web search results is too large, we use only the
first 1,000 results to estimate the average trustiness
score.

SCS method:
Similarly, the SCS evidence score is recalculated
as follows:

ScoreTrust
SCS (t1, t2) = ScoreSCS(t1, t2)×

(AvgTrust(CorpusΓ
t1) +AvgTrust(CorpusΓ

t2))
(8)

SIWN method:
This method does not use any evidence from the
Web, and so its measure does not change as fol-
lows:

ScoreTrust
SIWN (t1, t2) = ScoreSIWN (t1, t2) (9)

The three measures of trustiness are also linearly
combined as follows:

ScoreTrust(t1, t2) = α× ScoreTrust
SIWN (t1, t2)+

β × ScoreTrust
LSP (t1, t2) + γ × ScoreTrust

SCS (t1, t2)
(10)

The values of α, β, and γ in Formula 10 are
identical to those for Formula 1.

3.3 Collective synonym evidence

3.3.1 Synonymy identification
We use the three following methods to collect syn-
onyms: dictionaries, pattern matching, and super-
vised learning.

Dictionaries: Synonyms can be found in dic-
tionaries like a general-purpose dictionary Word-
Net and also domain-specific ones. Since our do-
mains of interest include virus, animals, and plants

(see the next section for details), we also utilize
MeSH5, a well-known vocabulary in biomedicine.

Pattern matching: Given two terms t1 and t2, we
use the following patterns to find their synonymy
evidence from the Web:

• t1 also [known|called|named|abbreviated] as t2
• Other common name[s] of t1 [is|are|include] t2
• t1, or t2, is a

• t1 (short for t2)

, where [a|b] denotes a choice between a and b. If
the number of Web search results is greater than a
threshold Ψ, t1 is considered as a synonym of t2.

Supervised learning: We randomly pick 100
pairs of synonyms in WordNet, and for each pair,
we use the Web search engine to collect sample
sentences in which both terms of the pair are men-
tioned. If the number of collected sentences is
greater than 2000, we use only the first 2000 sen-
tences for training. After that, we extract the fol-
lowing features from the sentences to train a logis-
tic regression model (Hastie et al., 2009) for the
synonymy identification:

• Headwords of the two terms

• Average distance between the terms

• Sequence of words between the terms

• Bag of words between the terms

• Dependency path between the terms (using
Stanford parser (Klein and Manning, 2003))

• Bag of words on the dependency path

The average F-measure of the obtained model
with 10-fold cross-validation is 81%. We use the
learned model to identify more synonym pairs in
the next step.

3.3.2 Embedding synonym information
Given a term t, we denote Syn(t) as the set of
synonyms of t (including t itself). The evidence
scores of the SCS and LSP methods are recalcu-
lated with synonyms as follows:

ScoreSynonym
X (t1, t2) =

∑
t′1∈Syn(t1)

t′2∈Syn(t2)

ScoreX(t′1, t
′
2) (11)

, where the variable X can be replaced with SCS
and LSP.

5http://www.ncbi.nlm.nih.gov/mesh
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The intuition of Formula (11) is that the evi-
dence score of the taxonomic relation between two
terms t1 and t2 can be boosted by adding all the
evidence scores of taxonomic relations between
them and their synonyms.

Again, as for the SIWN method, we do not
change the evidence score as follows:

ScoreSynonym
SIWN (t1, t2) = ScoreSIWN (t1, t2)

3.4 Contrastive evidence

Given two terms t1 and t2, we use the following
patterns to find their contrastive (thus negative) ev-
idence from the Web:

• t1 is not a t2 • t1 is not a [type|kind] of t2

• t1, unlike the t2 • t1 is different [from|with] t2

• t1 but not t2 • t1, not t2

WH(t1, t2) denotes the total number of Web
search results, and the contrastive evidence score
between t1 and t2 is computed as follows:

Contrast(t1, t2) = log(WH(t1, t2) + 1) (12)

Similar to the collective synonym evidence, the
contrastive evidence score of taxonomic relation
between t1 and t2 is boosted with the contrastive
evidence scores of taxonomic relations between
the two terms and their synonyms as follows:

ScoreContrast(t1, t2) =

∑
t′1∈Syn(t1)

t′2∈Syn(t2)

Contrast(t′1, t
′
2)

|Syn(t1)| ∗ |Syn(t2)|
(13)

3.5 Combining trustiness, synonym and
contrastive evidence

We combine all the three features into the system
of (Tuan et al., 2014) as follows:

ScoreFinal
X (t1, t2) =ScoreTrust

X (t1, t2)

+ ScoreSynonym
X (t1, t2)

(14)

, where the variable X can be replaced with each
of the three taxonomic relation evidence measures
(i.e. SCS, LSP, SIWN). The final combined score
is calculated as follows:

ScoreFinal
Combined(t1, t2) = α× ScoreFinal

SIWN (t1, t2)

+ β × ScoreFinal
LSP (t1, t2) + γ × ScoreFinal

SCS (t1, t2)

− δ × ScoreContrast(t1, t2)
(15)

For each ordered pair of terms t1 and t2, if
ScoreFinalCombined(t1, t2) is greater than a threshold
value, then t1 is considered as a hypernym of t2.

We estimate the optimal values of parameters
α, β, γ and δ in Formula 15 with ridge regres-
sion technique (Hastie et al., 2009) as follows:
First, we randomly select 100 taxonomic relations
in Animal domain as the training set. For each
taxonomic relation t1 � t2, its evidence score is
estimated as τ + 1

Dist(t1,t2) , where τ is the thresh-
old value for ScoreFinalCombined, and Dist(t1, t2) is
the length of the shortest path between t1 and t2
found in WordNet. Then we use our system to
find evidence scores with taxonomic relation iden-
tification methods in Formulas 13 and 14. Finally,
we build the training set using Formula 15, and
use the ridge regression algorithm to learn that the
best value for α is 1.31, β 1.57, γ 1.24 and δ 0.79,
where τ=2.3.

4 Experiment

4.1 Datasets
We evaluate our method for taxonomy construc-
tion against the following collections of six do-
mains:

• Artificial Intelligence (AI) domain: The cor-
pus consists of 4,976 papers extracted from
the IJCAI proceedings from 1969 to 2014 and
the ACL archives from year 1979 to 2014.

• Finance domain: The corpus consists of
1,253 papers extracted from the freely avail-
able collection of “Journal of Financial Eco-
nomics” from 1995 to 2012 and from “Re-
view Of Finance” from 1997 to 2012.

• Virus domain: We submit the query “virus”
to PUBMED search engine 6 and retrieve the
first 20,000 abstracts as the corpus of the
virus domain.

• Animals, Plants and Vehicles domains: Col-
lections of Web pages crawled by using
the bootstrapping algorithm described by
Kozareva et al. (2008).

We report the results of two experiments in
this section: (1) Evaluating the construction of
new taxonomies for Finance and AI domains (Sec-
tion 4.2), and (2) comparing with the curated

6http://www.ncbi.nlm.nih.gov/pubmed

1018



databases’ sub-hierarchies. We compare our ap-
proach with other three state-of-the-art methods
in the literature, i.e. (Kozareva and Hovy, 2010),
(Navigli et al., 2011) and (Tuan et al., 2014) (Sec-
tion 4.3). In addition, for Animal domain, we also
compare with the reported performance of Bansal
et al. (2014), a recent work to construct taxonomy
using belief propagation.

4.2 Constructing new taxonomies for
Finance and AI domains

Referential taxonomy structures such as WordNet
and OpenCyc are widely used in semantic analyt-
ics applications. However, their coverage is lim-
ited to common, well-known areas, and many spe-
cific domains like Finance and AI are not well cov-
ered in those structures. Therefore, an automatic
method which can induce taxonomies for those
specific domains can greatly contribute to the pro-
cess of knowledge discovery.

To estimate the precision of a given method, we
randomly choose 100 relations among the results
of the method and manually check their correct-
ness. The results summarized in Table 1 show that
our method extracts much more relations, though
with slightly lower precision, than Kozareva et al.
(2008) and Navigli and Velardi (2004). Note that
due to the lack of gold standards in these two do-
mains, we do not compare the methods in terms
of F-score, which we will measure with curated
databases in the next section. Compared to Tuan
et al. (2014), which can be considered as the base-
line of our approach, our method has significant
improvement in both precision and the number
of extracted relations. It indicates that the three
incorporated features of trustiness, and synonym
and contrastive evidence are effective in improv-
ing the performance of existing taxonomy con-
struction methods.

Finance AI
P N P N

Kozareva 90% 753 94% 950
Navigli 88% 1161 93% 1711
Tuan 85% 1312 90% 1927
Our method 88% 1570 92% 2168

Table 1: Experiment result for finance and AI do-
mains. P stands for Precision, and N indicates the
number of extracted relations.

4.3 Evaluation against curated databases
We evaluate automatically constructed tax-
onomies for four domains (i.e. Animal, Plant,

Vehicle, Virus) against the corresponding sub-
hierarchies of curated databases. For Animal,
Plant and Vehicle domains, we use WordNet as
the gold standards, whereas for Virus domain, we
use MeSH sub-hierarchy of virus as the reference.

Note that in this comparison, to be fair, we
change our algorithm to avoid using WordNet in
identifying taxonomic relations (i.e. SIWN algo-
rithm), and we only use the exact string-matching
comparison without WordNet. The evaluation
uses the following measures:

Precision = #relations found in database and by the method
#relations found by the method

Recall = #relations found in database and by the method
#relations found in database

To understand the individual contribution of the
three introduced features (i.e. trustiness, synonym,
contrast), we also evaluate our method only with
one of the three features each time, as well as with
all the three features (denoted as “Combined”).

Tables 2 and 3 summarize the experiment re-
sults. Our combined method achieves significantly
better performance than the previous state-of-the-
art methods in terms of F-measure and Recall (t-
test, p-value < 0.05) for all the four domains.
For Animal domain, it also shows higher perfor-
mance than the reported performance of Bansal et
al. (2014). In addition, the proposed method im-
proves the baseline (i.e. Tuan et al. (2014)) up to
4%-10% of F-measure.

Furthermore, we find that the three features
have different contribution to the performance im-
provement. The trustiness feature contributes to
the improvement on both precision and recall. The
synonym feature has the tendency of improving
the recall further than the trustiness, whereas the
contrastive evidence improves the precision. Note
that we discussed these different contributions of
the features in the Introduction.

Animal Plant
P R F P R F

Kozareva 98 38 55 97 39 56
Navigli 97 44 61 97 38 55
Bansal 84 55 67
Tuan 95 56 70 95 53 68
Trustiness 97 61 75 97 56 71
Synonym 92 65 76 93 58 71
Contrast 97 55 70 97 53 69
Combined 97 65 78 96 59 73

Table 2: Experiment results for animal and plant
domains. P stands for Precision, R Recall, and F
F-score. The unit is %.
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Vehicle Virus
P R F P R F

Kozareva 99 60 75 97 31 47
Navigli 91 49 64 99 37 54
Tuan 93 69 79 93 43 59
Trustiness 96 72 82 97 48 64
Synonym 91 72 80 91 53 67
Contrastive 97 68 80 98 42 59
Combined 95 73 83 96 54 69

Table 3: Experiment results for vehicle and virus
domains. P stands for Precision, R Recall, and F
F-score. The unit is %.

4.3.1 Evaluation of individual methods for
trustiness and synonymy identification

We evaluate the individual methods for trusti-
ness measurement and synonymy identification
described in Sections 3.2.1 and 3.3.1. For this pur-
pose, we evaluate our system only with one of the
individual methods at a time (i.e. importance, pop-
ularity, authority and accuracy for trustiness mea-
sure, and dictionary, pattern matching, and ma-
chine learning methods for synonymy identifica-
tion).

As summarized in Table 4, the “Importance”
and “Accuracy” methods for trustiness measure-
ment based on PageRank and IE systems, respec-
tively, have more contribution than the others.
Similarly, the experiment results indicate that the
“Machine learning” method has the most contribu-
tion among the three methods of synonymy iden-
tification.

In addition, we also examine the interdepen-
dence of the four introduced aspects of trustiness
by running the system with the combination of
only two aspects, Importance and Accuracy. The
results in all domains show that when combining
only the Importance and Accuracy, the system al-
most achieves the same performance to that of the
combined system with all four criteria, except for
the Plant domain. It can be explained as the Impor-
tance aspect (which is expressed as the PageRank
score) may subsume the Popularity and Authority
aspects. Another interesting point is that the per-
formance of Accuracy, which is solely based on
the local information from the website, when ap-
plied individually, is almost the same with that of
Importance which is based on the distributed in-
formation. It shows that the method of ranking of
the sites based on the knowledge-based facts can
achieve the effectiveness as good as the traditional
ranking method using PageRank score.

Animal Plant Vehicle Virus
Trustiness:
Importance 74% 70% 81% 63%
Popularity 72% 69% 81% 61%
Authority 72% 69% 80% 61%
Accuracy 73% 70% 81% 62%
Imp + Accu 75% 70% 82% 64%
Synonym:
Dictionaries 73% 69% 79% 62%
Pattern matching 74% 69% 80% 64%
Machine learning 74% 70% 80% 65%

Table 4: Contribution of individual trustiness mea-
sures and collective synonym evidence in terms of
F-measure. Imp stands for Important and Accu
stands for Accuracy

4.4 Discussion

4.4.1 Case studies
We give two examples to illustrate how the pro-
posed features help to infer correct taxonomic re-
lations and filter out incorrect relations. Our base-
line (Tuan et al. (2014)) extracts an incorrect taxo-
nomic relation between ‘fox’ and ‘flying fox’ due
to the following reasons: (1) ‘flying fox’ includes
‘fox’ (SIWN) and (2) untrusted sources such as
a public forum7 support the relation. Using our
proposed method, this relation is filtered out be-
cause those untrusted sources are discouraged by
the trustiness feature, and also because there are
contrastive evidence8 saying that ‘flying fox’ is
NOT a ‘fox’. Specifically, the average trustiness
score of LSP method of the sources for the invalid
relation (i.e. AvgTrust(CWeb(fox, flying fox)) +

AvgTrust(CWeb(flying fox, fox))) is 0.63, which
is lower than the average of those scores, 0.90.
Also, the collective contrastive evidence score
(i.e. ScoreContrast(fox, flying fox)) is 1.10, which
is higher than the average collective contrastive
score, 0.32.

On the other hand, the true taxonomic rela-
tion between ‘bat’ and ‘flying fox’ is not identi-
fied by the baseline, mainly due to the rare men-
tion of this relation in the Web. However, our
proposed method can recognize this relation be-
cause of two reasons: (1) ‘flying fox’ has many
synonyms such as ‘fruit bat’, ‘pteropus’, ‘kalong’,
and ‘megabat’, and there are much evidence that
these synonyms are kinds of ‘bat’ (i.e. using
the collective synonym evidence). (2) The ev-
idence for the taxonomic relation between ‘fly-

7http://redwall.wikia.com/wiki/User:Ferretmaiden/Archive3
8http://en.cc-english.com/index.php?shownews-1397
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ing fox’ and ‘bat’, though rare, is from trusted
sites9 which are maintained by scientists. Thus,
the trustiness feature helps to boost the evidence
score for this relation over the threshold value.
Specifically, the average trustiness score of LSP
method (i.e. (AvgTrust(CWeb(bat, flying fox)) +

AvgTrust(CWeb(flying fox, bat)))), 2.84, is higher
than the average in total, 0.90.

We further investigate on 256 taxonomic rela-
tions that were missed by the baseline but correctly
identified by the proposed method. The average
ScoreLSP and the average ScoreSCS of the re-
lations by the baseline are 0.35 and 0.60, respec-
tively, while those by the proposed method are
1.17 and 0.82, respectively. We thus find that the
proposed method is more effective in correctly im-
proving the LSP method than the SCS method.

4.4.2 Empirical comparison with WordNet
By error analysis, we find that our results may
complement WordNet. For example, in Animal
domain, our method identifies ‘wild sheep’ as a
hyponym of ‘sheep’, but in WordNet, they are sib-
lings. However, many references 10 11 consider
‘wild sheep’ as a species of ‘sheep’. Another such
example is that our system recognizes ‘aquatic
vertebrate’ as a hypernym of ‘aquatic mammal’,
but WordNet places them in different subtrees in-
correctly 12. Therefore, our results may help re-
structure and extend WordNet.

4.4.3 Threshold tuning
Our scoring methods utilize several thresholds to
select relations of high ranks. Here we discuss
them in details below.

The threshold value Ψ for the pattern match-
ing method in Section 3.3.1 controls the number
of synonymy relations extracted from text. The
threshold value for ScoreFinalCombined of Formula 15
in Section 3.5 controls the number of extracted
taxonomic relations. In general, the larger these
threshold values are, the higher number of syn-
onyms and taxonomic relations we can get. In
our experiments, we found that the threshold val-
ues for Ψ between 100 and 120, and those for
ScoreFinalCombined between 2.3 and 2.5 generally help
the system achieve the best performance.

9http://krjsoutheastasianrainforests.weebly.com/animals-
in-biome-and-habitat-structures.html

10http://en.wikipedia.org/wiki/Ovis
11http://www.bjornefabrikken.no/side/norwegian-sheep/
12http://en.wikipedia.org/wiki/Aquatic mammal

5 Conclusion

In this paper, we propose the features of trusti-
ness, and synonym and contrastive collective ev-
idence for the task of taxonomy construction, and
show that these features help the system improve
the performance significantly. As future work, we
will investigate into the task of automatically con-
structing patterns for the pattern matching meth-
ods in Sections 3.3 and 3.4, to improve cover-
age. We will also enhance the accuracy measure
of trustiness, based on the observation that some
untrusted sites copy information from other sites
to make them look more trustful.
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Abstract

Logic grid puzzle is a genre of logic puz-
zles in which we are given (in a natural
language) a scenario, the object to be de-
duced and certain clues. The reader has
to figure out the solution using the clues
provided and some generic domain con-
straints. In this paper, we present a sys-
tem, LOGICIA, that takes a logic grid puz-
zle and the set of elements in the puz-
zle and tries to solve it by translating it
to the knowledge representation and rea-
soning language of Answer Set Program-
ming (ASP) and then using an ASP solver.
The translation to ASP involves extrac-
tion of entities and their relations from
the clues. For that we use a novel learn-
ing based approach which uses varied su-
pervision, including the entities present
in a clue and the expected representa-
tion of a clue in ASP. Our system, LO-
GICIA, learns to automatically translate a
clue with 81.11% accuracy and is able to
solve 71% of the problems of a corpus.
This is the first learning system that can
solve logic grid puzzles described in natu-
ral language in a fully automated manner.
The code and the data will be made pub-
licly available at http://bioai.lab.
asu.edu/logicgridpuzzles.

1 Introduction

Understanding natural language to solve problems
be it algebraic word problems (Kushman et al.,
2014; Hosseini et al., 2014) or questions from bi-
ology texts (Berant et al., 2014; Kim et al., 2011),
has attracted a lot of research interest over the past
few decades. For NLP, these problems are of par-
ticular interest as they are concise, yet rich in in-
formation. In this paper, we attempt to solve an-
other problem of this kind, known as Logic Grid

Puzzle. Problem.1 shows an example of the same.
Puzzle problems in the same spirit as the previ-
ously mentioned science problems, do not restrict
the vocabulary; they use everyday language and
have diverse background stories. The puzzle prob-
lems, however, are unique in their requirement of
high precision understanding of the text. For a
puzzle problem, the solution is never in the text
and requires involved reasoning. Moreover, one
needs to correctly understand each of the given
clues to successfully solve a problem. Another in-
teresting property is that only a small core of the
world knowledge, noticeably spatial, temporal and
knowledge related to numbers, is crucial to solve
these problems.

PROBLEM .1 A LOGIC GRID PUZZLE

Waterford Spa had a full appoint-
ment calendar booked today. Help
Janice figure out the schedule by
matching each masseuse to her
client, and determine the total price
for each.

1. Hannah paid more than Teri’s client.
2. Freda paid 20 dollars more than

Lynda’s client.
3. Hannah paid 10 dollars less than

Nancy’s client.
4. Nancy’s client, Hannah and Ginger

were all different clients.
5. Hannah was either the person who

paid $180 or Lynda’s client.

Clients: Aimee, Ginger, Freda, Hannah.
Prices: $150, $160, $170, $180.
Masseuses: Lynda, Nancy, Tery, Whitney.

A logic grid puzzle contains a set of categories
and an equal number of elements in each category.
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And the goal is to find out which elements are
linked together based on a series of given clues.
Each element is used only once. Each puzzle has
a unique solution and can be solved using logical
reasoning. A logic grid puzzle is called a (n,m)-
puzzle if it contains n categories and each category
has m elements. For the example in Problem.1,
there are three categories, namely clients, prices,
masseuses and each category has four elements
which are shown in the respective columns. A to-
tal of five clues are given in free text and the goal
is to find the members of the four tuples, where
each tuple shall contain exactly one element from
each category such that all the members in a tuple
are linked together.

To solve such a puzzle problem, it is crucial to
understand the clues (for example, “Hannah paid
more than Teri’s client.”). Each clue talks about
a set of entities (for example, “Hannah”, “client”,
“Terry”) and their relations (“a greater-than rela-
tion between Hannah and the client of Terry on
the basis of payment”). Our system, LOGICIA,
learns to discover these entities and the underly-
ing semantics of the relations that exist between
them. Once the relations are discovered, a pair
of Answer Set Programming (ASP) (Baral, 2003)
rules are created. The reasoning module takes
these ASP rules as input and finds a group con-
figuration that satisfies all the clues. LOGICIA has
“knowledge” about a fixed set of predicates which
models different relations that hold between enti-
ties in a puzzle world. Clues in the puzzle text
that are converted into ASP rules, use these predi-
cates as building blocks. In this research, our goal
is to build a system which can automatically do
this conversion and then reason over it to find the
solution. The set of predicates that the reasoning
model is aware of is not sufficient to represent all
logic grid puzzles. The family of logic grid puz-
zles is broad and contains variety of clues. Our
future work involves dealing with such a diverse
set of relations. In this work we assume that the
relations in Table 1 are sufficient to represent the
clues. Following are some examples of clues that
cannot be modeled using the predicates in Table 1.

• Esther’s brother’s seat is at one end of the
block of seven.

• The writer of Lifetime Ambition has a first
name with more letters than that of the ten-
nis star.

• Edward was two places behind Salim in one
of the lines, both being in odd-numbered po-
sitions.

• Performers who finished in the top three
places, in no particular order, are Tanya , the
person who performed the fox trot, and the
one who performed the waltz.

The rest of the paper is organized as follows:
in section 2, we describe the representation of a
puzzle problem in ASP and delineate how it helps
in reasoning; in section 3, we present our novel
method for learning to automatically translate a
logic problem described in natural language to its
ASP counterpart. In section 4, we describe the re-
lated works. In section 5, we discuss the detailed
experimental evaluation of our system. Finally,
section 6 concludes our paper.

2 Puzzle Representation

Answer Set Programming (ASP) (Baral, 2003;
Lifschitz, 1999; Gelfond and Lifschitz, 1991) has
been used to represent a puzzle and reason over
it. This choice is facilitated by the two important
reasons: 1) non-monotonic reasoning may occur
in a puzzle (Nagy and Allwein, 2004) and 2) ASP
constructs greatly simplify the reasoning module,
as we will see in this section. We now briefly de-
scribe a part of ASP. Our discussion is informal.
For a detailed account of the language, readers are
referred to (Baral, 2003).

2.1 Answer Set Programming
An answer set program is a collection of rules of
the form,

L0 | ... | Lk :- Lk+1, ..., Lm,not Lm+1, ...,not Ln

where each of the Li’s is a literal in the sense
of a classical logic. Intuitively, the above rule
means that if Lk+1, ..., Lm are to be true and if
Lm+1, ..., Ln can be safely assumed to be false
then at least one of L0, ..., Lk must be true. The
left-hand side of an ASP rule is called the head
and the right-hand side is called the body. A rule
with no head is often referred to as a constraint.
A rule with empty body is referred to as a fact and
written as,

L0 | L1 | ... | Lk.
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Example
fly(X) :- bird(X), not ab(X).

The above program represents the knowledge that
“Most birds fly”. If we add the following rule
(fact) to the program,

bird(penguin).
the answer set of the program will contain the
belief that penguins can fly, {bird(penguin),
f ly(penguin)}. However, adding one more fact,
‘ab(penguin).’, to convey that the penguin is an
abnormal bird, will change the belief that the pen-
guin can fly and correspondingly the answer set,
{bird(penguin), ab(penguin)}, will not contain
the fact, fly(penguin).

Choice Rule

m {p(X) : q(X)} n : −L1, ..., Lk, ...,not Ln.

Rules of this type allow inclusion in the program’s
answer sets of arbitrary collections S of atoms of
the form p(t) such that,m ≤| S |≤ n and if p(t) ∈
S then q(t) belongs to the corresponding answer
set.

2.2 Representing Puzzle Entities
A (m,n)-puzzle problem contains m categories
and n elements in each category. The term ‘puz-
zle entity’ is used to refer to any of them. Each
category is assigned an unique index, denoted by
the predicate cindex/1 (the number after the ‘/’
denotes the arity of the predicate). The predicate
etype/2 captures this association. Each element
is represented, by the element/2 predicate which
connects a category index to its element. The pred-
icate eindex/1, denotes the tuple indices. The fol-
lowing blocks of code shows the representation of
the entities for the puzzle in Problem.1.

cindex(1...3).
eindex(1...4).

etype(1,clients).
etype(2,prices).
etype(3,masseuses).

element(1,aimee;;1,ginger).
element(1,freda;;1,hannah).
element(2,150;;2,160).
element(2,170;;2,180).
element(3,lynda;;3,nancy).
element(3,teri;;3,whitney).

2.3 Representing Solution

Solution to a logic grid puzzle is a set of tu-
ples containing related elements. The tuple/3
predicate captures this tuple membership infor-
mation of the elements. For example, the fact,
tuple(2, 1, aimee), states that the element aimee
from the category with index 1 is in the tuple 2.
The rel/m predicate captures all the elements in a
tuple for a (m,n)-puzzle and is defined using the
tuple/3 predicate.

2.4 Domain Constraints

In the proposed approach, the logic grid puzzle
problem is solved as a constraint satisfaction prob-
lem. Given a puzzle problem the goal is to enu-
merate over all possible configurations of tuple/3,
and select the one which does not violate the con-
straints specified in the clues. However, 1) each
tuple in a logic grid puzzle will contain exactly
one element from each category and 2) an element
will belong to exactly one tuple. These constraints
come from the specification of a puzzle problem
and will hold irrespective of the problem instance.
Following blocks of code show an elegant repre-
sentation of these domain constraints in ASP along
with the enumeration.

%enumerate over the tuple
%assignments with constraint#1
1 {

tuple(G,Cat,Elem):
element(Cat,Elem)

} 1 :- cindex(Cat),
eindex(G).

%domain constraint#2
:-tuple(G1,Cat,Elem),

tuple(G2,Cat,Elem),
G1!=G2.

2.5 Representing clues

Each clue describes some entities and the relations
that hold between them. In its simplest form, the
relations will suggest if the entities are linked to-
gether or not. However, the underlying semantics
of such relations can be deep such as the one in
clue 5 of Problem.1. There are different ways to
express the same relation that holds between en-
tities. For example, in Problem.1, the possessive
relation has been used to express the linking be-
tween clients and masseuses; and the word paid
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expresses the linking between the clients and the
prices. Depending on the puzzles the phrases that
are used to express the relations will vary and it
is crucial to identify their underlying semantics to
solve the problems in systematic way.

In the current version, the reasoning module has
knowledge of a selected set of relations and the
translation module tries to represent the clue as a
conjunction of these relations. All these relations
and their underlying meanings are described in ta-
ble 1. In this subsection, we describe the represen-
tation of a clue in terms of these relations in ASP
and show how it is used by the reasoning module.
In the next section, we present our approach to au-
tomate this translation.

Let us consider the clues and their representa-
tion from Problem.1:

[1] Hannah paid more than Teri’s client.

clue1 :-
greaterThan(hannah,1,X,1,2),
sameTuple(X,1,teri,3).

:- not clue1.

The first rule clue1 evaluates to true (will be in the
answer set) if the element from category 1 with
value hannah is linked to some element from cat-
egory 2 which has a higher value than the element
from its own category which is linked to an ele-
ment from category 1 which is linked to teri from
category 3. Since the desired solution must sat-
isfy the relations described in the clue, the second
ASP rule is added. A rule of this form that does
not have a head is known as a constraint and the
program must satisfy it to have an answer set. As
the reasoning module enumerates over all possi-
ble configurations, in some cases the clue1 will
not hold and subsequently those branches will be
pruned. Similar constraints will be added for all
clues. In the below, we show some more exam-
ples. A configuration which satisfies all the clue
constraints and the domain constraints described
in the previous section, will be accepted as the so-
lution to the puzzle.

[2] Nancy’s client, Hannah and Ginger were all
different clients.

clue4 :-
diffTuple(hannah,1,ginger,1),
diffTuple(hannah,1,X,1),
diffTuple(X,1,ginger,1),
sameTuple(X,1,nancy,3).

:- not clue4.

[3] Hannah was either the person who paid $180
or Lynda’s client.

clue5 :-
eitherOr(hannah,1,X,1,Y,1),
sameTuple(X,1,180,2).
sameTuple(Y,1,lynda,3).

:- clue5.

3 Learning Translation

To automate the translation of a clue to the pair
of ASP rules, the translation module needs to
identify the entities that are present in the clue,
their category and their value; and the underly-
ing interpretations of all the relations that hold
between them. Once all the relation instances
{R1(arg1, ..., argp1),..., Rq(arg1, ..., argpq)} , in
the clue are identified, the ASP representation of
the clue is generated in the following way:

clue : −R1(arg1..., argp1), ..., Rq(arg1..., argpq)

The entity classification problem for logic grid
puzzles poses several challenges. First, the exis-
tence of a wide variety in the set of entities. Enti-
ties can be names of objects, time related to some
event, numbers, dates, currency, some form of ID
etc. And it is not necessary that the entities in puz-
zles are nouns. It can be verbs, adjectives etc. Sec-
ond and of paramount important, the “category”
of a puzzle “element” is specific to a puzzle prob-
lem. Same element may have different category
in different problems. Also, a constituent in a
clue which refers to an entity in a particular prob-
lem may not refer to an entity in another problem.
We formalize this problem in this section and pro-
pose one approach to solve the problem. Next,
we discuss the method that is used to extract re-
lations from clues. To the best of our knowledge,
this type of entity classification problem has never
been studied before.
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Relation Interpretation
sameTuple(E1, C1, E2, C2) States that two elements, (C1,E1) and (C2,E2) are in

the same tuple. The dictionary also contains the nega-
tion of it, diffTuple(E1, C1, E2, C2).

referrent(E1, C1, E2, C2) States that the elements are identical.
posDiff (E1, C1, E2, C2, N1, NC1) If (C1,E1) is related to (NC1,X1) and (E2,C2) is re-

lated to (NC1,X2), then difference(X1,X2)=N1. Sim-
ilarly the dictionary contains the predicate negDiff.

greaterThan(E1, C1, E2, C2, NC1) Similar to posDiff however the difference(X1,X2) >
0. The dictionary also contains its opposite predicate
lessThan.

members(E1, C1, E2, C2,..., EN, CN) All the elements are distinct and do not share a tuple.
eitherOr(E1, C1, E2, C2,..., EN, CN) The first element is related to one of the last N − 1

elements. The last N − 1 elements are assumed to be
different unless contradicts with other beliefs.

referrent22(E1, C1, E2, C2, E3, C3, E4, C4) The first two elements are different and referring to
the last two elements.

Table 1: Describes the various relations that are part of the reasoning module.

3.1 Entity Classification

The entity classification problem is defined as fol-
lows:

Problem description Given m categories C1,
..., Cm and a text T , each category Ci, 1 ≤ i ≤ m,
contains a collection of elements Ei and an op-
tional textual description di. The goal is to find the
class information of all the constituents in the text
T . Each category contributes two classes, where
one of them represents the category itself and the
other represents an instance of that category. Also,
a constituent may not refer to any category or any
instance of it, in that case the class of that con-
stituent is null. So, there are a total 2m+1 classes
and a constituent will take one value from them.

Example In the puzzle of Problem.1, there are
3 categories with, C1 = {Aimee, Freda, Ginger,
Hannah}, C2 = {$150, $160, $170, $180}, C3

= {Lynda, Nancy, Terry, Whiteney} and d1 =
“clients”, d2 = “prices”, d3 = “masseuses”. The
text T , is the concatenation of all clues. In the
last clue, there are a total 5 entities, namely “Han-
nah”, “person”, “$180”, “Lydia”,“client” and the
corresponding classes are “Instance of C1”, “In-
stance of C1”, “Instance of C2”, “Instance of C3”
and “Instance of C1” respectively. The remaining
constituents in that clue have the class value null.
The constituent “clients” in the fourth clue refers
to the category C1.

Our approach We model the Entity Classifi-
cation problem as a decoding query on Pairwise
Markov Network (Koller and Friedman, 2009;
Kindermann et al., 1980; Zhang et al., 2001). A
pairwise Markov network over a graphH, is asso-
ciated with a set of node potentials {φ(Xi) : i =
1, ..., n} and a set of edge potentials {φ(Xi, Xj) :
(Xi, Xj) ∈ H}. Each node Xi ∈ H, represents
a random variable. Here, each Xi can take value
from the set {1...2m + 1}, denoting the class of
the corresponding constituent in the text T .

In our implementation, the node potential cap-
tures the chances of that node to be classified as
one of the possible categories without being af-
fected by the given text T . And the edge poten-
tials captures hints from the context in T for clas-
sification. After constructing the pairwise Markov
network, a decoding query is issued to obtain the
configuration that maximizes the joint probabil-
ity distribution of the pairwise Markov network in
consideration. The proposed approach is inspired
by the following two observations: 1) to find the
class of a constituent one needs some background
knowledge; 2) however, background knowledge is
not sufficient on its own, one also needs to under-
stand the text to properly identify the class of each
constituent. For example, let us consider the word
“person” in clue 5 of Problem.1. Just skimming
through the categories, one can discover that the
word “person” is very unlikely to be a instance of
the category “prices”, which is from her knowl-
edge about those constituents. However a proper

1027



disambiguation may face an issue here as there are
two different categories of human beings. To prop-
erly classify the word “person” it is necessary to
go through the text.

The following paragraphs describe the con-
struction of the grah H, and the algorithm that is
used in the computation of associated set of node
potentials and edge potentials.

Construction of the graph While constructing
the graph, we assign a label, L, to each edge in H
which will be used in the edge potential compu-
tation. Let DG denotes the dependency graph of
the text T obtained from the Stanford dependency
parser (Chen and Manning, 2014) and dep(v1, v2)
denotes the grammatical relation between (v1, v2)
∈ DG . Then the graph, H, is constructed as fol-
lows:

1. Create a node inH for each constituent wj in
T if wj ∈ DG .

2. Add an edge (Xi, Xj) toH if the correspond-
ing edge (wp, wq) ∈ DG . L(Xi, Xj) :=
dep(wp, wq).

3. Add an edge between a pair of nodes
(Xi, Xj) if the corresponding words are syn-
onyms. L(Xi, Xj) := synonymy.

4. Create a node for each element and category
specified in the puzzle and add an edge from
them to others if the corresponding string de-
scriptions are ‘same’. In this case, the edges
are labeled as exact match.

5. If (Xi, Xj) ∈ H and L(Xi, Xj) =
exact match and both of them are refer-
ring to a verb, then add more edges (X ′i, X

′
j)

to H with label spatial symmetry, where
L(Xi, X

′
i) = L(Xj , X

′
j).

Determining Node potentials For each element
in them category, a set of naive regular-expression
based taggers are used to detect it’s type (For ex-
ample, “am-pm time”). Each element type maps
to a WordNet (Miller, 1995) representative (For
example, “time unit#n”). For each constituent w
a similarity score, sim(w,c), is calculated to each
class c ∈ {1...2m+ 1}, in the following way:

•Class c is denoting instance of some category Ci
Similarity scores are computed between the tex-
tual description of the constituent to both the
WordNet representative of Ei and the textual

description di using the HSO WordNet similar-
ity algorithm (Hirst and St-Onge, 1998). The
similarity score, sim(w,c), is chosen to be the
maximum of them.

•Class c is denoting a category Ci : sim(w,c)
is assigned the value of HSO Similarity between
the textual description and di.

•Class c is null : In this case similarity is calcu-
lated using the following formula:

sim(w, null) = MAXHSO − max
c 6=null

sim(w, c)

where MAXHSO denotes the maximum similar-
ity score returned by HSO algorithm, which is 16.

Node potential for each node Xi ∈ H, corre-
sponding to the constituent wj , are then calculated
by,

φ(Xi = c) = 1 + sim(wj , c),∀c

Determining Edge potentials For each edge in
the graph H , the edge potential, φ(Xi, Xj) is cal-
culated using the following formula,

φ(Xi = c1, Xj = c2) =

1 +

{
P (Xi = Xj |L(Xi, Xj)), if c1 = c2

P (Xi 6= Xj |L(Xi, Xj)), otherwise

In the training phase, each entity in a clue is
tagged with its respective class. The probability
values are then calculated from the training dataset
using simple count.

3.2 Learning To Extract Relations
The goal here is to identify all the relations
R(arg1, ..., argp) that are present in a clue, where
each relation belongs to the logical vocabulary
described in Table 1 . This problem is known
as Complex relation extraction (McDonald et al.,
2005; Bach and Badaskar, 2007; Fundel et al.,
2007; Zhou et al., 2014). The common approach
for solving the Complex relation extraction prob-
lem is to first find the relation between each pair
of entities and then discover the complex relations
from binary ones using the definition of each rela-
tion.

Figure 1 depicts the scenario. The goal is to
identify the relation possDiff(E1, E2, E3),
where E1, E2, E3 are constituents having a non-
null class value. However instead of identifying
posDiff(E1, E2, E3) directly, first the relation

1028



Figure 1: Binary representation of the relation
possDiff

between each pair of entities will be identified.
If the relations {posDiffarg1−arg2(E1, E2),
posDiffarg2−arg3(E2, E3), posDiffarg1−arg3
(E1,E3) } are identified, the extraction module
will infer that posDiff(E1, E2, E3) holds. In a
similar manner, a set of total 39 binary relations
are created for all the relations described in Table
1.

In the training phase, all the relations and
their respective arguments in each clue are given.
Using this supervision, we have built a Maxi-
mum Entropy based model (Berger et al., 1996;
Della Pietra et al., 1997) to classify the relation
between a pair of entities present in a clue. Max-
imum entropy classifier has been successfully ap-
plied in many natural language processing appli-
cations (Charniak, 2000; Chieu and Ng, 2002;
Ratnaparkhi and others, 1996) and allows the in-
clusion of various sources of information without
necessarily assuming any independence between
the features. In this model, the conditional proba-
bility distribution is given by:

P (c|d) =

∏
j=1...K e

λifi(d,c)∑
c′∈C

∏
j=1...K e

λifi(d,c′)
(1)

where the denominator is the normalization
term and the parameter λi correspond to the
weight for the feature fi. Features in Maximum
Entropy model are functions from context and
classes to the set of real numbers. A detailed
description of the model or parameter estimation
method used - Generalized Iterative Scaling, can
be found at (Darroch and Ratcliff, 1972).

Table 2 describes the features that are used in
the classification task. Here, path(E1, E2) de-
notes all the words that occur in the path(s) con-

necting E1 and E2 in the dependency graph of the
clue.

Feature Set
Class of E1 and E2

All the grammatical relations between the
words in path(E1, E2)
All the adjectives and adverbs in path(E1, E2).
POS tags of all the words in path(E1, E2)
TypeMatched = [[class of E1 = class of E2 ]]
IsE1Numeric = [[class of E1 is Numeric ]]
IsE2Numeric = [[class of E2 is Numeric ]]
All the words that appears in the following
grammatical relations advmod, amod, cop,
det with the words in path(E1, E2).
hasNegativeWord = [[ ∃w ∈ path(E1, E2) s.t.
w has a neg relation starting with it.]]

Table 2: Features used in the classification task

The relation between each pair of entities in a
clue is the one which maximizes the conditional
probability in equation (1).

3.2.1 Missing Entity
In the case of comparative relations in Table 1,
such as greaterThan, the basis of the compar-
ison can be hidden. For example, in clue 1 of
the example problem, the two entities, “Hannah”
and “client” have been compared on the basis of
“price”, however there is no constituent in the clue
which refers to an element from that category. The
basis of comparison is hidden in this case and is
implied by the word “paid”. In the current imple-
mentation, the translation module does not handle
this case. For puzzles that contain only one cate-
gory consisting of numeric elements, the transla-
tion module goes with the obvious choice. This is
part of our future work.

4 Related Work

There has been a significant amount of work on the
representation of puzzle problems in a formal lan-
guage (Gelfond and Kahl, 2014; Baral, 2003; Ce-
lik et al., 2009). However, there has not been any
work that can automatically solve a logic grid puz-
zle. The latest work (Baral and Dzifcak, 2012) on
this problem, assumes that the entities in a clue are
given and the authors manually simplify the sen-
tences for translation. Furthermore their represen-
tation of logic grid puzzles does not consider the
category of a variable in the formal representation
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i.e. uses element/1 and tuple/2 predicates and
thus cannot solve puzzles containing more than
one numeric categories.

In the same work (Baral and Dzifcak, 2012), the
authors propose to use a semantic parser to do the
translation. This method works well for simple
sentences such as “Donna dale does not have green
fleece” however it faces several challenges while
dealing with real world puzzle sentences. The
difficulty arises due to the restrictions enforced
in the translation models used by the existing se-
mantic parsers. Traditional semantic parsers (Vo
et al., 2015; Zettlemoyer and Collins, 2005) as-
sign meanings to each word in a dictionary and
combine the meaning of the words to character-
ize the complete sentence. A phrase structure
grammar formalism such as Combinatory Cate-
gorial Grammar (Steedman and Baldridge, 2011;
Vo et al., 2015; Zettlemoyer and Collins, 2005),
Context Free Grammar (Aho and Ullman, 1972;
Wong and Mooney, 2006), is normally used to ob-
tain the way words combine with each other. In
the training phase, the semantic parser learns the
meanings of words given a corpus of <sentence,
meaning> pairs and stores them in a dictionary.
During translation, the semantic parser uses those
learned meanings to obtain the meaning of the sen-
tence. Firstly, for the puzzle problems the mean-
ing of the words changes drastically depending on
the puzzle. A word may be an entity in one puz-
zle, but, in a different problem it might not be an
entity or might belong to a different category alto-
gether. Thus a learned dictionary may not be use-
ful while translating clues in a new puzzle. Sec-
ondly, in puzzles relations are normally expressed
by phrases. For example, in the clue “The per-
son who played at Eden Gardens played for In-
dia”, the phrases “played at” and “played for” are
used to express two different relations. Thus, us-
ing a model that assigns meaning to each word
may not be suitable here. Finally, it is difficult to
identify the participants of a relation with a parse
tree generated following a phrase structure gram-
mar. For example, consider the parse tree of the
clue “The person who trekked for 8 miles started
at Bull Creek”. Even though, the relation “started
at” takes the word ‘person’ and ‘Bull Creek’ as its
input, it receives the entire phrase “the person who
trekked for 8 miles” as its argument along with the
other input ‘Bull Creek’.

The entity classification problem studied in this

Figure 2: Parse tree of an example sentence in
Combinatory categorial grammar

research shares many similarity with Named En-
tity Recognition (Nadeau and Sekine, 2007; Zhou
and Su, 2002) and the Word Sense disambiguation
(Stevenson and Wilks, 2003; Sanderson, 1994)
task. However, our work has a major difference;
in the entity classification problem, the class of an
entity varies with the problem and does not belong
to a known closed set, whereas for the other two
problems the possible classes are pre-specified.

5 Experimental Evaluation

Dataset To evaluate our method we have built
a dataset of logic grid puzzles along with their
correct solutions. A total of 150 problems are
collected from logic-puzzles.org. Out of
them 100 problems are fully annotated with the
entities and the relations information. The remain-
ing 50 puzzles do not have any annotation except
their solution. The set of annotated puzzles con-
tain a total of 467 clues, 5687 words, 1681 entities
and 862 relations. The set of 50 puzzles contain a
total of 222 clues with 2604 words.

Tasks We evaluate LOGICIA on three tasks: 1)
puzzle solving; 2) entity classification; and 3) re-
lation extraction. We use the percentage of correct
answers as the evaluation metric for all the three
tasks. In case of a logic grid puzzle solving, an
answer is considered correct if it exactly matches
the solution of that puzzle.

Training-Testing Out of the 100 annotated puz-
zle problems 50 are used as training samples and
remaining 50 puzzles are used in testing. The set
of 50 unannotated puzzles are used solely for the
task of testing puzzle solving.
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Entity classification
Binary relation classification Relation extraction

Solutionwith annotation with annotation
Yes No Yes No

Total 1766 960 450 50
Correct 1502 922 854 410 365 37
Percentage 85.05% 96.04% 88.95% 90.90% 81.11% 74%

Table 3: Accuracy on 50 annotated puzzle problems in the Test set.

Results Table 3 & 4 shows the efficacy of our
approach in solving logic grid puzzles with the se-
lected set of relations. LOGICIA is able to classify
the constituents with 85.05% accuracy and is able
to solve 71 problems out of the 100 test puzzles.
It should be noted that puzzle problems requires
precise understanding of the text and to obtain the
correct solution of a puzzle problem all the entities
and their relations in the puzzle need to be identi-
fied. Columns 2 and 3 in Table 3 compares the per-
formance on relation extraction when it is used in
conjunction with the entity classification and when
it directly uses the annotated entity.

Puzzle Solving
Total Correct Percentage
50 34 68%

Table 4: Accuracy on unannotated 50 test puzzle
problems.

Error Analysis The errors in entity classifica-
tion falls into two major categories. In the first
category, more knowledge of similarity is needed
than what is currently obtained from the WordNet.
Consider for example, the categories are “class
number” and “class size” and the constituent is
“20 students”. Even though the constituent is
closer to “class size”, standard WordNet based
similarity methods are unable to provide such in-
formation. In the second category, the WordNet
similarity of the constituent to one of the classes
is quite high due to their position in the WordNet
hierarchy; however with respect to the particular
problem the constituent is not an entity. The re-
lation extraction task performs fairly well, how-
ever the binary relation classification task does not
jointly consider the relation between all the enti-
ties and because of that if one of the necessary bi-
nary relation of a complex relation is misclassified,
the extraction of the entire relation gets affected.

6 Conclusion & Future Work

This paper presents a novel approach for solving
logic grid puzzle. To the best of our knowledge,
this is a novel work with respect to the fact that
that it can automatically solve a given logic grid
puzzle.

There are several advantages of our approach.
The inclusion of knowledge in terms of a vocab-
ulary of relations makes it scalable. For puzzles
which make use of a different set of constraints,
such as “Lynda sat on an even numbered position”,
can be easily integrated into the vocabulary and
the system can then be trained to identify those
relations for new puzzles. Also, the proposed ap-
proach separates the representation from reason-
ing. The translation module only identifies the re-
lation and their arguments; it is not aware of the
meaning of those relations. The reasoning mod-
ule, on the other hand, knows the definition of each
relation and subsequently prunes those possibili-
ties when relations appearing in a clue does not
hold. This separation of representation from rea-
soning allows the system to deal with the complex
relations that appear in a clue.

There are a few practical and theoretical issues
which need to be addressed. One of those is up-
dating the logical vocabulary in a scalable manner.
Logic grid puzzle is a wide family of puzzles and
it will require more knowledge of relations than
what is currently available. Another challenge that
needs to be addressed is the computation of simi-
larity between complex concepts such as “size of
class” and “20 students”. Also, the case of “miss-
ing entity” (3.2) needs to be modeled properly.
This work is the first step towards further under-
standing these important issues.
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Abstract

fast align is a simple, fast, and effi-
cient approach for word alignment based
on the IBM model 2. fast align per-
forms well for language pairs with rel-
atively similar word orders; however, it
does not perform well for language pairs
with drastically different word orders. We
propose a segmenting-reversing reorder-
ing process to solve this problem by al-
ternately applying fast align and re-
ordering source sentences during train-
ing. Experimental results with Japanese-
English translation demonstrate that the
proposed approach improves the per-
formance of fast align significantly
without the loss of efficiency. Experiments
using other languages are also reported.

1 Introduction

Aligning words in a parallel corpus is a basic task
for almost all state-of-the-art statistical machine
translation (SMT) systems. Word alignment is
used to extract translation rules in various way,
such as the phrase pairs used in a phrase-based
(PB) SMT system (Koehn et al., 2003), the hier-
archical rules used in a HIERO system (Chiang,
2007), and the sophisticated translation templates
used in tree-based SMT systems (Liu et al., 2006).

Among different approaches, GIZA++1 (Och
and Ney, 2003), which is based on the IBM
translation models, is the most widely used word
alignment tool. Other well-known tools are
the BerkeleyAligner2, Nile3 (Riesa et al.,
2011), and pialign4 (Neubig et al., 2011).

1http://www.statmt.org/moses/giza/
GIZA++.html

2https://code.google.com/p/
berkeleyaligner/

3http://jasonriesa.github.io/nile/
4http://www.phontron.com/pialign/

fast align5 (Dyer et al., 2013) is a recently
proposed word alignment approach based on the
reparameterization of the IBM model 2, which
is usually referred to as a zero-order alignment
model (Och and Ney, 2003). Taking advantage of
the simplicity of the IBM model 2, fast align
introduces a “tension” parameter to model the
overall accordance of word orders and an effi-
cient parameter re-estimation algorithm is devised.
It has been reported that the fast align ap-
proach is more than 10 times faster than baseline
GIZA++, with comparable results in end-to-end
French-, Chinese-, and Arabic-to-English transla-
tion experiments.

However, the simplicity of the IBM model 2
also leads to a limitation. As demonstrated in
this study, fast align does not perform well
when applied to language pairs with drastically
different word orders, e.g., Japanese and English.
The problem is because of the IBM model 2’s in-
trinsic inability to handle complex distortions. In
this study, we propose a simple and efficient re-
ordering approach to improve the fast align’s
performance in such situations, referred to as
segmenting-reversing (seg rev). Our motivation
is to apply a rough but robust reordering to make
the source and target sentences have more simi-
lar word orders, where fast align can show
its power. Specifically, seg rev first segments
a source-target sentence pair into a sequence of
minimal monotone chunk pairs6 based on the au-
tomatically generated word alignment. Within the
chunk pairs, source word sequences are exam-
ined to determine whether they should be com-
pletely reversed or the original order should be
retained. The objective of this step is to con-
vert the source sentence to a roughly target-like
word order. The seg rev process is applied re-
cursively but not deeply (only twice in our ex-

5https://github.com/clab/fast_align
6same as the “tuple” used in Mariño et al. (2006)
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Figure 1: Example of seg rev applied to a word-aligned English-Japanese sentence pair. Based on the
word alignment, the source sentence is reordered in a target-like order after applying seg rev twice.

periments) for each source sentence in the train-
ing data. Consequently, the seg rev process is
lightweight and shallow. Local word sequences,
except those at chunk boundaries, are not scram-
bled, while global word orders are re-arranged if
there are large chunks.

Our primary experimental results for Japanese-
English translation show that applying seg rev
significantly improves fast align’s perfor-
mance to a level comparable to GIZA++. The
training time becomes 2–4 times that of a baseline
fast align, which is still at least 2 – 4 times
faster than the training time required by base-
line GIZA++. Results for German-, French-, and
Chinese-English translations are also reported.

2 Segmenting-Reversing Reordering

The seg rev is inspired by the “REV preorder”
(Katz-Brown and Collins, 2008), which is a sim-
ple pre-reordering approach originally designed
for the Japanese-to-English translation task. More
efficient pre-reordering approaches usually require
trained parsers and sophisticated machine learning
frameworks (de Gispert et al., 2015; Hoshino et
al., 2015). We adopt the REV method in Katz-
Brown and Collins (2008) considering it is the
simplest and lightest pre-reordering approach (to
our knowledge), which may bring a minimal ef-
fect on the efficiency of fast align.

An example seg rev process, where the word
alignment is generated by fast align, is illus-
trated in Fig. 1. The example we selected has rel-
atively correct word alignment and seg rev per-
forms well. In general cases, the alignment has
significant noise and the reordering is rougher .

Algorithm 1 describes the repeated (δ times)
application of the seg rev process, and Algo-
rithm 2 describes a single application. Specifi-

cally, Algorithm 1 applies Algorithm 2 δ times.
For each application of Algorithm 2, source sen-
tence S and source indices in alignment A are
reordered, and the overall permutation RI is up-
dated and recorded. In Fig. 1, the original En-
glish sentence had 10 words (including the pe-
riod), being indexed as [0, 1, 2, 3, 4, 5, 6, 7, 8, 9].
After the first application of seg rev, RI was
[8,7,6,5,4,3,2,1,0 , 9], and after the second appli-
cation, RI was [7,8 , 6, 1,2,3,4,5 , 0, 9] (reversed
parts are boxed).

In Algorithm 2, the main for loop (line 3) scans
the source sentence from the beginning to the end
to obtain monotone segmentation. The foreach
(line 5) and if (line 11) are general phrase pair ex-
traction process. The if (line 13) guarantees that
the chunk is monotone on the target side. The
rev function (line 16), which is described in Al-
gorithm 3, determines whether the sub-sequence
from sstart to send should be reversed by exam-
ining the related alignment Asub. For example,
in the first application shown in Fig.1, two sub-
sequences [0 : 8] and [9 : 9] are processed by rev
and [0 : 8] is reversed. Four sub-sequences [0 : 1],
[2 : 2], [3 : 7], and [9 : 9] are processed in the sec-
ond application and [0 :1] and [3 :7] are reversed.7

Finally, source sentence S and source indices in
alignment A are reordered (lines 19 – 20).8

Algorithm 3 performs the reversal. We count
the concordant and discordant pairs9 and reverse

7The sub-sequences are based on the input, not the origi-
nal sentence, e.g., sub-sequence[0 :1]contains the 8th and 7th
word of the original source sentence in the 2nd application.

8Unaligned words between chunks on the source side are
problematic. They are not touched by line 18. Although they
can be attached to preceding or succeeding chunks, we do
not use further heuristics to handle them. An example is the
drifting “the” in the English sentence in Fig. 1, which our
approach cannot handle properly.

9As used in Kendall’s τ or Goodman and Kruskal’s γ.

1035



Algorithm 1: seg revδ

input : same as Algorithm 2 and a depth δ;
output : same as Algorithm 2 except RA;

1 RI ← [0, · · · , I]; RS ← S; RA ← A;
2 for i← 1 to δ do
3 RS , RA, RI′ ← seg rev (RS , T,RA);
4 permute RI with RI′ ;

5 return RS , RI ;

Algorithm 2: seg rev
input : source sentence S = s0, · · · , sI ;

target sentence T = t0 · · · , tJ ;
word alignment A = {(i, j)|
si, tj are aligned, i ∈ [0, I], j ∈ [0, J ]};

output : reordered source sentence RS ;
source index reordered alignmentRA;
reordered indices RI = π(0, · · · , I),

which is a permutation from 0 to I;
1 RI ← [0, · · · , I];
2 sstart ← 0; tpre end ← −1;
3 for send ← sstart to I do
4 tstart ← J + 1; tend ← −1;
5 foreach (i, j) ∈ A do
6 if i ∈ [sstart, send] then
7 if j < tstart then
8 tstart ← j;

9 if j > tend then
10 tend ← j;

11 if ∃(i, j) ∈ A :
j ∈ [tstart, tend] ∧ i /∈ [sstart, send] then

12 continue;

13 if ∃(i, j) ∈ A : j ∈ (tpre end, tstart) then
14 continue;

15 Asub ← {(i, j)|(i, j) ∈ A,
i ∈ [sstart, send] ∧ j ∈ [tstart, tend]};

16 rev (RI [sstart : send], Asub);
17 tpre end ← tend;
18 sstart ← min({i|i>send ∧ ∃(i, j) ∈ A});

19 RS ← permute S according to RI ;
20 RA ← permute i in A according to RI ;
21 return RS , RA, RI ;

the sub-sequence if and only if there are more dis-
cordant pairs than the concordant pairs. In Fig.1,
the sub-sequence [0 : 8] in the first application has
C2

8 = 28 pairs of aligned word pair (i.e., 28 gray
block pairs for eight gray blocks); however, only
11 pairs are concordant (C2

5 =10 pairs in [1 :5] and
one pair in [7 :8]), Consequently, the sub-sequence
[0 : 8] is reversed because there are more discor-
dant pairs (17 = 28−11). The two reversed sub-
sequences in the second application are obvious.

Algorithm 4 describes the training frame-
work, where fast align and seg rev are ap-
plied alternately. To generate word alignment,
fast align is run bi-directionally and sym-
metrization heuristics are applied to reduce noise
(line 11). In each iteration, the source sen-
tences for seg rev are the original sentences,

Algorithm 3: rev
input : index sequence Isub; word alignment Asub;

1 con← 0; dis← 0;
2 foreach unordered tuple ((i0, j0), (i1, j1)) :

(i0, j0) ∈ Asub ∧ (i1, j1) ∈ Asub do
3 x← (i1 − i0)× (j1 − j0);
4 if x > 0 then
5 con← con+ 1;
6 else if x < 0 then
7 dis← dis+ 1;
8 else
9 continue;

10 if dis > con then
11 Isub ← reverse Isub;

Algorithm 4: fast align with seg rev
input : parallel corpus C with N sentence pairs

C = {(S1, T 1) · · · , (SN , TN )};
maximum iteration M ; depth δ for seg rev;

output : word alignment A = {A1, · · · , AN};
1 A ← ∅;
2 for iter ← 1 to M do
3 I ← ∅; C′ ← ∅;
4 if A 6= ∅ then
5 for n← 1 to N do
6 RS ,RI←seg revδ(Sn, Tn, An);
7 append (RS , T

n) to C′;
8 append RI to I;

9 else
10 C′ ← C;

11 A ← sym ◦ fast align (C′);
12 if I 6= ∅ then
13 for n← 1 to N do
14 recover An by I [n];

15 return A;

and fast align uses the reordered sentences
with the exception of the first iteration. The word
alignment generated is thus based on the reordered
source sentences; consequently, the recorded per-
mutation (line 14) is used to recover word align-
ment before the next iteration. The permutation is
a one-to-one mapping; therefore, recovering is re-
alized by the inverse mapping of the permutation,
which transfers the source-side word alignment in-
dices to match the original source sentences.

The time complexity of Algorithm 3 is O(l2),
where l is the size of Asub that is related to the
chunk size. If the average chunk size is a constant
C depending on languages pairs or data sets, then
the time complexity of Algorithm 2 is O(C · I2)
assuming J and the size of A are both linear
against I . The average chunk size will be reduced
when seg rev is applied successively; there-
fore, the time required for subsequent seg rev
processes will decrease. In practice, compared
with the training time required by fast align,
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seg rev processing time is negligible. Note that
seg rev processes are accelerated easily by par-
allel processing.

3 Experiments and Discussion

We applied the proposed approach to Japanese-
English translation, a language pair with dramat-
ically different word orders. In addition, we ap-
plied the approach to German-English translation,
a language pair with relatively different word or-
ders among European languages.

For Japanese-English translation, we used
NTCIR-7 PAT-MT data (Fujii et al., 2008). For
German-English translation, we used the Eu-
roparl v7 corpus10 (Koehn, 2005) for training, the
WMT 0811 / WMT 0912 test sets for development
/ testing, respectively. Default settings for the PB
SMT in MOSES13 (Koehn et al., 2007) were used,
except for Japanese-English translations where the
distortion-limit was set to 12 to reach a recently
reported baseline (Isozaki et al., 2012). MERT
(Och, 2003) was used to tune development set pa-
rameter weights and BLEU (Papineni et al., 2002)
was used on test sets to evaluate the translation
performance. Bootstrap sampling (Koehn, 2004)
was employed to test statistical significance using
bleu kit14.

We compared GIZA++ and fast align with
default settings. GIZA++ was used as a mod-
ule of MOSES. The bi-directional outputs of
fast align were symmetrized by atools in
cdec15 (Dyer et al., 2010), and further training
steps were conducted using MOSES. grow-diag-
final-and symmetrization was used consistently in
the experiments. For the the proposed approach,
we set δ=2 and M =4 in Algorithm 4. Note that
δ can be set to a larger value and seg rev could
be applied repeatedly until no additional reorder-
ing is possible. As mentioned, the word alignment
is noisy and our intention is a robust and rough
process; therefore, we restricted seg rev to two
applications and did not consider the difference
in sentence lengths or different languages during
training. Within each iteration, fast align was
run with default settings, except initial diagonal-

10http://www.statmt.org/europarl/
11http://www.statmt.org/wmt08/
12http://www.statmt.org/wmt09/
13http://www.statmt.org/moses/
14http://www.nlp.mibel.cs.tsukuba.ac.

jp/bleu_kit/
15http://www.cdec-decoder.org/

ja-en en-ja de-en en-de
GIZA++ 28.8 30.8 18.2 12.9

FAλini=4.0 28.1‡ 29.5‡ 18.0† 12.7†

FAλini=0.1 28.0‡ 29.8‡ 17.5‡ 12.5‡

iteration 2 28.3† 30.9 17.9‡ 12.8
iteration 3 28.4† 30.1‡ 18.1 12.7†

iteration 4 28.8 30.7 18.1 12.7†

Table 1: Test set BLEU scores for Japanese-
English and German-English translations. (‡, sta-
tistical significance at p<0.01; †, at p<0.05; bold-
face, no significance; all compared with GIZA++)

tension (λini) was set to 0.1 in the first iteration,
to avoid overly strong monotone preference at the
beginning of training.

Experimental results for Japanese-English and
German-English translations in both directions
are listed in Table 1. The first two rows show
the baseline performance. fast align (using
a default λini = 4.0) performance was statisti-
cally significantly lower than GIZA++, particu-
larly for Japanese-English translation. The fol-
lowing four rows show the results of the pro-
posed approach. For the first iteration, λini was
set to 0.1, and the performance did not change
significantly. The translations from English im-
proved (equal to GIZA++) at the second itera-
tion. However, translations to English improved
more slowly. We attribute the difference in im-
provement rates between translation to and from
English to the relatively fixed word order of En-
glish, whereby the reordering process is easier
and more consistent. Note that once transla-
tions from English improved in the second iter-
ation, performance decreased in the following it-
erations. The results in Table 1 were obtained us-
ing predictable-seed for tuning, which generated
determinate results. Another attempt using ran-
dom seeds to tune returned test set BLEU scores
of 30.5, 30.4 on en-ja and 12.8, 12.8 on en-
de, for iterations 3 and 4, respectively. These
four scores had no statistical significance against
GIZA++. The instability is largely due to the
alignment of function words, which affects trans-
lation performance (Riesa et al., 2011). The align-
ment does not change significantly after the sec-
ond iteration; however, it is unstable around func-
tion words,16 because seg rev does not process

16Specifically, to, articles, and prepositions in English-
Japanese; of, have, and relative pronouns in English-German.
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fr-en zh-en
GIZA++ 23.3 31.4

FAλini=4.0 23.1 31.7
iteration 2 23.1 31.7

Table 2: Test set BLEU scores for French-to-
English and Chinese-to-English translations. For
fr-en, the data sets were the same as for de-en.
For zh-en, NIST 2006 OpenMT data were used
for training and test; test data from 2002 to 2005
OpenMT were used for tuning.

unaligned function words between chunks. Our
approach is too rough to handle function words
precisely. We plan to address this in future.

We also tested our approach on French- and
Chinese-to-English translations. The results are
listed in Table 2. GIZA++ and fast align
showed no statistically significant difference in
performance, which is consistent with Dyer et al.
(2013). The proposed approach did not affect
performance for French- and Chinese-to-English
translations. These results are expected as these
language pairs have similar word orders.

With regard to processing time, a naı̈ve, single-
thread implementation of seg rev in C++ took
approximately 60s / 40s in the first / second ap-
plication on the entire Japanese-English corpus17.
The recover process took less than 30s in each it-
eration. In contrast, fast align, although very
fast, took approximately one hour for one round
of training (using five iterations for its log-linear
model) on the same corpus. Therefore, the addi-
tional time required in our approach is quite small
and can be ignored compared with the training
time of fast align.18

4 Conclusion and Future Work

We have proposed a simple and efficient approach
to improve the performance of fast align on
language pairs with drastically different word or-
ders. With the proposed approach, fast align
obtained results comparable with GIZA++, and its
efficiency is retained. We are investigating further
properties of seg rev and plan to extend it to
achieve greater stability and efficiency.19

171.8 M sentence pairs with an average length of 35 words.
18GIZA++ actually took around 18 hours to align the

Japanese-English corpus (parallel processes for two direc-
tions, including mkcls, five iterations for the model 1 and
the HMM model, three iteration for the model 3 and 4).

19Ongoing experiments using seg rev with GIZA++ re-
turned negative results. BLEU decreases by approx. 1 point.
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Abstract

We introduce pre-post-editing, possibly
the most basic form of interactive trans-
lation, as a touch-based interaction with
iteratively improved translation hypothe-
ses prior to classical post-editing. We re-
port simulated experiments that yield very
large improvements on classical evalua-
tion metrics (up to 21 BLEU) as well as
on a parameterized variant of the TER
metric that takes into account the cost of
matching/touching tokens, confirming the
promising prospects of the novel transla-
tion scenarios offered by our approach.

1 Introduction

As shown by oracle studies (Wisniewski et al.,
2010; Turchi et al., 2012; Marie and Max, 2013),
Statistical Machine Translation (SMT) systems
produce results that are of significantly lower qual-
ity than what could be produced from their avail-
able resources. As a pragmatic solution, human
intervention is commonly used for improving au-
tomatic draft translations, in so-called post-editing
(PE), but is also studied earlier in the translation
process in a variety of interactive strategies, in-
cluding e.g. completion assistance and local trans-
lation choices (e.g. (Foster et al., 2002; Koehn and
Haddow, 2009; González-Rubio et al., 2013)). Al-
though interactive machine translation does facil-
itate the work of the SMT system in certain situa-
tions by allowing it to make efficient use of knowl-
edge contributed by the human translator, post-
editing has been shown to remain a faster alter-
native (Green et al., 2014). Nevertheless, this ac-
tivity usually requires complex intervention from
an expert translator (Carl et al., 2011).

In this work we reduce interaction with an SMT
system to its most basic form: similarly to what a
human translator is likely to do when first reading

a draft translation to post-edit, we require a user
to simply spot those segments of a draft transla-
tion that can participate in an acceptable transla-
tion. The corresponding information is then used
by a SMT system in a soft way to improve the
draft translation. This process may be iteratively
repeated as long as enough improvements are ob-
tained, and terminates with classical post-editing
on the obtained translation, hence we dub it pre-
post-editing (PPE). We resort to simulated pre-
post-editing and post-editing, as in other works
(Carl et al., 2011; Denkowski et al., 2014), to
measure translation performance on some avail-
able reference translation using both classical met-
rics and a variant of the TER metric (Snover et
al., 2006), where, essentially, the cost of a token
matching operation is a parameterized fraction of
the cost of the other token edit operations. With
the implementation of appropriate strategies in the
SMT system, we show under reasonable assump-
tions that this approach has the potential to signifi-
cantly reduce the amount of human effort required
to obtain a final translation.

In the remainder of this article, we describe the
technical details of pre-post-editing (Section 2),
report experiments conducted on two translation
directions and two domains (Section 3), and fi-
nally discuss our proposal and introduce our future
work (Section 4).

2 Touch-based pre-post-editing

In our PPE framework, the human pre-post-editor
has to mark n-grams from a translation hypoth-
esis that can take part in a correct translation.1

The annotated n-grams are counted, as an n-gram
can appear more than once in the same sentence,
and a “positive” 6-gram language model (LM)

1A touch-based interface when a keyboard is not available
or typing is inconvenient lends itself particularly well to PPE.
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(positive-lm) is trained on these counts2. A
“negative” LM (negative-lm) is also trained
on the counted n-grams left unannotated. Then,
all bi-phrases from the SMT system’s phrase ta-
ble that match an annotated n-gram, according to
the source token alignments provided by the de-
coder, are removed from the main phrase table
and stored in a separate “positive” phrase table
(positive-pt). Conversely, n-grams contain-
ing at least one token left unannotated are consid-
ered as incorrect, and the set of bi-phrases match-
ing these n-grams are removed and stored in a
“negative” phrase table (negative-pt).

As source tokens can appear more than once in a
source text, they are located: an identifier is con-
catenated to each token to make it unique in the
source text. Tokens of the source phrases in the
phrase table are accordingly also located, so each
bi-phrase is duplicated as needed to cover all lo-
cated tokens. Using located tokens allows our PPE
framework to treat differently source tokens that
are correctly translated from incorrectly translated
ones in the same sentence or text. Figure 1 shows
an example of phrase table extraction, using lo-
cated source tokens3, for one iteration of PPE.

If an n-gram is annotated as correct, all its in-
ner n-grams of lower order are also deemed cor-
rect. Although annotating translations of high
quality may be less expensive by explicitely anno-
tating incorrect n-grams instead of correct ones,
such annotations would not permit to identify cor-
rect n-grams inside incorrect ones, as illustrated
in Figure 2. PPE can thus be worded as a simple
problem for the pre-post-editor: which sequences
of tokens should appear in the final translation?

The newly extracted phrase tables and LMs4,
along with the remainder of the original phrase
table and the original LM, are used to re-decode
the source text in a first iteration of PPE. A new
PPE annotation can then be performed on the new
translations. The newly extracted “positive” and
“negative” phrase tables are merged with the cor-
responding phrase table of the previous iteration.
The extracted n-gram counts from the current iter-
ation and the counts of the previous iterations are
summed, and the LMs are re-trained with the up-
dated counts. A new iteration of PPE is then per-

2We used SRILM (Stolcke, 2002) to train the LMs with
Witten-Bell smoothing.

3Subsequent examples do not use located tokens.
4The extracted LMs are sentence-level, and are only used

on their specific sentence during PPE.

source un@0 retour@1 au@2 calme@3 précaire@4 .@5

hypothesis a return to calm is precarious .

target ref. return to precarious calm .

positive-pt negative-pt
source target source target

retour@1 au@2 return to précaire@4 is precarious
précaire@4 precarious calme@3 précaire@4 calm is precarious

.@5 . précaire@4 .@5 is precarious .

positive-lm negative-lm
n-gram count n-gram count

return 1 a 1
return to 1 a return to 1

to 1 to precarious 1
calm 1 to calm is precarious . 1

Figure 1: Examples of some of the bi-phrases and
n-grams extracted for phrase tables and language
models according to a reference translation.

source son impopularité semble être en grande partie due au chômage

PPE#0 his unpopularity seems to be owing largely to unemployment

PPE#1 his unpopularity seems to be largely owing to unemployment

target ref his unpopularity seems to be largely owing to unemployment

Figure 2: Annotation example for two correct to-
kens forming an incorrect n-gram. At the first PPE
iteration a reordering is performed and the new hy-
pothesis now matches the reference translation.

formed with the updated models. The weights for
all, old or new, models in the log-linear combina-
tion are found by tuning on a development set for
each PPE iteration.5 Figure 3 illustrates 4 itera-
tions of PPE from an initial translation hypothesis
assuming a given target reference translation.

3 Experiments

3.1 Data and systems

We ran experiments on two translation tasks of
different domains: the WMT’14 Medical trans-
lation task (medical) and the WMT’11 news
translation task (news) for the language pair en-fr
on both translation directions. For both tasks we
trained two competitive phrase-based SMT sys-
tems using Moses (Koehn et al., 2007) and WMT
data6 (see Table 1). The tuning for all systems,
including our iteration-specific PPE systems, was
performed with kb-mira (Cherry and Foster,
2012).

3.2 An adapted evaluation metric: TERPPE

Classical MT evaluation metrics cannot take into
account the interactive cost of PPE, and thus do

5In this work, we did not exceed 5 iterations.
6http://www.statmt.org/wmt14
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source c’ est la réponse à une nouvelle prise de conscience selon laquelle les entreprises chinoises sont indispensables
à la survie économique de Taiwan

PPE#0 this is the answer to a new awareness that Chinese companies are essential to the economic survival of Taiwan
PPE#1 it is the response to a new awareness that Chinese firms are essential to Taiwan’s economic survival .
PPE#2 it is the reply to a new awareness that Chinese enterprises is essential to Taiwan’s economic survival .
PPE#3 it is responding to a new awareness that Chinese businesses is essential to Taiwan’s economic survival .

PPE#4 it is responding to a new awareness that Chinese business is essential to Taiwan’s economic survival .

target ref it is responding to a new awareness that Chinese business is essential to Taiwan’s economic survival .

Figure 3: Example of a pre-post-edition trace for French to English translation (using the news task,
cf. Section 3) using a given implicit target reference translation for simulating pre-post-editing and post-
editing. Each newly touched phrase is indicated with a green background. Phrases with a gray back-
ground indicate previously touched phrases but their tokens remain individually touchable by the user.

Tasks Corpus Sentences Tokens (fr-en)

news
train 12M 383M - 318M
dev 2,525 73k - 65k
test 3,003 85k - 74k

medical
train 4.9M 91M - 78M
dev 500 12k - 10k
test 1,000 26k - 21k
specialized LM 146M - 78M

for both tasks LM 2.5B - 6B

Table 1: Data used in this work.

not allow us to make direct comparisons with PE.
We thus adapt the TER (Snover et al., 2006)
metric, which typically uses 4 types of token
edits: substitution (s), insertion (i),
deletion (d) and shift (f ). While these edit
types all have a (debatable) uniform cost of 1, the
operation of matching (m) a correct token is ig-
nored. We posit that this operation is in fact per-
formed by a human translator during PE (at the
minimum, by recognizing and skipping tokens),
and that it can be directly compared to our touch-
based selection of tokens for PPE. However, we
cannot at this stage of our work provide a realistic
cost value for this operation, and so we introduce
a match cost parameter α, and use the following
as our PPE-aware metric:

TERPPE =
#s+ #d+ #i+ #f + α#m

r + αr
(1)

where r is the number of tokens in the reference
translation. Note that a null value for α makes
TERPPE correspond to TER, while a value of 1
would indicate that a token matching/touch (m)
is e.g. as costly as a token rewriting (s). We antic-
ipate that a realistic value for α given a reasonably
skilled user should be rather small, but we will
provide TERPPE results for the full range [0, 1].

3.3 Experimental results

To validate our approach, we initially used a sim-
ulated post-editing paradigm (Carl et al., 2011;
Denkowski et al., 2014) in which non-post-edited
reference translations are used in lieu of human
post-editions. Results on TER (Snover et al.,
2006) and BLEU (Papineni et al., 2002), tuning
on both metrics, are provided in Tables 2 (news)
and 3 (medical).

First, we observe that whatever the metric and
the task, the first iteration of PPE always yields
a significant improvement over the Moses initial
system (e.g. up to +9.8 BLEU and -8.2 TER for
news fr→en). Unsurprisingly, tuning on a met-
ric yields better results for the same metric for
the first iteration; however, we note that this is
not always true for the TER metric at later itera-
tions (cf. news en→fr). More generally, tuning
on the TER metric results in lower improvements
for news, which are mostly concentrated on the
first iterations; as systems tuned on BLEU have
been found to produce better translations than sys-
tems tuned on TER (Cer et al., 2010), only BLEU
tuning was used for medical.7

Improvements follow an interesting pattern
over PPE iterations: for instance, on news
fr→en, BLEU scores steadily increase after each
new touch-based iteration and reach a gain
of +21.1 BLEU and -12.3 TER over the initial
Moses translation after 5 PPE iterations. Re-
sults are very comparable on both language pairs
and both domains, e.g. gains of +12.1 BLEU
and -9.7 TER are obtained on fr→en medical.
The lesser amplitude of the gains obtained after
5 iterations may be attributed to the higher ini-

7We have observed a tendency of the TER tuning to shrink
the size of hypotheses, resulting in higher brevity penalty val-
ues for BLEU and a higher number of insertions for TER.
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Iteration
fr→en en→fr

tuned with TER tuned with BLEU tuned with TER tuned with BLEU
TER BLEU TER BLEU TER BLEU TER BLEU

Moses 51.1 28.2 52.7 28.6 52.3 29.7 51.8 31.1
PPE iteration 1 42.9 35.4 46.7 38.4 44.4 35.0 47.3 39.6
PPE iteration 2 40.8 37.3 43.7 43.4 43.0 36.3 44.6 43.9
PPE iteration 3 40.8 37.8 42.2 46.2 42.5 36.4 43.5 46.6
PPE iteration 4 39.9 37.9 40.9 48.3 42.3 36.5 42.3 48.2
PPE iteration 5 39.9 37.9 40.4 49.7 42.2 36.6 41.0 49.5

Table 2: PPE results on the news task.

tial quality of the translations in the medical
task (e.g. 37.1 BLEU vs 28.6 BLEU in fr→en for
Moses with BLEU tuning).

Iteration
fr→en en→fr

tuned with BLEU tuned with BLEU
TER BLEU TER BLEU

Moses 42.2 37.1 44.0 38.8
PPE iteration 1 36.9 44.9 37.2 48.3
PPE iteration 2 34.8 47.5 35.3 51.1
PPE iteration 3 34.1 48.5 33.5 52.9
PPE iteration 4 32.9 49.2 32.4 54.0
PPE iteration 5 32.5 49.2 32.1 54.8

Table 3: PPE results on the medical task.

Figures 4 and 5 show how our TERPPE metric
varies for different values of our α parameter (re-
call that α = 0 corresponds to TER). Essentially,
whatever the value of α, we observe that any it-
eration of PPE dominates PE (Moses 1-best),
but with a tendency to become as costly as PE for
high, but probably unrealistic values of α. Tuning
with BLEU allows us to bring regular improve-
ments as the number of iteration increases, while
tuning with TER makes the amplitude of the gains
decrease faster.

Furthermore, results shown in Table 4 point
out the complementarity between negative
models (negative-lm and negative-pt)
and positive models (positive-lm and
positive-pt), with a drop of almost 10 BLEU
points compared to the corresponding config-
uration using all models when removing one
type of models on both translation directions.
The language models (negative-lm and
positive-lm) seem to play a more impor-
tant role during PPE than the phrase tables
(negative-pt and positive-pt), with
a drop of 9.6 BLEU points on news fr→en
when removing the language models against a
significantly lower drop of 4.4 BLEU points when
removing the phrase tables.
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Figure 4: PPE results on the en→fr news task.

4 Discussion and future work

We have introduced pre-post-editing, a minimalist
interactive machine translation paradigm where a
user is only asked to spot text fragments that may
be used in the final translation. Our approach is
quite comparable to the two-pass procedure de-
scribed by Luong et al. (2014) using word-level
confidence estimation (e.g. (Bach et al., 2011)) to
update the cost of the search graph hypotheses.
However, contrarily to Luong et al.’s work, our
PPE framework is efficiently multi-pass, updates
the models over iterations and relies on more in-
formative annotations made at n-gram-level. Our
evaluation based on simulated post-editing has re-
vealed a large potential for translation improve-
ment. Interestingly, the type of interaction defined
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Configuration
fr→en en→fr

tuned with BLEU tuned with BLEU
TER BLEU TER BLEU

Moses 52.7 28.6 51.8 31.1
PPE w/ all models 40.4 49.7 41.0 49.5

PPE w/o negative-pt and negative-lm 45.2 39.4 47.1 39.0
PPE w/o positive-pt and positive-lm 46.7 39.8 48.3 39.8

PPE w/o negative-pt and positive-pt 45.0 45.3 46.5 44.9
PPE w/o negative-lm and positive-lm 42.7 40.1 43.2 42.0

Table 4: PPE results for the news task after 5 iterations using various configurations.
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Figure 5: PPE results on the fr→en news task.

is very different from that expected of a post-editor
or in existing interactive translation modes, and
lends itself nicely to touch-based interaction. Fur-
thermore, our proposal may in fact define a new
role in Computer-Assisted Translation, with PPE
being performed on-the-go on mobile devices by
more people than available human translators, and
even possibly by monolinguals of the target lan-
guage whose contribution may be more efficiently
exploited than that of monolinguals of the source
language (e.g. (Resnik et al., 2010)).

In terms of usability, our future work will fo-
cus on two important questions: (a) study the
actual use of PPE in an interactive setting and
tune the α parameter for our TERPPE metric on
HTER (Snover et al., 2006) traces, and (b) study

whether PPE alters in any positive way the work
of the human translator performing the resid-
ual post-editing, hoping that PE could become
a less tedious task by nature. We further an-
ticipate that some additions would improve our
approach, including dealing early with out-of-
vocabulary phrases, proposing local drop-down
options (e.g. (Koehn and Haddow, 2009)), possi-
bly clustered by senses, allowing the user to eas-
ily fix reordering issues, and adapting PPE to be
discourse-aware (e.g. (Ture et al., 2012)).

5 Acknowledgements

The authors would like to thank the anonymous
reviewers for their helpful comments and sugges-
tions. The work of the first author is supported by
a CIFRE grant from French ANRT.

References
Nguyen Bach, Fei Huang, and Yaser Al-Onaizan.

2011. Goodness: A Method for Measuring Ma-
chine Translation Confidence. In Proceedings of
ACL, Portland, USA.

Michael Carl, Dragsted Barbara, Jakob Elming, Hardt
Daniel, and Jakobsen Arnt Lykke. 2011. The Pro-
cess of Post-Editing: A pilot study. In Copenhagen
Studies in Language.

Daniel Cer, Christopher D. Manning, and Daniel Juraf-
sky. 2010. The best lexical metric for phrase-based
statistical mt system optimization. In Proceedings
of NAACL, Los Angeles, USA.

Colin Cherry and George Foster. 2012. Batch Tun-
ing Strategies for Statistical Machine Translation. In
Proceedings of NAACL, Montréal, Canada.
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Abstract

Continuous-space translation models have
recently emerged as extremely powerful
ways to boost the performance of existing
translation systems. A simple, yet effec-
tive way to integrate such models in infer-
ence is to use them in an N -best rescor-
ing step. In this paper, we focus on this
scenario and show that the performance
gains in rescoring can be greatly increased
when the neural network is trained jointly
with all the other model parameters, using
an appropriate objective function. Our ap-
proach is validated on two domains, where
it outperforms strong baselines.

1 Introduction

Over the past few years, research on neural net-
works (NN) architectures for Natural Language
Processing has been rejuvenated. Boosted by early
successes in language modelling for speech recog-
nition (Schwenk, 2007; Le et al., 2011), NNs have
since been successufully applied to many other
tasks (Socher et al., 2013; Huang et al., 2012;
Yang et al., 2013). In particular, these techniques
have been applied to Statistical Machine Trans-
lation (SMT), first to estimate continuous-space
translation models (CTMs) (Schwenk et al., 2007;
Le et al., 2012; Devlin et al., 2014), and more
recently to implement end-to-end translation sys-
tems (Cho et al., 2014; Sutskever et al., 2014).

In most SMT settings, CTMs are used as an ad-
ditional feature function in the log-linear model,
and are conventionally trained by maximizing the
regularized log-likelihood on some parallel train-
ing corpora. Since this objective function requires
to normalize scores, several alternative training
objectives have recently been proposed to speed
up training and inference, a popular and effec-
tive choice being the Noise Contrastive Estimation

(NCE) introduced in (Gutmann and Hyvärinen,
2010). In any case, NN training is typically per-
formed (a) in isolation from the other components
of the SMT system and (b) using a criterion that
is unrelated to the actual performance of the SMT
system (as measured for instance by BLEU). It is
therefore likely that the resulting NN parameters
are sub-optimal with respect to their intended use.

In this paper, we study an alternative training
regime aimed at addressing problems (a) and (b).
To this end, we propose a new objective func-
tion used to discriminatively train or adapt CTMs,
along with a training procedure that enables to take
the other components of the system into account.
Our starting point is a non-normalized extension
of the n-gram CTM of (Le et al., 2012) that we
briefly restate in section 2. We then introduce our
objective function and the associated optimization
procedure in section 3. As will be discussed, our
new training criterion is inspired both from max-
margin methods (Watanabe et al., 2007) and from
pair-wise ranking (PRO) (Hopkins and May, 2011;
Simianer et al., 2012). This proposal is evaluated
in an N -best rescoring step, using the framework
of n-gram-based systems, within which they in-
tegrate seamlessly. Note, however that it could
be used with any phrase-based system. Experi-
mental results for two translation tasks (section 4)
clearly demonstrate the benefits of using discrimi-
native training on top of an NCE-trained model, as
it almost doubles the performance improvements
of the rescoring step in all settings.

2 n-gram-based CTMs

The n-gram-based approach in Machine Trans-
lation is a variant of the phrase-based ap-
proach (Zens et al., 2002). Introduced in (Casacu-
berta and Vidal, 2004), and extended in (Mariño et
al., 2006; Crego and Mariño, 2006), this approach
is based on a specific factorization of the joint
probability of parallel sentence pairs, where the
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source sentence has been reordered beforehand.

2.1 n-gram-based Machine Translation
Let (s, t) denote a sentence pair made of a source
s and target t sides. This sentence pair is decom-
posed into a sequence of L bilingual units called
tuples defining a joint segmentation. In this frame-
work, tuples constitute the basic translation units:
like phrase pairs, they represent a matching be-
tween a source and a target chunk . The joint prob-
ability of a synchronized and segmented sentence
pair can be estimated using the n-gram assump-
tion. During training, the segmentation is obtained
as a by-product of source reordering, (see (Crego
and Mariño, 2006) for details). During the infer-
ence step, the SMT decoder will compute and out-
put the best derivation in a small set of pre-defined
reorderings.

Note that the n-gram translation model manipu-
lates bilingual tuples. The underlying set of events
is thus much larger than for word-based models,
while the training data (parallel corpora) are typ-
ically order of magnitude smaller than monolin-
gual resources. As a consequence, data sparsity
issues for such models are particularly severe. Ef-
fective workarounds consist in factorizing the con-
ditional probabitily of tuples into terms involv-
ing smaller units: the resulting model thus splits
bilingual phrases in two sequences of respectively
source and target words, synchronised by the tuple
segmentation. Such bilingual word-based n-gram
models were initially described in (Le et al., 2012).
We assume here a similar decomposition.

2.2 Neural Architectures
The estimation of n-gram probabilities can be per-
formed via multi-layer NN structures, as described
in (Bengio et al., 2003; Schwenk, 2007) for a
monolingual language model. The standard feed-
forward structure is used to estimate the trans-
lation models sketched in the previous section.
We give here a brief description, more details are
in (Le et al., 2012): first, each context word is pro-
jected into language dependent continuous spaces,
using two projection matrices for the source and
target languages. The continuous representations
are then concatenated to form the representation
of the context, which is used as input for a feed-
forward NN predicting a target word.

In such architecture, the size of output vocab-
ulary is a bottleneck when normalized distribu-
tions are expected. Various workarounds have

been proposed, relying for instance on a struc-
tured output layer using word-classes (Mnih and
Hinton, 2008; Le et al., 2011). A more effective
alternative, which however only delivers quasi-
normalized scores, is to train the network using
the Noise Contrastive Estimation or NCE (Gut-
mann and Hyvärinen, 2010; Mnih and Teh, 2012).
This technique is readily applicable for CTMs and
has been adopted here. We therefore assume that
the NN outputs a positive score bθ(w, c) for each
word w given its context c; this score is simply
computed as bθ(w, c) = exp(aθ(w, c)), where
aθ(w, c) is the activation at the output layer; θ de-
notes all the network free parameters.

3 Discriminative Training of CTMs

In SMT, the primary role of CTMs is to help
the system in ranking a set of hypotheses so that
the top scoring hypotheses correspond to the best
translations, where quality is measured using au-
tomatic metrics such as BLEU (Papineni et al.,
2002). Given the computational burden of con-
tinuous models, the prefered use of CTMs is to
rescore a list of N-best hypotheses, a scenario we
favor here; note that their integration in a first pass
search is also possible (Niehues and Waibel, 2012;
Vaswani et al., 2013; Devlin et al., 2014). The im-
portant point is to realize that the CTM score will
in any case be composed with several scores com-
puted by other components: reordering model(s),
monolingual language model(s), etc. In this sec-
tion, we propose a discriminative training frame-
work which implements a tight integration of the
CTM with the rest of the system.

3.1 A Discriminative Training Framework

The decoder generates a list of N hypotheses for
each source sentence s. Each hypothesis h is com-
posed of a target sentence t along with its associ-
ated derivation and is evaluated as follows:

Gλ,θ(s,h) =
M∑
k=1

λkfk(s,h) + λM+1fθ(s,h),

whereM conventional feature functions1 f1...fM ,
estimated during the training phase, are scaled by
coefficients λ1...λM . The introduction of a con-
tinuous model during the rescoring step is imple-
mented by adding the feature fθ(s,h), which ac-

1The functions used in our experiments are similar to the
ones used in other phrase-based systems (Crego et al., 2011).
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Algorithm 1 Joint optimization of θ and λ

1: Init. of θ and λ
2: for each iteration do
3: for P mini-batch do . λ is fixed
4: Compute the sub-gradient of L(θ) for

each sentence s in the mini-batch
5: Update θ
6: end for
7: Update λ on development set . θ is fixed
8: end for

cumulates, over all contexts c and word w, the
CTM log-score log bθ(w, c).
Gλ,θ depends both on the NN parameters θ

and on the log-linear coefficients λ. We pro-
pose to train these two sets of parameters, by al-
ternatively updating θ through SGD on the train-
ing corpus, and updating λ using conventional al-
gorithms on the development data. This proce-
dure, which has also been adopted in recent stud-
ies (e.g. (He and Deng, 2012; Gao and He, 2013))
is sketched in algorithm 1. In practice, the train-
ing data is successively divided into mini-batches
of 128 sentences. Each mini-batch is used to com-
pute the sub-gradient of the training criterion (see
section 3.2) and to update θ. After each training
iteration of the CTM, λs are retuned on the de-
velopment set; we use here the K-Best Mira algo-
rithm of Cherry and Foster (2012) as implemented
in MOSES.2

3.2 Loss function

The training criterion considered here draws in-
spiration both from max-margin methods (Watan-
abe et al., 2007) and from the pair-wise ranking
(PRO) (Hopkins and May, 2011; Simianer et al.,
2012). The choice of a ranking loss seems to be
the most appropriate in our setting; as in many
recent studies on discriminative training for MT
(e.g. (Chiang, 2012; Flanigan et al., 2013)), the
integration of the translation metric into the loss
function is critical to obtain parameters that will
yield good translation performance.

Translation hypotheses hi are scored using a
sentence-level approximation of BLEU denoted
SBLEU(hi). Let ri be the rank of hypothesis
hi when hypotheses are sorted according to their
sentence-level BLEU. Critical hypotheses are de-

2http://www.statmt.org/moses/

fined as follows:3

Cαδ (s) = {(i, k) : 1 ≤ k, i ≤ N, rk − ri ≥ δ,
∆i,kGλ,θ(s,h) < α∆i,kSBLEU(h).

A pair of hypotheses is thus deemed critical when
a large difference in SBLEU is not reflected
by the difference of scores, which falls below a
threshold. This threshold is defined by the differ-
ence between their sentence-level BLEU, multi-
plied by α. Our loss function L(θ) is defined with
respect to this critical set and can be written as:4∑
(i,k)∈Cαδ (s)

α∆i,kSBLEU(h)−∆i,kGλ,θ(s,hi)

Initialization is an important issue when opti-
mizing NN. Moreover, our training procedure de-
pends heavily on the log-linear coefficients λ. To
initialize θ, preliminary experiments (Do et al.,
2014; Do et al., 2015) show that it is more effi-
cient to start from a NN pre-trained using NCE,
while the discriminative loss is used only in a fine-
tuning phase. Given the pre-trained CTM’s scores,
we initialize λ by optimizing it on the develop-
ment set. This strategy forces the training of θ to
focus on errors made by the system as a whole.

4 Experiments

4.1 Tasks and Corpora
The discriminative optimization framework is
evaluated both in a training and in an adaptation
scenario. In the training scenario, the CTM is
trained on the same parallel data as the one used
for the baseline system. In the adaptation sce-
nario, large out-of-domain corpora are used to
train the baseline SMT system, while the CTM is
trained on a much smaller, in-domain corpus and
only serves for rescoring. An intermediate situa-
tion (partial training) is when only a fraction of
the training data is re-used to estimate the CTM:
this situation is interesting because it allows us to
train the CTM much faster than in the training sce-
nario.5

Two domains are investigated. For the
TED Talkstask6 the only parallel in-domain data
contains 180K sentence pairs; the out-of-domain

3∆i,k denotes the difference of values (for SBLEU or
Gλ,θ) between hypthoses hi and hk.

4This is for one single training sample.
5The discriminative training step also uses the develop-

ment data.
6http://workshop2014.iwslt.org/
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dev test train
Training scenario

Baseline Ncode on TED 28.1 32.3 65.6
Baseline + CTM NCE 28.9 33.1 64.1
Baseline + CTM discriminative 29.0 33.5 64.9

Adaptation scenario
Baseline Ncode on WMT 28.5 32.0 33.3
Baseline + CTM NCE 29.2 33.0 34.9
Baseline + CTM discriminative 29.8 33.9 35.8

Table 1: BLEU scores for the TED Talkstasks.

data is much larger and contains all corpora al-
lowed in the translation shared task of WMT’14
(English-French), amounting to 12M parallel sen-
tences. The second task is the medical transla-
tion task of WMT’147 (English to French) for
which we use all authorized corpora. The Patent-
Abstract corpus, made of 200K parallel sentence
pairs, is used either for adaptation or partial train-
ing for the CTM. Experimental results are re-
ported on official evaluation sets, as well as on the
CTM training set.

All translation systems are based on the open
source implementation8 of the bilingual n-gram
approach to MT. For the NN structure, each vo-
cabulary’s word is projected into a 500-dimension
space followed by two hidden layers of 1000 and
500 units. For the discriminative training and
adaptation tasks, baseline SMT systems are used
to generate respectively 600 and 300 best hypothe-
ses for each sentence of the in-domain corpus. 9

4.2 Experimental results
Results in Table 1 measure the impact of discrim-
inative training on top of an NCE-trained model
for the two TED Talks conditions. In the adapta-
tion task, the discriminative training of the CTM
gives a large improvement of 0.9 BLEU score
over the CTM only trained with NCE and 1.9 over
the baseline system. However, for the training sce-
nario, these gains are reduced respectively to 0.4
and 1.2 BLEU points. The BLEU scores (in the
train column) measured on the N -best lists used
to train the CTM provide an explanation for this
difference: in training, theN -best lists contain hy-
potheses with an overoptimistic BLEU score, to
be compared with the ones observed on unseen
data. As a result, adding the CTM significantly

7www.statmt.org/wmt14/medical-task/
8ncode.limsi.fr/
9The threshold δ is set to 250 for 300-best and to 500 for

600-best lists, while α is set empirically.

dev test train
Partial training scenario

Baseline Ncode 40.4 37.4 45.8
Baseline + CTM NCE 40.8 38.1 45.2
Baseline + CTM discriminative 41.8 38.8 46.0

“Adaptation” scenario
Baseline Ncode 39.8 37.2 39.4
Baseline + CTM NCE 41.2 38.2 40.4
Baseline + CTM discriminative 41.8 38.9 41.5

Table 2: BLEU scores for the medical tasks.

worsens the performance on the discriminative
training data, contrarily to what is observed on the
development and test sets. Even if the results of
these two conditions cannot be directly compared
(the baselines are different), it seems that the pro-
posed discriminative training has a greater impact
on performance in the adaptation scenario, even
though the out-of-domain system initially yields
lower BLEU scores.

The medical translation task represents a dif-
ferent situation, in which a large-scale system is
built from multiples but domain-related corpora,
among which, one is used to train the CTM. Nev-
ertheless, results reported in Table 2 exhibit a sim-
ilar trend. For both conditions, the discrimina-
tive training gives a significant improvement, up
to 0.7 BLEU score over the one only trained with
NCE and up to 1.7 over the baseline system. Ar-
guably, the difference between the two conditions
is much smaller than what was observed with the
TED Talks task, due to the fact that the Patent-
Abstract corpus used to discriminatively train the
CTM only corresponds to a small subset of the
parallel data. However, the best strategy seems,
here again, to exclude the data used for the CTM
from the data used to train the baseline system.

5 Related work

It is important to notice that similar discrimina-
tive methods have been used to train phrase table’s
scores (He and Deng, 2012; Gao and He, 2013;
Gao et al., 2014), or a recurrent NNLM (Auli
and Gao, 2014). In recent studies, the authors
tend to limit the number of iterations to 1 (Gao
et al., 2014; Auli and Gao, 2014), while we still
advocate the general iterative procedure sketched
in Algo. 1. Initialization is also an important is-
sue when optimizing NN. In this work, we ini-
tialize CTM’s parameters by using a pre-training
procedure based on the model’s probabilistic in-
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terpretation and NCE algorithm to produce quasi-
normalized scores, while similar work in (Auli and
Gao, 2014) only uses un-normalized scores. The
initial values of λ also needs some investigation.
Gao et al. (2014) and Auli and Gao (2014) ini-
tialize λM+1 to 1, and normalize all other coef-
ficients; here we initialize λ by optimizing it on
the development set using the pre-trained CTM’s
scores. This strategy forces the training of θ to
focus on errors made by the system as a whole.
The fundamental difference of this work hence
lays in the use of the ranking loss described in
Section 3.2, whereas previous works use expected
BLEU loss. We plan a systematic comparison be-
tween these two criteria, along with some other
discriminative losses in a future work.

About the CTM’s structure, our used model is
based on the feed-forward CTM described in (Le
et al., 2012) and extended in (Devlin et al., 2014).
This structure, though simple, have been shown
to achieve impressive results, and with which effi-
cient tricks are available to speed up both train-
ing and inference. While models in (Le et al.,
2012) employ a structured output layer to reduce
softmax operation’s cost, we prefer the NCE self-
normalized output which is very efficient both
in training and inference. Another form of self-
normalization is presented in (Devlin et al., 2014)
but does not seem to have fast training. Finally,
although N -best rescoring is used in this work to
facilitate the discriminative training, other CTM’s
integration into SMT systems exist, such as lat-
tice reranking (Auli et al., 2013) or direct decod-
ing with CTM (Niehues and Waibel, 2012; Devlin
et al., 2014; Auli and Gao, 2014).

6 Conclusions

In this paper, we have proposed a new discrimina-
tive training procedure for continuous-space trans-
lation models, which correlates better with trans-
lation quality than conventional training meth-
ods. This procedure has been validated using an
n-gram-based CTM, but the general idea could be
applied to other continuous models which com-
pute a score for each translation hypothesis. The
core of the method lays in the definition of a new
objective function inspired both from max-margin
and Pairwise Ranking approach in MT, which en-
ables us to effectively integrate the CTM into the
SMT system through N -best rescoring. A major
difference with most past efforts along these lines

is the joint training of the CTM and the log-linear
parameters. In all our experiments, discriminative
training, when applied on a CTM initially trained
with NCE, yields substantial performance gains.
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José B. Mariño, Rafael E. Banchs, Josep M. Crego,
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Abstract 

In this paper, we propose a paraphrasing 

model to address the task of system com-

bination for machine translation. We dy-

namically learn hierarchical paraphrases 

from target hypotheses and form a syn-

chronous context-free grammar to guide 

a series of transformations of target hy-

potheses into fused translations. The 

model is able to exploit phrasal and struc-

tural system-weighted consensus and also 

to utilize existing information about word 

ordering present in the target hypotheses. 

In addition, to consider a diverse set of 

plausible fused translations, we develop a 

hybrid combination architecture, where 

we paraphrase every target hypothesis us-

ing different fusing techniques to obtain 

fused translations for each target, and 

then make the final selection among all 

fused translations. Our experimental re-

sults show that our approach can achieve 

a significant improvement over combina-

tion baselines.  

1 Introduction 

In the past several years, many machine transla-

tion (MT) combination approaches have been 

developed. Word-level combination approaches, 

such as the confusion network decoding model, 

have been quite successful (Matusov et al., 2006; 

Rosti et al., 2007a; He et al. 2008; Karakos et al. 

2008; Chen et al. 2009a; Narsale 2010; Leusch 

2011; Freitag et al. 2014).  

In addition to word-level combination ap-

proaches, some phrase-level combination ap-

proaches have also recently been developed; the 

goal is to retain coherence and consistency be-

tween the words in a phrase. The most common 

phrase-level combination approaches are re-

decoding methods: by constructing a new phrase 

table from each MT system’s source-to-target 

phrase alignments, the source sentence can also 

be re-decoded using the new translation table 

(Rosti et al., 2007b; Huang and Papineni, 2007; 

Chen et al., 2007; Chen et al., 2009b). One prob-

lem with these approaches is that, just with a new 

phrase table, existing information about word 

ordering present in the target hypotheses is not 

utilized; thus the approaches are likely to make 

new mistakes of word reordering which do not 

appear in the target hypotheses of MT engines. 

Huang and Papineni (2007) attacked this issue 

through a reordering cost function that encour-

ages search along with decoding paths from all 

MT engines’ decoders.  

Another phrase-level combination approach 

relies on a lattice decoding model to carry out the 

combination (Feng et al 2009; Du and Way 2010; 

Ma and McKeown 2012). In a lattice, each edge 

is associated with a phrase (a single word or a 

sequence of words) rather than a single word. 

The construction of the lattice is based on the 

extraction of phrase pairs from word alignments 

between a selected best MT system hypothesis 

(the backbone) and the other translation hypothe-

ses. One challenge of the lattice decoding model 

is that it is difficult to consider structural consen-

sus among target hypotheses from multiple MT 

engines, i.e, the consensus among occurrences of 

discontinuous words. 

In this paper, we propose another phrase-level 

combination approach – a paraphrasing model 

using hierarchical paraphrases (paraphrases con-

tain subparaphrases), to fuse target hypotheses. 

We dynamically learn hierarchical paraphrases 

from target hypotheses without any syntactic an-

notations and form a synchronous context-free 

grammar (SCFG) (Aho and Ullman 1969) to 
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guide a series of transformations of target hy-

potheses into fused translations. Through these 

structural transformations, the paraphrasing 

model is able to exploit phrasal and structural 

system-weighted consensus and also able to uti-

lize existing information about word ordering 

present in the target hypotheses. In addition, to 

consider a diverse set of plausible fused transla-

tions, we develop a hybrid combination architec-

ture, where we paraphrase every target hypothe-

sis using different fusing techniques to obtain 

fused translations for each target, and then make 

the final selection among all fused translations 

through a sentence-level selection-based model.  

In short, compared with other related work, 

our approach features the following advantages: 

 

1. It can consider structural system-weighted 

consensus among target hypotheses from 

multiple MT engines through its hierar-

chical paraphrases, which non-hierarchical 

paraphrases are not able to do. 

 

2. It can utilize existing information about 

word ordering present in the target hy-

potheses. 

 

3. It can retain coherence and consistency 

between the words in a phrase. 

 

4. The hybrid combination architecture ena-

bles us to consider a diverse set of plausi-

ble fused translations produced by differ-

ent fusing techniques. 

2 Hybrid Combination Architecture 

In the context of system combination, discrimi-

native reranking or post editing, MT researchers 

(Rosti et al., 2007a; Huang and Papineni, 2007; 

Devlin and Matsoukas, 2012, Matusov et al., 

2008; Gimpel et al., 2013) have recently shown 

many positive results if more diverse translations 

are considered. Inspired by them, we develop a 

hybrid combination architecture in order to con-

sider more diverse fused translations. We para-

phrase every target hypothesis to obtain the cor-

responding fused translation, and then make the 

final selection among all fused translations 

through a sentence-level selection-based model, 

shown in Figure 1. In the architecture, different 

fusing techniques can be used to generate fused 

translations for the further sentence-level selec-

tion, enabling us to exploit more sophisticated 

information of the whole sentence. 
 

 

 
Figure 1. An example of hybrid combination architecture 

3 Paraphrasing Model 

In this section, we introduce our paraphrasing 

model. For each single target hypothesis, we ex-

tract a set of hierarchical paraphrases from mon-

olingual word alignments between the hypothesis 

and other hypotheses. Each set of hierarchical 

paraphrases forms a synchronous context-free 

grammar to guide a series of transformations of 

that target hypothesis into a fused translation. 

  Any monolingual word aligner can be used to 

produce the monolingual word alignments. In 

our system, we adopt TERp (Snover et al. 2009), 

one of the state-of-the-art alignment tools, to 

serve this purpose. TERp is an extension of TER 

(Snover et al. 2006). Both TERp and TER are 

automatic evaluation metrics for MT, based on 

measuring the ratio of the number of edit opera-

tions between the reference sentence and the MT 

system hypothesis. The edit operations of TERp 

include TER’s Matches, Insertions, Deletions, 

Substitutions and Shifts—as well as three new 

edit operations: Stem Matches, Synonym Match-

es and Paraphrases. A valuable side product of 

TERp is the monolingual word alignment. A 

constructed example is shown in Figure 2. 

3.1 Hierarchical Paraphrase Extraction 

We first introduce our notation. For a given sen-

tence i, we use i

hE  to denote the target hypothe-

sis from MT system h, use i

hEP  to denote i

hE  

attached with related word positions, use i

he  to 

denote a phrase within i

hE , and use i

hep  to denote 

i

he  attached with related word positions. For in-

stance, If i

hE is “you buy the book”, then i

hEP  

would be “you1 buy2 the3 book4”. If i

he is “the 

book”, then i

hep  is “the3 book4”.  

For a given sentence i, a MT system h and a 

MT system k, we use a SCFG denoted by i

khQ ,
to 

represent the set of hierarchical paraphrases 

learned from i

hEP  and i

kEP . Adapting (Chiang 

Translation from 

MT System 1

…

Fusion

output

Fusion

output

Para-

phrasing

model

Lattice

decoding

Translation from 

MT System 2

Fusion

output

Fusion

output
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decoding
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output
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output
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2007), we design the following rules to obtain 
i

khQ ,
, based on the monolingual word alignment, 

obtained by a aligner, such as TERp. 
 

 

 If   i

k

i

h epep  ,  is consistent1 with the mono-

lingual word alignment, then   i

k

i

h eepX  ,  

is added to i

khQ ,
.                     

                                 

 If    , X  is in i

khQ ,
, and  i

k

i

h epep  ,  is 

consistent with monolingual word alignment 

such that 
21  i

hep  and
21  i

ke , then

 2121  ,  aa XXX  is added to i

khQ ,
, where 

a is an index. 
 

Please note that for each extracted hierarchical 

paraphrase -    , X  ,   would include 

information of word positions while  would not. 

For a certain target hypothesis - i

hEP , our goal 

is to paraphrase it to get the fusion output by us-

ing a set of hierarchical paraphrases, denoted by
i

hQ . Thus we create the union of all related hier-

archical paraphrases learned from i

hEP and other 

target hypotheses. Two special “glue” rules - 

 2121 X,X SSS  and  11 X,XS  are also added 

to i

hQ . The process can be represented formally in 

the following: 
 

 }X,X,X,X{ 112121

1

, 


SSSSQQ
N

k

i

kh

i

h

 

 

where N is the total number of MT systems. 

3.1.1 An Example 

 
Figure 2. A constructed example of a sentence - “你買的書 

(the book that you bought)” and its translations from three 

MT systems – iE1
, iE2

 and iE3
, and word alignments be-

tween iE2
 and iE1

, and between iE2
 and iE3

, obtained 

through TERp. 

 
 

We use a Chinese-to-English example in Figure 

2 to illustrate the extraction process. The extract-

                                                 
1 This means that words in a legal paraphrase are not 

aligned to words outside of the paraphrase, and should 

include at least one pair of words aligned with each 

other. 

ed hierarchical paraphrases to paraphrase iEP2
 - 

“you1 buy2 the3 book4” are shown in Table 1. 

Because of limited space, only part of the para-

phrases, i.e, part of the rules of iQ2
, are shown.  

 

 

iQ2 of rules ofpart  
iQ 1,2

in

? 

iQ 2,2

in

? 

iQ 3,2

in

? 

    you,  youX 1                                                           (a) ✔ ✔ ✔ 

 buy  you,  buy youX 21                                           (b)  ✔  

 bought  you,  buy youX 21                                     (c)   ✔ 

 bring  you,  buy youX 21                                        (d) ✔   

 book , bookX 4                                                         (e) ✔ ✔  

 books , bookX 4                                                       (f)   ✔ 

 book  the, book theX 43                                          (g) ✔ ✔  

 books  the, book theX 43                                        (h)   ✔ 

(i)bought  that youbooks  the, book  thebuy youX 4321 

 

  ✔ 

 1

43

1 X that books  the, book  theXX                      (j)   ✔ 

 bought  that youX  the, X  thebuy youX 11

321     (k)   ✔ 

 122

3

1 X that X  the, X  theXX                                (l) ✔  ✔ 

Table 1. Part of extracted hierarchical paraphrases to para-

phrase iEP2
, i.e, part of the rules of iQ2

.  
 

 

Note that, in Table 1, the rules (j), (k) and (l) 

can be regarded as structural paraphrases, and 

they utilize existing information about word or-

dering present in the target hypotheses. Since 

rule (l) is included in both iQ 1,2
and iQ 3,2

, we can 

say that rule (l) has more structural consensus 

than rule (j) and (k). And rule (l) also models the 

word reordering through reversing the order of 

X1 and X2. By the example, we can see the rea-

son why our model is able to exploit structural 

consensus and also to utilize existing information 

about word ordering present in the target hypoth-

eses. 

3.2 Decoding 

Given a certain target hypothesis - i

hEP , and its 

set of hierarchical paraphrases - i

hQ , the decoder 

aims to paraphrase i

hEP  using i

hQ by performing a 

search for the single most probable derivation via 

the CKY algorithm with a Viterbi approximation. 

The derivation is the paraphrased result, i.e, the 

fusion result indicated in Figure 1. The single 

most probable derivation can be represented as 
 

 

 

 

 

 



 


otherwise 0

   if  1
),( ,

,

,

i

kh

ji

hji

h

Qq
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where ji

hq , is the jth paraphrase in i

hQ  used to 

generate
i
hE , J is the number of paraphrases used 

to generate 
i
hE . N is the total number of MT sys-

tems. 
k is the weight of MT system k, in charge 

of the system-weighted consensus.
p  is phrase 

penalty. 
l  is the LM weight and 

w  is word 

penalty. All weights are trained discriminatively 

for Bleu score using Minimum Error Rate Train-

ing (MERT) procedure (Och 2004). 

  The ideal result of paraphrasing iEP2
 is shown 

in the following, which is supposed to be gener-

ated with a higher chance if, regardless of system 

weights. That is because of the use of the rules 

with higher degree of structural consensus, such 

as (l) and (e). 
 

 

 

 

 

 

4 Sentence-Level Selection-based Model 

For a given sentence i and its M multiple fusion 

outputs - i

fE , Mf 1  generated by the para-

phrasing model or the lattice decoding model, the 

goal here is to select the best one among them, as 

shown in Figure 1 (For the case shown in the 

figure, M is 2N). The idea is to compare system-

weighted consensus among all fusion outputs and 

translations from all MT systems, and then select 

the one with the highest consensus. We adopt 

Minimum Bayes Risk (MBR) decoding (Kumar 

and Byrne, 2004; Sim et al., 2007) to serve our 

purpose and develop the following TER-based 

MBR: 

 

 

 

 
 

where TER is Translation Tdit Ratio. 
m is the 

fusion weight specific to a certain MT system 

and a certain fusion model, 
k  is the weight of 

MT system k and 
l  is the LM weight. All 

weights are trained discriminatively for Bleu 

score using MERT. 

5 Experiments 

Our experiments are conducted and reported on 

three datasets: The first dataset includes Chinese-

English system translations and reference trans-

lations from DARPA GALE 2008 (GALE Chi-

Eng). The second dataset includes Chinese-

English system translations and reference trans-

lations and from NIST 2008 (NIST Chi-Eng). 

And the third dataset includes Arabic-English 

system translations and reference translations 

and from NIST 2008 (NIST Ara-Eng). 
 

 

 MTSystem# TuneSent#   TestSent# 

GALE Chi-Eng 5 422 422 

NIST Chi-Eng 5 524 788 

NIST Ara-Eng 5 592 717 

Table 2. Experimental setting 

 
MT System  Approach Bleu 

nrc phrase-based SMT 30.95     

rwth-pbt-aml phrase-based SMT + 
source reordering 

 

 
 

 

 
 

+ source reordering 

31.83   

rwth-pbt-jx phrase-based SMT + word seg-
mentation 

31.78   

rwth-pbt-sh phrase-based SMT + source reor-
dering + rescoring 

32.63   

sri-hpbt hierarchical phrase-based SMT 32.00   

Table 3: Techniques of top five MT of GALE Chi-Eng Da-

taset 

 

Table 3 lists distinguishing machine transla-

tion approaches of top five MT of GALE Chi-

Eng Dataset. And “rwth-pbt-sh” performs the 

best in Bleu score. 

Two combination baselines are implemented 

for comparison: one is an implementation based 

on confusion network decoding, and the other is 

Lattice Decoding from (Ma and McKeown 2012), 

both of which are using TERp to obtain word 

alignments between a selected backbone hypoth-

esis and other target hypotheses. The former uses 

these word alignments to construct a confusion 

network while the latter extracts phrases which 

are consistent with these word alignments to 

construct a lattice. For both baselines, backbone 

hypotheses are selected sentence by sentence 

based on system-weighted consensus among 

translation of all MT systems.  

5.1 Results 

In Table 4, CN represents confusion network; 

LD represents Lattice Decoding (Ma and McKe-

own 2012); PARA represents paraphrasing mod-

el proposed in this paper; Backbone_* represents 

that * is carried out on selected backbones, in 

contrast with the hybrid combination architecture. 

Arch_LD represents that only lattice decoding is 

carried out using hybrid combination architecture. 

Arch_PARA represents that only paraphrasing 

model is carried out using hybrid combination 

  (e) rule using     bought youbook that   the, book  thebuy  you

           (c) rule using             bought  that youX  the, X  thebuy  you

                                                       (l) rule using                                      X that X  the, X  theX 

                                                                            rule glue using                                                                  X ,X 

 S 
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architecture. Arch_LD_PARA represents that 

LD and PARA are both carried out using hybrid 

combination architecture, which is the example 

shown in Figure 2. 
 

 GALE  

Chi-Eng 

NIST  

Chi-Eng 

NIST  

Ara-Eng 

Best MT system 
32.63 30.16 48.40 

Backbone_CN (baseline) 
33.04 31.21 48.56 

Backbone_LD (baseline) 
33.16 32.65 49.33 

Backbone_PARA 
33.09 32.59 49.46 

Arch_LD 33.24 32.66 50.48 

Arch_PARA 33.32 32.90 50.20 

Arch_LD_PARA 33.72 33.42 50.44 

Table 4. Experimental results in Bleu score 
 

From Table 4, we can first observe that, for 

the three datasets, Backbone_PARA and Back-

bone_LD outperform Backbone_CN, which 

shows the advantage of using phrases over words 

in combination. However, Backbone_PARA 

does not show improvement over Backbone_LD. 

The reason could be that selected backbones al-

ready have a high level of quality and fewer 

words need to be replaced or re-ordered in con-

trast with other target hypotheses. 

We find that Arch_PARA performs better than 

Backbone_PARA, and Arch_LD performs better 

than Backbone_LD. This observation supports 

our claim that it is beneficial to consider more 

diverse sets of plausible fused translations.  

Arch_LD_PARA achieves the best perfor-

mance among all techniques used in this paper. It 

not only supports our claim, but also brings a 

conclusion that the paraphrasing model and lat-

tice decoding can compensate for the weaknesses 

of the other in our architecture.  

Since the paraphrasing model uses hierarchical 

paraphrases to carry out the fusion, it is able to 

make a bigger degree of word-reordering or 

structural change on the input hypothesis in 

comparison with lattice decoding. We suppose 

that when more word-reordering and structural 

changes are needed, paraphrasing model can 

bring more benefits than lattice decoding. Be-

cause the quality of a given translation hypothe-

sis is highly related to word reordering and struc-

tural change, it can be expected that when a 

poorly translated hypothesis is paraphrased, par-

aphrasing model can bring more benefits than 

lattice decoding. In order to obtain the evidence 

to support this hypothesis, we carried out the fol-

lowing experiment on NIST Chi-Eng Dataset. 

For each MT system from the selected top 5 

system A-E, we paraphrase its translations using 

the paraphrasing model and lattice decoding sep-

arately, aiming to compare the performances of 

the two models on each MT system. In other 

words, we do not first do backbone selection. 

Every MT system’s translation is regarded as a 

backbone. The results are shown in Table 5. 
 

 MT Lattice Decod-

ing 

Paraphrasing  

model 

Sys A 30.16 32.17 31.76 

Sys B 30.06 31.93 31.72 

Sys C 28.15 30.66 31.00 

Sys D 29.94 31.86 31.46 

Sys E 29.52 31.52 31.92 

Table 5. The Bleu score of each MT system, the Bleu 

score of paraphrasing each MT system using lattice decod-

ing and the Bleu score of paraphrasing each MT system 

using paraphrasing model. 
 

Among the five MT systems, “Sys C” and 

“Sys D” perform poorer than the other three MT 

systems. When we paraphrase the two systems, 

we find that paraphrasing model outperforms 

lattice decoding. These results support our hy-

pothesis that when more word-reordering and 

structural changes are needed, paraphrasing 

model can bring more benefits than lattice de-

coding. 

6 Conclusion 

We view MT combination as a paraphrasing pro-

cess using a set of hierarchical paraphrases, in 

which more complicated paraphrasing phenome-

na are able to be modeled, such as phrasal and 

structural consensus. Existing information about 

word ordering present in the target hypotheses 

are also considered. The experimental results 

show that our approach can achieve a significant 

improvement over combination baselines.  

There are many possibilities for enriching the 

simple framework. Many ideas from recent 

translation developments can be borrowed and 

modified for combination. Our future work aims 

to incorporate syntactic or semantic information 

into our paraphrasing framework. 
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Abstract

We present an incremental adaptation ap-
proach for statistical machine translation
that maintains a flexible hierarchical do-
main structure within a single consistent
model. Both weights and rules are updated
incrementally on a stream of post-edits. Our
multi-level domain hierarchy allows the sys-
tem to adapt simultaneously towards local
context at different levels of granularity, in-
cluding genres and individual documents.
Our experiments show consistent improve-
ments in translation quality from all com-
ponents of our approach.

1 Introduction
Suggestions from a machine translation system can
increase the speed and quality of professional hu-
man translators (Guerberof, 2009; Plitt and Mas-
selot, 2010; Green et al., 2013a, inter alia). How-
ever, querying a single fixed model for all different
documents fails to incorporate contextual informa-
tion that can potentially improve suggestion quality.
We describe a model architecture that adapts simul-
taneously to multiple genres and individual docu-
ments, so that translation suggestions are informed
by two levels of contextual information.

Our primary technical contribution is a hierarchi-
cal adaptation technique for a post-editing scenario
with incremental adaptation, in which users request
translations of sentences in corpus order and pro-
vide corrected translations of each sentence back
to the system (Ortiz-Martínez et al., 2010). Our
learning approach resembles Hierarchical Bayesian
Domain Adaptation (Finkel and Manning, 2009),
but updates both the model weights and translation

rules in real time based on these corrected transla-
tions (Mathur et al., 2013; Denkowski et al., 2014).
Our adapted system can provide on-demand trans-
lations for any genre and document to which it has
ever been exposed, using weights and rules for do-
mains associated with each translation request.

Our weight adaptation is performed using a hier-
archical extension to fast and adaptive online train-
ing (Green et al., 2013b), a technique based on Ada-
Grad (Duchi et al., 2011) and forward-backward
splitting (Duchi and Singer, 2009) that can accu-
rately set weights for both dense and sparse fea-
tures (Green et al., 2014b). Rather than adjusting
all weights based on each example, our extension
adjusts offsets to a fixed baseline system. In this
way, the system can adapt to multiple genres while
preventing cross-genre contamination.
In large-scale experiments, we adapt a multi-

genre baseline system to patents, lectures, and news
articles. Our experiments show that sparse mod-
els, hierarchical updates, and rule adaptation all
contribute consistent improvements. We observe
quality gains in all genres, validating our hypothe-
sis that document and genre context are important
additional inputs to a machine translation system
used for post-editing.

2 Background

The log-linear appoach to statistical machine trans-
lation models the predictive translation distribution
p(e|f ;w) directly in log-linear form (Och and Ney,
2004):

p(e|f ;w) =
∑
r:

src(r)=f
tgt(r)=e

1
Z(f)

exp
[
w>φ(r; c)

]
(1)
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where f ∈ F is a string in the set of all source
language strings F , e ∈ E is a string in the set of
all target language strings E , r is a phrasal deriva-
tion with source and target projections src(r) and
tgt(r), w ∈ Rd is the vector of model parameters,
φ(·) ∈ Rd is a feature map computed using corpus
c, and Z(f) is an appropriate normalizing constant.
During search, the maximum approximation is ap-
plied rather than summing over the derivations r.
Model. We extend a phrase-based system for which
φ(r; c) includes 16 dense features:
• Two phrasal channel models and two lexical
channel models (Koehn et al., 2003), the (log)
count of the rule in the training corpus c, and
an indicator for singleton rules in c.
• Six orientation models that score ordering con-
figurations in r by their frequency in c (Koehn
et al., 2007).
• A linear distortion penalty that promotes
monotonic translation.
• An n-gram language model score, p(e), which
scores the target language projection of r using
statistics from a monolingual corpus.
• Fixed-value phrase and word penalties.

The elements of φ(r; c) may also include sparse
features that have non-zero values for only a subset
of rules, but typically do not depend on c (Liang
et al., 2006). In this paper, we use four types of
sparse features: rule indicators, discriminative lexi-
calized reordering indicators, rule shape indicators
and alignment features (Green et al., 2014b).

The model parametersw are chosen to maximize
translation quality on a tuning set.
Adaptation. Domain adaptation for machine trans-
lation has improved quality using a variety of ap-
proaches, including data selection (Ceauşfu et al.,
2011), regularized online learning (Simianer et al.,
2012; Green et al., 2013b), and input classification
(Xu et al., 2007; Banerjee et al., 2010; Wang et
al., 2012) and has also been investigated for multi-
domain tasks (Sennrich et al., 2013; Cui et al., 2013;
Simianer and Riezler, 2013). Even without domain
labels at either training or test time, multi-task learn-
ing can boost translation quality in a batch setting
(Duh et al., 2010; Song et al., 2011).

Post-editing with incremental adaptation de-
scribes a particular mixed-initiative setting (Ortiz-
Martínez et al., 2010; Hardt and Elming, 2010). For
each f in a corpus, the machine generates a hypothe-
sis e, then a human provides a corrected translation
e∗ to the machine. Observing e∗ can affect both the

Root Domain

Patents Genre News Genre Lectures Genre

Each document has 3 domains: root, its genre, & the document itself

Figure 1: The weights used to translate a document
in the patent genre include three domains.

model weights w and corpus c used for rule extrac-
tion and dense feature estimation.1 To translate the
ith sentence fi, the system uses weights wi−1 and
corpus ci−1. The new corpus ci results from adding
(fi, e∗i ) to ci−1. For incremental adaptation, speed
is essential, and so wi is typically computed with
a single online update from wi−1 using (fi, e∗i ) as
the tuning example.
To alleviate the need for human intervention in

the experiment cycle, simulated post-editing (Hardt
and Elming, 2010; Denkowski et al., 2014) replaces
each e∗ with a reference that is not a corrected vari-
ant of e. Thus, a standard test corpus can be used as
an adaptation corpus. Prior work on online learn-
ing from post-edits has demonstrated the benefit of
adjusting only c (Ortiz-Martínez et al., 2010; Hardt
and Elming, 2010) and further benefit from adjust-
ing both c and w (Mathur et al., 2013; Denkowski
et al., 2014). Incremental adaptation of both c and
the weightsw for sparse features is reported to yield
large quality gains by Wäschle et al. (2013).2

3 Hierarchical Incremental Adaptation

Our hierachical approach to incremental adaptation
uses document and genre information to adapt ap-
propriately to multiple contexts. We assume that
each sentence fi has a known set Di of domains,
which identify the genre and individual document
origin of the sentence. This set could be extended
to include topics, individual translators, etc.
Figure 1 shows the domains that we apply in

experiments. All sentences in the baseline training
corpus, the tuning corpus, and the adaptation corpus
share a root domain.

1For the purpose of our description, the corpus c is equiva-
lent to the set of phrases and their scores in the rule table. We
prefer this notation because it is consistent with our stream-
based rule table, where the models are computed on-the-fly
from the indexed training corpus c.

2Language model adaptation also has a rich literature, but
it is beyond the scope of this paper.
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Our adaptation is conceptually similar to hier-
archical Bayesian domain adaptation (Finkel and
Manning, 2009), but both weights and feature val-
ues depend on Di, and we use L1 regularization.
Weight Updates. Model tuning and adaptation are
performed with AdaGrad, an online subgradient
method with an adaptive learning rate that comes
with good theoretical guarantees. AdaGrad makes
the following update:

wt = wt−1 − ηΣ1/2
t ∇`t(wt−1) (2)

Σ−1
t = Σ−1

t−1 +∇`t(wt−1)∇`t(wt−1)>

=
t∑
i=1

∇`i(wi−1)∇`i(wi−1)> (3)

The loss function ` reflects the pairwise ordering
between hypotheses. For feature selection, we ap-
ply an L1 penalty via forward-backward splitting
(Duchi and Singer, 2009). η is the initial learning
rate. See (Green et al., 2013b) for details.

Our adaptation schema is an extension of frustrat-
ingly easy domain adaptation (FEDA) (Daumé III,
2007) to multiple domains with different regular-
ization parameters, similar to (Finkel and Manning,
2009). Each feature value is replicated for each do-
main. LetD denote the set of all domains present in
the adaptation set. Given an original feature vector
φ(r; c) for derivation r of sentence fi withDi ⊆ D,
the replicated feature vector includes |D| copies of
φ(r; c), one for each d ∈ |D|, such that

φd(r; c) =

{
φ(r; c), d ∈ Di

0, otherwise.
(4)

The weights of this replicated feature space are ini-
tialized using the weights w tuned for the baseline
φ(r; c).

wd =

{
w, d is root
0, otherwise.

(5)

In this way, the root domain corresponds to the un-
adapted baseline weights, denoted as Θ∗ in (Finkel
and Manning, 2009). The idea is that we simultane-
ously maintain a generic set of weights that applies
to all domains as well as their domain-specific “off-
sets”, describing how a domain differs from the
generic case. Model updates during adaptation are
performed according to the same procedure as tun-
ing updates, but now in the replicated space.

Different from (Finkel and Manning, 2009), this
generalized FEDA model does not restrict the do-
mains to be strictly hierarchically structured. We

could, for example, include a domain for each trans-
lator that crossed different genres. However, all of
our experimental evaluations maintain a hierarchi-
cal domain structure, leaving more general setups
to future work.

Rules and Feature Values. A derivation r of sen-
tence fi has features that are computed from the
combination of the baseline training corpus c0 and
a genre-specific corpus that includes all sentence
pairs from the tuning corpus as well as from the
adaptation corpus (fj , e∗j ) with j < i sharing fi’s
genre. We refer to this combined corpus as ci. The
tuning corpus is the same that is used for parameter
tuning in the baseline system. The adaptation cor-
pus is our test set. Note that in our evaluation, each
sentence is translated before it is used for adaptation,
so that there is no contamination of results.

In order to extend the model efficiently within
a streaming data environment, we make use of a
suffix-array implementation for our phrase table
(Levenberg et al., 2010).

Rather than combining corpus counts across
these different sources, separate rules extracted
from the baseline corpus and the genre-specific
corpus exist independently in the derivation space,
and features of each are computed only with one
corpus. In this configuration, a large amount of out-
of-domain evidence from the baseline model will
not dampen the feature value adaptation effects of
adding new sentence pairs from the adaptation cor-
pus. The genre-specific phrases are distinguished
by an additional binary provenance feature.

In order to extract features from the genre-
specific corpus, a word-level alignment must be
computed for each (fj , e∗j ). We force decode using
the adapted translation model for fj . In order to
avoid decoding failures, we insert high-cost single-
word translation rules that allow any word in fj to
align to any word in e∗j .

Sparse Features. Applying a large number of
sparse features would compromise responsiveness
of our translation system and is thus a poor fit
for real-time adaptive computer-assisted transla-
tion. However, features that can be learned on a
single document are limited in number and can be
discarded after the document has been processed.
Therefore, document-level sparse features are a
powerful means to fit our model to local context
with a comparatively small impact on efficiency.
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4 Experiments
We performed two sets of German→English exper-
iments; Table 1 contains the results for both. Our
first set of experiments was performed on the PatTR
corpus (Wäschle and Riezler, 2012). We divided
the corpus into training and development data by
date and selected 2.4M parallel segments dated be-
fore 2000 from the “claims” section as bilingual
training data, taking equal parts from each of the
eight patent types A–H as classified by the Cooper-
ative Patent Classification (CPC). From each type
we further drew separate test sets and a single tune
set, selecting documents with at least 10 segments
and a maximum of 150 source words per segment,
with around 2,100 sentences per test set and 400
sentences per type for the tune set. The “claims”
section of this corpus is highly repetitive, which
makes it ideal for observing the effects of incremen-
tal adaptation techniques.
To train the language and translation model we

additionally leveraged all available bilingual and
monolingual data provided for the EMNLP 2015
Tenth Workshop on Machine Translation3. The to-
tal size of the bitext used for rule extraction and
feature estimation was 6.4M sentence pairs. We
trained a standard 5-gram language model with
modified Kneser-Ney smoothing (Kneser and Ney,
1995; Chen and Goodman, 1998) using the KenLM
toolkit (Heafield et al., 2013) on 4 billion running
words. The bitext was word-aligned with mgiza
(Och and Ney, 2003), and we used the phrasal de-
coder (Green et al., 2014a) with standard German-
English settings for experimentation.

Our second set of experiments was performed on
a mixed-genre corpus containing lectures, patents,
and news articles. The standard dev and test sets
of the IWSLT 2014 shared task4 were used for
the lecture genre. Each document corresponded
to an entire lecture. For the news genre, we used
newstest2012 for tuning, newstest2013 for meta-
parameter optimization, and newstest2014 for test-
ing. The tune set for the patent genre is identical
to the first set of experiments, while the test set
consists of the first 300 sentence pairs of each of
the patent type specific test sets of the previous ex-
periment. The documents in the news and patent
genres contain around 20 segments on average.

Our evaluation proceeded in multiple stages. We
first trained a set of background weights on the

3http://www.statmt.org/wmt15/
4http://workshop2014.iwslt.org/

PatTR heterogeneous data
avg lecture news patent

repetition rate 27.80 5.46 3.13 27.42

baseline 48.89 25.82 24.92 48.97
+ genre weights 49.05 26.64 25.12 49.39

+ genre TM 53.25 27.67 25.66 53.22
+ doc. weights 53.56 27.98 25.71 53.40
+ sparse features 54.53 28.09 25.89 54.30

Table 1: Results in uncased Bleu [%]. Each com-
ponent is added on top of the previous line. All
results in line + genre TM and below are statisti-
cally significant improvements over the baseline
with 95% confidence. We also report the repetition
rate of the test corpora as propsed by Bertoldi et al.
(2013).

concatenated tune sets (baseline). Keeping these
weights fixed, we performed an additional tun-
ing run to estimate genre-level weights (+ genre
weights).5 In the patent-only setup, we used patent
CPC type as genre. Next, we trained a genre-
specific translation model for each genre by first
feeding the tune set and then the test set into our
incremental adaptation learning method as a contin-
uous stream of simulated post edits (+ genre TM).
After each sentence, we performed an update on the
genre-specific weights. In separate experiments, we
also included document-level weights as an addi-
tional domain (+ doc. weights) and included sparse
features at the document level (+ sparse features).6
Table 1 demonstrates that each component of

this approach offered consistent incremental qual-
ity gains, but with varying magnitudes. For the
patent experiments we report the average over our
eight test sets (A-H) due to lack of space, but to-
tal improvement varied from +4.92 to +6.46 Bleu.
In the mixed-genre experiments, Bleu increased
by +2.27 on lectures, +0.97 on news, and +5.33
on patents. On all tasks, we observed statistically
significant improvements over the baseline (95%
confidence level) in the + genre TM, + doc. weights
and + sparse features experiments using bootstrap
resampling (Koehn, 2004).
These results demonstrate the efficacy of hierar-

chical incremental adaptation, although we would
like to stress that the patent data was selected specif-
ically for its high level of repetitiveness, and the

5Learning rates and regularization weights for this step
were selected on newstest2013.

6Learning rates and regularization weights for each genre
were selected on the genre-specific tune sets.
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Figure 2: Bleu difference between baseline + genre
weights and our incremental adaptation approach,
computed on a single segment from each document
according to their order, i.e. the first segment from
each document, then the second segment from each
document, etc.

large improvement in this genre would only be ex-
pected to arise in similarly structured domains. This
property is quantified by the repetition rate mea-
sure (RR) (Bertoldi et al., 2013) reported in Table 1,
which confirms the finding by Cettolo et al. (2014)
that RR correlates with the effectiveness of adapta-
tion.
Analysis. Figure 2 shows Bleu score differences
to the baseline + genre weights system for different
subsets of the news and patent test sets. Each point
is computed by document slicing, i.e. on a single
segment from each document. The rightmost data
point is the Bleu score we obtain by evaluating on
the 20th segment of each document, grouped into a
pseudo-corpus. Note that this group does not cor-
respond to any number in Table 1, which reports
Bleu on the entire test sets. Thus, we evaluate on all
sentences that have learned from exactly (i−1) seg-
ments of the same document, with i = 1, . . . , 19.
Although the graph is naturally very noisy (each
score is computed on roughly 150 segments), we
can clearly see that incremental adaptation learns
on the document level: on average, the improve-
ment over the baseline increases when proceeding
further into the document.
Decoding speed. In our real-time computer-
assisted translation scenario, a certain translation
speed is required to allow for responsive user in-
teraction. Table 2 reports the speed in words per
second on the lecture data. Adding a genre-specific
translation model results in a speed reduction by a
factor of 12.6 due to the additional (forced) decod-

words / sec

baseline 177.6
+ genre weights 58.5

+ genre TM 14.1
+ doc. weights 9.8
+ sparse features 5.8

Table 2: Decoding speed on the lecture data.

ing run and weight updates. Sparse features slows
the system down further by a factor of 2.4. However,
the largest part of the computation time incurs only
when the user has finalized collaborative translation
of one sentence and is busy reading the next source
sentence. Further, the speed/quality tradeoff can be
adjusted with pruning parameters.

5 Conclusion

We have presented an incremental learning ap-
proach for MT that maintains a flexible hierarchical
domain structure within a single consistent model.
In our experiments, we define a three-level hierar-
chy with a global root domain as well as genre- and
document-level domains. Further, we perform in-
cremental adaptation by training a genre-specific
translation model on the stream of incoming post-
edits and adding document-level sparse features that
do not significantly compromise efficiency. Our re-
sults show consistent contributions from each level
of adaptation across multiple genres.
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Abstract

Many state-of-the-art Machine Translation
(MT) evaluation metrics are complex, in-
volve extensive external resources (e.g.
for paraphrasing) and require tuning to
achieve best results. We present a simple
alternative approach based on dense vec-
tor spaces and recurrent neural networks
(RNNs), in particular Long Short Term
Memory (LSTM) networks. For WMT-14,
our new metric scores best for two out of
five language pairs, and overall best and
second best on all language pairs, using
Spearman and Pearson correlation, respec-
tively. We also show how training data is
computed automatically from WMT ranks
data.

1 Introduction

Deep learning approaches have turned out to be
successful in many NLP applications such as para-
phrasing (Mikolov et al., 2013b; Socher et al.,
2011), sentiment analysis (Socher et al., 2013b),
parsing (Socher et al., 2013a) and machine trans-
lation (Mikolov et al., 2013a). While dense vec-
tor space representations such as those obtained
through Deep Neural Networks (DNNs) or RNNs
are able to capture semantic similarity for words
(Mikolov et al., 2013b), segments (Socher et al.,
2011) and documents (Le and Mikolov, 2014)
naturally, traditional MT evaluation metrics can
only achieve this using resources like WordNet
and paraphrase databases. This paper presents a
novel, efficient and compact MT evaluation mea-
sure based on RNNs. Our metric is simple in the
sense that it does not require much machinery and
resources apart from the dense word vectors. This
cannot be said of most of the state-of-the-art MT
evaluation metrics, which tend to be complex and
require extensive feature engineering. Our metric

is based on RNNs and particularly on Tree Long
Short Term Memory (Tree-LSTM) networks (Tai
et al., 2015). LSTM (Hochreiter and Schmidhu-
ber, 1997) is a sequence learning technique which
uses a memory cell to preserve a state over a long
period of time. This enables distributed represen-
tations of sentences using distributed representa-
tions of words. Tree-LSTM is a recent approach,
which is an extension of the simple LSTM frame-
work (Zaremba and Sutskever, 2014). To provide
the required training data, we also show how to
automatically convert the WMT-13 (Bojar et al.,
2013) human evaluation rankings into similarity
scores between the reference and the translation.
Our metric including training data is available at
https://github.com/rohitguptacs/ReVal.

2 Related Work

Many metrics have been proposed for MT eval-
uation. Earlier popular metrics are based on n-
gram counts (e.g. BLEU (Papineni et al., 2002)
and NIST (Doddington, 2002)) or word error rate.
Other popular metrics like METEOR (Denkowski
and Lavie, 2014) and TERp (Snover et al., 2008)
also use external resources like WordNet and para-
phrase databases. However, system-level cor-
relation with human judgements for these met-
rics remains below 0.90 Pearson correlation co-
efficient (as per WMT-14 results, BLEU-0.888,
NIST-0.867, METEOR-0.829, TER-0.826, WER-
0.821).

Recent best-performing metrics in the WMT-14
metric shared task (Machácek and Bojar, 2014)
used a combination of different metrics. The
top performing system DISKOTK-PARTY-TUNED

(Joty et al., 2014) in the WMT-14 task uses five
different discourse metrics and twelve different
metrics from the ASIYA MT evaluation toolkit
(Giménez and Màrquez, 2010). The metric com-
putes the number of common sub-trees between
a reference and a translation using a convolution
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tree kernel (Collins and Duffy, 2001). The basic
version of the metric does not perform well but
in combination with the other 12 metrics from
the ASIYA toolkit obtained the best results for
the WMT-14 metric shared task. Another top
performing metric LAYERED (Gautam and Bhat-
tacharyya, 2014), uses linear interpolation of dif-
ferent metrics. LAYERED uses BLEU and TER
to capture lexical similarity, Hamming score and
Kendall Tau Distance (Birch and Osborne, 2011)
to identify syntactic similarity, and dependency
parsing (De Marneffe et al., 2006) and the Univer-
sal Networking Language1 for semantic similarity.
Recently, Guzmán et al. (2015) presented a metric
based on word embeddings and neural networks.
However, this metric is limited to ranking the
available systems and does not provide an absolute
score.

In this paper we propose a compact MT eval-
uation metric. We hypothesize that our model
learns different notions of similarity (which other
metrics tend to capture using different metrics)
using input, output and forget gates of an LSTM
architecture.

3 LSTMs and Tree-LSTMs

Recurrent Neural Networks allow processing of
arbitrary length sequences, but early RNNs had
the problem of vanishing and exploding gradi-
ents (Bengio et al., 1994). RNNs with LSTM
(Hochreiter and Schmidhuber, 1997) tackle this
problem by introducing a memory cell composed
of a unit called constant error carousel (CEC) with
multiplicative input and output gate units. Input
gates protect against irrelevant inputs and output
gates against current irrelevant memory contents.
This architecture is capable of capturing important
pieces of information seen in a bigger context.
Tree-LSTM is an extension of simple LSTM. A
typical LSTM processes the information sequen-
tially whereas Tree-LSTM architectures enable
sentence representation through a syntactic struc-
ture. Equation (1) represents the composition of
a hidden state vector for an LSTM architecture.
For a simple LSTM, ct represents the memory cell
and ot the output gate at time step t in a sequence.
For Tree-LSTM, ct represents the memory cell
and ot represents the output gate corresponding
to node t in a tree. The structural processing of
Tree-LSTM makes it better suited to representing

1http://www.undl.org/unlsys/unl/unl2005/UW.htm

sentences. For example, dependency tree structure
captures syntactic features and model parameters
the importance of words (content vs. function
words).

ht = ot ⊙ tanh ct (1)

Figure 1 shows simple LSTM and Tree-LSTM
architectures.
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Figure 1: Tree-LSTM (left) and simple LSTM
(right)

4 Evaluation Metric

We represent both the reference (href ) and the
translation (htra) using an LSTM and predict the
similarity score ŷ based on a neural network which
considers both distance and angle between href

and htra:

h× = href ⊙ htra

h+ = |href − htra|
hs = σ

(
W (×)h× + W (+)h+ + b(h)

)
p̂θ = softmax

(
W (p)hs + b(p)

)
ŷ = rT p̂θ

(2)

where, σ is a sigmoid function, p̂θ is the estimated
probability distribution vector and rT = [1 2...K].
The cost function J(θ) is defined over probability
distributions p and p̂θ using regularised Kullback-
Leibler (KL) divergence.

J(θ) =
1
n

n∑
i=1

KL
(
p(i)

∣∣∣∣∣∣p̂(i)
θ

)
+

λ

2
||θ||22 (3)

In Equation 3, i represents the index of each train-
ing pair, n is the number of training pairs and p is
the sparse target distribution such that y = rT p is
defined as follows:

pj =


y − ⌊y⌋, j = ⌊y⌋+ 1
⌊y⌋ − y + 1, j = ⌊y⌋
0 otherwise
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for 1 ≤ j ≤ K, where, y ∈ [1,K] is the similarity
score of a training pair. For example, for y = 2.7,
pT = [0 0.3 0.7 0 0]. In our case, the similarity
score y is a value between 1 and 5.

For our work, we use glove word vectors (Pen-
nington et al., 2014) and the simple LSTM, the
dependency Tree-LSTM and neural network im-
plementations by Tai et al. (2015). 2 The system
uses the scientific computing framework Torch3.
Training is performed on the data computed in
Section 5. The system uses a mini batch size
of 25 with learning rate 0.05 and regularization
strength 0.0001. The compositional parameters
for our Tree-LSTM systems with memory di-
mensions 150 and 300 are 203,400 and 541,800,
respectively. The training is performed for 10
epochs. System-level scores are computed by ag-
gregating and normalising segment-level scores.

5 Computing Similarity Scores from
WMT Rankings

As we do not have access to any dataset which
provides scores to segments on the basis of trans-
lation quality, we used the WMT-13 ranks corpus
to automatically derive training data. This corpus
is a by-product of the manual systems evaluation
carried out in the WMT-13 evaluation. In the eval-
uation, the annotators are presented with a source
segment, the output of five systems and a reference
translation. The annotators are given the following
instructions: “You are shown a source sentence
followed by several candidate translations. Your
task is to rank the translations from best to worst
(ties are allowed)”. Using the WMT-13 ranked
corpus, we derived a corpus where the reference
and corresponding translations are assigned simi-
larity scores. The fact that ties are allowed makes
it more suitable to generate similarity scores. If
all translations are bad, annotators can mark all
as rank 5 and if all translations are accurate, an-
notators can mark all as rank 1. The selection of
the WMT-13 corpus over other WMT workshops
is motivated by the fact that it is the largest among
them. It contains ten times more ranks than WMT-
12 and three to four times more than WMT-14.
This also makes it possible to obtain enough refer-
ence translation pairs which are evaluated several
times.

2The adapted code for MT evaluation scenarios is avail-
able at https://github.com/rohitguptacs/ReVal.

3http://torch.ch

Our hypothesis is that if a translation is given
a certain rank many times, this reflects its simi-
larity score with the reference. A better ranked
translation among many systems will be close to
the reference whereas a worse ranked translation
among many systems will be dissimilar from the
reference. To remove noisy pairs, we collect ref-
erence translation pairs below a certain variance
only. We determined appropriate variance values
using Algorithm 1 below for n = 3, 4, 5, 6, 7 and
≥ 8, separately. The computed variance values are
given in Table 1.

n 3 4 5 6 7 ≥ 8
Var 0.65 1.0 1.2 1.2 1.3 0.85

Table 1: Variances computed using Algorithm 1

Algorithm 1 Variance Computation
1: procedure GETVARIANCE(judgements)
2: V, v ← −1, 0.25 ▷ Initialise N
3: for v ≤ max do
4: prs← pairs with variance below v
5: score← kendall(prs, judgements)
6: if score ≥ 0.78 then
7: V ← v
8: v ← v + 0.05
9: else
10: break
11: Return V ▷ Return variance

In Algorithm 1, the kendall function calculates
Kendall tau correlation using the WMT-13 hu-
man judgements. We select a set for which the
correlation coefficient is greater than 0.78.4 The
correlation is computed using the annotations for
which scores are available in the corpus (prs). In
other words, the corpus acts as a scoring function
for the available reference translation pairs, which
gives a similarity score between a reference and a
translation. We selected pairs below the variance
values obtained for n = 4, 5, 6, 7 and≥ 8. Finally,
all the pairs are merged to obtain a set (L). Apart
from this set, we created three other sets for our
experiments. The last two also use the SICK data
(Marelli et al., 2014) which was developed for
evaluating semantic similarity. All four sets are
described below:

L: contains the set generated by selecting the
pairs ranked four or more times and filtering
the segments based on the variance

LNF: contains the set generated by selecting
the pairs ranked four or more times without
any filtering depending on the variance

4The score was decided so that we obtain around 10K
pairs which are annotated at least four times.
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L+Sick: Added 4500 sentence pairs from
the SICK training set to Set L in the training
set and 500 pairs in the development set.

XL+Sick: Added also the pairs ranked three
times to Set L+Sick.

Train Dev Test
L 9559 1000 1000
LNF 17855 1000 1000
L+Sick 14059 1500 1000
XL+Sick 21356 1500 1000

Table 2: Derived Corpus statistics

Table 2 shows the number of pairs extracted for
each set to train our LSTM based models.5

6 Results

We evaluate our approach trained on the four dif-
ferent datasets obtained from WMT-13 (as given
in Table 2) on WMT-14. Table 3 shows system-
level Pearson correlation obtained on different lan-
guage pairs as well as average Pearson correlation
(PAvg) over all language pairs. The last column
of the table also shows average Spearman corre-
lation (SAvg). The 95% confidence level scores
are obtained using bootstrap resampling as used in
the WMT-2014 metric task evaluation. The scores
in bold show best scores overall and the scores in
bold italic show best scores in our variants.

In Table 3 and Table 4, the first section
(L+Sick(lstm)) shows the results obtained us-
ing simple LSTM (layer 1, hidden dimension
50, memory dimension 150, compositional pa-
rameters 203400). The second section shows
the scores of our Tree-LSTM metric trained
on different training sets and dimensions. Di-
mensions are shown in brackets, e.g L(50,150)
shows the results on set ‘L’ with the hidden
dimension 50 and the memory dimension 150.
L+Sick(mix) shows results of combining the two
systems: L+Sick(50,150) and L+Sick(100,150).
For the sentences longer than 20 words, the sys-
tem uses scores of L+Sick(100,150) and scores
of L+Sick(50,150) for the rest. The third sec-
tion shows the best three overall systems from the
WMT-14 metric task. The fourth section in Table
3 shows the systems from the WMT-14 task which
obtained best results for certain languages but do

5For testing our approach we use WMT-12 and WMT-14
rankings instead of the test sets in this table.

not preform well overall. The last section in Tables
3 and 4 shows systems implementing BLEU (or
variants for the segment level) and METEOR in
the WMT-14 metric task.

Tables 3 and 4 contain a deluge of evaluation
data, mainly to explore the effect of different
training data and model parameter settings for our
models. The main messages can be summarised
as follows: 1. Tree LSTM models significantly
outperform the LSTM model (L+Sick(lstm) and
L+Sick(50,150) have the same data and parameter
settings). 2. For Tree-LSTM models different
parameter settings have only a minor impact on
performance (in fact only for a few language pairs
(e.g. hi-en at system-level, L+Sick(100, 300) and
L+Sick(100,150)) results are statistically signifi-
cantly different). This is reassuring as it indicates
that the metric is not overly sensitive to exten-
sive and delicate parameter tuning. 3. For the
system level evaluation Tree-LSTM models are
fully competitive with the best of the current com-
plex models that combine many different metrics,
substantial external resources and may require a
significant amount of feature engineering and tun-
ing. 4. For the segment level evaluation our met-
ric outperforms BLEU based approaches and the
other three systems6 but lags behind some other
approaches. We investigate this further below.

Tables 3 and 4 show that set L is able to obtain
similar results compared to set LNF even though
we filter out almost half of the pairs. Table 3 shows
that for L+Sick(50, 150) and L+Sick(mix), we ob-
tained an average second best Pearson correlation
and best Spearman correlation coefficient. We also
obtained better results for the Russian-English and
Czech-English language pairs compared to any
other systems in the WMT-14 task.

We also evaluate our setting L-Sick(50,150) on
the WMT-12 task dataset. Our metric performs
best for two out of four language pairs and best
overall at the system level with 0.950 and 0.926
Pearson and Spearman correlation coefficient, re-
spectively. At the segment level, we obtained
0.222 Kendall tau correlation which was better
than seven out of the total ten metrics in the WMT-
12 task.

One of the reasons for the difference in
segment-level and system-level correlations is that
Kendall Tau segment-level correlation is calcu-

6These three systems are not given in this paper. Please
refer (Machácek and Bojar, 2014) for results of these systems.
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Test cs-en de-en fr-en hi-en ru-en PAvg SAvg
L+Sick(lstm) .922± .051 .882± .028 .974± .009 .898± .011 .863± .023 .908± .024 .872± .060
LNF(50,150) .972± .032 .900± .026 .974± .009 .900± .011 .882± .021 .925± .020 .913± .045
L(50,150) .988± .022 .897± .027 .978± .008 .905± .010 .875± .022 .929± .018 .904± .042
L+Sick(50,150) .993± .017 .904± .025 .978± .008 .908± .010 .881± .022 .933± .016 .915± .042
L+Sick(100,300) .993± .018 .907± .025 .973± .009 .866± .012 .890± .020 .926± .017 .902± .050
XL+Sick(100,300) .913± .054 .917± .024 .978± .008 .904± .010 .884± .022 .919± .024 .889± .055
L+Sick(100,150) .994± .016 .911± .025 .975± .009 .923± .010 .870± .022 .935± .016 .904± .049
L+Sick(mix) .994± .017 .906± .025 .979± .008 .918± .010 .881± .022 .935± .016 .919± .045
DISCOTK-PARTY-TUNED .975± .031 .943± .020 .977± .009 .956± .007 .870± .022 .944± .018 .912± .043
LAYERED .941± .045 .893± .026 .973± .009 .976± .006 .854± .023 .927± .022 .894± .047
DISCOTK-PARTY .983± .025 .921± .024 .970± .010 .862± .015 .856± .023 .918± .019 .856± .046
REDSYS .989± .021 .898± .026 .981± .008 .676± .022 .814± .026 .872± .021 .786± .047
REDSYSSENT .993± .018 .910± .024 .980± .008 .644± .023 .807± .027 .867± .020 .771± .043
BLEU .909± 0.54 .832± .034 .952± .012 .956± .007 .789± .027 .888± .027 .833± .058
METEOR .980± .029 .927± .022 .975± .009 .457± .027 .805± .026 .829± .023 .788± .046

Table 3: Results: System-Level Correlations on WMT-14

Test cs-en de-en fr-en hi-en ru-en Average Avg wmt12
L+Sick(lstm) .204± .015 .232± .014 .289± .013 .319± .013 .236± .012 .256± .013 .254± .013
NFL(50,150) .228± .015 .288± .014 .318± .014 .341± .014 .271± .012 .289± .014 .287± .014
L(50,150) .225± .015 .272± .014 .328± .013 .346± .013 .280± .011 .290± .013 .287± .013
L+Sick(50,150) .243± .016 .274± .013 .333± .013 .360± .014 .278± .011 .298± .013 .295± .014
L+Sick(100,300) .233± .014 .286± .014 .343± .014 .358± .013 .281± .011 .300± .013 .297± .013
XL+Sick(100,300) .252± .014 .279± .014 .347± .013 .367± .013 .274± .011 .304± .013 .301± .013
L+Sick(100,150) .243± .016 .274± .014 .329± .013 .368± .012 .276± .011 .298± .013 .295± .013
L+Sick(mix) .243± .016 .276± .013 .338± .013 .358± .013 .273± .011 .298± .013 .295± .013
DISCOTK-PARTY-TUNED .328± .014 .380± .014 .433± .013 .434± .013 .355± .010 .386± .013 .386± .013
BEER .284± .015 .337± .014 .417± .013 .438± .014 .333± .011 .362± .013 .358± .013
REDCOMBSENT .284± .015 .338± .013 .406± .012 .417± .014 .336± .011 .356± .013 .346± .013
METEOR .282± .015 .334± .014 .406± .012 ..420± .013 .329± .010 .354± .013 .341± .013
BLEU NRC .226± .014 .272± .014 .382± .013 .322± .013 .269± .011 .294± .013 .267± .013
SENTBLEU .213± .016 .271± .014 .378± .013 .300± .013 .263± .011 .285± .013 .258± .014

Table 4: Results: Segment-Level Correlations on WMT-14

lated based on rankings and does not consider
the amount of difference between scores. Here is
an example similar to that given in (Hopkins and
May, 2013). Suppose four systems produce the
translations T0, T1, T2 and T3. Suppose we have
two metrics M1 and M2 and they produce scores
and rankings as follows. GS represents the correct
ranking and scores; Scores are in a scale [0, 1]
with a higher score indicating a better translation:

M1: T0 (0.10), T3 (0.71), T1 (0.72), T2 (0.73)

M2: T1 (0.71), T0 (0.72), T2 (0.73), T3 (0.74)

GS: T0 (0.10), T1 (0.71), T2 (0.72), T3 (0.73)

Certainly, M1 produces better scores and rank-
ing than M2. But, Kendall Tau segment-level
correlation is higher for M2. (There are four
concordant pairs in the M1 rank and five in the
M2 rank.) Therefore, if a metric does not scale
well as per the quality of translations, it may still
obtain a good Kendall Tau segment-level corre-
lation and a better metric may end up getting a
low correlation. Another reason for the discrep-
ancy between segment and system-level scores
may be a low agreement on annotations. For
the WMT-14 dataset, inter-annotator and intra-
annotator agreement were 0.367 and 0.522. These

problems should not occur with Pearson corre-
lation at the system level because system-level
scores are calculated using more sophisticated ap-
proaches (Koehn, 2012; Hopkins and May, 2013;
Sakaguchi et al., 2014). For example, Hopkins and
May (2013) model the differences among annota-
tors by adding random Gaussian noise.

7 Conclusion

We conclude that our dense-vector-space-based
ReVal metric is simple, elegant and effective with
state-of-the-art results. ReVal is fully competitive
with the best of the current complex alternative
approaches that involve system combination, ex-
tensive external resources, feature engineering and
tuning.
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Ondřej Bojar, Christian Buck, Chris Callison-Burch,
Christian Federmann, Barry Haddow, Philipp
Koehn, Christof Monz, Matt Post, Radu Soricut,
and Lucia Specia. 2013. Findings of the 2013
Workshop on Statistical Machine Translation. In
Proceedings of the Eighth Workshop on Statistical
Machine Translation, pages 1–44, Sofia, Bulgaria,
August. Association for Computational Linguistics.

Michael Collins and Nigel Duffy. 2001. Convolution
kernels for natural language. In Advances in Neural
Information Processing Systems, pages 625–632.

Marie-Catherine De Marneffe, Bill MacCartney,
Christopher D Manning, et al. 2006. Generat-
ing typed dependency parses from phrase structure
parses. In Proceedings of LREC, volume 6, pages
449–454.

Michael Denkowski and Alon Lavie. 2014. Meteor
universal: Language specific translation evaluation
for any target language. In Proceedings of the EACL
2014 Workshop on Statistical Machine Translation.

George Doddington. 2002. Automatic evaluation
of machine translation quality using n-gram co-
occurrence statistics. In Proceedings of the second
international conference on Human Language Tech-
nology Research, pages 138–145. Morgan Kauf-
mann Publishers Inc.

Shubham Gautam and Pushpak Bhattacharyya. 2014.
Layered: Metric for machine translation evaluation.
In Proceedings of the Ninth Workshop on Statistical
Machine Translation.
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Abstract

We present novel features designed with a
deep neural network for Machine Trans-
lation (MT) Quality Estimation (QE). The
features are learned with a Continuous
Space Language Model to estimate the
probabilities of the source and target seg-
ments. These new features, along with
standard MT system-independent features,
are benchmarked on a series of datasets
with various quality labels, including post-
editing effort, human translation edit rate,
post-editing time and METEOR. Results
show significant improvements in predic-
tion over the baseline, as well as over sys-
tems trained on state of the art feature sets
for all datasets. More notably, the addition
of the newly proposed features improves
over the best QE systems in WMT12 and
WMT14 by a significant margin.

1 Introduction

Quality Estimation (QE) is concerned with pre-
dicting the quality of Machine Translation (MT)
output without reference translations. QE is ad-
dressed with various features indicating fluency,
adequacy and complexity of the translation pair.
These features are used by a machine learning al-
gorithm along with quality labels given by humans
to learn models to predict the quality of unseen
translations.

A variety of features play a key role in QE.
A wide range of features from source segments
and their translated segments, extracted with the
help of external resources and tools, have been
proposed. These go from simple, language-
independent features, to advanced, linguistically
motivated features. They include features that
summarise how the MT systems generate transla-
tions, as well as features that are oblivious to the
systems. The majority of the features in the lit-
erature are extracted from each sentence pair in

isolation, ignoring the context of the text. QE
performance usually differs depending on the lan-
guage pair, the specific quality score being opti-
mised (e.g., post-editing time vs translation ad-
equacy) and the feature set. Features based on
n-gram language models, despite their simplicity,
are among those with the best performance in most
QE tasks (Shah et al., 2013b). However, they may
not generalise well due to the underlying discrete
nature of words in n-gram modelling.

Continuous Space Language Models (CSLM),
on the other hand, have shown their potential
to capture long distance dependencies among
words (Schwenk, 2012; Mikolov et al., 2013). The
assumption of these models is that semantically or
grammatically related words are mapped to simi-
lar geometric locations in a high-dimensional con-
tinuous space. The probability distribution is thus
much smoother and therefore the model has a bet-
ter generalisation power on unseen events. The
representations are learned in a continuous space
to estimate the probabilities using neural networks
with single (called shallow networks) or multi-
ple (called deep networks) hidden layers. Deep
neural networks have been shown to perform bet-
ter than shallow ones due to their capability to
learn higher-level, abstract representations of the
input (Arisoy et al., 2012). In this paper, we ex-
plore the potential of these models in context of
QE for MT. We obtain more robust features with
CSLM and improve the overall prediction power
for translation quality.

The paper is organised as follows: In Section
2 we briefly present the related work. Section 3
describes the CSLM model training and its vari-
ous settings. In Section 4 we propose the use of
CSLM features for QE. In Section 5 we present
our experiments along with their results.

2 Related Work

For a detailed overview of various features and
algorithms for QE, we refer the reader to the
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WMT12-14 shared tasks on QE (Callison-Burch
et al., 2012; Bojar et al., 2013; Ling et al., 2014).
Most of the research work lies on deciding which
aspects of quality are more relevant for a given
task and designing feature extractors for them.
While simple features such as counts of tokens
and language model scores can be easily extracted,
feature engineering for more advanced and useful
information can be quite labour-intensive.

Since their introduction in (Bengio et al.,
2003), neural network language models have
been successfully exploited in many speech and
language processing problems, including auto-
matic speech recognition (Schwenk and Gau-
vain, 2005; Schwenk, 2007) and machine trans-
lation (Schwenk, 2012).

Recently, (Banchs et al., 2015) used a Latent
Semantic Indexing approach to model sentences
as bag-of-words in a continuous space to measure
cross language adequacy. (Tan et al., 2015) pro-
posed to train models with deep regression for ma-
chine translation evaluation in a task to measure
semantic similarity between sentences. They re-
ported positive results on simple features; larger
feature sets did not improve these results.

In this paper, we propose to estimate the prob-
abilities of source and target segments with con-
tinuous space language models based on a deep
architecture and to use these estimated probabili-
ties as features along with standard feature sets in
a supervised learning framework. To the best of
our knowledge, such approach has not been stud-
ied before in the context of QE for MT. The result
shows significant improvements in many predic-
tion tasks, despite its simplicity. Monolingual data
for source and target language is the only resource
required to extract these features.

3 Continuous Space Language Models

A key factor for quality inference of a translated
text is to determine the fluency of such a text and
how well it conforms to the linguistic regularities
of the target language. It involves grammatical
correctness, idiomatic and stylistic word choices
that can be derived by using n-gram language
models. However, in high-order n-grams, the pa-
rameter space is sparse and conventional mod-
elling is inefficient. Neural networks model the
non-linear relationship between the input features
and target outputs. They often outperform con-
ventional techniques in difficult machine learning
tasks. Neural network language models (CSLM)
alleviate the curse of dimensionality by projecting

words into a continuous space, and modelling and
estimating probabilities in this space.

The architecture of a deep CSLM is illus-
trated in Figure 1. The inputs to a CSLM
model are the (K − 1) left-context words
(wi−K+1, . . . , wi−2, wi−1) to predict wi. A one-
hot vector encoding scheme is used to repre-
sent the input wi−k with an N -dimensional vec-
tor. The output of CSLM is a vector of pos-
terior probabilities for all words in vocabulary,
P (wi|wi−1, wi−2, . . . , wi−K+1). Due to the large
output layer (vocabulary size), the complexity of a
basic neural network language model is very high.
Schwenk (2007) proposed efficient training strate-
gies in order to reduce the computational complex-
ity and speed up the training time. They process
several examples at once and use a short-list vo-
cabulary V with only the most frequent words.

Figure 1: Deep CSLM architecture.

Following the settings mentioned in (Schwenk
et al., 2014), all CSLM experiments described
in this paper are performed using deep networks
with four hidden layers: first layer for the projec-
tion (320 units for each context word) and three
hidden layers of 1024 units with tanh activation.
At the output layer, we use a softmax activation
function applied to a short-list of the 32k most
frequent words. The probabilities of the out-of-
vocabulary words are obtained from a standard
back-off n-gram language model. The projection
of the words onto the continuous space and the
training of the neural network is done by the stan-
dard back-propagation algorithm and outputs are
the converged posterior probabilities. The model
parameters are optimised on a development set.

4 CSLM and Quality Estimation

In the context of MT, CSLMs are generally trained
on the target side of a given language pair to ex-
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press the probability that the generated sentence
is “correct” or “likely”, without looking at the
source sentence. However, QE is also concerned
with how well the source segments can be trans-
lated. Therefore, we trained two models, one for
each side of a given language pair. We extracted
the probabilities for QE training and test sets for
both source and its translation with their respec-
tive models and used them as features, along with
other features, in a supervised learning setting.

Finally, we also used CSLM in a spoken lan-
guage translation (SLT) task. In SLT, an auto-
matic speech recogniser (ASR) is used to decode
the source language text from audio. This creates
an extra source of variability, where different ASR
models and configurations give different outputs.
In this paper, we use QE to exploit different ASR
outputs (i.e. MT inputs) which in turn can lead to
different MT outputs.

5 Experiments

We focus on experiments with sentence level QE
tasks. Our English-Spanish experiments are based
on the WMT QE shared task data from 2012 to
2015.1 These tasks are diverse in nature, with dif-
ferent sizes and labels such as post-editing effort
(PEE), post-editing time (PET) and human trans-
lation error rate (HTER). The results reported in
Section 5.5 are directly comparable with the of-
ficial systems submitted for each of the respec-
tive tasks. We also performed experiments on the
IWSLT 2014 English-French SLT task 2 to study
the applicability of our models on n-best ASR
(MT inputs) comparison.

5.1 QE Datasets
In Table 1 we summarise the data and tasks for our
experiments. We refer readers to the WMT and
IWSLT websites for detailed descriptions of these
datasets. All datasets are publicly available.

WMT12: English-Spanish news sentence trans-
lations produced by a Moses “baseline” statisti-
cal MT (SMT) system, and judged for perceived
post-editing effort in 1–5 (highest-lowest), taking
a weighted average of three annotators (Callison-
Burch et al., 2012).

WMT13 (Task-1): English-Spanish sentence
translations of news texts produced by a Moses

1http://www.statmt.org/wmt[12,13,14,
15]/quality-estimation-task.html

2https://sites.google.com/site/
iwsltevaluation2014/slt-track

“baseline” SMT system. These were then post-
edited by a professional translator and labelled
using HTER. This is a superset of the WMT12
dataset, with 500 additional sentences for test, and
a different quality label (Bojar et al., 2013).

WMT14 (Task-1.1): English-Spanish news
sentence translations. The dataset contains source
sentences and their human translations, as well
as three versions of machine translations: by an
SMT system, a rule-based system system and a
hybrid system. Each translation was labelled by
professional translators with 1-3 (lowest-highest)
scores for perceived post-editing effort.

WMT14 (Task-1.3): English-Spanish news
sentence translations post-edited by a professional
translator, with the post-editing time collected on a
sentence-basis and used as label (in milliseconds).

WMT15 (Task-1): Large English-Spanish news
dataset containing source sentences, their machine
translations by an online SMT system, and the
post-editions of the translation by crowdsourced
translators, with HTER used as label.

IWSLT14: English-French dataset containing
source language data from the 10-best (sentences)
ASR system output. On the target side, the 1-
best MT translation is used. The ASR system
leads to different source segments, which in turn
lead to different translations. METEOR (Banerjee
and Lavie, 2005) is used to label these alternative
translations against a reference (human) transla-
tion. Both ASR and MT outputs come from a sys-
tem submission in IWSLT 2014 (Ng et al., 2014).
The ASR system is a multi-pass deep neural net-
work tandem system with feature and model adap-
tation and rescoring. The MT system is a phrase-
based SMT system produced using Moses.

Dataset Lang. Train Test Label
WMT12 en-es 1, 832 422 PEE 1-5
WMT13 en-es 2, 254 500 HTER 0-1
WMT14task1.1 en-es 3, 816 600 PEE 1-3
WMT14task1.3 en-es 650 208 PET (ms)
WMT15 en-es 11, 271 1, 817 HTER 0-1
IWSLT14 en-fr 8, 180 11, 240 MET. 0-1

Table 1: QE datasets: # sentences and labels.

5.2 CSLM Dataset

The dataset used for CSLM training consists of
Europarl, News-commentary and News-crawl cor-
pus. We used a data selection method (Moore
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and Lewis, 2010) to select the most relevant train-
ing data with respect to a development set. For
English-Spanish, the development data is the con-
catenation of newstest2012 and newstest2013 of
the WMT translation track. For English-French,
the development set is the concatenation of the
IWSLT dev2010 and eval2010. In Table 2 we
show statistics on the selected monolingual data
used to train back-off LM and CSLM.

Lang. Train Dev LM ppl CSLM ppl
en 4.3G 137.7k 164.63 116.58 (29.18%)
fr 464.7M 54K 99.34 64.88 (34.68%)
es 21.2M 149.4k 145.49 87.14 (40.10%)

Table 2: Training data size (number of tokens) and
language models perplexity (ppl). The values in
parentheses in last column shows percentage de-
crease in perplexity.

5.3 Feature Sets
We use the QuEst 3 toolkit (Specia et al., 2013;
Shah et al., 2013a) to extract two feature sets for
each dataset:
• BL: 17 features used as baseline in the WMT

shared tasks on QE.
• AF: 80 augmented MT system-independent

features4 (superset of BL). For the En-Fr SLT
task, we have additional 36 features (21 ASR
+ 15 MT-dependent features)

The resources used to extract these features (cor-
pora, etc.) are also available as part of the WMT
shared tasks on QE. The CSLM features for each
of the source and target segments are extracted us-
ing the procedure described in Section 3 with the
CSLM toolkit. 5

We trained QE models with following combina-
tion of features:
• BL + CSLMsrc,tgt: CSLM features for

source and target segments, plus the baseline
features.
• AF + CSLMsrc,tgt: CSLM features for

source and target segments, plus all available
features.

For the WMT12 task, we performed further exper-
iments to analyse the improvements with CSLM:
• CSLMsrc: Source side CSLM feature only.
• CSLMtgt: Target side CSLM feature only.
• CSLMsrc,tgt: Source and target CSLM fea-

tures by themselves.
3http://www.quest.dcs.shef.ac.uk/
480 features http://www.quest.dcs.shef.ac.

uk/quest_files/features_blackbox
5http://www-lium.univ-lemans.fr/cslm/

• FS(AF) + CSLMsrc,tgt: CSLM features in
addition to the best performing feature set
(FS(AF)) selected as described in (Shah et
al., 2013b; Shah et al., 2015).

5.4 Learning algorithms

We use the Support Vector Machines implementa-
tion of the scikit-learn toolkit to perform re-
gression (SVR) with either Radial Basis Function
(RBF) or linear kernel and parameters optimised
via grid search. To evaluate the prediction models
we use Mean Absolute Error (MAE), its squared
version – Root Mean Squared Error (RMSE), and
Pearson’s correlation (r) score.

Task System #feats MAE RMSE r

W
M

T
12

BL 17 0.6821 0.8117 0.5595
AF 80 0.6717 0.8103 0.5645
BL + CSLMsrc,tgt 19 0.6463 0.7977 0.5805
AF + CSLMsrc,tgt 82 0.6462 0.7946 0.5825

W
M

T
13

BL 17 0.1411 0.1812 0.4612
AF 80 0.1399 0.1789 0.4751
BL + CSLMsrc,tgt 19 0.1401 0.1791 0.4771
AF + CSLMsrc,tgt 82 0.1371 0.1750 0.4820

W
M

T
14

Ta
sk

1.
1 BL 17 0.5241 0.6591 0.2502

AF 80 0.4896 0.6349 0.3310
BL + CSLMsrc,tgt 19 0.4931 0.6351 0.3545
AF + CSLMsrc,tgt 82 0.4628∗ 0.6165∗ 0.3824∗

W
M

T
14

Ta
sk

1.
3 BL 17 0.1798 0.2865 0.5661

AF 80 0.1753 0.2815 0.5871
BL + CSLMsrc,tgt 19 0.1740 0.2758 0.6243
AF + CSLMsrc,tgt 82 0.1701∗∗ 0.2734 0.6201

W
M

T
15

BL 17 0.1562 0.2036 0.1382
AF 80 0.1541 0.1995 0.2205
BL + CSLMsrc,tgt 19 0.1501 0.1971 0.2611
AF + CSLMsrc,tgt 82 0.1471 0.1934 0.2862

IW
SL

T
14 BL 17 0.1390 0.1791 0.5012

AF 116 0.1361 0.1775 0.5211
BL + CSLMsrc,tgt 19 0.1358 0.1750 0.5321
AF + CSLMsrc,tgt 118 0.1337 0.1728 0.5445

Table 3: Results for datasets with various feature
sets. Figures with ∗ beat the official best systems,
and with ∗∗ are second best. Results with CSLM
features are significantly better than BL and AF on
all tasks (paired t-test with p ≤ 0.05).

Task System #feats MAE RMSE r

W
M

T
12

BL + CSLMsrc 18 0.6751 0.8125 0.5626
BL + CSLMtgt 18 0.6694 0.8023 0.5815
CSLMsrc,tgt 2 0.6882 0.8430 0.5314
FS(AF) 19 0.6131 0.7598 0.6296
FS(AF) + CSLMsrc,tgt 21 0.5950∗ 0.7442∗ 0.6482∗

Table 4: Impact of different combinations of
CSLM features on the WMT12 task. Figures with
∗ beat the official best system. Results with CSLM
features are significantly better than BL and AF on
all tasks (paired t-test with p ≤ 0.05).
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5.5 Results

Table 3 presents the results with different feature
sets for data from various shared tasks. It can be
noted that CSLM features always bring significant
improvements whenever added to either baseline
or augmented feature set. A reduction in both error
scores (MAE and RMSE) as well as an increase
in Pearson’s correlation with human labels can be
observed on all tasks. It is also worth noticing
that the CSLM features bring improvements over
all tasks with different labels, evidencing that dif-
ferent optimisation objectives and language pairs
can benefit from these features. However, the im-
provements are more visible when predicting post-
editing effort for WMT12 and WMT14’s Task 1.1.
For these two tasks, we are able to achieve state-
of-the-art performance by adding the two CSLM
features to all available or selected feature sets.

For WMT12, we performed another set of ex-
periments to study the effect of CSLM features
by themselves and in combination. The results
in Table 4 show that the target side CSLM fea-
ture bring larger improvements than its source side
counterpart. We believe that it is because the tar-
get side feature directly reflects the fluency of the
translation, whereas the source side feature (re-
garded as a translation complexity feature) only
has indirect effect on quality. Interestingly, the
two CSLM features alone give comparable re-
sults (slightly worse) than the BL feature set 6 de-
spite the fact that these 17 features cover many
complexity, adequacy and fluency quality aspects.
CSLM features bring further improvements on
pre-selected feature sets, as shown in Table 3. We
also performed feature selection over the full fea-
ture set along with CSLM features, following the
procedure in (Shah et al., 2013b). Interestingly,
both CSLM features were selected among the top
ranked features, confirming their relevance.

In order to investigate whether our CSLM fea-
tures results hold for other feature sets, we ex-
perimented with the feature sets provided by most
teams participating in the WMT12 QE shared task.
These feature sets are very diverse in terms of the
types of features, resources used, and their sizes.
Table 5 shows the official results from the shared
task (Off.) (Callison-Burch et al., 2012), those
from training an SVR on these features with and
without CSLM features. Note that the official
scores are often different from the results obtained
with our SVR models because of differences in

6We compare results in terms of MAE scores only.

the learning algorithms. As shown in Table 5,
we observed similar improvements with additional
CSLM features over all of these feature sets.

System #feats Off. SVR SVR
without CSLM with CSLM

SDL 15 0.61 0.6115 0.5993
UU 82 0.64 0.6513 0.6371

Loria 49 0.68 0.6978 0.6729
UEdin 56 0.68 0.6879 0.6724
TCD 43 0.68 0.6972 0.6715

WL-SH 147 0.69 0.6791 0.6678
UPC 57 0.84 0.8419 0.8310
DCU 308 0.75 0.6825 0.6812

PRHLT 497 0.70 0.6699 0.6649

Table 5: MAE score on official WMT12 feature
sets using SVR with and without CSLM features.

6 Conclusions

We proposed novel features for machine transla-
tion quality estimation obtained using a deep con-
tinuous space language models. The proposed fea-
tures led to significant improvements over stan-
dard feature sets for a variety of datasets, outper-
forming the state-of-art on two official WMT QE
tasks. These results showed that different opti-
misation objectives and language pairs can bene-
fit from the proposed features. The proposed fea-
tures have been shown to also perform well on QE
within a spoken language translation task.

Both source and target CSLM features improve
prediction quality, either when used separately
or in combination. They proved complementary
when used together with other feature sets and
produce comparable results to high performing
baseline features when used alone for prediction.
Finally, results comparing all official WMT12 QE
feature sets showed significant improvements in
the predictions when CSLM features were added
to those submitted by participating teams. These
findings provide evidence that the proposed fea-
tures bring valuable information into prediction
models, despite their simplicity and the fact that
they require only monolingual data as resource,
which is available in abundance for many lan-
guages.

As future work, it would be interesting to ex-
plore various distributed word representations for
quality estimation and joint models that look at
both the source and the target sentences simulta-
neously.
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Abstract

In this paper, we develop a supervised
learning technique that improves noisy
phrase translation scores obtained by
phrase table triangulation. In particular,
we extract word translation distributions
from small amounts of source-target bilin-
gual data (a dictionary or a parallel corpus)
with which we learn to assign better scores
to translation candidates obtained by trian-
gulation. Our method is able to gain im-
provement in translation quality on two
tasks: (1) On Malagasy-to-French transla-
tion via English, we use only 1k dictionary
entries to gain +0.5 Bleu over triangula-
tion. (2) On Spanish-to-French via English
we use only 4k sentence pairs to gain +0.7
Bleu over triangulation interpolated with
a phrase table extracted from the same 4k
sentence pairs.

1 Introduction

Phrase-based statistical machine translation sys-
tems require considerable amounts of source-
target parallel data to produce good quality trans-
lation. However, large amounts of parallel data are
available for only a fraction of language pairs, and
mostly when one of the languages is English.

Phrase table triangulation (Utiyama and Isa-
hara, 2007; Cohn and Lapata, 2007; Wu and
Wang, 2007) is a method for generating source-
target phrase tables without having access to any
source-target parallel data. The intuition behind
triangulation (and pivoting techniques in general)
is the transitivity of translation: if a source lan-
guage phrase s translates to a pivot language
phrase p which in turn translates to a target lan-
guage phrase t, then s should likely translate to t.
Following this intuition, a triangulated source-
target phrase table T̂ can be composed from a
source-pivot and pivot-target phrase table (§2).

However, the resulting triangulated phrase table
T̂ contains many spurious phrase pairs and noisy
probability estimates. Therefore, early triangula-
tion work (Wu and Wang, 2007) already realis-
tically assumed access to a limited source-target
parallel data from which a relatively high-quality
source-target phrase table T can be directly esti-
mated. The two phrase tables were then combined,
resulting in a higher quality phrase table that pro-
poses translations for many source phrases not
found in T . Wu and Wang (2007) report that in-
terpolation of the two phrase tables T and T̂ leads
to higher quality translations. However, the trian-
gulated phrase table T̂ is obtained without using
the source-target bilingual data, which suggests
that the source-target data is not used as fully as
it could be.

In this paper, we develop a supervised learning
algorithm that corrects triangulated word transla-
tion probabilities by relying on word translation
distributions wsup derived from the limited source-
target data. In particular, we represent source and
target words using word embeddings (Mikolov
et al., 2013) and learn a transformation between
the two embedding spaces in order to approxi-
mate wsup, thus down-weighting incorrect trans-
lation candidates proposed by triangulation (§3).
By representing words as embeddings, our model
can generalize the information contained in the
source-target data (as encoded in the distributions
wsup) to a much larger vocabulary, and can as-
sign lexical-weighting probabilities to most of the
phrase pairs in T̂ .

Fixing English as the pivot language (the
most realistic pivot language choice), on a low-
resource Spanish-to-French translation task our
model gains +0.7 Bleu on top of standard phrase
table interpolation. On Malagasy-to-French trans-
lation, our model gains +0.5 Bleu on top of tri-
angulation when using only 1k Malagasy-French
dictionary entries (§4).
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2 Preliminaries

Let s, p, t denote words and s,p, t denote phrases
in the source, pivot, and target languages, respec-
tively. Also, let T denote a phrase table estimated
over a parallel corpus and T̂ denote a triangu-
lated phrase table. We use similar notation for their
respective phrase translation features φ, lexical-
weighting features lex, and the word translation
probabilities w.

2.1 Triangulation (weak baseline)
In phrase table triangulation, a source-target
phrase table Tst is constructed by combining a
source-pivot and pivot-target phrase table Tsp,Tpt,
each estimated on its respective parallel data. For
each resulting phrase pair (s, t), we can also com-
pute an alignment â as the most frequent align-
ment obtained by combining source-pivot and
pivot-target alignments asp and apt across all pivot
phrases p as follows: {(s, t) | ∃p : (s, p) ∈ asp ∧
(p, t) ∈ apt}.

The triangulated source-to-target lexical
weights, denoted l̂exst, are approximated in two
steps: First, word translation scores ŵst are ap-
proximated by marginalizing over the pivot words:

ŵst(t | s) =
∑

p

wsp(p | s) · wpt(t | p). (1)

Next, given a (triangulated) phrase pair (s, t) with
alignment â, let âs,: = {t | (s, t) ∈ â}; the lexical-
weighting probability is (Koehn et al., 2003):

l̂exst(t | s, â) =
∏
s∈s

1
|âs,:|

∑
t∈âs,:

ŵst(t | s). (2)

The triangulated phrase translation scores, de-
noted φ̂st, are computed by analogy with Eq. 1.

We also compute these scores in the reverse
direction by swapping the source and target lan-
guages.

2.2 Interpolation (strong baseline)
Given access to source-target data, an ordinary
source-target phrase table Tst can be estimated di-
rectly. Wu and Wang (2007) suggest interpolating
phrase pairs entries that occur in both tables:

Tinterp = αTst + (1 − α)T̂st. (3)

Phrase pairs appearing in only one phrase table are
added as-is. We refer to the resulting table as the
interpolated phrase table.

3 Supervised Word Translations

While interpolation (Eq. 3) may help correct some
of the noisy triangulated scores, its effect is lim-
ited to phrase pairs appearing in both phrase ta-
bles. Here, we suggest a discriminative supervised
learning method that can affect all phrase pairs.

Our idea is to regard word translation distri-
butions derived from source-target bilingual data
(through word alignments or dictionary entries)
as the correct translation distributions, and use
them to learn discriminately: correct target words
should become likely translations, and incorrect
ones should be down-weighted. To generalize be-
yond the vocabulary of the source-target data, we
appeal to word embeddings.

We present our formulation in the source-to-
target direction. The target-to-source direction is
obtained simply by swapping the source and tar-
get languages.

3.1 Model
Let csup

st denote the number of times source word
s was aligned to target word t (in word alignment,
or in the dictionary). We define the word transla-
tion distributions wsup(t | s) = csup

st /c
sup
s , where

csup
s =

∑
t csup

st . Furthermore, let q(t | s) denote the
word translation probabilities we wish to learn and
consider maximizing the log-likelihood function:

arg max
q

L(q) = arg max
q

∑
(s,t)

csup
st log q(t | s).

Clearly, the solution q(· | s) := wsup(· | s) maxi-
mizes L. However, we would like a solution that
generalizes to source words s beyond those ob-
served in the source-target corpus – in particular,
those source words that appear in the triangulated
phrase table T̂ , but not in T .

In order to generalize, we abstract from words
to vector representations of words. Specifically,
we constrain q to the following parameterization:

q(t | s) =
1
Zs

exp
(
vT

s Avt + f T
st h

)
Zs =

∑
t∈T (s)

exp
(
vT

s Avt + f T
st h

)
.

Here, the vectors vs and vt represent monolingual
features and the vector fst represents bilingual fea-
tures. The parameters A and h are to be learned.

In this work, we use monolingual word embed-
dings for vs and vt, and set the vector fst to con-
tain only the value of the triangulated score, such
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that fst := ŵst. Therefore, the matrix A is a lin-
ear transformation between the source and target
embedding spaces, and h (now a scalar) quantifies
how the triangulated scores ŵ are to be trusted.

In the normalization factor Zs, we let t range
only over possible translations of s suggested by
either wsup or the triangulated word probabilities.
That is:

T (s) = {t | wsup(t | s) > 0 ∨ ŵ(t | s) > 0}.

This restriction makes efficient computation pos-
sible, as otherwise the normalization term would
have to be computed over the entire target vocab-
ulary.

Under this parameterization, our goal is to solve
the following maximization problem:

max
A,h

L(A, h) = max
A,h

∑
s,t

csup
st log q(t | s). (4)

3.2 Optimization

The objective function in Eq. 4 is concave in both
A and h. This is because after taking the log, we
are left with a weighted sum of linear and concave
(negative log-sum-exp) terms in A and h. We can
therefore reach the global solution of the problem
using gradient descent.

Taking derivatives, the gradient is

∂L
∂A

=
∑
s,t

mstvsvT
t

∂L
∂h

=
∑
s,t

mst fst

where the scalar mst = csup
st − csup

s q(t | s) for the
current value of q.

For quick results, we limited the number of gra-
dient steps to 200 and selected the iteration that
minimized the total variation distance to wsup over
a held out dev set:∑

s

||q(· | s) − wsup(· | s)||1. (5)

We obtained better convergence rate by us-
ing a batch version of the effective and easy-
to-implement Adagrad technique (Duchi et al.,
2011). See Figure 1.

3.3 Re-estimating lexical weights

Having learned the model (A and h), we can now
use q(t | s) to estimate the lexical weights (Eq. 2)
of any aligned phrase pairs (s, t, â), assuming it is
composed of embeddable words.
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Figure 1: The (target-to-source) objective function
per iteration. Applying batch Adagrad (blue) sig-
nificantly accelerates convergence.

However, we found the supervised word trans-
lation scores q to be too sharp, sometimes assign-
ing all probability mass to a single target word. We
therefore interpolated q with the triangulated word
translation scores ŵ:

qβ = βq + (1 − β)ŵ. (6)

To integrate the lexical weights induced by qβ
(Eq. 2), we simply appended them as new features
in the phrase table in addition to the existing lexi-
cal weights. Following this, we can search for a β
value that maximizes Bleu on a tuning set.

3.4 Summary of method

In summary, to improve upon a triangulated or in-
terpolated phrase table, we:

1. Learn word translation distributions q by super-
vision against distributions wsup derived from
the source-target bilingual data (§3.1).

2. Smooth the learned distributions q by interpo-
lating with triangulated word translation scores
ŵ (§3.3).

3. Compute new lexical weights and append them
to the phrase table (§3.3).

4 Experiments

To test our method, we conducted two low-
resource translation experiments using the
phrase-based MT system Moses (Koehn et al.,
2007).
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4.1 Data
Fixing the pivot language to English, we applied
our method on two data scenarios:

1. Spanish-to-French: two related languages
used to simulate a low-resource setting. The
baseline is phrase table interpolation (Eq. 3).

2. Malagasy-to-French: two unrelated languages
for which we have a small dictionary, but no
parallel corpus (aside from tuning and testing
data). The baseline is triangulation alone (there
is no source-target model to interpolate with).

Table 1 lists some statistics of the bilin-
gual data we used. European-language bitexts
were extracted from Europarl (Koehn, 2005). For
Malagasy-English, we used the Global Voices par-
allel data available online.1 The Malagasy-French
dictionary was extracted from online resources2

and the small Malagasy-French tune/test sets were
extracted3 from Global Voices.

lines of data
language pair train tune test

sp-fr 4k 1.5k 1.5k
mg-fr 1.1k 1.2k 1.2k
sp-en 50k – –
mg-en 100k – –
en-fr 50k – –

Table 1: Bilingual datasets. Legend: sp=Spanish,
fr=French, en=English, mg=Malagasy.

Table 2 lists token statistics of the monolin-
gual data used. We used word2vec4 to generate
French, Spanish and Malagasy word embeddings.
The French and Spanish embeddings were (in-
dependently) estimated over their combined to-
kenized and lowercased Gigaword5 and Leipzig
news corpora.6 The Malagasy embeddings were
similarly estimated over data form Global Voices,7

the Malagasy Wikipedia and the Malagasy Com-
mon Crawl.8 In addition, we estimated a 5-gram
French language model over the French monolin-
gual data.

1http://www.ark.cs.cmu.edu/global-voices
2http://motmalgache.org/bins/homePage
3https://github.com/vchahun/gv-crawl
4https://radimrehurek.com/gensim/models/word2vec.html
5http://catalog.ldc.upenn.edu
6http://corpora.uni-leipzig.de/download.html
7http://www.isi.edu/˜qdou/downloads.html
8https://commoncrawl.org/the-data/

language words
French 1.5G
Spanish 1.4G
Malagasy 58M

Table 2: Size of monolingual corpus per language
as measured in number of tokens.

4.2 Spanish-French Results
To produce wsup, we aligned the small Spanish-
French parallel corpus in both directions, and
symmetrized using the intersection heuristic. This
was done to obtain high precision alignments (the
often-used grow-diag-final-and heuristic is opti-
mized for phrase extraction, not precision).

We used the skip-gram model to estimate the
Spanish and French word embeddings and set the
dimension to d = 200 and context window to
w = 5 (default). Subsequently, to run our method,
we filtered out source and target words that either
did not appear in the triangulation, or, did not have
an embedding. We took words that appeared more
than 10 times in the parallel corpus for the training
set (∼690 words), and between 5–9 times for the
held out dev set (∼530 words). This was done in
both source-target and target-source directions.

In Table 3 we show that the distributions learned
by our method are much better approximations of
wsup compared to those obtained by triangulation.

Method source→target target→source
triangulation 71.6% 72.0%
our scores 30.2% 33.8%

Table 3: Average total variation distance (Eq. 5)
to the dev set portion of wsup (computed only over
words whose translations in wsup appear in the tri-
angulation). Using word embeddings, our method
is able to better generalize on the dev set.

We then examined the effect of appending our
supervised lexical weights. We fixed the word
level interpolation β := 0.95 (effectively assigning
very little mass to triangulated word translations
ŵ) and searched for α ∈ {0.9, 0.8, 0.7, 0.6} in Eq. 3
to maximize Bleu on the tuning set.

Our MT results are reported in Table 4. While
interpolation improves over triangulation alone by
+0.8 Bleu, our method adds another +0.7 Bleu on
top of interpolation, a statistically significant gain
(p < 0.01) according to a bootstrap resampling
significance test (Koehn, 2004).
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Method α tune test
source-target – 26.8 25.3
triangulation – 29.2 28.4
interpolation 0.7 30.2 29.2
interpolation+our scores 0.6 30.8 29.9

Table 4: Spanish-French Bleu scores. Append-
ing lexical weights obtained by supervision over
a small source-target corpus significantly out-
performs phrase table interpolation (Eq. 3) by
+0.7 Bleu.

4.3 Malagasy-French Results
For Malagasy-French, the wsup distributions used
for supervision were taken to be uniform distri-
butions over the dictionary translations. For each
training direction, we used a 70%/30% split of the
dictionary to form the train and dev sets.

Having significantly less Malagasy monolin-
gual data, we used d = 100 dimensional embed-
dings and a w = 3 context window to estimate both
Malagasy and French words.

As before, we added our supervised lexical
weights as new features in the phrase table. How-
ever, instead of fixing β = 0.95 as above, we
searched for β ∈ {0.9, 0.8, 0.7, 0.6} in Eq. 6 to max-
imize Bleu on a small tune set. We report our re-
sults in Table 5. Using only a dictionary, we are
able to improve over triangulation by +0.5 Bleu, a
statistically significant difference (p < 0.01).

Method β tune test
triangulation – 12.2 11.1
triangulation+our scores 0.6 12.4 11.6

Table 5: Malagasy-French Bleu. Supervision with
a dictionary significantly improves upon simple
triangulation by +0.5 Bleu.

5 Conclusion

In this paper, we argued that constructing a trian-
gulated phrase table independently from even very
limited source-target data (a small dictionary or
parallel corpus) underutilizes that parallel data.

Following this argument, we designed a super-
vised learning algorithm that relies on word trans-
lation distributions derived from the parallel data
as well as a distributed representation of words
(embeddings). The latter enables our algorithm to
assign translation probabilities to word pairs that
do not appear in the source-target bilingual data.

We then used our model to generate new lexi-
cal weights for phrase pairs appearing in a trian-
gulated or interpolated phrase table and demon-
strated improvements in MT quality on two tasks.
This is despite the fact that the distributions (wsup)
we fit our model to were estimated automatically,
or even naı̈vely as uniform distributions.
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dra Constantin, and Evan Herbst. 2007. Moses:
Open source toolkit for statistical machine transla-
tion. In Proc. ACL, Interactive Poster and Demon-
stration Sessions, pages 177–180.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Proc. EMNLP,
pages 388–395.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In Proc. MT Summit,
pages 79–86.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In Proc. ICLR, Workshop
Track.

Masao Utiyama and Hitoshi Isahara. 2007. A com-
parison of pivot methods for phrase-based statistical
machine translation. In Proc. HLT-NAACL, pages
484–491.

Hua Wu and Haifeng Wang. 2007. Pivot language ap-
proach for phrase-based statistical machine transla-
tion. In Proc. ACL, pages 856–863.

1083



Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 1084–1088,
Lisbon, Portugal, 17-21 September 2015. c©2015 Association for Computational Linguistics.

Translation Invariant Word Embeddings

Matt Gardner∗
Carnegie Mellon University

mg1@cs.cmu.edu

Kejun Huang∗
University of Minnesota
huang663@umn.edu

Evangelos Papalexakis
Carnegie Mellon University
epapalex@cs.cmu.edu

Xiao Fu
University of Minnesota

xfu@umn.edu

Partha Talukdar
Indian Institute of Science
ppt@serc.iisc.in

Christos Faloutsos
Carnegie Mellon University
christos@cs.cmu.edu

Nicholas Sidiropoulos
University of Minnesota
nikos@umn.edu

Tom Mitchell
Carnegie Mellon University
tom.mitchell@cmu.edu

Abstract

This work focuses on the task of finding
latent vector representations of the words
in a corpus. In particular, we address the
issue of what to do when there are multiple
languages in the corpus. Prior work has,
among other techniques, used canonical
correlation analysis to project pre-trained
vectors in two languages into a common
space. We propose a simple and scal-
able method that is inspired by the no-
tion that the learned vector representations
should be invariant to translation between
languages. We show empirically that our
method outperforms prior work on mul-
tilingual tasks, matches the performance
of prior work on monolingual tasks, and
scales linearly with the size of the input
data (and thus the number of languages be-
ing embedded).

1 Introduction

Representing words as vectors in some latent
space has long been a central idea in natural lan-
guage processing. The distributional hypothesis,
perhaps best stated as “You shall know a word by
the company it keeps” (Firth, 1957), has had a long
and productive history, as well as a recent revival
in neural-network-based models (Mikolov et al.,
2013). These methods generally construct a word
by context matrix, then either use the vectors di-
rectly (often weighted by term frequency and in-
verse document frequency), perform some factor-

∗These authors contributed equally.

ization of the matrix, or use it as input to a neu-
ral network which produces vectors for each word.
The resultant vectors can be used in a wide array of
tasks, from information retrieval to part-of-speech
tagging and parsing.

There has also been some recent work address-
ing how to create these vectors when informa-
tion from multiple languages is available. Two
recent attempts involve using canonical correla-
tion analysis (CCA) to project pre-trained vec-
tors from each of two languages into a common
space (Faruqui and Dyer, 2014b) and using an
alignment matrix to heuristically project the vec-
tors from one language onto the words in another
language (Guo et al., 2015). These methods gener-
ally only work with two languages at a time, how-
ever.

In this paper, we introduce a technique for con-
structing multilingual word embeddings that is in-
spired by the notion of translational invariance.
CCA and the heuristic projection mentioned above
both attempt to construct vectors such that words
that are translations of each other are close in the
vector space, but the method we introduce formal-
izes this as part of the objective function of the
original decomposition. We further show how to
optimize this objective function with a method that
scales linearly in the size of the input data. This
results in a scalable, single-step method that is in-
formed by both the monolingual corpus statistics
and the multilingual alignment data. We show ex-
perimentally that this results in vectors that outper-
form prior work on multilingual tasks and match
the performance of prior work on monolingual
tasks.
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The contributions of this paper are the follow-
ing:
• Problem formulation: we formalize the no-

tion of translation-invariance, regardless of
the number of languages, as part of the ob-
jective function of a standard matrix decom-
position;
• Scalable algorithm: we introduce scalable

means of optimizing this augmented objec-
tive functions; and
• Effectiveness: we present state-of-the-art re-

sults on a multilingual task using the vectors
obtained by these methods.

The code and data used in this paper are pub-
licly available at https://sites.google.
com/a/umn.edu/huang663/.

2 Problem Definition

The informal problem definition is the following:

Informal Problem. Given a set of cooccurrence
statistics between words in each of several lan-
guages, and a translation table containing align-
ment counts between words in each of these lan-
guages, Find a latent representation for each word
in each language that (1) captures information
from the cooccurrence statistics and (2) is invari-
ant to translations of the cooccurrence statistics
between languages.

More formally, suppose we have M1 words and
N1 contexts in the first language (“English”), and
M2 and N2 for the second language (“Spanish”).
Then, we are given two matrices of cooccurrence
statistics (one for each language), with dimensions
M1×N1 and M2×N2, and two dictionary matri-
ces containing translations from English to Span-
ish, and from Spanish to English, repesctively. A
more detailed description on how the data is ob-
tained can be found in (Faruqui and Dyer, 2014b).
For simplicity in what follows, we denote these
matrices as
• X: a single multilingual cooccurrence matrix

(with all theM1 +M2 words as the rows, and
N1 + N2 contexts as columns). Entries in
this matrix specify the cooccurrence between
a word in any language and a context in any
language.
• D1: a word dictionary matrix (with all the
M1 + M2 English and Spanish words as
both rows and columns). Entries in this ma-
trix specify which words are translations of
which other words, and is generally block-

normalized, so that (e.g.) each Spanish word
has a probability distribution over English
words.
• D2: a context dictionary matrix (with all the
N1+N2 English and Spanish contexts as both
rows and columns). This is similar to D1 in
its construction.

We seek decompositions of X that are invari-
ant to multiplications along each mode by its re-
spective D matrix. Note that, while we only de-
scribed the case where we have two languages, it
is straightforward to extend this to having many
languages in the combined X, D1 and D2 matri-
ces, and we do this in some of the experiments
described below.

3 Translation-invariant LSA

Without the side information provided by the dic-
tionary matrices, the classic method for generat-
ing word vectors finds a low-rank decomposition
of the data matrix X:

min
U,V
‖X−UVT ‖2F .

With proper scaling (see our discussion in §4.2),
the rows of U (or rows of V) are the word embed-
dings (or “context embeddings”). It is well-known
that the solution is given by the principal compo-
nents of the singular value decomposition (SVD)
of X. Generating word embeddings in this way
is known as latent semantic analysis (LSA) (Deer-
wester et al., 1990).

Our method extends LSA to incorporate infor-
mation from many languages at a time, with the
constraint that the decomposition should be invari-
ant to translation between these languages. We
call this method translation-invariant LSA (TI-
LSA).

In order to take the dictionary matrices D1 and
D2 into consideration, we propose to seek a de-
composition that can simultaneously explain the
original matrix X and various translations of it.
We can formalize this in the following objective
function:

min
U,V

‖X−UVT ‖2F + ‖D1X−UVT ‖2F + (1)

‖XDT
2 −UVT ‖2F + ‖D1XDT

2 −UVT ‖2F .
By expanding and combining all four quadratic
terms, we can see that the above problem is equiv-
alent to (up to a constant difference)

min
U,V

‖X̃−UVT ‖2F , (2)
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where

X̃ =
1
4
(
X + D1X + XDT

2 + D1XDT
2

)
=

1
4
(I + D1)X(I + D2)T .

Taking the SVD of X̃ does not seem numeri-
cally appealing at first glance: even though D1,
D2, and X are all very sparse, forming X̃ explic-
itly will introduce a significant amount of nonze-
ros. However, as we will explain below, it is not
necessary to explicitly form X̃ in order to find a
few principal components of it.

We propose to use the Lanczos algorithm
(Golub and Van Loan, 1996, Chapter 9) to calcu-
late the SVD of X̃. The Lanczos method can be
viewed as a generalization of the power method
for computing an arbitrary number of principal
components, and the basic operation required is
only matrix-vector multiplication. For our prob-
lem specifically, the required matrix-vector multi-
plications X̃µ and X̃Tν can be carried out very
efficiently with three sparse matrix-vector multi-
plications, each with complexity linear in the num-
ber of nonzeros in the sparse matrix involved, so
that any dense intermediate matrix is avoided. As
a result, by using our implementation of the Lanc-
zos method, the time required for calculating the
SVD of X̃ is not much more than that of X, even
though X̃ is significantly denser than X.

4 Experiments

We present three experiments to evaluate the
method introduced in this paper. The first experi-
ment uses our word embeddings in a cross-lingual
dependency parsing task; the second experiment
looks at monolingual (English) performance on a
series of word-similarity tasks; and the final ex-
periment shows the scalability of our method by
applying it to multiple languages.

4.1 Cross-lingual evaluation

Guo et al. (2015) recently introduced a method for
using multilingual word embeddings to perform
cross-lingual dependency parsing. They train a
neural-network-based dependency parsing model
using word vectors from one language, and then
test the model using data and word vectors from
another language. They used the embeddings ob-
tained by Faruqui and Dyer (2014b), along with
a heuristic projection. Because we used the same

Embedding method LAS UAS
CCA (Faruqui & Dyer) 60.7 69.8
Projection (Guo et al.) 61.3 71.1
TI-LSA 62.8 72.5

Table 1: Labeled and unlabeled attachment score
(LAS/UAS) on a cross-lingual dependency task. TI-LSA out-
performs prior work on this task.

data to obtain our embeddings, our method is di-
rectly comparable to the CCA method of Faruqui
and Dyer, and the projection method of Guo et al.

We used code and data graciously provided by
Guo to run experiments, training a dependency
parsing model on their English treebank, and test-
ing it on the Spanish treebank. We report the re-
sults below for the methods used by Guo et al. and
the method introduced in this paper. We could not
exactly reproduce Guo’s result with the code we
were provided, so we report all results from our
use of the provided code, in case some parame-
ter settings are different from those used in Guo’s
paper. The results are shown in Table 1. As can
be seen in the table, our first method for obtain-
ing multilingual embeddings outperforms both the
CCA method of Faruqui and Dyer, and the heuris-
tic projection used by Guo et al.

4.2 Monolingual evaluation

While our focus is on generating embeddings that
are invariant to translations (and thus most suited
to multi- or cross-lingual tasks), we would hope
that the addition of multiple languages would
not hurt performance on monolingual tasks. We
used wordvectors.org (Faruqui and Dyer, 2014a)
to evaluate our learned vectors on a variety of
English-language word similarity tasks. The tasks
are mostly all variations on performing word simi-
larity judgments, finding the correlation between
the system’s output and human responses. We
used the same data as that used by Faruqui and
Dyer (2014b) (English-Spanish only), and thus
our method for obtaining multilingual embeddings
is directly comparable to their technique for do-
ing the same (CCA). We used the first 11 tasks on
wordvectors.org, and obtained Faruqui and Dyer’s
results from that website. Due to space con-
straints, we only report the average performance
across these 11 tasks for each of the methods we
tested. The results are shown in Table 2. To test
statistical significance, we performed a paired per-
mutation test, treating performance on each task as
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Method Average Correlation
CCA (Faruqui & Dyer) 0.638
LSA 0.626
TI-LSA 0.628

Table 2: Average correlation with human similarity judg-
ments on 11 word-similarity tasks. The differences between
these methods are not statistically significant, showing that
the gains we see in cross-lingual tasks are not at the expense
of monolingual tasks.

paired data. The important thing to note from the
table is that the differences between the methods
are all quite small, and none of them are statisti-
cally significant.

Note that LSA on just the English data performs
on par with all of the other methods presented;
we have not found a way to improve performance
on this monolingual task from using multilingual
data.1 However, it is also important to note that
our multilingual methods do not hurt performance
on these monolingual tasks, either—we get the
benefits described in our other evaluations without
losing performance on English-only tasks.

4.3 Scalability

We mentioned in Section 3 that our method is lin-
ear in the number of nonzeros in the data, as we
are simply using the Lanczos algorithm to com-
pute a sparse SVD. To show this in practice, we
briefly present how the running time of our algo-
rithm scales with the number of languages used.
Each additional language adds roughly the same
amount of data to the X matrix. Figure 1 shows
that our method does indeed scale linearly with the
number of nonzeros in the matrix, and thus also
with the number of languages used (assuming each
language has roughly the same amount of data).
All the experiments are performed in MATLAB
2013a on a Linux server with 32 Xeon 2.00GHz
cores and 128GB memory.

5 Discussion

We discuss here two points on the flexibility of
the method we have introduced. First, note that
the dictionary matrices we used contained infor-

1This is in contrast to the results reported by Faruqui and
Dyer, who by our evaluation also do not improve perfor-
mance using multilingual data. To obtain word vectors from
our decomposition, we used only the U component of the
SVD; including the singular values, as Faruqui and Dyer did,
gives worse performance. We confirmed this with the au-
thors, and replicated their result for English-only LSA when
using the singular values.

nnz(X)+nnz(D
1
)+nnz(D

2
) ×108

1 2 3 4 5 6

tim
e/

ho
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English-Spanish-French-German

Figure 1: TI-LSA is linear in the number of nonzeros in the
data matrices, and can easily scale to many languages.

mation about translations between languages. It is
also possible to include information about para-
phrases in this dictionary. For instance, a resource
such as the Paraphrase Database (Ganitkevitch et
al., 2013) could be used to further constrain the
embeddings obtained; this could be useful if the
resource used to obtain a paraphrase dictionary
contained more or different information than the
corpus statistics used in the decomposition.

Second, note that we have two dictionaries, one
for the words and one for the contexts. These
dictionaries correspond to the modes of the ma-
trix; we have one dictionary matrix per mode, and
we always multiply the dictionary along its corre-
sponding mode. It would be easy to extend this
method to a setting where the data is a 3-mode
tensor instead of a matrix, e.g., if the data were
(subject, verb, object) triples, or relation triples in
some knowledge base. In these settings, the dictio-
naries used for each mode might be more different;
in the subject-verb-object example, one of the dic-
tionaries would only have verbs, while the other
two would only have nouns, for instance. Stan-
dard tensor decompositions could be augmented
with a translation-invariance term, similar to what
we have done with matrices in this work.

6 Related Work

The most closely related work is that of Faruqui
and Dyer (2014b), whose CCA-based method we
have already mentioned; however, it is not obvi-
ous how CCA-based methods can be applied to
more than two languages at a time. Our work is
also similar to prior work on multilingual latent
semantic analysis; Bader and Chew (2008) also
include a translation dictionary when decompos-
ing the X matrix, though their formulation uses a
term-document matrix instead of a word-context
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matrix, and the way they use the translation dic-
tionary is quite different.

7 Conclusions

We have presented a new technique for gener-
ating word embeddings from multilingual cor-
pora. This technique formalizes the notion of
translation invariance into the objective function
of the matrix decomposition and provides flexi-
ble and scalable means for obtaining word vec-
tors where words that are translations of each other
are close in the learned vector space. Through
three separate evaluations, we showed that our
technique gives superior performance on multilin-
gual tasks, matches prior work on monolingual
tasks, and scales linearly in the size of the input
data. The code and data used in this paper are
available at https://sites.google.com/
a/umn.edu/huang663/.
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Abstract

This paper proposes a method for hierar-
chical phrase-based stream decoding. A
stream decoder is able to take a contin-
uous stream of tokens as input, and seg-
ments this stream into word sequences that
are translated and output as a stream of tar-
get word sequences. Phrase-based stream
decoding techniques have been shown to
be effective as a means of simultaneous in-
terpretation. In this paper we transfer the
essence of this idea into the framework of
hierarchical machine translation. The hi-
erarchical decoding framework organizes
the decoding process into a chart; this
structure is naturally suited to the process
of stream decoding, leading to an efficient
stream decoding algorithm that searches
a restricted subspace containing only rel-
evant hypotheses. Furthermore, the de-
coder allows more explicit access to the
word re-ordering process that is of crit-
ical importance in decoding while inter-
preting. The decoder was evaluated on
TED talk data for English-Spanish and
English-Chinese. Our results show that
like the phrase-based stream decoder, the
hierarchical is capable of approaching the
performance of the underlying hierarchi-
cal phrase-based machine translation de-
coder, at useful levels of latency. In ad-
dition the hierarchical approach appeared
to be robust to the difficulties presented
by the more challenging English-Chinese
task.

1 Introduction

Statistical machine translation traditionally oper-
ates on sentence segmented input. This technol-
ogy has advanced to the point where it is becom-
ing capable enough to be useful for many applica-
tions. However, this approach may be unsuitable
for simultaneous interpretation where the machine

translation system is required to provide transla-
tions within a reasonably short space of time after
words have been spoken. Under this type of con-
straint, it may not be possible to wait for the end
of the sentence before translating, and segmenta-
tion at the sub-sentential level may be required
as a consequence. This segmentation process is
difficult, even for skilled human interpreters, and
presents a major challenge to a machine since in
addition to the translation process, decisions need
to be made about when to commit to outputting
a partial translation. Such decisions are critical
since once such an output is made it can be dif-
ficult and highly undesirable to correct it later if it
is in error.

2 Related Work

In order to automatically perform segmentation
for interpretation, two types of strategy have be
proposed. In the first, which we will call pre-
segmentation, the stream is segmented prior to the
start of the machine translation decoding process,
and the machine translation system is constrained
to translate using the given segmentation. This
approach has the advantage that it can be imple-
mented without the need to modify the machine
translation decoding software. In the second type
of strategy, which we will call incremental decod-
ing, the segmentation process is performed during
the decoding of the input stream. In this approach
the segmentation process is able to exploit seg-
mentation cues arising from the decoding process
itself. That is to say, the order in which the de-
coder would prefer to generate the target sequence
is taken into account.

A number of diverse strategies for pre-
segmentation were studied in (Sridhar et al.,
2013). They studied both non-linguistic tech-
niques, that included fixed-length segments, and a
“hold-output” method which identifies contiguous
blocks of text that do not contain alignments to
words outside them, and linguistically-motivated
segmentation techniques beased on segmenting on
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conjunctions, sentence boundaries and commas.
Commas were the most effective segmentation cue
in their investigation.

In (Oda et al., 2014) a strategy for segmentation
prior to decoding based on searching for segmen-
tation points while optimizing the BLEU score
was presented. An attractive characteristic of this
approach is that the granularity of the segmenta-
tion could be controlled by choosing the number
of segmentation boundaries to be inserted, prior
to the segmentation process. In (Matusov et al.,
2007) it was shown that the prediction and use of
soft boundaries in the source language text, when
used as re-ordering constraints can improve the
quality of a speech translation system.

(Siahbani et al., 2014) used a pre-segmenter in
combination with a left-to-right hierarchical de-
coder (Watanabe et al., 2006) to achieve a consid-
erably faster decoder in return for a small cost in
terms of BLEU score.

A phrase-based incremental decoder called the
stream decoder was introduced in (Kolss et al.,
2008b), and further studied in (Finch et al., 2014).
Their results, conducted on translation between
European languages, and also on English-Chinese,
showed that this approach was able to maintain
a high level of translation quality for practically
useful levels of latency. The hierarchical decoding
strategy proposed here is based on this work.

2.1 Stream Decoding
The reader is referred to the original paper (Kolss
et al., 2008a) for a complete description of the
stream decoding process; in this section we pro-
vide a brief summary.

Figure 1 depicts a stream decoding process, and
the figure applies to both the original phrase-based
technique, and the proposed hierarchical method.
The input to the stream decoder is a stream of to-
kens (it is also possible for the decoder to oper-
ate on tuples of confusable token sequences from
a speech recognition decoder). As new tokens ar-
rive, states in the search graph are extended with
the new possible translation options arising from
the new tokens. Periodically the stream decoder
will commit to outputting a sequence of target to-
kens. At this point a state from the search graph is
selected, the search graph leading from this state
is kept, and the remainder discarded. The search
then continues using the pruned search graph. The
language model context is preserved at this state
for use during the subsequent decoding. In this
manner the stream decoder is able to jointly seg-
ment and translate a continuous stream of tokens
that contains no segment boundary information;

the segmentation occurs as a natural by-product of
the decoding process. Re-ordering occurs in ex-
actly the same manner as the sentence-by-sentence
hierarchical decoder, and word re-ordering within
segments is possible.

2.1.1 Latency Parameters
The stream decoding process is governed by two
parameters Lmax and Lmin. These parameters are
illustrated in Figure 1. The Lmax parameter con-
trols the maximum latency of the system. That is,
the maximum number of tokens the system is per-
mitted to fall behind the current position. If in-
terpreting from speech, the parameter represents
the number of words the system is allowed to fall
behind the speaker, before being required to pro-
vide an output translation. This parameter is a hard
constraint that guarantees the system will always
be within Lmax tokens of the current last token in
the stream of input tokens. The parameter Lmin

represents the minimum number of words the sys-
tem will lag behind the last word spoken. It serves
as a means of preventing the decoder from com-
mitting to a translation too early.

Both the phrase-based and hierarchical phrase-
based stream decoders maintain a sequence of to-
kens that represent the sequence of untranslated
tokens from the input stream (see Figure 1). As
new tokens arrive from the input stream, they are
added to the end of the sequence. When the length
of this sequence reaches Lmax, the decoder is
forced to provide an output.

2.1.2 Phrase-based Segmentation
When forced to commit to a translation, the
phrase-based decoder rolls back the best hypoth-
esis state by state, until the remaining state se-
quence translates a contiguous sequence of source
words starting from beginning of the sequence
of untranslated words, and the number of words
that would remain in the sequence of untranslated
words after the translation is made, is at least
Lmin. It is possible that no such state exists, in
which case since the stream decoder is required to
make an output, it must use an alternative strategy.

In this alternative strategy, the stream decoder
will undertake a new decoding pass in which it is
forced to make a monotonic step as the first step
in the decoding process. Then, a state is selected
from the best hypothesis using the roll-back strat-
egy above. This process may also fail if the mono-
tonic step would lead to the violation of Lmin.
In the implementation of (Finch et al., 2014), the
decoder is permitted to violate Lmin only in this
case.
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Figure 1: The stream decoding process.

2.1.3 The Proposed Method
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Figure 2: Selecting a segmentation point during
hierarchical decoding.

The proposed hierarchical method attempts to
capture the spirit of the phrase-based method.
When forced to commit to a translation of a se-
quence of n words, the segmentation process is
simple and guided direcly by the chart.

As in the phrase-based approach, the best hy-
pothesis at the top of the chart is used to pro-
vide the partial translation and segmentation point.
This hypothesis has a span of [1, n] over the source
words. The left child of the rule (defined in accor-
dance with the binarized grammar used by the de-
coder) that was applied to create this hypothesis is
examined; let its span be [1, k]. If n − k ≥ Lmin,
then this partial hypothesis represents a translation
of the first k words of the sentence that leaves at
least Lmin words untranslated, and therefore the
target word sequence from this partial hypothesis
is output, and the associated source words are re-
moved from the sequence of untranslated words.
If this hypothesis is not able to meet the constraint,
the parse tree traversal continues in the same man-
ner: depth first along the left children until either a
translation can be made, or no further traversal is
possible.

Following the translation of of word sequence,
similar to the phrase-based stream decoder of
(Finch et al., 2014), the hierarchical stream de-

coder proceeds from an initial state in which the
language model context is preserved. The decod-
ing process relies on an implicit application of
the glue grammar to connect the past and future
nodes. An visual example of this selection pro-
cess is given in Figure 2. In this example, the
neither the root of the tree (spanning t1t2t3t4t5t6)
nor its left child (spanning t1t2t3t4) are not able to
generate an output since they both span sequences
of words that would violate Lmin, which is 3 in
this example. The left child two levels down from
the root node spans only t1t2 and would leave 4
words untranslated, therefore it defines an accept-
able segmentation point.

Instead of forcing a monotonic decoding step in
the event of a failure to find a segmentation point
during the decoding, the hierarchical stream de-
coder directly eliminates hypotheses that would
lead to such a failure. The search process is con-
strained such that all parse trees that cover the first
word of the source sentence, must contain a sub-
tree that can give rise to a translation that does
not violate Lmin (constituents that can produce
translations cannot span more than Lmax − Lmin

words). Any search state that would violate this
constraint is not allowed to enter the chart. This
property is recursively propagated up the chart
during the parsing process ensuring that each entry
placed into the first column of the chart contains a
constituent that could be used to produce a trans-
lation.

This approach is more appealing than the forced
monotonic step in that it will also allow non-
monotonic translations that are guaranteed to be
usable. Similar to the phrase-based approach, in
some circumstances it may not be possible to pro-
duce a parse that does not violate Lmin, and only
in this rare case is the decoder allowed to violate
Lmin in order to guarantee maximum latency.
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(a) English-to-French.
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(b) English-to-Spanish.
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(c) English-to-Arabic.
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(d) English-to-Hebrew.
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(e) English-to-Russian.
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(f) English-to-Chinese.

Figure 3: Stream decoding performance for several language pairs. The baseline was the same hierar-
chical phrase-based decoder, but decoded in the usual manner sentence-by-sentence without the stream
decoding process. The baseline used the sentence segmentation provided by the corpus.

3 Experiments

3.1 Corpora

In all experiments, we used the TED1 talks
data sets from the IWSLT2014 campaign. We
evaluated on English-to-Spanish, and English-to-
Chinese translation using the same data sets that
were used in (Finch et al., 2014). These pairs were
chosen to include language pairs with a relatively
monotonic translation process (English-Spanish)
and (English-French), and also language pairs that
required a greater amount of word re-ordering for

1http://www.ted.com

example (English-Chinese). The Chinese corpus
was segmented using the Stanford Chinese word
segmenter (Tseng et al., 2005) according to the
Chinese Penn Treebank standard.

3.2 Experimental Methodology
Our stream decoder was implemented within the
framework of the AUGUSTUS decoder, a hierar-
chical statistical machine translation decoder (Chi-
ang, 2007) that operates in a similar manner to the
moses-chart decoder provided in the Moses ma-
chine translation toolkit (Koehn et al., 2007). The
training procedure was quite typical: 5-gram lan-
guage models were used, trained with modified
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English input stream:
... we want to encourage a world of creators of inventors

of contributors because this world that we live in this
interactive world is ours ...

Sequence of translated segments:

Segment 1: queremos [we want to]
Segment 2: animar a un mundo de [encourage a world of]
Segment 3: creadores de inventores [creators of inventors]
Segment 4: de colaboradores [of collaborators]
Segment 5: porque este mundo [because this world]
Segment 6: en el que vivimos [in which we live]
Segment 7: este interactiva mundo [this interactive world]
Segment 8: es la nuestra [is ours]

Figure 4: Example translation segmentation from the English-Spanish task (Lmax = 8 and Lmin = 4).

Kneser-Ney smoothing; MERT (Och, 2003) was
used to train the log-linear weights of the models;
the decoding was performed with a distortion limit
of 20 words.

To allow the results to be directly comparable to
those in (Finch et al., 2014), the talk level BLEU
score (Papineni et al., 2001) was used to evaluate
the machine translation quality in all experiments.

3.3 Results

The results for decoding with various values of
the latency parameters are shown in Figure 3 for
English-French, English-Spanish, English-Arabic,
English-Hebrew, English-Russian and English-
Chinese. Overall the behavior of the system was
quite similar in character to the published results
for phrase-based stream decoding for English-
Spanish (Kolss et al., 2008b; Finch et al., 2014).
The hierarchical system seemed to be more sen-
sitive to small values of minimum latency, and
less sensitive to larger values. The results for
the more challenging English-Chinese pair were
more surprising. In (Finch et al., 2014), the per-
formance of the phrase-based decoder suffered as
expected in comparison to pairs of European lan-
guages. This was in line with the increase in dif-
ficulty of the task due to word order differences.
However, in comparison to prior results published
on the phrase-based stream decoder, the hierarchi-
cal stream decoder seems less affected by the dif-
ferences between these languages; the curves are
higher at the optimal values of minimum latency,
and seem less sensitive to its value. The character
of the results appears to be very similar to those
from English-Spanish. This result is encouraging
and suggests that the hierarchical method may be
better suited to interpreting between the more dif-

ficult language pairs. Figure 4 shows the segmen-
tation given by the system with Lmax = 8 and
Lmin = 4, on a sequence of English words which
is a subsequence of an unseen test stream of words
being decoded.

4 Conclusion
In this paper we propose and evaluate the first hi-
erarchical phrase-based steam decoder. The stan-
dard hierarchical phrase-based decoding process
generates from the source in left-to-right order,
making it naturally suited for incremental decod-
ing. The hierarchical decoder organizes the search
process in a chart which can be directly exploited
to perform stream decoding. The proposed hier-
archical stream decoding process only searches a
subset of the search space that is capable of gen-
erating useful partial translation hypothesis. This
eliminates the necessity for the forced monotonic
step necessary in the phrase-based counterpart.
Hypotheses that are not useful are discarded, and
are therefore not able to compete with useful hy-
potheses in the search. Additionally, a benefi-
cial side-effect of the pruning of the search space
is that decoding speed increased by a factor of
approximately 8 over the baseline sentence-by-
sentence decoder. Looking to the future, one im-
portant benefit of taking a hierarchical approach is
that the re-ordering process is made explicit, and
in further research we wish to explore the possi-
bility of introducing of new interpretation-oriented
rules into the stream decoding process.
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Abstract

In syntax-based machine translation, rule
selection is the task of choosing the cor-
rect target side of a translation rule among
rules with the same source side. We de-
fine a discriminative rule selection model
for systems that have syntactic annota-
tion on the target language side (string-
to-tree). This is a new and clean way to
integrate soft source syntactic constraints
into string-to-tree systems as features of
the rule selection model. We release our
implementation as part of Moses.

1 Introduction

Syntax-based machine translation is well known
for its ability to handle non-local reordering.
Syntax-based models either use linguistic annota-
tion on the source language side (Huang, 2006;
Liu et al., 2006), target language side (Galley et
al., 2004; Galley et al., 2006) or are syntactic in
a structural sense only (Chiang, 2005). Recent
shared tasks have shown that systems integrat-
ing information on the target language side, also
called string-to-tree systems, achieve the best per-
formance on several language pairs (Bojar et al.,
2014). At the same time, soft syntactic features
significantly improve the translation quality of hi-
erarchical systems (Hiero) as shown in (Marton et
al., 2012; Chiang, 2010; Liu et al., 2011; Cui et
al., 2010). Improving the performance of string-
to-tree systems through the integration of soft syn-
tactic constraints on the source language side is
therefore an interesting task.

So far, all approaches on this topic include soft
syntactic constraints into the rules of string-to-tree
(Zhang et al., 2011; Huck et al., 2014) or string-
to-dependency (Huang et al., 2013) systems and
define heuristics to determine to what extent these
constituents match the syntactic structure of the

source sentence. We propose a novel way to in-
tegrate soft syntactic constraints into a string-to-
tree system. We define a discriminative rule se-
lection model for string-to-tree machine transla-
tion. We consider rule selection as a multi-class
classification problem where the task is to select
the correct target side of a rule given its source
side as well as contextual information about the
source sentence and the considered rule. So far,
such models have been applied to systems without
syntactic annotation on the target language side.
He et al. (2008), He et al. (2010) and Cui et al.
(2010) apply such rule selection models to hier-
archical machine translation, Liu et al. (2008) to
tree-to-string systems and Zhai et al. (2013) to
systems based on predicate argument structures.
When target side syntactic annotations are taken
into account, the task of rule selection has to be
reformulated (see Section 2) while the same type
of model can be used in approaches without target
annotations. This work is the first attempt to define
a rule selection model for a string-to-tree system.
We make our implementation publicly available as
part of Moses.1

We show in Section 2 that string-to-tree rule se-
lection is different from the hierarchical case ad-
dressed by previous work and define our rule se-
lection model. In Section 3 we present the train-
ing procedure before providing a proof-of-concept
evaluation in Section 4.

2 Rule selection for string-to-tree SMT

2.1 String-to-tree machine translation

We present string-to-tree machine translation as
implemented in Moses (which is the framework
that we use). String-to-tree rules have the form
X/A → 〈α, γ,∼〉. On the source language side,

1We use the string-to-tree component of Moses (Williams
and Koehn, 2012; Hoang et al., 2009) in which we integrate
the high-speed classifier Vowpal Wabbit http://hunch.
net/˜vw/.
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Ces cellules présentent plusieurs caractéristiques spécifiques

S

NP

DT

These

NNS

cells

VP

VBP

present

NP

JJ

several

JJ

specific

NNS

characteristics

Ces robots ont des comportements caractéristiques similaires

S

NP

DT

These

NNS

robots

VP

VBP

have

NP

JJ

similar

JJ

characteristic

NNS

behaviours

Figure 1: Word-aligned sentence pairs with target-
side parse.

Diverses caractéristiques importantes

JJ

Various

JJ

important

Figure 2: Partial translation during decoding.

all non-terminals have the unique label X while
on the target language side non-terminals are an-
notated with syntactic labels nt ∈ Nt. The left-
hand side X/A consists of source and target non-
terminals. In the right hand side (rhs), α is a string
of source terminal symbols and the non-terminal
X . The string γ consists of target terminals and
non-terminals nt ∈ Nt. The alignment∼ is a one-
to-one correspondence between source and target
non-terminal symbols. String-to-tree rules are ex-
tracted from pairs of strings and trees as exempli-
fied in Figure 1. Rules r1 and r2 are example rules
extracted from this data.

(r1) X/NP → 〈X1 caractéristiques X2, JJ1 JJ2 charac-
teristics 〉

(r2) X/NP → 〈 X1 caractéristiques X2, NNS1 charac-
teristic JJ2 〉

During decoding, CYK+ chart parsing (Chappe-
lier et al., 1998) with cube pruning and language
model scoring is performed on an input sentence
such as F below. Each time a rule is applied to
the input sentence, candidate target trees are built.
Figure 2 shows the partial translations built after
the segments Diverses and importantes have been
decoded. Given these partial translations, rule r1
can be applied in a further decoding step.

F (Diverses)X1 caractéristiques (importantes)X2 n’ont
pas été prises en compte.
(Various)X1 characteristics (important)X2 were not
considered.

2.2 String-to-tree rule selection

Rule selection is the problem of selecting the rule
with the correct target side among rules with the
same source side. For hierarchical machine trans-
lation (Hiero), the rule selection problem consists
of choosing, among r3 and r4, the rule that cor-
rectly applies to F (r3 in our example).

(r3) X/X→ 〈X1 caractéristiquesX2, X1 X2 characteris-
tics 〉

(r4) X/X → 〈 X1 caractéristiques X2, X1 characteristic
X2 〉

Rule selection models disambiguate between these
rules using context information about the source
sentence and the shape of the rules.

In string-to-tree machine translation, the rule
selection problem is different. Because the decod-
ing process is guided by target side syntactic an-
notation, partial trees built during decoding must
be considered when new rules are applied. For
instance, when a rule is selected to translate sen-
tence F given the partial translations in Figure 2,
then the non-terminals in the target side of this
rule must match the constituents selected so far.
Consequently, rules r1 and r2 (Section 2.1) are
not competing during rule selection.2 Competing
rules for r1 would be r5 and r6 below.

(r5) X/NP → 〈 X1 caractéristiques X2, JJ1 properties
JJ2 〉

(r6) X/NP → 〈 X1 caractéristiques X2, JJ1 JJ2 fea-
tures 〉

For consistency with decoding, we redefine the
rule selection problem for the string-to-tree case.
In this setup, it is the task of disambiguating rules
with the same source side and aligned target non-
terminals. As a consequence, our rule selection
model (presented next) is not only normalized over
the source rhs of the rules but also takes target
non-terminals into account. The default rule scor-
ing procedure for string-to-tree rules implemented
in Moses uses the same normalization as we do.
However, Williams and Koehn (2012) propose to
normalize string-to-tree rules over the source rhs
only.

2This is because their target side non-terminals are differ-
ent.
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Figure 3: French sentence with input parse tree.

2.3 Rule selection model

We denote string-to-tree rules with X/A →
〈α, γ,∼〉, as in Section 2.1. By Ñtt, we de-
note target non-terminals with their alignment to
source non-terminals.3 C(f, α) is context infor-
mation in the source sentence f and the source
side α. R(α, γ) represents features on string-to-
tree rules. The rule selection model estimates
P (γ | C(f, α), R(α, γ), α, Ñtt) and is normal-
ized over the set G′ of candidate target sides γ′ for
a given α and Ñtt. The function GTO : α → G′
generates, given the source side α and target non-
terminals Ñtt , the set G′ of all corresponding
target sides γ′. The estimated distribution can be
written as:

P (γ | C(f, α), R(α, γ), α, Ñtt) =

exp(
∑
i λihi(C(f, α), R(α, γ), α, Ñtt)))∑

γ′∈GTO(α,Ñtt)
exp(

∑
i λihi(C(f, α), R(α, γ′), α, Ñtt))

In the same fashion as (Cui et al., 2010) do for
the hierarchical case, we define a global rule selec-
tion model instead of a model that is local to the
source side of each rule.

To illustrate the feature templates C(f, α) and
R(α, γ) of our rule selection model, we suppose
that rule r1 has been extracted from the French
sentence in Figure 3. The syntactic features are:

- Does α match a constituent: no match
- Type of matched constituent: None
- Lowest parent of unmatched constituent: NP
- Span width covered by α: 3

The rule internal features are:

- Source side α: X1 caractéristiques X2 (one feature)
- Target side γ: JJ1 JJ2 characteristics
- Aligned terminals in α and γ: car-

actéristiques↔characteristics
- Aligned non-terminals in α and γ: X1↔JJ1 X2↔JJ2
- Best baseline translation probability: Most Frequent

Our rule selection model is integrated in the
Moses string-to-tree system as an additional fea-
ture of the log-linear model.

3For rule r1,r5 and r6, Ñtt would be JJ1 and JJ2.

3 Model Training

We create training examples using the rule extrac-
tion procedure in (Williams and Koehn, 2012).4

We begin by generating a rule-table using this pro-
cedure. Then, each time a rule r : X/A →
〈α, γ,∼〉 can be extracted from the training data,
we generate a new training example. The target
side γ of the extracted rule is a positive instance
and gets a loss of 0. To generate negative sam-
ples, we collect all rules r2, . . . , rn that have the
same source language side as r as well as the same
aligned target non-terminals Ñtt. Each of these
rules is a negative example and gets a cost of 1.
As an example, suppose that rule r1 introduced in
Section 2.1 has been extracted from the training
example in Figure 1. The target side ”JJ1 JJ2

characteristics” is a correct class and gets a cost of
0. The target side of all other rules having the same
source side and aligned target non-terminals, such
as rule r5 and r6, are incorrect classes.

For model training, we use the cost-sensitive
one-against-all-reduction (Beygelzimer et al.,
2005) of Vowpal Wabbit (VW).5 We avoid over-
fitting to training data by employing early stop-
ping once classifier accuracy decreases on a held-
out dataset.6

4 Experiments

4.1 Experimental Setup

Our baseline system is a syntax-based system with
linguistic annotation on the target language side
(string-to-tree). We use the version implemented
in the Moses open source toolkit (Hoang et al.,
2009; Williams and Koehn, 2012) with standard
parameters. Rule extraction is performed as in
(Galley et al., 2004) with rule composition (Gal-
ley et al., 2006; DeNeefe et al., 2007). Non-lexical
unary rules are removed (Chung et al., 2011) and
scope-3 pruning (Hopkins and Langmead, 2010)
is performed. Rule scoring is done using relative
frequencies normalized over the source rhs and
aligned non-terminals in the target rhs. The con-
trastive system is the same string-to-tree system
but augmented with our rule selection model as a
feature of the log-linear model.

4Which is based on (Galley et al., 2004; Galley et al.,
2006; DeNeefe et al., 2007).

5Specifically, the label dependent version of Cost Sensi-
tive One Against All which uses classification.

6We use the development set which is also used for MIRA
tuning.
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System science medical news

Baseline 34.06 49.87 18.35
Contrastive 34.36 49.57 18.59

Table 2: String-to-tree system evaluation results.

We evaluate the baseline and our global model
on three domains: (1) news, (2) medical,
and (3) science. The training data for news
is taken from Europarl-v4. Development and
test sets are from the news translation task of
WMT 2009 (Callison-Burch et al., 2009). For
medical we use the biomedical data from
EMEA (Tiedemann, 2009). Since this is a parallel
corpus only, we first removed duplicate sentences
and then constructed development and test sets by
randomly selecting sentence pairs. As training
data for science we use the scientific abstracts
data provided by Carpuat et al. (2013). Table 1
gives an overview of the corpora sizes.

Berkeley parser (Petrov et al., 2006) is used to
parse the English side of each parallel corpus (for
string-to-tree rule extraction) as well as for pars-
ing the French source side (for feature extraction).
We trained a 5-gram language model on the En-
glish side of each training corpus using the SRI
Language Modeling Toolkit (Stolcke, 2002). We
train the model in the standard way and gener-
ate word alignments using GIZA++. After train-
ing, we reduced the number of translation rules
by only keeping the 30-best rules with the same
source side according to the direct rule transla-
tion rule probability. Our rule selection model was
trained with VW. All systems were tuned using
batch MIRA (Cherry and Foster, 2012). We mea-
sured the overall translation quality with 4-gram
BLEU (Papineni et al., 2002), which was com-
puted on tokenized and lowercased data for all sys-
tems. Statistical significance is computed with the
pairwise bootstrap resampling technique of Koehn
(2004).

4.2 Results

Table 2 displays the BLEU scores for our experi-
ments. On science and news, small improve-
ments are achieved while for medical a small
decrease is observed. None of these differences is
statistically significant.

An analysis of the system outputs for each do-
main showed that the small improvements are due
to the fact that in string-to-tree systems there is not

enough ambiguity between competing rules dur-
ing decoding. To support this conjecture, we first
analyzed rule diversity by looking at the negative
samples collected during training example acqui-
sition. In a second step, we compared the results
of the string-to-tree systems in Table 2 with a sys-
tem where the translation rules are much more am-
biguous. To this aim, we applied our approach to a
hierarchical system in the same line as (Cui et al.,
2010). Finally, we further tested the ability of our
system to disambiguate between competing rules
by training a model on the concatenation of all do-
mains.

4.3 Analysis of Rule Diversity
The amount of competing rules during decoding
can be estimated by looking at the negative sam-
ples collected for each training example. This
analysis showed that the diversity of rules contain-
ing non-terminal symbols is limited. We present
rules q1 to q3 (taken from science) to illustrate
the poor diversity observed in our training exam-
ples.

(q1) X/PP → 〈 à X1 X2 éventail X3, to DT1 JJ2 variety
PP3 〉

(q2) X/PP → 〈 à X1 X2 éventail X3, to DT1 JJ2 range
PP3 〉

(q3) X/PP → 〈 à X1 X2 éventail X3, to DT1 JJ2 array
PP3 〉

Rules q1 to q3 are the only rules with source side à
X1 X2 éventailX3. This number is very low given
that the source side contains three non-terminal
symbols out of which two are adjacent. More-
over, the difference between these rules is limited
to the lexical translation of éventail. This lack
of diversity is due to the constraint that compet-
ing string-to-tree rules must have the same aligned
non-terminal symbols, which is taken into account
when collecting negative samples. In other words,
the ambiguity between translation rules in a string-
to-tree system is heavily restricted by the target
side syntax.

The observed lack of diversity could be min-
imized by allowing rules with the same source
rhs to have different aligned target non-terminals.
In this perspective, rule scoring should be done
by normalizing over the source rhs only as
in Williams and Koehn (2012). The rule selection
model in Section 2.3 should then be redefined and
normalized over all rules with the same source rhs.
Another way to improve rule diversity would be
to remove target non-terminals and use preference
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news medical science

training data 4th EuroParl corpus (Tiedemann, 2009) (Carpuat et al., 2013)
training data size 149,986 sentence pairs 111,081 sentence pairs 139,199 sentence pairs
development size 1,025 sentences 2,000 sentences 2,907 sentences

test size 1,026 sentences 1,999 sentences 3,915 sentences

Table 1: Overview of the sizes of the three domains.

System science medical news

Baseline 31.22 48.67 17.28
Contrastive 32.27 49.66 17.38

Table 3: Hierarchical system evaluation results.
The results in bold are statistically significant im-
provements over the Baseline (at confidence p <
0.05).

grammars as in Huck et al. (2014).

4.4 Comparison with Hierarchical Rule
Selection

We applied our approach in a hierarchical phrase-
based setting (Hiero). To this end, we trained 3 Hi-
ero baseline systems and 3 Hiero systems aug-
mented with our rule selection model on the data
given in Section 4.1. The results of these ex-
periments are shown in Table 3. Our augmented
system largely outperforms the baselines. Inter-
estingly, hierarchical rule selection significantly
helps on the medical and scientific domain but
still yields results that are significantly lower than
those of the string-to-tree systems. This indicates
that systems with target side syntax better disam-
biguate than hierarchical models with improved
rule selection. Overall, we find the results of both
types of systems promising and we will consider
how to introduce more diversity into the rules of
string-to-tree systems.

4.5 Concatenation of Training Data

In order to further evaluate the ability of our model
to disambiguate string-to-tree rules, we trained a
system using the concatenated training data of all
3 domains as presented in Section 4.1. This global
model was then used to tune and decode using the
development and test data of each domain. The
results in Table 4 show that even on concatenated
data our rule selection model does not improve
over the baseline.

System science medical news

Baseline 33.78 49.48 19.12
Contrastive 33.87 49.14 19.00

Table 4: String-to-tree system evaluation results
with concatenated training data.

5 Conclusion and future work

We presented the first attempt to define a rule se-
lection model with syntactic features for string-to-
tree machine translation. We have shown that in
order to be applied to the string-to-tree case, the
rule selection problem must be redefined. An ex-
tensive evaluation on French-English translation
tasks for different domains has shown that rule se-
lection cannot significantly improve string-to-tree
systems. An analysis of rule diversity and an em-
pirical comparison with hierarchical rule selection
indicate that the low improvements are due to the
fact that the ambiguity between string-to-tree rules
is too small to be improved with a rule selection
model. In future work, we will use different tech-
niques to improve the diversity of the string-to-tree
rules considered during decoding in our system.
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grateful to Hal Daumé III and Ales Tamchyna for
their ongoing support in the implementation of our
system. We also thank Andreas Maletti for his
shared expertise on tree grammars. This project
has received funding from the European Unions
Horizon 2020 research and innovation programme
under grant agreement No 644402 (HimL) and the
DFG grant Models of Morphosyntax for Statistical
Machine Translation (Phase 2), which we grate-
fully acknowledge.

References
Alina Beygelzimer, John Langford, and Bianca

Zadrozny. 2005. Weighted one-against-all. In

1099



AAAI, pages 720–725.

Ondrej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve
Saint-Amand, Radu Soricut, Lucia Specia, and Aleš
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Abstract
Language use is known to be influenced
by personality traits as well as by socio-
demographic characteristics such as age or
mother tongue. As a result, it is possible to au-
tomatically identify these traits of the author
from her texts. It has recently been shown that
knowledge of such dimensions can improve
performance in NLP tasks such as topic and
sentiment modeling. We posit that machine
translation is another application that should
be personalized. In order to motivate this, we
explore whether translation preserves demo-
graphic and psychometric traits. We show that,
largely, both translation of the source training
data into the target language, and the target test
data into the source language has a detrimen-
tal effect on the accuracy of predicting author
traits. We argue that this supports the need for
personal and personality-aware machine trans-
lation models.

1 Introduction
Computational personality recognition is garnering in-
creasing interest with a number of recent workshops
exploring the topic (Celli et al., 2014; Tkalčič et al.,
2014). The addition of personality as target traits in the
PAN Author Profiling challenge in 2015 (Rangel et al.,
2015) is further evidence. Such user modeling – when
performed on text – is built on a long-standing un-
derstanding that language use is influenced by socio-
demographic characteristics such as age, gender, edu-
cation level or mother tongue and personality traits like
agreeableness or openness (Tannen, 1990; Pennebaker
et al., 2003).

In this work we explore multilingual user modelling.
The motivation is not only to enable modeling in multi-
ple languages, but also to enable modeling multilingual
users who may express different sides of their personal-
ity in each language. One way to address multilingual-
ity in this context is to create models separately in each
language, and then fuse the resulting models. How-
ever, labelled data of this nature, particularly in non-
English languages, is often not available. Personality

∗ This work was mostly done while the first author was
at Xerox Research Centre Europe.

labelling is time consuming, requiring the completion
of psychometric questionnaires which may be consid-
ered invasive by many. An alternative is the use of ma-
chine translation (MT) to bootstrap corpora in resource
poor languages, and to translate the user’s content into
a single language before modeling. Translated text, ei-
ther manually or automatically generated, is known to
have different characteristics than native text. Yet, MT
was shown to be of use within traditional NLP tasks
such as sentiment analysis (Balahur and Turchi, 2012).
We explore the utility of MT for classification of demo-
graphic and personality traits.

MT models, even domain-specific, are user-generic.
Thus, the linguistic signals of user traits which are con-
veyed in the original language may not be preserved
over translation. In other words, the attributes on which
we wish to rely for modelling may be lost. This con-
cern is perhaps most observable with gender, a trait of
the speaker that is encoded in the morphology of many
languages, though not in English. Gendered translation
was the topic of research for many years. However, the
gender of the author is largely ignored by MT systems,
and specifically statistical ones, that would often arbi-
trarily (or rather statistically-based) translate into one
gender form or another. Other demographic and per-
sonality traits have not yet been investigated.

One way to address this concern is personalized
translation, or author-aware translation.1 The first step
toward this goal would be to consider the author traits
in the model. Such an approach has already shown to
be useful for several NLP tasks (Volkova et al., 2013;
Hovy, 2015). However, before embarking on this chal-
lenging task, we explore if the above concerns are
founded by addressing the research question: does MT
has an impact on the classification of demographic and
personality traits?

2 Background
Oberlander and Nowson (2006) motivated their study
of computational personality recognition by arguing
that automatically understanding an author’s person-
ality would permit the personalization of sentiment
analysis. Such personalized NLP has recently been

1In this work we investigate MT awareness of the author;
in (Mirkin and Meunier, 2015) we address the task of reader-
aware MT.
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explored by Volkova et al. (2013). They incorpo-
rated age and gender features for sentiment analysis,
and show improvements in three different languages.
Hovy (2015) extends this work to other languages and
NLP tasks. Using demographically-informed word em-
beddings, they show improvements in sentiment anal-
ysis, topic classification and trait detection. None of
these works, however, addressed cross-lingual issues.

Yet, personality projection goes beyond automatic
detection of traits – there is also human perception to be
considered. The casual reader may not be aware of per-
sonality related linguistic cues. Yet, studies have shown
that traits can be reliably detected following cold read-
ings of texts from unknown authors (Mehl et al., 2006;
Gill et al., 2012) without such explicit knowledge. Al-
though personality projection in different languages is
under-explored, it has been shown that the relationship
between language use and personality traits varies be-
tween domains (Nowson and Gill, 2014). Thus, while
it would seem that there are cues which translate di-
rectly between languages, this may not always be the
case. In English, for example, women tend to use first-
person pronouns such as “I” more than men (Newman
et al., 2008); but this does not guarantee a gender-based
usage difference for, say, “je” in French. Furthermore,
what happens with more subtle, language-specific in-
dicators of personality? For instance, Nowson (2006)
showed that use of contractions (e.g. don’t vs. do not)
is a marker for the Agreeableness trait. These different
forms do not naturally translate into other languages.
It is doubtful that even a human translator would al-
ways pay attention to such subtleties. In investigating
whether these cues are preserved when a text is trans-
lated, we are also beginning to address the question of
consistency in cues between languages.

MT systems do not explicitly consider demographic
or personality traits. Instead, they often exploit “in-
domain” data to create translation models that are
adapted for the domain of interest (Lu et al., 2007; Fos-
ter et al., 2010; Axelrod et al., 2011; Gong et al., 2012;
Mirkin and Besacier, 2014). The term “domain” has
a wide interpretation in the MT literature and may re-
fer to topic, dialect, genre or style (Chen et al., 2013).
However, to the best of our knowledge, MT domain
adaptation does not extend to consider demographic or
personality traits of the author. Gender in translation
has been researched extensively; in human translation
studies, it has been shown that the gender of transla-
tors impact the translation. In SMT, phrase-based mod-
els (Koehn et al., 2003) can correctly pick-up trans-
lations of gender-inflected words, and rule-based MT
systems and factored models (Koehn and Hoang, 2007)
provide more explicit ways for gender translation. Yet,
most SMT systems are unaware of the gender of the
author, neither in the training nor in the test data, and
are therefore unable to adapt their translation beyond
the local inflectional level; in particular when no such
evidence exists, as in English. To a much greater ex-

tent, this is the case with other demographics, such as
age, and with personality traits.

3 Methodology
3.1 Hypothesis
The hypothesis of our broader vision is that personal-
ized MT or author-aware translation is an important ne-
cessity. We believe the human understanding of trans-
lated text (of its explicit and implicit meanings, of its
author and of the full context) would be improved if
author traits are better conveyed.

In order to motivate this future work, this paper ex-
plores a supporting hypothesis: that author traits are
not conveyed accurately under machine translation. We
assess this by investigating whether trait detection per-
forms as well on translated data as on native text.

3.2 Experimental Framework
To explore our hypothesis, we require data in multiple
languages which is labelled with socio-demographic or
personality traits. Using English as the base language
(as typically the most resource-rich language in NLP
studies), we perform three comparative experiments on
several non-English (“foreign”) corpora. In these ex-
periments we train a classification model:

1. Using only foreign language data. This provides a
baseline, as no translated data is used.

2. Augmenting the foreign training data with English
data translated into the foreign language. Here,
the goal is to assess a scenario where translations
from a resource-rich language supplement scarce
training data in the foreign language, under the as-
sumption that more training data can be beneficial.

3. Translating the foreign test data into English and
classifying it using a model trained on the English
data. This allows us to explore another practical
scenario, where an English model already exists
and we wish to use it to classify data from another
language for which we do not have a robust model.

For this task we use the data from the 2015 PAN
workshop (Rangel et al., 2015) which is labelled for
author gender and personality traits. For more details
see Section 4.1. We also wish to explore if any af-
fect was due strictly to the use of MT or to translation
(or language change) in general. The PAN corpus is
multi-lingual but does not contain parallel data. Such
parallel corpora, however, are not typically labelled
with the type of author information we wish to inves-
tigate. Therefore we required such a corpus to which
we could easily add labels. For these we used a selec-
tion of TED talks which we labelled for gender (see
Section 4.2). The full details of our approach to text
processing, translation and classification can be found
in our technical paper at the PAN workshop (Nowson
et al., 2015); in the interests of space a compressed ver-
sion is presented here.
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3.3 Preprocessing and feature extraction

We use the multilingual parser described by Ait-
Mokhtar et al. (2001) to preprocess the texts and ex-
tract a wide range of features. The parser has been cus-
tomized to handle social media data, e.g. by detecting
hashtags, mentions, and emoticons. For English, we
have integrated a normalization dictionary by Han et al.
(2012) in the preprocessing. The English and French
grammars also include a polarity lexicon to recognize
sentiment bearing words or expressions. The features
we extract include: 1-, 2-, 3-grams of surface, nor-
malized and lemmatized forms; part-of-speech tagged
forms, and n-grams of POS; named entities (places,
persons, organization, dates, time expressions), emoti-
cons, hashtags, mentions and URLs.

3.4 Learning framework

To train classification models we first prune features
with a frequency threshold. Next, the remaining set
of features is compressed using truncated singular
value decomposition (SVD). SVD (Golub and Reinsch,
1970) is a widely used technique in sparse dataset sit-
uations. This method copes with noise present in the
data by extracting the principal dimensions describing
the data and projecting the data to a latent space. In the
truncated version, a low-rank approximation, all but the
top-k dimensions are removed. The result is a dense,
low-dimension representation of the data. Finally, en-
semble models (Schapire, 1990; Dietterich, 2000) are
used to predict trait values: for gender, we use the ma-
jority vote of 10 classifiers; for each personality trait,
we use the mean of 10 regression estimators.

3.5 Machine translation models

We created standard machine translation models be-
tween English and each one of Spanish, Italian, French
and Dutch. The details are described below.

Parallel corpora We wished to use the same setting
for all language pairs. To that end, we chose parallel
corpora that are available for all of them, namely Eu-
roparl (Koehn, 2005)2 and WIT3 (Cettolo et al., 2012),
from the IWSLT 2014 evaluation campaign (Cettolo et
al., 2014). WIT3, consisting of spoken-language tran-
scripts, represents an in-domain corpus for the TED
dataset and a “near-domain” for PAN. The data con-
sisted of approximately 2 million parallel sentences for
each language pair, with 50 million tokens for each lan-
guage. The Europarl corpus comprised more than 90%
of that data. The two corpora were concatenated to cre-
ate the training data for the MT models.

Translation System Moses (Koehn et al., 2007), an
open-source phrase-based MT system,3 was used to
train translation models and translate the data.

2Version 7, www.statmt.org/europarl
3We used version 3.0, downloaded on 16 Feb 2015 from

www.statmt.org/moses.

Preprocessing We used the standard Moses tools to
preprocess the data, including tokenization, lowercas-
ing and removal of sentence pairs where at least one of
the sentences is empty or longer than 80 tokens.

Recasing and Language models We used
SRILM (Stolcke, 2002) version 1.7.1 to train 5-
gram language models on the target side of the parallel
corpus, with modified Kneser-Ney discounting (Chen
and Goodman, 1996). A recasing model was trained
from the same corpus, with a 3-gram KenLM language
model (Heafield, 2011).

Tuning We tuned the translation models using
MERT (Och, 2003), using the development set of the
above mentioned campaign (dev2010), consisting of
887 sentence pairs for each language pair.

Translation and post-processing Each of the tweets
of the PAN training set was preprocessed in the same
fashion as the training data. It was then translated with
the trained model of the corresponding language pair,
and finally underwent quick post-processing, namely
recasing and detokenization.

4 Data
Personality-tagged datasets in multiple languages are
scarce. We used two datasets, with content from twitter
and TED talks, as described in this section.

4.1 PAN
The first corpus we used was the data of the PAN 2015
Author Profiling task (Rangel et al., 2015), drawn from
Twitter (PAN15). For each user, the data consists of
tweets (average n = 100) and gold standard labels:
gender (Male or Female), and personality. The labels
are provided by the author, with scores on five traits
being calculated via self-assessment responses to the
short Big 5 test, BFI-10 (Rammstedt and John, 2007)),
then normalized between -0.5 and +0.5. Table 1 shows
the volume of data per language for the training set.

Language Authors Tweets
English (en) 152 14166
Spanish (es) 100 9879
Italian (it) 38 3687
Dutch (nl) 34 3350

Table 1: Number of authors and tweets across the four
languages of the PAN dataset.

4.2 TED
The PAN15 data allows us to assess personality projec-
tion in multilingual data. In addition to exploring au-
tomatic translation, we wish to compare with manual
translation. We turned to TED talks4 for such com-
parative evaluation. We chose the English-French lan-

4www.ted.com
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guage pair, because French is not a language in PAN15,
but also due to the difficulties in obtaining such data, as
described below.

4.2.1 TED English-French
We use data of the MT track of the IWSLT 2014 Evalu-
ation Campaign, which includes parallel corpora from
transcripts of TED talks. The English-French (en-fr)
corpus consists of 1415 talks, with approximately 190k
sentence pairs and 3 million tokens for each of the
source and target sides (before preprocessing). We an-
notated the gender of each speaker with a simple web
interface. Any talk with multiple speakers or where the
majority is not a speech (e.g. a performance) is dis-
carded. After discarding 59 talks, 1012 (75%) were
annotated as male and 344 (25%) as female.5

4.2.2 TED French-English
The WIT3 data seems to also include data in the fr-en
direction. However, in practice, TED hosts only talks
in English and all foreign to English corpora were col-
lected from the translated versions of the site. We there-
fore turned to TEDx6 for fr-en data. TEDx are in-
dependent TED-style events, often including talks in
languages other than English. Unlike en-fr, there is
no easily accessible parallel data available for fr-en,
where the source is native French. We applied the fol-
lowing procedure to collect the necessary data. We
used the Google YouTube Analytics API7 to search
for videos of talks in French. We have extracted the
list of TEDx events in France and their dates via
www.tedxenfrance.fr.8 Each event-name and
year is used as a query in YouTube, e.g. “TEDx Paris
2011”. For each talk, we download the manual French
and English subtitles, i.e. the transcript and the trans-
lation, respectively. These files were annotated using
the same process and criteria described above. This re-
sulted with a small corpus (TED61fr−en) of 61 talks
of which 32 are annotated as male and 29 as female.

TED61en In order to account for any potential effect
of length, we created a subset of the en-fr corpus, that
is of the same size of the fr-en dataset. We matched
files from the French side of the en-fr corpus to each
of those in the fr-en for gender and length (in tokens).
The French en-fr files were truncated after the nearest
line break to the desired size; the corresponding En-
glish en-fr files were truncated at the same point.

5 Experiments
It has been shown that standard approaches to gender
classification on English texts can be sub-optimal for
non-English language data (Ciot et al., 2013). How-
ever, state-of-the-art classification results are not our
focus; rather, our intention is to understand the impact

5Annotation data is available at cm.xrce.xerox.com
6www.ted.com/watch/tedx-talks
7developers.google.com/youtube
8Accessed on 23/2/15.

of translation on classification of socio-demographic
and personality traits. Therefore, we fix our models
with a set of parameters selected via cross-validation
(CV) on the native language: the occurrence threshold
is set to 5 and the SVD dimensionality to 500.

5.1 PAN

For each of the three non-English languages of PAN15
we train classification models as explained in Section 3:
using the original training data, adding training data
translated from English, and translating the test data
into English to use the English-trained model.

Results can be seen in Table 2. For the majority of
the traits, the native results outperform both translation
settings, in some cases by considerable margin. The
assumption posited earlier that more training data is be
beneficial appears not to have held up in this context.
The alternative scenario seems to be doing even worse.

The most distinct results are perhaps the accuracy
of gender prediction (for which each corpora is bal-
anced, thus a baseline of 50%). One explanation may
be that the translation is done from and into English,
which does not express gender via morphology, in con-
trast to Italian and Spanish. An interesting exception is
that adding translated English texts into Dutch consid-
erably improves performance. This may be explained
by the lesser expression of gender in Dutch morphol-
ogy, much like English. In this instance it appears
that adding more data – when translation is between
two gender-agnostic languages – does indeed help. For
both Italian and Dutch, English adds a very substantial
amount of data; the outcomes, however, are opposite.

5.2 TED

Though the TED data is currently only labelled for
gender, it allows us to make comparisons between man-
ual and machine translation. First we explored if there
were gender signals in the English corpus which a clas-
sifier could uncover. For this, we performed leave-one-
out CV on each of the following three versions: native
English, manually and machine translated into French.
The results, presented in Table 3, show that some gen-
der signal is lost between manual and machine trans-
lation. In the manual translation, the translator, who
is aware of the speaker’s gender is able to reflect that
through morphological and lexical cues, that exist in
French much more than in English. The MT’s abil-
ity to project these features properly was more limited.
Note that the results between English and French are
not directly comparable, since any text classification on
different languages may yield different results.

One interesting observation is the low performance
relative to the baseline and that of PAN15. Though we
do not discuss this in detail here, we suspect this may
be an effect of genre muting (Argamon et al., 2003;
Herring and Paolillo, 2006).

Next, we explore another setting: The English
corpus is modified to exclude the speakers of the
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Training Test Gender (%) Extraverted Stable Agreeable Conscientious Open
en en 80.5 0.029 0.050 0.030 0.021 0.021
es es 82.8 0.023 0.035 0.024 0.024 0.025
es + en→es es 75.1 0.031 0.042 0.024 0.021 0.020
en es→en 62.6 0.032 0.048 0.021 0.027 0.030
it it 80.0 0.009 0.028 0.020 0.010 0.019
it + en→it it 59.1 0.013 0.028 0.016 0.014 0.016
en it→en 61.7 0.031 0.063 0.020 0.024 0.025
nl nl 67.6 0.008 0.014 0.014 0.007 0.010
nl + en→nl nl 74.0 0.011 0.032 0.020 0.015 0.012
en nl→en 53.2 0.028 0.076 0.018 0.017 0.023

Table 2: Cross-validation results on PAN15 for the settings as per Section 5.1. Gender is measured in accuracy; the
remaining traits as mean squared error. Bold highlights the best result. English results are included for comparison.

Corpus English →French
Native 63.1
Manual 66.6
MT 62.7

Table 3: Gender CV accuracy (%) on the English TED
dataset, when translated manually and automatically.

Corpus Accuracy (%)
TED61en 58.3
TED61fr−en (Manual) 60.0
TED61fr−en (MT) 52.1

Table 4: Results when classifying gender on native,
manually translated and machine translated English
texts, from 61 TEDx and TED talks.

TED61en dataset (leaving n = 1295 speakers), and
this data is used to train a classification model. We
then test our three smaller English datasets on this
model: TED61en, TED61fr−en manual translated
and TED61fr−en machine translated. The results in
this case are more comparable since we use the same
model for all datasets and since their sizes are simi-
lar. The classification results are presented in Table 4.
Again, signal is lost in automatic translation in com-
parison to manual translation. Interestingly, the man-
ual translation scores higher than the native English, as
if the translators are adding more gender indications to
the text. Further analysis is required to clarify whether
this is indeed a consequence of the manual translation
or an artifact of the setting.

Author-aware translation may be viewed as a
human-centric domain adaptation task: we can con-
sider the two genders as two different domains, and
apply domain adaptation techniques to train a better-
suited model for each one. To assess this approach, we
conducted a set of experiments with standard domain
adaptation techniques for en-fr, including: separating
the translation models and the language models by gen-
der in various configurations, using only the target gen-
der’s training data from WIT3 (on top of the Europarl
data), and separating tuning sets by gender. We split

the IWSLT test sets by gender, and applied on each part
the respective gender’s model before concatenating the
translations to compute a BLEU (Papineni et al., 2002)
score. Unfortunately, none of these models showed a
significant improvement, if at all, in comparison to our
baseline that used both genders together. This suggests
that alternative methods should be used for our task.
We cannot say, however, that these results are conclu-
sive; specifically, one difficulty in our experiments was
obtaining enough female data, due to the relative small
number of female speakers in WIT3.

6 Discussion

We are interested in understanding the impact which
the consideration of author traits might have on au-
tomatic translation, in order to preserve projection of
those traits in a target language. However, it is first nec-
essary to understand the inverse: the effect of current
translation approaches on the computational recogni-
tion of these traits. In the initial studies reported here
we have explored two corpora: one of social media
data; one of scripted speeches. Although linguistic sig-
nals of traits are weaker in the latter case, so far it ap-
pears that machine translation is detrimental to the au-
tomatic recognition of these traits. Though we have
tried to account for as many confounding factors in
this work as we could – particularly the availability
of data – naturally there are still some open questions,
and some obvious next steps. We fixed the learning
parameters across languages and traits for comparative
reasons, but would independent optimization provide
better results? What is the impact of the translation
quality on the subsequent classification performance?
We would also like to understand the true relationship
between linguistic features and traits across languages,
along with how native speakers naturally observe these
traits. Overall, however, we are encouraged to pursue
our goal of personalized machine translation.
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Abstract

We introduce Trans-gram, a simple
and computationally-efficient method to
simultaneously learn and align word-
embeddings for a variety of languages, us-
ing only monolingual data and a smaller
set of sentence-aligned data. We use our
new method to compute aligned word-
embeddings for twenty-one languages us-
ing English as a pivot language. We show
that some linguistic features are aligned
across languages for which we do not have
aligned data, even though those properties
do not exist in the pivot language. We also
achieve state of the art results on standard
cross-lingual text classification and word
translation tasks.

1 Introduction

Word-embeddings are a representation of words
with fixed-sized vectors. It is a distributed rep-
resentation (Hinton, 1984) in the sense that there
is not necessarily a one-to-one correspondence be-
tween vector dimensions and linguistic properties.
The linguistic properties are distributed along the
dimensions of the space.

A popular method to compute word-
embeddings is the Skip-gram model (Mikolov et
al., 2013a). This algorithm learns high-quality
word vectors with a computation cost much lower
than previous methods. This allows the processing
of very important amounts of data. For instance, a
1.6 billion words dataset can be processed in less
than one day.

Several authors came up with different methods
to align word-embeddings across two languages
(Klementiev et al., 2012; Mikolov et al., 2013b;
Lauly et al., 2014; Gouws et al., 2015).

∗These authors contributed equally.

In this article, we introduce a new method
called Trans-gram, which learns word embed-
dings aligned across many languages, in a simple
and efficient fashion, using only sentence align-
ments rather than word alignments. We compare
our method with previous approaches on a cross-
lingual document classification task and on a word
translation task and obtain state of the art results
on these tasks. Additionally, word-embeddings for
twenty-one languages are learned simultaneously
- to our knowledge - for the first time, in less than
two and a half hours. Furthermore, we illustrate
some interesting properties that are captured such
as cross-lingual analogies, e.g ~reyes− ~Mannde +
~femmefr ≈ ~reginait which can be used for dis-

ambiguation.

2 Review of Previous Work

A number of methods have been explored to
train and align bilingual word-embeddings. These
methods pursue two objectives: first, similar rep-
resentations (i.e. spatially close) must be assigned
to similar words (i.e. “semantically close”) within
each language - this is the mono-lingual objec-
tive; second, similar representations must be as-
signed to similar words across languages - this is
the cross-lingual objective.

The simplest approach consists in separating the
mono-lingual optimization task from the cross-
lingual optimization task. This is for example the
case in (Mikolov et al., 2013b). The idea is to sep-
arately train two sets of word-embeddings for each
language and then to do a parametric estimation
of the mapping between word-embeddings across
languages. This method was further extended by
(Faruqui and Dyer, 2014). Even though those al-
gorithms proved to be viable and fast, it is not
clear whether or not a simple mapping between
whole languages exists. Moreover, they require
word alignments which are a rare and expensive
resource.
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Another approach consists in focusing entirely
on the cross-lingual objective. This was explored
in (Hermann and Blunsom, 2013; Lauly et al.,
2014) where every couple of aligned sentences is
transformed into two fixed-size vectors. Then, the
model minimizes the Euclidean distance between
both vectors. This idea allows processing corpus
aligned at sentence-level rather than word-level.
However, it does not leverage the abundance of ex-
isting mono-lingual corpora .

A popular approach is to jointly optimize the
mono-lingual and cross-lingual objectives simul-
taneously. This is mostly done by minimizing the
sum of mono-lingual loss functions for each lan-
guage and the cross-lingual loss function. (Kle-
mentiev et al., 2012) proved this approach to be
useful by obtaining state-of-the-art results on sev-
eral tasks. (Gouws et al., 2015) extends their work
with a more computationally-efficient implemen-
tation.

3 From Skip-Gram to Trans-Gram

3.1 Skip-gram
We briefly introduce the Skip-gram algorithm, as
we will need it for further explanations. Skip-
gram allows to train word embeddings for a lan-
guage using mono-lingual data. This method uses
a dual representation for words. Each word w
has two embeddings: a target vector, ~w (∈ RD),
and a context vector, ~w (∈ RD). The algorithm
tries to estimate the probability of a word w to
appear in the context of a word c. More pre-
cisely we are learning the embeddings ~w, ~c so that:
σ(~w · ~c) = P (w|c) where σ is the sigmoid func-
tion.

A simplified version of the loss function mini-
mized by Skip-gram is the following:

J =
∑
s∈C

∑
w∈s

∑
c∈s[w−l:w+l]

− log σ(~w · ~c) (1)

where C is the set of sentences constituting the
training corpus, and s[w− l : w+ l] is a word win-
dow on the sentence s centered around w. For the
sake of simplicity this equation does not include
the “negative-sampling” term, see (Mikolov et al.,
2013a) for more details.

Skip-gram can be seen as a materialization
of the distributional hypothesis (Harris, 1968):
“Words used in similar contexts have similar
meanings”. We will now see how to extend this
idea to cross-lingual contexts.

3.2 Trans-gram

In this section we introduce Trans-gram, a new
method to compute aligned word-embeddings for
a variety of languages.

Our method will minimize the summation of
mono-lingual losses and cross-lingual losses. Like
in BilBOWA (Gouws et al., 2015), we use Skip-
gram as a mono-lingual loss. Assuming we are
trying to learn aligned word vectors for languages
e (e.g. English) and f (e.g. French), we note Je
and Jf the two mono-lingual losses.

In BilBOWA, the cross-lingual loss function
is a distance between bag-of-words representa-
tions of two aligned sentences. But as (Levy and
Goldberg, 2014) showed that the Skip-gram loss
function extracts interesting linguistic features, we
wanted to use a loss function for the cross-lingual
objective that will be closer to Skip-gram than Bil-
BOWA.

Therefore, we introduce a new task, Trans-
gram, similar to Skip-gram. Each English sen-
tence se in our aligned corpus Ae,f is aligned with
a French sentence sf . In Skip-gram, the context
picked for a target word we in a sentence se is the
set of words ce appearing in the window centered
around we: se[we− l : we + l]. In Trans-gram, the
context picked for a target word we in a sentence
se will be all the words cf appearing in sf . The
loss can thus be written as:

Ωe,f =
∑

(se,sf )∈Ae,f

∑
we∈se

∑
cf∈sf

− log σ( ~we · ~cf )

(2)
This loss isn’t symmetric with respect to the lan-

guages. We, therefore, use two cross-lingual ob-
jectives: Ωe,f aligning e’s target vectors and f ’s
context vectors and Ωf,e aligning f ’s target vectors
and e’s context vectors. By comparison BilBOWA
only aligns e’s target vectors and f ’s target vec-
tors. The figure 1 illustrates the four objectives.

Notice that we make the assumption that the
meaning of a word is uniformly distributed in
the whole sentence. This assumption, although
a naive one, gave us in practice excellent results.
Also our method uses only sentence-aligned cor-
pus and not word-aligned corpus which are rarer.

To add a third language i (e.g. Italian), we just
have to add 3 new objectives (Ji, Ωe,i and Ωi,e)
to the global loss. If available we could also add
Ωf,i or Ωi,f but in our case we only used corpora
aligned with English.
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~the ~cat ~on ~thee

~sitse

Je

~the ~cat ~sits ~on ~the ~mate

~assisf

Ωf,e

~le ~chat ~est ~assis ~sur ~le ~tapisf

~sitse

Ωe,f

~chat ~est ~sur ~lef

~assisf

Jf

∑

Figure 1: The four partial objectives contributing to the alignment of English and French: a Skip-gram
objective per language (Je and Jf ) over a window surrounding a target word (blue) and two Trans-gram
objectives (Ωe,f and Ωf,e) over the whole sentence aligned with the sentence from which the target word
is extracted (red).

4 Implementation

In our experiments, we used the Europarl (Koehn,
2005) aligned corpora. Europarl-v7 has two pe-
culiarities: firstly, the corpora are aligned at
sentence-level; secondly each pair of languages
contains English as one of its members: for in-
stance, there is no French/Italian pair. In other
words, English is used as a pivot language. No
bi-lingual lexicons nor other bi-lingual datasets
aligned at the word level were used.

Using only the Europarl-v7 texts as both mono-
lingual and bilingual data, it took 10 minutes to
align 2 languages, and two and a half hours to
align the 21 languages of the corpus, in a 40
dimensional space on a 6 core computer. We
also computed 300 dimensions vectors using the
Wikipedia extracts provided by (Al-Rfou et al.,
2013) as monolingual data for each language. The
training time was 21 hours.

5 Experiments

5.1 Reuters Cross-lingual Document
Classification

We used a subset of the English and German sec-
tions of the Reuters RCV1/RCV2 corpora (Lewis
and Li, 2004) (10000 documents each), as in (Kle-
mentiev et al., 2012), and we replicated the exper-
imental setting. In the English dataset, there are
four topics: CCAT (Corporate/Industrial), ECAT
(Economics), GCAT (Government/Social), and
MCAT (Markets). We used these topics as our la-
bels and we only selected documents labeled with
a single topic. We trained our classifier on the ar-
ticles of one language, where each document was
represented using an IDF weighted sum of the vec-
tors of its words, we then tested it on the articles
of the other language. The classifier used was an

averaged perceptron, and we used the implemen-
tation from (Klementiev et al., 2012)1. The word
vectors were computed on the Europarl-v7 paral-
lel corpus with size 40 like other methods. For this
task only the target vectors where used.

We report the percentage precision obtained
with our method, in comparison with other meth-
ods, in Table 1. The table also include results
obtained with 300 dimensions vectors trained by
Trans-gram with the Europarl-v7 as parallel cor-
pus and the Wikipedia as mono-lingual corpus.
The previous state of the art results were detained
(Gouws et al., 2015) with BilBOWA and (Lauly
et al., 2014) with their Bilingual Auto-encoder
model. This model learns word embeddings dur-
ing a translation task that uses an encoder-decoder
approach. We also report the scores from Kle-
mentiev et al. who introduced the task and the
BiCVM model scores from (Hermann and Blun-
som, 2013).

The results show an overall significant improve-
ment over the other methods, with the added ad-
vantage of being computationally efficient.

5.2 P@k Word Translation
Next we evaluated our method on a word transla-
tion task, introduced in (Mikolov et al., 2013b) and
used in (Gouws et al., 2015). The words were ex-
tracted from the publicly available WMT112 cor-
pus. The experiments were done for two sets of
translation: English to Spanish and Spanish to En-
glish. (Mikolov et al., 2013b) extracted the top
6K most frequent words and translated them with
Google Translate. They used the top 5K pairs
to train a translation matrix, and evaluated their
method on the remaining 1K. As our English and

1Thanks to S. Gouws for providing this implementation
2http://www.statmt.org/wmt11/
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Method En→ De De→ En Speed-up in training time
Klementiev et al. 77.6% 71.1% ×1

Bilingual Auto-encoder 91.8% 72.8% ×3

BiCVM 83.7% 71.4% ×320

BilBOWA 86,5% 75% ×800

Trans-gram 87,8% 78,7% ×600

Trans-gram (size 300 vectors EP+WIKI) 91,1% 78,4%

Table 1: Comparison of Trans-gram with various methods for Reuters English/German classification

Method En→ Es P@1 En→ Es P@5 Es→ En P@1 Es→ En P@5
Edit distance 13% 18% 24% 27%
Bing 55% 71%
Translation Matrix 33% 35% 51% 52%
BilBOWA 39% 44% 51% 55%
Trans-gram 45% 61% 47% 62%

Table 2: Results on the translation task

Spanish vectors are already aligned we don’t need
the 5K training pairs and use only the 1K test
pairs.

The reported score, the translation precision
P@k, is the fraction of test-pairs where the tar-
get translation (Google Translate) is one of the k
translations proposed by our model. For a given
English word, w, our model takes its target vectors
~w and proposes the k closest Spanish word using
the co-similarity of their vectors to ~w. We com-
pare ourselves to the “translation matrix” method
and to the BilBowa aligned vectors. We also re-
port the scores obtained by a trivial algorithm that
uses edit-distance to determine the closest transla-
tion and by the Bing Translator service.

6 Interesting properties

6.1 Cross-lingual disambiguation
We now present the task of cross-lingual dis-
ambiguation as an example of possible uses of
aligned multilingual vectors. The goal of this task
is to find a suitable representation of each sense of
a given polysemous word. The idea of our method
is to look for a language in which the undesired
senses are represented by unambiguous words and
then to perform some arithmetic operation.

Let’s illustrate the process with a concrete ex-
ample: consider the French word “train”, trainfr.
The three closest Polish words to ~trainfr translate
in English into “now”, “a train” and “when”. This
seems a poor matching. In fact, trainfr is polyse-
mous. It can name a line of railroad cars, but it is
also used to form progressive tenses. The French

“Il est en train de manger” translates into “he is
eating”, or in Italian “sta mangiando”.

As the Italian word “sta” is used to form pro-
gressive tenses, it’s a good candidate to disam-
biguate trainfr. Let’s introduce the vector ~v =
~trainfr − ~stait. Now the three polish words clos-

est to ~v translate in English into “a train”, “a train”
and “railroad”. Therefore ~v is a better representa-
tion for the railroad sense of trainfr.

6.2 Transfer of linguistic features

Another interesting property of the vectors gener-
ated by Trans-gram is the transfer of linguistic fea-
tures through a pivot language that does not pos-
sess these features.

Let’s illustrate this by focusing on Latin lan-
guages, which possess some features that En-
glish does not, like rich conjugations. For ex-
ample, in French and Italian the infinitives of
“eat” are mangerfr and mangiareit, and the first
plural persons are mangeonsfr and mangiamoit.
Actually in our models we observe the follow-
ing alignments: ~mangerfr ≈ ~mangiareit and

~mangeonsfr ≈ ~mangiamoit. It is thus remark-
able to see that features not present in English
match in languages aligned through English as
the only pivot language. We also found similar
transfers for the genders of adjectives and are cur-
rently studying other similar properties captured
by Trans-gram.
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7 Conclusion

In this paper we provided the following contri-
butions: Trans-gram, a new method to compute
cross-lingual word-embeddings in a single word
space; state of the art results on cross-lingual NLP
tasks; a sketch of a cross-lingual calculus to help
disambiguate polysemous words; the exhibition
of linguistic features transfers through a pivot-
language not possessing those features.

We are still exploring promising properties of
the generated vectors and their applications in
other NLP tasks (Sentiment Analysis, NER...).
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Abstract

Discourse relations can be categorized as
continuous or discontinuous in the hypoth-
esis of continuity (Murray, 1997), with
continuous relations expressing normal
succession of events in discourse such as
temporal, spatial or causal. Asr and Dem-
berg (2013) propose a markedness mea-
sure to test the prediction that discontin-
uous relations may have more unambigu-
ous connectives, but restrict the marked-
ness calculation to relations with explicit
connectives only. This paper extends their
measure to explicit and implicit relations
and shows that results from this extension
better fit the continuity hypothesis predic-
tions both for the English Penn Discourse
(Prasad et al., 2008) and the Chinese Dis-
course (Zhou and Xue, 2015) Treebanks.

1 Introduction

Discourse relations between units of text are cru-
cial for the production and understanding of dis-
course. Different taxonomies of discourse rela-
tions have been proposed (i.a. Hobbs (1985), Las-
carides and Asher (1993) and Knott and Sanders
(1998)). One taxonomy is based on deictic conti-
nuity (Segal et al., 1991; Murray, 1997): continu-
ity in the sense of Segal et al. (1991) means that
the same frame of reference is maintained, for ex-
ample by subsequent sentences talking about the
same event, without a shift in perspective (Asr and
Demberg, 2012). For instance, a causal relation
such as I was tired, so I drank a cup of coffee. is
continuous, and adversatives show discontinuous
relations: I drank a cup of coffee but I was still
tired. Other continuous relations include temporal
succession, topic succession and so on. The conti-
nuity hypothesis predicts that sentences connected
by continuous relations are easier to understand
than ones connected by discontinuous relations.

Previous work on continuity hypothesis (Maury
and Teisserenc, 2005; Cain and Nash, 2011;
Hoek and Zufferey, 2015) suggests that discourse
connectives are indicators of the continuity of
discourse and help the interlocutors predict the
level of continuity of upcoming sentences. Se-
gal et al. (1991) propose that connectives which
signal discontinuous discourse relations, such as
but, are the marked ones because they indicate
harder-to-comprehend content. Asr and Demberg
(2012, 2013) extend this idea to discourse rela-
tions, proposing that discourse relations which are
discontinuous, or posing a conceptual difficulty
(Haspelmath, 2006), may be less explicitly con-
veyed in text, or more explicitly marked by a con-
nective which unambiguously conveys that spe-
cific relation than continuous ones. They propose
a new measure called markedness to capture this,
but when computed on the Penn Discourse Tree-
bank, results do not fit the continuity theory well.
This paper improves on Asr and Demberg (2013)’s
measure and shows that the results on the Penn
Discourse and the Chinese Discourse Treebanks
fit the continuity hypothesis very well.

2 Discourse Treebanks

Penn Discourse Treebank The Penn Discourse
Treebank (PDTB) is a corpus of Wall Street Jour-
nal articles annotated with discourse relations
(Prasad et al., 2008). The discourse relations are
organized in a hierarchical structure with three lev-
els: a level 1 (e.g. TEMPORAL), level 1/level 2 (e.g.
TEMPORAL.Asynchronous) or level 1/level 2/level
3 (e.g. TEMPORAL.Asynchronous.succession) re-
lation can appear between two clauses within a
sentence. Discourse relations with overt discourse
connectives are annotated as “Explicit”, whereas
the relations with no discourse connective are an-
notated as “Implicit”. The “AltLex” category is
used when a non-connective expression conveys
the relation. Table 1 gives the distribution of the
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relation categories in the corpus.
Some connectives are labeled with multiple re-

lations when it was difficult to pinpoint exactly
one exact discourse relation for it. We follow Asr
and Demberg (2013) and treat these cases as if
there are multiple instances of the connective, each
with one of the labels it received. This gives us a
total of 35,870 relation instances.

PDTB CDTB
Relation Category Count % Count %

Explicit 18459 45.5 1219 22.0
Implicit 16053 39.5 3935 71.1
AltLex 633 1.6 116 2.1
EntRel and NoRel 5464 13.4 264 4.8

Table 1: Relation category counts for the Penn
Discourse and Chinese Discourse Treebanks.

Chinese Discourse Treebank The Chinese Dis-
course Treebank (CDTB, Zhou and Xue 2014) fol-
lows the PDTB annotation style and has annota-
tions for 164 documents from Xinhua News. The
main difference between CDTB and PDTB is that
CDTB has a flat structure of only ten relations
compared to the hierarchical relation structure in
PDTB. Table 1 gives the distribution of the rela-
tion categories.

3 Rethinking the Markedness Measure

To quantify the conceptual difficulty of dis-
course relations, Asr and Demberg (2013) propose
an information-theoretic measure “markedness”,
which tells us how tightly and uniquely a relation
is associated with a connective. The measure uses
normalized point-wise mutual information:

npmi(r; c) =
log p(r)p(c)
log p(r, c)

− 1 (1)

to get the markedness of a discourse relation:

markedness(r) =
∑
c

p(c|r)npmi(r; c) + 1
2

(2)

where r is a relation and c is a discourse connec-
tive. Asr and Demberg (2013) propose this mea-
sure in the surprisal framework of Levy (2008),
and restrict the scope of the data to only Explicit
relations in PDTB. We will call this measure with
only explicit relations “M-exp”. Since surprisal is
defined as the probability of a word given previous

words and context (3), this restriction on the scope
of relations does not seem reasonable. Surprisal is
defined as

surprisal ∝ − log p(wi|w1...i−1, CONTEXT )
(3)

It can be argued that at the current word wi−1,
the distribution of upcoming discourse relations,
available in CONTEXT, should play a role in de-
termining the probability of the upcoming word
wi. In the surprisal model, the domain for wi
should be the same as wi−1, which is all possible
words. However, if we only calculate the distri-
bution of explicit connectives as proposed by Asr
and Demberg (2013), the candidates for wi will
change according to the prediction of whether an
explicit relation is coming up or not. If the upcom-
ing relation is an implicit relation, one then has ac-
cess to a distribution of words without the connec-
tives, whereas if one predicts an explicit relation,
then one predicts the next word using a distribu-
tion of all the connectives as in M-exp. However
surprisal should not be a model of deterministic
decision making. It is more likely the case that
given CONTEXT, one assigns probabilities to all
words given the preceding context, which includes
the case where no connective, in other words a
zero or null connective, is predicted. The null
connective may also be viewed as the probability
mass for all the non-connective words predicted
by CONTEXT where the connective is predicted
to be omitted (Asr and Demberg, 2015).

The markedness measure can be analyzed in
terms of point-wise mutual information (pmi), in-
dicating the amount of information one relation
has for the distribution of the words that follow
it (Hume, 2011). Because pmi is proportionate to
npmi, we can rewrite (2) as

markedness(r) ∝
∑
c

p(c|r)pmi(r; c) (4)

We also have the mutual information measure:

I(X;Y ) =
∑
y

∑
x

p(x, y)pmi(x; y) (5)

For the mutual information of yi in Y :

I(X;Y = yi) =
∑

x p(x, yi)pmi(x; yi)
p(yi)

= DKL(p(x|yi) ‖ p(x))
=
∑
x

p(x|yi)pmi(x; yi)

∝ markedness(yi)

(6)

1115



Level 1 Relation Level 2 Relation Level 3 Relation Continuity

TEMPORAL Asynchronous precedence Discontinuous
succession Discontinuous

Synchronous Ambiguous

CONTIGENCY Cause Continuous
Condition Unidentified

COMPARISON Discontinuous

EXPANSION Instantiation Continuous
Restatement Continuous
List Continuous
Alternative Discontinuous
Exception Discontinuous
Conjunction Ambiguous

Table 2: Continuity of relations according to the continuity hypothesis (Asr and Demberg, 2012).

Therefore, the markedness measure can be under-
stood as the Kullback-Leibler divergence of the
univariate distribution of X from the conditional
distribution of X given yi (a discourse relation in
our case). This shows the influence a relation has
on the unigram distribution of words. Discourse
relations strongly associated with certain connec-
tives will have larger values of this measure than
the ones with a weak association. In the previ-
ous discussion of surprisal, we have seen that one
may treat the implicit cases as predicting a null
connective, which will then expand the domain of
X from explicit cases to all implicit and explicit
cases. With this setup, we calculate “M-all” using
all explicit and implicit relations, with a null con-
nective accompanying all the implicit relations.

Continuity hypothesis has been linked with cog-
nitive difficulties in discourse processing in previ-
ous studies (Segal et al., 1991; Murray, 1997). The
markedness measure can also be linked to process-
ing difficulties through surprisal theory. Surprisal
theory proposes that processing difficulty during
sentence processing can be seen as the work in-
curred by resource allocation during parallel dis-
ambiguation (Levy, 2008). If a relation has a high
markedness value, it indicates that this relation has
a strong influence on the distribution of upcoming
candidate words. The stronger the influence is, the
higher the resource allocation cost will be for the
relation, thus more difficult to process.

4 Results on PDTB

Figure 1 compares the markedness of the PDTB
level 1 relations as computed by the M-exp and
M-all measures. According to the continuity hy-
pothesis, the TEMPORAL relation is discontinu-
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Figure 1: Comparison of markedness measures for
PDTB level 1 relations.

ous (see Table 2 which gives the classification
of discourse relations according to the continu-
ity hypothesis). It should therefore have a high
markedness value. However, M-exp assigns a low
markedness to TEMPORAL, which Asr and Dem-
berg (2013) note is unexpected. They ascribe
this to the fact that temporal discourse connec-
tives are often used to mark CONTINGENCY rela-
tions. However because of the high counts of Ex-
plicit connectives in TEMPORAL, whenever there
is a connective that can indicate CONTINGENCY

or TEMPORAL, one is more likely to predict TEM-
PORAL because of fewer null connective cases for
TEMPORAL. In surprisal terms, whenever one pre-
dicts that there is a TEMPORAL relation next, one
will more likely predict that there is an explicit dis-
course connective signaling the relation.

EXPANSION is the least marked of all the rela-
tions in Figure 1 with M-all. An analysis of the
level 2 relations explains this fact. Figure 2 com-
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Figure 2: Comparison of markedness measures for PDTB level 2 relations.

pares both measures for the level 2 relations.1 Us-
ing M-all, it is easy to see that discontinuous re-
lations and ambiguous relations are more marked
than the continuous ones. In the case of EXPAN-
SION, the level 2 continuous relations are among
the least marked ones, which are keeping the over-
all markedness low. Also, the ones which are dis-
continuous, especially Exception, are rare, so their
influence to the overall score for EXPANSION is
small. The most frequent relation, Conjunction,
can be viewed as sometimes continuous and some-
times discontinuous, therefore the overall marked-
ness rating for it is in the middle. All these fac-
tors contribute to the lowest markedness for EX-
PANSION. For CONTINGENCY, Condition is not
classified as continuous or discontinuous, and it is
highly marked, thus driving the overall score high.
However if Condition is removed, then CONTIN-
GENCY will be the least marked relation at the
level 1.

At the level 3, there are two discontinuous rela-
tions of interest: precedence (e.g. I had a cup of
coffee before I took a bath) and succession (e.g.
I took a bath after I had a cup of coffee) under
the TEMPORAL.Asynchronous relation. Table 3
compares the markedness measures for both rela-
tions. Asr and Demberg (2013) mention that there
is no significant markedness distinction for them
and we can see that precedence is slightly more
marked than succession in M-exp, but the differ-

1Pragmatic relations are not shown due to their small
number of occurrences.

Metric Precedence Succession

M-exp 0.799 0.783
M-all 0.494 0.687

Table 3: Precedence and Succession Markedness.

Arg1-Conn-Arg2 Conn-Arg2-Arg1
Implicit Explicit Implicit Explicit

Precedence 567 931 0 55
Succession 171 867 0 234

Table 4: Counts for different argument orders of
Precedence and Succession.

ence is small. M-all however shows that succes-
sion is more marked than precedence, reflecting
the fact that precedence is easier to understand.

For precedence, the arguments can be in a nor-
mal temporal order, i.e. a forward temporal or-
der (Arg1-Conn-Arg2, e.g. I had some coffee be-
fore I went out.) or in a backward temporal order
(Conn-Arg2-Arg1, e.g. Before I went out, I had
some coffee.). For succession, the temporal or-
der and the argument order are reversed. Table 4
gives the counts in PTDB for both precedence and
succession with different argument orders, show-
ing that Arg1-Conn-Arg2 is the most frequent con-
struction for both relations, which is forward tem-
poral order for precedence and backward tempo-
ral order for succession, despite the fact that both
of the relations can follow a forward temporal or-
der. Therefore the results from M-all match the
continuity hypothesis prediction that events in for-
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ward temporal order are easier to understand, thus
less marked, than events in backward temporal or-
der. Asr and Demberg (2012) explain that the rel-
atively high count of Conn-Arg2-Arg1 construc-
tions in succession is due to the fact that this con-
struction actually places the events in the forward
temporal order. We also notice that precedence has
a lot more implicit occurrences than succession,
meaning that inferring a normal temporal relation
is much easier than inferring a reversed temporal
relation.

5 Results on CDTB and Comparison
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Figure 3: Markedness comparison for CDTB.

The results for CDTB, in Figure 3, shows the
same trends as for English: overall, the marked-
ness computed by M-all better fits the continuity
hypothesis. EXPANSION is considered by M-exp
as the second highest marked relation, whereas
the continuity hypothesis predicts it to be one of
the lowest marked relation, which is correctly cap-
tured by M-all. The reason for it to be low may be
that discontinuous relations included by EXPAN-
SION are rare so the frequent continuous relations
dominate, just as for English. Using M-exp, CAU-
SATION is around the middle, but M-all correctly
lowers it to the third least marked relation. TEM-
PORAL is now the second highest marked relation
among all relations, as opposed to the second least
marked one. Importantly, M-all correctly shows
that discourses relations in English and Chinese
behave similarly in terms of markedness, which
indicates that the continuity hypothesis is valid
across languages.

Sanders (2005) proposes the causality-by-
default hypothesis, claiming that CAUSATION is

the default discourse relation when processing dis-
course. However, looking at M-all scores for
both languages, it is clear that CAUSATION is not
the least marked relation in either language. In
fact, EXPANSION can actually be seen as the least
marked common relation in both languages, which
may indicate that EXPANSION is the default dis-
course relation cross-linguistically, yet more in-
vestigations are needed to decide which one in
EXPANSION is the default. CONJUNCTION is also
among the least marked relations in Chinese, with
89% of its instances being implicit, but in English,
CONJUNCTION has an average markedness score.
This shows that there are also differences among
languages on judgments of continuity of specific
relations.

6 Conclusion

The continuity hypothesis predicts that discontinu-
ous discourse relations are less expected than con-
tinuous relations and should be more marked. We
expand Asr and Demberg (2013)’s measure from
explicit relations only to explicit and implicit re-
lations. We show that the results from that expan-
sion fit the predictions of the theory very well, and
such evidence demonstrates that discontinuous re-
lations are indeed cognitively more difficult to pro-
cess. Further we show that such difficulty is con-
sistent across languages, indicating that discourse
relations may not be influenced by idiosyncrasies
of specific languages. Apart from the markedness
measure, Asr and Demberg (2012) proposed an
“implicitness” measure, modeling the continuity
of a relation using the ratio of implicit cases to all
cases. Incorporating explicit and implicit relations
into the markedness measure has the advantage of
not only providing a single measure but also one
which better fits the continuity hypothesis and sur-
prisal theory.
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Abstract

The widespread use of deception in online
sources has motivated the need for meth-
ods to automatically profile and identify
deceivers. This work explores deception,
gender and age detection in short texts us-
ing a machine learning approach. First,
we collect a new open domain deception
dataset also containing demographic data
such as gender and age. Second, we ex-
tract feature sets including n-grams, shal-
low and deep syntactic features, seman-
tic features, and syntactic complexity and
readability metrics. Third, we build clas-
sifiers that aim to predict deception, gen-
der, and age. Our findings show that while
deception detection can be performed in
short texts even in the absence of a pre-
determined domain, gender and age pre-
diction in deceptive texts is a challenging
task. We further explore the linguistic dif-
ferences in deceptive content that relate
to deceivers gender and age and find evi-
dence that both age and gender play an im-
portant role in people’s word choices when
fabricating lies.

1 Introduction

Given the potential ethical and security risks as-
sociated with deceitful interactions, it is important
to build computational tools able not only to detect
deceivers but also to provide insights into the na-
ture of deceptive behaviors. In particular, informa-
tion related to the demographics of the deceivers
could be potentially useful, as recent studies have
shown that online users lie frequently about their
appearance, gender, age or even education level.

There are multiple scenarios where it would
be desirable to identify deceivers’ demographics;

for instance, identifying the age and gender of
SMS senders or Twitter users might help improve
parental controls, spam filtering, and user’s secu-
rity and privacy.

In this paper, we present a study on deception
detection in an open domain, and also present an
analysis of deceptive behavior in association with
gender and age. Unlike previous studies, where
domain-specific conversational transcripts and re-
views have been used, this research targets the
identification of deceit in short texts where domain
and context are not available. We aim to build
deception, age, and gender classifiers using short
texts, and also explore the prediction of gender and
age in deceptive content. Moreover, we present an
analysis of the topics discussed by deceivers given
their age and gender based on the assumption that,
when lying in an open domain setting, deceivers
will show natural bias towards specific topics re-
lated to gender and age.

2 Related work

To date, several studies have explored the iden-
tification of deceptive content in a variety of do-
mains, including online dating, forums, social net-
works, and consumer reviews. (Toma and Han-
cock, 2010) conducted linguistic analyses in on-
line dating profiles and identified correlations be-
tween deceptive profiles and self references, nega-
tions, and lower levels of words usage. A study
for deception detection on essays and product re-
views is presented in (Feng et al., 2012). (Ott
et al., 2011) addressed the identification of spam
in consumer reviews and also studied the human
capability of detecting deceptive reviews, which
was found not better than chance. In a follow-
ing study, (Ott et al., 2013) presented an analy-
sis of the sentiment associated to deceitful reviews
focusing particularly in those containing negative
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sentiment as it largely affects consumer purchase
decisions. More recently (Yu et al., 2015) pre-
sented a study where authors analyze the role of
deception in online networks by detecting decep-
tive groups in a social elimination-game.

This previous work has shown the effectiveness
of features derived from text analysis, which fre-
quently includes basic linguistic representations
such as n-grams and sentence counts statistics
(Mihalcea and Strapparava, 2009; Ott et al., 2011)
and also more complex linguistic features derived
from syntactic context free grammar trees and part
of speech tags (Feng et al., 2012; Xu and Zhao,
2012). Other studies have focused on deception
clues inspired from psychological studies. For
instance, following the hypothesis that deceivers
might create less complex sentences (DePaulo et
al., 2003), researchers have incorporated syntactic
complexity measures into the analysis. (Yancheva
and Rudzicz, 2013) presented a study based on the
analysis of syntactic units and found that syntac-
tic complexity correlates with deceiver’s age. Psy-
cholinguistics lexicons, such as Linguistic Inquiry
and Word Count (LIWC) (Pennebaker and Fran-
cis, 1999), have also been used to build deception
models using machine learning approaches (Mi-
halcea and Strapparava, 2009; Almela et al., 2012)
and showed that the use of semantic information is
helpful for the automatic identification of deceit.

While there is a significant body of work
on computational deception detection, except for
(Yancheva and Rudzicz, 2013) who considered
the relation between syntactic constructs and de-
ceivers’ age, to our knowledge there are no com-
putational analyses of demographics in deceptive
content. However, there have been a number of
psychological studies on the role of gender and
age in deceptive behavior. These studies have
found interesting associations between deception
and gender. For instance, (Toma et al., 2008) iden-
tified differences in self-presentation among gen-
ders. In this study men were found to lie more
about their height and women lied more about
their weight. (Kaina et al., 2011) found that fe-
males are more easily detectable when lying than
their male counterparts. (Tilley et al., 2005) re-
ported that females are more successful in decep-
tion detection than male receivers.

3 Open Domain Deception Dataset

We started our study by collecting a new open do-
main deception dataset consisting of freely con-
tributed truths and lies. We used Amazon Me-
chanical Turk and asked each worker to contribute
seven lies and seven truths, on topics of their own
choice, each of them consisting of one single sen-
tence. In an attempt to obtain truths and lies that
represent everyday lying behavior, we asked our
contributors to provide plausible lies and avoid
non-commonsensical statements such as “I can
fly.” Since we did not enforce a particular topic,
resulting truths and lies are open domain. Sample
truths and lies are presented in Table 1. Note that
the collected lies might include statements that
are somehow unrealistic, even if plausible, e.g.,
”I own two Ferraris, one red and one black”. We
decided to also include these statements in order
to aid the identification of differences in deceivers
and true-tellers language, as we hypothesize that
they might help reveal topics that naturally occur
in truths and lies.

Additionally, we collect demographic data from
the contributors, including their gender, age, coun-
try of origin, and education level. To avoid spam,
contributions were manually verified by one of the
paper authors. The final dataset consists of 7168
sentences from 512 unique contributors. Since
each contributor provided seven lies and seven
truths the dataset contains a total of 3584 truths
and 3584 lies respectively. Participant’s ages
range from 18 to 72 years, with an average age
of 34.14 and a standard deviation of 12.67.

4 Features

In this section, we describe the sets of features ex-
tracted, which will then be used to build our clas-
sifiers.

Unigrams We extract unigrams derived from the
bag of words representation of truths and lies
present in our dataset.

Shallow and deep syntax features These fea-
tures consist of part of speech (POS) tags
and lexicalized production rules derived
from Probabilistic Context Free Grammar
(PCFG) trees, obtained with the Berkeley
Parser (Petrov et al., 2006).
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Female
Lie Truth
I won 1 billion dollars in the Illinois state lottery
last year and gave it all away to my mother.

My daughter is my best friend in the whole wide
world, and i would give my life for hers.

On my last birthday i turned 119 years old and
went sky diving as a gift to myself.

I graduated with a degree in information systems
10 years ago and still can’t find a good job.

I’m allergic to alcohol Giraffes are taller than zebras.
Male

Lie Truth
Barak obama was my guest last night; he offered
me the administrative assistant job at white house
in Washington.

Internet is one of the greatest invention of his-
tory of humankind with its ability to speed up the
communication.

I own two Ferraris, one red and one black I love to play soccer with my friends
I wake up at 11 o clock every day I wake up at 6 am because I have to work at 7 am

Table 1: Sample open-domain lies and truths provided by male and a female participants

Semantic features These features include the 80
semantic classes present in the LIWC lexi-
con. Each feature represents the number of
words in a sentence belonging to a specific
semantic class.

Readability and Syntactic Complexity features
This set includes the Flesch-Kincaid and
Gunning Fog readability scores and 14
indexes of syntactic complexity derived
from the syntactic analysis of each sentence;
performed with the tool provided by Lu (Lu,
2010).

5 Classification of Deception, Gender,
and Age in Short Texts

Our first experiment seeks to evaluate whether de-
ception detection can be conducted using the open
domain deception dataset described above. We
performed the evaluations at user level, by collaps-
ing all the lies from one user into one instance, and
all the truths into another instance.

We build deception classifiers using the SVM
algorithm1 and the different sets of features. We
performed a five-fold cross-validation, by training
each time on 80% of the users and testing on the
remaining 20%. During our evaluations truths and
lies pertaining to a particular user were either on
the training or testing set. Classification results on
individual and combined sets of features are pre-
sented in Table 3. The best performing set of fea-

1As implemented in the Weka toolkit, with default param-
eter settings.
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Figure 1: Learning curves for deception detection
using five feature sets

tures are the POS tags, followed by features de-
rived from production rules. The remaining sets
of features achieved accuracy values ranging from
54% to 65%, which still represent a noticeable im-
provement over the random baseline. Note that we
experimented with a few more feature sets combi-
nations, including the use of all the features to-
gether, however we did not observe significant im-
provements.

To analyze the impact of the amount of data on
the classifier learning process, we plot the learn-
ing curves on the different sets of features using
incremental amounts of data as shown in Figure 1.
Evaluations were conducted using five-fold cross
validations on each incremental fraction of data.
The learning trend suggests that most classifiers
benefit from increasing amounts of training data.
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Gender
Female 298
Male 214

Age
Young ( 35 years) 319
Middle-aged/Elder (>35 years) 193

Table 2: Class distribution for gender and age

Feature set Deception Gender Age
Baseline 50.00% 58.00% 62.00%
Unigrams 60.89% 54.25% 51.12%
Semantic 60.21% 57.28% 61.83%
POS 69.50% 49.95% 52.39%
CFG 65.39% 52.19% 54.74%
Readability 54.44% 58.16% 62.26%
Uni+Semantic 62.17% 63.04% 51.51%

Table 3: SVM classifiers trained for three predic-
tion tasks: deception, gender, and age.

However, except for the POS features, the overall
performance seems to stabilize when using 90%
of the training data.

As a second experiment, we evaluate the abil-
ity of the classifier to predict gender and age in
short open domain deceptive texts. Given the con-
tributors’ age distribution, which lies mainly in the
range of 30-45 years, we opted to cluster the par-
ticipants age into into two groups: young ( 35
years) and middle-aged/elder (>35 years). Class
distributions for age and gender are shown in Ta-
ble 2. We performed the age prediction task on
the two groups using the different sets of features
and SVM classifiers. Classification accuracies are
shown in Table 3. Reported baselines consist of
a majority class baseline. Results show low to
moderate improvement over the baseline for gen-
der classification, with the combination of seman-
tic features and unigrams being the best perform-
ing feature set. However, our classifiers performed
poorly in the age prediction task, with accuracies
below the majority class baseline.

Overall, the results suggest that age and gender
prediction are challenging tasks when conducted
in open domain deception data. One possible ex-
planation for this is that the lack of context intro-
duces noise into the analysis. For instance, the fol-
lowing sentence: “I’m 50 years old” can belong to
either a male or a female, and it might be a lie for
younger people or a truth for older people.

Lies
Male Female

Other 2.22 Certain 1.87
Negate 2.08 Negate 1.63
Certain 2.06 You 1.59
Death 2.04 Motion 1.47
Anger 2.03 Down 1.45
You 1.77 Money 1.35
Friends 1.71 Anger 1.28
Othref 1.67 Future 1.20

Truths
Male Female

Religion 1.67 Sleep 1.64
Family 1.65 Religion 1.61
Groom 1.60 See 1.50
Music 1.49 Discrepancy 1.39
Sports 1.45 Anxiety 1.36
School 1.42 Posfeel 1.33
Posfeel 1.35 Metaphor 1.33
Feel 1.32 TV 1.31

Table 4: Results from LIWC word class analysis
for short open domain truths and lies.

6 Analyzing Language Used by
Deceivers Given Age and Gender

In order to explore language differences among
deceivers and true-tellers, we use the linguis-
tic ethnography method (Mihalcea and Pulman,
2009) and obtain the most dominant semantic
word classes in the LIWC lexicon associated to
truth and lies provided by males and females. Re-
sults are shown in Table 4. From this table, we
observe interesting patterns in word usage that
are shared among genders. For instance, spon-
taneous lies often include negation, certain, and
you words, which is in line with previous work on
domain-specific deception (Mihalcea and Strappa-
rava, 2009) that suggested that liars try to rein-
force their lies through the use of stronger word-
ing and detachment from the self. On the other
hand, people appear to be less likely to lie when
talking about their family, religion, and describing
positive experiences. There are also LIWC classes
associated to a specific gender. Male lies contain
references to friends and others, while female lies
contain references to money and future. Similarly,
female true-tellers use metaphor words while male
true-tellers use words related to sports and music.
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Lies
Age 18-34 Age 35-65

Certain 2.04 Assent 2.13
Anger 1.98 Certain 1.83
Negate 1.82 Negate 1.68
Other 1.76 Anxiety 1.64
You 1.72 You 1.64
Down 1.64 Motion 1.54
Othref 1.53 Money 1.50
Death 1.49 Optim 1.38

Truths
Age 18-34 Age 35-65

Religion 1.83 Music 1.43
Tv 1.48 Sleep 1.42
Anxiety 1.45 Feel 1.34
Posfeel 1.37 Posfeel 1.33
See 1.30 See 1.31
Music 1.30 Sexual 1.28
School 1.29 Religion 1.27
Inhib 1.28 Family 1.25

Table 5: Results from LIWC word class analysis
for short open domain truths and lies.

We also evaluate differences in word usage that
might be attributed to deceiver’s age. Resulting
dominant classes and their scores are presented in
Table 5. The analyses show interesting differences
for deceiver’s word usage across age. For instance,
regardless of their gender, older deceivers use ref-
erences to anxiety, money, and motion. On the
other hand, younger deceivers language includes
anger, negate, and death words. These differences
suggest that indeed gender and age play a role on
people words choices while fabricating lies.

7 Conclusions

In this paper, we presented our initial experiments
in open domain deception detection. We target-
ted the deception detection on short text to address
the cases where context is not available. In real
settings, this can be useful when receiving a text
message or when looking at anonymous posts in
forums. We collected a new deception dataset con-
sisting of one-sentence truths and lies, along with
the demographics of the deceivers. Through sev-
eral experiments, we showed that this data can be
used to build deception classifiers for short open
domain text. However, the classifiers do not per-

form very well while trying to predict gender and
age. We further explored linguistic differences
in deceptive content that relate to deceivers gen-
der and age and found evidence that both age and
gender play an important role on people’s word
choices when fabricating lies.

The dataset introduced in this paper is publicly
available from http://lit.eecs.umich.edu.
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Abstract
The phonotactics of a language describes
the ways in which the sounds of the
language combine to form possible mor-
phemes and words. Humans can learn
phonotactic patterns at the level of abstract
classes, generalizing across sounds (e.g.,
“words can end in a voiced stop”). More-
over, they rapidly acquire these general-
izations, even before they acquire sound-
specific patterns. We present a probabilis-
tic model intended to capture this early-
abstraction phenomenon. The model rep-
resents both abstract and concrete gen-
eralizations in its hypothesis space from
the outset of learning. This—combined
with a parsimony bias in favor of compact
descriptions of the input data—leads the
model to favor rapid abstraction in a way
similar to human learners.

1 Introduction

Natural languages place restrictions on the ways
in which sounds can combine to form words (the
phonotactics of the language). The velar nasal [N],
for example, occurs at the end of English sylla-
bles, as in ring [ôIN] or finger [fINg@ô], but never at
the beginning of a syllable: English does not have
words like *ngir [NIô]. English speakers are aware
of this constraint, and judge forms that start with a
[N] as impossible English words.

Sounds that share articulatory and/or perceptual
properties often have similar phonotactic distribu-
tions. German, for example, allows voiced obstru-
ents,1 such as [b] and [g], to occur anywhere in
the word except at its end: [bal] is a valid German
word, but [lab] isn’t.

Speakers use such features of sounds to form
phonotactic generalizations, which can then apply

to sounds that do not appear in their language. Al-
though no English words start with either [sô] or
[mb], English speakers judge srip to be a better po-
tential word of English than mbip (Scholes, 1966);
this is likely because [sô] shares properties with
strident-liquid clusters that do exist in English,
such as [sl] as in slip and [Sô] as in shrewd, whereas
[mb] does not benefit from any sonorant-stop on-
set sequences (*[nt])—none exist in English.

Recent studies have investigated how humans
acquire generalizations over phonological classes
in an artificial language paradigm (Linzen and
Gallagher, 2014; Linzen and Gallagher, 2015).
The central finding of these studies was that
participants rapidly learned abstract phonotactic
constraints and exhibited evidence of generaliza-
tions over classes of sounds before evidence of
phoneme-specific knowledge.

This paper presents a probabilistic genera-
tive model, the Phonotactics As Infinite Mixture
(PAIM) model, which exhibits similar behavior.
This behavior arises from the combination of two
factors: the early availability of abstract phono-
logical classes in the learner’s hypothesis space;
and a parsimony bias implemented as a Dirichlet
process mixture, which favors descriptions of the
data using a single pattern over ones that make ref-
erence to multiple specific patterns.

2 Summary of behavioral data

The experiments are described in detail in Linzen
and Gallagher (2014) and Linzen and Gallagher
(2015); we summarize the main details here.

Design: Participants were exposed to varying
numbers of auditorily-presented words in one of
two artificial languages, VOICING and IDENTITY.

1See Hayes (2011) for an introduction to phonological
features.
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Exposure Test
ganu gimi CONF- CONF- NONCONF-
balu bini ATT UNATT UNATT

vimu voni zonu dila tumu
zalu zili zini dimu talu
Dano Damu

Table 1: VOICING: Design for one of the lists
(voiced exposure, [d] held out). The table shows
the complete list of exposure words that a partici-
pant in the two exposure sets group might receive.

Following the exposure phase, they were asked
to judge for a set of novel test words whether
those words could be part of the language they had
learned (the possible answers were “yes” or “no”).

In the VOICING experiment, all exposure words
began with consonants that had the same value for
their voicing feature (all voiced or all voiceless,
e.g., A1 = {g, v, z, D, b} or A2 = {k, f, s, T, p}).
Some of the sounds with the relevant voicing were
held out to be used during testing (e.g., [d] for A1

or [t] for A2). All exposure and test words had the
form CVMV (tumi), where C stands for the onset
consonant, V for a randomized vowel, and M for
[m], [n] or [l] (see Table 1).

Participants judged three types of novel test
words: ones with the same onset as one or more
of the words in exposure (CONF-ATT;2 e.g., zonu
for A1); ones whose onset was not encountered
in exposure but had the same voicing as the ex-
posure onsets (CONF-UNATT; e.g., dila); and ones
whose onset had different voicing from the expo-
sure words (NONCONF-UNATT, e.g., tomu). The
vowels and the second consonant were random-
ized across conditions such that only the onsets
reliably discriminated the three conditions.

In the IDENTITY language, words had the form
C1V C2V . The generalization in this language was
C1 = C2 (e.g., pipa). Here it was probabilistic:
only half of the words in the exposure stage con-
formed to the generalization. As such, there was a
fourth test condition, NONCONF-ATT, of exposure
words that did not conform to the generalization.

Participants were recruited on Amazon Me-
chanical Turk (280 participants in the VOICING

2ATT (attested): the consonants in the word (though not
the full word) were encountered in exposure; UNATT (unat-
tested): consonants were not encountered in exposures; CONF
(conforming): the consonants conform to the abstract pat-
tern (voicing or identity); NONCONF (nonconforming): con-
sonants don’t conform to the abstract pattern.

Exposure Test
CONF-
ATT

CONF-
UNATT

pipa papi keku
SuSe SeSu sasi
gapu gugi dZidZe
nuni nanu mamu

NONCONF-
ATT

NONCONF-
UNATT

kesa kasi pina
mudZe medZa nage
dZuki dZuke gaSe
semi sami Sipu

Table 2: IDENTITY: A complete list of exposure
and test words that a participant in the one expo-
sure set group might receive.

experiment and 288 in the IDENTITY experiment).
They were divided into four groups, which re-
ceived 1, 2, 4 or 8 sets of words. In the VOICING

experiment, each of the sets contained five words,
one starting with each of the five CONF-ATT on-
sets; in the IDENTITY experiment, each of the sets
contained eight words, one with each of the CONF-
ATT and NONCONF-ATT consonant pairs (Tables 1
and 2).

Results: Human experimental results are plotted
in Figure 1. Endorsement rates represent the pro-
portion of trials in which participants judged the
word to be well-formed. Participants learned gen-
eralizations involving abstract classes of sounds
after a single exposure set: in the VOICING exper-
iment, they judged voiced word onsets to be bet-
ter than voiceless ones, and in the IDENTITY ex-
periment they judged words with identical conso-
nants as better than words with nonidentical ones.3

Participants did not start distinguishing CONF-ATT

from CONF-UNATT patterns until they received
two or more sets of exposure to the language.

Participants continued to generalize to CONF-
UNATT patterns even after significant exposure to
the language. Endorsement rates were higher than
50% across the board, likely because even words
with NONCONF-UNATT consonant patterns were
similar to the exposure words in all other respects
(e.g., length, syllable structure, number of vowels

3All differences discussed in this section are statistically
significant.

1127



VOICING IDENTITY

40%

60%

80%

100%

1 2 4 8 1 2 4 8

Exposure sets

E
nd

or
se

m
en

t r
at

e

Conforming

Nonconforming

Attested

Unattested

Figure 1: Human behavioral results. Error bars
indicate bootstrapped 95% confidence intervals.

and consonants).

3 The model

PAIM is a generative model: it describes the prob-
abilistic process by which the phonological forms
of words are generated. Phonotactic knowledge is
expressed as a set of word-form templates, repre-
sented as sequences of phonological classes. For
example, the template 〈[+voiced], V, C, V〉 cap-
tures a generalization over words beginning with a
voiced consonant.

Prior over phonological classes: Phonemes are
represented as phonological feature-value matri-
ces.4 We generate a phonological class for each
position in the template using this feature sys-
tem and a parameter p ∈ [0, 1], which con-
trols the model’s willingness to consider more
or less abstract phonological classes: low val-
ues of p encourage underspecified classes, such
as [] or [+voice], whereas high values of p favor
highly specified classes, such as [+voice, labial,
-continuant]. Given a particular value of p, we de-
fine the distribution G(c) over classes as follows:

• For each phonological feature f whose set of
possible values is Vf :

1. Draw P ∼ Bernoulli(p).
2. If P = 1, draw v ∼ Uniform(Vf ) and

include it in c.
3. Otherwise, leave the feature unspeci-

fied, allowing the class to be abstract.
4The particular feature system is treated as a parameter of

the model. In the simulation below we used a simplified ver-
sion of the phonological feature inventory described in Hayes
(2011), which only included features that are distinctive in
English consonants.

Generating words from templates: Given a
choice of phonological template t, we assume that
each of the segments that instantiate t has the same
probability of being sampled (cf. the “size prin-
ciple” of Tenenbaum and Griffiths (2001)). Con-
sider again the class c0 = [+continuant, labial].
Under the assumption that the model’s segment in-
ventory is the English one, there are only two seg-
ments that are labial continuants: [v] and [f]. The
probability of each one of them being generated
from c0 will be P (s|c0) = 1/2.

Prior over template sets: The sounds of the
language can be generated from a variety of tem-
plates at varying levels of abstraction. We there-
fore extend the model to be a mixture of template
distributions of the type described above. The
number of templates is inferred from the data us-
ing a Dirichlet process mixture model (Antoniak,
1974).

This prior can be constructed as a process. Sup-
pose that si is an ordering of the input sounds,
and that we know which templates generated the
first n − 1 sounds s1, . . . , sn−1. If K is the num-
ber of templates that have been posited so far and
n1, . . . , nK indicate the number of sounds that
have been drawn from each template, then the
probability distribution over the template zn that
the sound sn will be drawn from is given by

P (zn = k|z1:n−1) ∝
nk if k ≤ K

α otherwise
(1)

Since the probability that an existing template
generated sn is proportional to the number of seg-
ments currently assigned to that template, this
prior encourages partitions in which a few tem-
plates explain most of the sounds (the “rich get
richer” property), which amounts to a parsimony
bias. Higher values of α can make this bias
weaker.

Modeling phoneme spreading: To simulate the
generalization made by participants in the IDEN-
TITY experiment, templates must be able to state
that two phonemes need to be identical. This is
analogous to mechanisms of “spreading” widely
assumed in phonology (Colavin et al., 2010; Gold-
smith, 1976; McCarthy, 1986). For our simula-
tions below, we simplify by only considering iden-
tity constraints between the initial and medial con-
sonants in exposure and test forms. We sample a
template over these positions as follows:
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1. Draw a class c1 ∼ G, whereG is the distribu-
tion over phonological classes defined above.

2. Draw Q ∼ Bernoulli(q).
3. If Q = 1, return an identity template, i.e.,
〈s, s〉 such that s ∈ c1.

4. Otherwise, draw c2 ∼ G and return the tem-
plate 〈s1, s2〉 such that s1 ∈ c1 and s2 ∈ c2.

Inference: We perform inference to find the
posterior over template sets given the exposure
datasets used in the human experiments described
above. We also infer the hyperparameters using
the following prior distributions:

p ∼ Beta(1, 1)
α ∼ Gamma(2, 4)
q ∼ Beta(1, 1)

(2)

Inference for the Dirichlet process mixture was
performed using the Gibbs sampler described in
Neal (2000). After each Gibbs sweep, slice sam-
pling (Neal, 2003) was used to obtain a new value
for p and q. A new value for α was sampled using
the method described by Escobar and West (1995).
We ran the sampler for 3000 iterations, discarded
the first 100 samples and kept every fifth sample of
the remaining samples, for a total of 580 samples
from the posterior distribution.

Predicting human data: Participants in the
behavioral experiments gave binary judgments
(“could the word be part of the language?”) rather
than probability estimates. To link our model’s
predictions to participants’ binary responses, we
sample m template instantiations from the poste-
rior predictive distribution.5 If the relevant part
of the test word appeared in these m samples, the
model responds “yes”; this can be understood to
be related to a sampling-based view of human in-
ference (Vul et al., 2014). In the simulations below
we fix m to be 10.

Human endorsement rates were consistently
above 50%, while the model’s ratings were of-
ten close to 0%. This is likely to be because hu-
man ratings were also informed by the unmodeled
(fixed) parts of the templates, such as word length
or number of vowels. We therefore linearly trans-
form the model’s ratings to the range exhibited by
human participants: if the untransformed rate is r,
the ultimate simulated rate will be (1 + r)/2.

5Template instantiations only include the modeled (speci-
fied) part of the template: an onset consonant in our model of
the VOICING language or a consonant pair for the IDENTITY
language.

VOICING IDENTITY

40%

60%

80%

100%

1 2 4 8 1 2 4 8

Exposure sets

S
im

ul
at

ed
 r

at
e

Conforming

Nonconforming

Attested

Unattested

Figure 2: PAIM: Simulated endorsement rates.

4 Simulations

We only modeled those aspects of phonotactic
templates that are relevant to the experimental
results. For the VOICING experiment, we con-
strained the template to be 〈 , V, C, V〉 (inference
is only performed on the first consonant); for the
IDENTITY experiment, we constrained it to be 〈 ,
V, , V〉.

Figure 2 shows the simulated endorsement
rates. After a single exposure to each pattern (one
exposure set), PAIM behaved in a qualitatively
similar way to participants in both experiments:
it distinguished CONF from NONCONF words, but
did not distinguish ATT from UNATT words.

PAIM was less willing than humans to general-
ize to CONF-UNATT items after multiple exposure
sets: in the IDENTITY experiment the generaliza-
tion had no effect by the eighth exposure set; in the
VOICING experiment its effect was weaker after
eight than after four exposures sets. By contrast,
human generalization in both languages showed
no sign of weakening after multiple exposure sets.

5 Comparison to related models

Hayes and Wilson (2008) propose a Maximum
Entropy model of phonotactics (MaxEnt; see also
Goldwater and Johnson (2003)). Like PAIM,
MaxEnt is based on phonological classes defined
as feature matrices. Each class c is assigned a
weight wc. The predicted probability in MaxEnt
of a sound s is

p̂(s) =
1
Z
e

∑
c
wcIc(s)

(3)

where Z =
∑

s p̂(s) and Ic(s) = 1 if s ∈ c and
0 otherwise.
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We simulated endorsement rates from a Max-
Ent model for the VOICING language. Following
Hayes and Wilson (2008), we used l2 regulariza-
tion; that is, if the exposure words were s1, . . . , sn,
the objective function was

n∑
i=1

log p̂(si)−
∑
c

(wc − µ)2

2σ2
(4)

Figure 3 shows the simulated endorsement rates
for different values of σ (we set µ = 0 in all
simulations). For σ = 0.05, the model showed
little learning after a single exposure set. When
σ was set to higher values, MaxEnt rapidly pre-
ferred attested to unattested items, failing to re-
produce the human early generalization pattern.
Like PAIM, but unlike humans, generalization to
CONF-UNATT items diminished after multiple ex-
posure sets (in particular for σ = 0.5). A straight-
forward implementation of MaxEnt is therefore
incapable of simulating the human results; better
results could potentially be achieved with a regu-
larization method that encouraged sparsity (Good-
man, 2004; Johnson et al., 2015).

Another proposed model of phonotactics is
the Minimal Generalization Learner, or MGL
(Albright, 2009); Linzen and Gallagher (2014)
showed that MGL can simulate relevant human
behavioral data in some circumstances. In contrast
with PAIM and MaxEnt, which converge to the
empirical distribution given sufficient data, MGL
reserves a fixed amount of probability mass to un-
seen events. It would therefore able to simulate a
sustained generalization pattern.

Our prior over phonological classes bears some
resemblance to the Rational Rules model of vi-
sual categorization (Goodman et al., 2008). In that
model, classes are generated from a probabilis-
tic context free grammar (PCFG); highly specified
rules are therefore implicitly less probable, as in
our model. Relatedly, Hayes and Wilson (2008)
use a greedy feature selection procedure that starts
from simpler phonological classes and gradually
adds more complex ones; this procedure also en-
codes an implicit bias in favor of simple classes.
Finally, our implementation of a parsimony bias
using a Dirichlet process is related to similar bi-
ases incorporated into other models of language
learning (Frank and Tenenbaum, 2011; Johnson et
al., 2007; O’Donnell, 2015).

σ = 0.05 σ = 0.3 σ = 0.5
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Figure 3: Maximum entropy model: Simulated
endorsement rates for the VOICING language, with
different values of the regularization parameter σ.

6 Discussion

We have presented a probabilistic model of phono-
tactic generalization that captures the pattern of
rapid, abstract generalization characteristic of hu-
man learners. The model’s performance is driven
by two crucial assumptions. First, it allows hy-
potheses that make reference to abstract, broad
classes of phones from the beginning of the learn-
ing process. Second, it prefers to learn compact
or parsimonious explanations of the input corpus,
using a small number of phonotactic templates.
This second property is enforced by our use of the
Dirichlet process as a prior over template sets.

These two properties interact. When the model
has seen only a few data items, the availability
of abstract generalizations allows it to explain all
items using a single template, and the prior bias
towards parsimony drives it to do so. As the num-
ber of data items increases, repeated instances of
specific phonemes no longer seem like acciden-
tal observations from a more general template, but
rather like significant templates in their own right;
the model begins to capture such item-specificity.

The model stopped generalizing earlier than hu-
mans did; we intend to explore ways to explain
this discrepancy. Additional human data would
need to be collected to determine whether humans
keep generalizing indefinitely, or eventually con-
verge on the attested sounds. Finally, to facilitate
inference, we only tested our model on the parts
of the word that were relevant to the human data.
In future work, we intend to extend the model to
learn larger templates that include syllable struc-
ture and phonological tiers (Goldsmith, 1976).
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Abstract 

This paper presents a semantic parsing 

and reasoning approach to automatically 

solving math word problems. A new 

meaning representation language is de-

signed to bridge natural language text and 

math expressions. A CFG parser is imple-

mented based on 9,600 semi-automati-

cally created grammar rules. We conduct 

experiments on a test set of over 1,500 

number word problems (i.e., verbally ex-

pressed number problems) and yield 

95.4% precision and 60.2% recall. 

1 Introduction 

Computers, since their creation, have exceeded 

human beings in (speed and accuracy of) mathe-

matical calculation. However, it is still a big chal-

lenge nowadays to design algorithms to automat-

ically solve even primary-school-level math word 

problems (i.e., math problems described in natural 

language). 

Efforts to automatically solve math word prob-

lems date back to the 1960s (Bobrow, 1964a, b). 

Previous work on this topic falls into two catego-

ries: symbolic approaches and statistical learning 

methods. In symbolic approaches (Bobrow, 

1964a, b; Charniak, 1968; Bakman, 2007; Liguda 

& Pfeiffer, 2012), math problem sentences are 

transformed to certain structures by pattern 

matching or verb categorization. Equations are 

then derived from the structures. Statistical learn-

ing methods are employed in two recent papers 

(Kushman et al., 2014; Hosseini et al., 2014). 

 

Most (if not all) previous symbolic approaches 

suffer from two major shortcomings. First, natural 

language (NL) sentences are processed by simply 

applying pattern matching and/or transformation 

rules in an ad-hoc manner (refer to the related 

work section for more details). Second, surpris-

ingly, they seldom report evaluation results about 

the effectiveness of the methods (except for some 

examples for demonstration purposes). For the 

small percentage of work with evaluation results 

available, it is unclear whether the patterns and 

rules are specially designed for specific sentences 

in a test set. 

 

Figure 1: Number word problem examples 

In this paper, we present a computer system 

called SigmaDolphin which automatically solves 

math word problems by semantic parsing and rea-

soning. We design a meaning representation lan-

guage called DOL (abbreviation of dolphin lan-

guage) as the structured semantic representation 

of NL text. A semantic parser is implemented to 

transform math problem text into DOL trees. A 

reasoning module is included to derive math ex-

pressions from DOL trees and to calculate final 

answers. Our approach falls into the symbolic cat-

egory, but makes improvements over previous 

symbolic methods in the following ways, 

______________________________________ 

* Work done while this author was an intern at Microsoft 
Research 

1). One number is 16 more than another. If the 
smaller number is subtracted from 2/3 of the larger, 
the result is 1/4 of the sum of the two numbers. Find 
the numbers. 

2). Nine plus the sum of an even integer and its 
square is 3 raised to the power of 4. What is the num-
ber? 

3). The tens digit of a two-digit number is 3 more 
than the units digit. If the number is 8 more than 6 
times the sum of the digits, find the number. 

4). If the first and third of three consecutive even in-
tegers are added, the result is 12 less than three times 
the second integer. Find the integers. 
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1) We introduce a systematic way of parsing 

NL text, based on context-free grammar (CFG). 

2) Evaluation is enhanced in terms of both data 

set construction and evaluation mechanisms. We 

split the problem set into a development set 

(called dev set) and a test set. Only the dev set is 

accessible during our algorithm design (especially 

in designing CFG rules and in implementing the 

parsing algorithm), which avoids over-tuning to-

wards the test set. Three metrics (precision, recall, 

and F1) are employed to measure system perfor-

mance from multiple perspectives, in contrast to 

all previous work (including the statistical ones) 

which only measures accuracy. 

We target, in experiments, a subtype of word 

problems: number word problems (i.e., verbally 

expressed number problems, as shown in Figure 

1). We hope to extend our techniques to handle 

general math word problems in the future. 

We build a test set of over 1,500 problems and 

make a quantitative comparison with state-of-the-

art statistical methods. Evaluation results show 

that our approach significantly outperforms base-

line methods on our test set. Our system yields an 

extremely high precision of 95.4% and a reasona-

ble recall of 60.2%, which shows promising appli-

cation of our system in precision-critical situa-

tions. 

2 Related Work 

2.1 Math word problem solving 

Most previous work on automatic word problem 

solving is symbolic. STUDENT (Bobrow, 1964a, 

b) handles algebraic problems by first transform-

ing NL sentences into kernel sentences using a 

small set of transformation patterns. The kernel 

sentences are then transformed to math expres-

sions by recursive use of pattern matching. 

CARPS (Charniak, 1968, 1969) uses a similar ap-

proach to solve English rate problems. The major 

difference is the introduction of a tree structure as 

the internal representation of the information 

gathered for one object. Liguda & Pfeiffer (2012) 

propose modeling math word problems with aug-

mented semantic networks. Addition/subtraction 

problems are studied most in early research (Bri-

ars & Larkin, 1984; Fletcher, 1985; Dellarosa, 

1986; Bakman, 2007; Ma et al., 2010). Please re-

fer to Mukherjee & Garain (2008) for a review of 

symbolic approaches before 2008. 

                                                 
1 http://www.wolframalpha.com  

No empirical evaluation results are reported in 

most of the above work. Almost all of these ap-

proaches parse NL text by simply applying pattern 

matching rules in an ad-hoc manner. For example, 

as mentioned in Bobrow (1964b), due to the pat-

tern “($, AND $)”, the system would incorrectly 

divide “Tom has 2 apples, 3 bananas, and 4 

pears.” into two “sentences”: “Tom has 2 apples, 

3 bananas.” and “4 pears.” 

WolframAlpha1 shows some examples2 of au-

tomatically solving elementary math word prob-

lems, with technique details unknown to the gen-

eral public. Other examples on the web site 

demonstrate a large coverage of short phrase que-

ries on math and other domains. By randomly se-

lecting problems from our dataset and manually 

testing on their web site, we find that it fails to 

handle most problems in our problem collection. 

Statistical learning methods have been pro-

posed recently in two papers: Hosseini et al. 

(2014) solve single step or multi-step homoge-

nous addition and subtraction problems by learn-

ing verb categories from the training data. Kush-

man et al. (2014) can solve a wide range of word 

problems, given that the equation systems and so-

lutions are attached to problems in the training set. 

The method of the latter paper (referred to as 

KAZB henceforth) is used as one of our baselines. 

2.2 Semantic parsing 

There has been much work on analyzing the se-

mantic structure of NL strings. In semantic role 

labeling and frame-semantic parsing (Gildea & 

Jurafsky, 2002; Carreras & Marquez, 2004; 

Marquez et al., 2008; Baker et al., 2007; Das et 

al., 2014), predicate-argument structures are dis-

covered from text as their shallow semantic repre-

sentation. In math problem solving, we need a 

deeper and richer semantic representation from 

which to facilitate the deriving of math expres-

sions. 

Another type of semantic parsing work (Zelle 

& Mooney, 1996; Zettlemoyer & Collins, 2005; 

Zettlemoyer & Collins, 2007; Wong & Mooney, 

2007; Cai & Yates, 2013; Berant et al., 2013; 

Kwiatkowski et al., 2013; Berant & Liang, 2014) 

maps NL text into logical forms by supervised or 

semi-supervised learning. Some of them are based 

on or related to combinatory categorial grammar 

(CCG) (Steedman, 2000). Abstract Meaning Rep-

resentation (AMR) (Banarescu et al., 2013) keeps 

richer semantic information than CCG and logical 

2 https://www.wolframalpha.com/examples/Elementary-

Math.html (bottom-right part) 
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forms. In Section 3.1.4, we discuss the differences 

between DOL, AMR, and CCG, and explain why 

we choose DOL as the meaning representation 

language for math problem solving. 

3 Approach 

Consider the first problem in Figure 1 (written be-

low for convenience), 
One number is 16 more than another. If the smaller 

number is subtracted from 2/3 of the larger, the result 

is 1/4 of the sum of the two numbers. Find the numbers. 

To automatically solve this problem, the com-

puter system needs to figure out, somehow, that 1) 

two numbers x, y are demanded, and 2) they sat-

isfy the equations below, 

 x = 16 + y 

(2/3)x – y = (x + y) / 4 

(1) 

(2) 

To achieve this, reasoning must be performed 

based on common sense knowledge and the infor-

mation provided by the source problem. Given the 

difficulty of performing reasoning directly on un-

structured and ambiguous natural language text, it 

is reasonable to transform the source text into a 

structured, less ambiguous representation. 

Our approach contains three modules: 

1) A meaning representation language called 

DOL newly designed by us as the semantic 

representation of natural language text. 

2) A semantic parser which transforms natu-

ral language sentences of a math problem 

into DOL representation. 

3) A reasoning module to derive math expres-

sions from DOL representation. 

 

Figure 2: DOL example 

3.1 DOL: Meaning representation language 

Every meaningful piece of NL text is represented 

in DOL as a semantic tree of various node types. 

Figure 2 shows the DOL representation of the sec-

ond problem of Figure 1. It contains two semantic 

trees, corresponding to the two sentences. 

3.1.1 Node types 

Node types of a DOL tree include constants, clas-

ses, and functions. Each interim node of a tree is 

always a function; and each leaf node can be a 

constant, a class, or a zero-argument function. 

Constants in DOL refer to specific objects in 

the world. A constant can be a number (e.g., 3.57), 

a lexical string (like “New York”), or an entity. 

Classes: An entity class refers to a category of 

entities sharing common semantic properties. For 

example, all cities are represented by the class lo-

cation.city; and math.number is a class for all 

numbers. It is clear that, 

3.14159 ∈ math.number 

city.new_york ∈ location.city 

A class C1 is a sub-class (denoted by ⊆) of an-

other class C2 if and only if every instance of C1 

are in C2. The following holds according to com-

mon sense knowledge, 

math.number ⊆ math.expression 

person.pianist ⊆ person.performer 

Template classes are classes with one or more 

parameters, just like template classes in C++. The 

most important template class in DOL is 

t.list<c,m,n> 

where c is a class; m and n are integers. Each in-

stance of this class is a list containing at least m 

and at most n elements of type c. For example, 

each instance of t.list<math.number,2,+∞> is a 

list containing at least 2 numbers. 

Functions are used in DOL as the major way 

to form larger language units from smaller ones. 

A function is comprised of a name, a list of core 

arguments, and a return type. DOL enables func-

tion overloading (again borrowing ideas from pro-

gramming languages). That is, one function name 

can have multiple core-argument specifications. 

Below are two specifications for fn.math.sum 

(which appears in the example of Figure 2). 

nf.math.sum!1: 

$1: math.expression;  $2: math.expression 

return type: math.expression 

return value: The sum of its arguments 

nf.math.sum!2: 

$1: t.list<math.expression,2,+∞> 

return type: math.expression 

return value: The sum of the elements in $1 

English: Nine plus the sum of an even integer and 

its square is 3 raised to the power of 4. What is the 

number? 

DOL trees: 

vf.be.equ 

nf.math.sum 

nf.list-v1 

math.integer 

nf.math.power 

4 3 9 

1 mf.number.even 

nf.math.2nd_power 

nf.it-v1 

nf.math.sum 

vf.be.equ 

nf.what nf.list-v1 

math.number 1 
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Here “$1: math.expression” means the first ar-

gument has type math.expression. 

DOL supports three kinds of functions: noun 

functions, verb functions, and modifier functions. 

Noun functions map entities to their properties 

or to other entities having specific relations with 

the argument(s). For example, nf.math.sum maps 

math expressions to their sum. Noun functions are 

used to represent noun phrases in natural language 

text. More noun functions are shown in Table 1. 

Among all noun functions, nf.list has a special 

important position due to its high frequency in 

DOL trees. The function is specified below, 

nf.list 

$1: class;  $2: math.number 

return type: t.list<$1> 

return value: An entity list with cardinality $2 

and element type $1 

For example nf.list(math.number,5) returns a 

list containing 5 elements of type math.number. It 

is the semantic representation of “five numbers”. 

Pronoun functions are special zero-argument 

noun functions. Examples are nf.it (representing 

an already-mentioned entity or event) and nf.what 

(denoting an unknown entity or entity list). 

Verb functions act as sentences or sub-sen-

tences in DOL. As an example, vf.be.equ (in Fig-

ure 2) is a verb function that has two arguments of 

the quantity type. 

vf.be.equ 

$1: quantity.generic;  $2: quantity.generic 

return type: t.vf 

Meaning: Two quantities $1 and $2 have the 

same value 

In addition to core arguments ($1, $2, etc.), 

many functions can take additional extended ar-

guments as their modifiers. Our last function type 

called modifier functions often take the role of ex-

tended arguments, to modify noun functions, verb 

functions, or other modifier functions. Modifier 

functions are used in DOL as the semantic repre-

sentation of adjectives, adverb phrases (including 

conjunctive adverb phrases), and prepositional 

phrases in natural languages. In the example of 

Figure 2, the function mf.number.even modifies 

the noun function nf.list as its extended argument. 

3.1.2 Entity variables 

Variables are assigned to DOL sub-trees for indi-

cating the co-reference of sub-trees to entities and 

for facilitating the construction of logical forms 

and math expressions from DOL. In Figure 2, the 

same variable v1 (meaning a variable with ID 1) 

is assigned to two sub-trees in the first sentence 

and one sub-tree in the second sentence. Thus the 

three sub-trees refer to the same entity. 

Function Remarks 

nf.math.numerator 
  $1: math.fraction 
  ret: math.number 

Get the numerator of fraction 

$1 

nf.math.gcd 
  $1: t.list<math.integer,2,+∞> 
  ret: math.integer 

Get the greatest common di-

visor of the elements of $1 

nf.e.height 
  $1: e.concrete 
  ret: quantity.length 

Get the height of $1 which is 

a concrete entity 

vf.believe 
  $1: e.agent; $2: t.vf.std 
  ret: t.vf 

Agent $1 believes that $2 is 

true as a predicate 

mf.number.even 
  ret: t.mf.adj 

Indicating the property of be-

ing an even number 

Table 1: Example DOL functions 

3.1.3 Key features of DOL 

DOL has some nice characteristics that are critical 

to building a high-precision math problem solving 

system. That is why we invent DOL as our mean-

ing representation language instead of employing 

an existing one. 

First, DOL is a strongly typed language. Every 

function has clearly defined argument types and a 

return type. A valid DOL tree must satisfy the 

type-compatibility property: 

Type-compatibility: The type of each child of a 

function node should match the corresponding ar-

gument type of the function. 

For example, in Figure 2, the return type of 

nf.math.power is math.expression, which matches 

the second argument of vf.be.equ. However, the 

following two trees (yielded from the correspond-

ing pieces of text) are invalid because they do not 

satisfy type-compatibility. 

sum of 100  [unreasonable text] 

nf.math.sum!2(100)  [invalid DOL tree] 

sum of 3 and Jordan  [unreasonable text] 

nf.math.sum!2({3, “Jordan”})  [invalid tree] 

Second, we maintain in DOL an open-domain 

type system. The type system contains over 1000 

manually verified classes and more automatically 

generated ones (refer to Section 3.2.1 for more de-

tails). Such a comprehensive type system makes it 

possible to define various kinds of functions and 

to perform type-compatibility checking. In con-

trast, most previous semantic languages have at 

most 100+ types at the grammar level. In addition, 

by introducing template classes, we avoid main-

taining a lot of potentially duplicate types and re-

duce the type system management efforts. To the 

best of our knowledge, template classes are not 
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available in other semantic representation lan-

guages. 

Third, DOL has built-in data structures like 

t.list and nf.list which greatly facilitate both func-

tion declaration and text representation (espe-

cially math text representation). For example, the 

two variants of nf.math.sum (refer to Section 3.1.1 

for their specifications) are enough to represent 

the following English phrases: 

3 plus 5  

 nf.math.sum!1(3, 5) 

sum of 3, 5, 7, and 9 

 nf.math.sum!2(nf.list(3, 5, 7, 9)) 

sum of ten thousand numbers 

 nf.math.sum!2(nf.list(math.number,10000)) 

Without t.list or nf.list, we would have to define 

a lot of overloaded functions for nf.math.sum to 

deal with different numbers of addends. 

3.1.4 Comparing with other languages 

Among all meaning representation languages, 

AMR (Banarescu et al., 2013) is most similar to 

DOL. Their major differences are: First, they use 

very different mechanisms to represent noun 

phrases. In AMR, a sentence (e.g., “the boy de-

stroyed the room”) and a noun phrase (e.g., “the 

boy’s destruction of the room”) can have the same 

representation. While in DOL, a sentence is al-

ways represented by a verb function; and a noun 

phrase is always a noun function or a constant. 

Second, DOL has a larger type system and is 

stricter in type compatibility checking. Third, 

DOL has template classes and built-in data struc-

tures like t.list and nf.list to facilitate the represen-

tation of math concepts. 

CCG (Steedman, 2000) provides a transparent 

interface between syntax and semantics. In CCG, 

semantic information is defined on words (e.g., 

“λx.odd(x)” for “odd” and “λx.number(x)” for 

“number”). In contrast, DOL explicitly connects 

NL text patterns to semantic elements. For exam-

ple, as shown in Table 2 (Section 3.2.1), one CFG 

grammar rule connects pattern “{$1} raised to the 

power of {$2}” to function nf.math.power. 

Logical forms are another way of meaning rep-

resentation. We choose not to transform NL text 

directly to logical forms for two reasons: On one 

hand, state-of-the-art methods for mapping NL 

text into logical forms typically target short, one-

sentence queries in restricted domains. However, 

many math word problems are long and contain 

multiple sentences. On the other hand, variable-id 

assignment is a big issue in direct logical form 

construction for many math problems. Let’s use 

the following problem (i.e., the first problem of 

Figure 1) to illustrate, 

One number is 16 more than another. If the smaller 

number is subtracted from 2/3 of the larger, the result 

is 1/4 of the sum of the two numbers. Find the numbers. 

For this problem, it is difficult to determine 

whether “the smaller number” refers to “one num-

ber” or “another” in directly constructing logical 

forms. It is therefore a challenge to construct a 

correct logical form for such kinds of problems. 

Our solution to the above challenge is assigning 

a new variable ID (which is different from the IDs 

of “one number” and “another”) and to delay the 

final variable-ID assignment to the reasoning 

stage. To enable this mechanism, the meaning 

representation language should support a lazy var-

iable ID assignment and keep as much infor-

mation (e.g., determiners, plurals, modifiers) from 

the noun phrases as possible. DOL is a language 

that always keeps the structure information of 

phrases, whether or not it has been assigned a var-

iable ID. 

In summary, compared with other languages, 

DOL has some unique features which make it 

more suitable for our math problem solving sce-

nario. 

3.2 Semantic Parsing 

Our parsing algorithm is based on context-free 

grammar (CFG) (Chomsky, 1956; Backus, 1959; 

Jurafsky & Martin, 2000), a commonly used 

mathematical system for modeling constituent 

structure in natural languages. 

3.2.1 CFG for connecting DOL and NL 

The core part of a CFG is the set of grammar 

rules. Example English grammar rules for build-

ing syntactic parsers include “S → NP VP”, “NP → 

CD | DT NN | NP PP”, etc. Table 2 shows some 

example CFG rules in our system for mapping 

DOL nodes to natural language word sequences. 

The left side of each rule is a DOL element (a 

function, class, or constant); and the right side is a 

sequence of words and arguments. The grammar 

rules are consumed by our parser for building 

DOL trees from NL text. 

So far there are 9,600 grammar rules in our sys-

tem. For every DOL node type, the lexicon and 

grammar rules are constructed together in a semi-

automatic way. Math-related classes, functions, 

and constants and their grammar rules are manu-

ally built by referring to text books and online tu-
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torials. About 35 classes and 200 functions are ob-

tained in this way. Additional instances of each 

element type are constructed in the ways below. 

Classes: Additional classes and grammar rules 

are obtained from two data sources: Freebase 3 

types, and automatically extracted lexical seman-

tic data. By treating Freebase types as DOL clas-

ses and the mapping from types to lexical names 

as grammar rules, we get the first version of gram-

mar for classes. To improve coverage, we run a 

term peer similarity and hypernym extraction al-

gorithm (Hearst, 1992; Shi et al., 2010; Zhang et 

al., 2011) on a web snapshot of 3 billion pages, 

and get a peer-similarity graph and a collection of 

is-a pairs. An is-a pair example is (Megan Fox, 

actress), where “Megan Fox” and “actress” are in-

stance and type names respectively. In our peer 

similarity graph, “Megan Fox” and “Britney 

Spears” have a high similarity score. The peer 

similarity graph is used to clean the is-a data col-

lection (with the idea that peer terms often share 

some common type names). Given the cleaned is-

a data, we sort the type names by weight and man-

ually create classes for top-1000 type names. For 

example, create a class person.actress and add a 

grammar rule “person.actress → actress”. For the 

other 2000 type names in the top 3000, we create 

classes and rules automatically, in the form of 

“class.TN → TN”, where TN is a type name. For 

example, create rule “class.succulent →  succu-

lent” for name “succulent”. 

vf.be.equ($1,$2) → {$1} be equal to {$2} 
                             |  {$1} equal {$2} 
                             |  {$1} be {$2} 
vf.give($1,$2,$3) → {$1} give {$2} to {$3} 
                              |  {$1} give {$3} {$2} 
nf.math.sum!1($1,$2) → {$1} plus {$2} 
                                      | {$2} added to {$1} 
nf.math.sum!2($1) → sum of {$1} 
                                 | addition of {$1} 
nf.math.power($1,$2) 

→ {$1} raised to the {power|exponent} of {$2} 
nf.list($1,$2) → {$2} {$1} 
mf.number.even → even 
mf.condition.if($1) → if {$1} 
mf.approximately → approximately 
                               | roughly 
education.university → university 
math.number → number 
math.integer → integer 

Table 2: Example grammar for connecting DOL 

and NL 

                                                 
3 Freebase: http://www.freebase.com/ 

Functions: Additional noun functions are auto-

matically created from Freebase properties and at-

tribute extraction results (Pasca et al., 2006; 

Durme et al., 2008), using a similar procedure 

with creating classes from Freebase types and is-

a extraction results. We have over 50 manually 

defined math-related verb functions. Our future 

plan is automatically generating verb functions 

from databases like PropBank (Kingsbury & 

Palmer, 2002), FrameNet (Fillmore et al., 2003), 

and VerbNet4 (Schuler, 2005). Additional modi-

fier functions are automatically created from an 

English adjective and adverb list, in the form of 

“mf.adj.TN →  TN” and “mf.adv.TN →  TN” 

where TN is the name of an adjective or adverb. 

 

Figure 3: The DOL semantic parse tree for “Nine 

plus an integer is equal to 314” 

 

Figure 4: A syntactic parse tree 

3.2.2 Parsing 

Parsing for CFG is a well-studied topic with lots 

of algorithms invented (Kasami, 1965; Earley, 

1970). The core idea behind almost all the algo-

rithms is exploiting dynamic programming to 

achieve efficient search through the space of pos-

sible parse trees. For syntactic parsing, a well-

known serious problem is ambiguity: the appear-

ance of many syntactically correct but semanti-

cally unreasonable parse trees. Modern syntactic 

parsers reply on statistical information to reduce 

4 VerbNet: http://verbs.colorado.edu/~mpalmer/pro-

jects/verbnet.html  
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ambiguity. They are often based on probabilistic 

CFGs (PCFGs) or probabilistic lexicalized CFGs 

trained on hand-labeled TreeBanks. 

With the new set of DOL-NL grammar rules 

(examples in Table 2) and the type-compatibility 

property (Section 3.1.3), ambiguity can hopefully 

be greatly reduced, because semantically unrea-

sonable parsing often results in invalid DOL trees. 

We implement a top-down parser for our new 

CFG of Section 3.2.1, following the Earley algo-

rithm (Earley, 1970). No probabilistic information 

is attached in the grammar rules because no Tree-

banks are available for learning statistical proba-

bilities for the new CFG. Figure 3 shows the parse 

tree returned by our parser when processing a sim-

ple sentence. The DOL tree can be obtained by re-

moving the dotted lines (corresponding to the 

non-argument part in the right side of the grammar 

rules). A traditional syntactic parse tree is shown 

in Figure 4 for reference. 

During parsing, a score is calculated for each 

DOL node. The score of a tree T is the weighted 

average of the scores of its sub-trees, 

 
𝑺(𝑻) =

∑ 𝑳(𝑻𝒊) ∙ 𝑺(𝑻𝒊)
𝒌
𝒊=𝟏

∑ 𝑳(𝑻𝒊)
𝒌
𝒊=𝟏

∙ 𝒑(𝑻) (3) 

where 𝑇𝑖 is a sub-tree, and 𝐿(𝑇𝑖) is the number of 

words to which the sub-tree corresponds in the 

original text. If the type-compatibility property for 

T is satisfied, 𝑝(𝑇)=1; otherwise 𝑝(𝑇)=0. 

All leaf nodes are assigned a score of 1.0, ex-

cept for pure lexical string nodes (which are used 

as named entity names). The score of a lexical 

string node is set to 1/(1+𝜇n), where n is the num-

ber of words in the node, and 𝜇 (=0.2 in experi-

ments) is a parameter whose value does not have 

much impact on parsing results. Such a score 

function encourages interpreting a word sequence 

with our grammar than treating it as an entity 

name. 

Among all candidate DOL trees yielded during 

parsing, we return the one with the highest score 

as the final parsing result. A null tree is returned 

if the highest score is zero. 

3.3 Reasoning 

The reasoning module is responsible for deriving 

math expressions from DOL trees and calculating 

problem answers by solving equation systems. 

Math expressions have different definitions in dif-

ferent contexts. In some definitions, equations and 

inequations are excluded from math expressions. 

In this paper, equations and inequations (like 

“a=b” and “ax+b>0”) are called s-expressions be-

cause they represent mathematical sentences, 

while other math expressions (like “x+5”) are 

named n-expressions since they are essentially 

noun phrases. Our definition of “math expres-

sions” therefore includes both n-expressions and 

s-expressions. 

Different types of nodes may generate different 

types of math expressions. In most cases, s-ex-

pressions are derived from verb function nodes 

and modifier function nodes, while n-expressions 

are generated from constants and noun function 

nodes. For example, the s-expression “9+x=314” 

can be derived from the DOL tree of Figure 3, if 

variable x represents the integer. In the same Fig-

ure, The n-expression “9+x” is derived from the 

left sub-tree. 

The pseudo-codes of our math expression deri-

vation algorithm are shown in Figure 5. The algo-

rithm generates the math expression for a DOL 

tree T by first calling the expression derivation 

procedure of sub-trees, and then applying the se-

mantic interpretation of T. All the s-expressions 

derived so far are stored in an expression list 

named XL. 

Algorithm MathExpDerivation 

    Input: DOL tree T 

Output: Math expression X(T) 

Global data structure: Expression list XL 

1: For each child Ci of T 

2:     X(Ci) = MathExpDerivation(Ci) 

3:     If X(Ci) is an s-expression 

4:         Add X(Ci) to XL 

5: X(T) ← Applying the semantic interpretation 

of T 

6: Return X(T) 

Figure 5: Math expression derivation algorithm 

vf.be.equ($1,$2) → X($1) = X($2) (1) 

nf.math.sum!1($1,$2) → X($1) + X($2) (2) 

nf.math.sum!2($1) → ∑ 𝐗(𝐞)𝐞∈$𝟏  (3) 

nf.math.gcd($1) → gcd({X(e) | 𝐞 ∈ $𝟏}) (4) 

nf.list($1,$2) → V = (v1, v2…, vn), n=X($2) (5) 

mf.number.even → X($↑) % 2 = 0 (6) 

Table 3: Example semantic interpretations 

The semantic interpretation of DOL nodes 

plays a critical role in the algorithm. Table 3 

shows some example interpretations of some rep-

resentative DOL functions. In the table, $1, $2 etc. 

are function arguments, and $↑  for a modifier 

node denotes the node which the modifier modi-

fies. So far the semantic interpretations are built 

manually. Please note that it is not necessary to 

make semantic interpretations for every DOL 
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node in solving number word problems. For ex-

ample, most class nodes and many adverb nodes 

can have null interpretations at the moment. 

4 Experiments 

4.1 Experimental setup 

Datasets: Our problem collection5 contains 1,878 

math number word problems, collected from two 

web sites: algebra.com6 (a web site for users to 

post math problems and get help from tutors) and 

answers.yahoo.com7. Problems on both sites are 

organized into categories. For algebra.com, prob-

lems are randomly sampled from the number 

word problems category; for answers.yahoo.com, 

we first randomly sample an initial set of prob-

lems from the math category and then ask human 

annotators to manually choose number word 

problems from them. Math equations 8  and an-

swers to the problems are manually added by hu-

man annotators. 

We randomly split the dataset into a dev set (for 

algorithm design and debugging) and a test set. 

More subsets are extracted to meet the require-

ments of the baseline methods (see below). Table 

4 shows the statistics of the datasets. 

Baseline methods: We compare our approach 

with two baselines: KAZB (Kushman et al., 2014) 

and BasicSim. 

KAZB is a learning-based statistical method 

which solves a problem by mapping it to one of 

the equation templates determined by the anno-

tated equations in the training data. We run the 

ALLEQ version of their algorithm since it per-

forms much better than the other two (i.e., 5EQ 

and 5EQ+ANS). Their codes support only linear 

equations and require that there are at least two 

problems for each equation template (otherwise 

an exception will be thrown). By choosing prob-

lems from the collection that meet these require-

ments, we build a sub-dataset called LinearT2. In 

the dataset of KAZB, each equation template cor-

responds to at least 6 problems. So we form an-

other sub-dataset called LinearT6 by removing 

from the test set the problems for which the asso-

ciated equation template appears less than 6 times. 

BasicSim is a simple statistical method which 

works by computing the similarities between a 

testing problem and those in the training set, and 

then applying the equations of the most similar 

problem. This method has similar performance 

                                                 
5 Available from http://research.microsoft.com/en-us/pro-

jects/dolphin/  
6 http://www.algebra.com  

with KAZB on their dataset, but does not have the 

two limitations mentioned above. Therefore we 

adopt it as the second baseline. 

For both baselines, experiments are conducted 

using 5-fold cross-validation with the dev set al-

ways included in the training data. In other words, 

we always use the dev set and 4/5 of the test set as 

training data for each fold. 

Evaluation metrics: Evaluation is performed in 

the setting that a system can choose NOT to an-

swer all problems in the test set. In other words, 

one has the flexibility of generating answers only 

when she knows how to solve it or she is confident 

about her answer. In this setting, the following 

three metrics are adopted in reporting evaluation 

results (assuming, in a test set of size n, a system 

generates answers for m problems, where k of 

them are correct): 

Precision: k/m 

Recall (or coverage): k/n 

F1: 2PR/(P+R) = 2k/(m+n) 

Dataset #problems #sentences 
(average) 

#words 
(average) 

All 
dev 374 1.79 20.3 
test 1,504 1.75 22.5 

Linear 
dev 247 1.78 19.6 
test 986 1.72 19.0 

LinearT2 
dev 172 1.85 18.8 
test 669 1.71 17.4 

LinearT6 
dev 71 1.96 16.8 
test 348 1.80 16.1 

Table 4: Dataset statistics (Linear: problems with 

linear equations; T2: problems corresponding to 

template size ≥ 2) 

4.2 Experimental results 

The Overall evaluation results are summarized in 

Table 5, where “Dolphin” represents our ap-

proach. The results show that our approach signif-

icantly outperforms (with p<<0.01 according to 

two-tailed t-test) the two baselines on every test 

set, in terms of precision, recall, and F-measure. 

Our approach achieves a particularly high preci-

sion of 95%. That means once an answer is pro-

vided by our approach, it has a very high proba-

bility of being correct. 

Please note that our grammar rules and parsing 

algorithm are NOT tuned for the evaluation data. 

Only the dev set is referred to in system building. 

7 https://answers.yahoo.com/  
8 Math equations are used in the baseline approaches as part 

of training data. 
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Since the baselines generate results for all prob-

lems, the precision, recall, and F1 are all the same 

for each dataset. 

Dataset Method 
Precision 

(%) 
Recall 

(%) 
F1 
(%) 

LinearT6 
KAZB 49.1 49.1 49.1 
BasicSim 59.7 59.7 59.7 
Dolphin 98.1 72.9 83.6 

LinearT2 
KAZB 37.5 37.5 37.5 
BasicSim 46.3 46.3 46.3 
Dolphin 97.3 68.0 80.0 

Linear 
BasicSim 32.3 32.3 32.3 
Dolphin 95.7 63.6 76.4 

Test set 
all 

BasicSim 29.0 29.0 29.0 
Dolphin 95.4 60.2 73.8 

Table 5: Evaluation results 

The reason for such a high precision is that, by 

transforming NL text to DOL trees, the system 

“understands” the problem (or has structured and 

accurate information about quantity relations). 

Therefore it is more likely to generate correct re-

sults than statistical methods who simply “guess” 

according to features. By examining the problems 

in the dev set that we cannot generate answers, we 

find that most of them are due to empty parsing 

results. 

On the other hand, statistical approaches have 

the advantage of generating answers without un-

derstanding the semantic meaning of problems (as 

long as there are similar problems in the training 

data). So they are able to handle (with probably 

low precision) problems that are complex in terms 

of language and logic. 

Please pay attention that our experimental re-

sults reported here are on number word problems. 

General math word problems are much harder to 

our approach because the entity types, properties, 

relations, and actions contained in general word 

problems are much larger in quantity and more 

complex in quality. We are working on extending 

our approach to general math word problems. 

Now our DOL language and CFG grammar al-

ready have a good coverage on common entity 

types, but the coverage on properties, relations, 

and actions is quite limited. As a result, our parser 

fails to parse many sentences in general math 

word problems because they contain properties, 

relations or actions that are unknown to our sys-

tem. We also observe that sometimes we are able 

to parse a problem successfully, but cannot derive 

math expressions in the reasoning stage. This is 

often because some relations or actions in the 

problem are not modeled appropriately. As future 

work, we plan to extend our DOL lexicon and 

grammar to improve the coverage of properties, 

relations, and actions. We also plan to study the 

mechanism of modeling relations and actions. 

5 Conclusion 

We proposed a semantic parsing and reasoning 

approach to automatically solve math number 

word problems. We have designed a new meaning 

representation language DOL to bridge NL text 

and math expressions. A CFG parser is imple-

mented to parse NL text to DOL trees. A reason-

ing module is implemented to derive math expres-

sions from DOL trees, by applying the semantic 

interpretation of DOL nodes. We achieve a high 

precision and a reasonable recall on our test set of 

over 1,500 problems. We hope to extend our tech-

niques to handling general math word problems 

and to other domains (like physics and chemistry) 

in the future. 
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Abstract

We present a parser for Abstract Meaning
Representation (AMR). We treat English-
to-AMR conversion within the framework
of string-to-tree, syntax-based machine
translation (SBMT). To make this work,
we transform the AMR structure into a
form suitable for the mechanics of SBMT
and useful for modeling. We introduce
an AMR-specific language model and add
data and features drawn from semantic re-
sources. Our resulting AMR parser signif-
icantly improves upon state-of-the-art re-
sults.

1 Introduction

Abstract Meaning Representation (AMR) is a
compact, readable, whole-sentence semantic an-
notation (Banarescu et al., 2013). It includes en-
tity identification and typing, PropBank semantic
roles (Kingsbury and Palmer, 2002), individual en-
tities playing multiple roles, as well as treatments
of modality, negation, etc. AMR abstracts in nu-
merous ways, e.g., by assigning the same concep-
tual structure to fear (v), fear (n), and afraid (adj).
Figure 1 gives an example.

AMR parsing is a new research problem, with
only a few papers published to date (Flani-
gan et al., 2014; Wang et al., 2015) and a
publicly available corpus of more than 10,000
English/AMR pairs.1 New research problems
can be tackled either by developing new algo-
rithms/techniques (Flanigan et al., 2014; Wang
et al., 2015) or by adapting existing algo-
rithms/techniques to the problem at hand. In this
paper, we investigate the second approach.

The AMR parsing problem bears a strong for-
mal resemblance to syntax-based machine transla-
tion (SBMT) of the string-to-tree variety, in that

1LDC Catalog number 2014T12

ins
t

fear-01

die-01

A
R
G
0 ARG1

polarity -

in
st

soldier

inst
ARG1

The soldier was not afraid of dying.
The soldier was not afraid to die.

The soldier did not fear death.

Figure 1: An Abstract Meaning Representation
(AMR) with several English renderings.

a string is transformed into a nested structure in
both cases. Because of this, it is appealing to ap-
ply the substantial body of techniques already in-
vented for SBMT2 to AMR parsing. By re-using
an SBMT inference engine instead of creating cus-
tom inference procedures, we lose the ability to
embed some task-specific decisions into a custom
transformation process, as is done by Flanigan et
al. (2014) and Wang et al. (2015). However, we
reap the efficiency gains that come from work-
ing within a tested, established framework. Fur-
thermore, since production-level SBMT systems
are widely available, anyone wishing to generate
AMR from text need only follow our recipe and
retrain an existing framework with relevant data to
quickly obtain state-of-the-art results.

Since SBMT and AMR parsing are, in fact,
distinct tasks, as outlined in Figure 2, to adapt
the SBMT parsing framework to AMR parsing,
we develop novel representations and techniques.
Some of our key ideas include:

1. Introducing an AMR-equivalent representa-
tion that is suitable for string-to-tree SBMT
rule extraction and decoding (Section 4.1).

2See e.g. the related work section of Huck et al. (2014).
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SBMT AMR parsing
Target tree graph
Nodes labeled unlabeled
Edges unlabeled labeled
Alignments words to leaves words to leaves

+ words to edges
Children ordered unordered
Accuracy
Metric

BLEU (Papineni
et al., 2002)

Smatch (Cai and
Knight, 2013)

Figure 2: Differences between AMR parsing and
syntax-based machine translation (SBMT).

2. Proposing a target-side reordering technique
that leverages the fact that child nodes in
AMR are unordered (Section 4.4).

3. Introducing a hierarchical AMR-specific lan-
guage model to ensure generation of likely
parent-child relationships (Section 5).

4. Integrating several semantic knowledge
sources into the task (Section 6).

5. Developing tuning methods that maximize
Smatch (Cai and Knight, 2013) (Section 7).

By applying these key ideas, which constitute
lightweight changes on a baseline SBMT system,
we achieve state-of-the-art AMR parsing results.
We next describe our baseline, and then describe
how we adapt it to AMR parsing.

2 Syntax-Based Machine Translation

Our baseline SBMT system proceeds as follows.
Given a corpus of (source string, target tree,
source-target word alignment) sentence translation
training tuples and a corpus of (source, target,
score) sentence translation tuning tuples:

1. Rule extraction: A grammar of string-to-
tree rules is induced from training tuples us-
ing the GHKM algorithm (Galley et al., 2004;
Galley et al., 2006).

2. Local feature calculation: Statistical and in-
dicator features, as described by Chiang et al.
(2009), are calculated over the rule grammar.

3. Language model calculation: A Kneser-
Ney-interpolated 5-gram language model
(Chen and Goodman, 1996) is learned from
the yield of the target training trees.

4. Decoding: A beamed bottom-up chart de-
coder (Pust and Knight, 2009; Hopkins
and Langmead, 2010) calculates the optimal
derivations given a source string and feature
parameter set.

5. Tuning: Feature parameters are optimized
using the MIRA learning approach (Chiang

Corpus Sentences Tokens
Training 10,313 218,021

Development 1,368 29,484
Test 1,371 30,263

Table 1: Data splits of AMR 1.0, used in this work.
Tokens are English, after tokenization.

et al., 2009) to maximize the objective, typi-
cally BLEU (Papineni et al., 2002), associated
with a tuning corpus.

We initially use this system with no modifica-
tions and pretend that English–AMR is a language
pair indistinct from any other.

3 Data and Comparisons

We use English–AMR data from the AMR 1.0 cor-
pus, LDC Catalog number 2014T12. In contrast
to narrow-domain data sources that are often used
in work related to semantic parsing (Price, 1990;
Zelle, 1995; Kuhlmann et al., 2004), the AMR cor-
pus covers a broad range of news and web forum
data. We use the training, development, and test
splits specified in the AMR corpus (Table 1). The
training set is used for rule extraction, language
modeling, and statistical rule feature calculation.
The development set is used both for parameter
optimization and qualitatively for hill-climbing.
The test set is held out blind for evaluation. We
preprocess the English with a simple rule-based
tokenizer and, except where noted, lowercase all
data. We obtain English–AMR alignments by us-
ing the unsupervised alignment approach of Pour-
damghani et al. (2014), which linearizes the AMR
and then applies the models of Brown et al. (1993)
with an additional symmetrization constraint.

All parsing results reported in this work are
obtained with the Smatch 1.0 software (Cai and
Knight, 2013). We compare our results to those of
Flanigan et al. (2014) on the AMR 1.0 data splits;
we run that work’s JAMR software according to
the provided instructions.3 We also compare our
results to published scores in the recent work of
Wang et al. (2015). Their work uses slightly dif-
ferent data than that used here 4 but in practice we
have not seen significant variation in results.

3https://github.com/jflanigan/jamr
4LDC2013E117, a pre-released version of LDC2014T12

that is not generally available.
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Figure 3: Transformation of AMR into tree structure that is acceptable to GHKM rule extraction (Galley
et al., 2004; Galley et al., 2006) and yields good performance.

4 AMR Transformations

In this section we discuss various transformations
to our AMR data. Initially, we concern ourselves
with converting AMR into a form that is amenable
to GHKM rule extraction and string to tree decod-
ing. We then turn to structural transformations
designed to improve system performance. Fig-
ure 3 progressively shows all the transformations
described in this section; the example we follow is
shown in its original form in Figure 3a. We note
that all transformations are done internally; the in-
put to the final system is a sentence and the output
is an AMR. We further observe that all transfor-
mations are data-driven and language agnostic.

4.1 Massaging AMRs into Syntax-Style Trees

The relationships in AMR form a directed acyclic
graph (DAG), but GHKM requires a tree, so
we must begin our transformations by discarding
some information. We arbitrarily disconnect all
but a single parent from each node (see Figure 3b).

This is the only lossy modification we make to
our AMR data. As multi-parent relationships oc-
cur 1.05 times per training sentence and at least
once in 48% of training sentences, this is indeed a
regrettable loss. We nevertheless make this mod-
ification, since it allows us to use the rest of our
string-to-tree tools.

AMR also contains labeled edges, unlike the
constituent parse trees we are used to working with
in SBMT. These labeled edges have informative
content and we would like to use the alignment
procedure of Pourdamghani et al. (2014), which
aligns words to edges as well as to terminal nodes.
So that our AMR trees are compatible with both
our desired alignment approach and our desired
rule extraction approach, we propagate edge labels
to terminals via the following procedure:

1. For each node n in the AMR tree we create
a corresponding node m with the all-purpose
symbol ‘X’ in the SBMT-like tree. Outgoing
edges from n come in two flavors: concept
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edges, labeled ‘inst,’ which connect n to a
terminal concept such as fear-01, and role
edges, which have a variety of labels such as
ARG0 and name, and connect n to another
instance or to a string.5 A node has one in-
stance edge and zero or more role edges. We
consider each type of edge separately.

2. For each outgoing role edge we insert two un-
labeled edges into the corresponding trans-
formation; the first is an edge from m to a
terminal bearing the original edge’s role label
(a so-called role label edge), and the second
(a role filler edge) connects m to the trans-
formation of the original edge’s target node,
which we process recursively. String targets
of a role receive an ‘X’ preterminal to be con-
sistent with the form of role filler edges.

3. For the outgoing concept edge we insert an
unlabeled edge connecting m and the con-
cept. It is unambiguous to determine which
of m’s edges is the concept edge and which
edges constitute role label edges and their
corresponding role filler edges, as long as
paired label and filler edges are adjacent.

4. Since SBMT expects trees with preterminals,
we simply replicate the label identities of
concepts and role labels, adding a marker (‘P’
in Figure 3) to distinguish preterminals.

The complete transformation can be seen in Fig-
ure 3c. Apart from multiple parent ancestry, the
original AMR can be reconstructed deterministi-
cally from this SBMT-compliant rewrite.

4.2 Tree Restructuring
While the transformation in Figure 3c is accept-
able to GHKM, and hence an entire end-to-end
AMR parser may now be built with SBMT tools,
the resulting parser does not exhibit very good per-
formance (Table 3, first line). The trees we are
learning on are exceedingly flat, and thus yield
rules that do not generalize sufficiently. Rules pro-
duced from the top of the tree in Figure 3c, such
as that in Figure 4a, are only appropriate for cases
where fear-01 has exactly three roles: ARG0
(agent), ARG1 (patient), and polarity.

We follow the lead of Wang et al. (2010), who
in turn were influenced by similar approaches in
monolingual parsing (Collins, 1997; Charniak,
2000), and re-structure trees at nodes with more

5In Figure 3 the negative polarity marker ‘-’ is a string.
Disconnected referents labeled ‘*’ are treated as AMR in-
stances with no roles.

than three children (i.e. instances with more than
one role), to allow generalization of flat structures.

However, our trees are unlike syntactic con-
stituent trees in that they do not have labeled non-
terminal nodes, so we have no natural choice of
an intermediate (“bar”) label. We must choose a
meaningful label to characterize an instance and
its roles. We initially choose the concept label,
resulting in trees like that in Figure 3d, in which a
chain of fear-01 nodes is used to unflatten the root,
which has instance fear-01.

This attempt at re-structuring yields rules like
that in Figure 4b, which are general in form but
are tied to the concept context in which they were
extracted. This leads to many redundant rules and
blows up the nonterminal vocabulary size to ap-
proximately 8,000, the size of the concept vocabu-
lary. Furthermore, the rules elicited by this proce-
dure encourage undesirable behavior such as the
immediate juxtaposition of two rules generating
ARG1.

We next consider restructuring with the imme-
diately dominant role labels, resulting in trees like
that in Figure 3e and rules like that in Figure 4c.
The shape of the structure added is the same as in
Figure 3d but the bar nodes now take their labels
from their second children. This approach leads to
more useful rules with fewer undesirable proper-
ties.

4.3 Tree Relabeling
AMR strings have an effective preterminal label of
‘X,’ which allows them to compete with full AMR
instances at decode time. However, whether or not
a role is filled by a string or an instance is highly
dependent on the kind of role being filled. The
polarity and mode roles, for instance, are nearly
always filled by strings, but ARG0 and ARG1 are
always filled by instances. The quant role, which
is used for representation of numerical quantities,
can be filled by an instance (e.g. for approximate
quantities such as ‘about 3’) or a string. To capture
this behavior we relabel string preterminals of the
tree with labels indicating role identity and string
subsumption. This relabeling, replaces, for exam-
ple, one ‘X’ preterminal in Figure 3c with “Spo-
larity,” as shown in Figure 3f.

4.4 Tree Reordering
Finally, let us consider the alignments between
English and AMR. As is known in SBMT, non-
monotone alignments can lead to large, unwieldy
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Figure 4: Impact of restructuring on rule extraction.

rules and in general make decoding more diffi-
cult (May and Knight, 2007). While this is often
an unavoidable fact of life when trying to trans-
late between two natural languages with different
syntactic behavior, it is an entirely artificial phe-
nomenon in this case. AMR is an unordered repre-
sentation, yet in order to use an SBMT infrastruc-
ture we must declare an order of the AMR tree.
This means we are free to choose whatever order
is most convenient to us, as long as we keep role
label edges immediately adjacent to their corre-
sponding role filler edges to preserve conversion
back to the edge-labeled AMR form. We thus
choose the order that is as close as possible to
that of the source yet still preserves these con-
straints. We use a simple greedy bottom-up ap-
proach that permutes the children of each internal
node of the unrestructured tree so as to minimize
crossings. This leads to a 79% overall reduction in
crossings and is exemplified in Figure 3g (before)
and Figure 3h (after). We may then restructure our
trees, as described above, in an instance-outward
manner. The final restructured, relabeled, and re-
ordered tree is shown in Figure 3i.

5 AMR Language Models

We now turn to language models of AMRs, which
help us prefer reasonable target structures over un-
reasonable ones.

Our first language model is unintuitively
simple—we pretend there is a language called
AMRese that consists of yields of our restruc-
tured AMRs. An example AMRese string from
Figure 3i is ‘ARG0 soldier polarity -

fear-01 ARG1 die-01 ARG1 *.’ We then
build a standard n-gram model for AMRese.

It also seems sensible to judge the correctness of
an AMR by calculating the empirical probability
of the concepts and their relations to each other.
This is the motivation behind the following model
of an AMR:6

We define an AMR instance i = (c,R), where
c is a concept and R is a set of roles. We
define an AMR role r = (l, i), where l is a
role label, and i is an AMR instance labeled l.
For an AMR instance i let ĉi be the concept of
i’s parent instance, and l̂i be the label of the
role that i fills with respect to its parent. We
also define the special instance and role labels
ROOT and STOP. Then, we define PAMR(i|l̂i, ĉi),
the conditional probability of AMR instance i
given its ancestry as PAMR(i = (c,R)|l̂i, ĉi) =
P (c|l̂i, ĉi)

∏
r∈R

PRole(r|c) × P (STOP|c), where

PRole(r = (l, i)|c) = P (l|c)PAMR(i|l, c).
We define P (c|l̂i, ĉi), P (l|c), and P (STOP|c)

as empirical conditional probabilities, Witten-Bell
interpolated (Witten and Bell, 1991) to lower-
order models by progressively discarding context
from the right.7 We model exactly one STOP
event per instance. We define the probability of
a full-sentence AMR i as PAMR(i|ROOT) where
ROOT in this case serves as both parent concept
and role label.

6This model is only defined over AMRs that can be rep-
resented as trees, and not over all AMRs. Since tree AMRs
are a prerequisite of our system we did not yet investigate
whether this model could be sufficiently generalized.

7That is, P (c|l̂i, ĉi) is interpolated with P (c|l̂i) and then
P (c).

1147



System Tune Test
AMRese n-gram LM 61.7 59.7

AMR LM 59.1 57.1
both LMs 62.3 60.6

Table 2: The effect of AMRese n-gram and AMR
LMs on Smatch quality.

As an example, the instance associated
with concept die-01 in Figure 3b has l̂i =
ARG1 and ĉi = fear-01, so we may
score it as P (die-01|ARG1,fear-01) ×
P (ARG1|die-01) × P (STOP|die-01) ×
P (*|ARG1,die-01)

In Table 2 we compare the effect of varying
LMs on Smatch quality. The AMR LM by itself
is inferior to the AMRese n-gram LM, but com-
bining the two yields superior quality.

6 Adding External Semantic Resources

Although we are engaged in the task of semantic
parsing, we have not yet discussed the use of any
semantic resources. In this section we rectify that
omission.

6.1 Rules from Numerical Quantities and
Named Entities

While the majority of string-to-tree rules in SBMT
systems are extracted from aligned parallel data, it
is common practice to dynamically generate addi-
tional rules to handle the translation of dates and
numerical quantities, as these follow common pat-
terns and are easily detected at decode-time. We
follow this practice here, and additionally detect
person names at decode-time using the Stanford
Named Entity Recognizer (Finkel et al., 2005).
We use cased, tokenized source data to build the
decode-time rules. We add indicator features to
these rules so that our tuning methods can decide
how favorable the resources are. We leave as fu-
ture work the incorporation of named-entity rules
for other classes, since most available named-
entity recognition beyond person names is at a
granularity level that is incompatible with AMR
(e.g. we can recognize ‘Location’ but not distin-
guish between ‘City’ and ‘Country’).

6.2 Hierarchical Semantic Categories

In order to further generalize our rules, we mod-
ify our training data AMRs once more, this time
replacing the identity preterminals over concepts
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Figure 5: Final modification of the AMR data; se-
mantically clustered preterminal labels are added
to concepts.

with preterminals designed to enhance the appli-
cability of our rules in semantically similar con-
texts. For each concept c expressed in AMR, we
consult WordNet (Fellbaum, 1998) and a curated
set of gazetteers and vocabulary lists to identify
a hierarchy of increasingly general semantic cat-
egories that describe the concept. So as not to
be overwhelmed by the many fine-grained distinc-
tions present in WordNet, we pre-select around
100 salient semantic categories from the WordNet
ontology. When traversing the WordNet hierarchy,
we propagate a smoothed count8 of the number
of examples seen per concept sense,9 combining
counts when paths meet. For each selected se-
mantic category s encountered in the traversal, we
calculate a weight by dividing the propagated ex-
ample count for c at s by the frequency s was pro-
posed over all AMR concepts. We then assign c
to the highest scoring semantic category s. An ex-
ample calculation for the concept computer is
shown in Figure 7.

We apply semantic categories to our data
as replacements for identity preterminals of
concepts. This leads to more general, more
widely-applicable rules. For example, with
this transformation, we can parse correctly
not only contexts in which “soldiers die,” but
also contexts in which other kinds of “skilled
workers die.” Figure 5 shows the addition of
semantic preterminals to the tree from Figure
3i. We also incorporate semantic categories
into the AMR LM. For concept c, let sc be
the semantic category of c. Then we reformu-

8We use very simple smoothing, and add 0.1 to the pro-
vided example counts.

9Since WordNet senses do not correspond directly to
PropBank or AMR senses, we simply use a lexical match and
must consider all observed senses for that match.
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System Sec. Tune Test
flat trees 4.1 51.6 49.9

concept restructuring 4.2 57.2 55.3
role restructuring (rr) 4.2 60.8 58.6

rr + string preterminal relabeling (rl) 4.3 61.3 59.7
rr + rl + reordering (ro) 4.4 61.7 59.7
rr + rl + ro + AMR LM 5 62.3 60.6

rr + rl + ro + AMR LM + date/number/name rules (dn) 6.1 63.3 61.3
rr + rl + ro + AMR LM + dn + semantic categories (sc) 6.2 66.2 64.3

rr + rl + ro + AMR LM + dn + sc + morphological normalization (mn) 6.3 67.3 65.4
rr + rl + ro + AMR LM + dn + sc + mn, rule-based alignments 6.4 68.3 66.3

rr + rl + ro + AMR LM + dn + sc + mn, rule-based + unsupervised alignments 6.4 69.0 67.1
JAMR (Flanigan et al., 2014) 9 58.8 58.2

dependency parse-based (Wang et al., 2015) 9 N/A 63

Table 3: AMR parsing Smatch scores for the experiments in this work. We provide a cross-reference to
the section of this paper that describes each of the evaluated systems. Entries in bold are improvements
over JAMR (Flanigan et al., 2014). Test entries underlined are improvements over the dependency-based
work of Wang et al. (2015). Human inter-annotator Smatch performance is in the 79-83 range (Cai and
Knight, 2013).

English AMRese
tigers tiger
asbestos asbestos
quietly quiet
nonexecutive executive polarity ‘-’
broke up break-up-08

Table 4: Lexical conversions to AMRese form
due to the morphological normalization rules de-
scribed in Section 6.3.

late PAMR(i|l̂i, ĉi) as PAMR(i = (c,R)|l̂i, ĉi) =
P (sc|l̂i, sĉi , ĉi)P (c|sc, l̂i, sĉi , ĉi)

∏
r∈R

PRole(r|c) ×
P (STOP|sc, c), where PRole(r = (l, i)|c) =
P (l|sc, c)× PAMR(i|l, c).

6.3 Morphological Normalization

While we rely heavily on the relationships be-
tween words in-text and concept nodes expressed
in parallel training data, we find this is not suf-
ficient for complete coverage. Thus we also in-
clude a run-time module that generates AMRese
base forms at the lexical level, expressing relation-
ships such as those depicted in Table 4. We build
these dictionary rules using three resources:

1. An inflectional morphological normalizing
table, comprising a lexicon with 84,558 en-
tries, hand-written rules for regular inflec-
tional morphology, and hand-written lists of

irregular verbs, nouns, and adjectives.
2. Lists of derivational mappings (e.g. ‘quietly’
→ ‘quiet’, ‘naval’→ ‘navy’).

3. PropBank framesets, which we use, e.g., to
map the morphologically normalized ‘break
up’ (from ‘broke up’) into a sense match,
such as break-up-08.

6.4 Semantically informed Rule-based
Alignments

For our final incorporation of semantic resources
we revisit the English-to-AMR alignments used to
extract rules. As an alternative to the unsupervised
approach of Pourdamghani et al. (2014), we build
alignments by taking a linguistically-aware, super-
vised heuristic approach to alignment:

First, we generate a large number of poten-
tial links between English and AMR. We attempt
to link English and AMR tokens after conver-
sion through resources such as a morphological
analyzer, a list of 3,235 pertainym pairs (e.g.
adj-‘gubernatorial’ → noun-‘governor’), a list of
2,444 adverb/adjective pairs (e.g. ‘humbly’ →
‘humble’), a list of 2,076 negative polarity pairs
(e.g. ‘illegal’→ ‘legal’), and a list of 2,794 known
English-AMR transformational relationships (e.g.
‘asleep’ → sleep-01, ‘advertiser’ → person
ARG0-of advertise-01, ‘Greenwich Mean
Time’→ GMT). These links are then culled based
on context and AMR structure. For example, in
the sentence “The big fish ate the little fish,” ini-
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Figure 6: BLEU of AMRese and Smatch correlate
closely when tuning.

tially both English ‘fish’ are aligned to both AMR
fish. However, based on the context of ‘big’ and
‘little’ the spurious links are removed.

In our experiments we explore both replacing
the unsupervised alignments of Pourdamghani et
al. (2014) with these alignments and concatenat-
ing the two alignment sets together, essentially
doubling the size of the training corpus. Because
the different alignments yield different target-side
tree reorderings, it is necessary to build separate
5-gram AMRese language models.10 When us-
ing both alignment sets together, we also use both
AMRese language models simultaneously.

7 Tuning

We would like to tune our feature weights to max-
imize Smatch directly. However, a very con-
venient alternative is to compare the AMRese
yields of candidate AMR parses to those of ref-
erence AMRese strings, using a BLEU objective
and forest-based MIRA (Chiang et al., 2009). Fig-
ure 6 shows that MIRA tuning with BLEU over
AMRese tracks closely with Smatch. Note that,
for experiments using reordered AMR trees, this
requires obtaining similarly permuted reference
tuning AMRese and hence requires alignments on
the development corpus. When using unsuper-
vised alignments we may simply run inference
on the trained alignment model to obtain devel-
opment alignments. The rule-based aligner runs
one sentence at a time and can be employed on
the development corpus. When using both sets of
alignments, each approach’s AMRese is used as

10The AMR LM is insensitive to reordering so we do not
need to vary it when varying alignments.
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Figure 7: WordNet hierarchy for computer.
Pre-selected salient WordNet categories are
boxed. Smoothed sense counts are propagated
up the hierarchy and re-combined at join points.
Scores are calculated by dividing propagated
sense count by count of the category’s prevalence
over the set of AMR concepts. The double box
indicates the selection of artefact as the category
label for computer.

a development reference (i.e. each development
sentence has two possible reference translations).

8 Results and Discussion

Our AMR parser’s performance is shown in Ta-
ble 3. We progressively show the incremental im-
provements and compare to the systems of Flani-
gan et al. (2014) and Wang et al. (2015). Purely
transforming AMR data into a form that is com-
patible with the SBMT pipeline yields suboptimal
results, but by adding role-based restructuring, re-
labeling, and reordering, as described in Section
4, we are able to surpass Flanigan et al. (2014).
Adding an AMR LM and semantic resources in-
creases scores further, outperforming Wang et al.
(2015). Rule-based alignments are an improve-
ment upon unsupervised alignments, but concate-
nating the two alignments is even better. We com-
pare rule set sizes of the various systems in Ta-
ble 5; initially we improve the rule set by remov-
ing numerous overly brittle rules but then succes-
sive changes progressively add useful rules. The
parser is available for public download and use at
http://amr.isi.edu.
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System Rules
flat trees 1,430,124

concept restructuring 678,265
role restructuring (rr) 660,582

rr + preterminal relabeling (rl) 661,127
rr + rl + semantic categories (sc) 765,720

rr + rl + sc + reordering (ro) 790,624
rr + rl + sc + ro + rule-based alignments 908,318

rr + rl + sc + ro + both alignments 1,306,624

Table 5: Comparison of extracted rule set size on the systems evaluated in this work. Note that, as
compared to Table 3, only systems that affect the rule size are listed.

9 Related Work
The first work that addressed AMR parsing was
that of Flanigan et al. (2014). In that work, mul-
tiple discriminatively trained models are used to
identify individual concept instances and then a
minimum spanning tree algorithm connects the
concepts. That work was extended and improved
upon by Werling et al. (2015). Recent work by
Wang et al. (2015) also uses a two-pass approach;
dependency parses are modified by a tree-walking
algorithm that adds edge labels and restructures to
resolve discrepancies between dependency stan-
dards and AMR’s specification. In contrast to
these works, we use a single-pass approach and
re-use existing machine translation architecture,
adapting to the AMR parsing task by modify-
ing training data and adding lightweight AMR-
specific features.

Several other recent works have used a ma-
chine translation approach to semantic parsing,
but all have been applied to domain data that is
much narrower and an order of magnitude smaller
than that of AMR, primarily the Geoquery cor-
pus (Zelle and Mooney, 1996). The WASP sys-
tem of Wong and Mooney (2006) uses hierarchi-
cal SMT techniques and does not apply semantic-
specific improvements; its extension (Wong and
Mooney, 2007) incorporates a target-side reorder-
ing component much like the one presented in
Section 4.4. Jones et al. (2012a) cast semantic
parsing as an instance of hyperedge replacement
grammar transduction; like this work they use an
IBM model-influenced alignment algorithm and a
GHKM-based extraction algorithm. Andreas et
al. (2013) use phrase-based and hierarchical SMT
techniques on Geoquery. Like this work, they per-
form a transformation of the input semantic repre-
sentation so that it is amenable to use in an exist-

ing machine translation system. However, they are
unable to reach the state of the art in performance.
Li et al. (2013) directly address GHKM’s word-to-
terminal alignment requirement by extending that
algorithm to handle word-to-node alignment.

Our SBMT system is grounded in the theory of
tree transducers, which were applied to the task of
semantic parsing by Jones et al. (2011; 2012b).

Semantic parsing in general and AMR parsing
specifically can be considered a subsumption of
many semantic resolution sub-tasks, e.g. named
entity recognition (Nadeau and Sekine, 2007), se-
mantic role labeling (Gildea and Jurafsky, 2002),
word sense disambiguation (Navigli, 2009) and re-
lation finding (Bach and Badaskar, 2007).

10 Conclusion

By restructuring our AMRs we are able to convert
a sophisticated SBMT engine into a baseline se-
mantic parser with little additional effort. By fur-
ther restructuring our data to appropriately model
the behavior we want to capture, we are able to
rapidly achieve state-of-the-art results. Finally, by
incorporating novel language models and external
semantic resources, we are able to increase quality
even more. This is not the last word on AMR pars-
ing, as fortunately, machine translation technology
provides more low-hanging fruit to pursue.

Acknowledgments

Thanks to Julian Schamper and Allen Schmaltz
for early attempts at this problem. This work
was sponsored by DARPA DEFT (FA8750-13-2-
0045), DARPA BOLT (HR0011-12-C-0014), and
DARPA Big Mechanism (W911NF-14-1-0364).

1151



References
Jacob Andreas, Andreas Vlachos, and Stephen Clark.

2013. Semantic parsing as machine translation. In
Proceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 47–52, Sofia, Bulgaria, Au-
gust. Association for Computational Linguistics.

Nguyen Bach and Sameer Badaskar. 2007. A Review
of Relation Extraction. Unpublished. http:
//www.cs.cmu.edu/˜nbach/papers/
A-survey-on-Relation-Extraction.
pdf.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178–186, Sofia, Bulgaria, August.
Association for Computational Linguistics.

Peter F. Brown, Vincent J. Della Pietra, Stephen
A. Della Pietra, and Robert L. Mercer. 1993.
The mathematics of statistical machine translation:
parameter estimation. Computational Linguistics,
19(2):263–311.

Shu Cai and Kevin Knight. 2013. Smatch: an evalua-
tion metric for semantic feature structures. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 748–752, Sofia, Bulgaria, August.
Association for Computational Linguistics.

Eugene Charniak. 2000. A maximum-entropy-
inspired parser. In Proceedings of the 1st North
American Chapter of the Association for Computa-
tional Linguistics Conference, NAACL 2000, pages
132–139, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Stanley F. Chen and Joshua Goodman. 1996. An em-
pirical study of smoothing techniques for language
modeling. In Proceedings of the 34th Annual Meet-
ing on Association for Computational Linguistics,
ACL ’96, pages 310–318, Stroudsburg, PA, USA.
Association for Computational Linguistics.

David Chiang, Kevin Knight, and Wei Wang. 2009.
11,001 new features for statistical machine trans-
lation. In Proceedings of Human Language Tech-
nologies: The 2009 Annual Conference of the North
American Chapter of the Association for Compu-
tational Linguistics, pages 218–226, Boulder, Col-
orado, June. Association for Computational Linguis-
tics.

Michael Collins. 1997. Three generative, lexicalised
models for statistical parsing. In Proceedings of the
35th Annual Meeting of the Association for Com-
putational Linguistics, pages 16–23, Madrid, Spain,
July. Association for Computational Linguistics.

Christiane Fellbaum. 1998. WordNet: An Electronic
Lexical Database. Bradford Books.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by gibbs
sampling. In Proceedings of the 43rd Annual Meet-
ing of the Association for Computational Linguis-
tics (ACL’05), pages 363–370, Ann Arbor, Michi-
gan, June. Association for Computational Linguis-
tics.

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell,
Chris Dyer, and Noah A. Smith. 2014. A discrim-
inative graph-based parser for the abstract mean-
ing representation. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1426–
1436, Baltimore, Maryland, June. Association for
Computational Linguistics.

Michel Galley, Mark Hopkins, Kevin Knight, and
Daniel Marcu. 2004. What’s in a translation
rule? In Daniel Marcu Susan Dumais and Salim
Roukos, editors, HLT-NAACL 2004: Main Proceed-
ings, pages 273–280, Boston, Massachusetts, USA,
May 2 - May 7. Association for Computational Lin-
guistics.

Michel Galley, Jonathan Graehl, Kevin Knight, Daniel
Marcu, Steve DeNeefe, Wei Wang, and Ignacio
Thayer. 2006. Scalable inference and training of
context-rich syntactic translation models. In Pro-
ceedings of the 21st International Conference on
Computational Linguistics and 44th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 961–968, Sydney, Australia, July. Asso-
ciation for Computational Linguistics.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic
labeling of semantic roles. Computational Linguis-
tics, 28(3):245–288, September.

Mark Hopkins and Greg Langmead. 2010. SCFG de-
coding without binarization. In Proceedings of the
2010 Conference on Empirical Methods in Natural
Language Processing, pages 646–655, Cambridge,
MA, October. Association for Computational Lin-
guistics.

Matthias Huck, Hieu Hoang, and Philipp Koehn. 2014.
Augmenting string-to-tree and tree-to-string transla-
tion with non-syntactic phrases. In Proceedings of
the Ninth Workshop on Statistical Machine Trans-
lation, pages 486–498, Baltimore, Maryland, USA,
June. Association for Computational Linguistics.

Bevan Jones, Mark Johnson, and Sharon Goldwa-
ter. 2011. Formalizing semantic parsing with tree
transducers. In Proceedings of the Australasian
Language Technology Association Workshop 2011,
pages 19–28, Canberra, Australia, December.

Bevan Jones, Jacob Andreas, Daniel Bauer,
Karl Moritz Hermann, and Kevin Knight. 2012a.

1152



Semantics-based machine translation with hy-
peredge replacement grammars. In Proceedings
of COLING 2012, pages 1359–1376, Mumbai,
India, December. The COLING 2012 Organizing
Committee.

Bevan Jones, Mark Johnson, and Sharon Goldwater.
2012b. Semantic parsing with bayesian tree trans-
ducers. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 488–496, Jeju
Island, Korea, July. Association for Computational
Linguistics.

Paul Kingsbury and Martha Palmer. 2002. From tree-
bank to propbank. In In Language Resources and
Evaluation.

Gregory Kuhlmann, Peter Stone, Raymond J. Mooney,
and Jude W. Shavlik. 2004. Guiding a reinforce-
ment learner with natural language advice: Initial
results in robocup soccer. In The AAAI-2004 Work-
shop on Supervisory Control of Learning and Adap-
tive Systems, July.

Peng Li, Yang Liu, and Maosong Sun. 2013. An ex-
tended ghkm algorithm for inducing lambda-scfg.
In Marie desJardins and Michael L. Littman, editors,
AAAI. AAAI Press.

Jonathan May and Kevin Knight. 2007. Syntactic
re-alignment models for machine translation. In
Jason Eisner and Taku Kudo, editors, Proceedings
of the 2007 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Computa-
tional Natural Language Learning, pages 360–368,
Prague, Czech Republic, June 28 – June 30. Associ-
ation for Computational Linguistics.

David Nadeau and Satoshi Sekine. 2007. A survey
of named entity recognition and classification. Lin-
guisticae Investigationes, 30(1):3–26, January. Pub-
lisher: John Benjamins Publishing Company.

Roberto Navigli. 2009. Word sense disambiguation:
A survey. ACM Comput. Surv., 41(2):10:1–10:69,
February.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic
evaluation of machine translation. In Proceedings
of the 40th Annual Meeting on Association for Com-
putational Linguistics, ACL ’02, pages 311–318,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Nima Pourdamghani, Yang Gao, Ulf Hermjakob, and
Kevin Knight. 2014. Aligning English strings with
Abstract Meaning Representation graphs. In Pro-
ceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 425–429, Doha, Qatar, October. Association
for Computational Linguistics.

P. J. Price. 1990. Evaluation of spoken language sys-
tems: The ATIS domain. In Proceedings of the
Workshop on Speech and Natural Language, HLT
’90, pages 91–95, Stroudsburg, PA, USA. Associa-
tion for Computational Linguistics.

Michael Pust and Kevin Knight. 2009. Faster mt
decoding through pervasive laziness. In Proceed-
ings of Human Language Technologies: The 2009
Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
Companion Volume: Short Papers, pages 141–144,
Boulder, Colorado, June. Association for Computa-
tional Linguistics.

Wei Wang, Jonathan May, Kevin Knight, and Daniel
Marcu. 2010. Re-structuring, re-labeling, and
re-aligning for syntax-based machine translation.
Computational Linguistics, 36(2):247–277, June.

Chuan Wang, Nianwen Xue, and Sameer Pradhan.
2015. A transition-based algorithm for amr parsing.
In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 366–375, Denver, Colorado, May–June. As-
sociation for Computational Linguistics.

Keenon Werling, Gabor Angeli, and Christopher D.
Manning. 2015. Robust subgraph generation im-
proves abstract meaning representation parsing. In
Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
982–991, Beijing, China, July. Association for Com-
putational Linguistics.

I.H. Witten and T.C. Bell. 1991. The zero-frequency
problem: Estimating the probabilities of novel
events in adaptive text compression. IEEE Trans-
actions on Information Theory, 37(4).

Yuk Wah Wong and Raymond Mooney. 2006. Learn-
ing for semantic parsing with statistical machine
translation. In Proceedings of the Human Language
Technology Conference of the NAACL, Main Con-
ference, pages 439–446, New York City, USA, June.
Association for Computational Linguistics.

Yuk Wah Wong and Raymond Mooney. 2007. Learn-
ing synchronous grammars for semantic parsing
with lambda calculus. In Proceedings of the 45th
Annual Meeting of the Association of Computational
Linguistics, pages 960–967, Prague, Czech Repub-
lic, June. Association for Computational Linguis-
tics.

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence - Volume
2, AAAI’96, pages 1050–1055. AAAI Press.

1153



John Marvin Zelle. 1995. Using Inductive Logic Pro-
gramming to Automate the Construction of Natural
Language Parsers. Ph.D. thesis, University of Texas
at Austin, Austin, TX, USA.

1154



Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 1155–1164,
Lisbon, Portugal, 17-21 September 2015. c©2015 Association for Computational Linguistics.

The Forest Convolutional Network: Compositional Distributional
Semantics with a Neural Chart and without Binarization

Phong Le and Willem Zuidema
Institute for Logic, Language and Computation

University of Amsterdam, the Netherlands
{p.le,zuidema}@uva.nl

Abstract

According to the principle of composi-
tionality, the meaning of a sentence is
computed from the meaning of its parts
and the way they are syntactically com-
bined. In practice, however, the syntactic
structure is computed by automatic parsers
which are far-from-perfect and not tuned
to the specifics of the task. Current re-
cursive neural network (RNN) approaches
for computing sentence meaning therefore
run into a number of practical difficulties,
including the need to carefully select a
parser appropriate for the task, deciding
how and to what extent syntactic context
modifies the semantic composition func-
tion, as well as on how to transform parse
trees to conform to the branching settings
(typically, binary branching) of the RNN.
This paper introduces a new model, the
Forest Convolutional Network, that avoids
all of these challenges, by taking a parse
forest as input, rather than a single tree,
and by allowing arbitrary branching fac-
tors. We report improvements over the
state-of-the-art in sentiment analysis and
question classification.

1 Introduction

For many natural language processing tasks we
need to compute meaning representations for sen-
tences from meaning representations of words. In
a recent line of research on ‘recursive neural net-
works’ (e.g., Socher et al. (2010)), both the word
and sentence representations are vectors, and the
word vectors (“embeddings”) are borrowed from
work in distributional semantics or neural lan-
guage modelling. Sentence representations, in this
approach, are computed by recursively applying a
neural network that combines two vectors into one

(typically according to the syntactic structure pro-
vided by an external parser). The network, which
thus implements a ‘composition function’, is opti-
mized for delivering sentence representations that
support a given semantic task: sentiment analysis
(Irsoy and Cardie, 2014; Le and Zuidema, 2015),
paraphrase detection (Socher et al., 2011), seman-
tic relatedness (Tai et al., 2015) etc. Studies with
recursive neural networks have yielded promising
results on a variety of such tasks.

In this paper, we represent a new recursive neu-
ral network architecture that fits squarely in this
tradition, but aims to solve a number of difficulties
that have arisen in existing work. In particular, the
model we propose addresses three issues:

1. how to make the composition functions adap-
tive, in the sense that they operate adequately
for the many different types of combina-
tions (e.g., adjective-noun combinations are
of a very different type than VP-PP combina-
tions);

2. how to deal with different branching factors
of nodes in the relevant syntactic trees (i.e.,
we want to avoid having to binarize syntac-
tic trees,1 but also do not want ternary pro-
ductions to be completely independent from
binary productions);

3. how to deal with uncertainty about the correct
parse inside the neural architecture (i.e., we
don’t want to work with just the best or k-best
parses for a sentence according to an external
model, but receive an entire distribution over
possible parsers).

1Eisner (2001, Chapter 2) shows that using flat rules is
linguistically beneficial, “most crucially, a flat lexical entry
corresponds to the local domain of a headword-the word to-
gether with all its semantic arguments and modifiers”. From
the computational perspective, flat rules make trees less deep,
thus avoiding the vanishing gradient problem and capturing
long range dependencies.

1155



Figure 1: Recursive Neural Network. For simplic-
ity, bias vectors are removed.

To solve these challenges we take inspiration
from two other traditions: the convolutional neu-
ral networks and classic parsing algorithms based
on dynamic programming. Including convolution
in our network provides a direct solution for is-
sue (2), and turns out, somewhat unexpectedly, to
also provide a solution for issue (1). Introduc-
ing the chart representation from classic parsing
into our architecture then allows us to tackle issue
(3). The resulting model, the Forest Convolutional
Network, outperforms all other models on a senti-
ment analysis and question classification task.

2 Background

This section is to introduce the recursive neural
network (RNN) and convolutional neural network
(CNN) models, on which our work is based.

2.1 Recursive Neural Network
A recursive neural network (RNN) (Goller and
Küchler, 1996) is a feed-forward neural network
where, given a tree structure, we recursively ap-
ply the same weight matrices at each inner node
in a bottom-up manner. In order to see how
an RNN works, consider the following exam-
ple. Assume that there is a constituent with parse
tree (S I (V P like it)) (Figure 1), and that
xI ,xlike,xit ∈ Rd are the vectorial representa-
tions of the three words I , like and it, respec-
tively. We use a neural network which consists of
a weight matrix W1 ∈ Rd×d for left children and
a weight matrix W2 ∈ Rd×d for right children to
compute the vector for a parent node in a bottom
up manner. Thus, we compute xV P

xV P = f(W1xlike + W2xit + b) (1)

where b is a bias vector and f is an (non-linear)
activation function. Having computed xV P , we

Figure 2: Convolutional Neural Network (one
convolutional layer and one fully connected layer)
with a window-size-3 kernel.

can then move one level up in the hierarchy and
compute xS

xS = f(W1xI + W2xV P + b)

This process is continued until we reach the root
node.

For classification tasks, we put a softmax layer
on the top of the root node, and compute the prob-
ability of assigning a class c to an input x by

Pr(c|x) = softmax(c) =
eu(c,ytop)∑

c′∈C eu(c
′,ytop)

(2)

where
[
u(c1,ytop), ..., u(c|C|,ytop)

]T =
Wuytop + bu; C is the set of all possible
classes; Wu ∈ R|C|×d,bu ∈ R|C| are a weight
matrix and a bias vector.

Training an RNN uses the gradient descent
method to minimize an objective function J(θ).
The gradient ∂J/∂θ is efficiently computed thanks
to the back-propagation through structure algo-
rithm (Goller and Küchler, 1996).

Departing from the original RNN model, many
extensions have been proposed to enhance its
compositionality (Socher et al., 2013; Irsoy and
Cardie, 2014; Le and Zuidema, 2015) and appli-
cability (Le and Zuidema, 2014b). The model we
are going to propose can be considered as an ex-
tension of RNN with an ability to solve the three
issues introduced in Section 1.

2.2 Convolutional Neural Network
A convolutional neural network (CNN) (LeCun et
al., 1998) is also a feed-forward neural network; it
consists of one or more convolutional layers (of-
ten with a pooling operation) followed by one or
more fully connected layers. This architecture was
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invented for computer vision. It then has been
widely applied to solve natural language process-
ing tasks (Collobert et al., 2011; Kalchbrenner et
al., 2014; Kim, 2014).

To illustrate how a CNN works, the following
example uses a simplified model proposed by Col-
lobert et al. (2011) which consists of one con-
volutional layer with the max pooling operation,
followed by one fully connected layer (Figure 2).
This CNN uses a kernel with window size 3; when
we slide this kernel along the sentence “〈s〉 I like
it very much 〈/s〉”, we get five vectors:

u(1) = W1x<s> + W2xI + W3xlike + bc

u(2) = W1xI + W2xlike + W3xit + bc
...

u(5) = W1xvery + W2xmuch + W3x</s> + bc

where W1,W2,W3 ∈ Rd×m are weight matri-
ces, bc ∈ Rm is a bias vector. The max pooling
operation is then applied to those resulted vectors
in an element-wise manner:

x =
[

max
1≤i≤5

u(i)
1 , ..., max

1≤i≤5
u(i)
j , ...

]T
Finally, a fully connected layer is employed

y = f(Wx + b)

where W, b are a real weight matrix and bias vec-
tor, respectively; f is an activation function.

Intuitively, a window-size-k kernel extracts (lo-
cal) features from k-grams, and is thus able to cap-
ture k-gram composition. The max pooling oper-
ation is for reducing dimension, forcing the net-
work to discriminate important features from oth-
ers by assigning high values to them. For instance,
if the network is used for sentiment analysis, local
features corresponding to k-grams containing the
word “like” should receive high values in order to
be propagated to the top layer.

3 Forest Convolutional Network

We now first propose a solution to the issues (1)
and (2) (i.e., making the composition functions
adaptive and dealing with different branching fac-
tors), called Recursive convolutional neural net-
work (RCNN), and then a solution to the third is-
sue (i.e., dealing with uncertainty about the cor-
rect parse), called Chart Neural Network (ChNN).
A combination of them, Forest Convolutional Net-
work (FCN), will be introduced lastly.

Figure 3: Recursive Convolutional Neural Net-
work with a nonlinear window-size-3 kernel.

3.1 Recursive Convolutional Neural
Network2

Given a subtree p → x1 ... xl, an RCNN (Fig-
ure 3), like a CNN, slides a window-size-k kernel
along the sequence of children (x1, ..., xl) to com-
pute a pool of vectors. The max pooling operation
followed by a fully connected layer is then applied
to this pool to compute a vector for the parent p.

This RCNN differs from the CNN introduced
in Section 2.2 at two points. First, we use a
non-linear kernel: after linearly transforming in-
put vectors, an activation function is applied. Sec-
ond, we put k − 1 padding tokens <b> at the be-
ginning of the children sequence and k−1 padding
tokens <e> at the end. This thus guarantees that
all the children contribute equally to the resulted
vector pool, which now has l + k − 1 vectors.

It is obvious that this RCNN can solve the sec-
ond issue (i.e., dealing with different branching
factors), we now show how it can make the com-
position functions adaptive. We first see what hap-
pens if the window size k is larger than the number
of children l, for instance k = 3 and l = 2. There
are four vectors in the pool

u(1) = f(W1x<b> + W2x<b> + W3x1 + bc)

u(2) = f(W1x<b> + W2x1 + W3x2 + bc)

u(3) = f(W1x1 + W2x2 + W3x<e> + bc)

u(4) = f(W1x2 + W2x<e> + W3x<e> + bc)

where W1,W2,W3 are weight matrices, bc is a
2While finalizing the current paper we discovered a pa-

per by Zhu et al. (2015) proposing a similar model which is
evaluated on syntactic parsing. Our work goes substantially
beyond theirs, however, as it takes a parse forest rather than a
single tree as input.
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Figure 4: Chart Neural Network.

bias vector, f is an activation function. These four
resulted vectors correspond to four ways of com-
posing the two children:

(1) the first child stands alone (e.g., when the in-
formation of the second child is not impor-
tant, it is better to ignore it),

(2,3) the two children are composed with two dif-
ferent weight matrix sets,

(4) the second child stands alone.

Now, imagine that we must handle binary syn-
tactic rules with different head positions such as
S → NP V P (e.g. “Jones runs”) where the
second child is the head and V P → V BD NP
(e.g., “ate spaghetti”) where the first child is the
head. We can set those weight matrices such that
when multiplying W2 by the vector of a head, we
have a vector with high-value entries. And when
multiplying W2 by the vector of a non-head, or
when multiplying W1 or W3 by a vector, the re-
sulted vector has low-value entries. This is possi-
ble thanks to the max pooling operation and that
heads are often more informative than non-heads.

If the window size k is smaller than the number
of children l, the argument above is still valid in
some cases such as head position. However, there
is no longer a direct interaction between any two
children whose distance is larger than k.3 In prac-
tice, this problem is not serious because rules with
a large number of children are very rare.

3.2 Chart Neural Network
Unseen sentences are always parsed by an auto-
matic parser, which is far from perfect and task-
independent. Therefore, a good solution is to give

3An indirect interaction can be set up through pooling.

the system a set of parses and let it decide which
parse is the best or to combine some of them. The
RNN model handles one extreme where this set
contains only one parse. We now consider the
other extreme where the set contains all possible
parses. Because the number of all possible bi-
nary parse trees of a length-n sentence is the n-
th Catalan number, processing individual parses is
not practical. We thus propose a new model work-
ing on charts in the CKY style (Younger, 1967),
called Chart Neural Network (ChNN).

We describe this model by the following exam-
ple. Given a phrase “ate pho with Milos”, a ChNN
will process its parse chart as in Figure 4. Be-
cause any 2-word constituent has only one parse,
the computation for p1, p2, p3 is identical to Equa-
tion 1. For 3-word constituent p4, because there
are two possible productions p4 → ate p2 and
p4 → p1 with, we compute one vector for each
production

u(1) = f(W1xate + W2p2 + b)

u(2) = f(W1p1 + W2xwith + b)
(3)

and then apply the max pooling operation to these
two vectors to compute p4. We do the same to
compute p5. Finally, at the top, there are three
productions p6 → ate p5, p6 → p1 p3 and
p6 → p4 Milos. Similarly, we compute one vec-
tor for each production and employ the max pool-
ing operation to compute p6.

Because this ChNN processes a chart like the
CKY algorithm, its time complexity is O(n2d2 +
n3d) where n and d are the sentence length and
the dimension of vectors, respectively.4 A ChNN
is thus notably more complex than an RNN, whose
complexity is O(nd2). Like chart parsing, the
complexity can be reduced significantly by prun-
ing the chart before applying the ChNN. This will
be discussed right below.

3.3 Forest Convolutional Network
We now introduce the Forest Convolutional Net-
work (FCN) model, which is a combination of the
RCNN and the ChNN. The idea is to use an au-
tomatic parser to prune a chart5, debinarize pro-
ductions (if applicable), and then apply a ChNN

4In each cell, we apply the matrix-vector multiplication
two times and (if the cell is not a leaf) apply the max pooling
to a pool of maximally n d-D vectors.

5Pruning a chart by an automatic parser is also not per-
fect. However, the quality of a pruned chart can get very
close to human annotation. For instance, the chart pruner
proposed by Huang (2008) has a forest oracle of 97.8% F-
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Figure 5: Forest of parses (left) and Forest Convolutional Network (right). ⊗ denotes a convolutional
layer followed by the max pooling operation and a fully connected layer as in Figure 3.

where the computation in Equation 3 is replaced
by a convolutional layer followed by the max pool-
ing operation and a fully connected layer as in the
RCNN.

Figure 5 shows an illustration how the
FCN works on the phrase “ate pho with
Milos”. A forest of parses, given by
an external parser, comprises two parses
(V P ate pho (PP with Milos)) (solid lines)
and (V P ate (NP pho (PP with Milos)))
(dash-dotted lines). The first parse is the preferred
reading if Milos is a person, but the second one
is a possible reading (for instance, if Milos is the
name of a sauce). Instead of forcing the external
parser to decide which one is correct, we let
the FCN network do that because it has more
information about the context and domain, which
are embedded in training data. What the network
should do is depicted in Figure 5-right.

Training Training an FCN is similar to train-
ing an RNN. We use the mini-batch gradient de-
scent method to minimize an objective function J ,
which depends on which task this network is ap-
plied to. For instance, if the task is sentiment anal-
ysis, J is the cross-entropy over the training sen-
tence set D plus an L2-norm regularization term

J(θ) = − 1
|D|

∑
s∈D

∑
p∈s

logPr(cp|p) +
λ

2
||θ||2

where θ is the parameter set, cp is the sentiment
class of phrase p, p is the vector representation
at the node covering p, Pr(cp|p) is computed by

score on section 23 of the Penn Treebank whereas resulted
forests are very compact: the average number of hyperedges
per forest is 123.1.

the softmax function, and λ is the regularization
parameter.

The gradient ∂J/∂θ is computed efficiently
thanks to the back-propagation through structure
(Goller and Küchler, 1996). We use the AdaGrad
method (Duchi et al., 2011) to automatically up-
date the learning rate for each parameter.

4 Experiments

We evaluate the FCN model with two tasks: ques-
tion classification and sentiment analysis. The
evaluation metric is the classification accuracy.

Our networks were initialized with the 300-D
GloVe word embeddings trained on a corpus of
840B words6 (Pennington et al., 2014). The ini-
tial values for a weight matrix were uniformly
sampled from the symmetric interval

[− 1√
n
, 1√

n

]
where n is the number of total input units. In each
experiment, a development set was used to tune
the model. We run the model ten times and chose
the run with the highest performance on the devel-
opment set. We employed early stopping: training
is halted if performance on the development set
does not improve after three consecutive epochs.

4.1 Sentiment Analysis
The Stanford Sentiment Treebank (SST)7 (Socher
et al., 2013) which consists of 5-way fine-grained
sentiment labels (very negative, negative, neu-
tral, positive, very positive) for 215,154 phrases
of 11,855 sentences. We used the standard split-
ting: 8544 sentences for training, 1101 for devel-
opment, and 2210 for testing. The average sen-
tence length is 19.1. In addition, the treebank

6http://nlp.stanford.edu/projects/GloVe/
7http://nlp.stanford.edu/sentiment/treebank.html
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Model Fine-grained Binary
RNTN 45.7 85.4
CNN 48.0 88.1
DCNN 48.5 86.8
PV 48.7 87.8
DRNN 49.8 86.6
LSTM-RNN 49.9 88.0
CT-LSTM 51.0 88.0
FCN (dep.) 50.4 88.2
FCN (const.) 51.0 89.1

Table 1: Accuracies at sentence level on the SST
dataset. FCN (dep.) and FCN (const.) denote the
FCN with dependency forests and with constituent
forests, respectively. The accuracies of RNTN,
CNN, DCNN, PV, DRNN, LSTM-RNN and CT-
LSTM are copied from the corresponding papers
(see text).

also supports binary sentiment (positive, negative)
classification by removing neutral labels, leading
to: 6920 sentences for training, 872 for develop-
ment, and 1821 for testing.

All sentences were parsed by Liang Huang’s de-
pendency parser8 (Huang and Sagae, 2010). We
used this parser because it generates parse forests
and that dependency trees are less deep than con-
stituent trees. In addition, because the SST was
annotated in a constituency manner, we also em-
ployed the Charniak’s constituent parser (Char-
niak and Johnson, 2005) with Huang (2008)’s for-
est pruner. We found that the beam width 16
for the dependency parser and the log probability
beam 10 for the other worked best. Lower values
harmed the system’s performance and higher val-
ues were not beneficial.

Our FCN has the dimension of vectors at inner
nodes 200, a window size for the convolutional
kernel of 7, and the activation function tanh. It
was trained with the learning rate 0.01, the regu-
larization parameter 10−4, and the mini batch size
5. To reduce the average depth of the network, the
fully connected layer following the convolutional
layer was removed (i.e., p = x, see Figure 3).

We compare the FCN against other models:
the Recursive neural tensor network (RNTN)
(Socher et al., 2013), the Convolutional neural net-
work (CNN) (Kim, 2014), the Dynamic convolu-
tional neural network (DCNN) (Kalchbrenner et
al., 2014), the Paragraph vectors (PV) (Le and

8http://acl.cs.qc.edu/∼lhuang/software

Mikolov, 2014), the Deep recursive neural net-
work (DRNN) (Irsoy and Cardie, 2014), the Re-
cursive neural network with Long short term mem-
ory (LSTM-RNN) (Le and Zuidema, 2015) and
the Constituent Tree LSTM (CT-LSTM) (Tai et
al., 2015).9

Table 1 shows the results. Our FCN using con-
stituent forests achieved the highest accuracies in
both fine-grained task and binary task, 51% and
89.1%. Comparing to CT-LSTM, although there
is no difference in the fine-grained task, the dif-
ference in the binary task is significant (1.1%).
Comparing to LSTM-RNN, the differences in both
tasks are all remarkable (1.1% and 1.1%).

Constituent parsing is clearly more helpful than
dependency parsing: the improvements that the
FCN got are 0.6% in the fine-grained task and
0.9% in the binary task. We conjecture that, be-
cause sentences in the treebank were parsed by
a constituent parser (here is the Stanford parser),
training with constituent forests is easier.

4.2 Question Classification

In this task we used the TREC question dataset10

(Li and Roth, 2002) which contains 5952 ques-
tions (5452 questions for training and 500 ques-
tions for testing). The task is to assign a ques-
tion to one in six types: ABBREVIATION, EN-
TITY, DESCRIPTION, HUMAN, LOCATION,
NUMERIC. The average length of the questions
in the training set is 10.2 whereas in the test set
is 7.5. This difference is due to the fact that those
questions are from different sources. All questions
were parsed by Liang Huang’s dependency parser
with the beam width 16.

We randomly picked 5% of the training set (272
questions) for validation. Our FCN has the dimen-
sion of vectors at inner nodes 200, a window size
for the convolutional kernel of 5, and the activa-
tion function tanh. It was trained with the learn-
ing rate 0.01, the regularization parameter 10−4,
and the mini batch size 1. The vectors represent-
ing the two padding tokens <b>, <e> were fixed
to 0.

We compare the FCN against the Convolutional
neural network (CNN) (Kim, 2014), the Dynamic
convolutional neural network (DCNN) (Kalch-

9LSTM-RNN and CT-LSTM are very similar: they are
RNNs using LSTMs for composition. Their difference is that
LSTM-RNN uses one input gate for each child where as CT-
LSTM uses only one input gate for all children.

10http://cogcomp.cs.illinois.edu/Data/QA/QC
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Model Acc. (%)
DCNN 93.0
MaxEntH 93.6
CNN-non-static 93.6
SVMS 95.0
LSTM-RNN 93.4
FCN 94.8

Table 2: Accuracies on the TREC question type
classification dataset. The accuracies of DCNN,
MaxEntH , CNN-non-static, and SVMS are copied
from the corresponding papers (see text).

brenner et al., 2014), MaxEntH (Huang et al.,
2008) (which uses MaxEnt with uni-bi-trigrams,
POS, wh-word, head word, word shape, parser,
hypernyms, WordNet) and the SVMS (Silva et al.,
2011) (which uses SVM with, in addition to fea-
tures used by MaxEntH , 60 hand-coded rules). We
also include the LSTM-RNN (Le and Zuidema,
2015) whose accuracy was computed by running
their published source code11 on binary trees from
the Stanford Parser12 (Klein and Manning, 2003).
This network was also initialized by the 300-D
GloVe word embeddings.

Table 2 shows the results.13 The FCN achieved
the second best accuracy, only lightly lower than
SVMS (0.2%). This is a promising result because
our network used only parse forests, unsupervis-
edly pre-trained word embeddings whereas SVMS

used heavily engineered resources. The differ-
ence between FCN and the third best is remark-
able (1.2%). Interestingly, LSTM-RNN did not
perform well on this dataset. This is likely be-
cause the questions are short and the parse trees
quite shallow, such that the two problems that the
LSTM was invented for (long range dependency
and vanishing gradient) do not play much of a role.

4.3 Visualization

We visualize the charts we obtained in the sen-
timent analysis task as in Figure 6. To identify
how important each cell is for determining the fi-
nal vector at the root, we compute the number of
features of each that are actually propagated all the
way to the root in the successive max pooling op-

11https://github.com/lephong/lstm-rnn
12http://nlp.stanford.edu/software/lex-parser.shtml
13While finalizing the current paper we discovered a paper

by Ma et al. (2015) proposing a convolutional network model
for dependency trees. They report a new state-of-the-art ac-
curacy of 95.6%.

erations. The circles in a graph are proportional
to this number. Here, to make the contribution of
each individual cell clearer, we have set the win-
dow size to 1 to avoid direct interactions between
cells.

At the lexical level, we can see that the FCN
can discriminate important words from the others.
Two words “most” and “incoherent” are the key
of the sentiment of this sentence: if one of them is
replaced by another word (e.g. replacing “most”
by “few” or “incoherent” by “coherent”), the sen-
timent will flip. The punctuation “.” however also
has a high contribution to the root. This happens
to other charts as well. We conjecture that the net-
work uses the vector of “.” to store neutral features
and propagate them to the root whenever it can not
find more useful features in other vectors. Our fu-
ture work is to examine this.

At the phrasal level, the network tends to group
words in grammatical constituents, such as “most
of the action setups”, “are incoherent”. Ill-formed
constituents such as “of the action” and “incoher-
ent .” receive little attention from the network.

Interestingly, we can see that the circle of “inco-
herent” is larger than the circles of any inner cells,
suggesting that the network is able to make use
of parses containing direct links from that word to
the root. This is evidence that the network has an
ability of selecting (or combining) parses that are
beneficial to this sentiment analysis task.

5 Related Work

The idea that a composition function must be able
to change its behaviour on the fly according to in-
put vectors is explored by Socher et al. (2013), Le
and Zuidema (2015), among others. The tensor
in the former is multiplied with the vector repre-
sentations of the phrases it is going to combine
to define a composition function (a matrix) on the
fly, and then multiplies again with these vectors
to yield a compound representation. In the LSTM
architecture of the latter, there is one input gate
for each child in order to control how the vector
of the child affects the composition at the parent
node. Because the input gate is a function of the
vector of the child, the composition function has
an infinite number of behaviours. In this paper, we
instead slide a kernel function along the sequence
of children to generate different ways of composi-
tion. Although the number of behaviours is limited
(and depends on the window size), it simultane-
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Figure 6: Chart of sentence “Most of the action setups are incoherent .” The size of a circle is proposi-
tional to the number of the cell’s features that are propagated to the root.

ously provides us with a solution to handle rules
with different branching sizes.

Some approaches try to overcome the prob-
lem of varying branching sizes. Le and Zuidema
(2014b) use different sets of weight matrices for
different branching sizes, thus requiring a large
number of parameters. Because large branching-
size rules are rare, many parameters are infre-
quently updated during training. Socher et al.
(2014), for dependency trees, use a weight matrix
for each relative position to the head word (e.g.,
first-left, second-right). Le and Zuidema (2014a)
replace relative positions by dependency relations
(e.g., OBJ, SUBJ). These approaches strongly de-
pend on input parse trees and are very sensitive to
parsing errors. The approach presented in this pa-
per, on the other hand, does not need the informa-
tion about the head word position and is less sensi-
tive to parsing errors. Moreover, its number of pa-
rameters is independent from the maximal branch-
ing size.

Convolutional networks have been widely ap-
plied to solve natural language processing tasks.
Collobert et al. (2011), Kalchbrenner et al. (2014),
and Kim (2014) use convolutional networks to
deal with varying length sequences. Recently, Zhu
et al. (2015) and Ma et al. (2015) try to intergrate
syntactic information by employing parse trees.
Ma et al. (2015) extend the work of Kim (2014)
by taking into acount dependency relations so that
long range dependencies could be captured. The
model proposed by Zhu et al. (2015), which is
very similar to our Recursive convolutional neural
network model, is to use a convolutional network

for the composition purpose. Our work, although
also employing a convolutional network and syn-
tactic information, goes beyond them: we address
the issue of how to deal with uncertainty about the
correct parse inside the neural architecture. There-
fore, instead of using a single parse, our proposed
FCN model takes as input a forest of parses.

Related to our FCN is the Gated recursive con-
volutional neural network model proposed by Cho
et al. (2014) which is stacking n−1 convolutional
neural layers using a window-size-2 gated kernel
(where n is the sentence length). Mapping their
network into a chart, each cell is only connected
to the two cells right below it. What makes this
network special is the gated kernel which is a 3-
gate switcher for choosing one of three options:
directly transmit the left/right child’s vector to the
parent node, or compose the vectors of the two
children. Thanks to this, the network can capture
any binary parse trees by setting those gates prop-
erly. However, because only one gate is allowed to
open in a cell, the network is not able to capture an
arbitrary forest. Our FCN is thus more expressive
and flexible than their model.

6 Conclusions

We proposed the Forest Convolutional Network
(FCN) model that addresses the three issues: (1)
how to make the composition functions adaptive,
(2) how to deal with different branching factors of
nodes in the relevant syntactic trees, (3) how to
deal with uncertainty about the correct parse in-
side the neural architecture. The key principle is
to carry out many different ways of computation
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and then choose or combine some of them. For
more details, the two first issues are solved by em-
ploying a convolutional net for composition. To
the third issue, the network takes input as a forest
of parses instead of a single parse as in traditional
approaches.

Our future work is to focus on how to
choose/combine different ways of computation.
For instance, we might replace the max pooling
by different pooling operations such as mean pool-
ing, k-max pooling (Kalchbrenner et al., 2014),
and stochastic pooling (Zeiler and Fergus, 2013).
We can even bias the selection/combination to-
ward grammatical constituents by weighing cells
by their inside probabilities.
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Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. The Journal of Machine Learning Re-
search, 12:2493–2537.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. The Journal of Ma-
chine Learning Research, pages 2121–2159.

Jason Eisner. 2001. Smoothing a Probabilistic Lexicon
via Syntactic Transformations. Ph.D. thesis, Univer-
sity of Pennsylvania, July. 318 pages.

Christoph Goller and Andreas Küchler. 1996. Learn-
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Abstract

This paper describes an alignment-based
model for interpreting natural language in-
structions in context. We approach in-
struction following as a search over plans,
scoring sequences of actions conditioned
on structured observations of text and the
environment. By explicitly modeling both
the low-level compositional structure of
individual actions and the high-level struc-
ture of full plans, we are able to learn
both grounded representations of sentence
meaning and pragmatic constraints on in-
terpretation. To demonstrate the model’s
flexibility, we apply it to a diverse set
of benchmark tasks. On every task, we
outperform strong task-specific baselines,
and achieve several new state-of-the-art
results.

1 Introduction

In instruction-following tasks, an agent executes
a sequence of actions in a real or simulated envi-
ronment, in response to a sequence of natural lan-
guage commands. Examples include giving nav-
igational directions to robots and providing hints
to automated game-playing agents. Plans speci-
fied with natural language exhibit compositional-
ity both at the level of individual actions and at
the overall sequence level. This paper describes a
framework for learning to follow instructions by
leveraging structure at both levels.

Our primary contribution is a new, alignment-
based approach to grounded compositional se-
mantics. Building on related logical approaches
(Reddy et al., 2014; Pourdamghani et al., 2014),
we recast instruction following as a pair of nested,
structured alignment problems. Given instructions
and a candidate plan, the model infers a sequence-
to-sequence alignment between sentences and

atomic actions. Within each sentence–action pair,
the model infers a structure-to-structure alignment
between the syntax of the sentence and a graph-
based representation of the action.

At a high level, our agent is a block-structured,
graph-valued conditional random field, with align-
ment potentials to relate instructions to actions and
transition potentials to encode the environment
model (Figure 3). Explicitly modeling sequence-
to-sequence alignments between text and actions
allows flexible reasoning about action sequences,
enabling the agent to determine which actions are
specified (perhaps redundantly) by text, and which
actions must be performed automatically (in or-
der to satisfy pragmatic constraints on interpreta-
tion). Treating instruction following as a sequence
prediction problem, rather than a series of inde-
pendent decisions (Branavan et al., 2009; Artzi
and Zettlemoyer, 2013), makes it possible to use
general-purpose planning machinery, greatly in-
creasing inferential power.

The fragment of semantics necessary to com-
plete most instruction-following tasks is essen-
tially predicate–argument structure, with limited
influence from quantification and scoping. Thus
the problem of sentence interpretation can reason-
ably be modeled as one of finding an alignment be-
tween language and the environment it describes.
We allow this structure-to-structure alignment—
an “overlay” of language onto the world—to be
mediated by linguistic structure (in the form of
dependency parses) and structured perception (in
what we term grounding graphs). Our model
thereby reasons directly about the relationship be-
tween language and observations of the environ-
ment, without the need for an intermediate logi-
cal representation of sentence meaning. This, in
turn, makes it possible to incorporate flexible fea-
ture representations that have been difficult to in-
tegrate with previous work in semantic parsing.

We apply our approach to three established
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. . . right round the white water but
stay quite close ’cause you don’t
otherwise you’re going to be in that
stone creek . . .

Go down the yellow hall. Turn left
at the intersection of the yellow and
the gray.

Clear the right column. Then the
other column. Then the row.

(a) Map reading (b) Maze navigation (c) Puzzle solving

Figure 1: Example tasks handled by our framework. The tasks feature noisy text, over- and under-specification of plans, and
challenging search problems.

instruction-following benchmarks: the map read-
ing task of Vogel and Jurafsky (2010), the maze
navigation task of MacMahon et al. (2006), and
the puzzle solving task of Branavan et al. (2009).
An example from each is shown in Figure 1.
These benchmarks exhibit a range of qualitative
properties—both in the length and complexity of
their plans, and in the quantity and quality of ac-
companying language. Each task has been stud-
ied in isolation, but we are unaware of any pub-
lished approaches capable of robustly handling
all three. Our general model outperforms strong,
task-specific baselines in each case, achieving
relative error reductions of 15–20% over sev-
eral state-of-the-art results. Experiments demon-
strate the importance of our contributions in both
compositional semantics and search over plans.
We have released all code for this project at
github.com/jacobandreas/instructions.

2 Related work

Existing work on instruction following can be
roughly divided into two families: semantic
parsers and linear policy estimators.

Semantic parsers Parser-based approaches
(Chen and Mooney, 2011; Artzi and Zettlemoyer,
2013; Kim and Mooney, 2013) map from text into
a formal language representing commands. These
take familiar structured prediction models for
semantic parsing (Zettlemoyer and Collins, 2005;
Wong and Mooney, 2006), and train them with
task-provided supervision. Instead of attempting
to match the structure of a manually-annotated
semantic parse, semantic parsers for instruction
following are trained to maximize a reward signal

provided by black-box execution of the predicted
command in the environment. (It is possible to
think of response-based learning for question
answering (Liang et al., 2013) as a special case.)

This approach uses a well-studied mechanism
for compositional interpretation of language, but is
subject to certain limitations. Because the environ-
ment is manipulated only through black-box exe-
cution of the completed semantic parse, there is no
way to incorporate current or future environment
state into the scoring function. It is also in general
necessary to hand-engineer a task-specific formal
language for describing agent behavior. Thus it is
extremely difficult to work with environments that
cannot be modeled with a fixed inventory of pred-
icates (e.g. those involving novel strings or arbi-
trary real quantities).

Much of contemporary work in this family is
evaluated on the maze navigation task introduced
by MacMahon et al. (2006). Dukes (2013) also in-
troduced a “blocks world” task for situated parsing
of spatial robot commands.

Linear policy estimators An alternative fam-
ily of approaches is based on learning a pol-
icy over primitive actions directly (Branavan et
al., 2009; Vogel and Jurafsky, 2010).1 Policy-
based approaches instantiate a Markov decision
process representing the action domain, and ap-
ply standard supervised or reinforcement-learning
approaches to learn a function for greedily select-
ing among actions. In linear policy approximators,
natural language instructions are incorporated di-
rectly into state observations, and reading order

1This is distinct from semantic parsers in which greedy
inference happens to have an interpretation as a policy (Vla-
chos and Clark, 2014).
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becomes part of the action selection process.
Almost all existing policy-learning approaches

make use of an unstructured parameterization,
with a single (flat) feature vector representing all
text and observations. Such approaches are thus
restricted to problems that are simple enough (and
have small enough action spaces) to be effectively
characterized in this fashion. While there is a great
deal of flexibility in the choice of feature func-
tion (which is free to inspect the current and fu-
ture state of the environment, the whole instruc-
tion sequence, etc.), standard linear policy estima-
tors have no way to model compositionality in lan-
guage or actions.

Agents in this family have been evaluated on a
variety of tasks, including map reading (Anderson
et al., 1991) and gameplay (Branavan et al., 2009).

Though both families address the same class
of instruction-following problems, they have been
applied to a totally disjoint set of tasks. It should
be emphasized that there is nothing inherent to
policy learning that prevents the use of composi-
tional structure, and nothing inherent to general
compositional models that prevents more compli-
cated dependence on environment state. Indeed,
previous work (Branavan et al., 2011; Narasimhan
et al., 2015) uses aspects of both to solve a differ-
ent class of gameplay problems. In some sense,
our goal in this paper is simply to combine the
strengths of semantic parsers and linear policy es-
timators for fully general instruction following.
As we shall see, however, this requires changes
to many aspects of representation, learning and in-
ference.

3 Representations

We wish to train a model capable of following
commands in a simulated environment. We do so
by presenting the model with a sequence of train-
ing pairs (x,y), where each x is a sequence of nat-
ural language instructions (x1, x2, . . . , xm), e.g.:

(Go down the yellow hall., Turn left., . . . )

and each y is a demonstrated action sequence
(y1, y2, . . . , yn), e.g.:

(rotate(90), move(2), . . . )

Given a start state, y can equivalently be char-
acterized by a sequence of (state, action, state)

Go down the yellow hall

go down hall
the

(a)  Text

(b)  Syntax

(c)  Alignment

(d)  Perception

(e)  Environment

*    go    down    the   yellow hall

yellow

move(2)

Figure 2: Structure-to-structure alignment connecting a sin-
gle sentence (via its syntactic analysis) to the environment
state (via its grounding graph). The connecting alignments
take the place of a traditional semantic parse and allow flexi-
ble, feature-driven linking between lexical primitives and per-
ceptual factors.

triples resulting from execution of the environ-
ment model. An example instruction is shown in
Figure 2a. An example action, situated in the en-
vironment where it occurs, is shown in Figure 2e.

Our model performs compositional interpreta-
tion of instructions by leveraging existing struc-
ture inherent in both text and actions. Thus we
interpret xi and yj not as raw strings and primitive
actions, but rather as structured objects.

Linguistic structure We assume access to a pre-
trained parser, and in particular that each of the
instructions xi is represented by a tree-structured
dependency parse. An example is shown in Fig-
ure 2b.

Action structure By analogy to the represen-
tation of instructions as parse trees, we assume
that each (state, action, state) triple (provided by
the environment model) can be characterized by
a grounding graph. The structure and content of
this representation is task-specific. An example
grounding graph for the maze navigation task is
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shown in Figure 2d. The example contains a node
corresponding to the primitive action move(2)
(in the upper left), and several nodes correspond-
ing to locations in the environment that are visible
after the action is performed.

Each node in the graph (and, though not de-
picted, each edge) is decorated with a list of fea-
tures. These features might be simple indica-
tors (e.g. whether the primitive action performed
was move or rotate), real values (the distance
traveled) or even string-valued (English-language
names of visible landmarks, if available in the
environment description). Formally, a grounding
graph consists of a tuple (V,E,L, fV , fE), with

– V a set of vertices

– E ∈ V × V a set of (directed) edges

– L a space of labels (numbers, strings, etc.)

– fV : V → 2L a vertex feature function

– fE : E → 2L an edge feature function

In this paper we have tried to remain agnostic
to details of graph construction. Our goal with the
grounding graph framework is simply to accom-
modate a wider range of modeling decisions than
allowed by existing formalisms. Graphs might
be constructed directly, given access to a struc-
tured virtual environment (as in all experiments
in this paper), or alternatively from outputs of a
perceptual system. For our experiments, we have
remained as close as possible to task representa-
tions described in the existing literature. Details
for each task can be found in the accompanying
software package.

Graph-based representations are extremely
common in formal semantics (Jones et al., 2012;
Reddy et al., 2014), and the version presented here
corresponds to a simple generalization of famil-
iar formal methods. Indeed, if L is the set of all
atomic entities and relations, fV returns a unique
label for every v ∈ V , and fE always returns
a vector with one active feature, we recover the
existentially-quantified portion of first order logic
exactly, and in this form can implement large parts
of classical neo-Davidsonian semantics (Parsons,
1990) using grounding graphs.

Crucially, with an appropriate choice of L this
formalism also makes it possible to go beyond set-
theoretic relations, and incorporate string-valued
features (like names of entities and landmarks) and
real-valued features (like colors and positions) as
well.

Turn left.Go down the yellow hall.

turn left

Text

Alignments

Plans

Figure 3: Our model is a conditional random field that de-
scribes distributions over state-action sequences conditioned
on input text. Each variable’s domain is a structured value.
Sentences align to a subset of the state–action sequences,
with the rest of the states filled in by pragmatic (planning)
implication. State-to-state structure represents planning con-
straints (environment model) while state-to-text structure rep-
resents compositional alignment. All potentials are log-linear
and feature-driven.

Lexical semantics We must eventually combine
features provided by parse trees with features pro-
vided by the environment. Examples here might
include simple conjunctions (word=yellow ∧
rgb=(0.5, 0.5, 0.0)) or more compli-
cated computations like edit distance between
landmark names and lexical items. Features of
the latter kind make it possible to behave correctly
in environments containing novel strings or other
features unseen during training.

This aspect of the syntax–semantics inter-
face has been troublesome for some logic-based
approaches: while past work has used related
machinery for selecting lexicon entries (Berant
and Liang, 2014) or for rewriting logical forms
(Kwiatkowski et al., 2013), the relationship be-
tween text and the environment has ultimately
been mediated by a discrete (and indeed finite) in-
ventory of predicates. Several recent papers have
investigated simple grounded models with real-
valued output spaces (Andreas and Klein, 2014;
McMahan and Stone, 2015), but we are unaware
of any fully compositional system in recent lit-
erature that can incorporate observations of these
kinds.

Formally, we assume access to a joining feature
function φ : (2L × 2L)→ Rd. As with grounding
graphs, our goal is to make the general framework
as flexible as possible, and for individual exper-
iments have chosen φ to emulate modeling deci-
sions from previous work.
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4 Model

As noted in the introduction, we approach instruc-
tion following as a sequence prediction problem.
Thus we must place a distribution over sequences
of actions conditioned on instructions. We decom-
pose the problem into two components, describing
interlocking models of “path structure” and “ac-
tion structure”. Path structure captures how se-
quences of instructions give rise to sequences of
actions, while action structure captures the com-
positional relationship between individual utter-
ances and the actions they specify.

Path structure: aligning utterances to actions

The high-level path structure in the model is de-
picted in Figure 3. Our goal here is to permit both
under- and over-specification of plans, and to ex-
pose a planning framework which allows plans to
be computed with lookahead (i.e. non-greedily).

These goals are achieved by introducing a se-
quence of latent alignments between instructions
and actions. Consider the multi-step example in
Figure 1b. If the first instruction go down the yel-
low hall were interpreted immediately, we would
have a presupposition failure—the agent is facing
a wall, and cannot move forward at all. Thus an
implicit rotate action, unspecified by text, must
be performed before any explicit instructions can
be followed.

To model this, we take the probability of a (text,
plan, alignment) triple to be log-proportional to
the sum of two quantities:

1. a path-only score ψ(n; θ) +
∑

j ψ(yj ; θ)

2. a path-and-text score, itself the sum of all pair
scores ψ(xi, yj ; θ) licensed by the alignment

(1) captures our desire for pragmatic constraints
on interpretation, and provides a means of encod-
ing the inherent plausibility of paths. We take
ψ(n; θ) and ψ(y; θ) to be linear functions of θ.
(2) provides context-dependent interpretation of
text by means of the structured scoring function
ψ(x, y; θ), described in the next section.

Formally, we associate with each instruction xi
a sequence-to-sequence alignment variable ai ∈
1 . . . n (recalling that n is the number of actions).

Then we have2

p(y,a|x; θ) ∝ exp
{
ψ(n) +

n∑
j=1

ψ(yj)

+
m∑
i=1

n∑
j=1

1[aj = i] ψ(xi, yj)
}

(1)

We additionally place a monotonicity constraint
on the alignment variables. This model is globally
normalized, and for a fixed alignment is equiva-
lent to a linear-chain CRF. In this sense it is analo-
gous to IBM Model I (Brown et al., 1993), with the
structured potentials ψ(xi, yj) taking the place of
lexical translation probabilities. While alignment
models from machine translation have previously
been used to align words to fragments of semantic
parses (Wong and Mooney, 2006; Pourdamghani
et al., 2014), we are unaware of such models be-
ing used to align entire instruction sequences to
demonstrations.

Action structure: aligning words to percepts
Intuitively, this scoring function ψ(x, y) should
capture how well a given utterance describes an
action. If neither the utterances nor the actions had
structure (i.e. both could be represented with sim-
ple bags of features), we would recover something
analogous to the conventional policy-learning ap-
proach. As structure is essential for some of our
tasks, ψ(x, y) must instead fill the role of a seman-
tic parser in a conventional compositional model.

Our choice of ψ(x, y) is driven by the following
fundamental assumptions: Syntactic relations ap-
proximately represent semantic relations. Syntac-
tic proximity implies relational proximity. In this
view, there is an additional hidden structure-to-
structure alignment between the grounding graph
and the parsed text describing it. 3 Words line up
with nodes, and dependencies line up with rela-
tions. Visualizations are shown in Figure 2c and
the zoomed-in portion of Figure 3.

As with the top-level alignment variables, this
approach can viewed as a simple relaxation of a
familiar model. CCG-based parsers assume that
syntactic type strictly determines semantic type,

2Here and the remainder of this paper, we suppress the
dependence of the various potentials on θ in the interest of
readability.

3It is formally possible to regard the sequence-to-
sequence and structure-to-structure alignments as a single
(structured) random variable. However, the two kinds of
alignments are treated differently for purposes of inference,
so it is useful to maintain a notational distinction.
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and that each lexical item is associated with a
small set of functional forms. Here we simply
allow all words to license all predicates, multi-
ple words to specify the same predicate, and some
edges to be skipped. We instead rely on a scoring
function to impose soft versions of the hard con-
straints typically provided by a grammar. Related
models have previously been used for question an-
swering (Reddy et al., 2014; Pasupat and Liang,
2015).

For the moment let us introduce variables b
to denote these structure-to-structure alignments.
(As will be seen in the following section, it is
straightforward to marginalize over all choices of
b. Thus the structure-to-structure alignments are
never explicitly instantiated during inference, and
do not appear in the final form of ψ(x, y).) For
a fixed alignment, we define ψ(x, y, b) according
to a recurrence relation. Let xi be the ith word of
the sentence, and let yj be the jth node in the ac-
tion graph (under some topological ordering). Let
c(i) and c(j) give the indices of the dependents of
xi and children of yj respectively. Finally, let xik

and yjl denote the associated dependency type or
relation. Define a “descendant” function:

d(i, j) =
{
(k, l) : k ∈ c(i), l ∈ c(j), (k, l) ∈ b}

Then,

ψ(xi, yj , b) = exp
{
θ>φ(xi, yj)

+
∑

(k,l)∈d(x,y)

[
θ>φ

(
xik, yjl

) · ψ(xk, yl, b)
]}

This is just an unnormalized synchronous deriva-
tion between x and y—at any aligned (node, word)
pair, the score for the entire derivation is the score
produced by combining that word and node, times
the scores at all the aligned descendants. Observe
that as long as there are no cycles in the depen-
dency parse, it is perfectly acceptable for the rela-
tion graph to contain cycles and even self-loops—
the recurrence still bottoms out appropriately.

5 Learning and inference

Given a sequence of training pairs (x,y), we
wish to find a parameter setting that maximizes
p(y|x; θ). If there were no latent alignments a
or b, this would simply involve minimization of
a convex objective. The presence of latent vari-
ables complicates things. Ideally, we would like

Algorithm 1 Computing structure-to-structure
alignments

xi are words in reverse topological order
yj are grounding graph nodes (root last)
chart is an m× n array
for i = 1 to |x| do

for j = 1 to |y| do
score← exp

{
θ>φ(xi, yj)

}
for (k, l) ∈ d(i, j) do

s←∑
l∈c(j)

[
exp

{
θ>φ(xik, yjl)

}
· chart[k, l]

]
score← score · s

end for
chart[i, j]← score

end for
end for
return chart[n,m]

to sum over the latent variables, but that sum is in-
tractable. Instead we make a series of variational
approximations: first we replace the sum with a
maximization, then perform iterated conditional
modes, alternating between maximization of the
conditional probability of a and θ. We begin by
initializing θ randomly.

As noted in the preceding section, the vari-
able b does not appear in these equations. Con-
ditioned on a, the sum over structure-to-structure
ψ(x, y) =

∑
b ψ(x, y, b) can be performed ex-

actly using a simple dynamic program which runs
in time O(|x||y|) (assuming out-degree bounded
by a constant, and with |x| and |y| the number of
words and graph nodes respectively). This is Al-
gorithm 1.

In our experiments, θ is optimized using L-
BFGS (Liu and Nocedal, 1989). Calculation of
the gradient with respect to θ requires computa-
tion of a normalizing constant involving the sum
over p(x,y′,a) for all y′. While in principle the
normalizing constant can be computed using the
forward algorithm, in practice the state spaces un-
der consideration are so large that even this is in-
tractable. Thus we make an additional approxima-
tion, constructing a set Ỹ of alternative actions and
taking

p(y,a|x) ≈
n∑
j=1

exp
{
ψ(yj)+

∑m
i=1 1[ai=j]ψ(xi,yi)

}
∑

ỹ∈Ỹ exp
{
ψ(ỹ)+

∑m
i=1 1[ai=j]ψ(xi,ỹ)

}
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Ỹ is constructed by sampling alternative actions
from the environment model. Meanwhile, maxi-
mization of a can be performed exactly using the
Viterbi algorithm, without computation of normal-
izers.

Inference at test time involves a slightly differ-
ent pair of optimization problems. We again per-
form iterated conditional modes, here on the align-
ments a and the unknown output path y. Max-
imization of a is accomplished with the Viterbi
algorithm, exactly as before; maximization of y
also uses the Viterbi algorithm, or a beam search
when this is computationally infeasible. If bounds
on path length are known, it is straightforward to
adapt these dynamic programs to efficiently con-
sider paths of all lengths.

6 Evaluation

As one of the main advantages of this approach
is its generality, we evaluate on several different
benchmark tasks for instruction following. These
exhibit great diversity in both environment struc-
ture and language use. We compare our full
system to recent state-of-the-art approaches to
each task. In the introduction, we highlighted
two core aspects of our approach to semantics:
compositionality (by way of grounding graphs
and structure-to-structure alignments) and plan-
ning (by way of inference with lookahead and
sequence-to-sequence alignments). To evaluate
these, we additionally present a pair of ablation ex-
periments: no grounding graphs (an agent with an
unstructured representation of environment state),
and no planning (a reflex agent with no looka-
head).

Map reading Our first application is the map
navigation task established by Vogel and Jurafsky
(2010), based on data collected for a psychological
experiment by Anderson et al. (1991) (Figure 1a).
Each training datum consists of a map with a des-
ignated starting position, and a collection of land-
marks, each labeled with a spatial coordinate and
a string name. Names are not always unique, and
landmarks in the test set are never observed dur-
ing training. This map is accompanied by a set
of instructions specifying a path from the start-
ing position to some (unlabeled) destination point.
These instruction sets are informal and redundant,
involving as many as a hundred utterances. They
are transcribed from spoken text, so grammatical
errors, disfluencies, etc. are common. This is a

P R F1

Vogel and Jurafsky (2010) 0.46 0.51 0.48
Andreas and Klein (2014) 0.43 0.51 0.45

Model [no planning] 0.44 0.46 0.45
Model [no grounding graphs] 0.52 0.52 0.52
Model [full] 0.51 0.60 0.55

Table 1: Evaluation results for the map-reading task. P is pre-
cision, R is recall and F1 is F-measure. Scores are calculated
with respect to transitions between landmarks appearing in
the reference path (for details see Vogel and Jurafsky (2010)).
We use the same train / test split. Some variant of our model
achieves the best published results on all three metrics.

Feature Weight

word=top ∧ side=North 1.31
word=top ∧ side=South 0.61
word=top ∧ side=East −0.93

dist=0 4.51
dist=1 2.78
dist=4 1.54

Table 2: Learned feature values. The model learns that the
word top often instructs the navigator to position itself above
a landmark, occasionally to position itself below a landmark,
but rarely to the side. The bottom portion of the table shows
learned text-independent constraints: given a choice, near
destinations are preferred to far ones (so shorter paths are pre-
ferred overall).

prime example of a domain that does not lend it-
self to logical representation—grammars may be
too rigid, and previously-unseen landmarks and
real-valued positions are handled more easily with
feature machinery than predicate logic.

The map task was previously studied by Vo-
gel and Jurafsky (2010), who implemented SARSA

with a simple set of features. By combining these
features with our alignment model and search pro-
cedure, we achieve state-of-the-art results on this
task by a substantial margin (Table 1).

Some learned feature values are shown in Ta-
ble 2. The model correctly infers cardinal direc-
tions (the example shows the preferred side of a
destination landmark modified by the word top).
Like Vogel et al., we see support for both allocen-
tric references (you are on top of the hill) and ego-
centric references (the hill is on top of you). We
can also see pragmatics at work: the model learns
useful text-independent constraints—in this case,
that near destinations should be preferred to far
ones.

Maze navigation The next application we con-
sider is the maze navigation task of MacMahon et
al. (2006) (Figure 1b). Here, a virtual agent is sit-
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Success (%)

Kim and Mooney (2012) 57.2
Chen (2012) 57.3

Model [no planning] 58.9
Model [no grounding graphs] 51.7
Model [full] 59.6

Kim and Mooney (2013) [reranked] 62.8
Artzi et al. (2014) [semi-supervised] 65.3

Table 3: Evaluation results for the maze navigation task.
“Success” shows the percentage of actions resulting in a cor-
rect position and orientation after observing a single instruc-
tion. We use the leave-one-map-out evaluation employed by
previous work.4 All systems are trained on full action se-
quences. Our model outperforms several task-specific base-
lines, as well as a baseline with path structure but no action
structure.

uated in a maze (whose hallways are distinguished
with various wallpapers, carpets, and the presence
of a small set of standard objects), and again given
instructions for getting from one point to another.
This task has been the subject of focused attention
in semantic parsing for several years, resulting in
a variety of sophisticated approaches.

Despite superficial similarity to the previous
navigation task, the language and plans required
for this task are quite different. The proportion of
instructions to actions is much higher (so redun-
dancy much lower), and the interpretation of lan-
guage is highly compositional.

As can be seen in Table 3, we outperform a
number of systems purpose-built for this naviga-
tion task. We also outperform both variants of
our system, most conspicuously the variant with-
out grounding graphs. This highlights the impor-
tance of compositional structure. Recent work by
Kim and Mooney (2013) and Artzi et al. (2014)
has achieved better results; these systems make
use of techniques and resources (respectively, dis-
criminative reranking and a seed lexicon of hand-
annotated logical forms) that are largely orthogo-
nal to the ones used here, and might be applied to
improve our own results as well.

Puzzle solving The last task we consider is the
Crossblock task studied by Branavan et al. (2009)
(Figure 1c). Here, again, natural language is used
to specify a sequence of actions, in this case the
solution to a simple game. The environment is
simple enough to be captured with a flat feature

4We specifically targeted the single-sentence version of
this evaluation, as an alternative full-sequence evaluation
does not align precisely with our data condition.

Match (%) Success (%)

No text 54 78
Branavan ’09 63 –

Model [no planning] 64 66
Model [full] 70 86

Table 4: Results for the puzzle solving task. “Match” shows
the percentage of predicted action sequences that exactly
match the annotation. “Success” shows the percentage of
predicted action sequences that result in a winning game con-
figuration, regardless of the action sequence performed. Fol-
lowing Branavan et al. (2009), we average across five random
train / test folds. Our model achieves state-of-the-art results
on this task.

representation, so there is no distinction between
the full model and the variant without grounding
graphs.

Unlike the other tasks we consider, Crossblock
is distinguished by a challenging associated search
problem. Here it is nontrivial to find any sequence
that eliminates all the blocks (the goal of the puz-
zle). Thus this example allows us measure the ef-
fectiveness of our search procedure.

Results are shown in Table 4. As can be seen,
our model achieves state-of-the-art performance
on this task when attempting to match the human-
specified plan exactly. If we are purely concerned
with task completion (i.e. solving the puzzle, per-
haps not with the exact set of moves specified
in the instructions) we can measure this directly.
Here, too, we substantially outperform a no-text
baseline. Thus it can be seen that text induces a
useful heuristic, allowing the model to solve a con-
siderable fraction of problem instances not solved
by naı̈ve beam search.

The problem of inducing planning heuristics
from side information like text is an important
one in its own right, and future work might focus
specifically on coupling our system with a more
sophisticated planner. Even at present, the re-
sults in this section demonstrate the importance of
lookahead and high-level reasoning in instruction
following.

7 Conclusion

We have described a new alignment-based com-
positional model for following sequences of nat-
ural language instructions, and demonstrated the
effectiveness of this model on a variety of tasks. A
fully general solution to the problem of contextual
interpretation must address a wide range of well-
studied problems, but the work we have described
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here provides modular interfaces for the study of
a number of fundamental linguistic issues from a
machine learning perspective. These include:

Pragmatics How do we respond to presup-
position failures, and choose among possible
interpretations of an instruction disambiguated
only by context? The mechanism provided by
the sequence-prediction architecture we have de-
scribed provides a simple answer to this ques-
tion, and our experimental results demonstrate that
the learned pragmatics aid interpretation of in-
structions in a number of concrete ways: am-
biguous references are resolved by proximity in
the map reading task, missing steps are inferred
from an environment model in the maze naviga-
tion task, and vague hints are turned into real plans
by knowledge of the rules in Crossblock. A more
comprehensive solution might explicitly describe
the process by which instruction-givers’ own be-
liefs (expressed as distributions over sequences)
give rise to instructions.

Compositional semantics The graph alignment
model of semantics presented here is an expres-
sive and computationally efficient generalization
of classical logical techniques to accommodate en-
vironments like the map task, or those explored
in our previous work (Andreas and Klein, 2014).
More broadly, our model provides a compositional
approach to semantics that does not require an
explicit formal language for encoding sentence
meaning. Future work might extend this approach
to tasks like question answering, where logic-
based approaches have been successful.

Our primary goal in this paper has been to ex-
plore methods for integrating compositional se-
mantics and the pragmatic context provided by se-
quential structures. While there is a great deal
of work left to do, we find it encouraging that
this general approach results in substantial gains
across multiple tasks and contexts.
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Abstract

We investigate the need for bigram align-
ment models and the benefit of super-
vised alignment techniques in grapheme-
to-phoneme (G2P) conversion. Moreover,
we quantitatively estimate the relation-
ship between alignment quality and over-
all G2P system performance. We find
that, in English, bigram alignment models
do perform better than unigram alignment
models on the G2P task. Moreover, we
find that supervised alignment techniques
may perform considerably better than their
unsupervised brethren and that few manu-
ally aligned training pairs suffice for them
to do so. Finally, we estimate a highly
significant impact of alignment quality on
overall G2P transcription performance and
that this relationship is linear in nature.

1 Introduction

Grapheme-to-phoneme (G2P) conversion is the
problem of converting a string of letters into a
string of phonetic symbols. Closely related to
G2P are other string transduction problems in nat-
ural language processing (NLP) such as transliter-
ation (Sherif and Kondrak, 2007), lemmatization
(Dreyer et al., 2008), and spelling error correc-
tion (Brill and Moore, 2000). The classical learn-
ing paradigm in each of these settings is to train
a model on pairs of strings {(x,y)} and then to
evaluate model performance on test data. While
there are exceptions (e.g., (Rao et al., 2015)), most
state-of-the-art modelings (e.g., (Jiampojamarn et
al., 2007; Bisani and Ney, 2008; Jiampojamarn
et al., 2008; Jiampojamarn et al., 2010; Novak et
al., 2012)) view string transduction as a two-stage
process in which string pairs (x,y) in the train-
ing data are first aligned, and then a subsequent
(e.g., sequence labeling) module is learned on the
aligned data.

ph oe n i x
f i n I ks

Table 1: Sample monotone many-to-many align-
ment between x = phoenix and y = finIks.

State-of-the-art alignments in G2P are charac-
terized by the following properties:

(i) Alignments are monotone in that the ordering
of characters in input and output sequences
is preserved by the alignments. Furthermore,
they are many-to-many in the sense that sev-
eral x sequence characters may be matched
up with several y sequence characters as il-
lustrated in Table 1.

(ii) The alignment is a latent variable and learnt
in an unsupervised manner from pairs of
strings in the training data.

(iii) The unsupervised alignment models are un-
igram alignment models insofar as the over-
all score that the alignment model assigns an
alignment is the same for all orderings of the
matched-up subsequences (context indepen-
dence).

To illustrate point (iii), consider, in the field of
lemmatization, the case of aligning an inflected
word form with the extended infinitive in German,
such as absagt (‘rejects’) with abzusagen (‘to re-
ject’). Critically, the insertion -zu- appears in in-
fixal position and a plausible alignment might be
as in Table 2. Then, correctly aligning certain

a b ε s a g t
a b zu s a g en

Table 2: Alignment between absagen and
abzusagen. Empty string denoted by ε.

analogous forms such as zusagt (‘accepts’) with
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their corresponding extended infinitive zuzusagen
(‘to accept’) is beyond the scope of a unigram
alignment model since this cannot distinguish the
linguistically correct alignment from the following
linguistically incorrect alignment

ε z u s a g t
zu z u s a g en

precisely because it has no notion of context.
In this work, we firstly address bigram align-

ment models in G2P. We investigate whether there
are phenomena in G2P that require bigram align-
ment models and, more generally, whether bigram
alignment models produce better alignments —
with respect to a human gold standard — than un-
igram alignment models within the G2P setting.
We do so, secondly, in a supervised setting where
the model learns from gold-standard alignments.
While this may seem an odd scenario at first sight,
modern alignment toolkits in the related field of
machine translation typically include the possibil-
ity to learn both in a supervised and unsupervised
manner (Liu et al., 2010; Liu and Sun, 2015).
The rationale behind supervised learning models
may be that they perform better than unsupervised
models, and if alignment quality has a large impact
upon subsequent string translation performance,
then a supervised model may be a suitable alterna-
tive. Thirdly, we investigate how alignment qual-
ity affects overall G2P performance. This allows
us to address whether it is worthwhile to work
on better alignment models, which bigram and
supervised alignment models promise to be. To
our knowledge, all three outlined aspects of align-
ments — bigram models, supervised learning, and
systematically estimating the relationship between
alignment quality and overall string transduction
performance — are novel in the G2P setting and
its related fields as outlined; however, see also the
related work section.

This work is structured as follows. Section 2
presents definitions and algorithms for uni- and bi-
gram alignment models. Section 3 surveys related
work. Section 4 presents our data and Section 5
our experiments. We conclude in Section 6.

2 Uni- and bigram alignment models

We first formally define the problem of aligning
two strings x and y over arbitrary alphabets in a
monotone and many-to-many manner. Let `x =
|x| and `y = |y| denote the lengths of x and y,
respectively. Let N = {0, 1, 2, . . .}, and let S ⊆

N2\{(0, 0)} be a set defining the valid match-up
operations between x characters and y characters.
In other words, when (s, t) ∈ S, then this means
we allow matches of subsequences of x of length
s and subsequences of y of length t.1

It is convenient to define a monotone many-to-
many alignment of x and y as a 2×k (for k ≥ 1 ar-
bitrary) nonnegative integer matrix Ax,y ∈ N2×k

satisfying Ax,y1k =
(
`x
`y

)
, i.e., the two rows

of Ax,y sum up to the lengths of the respective
strings,2 and where each column of Ax,y lies in
S. For any such alignment, we let (x1, . . . ,xk) be
the corresponding induced segmentation of x and
(y1, . . . ,yk) be the corresponding induced seg-
mentation of y.

Example. For any S ⊇ {(1, 1), (1, 2), (2, 1)},
the alignment of x = phoenix and y = finIks
shown in Table 1 may be represented by the ma-

trix Ax,y =
(

2 2 1 1 1
1 1 1 1 2

)
. The correspond-

ing induced segmentations are (ph,oe,n,i,x) and
(f,i,n,I,ks).

Let AS(x,y) denote the class of all alignments
of x and y. We call a function f : AS(x,y)→ R
an alignment model. We call an alignment model
f a unigram alignment model if f takes the form,
for any Ax,y ∈ AS(x,y),

f(Ax,y) =
k∑
i=1

sim1(xi,yi) (1)

where sim1 is an arbitrary (real-valued) similar-
ity function measuring similarity of two subse-
quences. We call an alignment model f a bigram
alignment model if f takes the form

f(Ax,y) =
k∑
i=1

sim2

(
(xi,yi), (xi−1,yi−1)

)
(2)

where sim2 is an arbitrary (real-valued) similarity
function measuring similarity of successive pairs
of subsequences.

Example. Let sim1(u,v) be equal to |u| · |v| and
let funi(Ax,y) be as in Eq. (1). Then, funi is a
unigram alignment model that assigns the score

1This is sometimes denoted in the manner M -N (e.g., 3-
2, 1-0), indicating that M characters of one string may be
matched up with N characters of the other string. Analo-
gously, we could write here s-t rather than (s, t).

2Here, 1k denotes the unit vector of dimension k.
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1 + 1 + 0 + 1 + 1 + 1 + 2 = 7 to the alignment
given in Table 2.

Example. Let sim2

(
(u,v), (u′,v′)

)
= (|u| ·

|v|)|v′| if |u| = |u′| − 1 or u = v and −2 oth-
erwise. Let fbi(Ax,y) be as in Eq. (2). Then, fbi
is a bigram alignment model assigning the score
(1 · 1)0 + (1 · 1)1 + (0 · 2)1 + (1 · 1)2 + (1 · 1)1 +
(1 · 1)1 − 2 = 3 to the alignment in Table 2.

In statistical alignment modeling, the task is to
find an optimal alignment (i.e., one with maxi-
mal score) given strings x and y and given the
alignment model f . When f is a unigram model,
this can be solved efficiently via dynamic pro-
gramming (DP). When f is a bigram alignment
model, then finding the optimal alignment can
still be solved via DP, by introducing a variable
Mijqw denoting the score of the best alignment
of x(1 : i) and y(1 : j) that ends in the match-
up of x(q : i) with y(w : j).3 The variable
Mijqw satisfies a recurrence leading to a DP al-
gorithm, shown in Algorithm 1. The actual align-
ment can be found by storing pointers to the maxi-
mizing steps taken. Running time of the algorithm
is O(`2x`

2
y|S|). Note also that the sketched algo-

rithm is supervised insofar as it assumes that the
similarity values sim2(·, ·) are known. Typically,
such alignment algorithms can be converted into
unsupervised algorithms in which similarity mea-
sures sim are learnt iteratively, e.g., in an EM-like
fashion (cf., e.g., Eger (2012), Eger (2013)); how-
ever, in this paper, we only investigate the super-
vised base version as indicated.

3 Related work

Monotone alignments have a long tradition in
NLP. The classical Needleman-Wunsch algo-
rithm (Needleman and Wunsch, 1970) computes
the optimal alignment between two sequences
when only single character matches, mismatches,
and skips are allowed. It is a special case
of the unigram model (1) for which S =
{(1, 0), (0, 1), (1, 1)} and sim1 takes on values
from {0,−1}, depending on whether compared
subsequences match or not. As is well-known, this
alignment specification is equivalent to the edit
distance problem (Levenshtein, 1966) in which
the minimal number of insertions, deletions and
substitutions is sought that transforms one string

3We denote by x(a : b) the substring xaxa+1 · · ·xb of
the string x1x2 · · ·xt.

into another. Substring-to-substring edit oper-
ations — or equivalently, (monotone) many-to-
many alignments — have appeared in the NLP
context, e.g., in Deligne et al. (1995), Brill and
Moore (2000), Jiampojamarn et al. (2007), Bisani
and Ney (2008), Jiampojamarn et al. (2010), or,
significantly earlier, in Ukkonen (1985), Véronis
(1988). Learning edit distance/monotone align-
ments in an unsupervised manner has been the
topic of, e.g., Ristad and Yianilos (1998), Cot-
terell et al. (2014), besides the works already men-
tioned. All of these approaches are special cases of
our unigram model — i.e., they consider particular
S (most prominently, S = {(1, 0), (0, 1), (1, 1)})
and sim1.4 Eger (2015b), Yao and Kondrak
(2015), and Eger (2015a) generalize to alignments
of multiple strings, but likewise only consider un-
igram alignment models in their experiments.

Probably the most closely related work to ours
is Jiampojamarn and Kondrak (2010). There,
older and specialized alignment techniques such
as ALINE (Kondrak, 2000) (as well as partly
heuristic/semi-automatic alignment methods) are
compared with variants of the M2M alignment
algorithm, which we also survey. This work
does not consider supervised alignments or bigram
alignments, as we do. Moreover, Jiampojamarn
and Kondrak (2010) also evaluate the impact of
alignment quality on overall G2P system accuracy
by running a few experiments, finding that better
alignment quality does not always translate into
better G2P accuracy, but that there is a “strong
correlation” between the two. We more thorougly
investigate this question, using, arguably, more
heterogeneous aligners, and many more experi-
ments. We also quantitatively estimate how align-
ment quality influences G2P system accuracy on
two different languages via linear regression.

Goldwater et al. (2006) study the effect of
context in (unsupervised) word/sequence seg-
mentation, which may be considered the one-
dimensional specialization of sequence alignment,
using a Bayesian method. They find that bigram
models greatly outperform unigram models for
their task.

Of course, our study is also related to the field
of machine translation and its studies on the rela-

4In Cotterell et al. (2014), context influences alignments,
so that the approach goes beyond the unigram model sketched
in (1) (but does not allow for many-to-many match-ups). The
contextual dependencies in this model are set up differently
from the bigram dependencies in our paper.
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Algorithm 1
1: procedure BIGRAM-ALIGN(x = x1 . . . xn,y = y1 . . . ym; S, sim2)
2: Mijqw ← −∞ for all (i, j, q, w) ∈ Z4

3: M0000 ← 0
4: for i = 0 . . . n do
5: for j = 0 . . .m do
6: for q = 0 . . . i+ 1 do
7: for w = 0 . . . j + 1 do
8: if (i, j, q, w) 6= (0, 0, 0, 0) then
9: if (i− q + 1, j − w + 1) ∈ S then

10: Mijqw= max
(a,b)∈S

Mq−1,w−1,q−a,w−b+sim2

((
x(q:i),y(w:j)

)
,
(
x(q−a:q−1),y(w−b:w−1)

))

tionship between alignment quality and translation
performance (Ganchev et al., 2008). In machine
translation, the monotonicity assumption of string
transduction does typically not hold, however, ren-
dering alignment and translation techniques differ-
ent and more heuristic in nature.

4 Data and systems

4.1 Data

For English, we conduct experiments on the Gen-
eral American (GA) variant of the Combilex data
set (Richmond et al., 2009). This contains about
128 000 grapheme-phoneme pairs as exemplified
in Table 3. Importantly, Combilex provides gold-
standard alignments, which we will make use of
for the supervised alignment models as well as for
measuring alignment quality. For German, we ran-

Grapheme string Phoneme string
g-e-n-e-r-a-l dZ-E-n-@-r-@-l

p-r-o-b-a-t-ion-a-r-y p-r-@U-b-eI-S-n=-E-r-i
w-oo-d-e-d w-U-d-@-d

M-u-r-m-a-n-s-k m-U@-r-m-A-n-s-k

Table 3: Sample grapheme-phoneme string pairs
in Combilex, using Combilex notation for the
phoneme strings. Gold-standard alignments indi-
cated in an intuitive manner.

domly extract 3 000 G2P string pairs from CELEX
(Baayen et al., 1995). We had a native speaker
manually align them so that gold standard align-
ments are available here, too. Both data sets con-
tain quite complex match-ups of character subse-
quences such as (2,3) as in English s-oi-r-ee-s/s-
wOA-r-P-z or (4,1) as in w-eigh-t/w-P-t but the
majority of match-ups are of type (1,1), (2,1), and,
to a lesser degree, (1,2) and (3,1).

4.2 Alignment toolkits/models

The M2M aligner (Jiampojamarn et al., 2007),
which is based on EM maximum likelihood es-
timation of alignment parameters, is the classi-
cal unsupervised unigram many-to-many aligner
in G2P. As has been pointed out (Kubo et al.,
2011), M2M greatly overfits the data.5 This
means that when the M2M aligner is given the
freedom to align two sequences without restric-
tions, it matches them up as a whole. The rea-
son is that a (probabilistic) unigram alignment
model adds log-probabilities of matched-up sub-
sequences, which, if not appropriately corrected
for, makes alignments with few match-ups a pri-
ori more likely than alignments with many match-
ups, when probabilities of individual match-ups
are uniformly or randomly initialized (as is typi-
cally the case for EM maximum likelihood esti-
mation in unsupervised models). To address this,
M2M must artifically restrain, in our language, the
set S to be {(1, 1), (1, 2), (2, 1)}. In contrast, the
Mpaligner (Kubo et al., 2011) introduces a prior
(or penalty) in the alignment model which favors
‘short’ matches (s, t) over ‘long’ ones. Finally, the
Phonetisaurus aligner (Novak et al., 2012) mod-
ifies the M2M aligner by adding additional soft
constraints.

Our own alignment model is, as indicated, su-
pervised. We implement a unigram alignment
model where we specify sim1(u,v) as

α · logp((u,v)) + β · logp((|u|, |v|))
+γ · logp(u) + δ · logp(v).

Here, logp(z) denotes the log-probability — esti-
mated from the training data — of observing the

5See also the discussion in (Goldwater et al., 2006) for the
related word segmentation problem.
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object z, and α, β, γ and δ are parameters. This
specification says that the subsequences u and v
are similar insofar as (i) u and v have been paired
frequently in the training data, (ii) the length of u
and the length of v have been paired frequently,
(iii)/(iv) u/v by itself is likely. We refer to this
unigram alignment model as uniα,β,γ,δ. We also
implement a bigram alignment model where we
specify sim2

(
(u,v), (u′,v′)

)
as

α · logp
(
(u,v) | (u′,v′))

+β · logp
(
(|u|, |v|) | (|u′|, |v′|))

+γ · logp
(
u|u′)+ δ · logp

(
v|v′).

Here, logp(z | z′) denotes the logarithm of the con-
ditional probability of observing the object z fol-
lowing the object z′. We refer to this bigram align-
ment model as biα,β,γ,δ.

4.3 Transduction systems
We use two string transduction systems for our ex-
periments. The first one is DirecTL+ (Jiampo-
jamarn et al., 2010), a discriminative string-to-
string translation system incorporating joint n-
gram features. DirecTL+ is an extension of the
model presented in Jiampojamarn et al. (2008)
which treats string transduction as a source se-
quence segmentation and subsequent sequence la-
beling task. In addition, we use Phonetisaurus
(Novak et al., 2012), a weighted finite state-based
joint n-gram model employing recurrent neural
network language model N -best rescoring in de-
coding. Both systems take aligned pairs of strings
as input and from this construct a monotone trans-
lation model.6

4.4 Measuring alignment quality
We employ two measures of alignment quality.
First, we use word accuracy, defined as the frac-
tion of correctly aligned sequence pairs in a test
sample. This is a very strict measure that penalizes
even tiny deviations from the gold standard. Addi-
tionally, we measure the edit distance between the
true alignment Ax,y and the predicted alignment
Âx,y. To implement this, we view the two induced
segmentations that constitute an alignment — e.g.,
(ph,oe,n,i,x) and (f,i,n,I,ks) — as strings includ-
ing splitting signs. Thus, we can compute the edit
distance between the gold-standard segmented x

6We run both systems with parameters determined by
some manual tuning, without trying to systematically opti-
mize their individual performances, however.

string and the predicted segmentation, and analo-
gously for the y sequence. Then, we define the
edit distance between Ax,y and Âx,y as the sum
of these two string edit distances. For a test sam-
ple, we indicate so-defined average edit distance,
averaged over all pairs in the sample.

5 Experiments

5.1 Alignment quality

To measure alignment quality for the different sys-
tems, for English, we run experiments on sets of
size x+5 000, where x = 1 000, 2 000, 5 000,
10 000, and 20 000. For the supervised models,
we consider x as the training data and the 5 000
additional string pairs as test data.7 To quantify
effects when training data is very little, we let x
also range over 100 and 500 string pairs for the
supervised models. For the unsupervised models,
we simply take all x+5 000 string pairs as data to
learn from (but evaluate performance only on the
5 000 string pairs, for comparability).

Results are shown in Tables 4, 5, and 6. We
first note (Table 4) that the unsupervised mod-
els perform decently, obtaining accuracy rates of
80% and beyond under appropriate parametriza-
tions. We also observe the M2M aligner’s de-
terioration in performance as we increase its de-
grees of freedom (allowing it to match subse-
quences of larger length), confirming our previous
remarks. The Mpaligner does not suffer from this
problem as it penalizes large matches. Phoneti-
saurus suffers from the same problems as M2M,
but to a lesser degree. Overall, we find that, under
optimal parametrizations, Phonetisaurus produces
best alignments, followed by Mpalign and M2M.
However, peak performances of all three unsu-
pervised aligners are close. Unsurprisingly, the
supervised alignment models perform better than
the unsupervised ones (Tables 5 and 6). Surpris-
ingly, however, they do so with very little train-
ing data; fewer than 100 aligned string pairs suf-
fice to outperform the unsupervised models under
good calibrations. When there is sufficient train-
ing data, the supervised models perform splen-
didly, with a peak accuracy of 99.43% for the bi-
gram alignment model that includes appropriate
features (scoring lengths of aligned subsequences,

7For all our below experiments involving the supervised
aligners, we set S to a (‘pessimistically’ large) value of
{(a, b) | 1 ≤ a ≤ 6, 1 ≤ b ≤ 6}. Also, for the bigram
models, we add special sequence boundary markers.
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etc.). We also note that the bigram alignment
model is almost consistently better than the uni-
gram alignment model, with a surplus of about 1%
point, depending on specific parametrizations.

We performed an analogous analysis for the
German data. Results are quite similar except that
unigram and bigram alignment model have indis-
tinguishable performance on the German data, in-
dicating (the known fact) that G2P is a more com-
plex task in English, apparently not requiring bi-
gram alignment models.

x uni0,0,1,1 uni1,0,0,0 uni1,1,1,1
100 70.34 58.13 87.22
500 81.94 84.64 95.60

1000 84.56 90.38 96.17
2000 85.41 93.47 97.13
5000 86.56 96.11 97.72

10000 86.13 97.07 98.14
20000 86.60 97.90 98.34

Table 5: Unigram model and its alignment accura-
cies in % for various training sizes.

x bi0,0,1,1 bi1,0,0,0 bi1,1,1,1
100 73.96 58.02 87.28
500 87.62 85.31 95.26

1000 91.87 90.73 97.32
2000 93.29 94.11 97.96
5000 95.58 97.01 99.03

10000 96.07 98.12 99.17
20000 97.21 98.73 99.43

Table 6: Bigram model and its alignment accura-
cies in % for various training sizes.

Error analysis Concerning errors that the uni-
gram model commits and the bigram model does
not, the majority of errors (roughly 80%) involve
match-ups of ed/d and d. For example, the uni-
gram model aligns as in

t w i n k le d
t w I N k @l d

while the gold-standard alignment is

t w i n k l ed
t w I N k @l d

While all match-ups in both alignments are plau-
sible, the bigram model assigns here higher proba-
bility to the correct ed/d match-up in terminal po-
sition (consistently favored in the data set), which

has a particular meaning there, namely, that of
a suffix marker for past tense.8,9 In the German
data, there is a single instance where the unigram
and bigram alignment model disagree, namely, in
the alignment of s-t-o-ff-f-l-a-sch-e/S-t-O-f-f-l-&-
S-@, which the unigram model falsely aligns as
s-t-o-f-ff-l-a-sch-e/S-t-O-f-f-l-&-S-@; note that in
the correct alignment f must follow ff, not vice
versa, which depends on context information, e.g.,
that o/O signifies a short vowel which is followed
by a double consonant, not a single consonant.

All remaining errors that the bigram align-
ment models commits are, for the best considered
parametrization and training set size, typically due
to match-up types not seen in the training data,
and thus mostly concern foreign names or writings
(e.g., Bh-u-tt-o/b-u-t-F, falsely aligned as B-hu-tt-
o/b-u-t-F). A few other errors might be corrected
when the feature coefficients α, β, γ, δ were opti-
mized on a development set rather than set manu-
ally. We find no indication that our G2P data, ei-
ther for English or German, would further benefit
from n-gram alignment models of order n > 2.

5.2 Alignment quality vs. overall G2P
performance

Next, we estimate the relationship between align-
ment quality and overall G2P performance (tran-
scription accuracy). To this end, for the English
data, we use the 5 000 aligned string pairs from
the previous experiment on alignment quality and
feed them in — as training data — to either Di-
recTL+ or Phonetisaurus as outlined in Section 4.
We then evaluate G2P performance — in terms of
word accuracy (fraction of correctly transcribed
strings) — on a distinct test set of size 10 000.
Figure 1 shows a plot of overall G2P accuracy
vs. training set size for the aligner (ranging over
the x values in the last section); and a second plot
that sketches G2P accuracy as a function of corre-
sponding alignment accuracy. We first note that,
as the supervised aligner receives more training

8Similar cases are, e.g., alignments of the type f-ee-d-b-
a-ck/f-i-d-b-a-k, which the unigram model falsely aligns as
f-e-ed-b-a-ck/f-i-d-b-a-k. Here, too, the unigram is unable to
account for the almost exclusive terminal position of the ed/d
match-up in the data.

9Other errors involve ‘unusual/foreign’
spelling/pronunciation pairs such as Ph-oe-n-i-c-ia/f-@-
n-i-S-@ (wrongly aligned as Ph-o-en-i-c-ia/f-@-n-i-S-@ by
the unigram model) or m-a-d-e-m-oi-s-e-ll-e-’s/m-a-d-@-m-
w@-z-E-l-0-z (m-a-d-e-m-o-i-s-e-ll-e-’s/m-a-d-@-m-w-@-
z-E-l-0-z), where the bigram alignment model has apparently
gathered the more appropriate statistics.
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x Mpalign M2M2,2 M2M3,3 M2M6,6 Phon2,2 Phon3,3 Phon6,6

1000 76.48 77.87 34.59 18.96 78.27 78.15 11.70
2000 78.05 78.03 34.45 18.87 79.24 77.07 12.43
5000 76.68 77.93 35.09 19.72 79.77 80.47 17.63

10000 78.86 77.97 35.03 21.35 79.60 81.30 23.57
20000 79.87 78.60 37.09 22.90 80.09 83.37 34.61

Table 4: Unsupervised aligners and their alignment accuracies in % for various data sizes as described
in the text. Subscripts a, b denote restrictions on maximal lengths of subsequences allowed in match-ups
(a/b corresponds to x/y subsequences).
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Figure 1: Left: Overall G2P accuracy as a function of training set size of supervised aligner uni1,0,0,0.
Right: G2P accuracy as a function of alignment quality (measured in accuracy).

data from which to align the 5 000 string pairs,
the overall G2P accuracy of both DirecTL+ and
Phonetisaurus increase substantially (and as a con-
vex function of training set size). Apparently, the
better alignments produced by more training data
for the particular supervised aligner considered di-
rectly translate into better overall G2P accuracy.
The other plot in the figure shows that, indeed,
there seems to be a linear trend coupling align-
ment quality with overall G2P performance. Table
7 pairs G2P accuracy with alignment accuracy of
selected systems, all run in the x = 20 000 set-
ting. While, in the table, better alignments do not
necessarily imply better overall G2P performance,
the two best alignments also lead to the two best
overall G2P performances (although, in this case,
the second best alignment is paired with the best
overall G2P performance); conversely, the worst
alignment quality is coupled with the worst over-
all G2P performance.

Overall, we ran 249 experiments (including the
German data) in which we trained DirecTL+ or
Phonetisaurus with alignments of specific quali-

Alignment acc. Phon. DirecTL+
Mpalign 79.87 55.48 57.54
M2M3,3 37.09 49.25 53.71
Phon3,3 83.37 54.05 56.11
uni0,0,1,1 86.60 53.19 55.49
uni1,1,1,1 98.34 55.72 57.78
bi1,1,1,1 99.43 55.71 57.71

Table 7: Systems, alignment accuracies of corre-
sponding produced alignments and transcription
accuracy of Phonetisaurus and DirecTL+ when
trained with the respective alignments.

ties obtained from particularly parametrized align-
ers. In each of these cases, we obtained an align-
ment quality score and a subsequent overall G2P
system performance. The English part of this
data is sketched in Figure 2. This figure seems
to corroborate the linear relationship (apparently
present in Figure 1) between alignment quality and
overall G2P system accuracy, particularly, when
alignment quality is measured in the more fine-
grained metric of edit distance. To formally test
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Figure 2: Overall G2P accuracy vs. alignment quality. Left: Alignment quality measured in accuracy.
Right: Alignment quality measured in edit distance. English data only.

this, we regress overall G2P system performance
(measured in word accuracy) on edit distance and
other variables.10 This yielded the coefficients as
given in Table 8; in each case, the goodness-of-
fit of the linear model was quite large, with R2

values above 90% for the English data and about
84% for the German data. Also, the coefficients
on alignment quality were highly significantly dif-
ferent from zero. The table shows that the co-
efficients are on the order of about −3.80% to
−4.70%, meaning that, all else being equal, in-
creasing alignment quality by 1 edit distance to the
gold-standard alignment increases overall G2P by
about 3.80 to 4.70%.

DirecTL+ Phonetisaurus
English −3.80∗∗∗ −4.14∗∗∗

German - −4.68∗∗∗

Table 8: Coefficients on edit distance in the regres-
sion of G2P accuracy on edit distance and further
variables. For German, DirecTL+ is omitted due
to its long run times.

So far, we have estimated the effects of align-
ment quality on overall G2P system performance
for a fixed size of training data, namely, 5 000
aligned string pairs. To see whether this relation-
ship changes when we vary the amount of train-
ing data, we run several more experiments. In
these, we align training sets of sizes 100, 500,

10These include binary dummy variables for the specific
systems as well as alignment consistency and its square —
measured in conditional entropy H(Y |X) (Pervouchine et
al., 2009) — in the regression.

1 000, 2 000, 10 000, 20 000, 40 000 and 60 000
via our several alignment systems. Then we feed
the aligned data to the Phonetisaurus system (we
omit DirecTL+ here because of its long run times)
and compute overall G2P accuracy on a disjoint
test set of size 28 000 approximately. This time,
we only use the unsupervised aligners and the
gold-standard alignments directly, omitting results
for our various supervised aligners. Note, how-
ever, that these aligners could, in principle, imi-
tate the gold-standard alignments with a very high
degree of precision, as previously seen. Table 9

M2M3,3 Mpalign Phon3,3 Gold
100 5.38 6.43 0.19 9.60
500 16.80 22.43 5.08 23.93
1K 25.79 31.46 18.70 33.37
2K 35.31 42.01 37.74 43.64

10K 58.44 64.05 63.06 64.60
20K 67.70 71.70 71.51 72.21
40K 74.69 78.45 78.13 78.65
60K 78.00 81.07 80.92 81.17

Table 9: Overall G2P accuracy in % as a function
training size of aligned data and alignment system.

shows that training G2P systems from the human
gold standard alignments in each case yields bet-
ter overall G2P transcriptions than training them
from either of the three unsupervised alignments
considered here. However, we note that the sur-
plus over the unsupervised alignments decreases
as training set size increases. This may be due
to the fact that the unsupervised aligners them-
selves create better alignments once they are boot-
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strapped from larger data sets (cf. Table 4). Ad-
ditionally, the effect of alignment quality on over-
all G2P system performance may simply vanish as
training set sizes become large enough because the
translation modules can better accomodate ‘noisy’
data as long as its size is sufficiently large. Figure
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Figure 3: Ratio of transcription accuracy when us-
ing gold standard alignments (GOLD) and when
using alignments generated by T = M2M3,3,
Mpalign, and Phon3,3, respectively, as a function
of size of aligned training set.

3 sketches the decreasing influence of alignment
system on overall G2P system performance as size
of the aligned data increases.

6 Conclusion

We have investigated the need for bigram align-
ment models and the benefit of supervised align-
ment techniques in G2P. We have also quantita-
tively estimated the relationship between align-
ment quality and overall G2P system performance.
We have found that, in English, bigram alignment
models do perform better than unigram alignment
models on the G2P task (we find almost no dif-
ferences between unigram and bigram models for
the German sample of G2P data we considered).
Moreover, we have found that supervised align-
ment techniques may perform considerably better
than their unsupervised brethren and that few man-
ually aligned training pairs suffice for them to do
so. Finally, we have estimated a highly significant
impact of alignment quality on overall G2P tran-
scription performance and that this relationship is
linear in nature. At a particular training size, a
linear regression model has estimated that improv-
ing alignment quality by 1 edit distance toward the

gold standard alignments leads to an 3.80-4.70%
increase in G2P transcription accuracy. However,
we have also found that the importance of good
alignments on G2P accuracy appears to dimish as
data set size increases, possibly because the trans-
lation modules can accomodate more ‘noisy’ data
in this scenario.

As a ‘policy’ implication, we recommend the
use of supervised alignment techniques particu-
larly when the size of the G2P corpus is small or
when high quality alignments, as an end in them-
selves, are required. In this case, constructing a
few dozen or few hundred alignments in an unsu-
pervised manner and correcting them by hand (to
serve as an input for a supervised technique) may
be highly beneficial.

In future work, it may be worthwhile to study
the impact of alignment techniques on overall sys-
tem performance in other string transduction prob-
lems such as transliteration, lemmatization, and
spelling error correction.

Our supervised uni- and bigram aligners
are available via https://github.com/
SteffenEger/.
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Abstract

In this paper we propose a framework to
improve word segmentation accuracy us-
ing input method logs. An input method
is software used to type sentences in lan-
guages which have far more characters
than the number of keys on a keyboard.
The main contributions of this paper are:
1) an input method server that proposes
word candidates which are not included in
the vocabulary, 2) a publicly usable input
method that logs user behavior (like typ-
ing and selection of word candidates), and
3) a method for improving word segmen-
tation by using these logs. We conducted
word segmentation experiments on tweets
from Twitter, and showed that our method
improves accuracy in this domain. Our
method itself is domain-independent and
only needs logs from the target domain.

1 Introduction

The first step of almost all natural language
processing (NLP) for languages with ambiguous
word boundaries (such as Japanese and Chinese)
is solving the problem of word identification am-
biguity. This task is called word segmentation
(WS) and the accuracy of state-of-the-art methods
based on machine learning techniques is more than
98% for Japanese and 95% for Chinese (Neubig
et al., 2011; Yang and Vozila, 2014). Compared
to languages like English with clear word bound-
aries, this ambiguity poses an additional problem
for NLP tasks in these languages. To make matters
worse, the domains of the available training data
often differ from domains where there is a high
demand for NLP, which causes a severe degrada-
tion in WS performance. Examples include ma-

*This work was done when the first author was at Kyoto
University.

chine translation of patents, text mining of med-
ical texts, and marketing on the micro-blog site
Twitter1. Some papers have reported low accuracy
on WS or the joint task of WS and part-of-speech
(POS) tagging of Japanese or Chinese in these do-
mains (Mori and Neubig, 2014; Kaji and Kitsure-
gawa, 2014; Liu et al., 2014)

To cope with this problem, we propose a way
to collect information from people as they type
Japanese or Chinese on computers. These lan-
guages use far more characters than the number of
keys on a keyboard, so users use software called an
input method (IM) to type text in these languages.
Unlike written texts in these languages, which lack
word boundary information, text entered with an
IM can provide word boundary information that
can used by NLP systems. As we show in this pa-
per, logs collected from IMs are a valuable source
of word boundary information.

An IM consists of a client (front-end) and a
server (back-end). The client receives a key se-
quence typed by the user and sends a phoneme
sequence (kana in Japanese or pinyin in Chinese)
or some predefined commands to the server. The
server converts the phoneme sequence into normal
written text as a word sequence or proposes word
candidates for the phoneme sequence in the region
specified by the user. We noticed that the actions
performed by people using the IM (such as typ-
ing and selecting word candidates) provide infor-
mation about word boundaries, including context
information.

In this paper, we first describe an IM for
Japanese which allows us to collect this informa-
tion. We then propose an automatic word seg-
menter that uses IM logs as a language resource to
improve its performance. Finally, we report exper-
imental results showing that our method increases
the accuracy of a word segmenter on Twitter texts
by using logs collected from a browser add-on ver-

1https://twitter.com/ (accessed in 2015 May).
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sion of our IM.
The three main contributions of this paper are:

• an IM server that proposes word candidates
which are not included in the vocabulary
(Section 3),

• a publicly usable IM that logs user behavior
(such as typing and selection of word candi-
dates) (Section 4),

• a method for improving word segmentation
by using these logs (Section 5).

To the best of our knowledge, this is the first paper
proposing a method for using IM logs to success-
fully improve WS.

2 Related Work

The main focus of this paper is WS. Corpus-based,
or empirical, methods were proposed in the early
90’s (Nagata, 1994). Then (Mori and Kurata,
2005) extended it by lexicalizing the states like
many researches in that era, grouping the word-
POS pairs into clusters inspired by the class-based
n-gram model (Brown et al., 1992), and making
the history length variable like a POS tagger in
English (Ron et al., 1996). In parallel, there were
attempts at solving Chinese WS in a similar way
(Sproat and Chang, 1996). WS or the joint task of
WS and POS tagging can be seen as a sequence
labeling problem. So conditional random fields
(CRFs) (Peng et al., 2004; Lafferty et al., 2001)
have been applied to this task and showed bet-
ter performance than POS-based Markov models
(Kudo et al., 2004). The training time of sequence-
based methods tends to be long, especially when
we use partially annotated data. Thus a simple
method based on pointwise classification has been
shown to be as accurate as sequence-based meth-
ods and fast enough to make active learning prac-
tically possible (Neubig et al., 2011). Since the
pointwise method decides whether there is a word
boundary or not between two characters without
referring to other word boundary decisions in the
same sentence, it is straightforward to train the
model from partially annotated sentences. We
adopt this WS system for our experiments.

Along with the evolution of models, the NLP
community has become increasingly aware of the
importance of language resources (Neubig and
Mori, 2010; Mori and Neubig, 2014). So Mori

and Oda (2009) proposed to incorpolate dictio-
naries for human into a WS system with a differ-
ent word definition. CRFs were also extended to
enable training from partially annotated sentences
(Tsuboi et al., 2008). When using partially anno-
tated sentences for WS training data, word bound-
ary information exists only between some charac-
ter pairs and is absent for others. This extension
was adopted in Chinese WS to make use of so-
called natural annotations (Yang and Vozila, 2014;
Jiang et al., 2013). In that work, tags in hyper-texts
were regarded as annotations and used to improve
WS performance. The IM logs used in this paper
are also classified as natural annotations, but con-
tain much more noise. In addition, we need an IM
that is specifically designed to collect logs as nat-
ural annotations.

Server design is the most important factor in
capturing information from IM logs. The most
popular IM servers are based on statistical lan-
guage modeling (Mori et al., 1999; Chen and
Lee, 2000; Maeta and Mori, 2012). Their param-
eters are trained from manually segmented sen-
tences whose words are annotated with phoneme
sequences, and from sentences automatically an-
notated with NLP tools which are also based on
machine learning models trained on the annotated
sentences. Thus normal IM servers are not capa-
ble of presenting out-of-vocabulary (OOV) words
(which provide large amounts of information on
word boundaries) as conversion candidates. To
make our IM server capable of presenting OOV
words, we extend a statistical IM server based on
(Mori et al., 2006), and ensure that it is compu-
tationally efficient enough for practical use by the
public.

The target domain in our experiments is Twit-
ter, a site where users post short messages called
tweets. Since tweets are an immediate and power-
ful reflection of public attitudes and social trends,
there have been numerous attempts at extracting
information from them. Examples include infor-
mation analysis of disasters (Sakai et al., 2010),
estimation of depressive tendencies (Tsugawa et
al., 2013), speech diarization (Higashinaka et al.,
2011), and many others. These works require pre-
processing of tweets with NLP tools, and WS is
the first step. So it is clear that there is strong de-
mand for improving WS accuracy. Another reason
why we have chosen Twitter for the test domain is
that the tweets typed using our server are open and
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we can avoid privacy problems. Our method does
not utilize any other characteristics of tweets. So
it also works in other domains such as blogs.

3 Input Method Suggesting OOV Words

In this section we propose a practical statistical IM
server that suggests OOV word candidates in ad-
dition to words in its vocabulary.

3.1 Statistical Input Method
An input method (IM) is software which converts
a phoneme sequence into a word sequence. This is
useful for languages which contain far more char-
acters than keys on a keyboard. Since there are
some ambiguities in conversion, a conversion en-
gine based on a word n-gram model has been pro-
posed (Chen and Lee, 2000). Today, almost all IM
engines are based on statistical methods.

For the LM unit, instead of words we propose to
adopt word-pronunciation pairs u = 〈y, w〉. Thus
given a phoneme sequence yl

1 = y1y2 · · · yl as
the input, the goal of our IM engine is to output
a word sequence ŵm

1 that maximizes the probabil-
ity P (w, yl

1) as follows:

ŵm
1 = argmax

w
P (w, yl

1),

P (w, yl
1) =

m+1∏
i=1

P (ui|ui−1
i−n+1),

where the concatenation of yi in each ui is equal to
the input: yl

1 = y1y2 · · ·ym. In addition uj (j ≤
0) are special symbols introduced to simplify the
notation and um+1 is a special symbol indicating
a sentence boundary.

As in existing statistical IM engines, parame-
ters are estimated from a corpus whose sentences
are segmented into words annotated with their pro-
nunciations as follows:

P (ui|ui−1
i−n+1) =

F (ui
i−n+1)

F (ui−1
i−n+1)

, (1)

where F (·) denotes the frequency of a pair se-
quence in the corpus. In contrast to IM engines
based on a word n-gram model, ours does not re-
quire an additional model describing relationships
between words and pronunciations, and thus it is
much simpler and more practical.

Existing statistical IM engines only need an ac-
curate automatic word segmenter to estimate the
parameters of the word n-gram model. As the

equation above shows, our pair-based engine also
needs an accurate way of automatically estimat-
ing pronunciation (phoneme sequences). How-
ever, recently an automatic pronunciation estima-
tor (Mori and Neubig, 2011) that delivers as accu-
rate as state-of-the-art word segmenters has been
proposed. As we explain in Section 6, in our ex-
periments both our IM engine and existing ones
delivered accuracy of 91%.

3.2 Enumerating Substrings as Candidate
Words

Essentially, the IM engine which we have ex-
plained above does not have the ability to enumer-
ate words which are unknown to the word seg-
menter and the pronunciation estimator used to
build the training data. The aim of our research is
to gather language information from user behav-
ior as they use an IM. So we extend the basic IM
engine to enumerate all the substrings in a corpus
with all possible pronunciations. For that purpose,
we adopt the notion of a stochastically segmented
corpus (SSC) (Mori and Takuma, 2004) and ex-
tend it to the pronunciation annotation to words.

3.2.1 Stochastically Segmented Corpora
An SSC is defined as a combination of a raw cor-
pus Cr (hereafter referred to as the character se-
quence xnr

1 ) and word boundary probabilities of
the form Pi, which is the probability that a word
boundary exists between two characters xi and
xi+1. These probabilities are estimated by a model
based on logistic regression (LR)(Fan et al., 2008)
trained on a manually segmented corpus referring
to the same features as those used in (Neubig et
al., 2011). Since there are word boundaries be-
fore the first character and after the last character
of the corpus, P0 = Pnr = 1. Then word n-gram
frequencies on an SSC are calculated as follows:

Word 0-gram frequency: This is defined as the
expected number of words in the SSC:

f(·) = 1 +
nr−1∑
i=1

Pi.

Word n-gram frequency (n ≥ 1): Consider the
situation in which a word sequence wn

1 occurs
in the SSC as a subsequence beginning at the
(i + 1)-th character and ending at the k-th char-
acter and each word wm in the word sequence is
equal to the character sequence beginning at the
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xi xb1 xe1| {z }
w1

xb2 xe2| {z }
w2

xbn xbn+1 xen xk+1| {z }
wn

fr(w
n
1 ) = Pi(1 − Pb1)Pe1(1 − Pb2)Pe2 · · · (1 − Pbn)(1 − Pbn+1)Pen

Figure 1: Word n-gram frequency in a stochastically segmented corpus.

bm-th character and ending at the em-th charac-
ter (xem

bm
= wm, 1 ≤ ∀m ≤ n; em + 1 =

bm+1, 1 ≤ ∀m ≤ n − 1; b1 = i + 1; en = k)
(See Figure 1 for an example). The word n-
gram frequency of a word sequence fr(wn

1 ) in
the SSC is defined by the summation of the
stochastic frequency at each occurrence of the
character sequence of the word sequence wn

1

over all of the occurrences in the SSC:

fr(wn
1 ) =

∑
(i,en

1 )∈On

Pi

 n∏
m=1


em−1∏
j=bm

(1 − Pj)

Pem

 ,

where en
1 = (e1, e2, · · · , en) and On =

{(i, en
1 )|xem

bm
= wm, 1 ≤ m ≤ n}.

We calculate word n-gram probabilities by divid-
ing word n-gram frequencies by word (n − 1)-
gram frequencies. For a detailed explanation and
a mathematical proof of this method, please refer
to (Mori and Takuma, 2004).

3.2.2 Pseudo-Stochastically Segmented
Corpora

The computational costs (in terms of both time and
space) for calculating an n-gram model from an
SSC are very high2, so it is not a practical tech-
nique for implementing an IM engine. In order
to reduce the computational costs we approximate
an SSC using a deterministically tagged corpus,
which is called a pseudo-stochastically segmented
corpus (pSSC) (Kameko et al., 2015). The follow-
ing is the method for producing a pSSC from an
SSC.

• For i = 1 to nr − 1

1. output a character xi,
2. generate a random number 0 ≤ p < 1,
3. output a word boundary if p < Pi or

output nothing otherwise.

Now we have a corpus in the same format as
a standard segmented corpus with variable (non-
constant) segmentation.

2This is because an SSC has many words and word frag-
ments. Additionally, word n-gram frequencies must be cal-
culated using floating point numbers instead of integers.

3.2.3 Pseudo-Stochastically Tagged Corpora
We can annotate a word with its all possi-
ble pronunciations and their probabilities, as is
done in an SSC. We call a corpus containing
sequences of words (w1w2 · · ·wi · · · ) annotated
with a sequence of pairs of a pronunciation and
its probability (〈yi,1, pi,1〉, 〈yi,2, pi,2〉, · · · , where∑

j pi,j = 1, for ∀i) a stochastically tagged cor-
pus (STC)3. We can estimate these probabilities
using an LR model built from sentences annotated
with pronunciations (Mori and Neubig, 2011).

Similar to pSSC we then produce a pseudo-
stochastically tagged sentence (pSTC) from an
STC as follows:

• For each wi in the sentence

1. generate a random number 0 ≤ p < 1,
2. annotate wi with its j-th phoneme se-

quence yi,j , where
∑j−1

1 pi,j ≤ p <∑j
1 pi,j

Now we have a corpus in the same format as a
standard corpus annotated with variable pronunci-
ation.

By estimating the parameters in Equation (1)
from a pSTC derived from a pSSC, our IM en-
gine can also suggest OOV word candidates with
various possible segmentation and pronunciations
without incurring high computational costs.

3.2.4 Suggestion of OOV Words
Here we give an intuitive explanation why our
IM engine can suggest OOV words for a certain
phoneme sequence. Let us take an OOV word
example: “横アリ/yo-ko-a-ri,” an abbreviation of
“横浜アリーナ” (Yokohama city arena). A WS
system tends to segment it into “横” (side) and “
アリ” (ant) because they are frequent nouns. In
a pSSC, however, some occurrences of the string
“横アリ” are remain concatenated as the correct
word. For pronunciation, the first character has
two possible pronunciations “yo-ko” and “o-u.”

3Because the existence or non-existence of a word bound-
ary information can also be expressed as a tag, a stochasti-
cally tagged corpus includes stochastic segmentation.
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Figure 2: Input method for collecting logs.

So deterministic pronunciation estimation of this
new word has the risk of outputting the erroneous
result “o-u-a-ri.” This prevents our engine from
presenting “横アリ” as a conversion candidate for
the input “yo-ko-a-ri.” The pSTC, however, con-
tains two possible pronunciations for this word
and allows our engine to present the OOV word
“横アリ” for the input “yo-ko-a-ri.”

Thus when the user of our IM engine types “yo-
ko-a-ri-ni-i-ku” and selects “横アリに (to) 行く
(go),” the engine can learn an OOV word “横ア
リ/yo-ko-a-ri” with context “に/ni行く/i-ku”.

4 Input Method Logs

In this section we first propose an IM which al-
lows us to collect user logs. We then examine the
characteristics of these logs and some difficulties
in using them as language resources.

4.1 Collecting Logs from an Input Method
As Figure 2 shows, the client of our IM, running
on the user’s PC, is used to input characters and
to modify conversion results. The server logs both
input from the client and the results of conversions
performed in response to requests from the client.

Our IM has two phases: phoneme typing and
conversion result editing. In each phase, the client
sends the typed keys to the server with a timestamp
and its IP address.

Phoneme typing: First the user inputs ASCII

characters for a phoneme sequence. If the
phoneme sequence itself is what the user
wants to write, the user may not go to the
next phase. The server records the keys typed
to enter the phoneme sequence, cursor move-
ments, and the phoneme sequence if the user
selects it as-is.

Conversion result editing: Then the user presses
a space key to make the IM engine con-
vert the phoneme sequence to the most likely
word sequence based on Equation (1). Some-
times the user changes some word bound-
aries, makes the IM engine enumerate can-
didate words covering the region, and selects
the intended one from the list of candidates.
The server records a space key and the final
word sequence.

4.2 Characteristics of Input Method Logs
Table 1 shows an example of interesting log mes-
sages from the same IP address4. In many cases,
users type sentence fragments but not a complete
sentence. So in the example there are six frag-
ments within a short period indicated by the times-
tamps. If the user selects the phoneme sequence
as-is without going to the conversion result editing
phase, we can expect that there are word bound-
aries on both sides of the phoneme sequence. In-

4In reality, logs from different IPs are stored in the order
that they were received.
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Table 1: Input method logs of a tweet ‘横アリに比べると安めかと’ (It is cheap compared with Yoko-
hama arena).
Timestamp Phoneme sequence Edit result Note
18:37:11.21 よこありに/yo-ko-a-ri-ni 横アリ/yo-ko-a-ri に/ni (with Yokohama arena)
18:37:12.60 くらっべる/ku-ra-b-be-ru くらっ/ku-ra-b ベル/be-ru Mistyping
18:37:14.94 くらべる/ku-ra-be-ru 比べ/ku-ra-be る/ru Revised input (compare)
18:37:15.32 と/to N/A (inflectional ending)
18:37:19.82 ものの/mo-no-no N/A Discarded in the twitter
18:37:22.42 やすめかと/ya-su-me-ka-to 安め/ya-su-me か/ka と/to (cheap)

side the phoneme sequence, however, there is no
information. If the user goes to the conversion
result editing phase, we can expect that the final
word sequence has correct word boundary infor-
mation.

There are two main problems that make it dif-
ficult to directly use IM logs as a training cor-
pus for word segmentation. The first problem is
fragmentation. IM users send the phoneme se-
quences for sentence fragments to the engine to
avoid editing long conversion results that require
many cursor movements. Thus the phoneme se-
quence and the final word sequence tend to be
sentence fragments (as we noted above) and as a
result they lose context information. The second
problem is noise. Word boundary information is
unreliable even when it is present because of mis-
takenly selected conversions or words entered sep-
arately. From these observations, the IM logs are
treated as partially segmented sentence fragments
that include noise.

5 Word Segmentation Using Input
Method Logs

In this section we first explain various ways to
generate language resources for a word segmenter
from IM logs. We then describe an automatic word
segmenter which utilizes these resources. In the
examples below we use the three-valued notation
(Mori and Oda, 2009) to denote partial segmenta-
tion as follows:

| : there is a word boundary,
- : there is not a word boundary,

: there is no information.

5.1 Input Method Logs as Language
Resources

The phoneme sequences and edit results in the fi-
nal selection themselves are considered to be par-
tially segmented sentences. We call the corpus

generated directly from the logs “Log-as-is.” Ex-
amples in Table 1 are converted as following.

Example of Log-as-is (12 annotations)� �
横-ア-リ|に と
く-ら-っ|ベ-ル も の の
比-べ|る 安-め|か|と� �

Here the number of annotations is the sum of “-”
and “|”. In this example, one entry corresponds
to one entry of the training data for the word seg-
menter. As you can easily imagine, Log-as-is may
contain mistaken results (noise) and short entries
(fragmentation). Both are harmful for a word seg-
menter.

To cope with the fragmentation problem, we
propose to connect some logs based on their times-
tamps. If the difference between the timestamps of
two sequential logs is short, both logs are proba-
bly from the same sentence. So we connect two
sequential logs if the time difference between the
last key of the first log and the first key of the sec-
ond log is smaller than a certain threshold s. In the
experiment we set s = 500[ms] based on observa-
tions of our behavior5. This method is referred to
as “Log-chunk.” Using this method, we obtain
the following from the examples in Table 1.

Example of Log-chunk (15 annotations)� �
横-ア-リ|に|く-ら-っ|ベ-ル
比-べ|る|と|も の の
安-め|か|と� �

We see that Log-chunk contains more context in-
formation than Log-as-is.

For preventing the noise problem, we propose
to filter out logs with a small number of conver-
sions. We expect that an edited sentence will have
many OOV words and not much noise. Therefore
we use logs which were converted more than nc

times. In the experiment we set nc = 2 based on

5The results were stable for s in preliminary experiments.
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Table 2: Corpus specifications.
#sent. #words #char.

Training
BCCWJ 56,753 1,324,951 1,911,660
Newspaper 8,164 240,097 361,843
Conversation 11,700 147,809 197,941

Test
BCCWJ-test 6,025 148,929 212,261
TWI-test 2,976 37,010 58,316

observations of our behavior6. This method is re-
ferred to as “Log-mconv.” Using this method, the
examples in Table 1 becomes the following.

Example of Log-mconv (3 annotations)� �
横-ア-リ|に� �

As this example shows, Log-mconv contains short
entries (fragmentation) like Log-as-is. However,
we expect that the annotated tweets do not include
mistaken boundaries or conversions that were dis-
carded.

Obviously we can combine Log-chunk and
Log-mconv to avoid both the fragmentation and
noise problems. This combination is referred to as
“Log-chunk-mconv.”

5.2 Training a Word Segmenter on Logs

The IM logs give us partially segmented sentence
fragments, so we need a word segmenter capa-
ble of learning from them. We can use a word
segmenter based on a sequence classifier (Tsuboi
et al., 2008; Yang and Vozila, 2014; Jiang et al.,
2013) or one based on a pointwise classifier (Neu-
big et al., 2011). Although both types are viable,
we adopt the latter in the experiments because it
requires much less training time while delivering
comparable accuracy.

Here is a brief explanation of the word seg-
menter based on the pointwise method. For more
detail the reader may refer to (Neubig et al., 2011).
The input is an unsegmented character sequence
x = x1x2 · · ·xk. The word segmenter decides if
there is a word boundary ti = 1 or not ti = 0
by using support vector machines (SVMs) (Fan et
al., 2008)7. The features are character n-grams

6The results were stable for nc in the preliminary experi-
ments.

7The reason why we use SVM for word segmentation is
that the accuracy is generally higher than that based on LR. It
was so in the experiments of this paper. The F-measure of LR
on TWI-test was 91.30 (Recall = 89.50, Precision = 93.17),

Table 3: Language resources derived from logs.
#sentence
fragments #annotations

Log-as-is 32,119 39,708
Log-chunk 8,685 63,144
Log-mconv 4,610 10,852
Log-chunk-mconv 1,218 14,242

and character type n-grams (n = 1, 2, 3) around
the decision points in a window with a width of
6 characters. Additional features are triggered if
character n-grams in the window match with char-
acter sequences in the dictionary. This approach is
called pointwise because the word boundary deci-
sion is made without referring to the other deci-
sions on the points j 6= i. As you can see from the
explanation given above, we can also use partially
segmented sentences from IM logs for training in
the standard way.

6 Evaluation

As an evaluation of our methods, we measured
the accuracy of WS without using logs (the base-
line) and using logs converted by several methods.
There are two test corpora: one is the general do-
main corpus from which we built the baseline WS,
and the other is the same domain that the IM logs
were collected from, Twitter.

6.1 Corpora

The annotated corpus we used to build the base-
line word segmenter is the manually annotated
part (core data) of the Balanced Corpus of Con-
temporary Written Japanese (BCCWJ) (Maekawa,
2008), plus newspaper articles and daily conver-
sation sentences. We also used a 234,652-word
dictionary (UniDic) provided with the BCCWJ. A
small portion of the BCCWJ core data is reserved
for testing. In addition, we manually segmented
sentences randomly obtained from Twitter8 during
the same period as the log collection for the test
corpus. Table 2 shows the details of these corpora.

which is lower than that of SVM (see Table 4). To make an
SSC, however, we use an LR model because we need word
boundary probabilities.

8We extracted body text from 1,592 tweets excluding
mentions, hash tags, URLs, and ticker symbols. Then we
divided the body text into sentences by separating on newline
characters, resulting in 2,976 sentences.
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Table 4: WS accuracy on the tweets.
Recall [%] Precision [%] F-measure

Baseline 90.31 94.05 92.14
+ Log-as-is 90.33 93.77 92.02
+ Log-chunk 91.04 94.29 92.64
+ Log-mconv 90.62 94.09 92.32
+ Log-chunk-mconv 91.40 94.45 92.90

Table 5: WS accuracy on BCCWJ.
Recall [%] Precision [%] F-measure

Baseline 99.01 98.97 98.99
+ Log-as-is 99.02 98.87 98.94
+ Log-chunk 99.05 98.88 98.96
+ Log-mconv 98.98 98.91 98.95
+ Log-chunk-mconv 98.98 98.92 98.95

6.2 Models using Input Method Logs

To make the training data for our IM server, we
first chose randomly selected tweets (786,331 sen-
tences) in addition to the unannotated part of the
BCCWJ (358,078 sentences). We then trained LR
models which estimate word boundary probabili-
ties and pronunciation probabilities for words (and
word candidates) from the training data shown in
Table 2 and UniDic. We made a pSTC for our
IM engine from 1,207,182 sentences randomly ob-
tained from Twitter by following the procedure
which we explained in Subsection 3.2.39.

We launched our IM as a browser add-on for
Twitter and collected 19,770 IM logs from 7 users
between April 24 and December 31, 2014. Fol-
lowing the procedures in Section 5.1, we obtained
the language resources shown in Table 3. We com-
bined them with the training corpus and dictionar-
ies to build four WSs, which we compared with
the baseline.

6.3 Results and Discussion

Following the standard in WS experiments, the
evaluation criteria are recall, precision, and F-
measure (their harmonic mean). Recall is the
number of correctly segmented words divided by
the number of words in the test corpus. Preci-
sion is the number of correctly segmented words
divided by the number of words in the system out-
put.

Table 4 and 5 show WS accuracy on TWI-test
and BCCWJ-test, respectively. The difference in

9There is no overlap with the test data.

accuracy of the baseline method on BCCWJ-test
and TWI-test shows that WS of tweets is very dif-
ficult. The fact that the precision on TWI-test is
much higher than the recall indicates that the base-
line model suffers from over-segmentation. This
over-segmentation problem is mainly caused by
OOV words being divided into known words. For
example, “横アリ” (Yokohama arena) is divided
into the two know words “横” (side) and “アリ”
(ant).

When we compare the F-measures on TWI-test,
all the models referring to the IM logs outperform
the baseline model trained only from the BCCWJ.
The highest is the Log-chunk-mconv model and
the improvement over the baseline is statistically
significant (significance level: 1%). In addition
the accuracies of the five methods on the BCCWJ
(Table 5) are almost the same and there is no statis-
tical significance (significance level: 1%) between
any two of them.

We analyzed the words misrecognized by the
WSs, which we call error words. Table 6 shows
the number of error words, the number of OOV
words, and the ratio of OOV words to error words.
Here the vocabulary is the set of the words appear-
ing in the training data or in UniDic (see Table 2).
Although the result of the WS trained on Log-as-
is contains more error words than the baseline, the
OOV ratio is less than the baseline. This means
that the IM logs have a potential to reduce errors
caused by OOV words.

Table 6 also indicates that the best method Log-
chunk-mconv had the greatest success in reducing
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Table 6: Ratio of OOV words in error words.

#Error words #OOV words (ratio[%])
Baseline 446 103 (23.09)
+ Log-as-is 467 89 (19.06)
+ Log-chunk 428 81 (18.93)
+ Log-mconv 443 88 (19.86)
+ Log-chunk-mconv 413 74 (17.79)
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Figure 3: Relationship between WS accuracy on
the tweets and log size.

errors caused by OOV words. However, the ma-
jority of error words are in-vocabulary words. It
can be said that our log chunking method (Log-
chunk or Log-chunk-mconv) enabled the WSs to
eliminate many known word errors by using con-
text information.

To investigate the impact of the log size, we
measured WS accuracy on TWI-test when vary-
ing the log size during training. Figure 3 shows
the results. Table 4 says that Log-chunk-mconv
and Log-chunk increase the accuracy nicely. The
graph, however, clarifies that Log-chunk-mconv
achieves high accuracy with fewer training data
converted from logs. In other words, the method
Log-chunk-mconv is good at distilling the in-
formative parts and filtering out the noisy parts.
These characteristics are very important properties
to have as we consider deploying our IM to a wider
audience. An IM is needed to type Japanese and
the number of Japanese speakers is more than 100
million. If we can use input logs of even 1% of
them for the same or longer period10, the idea we
propose in this paper can improve WS accuracy on
various domains efficiently and automatically.

As a final remark, this paper describes a suc-

10The number of users using our system in this paper is 7
for 8 months.

cessful example of how to build a useful tool for
the NLP community. This process has three steps:
1) design a useful NLP application that can collect
user logs, 2) deploy it for public use, and 3) devise
a method for mining data from the logs.

7 Conclusion

This paper described the design of a publicly us-
able IM which collects natural annotations for use
as training data for another system. Specifically,
we (1) described how to construct an IM server
that suggests OOV word candidates, (2) designed
a publicly usable IM that collects logs of user
behavior, and (3) proposed a method for using
this data to improve word segmenters. Tweets
from Twitter are a promising source of data with
great potential for NLP, which is one reason why
we used them as the target domain for our ex-
periments. The experimental results showed that
our methods improve accuracy in this domain.
Our method itself is domain-independent and only
needs logs from the target domain, so it is worth
testing on other domains and with much longer pe-
riods of data collection.

Acknowledgments

This work was supported by JSPS Grants-in-Aid
for Scientific Research Grant Number 26280084
and Microsoft CORE project. We thank Dr.
Hisami Suzuki, Dr. Koichiro Yoshino, and Mr.
Daniel Flannery for their valuable comments and
suggestions on the manuscript. We are also grate-
ful to the anonymous users of our input method.

References
Peter F. Brown, Vincent J. Della Pietra, Peter V. deS-

ouza, Jennifer C. Lai, and Robert L. Mercer. 1992.
Class-based n-gram models of natural language.
Computational Linguistics, 18(4):467–479.

Zheng Chen and Kai-Fu Lee. 2000. A new statistical
approach to Chinese pinyin input. In Proceedings

1194



of the 38th Annual Meeting of the Association for
Computational Linguistics, pages 241–247.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. LIBLINEAR:
A library for large linear classification. Journal of
Machine Learning Research, 9:1871–1874.

Ryuichiro Higashinaka, Noriaki Kawamae, Kugatsu
Sadamitsu, Yasuhiro Minami, Toyomi Meguro, Ko-
hji Dohsaka, and Hirohito Inagaki. 2011. Building a
conversational model from two-tweets. IEEE Trans-
actions on ASRU, pages 330–335.

Wenbin Jiang, Meng Sun, Yajuan Lu, Yating Yang, and
Qun Liu. 2013. Discriminative learning with natu-
ral annotations: Word segmentation as a case study.
In Proceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics, pages 761–
769.

Nobuhiro Kaji and Masaru Kitsuregawa. 2014. Ac-
curate word segmentation and POS tagging for
Japanese microblogs: Corpus annotation and joint
modeling with lexical normalization. In Proceed-
ings of the 2014 Conference on Empirical Methods
in Natural Language Processing, pages 99–109.

Hirotaka Kameko, Shinsuke Mori, and Yoshimasa Tsu-
ruoka. 2015. Can symbol grounding improve low-
level NLP? Word segmentation as a case study. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing.

Taku Kudo, Kaoru Yamamoto, and Yuji Matsumoto.
2004. Applying conditional random fields to
Japanese morphological analysis. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing, pages 230–237.

John Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth
ICML, pages 282–289.

Yijia Liu, Yue Zhang, Wangxiang Che, Ting Liu, and
Fan Wu. 2014. Domain adaptation for CRF-based
Chinese word segmentation using free annotations.
In Proceedings of the 2014 Conference on Empiri-
cal Methods in Natural Language Processing, pages
864–874.

Kikuo Maekawa. 2008. Balanced corpus of con-
temporary written Japanese. In Proceedings of the
6th Workshop on Asian Language Resources, pages
101–102.

Hirokuni Maeta and Shinsuke Mori. 2012. Statistical
input method based on a phrase class n-gram model.
In Workshop on Advances in Text Input Methods.

Shinsuke Mori and Gakuto Kurata. 2005. Class-based
variable memory length markov model. In Proceed-
ings of the InterSpeech2005, pages 13–16.

Shinsuke Mori and Graham Neubig. 2011. A point-
wise approach to pronunciation estimation for a TTS
front-end. In Proceedings of the InterSpeech2011,
pages 2181–2184.

Shinsuke Mori and Graham Neubig. 2014. Language
resource addition: Dictionary or corpus? In Pro-
ceedings of the Nineth International Conference on
Language Resources and Evaluation, pages 1631–
1636.

Shinsuke Mori and Hiroki Oda. 2009. Automatic word
segmentation using three types of dictionaries. In
Proceedings of the Eighth International Conference
Pacific Association for Computational Linguistics,
pages 1–6.

Shinsuke Mori and Daisuke Takuma. 2004. Word
n-gram probability estimation from a Japanese raw
corpus. In Proceedings of the Eighth International
Conference on Speech and Language Processing,
pages 1037–1040.

Shinsuke Mori, Tsuchiya Masatoshi, Osamu Yamaji,
and Makoto Nagao. 1999. Kana-kanji conversion
by a stochastic model. Transactions of Information
Processing Society of Japan, 40(7):2946–2953. (in
Japanese).

Shinsuke Mori, Daisuke Takuma, and Gakuto Kurata.
2006. Phoneme-to-text transcription system with an
infinite vocabulary. In Proceedings of the 21st Inter-
national Conference on Computational Linguistics,
pages 729–736.

Masaaki Nagata. 1994. A stochastic Japanese mor-
phological analyzer using a forward-DP backward-
A∗ n-best search algorithm. In Proceedings of
the 15th International Conference on Computational
Linguistics, pages 201–207.

Graham Neubig and Shinsuke Mori. 2010. Word-
based partial annotation for efficient corpus con-
struction. In Proceedings of the Seventh Interna-
tional Conference on Language Resources and Eval-
uation, pages 2723–2727.

Graham Neubig, Yosuke Nakata, and Shinsuke Mori.
2011. Pointwise prediction for robust, adaptable
Japanese morphological analysis. In Proceedings of
the 49th Annual Meeting of the Association for Com-
putational Linguistics, pages 529–533.

Fuchun Peng, Fangfang Feng, and Andrew McCallum.
2004. Chinese segmentation and new word detec-
tion using conditional random fields. In Proceed-
ings of the 20th International Conference on Com-
putational Linguistics, pages 562–568.

Dana Ron, Yoram Singer, and Naftali Tishby. 1996.
The power of amnesia: Learning probabilistic au-
tomata with variable memory length. Machine
Learning, 25:117–149.

1195



Takeshi Sakai, Makoto Okazaki, and Yutaka Matsuo.
2010. Earthquake shakes Twitter users: Real-time
event detection by social sensors. In Proceedings
of the 19th International Conference on World Wide
Web, WWW ’10, pages 851–860.

Richard Sproat and Chilin Shih William Gale Nancy
Chang. 1996. A stochastic finite-state word-
segmentation algorithm for Chinese. Computational
Linguistics, 22(3):377–404.

Yuta Tsuboi, Hisashi Kashima, Shinsuke Mori, Hiroki
Oda, and Yuji Matsumoto. 2008. Training condi-
tional random fields using incomplete annotations.
In Proceedings of the 22nd International Conference
on Computational Linguistics, pages 897–904.

Sho Tsugawa, Yukiko Mogi, Yusuke Kikuchi, Fumio
Kishino, Kazuyuki Fujita, Yuichi Itoh, and Hiroyuki
Ohsaki. 2013. On estimating depressive tendencies
of Twitter users utilizing their tweet data. In VR’13,
pages 1–4.

Fan Yang and Paul Vozila. 2014. Semi-supervised
Chinese word segmentation using partial-label
learning with conditional random fields. In Proceed-
ings of the 2014 Conference on Empirical Methods
in Natural Language Processing, pages 90–98.

1196



Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 1197–1206,
Lisbon, Portugal, 17-21 September 2015. c©2015 Association for Computational Linguistics.

Long Short-Term Memory Neural Networks
for Chinese Word Segmentation

Xinchi Chen, Xipeng Qiu∗, Chenxi Zhu, Pengfei Liu, Xuanjing Huang
Shanghai Key Laboratory of Intelligent Information Processing, Fudan University

School of Computer Science, Fudan University
825 Zhangheng Road, Shanghai, China

{xinchichen13,xpqiu,czhu13,pfliu14,xjhuang}@fudan.edu.cn

Abstract

Currently most of state-of-the-art meth-
ods for Chinese word segmentation are
based on supervised learning, whose fea-
tures aremostly extracted from a local con-
text. Thesemethods cannot utilize the long
distance information which is also crucial
for word segmentation. In this paper, we
propose a novel neural network model for
Chinese word segmentation, which adopts
the long short-term memory (LSTM) neu-
ral network to keep the previous impor-
tant information inmemory cell and avoids
the limit of window size of local context.
Experiments on PKU, MSRA and CTB6
benchmark datasets show that our model
outperforms the previous neural network
models and state-of-the-art methods.

1 Introduction

Word segmentation is a fundamental task for Chi-
nese language processing. In recent years, Chi-
nese word segmentation (CWS) has undergone
great development. The popular method is to re-
gard word segmentation task as a sequence label-
ing problem (Xue, 2003; Peng et al., 2004). The
goal of sequence labeling is to assign labels to all
elements in a sequence, which can be handled with
supervised learning algorithms such as Maximum
Entropy (ME) (Berger et al., 1996) and Condi-
tional RandomFields (CRF) (Lafferty et al., 2001).
However, the ability of these models is restricted
by the design of features, and the number of fea-
tures could be so large that the result models are
too large for practical use and prone to overfit on
training corpus.
Recently, neural network models have increas-

ingly used for NLP tasks for their ability to min-
imize the effort in feature engineering (Collobert

∗Corresponding author.

et al., 2011; Socher et al., 2013; Turian et al.,
2010; Mikolov et al., 2013b; Bengio et al., 2003).
Collobert et al. (2011) developed the SENNA sys-
tem that approaches or surpasses the state-of-the-
art systems on a variety of sequence labeling tasks
for English. Zheng et al. (2013) applied the archi-
tecture of Collobert et al. (2011) to Chinese word
segmentation and POS tagging, also he proposed a
perceptron style algorithm to speed up the train-
ing process with negligible loss in performance.
Pei et al. (2014) models tag-tag interactions, tag-
character interactions and character-character in-
teractions based on Zheng et al. (2013). Chen et al.
(2015) proposed a gated recursive neural network
(GRNN) to explicitly model the combinations of
the characters for Chinese word segmentation task.
Each neuron in GRNN can be regarded as a differ-
ent combination of the input characters. Thus, the
whole GRNN has an ability to simulate the design
of the sophisticated features in traditional methods.
Despite of their success, a limitation of them

is that their performances are easily affected by
the size of the context window. Intuitively, many
words are difficult to segment based on the local
information only. For example, the segmentation
of the following sentence needs the information of
the long distance collocation.
冬天 (winter)，能 (can) 穿 (wear) 多少
(amount) 穿 (wear) 多少 (amount)；夏天
(summer)，能 (can)穿 (wear)多 (more)少
(little)穿 (wear)多 (more)少 (little)。
Without the word “夏天 (summer)” or “冬天

(winter)”, it is difficult to segment the phrase “能
穿多少穿多少”. Therefore, we usually need uti-
lize the non-local information for more accurate
word segmentation. However, it does not work
by simply increasing the context window size. As
reported in (Zheng et al., 2013), the performance
drops smoothly when the window size is larger
than 3. The reason is that the number of its pa-
rameters is so large that the trained network has
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overfitted on training data. Therefore, it is neces-
sary to capture the potential long-distance depen-
dencies without increasing the size of the context
window.
In order to address this problem, we propose a

neural model based on Long Short-Term Memory
Neural Network (LSTM) (Hochreiter and Schmid-
huber, 1997) that explicitly model the previous
information by exploiting input, output and for-
get gates to decide how to utilize and update the
memory of pervious information. Intuitively, if
the LSTM unit detects an important feature from
an input sequence at early stage, it easily carries
this information (the existence of the feature) over
a long distance, hence, capturing the potential use-
ful long-distance information. We evaluate our
model on three popular benchmark datasets (PKU,
MSRA and CTB6), and the experimental results
show that our model achieves the state-of-the-art
performance with the smaller context window size
(0,2).
The contributions of this paper can be summa-

rized as follows.

• We first introduce the LSTM neural network
for Chinese word segmentation. The LSTM
can capture potential long-distance depen-
dencies and keep the previous useful informa-
tion in memory, which avoids the limit of the
size of context window.

• Although there are relatively few researches
of applying dropout method to the LSTM,
we investigate several dropout strategies and
find that dropout is also effective to avoid the
overfitting of the LSTM.

• Despite Chinese word segmentation being a
specific case, our model can be easily gener-
alized and applied to the other sequence la-
beling tasks.

2 Neural Model for Chinese Word
Segmentation

Chinese word segmentation is usually regarded as
character-based sequence labeling. Each character
is labeled as one of {B, M, E, S} to indicate the
segmentation. {B, M, E} represent Begin, Mid-
dle, End of a multi-character segmentation respec-
tively, and S represents a Single character segmen-
tation.
The neural model is usually characterized by

three specialized layers: (1) a character embedding

layer; (2) a series of classical neural network lay-
ers and (3) tag inference layer. An illustration is
shown in Figure 1.
The most common tagging approach is based

on a local window. The window approach as-
sumes that the tag of a character largely depends
on its neighboring characters. Given an input sen-
tence c(1:n), a window of size k slides over the
sentence from character c(1) to c(n), where n is
the length of the sentence. As shown in Figure
1, for each character c(t)(1 ≤ t ≤ n), the con-
text characters (c(t−2),c(t−1),c(t),c(t+1),c(t+2)) are
fed into the lookup table layer when the window
size k is 5. The characters exceeding the sen-
tence boundaries are mapped to one of two spe-
cial symbols, namely “start” and “end” symbols.
The character embeddings extracted by the lookup
table layer are then concatenated into a single vec-
tor x(t) ∈ RH1 , where H1 = k × d is the size
of layer 1. Then x(t) is fed into the next layer
which performs linear transformation followed by
an element-wise activation function g such as sig-
moid function σ(x) = (1+e−x)−1 and hyperbolic
tangent function ϕ(x) = ex−e−x

ex+e−x here.

h(t) = g(W1x(t) + b1), (1)

whereW1 ∈ RH2×H1 , b1 ∈ RH2 , h(t) ∈ RH2 . H2

is a hyper-parameter which indicates the number of
hidden units in layer 2. Given a set of tags T of size
|T |, a similar linear transformation is performed
except that no non-linear function is followed:

y(t) = W2h(t) + b2, (2)

where W2 ∈ R|T |×H2 , b2 ∈ R|T |. y(t) ∈ R|T | is
the score vector for each possible tag. In Chinese
word segmentation, the most prevalent tag set T j
T is {B, M, E, S} as mentioned above.
To model the tag dependency, a transition score

Aij is introduced to measure the probability of
jumping from tag i ∈ T to tag j ∈ T (Collobert
et al., 2011). Although this model works well for
Chinese word segmentation and other sequence la-
beling tasks, it just utilizes the information of con-
text of a limited-length window. Some useful long
distance information is neglected.

3 Long Short-Term Memory Neural
Network for Chinese Word
Segmentation

In this section, we introduce the LSTM neural net-
work for Chinese word segmentation.
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Figure 1: General architecture of neural model for
Chinese word segmentation.

3.1 Character Embeddings

The first step of using neural network to process
symbolic data is to represent them into distributed
vectors, also called embeddings (Bengio et al.,
2003; Collobert and Weston, 2008).
Formally, in Chinese word segmentation task,

we have a character dictionary C of size |C|. Un-
less otherwise specified, the character dictionary is
extracted from the training set and unknown char-
acters are mapped to a special symbol that is not
used elsewhere. Each character c ∈ C is repre-
sented as a real-valued vector (character embed-
ding) vc ∈ Rd where d is the dimensionality of the
vector space. The character embeddings are then
stacked into an embeddingmatrixM ∈ Rd×|C|. For
a character c ∈ C, the corresponding character em-
bedding vc ∈ Rd is retrieved by the lookup table
layer. And the lookup table layer can be regarded
as a simple projection layer where the character
embedding for each context character is achieved
by table lookup operation according to its index.

3.2 LSTM

The long short term memory neural network
(LSTM) (Hochreiter and Schmidhuber, 1997) is an
extension of the recurrent neural network (RNN).

The RNN has recurrent hidden states whose
output at each time is dependent on that of the
previous time. More formally, given a sequence
x(1:n) = (x(1), x(2), . . . , x(t), . . . , x(n)), the RNN
updates its recurrent hidden state h(t) by

h(t) = g(Uh(t−1) +Wx(t) + b), (3)

where g is a nonlinear function as mentioned
above.
Though RNN has been proven successful on

many tasks such as speech recognition (Vinyals
et al., 2012), language modeling (Mikolov et al.,
2010) and text generation (Sutskever et al., 2011),
it can be difficult to train them to learn long-
term dynamics, likely due in part to the vanishing
and exploding gradient problem (Hochreiter and
Schmidhuber, 1997).
The LSTM provides a solution by incorporating

memory units that allow the network to learn when
to forget previous information and when to update
the memory cells given new information. Thus, it
is a natural choice to apply LSTM neural network
to word segmentation task since the LSTM neural
network can learn from data with long range tem-
poral dependencies (memory) due to the consider-
able time lag between the inputs and their corre-
sponding outputs. In addition, the LSTM has been
applied successfully in many NLP tasks, such as
text classification (Liu et al., 2015) and machine
translation (Sutskever et al., 2014).
The core of the LSTM model is a memory cell

c encoding memory at every time step of what in-
puts have been observed up to this step (see Figure
2) . The behavior of the cell is controlled by three
“gates”, namely input gate i, forget gate f and out-
put gate o. The operations on gates are defined as
element-wise multiplications, thus gate can either
scale the input value if the gate is non-zero vector
or omit input if the gate is zero vector. The output
of output gate will be fed into the next time step
t + 1 as previous hidden state and input of upper
layer of neural network at current time step t. The
definitions of the gates, cell update and output are
as follows:

i(t) = σ(Wixx(t) + Wihh(t−1) + Wicc(t−1)), (4)

f(t) = σ(Wfxx(t) + Wfhh(t−1) + Wfcc(t−1)), (5)

c(t) = f(t) ⊙ c(t−1) + i(t) ⊙ ϕ(Wcxx(t) + Wchh(t−1)),
(6)

o(t) = σ(Woxx(t) +Wohh(t−1) +Wocc(t)), (7)

h(t) = o(t) ⊙ ϕ(c(t)), (8)
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Figure 2: LSTM Memory Unit. The memory unit
contains a cell cwhich is controlled by three gates.
The green links show the signals at time t − 1,
while the black links show the current signals. The
dashed links represent the weight matrices from
beginning to end are diagonal. Moreover, the solid
pointers mean there are weight matrices on the
connections, and hollow pointers mean none. The
current output signal, h(t), will fed back to the next
time t + 1 via three gates, and is the input of the
higher layer of the neural network as well.

whereσ andϕ are the logistic sigmoid function and
hyperbolic tangent function respectively; i(t), f(t),
o(t) and c(t) are respectively the input gate, forget
gate, output gate, and memory cell activation vec-
tor at time step t, all of which have the same size as
the hidden vector h(t) ∈ RH2 ; the parameter ma-
trices W s with different subscripts are all square
matrices; ⊙ denotes the element-wise product of
the vectors. Note that Wic, Wfc and Woc are di-
agonal matrices.

3.3 LSTM Architectures for Chinese Word
Segmentation

To fully utilize the LSTM, we propose four differ-
ent structures of neural network to select the effec-
tive features via memory units. Figure 3 illustrates
our proposed architectures.

LSTM-1 The LSTM-1 simply replace the hid-
den neurons in Eq. (1) with LSTM units (See Fig-
ure 3a).

The input of the LSTM unit is from a window of
context characters. For each character, c(t), (1 ≤
t ≤ n), the input of the LSTM unit x(t),

x(t) = v(t−k1)
c ⊕ · · · ⊕ v(t+k2)

c , (9)

is concatenated from character embeddings of
c(t−k1):(t+k2), where k1 and k2 represent the num-
bers of characters from left and right contexts re-
spectively. The output of the LSTM unit is used
in final inference function (Eq. (11) ) after a linear
transformation.

LSTM-2 The LSTM-2 can be created by stack-
ing multiple LSTM hidden layers on top of each
other, with the output sequence of one layer form-
ing the input sequence for the next (See Figure 3b).
Here we use two LSTM layers. Specifically, input
of the upper LSTM layer takes h(t) from the lower
LSTM layer without any transformation. The in-
put of the first layer is same to LSTM-1, and the
output of the second layer is as same operation as
LSTM-1.

LSTM-3 The LSTM-3 is a extension of LSTM-
1, which adopts a local context of LSTM layer as
input of the last layer (See Figure 3c). For each
time step t, we concatenate the outputs of a win-
dow of the LSTM layer into a vector ĥ(t),

ĥ(t)
= h(t−m1) ⊕ · · · ⊕ h(t+m2), (10)

wherem1 andm2 represent the lengths of time lags
before and after current time step.Finally, ĥ(t) is
used in final inference function (Eq. (11) ) after a
linear transformation.

LSTM-4 The LSTM-4 (see Figure 3d) is a mix-
ture of the LSTM-2 and LSTM-3, which consists
of two LSTM layers. The output sequence of the
lower LSTM layer forms the input sequence of the
upper LSTM layer. The final layer adopts a local
context of upper LSTM layer as input.

3.4 Inference at Sentence Level
To model the tag dependency, previous neural net-
work models (Collobert et al., 2011; Zheng et al.,
2013; Pei et al., 2014) introduced the transition
score Aij for measuring the probability of jump-
ing from tag i ∈ T to tag j ∈ T . For a input sen-
tence c(1:n) with a tag sequence y(1:n), a sentence-
level score is then given by the sum of tag transi-
tion scores and network tagging scores:
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Figure 3: Our proposed LSTM architectures for Chinese word segmentation.

s(c(1:n), y(1:n), θ) =

n∑
t=1

(
Ay(t−1)y(t) + y(t)

y(t)

)
, (11)

where y(t)

y(t) indicates the score of tag y(t),
and y(t) is computed by the network as in
Eq. (2). The parameter set of our model θ =
{M,A,Wic,Wfc,Woc,Wix,Wfx,Wox,Wih,Wfh,
Woh,Wcx,Wch}.
4 Training

4.1 Max-Margin criterion
We use the Max-Margin criterion to train our
model. Intuitively, the Max-Margin criterion pro-
vides an alternative to probabilistic, likelihood
based estimation methods by concentrating di-
rectly on the robustness of the decision boundary
of a model (Taskar et al., 2005). We use Y (xi) to
denote the set of all possible tag sequences for a
given sentence xi and the correct tag sequence for
xi is yi. The parameter set of our model is θ. We
first define a structured margin loss ∆(yi, ŷ) for
predicted tag sequence ŷ:

∆(yi, ŷ) =
n∑
t

η1{y(t)
i ̸= ŷ(t)}, (12)

where n is the length of sentence xi and η is a dis-
count parameter. The loss is proportional to the
number of characters with incorrect tags in the pro-
posed tag sequence. For a given training instance
(xi, yi),the predicted tag sequence ŷi ∈ Y (xi) is
the one with the highest score:

ŷi = argmax
y∈Y (xi)

s(xi, y, θ), (13)

where the function s(·) is sentence-level score and
defined in equation (11).
Given a set of training setD, the regularized ob-

jective function is the loss function J(θ) including

a l2-norm term:

J(θ) =
1
|D|

∑
(xi,yi)∈D

li(θ) +
λ

2
∥θ∥2

2, (14)

where li(θ) = max(0, s(xi, ŷi, θ) + ∆(yi, ŷi) −
s(xi, yi, θ)).
To minimize J(θ), we use a generalization

of gradient descent called subgradient method
(Ratliff et al., 2007) which computes a gradient-
like direction.
Following (Socher et al., 2013), we also use the

diagonal variant of AdaGrad (Duchi et al., 2011)
with minibatchs to minimize the objective. The
parameter update for the i-th parameter θt,i at time
step t is as follows:

θt,i = θt−1,i − α√∑t
τ=1 g2

τ,i

gt,i, (15)

where α is the initial learning rate and gτ ∈ R|θi|

is the subgradient at time step τ for parameter θi.
In addition, the process of back propagation is fol-
lowd Hochreiter and Schmidhuber (1997).

4.2 Dropout
Dropout is one of prevalent methods to avoid over-
fitting in neural networks (Srivastava et al., 2014).
When dropping a unit out, we temporarily remove
it from the network, alongwith all its incoming and
outgoing connections. In the simplest case, each
unit is omitted with a fixed probability p indepen-
dent of other units, namely dropout rate, where p
is also chosen on development set.

5 Experiments

5.1 Datasets
We use three popular datasets, PKU, MSRA
and CTB6, to evaluate our model. The PKU
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Figure 4: Performances of LSTM-1 with the different context lengths and dropout rates on PKU devel-
opment set.

Context length (k1, k2) = (0, 2)
Character embedding size d = 100
Hidden unit number H2 = 150
Initial learning rate α = 0.2
Margin loss discount η = 0.2
Regularization λ = 10−4

Dropout rate on input layer p = 0.2

Table 1: Settings of the hyper-parameters.
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Figure 5: Performances of LSTM-1 (0,2) with
20% dropout on PKU development set.

and MSRA data are provided by the second In-
ternational Chinese Word Segmentation Bakeoff
(Emerson, 2005), and CTB6 is from Chinese Tree-
Bank 6.0 (LDC2007T36) (Xue et al., 2005), which
is a segmented, part-of-speech tagged and fully
bracketed corpus in the constituency formalism.
These datasets are commonly used by previous
state-of-the-art models and neural network mod-
els. In addition, we use the first 90% sentences of
the training data as training set and the rest 10%

sentences as development set for PKU and MSRA
datasets. For CTB6 dataset, we divide the training,
development and test sets according to (Yang and
Xue, 2012)
All datasets are preprocessed by replacing the

Chinese idioms and the continuous English char-
acters and digits with a unique flag.
For evaluation, we use the standard bake-off

scoring program to calculate precision, recall, F1-
score and out-of-vocabulary (OOV) word recall.

5.2 Hyper-parameters

Hyper-parameters of neural model impact the per-
formance of the algorithm significantly. Accord-
ing to experiment results, we choose the hyper-
parameters of our model as showing in Figure
1. The minibatch size is set to 20. Generally,
the number of hidden units has a limited impact
on the performance as long as it is large enough.
We found that 150 is a good trade-off between
speed and model performance. The dimension-
ality of character embedding is set to 100 which
achieved the best performance. All these hyper-
parameters are chosen according to their average
performances on three development sets.
For the context lengths (k1, k2) and dropout

strategy, we give detailed analysis in next section.

5.3 Dropout and Context Length

We first investigate the different dropout strate-
gies, including dropout at different layers and with
different dropout rate p. As a result, we found that
it is a good trade-off between speed and model per-
formance to drop the input layer only with dropout
rate pinput = 0.2. However, it does not show
any significant improvement to dropout on hidden
LSTM layers.

1202



Context Length Dropout rate=20% Dropout rate=50% without Dropout
P R F P R F P R F

LSTM-1 (2,2) 95.8 95.3 95.6 94.8 94.4 94.6 95.2 94.9 95.1
LSTM-1 (1,2) 95.7 95.3 95.5 94.8 94.4 94.6 95.4 94.9 95.2
LSTM-1 (0,2) 95.8 95.5 95.7 94.6 94.2 94.4 95.4 95.0 95.2

Table 2: Performances of LSTM-1 with the different context lengths and dropout rates on PKU test set.

models Contextr Length = (0,2)
P R F

LSTM-1 95.8 95.5 95.7
LSTM-2 95.1 94.5 94.8
LSTM-3 89.1 90.4 89.8
LSTM-4 92.1 91.7 91.9

Table 3: Performance on our four proposedmodels
on PKU test set.

Due to space constraints, we just give the per-
formances of LSTM-1 model on PKU dataset with
different context lengths (k1, k2) and dropout rates
in Figure 4 and Table 2. From Figure 4, we can see
that 20% dropout converges slightly slower than
the one without dropout, but avoids overfitting.
50% or higher dropout rate seems to be underfit-
ting since its training error is also high.
Table 2 shows that the LSTM-1 model performs

consistently well with the different context length,
but the LSTM-1 model with short context length
saves computational resource, and gets more ef-
ficiency. At the meanwhile, the LSTM-1 model
with context length (0,2) can receive the same or
better performance than that with context length
(2,2), which shows that the LSTM model can well
model the pervious information, and it is more ro-
bust for its insensitivity of window size variation.
We employ context length (0,2) with the 20%

dropout rate in the following experiments to bal-
ance the tradeoff between accuracy and efficiency.

5.4 Model Selection
We also evaluate the our four proposed models
with the hyper-parameter settings in Table 1. For
LSTM-3 and LSTM-4 models, the context win-
dow length of top LSTM layer is set to (2,0). For
LSTM-2 and LSTM-4,the number of upper hidden
LSTM layer is set to 100. We use PKU dataset to
select the best model. Figure 5 shows the results of
the fourmodels on PKUdevelopment set from first
epoch to 60-th epoch. We see that the LSTM-1 is
the fastest one to converge and achieves the best

performance. The LSTM-2 (two LSTM layers)
get worse, which shows the performance seems
not to benefit from deep model. The LSTM-3 and
LSTM-4 models do not converge, which could be
caused by the complexity of models.
The results on PKU test set are also shown in Ta-

ble 3, which again show that the LSTM-1 achieves
the best performance. Therefore, in the rest of
the paper we will give more analysis based on the
LSTM-1with hyper-parameter settings as showing
in Table 1.

5.5 Experiment Results
In this section, we give comparisons of the LSTM-
1 with pervious neural models and state-of-the-art
methods on the PKU, MSRA and CTB6 datasets.
We first compare our model with two neural

models (Zheng et al., 2013; Pei et al., 2014) on
Chinese word segmentation task with random ini-
tialized character embeddings. As showing in Ta-
ble 4, the performance is boosted significantly by
utilizing LSTM unit. And more notably, our win-
dow size of the context characters is set to (0,2),
while the size of the other models is (2,2).
Previous works found that the performance can

be improved by pre-training the character embed-
dings on large unlabeled data. We use word2vec
1 (Mikolov et al., 2013a) toolkit to pre-train the
character embeddings on the Chinese Wikipedia
corpus. The obtained embeddings are used to ini-
tialize the character lookup table instead of random
initialization. Inspired by (Pei et al., 2014), we also
utilize bigram character embeddings which is sim-
ply initialized as the average of embeddings of two
consecutive characters.
Table 5 shows the performances with addi-

tional pre-trained and bigram character embed-
dings. Again, the performances boost significantly
as a result. Moreover, when we use bigram embed-
dings only, which means we do close test without
pre-training the embeddings on other extra corpus,
our model still perform competitively compared

1http://code.google.com/p/word2vec/
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models PKU MSRA CTB6
P R F P R F P R F

(Zheng et al., 2013) 92.8 92.0 92.4 92.9 93.6 93.3 94.0* 93.1* 93.6*
(Pei et al., 2014) 93.7 93.4 93.5 94.6 94.2 94.4 94.4* 93.4* 93.9*
LSTM 95.8 95.5 95.7 96.7 96.2 96.4 95.0 94.8 94.9

Table 4: Performances on three test sets with random initialized character embeddings. The results with
* symbol are from our implementations of their methods.

models PKU MSRA CTB6
P R F P R F P R F

+Pre-train
(Zheng et al., 2013) 93.5 92.2 92.8 94.2 93.7 93.9 93.9* 93.4* 93.7*
(Pei et al., 2014) 94.4 93.6 94.0 95.2 94.6 94.9 94.2* 93.7* 94.0*
LSTM 96.3 95.6 96.0 96.7 96.5 96.6 95.9 95.5 95.7
+bigram
LSTM 96.3 95.9 96.1 97.1 97.1 97.1 95.6 95.3 95.5
+Pre-train+bigram
(Pei et al., 2014) - - 95.2 - - 97.2 - - -
LSTM 96.6 96.4 96.5 97.5 97.3 97.4 96.2 95.8 96.0

Table 5: Performances on three test sets with pre-trained and bigram character embeddings. The results
with * symbol are from our implementations of their methods.

Models PKU MSRA CTB6
(Tseng et al., 2005) 95.0 96.4 -

(Zhang and Clark, 2007) 95.1 97.2 -
(Sun and Xu, 2011) - - 95.7
(Zhang et al., 2013) 96.1 97.4 -

This work 96.5 97.4 96.0

Table 6: Comparison of our model with state-of-
the-art methods on three test sets.

with previous neural models with pre-trained em-
bedding and bigram embeddings.
Table 6 lists the performances of our model as

well as previous state-of-the-art systems. (Zhang
and Clark, 2007) is a word-based segmentation
algorithm, which exploit features of complete
words, while the rest of the list are character-based
word segmenters, whose features are mostly ex-
tracted from a window of characters. Moreover,
some systems (such as Sun and Xu (2011) and
Zhang et al. (2013)) also exploit kinds of extra in-
formation such as unlabeled data or other knowl-
edge. Despite our model only uses simple bigram
features, it outperforms previous state-of-the-art
models which use more complex features.
Since that we do not focus on the speed of the al-

gorithm in this paper, we do not optimize the speed

a lot. On PKU dataset, it takes about 3 days to train
themodel (last row of Table 5) usingCPU (Intel(R)
Xeon(R) CPU E5-2665 @ 2.40GHz) only. All im-
plementation is based on Python.

6 Related Work

Chinese word segmentation has been studied with
considerable efforts in the NLP community. The
most popular word segmentation methods is based
on sequence labeling (Xue, 2003). Recently, re-
searchers have tended to explore neural network
based approaches (Collobert et al., 2011) to re-
duce efforts of feature engineering (Zheng et al.,
2013; Pei et al., 2014; Qi et al., 2014; Chen et al.,
2015). The features of all these methods are ex-
tracted from a local context and neglect the long
distance information. However, previous informa-
tion is also crucial for word segmentation. Our
model adopts the LSTM to keep the previous im-
portant information in memory and avoids the lim-
itation of ambiguity caused by limit of the size of
context window.

7 Conclusion

In this paper, we use LSTM to explicitly model the
previous information for Chinese word segmen-
tation, which can well model the potential long-
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distance features. Though our model use smaller
context window size (0,2), it still outperforms the
previous neural models with context window size
(2,2). Besides, our model can also be easily gener-
alized and applied to other sequence labeling tasks.
Although our model achieves state-of-the-art

performance, it only makes use of previous con-
text. The future context is also useful for Chi-
nese word segmentation. In future work, wewould
like to adopt the bidirectional recurrent neural net-
work (Schuster and Paliwal, 1997) to process the
sequence in both directions.
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Abstract

This paper presents a bilingual semi-
supervised Chinese word segmentation
(CWS) method that leverages the nat-
ural segmenting information of English
sentences. The proposed method in-
volves learning three levels of features,
namely, character-level, phrase-level and
sentence-level, provided by multiple sub-
models. We use a sub-model of condi-
tional random fields (CRF) to learn mono-
lingual grammars, a sub-model based on
character-based alignment to obtain ex-
plicit segmenting knowledge, and anoth-
er sub-model based on transliteration sim-
ilarity to detect out-of-vocabulary (OOV)
words. Moreover, we propose a sub-model
leveraging neural network to ensure the
proper treatment of the semantic gap and
a phrase-based translation sub-model to s-
core the translation probability of the Chi-
nese segmentation and its corresponding
English sentences. A cascaded log-linear
model is employed to combine these fea-
tures to segment bilingual unlabeled data,
the results of which are used to justify the
original supervised CWS model. The eval-
uation shows that our method results in su-
perior results compared with those of the
state-of-the-art monolingual and bilingual
semi-supervised models that have been re-
ported in the literature.

1 Introduction

Chinese word segmentation (CWS) is generally
accepted to be a necessary first step in most Chi-
nese NLP tasks because Chinese sentences are
written in continuous sequences of characters with
no explicit delimiters (e.g., the spaces in English).
Many studies have been conducted in this area, re-
sulting in extensive investigation of the problem of

CWS using machine learning techniques in recent
years. However, the reliability of CWS that can
be achieved using machine learning techniques re-
lies heavily on the availability of a large amount of
high-quality, manually segmented data. Because
hand-labeling individual words and word bound-
aries is very difficult (Jiao et al., 2006), producing
segmented Chinese texts is very time-consuming
and expensive. Although a number of manual-
ly segmented datasets have been constructed by
various organizations, it is not feasible to com-
bine them into a single complete dataset because
of their incompatibility due to the use of various
segmenting standards. Thus, it is difficult to build
a large-scale manually segmented corpus, and the
resulting lack of such a corpus is detrimental to
further enhancement of the accuracy of CWS.

To address the scarcity of manually segment-
ed corpora, a number of semi-supervised CWS
approaches have been intensively investigated in
recent years. These approaches attempt to ei-
ther learn the predicted label distribution (Jiao et
al., 2006) or extract mutual information ((Liang
et al., 2005); (Sun and Xu, 2011); (Zeng et al.,
2013a)) from large-scale monolingual unlabeled
data to update the baseline model (from manual-
ly segmented corpora). In addition to these tech-
niques, several co-training approaches (Zeng et
al., 2013b) using character-based and word-based
models have also been employed. However, be-
cause monolingual unlabeled data contain limit-
ed natural segmenting information, in most semi-
supervised methods, the objective function tend-
s to be optimized based on the personal experi-
ence and knowledge of the researchers. This prac-
tice means that these methods can typically yield
high performance in certain specialized domain-
s, but they lack generalizability. In contrast with
these methods, we propose to leverage bilingual
unlabeled data, i.e., a Chinese-English corpus with
sentence alignment. Because English sentences
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Figure 1: The examples of different segmentation
on the same Chinese sentences guided by the En-
glish sentences

are naturally segmented, extracting information
from a bilingual corpus is a much more objective
task. As the example presented in Fig 1 shows,
the English sentences that correspond to Chinese
text can easily help guide better segmentation, and
thus, the learning of segmenting information from
bilingual data is a very promising approach.

In this paper, to obtain high-quality segment-
ing information from bilingual unlabeled data, we
leverage multilevel features using the following
steps: first, we integrate character-level features
calculated using a conditional random field (CRF)
model, which is used to capture the monolingual
grammars. Then, we employ a statistical align-
er to perform character-based alignment. Given
the results of this character-based alignment, we
apply several phrase-level features to extract ex-
plicit and implicit segmenting information: (1) we
use two types of English-Chinese co-occurrence
features (one-to-many and many-to-many) to learn
the explicit segmenting information of the English
sentences, (2) we use the transliteration similarity
feature to detect out-of-vocabulary (OOV) words
using a phrase-based translation model, and (3) we
employ a neural network to calculate the seman-
tic gap between the Chinese and English words
to ensure that the Chinese segmentation follows
the semantic meanings of the corresponding En-
glish sentences as closely as possible. Finally, we
employ another phrase-based translation model to
perform a sentence-level calculation of the trans-
lation probability of the Chinese segmentation and
its corresponding English sentences. After obtain-
ing these multilevel features, we normalize them
and combine them into two log-linear models in
a cascaded structure, which is illustrated in Fig
2. Finally, we segment the bilingual unlabeled da-
ta using the proposed model and use the segmen-
tation of those data to justify the original super-

Figure 2: The structure of cascaded log-linear
model with multilevel features

vised CWS model, which was trained on a stan-
dard manually segmented corpus.

In fact, several semi-supervised CWS methods
have previously been proposed that leverage bilin-
gual unlabeled data ((Xu et al., 2008); (Chang
et al., 2008); (Ma and Way, 2009);(Chung et al.,
2009); (Xi et al., 2012)). However, most were de-
veloped for statistical machine translation (SMT),
causing them to focus on decreasing the perplex-
ity of the bilingual data and the word alignmen-
t process rather than on achieving more accurate
segmentation. These methods achieve significan-
t improvement in SMT performance but are not
very suitable for common NLP tasks because in
many situations, they ignore the standard gram-
mars to satisfy the needs of SMT. By contrast,
we employ various types of features to capture
both monolingual standard grammars and bilin-
gual segmenting information, which allows our
semi-supervised CWS model to be very efficient
at other NLP tasks and endows it with higher gen-
eralizability.

Our evaluation also shows that our method sig-
nificantly outperforms the state-of-the-art mono-
lingual and bilingual semi-supervised approaches.

2 Related Work

First, we review related work on monolingual
supervised and semi-supervised CWS methods.
Then, we review bilingual semi-supervised CWS.

2.1 Monolingual Supervised and
Semi-supervised CWS Methods

Considerable efforts have been made in the NLP
community in the study of Chinese word segmen-
tation. The most popular supervised approach
treats word segmentation as a sequence labeling
problem, as first proposed by (Xue et al., 2003).
Most previous systems have addressed this task
using linear statistical models with carefully de-
signed features ((Peng et al., 2004); (Asahara et
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al., 2005); (Zhang and Clark, 2007); (Zhao et
al., 2010)). However, the primary shortcoming
of these approaches is that they rely heavily on a
large amount of labeled data, which is very time-
consuming and expensive to produce. Thus, the s-
cale of available manually labeled data has placed
considerable limitations on the further enhance-
ment of supervised CWS methods.

To address this problem, a number of semi-
supervised CWS approaches have been intensive-
ly investigated in recent years. For example,
(Sun and Xu, 2011) enhanced their segmenta-
tion results by interpolating statistics-based fea-
tures derived from unlabeled data into a CRF mod-
el. (Zeng et al., 2013a) introduced a graph-based
semi-supervised joint model of Chinese word seg-
mentation and part-of-speech tagging and regular-
ized the learning of a linear CRF model based on
the label distributions derived from unlabeled da-
ta. However, because monolingual unlabeled data
lack natural segmenting information, most previ-
ous semi-supervised CWS methods have required
certain assumptions to be made regarding their ob-
jective functions based on the researchers’ person-
al experiences. By contrast, we leverage bilingual
unlabeled data that contain the natural segmenta-
tion that is present in English sentences and can
therefore extract linguistic knowledge without any
manual assumptions or bias.

2.2 Bilingual Semi-supervised CWS Methods

Some previous work ((Xu et al., 2008); (Chang
et al., 2008); (Ma and Way, 2009);(Chung et al.,
2009); (Xi et al., 2012)) has been performed on
leveraging bilingual unlabeled data to achieve bet-
ter segmentation, although most such studies have
focused on statistical machine translation (SMT).
These approaches leverage the mappings of indi-
vidual English words to one or more consecutive
Chinese characters either to construct a Chinese
word dictionary for maximum-matching segmen-
tation (Xu et al., 2004) or to form a labeled dataset
for training a sequence labeling model (Peng et al.,
2004). (Zeng et al., 2014) also used such map-
pings to bias a supervised segmentation model to-
ward a better solution for SMT. However, because
most of these approaches focus on SMT perfor-
mance, they emphasize decreasing the perplexity
of the bilingual data and word alignment rather
than improving the CWS accuracy. Thus, they
sometimes ignore the standard grammars during

segmentation in favor of satisfying the needs of
SMT, thereby causing these methods to be rather
unsuitable for other NLP tasks. By contrast, we
propose to use various types of features to capture
syntactic and semantic information and a cascaded
log-linear model to maintain balance between the
monolingual grammars and the bilingual knowl-
edge.

3 Multilevel Features

In this section, we describe the three levels of fea-
tures used in our approach. We propose to use
character-level features to capture monolingual
grammars and phrase-level and sentence-level fea-
tures to obtain bilingual segmenting information.
Moreover, we describe a cascaded log-linear mod-
el by proposing both inner and outer log-linear
models.

3.1 Character-level Feature

The conditional random field (CRF) (Lafferty et
al., 2001) model was first used for CWS tasks by
(Xue et al., 2003) who treated the CWS task as a
sequence tagging problem and demonstrated this
model’s effectiveness in detecting OOV words.

In this paper, we score the character-level fea-
ture in the same manner defined by (Xue et al.,
2003). For the jth character cj in the sentence
cJ1 = c1...cJ , the score can be calculated as fol-
lows:

fCRF (j) =
∑
k

λkfk(yj−1, yj , c
J
1 , j) (1)

where fk(yj−1, yj , c
J
1 , j) is a feature function

and λk is a learned weight that corresponds to the
feature fk. j represents the index of the character
in the sentence. yj−1 and yj represent the tags of
the previous and current characters, respectively.

We do not introduce the CRF-based CWS mod-
el in detail here, but more information can be ob-
tained from (Lafferty et al., 2001) and (Xue et al.,
2003).

3.2 Phrase-level Features

In this section, we first describe English-Chinese
character-based alignment. Then, we propose sev-
eral phrase-level features to obtain explicit and im-
plicit segmenting information from the character-
based alignment. Finally, we describe the in-
ner log-linear model that is used to combine the
character-level and phrase-level features.
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3.2.1 English-Chinese Character-based
Alignment

To avoid introducing omissions and mistakes in-
to the linguistic information in the initial segmen-
tations of the bilingual data, we perform a statis-
tical character-based alignment: First, every Chi-
nese character in the bitexts is separated by white
spaces so that individual characters are recognized
as unique /words0 or alignment targets. Then,
they are associated with English words using a s-
tatistical word aligner.

By representing the English and Chinese sen-
tences as eI1 = e1e2...eI and cJ1 = c1c2...cJ , re-
spectively, where ei and cj represent single ele-
ments of the sentences, we define their alignment
as aK1 , of which each element is a span ak =<
s, t > and represents the alignment of the English
word es with the Chinese character ct. Then, the
corpus of unlabeled bilingual data can be repre-
sented as the set of sentence tuples <eI1, cJ1 , aK1 >

To obtain the character-based alignment, we
employ an open-source toolkit Pialign1 ((Neubig
et al., 2011); (Neubig et al., 2012)) which us-
es Bayesian learning and inversion transduction
grammars.

3.2.2 Features Obtained from the
Character-based Alignment

Given the English-Chinese character-based align-
ment aK1 , we extract several phrase-level features
to optimize the segmentation. For the jth char-
acter in cJ1 , we assume that one of the segmen-
tations of the substring cj1 can be represented as
wN+1

1 = w1w2w3...wN+1 = cj11 c
j2
j1+1...c

j
jN+1.

Then, we calculate the scores of each Chinese
word wn = cjnjm (jm = jn−1 + 1) in wN+1

1 us-
ing the following features.

English-Chinese One-to-Many Alignment
To evaluate the probability that a sequence of

Chinese characters cjnjm = cjmcjm+1...cjn should
be combined into a word wn based on the corre-
sponding English sentence, we integrate the fea-
ture of English-Chinese one-to-many alignmen-
t (one English word is aligned with multiple Chi-
nese characters). First, for any English word ei in
eI1, the phrase tuple < ei, c

jn
jm

> can be defined as
an aligned One-to-Many phrase tuple if it satisfies
the following conditions:

(1) < i, jm > ∈ aK1 , < i, jn > ∈ aK1
(2) ∀j′ /∈ [jm, jn], < i, j′ >/∈ aK1
1http://www.phontron.com/pialign/

(3) ∀i′ 6= i§∀j′ ∈ [jm, jn], < i′, j′ >/∈ aK1
Then, for any phrase tuple < ei, c

jn
jm
> that sat-

isfies these conditions, the span < i, jm, jn > is
defined as a One-to-Many span and as a member
of the set AOne.

Thus, for each span < i, jm, jn >, the One-to-
Many score can be calculated as follows:

s(< i, jm, jn >) =

{
t(cjnjm |ei) if < i, jm, jn >∈ AOne
0 else

(2)

where t(cjnjm |ei) represents the translation proba-
bility of the phrase tuple cjnjm |ei.

Finally, the score for the feature of English-
Chinese One-to-Many alignment for wn = cjnjm is
derived as follows:

fOne−to−Many(n) = argmax
i∈[1,I]

s(< i, jm, jn >) (3)

English-Chinese Many-to-Many Alignment
The second phrase-level feature, called English-

Chinese Many-to-Many Alignment (multiple En-
glish words are aligned with multiple Chinese
characters), is used to evaluate the probability that
a space should be inserted between cn and cn+1.
Similar to One-to-Many alignment, for any se-
quence of English words ei2i1 and the Chinese word
wn = cjnjm , the phrase tuple < ei2i1 , c

jn
j1

> is de-
fined as an aligned Many-to-Many phrase tuple if
it satisfies the following conditions:

(1) j1 ≤ jm, and j1 is the beginning character
of a word in wn1

(1) < i1, j1 >∈ aK1 , < i2, jm >∈ aK1
(2) ∀j′ /∈ [j1, jm], ∀i′ ∈ [i1, i2], < i′, j′ >/∈ aK1
(3) ∀j′ ∈ [j1, jm], ∀i′ /∈ [i1, i2], < i′, j′ >/∈ aK1
Then, for any phrase tuple< ei2i1 , c

jn
jm
> that sat-

isfies these conditions, the span < i1, i2, j1, jn >
is defined as a Many-to-Many span and as a mem-
ber of the set AMany.

Thus, for each span < i1, i2, j1, jn >, the
Many-to-Many score can be calculated as follows:

s(< i1, i2, j1, jn >) =


t(cjnj1 |ei2i1)
if < i1, i2, j1, jn >∈ AMany

0 else

(4)

where t(cjnj1 |ei2i1) represents the translation proba-
bility of the phrase tuple < ei2i1 , c

jn
j1
>.
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Finally, the score for the feature of English-
Chinese Many-to-Many alignment for wn = cjnjm
is derived as follows:

fMany−to−Many(n) = argmax
i1∈[1,I]i2∈[i1,I]j1≤jm

s(i1, i2, j1, jn)

(5)

Transliteration Feature
To account for named entities (NEs), which suf-

fer from sparsity and thus make it difficult to cal-
culate the probabilities discussed above, we intro-
duce a transliteration feature to evaluate the simi-
larities between the pronunciations of Chinese and
English words because many NEs are translated
via transliteration. To perform this task, we first
introduce an initial NE dictionary and convert each
dictionary item—for example, we convert ”Ow
d/Alice” into ”ai l i s i/a l i c e” —by transform-
ing the Chinese word into its pronunciation (rep-
resented by the function Fpy(·)) and splitting the
English word into its constituent letters (represent-
ed by the function Flet(·)). Then, we train two
phrase-based translation models (Chinese-English
and English-Chinese) on the data obtained from
the converted NE dictionary.

Specifically, we apply two standard log-linear
phrase-based SMT models. The GIZA++ align-
er is adopted to obtain word alignments (Och
and Ney, 2000) from the converted NE dictio-
nary. The heuristic strategy of grow-diag-final-and
(Koehn et al., 2003) is used to combine the bidi-
rectional alignments to extract phrase translations
and to reorder tables. A 5-gram language mod-
el with Kneser-Ney smoothing is trained using S-
RILM (Stolcke et al., 2002) on the target language.
Moses (Koehn et al., 2007) is used as a decoder.
Minimum error rate training (MERT) (Och et al.,
2003) is applied to tune the feature parameters on
the development dataset.

Given these two phrase-based translation mod-
els, we calculate each span < i, jm, jn > in AOne
for the Chinese word wn using the following for-
mula:

Str(< i, jm, jn >) = Sch−en(< i, jm, jn >)

+Sen−ch(< i, jm, jn >)
(6)

where Sch−en(<i, jm, jn>) = DLev(Fletei,
PTch−en(Fpy(c

jn
jm

))) means that the pronuncia-
tion conversion in the Chinese-English direction
is performed as follows: First, the English word
ei is split into its constituent letters; Second, the

sequence of Chinese characters cjnjm is converted
into its pronunciation; Third, this pronunciation is
input into the Chinese-English phrase-based trans-
lation model, and the corresponding translation re-
sult is obtained; And finally, the Levenshtein dis-
tance between the English letters and the transla-
tion result is returned.
Sen−ch(<i, jm, jn>) can be calculated in ex-

actly the same way.
We set any span that does not belong to AOne

to zero, and the transliteration feature score of a
word wn = cjnjm is derived as follows:

ftransliteration(n) = argmax
i∈[1,I]

Str(< i, jm, jn >) (7)

English-Chinese semantic gap feature
To guarantee that the semantic meanings of the

Chinese segmentation match those of the corre-
sponding English sentences as closely as possible,
we propose to use a feature based on the English-
Chinese semantic gap to ensure the retention of se-
mantic meaning during the segmentation process.

First, we pre-train word embeddings using the
open-source toolkit Word2Vec (Mikolov et al.,
2013) on the Chinese (segmented using character-
level features only) and English sentences sepa-
rately, thereby obtaining the vocabularies Vch and
Ven and their corresponding embedding matrixes
Lch ∈ Rn×|Vch| andLen ∈ Rn×|Ven|. Given a Chi-
nese word wn with an index i in the vocabulary, it
is then straightforward to retrieve the word’s vec-
tor representation via simple multiplication with a
binary vector d that is equal to zero at all positions
except that with index i:

Xi = Lchdi ∈ Rn (8)

Because the word embeddings for the two lan-
guages (Lch and Len) are learned separately and
located in different vector spaces, we suppose that
a transformation exists between these two seman-
tic embedding spaces. Thus, we collect all the
One-to-Many phrase tuples < e1, c

j2
j1
> that sat-

isfy e1 ∈ Ven and cj2j1 ∈ Vch from the entire corpus
of bilingual data. Then, we insert the word embed-
ding tuple of each One-to-Many phrase tuple into
the set Aembed. Let us consider a word embedding
tuple < ps, pt > in Aembed as an example. We
define a bidirectional semantic distance using the
parameter θ as follows:
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Esem(ps, pt; θ) = Esem(ps|pt, θ) + Esem(pt|ps, θ) (9)

Here, Esem(ps|pt, θ) = Esem(pt, f(W ch
enps +

bchen)) represents the transformation of ps and is
performed as follows: We first multiply a parame-
ter matrix W ch

en by ps, and after adding a bias term
bchen, we apply an element-wise activation function
f = tanh(·). Finally, we calculate their Euclidean
distance:

Esem(ps|pt, θ) =
1

2
||pt − f(W ch

enps + bchen)||2 (10)

Esem(pt|ps, θ) can be calculated in exactly the
same way.

Given the definition of the semantic distance of
each word-embedding tuple inAembed, we wish to
minimize the following objective function:

J =
∑

<ps,pt>∈Aembed
Esem(ps, pt; θ) (11)

We apply the Stochastic Gradient Descent (S-
GD) algorithm to optimize each parameter and ul-
timately obtain the optimized parameters θ∗.

Using θ∗, we can calculate the semantic gap for
any possible span for wn, such as < i, jm, jn >,
as follows:

Sgap(< i, jm, jn >) =


1

Esem(p′s|p′t,θ∗)
if ei ∈ Ven cjnjm ∈ Vch

< i, jm, jn >∈ AOne
0 else

(12)

where p′s and p′t are the word vector representation
of ei and cjnjm , respectively. Thus, the semantic gap
feature score of the word wn = cjnjm is derived as
follows:

fsem(wn) = argmax
i∈[1,I]

Sgap(< i, jm, jn >) (13)

3.2.3 Normalization and the Inner
Log-Linear Model

Because the output scores of each sub-model de-
scribed above are not probabilistic and they vary
by orders of magnitude, we must first normalize

the output scores of each sub-model. After nor-
malization, the scores have means and standard
deviations of zero. We represent the normalization
function by Norm(·).

Thus, for the substring cj1 (j ∈ [1, J)) in cJ1 of
the sentence tuple <eI1, cJ1 , aK1 >, assuming that
one of its candidate segmentations is wN+1

1 =
w1w2w3...wN+1 = cj11 c

j2
j1+1...c

j
jN+1, the feature

score of the inner log-linear model is derived as
follows:

finner =
∑

j′∈[1,j]

Norm(fCRF (j′))+

λ1

∑
n∈[1,N+1]

(
∑
k

Norm(fk(n)))
(14)

where fk(n) represents the phrase-level features.
Then, we tune the weight λ1 from 0 to 1 in equal

increments of 0.1 to optimize its value.

3.3 Sentence-level Features

In this section, we describe the sentence-level fea-
tures calculated using the phrase-based translation
model and the outer log-linear model that is used
to combine the sentence-level features with the
features in the inner log-linear model.

3.3.1 Features Obtained from the
Phrase-based Translation Model

Let us consider the last character cJ in cJ1 and as-
sume that its candidate segmentation (according
to the inner log-linear model only) is wN+1

1 =
w1w2w3...wN+1. We now add a sentence-level
feature to incorporate into the inner log-linear
model. This sentence-level feature is obtained us-
ing a phrase-based translation model. We segmen-
t the Chinese sentences from the bilingual unla-
beled data using character-level features only and
train a phrase-based translation model on the bilin-
gual data that is similar to the phrase-based trans-
lation model used for the transliteration features.

Unlike the usage of the phrase-based translation
model in the case of the transliteration features,
here, we input both the source and target sentences
and achieve the output of translation probability.
Thus, we perform a force decoding for the sen-
tence tuple <wN+1

1 , eI1> and obtain the set of de-
coding paths P(wN+1

1 ), where each element acts
as a decoding path that can translate wN+1

1 into
eI1. Finally, we define the sentence-level feature
score of <wN+1

1 , eI1> as follows:
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fsent(w
N+1
1 ) = argmax

p(wN+1
1 )∈P (wN+1

1 )

Ftrans(p(w
N+1
1 ))

(15)

where Ftrans(·) returns the translation score of
the given decoding path based on the phrase-based
translation model.

3.3.2 The Outer Log-Linear Model
Finally, we normalize the sentence-level features
in a manner similar to that described previously
and construct the outer log-linear model by com-
bining the inner log-linear model and the sentence-
level features as follows:

fouter = finner + λ2Norm(fsent(wN+1
1 )) (16)

Then, we also tune the weight λ2 from 0 to 1 in
equal increments of 0.1 to optimize its value.

3.3.3 Decoder
A traditional viterbi beam search procedure is ap-
plied in the decoder to seek the segmented se-
quence with the highest score. Given a sentence
tuple < eI1, c

J
1 , a

K
1 >, the decoding procedure will

proceed in a left-right fashion using a dynamic
programming approach. At each position j in the
sequence cJ1 , we maintain a vector of size N to s-
tore the top N candidate segmentations of subse-
quence cj1 which are scored using the inner log-
linear model (j ∈ [1, J)) or the outer log-linear
model (j = J). Finally, we return the best seg-
mentation.

4 Justifying the Original CWS Model

We justify the original CWS model (the CRF-
based model trained on manually segmented data)
using the new CRF model trained on the segmen-
tation of unlabeled bilingual data. To avoid over-
weakening the influence of the small-scale manu-
ally segmented data, we again utilized a log-linear
model to balance their weights. The formula can
be described as follows:

fnew mono =
∑
k1

λk1fk1(yj−1, yj , c
J
1 , j)

+θ3
∑
k2

λk2fk2(yj−1, yj , c
J
1 , j)

(17)

where θ3 represents the weights of the second CR-
F model, which are set via minimum error rate
training using the developing dataset, and λki (i

=1, 2) represents the learned weights of the fea-
tures of the CRF models.

5 The Datasets

In this paper, we conduct our experiments on the
corpus of People’s daily of 1998 (from January to
June) as the standard (manually segmented) train-
ing corpus, the corpus of Bakeoff-2 CWS evalua-
tion as the developing and testing dataset. As the
corpus of Bakeoff-2 is made up of several sets pro-
vided by different organizations, we only select t-
wo sets whose segmenting standards are similar to
the training corpus. For each set, we take 3000
sentences as the developing dataset and the others
as the testing dataset. The statistics of every set
and the standard training corpus are shown in Ta-
ble 1.

Data Set of sent. of words
Training 120K 7.28M

AS 708K 5.45M
PKU 19K 1.1M

Table 1: Statistics of training and testing datasets

Moreover, the bilingual unlabeled data is
formed by a large in-house Chinese-English par-
allel corpus (Tian et al., 2014). There are in total
2,215,000 Chinese-English sentence pairs crawled
from online resources, concentrated in 5 different
domains including laws, novels, spoken, news and
miscellaneous.

6 Experiments

In our evaluation, the F-score was used as the ac-
curacy measure. The precision p is defined as the
percentage of words in the decoder output that are
segmented correctly, and the recall r is the percent-
age of gold-standard output words that are correct-
ly segmented by the decoder. The balanced F- s-
core is calculated as 2pr/(p + r). We also report
the recall of OOV words in our experiments. In
the following, we refer to our methods as ”SLBD”
(segmenter leveraging bilingual data).

Initially, we evaluated state-of-the-art super-
vised CWS methods, i.e., those of (Peng et al.,
2004) (Peng); (Asahara et al., 2005) (Asahara);
(Zhang and Clark, 2007) (Z&C); (Zhao et al.,
2010) (Zhao), whose models are trained only on
manually segmented data. Moreover, we also e-
valuated the performance of our sub-models by
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methods
AS PKU

F OOV F OOV
Peng 91.6 52.5 91.1 59

Asahara 92.2 63.1 91.4 61.6
Z&C 92.9 69.9 91.6 67.9
Zhao 93.1 72 92.3 60.6

character-level 92.3 58.6 92.9 60.8
Inner log-linear 95.9 78.8 96.1 81
Outer log-linear 96.7 80.8 97.1 85

Table 2: Word segmentation performance of SLB-
D and supervised CWS methods[%]

segmenting the bilingual unlabeled dataset using
character-level features only, the inner log-linear
model (which includes character-level and phrase-
level features) and the outer log-linear model (the
full SLBD approach). After applying these three
segmentations using the different sub-models, we
trained the new CRF models on the results of the
three segmentations to justify the original CWS
model. The evaluation results for the supervised
CWS methods and the sub-models are presented
in Table 2.

It can be seen that we achieved significant im-
provement in performance when we combined the
character-level and phrase-level features in the in-
ner log-linear model, demonstrating that the pro-
posed phrase-level features can be used to effi-
ciently obtain bilingual segmenting information.
Moreover, the outer log-linear model achieves a
further enhancement, thereby demonstrating that
the sentence-level features can be used to effec-
tively re-rank the candidate segmentations pro-
duced by the inner log-linear model.

Next, we compared the SLBD method with sev-
eral state-of-the-art monolingual semi-supervised
methods, including those of (Sun et al., 2012)
(Sun); (Sun and Xu, 2011) (S&X); (Zeng et al.,
2013b) (Zeng). To ensure a fair comparison, we
performed the evaluation in two steps. First, we
input the entire bilingual unlabeled dataset into
the SLBD method and input only the Chinese sen-
tences from the bilingual unlabeled dataset into the
other semi-supervised methods. Then, because the
available monolingual unlabeled dataset was much
larger than the bilingual unlabeled dataset in natu-
ral, we used the XIN CMN portion of Chinese Gi-
gaword 2.0 as an additional unlabeled dataset for
the monolingual semi-supervised methods. which
contains 204 million words, more than ten times

methods
Bilingual data Monolingual data

F OOV F OOV
Sun 93.9 63.1 94.6 67.9
S&X 94.1 66 94.4 71
Zeng 94.0 64.5 94.8 63.2

SLBD 96.7 80.8 - -

Table 3: Word segmentation performance of SLB-
D and other monolingual semi-supervised CWS
methods[%]

methods
AS PKU

F OOV F OOV
Xu 92.8 70.5 92.1 66
Ma 93.1 73 92.6 71.1
Xi 90.2 63 90.9 67.2

Zeng2014 93.5 76 93.2 73.3
SLBD 96.7 80.8 97.1 85

Table 4: Word segmentation performance of SLB-
D and other bilingual semi-supervised CWS meth-
ods[%]

the number of words in the bilingual unlabeled
dataset. The testing data was the set of AS only.
The evaluation is summarized in Table 3.

The results demonstrate that either leveraging
the same unlabeled data or providing a much larg-
er unlabeled dataset for the monolingual semi-
supervised methods, the SLBD method can sig-
nificantly outperform the evaluated monolingual
semi-supervised methods, which indicates that the
segmenting information obtained using SLBD is
much more efficient at optimizing segmentation.

Finally, we evaluated SLBD in comparison with
other bilingual semi-supervised methods, includ-
ing (Xu et al., 2008) (Xu); (Ma and Way, 2009)
(Ma); (Xi et al., 2012) (Xi);(Zeng et al., 2014)
(Zeng2014). The results presented in Table 4 indi-
cate that SLBD demonstrates much stronger per-
formance, primarily because these other methods
were developed with a focus on SMT, which caus-
es them to preferentially decrease the perplexity of
the subsequent SMT steps rather than producing a
highly accurate segmentation. In contrast to these
methods, the SLBD method exhibits greater gen-
eralizability.
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7 Conclusion

In this paper, we propose a cascaded log-linear
model to involve learning three levels of bilin-
gual linguistic features to semi-supervisedly learn
a new CWS model. Different from other mono-
lingual and bilingual semi-supervised approach-
es, we employ various types of features to cap-
ture both monolingual grammars and bilingual
segmenting information, which allows our mod-
el to be very efficient at other NLP tasks and en-
dows it with higher generalizability. The evalu-
ation shows that our method significantly outper-
forms the state-of-the-art monolingual and bilin-
gual semi-supervised approaches.
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Abstract

In hierarchical phrase-based machine
translation, a rule table is automatically
learned by heuristically extracting syn-
chronous rules from a parallel corpus.
As a result, spuriously many rules are
extracted which may be composed of
various incorrect rules. The larger rule
table incurs more run time for decoding
and may result in lower translation quality.
To resolve the problems, we propose a
hierarchical back-off model for Hiero
grammar, an instance of a synchronous
context free grammar (SCFG), on the
basis of the hierarchical Pitman-Yor
process. The model can extract a compact
rule and phrase table without resorting to
any heuristics by hierarchically backing
off to smaller phrases under SCFG.
Inference is efficiently carried out using
two-step synchronous parsing of Xiao et
al., (2012) combined with slice sampling.
In our experiments, the proposed model
achieved higher or at least comparable
translation quality against a previous
Bayesian model on various language
pairs; German/French/Spanish/Japanese-
English. When compared against heuristic
models, our model achieved comparable
translation quality on a full size German-
English language pair in Europarl v7
corpus with significantly smaller grammar
size; less than 10% of that for heuristic
model.

1 Introduction

Hierarchical phrase-based statistical machine
translation (HPBSMT) (Chiang, 2007) is a popu-
lar alternative to phrase-based SMT (PBSMT), in
which synchronous context free grammar (SCFG)

is used as the basis of the machine translation
model. With HPBSMT, a restricted form of an
SCFG, i.e., Hiero grammar, is usually used and is
especially suited for linguistically divergent lan-
guage pairs, such as Japanese and English. How-
ever, a rule table, i.e., a synchronous grammar,
may be composed of spuriously many rules with
potential errors especially when it was automati-
cally acquired from a parallel corpus. As a result,
the increase in the rule table incurs a large amount
of time for decoding and may result in lower trans-
lation quality.

Pruning a rule table either on the basis of signif-
icance test (Johnson et al., 2007) or entropy (Ling
et al., 2012; Zens et al., 2012) used in PBSMT can
be easily applied for HPBSMT. However, these
methods still rely on a heuristically determined
threshold parameter. Bayesian SCFG methods
(Blunsom et al., 2009) solve the spurious rule
extraction problem by directly inducing a com-
pact rule table from a parallel corpus on the basis
of a non-parametric Bayesian model without any
heuristics. Training for Bayesian SCFG models
infers a derivation tree for each training instance,
which demands the time complexity of O(|f |3|e|3)
when we use dynamic programming SCFG bi-
parsing (Wu, 1997). Gibbs sampling without bi-
parsing (Levenberg et al., 2012) can avoid this
problem, though the induced derivation trees may
strongly depend on initial derivation trees. Even
though we may learn a statistically sound model
on the basis of non-parametric Bayesian methods,
current approaches for an SCFG still rely on ex-
haustive heuristic rule extraction from the word-
alignment decided by derivation trees since the
learned models cannot handle rules and phrases of
various granularities.

We propose a model on the basis of the previ-
ous work on the non-parametric Inversion Trans-
duction Grammar (ITG) model (Neubig et al.,
2011) wherein phrases of various granularities are
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learned in a hierarchical back-off process. We
extend it by incorporating arbitrary Hiero rules
when backing off to smaller spans. For efficient
inference, we use a fast two-step bi-parsing ap-
proach (Xiao et al., 2012) which basically runs in a
time complexity of O(|f |3). Slice sampling for an
SCFG (Blunsom and Cohn, 2010) is used for effi-
ciently sampling a derivation tree from a reduced
space of possible derivations.

Our model achieved higher or at least com-
parable BLEU scores against the previous
Bayesian SCFG model on language pairs;
German/French/Spanish-English in the News-
Commentary corpus, and Japanese-English in
the NTCIR10 corpus. When compared against
heuristically extracted model through the GIZA++
pipeline, our model achieved comparable score on
a full size Germany-English language pair in Eu-
roparl v7 corpus with significantly less grammar
size.

2 Related Work

Various criteria have been proposed to prune a
phrase table without decreasing translation qual-
ity, e.g., Fisher’s exact test (Johnson et al., 2007)
or relative entropy (Ling et al., 2012; Zens et al.,
2012). Although those methods are easily ap-
plied for pruning a rule table, they heavily rely
on the heuristically determined threshold parame-
ter to trade off the translation quality and decoding
speed of an MT system.

Previously, EM-algorithm based generative
models were exploited for generating compact
phrase and rule tables. Joint phrase alignment
model (Marcu and Wong, 2002) can directly
express many-to-many word aligments without
heuristic phrase extraction. DeNero et al. (2006)
proposed IBM Model 3 based many-to-many
alignment model. Rule arithmetic method (Cme-
jrek and Zhou, 2010) can generate SCFG rules
by combining other rule pairs through an inside-
outside algorithm. However, those previous at-
tempts were restricted in that the rules and phrases
were induced by heuristic combination.

Bayesian SCFG models can induce a com-
pact model by incorporating sophisticated non-
parametric Bayesian models for an SCFG, such as
a dirichlet process (DeNero et al., 2008; Blunsom
et al., 2009; Chung et al., 2014) or Pitman-Yor
process (Levenberg et al., 2012; Peng and Gildea,
2014). A model is learned by sampling derivation

trees in a parallel corpus and by accumulating the
rules in the sampled trees into the model. Due to
the O(|f |3|e|3) time complexity for bi-parsing a
bilingual sentence, previous studies relied on bi-
parsing at the initialization step, and conducted
Gibbs sampling by local operators (Blunsom et al.,
2009; Levenberg et al., 2012) or sampling on fixed
word alignments (Chung et al., 2014; Peng and
Gildea, 2014). As a result, the inference can easily
result in local optimum, wherein induced deriva-
tion trees may strongly depend on the initial trees.

Xiao et al. (2012) proposed a two-step approach
for bi-parsing a bilingual sentence in O(|f |3) in the
context of inducing SCFG rules discriminatively;
however, their approach violates the detailed bal-
ance due to its heuristic k-best pruning. Blun-
som and Cohn (2010) proposed a slice sampling
for an SCFG, in the same manner as that for Infi-
nite Hiden Markov Model (iHMM) (Van Gael et
al., 2008), which can efficiently prune a space of
possible derivations on the basis of dynamic pro-
gramming. Although slice sampling can prune
spans without violating the detailed balance, its
time complexity of O(|f |3|e|3) is still impractical
for a large-scale experiment. We efficiently car-
ried out large-scale experiments on the basis of the
two-step bi-parsing of Xiao et al. combined with
slice sampling of Blunsom and Cohn.

After learning a Bayesian model, it is not di-
rectly used in a decoder since it is composed of
only minimum rules without considering phrases
of various granularities. As a consequence, it is
a standard practice to obtain word alignment from
derivation trees and to extract SCFG rules heuris-
tically from the word-aligned data (Cohn and Haf-
fari, 2013). The work by Neubig et al. (2011) was
the first attempt to directly use the learned model
on the basis of a Bayesian ITG in which phrases
of many granularities were encoded in the model
by employing a hierarchical back-off procedure.
Our work is strongly motivated by their work, but
greatly differs in that our model can incorporate
many arbitrary Hiero rules, not limited to ITG-
style binary branching rules.

3 Model

We use Hiero grammar (Chiang, 2007), an in-
stance of an SCFG, which is defined as a context-
free grammar for two languages. Let Σ denote a
set of terminal symbols in the source language, ∆
a set of terminal symbols in the target language,
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Figure 1: Derivation tree generated from Bayesian
SCFG model

V a set of non-terminal symbols, S a start symbol
and R a set of rewrite rules. An SCFG is denoted
as a tuple of ⟨Σ,∆, V, S, R⟩. Each rewrite rule
in R is represented as X → ⟨α/β⟩ in which α
is a string of non-terminals and source side termi-
nals (V ∪ Σ)∗ and β is a string of non-terminals
and target side terminals (V ∪ ∆)∗. An example
derivation in an SCFG for the sentence pair “ni-
hongo wo eigo ni honyaku suru koto wa muzukasii
。 / Japanese is difficult to translate into English .”
is represented as follows:
S → X1 eigo X2 muzukasii 。 / X1 difficult X2

English .
X1 → X3 wo / X3 is
X2 → X4 honyaku suru X5 wa / X4 translate X5

X3 → nihongo / Japanese
X4 → ni / into
X5 → koto / to .

A Hiero grammar has additional constraints
over a general SCFG; the number of terminal sym-
bols in each rule for both source and target sides
is limited to 5. Each rule may contain at most
two non-terminal symbols; adjacent non-terminal
symbols in the source side are prohibited. For de-
tails, refer to (Chiang, 2007).

3.1 Bayesian SCFG Models

Previous Bayesian SCFG Models, for instance a
model proposed by Levenberg et al. (2012), are
based on the Pitman-Yor process (Pitman and Yor,
1997) and learn SCFG rules by sampling a deriva-
tion tree for each bilingual sentence. Figure 1
shows an example derivation tree for our running
example sentence pair under the model. The gen-

erative process is represented as follows:

GX ∼ Prule(dr, θr, Gr0),
X → ⟨α/β⟩ ∼ GX , (1)

where GX is a derivation tree and
Prule(dr, θr, Gr0) is a Pitman-Yor process
(Pitman and Yor, 1997), which is a generalization
of a Dirichlet process parametrized by a discount
parameter dr, a strength parameter θr and a base
measure Gr0 . The output probability of a Pitman-
Yor process obeys the power-law distribution with
the discount parameter, which is very common in
standard NLP tasks.

The probability that a rule rk is drawn from a
model Prule(dr, θr, Gr0) is determined by a Chi-
nese restaurant process which is decomposed into
two probability distributions. If rk already exists
in a table, we draw rk with probability

ck − dr · |φrk
|

θr + nr
, (2)

where ck is the number of customers of rk, nr is
the number of all customers and φrk

is a number
of rk’s tables. On the other hand, if rk is a new
rule, we draw rk with probability

θr + dr · |φr|
θr + nr

·Gr0 , (3)

where |φr| is the number of tables in the model.

3.2 Hierarchical Back-off Model
In the previous models, the generative process is
represented as a rewrite process starting from the
symbol S, which can incorporate only minimal
rules. Following Neubig et al. (2011), our model
reverses the process by recursively backing off to
smaller phrase pairs as shown in Figure 2. First,
our model attempts to generate a phrase pair, i.e.,
a sentence pair, as a derivation tree. If the model
successfully generates the phrase pair, we will fin-
ish the generation process. Otherwise, a Hiero
rule is generated to fallback to smaller spans rep-
resented in each non-terminal symbol X in the
rule. Then, each phrase pair corresponding to each
smaller span is recursively generated through our
model. In Figure 2, a phrase pair with “nil” indi-
cates those not in our model; therefore the phrase
pair is forced to back-off either by generating a
new phrase pair from a base measure (base) or by
falling back to smaller phrases using a Hiero rule
(back-off). The recursive procedure is done until

1219



Figure 2: Derivation tree generated from the hier-
archical back-off model

we reach phrase pairs which are generated without
any back-offs. Let a discount parameter be dp, a
strength parameter be θp, and a base measure be
Gp0 . More formally, the generative process is rep-
resented as follows:

GX ∼ Prule(dr, θr, Gphrase),
Gphrase ∼ Pphrase(dp, θp, GX),

X → ⟨s/t⟩ ∼ Gphrase,

X → ⟨α/β⟩ ∼ GX , (4)

where s is source side terminals and t is target side
terminals in phrase pair ⟨s/t⟩. Pphrase is com-
posed of three states, i.e., model, back-off, and
base, and follows a hierarchical Pitman-Yor pro-
cess (Teh, 2006).

model: We draw a phrase pair ⟨s/t⟩ with the
probability similar to Equation (2):

ck − dp · |φpk
|

θp + np
, (5)

where ck is the numbers of customers of a phrase
pair pk and np is the number of all customers Note
that this state is reachable when the phrase pair
⟨s/t⟩ exists in the model in the same manner as
Equation (2).

back-off: We will back off to smaller phrases
using a rule generated by Prule as follows:

θp + dp · |φp|
θp + np

· cback + γb ·Gb

cback + cbase + γb

·Prule(dr, θr, Gphrase)

·
∏

X∈⟨α/β⟩
Pphrase(dp, θp, GX), (6)

where cback and cbase are the number of customers
sampled from the back-off and base phrases, re-
spectively, with a base measure Gb and hyper-
parameter γb. We use a uniform distribution for
Gb = 0.5 since we consider only two states, back-
off and base. Unlike the model state, Pphrase

may reach this state even when a phrase pair is
not in the model. The phrase pair is backed-off
to smaller phrase pairs using Pphrase through the
non-terminals in the generated rule X ∈ ⟨α/β⟩.
base: As an alternative to the back-off state, we
may reach the base state which follows the proba-
bility distribution on the basis of the base measure
Gp0 ,

θp + dp · |φp|
θp + np

· cbase + γb ·Gb

cback + cbase + γb
·Gp0 . (7)

In summary, Pphrase(dp, θp, GX) is defined as a
joint probability of Equations (5) through (7).

3.3 Base Measure
Similar to Levenberg et al. (2012), the base mea-
sure for rule probability Gr0 is composed of
four generative processes. First, a number of
symbols in a source side of a rule |α| is gen-
erated from a Poisson distribution, i.e., |α| ∼
Poisson(0.1). Let t(x) denote a function that re-
turns terminals from a string x. The number of
target side terminal symbols |t(β)| is also gener-
ated from a Poisson distribution and represented
as |t(β)| ∼ Poisson(α + λ0)1. The type of
symbol αi in the source side, typei, either ter-
minal or non-terminal symbol, is determined by
typei ∼ Bernoulli(ϕ|α|) where ϕ is a hyper-
parameter taking 0 < ϕ < 1. ϕ|α| is based
on an intuition that shorter rules should be rela-
tively more likely to contain terminal symbols than
longer rules. Source and target terminal symbol
pair ⟨t(α), t(β)⟩ are generated from the geomet-
ric means of two directional IBM Model 1 word
alignment probabilities and monolingual unigram
probabilities for two languages, and represented
as:

⟨t(α), t(β)⟩ ∼ (Puni(t(α))P−−→
M1

(t(α), t(β)) ·
Puni(t(β))P←−−

M1
(t(α), t(β)))

1
2 . (8)

When the t(α) or t(β) is empty, we use the con-
stant 0.01 instead of the Model1 probabilities.

1Note that λ0 is a small constant for the input distribution
greater than zero.
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The base measure for phrases Gp0 is composed
of three generative processes, in a similar man-
ner as Levenberg et al. (2012), the number of
terminal symbols in a phrase pair in the source
side, |s|, is generated from a Poisson distribution
|s| ∼ Poisson(0.1). The length for the target side
|t| is generated in the same manner as the source
side of the phrase pair. The alignments between
s and t are also generated in the same manner as
those for the base measure in a rule.

4 Inference

In inference, we use a sentence-wise block sam-
pling of Blunsom and Cohn (2010), which has a
better convergence property when compared with
a step-wise Gibbs sampling. We repeat the follow-
ing steps given a sentence pair.

1. Decrement customers of the rules and phrase
pairs used in the current derivation for the
sentence pair.

2. Bi-parse the sentence pair in a bottom up
manner.

3. Sample a new derivation tree in a top-down
manner.

4. Increment customers of the rules and phrase
pairs in the sampled derivation tree.

The most time-consuming step during the infer-
ence procedure is bi-parsing of a sentence pair
which essentially takes O(|f |3|e|3) time using a
bottom up dynamic programming algorithm (Wu,
1997). When a span is very large, it can easily suf-
fer combinatorial explosion. To avoid this prob-
lem, we use a two-step slice sampling by perform-
ing the two-step bi-parsing of Xiao et al. (2012)
and by pruning possible derivation space (Blun-
som and Cohn, 2010) in each step (Algorithm 1).
From lines 1 to 7, a set of word alignment is enu-
merated and put into cubea. In addition to the ar-
bitrary word alignment of sourcei to targetj , null
word alignment is also merged into cubea (line
5). Note that word alignment considered in the
algorithm is restricted to one-to-many. The set of
word alignments in cubea is pruned and added to
the charta by SliceSampling. From lines 8 to 15,
all possible phrases and rules for each span con-
strained by the pruned word alignment are enu-
merated and temporally stored into cube. The
phrases and rules in cube are pruned by SliceSam-
pling and the remainders are added to chart. The

Algorithm 1 Two-step slice sampling
1: for i← 1, · · · , |source| do
2: for j ← 1, · · · , |target| do
3: cubea← {soucei, targetj}
4: end for
5: cubea← {soucei, null}
6: charta← SliceSampling(cubea)
7: clear cubea

8: end for
9: for h← 1, · · · , |source| do

10: for all the i, j s.t j − i = h do
11: for inferable rule, phrase from the sub-

spans of [i, j] of all charts do
12: cube← rule, phrase
13: end for
14: chart← SliceSampling(cube)
15: clear cube
16: end for
17: end for

time complexity for the word alignment enumera-
tion from lines 1 to 7 is O(|f ||e|) and that for the
phrase and rule enumeration from lines 8 to 15 is
O(|f |3).

The key difference to the slice sampling of
Blunsom and Cohn (2010) lies in lines 6 and 3 of
Algorithm 1. Let d denote a set of derivation trees
d and u be a set of slice variables u. In slice sam-
pling, we prune the rules rsp in each source span
sp based on a slice variable usp corresponding to
that sp. After pruning, we sample trees from the
pruned space of r. The above process is formally
represented as:

u ∼ P (u|d),
d ∼ P (d|u), (9)

where P (d|u) is computed through sampling in
a top-down manner after parsing in a bottom-
up manner with Algorithm 1, and is equal to∏

d P (d|u). The probability P (u|d) is equal to∏
sp P (usp|d). Let r∗sp denote a currently adopted

rule in the span sp and P (usp|d) be defined using
a pruning score Score(r∗sp) as follows:

Score(rspi) = Inside(rspi) · Future(rspi), (10)

where Inside(rsp) and Future(rsp) are inside
and outside probabilities for sp, respectively. Let
srsp denote a set of source side words in rsp, trsp

a set of target side words in rsp, ssp a set of words
in a source sentence without srsp and tsp, a set of
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words in a target sentence without trsp . By us-
ing IBM Model 1 probabilities in two directions,
Inside(rsp) is calculated by

(P−−→
M1

(ssp, tsp) · P←−−M1
(ssp, tsp))

1
2 . (11)

We use IBM Model1 outside probability for future
score Future(rsp). Similarly, the future score
Future(rsp) is computed using the two direc-
tional models:

(P−−→
M1

(ssp, tsp) · P←−−M1
(ssp.tsp))

1
2 . (12)

When sp is used in the current derivation d, slice
variable usp is sampled from a uniform distribu-
tion2:

P (usp|d) =
I(usp < Score(r∗sp))

Score(r∗sp)
, (13)

otherwise, usp is sampled from a beta distribution
if sp is not in the current derivation d:

P (usp|d) = Beta(usp; a, 1.0), (14)

where a < 1 is a parameter for the beta distribu-
tion. If the Score(rspi) is less than usp, we prune
the rspi from cube. Similar to Blunsom and Cohn
(2010), if the span sp is not in the current deriva-
tion, the rules with low probability are pruned ac-
cording to Equation (14). Let rd

sp denotes a rule in
d with span sp, P (d|u) is calculated by:

∏
sp∈d

P (rd
sp)∑

rj∈rsp
P (rj)I(usp < Score(rj))

. (15)

In our experiments discussed in Section 6, slice
sampling parameter a was set to 0.02 when in-
corporating the future score of Equation (12). In
contrast, we used a = 0.1 when performing slice
sampling without the future score. We empirically
found that setting a lower value for a led to slower
progress in learning due to a combinatorial explo-
sion when inferencing a derivation for each sen-
tence pair.

In the beginning of training, we do not have
any derivation trees for given training data, al-
though the derivation trees are required for esti-
mating parameters for Bayesian models. We use
the two-step parsing for generating initial deriva-
tion trees from only base measures. The k-best

2I(·) is a function returns 1 if the condition is satisfied and
0 otherwise

pruning is conducted against the score denoted by
the equation 10 , which is very similar to Xiao et
al. (2012).3

For faster bi-parsing, we run sampling in paral-
lel in the same way as Zhao and Huang (2013), in
which bi-parsing is performed in parallel among
the bilingual sentences in a mini-batch. The up-
dates to the model are synchronized by increment-
ing and decrementing customers for the bilingual
sentences in the mini-batch. Note that the bi-
parsing for each mini-batch is conducted on the
fixed model parameters after the synchronised pa-
rameter updates.

In addition to the model parameters, hyperpa-
rameters are re-sampled after each training itera-
tion following the discount and strength hyperpa-
rameter resampling in a hierarchical Pitman-Yor
process (Teh, 2006). In particular, we resample
⟨dp, θp⟩, the pair of discount and strength parame-
ters for phrases from a distribution:

[θp]
|φp|
dp

[θp]
np

1

∏
⟨s,t⟩

|φp|∏
k=1

[1− dp]
(c⟨s,t⟩−1)

1 (16)

where [ ] denotes a generalized Pochhammer sym-
bol, and c⟨s,t⟩ the number of customers of phrase
pair ⟨s, t⟩. We resample the pair ⟨dr, θr⟩ in the
same way as ⟨dp, θp⟩. The hyperparameter γb is
resampled from distribution:

(cback + γb ·Gb)(cbase + γb ·Gb)
(cback + cbase + γb)2

, (17)

where ϕ, used in the generative process for ei-
ther terminal or non-terminal symbol typei ∼
Bernoulli(ϕα), is resampled from a distribution:∏

⟨α/β⟩∈Base

Bernoulli(ϕ|α|)c⟨α/β⟩ , (18)

where c⟨α/β⟩ denotes the number of customers of
rule ⟨α/β⟩, and Base denotes a set of rules gener-
ated from the base measure. All the hyperparame-
ters are inferred by slice sampling (Neal, 2003).

5 Extraction of Translation Model

In the previous work on Bayesian approaches
(Blunsom and Cohn, 2010; Levenberg et al.,
2012), it is a standard practice to heuristically ex-
tract rules and phrase pairs from the word align-
ment derived from the derivation trees sampled

3Note that we use k = 30 for k-best pruning.
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from the Bayesian models. Instead of the heuris-
tic method, we directly extract rules and phrase
pairs from the learned models which are repre-
sented as Chinese restaurant tables. To limit gram-
mar size, we include only phrase pairs that are se-
lected at least once in the sample. During this ex-
traction process, we limit the source or target ter-
minal symbol size of phrase pairs to 5.

For each extracted rule or phase pair, we com-
pute a set of feature scores used for a HPBSMT
decoder; a weighted combination of multiple fea-
tures is necessary in SMT since the model learned
from training data may not fit well to translate an
unseen test data (Och, 2003). We use the follow-
ing six features; the joint model probability Pmodel

is calculated by Equation (2) for rules and by
Equation (5) for phrase pairs. The joint posterior
probability Pposterior(f, e) is estimated from the
posterior probabilities for every rule and phrase
pair in derivation trees through relative count es-
timation, motivated by Neubig et al. (2011) 4.
The joint posterior probability is considered as
an approximation for those back-off scores. The
conditional model probabilities in two directions,
Pmodel(f |e) and Pmodel(e|f), are estimated by
marginalizing the joint probability Pmodel(f, e):

Pmodel(f |e) =
Pmodel(f, e)∑
f ′ Pmodel(f ′, e)

. (19)

The inverse direction Pmodel(e|f) is estimated,
similarly. The lexical probabilities in two direc-
tions, Plex(f |e) and Plex(e|f), are scored by IBM
Model probabilities between the source and target
terminal symbols in rules and phrase pairs. In ad-
dition to the above features, we use Word penalty
for each rule and phrase pair used in the cdec de-
coder (Dyer et al., 2010).

As indicated in previous studies (Koehn et al.,
2003; DeNero et al., 2006), the translation quality
of generative models is lower than that of mod-
els with heuristically extracted rules and phrase
pairs. DeNero et al. (2006) reported that con-
sidering multiple phrase boundaries is important
for improving translation quality. The generative
models, in particular Bayesian models, are strict in
determining phrase boundaries since their models
are usually estimated from sampled derivations.
As a result, translation quality is poorer when

4Note that the correct way to decode from our model is to
score every phrase pair created during decoding with back-off
states, which is computationally intractable

compared with a model estimated using a heuristic
method. The Hiero grammar severely suffers from
the phrase granularity problem and can overfit to
the training data due to the flexibility of the rules.

To alleviate this problem, Neubig et al. (2011)
combined the derivation trees across training it-
erations by averaging the features for each rule
and phrase pair. During the sampling process,
each training iteration draws a different deriva-
tion tree for each sentence pair, and the combi-
nation of those different derivation trees can pro-
vide multiple possible phrase boundaries to the
model. Inspired by the averaging over the mod-
els from different iterations, we combine them as a
part of a sampling process; we treat the derivation
trees acquired from different iterations as addi-
tional training data, and increment the correspond-
ing customers into our model. Hyperparameters
are resampled after the merging process. The new
features are directly computed from the merged
model.

6 Experiments

6.1 Comparison with Previous Bayesian
Model

First, we compared the previous Bayesian model
(Gen) with our hierarchical back-off model
(Back). We used the first 100K sentence
pairs of the WMT10 News-Commentary cor-
pus for German/Spanish/French-to-English pairs
(Callison-Burch et al., 2010) and NTCIR10 cor-
pus for Japanese-English (Goto et al., 2013) for
the translation model. All sentences are lower-
cased and filtered to preserve at most 40 words on
both source and target sides. We sampled 20 it-
erations for Gen and Back and combined the last
10 iterations for extracting the translation model.5

The batch size was set to 64. The language mod-
els were estimated from the all-English side of
the WMT News-Commentary and europarl-v7. In
NTCIR10, we simply used the all-English side of
the training data. All the 5-gram language mod-
els were estimated using SRILM (Stolcke and oth-
ers, 2002) with interpolated Kneser-Ney smooth-
ing. The details of the corpus are presented in Ta-
ble 2. For detailed analysis, we also evaluate Hiero
grammars extracted from GIZA++ (Och and Ney,
2003) grow-diag-final bidirectional alignments us-
ing Moses (Koehn et al., 2007) with Hiero options.

5Gen and Back took 1 day, Back+future took 1.5 days for
inference.
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News-Commentary NTCIR10
de-en es-en fr-en ja-en

Model Sample BLEU SIZE BLEU SIZE BLEU SIZE BLEU SIZE
∗GIZA++ - 16.66 7.07M 23.16 6.07M 20.79 6.25M 26.08 3.45M

Gen 1 15.36 397.63k 21.10 295.69k 19.45 311.76k 25.73 262.45k
10 15.39 529.46k 20.83 384.55k 19.24 419.33k 25.79 344.67k

Back 1 15.30 410.92k 21.43 314.95k 19.74 362.22k 25.69 294.90k
10 15.42 563.80k 21.53 420.15k 19.51 497.51k 25.63 388.87k

Back + future 1 15.49 384.69k 21.63 296.30k 19.97 340.70k 25.82 268.38k
10 15.55 579.12k 21.74 429.33k 19.97 513.41k 25.41 390.23k

Table 1: Results of translation evaluation in 100k corpus

de-en es-en fr-en ja-en
TM(en) 1.85M 1.67M 1.54M 1.80M

TM(other) 1.86M 1.86M 1.83M 2.03M
LM(en) 55.6M 55.6M 55.6M 27.8M
Dev(en) 65.5k 65.5k 65.5k 67.3k

Dev(other) 62.7k 68.1k 72.5k 73.0k
Test(en) 61.9k 61.9k 61.9k 310k

Test(other) 61.3k 65.5k 70.5k 333k

Table 2: The number of words in training data

TM LM Dev Test
de 31.3M - 55.1k 59.4k
en 32.8M 50.5M 58.8k 55.5k

Table 3: The number of words in training data

We use GIZA++ and Moses default parameters for
training. Decoding was carried out using the cdec
decoder (?). Feature weights were tuned on the de-
velopment data by running MIRA (Chiang, 2012)
for 20 iterations with 16 parallel. For other param-
eters, we used cdec’s default values. The numbers
reported here are the average of three tuning runs
(Hopkins and May, 2011).

Table 1 lists the results measured using BLEU
(Papineni et al., 2002).The term Sample denotes
the combination size for each model. The term
SIZE in the table denotes the number of the ex-
tracted grammar types composed of Hiero rules
and phrase pairs. The numbers in italic denotes
the score of Back, significantly improved from
the score of 1 sampled combinated Gen. The
numbers in bold denotes the score of Back +
future, significantly improved from the score of
1 sampled combinated Back. All significance
test are performed using Clark et al. (2011) un-
der p-value of 0.05. Back performed better than
Gen on Spanish-English and French-English lan-
guage pairs. Note that the gains were achieved
with the comparable grammar size. When com-
paring German-English and Japanese-English lan-
guage pairs, there are no significant differences
between Back and Gen. The combination of our

Back with future score during slice sampling (+fu-
ture) achieved further gains over the slice sam-
pling without future scores, and slightly decrese
the grammar size, compared to Back. However,
there are still no significant difference between
Back+future and Gen on German-English and
Japanese-English language pairs. Sample combi-
nation has no or slight gain on BLEU score, in
spite of the increase in grammar size. From the
results, using last one sample as a grammar is suf-
ficient for translation quality. The performance of
the Bayesian model did not match with that for the
GIZA++ pipeline heuristic approach. In general,
complex model, such as Gen and Back, demands
larger corpus size for training, and the evaluation
on such smaller corpus may not be a fair com-
parison, since the sampling approach can rely on
only sampled derivations. Thus, we evaluate these
methods on large size corpus in the next section.

6.2 Comparison with Heuristic Extraction

As reported in (Koehn et al., 2003; DeNero et
al., 2006), the comparison against heuristic ex-
traction is a challenging task. We compare the
Back+future and a baseline extracted from grow-
diag-final alignments of GIZA++ using Moses
with Hiero options. We use GIZA++ and Moses
default parameters for training. In addition, we
present heuristic extraction from the last 1 sample
of Back+future in +Exhaustive.

We used the full europarl-v7 German-English
corpus as presented in Table 3. The experimen-
tal set up was similar to that in Section 6.1 with
the following exceptions; Slice sampling parame-
ter a was set to 0.05. Mini-batch size was set to
1024 and sampling was performed 5 iterations.6

The translation model was extracted by last 1 iter-
ations.

Table 4 lists the results7. Our Back+future can
6Inference took 5 days.
7The row mark up with ∗ indicate the model using word
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Model BLEU SIZE
∗ GIZA++ Model 4 27.21 73.24M (×14.0)
GIZA++ Model 3 26.78 59.26M (×11.3)
Back + future 26.83 5.25M (×1.0)
Back + future + exhasustive 26.73 90.42M (×17.2)

Table 4: Results of translation evaluation in de-en
full size corpus.

Gen gin X kamera / silver X camera
en / salt

Back + future gin en kamera / silver salt camera

Table 5: Example of a grammar

decrease the grammar size against GIZA++ with
comparable BLEU score. Surprisingly, exhaustive
extraction had no gains, probably because of the
word alignment in each Hiero rules relied on the
IBM Model 1.

7 Analysis

Intuitively, the use of the hierarchical back-off in-
creases the Hiero grammar size, since the phrases
of all the granularities in the derivation trees are
incorporated in the grammar. In contrast, our hier-
archical back-off model achieved gains in transla-
tion quality without increasing the size of the ex-
tracted grammar when compared to the previous
generative model. The major differences were the
use of the minimal phrase pairs used in the previ-
ous work in which only minimal phrase pairs in
the leaves of derivation trees were included in the
model. As a result, larger phrase pairs were forced
to be constructed from those minimal rules. On the
other hand, our back-off model could directly ex-
press phrase pairs of multiple granularities. In par-
ticular, a complex noun may be composed of sev-
eral Hiero rules in the previous model, but it can
be directly expressed by a single phrase pair in our
model. Table 5 gives an example of a Japanese-
English phrase pair which is represented by two
Hiero rules in the previous model; it is directly ex-
pressed by a single phrase pair in our model.

The BLEU score of Back+future was higher
than the generative baseline with comparable
grammar size. We observed that a very different
word alignment was sampled in every training it-
eration; the tendency was very frequent for func-
tion words. Our future score for inferring the slice
variables may take into account the context in a
sentence better than those without the future score.
class informations. Model 3 and our Back-off model dose not
use any word class informations.

As a result, Back+future infers better models by
avoiding over pruning spans.

The BLEU score of our back-off model did not
achieve gains over the heuristic baselines. The de-
tail analysis of the learned Hiero grammar’s CRP
tables reveals that the grammar is very sparse and
may have little generalization capacity. The ex-
pansion of back-off process and the use of word
classes will solve the sparsity and increase the
translation quality.

8 Conclusion

We proposed a hierarchical back-off model for
Hiero grammar. Our back-off model achieved
higher or equal translation quality against a previ-
ous Bayesian model under BLEU score on various
language pairs;German/French/Spanish/Japanese-
English. In addition to the hierarchical back-off
model, we also proposed a two-step slice sampling
approach. We showed that the two-step slice sam-
pling approach can avoid over-pruning by incor-
porating a future score for estimating slice vari-
ables, which led to increase in translation quality
through the experiments. The joint use of hierar-
chical back-off model and two step slice sampling
approach achieved comparable translation quality
on a full size Germany-English language pair in
Europarl v7 corpus with with significantly smaller
grammar size; 10% less than that for he heuristic
baseline.

For future work, we plan to embed a back-off
feature to decoder which is computed for all the
phrase pairs constructed in a derivation during the
decoding process. We will reflect the change of a
probability as a statefull feature for decoding step.

References
Phil Blunsom and Trevor Cohn. 2010. Inducing syn-

chronous grammars with slice sampling. In Human
Language Technologies: The 2010 Annual Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics, pages 238–241,
Los Angeles, California, June. Association for Com-
putational Linguistics.

Phil Blunsom, Trevor Cohn, Chris Dyer, and Miles
Osborne. 2009. A gibbs sampler for phrasal syn-
chronous grammar induction. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP, pages
782–790, Suntec, Singapore, August. Association
for Computational Linguistics.

1225



Chris Callison-Burch, Philipp Koehn, Christof Monz,
Kay Peterson, Mark Przybocki, and Omar F Zaidan.
2010. Findings of the 2010 joint workshop on sta-
tistical machine translation and metrics for machine
translation. In Proceedings of the Joint Fifth Work-
shop on Statistical Machine Translation and Met-
ricsMATR, pages 17–53. Association for Computa-
tional Linguistics.

David Chiang. 2007. Hierarchical phrase-based trans-
lation. computational linguistics, 33(2):201–228.

David Chiang. 2012. Hope and fear for discriminative
training of statistical translation models. The Jour-
nal of Machine Learning Research, 13(1):1159–
1187.

Tagyoung Chung, Licheng Fang, Daniel Gildea, and
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Abstract

As conventional word alignment search
algorithms usually ignore the consistency
constraint in translation rule extraction,
improving alignment accuracy does not
necessarily increase translation quality.
We propose to use coverage, which
reflects how well extracted phrases can
recover the training data, to enable word
alignment to model consistency and corre-
late better with machine translation. This
can be done by introducing an objective
that maximizes both alignment model
score and coverage. We introduce an
efficient algorithm to calculate coverage
on the fly during search. Experiments
show that our consistency-aware search
algorithm significantly outperforms both
generative and discriminative alignment
approaches across various languages and
translation models.

1 Introduction

Word alignment, which aims to identify the
correspondence between words in two languages,
plays an important role in statistical machine
translation (Brown et al., 1993). Word alignment
and translation rule extraction often constitute two
consecutive steps in the training pipeline. Word-
aligned bilingual corpora serve as a fundamental
resource for translation rule extraction, not only
for phrase-based models (Koehn et al., 2003; Och
and Ney, 2004), but also for syntax-based models
(Chiang, 2005; Galley et al., 2006). Dividing
alignment and extraction into two separate steps
significantly improves the efficiency and scala-
bility of parameter estimation as compared with
directly learning translation models from bilingual

∗Corresponding author: Yang Liu.

corpora (Marcu and Wong, 2002; DeNero and
Klein, 2008; Cohn and Blunsom, 2009).

However, separating word alignment from
translation rule extraction suffers from a major
problem: maximizing the accuracy of word align-
ment does not necessarily lead to the improvement
of translation quality. A number of studies
show that alignment error rate (AER) only has
a loose correlation with BLEU (Callison-Burch
et al., 2004; Goutte et al., 2004; Ittycheriah
and Roukos, 2005). Ayan and Dorr (2006)
find that precision-oriented alignments result in
better translation performance than recall-oriented
alignments. Fraser and Marcu (2007) show that
using AER and balanced F-measure can only
partially explain the effect of alignment quality on
BLEU for several language pairs.

We believe that the correlation problem arises
from the discrepancy between word alignment
and translation rule extraction. On one hand,
aligners seek to find the alignment with the
highest alignment model score, without regard
to structural constraints. Consequently, sensible
translation rules may not be extracted because
they violate consistency constraints required by
translation rule extraction (Och and Ney, 2004).
Wang et al. (2010) find that the standard alignment
tools are not optimal for training syntax-based
models. As a result, they have to resort to re-
aligning. On the other hand, the consistency
constraint used in most translation rule extraction
algorithms tolerate wrong links within consistent
phrase pairs. Chiang (2007) uses the union
of two unidirectional alignments, which usually
has a low precision, for extracting hierarchical
phrases. Therefore, it is important to include
both alignment model score and the consistency
constraint in the optimization objective of word
alignment.

In this work, we propose to use coverage,
which measures how well extracted phrases can
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Figure 1: (a) An alignment resulting in a set of bilingual phrases (highlighted by shading) that can recover
the training example, and (b) an alignment resulting in a set of bilingual phrases that fails to fully recover
the training example. We assume the maximum phrase lengthw = 3. Our approach aims to avoid adding
links that both have low posterior probabilities and hurt the recovery (e.g., the link between “huiwu” and
“hold”).

recover the training data, to bridge word alignment
and (hierarchical) phrase-based translation. We
introduce a new alignment search algorithm with
an objective that maximizes both alignment model
score and coverage while keeping the training
algorithm unchanged. The coverage of an align-
ment is calculated on the fly during search using
a local phrase extraction algorithm. Experiments
show that our approach achieves significant im-
provements over state-of-the-art baselines across
various languages and translation models.

2 Background

We begin by introducing the preliminaries of word
alignment and phrase-based translation.

Definition 1 Given a source-language sentence
f = fJ1 = f1 . . . fJ and a target-language sentence
e = eI1 = e1 . . . eI , an alignment a is a subset
of the Cartesian product of the word positions of
two sentences: a ⊆ {(j, i) : j = 1, . . . , J ; i =
1, . . . , I}.

Figure 1(a) shows an alignment for a Chinese
sentence “oumeng he eluosi shounao huiwu zai
mosike juxing” and an English sentence “EU and
Russia hold summit in Moscow”. We use black
circles to denote links. The link (1, 1) indicates
that the first Chinese word “oumeng” and the first
English word “EU” are translations of each other.

Definition 2 Given a training example 〈f , e,a〉, a
bilingual phrase B is a pair of source and target
phrases: B = (f j2j1 , e

i2
i1

) such that 1 ≤ j1 ≤ j2 ≤
J ∧ 1 ≤ i1 ≤ i2 ≤ I .

For example, (“zai mosike”, “in Moscow”) in
Figure 1 can be denoted as a bilingual phrase
B = (f7

6 , e
7
6). For convenience, We use B.j1 and

B.j2 to denote the beginning and ending positions
of the source phrase in B, respectively. B.i1 and
B.i2 are defined likewise for the target side.

Definition 3 A bilingual phrase B = (f j2j1 , e
i2
i1

) is
said to be tight if and only if all boundary words
(i.e., fj1 , fj2 , ei1 , and ei2) are aligned. Otherwise,
it is a loose bilingual phrase.

For example, in Figure 1, while (f3
1 , e

3
1) is a

tight bilingual phrase, (f4
1 , e

4
1) is a loose bilingual

phrase.

Definition 4 (Och and Ney, 2004) Given a train-
ing example 〈f , e,a〉, a bilingual phrase B =
(f j2j1 , e

i2
i1

) is said to be consistent with the word
alignment a if and only if:

1. No words in the source phrase are aligned
with words outside the target phrase and vice
versa: ∀(j, i) ∈ a : j1 ≤ j ≤ j2 ↔ i1 ≤ i ≤
i2,

2. At least one word in the source phrase is
aligned with at least one word in the target
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phrase: ∃(j, i) ∈ a : j1 ≤ j ≤ j2 ∧ i1 ≤ i ≤
i2.

Alignment consistency forms the basis of trans-
lation rule extraction in modern SMT systems
(Koehn and Hoang, 2007; Chiang, 2007; Galley
et al., 2006; Liu et al., 2006). In Figure 1,
(f3

1 , e
3
1) is consistent with the alignment because

all words in “oumeng he eluosi” are aligned with
all words in “EU and Russia”. In contrast, in
Figure 1(b), “huiwu shounao” and “hold summit”
are not consistent with the alignment because
“hold” is also aligned to a word “juxing” outside.

However, alignment consistency only defines a
loose relationship between alignment and trans-
lation. A phrase pair consistent with alignment
tolerates wrong inside links. For example, even
if “oumeng” is aligned with “Russia”, (f3

1 , e
3
1) is

still consistent. This is one possible reason that
maximizing alignment accuracy does not neces-
sarily lead to improved translation performance.

3 Modeling Consistency in Word
Alignment

Our intuition is that including the consistency
constraint in word alignment can hopefully reduce
the discrepancy between alignment and transla-
tion. While this idea has been suggested by a
number of authors (e.g., (Deng and Zhou, 2009;
DeNero and Klein, 2010)), our goal is to optimize
arbitrary alignment models with respect to end-to-
end translation in the search phase without labeled
data (see Related Work for detailed comparison).

A natural way is to include consistency in
the optimization objective as a regularization
term. However, as consistency is only defined
at the phrase level (see Definition 4), we need
a sentence-level measure to reflect how well an
alignment conforms to the consistency constraint.
A straightforward measure is the number of bilin-
gual phrases consistent with the alignment (phrase
count for short), which is easy and efficient to
calculate during search (Deng and Zhou, 2009).
Unfortunately, optimizing with respect to phrase
count is prone to yield alignments with very few
links in a biased way, which result in a large
number of bilingual phrases extracted from a small
fraction of the training data. Another alternative is
reachability (Liang et al., 2006a; Yu et al., 2013)
that indicates whether there exists a full derivation
to recover the training data. However, calculating
reachability faces a major problem: a large portion

of training data cannot be fully recovered due to
noisy alignments and the distortion limit (Yu et al.,
2013).

In this work, we propose coverage, which
reflects how well extracted phrases can recover
the training data, to measure the sentence-level
consistency. In the following, we will introduce
a number of definitions to facilitate the exposition.

Definition 5 A source word fj is said to be
covered by a bilingual phrase B = (f j2j1 , e

i2
i1

) if
and only if j1 ≤ j ≤ j2 : cov(fj , B) = Jj1 ≤ j ≤
j2K. Similarly, a target word ei is covered by B if
and only if i1 ≤ i ≤ i2.

The indicator function JexprK returns 1 if the
boolean expression expr is true and returns 0
otherwise. For example, in Figure 1(a), “oumeng”
and “EU” are covered by the bilingual phraseB =
(f3

1 , e
3
1).

Definition 6 Given a set of bilingual phrases B =
{B(k)}Kk=1, a source word fj is said to be covered
by the bilingual phrase set B if and only if it is
covered by at least one phrase inB : cov(fj ,B) =J∑K

k=1 cov(fj , B
(k)) > 0K. The definition for a

target word is similar.

For example, in Figure 1(a), all source and
target words are covered by the bilingual phrase
set. In Figure 1(b), the source words “shounao”,
“huiwu”, “juxing” and the target words “hold” and
“summit” are not covered.

Definition 7 Given a sentence pair 〈f , e〉 and a
phrase length limit w 1, the hard coverage of an
alignment a is defined as a boolean value:

Ch(f , e,a, w) =

t
δ
( J∑
j=1

cov(fj ,B), J
)
∧

δ
( I∑
i=1

cov(ei,B), I
)|

(1)

where B = EXTRACT(f , e,a, 1, J, 1, I, w) is
the set of consistent bilingual phrases extracted
from the sentence pair using a standard phrase
extraction algorithm (Och and Ney, 2004). The
function δ returns true if the two parameters are
same and returns false otherwise.

1The phrase length limit w is essential in defining
coverage, restricting that the sentence pair must be covered
by bilingual phrases no longer than w words. Otherwise, a
very long bilingual phrase (e.g., the entire sentence pair) can
achieve full coverage in a biased way.
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Algorithm 1 A consistency-aware search
algorithm for word alignment.
1: procedure ALIGN(f , e,θ, w, β, b, n)
2: open← ∅
3: N ← ∅
4: 〈a,B〉 ← 〈∅, ∅〉
5: ADD(open, 〈a,B〉, β, b)
6: while open 6= ∅ do
7: closed← ∅
8: for all 〈a,B〉 ∈ open do
9: for all l ∈ J × I − a do

10: a′ ← a ∪ {l}
11: B′ ← UPDATE(f , e,a, l,B, w)
12: if GAIN(f , e,a,a′, w,θ) > 0 then
13: ADD(closed, 〈a′,B′〉, β, b)
14: end if
15: ADD(N , 〈a′,B′〉, β, n)
16: end for
17: end for
18: open← closed
19: end while
20: returnN
21: end procedure

Depending on the tightness of extracted phrases
(see Definition 3), we further distinguish between
Ch+t(f , e,a, w) and Ch+l(f , e,a, w), which
denote hard coverage calculated with tight and
loose phrases, respectively.

Hard coverage denotes whether extracted
phrases can fully recover the training data. For
example, the values of hard coverage for Figures
1(a) and 1(b) are 1 and 0, respectively. As most
training examples can hardly be fully recovered,
we introduce soft coverage to better account for
partially recoverable training data.

Definition 8 Given a sentence pair 〈f , e〉 and a
phrase length limit w, the soft coverage of an
alignment a is defined as

Cs(f , e,a, w)

=
∑J
j=1 cov(fj ,B) +

∑I
i=1 cov(ei,B)

J + I
(2)

Similarly, we also distinguish between Cs+t and
Cs+l depending on the tightness of extracted
phrases.

Definition 9 Given a word-aligned bilingual cor-
pus D = {〈f (s), e(s),a(s)〉}Ss=1 and a phrase
length limit w, the corpus-level soft coverage is
defined as

Cs(D,w) =
∑|f (s)|
j=1 cov(f (s)

j ,B(s))∑S
s=1 |f (s)|+ |e(s)| +

∑|e(s)|
i=1 cov(e(s)i ,B(s))∑S
s=1 |f (s)|+ |e(s)| (3)

Algorithm 2 Updating the set of extracted
bilingual phrases after adding a link.
1: procedure UPDATE(f , e,a, l,B, w)
2: B′ ← B
3: for all B ∈ B′ do
4: if B.j1 ≤ l.j ≤ B.j2 ∨B.i1 ≤ l.i ≤ B.i2 then
5: B′ ← B′ − {B}
6: end if
7: end for
8: j1 ← l.j − w + 1
9: j2 ← l.j + w − 1

10: i1 ← l.i− w + 1
11: i2 ← l.i+ w − 1
12: a′ ← a ∪ {l}
13: B′′ ← EXTRACT(f , e,a′, j1, j2, i1, i2, w)
14: B′ ← B′ ∪B′′

15: return B′

16: end procedure

The corpus-level hard coverage is defined like-
wise.

4 Consistency-Aware Search

While Deng and Zhou (2009) focus on intro-
ducing an effectiveness function such as phrase
count into alignment symmetrization, we are inter-
ested in guiding the search algorithms of arbitrary
alignment models using coverage. Therefore, the
objective of our search algorithm is defined as

score(f , e,a, w,θ)
= M(f , e,a,θ) + λC(f , e,a, w) (4)

where M(f , e,a,θ) is alignment model score,
θ is a set of model parameters, C(f , e,a, w) is
coverage (either hard or soft), and λ is a hyper-
parameter that controls the preference between
alignment model score and coverage. 2

Therefore, the decision rule is given by

â = argmax
a∈A(f ,e)

{
score(f , e,a, w,θ)

}
(5)

where A(f , e) is a set of all possible alignments
for the sentence pair.

Algorithm 1 shows the consistency-aware
search algorithm for word alignment. The input
of the algorithm includes a source sentence f , a
target sentence e, a set of model parameters θ,
phrase length limit w, pruning parameters β and
b, and the number of most likely alignments to be
retaind n (line 1). Inspired by Liu et al. (2010),

2Note that training algorithms are unchanged. We
only introduce a new search algorithm that takes coverage
into consideration. We leave consistency-aware training
algorithms for arbitrary alignment models for future work.

1231



the algorithm starts with an empty alignment a
together with an empty phrase set B. We use
open to store active alignments during search and
N to store top-n alignments after search (lines
2-4). The procedure ADD(open, 〈a,B〉, β, b)
adds 〈a,B〉 to open and discards any alignment
that has a score worse than β multiplied by the
best score in the list or the score of the b-th best
alignment (line 5). For each iteration (line 6), we
use a list closed to store promising alignments
that have higher scores than the current alignment
(line 8). For every possible link l (line 9), the
algorithm produces a new alignment a′ and
updates the phrase set by calling a procedure
UPDATE(f , e,a, l,B, w) (lines 10-11). Then, the
algorithm calls a procedure GAIN(f , e,a,a′, w,θ)
to calculate the difference of model score after
adding the link l:

score(f , e,a′, w,θ)− score(f , e,a, w,θ)

If a′ has a higher score, it is added to closed
(line 13). We also update N to retain the top
n alignment explored during the search (line 15).
This process iterates until the model score does not
increase.

Algorithm 2 describes how to update the set
of extracted bilingual phrases after adding a link.
Our idea is to only update the phrases near the
added link l and keep other phrases unchanged.
This strategy improves the efficiency by avoiding
extracting phrases from the entire sentence pair.
The algorithm first removes bilingual phrases that
are either in the same row or in the same column
with l (lines 2-7). For example, in Figure 1,
the following bilingual phrases are removed after
adding the link between “huiwu” and “hold”
because the link breaks the consistency:

(“shounao huiwu”, “summit”)
(“juxing”, “hold”)

Other phrases out of the reach of the added link
remain unchanged.

Then, the algorithm extracts bilingual phrases
near l by calling the procedure EXTRACT. Note
that the phrase extraction is restricted to a local
region (j1, j2, i1, i2) by the phrase length limit w.
We use l.i and l.j to denote the source and target
positions of the link, respectively.

coverage BLEU
Ch+l 24.89
Ch+t 23.16
Cs+l 24.69
Cs+t 25.41

Table 1: Comparison of different settings of
coverage on the Chinese-English dataset using
Moses. “h” denotes “hard”, “s” denotes “soft”,
“l” denotes “loose”, and “t” denotes “tight”. The
BLEU scores were calculated on the development
set. For quick validation, we used a small fraction
of the training data to train the phrase-based
model.

5 Experiments

5.1 Setup
5.1.1 Languages and Datasets
We evaluated our approach in terms of alignment
and translation quality on five language pairs:
Chinese-English (ZH-EN), Czech-English (CS-
EN), German-English (DE-EN), Spanish-English
(ES-EN), and French-English (FR-EN). The eval-
uation metrics for alignment and translation are
alignment error rate (AER) (Och and Ney, 2003)
and case-insensitive BLEU (Papineni et al., 2002),
respectively.

For Chinese-English, the training data consists
of 1.2M pairs of sentences with 30.9M Chinese
words and 35.5M English words. We used
the SRILM toolkit (Stolcke, 2002) to train a 4-
gram language model on the Xinhua portion of
the English GIGAWORD corpus, which contains
398.6M words. For alignment evaluation, we used
the Tsinghua Chinese-English word alignment
evaluation data set (Liu and Sun, 2015). 3 For
translation evaluation, we used the NIST 2006
dataset as the development set and the NIST 2002,
2003, 2004, 2005 and 2008 datasets as the test
sets.

For other languages, the training data is Euro-
parl v7. The English language model trained
on the Xinhua portion of the English GIGA-
WORD corpus was also used for translation from
European languages to English. For translation
evaluation, we used the “news-test2012” dataset
that contains 3,003 sentences as the development
set and the “news-test2013” dataset that contains
3,000 sentences as the test set.

3http://nlp.csai.tsinghua.edu.cn/˜ly/systems/TsinghuaAlig
ner/TsinghuaAligner.html
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method # bp # sp # tp # sw # tw Cs+t Cs+l AER BLEU
C→ E 49.8M 33.0M 14.1M 80.4K 89.5K 73.76 82.82 29.21 30.49
E→ C 66.0M 14.9M 43.1M 80.0K 82.2K 74.58 86.49 33.04 29.76
Intersection 465.6M 64.3M 72.5M 133.1K 165.0K 72.46 98.52 28.01 29.90
Union 11.8M 7.4M 7.8M 51.3K 50.5K 53.17 54.34 32.80 30.24
GDF 15.9M 9.6M 10.0M 64.7K 62.2K 63.12 64.45 30.56 30.40
phrase count 388.7M 58.5M 63.7M 133.4K 164.5K 78.42 99.52 25.70 30.16
this work 46.0M 20.6M 21.7M 130.8K 159.6K 91.25 98.34 25.77 31.33

Table 2: Comparison of different alignment methods on the Chinese-English dataset. “GDF” denotes the
grow-diag-final heuristic. “phrase count” denotes optimizing with respect to maximizing the number of
extracted tight phrases. We used Moses to extract loose phrases from word-aligned training data for all
methods. “# bp” denotes the number of extracted bilingual phrases, “# sp” denotes the number of source
phrases, “# tp” denotes the number of target phrases, “# sw” denotes the source vocabulary size, “# tw”
denotes the target vocabulary size. We report BLEU scores on the NIST 2005 test set.

alignment NIST06 NIST02 NIST03 NIST04 NIST05 NIST08
generative 29.60 31.84 31.68 31.80 30.40 24.53
+coverage 30.63** 32.89** 32.77** 32.96** 31.33** 25.25**

discriminative 28.98 32.31 31.69 31.89 30.65 23.20
+coverage 29.98** 32.93** 32.45** 32.45** 31.10** 24.67**

Table 3: Translation evaluation on different alignment models. We apply our approach to both generative
and discriminative alignment models. “generative” denotes applying the grow-diag-final heuristic to
the alignments produced by IBM Model 4 in two directions. “discriminative” denotes the log-linear
alignment model (Liu et al., 2010). Adding coverage leads to significant improvements. We use “**” to
denote that the difference is statistically significant at p < 0.01 level.

5.1.2 Alignment Models
We apply our approach to both generative and
discriminative alignment models. For generative
models, we used GIZA++ (Och and Ney, 2003) to
train IBM Model 4 in two directions. To calculate
a model score for symmetrized alignments, we fol-
low Liang et al. (2006b) to leverage link posterior
marginal probabilities. For discriminative models,
we used the open-source toolkit TsinghuaAligner
(Liu and Sun, 2015) that implements the log-linear
alignment model as described in (Liu et al., 2010).
The model score for the log-linear model is also
defined using link posteriors.

5.1.3 Translation Models
Two kinds of translation models, phrase-based
(Koehn et al., 2003) and hierarchical phrase-based
(Chiang, 2007), are used to evaluate whether
our approach improves the correlation between
alignment and translation. For the phrase-based
model, we used the open-source toolkit Moses
(Koehn and Hoang, 2007). For the hierarchical
phrase-based model, we used an in-house re-
implementation on par with state-of-the-art open-

source decoders.

5.2 Comparison of Different Settings
We first investigate the optimal setting for
coverage (hard vs. soft, tight vs. loose) on the
Chinese-English dataset. For quick validation,
we used a subset of the training data to train the
phrase-based model using Moses. We used the
development set to optimize the scaling factor λ
(see Eq. (4)) and set it to 0.3 in our experiments.

Table 1 compares Ch+l, Ch+t, Cs+l, and Cs+t.
We find that the “soft + tight” combination (i.e.,
Cs+t) yields the highest BLEU score on the
development set. One possible reason is that
tight phrases are usually of high quality and
soft coverage allows for taking full advantage of
the training data. On the contrary, Ch+t yields
the lowest BLEU score because hard coverage
fails to distinguish between partially recoverable
training examples as it assigns zero to all partially
recoverable data.

Then, we investigate the effect of the phrase
length limit w in Algorithm 1 on translation
quality. We find w = 7 achieves the best result,
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which is consistent with the default setting in
Moses. As a result, we used Cs+t and set w = 7
in the following experiments.

5.3 Comparison of Different Alignment
Methods

We compare our approach with a number of
alignment methods in terms of AER and BLEU,
including IBM Model 4 in two directions (C →
E and E → C), symmetrization heuristics (Inter-
section, Union, grow-diag-final), and consistency-
aware models (tight phrase count and coverage).
We used Moses to extract loose bilingual phrases
from word-aligned bilingual corpora from all
methods. Note that our approach uses Cs+t for
finding alignments, from which Moses extracts
loose phrases.

Table 2 lists the numbers of extracted bilingual
phrases (“# bp”), source phrases (“# sp”), target
phrases (“# tp”), source vocabulary size (“# sw”),
and target vocabulary size (“# tw”). We find
that a very large number of loose phrases can be
extracted from the Intersection alignments, which
also have the highest vocabulary sizes. However, a
large portion of words in these phrases are actually
unaligned, resulting in low translation quality.

We observe that adding consistency, either in
terms of phrase count or coverage, significantly
improves alignment accuracy by a large margin,
suggesting that imposing structural constraint
helps to reduce alignment errors. Our approach
outperforms all methods in terms of BLEU
significantly. Note that the coverage itself does
not correlate well with BLEU. It is important
to achieve a balance between model score and
coverage. As mentioned in Section 5.2, we set
λ = 0.3 in our experiments.

5.4 Translation Evaluation on Different
Alignment Models

We apply our approach to both generative (Brown
et al., 1993) and discriminative (Liu et al., 2010)
alignment models. As shown in Table 3, we find
that adding coverage to the optimization objective
significantly improves the BLEU scores. All
differences are statistically significant at p < 0.01
level. This finding suggests that our approach
generalizes well to various alignment models.

5.5 Translation Evaluation on Different
Translation Models

We also evaluated our approach on both phrase-
based and hierarchical phrase-based models. As
shown in Table 4, adding coverage to generative
models leads to significant improvements for
both models. All the differences are statistically
significant at p < 0.01 level.

Although coverage is designed for extracting
phrases, using coverage is still beneficial to hier-
archical phrase-based models because hierarchical
phrases are derived from phrases consistent with
word alignment. 4

5.6 Translation Evaluation on Different
Language Pairs

Finally, we report BLEU scores across five
language pairs in Table 5: Chinese-English (ZH-
EN), Czech-English (CS-EN), German-English
(DE-EN), Spanish-English (ES-EN), and French-
English (FR-EN). ZH-EN uses four references and
other language pairs only use single references.

We find that our approach outperforms the
baseline statistically significantly at p < 0.01 for
four language pairs and p < 0.05 for one language
pair. Therefore, using coverage to bridge word
alignment and machine translation can hopefully
benefit more languages.

6 Related Work

Our work is inspired by three lines of research:
(1) reachability in discriminative training of
translation models, (2) structural constraints for
alignment, and (3) learning with constraints.

6.1 Reachability in Discriminative Training
of Translation Models

Discriminative training algorithms for statistical
machine translation often need reachable training
examples to find full derivations for updating
model parameters (Liang et al., 2006a; Yu et
al., 2013). Yu et al. (2013) report that only
32.1% sentences in the Chinese-English training
data that contain 12.7% words are fully reachable

4We also tested our approach on syntax-based models
(Galley et al., 2006; Liu et al., 2006) but failed to achieve
significant improvements. The reason is that extracting
syntactic translation rules often imposes an additional con-
straint: a phrase must be a constituent that is subsumed by
a subtree. We believe that appending such constraint to the
optimization objective will hopefully benefit syntax-based
translation models. We leave this for future work.
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translation alignment NIST06 NIST02 NIST03 NIST04 NIST05 NIST08
phrase generative 29.60 31.84 31.68 31.80 30.40 24.53

+coverage 30.63** 32.89** 32.77** 32.96** 31.33** 25.25**
hierarchical generative 30.43 33.36 32.58 32.72 31.57 24.21

+coverage 31.60** 34.67** 34.14** 34.24** 32.73** 24.89**

Table 4: Translation evaluation on different translation models. For translation, We used both phrase-
based and hierarchical phrase-based models. For alignment, we used the generative model. “generative”
denotes applying the grow-diag-final heuristic to the alignments produced by IBM Model 4 in two
directions. Adding coverage leads to significant improvements. We use “**” to denote that the difference
is statistically significant at p < 0.01 level.

alignment ZH-EN CS-EN DE-EN ES-EN FR-EN
generative 30.40 19.89 21.13 26.39 26.22
+coverage 31.33** 20.04* 21.63** 26.79** 26.76**

Table 5: Translation evaluation on five language pairs. “generative” denotes applying the grow-diag-final
heuristic to the alignments produced by IBM Model 4 in two directions. We use “*” and“**” to denote
that the difference is statistically significant at p < 0.05 and p < 0.01, respectively. Note that ZH-EN
uses four references and other language pairs only use single references.

due to noisy alignments and distortion limit. They
find that most reachable sentences are short and
generally literal.

We borrow the idea of measuring the degree
of recovering training data from reachability but
ignore the dependency between bilingual phrases
for efficiency. To calculate reachability, one
needs to figure out a full derivation, in which the
bilingual phrases cover the training data and do not
intersect with each other. Yu et al. (2013) indicate
that using forced decoding to select reachable
sentences with an unlimited distortion limit runs
inO(2nn3) time. In contrast, calculating coverage
is much easier and more efficient by ignoring the
dependency between phrases but still retains the
spirit of measuring recovery.

6.2 Structural Constraints for Alignment

Modeling structural constraints in alignment has
received intensive attention in the community,
either directly modeling phrase-to-phrase align-
ment (Marcu and Wong, 2002; DeNero and
Klein, 2008; Cohn and Blunsom, 2009) or inter-
secting synchronous grammars with alignment
(Wu, 1997; Zhang and Gildea, 2005; Haghighi et
al., 2009).

Our work is in spirit most close to (Deng and
Zhou, 2009) and (DeNero and Klein, 2010). Deng
and Bowen (2009) cast combining IBM Model 4
alignments in two directions as an optimization
problem driven by an effectiveness function. They

evaluate the impact of adding or removing a
link with respect to phrase extraction using the
effectiveness function of phrase count. The major
difference is that we generalize their idea to
arbitrary alignment models in the search phase
rather than bidirectional alignment combination in
the post-processing phase. In addition, we find
that using coverage instead of phrase count results
in better translation performance (see Table 2).

DeNero and Klein (2010) develop a discrimi-
native model of extraction sets and optimize an
extraction-based loss function with respect to
translation. Their model is capable of predicting
the extracted phrase set. While their approach
relies on annotated data for training the discrimi-
native model, our method only needs to tune
the scaling factor λ on the development set. In
addition, our approach is very general and can
easily apply to arbitrary alignment models by
appending a term to the optimization objective.

6.3 Learning with Constraints

Our work is also related to learning with con-
straints such as constraint-driven learning (Chang
et al., 2007) and posterior regularization (Ganchev
et al., 2010). The basic idea is to inject
prior knowledge to the model as a regularization
term. The major difference is that our coverage
regularizer is independent of model parameters.
As a result, alignment models can still be trained
independently.
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7 Conclusion

In this work, we have presented a general frame-
work for optimizing word alignment with respect
to machine translation. We introduce coverage
to measure how well extracted bilingual phrases
can recover the training data. We develop a
consistency-aware search algorithm that calculates
coverage on the fly during search efficiently.
Experiments show the our approach is effective
in both alignment and translation tasks across
various alignment models, translation models, and
language pairs.

In the future, we plan to apply our approach to
syntax-based models (Galley et al., 2006; Liu et
al., 2006; Shen et al., 2008) and include the con-
stituency constraint in the optimization objective.
It is also interesting to develop consistency-aware
training algorithms for word alignment.
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Abstract

Lexical selection is of great importance
to statistical machine translation. In this
paper, we propose a graph-based frame-
work for collective lexical selection. The
framework is established on a translation
graph that captures not only local associ-
ations between source-side content words
and their target translations but also target-
side global dependencies in terms of relat-
edness among target items. We also in-
troduce a random walk style algorithm to
collectively identify translations of source-
side content words that are strongly related
in translation graph. We validate the ef-
fectiveness of our lexical selection frame-
work on Chinese-English translation. Ex-
periment results with large-scale training
data show that our approach significantly
improves lexical selection.

1 Introduction

Lexical selection, which selects appropriate trans-
lations for lexical items on the source side, is a cru-
cial task in statistical machine translation (SMT).
The task is closely related to two factors: 1) asso-
ciations of selected translations with lexical items
on the source side, including corresponding source
items and their neighboring words, and 2) depen-
dencies1 between selected target translations and
other items on the target side.

As translation rules and widely-used n-gram
language models can only capture local associ-
ations and dependencies, we have witnessed in-

∗Corresponding author.
1Please note that dependencies in this paper are not nec-

essarily syntactic dependencies.

creasing efforts that attempt to incorporate non-
local associations/dependencies into lexical selec-
tion. Efforts using source-side associations mainly
focus on the exploitation of either sentence-level
context (Chan et al., 2007; Carpuat and Wu, 2007;
Hasan et al., 2008; Mauser et al., 2009; He et
al., 2008; Shen et al., 2009) or the utilization of
document-level context (Xiao et al., 2011; Ture et
al., 2012; Xiao et al., 2012; Xiong et al., 2013).
In contrast, target-side dependencies attract little
attention, although they have an important im-
pact on the accuracy of lexical selection. The
most common practice is to use language mod-
els to estimate the strength of target-side depen-
dencies (Koehn et al., 2003; Shen et al., 2008;
Xiong et al., 2011). However, conventional n-
gram language models are not good at capturing
long-distance dependencies. Consider the exam-
ple shown in Figure 1. As the translations of pol-
ysemous words “wèntı́”, “chı́yǒu” and “lı̀chǎng”
are far from each other, our baseline can only
correctly translate “lı̀chǎng” as “stance”. It in-
appropriately translates the other two words as
“problem” and null, respectively, even with the
support of an n-gram language model. If we
could model long-distance dependencies among
target translations of source words “wèntı́”(issue),
“chı́yǒu”(hold) and “lı̀chǎng”(stance), these trans-
lation errors could be avoided.

In order to model target-side global dependen-
cies, we propose a novel graph-based collective
lexical selection framework for SMT. Specifically,

• First, we propose a translation graph to model
not only local associations between source-
side content words and their target trans-
lations but also global relatedness among
target-side items.
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           wèntí = {problem,   question,   issue ...}
chíyŏu = {hold,   null,   possess ...}
lìchăng = {stance,   position ...}

  Tran: For this problem , two sides of the same or similar stance .
  Ref:    Both sides hold the same or similar position on this issue .

  Src: 对于/P 这/DT 问题/NN ，/PU 双方/PN 持有/VV 相同/VA 的/DEG 立场/NN
   duìyú      zhè        wèntí       ,  shuāngfāng   chíyŏu    xiāngtóng    de          lìchăng

Figure 1: A Chinese-English translation example to illustrate the importance of target-side long-distance dependencies for lex-
ical selection. Dotted lines show long-distance dependencies of source content words. Three content words “wèntı́”, “chı́yǒu”,
“lı̀chǎng”, and their candidate translations with high translation probabilities are also presented. Src: A Chinese sentence with
part-of-speech tags. Tran: system output. Ref: reference translation.

• Second, we introduce a collective lexical se-
lection algorithm, which can jointly identify
translations of all source-side content words
in the translation graph.

• Finally, we incorporate confidence scores
of candidate translations in the translation
graph, which are derived by the collective se-
lection algorithm, into SMT to improve lexi-
cal selection.

We validate the effectiveness of our graph-
based lexical selection framework on a hierarchi-
cal phrase-based system (Chiang, 2007). Exper-
iment results on the NIST Chinese-English test
sets show that our approach significantly improves
translation quality.

We begin in Section 2 with the construction
of translation graph for each translated sentence.
Then, we propose a graph-based collective lexical
selection framework for SMT in Section 3. Ex-
periment results are reported in Section 4. We
summarize and compare related work in Section
5. Finally, Section 6 presents conclusions and di-
rections for future research.

2 Translation Graph

Formally, a translation graph is a weighted graph
G=(N,E). In the node set N , each node repre-
sents either a source word or a target translation
that contains one or multiple target words. In the
edge set E, an edge linking a source word to a tar-
get translation is referred to as a source-target as-
sociation edge, and an edge connecting two target
translations is called as a target-target relatedness
edge. In Section 2.1 and 2.2, we will answer the
following two questions on the translation graph:

• Which source words and their translations
should be included in the translation graph?

• How can we measure the strength of the
above two types of relations in the graph with
edge weights?

2.1 Graph Nodes

For a source sentence, the most ideal translation
graph is a graph that includes all source words
and their candidate translations. However, this
ideal graph has two problems: intensive compu-
tation for graph inference and difficulty in mod-
eling dependencies between function and content
words. In order to get around these two issues, we
only consider lexical selection for source content
words2.

We first identify source-side content word pairs
using statistical metrics, and then keep word pairs
with a high relatedness strength in the translation
graph. To be specific, we use pointwise mutual in-
formation (PMI) (Church and Hanks, 1990) and
co-occurrence frequency to measure the related-
ness strength of two source-side words s and s′

within a window ds. Content word pairs will
be kept when their co-occurrence frequencies are
more than εcf times in our training corpus and
PMI values are larger than εpmi. In this process,
we remove noisy word pairs using the following
heuristic rules: (1) As an adjective only has rela-
tions with its head nouns or dependent adverbs,
we remove all word pairs where an adjective is
paired with words other than its head nouns or
dependent adverbs; (2) We apply a similar con-
straint to adverbs too, since the same thing hap-
pens to an adverb and its head verb or head ad-

2In this work, we consider nouns, verbs, adjectives and
adverbs as content words in the source/target language.
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Figure 2: Translation graph of the example shown in Figure 1. Relatedness scores on edges are shown for two group of
translations {“problem”, null, “stance”} (green) and {“issue”, “hold”, “position”} (blue), which are estimated with PMI.
Note that the null node does not have any relations with other nodes. Besides, two translation combinations {“problem”, null,
“stance”} (green) and {“issue”, “hold”, “position”} (blue) have different strengths of relatedness.

jective. For example, in the Chinese sentence in
Figure 1, the adjective “xiāngtóng” is only related
to the noun “lı̀chǎng” although it also frequently
co-occur with “wèntı́”.

After identifying source-side content word
pairs, we collect all target translations of these
content words from extracted bilingual rules ac-
cording to word alignments. These content words
and target translations are used to build a transla-
tion graph, where each node represents a source-
side content word or a candidate target transla-
tion. Note that there may be hundreds of differ-
ent translations for a source word. For simplicity,
we only consider target translations from transla-
tion options that are adopted by the decoder after
rule filtering. Let’s revisit the example in Figure 2,
we include the following target translations in the
translation graph: “problem”, “question”, “issue”,
“hold”, null, “possess”, “stance” and “position”.

2.2 Edges and Weights

In this section, we introduce how we calculate
weights for two kinds of edges in a translation
graph.

2.2.1 Source-Target Association Edge
Connecting a source-side content word and its
candidate target translations, a source-target asso-
ciation edge provides a way to propagate transla-
tion association evidence from a source word to
its candidate translations. Obviously, the stronger
the association between a source word and its can-
didate translation, the more evidence the corre-
sponding edge will propagate. For each source-
side content word, we obtain its candidate trans-

lations via the kept word alignments. Following
Xiong et al. (2014), we allow a target translation
to be either a phrase of length up to 3 words or
null when s is not aligned to any word in the cor-
responding bilingual rule. We define the weight of
the edge from a source-side content word s to its
target translation t̃ as follows:

Weight(s→ t̃) =
TP (s, t̃)∑

t̃′∈N(s) TP (s, t̃′)
(1)

where N(s) denotes the set of candidate target
translations of s kept on the translation graph,
and TP (s, t̃) measures the probability of s be-
ing translated to t̃. It is very important to note
that there is no evidence propagated from a target
translation to a source word, as source-target asso-
ciation edges only go from a source-side content
word to its translations.

We compute TP (s, t̃) according to the principle
of maximal likelihood as follows:

TP (s, t̃) =
count(s, t̃)
count(s)

(2)

where count(s, t̃) indicates how often s is aligned
to t̃ in the training corpus. Using this method,
we can compute the translation probabilities of
the source-target association edges in Figure 2 as
follows: TP(“wèntı́”, “issue”)=0.31, TP(“chı́yǒu”,
“hold”)=0.22 and TP(“lı̀chǎng”, “position”)=0.47.

2.2.2 Target-Target Relatedness Edge
Connecting two target translations of different re-
lated source content words, a target-target relat-
edness edge enables translation graph to capture
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dependencies between translations of any two dif-
ferent source words.

Computing the weight of a target-target related-
ness edge is crucial for our method. Intuitively,
the stronger co-occurrence strength two transla-
tions have, the more evidence should be propa-
gated between them. Therefore we calculate the
weight of a target-target related edge based on the
co-occurrence strength of two translations linked
by the edge. Formally, given the translation t̃ of
source-side content word s and the translation t̃′

of source-side content word s′, the weight of the
edge from t̃ to t̃′ is defined as follows:

Weight(t̃→ t̃′)=
RS(t̃, t̃′)∑

t̃′′∈N(t̃)RS(t̃, t̃′′)
(3)

where N(t̃) denotes the set of candidate transla-
tions that link to t̃, and RS(t̃, t̃′) measures the
strength of relatedness between t̃ and t̃′ which is
calculated as the average word-level relatedness
over all content words in these two translations t̃
and t̃′.

As for the word-level relatedness RS(t, t′) for
a content word pair (t, t′), we estimate it with
the following two approaches over collected co-
occurring word pairs within a window of size dt:
(1) RS(t, t′) is computed as a bigram conditional
probability plm(t′|t) via the language model; (2)
Following (Xiong et al., 2011) and (Liu et al.,
2014), we employ PMI to define RS(t, t′) as
ln p(t,t′)

p(t)p(t′) .

3 Collective Lexical Selection Algorithm

Based on the translation graph, we propose a col-
lective lexical selection algorithm to jointly iden-
tify translations of all source words in the graph.

3.1 Problem Statement and Solution Method

As stated previously, the translation of a source-
side content word s should be: 1) associated with
s; 2) related to the translations of other source-side
content words. Thus, in the translation graph, the
translation of s should be a target-side node which
has: 1) an association edge with the node of s;
2) many relatedness edges with other target-side
nodes that represent translations of other source
words.

Let’s revisit Figure 2. If we know that the trans-
lation of “wèntı́” is “issue”, the relatedness be-
tween (“issue”, “hold”) and between (“issue”,

“position”) can provide evidences that “hold” and
“position” are the correct translations of “chı́yǒu”
and “lı̀chǎng”, respectively. On the other hand,
the candidate translation “problem” is less related
to “hold” and “position”, which may suggest that
it is not likely to be the correct translation of
“wèntı́”, even if it has a strong source-target as-
sociation relation with “wèntı́”. However, in the
translation graph, the correct target translation of
a source word depends on correct translations of
other source words in the graph, and vice versa.
So how do we find these correct translations?

We propose a Random Walk (Gobel and Jagers,
1974) style algorithm to solve this problem, aim-
ing to use both local source-target associations
and global target-target relatedness simultane-
ously during translation. In our algorithm, we as-
sign each node an evidence score in the transla-
tion graph, which indicates either the importance
of a source word (for a source word node) or the
confidence of a target translation being a correct
translation (for a target word node). Specifically,
we perform collective inference on the translation
graph as follows:

• First, we set initial evidence scores for nodes
in the translation graph.

• Second, evidence scores are simultaneously
updated by propagating evidences along
edges in the translation graph.

In the following sub-section, we describe the two
steps in detail.

3.2 Details of Our Algorithm

Using the algorithm shown in Algorithm 1, we
iteratively derive evidence scores for candidate
translations.

3.2.1 Notations
For a translation graph with n nodes, we assign
each node an index from 1 to n and use this index
to represent the node. We also use the following
two notations:

• The evidence vector V: an n-dimensional
vector where the ith component Vi is the ev-
idence score contained in this node (if node
i corresponds to a source word), or the evi-
dence score from the related translations (if
node i corresponds to a target translation). In
particular, we use V(0) to denote the initial
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Algorithm 1 Collective Inference in Translation Graph.

Input: S: the set of source-side content words, and S(i)

denotes the source word of node i;
k: the number of source-side content words ;
T: the set of all candidate target translations, and T (j)

denotes the target translation of node j;
l: the number of candidate target translations;
λ: the reallocation weight;
maxIter: the maximum iteration number;
ε: the difference threshold;

1: for i = 1, 2..., k
2: for j = 1, 2..., l
3: if S(i) is linked to T(j)

4: Mk+j,i←Weight(S(i)→ T(j))
5: for j1 = 1, 2..., l
6: for j2 = 1, 2..., l
7: if T(j1) is linked to T(j2)

8: Mk+j2,k+j1 →Weight(T(j1)→ T(j2))
9: for i = 1, 2..., k

10: V(0)
i ← Importance(S(i))

11: for j = 1, 2..., l
12: V(0)

k+j ← 0

13: δ←∞
14: r← 1
15: while r ≤maxIter && δ > ε do
16: V(r)← (1− λ) ×M × V(r−1) + λ × V(0)

17: δ← ‖V(r) − V(r−1)‖2
18: r← r + 1

19: end while
20: for i = 1, 2..., k
21: for j = 1, 2..., l
22: if S(i) is linked to T(j)

23: LexiTable(S(i), T(j))← normalize(V(r)
k+j)

Return: LexiTable;

evidence vector, and V(r) to represent the ev-
idence vector we obtain at the rth iteration.

• The evidence propagation matrix M: an
n×n matrix where Mij is the evidence prop-
agation ratio from node j to node i, and its
value is the weight of the edge from node j
to node i.

3.2.2 Algorithm
In Algorithm 1, we jointly infer the evidence
scores of all candidate translations in the follow-
ing three steps.

In Step 1, we calculate the evidence propaga-
tion matrix M according to the method described
in Section 2.2 (equations (1) and (3)) (Lines 1-8).

In Step 2, we adopt different methods to set the
value of V(0) according to the node type. If the
node corresponds to a source word, we set the ini-
tial value using its importance score in the trans-

lation graph, as implemented in (Han et al. 2011)
(Lines 9-10). We calculate the importance score
of the source word s using tf.idf as follows:

Importance(s) =
tf.idf(s)∑

s′∈Nsrc
tf.idf(s′)

(4)

where Nsrc is the set of source words in the trans-
lation graph. If the node corresponds to a target
translation, its initial evidence score is 0 (Lines
11-12).

In Step 3, evidences are simultaneously rein-
forced by propagating them among semantically
related translations (Lines 13-19). Specific to our
algorithm, we update them by propagating evi-
dences according to different types of relations in
the evidence propagation matrix M. Formally, the
recursive update of the evidence vector is defined
as follows:

V(r) = M× V(r−1) (5)

where r is the number of iterations.
One problem with the above equation is that

some nodes in the translation graph do not have
evidence outgoing edges, such as translation nodes
containing only function words or the null node.
The evidence will disappear when passing through
these nodes. To solve this problem, we propagate
evidence in the form of reallocation: we reallocate
a fraction of evidence to the initial evidence vector
V(0) at each step. The new recursive update of the
evidence vector is formulated as follows:

V(r) = (1− λ)×M× V(r−1) + λ× V(0) (6)

where λ ∈ (0, 1) is the fraction of the reallocated
evidence. We keep updating the evidence vec-
tor according to this equation (Line 16), until the
maximal number of iteration maxIter is reached
or the Euclidean distance (Line 17) between evi-
dence vectors calculated in two consecutive itera-
tions is less than a pre-defined threshold ε (Line
15).

In this way, we jointly infer the evidence scores
of all candidate target translations in the transla-
tion graph. Table 1 gives the evidence scores of
the example in Figure 2. We can find that our sys-
tem enhanced with target translation dependencies
is able to select correct translations.

3.2.3 Integration of Derived Evidence Score
For each translated sentence, we may build multi-
ple translation graphs. For each translation graph,
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scores of the source words scores of the target translations
wèntı́ chı́yǒu lı̀chǎng problem question issue hold null possess stance position

V(0) 0.2015 0.3989 0.3996 0 0 0 0 0 0 0 0
V(r) 0.0302 0.0598 0.0599 0.0533 0.0774 0.1071 0.1218 0.0244 0.0604 0.1186 0.1486

Table 1: The initial and final evidence scores of some source words and their target translations in Figure 2. Here we set the
reallocation weight λ as 0.15. Note that the translations “issue”, “hold” and “position” are given high evidence scores.

we infer evidence scores of translations repre-
sented by graph nodes using the above-mentioned
algorithm before decoding. Then, for each can-
didate translation of a source-side content word,
we normalize its evidence score over the cor-
responding translation graph to form an addi-
tional lexical translation probability (Lines 20-
23). For instance, the normalized evidence score
of “chı́yǒu” translated into “hold” is calculated as
0.1218/(0.1218 + 0.0244 + 0.0604) ≈ 0.5895. In
this way, for each bilingual rule with word align-
ments, we will obtain a new lexical weight which
can be used together with the original translation
probabilities and lexical weight to improve lexical
selection in SMT.

4 Experiments

4.1 Setup
Our bilingual training corpus is the combina-
tion of the FBIS corpus and Hansards part of
LDC2004T07 corpus (1M parallel sentences,
54.6K documents, with 25.2M Chinese words
and 29M English words). We word-aligned them
using GIZA++ (Och and Ney, 2003) with the op-
tion “grow-diag-final-and”. We chose the NIST
evaluation set of 2005 (MT05) as the development
set, and the sets of MT06/MT08 as test sets. We
used SRILM Toolkit (Stolcke, 2002) to train one
5-gram language model on the Xinhua portion of
Gigaword corpus.

To construct translation graphs, we first used the
ZPar toolkit3 and the Stanford toolkit4 to prepro-
cess (word segmentation, PoS tagging and so on)
Chinese and English sentences, respectively. We
used the Chinese part of our bilingual corpus and
an additional Chinese LDC Xinhua news corpus
(10.2M sentences with 279.9M words) as train-
ing data to collect Chinese word pairs. We set
window size ds=15, thresholds εpmi=0, εcf=5 to
identify Chinese related word pairs in the NIST
translated sentences. Averagely, these three sets
contain 13.5, 10.3 and 9.5 content words used

3http://people.sutd.edu.sg/∼yue zhang/doc/index.html
4http://nlp.stanford.edu/software

to build translation graphs per sentence, respec-
tively. Using the English part of our bilingual cor-
pus and the Xinhua portion of Gigaword corpus
as training data, we set window size dt=20, and
used the SRILM toolkit with Witten-Bell smooth-
ing and PMI to calculate relatedness strengths for
target-side translations. To avoid data sparseness,
we build the graph using the surface forms of
words while calculating the word relatedness at
the lemma level. To achieve this, we converted
each word into its corresponding lemma with the
exception of adjectives and adverbs. In the proce-
dure of collective lexical selection, the difference
threshold ε was set as 10−10, and the maximal it-
eration number maxIter 100.

We reimplemented the decoder of Hiero (Chi-
ang, 2007), a famous hierarchical phrase-based
(HPB) system. HPB system is a formally syntax-
based system and delivers good performance in
various translation evaluations. During decod-
ing, we set the ttable-limit as 20, the stack-size as
100. The translation quality is evaluated by case-
insensitive BLEU-4 metric (Papineni et al., 2002).
To alleviate the impact of the instability of MERT
(Och, 2003), we ran it three times for each exper-
iment and reported the average BLEU scores as
suggested in (Clark et al., 2011). Finally, we con-
ducted paired bootstrap sampling (Koehn, 2004)
to test the significance in BLEU score differences.

4.2 Our Method vs Other Methods

In the first group of experiments, we investigated
the effectiveness of our model by comparing it
against the baseline as well as two additional mod-
els: (1) lexicalized rule selection model (He et
al., 2008) (LRSM), which employs local context
to improve rule selection in the HPB system; (2)
topic similarity model (Xiao et al., 2012)5 (TSM),
which explores document-level topic information
for translation rule selection in the HPB system.
Furthermore, we combined our model with the
two models to see if we could obtain further im-
provements. For this, we integrated the new lexi-

5We used 30 topics following (Xiao et al., 2012).
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System MT06 MT08 Avg
Baseline 30.25 21.25 25.75

LRSM 31.12 21.98 26.55
TSM 30.79 21.90 26.35

GM(LM) 30.64 21.78 26.21
GM(PMI) 31.02 21.77 26.40

LRSM +GM(PMI) 31.66 22.23 26.95
TSM +GM(PMI) 31.34 22.26 26.80

Table 2: Experiment results on the test sets with λ=0.15. Avg
= average BLEU scores, GM(LM) and GM(PMI) denote our
model using the measure based on language model and PMI,
respectively.

cal weight learned by our model as a new feature
into the LRSM/TSM system.

Table 2 reports the results. All models outper-
form the baseline. Especially, our graph-based
lexical selection model GM(PMI) achieves an av-
erage BLEU score of 26.40 on the two test sets,
which is higher than that of the baseline by 0.65
BLEU points. This improvement is statistically
significant at p<0.01. The BLEU score of our
model is close to those of LRSM and TSM, which
achieve an average BLEU score of 26.55 and
26.35 on the two test sets, respectively. As PMI
is slightly better than LM in our model, we use
PMI in experiments hereafter.

The combination of our model and LRSM is
able to further improve translation quality in terms
of BLEU. In this case, the average BLEU score
of the improved system is 26.95, with 0.4 BLEU
points higher than LRSM. When combining our
model with TSM, we obtain an average BLEU
score of 26.80, which is better than TSM by
0.45 BLEU points. The two improvements over
LRSM and TSM are also statistically significant
at p<0.05. These experiment results suggest that
exploring long-distance dependencies among tar-
get translations is complementary to the previous
lexical selection methods which focus on source-
side context information.

In order to know how our approach improves
the performance of the HPB system, we compared
the best translations of the HPB system using dif-
ferent models. We find that our approach really
improves translation quality by utilizing target-
side long-distance dependencies which are, on the
contrary, ignored in previous methods.

For example, the source sentence “... ;â.Å
�c 9�Ú [n] ��/«... ©|� í{³
å...” is translated as follows:

• Ref: ... musharraf and some tribal leaders in

the northern region of [pakistan] last septem-
ber ... the remnant forces of the taliban ...

• Baseline: ... musharraf last september and
[palestine] north of tribal leaders ... the rem-
nants of the taliban ...

• LRSM: ... musharraf last september and
some tribal chiefs of the northern region of
[palestine] ... the remnants of the taliban ...

• LRSM+GM(PMI): ... last september
musharraf and some tribal chiefs of the
northern region of [pakistan] ... the remnants
of the taliban ...

Here both the baseline and LRSM fail to ob-
tain the right translation for the word “n” be-
cause “palestine” has a higher probability than
“pakistan” (0.0374 vs 0.0285). However, in our
model, the long-distance dependencies between
(“musharraf”, “pakistan”) and (“taliban”, “pak-
istan”) help the decoder correctly choose the
translation “pakistan” for “n”.

In yet another example, the source sentence “{
F" � Ø ¯K [�Æ] �� �¡ �1” is
translated as follows:

• Ref: us hopes agreement on north korean nu-
clear issue be fully implemented

• Baseline: us hoped that the dprk nuclear is-
sue is the full implementation

• TSM: us hope that the full implementation of
the nuclear issue

• TSM+GM(PMI): us hope that the dprk
nuclear issue [agreement] to be fully
implemented

Even with TSM, the HPB system did not trans-
late “�Æ” at all because translation rules “X1

�Æ �� ||| X1 is” and “X1 �Æ X2 �1
||| X2 implementation of X1” are used to trans-
late the source sentence by the baseline and TSM
systems respectively. However, in the combined
model TSM+GM(PMI), the differences in relat-
edness scores between (“nuclear”, “agreement”),
(“issue”, “agreement”) and (“agreement”, “im-
plemented”) encourage the enhanced system to se-
lect right translation for this word.
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Figure 3: Experiment results on the test sets using different
reallocation weights.

4.3 Effect of Reallocation Weight λ.

In Eq. (6), the reallocation weight λ determines
which part plays a more important role in our
method. In order to investigate the effect of λ
on our method, we tried different values for λ:
from 0.1 to 0.5 with an increment of 0.05 each
time. The experimental setup is the same as the
previous experiments. Figure 3 shows the aver-
age BLEU scores on the two test sets. Our sys-
tem performs well when λ ranges from 0.1 to 0.25.
The performance drops when λ is larger than 0.25.
A small reallocation weight λ reduces the impact
of initial evidences and local source-side associa-
tions in the collective lexical selection algorithm,
but increases the impact of global dependencies
of target-side translation, which are normally not
considered in previous lexical selection methods.
This performance curve on the values of λ sug-
gests that target-side global dependencies are im-
portant for lexical selection.

5 Related Work

The collective inference algorithm is partially in-
spired by Han et al. (2011) who propose a graph-
based collective entity linking (EL) method to
model global interdependences among different
EL decisions. We successfully adapt this algo-
rithm to lexical selection in SMT. Other related
work mainly includes the following two strands.

(1) Lexical selection in SMT. In order to cap-
ture source-side context for lexical selection, some
researchers propose trigger-based lexicon models
to capture long-distance dependencies (Hasan et
al., 2008; Mauser et al., 2009), and many more re-
searchers build classifiers with rich context infor-
mation to select desirable translations during de-
coding (Chan et al., 2007; Carpuat and Wu, 2007;
He et al., 2008; Liu et al., 2008). Shen et al. (2009)
introduce four new linguistic and contextual fea-

tures for HPB system. We have also witnessed in-
creasing efforts in the exploitation of document-
level context information. Xiao et al. (2011)
impose a hard constraint to guarantee the trans-
lation consistency in document-level translation.
Ture et al. (2012) soften this consistency con-
straint by integrating three counting features into
decoder. Hardmeier et al. (2012, 2013) introduce
a document-wide phrase-based decoder and inte-
grate a semantic language model that cross sen-
tence boundaries into the decoder. Based on topic
models, Xiao et al. (2012) present a topic simi-
larity model for HPB system, where each rule is
assigned with a topic distribution. Also relevant is
the work of Xiong et al. (2013), who use three
different models to capture lexical cohesion for
document-level machine translation. Compared
with the above-mentioned studies, our method fo-
cuses on the exploitation of global dependencies
among target translations, which has attracted lit-
tle attention before.

Different from exploring source-side context,
other researchers pay attention to the utilization
of target-side context information. The com-
mon practice in SMT is to use an n-gram lan-
guage model to capture local dependencies be-
tween translations (Koehn et al., 2003; Xiong et
al., 2011). Yet another approach exploring target-
side context information is proposed by Shen et al.
(2008), who use a dependency language model to
capture long-distance relations on the target side.
Moreover, Zhang et al. (2014) treat translation as
an unconstrained target sentence generation task,
using soft features to capture lexical and syntac-
tic correspondences between the source and tar-
get language. Recently, many researcher have
proposed to use deep neural networks to model
long-distance dependencies of arbitrary length for
SMT (Auli et al., 2013; Kalchbrenner and Blun-
som, 2013; Devlin et al., 2014; Hu et al., 2014;
Liu et al., 2014; Sundermeyer et al., 2014). Our
work is significantly different from these meth-
ods. We use a graph representation to capture local
and global context information, which, to the best
of our knowledge, is the first attempt to explore
graph-based representations for lexical selection.
Furthermore, our model do not resort to any syn-
tactic resources such as dependency parsers of the
target language.

(2) Random walk for SMT. Because of the
advantage of global consistency, random walk al-
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gorithm has been applied in SMT. For example,
Cui et al. (2013) develop an effective approach
to optimize phrase scoring and corpus weighting
jointly using graph-based random walk. Zhu et
al. (2013) apply a random walk method to dis-
cover implicit relations between the phrases of dif-
ferent languages. Aiming to better evaluate trans-
lation quality at the document level, Gong and Li
(2013) run PageRank algorithm to assign weights
to words in translation evaluation. Different from
these studies, the key interest of our research lies
in the lexical selection with random walk.

6 Conclusion and Future Work

This paper has presented a novel graph-based
collective lexical selection method for SMT. We
build translation graphs to capture local source-
side associations and global target-side dependen-
cies, and propose a purely collective inference al-
gorithm to jointly identify target translations of
source-side content words in translation graphs.
Our method capitalizes on capabilities of transla-
tion graphs to represent both local and global rela-
tions on the source/target side. Experiment results
demonstrate the effectiveness of our method.

In the future, we plan to further improve our
model by capturing semantic relatedness among
source words. Additionally, we also want to
jointly model different levels of context informa-
tion in a unified framework for SMT.
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Saša Hasan, Juri Ganitkevitch, Hermann Ney, and
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Abstract

Learning semantic representations and
tree structures of bilingual phrases is ben-
eficial for statistical machine translation.
In this paper, we propose a new neu-
ral network model called Bilingual Corre-
spondence Recursive Autoencoder (BCor-
rRAE) to model bilingual phrases in trans-
lation. We incorporate word alignments
into BCorrRAE to allow it freely ac-
cess bilingual constraints at different lev-
els. BCorrRAE minimizes a joint objec-
tive on the combination of a recursive au-
toencoder reconstruction error, a structural
alignment consistency error and a cross-
lingual reconstruction error so as to not
only generate alignment-consistent phrase
structures, but also capture different lev-
els of semantic relations within bilingual
phrases. In order to examine the effective-
ness of BCorrRAE, we incorporate both
semantic and structural similarity features
built on bilingual phrase representations
and tree structures learned by BCorrRAE
into a state-of-the-art SMT system. Exper-
iments on NIST Chinese-English test sets
show that our model achieves a substantial
improvement of up to 1.55 BLEU points
over the baseline.

1 Introduction

Recently a variety of “deep architecture” ap-
proaches, including autoencoders, have been suc-
cessfully used in statistical machine translation
(SMT) (Yang et al., 2013; Liu et al., 2013; Zou
et al., 2013; Devlin et al., 2014; Tamura et al.,
2014; Sundermeyer et al., 2014; Wang et al., 2014;
Kočiský et al., 2014). Typically, these approaches
represent words as dense, low-dimensional and

∗Corresponding author.

real-valued vectors, i.e., word embeddings. How-
ever, translation units in machine translation have
long since shifted from words to phrases (se-
quence of words), of which syntactic and se-
mantic information cannot be adequately captured
and represented by word embeddings. There-
fore, learning compact vector representations for
phrases or even longer expressions is more crucial
for successful “deep” SMT.

To address this issue, many efforts have been
initiated on learning representations for bilingual
phrases in the context of SMT, inspired by the suc-
cess of work on monolingual phrase embeddings
(Socher et al., 2010; Socher et al., 2011a; Socher
et al., 2013b; Chen and Manning, 2014; Kalch-
brenner et al., 2014; Kim, 2014). The learning
process of bilingual phrase embeddings in these
efforts is normally interacted and mingled with
single or multiple essential components of SMT,
e.g., with reordering models (Li et al., 2013),
translation models (Cui et al., 2014; Zhang et al.,
2014; Gao et al., 2014), or both language and
translation models (Liu et al., 2014). In spite of
their success, these approaches center around cap-
turing relations between entire source and target
phrases. They do not take into account internal
phrase structures and bilingual correspondences of
sub-phrases within source and target phrases. The
neglect of these important clues may be due to the
big challenge imposed by the integration of them
into the learning process of bilingual phrase rep-
resentations. However, we believe such internal
structures and correspondences can help us learn
better phrase representations since they provide
multi-level syntactic and semantic constraints.

In this paper, we propose a Bilingual Corre-
spondence Recursive Autoencoder (BCorrRAE)
to learn bilingual phrase embeddings. BCorrRAE
substantially extends the Bilingually-constrained
Recursive Auto-encoder (BRAE) (Zhang et al.,
2014) to exploit both inner structures and corre-
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resolution0 adopted1 today2今天0 所1 通过2 决议3

(a) BRAE

nē
nf̄2

nf̄1

resolution0 adopted1 today2今天0 所1 通过2 决议3

(b) BCorrRAE
reconstructing target sub-trees according to corresponding source nodes
reconstructing source sub-trees according to corresponding target nodes

nf̄1

nf̄2

nē

Figure 1: BRAE vs BCorrRAE models for generating of a
bilingual phrase (“䘸坕嚤埏䍌䛻懆”, “resolution adopted
today”) with word alignments (“0-2 2-1 3-0”). The subscript
number of each word indicates its position within phrase.
Solid lines depict the generation procedure of phrase struc-
tures, while dash lines illustrate the reconstruction procedure
from one language to the other. In this paper, the dimension-
ality of vector d in all figures is set to 3 for better illustration.

spondences within bilingual phrases. The intu-
itions behind BCorrRAE are twofold: 1) bilingual
phrase structure generation should satisfy word
alignment constraints as much as possible; and
2) corresponding sub-phrases on the source and
target side of bilingual phrases should be able
to reconstruct each other as they are semantic
equivalents. In order to model the first intuition,
BCorrRAE punishes bilingual structures that vio-
late word alignment constraints and rewards those
in consistent with word alignments. This en-
ables BCorrRAE to produce desirable bilingual
phrase structures from the perspective of word
alignments. With regard to the second intuition,
BCorrRAE reconstructs structures of sub-phrases
of one language according to aligned nodes in the
other language and minimizes the gap between
original and reconstructed structures. In doing so,
BCorrRAE is capable of capturing semantic rela-
tions at different levels.

To better illustrate our model, let us consider
the example in Figure 1. Similar to the conven-
tional recursive antoencoder (RAE), BRAE ne-
glects bilingual correspondences of sub-phrases.
Thus, it may combine “adopted” and “today” to-
gether to generate an undesirable target tree struc-
ture which violates word alignments. In contrast,
BCorrRAE aligns source-side nodes (e.g. (“埏
䍌”, “䛻懆”)) to their corresponding target-side

nodes (accordingly (“resolution”, “adopted”)) ac-
cording to word alignments. Furthermore, in
BCorrRAE, each subtree on the target side can be
reconstructed from the corresponding source node
that aligns to the target-side node dominating the
subtree and vice versa. These advantages allow us
to obtain improved bilingual phrase embeddings
with better inner correspondences of sub-phrases
and word alignment consistency.

We conduct experiments with a state-of-the-art
SMT system on large-scale data to evaluate the ef-
fectiveness of BCorrRAE model. Results on the
NIST 2006 and 2008 datasets show that our sys-
tem achieves significant improvements over base-
line methods. The main contributions of our work
lie in the following three aspects:

• We learn both embeddings and tree struc-
tures for bilingual phrases using cross-lingual
RAE reconstruction that minimizes semantic
distances between original and reconstructed
subtrees. To the best of our knowledge, this
has not been investigated before.
• We incorporate word alignment information

to guide phrase structure generation and es-
tablish internal semantic associations of sub-
phrases within bilingual phrases.
• We integrate two similarity features based on

BCorrRAE to enhance translation candidate
selection, and achieve an improvement of
1.55 BLEU points on Chinese-English trans-
lation.

2 RAE and BRAE

In this section, we briefly introduce the RAE and
its bilingual variation BRAE. This will provide
background knowledge on our proposed BCor-
rRAE.

2.1 RAE

The component in the dash box of Figure 2 illus-
trates an instance of an RAE applied to a three-
word phrase. The input to the RAE is x =
(x1, x2, x3), which are the d-dimensional vector
representations of the ordered words in a phrase.
For two children c1 = x1 and c2 = x2, the parent
vector y1 can be computed in the following way:

p = f(W (1)[c1; c2] + b(1)) (1)

where [c1; c2] ∈ R2d×1 is the concatenation of
c1 and c2, W (1) ∈ Rd×2d is a parameter matrix,
b(1) ∈ Rd×1 is a bias term, and f is an element-
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y2

x1 x2 x3

y1
W (1)

W (1)W (2)

W (2)
W (3)

Reconstruction Error

Reconstruction Error

Max-Semantic-
Margin Error

Figure 2: An illustration of the BRAE architecture.

wise activation function such as tanh(·), which is
used for all activation functions in BRAE and our
model. The learned parent vector p is also a d-
dimensional vector. In order to measure how well
p represents its children, we reconstruct the origi-
nal children nodes in a reconstruction layer:

[c′1; c′2] = f(W (2)p+ b(2)) (2)

where c′1 and c′2 are reconstructed children vectors,
W (2) ∈ R2d×d and b(2) ∈ R2d×1.

We can set y1 = p and then further use Eq. (1)
again to compute y2 by setting [c1; c2] = [y1;x3].
This combination and reconstruction process of
auto-encoder repeats at each node until the vec-
tor of the entire phrase is generated. To obtain the
optimal binary tree and phrase representation for
x, we employ a greedy algorithm (Socher et al.,
2011c) to minimize the sum of reconstruction er-
ror at each node in the binary tree T (x):

Erec(x; θ) =
∑

n∈T (x)

1
2
‖ [c1; c2]n−[c′1; c′2]n ‖2 (3)

where θ denotes model parameters and n repre-
sents a node in T (x).

2.2 BRAE

BRAE jointly learns two RAEs for source and tar-
get phrase embeddings as shown in Figure 1(a).
The core idea behind BRAE is that a source
phrase and its target correct translation should
share the same semantic representations, while
non-equivalent pairs should have different seman-
tic representations. Zhang et al. (2014) use this
intuition to constrain semantic pharse embedding
learning.

As shown in Figure 2, in addition to the above-
mentioned reconstruction error, BRAE introduces
a max-semantic-margin error to minimize the se-
mantic distance between translation equivalents
and maximize the semantic distance between non-

equivalent pairs simultaneously. Formally, the
max-semantic-margin error of a bilingual phrase
(f, e) is defined as

Esem(f, e; θ) = E∗sem(f |e, θ)+E∗sem(e|f, θ) (4)

where E∗sem(f |e, θ) is used to ensure that the se-
mantic error for an equivalent pair is much smaller
than that for a non-equivalent pair (the source
phrase f and a bad translation e′):

E∗sem(f |e, θ) = max{0, Esem(f |e, θ)
− Esem(f |e′, θ) + 1} (5)

where Esem(f |e, θ) is defined as the semantic dis-
tance between the learned vector representations
of f and e, denoted by pf and pe, respectively.
Since phrase embeddings for the source and target
language are learned separately in different vec-
tor spaces, a transformation matrix W (3)

f ∈ Rd×d

is introduced to capture this semantic transfor-
mation in the source-to-target direction. Thus,
Esem(f |e, θ) is calculated as

Esem(f |e, θ) =
1
2
‖ pe − f(W (3)

f pf + b
(3)
f ) ‖2 (6)

where b(3)
f ∈ Rd×1 is a bias term. E∗sem(e|f, θ) and

Esem(e|f, θ) can be computed in a similar way.
The joint error of (f, e) is therefore defined as fol-
lows:

E(f, e; θ) = α(Erec(f, θ) + Erec(e, θ))
+(1− α)(E∗sem(f |e, θ) + E∗sem(e|f, θ)) (7)

The final BRAE objective function over the train-
ing instance set D becomes:

JBRAE =
∑

(f,e)∈D
E(f, e; θ) +

λ

2
‖θ‖2 (8)

Model parameters can be optimized over the total
errors on training bilingual phrases in a co-training
style algorithm (Zhang et al., 2014).

3 The BCorrRAE Model

As depicted above, the learned embeddings us-
ing BRAE may be unreasonable due to the ne-
glect of bilingual constraints at different levels.
To address this drawback, we propose the BCor-
rRAE for bilingual phrase embeddings, which in-
corporates bilingual correspondence information
into the learning process of structures and embed-
dings via word alignments. In our model, we ex-
plore word alignments in two ways: (1) ensuring
that a learned bilingual phrase structure is con-
sistent with word alignments as much as possi-
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ble; (2) identifying corresponding sub-phrases in
the source language for reconstructing sub-phrases
in the target language, and vice versa. More
specifically, the former is to encourage alignment-
consistent generation of sub-structures, while the
latter is to minimize semantic distances between
bilingual sub-phrases.

In this section, we first formally introduce a
concept of structural alignment consistency en-
coded in bilingual phrase structure learning, which
is the basis of our model. Then, we describe
the objective function which is composed of three
types of errors. Finally, we provide details on the
training of our model.

3.1 Structural Alignment Consistency
We adapt word alignment to structural alignment
and introduce some related concepts. Given a
bilingual phrase (f, e) with its binary tree struc-
tures (Tf , Te), if the source node nf̄ ∈ Tf cov-
ers a source-side sub-phrase f̄ , and there exists
a target-side sub-phrase ē such that (f̄ , ē) are
consistent with word alignments (Och and Ney,
2003), we say nf̄ satisfies the structural alignment
consistency, and it is referred to as a structural-
alignment-consistent (SAC) node. Further, if ē is
covered by a target node nē ∈ Te, we say nē is
the aligned node of nf̄ . In this way, several dif-
ferent target nodes may be all aligned to the same
source node because of null alignments. For this,
we choose the target node with the smallest span
as the aligned one for the considered source node.
This is because a smaller span reflects a stronger
semantic relevance in most situations.

Likewise, we have similar definitions for tar-
get nodes. Note that alignment relations between
source- and target-side nodes may not be symmet-
ric. For example, in Figure 1(b), node nē is the
aligned node of node nf̄1

, while node nf̄2
rather

than nf̄1
is the aligned node of nē.

3.2 The Objective Function
We elaborate the three types of errors defined for
a bilingual phrase (f, e) with its binary tree struc-
tures (Tf , Te) on both sides below.

3.2.1 Reconstruction Error
Similar to RAE, the first error function is used to
estimate how well learned phrase embeddings rep-
resent corresponding phrases. The reconstruction
error Erec(f, e; θ) of (f, e) is defined as follows:

Erec(f, e; θ) = Erec(f ; θ) + Erec(e; θ) (9)

where both Erec(f ; θ) and Erec(e; θ) can be calcu-
lated according to Eq. (3).

3.2.2 Consistency Error
This metric corresponds to the first way in which
we exploit word alignments mentioned before,
which enables our model to generate as many SAC
nodes as possible to respect word alignments.

Formally, the consistency error Econ(f, e; θ) of
(f, e) is defined in the following way:

Econ(f, e; θ) = Econ(Tf ; θ) + Econ(Te; θ) (10)

whereEcon(Tf ; θ) andEcon(Te; θ) denote the con-
sistency error score for Tf and Te, given word
alignments. Here we only describe the calculation
of the former while the latter can be calculated in
exactly the same way.

To calculateEcon(Tf ; θ), we first judge whether
a source node nf̄ is an SAC node according to
word alignments. Let pnf̄

be the vector repre-
sentation of nf̄ . Following Socher et al. (2010),
who use a simple inner product to measure how
well the two words are combined into a phrase,
we use inner product to calculate the consis-
tency/inconsistency score for nf̄ :

s(nf̄ ) = W scorepnf̄
(11)

where W score ∈ R1×d is the score parameter. We
calculateW score by distinguishing SAC from non-
SAC nodes defined as follows:

W score =

{
W score
cns if nf̄ is an SAC node

W score
inc otherwise

where the subscript cns and inc represent consis-
tency and inconsistency, respectively. For exam-
ple, in Figure 3, as nf̄3

is a non-SAC node, we
calculate the inconsistency score using W score

inc for
it.

We expect Tf to satisfy structural alignment
consistency as much as possible. Therefore we en-
courage the consistency score for Tf to be larger
than its inconsistency score using a max-margin
consistency error function:

Econ(Tf ; θ) =max{0, 1− s(Tf )cns
+ s(Tf )ins}

(12)

where s(Tf )cns denotes the sum of consistency
scores over all SAC nodes and s(Tf )ins the sum
of inconsistency scores over all non-SAC nodes in
Tf . Minimizing this error function will maximize
the sum of consistency scores of SAC nodes and
minimize (up to a margin) the sum of inconsis-
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resolution0 adopted1所1 通过2 决议3

nē

W u
e

W
(3)
fnf̄1

nf̄2

nf̄3

Figure 3: The structure generation procedure of the source
sub-phrase “嚤 埏䍌 䛻懆” and the structure reconstruction
procedure of the target sub-phrase “resolution adopted”. Ac-
cording to word alignments (“2-1 3-0”), the node nf̄1

and nf̄2
are SAC ones while the node nf̄3

is a non-SAC node.

tency scores of non-SAC nodes.

3.2.3 Cross-Lingual Reconstruction Error
This metric corresponds to the second way in
which we exploit word alignments. The assump-
tion behind this is that a source/target node should
be able to reconstruct the entire subtree rooted at
its target/source aligned node as they are seman-
tically equivalent. Based on this, for the consid-
ered node, we calculate the cross-lingual recon-
struction error along the entire subtree rooted at
its aligned node in the other language and use the
error to measure how well the learned vector rep-
resents this node.

Similarly, the cross-lingual reconstruction error
Eclrec(f, e; θ) of (f, e) can be decomposed into
two parts as follows:

Eclrec(f, e; θ) = Ef2e·rec(Tf , Te; θ)
+ Ee2f ·rec(Tf , Te; θ)

(13)

where Ef2e·rec(Tf , Te; θ) denotes the error score
using Tf to reconstruct Te. Note that in this pro-
cess, the structure and the original node vector rep-
resentations of Te have been already generated.
Ee2f ·rec(Tf , Te; θ) denotes the reconstruction er-
ror score using Te to reconstruct Tf . Here we still
only describe the method of computing the former,
which also applies to the latter.

To calculate Ef2e·rec(Tf , Te; θ), we first collect
all source nodes (nf̄ ) in Tf and their aligned nodes
(nē) in Te to form a set of aligned node pairs
S = {〈nf̄ , nē〉} according to word alignments.
We then calculate Ef2e·rec(Tf , Te; θ) as the sum
of error scores over all node pairs in S. Given a
source node nf̄ with its aligned node nē on the
target side, we use nf̄ to reconstruct the sub-tree
structure Tē rooted at nē and compute the error
score based on the semantic distance between the
original and reconstructed vector representations
of nodes in Tē. As source and target phrase em-

beddings are separately learned, we first introduce
a transformation matrix W (3)

f and a bias term b
(3)
f

to transform source phrase embeddings into the
target-side semantic space, following Zhang et al.
(2014) and Hermann and Blunsom (2014):

p′nē
= f(W (3)

f pnf̄
+ b

(3)
f ) (14)

here p′nē
denotes the reconstructed vector represen-

tation of nē, which is transformed from the vec-
tor representation pnf̄

of nf̄ . Then, we repeat the
reconstruction procedure in a top-down manner
along the corresponding target tree structure un-
til leaf nodes are reached, following Socher et al.
(2011a). Specifically, given the vector representa-
tion p′nē

, we reconstruct vector representations of
its two children nodes:

[cue1; cue2] = f(W u
e p
′
nē

+ bue ) (15)

where cue1 and cue2 are the reconstructed vector rep-
resentations of the children nodes, W u

e ∈ R2d×d,
and bue∈R2d×1. Eventually, given the original
and reconstructed target phrase representations,
we calculate Ef2e·rec(Tf , Te; θ) as follows:

Ef2e·rec(Tf , Te; θ) =
1
2

∑
〈nf̄ ,nē〉∈S

∑
n∈Tē

‖ pn−p′n ‖2

(16)
where pn and p′n are the original and reconstructed
vector representations of node n in the sub-tree
structure Tē rooted at nē. This error function
will be minimized so that semantic differences
between original and reconstructed structures are
minimal.

Figure 3 demonstrates the structure reconstruc-
tion from a generated source sub-tree to its target
counterpart. In this way, BCorrRAE propagates
semantic information along dash lines sequentially
until leaf nodes in the generated structure of the
target phrase.

3.2.4 The Final Objective

Similar to Eq. (8), we define the final objective
function of our model based on the three types of
errors described above

JBCorrRAE =
∑

(f,e)∈D
{α (Erec(f ; θ) + Erec(e; θ))

+ β (Econ(Tf ; θ) + Econ(Te; θ))
+ γ (Ef2e·rec(Tf , Te; θ) + Ee2f ·rec(Tf , Te; θ))}
+R(θ) (17)
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where weights α, β, γ (s.t. α+β+γ = 1) are used
to balance the preference among the three errors,
and R(θ) is the regularization term. Parameters θ
are divided into four sets1:

1. θL: the word embedding matrix;
2. θrec: the RAE parameter matrices W (1),
W (2) and bias terms b(1), b(2) (Section 2.1);

3. θcon: the consistency/inconsistency score pa-
rameter matrices W score

cns , W score
inc (Section

3.2.2);
4. θclrec: the cross-lingual RAE semantic trans-

formation parameter matrices W (3), W u and
bias terms b(3), bu (Section 3.2.3).

For regularization, we assign each parameter set a
unique weight:

R(θ) =
λL
2
‖θL‖2 +

λrec
2
‖θrec‖2

+
λcon

2
‖θcon‖2 +

λlcrec
2
‖θlcrec‖2

(18)

Additionally, in order to prevent the hidden layer
from being very small, we normalize all output
vectors of the hidden layer to have length 1, p =
p
‖p‖ , following Socher et al. (2011c).

3.3 Model Training

Similar to Zhang et al. (2014), we adopt a co-
training style algorithm to train model parameters
in the following two steps:

First, we use a normal distribution (µ = 0, σ =
0.01) to randomly initialize all model parameters,
and adopt the standard RAE to pre-train source-
and target-side phrase embeddings and tree struc-
tures (Section 2.1).

Second, for each bilingual phrase, we update
its source-side parameters to obtain the fine-tuned
vector representation and binary tree of the source
phrase, given the target-side phrase structure and
node representations, and vice versa. In this pro-
cess, we apply L-BFGS to tune parameters based
on gradients over the joint error, as implemented
in (Socher et al., 2011c).

We repeat the procedure of the second step until
either the joint error (shown in Eq. (17)) reaches a
local minima or the number of iterations is larger
than a pre-defined number (25 is used in experi-
ments).

1Note that the source and target languages have different
four sets of parameters.

4 Decoding with BCorrRAE

Once the model training is completed, we in-
corporate two different phrasal similarity features
built on the trained BCorrRAE into the standard
log-linear framework of SMT. Given a bilingual
phrase (f, e), we first obtain their semantic phrase
representations (pf , pe). Then we transform pf
into p′e in the target semantic space and pe into
p′f in the source semantic space via transforma-
tion matrixes. Finally, we reconstruct sub-trees of
p′f along the source structure Tf learned by BCor-
rRAE, sub-trees of p′e along the target structure Te.

We exploit two kinds of phrasal similarity fea-
tures based on the learned phrase representations
and their tree structures as follows:

• Semantic Similarity measures the similarity
between original and transformed phrase rep-
resentations of (f, e):

SimSM (pf , p′f ) =
1
2
‖pf − p′f‖2

SimSM (pe, p′e) =
1
2
‖pe − p′e‖2

(19)

• Structural Similarity calculates the similarity
between original and reconstructed tree struc-
tures learned by BCorrRAE for (f, e):

SimST (pf , p′f ) =
1

2Cf

∑
n∈Tf

‖pn − p′n‖2

SimST (pe, p′e) =
1

2Ce

∑
n∈Te

‖pn − p′n‖2
(20)

where pn and p′n represent vector representations
of original and reconstructed node n, and Cf and
Ce count the number of nodes in the source and
target tree structure respectively. Note that if we
only compute the similarity for root nodes in the
bilingual tree of (f, e), the structural similarity
equals to the semantic similarity in Eq. (19).

5 Experiments

We conducted experiments on NIST Chinese-
English translation task to validate the effective-
ness of BCorrRAE.

5.1 System Overview

Our baseline decoder is a state-of-the-art phrase-
based translation system equipped with a maxi-
mum entropy based reordering model (MEBTG).
It adopts three bracketing transduction grammar
rules (Wu, 1997; Xiong et al., 2006): merging
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rules A → [A1, A2]|〈A1, A2〉 which are used to
merge two neighboring blocks2 A1 and A2 in a
straight|inverted order, and lexical rule A → f/e
used to translate a source phrase f into a target
phrase e.

The MEBTG system features a maximal en-
tropy classifier based reordering model that pre-
dicts orientations of neighboring blocks. During
training, we extract bilingual phrases containing
up to 7 words on the source side from the training
corpus. With the collected reordering examples,
we adopt the maximal entropy toolkit3 developed
by Zhang to train the reordering model with the
following parameters: iteration number iter=200
and gaussian prior g=1.0. Following Xiong et al.
(2006), we use only boundary words of blocks to
trigger the reordering model.

The whole translation model is organized in a
log-linear framework (Och and Ney, 2002). The
adopted sub-models mainly include: (1) rule trans-
lation probabilities in two directions, (2) lexical
weights in two directions, (3) targets-side word
number, (4) phrase number, (5) language model
score, and (6) the score of maximal entropy based
reordering model. We perform minimum error
rate training (Och, 2003) to tune various fea-
ture weights. During decoding, we set ttable-
limit=20 for translation candidates kept for each
source phrase, stack-size=100 for hypotheses in
each span, and swap-span=15 for the length of
the maximal reordering span.

5.2 Setup

Our bilingual data is the combination of the FBIS
corpus and Hansards part of LDC2004T07 corpus,
which contains 1.0M parallel sentences (25.2M
Chinese words and 29M English words). Follow-
ing Zhang et al. (2014), we collected 1.44M bilin-
gual phrases using forced decoding (Wuebker et
al., 2010) to train BCorrRAE from the training
data. We used a 5-gram language model trained
on the Xinhua portion of Gigaword corpus using
SRILM Toolkits4. Translation quality is evaluated
by case-insensitive BLEU-4 metric (Papineni et
al., 2002). We performed paired bootstrap sam-
pling (Koehn, 2004) to test the significance in
BLEU score differences. In our experiments, we
used NIST MT05 and MT06/MT08 data set as the

2A block is a bilingual phrase without maximum length
limitation.

3http://homepages.inf.ed.ac.uk/lzhang10/maxent toolkit.html
4http://www.speech.sri.com/projects/srilm/download.html

Parameter BRAE BCorrRAE
α 0.119 0.121
β - 0.6331
γ - 0.2459
λL 4.95 ×10−5 3.13 ×10−5

λrec 2.64 ×10−7 2.05 ×10−5

λcon - 7.32 ×10−6

λlcrec 9.31 ×10−5 5.25 ×10−6

Table 1: Hyper-parameters for BCorrRAE and BRAE model.

Method d MT06 MT08 AVG

BCorrRAESM

25 30.81 22.68⇓ 26.75
50 30.58↓ 22.72⇓ 26.65
75 30.50 22.53⇓ 26.52

100 30.34⇓ 22.61⇓ 26.48

BCorrRAEST

25 30.56 23.28 26.92
50 30.94 23.33 27.14
75 30.73 23.40 27.07

100 30.90 23.50 27.20

Table 2: Experiment results for different dimensions (d).
BCorrRAESM and BCorrRAEST are our systems that are
enhanced with the semantic and structural similarity features
learned by BCorrRAE, respectively. ↓/⇓: significantly worse
than the BCorrRAEST with the same dimensionality (p <
0.05/p < 0.01).

development and test set, respectively.
In addition to the baseline described below,

we also compare our method against the BRAE
model, which focuses on modeling relations of
source and target phrases as a whole unit. Word
embeddings in BRAE are pre-trained with toolkit
Word2Vec5 (Mikolov et al., 2013) on large-scale
monolingual data that contains 0.83B words for
Chinese and 0.11B words for English.

Hyper-parameters in all neural models are op-
timized by random search (Bergstra and Bengio,
2012) based on related joint errors. We ran-
domly extracted 250, 000 bilingual phrases from
the above-mentioned training data as training set,
5, 000 as development set and another 5, 000 as
test set. We drew α, β, γ uniformly from 0.10 to
0.50, and λL, λrec, λcon and λlcrec exponentially
from 10−8 to 10−2. Final parameters are shown in
Table 1 for both BRAE and BCorrRAE.

5.3 Dimensionality of Embeddings

To investigate the impact of embedding dimen-
sionality on our BCorrRAE, we tried four differ-
ent dimensions from 25 to 100 with an increment
of 25 each time. The results are displayed in Ta-
ble 2. We can observe that the performance of our
model is not consistently improved with the incre-
ment of dimensionality. This may be because a

5https://code.google.com/p/word2vec/
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larger dimension brings in much more parameters,
and therefore makes parameter tuning more diffi-
cult. In practice, setting the dimension d to 50, we
can get satisfactory results without much compu-
tation effort, which has also been found by Zhang
et al. (2014).

5.4 Structural Similarity vs. Semantic
Similarity

Table 2 also shows that the performance of
BCorrRAEST , the system with the structural sim-
ilarity feature in Eq. (20), is always superior to
that of BCorrRAESM with the semantic similar-
ity feature in Eq. (19). BCorrRAEST is bet-
ter than BCorrRAESM by 0.483 BLEU points
on average. In most cases, differences between
BCorrRAEST and BCorrRAESM with the same
dimensionality are statistically significant. This
suggests that digging into structures of bilingual
phrases (BCorrRAEST ) can obtain further im-
provements over only modeling bilingual phrases
as whole units (BCorrRAESM ).

5.5 Overall Performance

Table 3 summarizes the comparison results of dif-
ferent models on the test sets. The BCorrRAESM
outperforms the baseline and BRAE by 1.06 and
0.25 BLEU points on average respectively, while
BCorrRAEST gains 1.55 and 0.74 BLEU points
on average over the baseline and BRAE. The im-
provements of BCorrRAEST over the baseline,
BRAE and BCorrRAESM are statistically signif-
icant at different levels. This demonstrates the
advantage of our BCorrRAE over BRAE in that
BCorrRAE is able to explore sub-structures of
bilingual phrases.

5.6 Analysis

We compute a ratio of aligned nodes (Section 3.1)
over all nodes to estimate how well tree struc-
tures of bilingual phrases generated by BRAE and
BCorrRAE are consistent with word alignments.
We consider two factors when computing the ra-
tio: the length of the source side of a bilingual
phrase ls and the length of a span covered by an
aligned node la. The result is illustrated in Table
4.6 We find that BCorrRAE significantly outper-

6We only give ratios for bilingual phrases with source-
side length from 3 to 4 words because 1) ratios of BRAE and
BCorrRAE in the case of la < 3 are very close and 2) phrases
with length > 4 are rarely used during decoding (accounting
for < 0.5%).

Method MT06 MT08 AVG
Baseline 29.66⇓ 21.52⇓ 25.59
BRAE 30.27⇓ 22.53⇓ 26.40

BCorrRAESM 30.58↓ 22.72⇓ 26.65
BCorrRAEST 30.94 23.33 27.14

Table 3: Experiment results on the test sets. AVG = average
BLEU scores for test sets. For both BRAE and BCorrRAE,
we set d=50. ↓/⇓: significantly worse than the BCorrRAEST

with d=50 (p < 0.05/p < 0.01, respectively).

[ls, la] [3,2] [4,2] [4,3]
BRAE 52.70% 39.88% 46.58%

BCorrRAE 60.08% 46.32% 54.43%

Table 4: Aligned node ratio for source phrases of different
lengths.

forms BRAE model by 7.22% on average in terms
of the aligned node ratio. This strongly demon-
strates that the proposed BCorrRAE is able to gen-
erate tree structures that are more consistent with
word alignments than those generated by BRAE.

We further show example source phrases in Ta-
ble 5 with their most semantically similar trans-
lations learned by BRAE and BCorrRAE in the
training corpus. Both models can select correct
translations for content words. However, they are
different in dealing with function words. Com-
pared to our model, the BRAE model prefers
longer target phrases surrounded with function
words. Take the source phrase “惮䜃坝揔” as an
example, the BRAE model learns both “a serious
challenge to” and “a serious challenge from” as
its semantically similar target phrases. Although
the content words “惮䜃” and “坝揔” are trans-
lated correctly into “serious” and “challenge”, the
function words “to” and “from” express exactly
the opposite meanings. In contrast, our model, es-
pecially the BCorrRAEST model, tends to choose
shorter translations that are consistent with word
alignments.

6 Related Work

A variety of efforts have been devoted to learn-
ing vector representations for words/phrases with
deep neural networks. According to the differ-
ence of learning contexts, previous work mainly
include the following two strands.

(1) Monolingual Word/Phrase Embeddings.
The straightforward approach to represent
word/phrases is to learn their hidden represen-
tations with traditional feature vectors, which
requires manual and task-dependent feature
engineering (Cui et al., 2014; Wu et al., 2014;
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Source Phrase BRAE BCorrRAESM BCorrRAEST

䌓䌓䌓㥎㥎㥎
to advocate the out to advocate encouraging
in preaching the been encouraging claimed

(advocate) the promotion of an advocate advocate

惮惮惮䜃䜃䜃坝坝坝揔揔揔
as well as severe challenges of rigorous challenges rigorous challenge

a serious challenge to as well as severe challenges enormous challenge
(serious challenge) a serious challenge from of severe challenges severe challenge

䋺䋺䋺㟙㟙㟙䀛䀛䀛嗪嗪嗪䛢䛢䛢
by the figures published by the to the estimates announced published data

the statistics released by at the figures published released figures
(data released) data published by the the statistics released by the estimates announced

Table 5: Semantically similar target phrases in the training set for example source phrases.

Chen and Manning, 2014). To avoid exploiting
manually input features, Bengio et al. (2003)
convert words to dense, real-valued vectors by
learning probability distributions of n-grams.
Mikolov et al. (2013) generate word vectors by
predicting their limited context words. Instead of
exploiting outside context information, recursive
auto-encoder is usually adopted to learn the com-
position of internal words (Socher et al., 2010;
Socher et al., 2011b; Socher et al., 2013b; Socher
et al., 2013a). Recently, convolution architecture
has drawn more and more attention due to its
ability to explicitly capture short and long-range
relations (Collobert et al., 2011; Kalchbrenner
and Blunsom, 2013; Kalchbrenner et al., 2014;
Kim, 2014).

(2) Bilingual Word/Phrase Embeddings. In the
field of machine translation and cross-lingual in-
formation processing, bilingual embedding learn-
ing has become an increasingly important study.
The bilingual embedding research origins in the
word embedding learning, upon which Zou et
al. (2013) utilize word alignments to constrain
translational equivalence. Kočiský et al. (2014)
propose a probability model to capture more se-
mantic information by marginalizing over word
alignments. More specifically to SMT, its main
components have been exploited to learn better
bilingual phrase embeddings in different aspects:
language models (Wang et al., 2014; Garmash and
Monz, 2014), reordering models (Li et al., 2013)
and translation models (Tran et al., 2014; Zhang
et al., 2014). Instead of exploiting a single model,
Liu et al. (2014) combine the recursive and recur-
rent neural network to incorporate the language
and translation model.

Different from the methods mentioned above,
our model considers both the cross-language con-
sistency of phrase structures and internal corre-
spondence relations inside bilingual phrases. The
most related works include Zhang et al. (2014)

and Socher et al. (2011a). Compared with these
works, our model exploits different levels of cor-
respondence relations inside bilingual phrases in-
stead of only the top level of entire phrases, and
reconstructs tree structures of sub-phrases in one
language according to aligned nodes in the other
language, which, to the best of our knowledge, has
never been investigated before.

7 Conclusions and Future Work

In this paper, we have presented the BCorrRAE
to learn phrase embeddings and tree structures of
bilingual phrases for SMT. Punishing structural-
alignment-inconsistent sub-structures and mini-
mizing the gap between original and reconstructed
structures, our approach is able to not only gen-
erate alignment-consistent phrase structures, but
also capture different levels of semantic rela-
tions within bilingual phrases. Experiment results
demonstrate the effectiveness of our model.

In the future, we would like to derive
more features from BCorrRAE, e.g., consis-
tency/inconsistency scores of bilingual phrases, to
further enhance SMT. Additionally, we also want
to apply our model to other bilingual tasks, e.g.,
learning bilingual terminology or paraphrases.
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Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and

Christian Janvin. 2003. A neural probabilistic lan-
guage model. Journal of Machine Learning Re-
search, 3:1139–1155.

James Bergstra and Yoshua Bengio. 2012. Random
search for hyper-parameter optimization. Journal of
Machine Learning Research, 13:22–29.

Danqi Chen and Christopher Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proc. of EMNLP 2014, pages 740–750.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
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Abstract

We present novel models for domain adap-
tation based on the neural network joint
model (NNJM). Our models maximize
the cross entropy by regularizing the loss
function with respect to in-domain model.
Domain adaptation is carried out by as-
signing higher weight to out-domain se-
quences that are similar to the in-domain
data. In our alternative model we take a
more restrictive approach by additionally
penalizing sequences similar to the out-
domain data. Our models achieve better
perplexities than the baseline NNJM mod-
els and give improvements of up to 0.5
and 0.6 BLEU points in Arabic-to-English
and English-to-German language pairs, on
a standard task of translating TED talks.

1 Introduction

Rapid influx of digital data has galvanized the use
of empirical methods in many fields including Ma-
chine Translation (MT). The increasing availabil-
ity of bilingual corpora has made it possible to
automatically learn translation rules that required
years of linguistic analysis previously. While ad-
ditional data is often beneficial for a general pur-
pose Statistical Machine Translation (SMT) sys-
tem, a problem arises when translating new do-
mains such as lectures (Cettolo et al., 2014),
patents (Fujii et al., 2010) or medical text (Bojar
et al., 2014), where either the bilingual text does
not exist or is available in small quantity. All do-
mains have their own vocabulary and stylistic pref-
erences which cannot be fully encompassed by a
system trained on the general domain.

Machine translation systems trained from a sim-
ple concatenation of small in-domain and large
out-domain data often perform below par be-
cause the out-domain data is distant or over-

whelmingly larger than the in-domain data. Ad-
ditional data increases lexical ambiguity by in-
troducing new senses to the existing in-domain
vocabulary. For example, an Arabic-to-English
SMT system trained by simply concatenating in-
and out-domain data translates the Arabic phrase
“PAJ
�J 	kCË Y
K@ 	QË @ ÉÒmÌ'@ �éÊ¾ ��Ó 	á«” to “about the
problem of unwanted pregnancy”. This translation
is incorrect in the context of the in-domain data,
where it should be translated to “about the prob-
lem of choice overload”. The sense of the Ara-
bic phrase taken from out-domain data completely
changes the meaning of the sentence. In this paper,
we tackle this problem by proposing domain adap-
tation models that make use of all the data while
preserving the in-domain preferences.

A significant amount of research has been car-
ried out recently in domain adaptation. The com-
plexity of the SMT pipeline, starting from cor-
pus preparation to word-alignment, and then train-
ing a wide range of models opens a wide horizon
to carry out domain specific adaptations. This is
typically done using either data selection (Mat-
soukas et al., 2009) or model adaptation (Foster
and Kuhn, 2007). In this paper, we further re-
search in model adaptation using the neural net-
work framework.

In recent years, there has been a growing in-
terest in deep neural networks (NNs) and word
embeddings with application to numerous NLP
problems. A notably successful attempt on the
SMT frontier was recently made by Devlin et
al. (2014). They proposed a neural network
joint model (NNJM), which augments streams of
source with target n-grams and learns a NN model
over vector representation of such streams. The
model is then integrated into the decoder and used
as an additional language model feature.

Our aim in this paper is to advance the state-of-
the-art in SMT by extending NNJM for domain
adaptation to leverage the huge amount of out-
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domain data coming from heterogeneous sources.
We hypothesize that the distributed vector rep-
resentation of NNJM helps to bridge the lexical
differences between the in-domain and the out-
domain data, and adaptation is necessary to avoid
deviation of the model from the in-domain data,
which otherwise happens because of the large out-
domain data.

To this end, we propose two novel extensions
of NNJM for domain adaptation. Our first model
minimizes the cross entropy by regularizing the
loss function with respect to the in-domain model.
The regularizer gives higher weight to the training
instances that are similar to the in-domain data.
Our second model takes a more conservative ap-
proach by additionally penalizing data instances
similar to the out-domain data.

We evaluate our models on the standard task
of translating Arabic-English and English-German
language pairs. Our adapted models achieve bet-
ter perplexities (Chen and Goodman, 1999) than
the models trained on in- and in+out-domain data.
Improvements are also reflected in BLEU scores
(Papineni et al., 2002) as we compare these mod-
els within the SMT pipeline. We obtain gains of
up to 0.5 and 0.6 on Arabic-English and English-
German pairs over a competitive baseline system.

The remainder of this paper is organized as fol-
lows: Section 2 gives an account on related work.
Section 3 revisits NNJM model and Section 4 dis-
cusses our models. Section 5 presents the experi-
mental setup and the results. Section 6 concludes.

2 Related Work

Previous work on domain adaptation in MT can
be broken down broadly into two main categories
namely data selection and model adaptation.

2.1 Data Selection

Data selection has shown to be an effective way
to discard poor quality or irrelevant training in-
stances, which when included in an MT system,
hurts its performance. The idea is to score the out-
domain data using a model trained from the in-
domain data and apply a cut-off based on the re-
sulting scores. The MT system can then be trained
on a subset of the out-domain data that is closer
to in-domain. Selection based methods can be
helpful to reduce computational cost when train-
ing is expensive and also when memory is con-
strained. Data selection was done earlier for lan-

guage modeling using information retrieval tech-
niques (Hildebrand et al., 2005) and perplexity
measures (Moore and Lewis, 2010). Axelrod et
al. (2011) further extended the work of Moore and
Lewis (2010) to translation model adaptation by
using both source- and target-side language mod-
els. Duh et al. (2013) used a recurrent neural lan-
guage model instead of an ngram-based language
model to do the same. Translation model features
were used recently by (Liu et al., 2014; Hoang and
Sima’an, 2014) for data selection. Durrani et al.
(2015a) performed data selection using operation
sequence model (OSM) and NNJM models.

2.2 Model Adaptation

The downside of data selection is that finding an
optimal cut-off threshold is a time consuming pro-
cess. An alternative to completely filtering out
less useful data is to minimize its effect by down-
weighting it. It is more robust than selection since
it takes advantage of the complete out-domain data
with intelligent weighting towards the in-domain.

Matsoukas et al. (2009) proposed a
classification-based sentence weighting method
for adaptation. Foster et al. (2010) extended this
by weighting phrases rather than sentence pairs.
Other researchers have carried out weighting by
merging phrase-tables through linear interpolation
(Finch and Sumita, 2008; Nakov and Ng, 2009)
or log-linear combination (Foster and Kuhn,
2009; Bisazza et al., 2011; Sennrich, 2012)
and through phrase training based adaptation
(Mansour and Ney, 2013). Durrani et al. (2015a)
applied EM-based mixture modeling to OSM
and NNJM models to perform model weighting.
Chen et al. (2013b) used a vector space model for
adaptation at the phrase level. Every phrase pair is
represented as a vector, where every entry in the
vector reflects its relatedness with each domain.
Chen et al. (2013a) also applied mixture model
adaptation for reordering model.

Other work on domain adaptation includes but
not limited to studies focusing on topic models
(Eidelman et al., 2012; Hasler et al., 2014), dy-
namic adaptation without in-domain data (Sen-
nrich et al., 2013; Mathur et al., 2014) and sense
disambiguation (Carpuat et al., 2013).

In this paper, we do model adaptation using a
neural network framework. In contrast to pre-
vious work, we perform it at the (bilingual) n-
gram level, where n is sufficiently large to cap-
ture long-range cross-lingual dependencies. The
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generalized vector representation of the neural net-
work model reduces the data sparsity issue of tra-
ditional Markov-based models by learning better
word classes. Furthermore, our specially designed
loss functions for adaptation help the model to
avoid deviation from the in-domain data without
losing the ability to generalize.

3 Neural Network Joint Model

In recent years, there has been a great deal of ef-
fort dedicated to neural networks (NNs) and word
embeddings with applications to SMT and other
areas in NLP (Bengio et al., 2003; Auli et al.,
2013; Kalchbrenner and Blunsom, 2013; Gao et
al., 2014; Schwenk, 2012; Collobert et al., 2011;
Mikolov et al., 2013a; Socher et al., 2013; Hin-
ton et al., 2012). Recently, Devlin et al. (2014)
proposed a neural network joint model (NNJM)
and integrated it into the decoder as an additional
feature. They showed impressive improvements
in Arabic-to-English and Chinese-to-English MT
tasks. Let us revisit the NNJM model briefly.

Given a source sentence S and its correspond-
ing target sentence T , the NNJM model computes
the conditional probability P (T |S) as follows:

P (T |S) ≈
|T |∏
i

P (ti|ti−1 . . . ti−p+1, si) (1)

where, si is a q-word source window for the tar-
get word ti based on the one-to-one (non-NULL)
alignment of T to S. As exemplified in Figure 1,
this is essentially a (p + q)-gram neural network
LM (NNLM) originally proposed by Bengio et al.
(2003). Each input word i.e. source or target word
in the context is represented by a D dimensional
vector in the shared look-up layer L ∈ R|Vi|×D,
where Vi is the input vocabulary.1 The look-up
layer then creates a context vector xn representing
the context words of the (p+q)-gram sequence by
concatenating their respective vectors in L. The
concatenated vector is then passed through non-
linear hidden layers to learn a high-level represen-
tation, which is in turn fed to the output layer. The
output layer has a softmax activation over the
output vocabulary Vo of target words. Formally,
the probability of getting k-th word in the output
given the context xn can be written as:

P (yn = k|xn, θ) =
exp (wT

k φ(xn))∑|Vo|
m=1 exp (wT

mφ(xn))
(2)

1Note that L is a model parameter to be learned.

where φ(xn) defines the transformations of xn

through the hidden layers, and wk are the weights
from the last hidden layer to the output layer.
For notational simplicity, henceforth we will use
(xn, yn) to represent a training sequence.

By setting p and q to be sufficiently large,
NNJM can capture long-range cross-lingual de-
pendencies between words, while still overcom-
ing the data sparseness issue by virtue of its dis-
tributed representations (i.e., word vectors). A ma-
jor bottleneck, however, is to surmount the com-
putational cost involved in training the model and
applying it for MT decoding. Devlin et al. (2014)
proposed two tricks to speed up computation in
decoding. The first one is to pre-compute the hid-
den layer computations and fetch them directly as
needed during decoding. The second technique is
to train a self-normalized NNJM to avoid compu-
tation of the softmax normalization factor (i.e., the
denominator in Equation 2) in decoding. How-
ever, self-normalization does not solve the compu-
tational cost of training the model. In the follow-
ing, we describe a method to address this issue.

3.1 Training by Noise Contrastive Estimation
The standard way to train NNLMs is to maximize
the log likelihood of the training data:

J(θ) =

N∑
n=1

|Vo|∑
k=1

ynk log P (yn = k|xn, θ) (3)

where, ynk = I(yn = k) is an indicator vari-
able (i.e., ynk=1 when yn=k, otherwise 0). Op-
timization is performed using first-order online
methods, such as stochastic gradient ascent (SGA)
with standard backpropagation algorithm. Unfor-
tunately, training NNLMs are impractically slow
because for each training instance (xn, yn), the
softmax output layer (see Equation 2) needs to
compute a summation over all words in the output
vocabulary.2 Noise contrastive estimation or NCE
(Gutmann and Hyvärinen, 2010) provides an effi-
cient and stable way to avoid this repetitive com-
putation as recently applied to NNLMs (Vaswani
et al., 2013; Mnih and Teh, 2012). We can re-write
Equation 2 as follows:

P (yn = k|xn, θ) =
σ(yn = k|xn, θ)

Z(φ(xn),W)
(4)

where σ(.) is the un-normalized score and Z(.)
is the normalization factor. In NCE, we consider

2This would take few weeks for a modern CPU machine
to train a single NNJM model on the whole data.
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Figure 1: A simplified neural network joint model with noise contrastive loss, where we use 3-gram target
words (i.e., 2-words history) and a source context window of size 3. For illustration, the output yn is
shown as a single categorical variable (scalar) as opposed to the traditional one-hot vector representation.

Z(.) as an additional model parameter along with
the regular parameters, i.e., weights, look-up vec-
tors. However, it has been shown that fixing Z(.)
to 1 instead of learning it in training does not affect
the model performance (Mnih and Teh, 2012).

For each training instance (xn, yn), we add
M noise samples (xn, y

m
n ) by sampling ymn from

a known noise distribution ψ (e.g., unigram,
uniform)M many times (i.e.,m= 1 . . .M ); see
Figure 1. NCE loss is then defined to discriminate
a true instance from a noisy one. Let C ∈ {0, 1}
denote the class of an instance with C = 1 indicat-
ing true and C = 0 indicating noise. NCE maxi-
mizes the following conditional log likelihood:

J(θ) =

N∑
n=1

[
log[P (C = 1|yn,xn, θ)]

+

M∑
m=1

log[P (C = 0|ym
n ,xn, ψ)]

]
(5)

=

N∑
n=1

[
log [P (yn|C = 1,xn, θ)P (C = 1|π)]

+

M∑
m=1

log [(P (ym
n |C = 0,xn, ψ))P (C = 0|π)]

− (M + 1) log Q
]

(6)

where Q = P (yn, C = 1|xn, θ, π) + P (ymn , C =
0|xn, ψ, π) is a normalization constant. After re-
moving the constant terms, Equation 6 can be fur-
ther simplified as:

J(θ) =

N∑
n=1

|Vo|∑
k=1

[
ynk log σnk +

M∑
m=1

ym
nk log ψnk

]
(7)

where ψnk =P (ymn = k|xn, ψ) is the noise dis-
tribution, σnk =σ(yn = k|xn, θ) is the unnormal-
ized score at the output layer (Equation 4), and ynk
and ymnk are indicator variables as defined before.
NCE reduces the number of computations needed
at the output layer from |Vo| to M + 1, where M
is a small number in comparison with |Vo|. In all
our experiments we use NCE loss with M = 100
samples as suggested by Mnih and Teh (2012).

4 Neural Domain Adaptation Models

The ability to generalize and learn complex se-
mantic relationships (Mikolov et al., 2013b) and
its compelling empirical results gives a strong mo-
tivation to use the NNJM model for the problem of
domain adaptation in machine translation. How-
ever, the vanilla NNJM described above is limited
in its ability to effectively learn from a large and
diverse out-domain data in the best favor of an in-
domain data. To address this, we propose two neu-
ral domain adaptation models (NDAM) extending
the NNJM model. Our models add regularization
to its loss function either with respect to in-domain
or both in- and out-domains. In both cases, we first
present the regularized loss function for the nor-
malized output layer with the standard softmax,
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followed by the corresponding un-normalized one
using the noise contrastive estimation.

4.1 NDAMv1

To improve the generalization of word embed-
dings, NNLMs are generally trained on very large
datasets (Mikolov et al., 2013a; Vaswani et al.,
2013). Therefore, we aim to train our neural
domain adaptation models (NDAM) on in- plus
out-domain data, while restricting it to drift away
from in-domain. In our first model NDAMv1, we
achieve this by biasing the model towards the in-
domain using a regularizer (or prior) based on the
in-domain model. Let θi be an NNJM model al-
ready trained on the in-domain data. We train an
adapted model θa on the whole data, but regular-
izing it with respect to θi. We redefine the normal-
ized loss function of Equation 3 as follows:

J(θa) =
N∑

n=1

|Vo|∑
k=1

[
λ ynk logP (yn = k|xn, θa) + (1− λ)

ynk P (yn = k|xn, θi) logP (yn = k|xn, θa)
]

(8)

=

N∑
n=1

|Vo|∑
k=1

[
λ ynk log ŷnk(θa) +

(1− λ) ynk pnk(θi) log ŷnk(θa)
]

(9)

where ŷnk(θa) is the softmax output and pnk(θi)
is the probability of the training instance accord-
ing to the in-domain model θi. Notice that the loss
function minimizes the cross entropy of the cur-
rent model θa with respect to the gold labels yn
and the in-domain model θi. The mixing param-
eter λ ∈ [0, 1] determines the relative strength of
the two components.3 Similarly, we can re-define
the NCE loss of Equation 7 as:

J(θa) =

N∑
n=1

|Vo|∑
k=1

[
λ ynk log σnk + (1− λ) ynk

pnk(θi) log σnk +

M∑
m=1

ym
nklog ψnk

]
(10)

We use SGA with backpropagation to train this
model. The derivatives of J(θa) with respect to
the final layer weight vectors wj turn out to be:

∇wjJ(θa) =

N∑
n=1

[
λ (ynj − σnj) + (1− λ)

[pnj(θi)−
∑

k

ynk pnk(θi) σnj ]
]

(11)

3We used a balanced value λ = 0.5 for our experiments.

4.2 NDAMv2

The regularizer in NDAMv1 is based on an in-
domain model θi, which puts higher weights to
the training instances (i.e., n-gram sequences) that
are similar to the in-domain ones. This might
work better when the out-domain data is similar
to the in-domain data. In cases where the out-
domain data is different, we might want to build
a more conservative model that penalizes training
instances for being similar to the out-domain ones.

Let θi and θo be the two NNJMs already trained
from the in- and out-domains, respectively, and θo
is trained using the same vocabulary as θi. We de-
fine the new normalized loss function as follows:

J(θa) =

N∑
n=1

|Vo|∑
k=1

[
λ ynk log ŷnk(θa) + (1− λ) ynk

[pnk(θi)− pnk(θo)] log ŷnk(θa)
]

(12)

where ynk, ŷnk(θa), pnk(θi) and pnk(θo) are sim-
ilarly defined as before. This loss function min-
imizes the cross entropy of the current model θa
with respect to the gold labels yn and the differ-
ence between the in-domain model θi and the out-
domain model θo. Intuitively, the regularizer as-
signs higher weights to training instances that are
not only similar to the in-domain but also dissim-
ilar to the out-domain. The parameter λ ∈ [0, 1]
determines the strength of the regularization. The
corresponding NCE loss can be defined as follows:

J(θa) =

N∑
n=1

|Vo|∑
k=1

[
λ ynk log σnk + (1− λ) ynk log σnk

(pnk(θi)− pnk(θo)) +

M∑
m=1

ym
nk log ψnk

]
(13)

The derivatives of the above cost function with re-
spect to the final layer weight vectors wj are:

∇wjJ(θa) =

N∑
n=1

[
λ (ynj − σnj) + (1− λ)[pnj(θi)−

pnj(θo)−
∑

k

ynk σnj (pnk(θi)− pnk(θo))]
]

(14)

In a way, the regularizers in our loss functions
are inspired from the data selection methods of
Axelrod et al. (2011), where they use cross entropy
between the in- and the out-domain LMs to score
out-domain sentences. However, our approach is
quite different from them in several aspects. First
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and most importantly, we take the scoring inside
model training and use it to bias the training to-
wards the in-domain model. Both the scoring and
the training are performed at the bilingual n-gram
level rather than at the sentence level. Integrating
scoring inside the model allows us to learn a robust
model by training/tuning the relevant parameters,
while still using the complete data. Secondly, our
models are based on NNs, while theirs utilize the
traditional Markov-based generative models.

4.3 Technical Details

In this section, we describe some implementation
details of NDAM that we found to be crucial,
such as: using gradient clipping to handle vanish-
ing/exploding gradient problem in SGA training
with backpropagation, selecting appropriate noise
distribution in NCE, and special handling of out-
domain words that are unknown to the in-domain.

4.3.1 Gradient Clipping

Two common issues with training deep NNs on
large data-sets are the vanishing and the exploding
gradients problems (Pascanu et al., 2013). The er-
ror gradients propagated by the backpropagation
may sometimes become very small or very large
which can lead to undesired (nan) values in weight
matrices, causing the training to fail. We also ex-
perienced the same problem in our NDAM quite
often. One simple solution to this problem is to
truncate the gradients, known as gradient clipping
(Mikolov, 2012). In our experiments, we limit the
gradients to be in the range [−5; +5].

4.3.2 Noise Distribution in NCE

Training with NCE relies on sampling from a
noise distribution (i.e., ψ in Equation 5), and the
performance of the NDAM models varies consid-
erably with the choice of the distribution. We ex-
plored uniform and unigram noise distributions in
this work. With uniform distribution, every word
in the output vocabulary has the same probability
to be sampled as noise. The unigram noise dis-
tribution is a multinomial distribution over words
constructed by counting their occurrences in the
output (i.e., n-th word in the n-gram sequence).
In our experiments, unigram distribution delivered
much lower perplexity and better MT results com-
pared to the uniform one. Mnih and Teh (2012)
also reported similar findings on perplexity.

4.3.3 Handling of Unknown Words

In order to reduce the training time and to learn
better word representations, NNLMs are often
trained on most frequent vocabulary words only
and low frequency words are represented under a
class of unknown words, unk. This results in a
large number of n-gram sequences containing at
least one unk word and thereby, makes unk a
highly probable word in the model.4

Our NDAM models rely on scoring out-domain
sequences (of word Ids) using models that are
trained based on the in-domain vocabulary. To
score out-domain sequences using a model, we
need to generate the sequences using the same vo-
cabulary based on which the model was trained.
In doing so, the out-domain words that are un-
known to the in-domain data map to the same unk
class. As a result, out-domain sequences contain-
ing unks get higher probability although they are
distant from the in-domain data.

A solution to this problem is to have an in-
domain model that can differentiate between its
own unk class, resulted from the reduced in-
domain vocabulary, and actual unknown words
that come from the out-domain data. We intro-
duce a new class unko to represent the latter.
We train the in-domain model by adding a few
dummy sequences containing unko occurring on
both source and target sides. This enables the
model to learn unk and unko separately, where
unko is a less probable class according to the
model. Later, the n-gram sequences of the out-
domain data contain both unk and unko classes
depending on whether a word is unknown to only
pruned in-domain vocabulary (i.e., unk) or is un-
known to full in-domain vocabulary (i.e., unko).

5 Evaluation

In this section, we describe the experimental
setup (i.e., data, settings for NN models and MT
pipeline) and the results. First we evaluate our
models intrinsically by comparing the perplexities
on a held-out in-domain testset against the base-
line NNJM model. Then we carry out an extrinsic
evaluation by using the NNJM and NDAM models
as features in machine translation and compare the
BLEU scores. Initial developmental experiments
were done on the Arabic-to-English language pair.

4For our Arabic-English in-domain data, 30% of n-gram
sequences contain at least one unk word.
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We carried out further experiments on the English-
to-German pair to validate our models.

5.1 Data

We experimented with the data made publicly
available for the translation task of the Interna-
tional Workshop on Spoken Language Translation
(IWSLT) (Cettolo et al., 2014). We used TED
talks as our in-domain corpus. For Arabic-to-
English, we used the QCRI Educational Domain
(QED) – A bilingual collection of educational lec-
tures5 (Abdelali et al., 2014), the News, and the
multiUN (UN) (Eisele and Chen, 2010) as our
out-domain corpora. For English-to-German, we
used the News, the Europarl (EP), and the Com-
mon Crawl (CC) corpora made available for the
9th Workshop of Statistical Machine Translation.6

Table 1 shows the size of the data used.
Training NN models is expensive. We, there-

fore, randomly selected subsets of about 300K
sentences from the bigger domains (UN, CC and
EP) to train the NN models.7 The systems were
tuned on concatenation of the dev. and test2010
and evaluated on test2011-2013 datasets. The tun-
ing set was also used to measure the perplexities
of different models.

5.2 System Settings

NNJM & NDAM: The NNJM models were
trained using NPLM8 toolkit (Vaswani et al.,
2013) with the following settings. We used a tar-
get context of 5 words and an aligned source win-
dow of 9 words, forming a joint stream of 14-
grams for training. We restricted source and tar-
get side vocabularies to the 20K and 40K most
frequent words. The word vector size D and the
hidden layer size were set to 150 and 750, respec-
tively. Only one hidden layer is used to allow
faster decoding. Training was done by the stan-
dard stochastic gradient ascent with NCE using

5Guzmán et al. (2013) showed that the QED corpus is
similar to IWSLT and adding it improves translation quality.

6http://www.statmt.org/wmt14/translation-task.html
7Concatenating all the data results in a corpus of ap-

proximately 4.5 million sentences which requires roughly
18 days of wall-clock time (18 hours/epoch on a Linux
Ubuntu 12.04.5 LTS running on a 16 Core Intel Xeon E5-
2650 2.00Ghz and 64Gb RAM) to train NNJM models on
our machines. We ran one baseline experiment with all the
data and did not find it better than the system trained on ran-
domly selected subset of the data. In the interest of time, we
therefore reduced the NN training to a subset (800K and 1M
sentences for AR-EN and EN-DE respectively).

8http://nlg.isi.edu/software/nplm/

AR-EN EN-DE
Corpus Sent. Tok. Corpus Sent. Tok.

IWSLT 150k 2.8/3.0 IWSLT 177K 3.5/3.3
QED 150k 1.4/1.5 CC 2.3M 57/53
NEWS 203k 5.6/6.3 NEWS 200K 2.8/3.4
UN 3.7M 129/125 EP 1.8M 51/48

Table 1: Statistics of the Arabic-English and
English-German training corpora in terms of Sen-
tences and Tokens (Source/Target). Tokens are
represented in millions.

100 noise samples and a mini-batch size of 1000.
All models were trained for 25 epochs. We used
identical settings to train the NDAM models, ex-
cept for the special handling of unk tokens.

Machine Translation System: We trained a
Moses system (Koehn et al., 2007), with the
following settings: a maximum sentence length
of 80, Fast-Aligner for word-alignments (Dyer et
al., 2013), an interpolated Kneser-Ney smoothed
5-gram language model with KenLM (Heafield,
2011), lexicalized reordering model (Galley and
Manning, 2008), a 5-gram operation sequence
model (Durrani et al., 2015b) and other default pa-
rameters. We also used an NNJM trained with the
settings described above as an additional feature
in our baseline system. In adapted systems, we
replaced the NNJM model with the NDAM mod-
els. We used ATB segmentation using the Stanford
ATB segmenter (Green and DeNero, 2012) for
Arabic-to-English and the default tokenizer pro-
vided with the Moses toolkit (Koehn et al., 2007)
for the English-to-German pair. Arabic OOVs
were translated using an unsupervised transliter-
ation module in Moses (Durrani et al., 2014). We
used k-best batch MIRA (Cherry and Foster, 2012)
for tuning.

5.3 Intrinsic Evaluation

In this section, we compare the NNJM model and
our NDAM models in terms of their perplexity
numbers on the in-domain held-out dataset (i.e.,
dev+test2010). We choose Arabic-English lan-
guage pair for the development experiments and
train domain-wise models to measure the related-
ness of each domain with respect to the in-domain.
We later replicated selective experiments for the
English-German language pair.

The first part of Table 2 summarizes the results
for Arabic-English. The perplexity numbers in the
second column (NNJMb) show that NEWS is the
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Domain NNJMb NNJMcat NDAMv1 NDAMv2

Arabic-English

IWSLT 12.55 - - -
QED 61.34 11.72 11.14 11.15
NEWS 42.88 10.88 10.67 10.59
UN 111.11 11.25 10.83 10.74
ALL - 10.31 10.08 10.22

English-German

IWSLT 10.20 – – –
ALL - 6.71 6.21 6.37

Table 2: Comparing the perplexity of NNJM
and NDAM models. NNJMb represents the model
trained on each individual domain separately.

most related domain from the perspective of in-
domain data, whereas UN is the farthest having
the worst perplexity. The third column (NNJMcat)
shows results of the models trained from concate-
nating each domain to the in-domain data. The
perplexity numbers improved significantly in each
case showing that there is useful information avail-
able in each domain which can be utilized to im-
prove the baseline. It also shows the robustness of
neural network models. Unlike the n-gram model,
the NN-based model improves generalization with
the increase in data without completely skewing
towards the dominating part of the data.

Concatenating in-domain with the NEWS data
gave better perplexities than other domains. Best
results were obtained by concatenating all the
data together (See row ALL). The third and fourth
columns show results of our models (NDAMv∗).
Both give better perplexities than NNJMcat in all
cases. However, it is unclear which of the two
is better. Similar observations were made for the
English-to-German pair, where we only did exper-
iments on the concatenation of all domains.

5.4 Extrinsic Evaluation

Arabic-to-English: For most language pairs,
the conventional wisdom is to train the system
with all available data. However, previously re-
ported MT results on Arabic-to-English (Mansour
and Ney, 2013) show that this is not optimal and
the results are often worse than only using in-
domain data. The reason for this is that the UN
domain is found to be distant and overwhelmingly
large as compared to the in-domain IWSLT data.
We carried out domain-wise experiments and also
found this to be true.

We considered three baseline systems: (i) Bin,

SYS IWSLT QED NEWS UN ALL

Bin 26.1 - - - -
Bcat - 26.2 26.7 25.8 26.5
Bcat,in - 26.2 26.3 25.9 26.5

Table 3: Results of the baseline Arabic-to-English
MT systems. The numbers are averaged over
tst2011-2013.

which is trained on the in-domain data, (ii) Bcat,
which is trained on the concatenation of in- and
out-domain data, and (ii) Bcat,in, where the MT
pipeline was trained on the concatenation but the
NNJM model is trained only on the in-domain
data. Table 3 reports average BLEU scores across
three test sets on all domains. Adding QED and
NEWS domains gave improvements on top of the
in-domain IWSLT baseline. Concatenation of UN
with in-domain made the results worse. Concate-
nating all out-domain and in-domain data achieves
+0.4 BLEU gain on top of the baseline in-domain
system. We will use Bcat systems as our baseline
to compare our adapted systems with.

Table 4 shows results of the MT systems Sv1
and Sv2 using our adapted models NDAMv1 and
NDAMv2. We compare them to the baseline sys-
tem Bcat, which uses the non-adapted NNJMcat

as a feature. Sv1 achieved an improvement of up
to +0.4 and Sv2 achieved an improvement of up
to +0.5 BLEU points. However, Sv2 performs
slightly worse than Sv1 on individual domains.
We speculate this is because of the nature of the
NDAMv2, which gives high weight to out-domain
sequences that are liked by the in-domain model
and disliked by the out-domain model. In the case
of individual domains, NDAMv2 might be over pe-
nalizing out-domain since the out-domain model
is only built on that particular domain and always
prefers it more than the in-domain model. In case
of ALL, the out-domain model is more diverse and
has different level of likeness for each domain.

We analyzed the output of the baseline system
(Scat) and spotted several cases of lexical ambigu-
ity caused by out-domain data. For example, the
Arabic phrase PAJ
�J 	kCË Y
K@ 	QË @ ÉÒmÌ'@ can be trans-
lated to choice overload or unwanted pregnancy.
The latter translation is incorrect in the context of
in-domain. The bias created due to the out-domain
data caused Scat to choose the contextually incor-
rect translation unwanted pregnancy. However,
the adapted systems Sv∗ were able to translate it
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QED NEWS UN ALL
tst11 tst12 tst13 tst11 tst12 tst13 tst11 tst12 tst13 tst11 tst12 tst13

Bcat 25.0 27.3 26.2 25.4 27.6 27.1 24.7 27.0 25.8 25.0 27.5 27.0

Sv1 25.2 27.7 26.2 25.8 27.8 27.3 24.7 27.5 26.1 25.3 27.8 27.0
∆ +0.2 +0.4 0.0 +0.4 +0.2 +0.2 0.0 +0.5 +0.3 +0.3 +0.2 0.0

Sv2 25.1 27.6 26.2 25.6 27.9 27.2 24.6 27.2 26.1 25.5 27.9 26.9
∆ +0.1 +0.3 0.0 +0.2 +0.3 +0.1 -0.1 +0.2 +0.3 +0.5 +0.4 -0.1

Table 4: Arabic-to-English MT Results

SYS tst11 tst12 tst13 Avg

Baselines

Bin 25.0 22.5 23.2 23.6
Bcat 25.7 22.9 24.1 24.2
Bcat,in 26.0 22.4 23.6 24.0

Comparison against NDAM

Bcat 25.7 22.9 24.1 24.2

Sv1 26.3 23.1 24.5 24.6
∆ +0.6 +0.2 +0.4 +0.4

Sv2 26.2 23.0 24.6 24.6
∆ +0.5 +0.1 +0.5 +0.4

Table 5: English-to-German MT Results

correctly. In another example ? 	àYJ. Ë @ �é�̄ AJ
Ë 	á« @ 	XAÓ
(How about fitness?), the word �é�̄ AJ
Ë is translated
to proprietary by Scat, a translation frequently ob-
served in the out-domain data. Sv∗ translated it
correctly to fitness, as preferred by the in-domain.

English-to-German: Concatenating all training
data to train the MT pipeline has been shown to
give the best results for English-to-German (Birch
et al., 2014). Therefore, we did not do domain-
wise experiments, except for training a system on
the in-domain IWSLT data for the sake of com-
pleteness. We also tried Bcat,in variation, i.e.
training an MT system on the entire data and using
in-domain data to train the baseline NNJM. The
baseline system Bcat gave better results and was
used as our reference for comparison.

Table 5 shows the results of our systems, Sv1
and Sv2, compared to the baselines, Bin and Bcat.
Unlike Arabic-to-English, the baseline system Bin
is much worse than Bcat. Our adapted MT systems
Sv1 and Sv2 both outperformed the best baseline
system (Bcat) with an improvement of up to 0.6
points. Sv2 performed slightly better than Sv1 on
one occasion and slightly worse in others.

Comparison with Data Selection: We also
compared our results with the MML-based data

SYS tst11 tst12 tst13 Avg

Arabic-to-English

Bcat 25.0 27.5 27.0 26.5
Sv1 25.3 27.8 27.0 26.7
Bmml 25.5 27.8 26.8 26.7
Sv1+mml 25.5 28.2 27.2 27.0

English-to-German

Bcat 25.7 22.9 24.1 24.2
Sv1 26.3 23.1 24.5 24.6
Bmml 25.1 22.7 23.9 23.9
Sv1+mml 25.4 22.8 23.9 24.0

Table 6: Comparison with Modified Moore-Lewis

selection approach as shown in Table 6. The
MML-based baseline systems (Bmml) used 20%
selected data for training the MT system and the
NNJM. On Arabic-English, both MML-based se-
lection and our model (Sv1) gave similar gains on
top of the baseline system (Bcat). Further results
showed that both approaches are complementary.
We were able to obtain an average gain of +0.3
BLEU points by training an NDAMv1 model over
the selected data (see Sv1+mml).

However, on English-German, the MML-based
selection caused a drop in the performance (see
Table 6). Training an adapted NDAMv1 model
over selected data gave improvements over MML
in two test sets but could not restore the baseline
performance, probably because the useful data has
already been filtered by the selection process.

6 Conclusion
We presented two novel models for domain adap-
tation based on NNJM. Adaptation is performed
by regularizing the loss function towards the in-
domain model and away from the unrelated out-
of-domain data. Our models show better perplex-
ities than the non-adapted baseline NNJM mod-
els. When integrated into a machine translation
system, gains of up to 0.5 and 0.6 BLEU points
were obtained in Arabic-to-English and English-
to-German systems over strong baselines.
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Abstract

The information conveyed by some sen-
tences would be more easily understood
by a reader if it were expressed in multi-
ple sentences. We call such sentences con-
tent heavy: these are possibly grammatical
but difficult to comprehend, cumbersome
sentences. In this paper we introduce the
task of detecting content-heavy sentences
in cross-lingual context. Specifically we
develop methods to identify sentences in
Chinese for which English speakers would
prefer translations consisting of more than
one sentence. We base our analysis and
definitions on evidence from multiple hu-
man translations and reader preferences on
flow and understandability. We show that
machine translation quality when translat-
ing content heavy sentences is markedly
worse than overall quality and that this
type of sentence are fairly common in
Chinese news. We demonstrate that sen-
tence length and punctuation usage in Chi-
nese are not sufficient clues for accurately
detecting heavy sentences and present a
richer classification model that accurately
identifies these sentences.

1 Introduction

To generate text, people and machines need to de-
cide how to package the content they wish to ex-
press into clauses and sentences. There are multi-
ple possible renderings of the same information,
with varying degrees of ease of comprehension,
compactness and naturalness. Some sentences,
even though they are grammatical, would be more
accessible to a reader if expressed in multiple sen-
tences. We call such sentences content heavy sen-
tences, or heavy sentences for brevity.

In the established areas of language research,
text simplification and sentence planning in dia-

log and generation systems are clearly tasks in
which identification of content-heavy sentences is
of great importance. In this paper we introduce a
novel flavor of the task in the cross-lingual setting,
which in the long term may guide improvements in
machine translation. We seek to identify sentences
in Chinese that would result in heavy sentences in
English if translated to a single sentence.

Example I in Table 1 shows a Chinese sentence
and its two English translations A and B. Transla-
tor A used three English sentences to express all
the information. Translator B, on the other hand,
used a single sentence, which most readers would
find more difficult to read. Example II illustrates
a case where a translator would be hard pressed
to convey all the content in a sentence in Chinese
into a single grammatical English sentence.

Here we provide an operational characteriza-
tion of content-heavy sentences in the context of
Chinese-English translation. Instead of establish-
ing guidelines for standalone annotation, we re-
purpose datasets developed for evaluation of ma-
chine translation consisting of multiple reference
translations for each Chinese sentence. In this
cross-lingual analysis, sentences in Chinese are
considered content-heavy if their content would be
more felicitously expressed in multiple sentences
in English.

We first show that, with respect to English,
content-heavy Chinese sentences are common. A
fifth to a quarter of the sentences in the Chi-
nese news data that we analyze are translated
to multiple sentences in English. Moreover our
experiments with reader preference indicate that
for these sentences, readers strongly prefer multi-
sentence translation to a single-sentence transla-
tion (§ 4.1). We also compare the difference in ma-
chine translation quality for heavy sentences and
find that it is considerably lower than overall sys-
tem performance (§ 4.2). Then we study the con-
nection between heavy sentences and the factors
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[Example I] 虽然菲军方在南部的巴西兰岛上部署
了5000多兵力，并在美军的帮助下围剿阿布沙耶夫分
子，但迄今收效不大。Although the Philippine army on
the southern Basilan island deployed over 5,000 troops, and
with the US army’s help are hunting down ASG members, but
so far achieved little.
[A] The Philippine army has already deployed over 5 thou-
sand soldiers on the southern island of Basilan. With the
help of U.S. army, these soldiers are searching and suppress-
ing members of Abu Sayyaf. However, there is not much
achievement this far.
[B] The Philippine military has stationed over 5,000 troops
on Basilan Island in the southern Philippines and also tried to
hunt down ASG members with the help of the United States,
yet so far it has little success.

[Example II] 端粒是染色体末端的结构，随着细胞老化
和失去分裂能力，端粒会逐渐缩短长度，换言之，端粒
愈长显示细胞老化愈慢。Telomeres are chromosome ends
structures, with cell aging and losing division ability, telom-
eres will gradually decrease length, in other words, telomeres
the longer shows cell aging the slower.
[A] Telomeres are structures at the ends of chromosomes,
which gradually reduce in length with the aging of the cells
and their loss of the ability to divide. In other words, longer
telomeres indicate the slower aging of the cells.
[B] Telomeres are the physical ends of chromosomes. As
cells age and lose the ability to divide, the telomeres shrink
gradually. That is to say, longer telomeres indicate that cells
are aging more slowly.

Table 1: Examples of Chinese sentences expressed in multiple English sentences.

used in prior work to split a Chinese sentence into
multiple sentences, showing that they do not fully
determine the empirically defined content-heavy
status (§ 5). Finally, we present an effective system
to automatically identify content-heavy sentences
in Chinese (§ 6, 7, 8).

2 Related work

The need for identifying content-heavy sentences
arises in many specialized domains, including di-
alog systems, machine translation, text simplifica-
tion and Chinese language processing but it is usu-
ally addressed in an implicit or application specific
way. In contrast, we focus on identifying heavy
sentences as a standalone task, providing a uni-
fying view of the seemingly disparate strands of
prior work. We now overview the literature which
motivated our work.

Sentence planning. In text generation, a sen-
tence planner produces linguistic realizations of a
list of propositions (Rambow and Korelsky, 1992).
One subtask is to decide whether to package the
same content into one or more sentences. In the
example below (Pan and Shaw, 2005), the multi-
sentence expression B is much easier to process:
[A] This is a 1 million dollar 3 bedroom, 2 bathroom, 2000
square foot colonial with 2 acre of land, 2 car garage, annual
taxes 8000 dollars in Armonk and in the Byram Hills school
district.
[B] This is a 3 bedroom, 2 bathroom, 2000 square foot colo-
nial located in Armonk with 2 acres of land. The asking price
is 1 million dollar and the annual taxes are 8000 dollars. The
house is located in the Byram Hills School District.

Identifying sentence [A] as heavy would be useful
in selecting the best realization.

A crucial difference between our task and its
counterpart in sentence planning is that traditional

text generation systems have access to rich se-
mantic information about the type of propositions
the system needs to convey, while in our task we
have access only to Chinese text. In some dia-
log systems, content selection is treated as an op-
timization problem, balancing the placement of
full-stops and the insertion or deletion of proposi-
tions with the similarity of the resulting output and
an existing corpus of acceptable productions (Pan
and Shaw, 2005). Others formulate the problem as
a supervised ranking task, in which different pos-
sible content realizations are generated, including
variation in the number of sentences (Walker et al.,
2001; Stent et al., 2004). With the introduction
of the concept of content-heavy sentences, we can
envision dialog systems addressing the sentence
realization task in two steps, first predicting if the
semantic content will require multiple sentences,
then having different rankers for expressing the
content in one or multiple sentences. In that case
the ranker will need to capture only sentence-level
information and the discourse-level decision to use
multiple sentences will be treated separately.

Text simplification. “Text simplification, de-
fined narrowly, is the process of reducing the lin-
guistic complexity of a text, while still retain-
ing the original information content and mean-
ing” (Siddharthan, 2014). An important aspect of
simplification is syntactic transformation in which
sentences deemed difficult are re-written as multi-
ple sentences (Chandrasekar et al., 1996; Aluı́sio
et al., 2008). Our task may be viewed as identi-
fying sentences in one language that will require
simplification when translated, for the benefit of
the speakers of the target language. In rule-based
simplification systems, splitting is performed al-
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ways when a given syntactic construction such as
relative clause, apposition or discourse connec-
tive are detected (Chandrasekar et al., 1996; Sid-
dharthan, 2006; De Belder and Moens, 2010).
Most recently, text simplification has been ad-
dressed as a monolingual machine translation task
from complex to simple language (Specia, 2010;
Coster and Kauchak, 2011; Wubben et al., 2012).
However simplification by repackaging the con-
tent into multiple sentences is not naturally com-
patible with the standard view of statistical MT
in which a system is expected to produce a single
output sentence for a single input sentence. Some
of the recent systems using MT techniques sep-
arately model the need for sentence splitting (Zhu
et al., 2010; Woodsend and Lapata, 2011; Narayan
and Gardent, 2014). Identifying heavy sentences
in simplification is equivalent to identifying sen-
tences that require syntactic simplification.

Sentence structure and MT. Prior work in ma-
chine translation has discussed the existence of
sentences in Chinese which would result in a poor
translation if translated in one sentence in English.
The main factors proposed to characterize such
problematic sentences are sentence length (Xu and
Tan, 1996) and the presence of given syntactic
constructions (Xu et al., 2005; Yin et al., 2007; Jin
and Liu, 2010). Mishra et al. (2014) used rules in-
volving similar factors to distinguish sentences in
Hindi that need simplification prior to translation.

In each of these approaches, the identified sen-
tences are segmented into smaller units. Similar to
work in text simplification, the simplification rules
are applied to all sentences meeting certain crite-
ria, normally to all sentences longer than a pre-
defined threshold or where certain conjunctions or
coordinations are present. In contrast, the model
we propose here can be used to predict when seg-
mentation is at all necessary.

Our approach to the problem is more compat-
ible with the empirical evidence we presented in
our prior work (Li et al., 2014) where we ana-
lyzed the output of Chinese to English machine
translation and found that there is no correlation
between sentence length and MT quality. Rather
we showed that the quality of translation was
markedly inferior, compared to overall transla-
tion quality, for sentences that were translated into
multiple English sentences. This prior work was
carried over a dataset containing a single reference
translation for each Chinese sentence. In the work

presented in this paper, we strengthen our find-
ings by examining multiple reference translations
for each Chinese sentence. We define heavy sen-
tences based on agreement of translator choices
and reader preferences.

Commas in Chinese. Often a comma in a sen-
tence can be felicitously replaced by a full stop.
Such commas offer a straightforward way to split a
long sentence into multiple shorter ones by replac-
ing the comma with a full stop. Monolingual text
simplification systems often try to identify such
commas. They are particularly common in Chi-
nese and replacing them with full stops leads to
improvements in the accuracy of syntactic parsing
(Jin et al., 2004; Li et al., 2005). Moreover, exist-
ing syntactically parsed corpora conveniently pro-
vide numerous examples of these full-stop com-
mas, and thus training data for systems to identify
them (Xue and Yang, 2011; Yang and Xue, 2012).
In this paper, we systematically study the relation-
ship between the presence of full-stop commas in
the sentence and whether it is content-heavy for
Chinese to English translation.

3 Data

In this work we use three news datasets: the
newswire portion of the NIST 2012 Open Ma-
chine Translation Evaluation (OpenMT) (Group,
2013), Multiple-Translation Chinese (MTC) parts
1-4 (Huang et al., 2002; Huang et al., 2003; Ma,
2004; Ma, 2006), and the Chinese Treebank (Xue
et al., 2005). In OpenMT and MTC, multiple
reference translations in English are available for
each Chinese segment (sentence).

To study the relationship between content-
heavy sentences and reader preference for multi-
sentence translations (§ 4.1), we use OpenMT (688
segments) and MTC parts 2-4 (2,439 segments),
both of which provide four English translations for
each Chinese segment. This analysis forms the
basis for labeling heavy sentences for supervised
training and evaluation (§ 5, 6, 7).

The Chinese Treebank (CTB) has been used in
prior work as data for identifying full-stop com-
mas. Moreover, 52 documents in MTC part 1 were
drawn from the CTB. The intersection of the two
datasets allows us to directly analyze the relation-
ship between heavy sentences and full-stop com-
mas in Chinese (§ 5). Furthermore we use this in-
tersection as test set to identify heavy sentences so
we can directly compare with models developed

1273



for comma disambiguation. To be consistent with
the rest of the MTC data, we use 4 out of the 11
translators in part 1 in these experiments.1

Our model for Chinese full-stop comma recog-
nition is trained following the features and training
sets specified in Xue and Yang (2011)2, excluding
the overlapping MTC/CTB documents mentioned
above. There are 12,291 sentences in training
that contain at least one comma. A classifier for
detecting heavy sentences is trained on OpenMT
and MTC (excluding the test set). A quick in-
spection of both datasets reveals that Chinese sen-
tences without a comma were never translated into
multiple sentences by more than one translator.
Therefore in our experiments we consider only
sentences that contain at least one comma. There
are 301 test sentences, 511 training sentences in
OpenMT and 2418 in MTC. Sentences are pro-
cessed by the Stanford NLP packages3. CTB gold-
standard parses are used to obtain full-stop com-
mas and to train comma disambiguation models.

4 Content-heavy sentences: definition

In this section we provide an operational definition
for which sentences should be considered content-
heavy, based on the choices made by translators
and the fluency preferences of readers when a sen-
tence is translated into a single or multiple sen-
tences. We further demonstrate the difference
in machine translation quality when translating
content-heavy sentences compared to other sen-
tences.

4.1 Content-heaviness and multi-sentence
translations

First we quantify how often translators choose to
translate a Chinese sentence into multiple English
sentences. Content-heavy Chinese sentences are
those for which there is a strong preference to pro-
duce multiple sentences when translating to En-
glish (at the end of the section we present specific
criteria).

Obviously, splitting a sentence into multiple
ones is often possible but is not necessarily pre-
ferred. In Table 2, we show in the “%data”

1We did not use translator IDs as parameters in any of our
systems.

2Document IDs 41-325, 400-454, 500-554, 590-596, 600-
885, 900, 1001-1078, 1100-1151.

3The Stanford segmenter (Tseng et al., 2005), parser
(Levy and Manning, 2003) and the CoreNLP package (Man-
ning et al., 2014)

OpenMT MTC

#ref %best %best
multi %data multi %data multi

0 65.4 0 58.9 0
1 7.4 23.5 20.4 20.1
2 7.0 66.7 8.3 56.7
3 9.2 88.9 7.9 89.6
4 11.0 100 4.6 100

Table 2: Percentage of sentences for which a given
number of translators prefer to use multiple sen-
tences in English, along with percentage of times
a multi-sentence translation was selected as most
fluent and comprehensible by readers.

columns the percentage of source sentences split
in translation by 0, 1, 2, 3 and all 4 translators.
For about 20% of segments in OpenMT and 15%
in MTC, at least three of the translators produce
a multi-sentence translation, a rate high enough to
warrant closer inspection of the problem.

Next, we conduct a study to find out what level
of translator agreement leads to strong reader pref-
erence for the same information to be presented in
multiple sentences.

For each Chinese segment with one, two or
three multi-sentence reference translations, we ask
five annotators on Mechanical Turk to rank the
reference translations according to their general
flow and understandability. The annotators saw
only the four randomly ordered English transla-
tions and were not shown the Chinese original,
with the following instruction:
Below are 1-2 sentence snippets that describe the same con-
tent. Some are more readable and easier to understand than
others. Your task is to rank them from the best to worst in
terms of wording or flow (organization). There can be ties,
but you have to pick one that is the best.

We obtain reader preference for each segment in
the following manner: for each annotator, we take
the highest ranked translation and check whether
it consists of multiple sentences. In this way we
have five binary indicators. We say readers prefer
a sentence to have a multi-sentence translation in
terms of flow and comprehensibility if the major-
ity of these five indicators are positive.

In the “%best multi” columns of Table 2, we
tabulate the percentage of segments with major-
ity preference for multi-sentence translation, strat-
ified by the number of translators who split the
content. Obviously the more multi-sentence trans-
lations there are, the higher the probability that the
readers will select one as the best translation. We
are interested in knowing for which conditions the
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Criteria %data(Y) Y N ∆bleu

heavy 27.2 15.34 19.24 3.9

Table 3: Percentage of data for heavy sentences
along with BLEU scores for heavy and non-heavy
sentences and their difference.

preference for multi-sentence translation exceeds
the probability of randomly picking one.

When only one (out of four) translations is
multi-sentence, the best translations chosen by the
majority of readers contain multiple sentences less
often than in random selection from the avail-
able translations. When two out of the four ref-
erence translations are multi-sentence, the reader
preference towards them beats chance by a good
margin. The difference between chance selec-
tion and reader preference for multiple sentences
grows steadily with the number of reference trans-
lations that split the content. These data suggest
that when at least two translators perform a multi-
sentence translation, breaking down information
in the source sentence impacts the quality of the
translation.

Hence we define content-heavy sentences in
Chinese to be those for which at least two out of
four reference translations consist of multiple sen-
tences.

4.2 A challenge for MT

We now quantitatively show that heavy sentences
are particularly problematic for machine transla-
tion. We collect translations for each segment
in OpenMT and MTC from the Bing Translator.
We split the sentences into two groups, heavy and
other, according to the gold standard label ex-
plained in the previous section. We then com-
pare the BLEU score for sentences in a respective
group, where each group is in turn used as a test
set. The difference in BLEU scores (∆bleu) is a
strong indicator whether these sentences are chal-
lenging for MT systems.

In Table 3 we show the BLEU scores and ∆bleu
for sentences that are heavy (Y) and non-heavy
(N). Also included in the table is the percentage
of heavy sentences in all the data.

Translations for heavy sentences received a
BLEU score that is 3.9 points lower than those that
are not. This clearly illustrates the challenge and
potential for improvement for MT systems posed
by content-heavy sentences. Therefore the ability
to reliably recognize them provides a first step to-

Root IP

IP clause PU (,) IP clause

Figure 1: Coordinating IP structure at the root.

heavy fs-comma No fs-comma
N 19 180
Y 40 62

Table 4: Count of heavy and non-heavy sentences
with and without full-stop commas.

wards developing a better translation approach for
such sentences.

5 Comma usage and heavy sentences

In Chinese, commas can sometimes act as sen-
tence boundaries, similar to the function of an En-
glish period. In Xue and Yang (2011), the au-
thors showed that these full-stop commas can be
identified in the constituent parse tree as coordi-
nating IPs at the root level, shown in Figure 1.
Fancellu and Webber (2014) demonstrated that it
is beneficial to split sentences containing negation
on these types of commas, translate the resulting
shorter sentences separately, then stitch the result-
ing translations together. They report that this ap-
proach prevented movement of negation particles
beyond their scope. Here we study the degree to
which the content-heavy status of a sentence is ex-
plained by the presence of a full-stop comma in
the sentence. We show that they are interrelated
but not equivalent.

Corpus analysis. First we study how often a
heavy sentence contains a full-stop comma and
vice versa, using the overlapping MTC/CTB doc-
uments. We show in Table 4 the number of heavy
and non-heavy sentences with and without full-
stop commas4. When there is a full-stop comma
in the sentence, there is a higher chance that the
sentence is content-heavy. Yet of the 102 heavy
sentences in this data, fewer than 40% contain
full-stop commas; of the 242 sentences without
full-stop commas, more than a quarter are heavy.
Therefore, although comma usage in the Chinese
sentence may provide clues for detecting content
heaviness, the two phenomena are not equivalent

4For the study we exclude sentences without a comma. A
χ2 test for the strength of association between the presence
of full stop commas and heavy sentence status shows high
significance.
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and heavy sentences are not fully explained by the
presence of full-stop commas.

Learning with full-stop commas. Here we
evaluate the usefulness of using full-stop commas
as training data to predict whether a sentence is
content-heavy. From the analysis presented above
we know that the two tasks are not equivalent.
Nevertheless we would like to test directly if the
Chinese Treebank—the large (but noisy for the
task at hand) data available for comma function
disambiguation—would lead to better results than
learning on the cleaner but much smaller datasets
for which multiple translations are available.

We use logistic regression as our classification
model5. The performance of identifying heavy
sentences on the MTC/CTB overlapping test set
is compared using the following methods:

[Parallel] A classifier is trained using four
English translations for each Chinese sentence
(OpenMT and MTC training set). Following the
definition in Section 4.1, content-heavy sentences
are those translated into multiple English sen-
tences by two or more translators.

[Oracle comma] A test sentence is assigned to
class “heavy” if there is a full-stop comma in its
corresponding gold standard parse tree.

[Predicted comma] We train a comma disam-
biguation system on CTB to predict if a comma is
a full-stop comma. In testing, a sentence is marked
“heavy” if it contains a predicted full-stop comma.

Features. We reimplemented the per-comma
features used in Xue and Yang (2011)6. As in their
best performing system, features are extracted
from gold-standard parse trees during training and
from automatic parsing during testing. These in-
clude: words and part-of-speech tags immediately
before and after the comma; left- and right-sibling
node labels of the parent of the comma; ordered
ancestor node labels above the comma; punctua-
tion tokens ordered from left to right of the sen-
tence; whether the comma has a coordinating IP
structure; whether the comma’s parent is a child
of the root of the tree; whether there is a subordi-
nation before the comma; whether the difference
in number of words before and after the comma is
greater than or equal to seven.

5We use the Liblinear package (Fan et al., 2008).
6For predicted comma, our reimplementation of Xue and

Yang (2011) gave practically identical results to those re-
ported in the original paper on the test set that they used.

Training A P R

parallel 75.75 69.86 50
oracle comma 73.09 67.8 39.2

predicted comma 74.42 66.67 49.02

Table 5: Performance for identify heavy sentences
using multiple reference data (parallel) vs. full-
stop comma oracle labels (oracle comma) and pre-
dicted full-stop commas (predicted comma).

For parallel, feature values are accumulated
from all the commas in the sentence. For binary
features, we use an or operation on the feature val-
ues for each individual comma.

Results and comparison. In Table 5, we show
the accuracy, precision and recall for identifying
content-heavy sentences using the three methods
described above. We do not include the majority
baseline here because it assumes no sentences are
content heavy.

Interestingly, the system using oracle informa-
tion in each test sentence for full-stop commas per-
forms the worst. The system trained to identify
full-stop commas outperform the oracle system
with about 10% better in recall and less than 1%
lower in precision. This finding strongly suggests
that the features used for learning capture certain
characteristics of heavy sentences even with non-
ideal training labels. The best performance is ob-
tained learning directly on parallel corpora with
multiple reference translations. Note that we try
to provide the best possible setting for full-stop
comma prediction, using much more training data,
gold-standard parses, same-domain training and
testing, as well as the reimplementation of state-
of-the-art system. These settings allow us to con-
servatively interpret the results listed here, which
confirm that content-heaviness is different from
using a full-stop comma in the Chinese sentence.
It is more advantageous—leading to higher pre-
cision and overall accuracy—to learn from data
where translators encode their interpretation in the
form of multi-sentence translations.

6 Features to characterize content-heavy
sentences

In this section, we experiment with a wide range of
features from the sentence string, part-of-speech
tags and dependency parse trees.

Baseline. Intuitively, sentence length can be an
indication of too much content that needs to be
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VP

VP PU VP

Figure 2: Multiple VP structures

repackaged into multiple sentences. Therefore as
our baseline we train a decision tree using the
number of words7 in a Chinese sentence.

Sentence structure cues. We collect potential
signals for structural complexity: punctuation,
conjunctions, prepositional phrases and relative
clauses. As features we count the number of
commas, conjunction, preposition and postposi-
tion part-of-speech tags. In Chinese “DE” of-
ten marks prepositional phrases or relative clauses
among other functions (Chang et al., 2009a). Here
we include a simple count the number of “DEG”
tags in the sentence.

Dependencies. Dependency grammar captures
both syntactic and semantic relationship between
words and are shown to improve reordering in MT
(Chang et al., 2009b). To account for such rela-
tional information we include two feature classes:
the percentage of each dependency type and the
typed dependency pairs themselves. For the latter
we use the universal part-of-speech tags (Petrov et
al., 2012) for each word rather than the word itself
to avoid too detailed and sparse representations.
For example, the relation dobj(处理/handle, 事
情/matter) becomes feature dobj(verb, noun).

Furthermore, we use dependency trees to ex-
tract four features for potentially complex con-
structions. First, we indicate the presence of noun
phrases with heavy modifiers on the left. These
are frequently used in Chinese and would require
a relative clause or an additional sentence in En-
glish. Specifically we record the maximum num-
ber of dependents for the nouns in the sentence.
The second type of construction is the use of se-
rial verb phrases, illustrated in Figure 2. We record
the number of dependents of the head verb of the
sentence. The third feature class is the typed de-
pendencies (over universal POS tags) whose edge
crosses a comma. Finally, we also record the max-
imum number of dependents in the sentence to
capture the general phrasal complexity in the sen-
tence.

7obtained using the Stanford Chinese Word Segmenter
(Tseng et al., 2005)

Features Training A P R

baseline MTC+OpenMT 71.43 73.5 24.5
full set OpenMT 76.41 66.67 60.78
full set MTC 78.41 74.03 55.9
full set MTC+OpenMT 80.73 79.73 57.84

Table 6: Accuracy, precision and recall (for the
content heavy class) of binary classification using
proposed features to identify content-heavy sen-
tences.

Parts-of-speech. POS information captures nu-
merous aspects of the sentence such as the fre-
quency of different classes of words used and the
transition between them. Historically they are also
shown to be helpful for phrase boundary detection
(Taylor and Black, 1998). Here, we first convert
all Chinese POS tags into their corresponding uni-
versal tags. We then use the percentage of each tag
and tag bigram as two feature classes. To capture
the transition of each phrase and clause in the sen-
tence, we construct functional POS trigrams for
each sentence by removing all nouns, verbs, adjec-
tives, adverbs, numbers and pronouns in the sen-
tence. Percentages of these sequences are used as
feature values.

Comma disambiguation features. We also in-
corporate most of the features proposed by Xue
and Yang (2011), aggregated in the same way
as the parallel method (cf. Section 5). These
include: POS tags immediately before and af-
ter the comma; left- and right-sibling node labels
of the parent of the comma; the punctuation to-
kens ordered from left to right in the sentence,
whether the comma has a coordinating IP struc-
ture; whether the comma’s parent is a child of the
root of the tree; whether there is a subordination
before the comma; whether the difference in num-
ber of words before and after the comma is greater
than or equal to seven.

7 Results

7.1 Recognizing content-heavy sentences
We train a logistic regression model as in the par-
allel method in Section 5 using features illustrated
above. In Table 6, we show the performance of
detecting heavy sentences using four systems: the
baseline system using the number of words in the
sentence and three systems using our full feature
set, trained on MTC, OpenMT and both.

The baseline performance is characterized by
a remarkably poor recall. It becomes appar-
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#ref multi ≥ 0 ≥ 1 ≥ 2 ≥ 3 4

#seg 301 187 102 58 25
precision 79.73 84.29 100 100 100

recall 57.85 57.84 57.84 68.98 76
posterior 0.29 0.40 0.53 0.61 0.67

Table 7: Number of segments, precision, recall
and posterior probability (for the content-heavy
class) for examples where at least 0-4 translators
split the sentence.

ent that length alone cannot characterize content-
heaviness. On the other hand, using the full fea-
ture set achieves an accuracy of above 80%, a pre-
cision close to 80% and a recall about 58%. The
improvement in precision and recall over using or-
acle full-stop commas (Table 5) are about 12% and
19%. When compared with using features tuned
for comma disambiguation from Xue and Yang
(2011) (Table 5), our full feature set achieved a
5% increase in accuracy, about 10% increase in
precision and 8% increase in recall.

We also demonstrate the usefulness of having
more multi-reference translation data by compar-
ing training using MTC and OpenMT individually
and both. Remarkably, using only the very small
dataset of OpenMT is sufficient to produce a pre-
dictor that is more accurate than all of the meth-
ods listed in Section 5. Adding these examples to
MTC drastically improves precision by more than
13% with a less than 3% drop on recall.

Finally, we consider the portions of our test
set for which at least n translators provided a
multi-sentence translation (n ranges from 0 to 4).
In Table 7 we show the respective precision, re-
call and the average posterior probability from
the classifier for marking a sentence as content-
heavy. There is a clear trend that the classifier
is more confident and has higher precision for
sentences where more translators produce multi-
sentence translations. Although the model is not
highly confident in all groups, the precision of
the predictions are remarkably high. Miss rate
also decreases when more translators translate the
source into multiple sentences.

7.2 Post-hoc feature analysis
Here we identify which of the feature classes from
our full set are most helpful by performing for-
ward feature selection: in each iteration, the fea-
ture class that improves accuracy the most is se-
lected. The process is repeated until none of the re-
maining feature classes lead to improvement when

added to the model evaluated at the previous itera-
tion. We use our test data as the evaluation set for
forward selection, but we do so only to evaluate
features, not to modify our system.

Five feature classes are selected using this
greedy procedure. The first selected class is the
typed dependencies over universal POS tags. Re-
markably, this single feature class achieves 76.6%
accuracy, a number already reasonably high and
better than features used in Xue and Yang (2011).
The second feature added is whether there is a
comma of coordinating IP structure in the auto-
matic parse tree of the sentence. It gives a fur-
ther 1.7% increase in accuracy, showing that the
comma structure provide useful information as
features for detecting heavy sentences. Note that
this feature does not represent full stop commas,
i.e., it does not record whether the comma is un-
der the root level of the parse tree. The next se-
lected class is typed dependencies over universal
POS tags that have an edge across commas in the
sentence, with an 1% increase in accuracy. The
fourth feature selected is the number of preposi-
tions and postposition POS tags in the sentence,
improving the accuracy about 1%. Finally, part-
of-speech tags before each comma are added, with
a 0.3% improvement of accuracy.

The results from forward selection analysis re-
veal that the dependency structure of a sentence
captures the most helpful information for heavy
sentence identification. The interplay between
punctuation and phrase structure gives further im-
portant enhancements to the model. The final ac-
curacy, precision and recall after forward selec-
tion are 0.804, 0.8209, 0.5392, respectively. This
overall performance shows that forward selection
yields a sub-optimal feature set, suggesting that
the other features are also informative.

8 A challenge for MT: revisited

It is important to know whether a predictor for
content-heavy sentences is good at identifying
challenging sentences for applications such as ma-
chine translation. Here, we would like to revisit
Section 4.2 and see if predicted heavy sentences
are harder to translate.

For all the source sentences in OpenMT and
MTC, we compare five criteria for dividing the test
data in two subsets: whether the sentence contains
a full-stop comma or not; whether the sentence
is longer than the baseline decision tree threshold
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Criteria %data(Y) Y N ∆bleu

fs-comma 21.6 16.01 18.43 2.42
length threshold 8.6 15.38 18.3 2.92
pred-heavy (0.5) 22.72 15.81 18.77 2.96
pred-heavy (0.55) 19.72 15.47 18.76 3.29
pred-heavy (0.6) 16.67 14.95 18.77 3.82

oracle heavy 27.4 15.34 19.24 3.9

Table 8: Data portion, BLEU scores and dif-
ferences for sentences with/without a full-stop
comma, are/are not longer than the length thresh-
old, are/are not content heavy.

(47 words) or not; whether the sentence is pre-
dicted to be content-heavy with posterior proba-
bility threshold of 0.5, 0.55 and 0.6. Predictions
for the training portion is obtained using 10-fold
cross-validation. In the same manner as Table 3,
Table 8 shows the percentage of data that satis-
fies each criterion, BLEU scores of Bing transla-
tions for sentences that satisfy a criterion and those
that do not, as well as the difference of BLEU be-
tween the two subsets (∆bleu). As reference we
also include numbers listed in Table 3 using ora-
cle content-heavy labels.

First, notice that regardless of the posterior
probability threshold, the numbers of sentences
predicted to be content-heavy are much larger than
that using the length cutoff. These sentences are
also collectively translated much worse than the
sentences in the other subset. Sentences that con-
tain a predicted full-stop comma are also harder
to translate, but show smaller difference in BLEU
than when sentence heaviness or length are used as
separation criterion. As the posterior probability
threshold goes up and the classifier becomes more
confident when it identifies heavy sentences, there
is a clear trend that system translations for these
sentences become worse. These BLEU score com-
parisons indicate that our proposed model identi-
fies sentences that pose a challenge for MT sys-
tems.

9 Conclusion and future work

In this work, we propose a cross-lingual task
of detecting content-heavy sentences in Chinese,
which are best translated into multiple sentences
in English. We show that for such sentences, a
multi-sentence translation is preferred by readers
in terms of flow and understandability. Content-
heavy sentences defined in this manner present
practical challenges for MT systems. We further

demonstrate that these sentences are not fully ex-
plained by sentence length or syntactically defined
full-stop commas in Chinese. We propose a clas-
sification model using a rich set of features that
effectively identify these sentences.

The findings in this paper point out a defi-
nite issue in different languages currently under-
investigated in text-to-text generation systems.
One possible way to improve MT systems is to
incorporate sentence simplification before trans-
lation (Mishra et al., 2014). Future work could
use our proposed model to detect heavy sentences
that needs such pre-processing. Our findings can
also inspire informative features for sentence qual-
ity estimation, in which the task is to predict
the sentence-level fluency (Beck et al., 2014).
We have shown that heavy Chinese sentences are
likely to lead to hard to read, disfluent sentences
in English. Another important future direction lies
in text simplification. In our inspection of par-
allel Wikipedia/Simple Wikipedia data (Kauchak,
2013), around 23.6% of the aligned sentences in-
volve a single sentence on one side and multiple
sentences on another. A similar analysis using
ideas from this work can be useful in identify-
ing sentences that needs simplification in the first
place.
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Abstract

Parameter tuning is a key problem for sta-
tistical machine translation (SMT). Most
popular parameter tuning algorithms for
SMT are agnostic of decoding, result-
ing in parameters vulnerable to search er-
rors in decoding. The recent research of
“search-aware tuning” (Liu and Huang,
2014) addresses this problem by consid-
ering the partial derivations in every de-
coding step so that the promising ones
are more likely to survive the inexact de-
coding beam. We extend this approach
from phrase-based translation to syntax-
based translation by generalizing the eval-
uation metrics for partial translations to
handle tree-structured derivations in a way
inspired by inside-outside algorithm. Our
approach is simple to use and can be ap-
plied to most of the conventional parame-
ter tuning methods as a plugin. Extensive
experiments on Chinese-to-English trans-
lation show significant BLEU improve-
ments on MERT, MIRA and PRO.

1 Introduction

Efforts in parameter tuning algorithms for SMT,
such as MERT (Och, 2003; Galley et al., 2013),
MIRA (Watanabe et al., 2007; Chiang et al., 2009;
Cherry and Foster, 2012; Chiang, 2012), and
PRO (Hopkins and May, 2011) have improved
the translation quality considerably in the past
decade. These tuning algorithms share the same
characteristic that they treat the decoder as a black
box. This decoding insensitiveness has two ef-
fects: 1) the parameter tuning algorithm can be
more general to choose the most effective decod-
ing paradigm for different language pairs; 2) how-
ever, it also means that the learned parameters may
not fit the decoding algorithm well, so that promis-
ing partial translations might be pruned out due to
the beam search decoding.

Recent researches reveal that the parameter tun-
ing algorithms tailored for specific decoding al-
gorithms can be beneficial in general structured
prediction problems (Huang et al., 2012), and in
machine translation (Yu et al., 2013; Zhao et al.,
2014; Liu and Huang, 2014). Particularly, Liu and
Huang (2014) show that by requiring the conven-
tional parameter tuning algorithms to consider the
final decoding results (full translations) as well as
the intermediate decoding states (partial transla-
tions) at the same time, the inexact decoding can
be significantly improved so that correct interme-
diate partial translations are more likely to survive
the beam. However, the underlying phrase-based
decoding model suffers from limited distortion,
and thus, may not be flexible enough for translat-
ing language pairs that are syntactically different,
which require long distance reordering.

In order to better handle long distance reorder-
ing which beyonds the capability of phrase-based
MT, we extend the search-aware tuning frame-
work from phrase-based MT to syntax-based MT,
in particular the hierarchical phrase-based transla-
tion model (HIERO) (Chiang, 2007).

One key advantage of search-aware tuning for
previous phrase-based MT is the minimal change
to existing parameter tuning algorithms, which
is achieved by defining BLEU-like metrics for
the intermediate decoding states with sequence-
structured derivations. To keep our approach
simple, we generalize these BLEU-like metrics
to handle intermediate decoding states with tree-
structured derivations in HIERO, which are cal-
culated by dynamic programming algorithms in-
spired by the inside-outside algorithm.

We make the following contributions:

1. We extend the framework of search-aware
tuning methods from phrase-based transla-
tion to syntax-based translation. This exten-
sion is simple to be applied to most conven-
tional parameter tuning methods, requiring
minimal extra changes to existing algorithms.
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2. We propose two BLEU metrics and their vari-
ants to evaluate partial derivations. In order
to efficiently compute the new BLEU metrics,
we investigate dynamic programming based
algorithms to recover the good partial deriva-
tions for search-aware tuning.

3. Our method obtains significant improve-
ments on large-scale Chinese-to-English
translation on top of MERT, MIRA and PRO

baselines.

2 Hierarchical Phrase-based Decoding

We first briefly describe the hierarchical phrase-
based translation (Chiang, 2007), HIERO, by a
Chinese-English translation example (Figure 1).

A HIERO decoder translates a source sentence
by using a synchronous grammar (Figure 1 (a)) to
parse it into a bilingual derivation tree, as shown
in Figure 1 (b) and Figure 1 (c). An example rule
of the synchronous grammar is

r8 : X→ 〈X1 qian X2, X2 before X1〉,
where the left-hand-side is a non-terminal symbol,
and the right-hand-side is a pair of source and tar-
get strings, each of which consists a sequence of
lexical terminals and non-terminals. Specifically,
the same subscript on both sides denotes a one-to-
one correspondence between their non-terminals.
We use |r| to denote the arity of rule r, i.e., the
number of non-terminals. Usually, the rule used in
HIERO system has a maximum arity 2.

Let 〈x, y〉 be a Chinese-English sentence pair
in tuning set, the HIERO decoder will generate a
derivation tree for it (Figure 1 (b)), which can be
defined recursively in a functional way:

d =


r |r| = 0
r(d1) |r| = 1
r(d1, d2) |r| = 2 ,

(1)

where d is a (partial) derivation, i.e., the (sub-)
derivation tree. When r is a fully lexicalized rule
(|r| = 0), the decoder generates a tree node di-
rectly (e.g., X[3,5] in Figure 1 (b)). If |r| > 0, a
new (partial) derivation will be created by apply-
ing r to its children nodes. In our notation, we
denote this process as applying a function of rule
r to its arguments. For example, node X[1,5] in
Figure 1(b) is created by applying rule r8 in Fig-
ure 1(a), where the arguments are d1 = X[1,2] and
d2 = X[3,5] respectively.

Practically, we organize the partial derivations
based on spans in HIERO decoder, and use a beam
B[i,j] to keep the k-best partial derivations for each
span [i, j]:

B[i,j] = topkw (D[i,j]),

whereD[i,j] is the set of all possible partial deriva-
tions for span [i, j], and topkw(·) returns the top k
ones according to the current model w. Figure 2
shows an example of the HIERO beam-search de-
coding.

3 Search-Aware Tuning for HIERO

As we discussed in Section 1, current tuning meth-
ods for HIERO system (MERT, MIRA, or PRO) are
mostly search-agnostic. They only consider the
complete translations in final beam B[1,|x|], but ig-
nore the partial ones in the intermediate beams.
However, because MT decoding is inexact (beam-
search), many potentially promising derivations
might be pruned before reaching the final beam
(e.g., the partial derivation X[1,5] of Figure 1(b) is
pruned in beam B[1,5] in Figure 2). Consequently,
once we lose these good partial derivations in de-
coding, it is hard to promote them by these search-
agnostic tuning methods.

In order to address this problem, search-aware
tuning (Liu and Huang, 2014) aims to promote not
only the accurate complete translations in the final
beam, but more importantly those promising par-
tial derivations in non-final beams.

In this section, we apply search-aware tuning to
HIERO system. Similar to the phrase-based one,
the key challenge here is also the evaluation of par-
tial derivations. Following (Liu and Huang, 2014),
we design two different evaluation metrics, partial
BLEU and potential BLEU respectively for HIERO

decoding.

3.1 Partial BLEU

Given a partial derivation d of span [i, j], partial
BLEU evaluates it by comparing its partial trans-
lation e(d) directly with the (full) reference. We
explore two different partial BLEU measures here:
full partial BLEU and span partial BLEU.

Full partial BLEU is similar to the one used in
(Liu and Huang, 2014), which compares e(d) with
the full reference y and computes BLEU score us-
ing an adjusted effective reference length propor-
tional to the length of the source span [i, j] (i.e.,
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id rule

r0 S→ 〈X1,X1〉
r1 S→ 〈S1X1,S1X1〉
r2 X→ 〈Aimi,Amy〉
r2 X→ 〈Aimi,Amy has〉
r3 X→ 〈zhuzai bolin, lived in Berlin〉
r3 X→ 〈zhuzai bolin, living in Berlin〉
r4 X→ 〈qian, before〉
r5 X→ 〈qian, former〉
r6 X→ 〈jiehun, got married〉
r7 X→ 〈jiehun, getting married〉
r8 X→ 〈X1 qian X2,X2 before X1〉
r9 X→ 〈X1 qian X2,X1 before X2〉

S[0,5]

X[1,5]

X[3,5]

bolin 5zhuzai 4qian 3

X[1,2]

jiehun 2

S[0,1]

X[0,1]

0 Aimi 1

S

X

X

marriedgettingbefore

X

Berlininlived

S

X

Amy

S[0,5]

X[3,5]

bolin 5zhuzai 4

S[0,3]

X[2,3]

qian 3

S[0,2]

X[1,2]

jiehun 2

S[0,1]

0 Aimi 1

S

X

Berlininliving

S

X

before

S

X

marriedgotAmy

(a) HIERO rules (b) good derivation (c) bad derivation

Figure 1: An example of HIERO translation.

B[0,1] B[1,2] B[2,3] B[3,4] B[4,5]

B[3,5]B[0,2]

B[0,3]

B[0,5]

B[1,5]

at Berlin
living in
lived in

Berlin
former
beforegot married

getting married
Amy

Amy has

living in Berlin
lived in Berlin

Amy got married
Amy has got married

Amy got married before
Amy has got married before

got married before living in Berlin
getting married before living in Berlin

Amy got married before living in Berlin
Amy has got married before living in Berlin

Aimi jiehun qian zhuzai bolin0 1 2 3 4 5

Figure 2: An example of HIERO beam search
decoding (beam size = 2). We can see the good
derivation (Figure 1(b)) is pruned very early, while
the bad derivation (Figure 1(c)) ranks first at the fi-
nal beam.

the number of translated source words). See (Liu
and Huang, 2014) for more details.

Span partial BLEU differs from full partial
BLEU by creating a span reference for span [i, j]
to evaluate its partial derivations, rather than us-
ing the full reference. We use word alignment to
determine the span references of different spans.

Specifically, we first add the tuning set into train-
ing data, and then run GIZA++ to get the word
alignment. For a pair of source and target span
which are consistent with word alignment1, the
string of target span is used as the span reference
for the source span.2 For example, in Figure 1(b),
the span reference of source span [1, 5] is “lived in
Berlin before getting married”.

Partial BLEU is quite an intuitive choice for
evaluating partial derivations. However, as Liu
and Huang (2014) discussed, partial BLEU only
evaluates the partial derivation itself without con-
sidering any of its context information, leading to
a performance degradation. Thus, in order to take
the context information into account, we investi-
gate a more reasonable metric, potential BLEU, in
the next section.

3.2 Potential BLEU

Potential BLEU evaluates the partial derivation
d by assessing its potential, which is a complete
translation generated from d, rather than e(d) as
in partial BLEU. In phrase-based decoding, Liu

1Two spans are consistent with word alignment means
that words in one span only align to words in the other span
via word alignment, and vice versa.

2In practice, there might be several different consistent
target spans for a source span due to the unaligned words.
We use the longest target span as the span reference which
shows the best performance in our experiments.
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and Huang (2014) introduce a future string f(d)
to denote the translation of the untranslated part,
and get the potential of d by concatenating e(d)
and f(d).

Different from their work, we define an outside
string for d in HIERO system. Suppose a complete
translation generated from d is ē(d), it can be de-
composed as follows:

ē(d) = η(d) ◦ e(d) ◦ ξ(d) (2)

where ◦ is an operator that concatenates strings
monotonically, η(d) and ξ(d) are the left and right
parts of ē(d) apart from e(d), which we call left
and right future strings of d. The pair of η(d) and
ξ(d) is defined as the outside string of d:

O(d) = 〈η(d), ξ(d)〉
An example of the outside string is shown in Fig-
ure 3. Assume we are evaluating the partial deriva-
tion which translates Chinese word “qian” to En-
glish word “before”, and get a complete transla-
tion “Amy lived in Berlin before getting married”
from it, then its outside string would be:

〈Amy lived in Berlin, getting married〉

⌘(d) ⇠(d)

8 > > > > > > < > > > > > > :

jiehun    Aimi zhuzai  bolin

lived in BerlinAmy getting married

e(d)

before

qian    

� 8 > < > :

Figure 3: Example of outside string when we
use“Amy lived in Berlin before getting married” as
the potential for the partial derivation which trans-
lates word “qian” to “before”.

Theoretically, different partial derivations of the
same span could have different outside strings. To
simplify the problem, we use the same outside
string for all partial derivations of the same span.
The outside string for span [i, j] is defined as:

O([i, j]) = 〈η([i, j]), ξ([i, j])〉
For a specific partial derivation d of span [i, j],

by combining O([i, j]) and e(d), we can compute
its potential BLEU against the reference. Appar-
ently, different outside string will lead to different
potential BLEU score. In the rest of this section,
we will explore three different methods to gener-
ate outside strings.

3.2.1 Concatenation
In order to generate outside string, one simple and
straightforward way is concatenation. For a spe-
cific span [i, j], we first get the best translation
of its adjacent spans [0, i] and [j, |x|] (e([0, i]) and
e([j, |x|]) respectively).3 Then for a partial deriva-
tion d of span [i, j], we generate the outside string
of d by concatenation

η([i, j]) = e([0, i])
ξ([i, j]) = e([j, |x|])

ēx(d) = e([0, i]) ◦ e(d) ◦ e([j, |x|])
Also take the example of Figure 3, if we per-

form concatenation on it, the outside string of the
corresponding partial derivation is:

〈Amy getting married, lived in Berlin〉.
Obviously, this outside string is not good, since it
does not consider the reordering between spans. In
order to incorporate reordering into outside string,
we propose a new top-down algorithm in the next
subsection.

3.2.2 Top-Down
Top-down method (Algorithm 1) is defined over
the derivation tree, and takes the complete transla-
tions in the final beam as the potential for comput-
ing potential BLEU.

Suppose we have a partial derivation d =
r(d1, d2) as shown in Formula 1, and the target
side string of rule r is:

w1 · · · wp X1 wq · · · wm X2 wn · · · wl
The corresponding (partial) translation e(d) of d
could be generated by applying an r-based func-
tion er(·) with d1 and d2 as the arguments:

er(d1, d2) = w1···wp e(d1)wq···wm e(d2)wn···wl
where e(d1) and e(d2) are the partial translations
of d1 and d2. We can further decompose er(d1, d2)
based on e(d1):

w1 · · · wp︸ ︷︷ ︸
ηd(d1)

e(d1) wq · · · wm e(d2) wn · · · wl︸ ︷︷ ︸
ξd(d1)

.

where we call ηd(d1) and ξd(d1) the partial left
and right future strings of d1 under d. Similar

3For the spans not having translations, we compute a best
possible translation for each of them by concatenating the
translations of its children spans monotonically.
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Algorithm 1 Top-Down Outside String.
1: function TOPDOWN(d)
2: r← the rule that generates d
3: for each non-terminal x in rule r do
4: η(dx) = η(d) ◦ ηd(dx)
5: ξ(dx) = ξd(dx) ◦ ξ(d)
6: TOPDOWN(dx)
7: return

to the outside cost of inside-outside algorithm, we
compute the outside string 〈η(d1), ξ(d1)〉 for d1

based on the decomposition:

η(d1) = η(d) ◦ ηd(d1)
ξ(d1) = ξd(d1) ◦ ξ(d).

Similarly, if we decompose er(d1, d2) based on
e(d2) we have:

w1 · · · wp e(d1) wq · · · wm︸ ︷︷ ︸
ηd(d2)

e(d2) wn · · · wl︸ ︷︷ ︸
ξd(d2)

,

and the outside string 〈η(d2), ξ(d2)〉 for d2 is:

η(d2) = η(d) ◦ ηd(d2)
ξ(d2) = ξd(d2) ◦ ξ(d).

The top-down method works based on the above
decompositions. For a complete translation in the
final beam B[0,|x|], the algorithm tracebacks on its
derivation tree, and gets the outside string for all
spans in the derivation. Taking the span [1, 2] in
Figure 1(b) as an example, if we do top-down, its
outside string would be:

〈Amy lived in Berlin before, ε〉.

where ε denotes the empty string. Compared to
the concatenation method, top-down is able to
consider the reordering between spans, and thus
would be much better. However, since it bases on
the k-best list in the final beam, it can only handle
the spans appearing in the final k-best derivations.
In our experiments, top-down algorithm only cov-
ers about 30% of all spans.4 In order to incorpo-
rate more spans into search-aware tuning, we en-
hance the top-down algorithm and propose guided
backtrace algorithm in the next subsection.

3.2.3 Guided Backtrace
The guided backtrace algorithm is a variation of
top-down method. In guided backtrace, we first

4We do not consider the hypothesis recombination in top-
down algorithm.

introduce a container s[i,j] to keep a best partial
derivation for each split point of [i, j] during de-
coding.5 Hence, there will be at most j − i par-
tial derivations in s[i,j].6 For instance, suppose the
span is [2, 5], we will keep three partial derivations
in s[i,j] for split point 2, 3, and 4 respectively. Dif-
ferent from the similar k-best list in the decoding
beam, s[i,j] introduces more diverse partial deriva-
tions for backtracing, and thus could help to cover
more spans.

After decoding, we employ algorithm 2 to do
backtrace. The algorithm starts from the best
translation in the final beam. At first, we get the
corresponding span of the input partial derivation
d (line 2), and the outside string for this span
(line 5-6). We then sort the partial derivations
in s[i,j] based on their potential Bleu+1 (line 12).
Thus, the sorting will guide us to first backtrace
the partial derivations with better potential Bleu+1

scores. Then we traverse all these partial deriva-
tions (line 13-14), and do guided backtrace recur-
sively on its child partial derivations (line 16-19).
In this process, about 90% of all spans are visited
in our experiments. We demand each span will
only be visited once (line 3-4),

During the above process, guided backtrace will
collect good partial derivations which have bet-
ter potential Bleu+1 scores than the best Bleu+1

score MaxSenBleu of the final beam (line 10-11)
into goodcands. Meanwhile, we also collect the
good partial derivations from descendant nodes
(line 19), and apply rule r to them to form good
partial derivations for span [i, j] (line 20-21). At
last, we add the top 50 good partial derivations to
the beam B[i,j] for tuning (line 22).

The purpose of adding good partial derivations
for tuning is to recover the good ones pruned out
of the beam. For example, the partial derivation
X[1,5] in Figure 1 has been pruned out of the beam
B[1,5] in Figure 2. If we only consider the partial
derivations in the beam, it is still hard to promote
it. After adding good partial derivations, we will
have more good targets to do better tuning.

From Algorithm 2, we can also get a new way
to compute oracle BLEU score of a translation sys-
tem. We memorize the string that has the maxi-
mum potential Bleu+1 score of all strings (line 9).
We then collect the best string of all source sen-

5If the partial derivation is generated by HIERO rules, we
set the split point as the last position of the first non-terminal.

6Some split points might not have corresponding partial
derivations.
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Algorithm 2 Guided Backtrace Outside String.
1: function GUIDED(d)
2: [i, j]← the source span that d belongs to
3: if [i, j] has been visited then
4: return ∅
5: η([i, j]) = η(d)
6: ξ([i, j]) = ξ(d)
7: goodcands← ∅
8: for each partial derivation d in B[i,j] do
9: bleu = Bleu+1(η([i, j]) ◦ e(d) ◦ ξ([i, j]))

10: if bleu > MaxSenBleu then
11: add d to goodcands
12: sort s[i,j] based on potential Bleu+1

13: for each partial derivation d of span [i, j] do
14: r← the rule that generates d
15: Dd← the set of partial derivations r use to form d
16: for each non-terminal x in rule r do
17: η(dx) = η([i, j]) ◦ ηd(dx)
18: ξ(dx) = ξd(dx) ◦ ξ([i, j])
19: cands← GUIDED(dx)
20: for each cand dg in cands do
21: add r(dg, Dk\dx) to goodcands
22: add top 50 partial derivations of goodcands to B[i,j]

23: return goodcands

tences in the tuning or test set, and use them to
compute BLEU score of the set. This can be seen
as an approximation upper bound of the current
model and decoder, which we call guided oracle.

3.3 Implementation

The major process of search-aware tuning is sim-
ilar to traditional tuning pipeline. We first decode
the source sentence, and then output both the com-
plete translations in the final beam and the partial
derivations from the shorter spans as training in-
stances. For potential BLEU, the outputs of par-
tial derivations would be the corresponding com-
plete translations generated by Equation (2). If we
use partial BLEU, the outputs are the correspond-
ing partial translations. Each span will serve as
a single tuning instance. Different from (Liu and
Huang, 2014), we only use the features from par-
tial derivations for tuning.

For the spans that top-down or guided backtrace
algorithm cannot get outside strings, we use con-
catenation for them to maintain consistent number
of tuning instances between different tuning iter-
ations. However, since we do not want to spent
much effort on them, we only use the one-best par-
tial derivation for each of them.

4 Experiments
To evaluate our method, we conduct experiments
on Chinese-to-English translation. The train-
ing data includes 1.8M bilingual sentence pairs,

with about 40M Chinese words and 48M English
words. We generate symmetric word alignment
using GIZA++ and the grow-diag-final-and strat-
egy. We train a 4-gram language model on the
Xinhua portion of English Gigaword corpus by
SRILM toolkit (Stolcke, 2002). We use BLEU

4 with “average reference length” to evaluate the
translation performance for all experiments.

We use the NIST MT 2002 evaluation data
(878 sentences) as the tuning set, and adopt NIST
MT04 (1,789 sentences), MT05 (1,082 sentences),
MT06 (616 sentences from new portion) and
MT08 (691 sentences from new portion) data as
the test set.

Our baseline system is an in-house hierarchical
phrase-based system. The translation rules are ex-
tracted with Moses toolkit (Koehn et al., 2007) by
default settings. For the decoder, we set the beam
size to 30, nbest list to 50, and 20 as the maximum
length of spans for using non-glue rules.

The baseline tuning methods are batch tun-
ing methods based on k-best translations, includ-
ing MERT (Och, 2003), MIRA (Cherry and Fos-
ter, 2012) and PRO (Hopkins and May, 2011)
from Moses. Another baseline tuning method is
hypergraph-MERT from cdec toolkit (Dyer et al.,
2010). To guarantee the tuning efficiency, we con-
strain the minimum length of spans for search-
aware tuning to restrict the number of training in-
stances. For the sentences with less than 20 words,
we only use the spans longer than 0.75 times sen-
tence length. For the ones with more than 20
words, the minimum span length is set to 18.7 All
results are achieved by averaging three indepen-
dent runs for fair comparison (Clark et al., 2011).

4.1 Translation Results

Table 1 compares the main results of our MERT-
based search-aware tuning with traditional tuning:
MERT and hypergraph-MERT.

From the results, we can see that hypergraph-
MERT is better than MERT by 0.5 BLEU points,
verifying the result of (Kumar et al., 2009). For
search-aware tuning, partial BLEU (both full and
span one) only gets comparable results with base-
line tuning method, confirming our previous anal-
ysis in section 3.1, and the results are also consis-
tent with (Liu and Huang, 2014).

7As the decoder demands that spans longer than 20 can
only be translated by glue rule, for these spans, we only need
to consider the ones beginning with 0 in search-aware tuning.
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nist03 nist04 nist05 nist06 nist08 avg.
MERT 34.4 35.9 34.2 31.9 28.2 32.9

MERT-S 34.3 36.1 34.3 32.3 28.5 33.1
hypergraph-MERT 34.5 36.4 34.4 33.0 28.9 33.4
full partial BLEU 34.3 35.9 34.1 32.4 28.1 33.0
span partial BLEU 34.1 36.1 34.5 32.5 28.4 33.1

concatenation 34.3 36.4 34.6 33.1 28.5 33.4
top-down 34.5 36.6 34.5 33.1 28.9 33.5

guided backtrace 34.9 36.9 35.2 33.7 29.1 34.0

Table 1: MERT results: BLEU scores the test sets (nist03, nist04, nist05, nist06, and nist08). MERT-S is
an enhanced version of MERT, which uses a beam size 200 and nbest list 200 for tuning, and beam size
30 for testing.

methods nist02 nist04

1-best
MERT 36.1 35.9

guided backtrace +0.5 +1.0

k-best Oracle
MERT 43.3 42.8

guided backtrace +1.1 +1.2

Guided Oracle
MERT 48.0 47.2

guided backtrace +1.4 +1.4

Table 2: The oracle BLEU comparison between
baseline MERT and guided backtrace.

Compared to partial BLEU, potential BLEU is
more helpful. Both concatenation and top-down
method are better than MERT on all five test sets.
Guided backtrace gets the best performance over
all methods. It outperforms traditional MERT

by 1.1 BLEU points on average, and better than
hypergraph-MERT by 0.6 BLEU points.

4.2 Analysis

In this section, we analyze the results of search-
aware tuning by comparing MERT-based baseline
and guided backtrace in detail.

Oracle BLEU We first compare the oracle
BLEU scores of baseline and guided backtrace in
Table 2. In order to get the k-best oracle, we first
look for the best Bleu+1 translation in the k-best
list for each source sentence, and then use these
best translations to compute the BLEU score of the
entire set. To get the guided oracle, we use the
weights from baseline MERT to run Algorithm 2
on tuning set (nist02) and nist04 test set, and gen-
erate the best oracle translation (section 3.2.3) for
each source sentence for evaluation.

The final oracle BLEU comparison is shown in
Table 2. On both nist02 tuning set and nist04 test
set, guided backtrace method gains at lease 1.0

nist02 nist04
MERT 0.3960 0.3791

guided backtrace 0.4098 0.3932

Table 3: The diversity comparison based on k-best
list in the final beam on both tuning set (nist02)
and nist04 test set. The higher the value is, the
more diverse the k-best list is.

BLEU points improvements over traditional MERT

on both k-best oracle and guided oracle. More-
over, k-best and guided oracle get more improve-
ments than 1-best, indicating that by search-aware
tuning, the decoder could generate a better k-best
list, and has a higher upper bound.

Diversity As shown in (Gimpel et al., 2013;
Liu and Huang, 2014), diversity is important for
MT tuning. An k-best list with higher diversity
can better represent the entire decoding space, and
thus tuning on it will lead to a better performance.

Similar as (Liu and Huang, 2014), our method
encourages the diversity of partial translations in
each beam, including the ones in the final beam.
We use the metric in (Liu and Huang, 2014) to
compare the diversity of traditional MERT and
guided backtrace. The metric is based on the n-
gram matches between two sentences y and y′:

∆(y, y′) = −
|y|−q∑
i=1

|y′|−q∑
j=1

〈yi:i+q = y′j:j+q〉

d(y, y′) = 1− 2×∆(y, y′)
∆(y, y) + ∆(y′, y′)

,

where q = n− 1 and 〈x〉 equals to 1 if x is true, 0
otherwise. The final diversity results are shown in
Table 3. We can see guided backtrace gets a better
diversity than traditional MERT.
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Figure 4: The BLEU comparison between MERT

and guided backtrace on nist04 test set over differ-
ent beam sizes.

Beam Size As we discussed before, search-
aware tuning helps to accommodate search errors
in decoding, and promotes good partial deriva-
tions. Thus, we believe that even with a small
beam, these good partial derivations can still sur-
vive with search-aware tuning, resulting in a good
translation quality. Figure 4 compares the results
of different beam sizes (2, 4, 8, 16, 30) between
traditional MERT and guided backtrace. The com-
parison shows that guided backtrace achieves bet-
ter result than baseline MERT, and when the beam
is smaller, the improvement is bigger. More-
over, guided backtrace method with a beam size
8 could achieve comparable BLEU score to tradi-
tional MERT with beam size 30.

Span Size For a big tuning set, in order to make
the tuning tractable, we constrain the length of
spans for search-aware tuning. Intuitively, towards
search-aware tuning, more spans will get better re-
sults because we have more training instances to
guide the tuning process, and accommodate search
errors in early decoding stage (shorter spans). To
verify this intuition, we perform experiments on
a small tuning set, which is generated by select-
ing the sentences with less than 20 words from the
original NIST MT 02 tuning set.

Figure 5 compares the results of traditional
MERT and guided backtrace over different mini-
mum span length. The curve in the figure shows
that by using more spans for search-aware tuning,
we can achieve better translation performance.

35
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Figure 5: The BLEU comparison between MERT

and guided backtrace on nist04 test set over dif-
ferent span sizes. L denotes the sentence length.
The value of x-axis refers to the minimum length
of spans used for search-aware tuning. More spans
will be used in tuning with smaller minimum span
length.

4.3 MIRA and PRO Results

Table 4 and Table 5 shows the final results of
MIRA and PRO for traditional tuning and search-
aware tuning using potential BLEU. We can see
that potential BLEU is helpful for tuning. Guided
backtrace is also the best one, which outperforms
the baseline MIRA and PRO by 0.9 and 0.8 BLEU
points on average.

4.4 Efficiency

Table 6 shows the training time comparisons be-
tween search-aware tuning and traditional tuning.
From this Table, we can see that search-aware tun-
ing slows down the training speed.8 The slow
training is due to three reasons.

Similar to (Liu and Huang, 2014), as search-
aware tuning considers partial translations of
spans besides the complete translations, it has
much more training instances than traditional tun-
ing. In our experiments, although we have con-
strained the length of spans, we get a total of
38,539 instances for search-aware tuning, while it
is 878 for traditional tuning.

Another time consuming factor is the compu-
tation of Bleu+1 scores. In guided backtrace set-
ting, we need to compute the Bleu+1 scores for all
candidates of spans we consider. This is why the

8Since the tuning set is different for traditional PRO tuning
and search-aware tuning, we do not compare them here.
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nist03 nist04 nist05 nist06 nist08 avg.
MIRA 34.5 36.1 34.4 32.1 28.5 33.1

concatenation 34.5 36.5 34.6 33.6 28.9 33.6
top-down 34.4 36.6 34.6 33.5 28.8 33.6

guided backtrace 35.0 36.9 35.1 33.7 29.1 34.0

Table 4: MIRA results: BLEU scores on test sets (nist03, nist04, nist05, nist06, and nist08).

nist03 nist04 nist05 nist06 nist08 avg.
PRO 34.2 36.1 33.9 32.3 28.7 33.1

concatenation 34.6 36.2 34.7 32.3 28.5 33.2
top-down 34.8 36.4 34.7 32.7 29.0 33.5

guided backtrace 35.0 36.8 34.7 33.4 29.6 33.9

Table 5: PRO results: BLEU scores on test sets (nist03, nist04, nist05, nist06, and nist08). Similar to (Liu
and Huang, 2014), there is also an monster phenomenon (Nakov et al., 2013) in our search-aware tuning
setting. Therefore, here we perform search-aware tuning on only 109 short sentences (with less than 10
words) from nist02.

MERT MIRA

Total Optim. Total Optim.
baseline 17 2 17 2

concatenation 59 44 38 23
top-down 31 14 23 8

guided backtrace 108 45 69 22

Table 6: Comparison on training efficiency. The
time (in minutes) is measured at the last iteration
of tuning. Column “Total” refers to the time for an
entire iteration, while “Optim.” is the time of op-
timization. We use a parallelized MERT for tuning
by 24 cores.

decoding of guided backtrace is much slower than
baseline or top-down.

Finally, adding good candidates enlarges the k-
best lists of training instances, which further slows
down the tuning process of guided backtrace.

It should be noted that although search-aware
tuning is slower than traditional tuning method,
since the decoding is all the same for them in test-
ing time, it does not slow down the testing speed.

5 Conclusion

We have presented an extension of “search-aware
tuning” to accommodate search errors in hier-
archical phrase-based decoding and promote the
promising partial derivations so that they are more
likely to survive in the inexact beam search. In
order to handle the tree-structured derivations for
HIERO system, we generalize the BLEU metrics
and propose corresponding partial BLEU and po-
tential BLEU to evaluate partial derivations. Our

approach can be used as a plugin for most popu-
lar parameter tuning algorithms including MERT,
MIRA and PRO. Extensive experiments confirmed
substantial BLEU gains from our method.
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Abstract

In this paper, we address the challenge
of creating accurate and robust part-
of-speech taggers for low-resource lan-
guages. We propose a method that lever-
ages existing parallel data between the tar-
get language and a large set of resource-
rich languages without ancillary resources
such as tag dictionaries. Crucially, we
use CCA to induce latent word represen-
tations that incorporate cross-genre distri-
butional cues, as well as projected tags
from a full array of resource-rich lan-
guages. We develop a probability-based
confidence model to identify words with
highly likely tag projections and use these
words to train a multi-class SVM using
the CCA features. Our method yields
average performance of 85% accuracy
for languages with almost no resources,
outperforming a state-of-the-art partially-
observed CRF model.

1 Introduction

We address the challenge of creating accurate
and robust part-of-speech taggers for low-resource
languages. We aim to apply our methods to the
hundreds, and potentially thousands, of languages
with meager electronic resources. We do not as-
sume the existence of a tag dictionary, or any other
sort of prior knowledge of the target language. In-
stead, we base our methods entirely on the exis-
tence of parallel data between the target language
and a set of resource-rich languages.

Fortunately, such parallel data exists for just
about every written language, in the form of Bible
translations. Around 2,500 languages have at least

partial Bible translations, and somewhere between
500 and 1,000 languages have complete transla-
tions. We have collected such electronic Bible
translations for 650 languages. Figure 1 breaks
down the number of languages in our collection
according to their token count. The majority of our
languages have at least 200,000 tokens of Bible
translations.

While previous studies (Täckström et al., 2013;
Ganchev and Das, 2013) have addressed this gen-
eral setting, they have typically assumed the exis-
tence of a partial tag dictionary as well as large
quantities of non-parallel data in the target lan-
guage. These assumptions are quite reasonable for
the dozen most popular languages in the world, but
are inadequate for the creation of a truly world-
wide repository of NLP tools and linguistic data.

In fact, we argue that such ancillary sources of
information are not really necessary once we take
into account the vastly multilingual nature of our
parallel data. Annotations projected from individ-
ual resource-rich languages are often noisy and
unreliable, due to systematic differences between
the languages in question, as well as word align-
ment errors. We can thus think of these languages
as very lazy and unreliable annotators of our tar-
get language. Despite their incompetence, as the
number of such annotators increases, their com-
bined efforts converge upon the truth, as idiosyn-
cratic biases and random noise are washed away.

Our assumption throughout will be that we have
in our possession a single multilingual corpus
(the Bible) consisting of about 200,000 tokens
for several hundred languages languages, as well
as reasonably accurate POS taggers for about ten
“resource-rich” languages. We will tag the Bible
data for the resource-rich languages, word-align
them to one another, and also word-align them to
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the remaining several hundred target languages.

Of course, our goal is not to produce a tagger
restricted to the Biblical lexicon. We therefore
assume a small unannotated monolingual sample
of the target language in an entirely unrelated
genre (e.g. newswire). We use this sample trans-
ductively to adapt our learned taggers from the
Biblical genre. In our experiments, we use the
CoNLL 2006 and 2007 shared-task test data for
this purpose. Of course tagged data does not exist
for truly resource-poor languages, so we evaluate
our methodology on the resource-rich languages.
Each such language takes a turn playing the role
of the target language for testing purposes.

The goal of the paper is to introduce a gen-
eral “recipe” for successful cross-lingual induction
of accurate taggers using meager resources. We
faced three major technical challenges:

• First, word alignments across languages are
incomplete, and often do not preserve part-
of-speech due to language differences.

• Second, when using multiple resource-rich
languages, we need to resolve conflicting
projections.

• Third, the parallel data at our disposal is of an
idiosyncratic genre (the Bible), and we wish
to induce a general-purpose tagger.

To address these challenges, we forgo the typi-
cal sequence-based learning technique of HMM’s
and CRF’s and instead adopt an instance-learning
approach using latent distributional features. To
induce these features, we introduced a new method
using Canonical Correlation Analysis (CCA) to
generalize the aligned information to new words.
This method views each word position as consist-
ing of three fundamental views: (1) the token view
(word context), (2) the type view, and (3) the pro-
jected tags in the local vicinity. We perform a
CCA to induce latent continuous vector represen-
tations of each view that maximizes their correla-
tions to one another. On the test data, a simple
multi-class classifier then suffices to predict accu-
rate tags, even for novel words. This approach out-
perform a state-of-the-art baseline (Täckström et
al., 2013) to achieve average tag accuracy of 85%
on newswire text.

Figure 1: The breakdown of languages by the
number of tokens in their available Bible trans-
lations. The horizontal axis gives the number of
tokens, and the vertical axis gives the number of
languages in each token range.

2 Related Work

2.1 Multilingual Projection

The idea of projecting annotated resources across
languages using parallel data was first proposed
by Yarowsky et al. (2001). This early work
recognized the noisy nature of automatic word
alignments and engineered smoothing and filter-
ing methods to mitigate the effects of cross- lin-
gual variation and alignment errors. More recent
work in this vein has dealt with this by instead
transferring information at the word type or model
structure level, rather than on a token-by-token ba-
sis (Das and Petrov, 2011; Durrett et al., 2012).
Current state-of-the-art results for indirectly su-
pervised POS performance use a combination of
token constraints as well as type constraints mined
from Wiktionary (Li et al., 2012; Täckström et al.,
2013; Ganchev and Das, 2013). As we argued
above, the only widely available source of infor-
mation for most low-resource languages is in fact
their Bible translation. Perhaps surprisingly, our
experiments show that this data source suffices to
achieve state-of-the-art results.

Several previous authors have considered the
advantage of using more than one resource-rich
language to alleviate alignment noise.

Fossum and Abney (2005) found that using two
source languages project-sources gave better re-
sults than simply using more data from one lan-
guage. McDonald et al. (2011) also found advan-
tages to using multiple language sources for pro-
jecting parsing constraints. In more of an unsu-
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pervised context (but using small tag dictionaries),
adding more languages to the mix has been shown
to improve part-of-speech performance across all
component languages (Naseem et al., 2009).

In our own previous multilingual work, we have
developed the idea that supervised knowledge of
some number of languages can help guide the un-
supervised induction of linguistic structure, even
in the absence of parallel text (Kim et al., 2011;
Kim and Snyder, 2012; Kim and Snyder, 2013a;
Kim and Snyder, 2013b). We have showed that
cross-lingual supervised learning leads to signif-
icant performance gains over monolingual mod-
els. We point out that the previous tasks have con-
sidered as word-level structural analyses and our
present case as a sentence-level analysis.

2.2 Word Alignment

Most of the papers surveyed above rely on auto-
matic word alignments to guide the cross-lingual
transfer of information. Given our desire to use
highly multilingual information to improve pro-
jection accuracy, the question of word alignment
performance becomes crucial. Our hypothesis is
that multiple language projections are beneficial
not only in weeding out random errors and id-
iosyncratic variations, but also in improving the
linguistic consistency of the alignments them-
selves. Instead of simply aligning each source lan-
guage to the target language in isolation, we will
instead use a confidence model to synthesize in-
formation from multiple sources.

While there are not many well-known papers
that have explored word alignment on a multilin-
gual scale1, there have been related efforts to sym-
metrize bilingual alignment models, using a vari-
ety of techniques ranging from modifications of
EM (Liang et al., 2006), posterior-regularized ob-
jective function (Ganchev et al., 2010), and by
considering relaxations of the hard combinato-
rial assignment problem (DeNero and Macherey,
2011).

2.3 Canonical Correlation Analysis (CCA)

Our method for generalizing the projections to
unseen words and contexts is based on Canoni-
cal Correlation Analysis (CCA), a dimensionality
reduction technique first introduced by Hotelling
(1936). The key idea is to consider two groups

1Mayer and Cysouw (2012) used multilingual word align-
ment to compare languages

of random variables with corresponding observa-
tions and to find linear subspaces with highest cor-
relation between the two views. This can be seen
as a kind of supervised version of Principal Com-
ponents Analysis (PCA), where each view is pro-
viding supervision for the other. In fact, it can be
shown that CCA directly generalizes both multi-
ple linear regression and Fisher’s Latent Discrimi-
native Analysis (LDA) (Glahn, 1968).

From a learning theory perspective, CCA is in-
teresting in that it allows us to prove regret-based
learning bounds that depend on the “intrinsic” di-
mensionality of the problem rather than the ap-
parent dimensionality (Kakade and Foster, 2007).
This seems especially relevant to natural language
processing scenarios, where the ambient dimen-
sion is extremely large and sparse, but reductions
to dense lower-dimensional spaces may preserve
nearly all the relevant semantic and syntactic in-
formation. In fact, CCA has recently been adapted
to learning latent word representations in an inter-
esting way: by dividing each word position into
a token view (which only sees surrounding con-
text) and a type view (which only sees the word
itself) and performing a CCA between these two
views (Dhillon et al., 2012; Kim et al., 2014;
Stratos et al., 2014; Stratos et al., 2015; Kim et
al., 2015c). CCA is also used to induce label rep-
resentations (Kim et al., 2015d) and lexicon repre-
sentations (Kim et al., 2015b).

Our technique will extend this idea by addition-
ally considering a third projected tag view. Cru-
cially, it is this view which pushes the latent repre-
sentations into coherent part-of-speech categories,
allowing us to simply apply multi-class SVM for
unseen words in our test set.

3 Tag projection from resource-rich
languages

In this section, we describe two methods for incor-
porating transferred tags from resource-rich lan-
guages: sequence-based learning (Täckström et
al., 2013; Kim et al., 2015a) and instance-based
learning. In the former, the transferred tags are
used to train a partially-observed CRF (PO-CRF)
by maximizing the probability of a constrained lat-
tice. In contrast, instance-based learning views
each word token as an independent classifica-
tion task, but uses latent distributional information
gleaned from surrounding words as features.
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3.1 A sequence learning example of partially
observed CRF (PO-CRF)

A first-order CRF parametrized by θ ∈ Rd de-
fines a conditional probability of a label sequence
y = y1 . . . yn given an observation sequence x =
x1 . . . xn as follows:

pθ(y|x) =
exp(θ>Φ(x, y))∑

y′∈Y(x) exp(θ>Φ(x, y′))

where Y(x) is the set of all possible label se-
quences for x and Φ(x, y) ∈ Rd is a global fea-
ture function that decomposes into local feature
functions Φ(x, y) =

∑n
j=1 φ(x, j, yj−1, yj) by

the first-order Markovian assumption. Given fully
labeled sequences {(x(i), y(i))}Ni=1, the standard
training method is to find θ that maximizes the log
likelihood of the label sequences under the model
with l2-regularization:

θ∗ = arg max
θ∈Rd

N∑
i=1

log pθ(y(i)|x(i))− λ

2
||θ||2

We used an l2 penalty weight λ of 1. Unfortu-
nately, in our setting, we do not have fully labeled
sequences. Instead, for each token xj in sequence
x1 . . . xn we have the following two sources of la-
bel information:

• A set of allowed label types Y(xj). (Label
dictionary, type constraints)

• Labels ỹj transferred from resource rich
languages. (transferred labels, token con-
straints)

Following previous work of Täckström et al.
(2013), we first define a constrained lattice
Y(x, ỹ) = Y(x1, ỹ1) × . . . × Y(xn, ỹn) where at
each position j a set of allowed label types is given
as:

Y(xj , ỹj) =
{ {ỹj} if ỹj is given
Y(xj) otherwise

And then we can define a conditional probabil-
ity over label lattices for a given observation se-
quence x:

pθ(Y(x, ỹ)|x) =
∑

y∈Y(x,ỹ)

pθ(y|x)

Given a label dictionary Y(xj) for every token
type xj and training sequences {(x(i), ỹ(i))}Ni=1

where ỹ(i) is transferred labels for x(i) and, the

new training method is to find θ that maximizes
the log likelihood of the label lattices:

θ∗ = arg max
θ∈Rd

N∑
i=1

log pθ(Y(x(i), ỹ(i))|x(i))

−λ
2
||θ||2

Since this objective is non-convex, we find a
local optimum with a gradient-based algorithm.
The gradient of this objective at each example
(x(i), ỹ(i)) takes an intuitive form:

∂

∂θ
log pθ(Y(x(i), ỹ(i))|x(i))− λ

2
||θ||2

=
∑

y∈Y(x(i),ỹ)

pθ(y|x(i))Φ(x(i), y)

−
∑

y∈Y(x(i))

pθ(y|x(i))Φ(x(i), y)− λθ

This is the same as the standard CRF train-
ing except the first term where the gold features
Φ(x(i), y(i)) are replaced by the expected value of
features in the constrained lattice Y(x(i), ỹ).

An important distinction in our setting is that
our token and type constraints are generated by
only using the transferred tags whereas Täckström
et al. (2013) generate type constraints induced
from Wiktionary. Our setting is more realistic for
at least two reasons; 1) Wiktionary is not always
available. 2) transferable information is not lim-
ited, but Wiktionary is (e.g., semantic role and
named entity).

3.2 Cross-lingual instance-based learning
The proposed method for cross-lingual instance-
based learning has three steps:

1. Select training tokens based on the confi-
dence of the projected tag information.

2. Induce distributional features over these
words that incorporate all projected tags.

3. Train a multi-class classifier with these in-
duced features to make local predictions for
individual tokens.

We will describe each step below.

3.2.1 Selecting training words
Since transferred tags are not always reliable, all
words in the parallel data are not necessary help-
ful in training. Since this method trains on words
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Figure 2: Graphical representation of the confi-
dence model. Unobserved variable y denotes the
true target-language tag for a token. Each of the
L resource-rich languages displays a project of y,
as y`, with an indicator variable z` determining the
fidelity of the projection.

instead of sequences, it is easy to discard words
which have unreliable or highly conflicting pro-
jections from different resource-rich languages.

To select our set of training tokens, we define a
simple probability-based confidence model, illus-
trated in Figure 2. Suppose we have L resource-
rich languages with alignments to the word in
question. If the true tag is y, we assume that the
projected tag for language ` will be identical to y
with probability 1 − ε`, where ε` is a language-
specific corruption probability. With probability
ε`, the projection will instead be chosen randomly
(uniformly).

To make this explicit, we introduce a corruption
indicator variable z` with:

P (z` = 1) = ε`

Given z`, the probability of the projected tag y` is
given by:

P (y`|y, z`) =


1 if z = 0 and y = y`,
1
m if z = 1,
0 otherwise.

where m is the total number of possible tags. We
can now compute a conditional distribution over
the unknown tag y, marginalizing out the unknown
corruption variables for each language:

p(y|y1, . . . , yn)

=
∏n
`=1

[
ε`
m + (1− ε`)δ(y, y`)

]
1

mn−1

∑
y
′∈Y

∏n
`=1

[
ε`
m + (1− ε`)δ(y′, y`)

]

where Y is all possible tags. For simplicity, we
simply set all ε` to 0.1 and use y as a training label
when the conditional probability of the most likely
value is greater than 0.9.

3.2.2 Inducing distributional features
In this section we discuss our approach for deriv-
ing latent distributional features. Canonical Cor-
relation Analysis (CCA) is a general method for
inducing new representations for a pair of vari-
ables X and Y (Hotelling, 1936). To derive word
embeddings using CCA, a natural approach is to
define X to represent a word and Y to represent
the relevant information about a word, typically
context words (Dhillon et al., 2012; Kim et al.,
2015c). When they are defined as one-hot encod-
ings, the CCA computation reduces to performing
an SVD of the matrix Ω where each entry is

Ωw,c =
count(w, c)√

count(w)count(c)

where count(w, c) denotes co-occurrence count
of word w and context c in the given corpus,
count(w) =

∑
c count(w, c), and count(c) =∑

w count(w, c).
The resulting word representation is given by

U>X where U is a matrix of the scaled left singu-
lar vectors of Ω (See Figure 3). In our work, we
use a slightly modified version of this definition by
taking square-root of each count:

√
Ωw,c =

count(w, c)1/2√
count(w)1/2count(c)1/2

This has an effect of stabilizing the variance of
each term in the matrix, leading to a more effi-
cient estimator. The square-root transformation
also transforms the distribution of the count data
to look more Gaussian (Bartlett, 1936): since an
interpretation of CCA is a latent-variable with
normal distributions (Bach and Jordan, 2005), it
makes the data more suitable for CCA. It has been
observed in past works (e.g., Dhillon et al. (2012))
to significantly improve the quality of the resulting
representations.

3.3 Feature Induction Algorithm
We now describe our algorithm for inducing la-
tent distributional features both on the multilin-
gual parallel corpus, as well as the monolingual,
newswire test data. This algorithm is described
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in detail in Figure 4. The key idea is to per-
form two CCA steps. The first step incorporates
word-distributional information over both the mul-
tilingual corpus (the Bible) as well as the exter-
nal domain monolingual corpus (CONLL data)2.
This provides us with word representations that
are general, and not overly specific to any single
genre. However, it does not incorporate any pro-
jected tag information. We truncate this first SVD
to the first 100 dimensions3.

After this CCA step is performed, we then re-
place the words in the multilingual Bible data with
their latent representations. We then perform a
second CCA between these word representations
and vectors representing the projected tags from
all resource-rich languages. This step effectively
adapts the first latent representation to the infor-
mation contained in the tag projections. We trun-
cate this second SVD to the first 50 dimensions.

We now have word embeddings that can be ap-
plied to any corpus, and are designed to maximize
correlation both with typical surrounding word
context, as well as typical projected tag context.
These embeddings serve as our primary feature
vectors for training the POS classifier (described
in the next section). We concatenate this primary
feature vector with the embeddings of the previous
and subsequent words, in order to provide context-
sensitive POS predictions.

3.3.1 Multi-class classifier
To train our POS tagger, we use a linear multi-
class SVM (Crammer and Singer, 2002). It has
a parameter wy ∈ Rd for every tag y ∈ T
and defines a linear score function s(x, j, y) :=
w>y Φ(x, j). Given any sentence x and a position
j, it predicts arg maxy∈T s(x, j, y) as the tag of
xj . We use the implementation of Fan et al. (2008)
with the default hyperparameter configurations for
training.

4 Experiments

4.1 Datasets and Experimental Setup

There are more than 4,000 living languages in the
world, and one of the most prevalently translated
books is the Bible. We now describe the Bible
dataset we collected.

2For context words, we use 5 words before and after the
word occurrence.

3Embedding dimension was empirically determined by
the singular values.

CCA-PROJ-SPARSE
Input: samples (x(1), y(1)) . . . (x(n), y(n)) ∈ {0, 1}d ×
{0, 1}d′

, dimension k
Output: projections A ∈ Rd×k and B ∈ Rd′×k

• Calculate B ∈ Rd×d′
, u ∈ Rd, and v ∈ Rd′

:

Bi,j =

n∑
l=1

[[x
(l)
i = 1]][[y

(l)
j = 1]]

ui =

n∑
l=1

[[x
(l)
i = 1]] vi =

n∑
l=1

[[y
(l)
i = 1]]

• Define Ω̂ = diag(u)−1/2Bdiag(v)−1/2.

• Calculate rank-k SVD Ω̂. Let U ∈ Rd×k (V ∈
Rd′×k) be a matrix of the left (right) singular vector
corresponding to the largest k singular values.

• Let A = diag(u)−1/2U and B = diag(v)−1/2V .

Figure 3: Algorithm for deriving CCA projections
from samples of two variables.

Lang Tagger Accuracy
BG Treetagger 0.9909
CS Hunpos 0.8969
DA Hunpos 0.9756
DE Hunpos 0.9855
EN Hunpos 0.9854
ES Treetagger 0.8785
IT Treetagger 0.9059
NL Treetagger 0.8781
PT Hunpos 0.9770
AVG - 0.9415

Table 1: Tagger accuracy on CoNLL data.

We first collect 893 bible volumes span-
ning several hundred languages that are freely
available from three resources (www.bible.is,
www.crosswire.org, www.biblegateway.com) and
changed to UTF-8 format. The distribution of to-
ken in each bible in the unit of a language is in
Figure 1.

Note that the Bible scripts are not exactly trans-
lated by sentences but by verses. We thus assume
that each verse in a chapter has the same meaning
if the number of verses is exactly same in a same
chapter. We also assume that the whole chapters
have the same meaning if the number of chap-
ters in a book are exactly the same. In the same
manner, we also assume the volumes that have the
same number of chapters are the same. That is,
their volume size should be as similar as possible
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Input:
• N “labeled” tokens in the Bible domain: word w(i) ∈
V , corresponding contextC(w(i)) ⊂ V and (projected)
tag set P (i) ⊂ T for i = 1 . . . N

• N ′ tokens in data in the test domain: word v(i) ∈ V ′
and corresponding context C(v(i)) ⊂ V ′ for i =
1 . . . N ′

• CCA dimensions k1, k2

Output: embedding e(w) ∈ Rk2 for each word w ∈ V ∪ V ′

1. Combine the observed tokens and their context from
the Bible and data in the test domain:

W1 :=
(
w : w ∈ (w(i))N

i=1 ∪ (v(i))N′
i=1

)
C1 :=

(
C(w) : w ∈ (w(i))N

i=1 ∪ (v(i))N′
i=1

)
2. Perform rank-k1 CCA-PROJ-SPARSE on (W1, C1)

to derive a word projection matrix ΦW1 and a context
projection matrix ΦC1 .

3. Project all word examples in the Bible domain using
ΦW1 . Denote these projected words and the corre-
sponding projected tag sets from all resource-rich lan-
guages by

W2 :=
(

ΦW1(w(i)) : i = 1 . . . N
)

P2 :=
(
P (i) : i = 1 . . . N

)
4. Perform rank-k2 CCA on (W2,P2) to derive a word

projection matrix ΦW2 and a tag projection matrix
ΦP2 .

5. Set the embedding e(w) for each word w ∈ V ∪ V ′ as

e(w) = ΦW2(ΦW1(w))

Figure 4: Algorithm for deriving word vectors for
the (unannotated) test data that use the projected
tags in the Bible data.

with the respect to the number of verses, chapters,
and books.

Based upon these assumptions, we choose the
best translation in a language based on a compar-
ison to a reference Bible, the Modern King James
Version (MKJV) in English. We choose the trans-
lation for each language that best matches this ref-
erence version in terms of chapter and verse num-
bering.

There are other factors considered if there are
more than one candidates satisfying this matching.
We focus on the contents of the bible such as the
publication time. For instance, 1599 Geneva Bible
in English contains old vocabulary with different

spelling systems, causing unexpected errors when
tagged by POS annotation tools. Also, some of
volumes such as Amplified Bible (AMP) contains
extraneous comments on verses themselves, caus-
ing errors for word alignments.

After the choice of the best volume, we finally
select the 10 resource rich languages4. The two
criteria to select resource rich languages are hav-
ing i) the matched bible scripts both on the Old and
New testament and ii) reliable parts-of-speech an-
notation tools. If these two requirements are satis-
fied, we can freely add more languages as resource
rich languages in the future research. We use Hun-
pos tagger for CS, DA, DE, EN, and PT, Treetag-
ger for BG, ES, IT, and NL, and Meltparser for
FR.

4.2 Test Data
We use CoNLL parts-of-speech tagged data
(selected resource-rich languages), plus Basque
(EU), Hungarian (HU) and Turkish (TR)) as our
test data. It consists of 5,000-6,000 hand-labeled
tokens. The accuracy of each supervised tagger on
this data is about 94% on average. Since there is
no French tagged CoNLL data, we exclude French
on testing but still use it in Training. The accuracy
of each supervised tagger on this data is shown in
Table 1.

The tag definitions used in CoNLL data are not
exactly matched the ones used in the taggers when
converted to universal POS tags. For instance in
Spanish, we initially follow mapping of Petrov
et al. (2011) for CoNLL data. The ‘dp’ tag for
words sus, su, mi are mapped to DET but they
are mapped to PRON in the bible data because of
the Treetagger definitions. Whenever we find this
kind of issues, we analyze them and choose the
one of mappings for compatibility. For the ‘dp’
tag, we choose to map PRON.

4.3 Alignments
We perform two kinds of alignments in our data
sets; (i) the verse alignment and (ii) the word
alignment. When the tagged bible volumes are
prepared, we align verses across all resource rich
languages. For verse alignments, we pre-process
to remove extraneous information such as in-
line reference (e.g. [REV 4:16]) and HTML
tags. These alignments between two languages

4Bulgarian (BG), Czech(CS), Danish (DA), English(EN),
German (DE), French (FR), Spanish (ES), Italian (IT), Dutch
(NL), and Portuguese (PT)
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occurred only when volumes have the exact same
number of chapters and verses. For instance, Mark
must have 16 chapters and the first chapter of the
Mark must have 45 verses in our criteria. The cor-
rect number of chapters and verses are pre-defined
on MKJV volume, and the number of matched
verses on each volume is greater than 30,500.

After performing verse alignments, we then per-
form word alignments. The quality of tags in
resource poor languages is highly dependent on
the quality of word alignments because parts-of-
speech tags will be projected through this align-
ment path. First, we use GIZA++ for initial one-
to-many alignments and we symmetrize by taking
their intersection. This ensures that the resulting
alignments are of high quality.

4.4 Results

majority union confident
BG 0.8123 0.8167 0.8235
CS 0.8013 0.8094 0.8142
DA 0.8412 0.8497 0.8492
DE 0.8532 0.8611 0.8721
ES 0.8278 0.8345 0.8385
EU 0.8326 0.8413 0.8472
HU 0.7741 0.7789 0.7953
IT 0.8486 0.8445 0.8481
NL 0.7864 0.7876 0.7884
PT 0.8022 0.8081 0.8110
TR 0.6803 0.6739 0.6935

AVG 0.8055 0.8097 0.8165

Table 2: Baseline model CONLL performance de-
pending on criterion for selecting tag projection.

In all experiments, we hold out the tags of the
test language. EU, HU and TR used projected tags
from 10 resource-rich languages, 9 resource-rich
languages are used for the remaining languages.
In our first experiment, we consider the state-of-
the-art PO-CRF baseline. This model trains a par-
tially observed CRF based on a single projected
tag for each token. We experiment with different
methods of choosing the projected tags. The re-
sults are shown in Table 2. The majority method is
to choose the most common tag from the projected
tags of the current token. We then experiment with
taking the union of all projected tags (i.e. only
constraining the lattice based on unanimity of the
resource-rich languages). Finally, we considered
choosing the high confidence tags, based on our

confidence model. The confident tags are defined
by a method described in Section 3.2.1 If this ratio
is greater than 0.9, we assume that this token has
high confidence. As the results indicate, this final
method yielded the best tagging performance on
the CONLL test data, achieving average accuracy
of 82%.

In the remaining experiments we will adopt the
confidence-based selection criterion for both the
baseline as well as our method.

PO-CRF CCA+SVM
BG 0.8450 0.8686
CS 0.8359 0.8442
DA 0.8727 0.8826
DE 0.8862 0.9025
ES 0.8523 0.8816
EU 0.8506 0.8927
HU 0.8461 0.8495
IT 0.8705 0.8911
NL 0.8115 0.8345
PT 0.8346 0.8410
TR 0.7064 0.7389

AVG 0.8375 0.8570

Table 3: Performance on multilingual Bible data

In order to isolate the errors due to projection
mismatch versus domain variation, we first test
both models on the Bible data itself. To do so,
we assume that the tags produced by the test-
language’s supervised tagger are in fact the ground
truth. This experiment allows us to compare to
tag projection models using (1) PO-CRF and (2)
CCA+SVM. Results are given in Table 3. Unsur-
prisingly, PO-CRF performs better on the multi-
lingual corpus than on the CONLL data, due to
the beneficial constraint of the projected tags. Per-
haps interestingly, the CCA+SVM method, which
is a simple instance-based classifier using cleverly
constructed features, outperforms the sequence la-
beller, achieving accuracy of nearly 86%5 .

In our third experiment we use CoNLL test data
and compare the PO-CRF models with different
settings. See Table 4. This experiment is to show
the effects of suffix and Brown cluster features on
PO-CRF to relieve the unseen words issue. We
also show that the more projecting languages are

5Note that some previous researches (Liang et al., 2008;
Wisniewski et al., 2014; Moore, 2014) also pointed out that
POS tagging does not necessarily require a sequence model
for strong performance.
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1 lang (EN) (A) 9/10 langs (W) 9/10 langs (no S/C) 9/10 langs (A)
BG 0.7883 0.7144 0.8094 0.8478
CS 0.6601 0.5589 0.6535 0.7868
DA 0.7820 0.7765 0.8016 0.8227
DE 0.8323 0.6956 0.7589 0.8500
ES 0.7893 0.7608 0.8279 0.8665
EU 0.7764 0.7543 0.8035 0.8661
HU 0.6429 0.6378 0.7834 0.8119
IT 0.8444 0.7588 0.8136 0.8921
NL 0.7887 0.6825 0.7751 0.8214
PT 0.8476 0.7797 0.8464 0.8656
TR 0.6306 0.5727 0.6719 0.7143

AVG 0.7621 0.6993 0.7768 0.8314

Table 4: Accuracy of the PO-CRF models on CoNLL data. A, W, no S/C means: all, word, all but no
suffix and cluster features are used, respectively.

included the better the results gets.
For the features, we used word identity, suffixes

of up to length 3, Brown cluster and three indi-
cators of (1) capitalization for the first character,
(2) containing a hyphen or (3) a digit. Especially,
Brown clusters was induced from more than 2 mil-
lion line documents, making the setting unrealistic
for resource-poor language.

With just the word features, the averaged per-
formance is 0.6993 and other indicator features
increase the performance to 0.7768. Also note
that the suffix and Brown cluster features increase
the performance from 0.7768 to 0.8314. As re-
ported, PO-CRF mitigates the adverse effects of
the unseen word issues and almost meets the per-
formance in the previous experiment (0.8375) of
Täckström et al. (2013) by using these features.

In fourth and final experiment, we used the
same features for PO-CRF, with Brown clusters
induced on a realistically obtainable sized (3k)
corpus for a low resource language. We compare
directly to our CCA+SVM model (which does not
use Brown clustering features at all). We achieved
0.7983 on PO-CRF with all features and our cor-
responding model on CCA achieved about 0.8474,
shown in Table 5. As reported, our model outper-
forms the PO-CRF with the realistic settings for
resource poor languages.

5 Conclusions

We addressed the challenge of POS tagging low-
resource languages. Our key idea is to use a mas-
sively multilingual corpus. Instead of relying on a
single resource-rich language, we leverage the full

PO-CRF CCA+SVM
3k Brown

BG 0.8318 0.8815
CS 0.7635 0.8232
DA 0.7335 0.8911
DE 0.8296 0.8543
ES 0.8319 0.8713
EU 0.8376 0.8734
HU 0.7817 0.8372
IT 0.8451 0.8474
NL 0.7626 0.8245
PT 0.8768 0.8823
TR 0.6874 0.7354

AVG 0.7983 0.8474

Table 5: Performances on our test data, CoNLL
document.

array of currently available POS taggers. This re-
moves alignment-mismatch noise and identifies a
subset of words with highly confident tags. We
then use a CCA procedure to induce latent fea-
ture representations across domains, incorporating
word contexts as well as projected tags. We then
train an SVM to predict tags.

Experimentally, we show that this procedure
yields accuracy of about 85% for languages with
nearly no resources available, beating a state-of-
the-art partially observed CRF formulation. In the
near future, this technique will enable us to re-
lease a suite of POS taggers for hundreds of low-
resource languages.
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Oscar Täckström, Dipanjan Das, Slav Petrov, Ryan
McDonald, and Joakim Nivre. 2013. Token and
type constraints for cross-lingual part-of-speech tag-
ging. Transactions of the Association for Computa-
tional Linguistics, 1:1–12.

Guillaume Wisniewski, Nicolas Pécheux, Souhir
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Abstract

Ratnaparkhi (1996) introduced a method
of inferring a tag dictionary from anno-
tated data to speed up part-of-speech tag-
ging by limiting the set of possible tags for
each word. While Ratnaparkhi’s tag dic-
tionary makes tagging faster but less accu-
rate, an alternative tag dictionary that we
recently proposed (Moore, 2014) makes
tagging as fast as with Ratnaparkhi’s tag
dictionary, but with no decrease in accu-
racy. In this paper, we show that a very
simple semi-supervised variant of Ratna-
parkhi’s method results in a much tighter
tag dictionary than either Ratnaparkhi’s
or our previous method, with accuracy
as high as with our previous tag dictio-
nary but much faster tagging—more than
100,000 tokens per second in Perl.

1 Overview

In this paper, we present a new method of con-
structing tag dictionaries for part-of-speech (POS)
tagging. A tag dictionary is simply a list of words1

along with a set of possible tags for each word
listed, plus one additional set of possible tags for
all words not listed. Tag dictionaries are com-
monly used to speed up POS-tag inference by re-
stricting the tags considered for a particular word
to those specified by the dictionary.

Early work on POS tagging generally relied
heavily on manually constructed tag dictionaries,
sometimes agumented with tag statistics derived
from an annotated corpus (Leech et al., 1983;
Church, 1988; Cutting et al., 1992). Merialdo
(1994) relied only on a tag dictionary extracted
from annotated data, but he used the annotated

1According to the conventions of the field, POS tags are
assigned to all tokens in a tokenized text, including punctu-
ation marks and other non-word tokens. In this paper, all of
these will be covered by the term word.

tags from his test data as well as his training data to
construct his tag dictionary, so his evaluation was
not really fair.2 Ratnaparkhi (1996) seems to have
been the first to use a tag dictionary automatically
extracted only from training data.

Ratnaparkhi’s method of constructing a tag dic-
tionary substantially speeds up tagging compared
to considering every possible tag for every word,
but it noticeably degrades accuracy when used
with a current state-of-the-art tagging model. We
recently presented (Moore, 2014) a new method of
constructing a tag dictionary that produces a tag-
ging speed-up comparable to Ratnaparkhi’s, but
with no decrease in tagging accuracy. In this pa-
per, we show that a very simple semi-supervised
variant of Ratnaparkhi’s method results in a much
tighter tag dictionary than either Ratnaparkhi’s or
our previous method, with accuracy as high as we
previously obtained, while allowing much faster
tagging—more than 100,000 tokens per second
even in a Perl implementation.

1.1 Tag Dictionaries and Tagging Speed
A typical modern POS tagger applies a statistical
model to compute a score for a sequence of tags
t1, . . . , tn given a sequence of words w1, . . . , wn.
The tag sequence assigned the highest score by the
model for a given word sequence is selected as the
tagging for the word sequence. If T is the set of
possible tags, and there are no restrictions on the
form of the model, then the time to find the highest
scoring tag sequence is potentially O(n|T |n) or
worse, which would be intractable.

To make tagging practical, models are normally
defined to be factorable in a way that reduces the
time complexity to O(n|T |k), for some small in-
teger k. For models in which all tagging deci-
sions are independent, or for higher-order mod-

2Merialdo (1994, p. 161) acknowledged this: “In some
sense this is an optimal dictionary for this data, since a word
will not have all its possible tags (in the language), but only
the tags it actually had within the text.”
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els pruned by fixed-width beam search, k = 1, so
the time to find the highest scoring tag sequence is
O(n|T |). But this linear dependence on the size of
the tag set means that reducing the average number
of tags considered per token should further speed
up tagging, whatever the underlying model or tag-
ger may be.

1.2 Ratnaparkhi’s Method
For each word observed in an annotated training
set, Ratnaparkhi’s tag dictionary includes all tags
observed with that word in the training set, with all
possible tags allowed for all other words. Ratna-
parkhi reported that using this tag dictionary im-
proved per-tag accuracy from 96.31% to 96.43%
on his Penn Treebank (Marcus et al., 1993) Wall
Street Journal (WSJ) development set, compared
to considering all tags for all words.

With a more accurate model, however, we found
(Moore, 2014) that while Ratnaparkhi’s tag dictio-
nary decreased the average number of tags per to-
ken from 45 to 3.7 on the current standard WSJ de-
velopment set, it also decreased per-tag accuracy
from 97.31% to 97.19%. This loss of accuracy
can be explained by the fact that 0.5% of the de-
velopment set tokens are known words with a tag
not seen in the training set, for which our model
achieved 44.5% accuracy with all word/tag pairs
permitted. With Ratnaparkhi’s dictionary, accu-
racy for these tokens is necessarily 0%.

1.3 Our Previous Method
We previously presented (Moore, 2014) a tag dic-
tionary constructed by using the annotated train-
ing set to compute a smoothed probability estimate
for any possible tag given any possible word, and
for each word in the training set, including in the
dictionary the tags having an estimated probabil-
ity greater than a fixed threshold T . In this ap-
proach, the probability p(t|w) of tag t given word
w is computed by interpolating a discounted rel-
ative frequency estimate of p(t|w) with an esti-
mate of p(t) based on “diversity counts”, taking
the count of a tag t to be the number of distinct
words ever observed with that tag. The distribu-
tion p(t) is also used to estimate tag probabilities
for unknown words, so the set of possible tags for
any word not explicitly listed is {t|p(t) > T}.

If we think of w followed by t as a word bi-
gram, this is exactly like a bigram language model
estimated by the interpolated Kneser-Ney (KN)
method described by Chen and Goodman (1999).

The way tag diversity counts are used has the de-
sirable property that closed-class tags receive a
very low estimated probability of being assigned
to a rare or unknown word, even though they oc-
cur very often with a small number of frequent
words. A single value for discounting the count
of all observed word/tag pairs is set to maximize
the estimated probability of the reference tagging
of the development set. When T was chosen to
be the highest threshold that preserves our model’s
97.31% per tag WSJ development set accuracy, we
obtained an average of 3.5 tags per token.

1.4 Our New Approach

We now present a new method that reduces the av-
erage number of tags per token to about 1.5, with
no loss of tagging accuracy. We apply a simple
variant of Ratnaparkhi’s method, with a training
set more than 4,000 times larger than the Penn
Treebank WSJ training set. Since no such hand-
annotated corpus exists, we create the training set
automatically by running a version of our tagger
on the LDC English Gigaword corpus. We thus
describe our approach as a semi-supervised vari-
ant of Ratnaparkhi’s method. Our method can be
viewed as an instance of the well-known technique
of self-training (e.g., McClosky et al., 2006), but
ours is the first use of self-training we know of for
learning inference-time search-space pruning.

We introduce two additional modifications of
Ratnaparki’s approach. First, with such a large
training corpus, we find it unnecessary to keep in
the dictionary every tag observed with every word
in the automatically-annotated data. So, we esti-
mate a probability distribution over tags for each
word in the dictionary according to unsmoothed
relative tag frequencies, and include for each word
in the dictionary only tags whose probability given
the word is greater than a fixed threshold.

Second, since our tokenized version of the En-
glish Gigaword corpus contains more than 6 mil-
lion unique words, we reduce the vocabulary of the
dictionary to the approximately 1 million words
having 10 or more occurrences in the corpus. We
treat all other tokens as instances of unknown
words, and we use their combined unsmoothed
relative tag frequencies to estimate a tag probabil-
ity distribution for unknown words. We use the
same threshold on this distribution as we do for
words explicitly listed in the dictionary, to obtain
a set of possible tags for unknown words.
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2 Experimental Details

In our experiments, we use the WSJ corpus from
Penn Treebank-3, split into the standard training
(sections 0–18), development (sections 19–21),
and test (sections 22-24) sets for POS tagging.

The tagging model we use has the property that
all digits are treated as indistinguishable for all
features. We therefore also make all digits in-
distinguishable in constructing tag dictionaries (by
internally replacing all digits by “9”), since it does
not seem sensible to give two different dictionary
entries based on containing different digits, when
the tagging model assigns them the same features.

2.1 The Tagging Model

The model structure, feature set, and learning
method we use for POS tagging are essentially the
same as those in our earlier work, treating POS
tagging as a single-token independent multiclass
classification task. Word-class-sequence features
obtained by supervised clustering of the annotated
training set replace the hidden tag-sequence fea-
tures frequently used for POS tagging, and ad-
ditional word-class features obtained by unsuper-
vised clustering of a very large unannotated corpus
provide information about words not occurring in
the training set. For full details of the feature set,
see our previous paper (Moore, 2014).

The model is trained by optimizing the mul-
ticlass SVM hinge loss objective (Crammer and
Singer, 2001), using stochastic subgradient de-
scent as described by Zhang (2004), with early
stopping and averaging. The only difference from
our previous training procedure is that we now use
a tag dictionary to speed up training, while we pre-
viously used tag dictionaries only at test time.

Our training procedure makes multiple passes
through the training data considering each train-
ing example in turn, comparing the current model
score of the correct tag for the example to that of
the highest scoring incorrect tag and updating the
model if the score of the correct tag does not ex-
ceed the score of the highest scoring incorrect tag
by a specified margin. In our new version of this
procedure, we use the KN-smoothed tag dictio-
nary described in Section 1.3. to speed up finding
the highest scoring incorrect tag.

Recall that the KN-smoothed tag dictionary es-
timates a non-zero probability p(t|w) for every
possible word/tag pair, and that the possible tags
for a given word are determinted by setting a

threshold T on this probability. In each pass
through the training set, we use the same probabil-
ity distribution p(t|w) determined from the statis-
tics of the annotated training data, but we employ
an adaptive method to determine what threshold T
to use in each pass.

For the first pass through the training set, we
set an initial threshold T0 to the highest value
such that for every token in the development set,
p(t|w) ≥ T0, where t is the correct tag for the to-
ken and w is the word for the token. At the end
of each training pass i, while evaluating the cur-
rent model on the development set for early stop-
ping using threshold Ti−1, we also find the high-
est probability threshold Ti such that choosing a
lower threshold would not enable any additional
correct taggings on the development set using the
current model. This threshold will normally be
higher than T0, because we disregard tokens in the
development set for which the correct tag would
not be selected by the model resulting from the
previous pass at any threshold. Ti is then used as
the threshold for training pass i + 1. Whenever
the selected threshold leaves only one tag remain-
ing for a particular training example, we skip that
example in training.

On the first pass through the training set, use of
this method resulted in consideration of an aver-
age of 31.36 tags per token, compared to 45 to-
tal possible tags. On the second and all subse-
quent passes, an average of 10.48 tags were con-
sidered per token. This sped up training by a fac-
tor of 3.7 compared to considering all tags for all
tokens, with no loss of tagging accuracy when a
development-set-optimized KN-smoothed tag dic-
tionary is also used at test time.

2.2 Tagging the Gigaword Corpus

To construct our new tag dictionary, we need
an automatically-tagged corpus several orders of
magnitude larger than the hand-tagged WSJ train-
ing set. To obtain this corpus we ran a POS
tagger on the LDC English Gigaword Fifth Edi-
tion3 corpus, which consists of more than 4 bil-
lion words of English text from seven newswire
sources. We first removed all SGML mark-up, and
performed sentence-breaking and tokenization us-
ing the Stanford CoreNLP toolkit (Manning et al,
2014). This produced 4,471,025,373 tokens of

3https://catalog.ldc.upenn.edu/
LDC2011T07
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Tag Dictionary Accuracy Tags/Token Unambig Tokens/Sec
Pruned KN-smoothed 97.31% 3.48 45.3% 69k
Unpruned semi-supervised 97.31% 1.97 51.7% 82k
Pruned semi-supervised 97.31% 1.51 66.8% 103k

Table 1: WSJ development set token accuracy and tagging speed for different tag dictionaries

6,616,812 unique words. We tagged this corpus
using the model described in Section 2.1 and a
KN-smoothed tag dictionary as described in Sec-
tion 1.3, with a threshold T = 0.0005. The tagger
we used is based on the fastest of the methods de-
scribed in our previous work (Moore, 2014, Sec-
tion 3.1). Tagging took about 26 hours using a
single-threaded implementation in Perl on a Linux
workstation equipped with Intel Xeon X5550 2.67
GHz processors.

2.3 Extracting the Tag Dictionary

We extracted a Ratnaparkhi-like tag dictionary for
the 957,819 words with 10 or more occurrences
in our corpus. Tokens of all other words in the
corpus were treated as unknown word tokens and
used to define a set of 24 tags4 to be used for words
not explicitly listed in the dictionary. To allow
pruning the dictionary as described in Section 1.4,
for each word (including the unknown word), we
computed a probability distribution p(t|w) using
unsmoothed relative frequencies. As noted above,
we treated all digits as indistinguishable in con-
structing and applying the dictionary.

3 Experimental Results

Tagging the WSJ development set with an un-
pruned semi-supervised tag dictionary obtained
from the automatic tagging of the English Gi-
gaword corpus produced the same tagging accu-
racy as allowing all tags for all tokens or using
the pruned KN-smoothed tag dictionary used in
tagging the Gigaword corpus. Additional exper-
iments showed that we could prune this dictionary
with a threshold on p(t|w) as high as T = 0.0024
without decreasing development set accuracy. In
addition to applying this threshold to the tag prob-
abilities for all listed words, we also applied it to
the tag probabilities for unknown words, leaving
13 possible tags5 for those.

4CC, CD, DT, FW, IN, JJ, JJR, JJS, MD, NN, NNP,
NNPS, NNS, PRP, RB, RBR, RP, UH, VB, VBD, VBG,
VBN, VBP, and VBZ

5CD, FW, JJ, NN, NNP, NNPS, NNS, RB, VB, VBD,
VBG, VBN, and VBZ

Tagging the WSJ development set with these
two dictionaries is compared in Table 1 to tag-
ging with our previous pruned KN-smoothed dic-
tionary. The second column shows the accuracy
per tag, which is 97.31% for all three dictionaries.
The third column shows the mean number of tags
per token allowed by each dictionary. The fourth
column shows the percentage of tokens with only
one tag allowed, which is significant since the tag-
ger need not apply the model for such tokens—it
can simply output the single possible tag.

The last column shows the tagging speed in
tokens per second for each of the three tag dic-
tionaries, using the fast tagging method we pre-
viously described (Moore, 2014), in a single-
threaded implementation in Perl on a Linux work-
station equipped with Intel Xeon X5550 2.67 GHz
processors. Speed is rounded to the nearest 1,000
tokens per second, because we measured times to
a precision of only about one part in one hundred.
For the pruned KN-smoothed dictionary, we pre-
viously reported a speed of 49,000 tokens per sec-
ond under similar conditions. Our current faster
speed of 69,000 tokens per second is due to an
improved low-level implementation for computing
the model scores for permitted tags, and a slightly
faster version of Perl (v5.18.2).

The most restrictive tag dictionary, the pruned
semi-supervised dictionary, allows only 1.51 tags
per token, and our implementation runs at 103,000
tokens per second on the WSJ development set.
For our final experiments, we tested our tagger
with this dictionary on the standard Penn Treebank
WSJ test set and on the Penn Treebank-3 parsed
Brown corpus subset, as an out-of-domain eval-
uation. For comparison, we tested our previous
tagger and the fast version (english-left3words-
distsim) of the Stanford tagger (Toutanova et al.,
2003; Manning, 2011) recommended for prac-
tical use on the Stanford tagger website, which
we found to be by far the fastest of the six pub-
licly available taggers tested in our previous work
(Moore, 2014). The results of these tests are
shown in Table 2.6

6In Table 2, “OOV” has the standard meaning of a token
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WSJ All WSJ OOV WSJ Brown All Brown OOV Brown
Tagger Tokens/Sec Accuracy Accuracy Tokens/Sec Accuracy Accuracy
This work 102k 97.36% 91.09% 96k 96.55% 89.25%
Our previous 51k/54k/69k 97.34% 90.98% 40k/43k/56k 96.54% 89.36%
Stanford fast 80k 96.87% 89.69% 50k 95.53% 87.38%

Table 2: WSJ test set and Brown corpus tagging speeds and token accuracies

For our previous tagger, we give three speeds:
the speed we reported earlier, a speed for a dupli-
cate of the earlier experiment using the faster ver-
sion of Perl that we use here, and a third measure-
ment including both the faster version of Perl and
our improved low-level tagger implementation.

With the pruned semi-supervised dictionary, our
new tagger has slightly higher all-token accuracy
than our previous tagger on both the WSJ test set
and Brown corpus set, and it is much more accu-
rate than the fast Stanford tagger. The accuracy
on the standard WSJ test set is 97.36%, one of the
highest ever reported. The new tagger is also much
faster than either of the other taggers, achieving a
speed of more than 100,000 tokens per second on
the WSJ test set, and almost 100,000 tokens per
second on the out-of-domain Brown corpus data.

4 Conclusions

Our method of constructing a tag dictionary is
technically very simple, but remarkably effective.
It reduces the mean number of possible tags per
token by 57% and increases the number of un-
ambiguous tokens by by 47%, compared to the
previous state of the art (Moore, 2014) for a tag
dictionary that does not degrade tagging accuracy.
When combined with our previous work on fast
high-accuracy POS tagging, this tag dictionary
produces by far the fastest POS tagger reported
with anything close to comparable accuracy.
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Abstract

We present an approach to Arabic auto-
matic diacritization that integrates syntac-
tic analysis with morphological tagging
through improving the prediction of case
and state features. Our best system in-
creases the accuracy of word diacritization
by 2.5% absolute on all words, and 5.2%
absolute on nominals over a state-of-the-
art baseline. Similar increases are shown
on the full morphological analysis choice.

1 Introduction

Modern Standard Arabic (MSA) orthography
generally omits diacritical marks which encode
lexical as well as syntactic (case) information. The
task of Arabic automatic diacritization is about
the automatic restoration of the missing diacritics.
Diacritization improvement in Arabic has impor-
tant implications for downstream processing for
Arabic natural language processing, e.g. speech
recognition (Ananthakrishnan et al., 2005; Biadsy
et al., 2009), speech synthesis (Elshafei et al.,
2002), and machine translation (Diab et al., 2007;
Zbib et al., 2010).

Previous efforts on diacritization utilized mor-
phological tagging techniques to disambiguate
word forms. Habash et al. (2007a) observe that
while such techniques work relatively well on lex-
ical diacritics (located on word stems), they are
much worse for syntactic case diacritics (typically
word final). They suggest that syntactic anal-
ysis may help with automatic diacrtization, but
stop short of testing the idea, and instead demon-
strate that complex linguistic features and rules are
needed to model complex Arabic case using gold
syntactic analyses. In this paper, we develop an
approach for improving the quality of automatic
Arabic diacritization through the use of automatic
syntactic analysis. Our approach combines hand-
written rules for case assignment and agreement
with machine learning of case and state adjustment
on the output of a state-of-the-art morphological
tagger. Our best system increases the accuracy of

word diacrtization by 2.5% absolute overall, and
5.2% absolute on nominals over a state-of-the-art
baseline.

2 Linguistic Background

Arabic automatic processing, and specifically dia-
critization is hard for a number of reasons.

First, Arabic words are morphologically rich.
The morphological analyzer we use represents
Arabic words with 15 features (Pasha et al.,
2014).1 We focus on case and state in this paper.
In our data set, case has five values: nominative
(n), accusative (a), genitive (g), undefined (u) and
not applicable (na). Cases n, a and g are usually
expressed with an overt morpheme. Case u is used
to mark words without an overt morpheme expres-
sion of case (e.g., invariable nouns such as ø �ñº ���
šakwaý ‘complaint’), or those not assigned a case
in the manual annotations. Most of the missing
assignments are for foreign proper nouns, which
often do not receive case markers. However, this
is not done consistently in the training data we use.
Case na is used for non-nominals. State is a nom-
inal feature that has four values: definite (d), in-
definite (i), construct (c) and not applicable (na).
State generally reflects the definiteness in nomi-
nals (d vs i) and whether a nominal is the head of
genitive construction (aka Idafa) (c). State na is
used for non-nominals.2 For the most part, case
and state realize as a single word-final morpheme,
e.g., the suffix

�
@ Aã in A�K. A

��J»� kitAbAã3 is a morpheme
indicating the word is (cas:a, stt:i).

Second, undiacritized Arabic words are highly
ambiguous: in our training data, words had an av-
erage of 12.8 analyses per word, most of which
are associated with different diacritizations. Some
diacritization differences reflect different analysis

1Lemma (lex), Part-of-Speech (pos), Gender (gen), Num-
ber (num), Case (cas), State (stt), Person (per), Aspect (asp),
Voice (vox), Mood (mod), four proclitics (prcn), and one en-
clitic (enc0).

2For a detailed discussion of Arabic case and state, see
(Smrž, 2007; Habash et al., 2007a).

3Arabic transliteration is presented in the Habash-Soudi-
Buckwalter scheme (Habash et al., 2007b).
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lemmas; while others are due to morpho-syntactic
differences. For example, the undiacritized ver-
sion of the word we used above ( AK. A�J» ktAbA)

has two other diacritizations and analyses: A�K. A
���J
�
»

kut∼AbAã (cas:a stt:i) ‘writers’ (different lemma)
and A�K. A

��J»� kitAbA (cas:n stt:c num:d) ‘two books of
[...]’ (different features).

Third, Arabic has complex case/state assign-
ment and agreement patterns that interact with the
sentence’s syntax. For example, a noun may get
its case by being subject of a verb and its state by
being the head of an idafa construction; while ad-
jectives modifying this noun agree with it in its
case, their state is determined by the state of the
last element in the idafa chain the noun heads.

For more information on Arabic orthography,
morphology, and syntax, see Habash (2010).

3 Related Work

Much work has been done on Arabic diacritization
(Vergyri and Kirchhoff, 2004; Nelken and Shieber,
2005; Zitouni et al., 2006; Habash and Rambow,
2007; Alghamdi and Muzafar, 2007; Rashwan et
al., 2009; Bebah et al., 2014; Hadj Ameur et al.,
2015; Abandah et al., 2015; Bouamor et al., 2015).
We refer the reader to the extensive literature re-
view by Abandah et al. (2015), and focus on sys-
tems we compare with.

Most of the previous approaches cited above
utilize different sequence modeling techniques
that use varying degrees of knowledge from shal-
low letter and word forms to deeper morphologi-
cal information; none to our knowledge make use
of syntax. Habash and Rambow (2007) approach
diacritization as a part of the morphological dis-
ambiguation problem, where they select the opti-
mal full morphological tag for Arabic in context
and use it to select from a list of possible analyses
produced by a morphological analyzer. They use
independent taggers for all features; and language
models for lemmas and diacritized surface forms.
Their work is part of the state-of-the-art Ara-
bic morphological tagger MADAMIRA (Pasha et
al., 2014). Our paper is most closely related
to Habash and Rambow (2007) and Pasha et al.
(2014). We extend their work using additional
syntactic features to improve morphological dis-
ambiguation accuracy. We demonstrate improve-
ments in terms of both full morphological analysis
choice (lemmatization, tokenization, all features)
as well as word diacritization.

Most recently, Abandah et al. (2015) presented

a recurrent neural network approach to diacritize
full sentences with impressive results. We do not
compare to their effort here but we note that they
use an order of magnitude more diacritized data
than we do, and they focus on diacritization only
as opposed to full morphological analysis.

In related work on modeling Arabic case and
syntax, Habash et al. (2007a) compared rule-based
and machine learning approaches to capture the
complexity of Arabic case assignment and agree-
ment. They demonstrated their results on gold
syntactic analyses showing that given good syn-
tactic representations, case prediction can be done
at a high degree of accuracy. Alkuhlani et al.
(2013) later extended this work to cover all mor-
phological features, including state. Additionally,
Marton et al. (2013) demonstrated that in the con-
text of syntactic dependency parsing, case is the
best feature to use in gold settings and is the worst
feature to use in predicted settings. In this paper
we use automatic (i.e. not gold) syntactic features
to improve case prediction, which improves mor-
phological analysis and word diacrtization.

4 Approach

Motivation We are motivated by an error
analysis we conducted of 1,200 words of the
MADAMIRA system output. We found a large
number of surprising syntactically impossible case
errors such as genitive nouns following verbs or
construct nouns followed by non-genitives. We
explain these errors by MADAMIRA’s contextual
models being limited to a small window of neigh-
boring words and with no modeling of syntax,
which leads to a much worse performance on case
and diacritization compared to lemmas and POS
(almost 10% absolute drop from 96% to 86%).

Proposed Solution Our approach is to provide
better prediction of case and state using models
with access to additional information, in partic-
ular syntactic analysis and rules. The predicted
case and state values are then used to re-tag the
MADAMIRA output by selecting the best match
in its ranked morphological analyses. We limit our
retagging to nominals. Since what we are learning
to predict is how to correct MADAMIRA’s base-
line choice (as opposed to a generative model of
case-state), we also re-apply the model on its out-
put to fix primarily propagated agreement errors in
a manner similar to Habash et al. (2007a)’s agree-
ment classifier.4

4We optimized for a re-application limit, which we found
invariably to be +1 time or +2 times in our DevTest experi-

1310



5 Experimental Results

We present next our experimental results and com-
pare five case-state prediction techniques. The
results for these techniques are compared to our
state-of-the-art baseline system, which has been
compared to a number of other approaches.

5.1 Experimental Setup

Data We used the Penn Arabic Treebank (PATB,
parts 1, 2 and 3) (Maamouri et al., 2004;
Maamouri et al., 2006; Maamouri et al., 2009)
split into Train, Dev and (blind) Test along the rec-
ommendations of Diab et al. (2013) which were
also used in the baseline system. The morpho-
logical feature representations we use are derived
from the PATB analyses following the approach
used in the MADA and later MADAMIRA sys-
tems (Habash and Rambow, 2005; Habash and
Rambow, 2007; Pasha et al., 2014). We further
divide Dev into two parts with equal number of
sentences: DevTrain (30K words) for training our
case-state classifiers, and DevTest (33K words) for
development testing. The Test set has 63K words.5

Evaluation Metrics We report our accuracy in
terms of two metrics: a. Diac, the percentage
of correctly fully diacrtized words; and b. All,
the percentage of words for which a full morpho-
logical analysis (lemma, POS, all inflectional and
clitic features, and diacritization) is correctly pre-
dicted. We report the results on all words (All
Words) as well as on nominals6 with no u case
in the gold (henceforth, Nominals). We do not re-
port on case and state prediction accuracy, nor on
the character-level diacritization.

Morphological Analysis, Baseline and Topline
For our baseline, we use the morphological analy-
sis and disambiguation tool MADAMIRA (Pasha
et al., 2014), which produces a contextually
ranked list of analyses for each word. We com-
puted an oracular topline using the PATB gold case
and state values in the retagging process.

ments. We do not report more on this due to space limitations.
Because of the need to have the same of number of parse
tree tokens for reapplication in the models using syntax, we
constrain the retagging to maintain the same clitic signature
(number of clitics) in the MADAMIRA baseline top analysis.

5To address the concern that we are using more "train-
ing" data than our baseline, we compared the performance
of MADAMIRA’s release (baseline) to a version that was
trained on Train + DevTrain. The small increase in training
data made no significant difference from the baseline system
in terms of our metrics.

6Nominals consists of nouns (including noun_quant and
noun_num), adjectives, proper nouns, adverbs, and pronouns.

All Words Nominals
System Diac All Diac All
Oracle Topline 96.2 94.2 98.0 95.7
Baseline 87.4 85.0 81.9 78.2
Morphology Rules 88.0 85.5 83.1 79.4
Morphology Classifier 88.4 85.9 83.7 80.1
Syntax Rules 87.4 84.6 86.4 82.2
Syntax Classifier 89.1 86.6 85.2 81.4
Syntax Rules+Classifier 89.7 87.1 86.4 82.5

Table 1: Results on DevTest.

Syntactic Analysis For syntactic features, we
trained an Arabic dependency parser using Malt-
Parser (Nivre et al., 2007) on the Columbia Arabic
Treebank (CATiB) version of the PATB (Habash
and Roth, 2009). The Train data followed the
same splits mentioned above. The Nivre "eager"
algorithm was used in all experiments. The CATiB
dependency tree has six simple POS tags and
eight relations (Habash and Roth, 2009; Habash
et al., 2009). The PATB tokenization as well as
the CATiB POS tags were produced by the base-
line system MADAMIRA and used as input to
the parser. We also used the well performing
yet simple CATiBex expansion of the CATiB tags
as implemented in the publicly available parsing
pipeline from Marton et al. (2013). Our parser’s
performance on the PATB Dev set is comparable
to Marton et al. (2013): 84.2% labeled attachment,
86.6% unlabeled attachment, and 93.6% label ac-
curacy.

Machine Learning Technique Given the small
size of DevTrain, we opted to train unlexical-
ized models that we expect to capture morpho-
syntactic abstractions. We tried a number of ma-
chine learning techniques and settled on using the
J48 Decision tree classifier with its default settings
in WEKA (Hall et al., 2009; Quinlan, 1993) for all
of the classification experiments in this paper.

5.2 Case and State Classification Techniques

We detail and report on five case-state classifica-
tion techniques we experimented with. All results
on the DevTest are presented in Table 1.

Morphology Rules We created a simple man-
ual word-morphology based classifier that handled
the most salient case errors seen in our pilot study
(Section 4) and whose correction has a high preci-
sion. The scope of the rules was limited to word
bigrams and included three conditions: (i) post-
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verbal genitive nouns are changed to the first non-
genitive analysis available from MADAMIRA; (ii)
post-construct state non-genitive nouns should be-
come genitive; and (iii) adjectives agreeing with
the nouns they follow in gender, number, and def-
initeness, but not in case should match the nouns’
case. The collective improvement of all the rules
applied in the order presented above adds up to
0.6% absolute on All Word Diac, and 1.2% abso-
lute on Nominal Diac.

Morphology-based Classifier We trained a
classifier to predict a correction of the baseline
case and state of a word using the DevTrain
data set. For features, we included all the non-
lexical morphological features (all features men-
tioned in footnote 1 except for lemma). Clitic fea-
ture values were binarized to indicate if a clitic is
present or not. We used Nil values for all out-
of-vocabulary words in MADAMIRA. BOS and
EOS placeholders were used for sentence bound-
aries. We excluded all DevTrain words whose
predicted POS switches from nominal to non-
nominal or vice versa, but kept them as part of
other words’ context. This minimizes noise and
sparsity in the training data, especially given its
small size and the rarity of such examples. We ex-
perimented with adding features from neighboring
words within a window size of +/- 2 words. The
best performing setup was with window size +/- 1.
This classifier makes around 0.5% absolute gain
over the simple word morphology rules.

Syntax Rules Inspired by Habash et al.
(2007a)’s simple set of rules for determining case
on gold dependency trees, we re-implemented
these rules to work with our different dependency
representation and extended them to include state
assignment in a manner similar to Alkuhlani et al.
(2013).7 These rules improve over the baseline
by 4.5% absolute in Nominal Diac accuracy,
but produce no gains in All Words setting. An
investigation of the error patterns reveals the main

7For nominal case assignment, our rules are: (i) default
case is a; (ii) children of root are n; (iii) object of prepo-
sition and idafa children are assigned g; (iv) predicates not
headed by verbs are assigned n; and (v) subjects and top-
ics not headed (or grand-headed) by a class of words called
Ân∼a and her sisters are assigned n. After case assign-
ment, we apply two case agreement rules: (i) for all nom-
inals modifying case-assigned nominals (i.e., with tree rela-
tionmod), copy the case of the modified nominal; and (ii) for
all nominals conjoined to case-assigned nominals (i.e., with
tree chain nominal-conjunction-nominal), copy the case
of the heading nominal. For state, we assign d to words with
the definite article proclitic, and c to words heading an idafa
construction. All other nominals are assigned state i.

reason to be the rules’ inability to predict the
problematic u case.

Syntax-based Classifier We trained a classifier
to predict a correction of the case and state of a
word on a parsed version of the DevTrain data set.
Since the syntactic parse separates most clitics in
the PATB tokenization, we align the tree tokens
with the word morphology before extracting clas-
sifier features. The features we used are the to-
ken’s morphological features (same as those used
for words in the morphology-based classifier), the
parent and grandparent’s features, the relations be-
tween token and parent, and between parent and
grandparent, and the features of the neighboring
+/- n tokens. The tokenized clitics are only used
as context features (tree and surface). We tested
all combinations of values of n as 0, 1, 2, and 3
and of including parent and grandparent features.
The best performing setting was with including
the parent and grandparent as well as a window of
+/- 1 tokens. The syntax-based classifier improves
over the morphology-based classifier but it trails
behind syntax rules in terms of Nominal Diac. Its
All Word Diac accuracy is the highest so far.

Combination of Syntax Rules and Classifier
We combine the last two approaches to exploit
their complementary performance by including
the syntax rule predictions as features in the
syntax-based classifier. The resulting system is
our best performer achieving DevTest accuracy
improvements of 2.3% absolute (All Word Diac),
and 4.5% absolute (Nominal Diac).

5.3 Blind Test Results
The results of applying the best approach and set-
tings on our blind Test set are presented in Ta-
ble 2. While the baseline on Test is slightly higher
than DevTest, the performance on all metrics are
comparable. The increase in Diac accuracy on All
Words is 2.5% absolute and on Nominals is 5.2%
absolute. The corresponding relative reductions in
error to the oracle toplines are 30% and 34%. Sim-
ilar increases are shown on the full morphological
analysis choice.

All Words Nominals
System Diac All Diac All
Oracle Topline 96.3 94.4 97.9 95.6
Baseline 88.1 86.0 82.4 79.4
Syntax Rules+Classifier 90.6 88.5 87.6 84.5

Table 2: Results on the blind Test set.
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(a)
�Y��J
 �k. 	àA 	JJ. Ë ú


	̄ 	áÓ


B@ 	à



@ ú
æ�A�



B@ ù


�®J
Êª�K tςlyqy AlÂsAsy Ân AlÂmn fy lbnAn jay∼idũ

My main comment is that security in Lebanon is good
Word Dependency Gold Baseline Best System

YJ
k. jyd PRD of Ân ‘that’ jay∼idũ [NOM] jay∼idı̃ [GEN] jay∼idũ [NOM]

(b) ú �	æÒ�J
Ë @ �è �Y�K
 Õç 	' A 	« 	àAg. 	àA¿ kAn jAn γAnm ydh Alymný

Jean Ghanem was his right hand
Word Dependency Gold Baseline Best System
èYK
 ydh PRD of kAn ‘was’ yadahu [ACC] yadihi [GEN] yadahu [ACC]

ú 	æÒJ
Ë @ Alymný MOD of yd ‘hand’ Alyum.naý [U] Alyamaniy∼i [GEN] Alyum.naý [U]

(c) AK. ðPð


@ ©Ó ��é��K
X� A ���J�

�̄B�
�
@ �H� A��̄C

� �ªË@ 	P 	QªJ
� syςzz AlςlAqAt AlAqtSAdyh̄ mς ÂwrwbA

It will reinforce the economic relations with Europe
Word Dependency Gold Baseline Best System
�HA�̄CªË@ OBJ of AlςalAqAti AlςalAqAti AlςalAqAti

AlςlAqAt yςzz ‘reinforce’ [ACC] [GEN] [ACC]�é�K
XA��J�̄B@ MOD of AlAiqtiSAdiy∼ah̄a AlAiqtiSAdiy∼ah̄i AlAiqtiSAdiy∼ah̄a
AlAqtSAdyh̄ AlςlAqAt ‘relations’ [ACC] [GEN] [ACC]

(d) . . . ��A 	®�K @ 	à


@ ø
 QK
QmÌ'@ ��J
 	̄P Z @P 	PñË@ ���

K� �P �Ó



@ é
KA �®Ë Q�K @
 	àAjJ
Ê 	̄ É�AK. XA��J�̄B@ QK
 	Pð Y»



@

Âkd wzyr AlAqtSAd bAsl flyHAn Ǎθr lqAŷh Âms rŷys AlwzrA’ rfyq AlHryry Ân AtfAq ...
Following his meeting with the Prime Minister Rafiq Alhariri,

the Minister of Economy Basil Flaihan has confirmed that the agreement ...
Word Dependency Gold Baseline Best System

��

KP rŷys SBJ of Âkd ‘confirmed’ raŷiysa [ACC] raŷiysa [ACC] raŷiysu [NOM]

Figure 1: Examples of corrections from our best performing system.

5.4 Error Analysis and Examples

We manually investigated the types of errors in
the first 100 errors in the DevTest in our best
system’s output. In about a quarter of the cases
(23%), all of which proper nouns, the gold refer-
ence was not fully diacritized, making it impossi-
ble to evaluate. In an additional 7%, typographi-
cal errors in the input including missing sentence
breaks led to bad parses which are the likely cause
of error. The rest of the errors are system fail-
ures: 31% are connected with syntactic tree errors
(although a third of these are due to agreement-
propagated errors over correct trees); 28% are due
to other morphological analysis issues (half are
out-of-vocabulary and 4% are no-analysis cases);
and 11% are other case selection errors unrelated
to the above-mentioned issues.

Figure 1 shows four examples from the DevTest
where the analysis of our best system for the un-
derlined words is different from baseline. Exam-
ples (a), (b), and (c) are cases where our best sys-
tem’s analysis matched the gold. The dependency
relation also matched the gold and was the likely
cause of correction. In example (d), our best sys-
tem incorrectly changed the correct baseline anal-
ysis in agreement with the wrong dependency re-
lation provided by the parser, which is the likely
cause of error.

6 Conclusion and Future Work

We have demonstrated the value of using auto-
matic syntactic analysis as part of the task of au-
tomatic diacritization and morphological tagging
of Arabic. Our best solution is a hybrid approach
that combines statistical parsing and manual syn-
tactic rules as part of a machine learning model for
correcting case and state features.

In the future, we plan to investigate the develop-
ment of joint morphological disambiguation and
syntactic parsing models. We will also work on
improving the quality of Arabic parsing which is
behind many of the errors according to our er-
ror analysis. Other possible directions include
using more sophisticated machine learning tech-
niques and richer lexical features. We also plan
to host a demo and make our system available
through the website of the Computational Ap-
proaches to Modeling Language (CAMeL) Lab:
www.camel-lab.com.
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Abstract

We investigate a combination of a tra-
ditional linear sparse feature model and
a multi-layer neural network model for
deterministic transition-based dependency
parsing, by integrating the sparse features
into the neural model. Correlations are
drawn between the hybrid model and pre-
vious work on integrating word embed-
ding features into a discrete linear model.
By analyzing the results of various parsers
on web-domain parsing, we show that the
integrated model is a better way to com-
bine traditional and embedding features
compared with previous methods.

1 Introduction

Transition-based parsing algorithms construct out-
put syntax trees using a sequence of shift-reduce
actions. They are attractive in computational ef-
ficiency, allowing linear time decoding with de-
terministic (Nivre, 2008) or beam-search (Zhang
and Clark, 2008) algorithms. Using rich non-local
features, transition-based parsers achieve state-of-
the-art accuracies for dependency parsing (Zhang
and Nivre, 2011; Zhang and Nivre, 2012; Bohnet
and Nivre, 2012; Choi and McCallum, 2013;
Zhang et al., 2014).

Deterministic transition-based parsers works
by making a sequence of greedy local deci-
sions (Nivre et al., 2004; Honnibal et al., 2013;
Goldberg et al., 2014; Gómez-Rodrı́guez and
Fernández-González, 2015). They are attractive
by very fast speeds. Traditionally, a linear model
has been used for the local action classifier. Re-
cently, Chen and Manning (2014) use a neural net-
work (NN) to replace linear models, and report im-
proved accuracies.

A contrast between a neural network model and
a linear model is shown in Figure 1 (a) and (b).

· · · · · ·

(a) discrete linear (b) continuous NN

· · · · · ·

(eg. MaltParser) (eg. Chen and Manning (2014))

(c) Turian et al. (2010)

· · · · · · · · ·
transform

(d) Guo et al. (2014)

· · · · · ·

(e) this paper

Figure 1: Five deterministic transition-based
parsers with discrete and continuous features.

A neural network model takes continuous vector
representations of words as inputs, which can be
pre-trained using large amounts of unlabeled data,
thus containing more information. In addition, us-
ing an extra hidden layer, a neural network is ca-
pable of learning non-linear relations between au-
tomatic features, achieving feature combinations
automatically.

Discrete manual features and continuous fea-
tures complement each other. A natural question
that arises from the contrast is whether traditional
discrete features and continuous neural features
can be integrated for better accuracies. We study
this problem by constructing the neural network
shown in Figure 1 (e), which incorporates the dis-
crete input layer of the linear model (Figure 1 (a))
into the NN model (Figure 1 (b)) by conjoining
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it with the hidden layer. This architecture is con-
nected with previous work on incorporating word
embeddings into a linear model.

In particular, Turian et al. (2010) incorporate
word embeddings as real-valued features into a
CRF model. The architecture is shown in Figure
1(c), which can be regarded as Figure 1(e) with-
out the hidden layer. Guo et al. (2014) find that
the accuracies of Turian et al can be enhanced by
discretizing the embedding features before com-
bining them with the traditional features. They use
simple binarization and clustering to this end, find-
ing that the latter works better. The architecture is
shown in Figure 1(d). In contrast, Figure 1(e) di-
rectly combines discrete and continuous features,
replacing the hard-coded transformation function
of Guo et al. (2014) with a hidden layer, which
can be tuned by supervised training.1

We correlate and compare all the five systems
in Figure 1 empirically, using the SANCL 2012
data (Petrov and McDonald, 2012) and the stan-
dard Penn Treebank data. Results show that
the method of this paper gives higher accura-
cies than the other methods. In addition, the
method of Guo et al. (2014) gives slightly better
accuracies compared to the method of Turian et
al. (2010) for parsing task, consistent with Guo
et al’s observation on named entity recognition
(NER). We make our C++ code publicly avail-
able under GPL at https://github.com/
SUTDNLP/NNTransitionParser.

2 Parser

We take Chen and Manning (2014), which uses
the arc-standard transition system (Nivre, 2008).
Given an POS-tagged input sentence, it builds a
projective output y by performing a sequence of
state transition actions using greedy search. Chen
and Manning (2014) can be viewed as a neutral
alternative of MaltParser (Nivre, 2008).

Although not giving state-of-the-art accuracies,
deterministic parsing is attractive for its high pars-
ing speed (1000+ sentences per second). Our in-
corporation of discrete features does not harm the
overall speed significantly. In addition, determin-
istic parsers use standard neural classifiers, which
allows isolated study of feature influences.

1Yet another alternative structure is to directly combine
the two types of inputs, and replacing the input layer of (b)
using them. Wang and Manning (2013) compared this archi-
tecture with (c) using a CRF network, finding that the latter
works better for NER and chunking.

3 Models

Following Chen and Manning (2014), training of
all the models using a cross-entropy loss objective
with a L2-regularization, and mini-batched Ada-
Grad (Duchi et al., 2011). We unify below the five
deterministic parsing models in Figure 1.

3.1 Baseline linear (L)
We build a baseline linear model using logistic re-
gression (Figure 1(a)). Given a parsing state x, a
vector of discrete features Φd(x) is extracted ac-
cording to the arc-standard feature templates of
Ma et al. (2014a), which is based on the arc-eager
templates of Zhang and Nivre (2011). The score
of an action a is defined by

Score(a) = σ
(
Φd(x) · −→θ d,a

)
,

where σ represents the sigmoid activation func-
tion,

−→
θ d is the set of model parameters, denoting

the feature weights with respect to actions, a can
be SHIFT, LEFT(l) and RIGHT(l).

3.2 Baseline Neural (NN)
We take the Neural model of Chen and Manning
(2014) as another baseline (Figure 1(b)). Given
a parsing state x, the words are first mapped into
continuous vectors by using a set of pre-trained
word embeddings. Denote the mapping as Φe(x).
In addition, denote the hidden layer as Φh, and the
ith node in the hidden as Φh,i (0 ≤ i ≤ |Φh|). The
hidden layer is defined as

Φh,i =
(
Φe(x) · −→θ h,i

)3
,

where
−→
θ h is the set of parameters between the in-

put and hidden layers. The score of an action a is
defined as

Score(a) = σ
(
Φh(x) · −→θ c,a

)
,

where
−→
θ c,a is the set of parameters between the

hidden and output layers. We use the arc-standard
features Φe as Chen and Manning (2014), which
is also based on the arc-eager templates of Zhang
and Nivre (2011), similar to those of the baseline
model L.

3.3 Linear model with real-valued
embeddings (Turian)

We apply the method of Turian et al. (2010), com-
bining real-valued embeddings with discrete fea-
tures in the linear baseline (Figure 1(c)). Given a
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state x, the score of an action a is defined as

Score(a) = σ
( (

Φd(x)⊕ Φe(x)
)

· (−→θ d,a ⊕−→θ c,a)
)
,

where ⊕ is the vector concatenation operator.

3.4 Linear model with transformed
embeddings (Guo)

We apply the method of Guo et al. (2014), com-
bining embeddings into the linear baseline by first
transforming into discrete values. Given a state x,
the score of an action is defined as

Score(a) = σ
( (

Φd(x)⊕ d(Φe(x) )
)

· (−→θ d,a ⊕−→θ c,a)
)
,

where d is a transformation function from real-
value to binary features. We use clustering of em-
beddings for d as it gives better performances ac-
cording to Guo et al. (2014). Following Guo et
al. (2014), we use compounded clusters learnt by
K-means algorithm of different granularities.

3.5 Directly combining linear and neural
features (This)

We directly combine linear and neural features
(Figure 1(e)). Given a state x, the score of an ac-
tion is defined as

Score(a) = σ
( (

Φd(x)⊕ Φh(x)
)

· (−→θ d,a ⊕−→θ c,a)
)
,

where Φh is the same as the NN baseline. Note
that like d in Guo, Φh is also a function that trans-
forms embeddings Φe. The main difference is that
it can be tuned in supervised training.

4 Web Domain Experiments

4.1 Setting
We perform experiments on the SANCL 2012 web
data (Petrov and McDonald, 2012), using the Wall
Street Journal (WSJ) training corpus to train the
models and the WSJ development corpus to tune
parameters. We clean the web domain texts fol-
lowing the method of Ma et al. (2014b). Au-
tomatic POS tags are produced by using a CRF
model trained on the WSJ training corpus. The
POS tags are assigned automatically on the train-
ing corpus by ten-fold jackknifing. Table 1 shows
the corpus details.

Domain #Sent #Word TA
WSJ-train 30,060 731,678 97.03
WSJ-dev 1,336 32,092 96.88
WSJ-test 1,640 35,590 97.51
answers 1,744 28,823 91.93

newsgroups 1,195 20,651 93.75
reviews 1,906 28,086 92.66

Table 1: Corpus statistics of our experiments,
where TA denotes POS tagging accuracy.

NN Turian This

88
89
90
91

-T +T

(a) WSJ

NN Turian This

79
80
81
82

-T +T

(b) answers

NN Turian This

79
80
81
82

-T +T

(c) newsgroups

NN Turian This

80
81
82
83

-T +T

(d) reviews

Figure 2: Dev results on fine-tuning (UAS).

Following Chen and Manning (2014), we use
the pre-trained word embedding released by Col-
lobert et al. (2011), and set h = 200 for the hidden
layer size, λ = 10−8 for L2 regularization, and
α = 0.01 for the initial learning rate of Adagrad.

4.2 Development Results

Fine-tuning of embeddings. Chen and Man-
ning (2014) fine-tune word embeddings in su-
pervised training, consistent with Socher et al.
(2013). Intuitively, fine-tuning embeddings allows
in-vocabulary words to join the parameter space,
thereby giving better fitting to in-domain data.
However, it also forfeits the benefit of large-scale
pre-training, because out-of-vocabulary (OOV)
words do not have their embeddings fine-tuned.
In this sense, the method of Chen and Manning
resembles a traditional supervised sparse linear
model, which can be weak on OOV.

On the other hand, the semi-supervised learning
methods such as Turian et al. (2010) and Guo et
al. (2014), do not fine-tune the word embeddings.
Embeddings are taken as inputs rather than model
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Model
WSJ answers newsgroups reviews

UAS LAS OOV OOE UAS LAS OOV OOE UAS LAS OOV OOE UAS LAS OOV OOE

L 88.19 86.16 83.72 —– 79.30 74.24 68.43 —– 82.55 79.06 69.07 —– 80.77 76.16 72.20 —–
NN 89.81 87.83 84.94 84.94 79.27 74.30 69.18 69.18 83.71 80.35 69.60 69.60 81.63 77.22 72.04 72.04

Turian 89.17 87.21 84.13 91.35 79.57 74.57 69.60 54.21 82.89 79.65 68.48 52.63 81.33 77.04 72.30 55.03
Guo 89.33 87.21 83.82 90.83 79.32 74.22 67.36 51.76 82.75 79.31 68.18 55.06 81.87 77.25 73.03 56.80
This 90.61 88.68 88.00 93.77 80.08 75.18 69.97 54.21 84.64 81.35 69.66 53.44 82.53 78.15 73.39 57.20

ZPar-local 88.95 86.90 84.63 —– 78.98 73.81 68.15 —– 82.43 79.01 67.30 —– 81.21 76.45 70.38 —–
C&M(2014) 89.56 87.55 79.15 79.15 79.82 74.63 67.78 67.78 83.39 79.72 67.95 67.95 81.60 76.91 68.83 68.83

Table 2: Main results on SANCL. All systems are deterministic.

parameters. Therefore, such methods can expect
better cross-domain accuracies.

We empirically compare the models NN, Turian
and This by fine-tuning (+T) and not fine-tuning
(-T) word embeddings, and the results are shown
in Figure 2. As expected, the baseline NN model
gives better accuracies on WSJ with fine-tuning,
but worse cross-domain accuracies. Interestingly,
our combined model gives consistently better ac-
curacies with fine-tuning. We attribute this to
the use of sparse discrete features, which allows
the model to benefit from large-scale pre-trained
embeddings without sacrificing in-domain perfor-
mance. The observation on Turian is similar. For
the final experiments, we apply fine-tuning on the
NN model, but not to the Turian and This. Note
also tat for all experiments, the POS and label em-
bedding features of Chen and Manning (2014) are
fine-tuned, consistent with their original method.
Dropout rate. We test the effect of dropout (Hin-
ton et al., 2012) during training, using a default ra-
tio of 0.5 according to Chen and Manning (2014).
In our experiments, we find that the dense NN
model and our combined model achieve better per-
formances by using dropout, but the other models
do not benefit from dropout.

4.3 Final Results

The final results across web domains are shown
in Table 2. Our logistic regression linear parser
and re-implementation of Chen and Manning
(2014) give comparable accuracies to the percep-
tron ZPar2 and Stanford NN Parser3, respectively.

It can be seen from the table that both Turian
and Guo4 outperform L by incorporating embed-

2https://sourceforge.net/projects/zpar/, version 0.7.
3http://nlp.stanford.edu/software/nndep.shtml
4We compound six clusters of granularities 500, 1000,

1500, 2000, 2500, 3000.

ding features. Guo gives overall higher improve-
ments, consistent with the observation of Guo et
al. (2014) on NER. Our methods gives signifi-
cantly5 better results compared with Turian and
Guo, thanks to the extra hidden layer.

Our OOV performance is higher than NN,
because the embeddings of OOV words are
not tuned, and hence the model can handle
them effectively. Interestingly, NN gives higher
accuracies on web domain out-of-embedding-
vocabulary (OOE) words, out of which 54% are
in-vocabulary.

Note that the accuracies of our parsers are lower
than the best systems in the SANCL shared task,
which use ensemble models. Our parser enjoys the
fast speed of deterministic parsers, and in partic-
ular the baseline NN parser (Chen and Manning,
2014).

5 WSJ Experiments

For comparison with related work, we conduct ex-
periments on Penn Treebank corpus also. We use
the WSJ sections 2-21 for training, section 22 for
development and section 23 for testing. WSJ con-
stituent trees are converted to dependency trees us-
ing Penn2Malt6. We use auto POS tags consistent
with previous work. The ZPar POS-tagger is used
to assign POS tags. Ten-fold jackknifing is per-
formed on the training data to assign POS auto-
matically. For this set of experiments, the parser
hyper-parameters are taken directly from the best
settings in the Web Domain experiments.

The results are shown in Table 3, together with
some state-of-the-art deterministic parsers. Com-
paring the L, NN and This models, the observa-
tions are consistent with the web domain.

5The p-values are below 0.01 using pairwise t-test.
6http://stp.lingfil.uu.se/ nivre/research/Penn2Malt.html
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System UAS LAS
L 89.36 88.33

NN 91.15 90.04
This 91.80 90.68

ZPar-local 89.94 88.92
Ma et al. (2014a) 90.38 –

Chen and Manning (2014) 91.17 89.99
Honnibal et al. (2013) 91.30 90.00

Ma et al. (2014a)? 91.32 –

Table 3: Main results on WSJ. All systems are de-
terministic.

Our combined parser gives accuracies competi-
tive to state-of-the-art deterministic parsers in the
literature. In particular, the method of Chen and
Manning (2014) is the same as our NN baseline.
Note that Zhou et al. (2015) reports a UAS of
91.47% by this parser, which is higher than the
results we obtained. The main results include the
use of different batch size during, while Zhou et
al. (2015) used a batch size of 100,000, we used a
batch size of 10,000 in all experiments. Honnibal
et al. (2013) applies dynamic oracle to the deter-
ministic transition-based parsing, giving a UAS of
91.30%. Ma et al. (2014a) is similar to ZPar local,
except that they use the arc-standard transitions,
while ZPar-local is based on arc-eager transitions.
Ma et al. (2014a)? uses a special method to process
punctuations, leading to about 1% UAS improve-
ments over the vanilla system.

Recently, Dyer et al. (2015) proposed a de-
terministic transition-based parser using LSTM,
which gives a UAS of 93.1% on Stanford conver-
sion of the Penn Treebank. Their work shows that
more sophisticated neural network structures with
long term memories can significantly improve the
accuracy over local classifiers. Their work is or-
thogonal to ours.

6 Related Work

As discussed in the introduction, our work is re-
lated to previous work on integrating word embed-
dings into discrete models (Turian et al., 2010; Yu
et al., 2013; Guo et al., 2014). Along this line,
there has also been work that uses a neural net-
work to automatically vectorize the structures of
a sentence, and then taking the resulting vector
as features in a linear NLP model (Socher et al.,
2012; Tang et al., 2014; Yu et al., 2015). Our re-
sults show that the use of a hidden neural layer

gives superior results compared with both direct
integration and integration via a hard-coded trans-
formation function (e.g binarization or clustering).

There has been recent work integrating contin-
uous and discrete features for the task of POS
tagging (Ma et al., 2014b; Tsuboi, 2014). Both
models have essentially the same structure as our
model. In contrast to their work, we systemati-
cally compare various ways to integrate discrete
and continuous features, for the dependency pars-
ing task. Our model is also different from Ma et
al. (2014b) in the hidden layer. While they use a
form of restricted Boltzmann machine to pre-train
the embeddings and hidden layer from large-scale
ngrams, we fully rely on supervised learning to
train complex feature combinations.

Wang and Manning (2013) consider integrat-
ing embeddings and discrete features into a neu-
ral CRF. They show that combined neural and dis-
crete features work better without a hidden layer
(i.e. Turian et al. (2010)). They argue that non-
linear structures do not work well with high di-
mensional features. We find that using a hid-
den layer specifically for embedding features gives
better results compared with using no hidden lay-
ers.

7 Conclusion

We studied the combination of discrete and con-
tinuous features for deterministic transition-based
dependency parsing, comparing several methods
to incorporate word embeddings and traditional
sparse features in the same model. Experiments
on both in-domain and cross-domain parsing show
that directly adding sparse features into a neural
network gives higher accuracies compared with all
previous methods to incorporate word embeddings
into a traditional sparse linear model.
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Abstract

Many NLP systems use dependency
parsers as critical components. Jonit learn-
ing parsers usually achieve better parsing
accuracies than two-stage methods. How-
ever, classical joint parsing algorithms
significantly increase computational com-
plexity, which makes joint learning im-
practical. In this paper, we proposed an ef-
ficient dependency parsing algorithm that
is capable of capturing multiple edge-label
features, while maintaining low computa-
tional complexity. We evaluate our parser
on 14 different languages. Our parser
consistently obtains more accurate results
than three baseline systems and three pop-
ular, off-the-shelf parsers.

1 Introduction

Natural language processing (NLP) systems, like
machine translation (Xie et al., 2011), resource-
low languages processing (McDonald et al., 2013;
Ma and Xia, 2014), word sense disambigua-
tion (Fauceglia et al., 2015) , and entity corefer-
ence resolution (Durrett and Klein, 2013), are be-
coming more sophisticated, in part because of uti-
lizing syntacitc knowledges such as dependency
parsing trees.

Dependency parsers predict dependency struc-
tures and dependency type labels on each edge.
However, most graph-based dependency parsing
algorithms only produce unlabeled dependency
trees, particularly when higher-order factoriza-
tions are used (Koo and Collins, 2010; Ma and
Zhao, 2012b; Martins et al., 2013; Ma and Zhao,
2012a). A two-stage method (McDonald, 2006) is
often used because the complexity of some joint
learning models is unacceptably high. On the
other hand, joint learning models can benefit from
edge-label information that has proven to be im-

portant to provide more accurate tree structures
and labels (Nivre and Scholz, 2004).

Previous studies explored the trade-off between
computational costs and parsing performance.
Some work (McDonald, 2006; Carreras, 2007)
simplified labeled information to only single la-
bel features. Other work (Johansson and Nugues,
2008; Bohnet, 2010) used richer label features
but increased systems’ complexities significantly,
while achieving better parsing accuracy. Yet, there
are no previous work addressing the problem of
good balance between parsing accuracy and com-
putational costs for joint parsing models.

In this paper, we propose a new dependency
parsing algorithm that can utilize edge-label infor-
mation of more than one edge, while simultane-
ously maintaining low computational complexity.
The component needed to solve this dilemma is an
inner-to-outer greedy approximation to avoid an
exhaustive search. The contributions of this work
are (i) showing the effectiveness of edge-label in-
formation on both UAS and LAS. (ii) proposing a
joint learning parsing model which achieves both
effectiveness and efficience. (iii) giving empiri-
cal evaluations of this parser on different treebanks
over 14 languages.

2 Joint Parsing Algorithm

2.1 Basic Notations

In the following, x represents a generic input sen-
tence, and y represents a generic dependency tree.
Formally, for a sentence x, dependency parsing is
the task of finding the dependency tree y with the
highest-score for x:

y∗(x) = argmax
y∈Y(x)

Score(x, y). (1)

Here Y(x) denotes the set of possible dependency
trees for sentence x.

In this paper, we adopt the second-order sib-
ling factorization (Eisner, 1996; McDonald and
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Pereira, 2006), in which each sibling part consists
of a tuple of indices (h,m, c) where (h,m) and
(h, c) are a pair of adjacent edges to the same side
of the head h. By adding labele information to this
factorization, Score(x, y) can be rewritten as:

Score(x, y) =
∑

(h,m,c,l1,l2)∈y

Ssib(h,m, c, l1, l2)

=
∑

(h,m,c,l1,l2)∈y

λT f(h,m, c, l1, l2)
(2)

where Ssib(h,m, c, l1, l2) is the score function for
the sibling part (h,m, c) with l1 and l2 being the
labels of edge (h,m) and (h, c), respectively. f
are feature functions and λ is the parameters of
parsing model.

2.2 Exact Search Parsing
The unlabeled sibling parser introduces three
types of dynamic-programming structures: com-
plete spans C(s,t), which consist of the headword
s and its descendents on one side with the endpoint
t, incomplete spans I(s,t), which consist of the de-
pendency (s, t) and the region between the head s
and the modifier t, and sibling spans S(s,t), which
represent the region between successive modifiers
s and t of some head. To capture label infor-
mation, we have to extend each incomplete span
Is,t to Is,t,l to store the label of dependency edge
from s to t. The reason is that there is an edge
shared by two adjacent sibling parts (e.g. (h,m, c)
and (h, c, c′) share the edge (h, c)). So the in-
complete span I(s,t) does not only depend on the
label of dependency (s, t), but also the label of
the dependency (s, r) for each split point r. The
dynamic-programming procedure for new incom-
plete spans1 are

I(s,t,l) = max
s<r≤t

S(r,t)+max
l′∈L

I(s,r,l′)+Ssib(s, r, t, l′, l) (3)

where L is set of all edge labels. Then we have,

I(s,t) = max
l∈L

I(s,t,l) (4)

l∗(s,t) = argmax
l∈L

I(s,t,l) (5)

The graphical specification of the this parsing al-
gorithm is provided in Figure 1 (a). The compu-
tational complexity of the exactly searching algo-
rithm is O(|L|2n3) time and O(|L|n2) space. In
practice, |L| is probably large. For English, the
number of edge labels in Stanford Basic Depen-
dencies (De Marneffe et al., 2006) is 45, and the

1Symmetric right-headed versions are elided for brevity
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Figure 1: The dynamic-programming structures
and derivation of four parsing algorithms. I(s,t,l)
and I(s,t) are depicted as trapezoids with solid and
dashed lines, respectively. C(s,t) are depicted as
triangles and S(s,t) are depicted as boxes. Sym-
metric right-headed versions are elided for brevity.

number in the treebank of CoNLL-2008 shared
task is 70. So it is impractical to perform an ex-
haustive search for parsing, and more efficient ap-
proximating algorithms are needed.

2.3 Two Intermediate Models

In this section, we describe two intuitive simpli-
fications of the labeled parsing model presented
above. For the two simplified parsing models, ef-
ficient algorithms are available.

2.3.1 Model 0: Single-edge Label
In this parsing model, labeled features are re-
stricted to a single edge. Specifically,

Ssib(h,m, c, l1, l2) = Ssib(h, c, l2).

Then the dynamic-programming derivation for
each incomplete span becomes

I(s,t) = max
s<r≤t

{
I(s,r) + S(r,t) + max

l∈L
Ssib(s, t, l)

}
= max

s<r≤t

{
I(s,r) + S(r,t) + Ssib(s, t, l(s, t))

}
where l(s, t) = argmax

l∈L
Ssib(s, t, l).

In this case, therefore, we do not have to ex-
tend incomplete spans. The computational cost to
calculate l(s, t) is O(|L|n2) time, so the compu-
tational complexity of this algorithm is O(n3 +
|L|n2) time and O(n2) space.
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2.3.2 Model 1: Sibling with Single Label
As remarked in McDonald (2006), Model 0 can
be slightly enriched to include single label features
associated with a sibling part. Formally,

Ssib(h,m, c, l1, l2) = Ssib(h,m, c, l2).

Now, the dynamic-programming derivation is

I(s,t) = max
s<r≤t

{
I(s,r) + S(r,t) + Ssib(s, r, t, l(s, r, t))

}
where l(s, r, t) = argmax

l∈L
Ssib(s, r, t, l).

The additional algorithm to calculate the best
edge label l(s, r, t) takes O(|L|n3) time. There-
fore, this algorithm requires O(|L|n3) time and
O(n2) space2. Figure 1 (b) and Figure 1 (c) pro-
vide the graphical specifications for Model 0 and
Model 1, respectively.

2.4 Inner-to-outer Greedy Search
Though the two intermediate parsing models,
model 0 and model 1, encode edge-label infor-
mation and have efficient parsing algorithms, the
labeled features they are able to capture are rela-
tively limited due to restricting their labeled fea-
ture functions to a single label. Our experimental
results show that utilizing these edge-label infor-
mation yields a slight improvement of parsing ac-
curacy (see Section 3 for details). In this section,
we describe our new labeled parsing model that
can exploit labeled features involving two edge-
labels in a sibling part. To achieve efficient search,
we adopt an method characterized by inferring la-
bels of outer parts from the labels of inner ones.

Formally, consider the maximization problem
in Eq 3. It can be treated as a two-layer maxi-
mization: first fixes a split point r and maximizes
over all edge-label l, then maximizes over all pos-
sible split points. Our approach approximates the
maximization in the first layer:

max
l′∈L

I(s,r,l′) + Ssib(s, r, t, l′, l)

≈ I(s,r) + Ssib(s, r, t, l∗(s,r), l)
(6)

Then the dynamic-programming derivation for
each incomplete span is

I(s,t) = max
s<r≤t

I(s,r)+S(r,t)+max
l∈L

Ssib(s, r, t, l∗(s,r), l) (7)

To compute I(s,t), we need to calculate

l(s, r, t, l∗(s,r)) = argmax
l∈L

Ssib(s, r, t, l∗(s,r), l), (8)

2We do not have to store l(s, r, t), as each l(s, r, t) will
be calculated exactly once.

which is similar to the calculation of l(s, r, t) in
Model 1. The only difference between them is
l∗(s,r) that can be calculated in previous derivations.
Thus, their computation costs are almost the same.

The procedure of our algorithm to derivate in-
complete spans can be regarded as two steps. At
the first step, the algorithm goes through all pos-
sible split points (Eq 7). Then at the second
step, at each split point r, it calculate the label
l(s, r, t, l∗(s,r)) (Eq 8) based on the sibling part
(s, r, t) and the label l∗(s,r) which is the “best” la-
bel for dependency edge (s, r) based on incom-
plete span I(s,r). The key insight of this algorithm
is the inner-to-outer dynamic-programming struc-
ture: inner modifiers (r) of a head (s) and their
“best” labels (l∗(s,r)) are generated before outer
ones (t). Thus, using already computed “best” la-
bels of inner dependency edges makes us get rid
of maximizing over two labels, l′ and l. Moreover,
we do not have to extend each incomplete span by
the augmentation with a “label” index. This makes
the space complexity remainsO(n2), which is im-
portant in practice. The graphical specification is
provided in Figure 1 (d).

3 Experiments

3.1 Setup

We conduct our experiments on 14 languages, in-
cluding the English treebank from CoNLL-2008
shared task (Surdeanu et al., 2008) and all 13 tree-
banks from CoNLL-2006 shared task (Buchholz
and Marsi, 2006). We train our parser using The k-
best version of the Margin Infused Relaxed Algo-
rithm (MIRA) (Crammer and Singer, 2003; Cram-
mer et al., 2006; McDonald, 2006). In our experi-
ments, we set k = 1 and fix the number of iteration
to 10, instead of tuning these parameters on devel-
opment sets. Following previous work, all exper-
iments are evaluated on the metrics of unlabeled
attachment score (UAS) and Labeled attachment
score (LAS), using the official scorer3 of CoNLL-
2006 shared task.

3.2 Non-Projective Parsing

The parsing algorithms described in the paper fall
into the category of projective dependency parsers,
which exclude crossing dependency edges. Since
the treebanks from CoNLL shared tasks con-
tain non-projective edges, we use the “mountain-

3http://ilk.uvt.nl/conll/software.html
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Two-stage Model 0 Model 1 Our Model Best in CoNLL
UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS System

ar 78.52 64.69 79.38 66.91 78.72 66.67 79.60 67.09 79.34 66.91 MD06
bg 91.98 86.75 92.34 87.47 92.12 87.41 92.68 87.79 92.04 87.57 MD06
zh 91.25 86.50 91.81 87.53 92.27 88.23 92.58 88.51 93.18 89.96 RD06
cs 87.32 76.56 87.36 78.42 87.72 78.90 88.01 79.31 87.30 80.18 MD06
da 90.96 84.63 91.24 85.47 91.50 85.79 91.44 85.55 90.58 84.79 MD06
nl 83.79 78.81 84.25 80.49 84.27 80.41 84.45 80.31 83.57 79.19 MD06
en 91.92 88.09 92.10 88.96 92.19 89.18 92.45 89.43 92.38 90.13 JN08
de 90.52 87.46 90.52 87.12 90.40 87.30 90.79 87.74 90.38 87.34 MD06
ja 93.14 90.95 93.32 91.29 93.52 91.80 93.54 91.80 93.10 91.65 NV06
pt 91.60 86.05 91.04 86.46 91.02 87.30 91.54 87.68 91.22 87.60 NV06
sl 83.03 70.80 83.23 72.88 83.93 73.38 84.39 73.74 83.17 73.44 MD06
es 85.61 80.95 86.05 82.83 86.42 83.59 86.44 83.29 86.05 82.25 MD06
sv 89.07 81.88 89.74 82.77 89.82 83.13 89.94 83.09 89.50 84.58 NV06
tr 75.02 57.78 75.40 60.25 74.75 59.73 75.32 60.39 75.82 65.68 NV06
av 87.41 80.14 87.70 81.35 87.76 81.63 88.08 81.84 87.69 82.23 – –

Table 1: UAS and LAS of non-projective versions of our parsing algorithms on 14 treebanks from
CoNLL shared tasks, together with three baseline systems and the best systems for each language re-
ported in CoNLL shared tasks. MD06 is McDonald et al. (2006), RD06 is Riedel et al. (2006), JN08
is Johansson and Nugues (2008), and NV06 is Nivre et al. (2006) Bold indicates the best result for a
language. Red values represent statistically significant improvements over two-stage baseline system
on the corresponding metrics with p < 0.01, using McNemar’s test. Blue values indicate statistically
significant improvements with p < 0.05.

climbing” non-projective parsing algorithm pro-
posed in McDonald and Pereira (2006). This ap-
proximating algorithm first searches the highest
scoring projective parse tree and then it rearranges
edges in the tree until the rearrangements do not
increase the score for the tree anymore 4.

3.3 Results and Comparison

Table 1 illustrates the parsing results our parser
with non-projective parsing algorithm, together
with three baseline systems—the two-stage sys-
tem (McDonald, 2006) and the two intermediate
models, Model 0 and Model 1—and the best sys-
tems reported in CoNLL shared tasks for each lan-
guage. Our parser achieves better parsing perfor-
mance on both UAS and LAS than all the three
baseline systems for 12 languages. The two ex-
ceptions are Portuguese and Turkish, on which our
parser achieves better LAS and comparable UAS.

Comparing with the best systems from CoNLL,
our parser achieves better performance on both
UAS and LAS for 9 languages. Moreover, the av-
erage UAS of our parser over the 14 languages is
better than that of the best systems in CoNLL. It
should be noted that the best results for 14 lan-
guages in CoNLL are not from one single system,
but different systems that achieved best results for

4Additional care is required in the non-projective approx-
imation since a change of one edge could result in a label
change for multiple edges

System UAS LAS
MaltParser 89.3 86.9
MSTParser 90.7 87.6
DNNParser 91.8 89.6
This Paper 92.4 89.9

Table 2: Parsing performance on PTB. The re-
sults for MaltParser, MSTParser and DNNParser
are from table 5 of Chen and Manning (2014).

different languages. The system of McDonald et
al. (2006) achieved the best average parsing per-
formance over 13 languages (excluding English)
in CoNLL-2006 shared tasks. Its average UAS and
LAS are 87.03% and 80.83%, respectively, while
our average UAS and LAS excluding English are
87.79% and 81.29%. So our parser shows signif-
icant improvement over the single best system re-
ported in CoNLL-2006 shared task.

3.4 Experiments on PTB

To make a thorough empirical comparison with
previous studies, we also evaluate our system on
the English Penn Treebanks (Marcus et al., 1993)
with Stanford Basic Dependencies (De Marn-
effe et al., 2006). We compare our parser with
three off-the-shelf parsers: MaltParser (Nivre and
Scholz, 2004; Zhang and Clark, 2008; Zhang
and Nivre, 2011), MSTParser (McDonald et al.,
2005), and the parser using Neural Networks

1325



F1 (UAS) F1 (LAS)
Label Description TST Ours diff TST Ours diff
MNR Adverbial of manner 54.01 66.10 12.10 52.23 62.15 9.92
OPRD Predicative complement of raising/control verb 86.61 96.92 10.31 86.61 89.89 3.28
APPO Apposition 77.40 82.62 5.22 72.74 77.03 4.29
ADV General adverbial 73.33 77.65 4.32 69.86 73.14 3.28
AMOD Modifier of adjective or adverbial 75.49 79.58 4.09 72.60 76.91 4.30
TMP Temporal adverbial or nominal modifier 73.47 76.76 3.29 64.50 68.59 4.09
DIR Adverbial of direction 62.42 65.02 2.60 62.42 64.61 2.19
LOC Locative adverbial or nominal modifier 75.78 78.35 2.57 63.11 65.83 2.72
OBJ Object 91.69 94.08 2.39 90.62 93.23 2.61

Table 3: Top 10 dependency labels on which our algorithm achieves most improvements on the F1 score
of UAS, together with the corresponding improvements of LAS. “TST” indicates the two-stage system.
The first column is the label name in the treebank. The second column is the label’s description from
Surdeanu et al. (2008).

(DNNParser) (Chen and Manning, 2014). The re-
sults are listed in Table 2. Clearly, our parser is
superior in terms of both UAS and LAS.

3.5 Analysis

To better understand the performance of our
parser, we analyze the distribution of our parser’s
UAS and LAS over different dependency labels
on the English CoNLL treebank, compared with
the ones of the two-stage model. Table 3 lists the
top 10 dependency labels on which our algorithm
achieves most improvements on the F1 score of
UAS, together with the corresponding improve-
ments of LAS.

From Table 3 we can see among the 10 labels,
there are 5 labels — “MNR”, “ADV”, “TMP”,
“DIR”, “LOC” — which are a specific kind of ad-
verbials. This illustrates that our parser performs
well on the recognition of different kinds of ad-
verbials. Moreover, the label “OPRD” and “OBJ”
indicate dependency relations between verbs and
their modifiers, too. In addition, our parser also
significantly improves the accuracy of apposi-
tional relations (“APPO”).

4 Conclusion

We proposed a new dependency parsing algo-
rithm which can jointly learn dependency struc-
tures and edge labels. Our parser is able to use
multiple edge-label features, while maintaining
low computational complexity. Experimental re-
sults on 14 languages show that our parser sig-
nificantly improves the accuracy of both depen-
dency structures (UAS) and edge labels (LAS),
over three baseline systems and three off-the-shelf
parsers. This demonstrates that jointly learning
dependency structures and edge labels can bene-

fit both performance of tree structures and label-
ing accuracy. Moreover, our parser outperforms
the best systems of different languages reported in
CoNLL shared task for 9 languages.

In future, we are interested in extending our
parser to higher-order factorization by increas-
ing horizontal context (e.g., from siblings to “tri-
siblings”) and vertical context (e.g., from siblings
to “grand-siblings”) and validating its effective-
ness via a wide range of NLP applications.
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Abstract

We propose online unsupervised domain
adaptation (DA), which is performed in-
crementally as data comes in and is appli-
cable when batch DA is not possible. In
a part-of-speech (POS) tagging evaluation,
we find that online unsupervised DA per-
forms as well as batch DA.

1 Introduction

Unsupervised domain adaptation is a scenario that
practitioners often face when having to build ro-
bust NLP systems. They have labeled data in the
source domain, but wish to improve performance
in the target domain by making use of unlabeled
data alone. Most work on unsupervised domain
adaptation in NLP uses batch learning: It assumes
that a large corpus of unlabeled data of the tar-
get domain is available before testing. However,
batch learning is not possible in many real-world
scenarios where incoming data from a new target
domain must be processed immediately. More im-
portantly, in many real-world scenarios the data
does not come with neat domain labels and it may
not be immediately obvious that an input stream is
suddenly delivering data from a new domain.

Consider an NLP system that analyzes emails
at an enterprise. There is a constant stream of in-
coming emails and it changes over time – without
any clear indication that the models in use should
be adapted to the new data distribution. Because
the system needs to work in real-time, it is also de-
sirable to do any adaptation of the system online,
without the need of stopping the system, changing
it and restarting it as is done in batch mode.

In this paper, we propose online unsupervised
domain adaptation as an extension to traditional
unsupervised DA. In online unsupervised DA, do-
main adaptation is performed incrementally as
data comes in. Specifically, we adopt a form of

representation learning. In our experiments, the
incremental updating will be performed for repre-
sentations of words. Each time a word is encoun-
tered in the stream of data at test time, its repre-
sentation is updated.

To the best of our knowledge, the work re-
ported here is the first study of online unsuper-
vised DA. More specifically, we evaluate online
unsupervised DA for the task of POS tagging. We
compare POS tagging results for three distinct ap-
proaches: static (the baseline), batch learning and
online unsupervised DA. Our results show that
online unsupervised DA is comparable in perfor-
mance to batch learning while requiring no retrain-
ing or prior data in the target domain.

2 Experimental setup

Tagger. We reimplemented the FLORS tagger
(Schnabel and Schütze, 2014), a fast and simple
tagger that performs well in DA. It treats POS tag-
ging as a window-based (as opposed to sequence
classification), multilabel classification problem.
FLORS is ideally suited for online unsupervised
DA because its representation of words includes
distributional vectors – these vectors can be easily
updated in both batch learning and online unsu-
pervised DA. More specifically, a word’s represen-
tation in FLORS consists of four feature vectors:
one each for its suffix, its shape and its left and
right distributional neighbors. Suffix and shape
features are standard features used in the litera-
ture; our use of them is exactly as described by
Schnabel and Schütze (2014).

Distributional features. The ith entry xi of the
left distributional vector ofw is the weighted num-
ber of times the indicator word ci occurs immedi-
ately to the left of w:

xi = tf (freq (bigram(ci, w)))
where ci is the word with frequency rank i in the
corpus, freq (bigram(ci, w)) is the number of oc-
currences of the bigram “ci w” and we weight non-
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newsgroups reviews weblogs answers emails wsj
ALL OOV ALL OOV ALL OOV ALL OOV ALL OOV ALL OOV

TnT 88.66 54.73 90.40 56.75 93.33 74.17 88.55 48.32 88.14 58.09 95.75 88.30
Stanford 89.11 56.02 91.43 58.66 94.15 77.13 88.92 49.30 88.68 58.42 96.83 90.25
SVMTool 89.14 53.82 91.30 54.20 94.21 76.44 88.96 47.25 88.64 56.37 96.63 87.96
C&P 89.51 57.23 91.58 59.67 94.41 78.46 89.08 48.46 88.74 58.62 96.78 88.65
S&S 90.86 66.42 92.95 75.29 94.71 83.64 90.30 62.16 89.44 62.61 96.59 90.37
S&S (reimpl.) 90.68 65.52 93.00 75.50 94.64 82.91 90.18 61.98 89.53 62.46 96.60 89.70
BATCH 90.87 71.18 93.07 79.03 94.86 86.53 90.70 65.29 89.84 65.44 96.63 91.86
ONLINE 90.85 71.00 93.07 79.03 94.86 86.53 90.68 65.16 89.85 65.48 96.62 91.69

Table 1: BATCH and ONLINE accuracies are comparable and state-of-the-art. Best number in each column is bold.

zero frequencies logarithmically: tf(x) = 1 +
log(x). The right distributional vector is defined
analogously. We restrict the set of indicator words
to the n = 500 most frequent words. To avoid
zero vectors, we add an entry xn+1 to each vector
that counts omitted contexts:

x501 = tf(
∑

j:j>n freq (bigram(cj , w)))
Let f(w) be the concatentation of the two dis-

tributional and suffix and shape vectors of wordw.
Then FLORS represents token vi as follows:
f(vi−2)⊕f(vi−1)⊕f(vi)⊕f(vi+1)⊕f(vi+2)

where ⊕ is vector concatenation. FLORS then
tags token vi based on this representation.

FLORS assumes that the association between
distributional features and labels does not change
fundamentally when going from source to target.
This is in contrast to other work, notably Blitzer
et al. (2006), that carefully selects “stable” dis-
tributional features and discards “unstable” dis-
tributional features. The hypothesis underlying
FLORS is that basic distributional POS properties
are relatively stable across domains – in contrast to
semantic and other more complex tasks. The high
performance of FLORS (Schnabel and Schütze,
2014) suggests this hypothesis is true.

Data. Test set. We evaluate on the development
sets of six different TDs: five SANCL (Petrov
and McDonald, 2012) domains – newsgroups, we-
blogs, reviews, answers, emails – and sections 22-
23 of WSJ for in-domain testing.

We use two training sets of different sizes. In
condition l:big (big labeled data set), we train
FLORS on sections 2-21 of Wall Street Journal
(WSJ). Condition l:small uses 10% of l:big.

Data for word representations. We also vary the
size of the datasets that are used to compute the
word representations before the FLORS model is
trained on the training set. In condition u:big, we
compute distributional vectors on the joint corpus
of all labeled and unlabeled text of source and tar-
get domains (except for the test sets). We also

include 100,000 WSJ sentences from 1988 and
500,000 sentences from Gigaword (Parker, 2009).
In condition u:0, only labeled training data is used.

Methods. We implemented the following mod-
ification compared to the setup in (Schnabel and
Schütze, 2014): distributional vectors are kept in
memory as count vectors. This allows us to in-
crease the counts during online tagging.

We run experiments with three versions of
FLORS: STATIC, BATCH and ONLINE. All three
methods compute word representations on “data
for word representations” (described above) be-
fore the model is trained on one of the two “train-
ing sets” (described above).

STATIC. Word representations are not changed
during testing.

BATCH. Before testing, we update
count vectors by freq (bigram(ci, w)) +=
freq∗ (bigram(ci, w)), where freq∗(·) denotes the
number of occurrences of the bigram “ci w” in the
entire test set.

ONLINE. Before tagging a test sentence, both
left and right distributional vectors are updated via
freq (bigram(ci, w)) += 1 for each appearance of
bigram “ci w” in the sentence. Then the sentence
is tagged using the updated word representations.
As tagging progresses, the distributional represen-
tations become increasingly specific to the target
domain (TD), converging to the representations
that BATCH uses at the end of the tagging process.

In all three modes, suffix and shape features are
always fully specified, for both known and un-
known words.

3 Experimental results

Table 1 compares performance on SANCL for a
number of baselines and four versions of FLORS:
S&S, Schnabel and Schütze (2014)’s version of
FLORS, “S&S (reimpl.)”, our reimplementation
of that version, and BATCH and ONLINE, the two
versions of FLORS we use in this paper. Compar-
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u:0 u:big
ALL KN SHFT OOV ALL KN SHFT OOV

ne
w

sg
ro

up
s

l:s
m

al
l STATIC 87.02 90.87 71.12 57.16 89.02 91.48 81.53 58.30

ONLINE 87.99 90.87 76.10 65.64 89.84 92.38 82.58 67.09
BATCH 88.28 91.08 77.01 66.37 89.82 92.37 82.65 67.03

l:b
ig STATIC 89.69 93.00 82.65 57.82 89.93 92.41 84.94 58.97

ONLINE 90.51 93.13 82.51 67.57 90.85 93.04 84.94 71.00
BATCH 90.69 93.12 83.24 69.43 90.87 93.03 85.20 71.18

re
vi

ew
s

l:s
m

al
l STATIC 89.08 91.96 66.55 65.90 91.45 92.47 80.11 70.81

ONLINE 89.67 92.14 70.14 69.67 92.11 93.62 81.46 78.42
BATCH 89.79 92.23 69.86 71.27 92.10 93.60 81.51 78.42

l:b
ig STATIC 91.96 93.94 82.30 67.97 92.42 93.53 84.65 69.97

ONLINE 92.33 94.03 83.59 72.50 93.07 94.36 85.71 79.03
BATCH 92.42 94.09 83.53 73.35 93.07 94.36 85.71 79.03

w
eb

lo
gs l:s
m

al
l STATIC 91.58 94.29 79.95 72.74 93.42 94.77 89.80 77.42

ONLINE 92.51 94.52 81.76 80.46 94.21 95.40 91.08 84.03
BATCH 92.68 94.60 82.34 81.20 94.20 95.42 91.03 83.87

l:b
ig STATIC 93.45 95.64 90.15 72.68 94.09 95.54 91.90 76.94

ONLINE 94.18 95.82 89.80 80.35 94.86 95.81 92.60 86.53
BATCH 94.34 95.85 90.03 81.84 94.86 95.82 92.60 86.53

an
sw

er
s

l:s
m

al
l STATIC 86.93 90.89 66.51 53.43 88.98 91.09 77.63 57.36

ONLINE 87.48 91.18 68.07 56.47 89.71 92.42 78.11 64.21
BATCH 87.56 91.11 68.25 58.44 89.71 92.43 78.23 64.09

l:b
ig STATIC 89.54 92.76 78.65 56.22 90.06 92.18 80.70 58.25

ONLINE 89.98 92.97 79.07 59.77 90.68 93.21 81.48 65.16
BATCH 90.14 93.10 79.01 60.72 90.70 93.22 81.54 65.29

em
ai

ls l:s
m

al
l STATIC 85.43 90.85 57.85 51.65 87.76 90.35 70.86 56.76

ONLINE 86.30 91.26 60.56 55.83 88.45 92.31 71.67 61.57
BATCH 86.42 91.31 61.03 56.32 88.46 92.32 71.71 61.65

l:b
ig STATIC 88.31 92.98 71.38 52.71 89.21 91.74 73.80 58.99

ONLINE 88.86 93.08 72.38 57.78 89.85 93.30 75.32 65.48
BATCH 88.96 93.11 72.28 58.85 89.84 93.30 75.27 65.44

w
sj l:s

m
al

l STATIC 94.64 95.44 83.38 82.72 95.73 95.88 90.36 87.87
ONLINE 94.86 95.53 85.37 85.22 95.80 96.21 89.89 89.70
BATCH 94.80 95.46 85.51 85.38 95.80 96.22 89.89 89.70

l:b
ig STATIC 96.44 96.85 92.75 85.38 96.56 96.72 93.35 88.04

ONLINE 96.50 96.85 93.55 86.38 96.62 96.89 93.35 91.69
BATCH 96.47 96.82 93.48 86.54 96.63 96.89 93.42 91.86

Table 2: ONLINE / BATCH accuracies are generally better than STATIC (see bold numbers) and improve with both more training
data and more unlabeled data.

ing lines “S&S” and “S&S (reimpl.)” in the ta-
ble, we see that our reimplementation of FLORS
is comparable to S&S’s. For the rest of this pa-
per, our setup for BATCH and ONLINE differs from
S&S’s in three respects. (i) We use Gigaword as
additional unlabeled data. (ii) When we train a
FLORS model, then the corpora that the word rep-
resentations are derived from do not include the
test set. The set of corpora used by S&S for this
purpose includes the test set. We make this change
because application data may not be available at
training time in DA. (iii) The word representations
used when the FLORS model is trained are derived
from all six SANCL domains. This simplifies the
experimental setup as we only need to train a sin-
gle model, not one per domain. Table 1 shows that
our setup with these three changes (lines BATCH

and ONLINE) has state-of-the-art performance on
SANCL for domain adaptation (bold numbers).

Table 2 investigates the effect of sizes of labeled
and unlabeled data on performance of ONLINE

and BATCH. We report accuracy for all (ALL) to-
kens, for tokens occurring in both l:big and l:small
(KN), tokens occurring in neither l:big nor l:small
(OOV) and tokens ocurring in l:big, but not in
l:small (SHFT).1 Except for some minor variations
in a few cases, both using more labeled data and
using more unlabeled data improves tagging accu-
racy for both ONLINE and BATCH. ONLINE and
BATCH are generally better or as good as STATIC

(in bold), always on ALL and OOV, and with a few
exceptions also on KN and SHFT.

ONLINE performance is comparable to BATCH

performance: it is slightly worse than BATCH on
u:0 (largest ALL difference is .29) and at most .02
different from BATCH for ALL on u:big. We ex-

1We cannot give the standard, single OOV evaluation
number here since OOVs are different in different conditions,
hence the breakdown into three measures.
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unknowns unseens known words
u:0 u:big u:0 u:big u:0 u:big

err std err std err std err std err std err std
l:s

m
al

l STATIC .3670† .00085 .2104 .00081 .1659† .00076 .1084 .00056 .1309† .00056 .0801 .00042
ONLINE .3094 .00160 .2102∗ .00093 .1467 .00120 .1086∗ .00074 .1186 .00095 .0802∗ .00048
BATCH .3050† .00143 .2101 .00083 .1646† .00145 .1076 .00060 .1251† .00103 .0801 .00040

l:b
ig STATIC .1451† .00114 .1042 .00100 .0732 .00052 .0690 .00042 .0534 .00027 .0503 .00025

ONLINE .1404 .00125 .1037∗ .00098 .0727 .00051 .0689∗ .00051 .0529 .00031 .0502∗ .00031
BATCH .1382† .00140 .1033 .00112 .0723 .00065 .0680 .00062 .0528 .00033 .0502 .00031

Table 3: Error rates (err) and standard deviations (std) for tagging. † (resp. ∗): significantly different from ONLINE error rate
above&below (resp. from “u:0” error rate to the left).

plain below why ONLINE is sometimes (slightly)
better than BATCH, e.g., for ALL and condition
l:small/u:big.

3.1 Time course of tagging accuracy

The ONLINE model introduced in this paper has
a property that is unique compared to most other
work in statistical NLP: its predictions change as
it tags text because its representations change.

To study this time course of changes, we need
a large application domain because subtle changes
will be too variable in the small test sets of the
SANCL TDs. The only labeled domain that is big
enough is the WSJ corpus. We therefore reverse
the standard setup and train the model on the dev
sets of the five SANCL domains (l:big) or on the
first 5000 labeled words of reviews (l:small). In
this reversed setup, u:big uses the five unlabeled
SANCL data sets and Gigaword as before. Since
variance of performance is important, we run on
100 randomly selected 50% samples of WSJ and
report average and standard deviation of tagging
error over these 100 trials.

The results in Table 32 show that error rates are
only slightly worse for ONLINE than for BATCH

or the same. In fact, l:small/u:0 known error rate
(.1186) is lower for ONLINE than for BATCH (sim-
ilar to what we observed in Table 2). This will be
discussed at the end of this section.

Table 3 includes results for “unseens” as well as
unknowns because Schnabel and Schütze (2014)
show that unseens cause at least as many errors
as unknowns. We define unseens as words with
a tag that did not occur in training; we compute
unseen error rates on all occurrences of unseens,
i.e., occurrences with both seen and unseen tags
are included. As Table 3 shows, the error rate for
unknowns is greater than for unseens which is in
turn greater than the error rate on known words.

2Significance test: test of equal proportion, p < .05

Examining the single conditions, we can see
that ONLINE fares better than STATIC in 10 out of
12 cases and only slightly worse for l:small/u:big
(unseens, known words: .1086 vs .1084, .0802 vs
.0801). In four conditions it is significantly better
with improvements ranging from .005 (.1404 vs
.1451: l:big/u:0, unknown words) to >.06 (.3094
vs .3670: l:small/u:0, unknown words).

The differences between ONLINE and STATIC

in the other eight conditions are negligible. For
the six u:big conditions, this is not surprising: the
Gigaword corpus consists of news, so the large un-
labeled data set is in reality the same domain as
WSJ. Thus, if large unlabeled data sets are avail-
able that are similar to the TD, then one might as
well use STATIC tagging since the extra work re-
quired for ONLINE/BATCH is unlikely to pay off.

Using more labeled data (comparing l:small and
l:big) always considerably decreases error rates.
We did not test for significance here because the
differences are so large. By the same token, us-
ing more unlabeled data (comparing u:0 and u:big)
also consistently decreases error rates. The differ-
ences are large and significant for ONLINE tagging
in all six cases (indicated by ∗ in the table).

There is no large difference in variability ON-
LINE vs. BATCH (see columns “std”). Thus, given
that it has equal variability and higher perfor-
mance, ONLINE is preferable to BATCH since it
assumes no dataset available prior to the start of
tagging.

Figure 1 shows the time course of tagging ac-
curacy.3 BATCH and STATIC have constant error
rates since they do not change representations dur-
ing tagging. ONLINE error decreases for unknown
words – approaching the error rate of BATCH – as

3In response to a reviewer question, the initial (leftmost)
errors of ONLINE and STATIC are not identical; e.g., ONLINE
has a better chance of correctly tagging the very first occur-
rence of an unknown word because that very first occurrence
has a meaningful (as opposed to random) distributed repre-
sentation.
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Figure 1: Error rates for unknown words, words with unseen
tags and known words for l:small/u:0. The x axis represents
the number of tokens of the respective type (e.g., number of
tokens of unknown words).

more and more is learned with each additional oc-
currence of an unknown word (top).

Interestingly, the error of ONLINE increases for
unseens and known words (middle&bottom pan-
els) (even though it is always below the error rate
of BATCH). The reason is that the BATCH update
swamps the original training data for l:small/u:0
because the WSJ test set is bigger by a large fac-

tor than the training set. ONLINE fares better here
because in the beginning of tagging the updates of
the distributional representations consist of small
increments. We noticed this in Table 2 too: there,
ONLINE outperformed BATCH in some cases on
KN for l:small/u:big. In future work, we plan
to investigate how to weight distributional counts
from the target data relative to that from the (la-
beled und unlabeled) source data.

4 Related work

Online learning usually refers to supervised learn-
ing algorithms that update the model each time
after processing a few training examples. Many
supervised learning algorithms are online or have
online versions. Active learning (Lewis and Gale,
1994; Tong and Koller, 2001; Laws et al., 2011) is
another supervised learning framework that pro-
cesses training examples – usually obtained inter-
actively – in small batches (Bordes et al., 2005).

All of this work on supervised online learning
is not directly relevant to this paper since we ad-
dress the problem of unsupervised DA. Unlike on-
line supervised learners, we keep the statistical
model unchanged during DA and adopt a repre-
sentation learning approach: each unlabeled con-
text of a word is used to update its representation.

There is much work on unsupervised DA for
POS tagging, including work using constraint-
based methods (Subramanya et al., 2010; Rush et
al., 2012), instance weighting (Choi and Palmer,
2012), self-training (Huang et al., 2009; Huang
and Yates, 2010), and co-training (Kübler and
Baucom, 2011). All of this work uses batch learn-
ing. For space reasons, we do not discuss super-
vised DA (e.g., Daumé III and Marcu (2006)).

5 Conclusion

We introduced online updating of word represen-
tations, a new domain adaptation method for cases
where target domain data are read from a stream
and BATCH processing is not possible. We showed
that online unsupervised DA performs as well as
batch learning. It also significantly lowers error
rates compared to STATIC (i.e., no domain adapta-
tion). Our implementation of FLORS is available
at cistern.cis.lmu.de/flors
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Abstract

We describe an approach for machine
learning-based empty category detection
that is based on the phrase structure analy-
sis of Japanese. The problem is formal-
ized as tree node classification, and we
find that the path feature, the sequence of
node labels from the current node to the
root, is highly effective. We also find that
the set of dot products between the word
embeddings for a verb and those for case
particles can be used as a substitution for
case frames. Experiments show that the
proposed method outperforms the previ-
ous state-of the art method by 68.6% to
73.2% in terms of F-measure.

1 Introduction

Empty categories are phonetically null elements
that are used for representing dropped pro-
nouns (“pro” or “small pro”), controlled elements
(“PRO” or “big pro”) and traces of movement
(“T” or “trace”), such as WH-questions and rela-
tive clauses. They are important for pro-drop lan-
guages such as Japanese, in particular, for the ma-
chine translation from pro-drop languages to non-
pro-drop languages such as English. Chung and
Gildea (2010) reported their recover of empty cat-
egories improved the accuracy of machine trans-
lation both in Korean and in Chinese. Kudo et
al. (2014) showed that generating zero subjects in
Japanese improved the accuracy of preordering-
based translation.

State-of-the-art statistical syntactic parsers had
typically ignored empty categories. Although
Penn Treebank (Marcus et al., 1993) has annota-
tions on PRO and trace, they provide only labeled
bracketing. Johnson (2002) proposed a statistical
pattern-matching algorithm for post-processing
the results of syntactic parsing based on minimal

unlexicalized tree fragments from empty node to
its antecedent. Dienes and Dubey (2003) proposed
a machine learning-based “trace tagger” as a pre-
process of parsing. Campbell (2004) proposed a
rule-based post-processing method based on lin-
guistically motivated rules. Gabbard et al. (2006)
replaced the rules with machine learning-based
classifiers. Schmid (2006) and Cai et al. (2011)
integrated empty category detection with the syn-
tactic parsing.

Empty category detection for pro (dropped pro-
nouns or zero pronoun) has begun to receive at-
tention as the Chinese Penn Treebank (Xue et al.,
2005) has annotations for pro as well as PRO
and trace. Xue and Yang (2013) formalized the
problem as classifying each pair of the location
of empty category and its head word in the de-
pendency structure. Wang et al. (2015) pro-
posed a joint embedding of empty categories and
their contexts on dependency structure. Xiang et
al. (2013) formalized the problem as classifying
each IP node (roughly corresponds to S and SBAR
in Penn Treebank) in the phrase structure.

In this paper, we propose a novel method for
empty category detection for Japanese that uses
conjunction features on phrase structure and word
embeddings. We use the Keyaki Treebank (But-
ler et al., 2012), which is a recent development.
As it has annotations for pro and trace, we show
our method has substantial improvements over the
state-of-the-art machine learning-based method
(Xiang et al., 2013) for Chinese empty category
detection as well as linguistically-motivated man-
ually written rule-based method similar to (Camp-
bell, 2004).

2 Baseline systems

The Keyaki Treebank annotates the phrase struc-
ture with functional information for Japanese sen-
tences following a scheme adapted from the Anno-
tation manual for the Penn Historical Corpora and
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Figure 1: An annotation example of家出した娘を連れ戻した。 (*pro* brought back a daughter who ran
away from home.) in Keyaki Treebank. (The left tree is the original tree and the right tree is a converted
tree based on Xiang et al.’s (2013) formalism)

the PCEEC (Santorini, 2010). There are some ma-
jor changes: the VP level of structure is typically
absent, function is marked on all clausal nodes
(such as IP-REL and CP-THT) and all NPs that
are clause level constituents (such as NP-SBJ).
Disambiguation tags are also used for clarifying
the functions of its immediately preceding node,
such as NP-OBJ *を *(wo) for PP, however, we re-
moved them in our experiment.

Keyaki Treebank has annotation for trace mark-
ers of relative clauses (*T*) and dropped pronouns
(*pro*), however, it deliberately has no annota-
tion for control dependencies (PRO) (Butler et al.,
2015). It has also fine grained empty categories
of *pro* such as *speaker* and *hearer*, but we
unified them into *pro* in our experiment.

HARUNIWA(Fang et al., 2014) is a Japanese
phrase structure parser trained on the treebank. It
has a rule-based post-processor for adding empty
categories, which is similar to (Campbell, 2004).
We call it RULE in later sections and use it as one
of two baselines.

We also use Xiang et al’s (2013) model as an-
other baseline. It formulates empty category de-
tection as the classification of IP nodes. For ex-
ample, in Figure 1, empty nodes in the left tree
are removed and encoded as additional labels with
its position information to IP nodes in the right
tree. As we can uniquely decode them from the
extended IP labels, the problem is to predict the
labels for the input tree that has no empty nodes.

Let T = t1t2 · · · tn be the sequence of nodes
produced by the post-order traversal from root

node, and ei be the empty category tag associated
with ti. The probability model of (Xiang et al.,
2013) is formulated as MaxEnt model:

P (en
1 |T ) =

n∏
i=1

P (ei|ei−1
1 , T )

=
n∏

i=1

exp(θ · φ(ei, e
i−1
1 , T ))

Z(ei−1
1 , T )

(1)

where φ is a feature vector, θ is a weight vector to
φ and Z is normalization factor:

Z(ei−1
1 , T ) =

∑
e∈E

exp(θ · φ(e, ei−1
1 , T ))

where E represents the set of all empty category
types to be detected.

Xiang et al. (2013) grouped their features into
four types: tree label features, lexical features,
empty category features and conjunction features
as shown in Table 1. As the features for (Xiang et
al., 2013) were developed for Chinese Penn Tree-
bank, we modify their features for Keyaki Tree-
bank: First, the traversal order is changed from
post-order (bottom-up) to pre-order (top-down).
As PROs are implicit in Keyaki Treebank, the de-
cisions on IPs in lower levels depend on those on
higher levels in the tree. Second, empty category
features are extracted from ancestor IP nodes, not
from descendant IP nodes, in accordance with the
first change.

Table 2 shows the accuracies of Japanese empty
category detection, using the original and our
modification of the (Xiang et al., 2013) with ab-
lation test. We find that the conjunction features
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Tree label features
1 current node label
2 parent node label
3 grand-parent node label
4 left-most child label or POS tag
5 right-most child label or POS tag
6 label or POS tag of the head child
7 the number of child nodes
8 one level CFG rule
9 left-sibling label or POS tag (up to two siblings)
10 right-sibling label or POS tag (up to two siblings)
Lexical features
11 left-most word under the current node
12 right-most word under the current node
13 word immediately left to the span of the current node
14 word immediately right to the span of the current node
15 head word of the current node
16 head word of the parent node
17 is the current node head child of its parent? (binary)
Empty category features
18 predicted empty categories of the left sibling
19* the set of detected empty categories of ancestor nodes
Conjunction features
20 current node label with parent node label
21* current node label with features computed from ances-

tor nodes
22 current node label with features computed from left-

sibling nodes
23 current node label with lexical features

Table 1: List of features of Xiang et al.’s (2013). (*
indicates the features we changed for the Keyaki
Treebank)

Features F(Gold) ∆
original (Xiang et al., 2013) 68.2 −0.40

modified (Xiang et al., 2013) 68.6 -
− Tree label 68.6 −0.00

− Empty category 68.3 −0.30
− Lexicon 68.6 −0.00

− Conjunction 58.5 −10.1

Table 2: Ablation result of (Xiang et al., 2013)

are highly effective compared to the three other
features. This observation leads to the model pro-
posed in the next section.

3 Proposed model

In the proposed model, we use combinations of
path features and three other features, namely head
word feature, child feature and empty category
feature. Path feature (PATH) is a sequence of non-
terminal labels from the current node to the ances-
tor nodes up to either the root node or the nearest
CP node. For example, in Figure 1, if the current
node is IP-REL, four paths are extracted; IP-REL,
IP-REL → NP, IP-REL → NP → PP and IP-REL
→ NP → PP → IP-MAT.

Head word feature (HEAD) is the surface form
of the lexical head of the current node. Child fea-
ture (CHILD) is the set of labels for the children of
the current node. The label is augmented with the
surface form of the rightmost terminal node if it is
a function word. In the example of Figure 1, if the
current node is IP-MAT, HEAD is連れ (tsure) and
CHILD includes: PP-を (wo), VB, VB2, AXD-た
(ta) and PU-。 . Empty category feature (EC) is a
set of empty categories detected in the ancestor IP
nodes. For example in Figure 1, if the current node
is IP-REL, EC is *pro*.

We then combine the PATH with others. If the
current node is the IP-MAT node in right-half of
Figure 1, the combination of PATH and HEAD
is:IP-MAT× 連れ (tsure) and the combinations
of PATH and CHILD are: IP-MAT×PP-を (wo),
IP-MAT×VB, IP-MAT×VB2, IP-MAT×AXD-た
(ta) and IP-MAT×PU-。 .

3.1 Using Word Embedding to approximate
Case Frame Lexicon

A case frame lexicon would be obviously useful
for empty category detection because it provides
information on the type of argument the verb in
question takes. The problem is that case frame lex-
icon is not usually readily available. We propose
a novel method to approximate case frame lexicon
for languages with explicit case marking such as
Japanese using word embeddings. According to
(Pennington et al., 2014), they designed their em-
bedding model GloVe so that the dot product of
two word embeddings approximates the logarithm
of their co-occurrence counts. Using this charac-
teristic, we can easily make a feature that approxi-
mate the case frame of a verb. Given a set of word
embeddings for case particles q1, q2, · · · , qN ∈ Q,
the distributed case frame feature (DCF) for a verb
wi is defined as:

ṽi = wi · (q1, q2, · · · , qN ) (2)

vi =
ṽi

||ṽi|| (3)

In our experiment, we used a set of high frequency
case particlesが (ga),は (ha), も (mo),の (no), を
(wo),に (ni),へ (he) andから (kara) as Q.

4 Experiment

4.1 Dataset
We divided the Keyaki Treebank into training, de-
velopment and test sets. As of May 8, 2015, there
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ALL development/test
transcript blog newswire

#pro SBJ 13343 598 187 346
OB1 1568 43 1 27
OB2 59 2 0 0

#T ADT 97 0 0 8
LOC 164 9 7 7
OB1 755 0 11 35
OB2 15 0 1 2
SBJ 3788 5 40 266
TMP 53 0 0 3
MSR 14 0 1 4
TPC 10 0 0 0

char/sent. 32.0 32.1 69.5 96.5
#sent. 22649 591 109 303

#IP node 46684 1129 544 1841

Table 3: Statistics of Keyaki Treebank

are 22,639 sentences in Keyaki Treebank. We used
1,000 sentences as the development set, 1,003
sentences as the test set. They were taken from
the files blog KNB.psd (blog), spoken CIAIR.psd
(transcript), newswire MAINICHI-1995.psd
(newswire) to balance the domain. The remaining
20,646 sentences are used for training. Further
statistics are shown in Table 3.

We used GloVe as word embedding, Wikipedia
articles in Japanese as of January 18, 2015, are
used for training, which amounted to 660 million
words and 23.4 million sentences. By using the
development set, we set the dimension of word
embedding and the window size for co-occurrence
counts as 200 and 10, respectively.

4.2 Result and Discussion

We tested in two conditions: gold parse and sys-
tem parse. In gold parse condition, we used
the trees of Keyaki Treebank without empty cat-
egories as input to the systems. In system parse
condition, we used the output of the Berkeley
Parser model of HARUNIWA before rule-based
empty category detection1. We evaluated them us-
ing the word-position-level identification metrics
described in (Xiang et al., 2013). It projects the
predicted empty category tags to the surface level.
An empty node is regarded as correctly predicted
surface position in the sentence, type (T or pro)
and function (SBJ, OB1 and so on) are matched
with the reference.

To evaluate the effectiveness of the proposed
1There are two models available in HARUNIWA, namely

the BitPar model (Schmid, 2004) and Berkeley Parser binary
branching model (Petrov and Klein, 2007). The output of
the later is first flattened, then added disambiguation tags and
empty categories using tsurgeon script (Levy and Andrew,
2006).

distributed case frame (DCF), we used an exist-
ing case frame lexicon (Kawahara and Kurohashi,
2006) and tested three different ways of encod-
ing the case frame information: BIN encodes each
case as binary features. SET encodes each combi-
nation of required cases as a binary feature. DIST
is a vector of co-occurrence counts for each case
particle, which can be thought of an unsmoothed
version of our DCF.

Table 4 shows the accuracies of various empty
category detection methods, for both gold parse
and system parse. In the gold parse condition, the
two baselines, the rule-based method (RULE) and
the modified (Xiang et al., 2013) method, achieved
the F-measure of 62.6% and 68.6% respectively.

We also implemented the third baseline based
on (Johnson, 2002). Minimal unlexicalized tree
fragments from empty node to its antecedent were
extracted as pattern rules based on corpus statis-
tics. For *pro*, which has no antecedent, we used
the statistics from empty node to the root. Al-
though the precision of the method is high, the re-
call is very low, which results in the F-measure of
38.1%.

Among the proposed models, the combination
of path feature and child feature (PATH×CHILD)
even outperformed the baselines. It reached 73.2%
with all features. As for the result of system-
parse condition, the F-measure dropped consider-
ably from 73.2% to 54.7% mostly due to the pars-
ing errors on the IP nodes and its function.

We find that there are no significant differences
among the different encodings of the case frame
lexicon, and the improvement brought by the pro-
posed distributed case frame is comparable to the
existing case frame lexicon.

Table 5 shows the ablation result of the pro-
posed model. It indicates conjunction between
PATH and CHILD feature is most effective.

F(Gold) ∆ F(System) ∆

Proposed 72.1 - 53.9 -
−CHILD 47.4 −24.7 33.7 −20.2
−EC 70.8 −1.3 52.4 −1.5

−HEAD 70.0 −2.1 51.6 −2.3

Table 5: Ablation result of PATH × (CHILD + EC
+ HEAD) model

1338



Models Gold parse System parse
CF P R F P R F #nonZ

RULE - 54.4 73.7 62.6 57.4 50.5 53.7 -
modified (Xiang et al., 2013) - 76.8 62.0 68.6 57.4 46.9 51.6 321k
modified (Johnson, 2002) - 81.3 25.0 38.1 66.8 18.1 28.6 -
PATH × CHILD - 71.0 67.7 69.3 55.9 49.1 52.3 108k
PATH × (CHILD + HEAD + EC) - 74.8 69.5 72.1 56.2 51.8 53.9 123k
PATH × (CHILD + HEAD + EC) +DCF 78.0 68.9 73.2 59.7 50.5 54.7 124k
PATH × (CHILD + HEAD + EC) +BIN 77.1 70.2 73.5 58.8 51.6 55.0 124k
PATH × (CHILD + HEAD + EC) +SET 77.5 70.0 73.6 58.5 51.4 54.7 126k
PATH × (CHILD + HEAD + EC) +DIST 77.5 68.3 72.6 60.4 50.6 55.1 124k

Table 4: Result of our models with baselines. #nonZ means the amount of non-zero weight of model

5 Conclusion

In this paper, we proposed a novel model for
empty category detection in Japanese using path
features and the distributed case frames. Although
it achieved fairly high accuracy for the gold parse,
there is much room for improvement when applied
to the output of a syntactic parser. Since the accu-
racy of the empty category detection implemented
as a post-process highly depends on that of the un-
derlying parser, we want to explore models that
can solve them jointly, such as the lattice parsing
approach of (Cai et al., 2011). We would like to
report the results in the future version of this pa-
per.
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Abstract

We present a new treebank of English and
French technical forum content which has
been annotated for grammatical errors and
phrase structure. This double annotation
allows us to empirically measure the effect
of errors on parsing performance. While
it is slightly easier to parse the corrected
versions of the forum sentences, the errors
are not the main factor in making this kind
of text hard to parse.

1 Introduction

The last five years has seen a considerable amount
of research carried out on web and social me-
dia text parsing, with new treebanks being cre-
ated (Foster et al., 2011; Seddah et al., 2012; Mott
et al., 2012; Kong et al., 2014), and new parsing
systems developed (Petrov and McDonald, 2012;
Kong et al., 2014). In this paper we explore a par-
ticular source of user-generated text, namely, posts
from technical support forums, which are a pop-
ular means for customers to resolve their queries
about a product. An accurate parser for this kind
of text can be used to inform forum-level question-
answering, machine translation and quality esti-
mation of machine translation.

We create a 2000-sentence treebank called
Foreebank which contains sentences from the
Symantec Norton English and French technical
support forums.1 The phrase structure of the sen-
tences is annotated and any grammatical errors are
marked in the trees. Marking the grammatical er-
rors allows us to precisely measure the amount of
grammatical noise in this kind of text, and joint er-
ror and syntactic annotation allows us to determine
its effect on parsing.

1http://community.norton.com

Foster (2010) explored the effect of spelling er-
rors on parsing performance of conversational fo-
rum text. We extend this study to include gram-
matical errors, focusing on more technical con-
tent. Foster et al. (2008) explored the effect of
artificially generated grammatical errors on Wall
Street Journal parsing. We concentrate on forum
text rather than newspaper text, and, crucially, ex-
amine the effect of real grammatical errors. We
find that the level of grammatical noise is lower
than expected, with capitalisation and punctuation
errors being the most frequent. While correcting
all the errors does result in a performance increase
of 1.5% for English and 0.8% for French, the ma-
jor challenge in parsing these sentences seems not
to be “bad language” (Eisenstein, 2013) per se.

The main contribution of the paper is the Foree-
bank data set itself2 but we also carry out prelim-
inary parsing experiments evaluating the accuracy
of a PCFG-LA parser on Foreebank, examining
the effect of grammatical errors on parsing and ex-
perimenting with different training sets.

2 Related Work

Other treebanks of English web text include the
English Web Treebank (aka Google Web Tree-
bank) (Mott et al., 2012), the small treebank of
tweets and football discussion forum posts de-
scribed in Foster et al. (2011) and the tweet de-
pendency bank described in Kong et al. (2014).
The English Web Treebank is a corpus of over
250K words, selected from blogs, newsgroups,
emails, local business reviews and Yahoo! an-
swers. It adapts the Penn Treebank (Marcus et
al., 1994) and Switchboard (Taylor, 1996) annota-
tion guidelines to address the phenomena specific

2www.computing.dcu.ie/mt/confidentmt.
html
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to this type of text. The annotation of the 1000-
sentence treebank described in Foster et al. (2011)
is based on the Penn Treebank, whereas the an-
notation of the treebank described in Kong et al.
(2014) is dependency-based. The French Social
Media Bank developed by Seddah et al. (2012) is
a treebank of 1,700 French sentences from various
type of social media including Facebook, Twit-
ter and discussion forums (video game and med-
ical). An extended version of the FTB-UC annota-
tion guidelines (Candito and Crabbé, 2009) is em-
ployed during annotation and subcorpora contain-
ing particularly noisy utterances are identified.

The main difference between Foreebank and
other web/social media treebanks is that grammat-
ical errors in the Foreebank sentences are marked
and corrected as part of the annotation process. Er-
ror annotation not only provides more insight into
this type of text but it also enables us to directly
measure the effect of these errors on parsing accu-
racy and leaves open the possibility of performing
joint parsing and error detection by directly learn-
ing the error annotation during parser training.

A learner corpus (Granger, 2008) contains utter-
ances produced by language learners and serves as
a resource for second language acquisition, com-
putational linguistic and computer-aided language
learning research. Examples include the Interna-
tional Corpus of Learner English (Granger, 1993),
the Cambridge Learner Corpus (Nicholls, 1999;
Yannakoudakis et al., 2011), the NUS Corpus of
Learner English (Dahlmeier et al., 2013) and the
German Falko corpus (Lüdeling, 2008; Rehbein et
al., 2012). We can compare Foreebank to a learner
corpus since both contain utterances that are po-
tentially ungrammatical and because in a learner
corpus the errors are often annotated, as they are
in Foreebank. In the last five years, there have
been several shared tasks in grammatical error cor-
rection including the Helping Our Own (HOO)
shared tasks of 2011 and 2012 (Dale and Kil-
gariff, 2011; Dale et al., 2012), and the CoNLL
2013 and 2014 shared tasks (Ng et al., 2013; Ng
et al., 2014). With the exception of HOO 2011,
all shared tasks involve error-annotated sentences
from learner corpora. Annotation schemes vary
but most involve marking the span of an error,
classifying the error according to some taxonomy
designed with L2 utterances in mind, and some-
times providing the correction or “target hypothe-
sis” (Hirschmann et al., 2007).

Regarding syntactic annotation of learner data,
Dickinson and Ragheb (2009) propose a depen-
dency annotation scheme based on the CHILDES
scheme (Sagae et al., 2007) developed for first lan-
guage learners. They treat the developing lan-
guage of learners as an interlanguage, as sug-
gested by Dı́az-Negrillo et al. (2010), and anno-
tate it as is. They use two POS tags and two de-
pendency labels for error cases: one for the sur-
face form and one for the intended form. Rosén
and De Smedt (2010) criticise the approach of
Dickinson and Ragheb (2009) involving “annotat-
ing language text as is” arguing that interpretation
of the language is required at all annotation lev-
els. They use NorGram, a Norwegian Lexical-
Functional Grammar, to annotate a learner cor-
pus with constituency structure, functional struc-
ture and semantic structure, in order to provide a
means to search for contexts in which learner er-
rors occur. Nagata et al. (2011) describe an En-
glish learner corpus which has been manually an-
notated with shallow syntax, introducing two new
POS tags and two new chunk labels for errors.

3 Building the Foreebank

The Foreebank treebank contains 1000 English
sentences and 1000 French sentences. The En-
glish sentences come from the Symantec Norton
technical support user forum. Half of the French
sentences come from the French Norton forum
and the other half are human translations of sen-
tences from the English forum. Four annotators
were involved in the annotation process. Their
main task was to correct automatically parsed
phrase structure trees using an annotation tool de-
veloped for this project.3 The English annota-
tors were guided by the Penn Treebank bracket-
ing guidelines and a Foreebank-adapted version of
the English Web Treebank bracketing guidelines.
The French annotators used the French treebank
(FTB) (Abeillé et al., 2003) guidelines, following
the SPMRL strategy for multiword expressions
(Seddah et al., 2013; Candito and Crabbé, 2009).
The two primary annotators, one for French and
one for English, annotated all the data for their
language. The two secondary annotators anno-
tated a 100-sentence subset. Inter-annotator agree-
ment was calculated by measuring the Parseval

3The Stanford parser (Klein and Manning, 2003) was
used to parse the English data and the Berkeley parser (Petrov
et al., 2006) was used for the French sentences.
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Figure 1: The Foreebank annotation of i tried customize too , but i cant find them .. T T corrected as I
tried Customize too , but I ca n’t find them ... T T

Su
ffi

x

Explanation Example FBen FBfr

English French # % # %
D Deleted token It fixed [the] problem. Cela a résolu [le] problème. 170 1.10 56 0.29
X Extraneous tokens It fixed the my problem. Cela a résolu le mon problème. 35 0.23 17 0.09
W Wrong form error It fix the problem. Cela résoudre le problème. 69 0.45 43 0.22
S Misspelled token It fixed my prbolem. Cela a résolu mon prbolème. 81 0.53 117 0.60
C Capitalisation error it fixed my problem. cela a résolu mon problème. 161 1.00 194 1.00
B Broken token It fix ed my problem. Cela a réso lu mon problème. 2 0.01 12 0.06
I Innovative initialism I have problem w/ this software. J’ai un problème av. ce logiciel. 1 0.01 7 0.04
M Merged sentences It fixed the problem Thank you. Cela a résolu le problème Merci. 3 0.30 29 2.90

Table 1: Foreebank Error Suffixes. The last two columns refer to their frequency.

F1 of trees produced by the secondary annotators
against those produced by the primary annotators.
For English this was 88 and for French it was 86.7.

Prior to correcting a parse tree produced by the
automatic parser, the annotators are asked to cor-
rect any errors they find in the sentence.4 The cor-
rected text is entered in a field of the annotation
tool. As part of the syntactic annotation process,
errors are marked by appending an error suffix to
the preterminals of the affected words in the tree.
The error suffixes used in Foreebank are listed in
Table 1 and an example tree from Foreebank is
shown in Figure 1. There are three kinds of substi-
tution error suffixes: C for marking problems with
capitalisation, S for marking spelling errors and W
for marking the wrong form of a word which en-
compasses inflection errors (they instead of them),
real-word spelling errors (test instead of text) and
lexical choice errors (desk instead of chair). The
POS tag of the corrected form is used in the tree
instead of the POS tag of the incorrect form.5 Al-
though this annotation scheme contains fewer er-
ror types than the taxonomies used for learner cor-

4Minimal correction is encouraged to prevent annotators
from rewriting the sentence in their preferred writing style.
Instead they are instructed to just focus on fixing the errors.

5An alternative would have been to use one POS tag for
the erroneous form and one for the corrected form, either
combined a la Nagata et al. (2011) or separate a la Dickin-
son and Ragheb (2009).

pora, its granularity increases when the error suf-
fixes are interpreted in the syntactic context in
which they occur. For example, we can distin-
guish a missing determiner (DT D) from a missing
preposition (IN D).

The “sentences” that the annotators see are the
result of passing the forum text through an auto-
matic sentence splitter (NLTK6) and tokeniser (in-
house). This is another important difference be-
tween Foreebank and the English Web Treebank
(EWT). In the EWT, sentence boundary detec-
tion and tokenisation has been carried out manu-
ally before annotation. Both approaches are valid
but ours was chosen in order to stay closer to the
more realistic scenario of less than perfect auto-
matic preprocessing tools. This means that anno-
tators have a special class of errors that result from
noisy sentence splitting and tokenisation that must
be marked during annotation.

There are two types of sentence splitting errors:
merged sentences such as (1) in which a sentence
boundary was not detected before the word When
due to the use of a comma instead of a full stop,
and split sentences such as (2).

(1) 7. Combofix will start, When it
is scanning don’t move the
mouse cursor inside the box,

(2) The questions to <CompanyName>:

6http://www.nltk.org/
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Merged sentences are gathered under one root
node with the error suffix M (e.g. S M) , and split
sentences are annotated as if they are standalone.

Tokenisation problems can also be categorised
as merged (3) or split (4 and 5). Merged tokens
are treated as a combination of a spelling error
(whenI instead of when) and a deleted token (I).
When the split is morphological as in (4), they are
tagged with the POS tag of the whole intended to-
ken, along with the error suffix B (for “broken”).
So in (4), the POS tag of anti would be annotated
as NN B and the POS tag of vir as NN B. When
there is no such clean morphological break (as in
(5)), the first token is treated as a spelling error and
the second as an extraneous token.

(3) whenI tried to use ...

(4) he should buy anti vir programs

(5) i t keeps causing <ProductName>
to lock up ...

4 Analysing the Foreebank

Table 2 presents the average and the maximum
sentence length in Foreebank, and, for compar-
ison, WSJ and FTB. It also gives the out-of-
vocabulary (OOV) rate of these data sets with re-
spect to the WSJ and FTB. The Foreebank sen-
tences are shorter on average than the WSJ and
FTB sentences. The table also shows that the
OOV rate of Foreebank with respect to WSJ/FTB
is high: 33.3% for English and 39.1% for French.
These numbers can be compared to the OOV rate
of the WSJ test set with respect to its training set
which is 13.2% and the FTB which is 20.6%. The
higher OOV rate for the French Foreebank com-
pared to the English is most likely due to the larger
size of the WSJ compared to the FTB. The OOV
rate of the English Foreebank is more than 2.5
times as large as that of the WSJ test set, while
the OOV rate of the French Foreebank is less than
2 times as large as that of the FTB test set. This
suggests that a bigger performance drop due to un-
known words should be expected in parsing the
English Foreebank sentences than the French.

The last four columns in Table 1 display the ab-
solute and relative frequency of each error suffix.
In sum, it seems that capitalisation is the major
error type in Foreebank especially in the French
data. Deleted tokens are also a major source of
problem on the English side. Most of the capital-
isation errors involve proper nouns (e.g. product
names) and most of the deleted tokens are cases

FBen WSJ FBfr FTB
Avg. sentence length 15.4 23.8 19.6 28.4
Max. sentence length 89 141 86 260
OOV rate (%) 31.6 - 33.6 -

Table 2: Characteristics of the English (FBen) and
French (FBfr) Foreebank compared with those of
the WSJ and FTB.

English FBen WSJ French FBfr FTBEnglish
All Test

French
All Test

WSJall 77.0 - FTBall 76.3 -
WSJtrain 75.4 89.6 FTBtrain 76.0 81.3

Table 3: Foreebank and WSJ/FTB test set results.

of missing punctuation. Overall, the errors oc-
cur on only a small fraction of the tokens in both
data sets. We also calculate the edit distance be-
tween each Foreebank sentence and its correction
by summing the number of error suffixes and di-
viding by the maximum of the original and cor-
rected sentence lengths. The average edit dis-
tance for the English section of Foreebank is 0.04
and for the French section is 0.03. Despite the
existence of some near-to-incomprehensible sen-
tences, the overall error level is very low.

5 Parsing the Foreebank

We first evaluate newswire-trained parsers on
Foreebank, using our in-house PCFG-LA parser
with the max-rule parsing algorithm (Petrov and
Klein, 2007) and 6 split-merge cycles. The En-
glish model is trained on the entire WSJ and the
French model on the entire FTB. For compari-
son, we parse the WSJ/FTB and so we addition-
ally use models trained only on the training sec-
tions. We remove the error suffixes and any D-
suffixed nodes (representing deleted words) from
the gold Foreebank trees before evaluation. The
results are shown in Table 3. As expected, we see a
significant drop for both languages when we move
from in-domain data to Foreebank. Compared to
parsing the English side of Foreebank, the perfor-
mance drop for French is relatively smaller: the
former drops 14.2 points from 89.6 F1 points to
75.4 and the latter 5.3 points from 81.3 to 76. This
suggests that, either the French parsing model is
better generalisable to the forum text, or alterna-
tively, that the FTB test set is more distant from its
training set than the WSJ one. The second hypoth-
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esis is more likely because 1) it is on par with the
OOV rate observed in Section 4, and 2) the perfor-
mance of the English and French parsers are close
on Foreebank but further apart on the newswire
test sets. The effect of using the entire WSJ and
FTB instead of only their training sections is also
worth noting. While adding the WSJ development
and test sets (about 5,500 sentences, a 14% in-
crease) improves the F1 of English parsing by 1.6
points, the 2,500 FTB development and test sen-
tences (a 25% increase) have little effect on the
French parsing, suggesting that either these new
sentences are still not enough or do not bring ad-
ditional information to the parsing model.

Since the annotators correct the errors made by
the forum users, we are able to parse the corrected
versions of the Foreebank sentences and examine
how accurately they are parsed compared to the
original sentences. We use the WSJall and FTBall
parsing models described above. Correcting the
user errors before parsing leads to an improved
parsing F1 of 78.6 for the English sentences, an
increase of 1.6 points (2%). A smaller impact is
observed on the French sentences where the edited
sentences receive an F1 of 77.1 (an increase of 0.8
points). Referring to the distribution of error suf-
fixes in Table 1, this suggests that the inserted and
deleted tokens may have a larger effect on parser
error than the substituted tokens, as their number
is higher for English. Many substitution errors are
capitalisation errors, typically involving a confu-
sion between proper and common nouns, which
tends not to affect the surrounding tree.

The simplest method to improve the accuracy
of parsing Foreebank is to use it as supplemen-
tary training data. We do this using a 5-fold cross
validation, in which Foreebank is randomly split
into five parts, with each part used for the evalu-
ation of the parsers trained on WSJ/FTB plus the
other four parts. The results are shown in Table 4.
Combining the larger treebank and Foreebank im-
proves the F1 by 2.6 points for English and 3.2 for
French. Considering that Foreebank is orders of
magnitude smaller than the WSJ/FTB, these gains
are encouraging. We try to overcome the small
size of Foreebank by 1) using the EWT as training
data, and 2) increasing the weight of Foreebank by
training on multiple copies of it. The EWT is not
a substitute for the WSJ but it does provide a mod-
est improvement when used in conjunction with
Foreebank and WSJ. The replication of Foreebank

English French
Training Set F1 Training Set F1

WSJall 77.0 FTBall 76.3
WSJall+FBen 79.6 FTBall+FBfr 79.5
WSJall+5FBen 80.1 FTBall+5FBfr 79.5
EWT 75.0 - -
EWT+FBen 79.0 - -
WSJall+FBen+EWT 80.3 - -
FBen 71.1 FBfr 72.4
FBen suf 70.2 FBfr suf 71.8

Table 4: Training on Foreebank/WSJ/EWT/FTB
and testing on Foreebank

trees has mixed results, providing a 0.5 point im-
provement for English and none for French.

In all experiments up to now, we have excluded
the error suffixes from the Foreebank trees (dur-
ing training and testing). We next try to directly
learn trees containing the error suffixes (except for
deleted tokens). That is, we use the original Foree-
bank trees containing the error suffixes for train-
ing and evaluate against Foreebank trees contain-
ing the error suffixes. The second last row of Ta-
ble 4 shows the 5-fold CV results when the version
of Foreebank without the error suffixes is used for
training and the last row the results when the er-
ror suffixes are included. Including the suffixes
decreases the accuracy, most likely due to the in-
creased data sparsity caused by the suffixed tags.

6 Conclusion

We have introduced a treebank of technical fo-
rum sentences for English and French, based on an
annotation strategy adapted to suit user-generated
text in a realistic NLP setting. By marking the er-
rors on the trees, we studied their prevalence as
well as their impact on parsing and found that de-
spite their low frequency, they do negatively af-
fect parser performance, while not being the most
important factor. Our next steps include learning
error suffixes during a prior tagging phase and ex-
perimenting with the French Social Media Bank.
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Abstract

We present a semi-supervised approach
to improve dependency parsing accuracy
by using bilexical statistics derived from
auto-parsed data. The method is based
on estimating the attachment potential of
head-modifier words, by taking into ac-
count not only the head and modifier
words themselves, but also the words sur-
rounding the head and the modifier. When
integrating the learned statistics as features
in a graph-based parsing model, we ob-
serve nice improvements in accuracy when
parsing various English datasets.

1 Introduction

We are concerned with semi-supervised depen-
dency parsing, namely how to leverage large
amounts of unannotated data, in addition to anno-
tated Treebank data, to improve dependency pars-
ing accuracy. Our method (Section 2) is based
on parsing large amounts of unannotated text us-
ing a baseline parser, extracting word-interaction
statistics from the automatically parsed corpus,
and using these statistics as the basis of additional
parser features. The automatically-parsed data is
used to acquire statistics about lexical interactions,
which are too sparse to estimate well from any
realistically-sized Treebank. Specifically, we at-
tempt to infer a function assoc(head,modifer)
measuring the “goodness” of head-modifier rela-
tions (“how good is an arc in which black is a mod-
ifier of jump”). A similar approach was taken by
Chen et al. (2009) and Van Noord et al. (2007). We
depart from their work by extending the scoring
to include a wider lexical context. That is, given
the sentence fragment in Figure 1, we score the
(incorrect) dependency arc (black, jump) based on
the triplets (the black fox,will jump over). Learn-
ing a function between word triplets raises an

extreme data sparsity issue, which we deal with
by decomposing the interaction between triplets
to a sum of interactions between word pairs.
The decomposition we use is inspired by recent
work in word-embeddings and dense vector rep-
resentations (Mikolov et al., 2013a; Mnih and
Kavukcuoglu, 2013). Indeed, we initially hoped
to leverage the generalization abilities associated
with vector-based representations. However, we
find that in our setup, reverting to direct count-
based statistics achieve roughly the same results
(Section 3).

Our derived features improve the accuracy of a
first-order dependency parser by 0.75 UAS points
(absolute) when evaluated on the in-domain WSJ
test-set, obtaining a final accuracy of 92.32 UAS
for a first-order parser. When comparing to the
strong baseline of using Brown-clusters based fea-
tures (Koo et al., 2008), we find that our triplets-
based method outperform them by over 0.27 UAS
points. This is in contrast to previous works (e.g.
(Bansal et al., 2014)) in which improvements over
using Brown-clusters features were achieved only
by adding to the cluster-based features, not by re-
placing them. As expected, combining both our
features and the brown-cluster features result in
some additional gains.

2 Our Approach

Our departure point is a graph-based parsing
model (McDonald et al., 2005):

parse(x) = argmax
y∈Y(x)

score(x, y)

score(x, y) = w · Φ(x, y) =
∑
part∈y

w · φ(x, part)

Given a sentence xwe look for the highest-scoring
parse tree y in the space Y(x) of valid dependency
trees over x. The score of a tree is determined by a
linear model parameterized by a weights vector w,
and a feature function Φ(x, y). To make the search
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Features in φijlex(x, y)
bin(Sij(x, y))
bin(Sij(x, y)) ◦ dist(x,y)
bin(Sij(x, y)) ◦ pos(x) ◦ pos(y)
bin(Sij(x, y)) ◦ pos(x) ◦ pos(y) ◦ dist(x,y)

Table 1: All features are binary indicators. x and y are
token indices. Sij is estimated from auto-parsed corpora as
described in the text. The values of S(·, ·) are in the range
(0, 1), which is split by bin into 10 equally-spaced intervals.
dist is the signed and binned sentence-distance between x
and y. pos(x) is the part of speech of token x. ◦ indicates a
concatenation of features.

tractable, the feature function is decomposed into
local feature functions over tree-parts φ(x, part).
The features in φ are standard graph-based depen-
dency parsing features, capturing mostly structural
information from the parse tree.

We extend the scoring function by adding an ad-
ditional term capturing the strength of lexical as-
sociation between head word h and modifier word
m in each dependency arc:
score(x, y) =∑
part∈y

w · φ(x, part) +
∑

(h,m)∈y
assoc(h,m)

The association function assoc is also modeled
as a linear model assoc(h,m) = wlex ·φlex(h,m).
While the weights wlex are trained jointly with w
based on supervised training data, the features in
φlex do not look at h and m directly, but instead
rely on a quantity S(h,m) that reflects the “good-
ness” of the arc (h,m). The quantity S(h,m)
ranges between 0 and 1, and is estimated based
on large quantities of auto-parsed data. Given a
value for S(h,m), φlex is composed of indicator
functions indicating the binned ranges of S(h,m),
possibly conjoined with information such as the
binned surface distance between the tokens h and
m and their parts of speech. The complete spec-
ification of φlex we use is shown in Table 1 (the
meaning of the ij indices will be discussed in Sec-
tion 2.2).

2.1 Estimating S(h,m)

One way of estimating S(h,m), which was also
used in (Chen et al., 2009), is using rank statistics.
LetD be the list of observed (h,m) pairs sorted by
their frequencies, and let rank(h,m) be the index
of the pair (h,m) in D. We now set:

SRANK(h,m) =
rank(h,m)
|D|

While effective, this approach has two related
shortcomings: first, it requires storing counts for
all the pairs (h,m) appearing in the auto-parsed
data, resulting in memory requirement that scales
quadratically with the vocabulary size. Second,
even with very large auto-parsed corpora many
plausible head-modifier pairs are likely to be un-
observed.

An alternative way of estimating S(h,m) that
does not require storing all the observed pairs and
that has a potential of generalizing beyond the
seen examples is using a log-bilinear embedding
model similar to the skip-gram model presented by
Mikolov et al. (2013b) to embed word pairs such
that compatible pairs receive high scores. The
model assigns two disjoint sets of d-dimensional
continuous latent vectors, u and v, where uh ∈ Rd
is an embedding of a head word h, and vm ∈ Rd is
an embedding of a modifier word m. The embed-
ding is done by trying to optimize the following
corpus-wide objective that is maximizing the dot
product of the vectors of observed (h,m) pairs and
minimizing the dot product of vectors of random
h and m pairs. Formally:

∑
h,m∈C

[
ln (σ (uh · vm))−

k∑
i=1

E
mi∼ Pm

ln (σ (uh · vmi))

]

where σ(x) = 1/(1 + e−x), and k is the number
of negative samples, drawn from the corpus-based
Unigram distribution Pm. For further details, see
(Mikolov et al., 2013b; Goldberg and Levy, 2014).
We then take:1

SEMBED(h,m) = σ(uh · vm)

In contrast to the counts based method, this model
is able to estimate the strength of a pair of words
even if the pair did not appear in the corpus due to
sparsity.

Finally, Levy and Goldberg (2014b) show that
the skip-grams with negative-sampling model de-
scribed above achieves its optimal solution when
uh · vm = PMI(h,m)− log k. This gives rise to
another natural way of estimating S:

1The embedding we derive are very similar to the ones de-
scribed in (Levy and Goldberg, 2014a; Bansal et al., 2014),
and which were used by Bansal et al.(2014) for deriving semi-
supervised parsing features. An important difference from
these previous work is that after training, they keep only one
set of vectors (u or v) and ignore the other, basing the fea-
tures on the derived vector representations. In contrast, we
keep both sets of vectors and are interested in the association
measure induced by the dot product uh · vm.
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m−1 m0 m+1 . . . h−1 h0 h+1

the black fox . . . will jump over

Figure 1: Illustration of the bilexical information including
context. When scoring the (incorrect) arc between h0 and
m0, we take into account also the surrounding words h−1,
h+1, m−1 and m+1.

SPMI(h,m) = σ(PMI(h,m)) = p(h,m)
p(h,m)+p(h)p(m)

where p(h,m), p(h) and p(m) are unsmoothed
maximum-likelihood estimates based on the auto-
parsed corpus.

Like SRANK and unlike SEMBED, SPMI requires
storing statistics for all observed word pairs, and
is not able of generalizing beyond (h,m) pairs
seen in the auto-parsed data. However, as we
see in Section 3, this method performing similarly
in practice, suggesting that the generalization ca-
pabilities of the embedding-based method do not
benefit the parsing task.

2.2 Adding additional context

Estimating the association between a pair of words
is effective. However, we would like to go a step
further and take into account also the context in
which these words occur. Specifically, our com-
plete model attempts to estimate the association
between word trigrams centered around the head
and the modifier words.

A naive solution that defines each trigram as
its own vocabulary item will increase the vocab-
ulary size by two orders of magnitude and re-
sult in severe data sparsity. An alternative so-
lution would be to associate each word in the
triplet (h−1, h0, h+1) with its own unique vocab-
ulary item, and likewise for modifier words. In
the embeddings-based model, this results in 6 vec-
tor sets u−1, u0, u+1, v−1, v0, v+1, where v−1

dog, for
example, represents the word “dog” when it ap-
pears to the left of the modifier word, and u+1

walk

the word “walk” when it appears to the right
of the head word.2 This amounts to only a 3-
fold increase in the required vocabulary size. We
then model the strength of association between
h−1h0h+1 and m−1m0m+1 as a weighted sum of

2Sentences are padded by special sentence-boundary
symbols.

pairwise interactions:3

assoc(h−1h0h+1,m−1m0m+1) =
1∑

i=−1

1∑
j=−1

αij associj(hi,mj)

As before, the pairwise association measure
associj(hi,mj) is modeled as a linear model:

associj(hi,mj) = wijlex · φijlex(hi,mj)

Where φijlex is again defined in terms of
a goodness function Sij(x, y). For example,
S−1,+1(the, over) corresponds to the goodness of
a head-modifier arc where the word to the left of
the head word is “the” and the word to the right
of the modifier word is “over”. Sij(hi,mj), the
goodness of the arc induced by the pair (hi,mj),
can be estimated by either SRANK, SEMBED or SPMI
as before. For example, in the embeddings model
we set Sij(x, y) = σ(uix · vjy).

We update the bilexical features to include con-
text as explained above. Instead of learning α
and wlex coefficients separately, we absorb the αij
terms into wlex, learning both at the same time:

assoc(h−1h0h+1,m−1m0m+1) =∑
i∈{−1,0,1}

∑
j∈{−1,0,1}

αij · associj(hi,mj) =

∑
i∈{−1,0,1}

∑
j∈{−1,0,1}

αij · wijlex · φijlex(hi,mj) =

∑
i∈{−1,0,1}

∑
j∈{−1,0,1}

w′ijlex · φijlex(hi,mj)

Finally, the parser selects a dependency tree which
maximizes the following:

w′ · Φ(x, y) =
∑
part∈y

w · φ(x, part)

+
∑

(h,m)∈y

1∑
i=−1

1∑
j=−1

wijlex · φijlex(hi,mj)

3In the word embeddings literature, it is common to rep-
resent a word triplet as the sum of the individual component
vectors, resulting in ux,y,z · va,b,c = (u−1

x + u0
y + u+1

z ) ·
(v−1

a + v0
b + v+1

c ). Expanding the terms will result in a very
similar formulation to our proposal, but we allow the extra
flexibility of associating a different strength αij with each
pairwise term.
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Dev Test Brown Answers Blogs Email News Reviews
Baseline 91.97 91.57 86.86 81.58 84.88 79.75 82.59 83.22
Base + Brown 92.16 92.05 87.16 81.96 85.46 80.27 83.02 83.56
Base + HM(SRANK) 92.16 91.74 87.01 82.06 85.36 80.29 82.72 83.62
Base + HM(SEMBED) 92.29 91.98 87.04 81.97 85.34 79.93 82.76 83.33
Base + HM(SPMI) 92.35 92.00 87.14 82.20 85.65 80.34 82.83 83.81
Base + TRIP(SRANK) 92.23 91.91 87.02 82.31 85.59 80.50 83.30 83.79
Base + TRIP(SEMBED) 92.38 92.27 87.15 82.34 85.71 80.41 83.21 83.68
Base + TRIP(SPMI) 92.61 92.32 87.29 82.58 85.88 80.43 83.57 84.18
Base + Brown + TRIP(SRANK) 92.43 92.33 87.23 82.60 85.75 80.57 83.48 84.00
Base + Brown + TRIP(SEMBED) 92.51 92.45 87.33 82.42 86.06 80.44 83.40 83.87
Base + Brown + TRIP(SPMI) 92.70 92.40 87.42 82.74 86.08 80.72 83.78 84.26

Table 2: Parsing accuracies (UAS, excluding puctuation) of the different models on various corpora. All models are trained
on the PTB training set. Dev and Test are sections 22 and 23. Brown is the Brown portion of the PTB. The other columns
correspond to the test portions of the Google Web Treebanks. Automatic POS-tags are assigned in all cases. HM indicates using
assoc(h,m) and TRIP using assoc(h−1h0h1,m−1m0m1). + BROWN indicate using features based on Brown clustering.

3 Experiments and Results

Data Our experiments are based on the Penn
Treebank (PTB) (Marcus et al., 1993) as well as
the Google Web Treebanks (LDC2012T13), cov-
ering both in-domain and out-of-domain scenar-
ios. We use the Stanford-dependencies represen-
tation (de Marneffe and Manning, 2008). All
the constituent-trees are converted to Stanford-
dependencies based on the settings of Version
1.0 of the Universal Treebank (McDonald et al.,
2013).4 These are based on the Stanford Depen-
dencies converter but use some non-default flags,
and change some of the dependency labels. All
of the models are trained on section 2-21 of the
WSJ portion of the PTB. For in-domain data, we
evaluate on sections 22 (Dev) and 23 (Test). All
of the parameter tuning were performed on the
Dev set, and we report test-set numbers only for
the “most interesting” configurations. For out-of-
domain data, we use the Brown portion of the PTB
(Brown), as well as the test-sets of different do-
mains available in the Google Web Treebank: An-
swers, Blogs, Emails, Reviews and Newsgroups.

All trees have automatically assigned part-of-
speech tags, assigned by the TurboTagger POS-
tagger.5 The train-set POS-tags were derived in
a 10-fold jacknifing, and the different test datasets
receive tags from a tagger trained on sections 2-21.

For auto-parsed data, we parse the text of the
BLLIP corpus (Charniak, 2000) using our base-
line parser. This is the same corpus used for deriv-
ing Brown clusters for use as features in (Koo et

4https://github.com/ryanmcd/
uni-dep-tb/raw/master/universal_
treebanks_v1.0.tar.gz

5http://www.ark.cs.cmu.edu/
TurboParser/

al., 2008). We use the clusters provided by Terry
Koo6. Parsing accuracy is measured by unlabeled
attachment score (UAS) excluding punctuations.
Implementation Details We focus on first-order
parsers, as they are the most practical graph-
based parsers in terms of running time in real-
istic parsing scenarios. Our base model is a re-
implementation of a first-order projective Graph-
based parser (McDonald et al., 2005), which we
extend to support the semi-supervised φlex fea-
tures. The parser is trained for 10 iterations
of online-training with passive-aggressive updates
(Crammer et al., 2006). For the Brown-cluster fea-
tures, we use the feature templates described by
(Koo et al., 2008; Bansal et al., 2014).

The embedding vectors are trained using the
freely available word2vecf software7, by con-
joining each word with its relative position (-1, 0
or 1) and treating the head words as “words” and
the modifier words to be “contexts”. The words
are embedded into 300-dimensional vectors. All
code and vectors will be available at the first au-
thor’s website.

Results The results are shown in Table 2. The
second block (HM) compares the baseline parser
to a parser including the assoc(h,m) lexical com-
ponent, using various ways of computing s(h,m).
We observe a clear improvement above the base-
line from using the lexical component across all
domains. The different estimation methods per-
form very similar to each other.

In the third block (TRIP) we switch to the
triplet-based lexical association. With SRANK,

6http://people.csail.mit.edu/maestro/
papers/bllip-clusters.gz

7http://www.bitbucket.org/yoavgo/
word2vecf

1351



there is very little advantage over looking at just
pairs. However, with SEMBED or SPMI the improve-
ment of using the triplet-based method over using
just the head-modifier pairs is clear. The counting-
based PMI method performs on par with the Em-
bedding based approximation of it.

The second line of the first block (Base+Brown)
represents the current state-of-the-art in semi-
supervised training of graph-based parsing: using
Brown-cluster derived features (Koo et al., 2008;
Bansal et al., 2014). The Brown-derived features
provide similar (sometimes larger) gains to using
our HM method, and substantially smaller gains
than our TRIP method. To the best of our knowl-
edge, we are the first to show a semi-supervised
method that significantly outperforms the use of
Brown-clusters without using Brown-clusters as a
component.

As expected, combining our features and the
Brown-based features provide an additional im-
provement, as can be seen in the last block of Table
2 (Base+Brown+TRIP).

4 Related Work

Semi-supervised approaches to dependency pars-
ing can be roughly categorized into two groups:
those that use unannotated data and those that use
automatically-parsed data. Our proposed method
falls in the second group.

Among the words that use unannotated data, the
dominant approach is to derive either word clus-
ters (Koo et al., 2008) or word vectors (Chen and
Manning, 2014) based on unparsed data, and use
these as additional features for a supervised pars-
ing model. While the word representations used
in such methods are not specifically designed for
the parsing task, they do provide useful features
for parsing, and in particular the method of (Koo
et al., 2008), relying on features derived using the
Brown-clustering algorithm, provides very com-
petitive state-of-the-art results. To the best of our
knowledge, we are the first to show a substantial
improvement over using Brown-clustering derived
features without using Brown-cluster features as a
component.

Among the words that use auto-parsed data, a
dominant approach is self-training (McClosky et
al., 2006), in which a parser A (possibly an en-
semble) is used to parse large amounts of data,
and a parser B is then trained over the union of
the gold data and the auto-parsed data produced

by parser A. In the context of dependency-parsing,
successful uses of self-training require parser A to
be stronger than parser B (Petrov et al., 2010) or
use a selection criteria for training only on high-
quality parses produced by parser A (Sagae and
Tsujii, 2007; Weiss et al., 2015). In contrast, our
work uses the same parser (modulo the feature-set)
for producing the auto-parsed data and for train-
ing the final model, and does not employ a high-
quality parse selection criteria when creating the
auto-parsed corpus. It is possible that high-quality
parse selection can improve our proposed method
even further.

Works that derive features from auto-parsed
data include (Sagae and Gordon, 2009; Bansal et
al., 2014). Such works assign a representation (ei-
ther cluster or vector) for individual word in the
vocabulary based on their syntactic behavior. In
contrast, our learned features are designed to cap-
ture interactions between words. As discussed in
sections (1) and (2), most similar to ours is the
work of (Chen et al., 2009; Van Noord, 2007). We
extend their approach to take into account not only
direct word-word interactions but also the lexical
surroundings in which these interactions occur.

Another recent approach that takes into account
various syntactic interactions was recently intro-
duced by Chen et al. (2014), who propose to learn
to embed complex features that are being used in
a graph-based parser based on other features they
co-occur with in auto-parsed data. Similar to our
approach, the embedded features are then used as
additional features in a conventional graph-based
model. The approaches are to a large extent com-
plementary, and could be combined.

Finally, our work adds additional features to
a graph-based parser which is based on a linear-
model. Recently, progress in dependency parsing
has been made by introducing non-linear, neural-
network based models (Pei et al., 2015; Chen and
Manning, 2014; Weiss et al., 2015; Dyer et al.,
2015; Zhou et al., 2015). Adapting our approach
to work with such models is an interesting research
direction.

5 Conclusions
We presented a semi-supervised method for de-
pendency parsing and demonstrated its effective-
ness on a first-order graph-based parser. Taking
into account not only the (head,modifier) word-
pair but also their immediate surrounding words
add a clear benefit to parsing accuracy.
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Oscar Täckström, et al. 2013. Universal depen-
dency annotation for multilingual parsing. In ACL
(2), pages 92–97.

Tomas Mikolov, Kai Chen, Gregory S. Corrado, and
Jeffrey Dean. 2013a. Efficient estimation of word
representations in vector space. In Proceedings of
the International Conference on Learning Represen-
tations (ICLR).

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013b. Distributed rep-
resentations of words and phrases and their compo-
sitionality. In Advances in Neural Information Pro-
cessing Systems, pages 3111–3119.

Andriy Mnih and Koray Kavukcuoglu. 2013. Learning
word embeddings efficiently with noise-contrastive
estimation. In NIPS.

Wenzhe Pei, Tao Ge, and Baobao Chang. 2015. An
effective neural network model for graph-based de-
pendency parsing. In Proc. of ACL.

Slav Petrov, Pi-Chuan Chang, Michael Ringgaard, and
Hiyan Alshawi. 2010. Uptraining for accurate de-
terministic question parsing. In Proc. of EMNLP-
2010, October.

Kenji Sagae and Andrew S. Gordon. 2009. Clustering
words by syntactic similarity improves dependency
parsing of predicate-argument structures. In IWPT,
pages 192–201.

Kenji Sagae and Jun’ichi Tsujii. 2007. Dependency
parsing and domain adaptation with LR models and
parser ensembles. In Proc. of CoNLL-2007 Shared
Task.

Gertjan Van Noord. 2007. Using self-trained bilexical
preferences to improve disambiguation accuracy. In
Proceedings of the 10th International Conference on
Parsing Technologies, pages 1–10. Association for
Computational Linguistics.

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured training for neural network
transition-based parsing. In Proc. of ACL.

Hao Zhou, Yue Zhang, and Jiajun Chen. 2015. A
neural probabilistic structured-prediction model for
transition-based dependency parsing. In Proc. of
ACL.

1353



Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 1354–1359,
Lisbon, Portugal, 17-21 September 2015. c©2015 Association for Computational Linguistics.

Improved Transition-Based Parsing and Tagging with Neural Networks

Chris Alberti David Weiss Greg Coppola Slav Petrov
Google Inc

New York, NY
{chrisalberti,djweiss,gcoppola,slav}@google.com

Abstract

We extend and improve upon recent work in struc-
tured training for neural network transition-based
dependency parsing. We do this by experimenting
with novel features, additional transition systems
and by testing on a wider array of languages. In par-
ticular, we introduce set-valued features to encode
the predicted morphological properties and part-of-
speech confusion sets of the words being parsed.
We also investigate the use of joint parsing and part-
of-speech tagging in the neural paradigm. Finally,
we conduct a multi-lingual evaluation that demon-
strates the robustness of the overall structured neu-
ral approach, as well as the benefits of the exten-
sions proposed in this work. Our research further
demonstrates the breadth of the applicability of neu-
ral network methods to dependency parsing, as well
as the ease with which new features can be added to
neural parsing models.

1 Introduction

Transition-based parsers (Nivre, 2008) are ex-
tremely popular because of their high accuracy
and speed. Inspired by the greedy neural net-
work transition-based parser of Chen and Man-
ning (2014), Weiss et al. (2015) and Zhou et al.
(2015) concurrently developed structured neural
network parsers that use beam search and achieve
state-of-the-art accuracies for English dependency
parsing.1 While very successful, these parsers
have made use only of a small fraction of the
rich options provided inside the transition-based
framework: for example, all of these parsers use
virtually identical atomic features and the arc-
standard transition system.

In this paper we extend this line of work and
introduce two new types of features that sig-
nificantly improve parsing performance: (1) a
set-valued (i.e., bag-of-words style) feature for

1There is of course a much longer tradition of neural net-
work dependency parsing models, going back at least to Titov
and Henderson (2007).

each word’s morphological attributes, and (2) a
weighted set-valued feature for each word’s k-best
POS tags. These features can be integrated nat-
urally as atomic inputs to the embedding layer of
the network and the model can learn arbitrary con-
junctions with all other features through the hid-
den layers. In contrast, integrating such features
into a model with discrete features requires non-
trivial manual tweaking. For example, Bohnet
and Nivre (2012) had to carefully discretize the
real-valued POS tag score in order to combine it
with the other discrete binary features in their sys-
tem. Additionally, we also experiment with differ-
ent transition systems, most notably the integrated
parsing and part-of-speech (POS) tagging system
of Bohnet and Nivre (2012) and also the swap sys-
tem of Nivre (2009).

We evaluate our parser on the CoNLL ’09
shared task dependency treebanks, as well as on
two English setups, achieving the best published
numbers in many cases.

2 Model

In this section, we review the baseline model, and
then introduce the features (which are novel) and
the transition systems (taken from existing work)
that we propose as extensions. We measure the
impact of each proposed change on the develop-
ment sets of the multi-lingual CoNLL ’09 shared
task treebanks (Hajič et al., 2009). For details on
our experimental setup, see Section 3.

2.1 Baseline Model
Our baseline model is the structured neural net-
work transition-based parser with beam search of
Weiss et al. (2015). We use a feed-forward net-
work with embedding, hidden and softmax lay-
ers. The input consists of a sequence of matrices

1354



Ca Ch Cz En Ge Ja Sp

Pipelined
baseline 87.67 79.10 81.26 88.34 86.79 93.26 87.31
+morph 88.77 ” 84.50 ” 87.26 93.31 88.86
+morph +ktags 88.75 79.42 84.45 88.62 87.13 93.35 89.40

Integrated Tagging & Parsing
+morph 88.93 79.71 84.41 88.57 87.07 93.32 89.35
+morph +ktags 89.23 80.03 84.27 88.55 87.88 93.50 89.76

Table 1: Ablation study on CoNLL’09 dev set. All scores in
this table are LAS with beam 32. The first three rows use a
pipeline of tagging and then parsing, while the last two rows
use integrated parsing and tagging. Chinese and English have
no morphology features provided in the dataset, so we omit
morphology for those languages.

extracted deterministically from a transition-based
parse configuration (consisting of a stack and a
buffer). Each matrix Xg, corresponds to a feature
group g (one of words, tags, or labels), and has di-
mension Fg ×Vg. Here, Xg

f v is 1 if the f ’th feature
takes on value v for group g, i.e. each row Xg is a
one-hot vector. These features are embedded and
then concatenated to form the embedding layer,
which in turn is input to the first hidden layer. The
concatenated embedding layer can then be written
as follows:

h0 = [XgEg | g ∈ {word, tag, label}] (1)

where Eg is a (learned) Vg × Dg embedding ma-
trix for group g, and Dg is the embedding dimen-
sion for group g. Beyond the embedding layer,
there are two non-linear hidden layers (with non-
linearity introduced using a rectified linear acti-
vation function), and a softmax layer that outputs
class probabilities for each possible decision.

Training proceeds in two stages: We first train
the network as a classifier by extracting decisions
from gold derivations of the training set, as in
Chen and Manning (2014). We then train a struc-
tured perceptron using the output of all network
activations as features, as in Weiss et al. (2015).
We use structured training and beam search during
inference in all experiments. We train our models
only on the treebank training set and do not use
tri-training or other semi-supervised learning ap-
proaches (aside from using pre-trained word em-
beddings).

2.2 New Features

Prior work using neural networks for dependency
parsing has not ventured beyond the use of one-hot
feature activations for each feature type-location
pair. In this work, we experiment with set-valued

Ca Ch Cz En Ge Ja Sp

CRF (k = 1) 98.60 93.19 98.25 97.55 96.73 97.47 98.02
Linear (k = 4) 98.75 93.71 98.48 97.70 97.27 97.75 98.33
Neural (k = 4) 99.09 94.62 99.37 97.85 97.77 98.01 98.97

BN’12 (k = 3) - 93.06 99.32 97.77 97.63 - -

Table 2: POS tagging results on the CoNLL ’09 test set for in-
tegrated POS tagging and parsing. We compare the accuracy
of our baseline CRF tagger, ‘Linear’ (our re-implementation
of Bohnet and Nivre (2012, BN’12)), ‘Neural’ (the neural
parser presented in this work), and results reported by BN’12.

features, in which a set (or bag) of features for a
given location fire at once, and are embedded into
the same embedding space. Note that for both of
the features we introduce, we extract features from
the same 20 tokens as used in the tags and words
features from Weiss et al. (2015), i.e. various lo-
cations on the stack and input buffer.

Morphology. It is well known that morpholog-
ical information is very important for parsing
morphologically rich languages (see for example
Bohnet et al. (2013)). We incorporate morpho-
logical information into our model using a set-
valued feature function. We define the feature
group morph as the matrix Xmorph such that, for
1 ≤ f ≤ Fmorph, 1 ≤ v ≤ Fmorph,

Xmorph
f ,v =

1/N f , token f has attribute v
0, otherwise

, (2)

where N f is the number of morphological features
active on the token indexed by f . In other words,
we embed a bag of features into a shared embed-
ding space by averaging the individual feature em-
beddings.

k-best Tags. The non-linear network models of
Weiss et al. (2015) and Chen and Manning (2014)
embed the 1-best tag, according to a first-stage tag-
ger, for a select set of tokens for any configura-
tion. Inspired by the work of Bohnet and Nivre
(2012), we embed the set of top tags according to
a first-stage tagger. Specifically, we define the fea-
ture group ktags as the matrix Xktags such that, for
1 ≤ f ≤ Fktags, 1 ≤ v ≤ Vktags,

Xktags
f ,v =

P(POS = v | f ), v ∈ top k tags for f
0, otherwise

,

(3)

where P(POS = v | f ) is the marginal probability
that the token indexed by f has the tag indexed by
v, according to the first-stage tagger.
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Catalan Chinese Czech English German Japanese Spanish
Method B UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

Best Shared Task Result - - 87.86 - 79.17 - 80.38 - 89.88 - 87.48 - 92.57 - 87.64

Pipelined
Zhang and McDonald (2014) - 91.41 87.91 82.87 78.57 86.62 80.59 92.69 90.01 89.88 87.38 92.82 91.87 90.82 87.34
Lei et al. (2014) - 91.33 87.22 81.67 76.71 88.76 81.77 92.75 90.00 90.81 87.81 94.04 91.84 91.16 87.38
This work linear 32 90.81 87.74 81.62 77.62 85.61 76.50 91.86 89.42 89.28 86.79 92.56 91.90 90.02 86.92
This work neural 32 92.31 89.17 83.34 79.50 88.35 83.50 92.37 90.21 90.12 87.79 93.99 93.10 91.71 88.68

Integrated Tagging & Parsing
Bohnet and Nivre (2012) 40 92.02 88.97 81.18 77.00 88.07 82.70 92.06 89.54 90.43 88.23 93.67 92.63 91.43 88.54
Bohnet and Nivre (2012)+G+C 80 92.44 89.60 82.52 78.51 88.82 83.73 92.87 90.60 91.37 89.38 93.52 92.63 92.24 89.60
This work linear 32 91.02 87.98 82.26 78.32 85.73 78.37 91.57 88.83 88.80 86.38 93.28 92.38 90.24 87.09
This work neural 32 92.21 89.15 83.57 79.90 88.45 83.57 92.70 90.56 90.58 88.20 93.85 92.97 92.26 89.33

Table 3: Final CoNLL ’09 test set results. The results not from this work were solicited from the respective authors.

Results. The contributions of our new features
for pipelined arc-standard parsing are shown in Ta-
ble 1. Morphology features (+morph) contributed
a labeled accuracy score (LAS) gain of 2.9% in
Czech, 1.5% in Spanish, and 0.9% in Catalan.
Adding the k-best tag feature (+morph +ktags)
provides modest gains (and modest losses), peak-
ing at 0.54% LAS for Spanish. This feature proves
more beneficial in the integrated transition system,
discussed in the next section. We note the ease
with which we can obtain these gains in a multi-
layer embedding framework, without the need for
any hand-tuning.

2.3 Integrating Parsing and Tagging
While past work on neural network transition-
based parsing has focused exclusively on the arc-
standard transition system, it is known that bet-
ter results can often be obtained with more so-
phisticated transition systems that have a larger set
of possible actions. The integrated arc-standard
transition system of Bohnet and Nivre (2012) al-
lows the parser to participate in tagging decisions,
rather than being forced to treat the tagger’s tags as
given, as in the arc-standard system. It does this by
replacing the shift action in the arc-standard sys-
tem with an action shiftp, which, aside from shift-
ing the top token on the buffer also assigns it one
of the k best POS tags from a first-stage tagger.
We also experiment with the swap action of Nivre
(2009), which allows reordering of the tokens in
the input sequence. This transition system is able
to produce non-projective parse trees, which is im-
portant for some languages.

Results. The effect of using the integrated tran-
sition system is quantified in the bottom part of Ta-
ble 1. The use of both 1) +morph +kbest features
and 2) integrated parsing and tagging achieves the
best score for 5 out of 7 languages tested. The use

of integrated parsing and tagging provides, for ex-
ample, a 0.8% LAS gain in German.

3 Experiments

In this section we provide final test set results for
our baseline and full models on three standard se-
tups from the literature: CoNLL ’09, English WSJ
and English Treebank Union.

3.1 General Setup

To train with predicted POS tags, we use a CRF-
based POS tagger to generate 5-fold jack-knifed
POS tags on the training set and predicted tags
on the dev, test and tune sets; our tagger gets
comparable accuracy to the Stanford POS tagger
(Toutanova et al., 2003) with 97.44% on the WSJ
test set. The candidate tags allowed by the inte-
grated transition system on every shiftp action are
chosen by taking the top 4 tags for a token accord-
ing to the CRF tagger, sorted by posterior proba-
bility, with no minimum posterior probability for a
tag to be selected. We report unlabeled attachment
score (UAS) and labeled attachment score (LAS).
Whether punctuation is included in the evaluation
is specified in each subsection.

We use 1024 units in all hidden layers, a choice
made based on the development set. We found
network sizes to be of critical importance for the
accuracy of our models. For example, LAS im-
provements can be as high as 0.98% in CoNLL’09
German when increasing the size of the two hid-
den layers from 200 to 1024. We use B = 16 or
B = 32 based on the development set performance
per language. For ease of experimentation, we de-
viate from Bohnet and Nivre (2012) and use a sin-
gle unstructured beam, rather than separate beams
for POS tag and parse differences.

We train our neural networks on the standard
training sets only, except for initializing with word
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Method B UAS LAS

Graph-based pipelined
Bohnet (2010) - 92.88 90.71
Martins et al. (2013) - 92.89 90.55
Zhang and McDonald (2014) - 93.22 91.02

Transition-based pipelined
Zhang and Nivre (2011) 32 93.00 90.95
Bohnet and Kuhn (2012) 80 93.27 91.19
Chen and Manning (2014) 1 91.80 89.60
Dyer et al. (2015) 1 93.20 90.90
Weiss et al. (2015), supervised 8 93.99 92.05
Weiss et al. (2015), semi-sup. 8 94.26 92.41

Transition-based integrated
Bohnet and Nivre (2012) 80 93.33 91.22
This work, supervised 32 94.23 92.36

Table 4: WSJ test set results on Stanford dependencies. Both
the best supervised and semi-supervised results are bolded.

embeddings generated by word2vec and using
cluster features in our POS tagger. Unlike Weiss et
al. (2015) we train our model only on the treebank
training set and do not use tri-training, which can
likely further improve the results.

3.2 CoNLL ’09

Our multilingual evaluation follows the setup of
the CoNLL ’09 shared task2 (Hajič et al., 2009).
As standard, we use the supplied predicted mor-
phological features from the shared task data;
however, we predict k-best tags with our own POS
tagger since k-best tags are not part of the given
data. We follow standard practice and include all
punctuation in the evaluation. We used the (inte-
grated) arc-standard transition system for all lan-
guages except for Czech where we added a swap
transition, obtaining a 0.4% absolute improvement
in UAS and LAS over just using arc-standard.

Results. In Table 3, we compare our models to
the winners of the CoNLL ’09 shared task, Ges-
mundo et al. (2009), Bohnet (2009), Che et al.
(2009), Ren et al. (2009), as well as to more recent
results on the same datasets. It is worth pointing
out that Gesmundo et al. (2009) is itself a neural
net parser. Our models achieve higher labeled ac-
curacy than the winning systems in the shared task
in all languages. Additionally, our pipelined neu-
ral network parser always outperforms its linear
counterpart, an in-house reimplementation of the
system of Zhang and Nivre (2011), as well as the
more recent and highly accurate parsers of Zhang
and McDonald (2014) and Lei et al. (2014). For
the integrated models our neural network parser

2http://ufal.mff.cuni.cz/conll2009-st/results/results.php

News Web QTB
Method UAS LAS UAS LAS UAS LAS

Bohnet (2010) 93.29 91.38 88.22 85.22 94.01 91.49
Martins et al. (2013) 93.10 91.13 88.23 85.04 94.21 91.54
Zhang et al. (2014) 93.32 91.48 88.65 85.59 93.37 90.69
Weiss et al. (2015) 93.91 92.25 89.29 86.44 94.17 92.06
This work (B=16) 94.10 92.55 89.55 86.85 94.74 93.04

Table 5: Final English Treebank Union test set results.

again outperforms its linear counterpart (Bohnet
and Nivre, 2012), however, in some cases the ad-
dition of graph-based and cluster features (Bohnet
and Nivre, 2012)+G+C can lead to even better re-
sults. The improvements in POS tagging (Table
2) range from 0.3% for English to 1.4% absolute
for Chinese and are always higher for the neural
network models compared to the linear models.

3.3 English WSJ
We experiment on English using the Wall Street
Journal (WSJ) part of the Penn Treebank (Marcus
et al., 1993), with standard train/test splits. We
convert the constituency trees to Stanford style de-
pendencies (De Marneffe et al., 2006) using ver-
sion 3.3.0 of the converter. We use predicted POS
tags and exclude punctuation from the evaluation,
as is standard for English.

Results. The results shown in Table 4, we find
that our full model surpasses, to our knowledge,
all previously reported supervised parsing models
for the Stanford dependency conversions. It sur-
passes its linear analog, the work of Bohnet and
Nivre (2012) on Stanford Dependencies UAS by
0.9% UAS and by 1.14% LAS. It also outperforms
the pipeline neural net model of Weiss et al. (2015)
by a considerable margin and matches the semi-
supervised variant of Weiss et al. (2015).

3.4 English Treebank Union
Turning to cross-domain results, and the “Tree-
bank Union” datasets, we use an identical setup to
the one described in Weiss et al. (2015). This setup
includes the WSJ with Stanford Dependencies, the
OntoNotes corpus version 5 (Hovy et al., 2006),
the English Web Treebank (Petrov and McDon-
ald, 2012), and the updated and corrected Ques-
tion Treebank (Judge et al., 2006). We train on
the union of each corpora’s training set and test on
each domain separately.

Results. The results of this evaluation are shown
in Table 5. As for the WSJ we find that the inte-
grated transition system combined with our novel
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features performs better than previous work and in
particular the model of Weiss et al. (2015), which
serves as the starting point for this work. The im-
provements on the out-of-domain Web and Ques-
tion corpora are particularly promising.

4 Conclusions

Weiss et al. (2015) presented a parser that ad-
vanced the state of the art for English Stanford de-
pendency parsing. In this paper we showed that
this parser can be significantly improved by in-
troducing novel set features for morphology and
POS tag ambiguities, which are added with almost
no feature engineering effort. The resulting parser
is already competitive in the multi-lingual setting
of the CoNLL’09 shared task, but can be further
improved by utilizing an integrated POS tagging
and parsing transition system. We find that for
all settings the dense neural network model pro-
duces higher POS tagging and parsing accuracy
gains than its sparse linear counterpart.
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Abstract

Model combination techniques have con-
sistently shown state-of-the-art perfor-
mance across multiple tasks, including
syntactic parsing. However, they dramat-
ically increase runtime and can be diffi-
cult to employ in practice. We demon-
strate that applying constituency model
combination techniques to n-best lists in-
stead of n different parsers results in sig-
nificant parsing accuracy improvements.
Parses are weighted by their probabilities
and combined using an adapted version
of Sagae and Lavie (2006). These accu-
racy gains come with marginal computa-
tional costs and are obtained on top of ex-
isting parsing techniques such as discrim-
inative reranking and self-training, result-
ing in state-of-the-art accuracy: 92.6% on
WSJ section 23. On out-of-domain cor-
pora, accuracy is improved by 0.4% on
average. We empirically confirm that six
well-known n-best parsers benefit from
the proposed methods across six domains.

1 Introduction

Researchers have proposed many algorithms to
combine parses from multiple parsers into one fi-
nal parse (Henderson and Brill, 1999; Zeman and
Žabokrtskỳ, 2005; Sagae and Lavie, 2006; Now-
son and Dale, 2007; Fossum and Knight, 2009;
Petrov, 2010; Johnson and Ural, 2010; Huang et
al., 2010; McDonald and Nivre, 2011; Shindo et
al., 2012; Narayan and Cohen, 2015). These new
parses are substantially better than the originals:
Zhang et al. (2009) combine outputs from mul-
tiple n-best parsers and achieve an F1 of 92.6%
on the WSJ test set, a 0.5% improvement over
their best n-best parser. Model combination ap-
proaches tend to fall into the following categories:

hybridization, where multiple parses are combined
into a single parse; switching, which picks a sin-
gle parse according to some criteria (usually a
form of voting); grammar merging where gram-
mars are combined before or during parsing; and
stacking, where one parser sends its prediction
to another at runtime. All of these have at least
one of the caveats that (1) overall computation
is increased and runtime is determined by the
slowest parser and (2) using multiple parsers in-
creases the system complexity, making it more
difficult to deploy in practice. In this paper, we
describe a simple hybridization extension (“fu-
sion”) which obtains much of hybridization’s ben-
efits while using only a single n-best parser and
minimal extra computation. Our method treats
each parse in a single parser’s n-best list as a
parse from n separate parsers. We then adapt
parse combination methods by Henderson and
Brill (1999), Sagae and Lavie (2006), and Fos-
sum and Knight (2009) to fuse the constituents
from the n parses into a single tree. We empir-
ically show that six n-best parsers benefit from
parse fusion across six domains, obtaining state-
of-the-art results. These improvements are com-
plementary to other techniques such as rerank-
ing and self-training. Our best system obtains
an F1 of 92.6% on WSJ section 23, a score pre-
viously obtained only by combining the outputs
from multiple parsers. A reference implementa-
tion is available as part of BLLIP Parser at http:
//github.com/BLLIP/bllip-parser/

2 Fusion

Henderson and Brill (1999) propose a method to
combine trees from m parsers in three steps: pop-
ulate a chart with constituents along with the num-
ber of times they appear in the trees; remove any
constituent with count less than m/2 from the
chart; and finally create a final tree with all the
remaining constituents. Intuitively their method
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constructs a tree with constituents from the ma-
jority of the trees, which boosts precision signif-
icantly. Henderson and Brill (1999) show that
this process is guaranteed to produce a valid tree.
Sagae and Lavie (2006) generalize this work by
reparsing the chart populated with constituents
whose counts are above a certain threshold. By
adjusting the threshold on development data, their
generalized method balances precision and recall.
Fossum and Knight (2009) further extend this line
of work by using n-best lists from multiple parsers
and combining productions in addition to con-
stituents. Their model assigns sums of joint proba-
bilities of constituents and parsers to constituents.
Surprisingly, exploiting n-best trees does not lead
to large improvement over combining 1-best trees
in their experiments.

Our extension takes the n-best trees from a
parser as if they are 1-best parses from n parsers,
then follows Sagae and Lavie (2006). Parses
are weighted by the estimated probabilities from
the parser. Given n trees and their weights, the
model computes a constituent’s weight by sum-
ming weights of all trees containing that con-
stituent. Concretely, the weight of a constituent
spanning from ith word to jth word with label ` is

c`(i→ j) =
n∑
k=1

W (k)Ck` (i→ j) (1)

where W (k) is the weight of kth tree and Ck` (i→
j) is one if a constituent with label ` spanning from
i to j is in kth tree, zero otherwise. After populat-
ing the chart with constituents and their weights,
it throws out constituents with weights below a set
threshold t. Using the threshold t = 0.5 emulates
the method of Henderson and Brill (1999) in that
it constructs the tree with the constituents in the
majority of the trees. The CYK parsing algorithm
is applied to the chart to produce the final tree.

Note that populating the chart is linear in the
number of words and the chart contains substan-
tially fewer constituents than charts in well-known
parsers, making this a fast procedure.

2.1 Score distribution over trees

We assume that n-best parsers provide trees along
with some kind of scores (often probabilities or
log probabilities). Given these scores, a natural
way to obtain weights is to normalize the prob-
abilities. However, parsers do not always provide
accurate estimates of parse quality. We may obtain

better performance from parse fusion by altering
this distribution and passing scores through a non-
linear function, f(·). The kth parse is weighted:

W (k) =
f(SCORE(k))∑n
i=1 f(SCORE(i))

(2)

where SCORE(i) is the score of ith tree.1 We ex-
plore the family of functions f(x) = xβ which can
smooth or sharpen the score distributions. This in-
cludes a tunable parameter, β ∈ R+

0 :

W (k) =
SCORE(k)β∑n
i=1 SCORE(i)β

(3)

Employing β < 1 flattens the score distribution
over n-best trees and helps over-confident parsers.
On the other hand, having β > 1 skews the distri-
bution toward parses with higher scores and helps
under-confident parsers. Note that setting β = 0
weights all parses equally and results in majority
voting at the constituent level. We leave develop-
ing other nonlinear functions for fusion as future
work.

3 Experiments

Corpora: Parse fusion is evaluated on British
National Corpus (BNC), Brown, GENIA, Ques-
tion Bank (QB), Switchboard (SB) and Wall Street
Journal (WSJ) (Foster and van Genabith, 2008;
Francis and Kučera, 1989; Kim et al., 2003;
Judge et al., 2006; Godfrey et al., 1992; Mar-
cus et al., 1993). WSJ is used to evaluate in-
domain parsing, the remaining five are used for
out-of-domain. For divisions, we use tune and test
splits from Bacchiani et al. (2006) for Brown, Mc-
Closky’s test PMIDs2 for GENIA, Stanford’s test
splits3 for QuestionBank, and articles 4000–4153
for Switchboard.
Parsers: The methods are applied to six widely
used n-best parsers: Charniak (2000), Stanford
(Klein and Manning, 2003), BLLIP (Charniak and
Johnson, 2005), Self-trained BLLIP (McClosky et
al., 2006)4, Berkeley (Petrov et al., 2006), and
Stanford RNN (Socher et al., 2013). The list of
parsers and their accuracies on the WSJ test set
is reported in Table 1. We convert to Stanford

1For parsers that return log probabilities, we turn these
into probabilities first.

2http://nlp.stanford.edu/˜mcclosky/
biomedical.html

3http://nlp.stanford.edu/data/
QuestionBank-Stanford.shtml

4Using the ‘WSJ+Gigaword-v2’ BLLIP model.
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Parser F1 UAS LAS
Stanford 85.4 90.0 87.3
Stanford RNN5 89.6 92.9 90.4
Berkeley 90.0 93.5 91.2
Charniak 89.7 93.2 90.8
BLLIP 91.5 94.4 92.0
Self-trained BLLIP 92.2 94.7 92.2

Table 1: Six parsers along with their 1-best F1

scores, unlabeled attachment scores (UAS) and la-
beled attachment scores (LAS) on WSJ section 23.

Dependencies (basic dependencies, version 3.3.0)
and provide dependency metrics (UAS, LAS) as
well.

Supervised parsers are trained on the WSJ train-
ing set (sections 2–21) and use section 22 or
24 for development. Self-trained BLLIP is self-
trained using two million sentences from Giga-
word and Stanford RNN uses word embeddings
trained from larger corpora.
Parameter tuning: There are three parameters for
our fusion process: the size of the n-best list (2 <
n ≤ 50), the smoothing exponent from Section 2.1
(β ∈ [0.5, 1.5] with 0.1 increments), and the mini-
mum threshold for constituents (t ∈ [0.2, 0.7] with
0.01 increments). We use grid search to tune these
parameters for two separate scenarios. When pars-
ing WSJ (in-domain), we tune parameters on WSJ
section 24. For the remaining corpora (out-of-
domain), we use the tuning section from Brown.
Each parser is tuned separately, resulting in 12
different tuning scenarios. In practice, though,
in-domain and out-of-domain tuning regimes tend
to pick similar settings within a parser. Across
parsers, settings are also fairly similar (n is usu-
ally 30 or 40, t is usually between 0.45 and 0.5).
While the smoothing exponent varies from 0.5 to
1.3, setting β = 1 does not significantly hurt ac-
curacy for most parsers.

To study the effects of these parameters, Fig-
ure 1 shows three slices of the tuning surface for
BLLIP parser on WSJ section 24 around the op-
timal settings (n = 30, β = 1.1, t = 0.47). In
each graph, one of the parameters is varied while
the other is held constant. Increasing n-best size
improves accuracy until about n = 30 where there
seems to be sufficient diversity. For BLLIP, the

5Socher et al. (2013) report an F1 of 90.4%, but this is
the result of using an ensemble of two RNNs (p.c.). We use a
single RNN in this work.

Parser WSJ Brown
BLLIP 90.6 85.7
+ Fusion 91.0 86.0
+ Majority voting (β = 0) 89.1 83.8
+ Rank-based weighting 89.3 84.1

Table 2: F1 of a baseline parser, fusion, and base-
lines on development sections of corpora (WSJ
section 24 and Brown tune).

smoothing exponent (β) is best set around 1.0,
with accuracy falling off if the value deviates too
much. Finally, the threshold parameter is empiri-
cally optimized a little below t = 0.5 (the value
suggested by Henderson and Brill (1999)). Since
score values are normalized, this means that con-
stituents need roughly half the “score mass” in or-
der to be included in the chart. Varying the thresh-
old changes the precision/recall balance since a
high threshold adds only the most confident con-
stituents to the chart (Sagae and Lavie, 2006).
Baselines: Table 2 gives the accuracy of fusion
and baselines for BLLIP on the development cor-
pora. Majority voting sets n = 50, β = 0, t =
0.5 giving all parses equal weight and results in
constituent-level majority voting. We explore a
rank-based weighting which ignores parse prob-
abilities and weight parses only using the rank:
Wrank(k) = 1/(2k). These show that accu-
rate parse-level scores are critical for good perfor-
mance.
Final evaluation: Table 3 gives our final re-
sults for all parsers across all domains. Results
in blue are significant at p < 0.01 using a ran-
domized permutation test. Fusion generally im-
proves F1 for in-domain and out-of-domain pars-
ing by a significant margin. For the self-trained
BLLIP parser, in-domain F1 increases by 0.4%
and out-of-domain F1 increases by 0.4% on av-
erage. Berkeley parser obtains the smallest gains
from fusion since Berkeley’s n-best lists are or-
dered by factors other than probabilities. As a re-
sult, the probabilities from Berkeley can mislead
the fusion process.

We also compare against model combination
using our reimplementation of Sagae and Lavie
(2006). For these results, all six parsers were given
equal weight. The threshold was set to 0.42 to
optimize model combination F1 on development
data (similar to Setting 2 for constituency parsing
in Sagae and Lavie (2006)). Model combination
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Figure 1: Tuning parameters independently for BLLIP and their impact on F1 for WSJ section 24 (solid
purple line). For each graph, non-tuned parameters were set at the optimal configuration for BLLIP
(n = 30, β = 1.1, t = 0.47). The dashed grey line represents the 1-best baseline at 90.6% F1.

Parser BNC Brown GENIA SB QB WSJ
Stanford 78.4 / 79.6 80.7 / 81.6 73.1 / 73.9 67.0 / 67.9 78.6 / 80.0 85.4 / 86.2
Stanford RNN 82.0 / 82.3 84.0 / 84.3 76.0 / 76.2 70.7 / 71.2 82.9 / 83.6 89.6 / 89.7
Berkeley 82.3 / 82.9 84.6 / 84.6 76.4 / 76.6 74.5 / 75.1 86.5 / 85.9 90.0 / 90.3
Charniak 82.5 / 83.0 83.9 / 84.6 74.8 / 75.7 76.8 / 77.6 85.6 / 86.3 89.7 / 90.1
BLLIP 84.1 / 84.7 85.8 / 86.0 76.7 / 77.1 79.2 / 79.5 88.1 / 88.9 91.5 / 91.7
Self-trained BLLIP 85.2 / 85.8 87.4 / 87.7 77.8 / 78.2 80.9 / 81.7 89.5 / 89.5 92.2 / 92.6
Model combination 86.6 87.7 79.4 80.9 89.3 92.5

Table 3: Evaluation of the constituency fusion method on six parsers across six domains. x/y indicates
the F1 from the baseline parser (x) and the baseline parser with fusion (y) respectively. Blue indicates a
statistically significant difference between fusion and its baseline parser (p < 0.01).

performs better than fusion on BNC and GENIA,
but surprisingly fusion outperforms model com-
bination on three of the six domains (not usually
not by a significant margin). With further tuning
(e.g., specific weights for each constituent-parser
pair), the benefits from model combination should
increase.

Multilingual evaluation: We evaluate fusion with
the Berkeley parser on Arabic (Maamouri et al.,
2004; Green and Manning, 2010), French (Abeillé
et al., 2003), and German (Brants et al., 2002)
from the SPMRL 2014 shared task (Seddah et al.,
2014) but did not observe any improvement. We
suspect this has to do with the same ranking issues
seen in the Berkeley Parser’s English results. On
the other hand, fusion helps the parser of Narayan
and Cohen (2015) on the German NEGRA tree-
bank (Skut et al., 1997) to improve from 80.9% to
82.4%.

Runtime: As discussed in Section 2, fusion’s run-
time overhead is minimal. Reranking parsers (e.g.,
BLLIP and Stanford RNN) already need to per-
form n-best decoding as input for the reranker.
Using a somewhat optimized implementation fu-
sion in C++, the overhead over BLLIP parser is

less than 1%.

Discussion: Why does fusion help? It is possible
that a parser’s n-list and its scores act as a weak
approximation to the full parse forest. As a result,
fusion seems to provide part of the benefits seen in
forest reranking (Huang, 2008).

Results from Fossum and Knight (2009) imply
that fusion and model combination might not be
complementary. Both n-best lists and additional
parsers provide syntactic diversity. While addi-
tional parsers provide greater diversity, n-best lists
from common parsers are varied enough to pro-
vide improvements for parse hybridization.

We analyzed how often fusion produces com-
pletely novel trees. For BLLIP on WSJ section
24, this only happens about 11% of the time.
Fusion picks the 1-best tree 72% of the time.
This means that for the remaining 17%, fusion
picks an existing parse from the rest of the n-
list, acting similar to a reranker. When fusion
creates unique trees, they are significantly better
than the original 1-best trees (for the 11% sub-
set of WSJ 24, F1 scores are 85.5% with fusion
and 84.1% without, p < 0.003). This contrasts
with McClosky et al. (2012) where novel predic-
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tions from model combination (stacking) were
worse than baseline performance. The difference
is that novel predictions with fusion better incor-
porate model confidence whereas when stacking,
a novel prediction is less trusted than those pro-
duced by one or both of the base parsers.
Preliminary extensions: Here, we summarize
two extensions to fusion which have yet to show
benefits. The first extension explores applying
fusion to dependency parsing. We explored two
ways to apply fusion when starting from con-
stituency parses: (1) fuse constituents and then
convert them to dependencies and (2) convert to
dependencies then fuse the dependencies as in
Sagae and Lavie (2006). Approach (1) does not
provide any benefit (LAS drops between 0.5% and
2.4%). This may result from fusion’s artifacts in-
cluding unusual unary chains or nodes with a large
number of children — it is possible that adjusting
unary handling and the precision/recall tradeoff
may reduce these issues. Approach (2) provided
only modest benefits compared to those from con-
stituency parsing fusion. The largest LAS increase
for (2) is 0.6% for the Stanford Parser, though for
Berkeley and Self-trained BLLIP, dependency fu-
sion results in small losses (-0.1% LAS). Two pos-
sible reasons are that the dependency baseline is
higher than its constituency counterpart and some
dependency graphs from the n-best list are dupli-
cates which lowers diversity and may need special
handling, but this remains an open question.

While fusion helps on top of a self-trained
parser, we also explored whether a fused parser
can self-train (McClosky et al., 2006). To test this,
we (1) parsed two million sentences with BLLIP
(trained on WSJ), (2) fused those parses, (3) added
the fused parses to the gold training set, and (4)
retrained the parser on the expanded training. The
resulting model did not perform better than a self-
trained parsing model that didn’t use fusion.

4 Conclusions

We presented a simple extension to parse hy-
bridization which adapts model combination tech-
niques to operate over a single parser’s n-best list
instead of across multiple parsers. By weight-
ing each parse by its probability from the n-best
parser, we are able to better capture the confidence
at the constituent level. Our best configuration ob-
tains state-of-the-art accuracy on WSJ with an F1

of 92.6%. This is similar to the accuracy obtained

from actual model combination techniques but at
a fraction of the computational cost. Additionally,
improvements are not limited to a single parser or
domain. Fusion improves parser accuracy for six
n-best parsers both in-domain and out-of-domain.

Future work includes applying fusion to n-best
dependency parsers and additional (parser, lan-
guage) pairs. We also intend to explore how to bet-
ter apply fusion to converted dependencies from
constituency parsers. Lastly, it would be interest-
ing to adapt fusion to other structured prediction
tasks where n-best lists are available.
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Abstract

We introduce an extension to the bag-of-
words model for learning words represen-
tations that take into account both syn-
tactic and semantic properties within lan-
guage. This is done by employing an at-
tention model that finds within the con-
textual words, the words that are relevant
for each prediction. The general intuition
of our model is that some words are only
relevant for predicting local context (e.g.
function words), while other words are
more suited for determining global con-
text, such as the topic of the document.
Experiments performed on both semanti-
cally and syntactically oriented tasks show
gains using our model over the existing
bag of words model. Furthermore, com-
pared to other more sophisticated models,
our model scales better as we increase the
size of the context of the model.

1 Introduction

Learning word representations using raw text data
have been shown to improve many NLP tasks,
such as part-of-speech tagging (Collobert et al.,
2011), dependency parsing (Chen and Manning,
2014; Kong et al., 2014) and machine transla-
tion (Liu et al., 2014; Kalchbrenner and Blunsom,
2013; Devlin et al., 2014; Sutskever et al., 2014).
These embeddings are generally learnt by defining
an objective function, which predicts words con-
ditioned on the context surrounding those words.
Once trained, these can be used as features (Turian
et al., 2010), as initializations of other neural net-
works (Hinton and Salakhutdinov, 2012; Erhan et
al., 2010; Guo et al., 2014).

The continuous bag-of-words (Mikolov et al.,
2013) is one of the many models that learns word
representations from raw textual data. While these
models are adequate for learning semantic fea-
tures, one of the problems of this model is the
lack of sensitivity for word order, which limits
their ability of learn syntactically motivated em-
beddings (Ling et al., 2015a; Bansal et al., 2014).
While models have been proposed to address this
problem, the complexity of these models (“Struc-
tured skip-n-gram” and “CWindow”) grows lin-
early as size of the window of words considered
increases, as a new set of parameters is created
for each relative position. On the other hand, the
continuous bag-of-words model requires no addi-
tional parameters as it builds the context repre-
sentation by summing over the embeddings in the
window and its performance is an order of magni-
tude higher than of other models.

In this work, we propose an extension to the
continuous bag-of-words model, which adds an at-
tention model that considers contextual words dif-
ferently depending on the word type and its rela-
tive position to the predicted word (distance to the
left/right). The main intuition behind our model
is that the prediction of a word is only dependent
on certain words within the context. For instance,
in the sentence We won the game! Nicely played!,
the prediction of the word played, depends on both
the syntactic relation from nicely, which narrows
down the list of candidates to verbs, and on the
semantic relation from game, which further nar-
rows down the list of candidates to verbs related
to games. On the other hand, the words we and
the add very little to this particular prediction. On
the other hand, the word the is important for pre-
dicting the word game, since it is generally fol-
lowed by nouns. Thus, we observe that the same
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word can be informative in some contexts and not
in others. In this case, distance is a key factor, as
the word the is informative to predict the immedi-
ate neighboring words, but not distance ones.

2 Attention-Based Continuous
Bag-of-words

2.1 Continuous Bag-Of-Words (CBOW)
The work in (Mikolov et al., 2013) is frequently
used to learn word embeddings. It defines pro-
jection matrix W ∈ <d×|V | where d is the em-
bedding dimension with the vocabulary V . These
parameters are optimized by by maximizing the
likelihood that words are predicted from their con-
text. Two models were defined, the skip-gram
model and the continuous bag-of-words model.
In this work, we focus on the continuous bag-
of-words model. The CBOW model predicts the
center word w0 given a representation of the sur-
rounding words w−b, . . . ,w−1,w1,wb, where b
is a hyperparameter defining the window of con-
text words. The context vector is obtained by
averaging the embeddings of each word c =
1
2b

∑
i∈[−b,b]−{0}wi and the prediction of the cen-

ter word w0 is obtained by performing a softmax
over all the vocabulary V . More formally, define
the output matrix O ∈ <|V |×dw , which maps the
context vector c into a |V |-dimensional vector rep-
resenting the predicted word, and maximizes the
following probability:

p(v0 | w[−b,b]−{0}) =
expv>0 Oc∑

v∈V expv>Oc
(1)

where Oc corresponds to the projection of the
context vector c onto the vocabulary V and v
is a one-hot representation. For larger vocabu-
laries it is inefficient to compute the normalizer∑

v∈V expv>Oc. Solutions for problem are us-
ing the hierarchical softmax objective function
(Mikolov et al., 2013) or resorting to negative
sampling to approximate the normalizer (Gold-
berg and Levy, 2014).

The continuous bag-of-words model differs
from other proposed models in the sense that its
complexity does not rise substantially as we in-
crease the window b, since it only requires two
extra additions to compute c, which correspond to
dw operations each. On the other hand, the skip-
n-gram model requires two extra predictions cor-
responding to dw × V operations each, which is
an order of magnitude more expensive even when

subsampling V . However, the drawback the bag-
of-words model is that it does not learn embed-
dings that are prone for learning syntactically ori-
ented tasks, mainly due to lack of sensitivity to
word order, since the context is defined by a sum
of surrounding words. Extensions are proposed
in (Ling et al., 2015a), where the sum if replaced
by the concatenation of the word embeddings in
the order these occur. However, this model does
not scale well as b increases as it requires V × dw
more parameters for each new word in the win-
dow.

Finally, setting a good value for b is difficult as
larger values may introduce a degenerative behav-
ior in the model, as more effort is spent predict-
ing words that are conditioned on unrelated words,
while smaller values of b may lead to cases where
the window size is not large enough include words
that are semantically related. For syntactic tasks,
it has been shown that increasing the window size
can adversely impact in the quality of the embed-
dings (Bansal et al., 2014; Lin et al., 2015).

2.2 CBOW with Attention
We present a solution to these problems while
maintaining the efficiency underlying the bag-of-
words model, and allowing it to consider contex-
tual words within the window in a non-uniform
way. We first rewrite the context window c as:

c =
∑

i∈[−b,b]−{0}
ai(wi)wi (2)

where we replace the average of the word embed-
dings with a weighted sum of the individual word
embeddings within the context. That is, each word
is wi at relative position i is attributed an attention
level representing how much the attention model
believes this it is important to look at in order to
predict the center word. The attention ai(w) given
to word w ∈ V at the relative position i is com-
puted as:

ai(w) =
exp kw,i + si∑

j∈[−b,b]−{0} exp kw,j + sj
(3)

where K ∈ <|V |×2b (with elements ki,j) is a set
of parameters that which determines the impor-
tance of each word type in each (relative) position,
s ∈ <2b is a bias, which is conditioned only on
the relative position. As this is essentially a soft-
max over context words, the default bag-of-words
model can be seen as a special case of this model
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where all parameters K and s are fixed at zero.
Computing the attention of all words in the input
requires 2b operations, as it simply requires re-
trieving one value from the lookup matrix K for
each word and one value from the bias s for each
word in the window. Considering that these mod-
els must be trainable on billions of tokens, effi-
ciency is paramount. Although more sophisticated
attentional models are certainly imaginable (Bah-
danau et al., 2014), ours is a good balance of com-
putational efficiency and modeling expressivity.

2.3 Parameter Learning

Gradients of the loss function with respect to
the parameters (W,O,K, s) are computed with
backpropagation, and parameters are updated after
each training instance using a fixed learning rate.

3 Experiments

3.1 Word Vectors

We used a subsample from an English Wikipedia
dump1 containing 10 million documents, contain-
ing a total of 530 million tokens. We built word
embeddings using the original CBOW and our
proposed attentional model on this dataset.

In both cases, word vectors were constructed us-
ing window size b = 20, which enables us to cap-
ture longer-range dependencies between words.
We set the embedding size dw = 50 and used a
negative sampling rate of 10. Finally, the vocabu-
lary was reduced to words with more than 40 oc-
currences. In terms of computational speed, the
original bag-of-words implementation was able to
compute approximately 220k words per second,
while our model computes approximately 100k
words per second. The slowdown is tied to the
fact that we are computing the gradients, the atten-
tion model parameters, as well as the word embed-
dings. On the other hand, the skip-n-gram model
process words at only 10k words per second, as it
must predict every word in the window b.

Figure 1 illustrates the attention model for the
prediction of the word south in the sentence an-
tartica has little rainfall with the south pole mak-
ing it a continental desert. Darker cell indicate
higher attention values from a(i, w). We can ob-
serve that function words (has, the and a) tend to
be attributed very low attentions, as these are gen-
erally less predictive power. On the other hand,

1Collected in September of 2014

antartica has little rainfall with the

south

pole making it a continental desert

Figure 1: Illustration of the inferred attention pa-
rameters for a sentence from our training data
when predicting the word south; darker cells in-
dicate higher weights.

content words, such as antartica, rainfall, conti-
nental and desert are attributed higher weights as
these words provide hints that the predicted word
is likely to be related to these words. Finally, the
word pole is assigned the highest attention as it
close to the predicted word, and there is a very
likely chance that south will precede pole.

3.2 Syntax Evaluation

For syntax, we evaluate our embeddings in the
domain of part-of-speech tagging in both su-
pervised (Ling et al., 2015b) and unsupervised
tasks (Lin et al., 2015). This later task is newly
proposed, but we argue that success in it is a com-
pelling demonstration of separation of words into
syntactically coherent clusters.

Part-of-speech induction. The work in (Lin et
al., 2015) attempts to infer POS tags with a
standard bigram hmm, which uses word embed-
dings to infer POS tags without supervision. We
use the same dataset, obtained from the ConLL
2007 shared task (Nivre et al., 2007) Scoring is
performed using the V-measure (Rosenberg and
Hirschberg, 2007), which is used to predict syn-
tactic classes at the word level. It has been shown
in (Lin et al., 2015) that word embeddings learnt
from structured skip-ngrams tend to work better
at this task, mainly because it is less sensitive to
larger window sizes. These results are consistent
with our observations found in Table 1, in rows
“Skip-ngram” and “SSkip-ngram”. We can ob-
serve that our attention based CBOW model (row
“CBOW Attention”) improves over these results
for both tasks and also the original CBOW model
(row “CBOW”).
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POS Induction POS Tagging Sentiment Analysis
CBOW 50.40 97.03 71.99

Skip-ngram 33.86 97.19 72.10
SSkip-ngram 47.64 97.40 69.96

CBOW Attention 54.00 97.39 71.39

Table 1: Results for unsupervised POS induction, supervised POS tagging and Sentiment Analysis (one
per column) using different types of embeddings (one per row).

Part-of-speech tagging. The evaluation is per-
formed on the English PTB, with the standard
train (Sections 0-18), dev (Sections 19-21) and test
(Sections 22-24) splits. The model is trained with
the Bidirectional LSTM model presented in (Ling
et al., 2015b) using the same hyper-parameters.
Results on the POS accuracy on the test set are
reported on Table 1. We can observe our model
can obtain similar results compared to the struc-
tured skip-ngram model on this task, while train-
ing the model is significantly faster. The gap be-
tween the usage of different embeddings is not as
large as in POS induction, as this is a supervised
task, where pre-training generally leads to smaller
improvements.

3.3 Semantic Evaluation

To evaluate the quality of our vectors in terms
of semantics, we use the sentiment analysis task
(Senti) (Socher et al., 2013), which is a binary
classification task for movie reviews. We sim-
ply use the mean of the word vectors of words
in a sentence, and use them as features in an `2-
regularized logistic regression classifier. We use
the standard training/dev/test split and report ac-
curacy on the test set in table 1.

We can see that in this task, our models do
not perform as well as the CBOW and Skipngram
model, which hints that our model is learning em-
beddings that learn more towards syntax. This is
expected as it is generally uncommon for embed-
dings to outperform existing models on both syn-
tactic and semantic tasks simultaneously, as em-
beddings tend to be either more semantically or
syntactically oriented. It is clear that the skipn-
gram model learns embeddings that are more se-
mantically oriented as it performs badly on all
syntactic tasks. The structured skip-ngram model
on the other hand performs badly on the syntactic
tasks, but we observe a large drop on this semanti-
cally oriented task. Our attention-based model, on
the other hand, out performs all other models on
syntax-based tasks, while maintaining a compet-

itive score on semantic tasks. This is an encour-
aging result that shows that it is possible to learn
representations that can perform well on both se-
mantic and syntactic tasks.

4 Related Work

Many methods have been proposed for learning
word representations. Earlier work learns em-
beddings using a recurrent language model (Col-
lobert et al., 2011), while several simpler and
more lightweight adaptations have been pro-
posed (Huang et al., 2012; Mikolov et al., 2013).
While most of the learnt vectors are semantically
oriented, work has been done in order to ex-
tend the model to learn syntactically oriented em-
beddings (Ling et al., 2015a). Attention models
are common in vision related tasks (Tang et al.,
2014), where models learn to pay attention to cer-
tain parts of a image in order to make accurate
predictions. This idea has been recently intro-
duced in many NLP tasks, such as machine trans-
lation (Bahdanau et al., 2014). In the area of word
representation learning, no prior work that uses at-
tention models exists to our knowledge.

5 Conclusions

In this work, we presented an extension to the
CBOW model by introducing an attention model
to select relevant words within the context to make
more accurate predictions. As consequence, the
model learns representations that are both syntac-
tic and semantically motivated that do not degrade
with large window sizes, compared to the orig-
inal CBOW and skip-ngram models. Efficiency
is maintained by learning a position-based atten-
tion model, which can compute the attention of
surrounding words with a relatively small number
of operations. Finally, we show improvements on
syntactically oriented tasks, without degrading re-
sults significantly on semantically oriented tasks.

1370



Acknowledgements

The PhD thesis of Wang Ling is supported by
FCT grant SFRH/BD/51157/2010. This research
was supported in part by the U.S. Army Re-
search Laboratory, the U.S. Army Research Office
under contract/grant number W911NF-10-1-0533
and NSF IIS-1054319 and FCT through the pluri-
anual contract UID/CEC/50021/2013 and grant
number SFRH/BPD/68428/2010.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR,
abs/1409.0473.

Mohit Bansal, Kevin Gimpel, and Karen Livescu.
2014. Tailoring continuous word representations for
dependency parsing. In Proceedings of the Annual
Meeting of the Association for Computational Lin-
guistics.

Danqi Chen and Christopher D Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 740–750.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
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Abstract

Transition-based dependency parsers usu-
ally use transition systems that monotoni-
cally extend partial parse states until they
identify a complete parse tree. Honni-
bal et al. (2013) showed that greedy one-
best parsing accuracy can be improved
by adding additional non-monotonic tran-
sitions that permit the parser to “repair”
earlier parsing mistakes by “over-writing”
earlier parsing decisions. This increases
the size of the set of complete parse trees
that each partial parse state can derive, en-
abling such a parser to escape the “gar-
den paths” that can trap monotonic greedy
transition-based dependency parsers.

We describe a new set of non-monotonic
transitions that permits a partial parse state
to derive a larger set of completed parse
trees than previous work, which allows our
parser to escape from a larger set of gar-
den paths. A parser with our new non-
monotonic transition system has 91.85%
directed attachment accuracy, an improve-
ment of 0.6% over a comparable parser us-
ing the standard monotonic arc-eager tran-
sitions.

1 Introduction

Recent work from Dyer et al. (2015) and Weiss
et al. (2015) show that neural network models can
improve greedy transition-based parsers dramat-
ically, even beyond the 20% error reduction re-
ported by Chen and Manning (2014). Improve-
ments on beam-search parsing are much more lim-
ited, due to the difficulty of applying neural net-
works to structured prediction.

We suggest that the lack of a ready search so-
lution may present the next barrier to further im-
provements in accuracy. Some degree of search
flexibility seems inherently necessary, no mat-
ter how powerful the local model becomes, as
even the human sentence processor can be ‘garden
pathed’ by local structural ambiguities.

We take inspiration from Frazier and Rayner
(1982) and other psycholinguists and propose re-
pair actions as a light-weight alternative to beam-
search. In a transition-based dependency parser,
transitions map parse states to parse states, ulti-
mately producing completed parse trees. This pro-
cess is non-deterministic, since usually more than
one transition can apply to a parse state. This
means that each partial parse state can be associ-
ated with a set of complete parse trees (i.e., the
complete parses that can be produced by applying
sequences of transitions to the partial parse state).
In general adding additional transitions (mono-
tonic or non-monotonic) increases the number of
complete parse trees that any given partial parse
state can derive.

We explore adding non-monotonic parsing tran-
sitions to a greedy arc-eager dependency parser in
this paper, in order to permit the parser to recover
from attachment errors made early in the parsing
process. These additional non-monotonic transi-
tions permit the parser to modify what would have
been irrevocable parsing decisions in the mono-
tonic arc-eager system when later information jus-
tifies this action. Thus one effect of adding the
non-monotonic parsing transitions is to effectively
delay the location in the input where the parser
must ultimately commit to a particular attachment.

Our transition-system builds on the work of
Honnibal et al. (2013) and Nivre and Fernandez-
Gonzalez (2014), who each present modifications
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to the arc-eager transition system that introduce
some non-monotonic behaviour, resulting in small
improvements in accuracy. However, these sys-
tems only apply non-monotonic transitions to a
relatively small number of configurations, so they
can only have a small impact on parse accuracy.

We introduce a non-monotonic transition sys-
tem that combines ideas from these two ap-
proaches, and allows substantially more repair ca-
pability (and hence search flexibility). We ob-
serve a 0.6% improvement in accuracy on the
OntoNotes corpus, which is an error reduction of
6.25% over a competitive baseline. A parser using
our transition system is guaranteed to run in linear
time, and the modifications to the algorithm have
no negative impact on run-time in our implemen-
tation.

Very recently there has been considerable suc-
cess in applying neural network models to pre-
dict which transition to apply in greedy one-best
transition-based parsing. In their preprints, both
Dyer et al. (2015) and Weiss et al. (2015) re-
port error reductions of around 20-30% for greedy
one-best parsing, and much more modest im-
provements for transition-based parsers with beam
search. Because the neural network approaches
improve the local model that predicts which tran-
sition to apply next, while this paper suggests
changes to the transition system itself, it is rea-
sonable to expect that the improvements reported
here are largely orthogonal to those obtained us-
ing the neural network techniques. In future work
we would like to explore integrating such neural
network models of transition prediction with the
extended transition system proposed here.

2 Improved non-monotonic transition
system

Our transition-system is based on the tree-
constrained arc-eager system of Nivre and
Fernandez-Gonzalez (2014), which extends the
classic arc-eager system (Nivre, 2003) with a new
non-monotonic operation that they call “Unshift”.
They introduce the Unshift action to repair con-
figurations where the buffer is exhausted and the
stack contains multiple words that are without in-
coming arcs (i.e. without governors). The origi-
nal arc-eager configuration outputs partial parses
in this situation.

Nivre and Fernandez-Gonzalez restrict their
Unshift action, such that it can only be applied

when the buffer is exhausted and the word on top
of the stack has no incoming arc. In this config-
uration, the Unshift action is the only action that
can be applied. The use of the new action is there-
fore entirely deterministic, and they do not need
to produce example configurations for the Unshift
action during training. They train their model with
what Goldberg and Nivre (2012) term a ‘static or-
acle’, which can only label configurations that are
consistent with the gold-standard parse.

We take the Nivre and Fernandez-Gonzalez
(2014) Unshift operation, and import it into the
non-monotonic parsing model of Honnibal et al.
(2013), which uses a dynamic oracle to determine
the gold-standard actions for configurations pro-
duced by the parser. This training strategy is crit-
ical to the success of a non-monotonic transition
system. The model cannot learn to recover from
previous errors if the training data cannot contain
configurations that result from incorrect actions.

Honnibal et al. (2013) allow the parser to cor-
rect prior misclassifications between the Shift and
Right-Arc actions. Both of these actions push the
first word of the buffer onto the stack, but the
Right-Arc action also adds an arc. After the Right-
Arc is applied, the top two words of the stack are
connected.

In the original arc-eager system, the presence
or absence of this arc determines which of the two
pop moves, Reduce or Left-Arc, is valid. If the arc
is present, then Left-Arc is excluded; if it is absent,
the Reduce action is excluded. Honnibal et al.
(2013) argue that these deterministic constraints
are unmotivated when the parser is trained using a
dynamic, instead of static, oracle. Instead of a con-
straint, they suggest that consistency be achieved
by refining the logic of the actions, so that they
have a broader applicability. Instead of preventing
the Left-Arc from applying when the word on top
of the stack has an incoming arc, they update the
definition of the Left-Arc so that it first deletes the
existing arc if necessary. A corresponding change
is made to the Reduce action: if the model predicts
Reduce when the word on top of the stack has no
incoming arc, the ‘missing’ arc is inserted. The
arc is labelled by noting the best-scoring Right-
Arc label on each Shift action, so that the label
can be assigned during non-monotonic Reduce.

We show that the Nivre and Fernandez-
Gonzalez Unshift operation serves as a far supe-
rior non-monotonic Reduce action than the one
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Notation
(σ, β,A,S) is a configuration, where
σ|s is a stack of word indices with topmost element s
b|β is a buffer of word indices with first element b
A is a vector of head indices
A(i) = j denotes an arc wj → wi
S is a bit-vector used to prevent Shift/Unshift cycles
Initial ([ ], [1...n],A(1) = 1)
Terminal ([i], [ ],A)
Shift (σ, b|β,A,S(b) = 0) ⇒ (σ|b, β,A,S(b) = 1)
Right-Arc (σ|s, b|β,A,S) ⇒ (σ|s|b, β,A(b) = s,S)
Reduce (σ|s, β,A(s) 6= 0,S) ⇒ (σ, β,A,S)
Unshift (σ|s, β,A(s) = 0,S) ⇒ (σ, s|β,A,S)
Left-Arc (σ|s, b|β,A,S) ⇒ (σ, s|β,A(s) = b,S

Table 1: Our non-monotonic transition system, which integrates the Unshift action of Nivre and
Fernandez-Gonzalez (2014) into the model of Honnibal et al. (2013).

Honnibal et al. use in their system, and that the re-
sulting transition system improves parse accuracy
by considerably more than either the Honnibal et
al or Nivre et al systems do.

2.1 Definition of Transition System

The hybrid transition system is defined in Table
1. Arcs are stored in a vector, A, where the entry
A(i) = j denotes an arc wj → wi. Words are
pushed from the buffer β onto the stack σ, using
either the Shift or the Right-Arc actions.

If a word was pushed with the Shift action, it
will not have an incoming arc. The new Unshift
action will then be valid, at any point at which the
word is on top of the stack — even after many ac-
tions have been performed.

The Unshift action pops the top word of the
stack, s, and places it at the start of the buffer.
Parsing then proceeds as normal. To prevent cy-
cles, the Shift action checks and sets a bit in the
new boolean vector S. The Shift action is invalid
if S(b) = 1, for a word b at the front of the buffer.
This bit will be set if the word was previously
Shifted, and then Unshifted.

At worst, each word can be pushed and popped
from the stack twice, so parsing is guaranteed to
terminate after a maximum of 4n transitions for a
sentence of length n.

The terminal condition is reached when the
buffer is exhausted and exactly one word remains
on the stack. This word will be deemed the root
of the sentence. No ‘dummy’ root token is neces-
sary, removing the need to choose whether the to-

ken is placed at the beginning or end of the buffer
(Ballesteros and Nivre, 2013).

Note that if the two words each seem like the
governor of the sentence, such that the parser
deems all incoming arcs to these words unlikely,
the transition system is guaranteed to arrive at a
configuration where these two words are adjacent
to each other. The model can then predict an arc
between them, initiated by either word.

2.2 Dynamic Training Oracle
Goldberg and Nivre (2013) describe three ques-
tions that need to be answered in order to imple-
ment their training algorithm.
Exploration Policy: When do we follow an incor-
rect transition, and which one do we follow?
We always follow the predicted transition, i.e.
their two hyper-parameters are set k = 1 and
p = 1.0.
Optimality: What constitutes an optimal transi-
tion in configurations from which the gold tree is
not reachable?
We follow Honnibal et al. (2013) in defining a
transition as optimal if it:

1. Renders no additional arcs unreachable using
the monotonic arc-eager transitions; and

2. Renders no additional arcs unreachable using
the non-monotonic transitions.

Said another way, we mark a transition as opti-
mal if it leads to an analysis with as few errors
as possible, and in cases of ties, uses as few non-
monotonic transitions as possible.
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For example, given the input string I saw Jack,
consider a configuration where saw is on the stack,
Jack is at the front of the buffer, and I is attached to
saw. The gold arcs are saw→ I and saw→ Jack.
In the monotonic system, the Shift action would
make the gold arc saw→ Jack newly unreachable.
In our system, this arc is still reachable after Shift,
via the Unshift action, but we consider the Shift
move non-optimal, so that the non-monotonic ac-
tions are reserved as ”repair” operations.
Oracle: Given a definition of optimality, how do
we calculate the set of optimal transitions in a
given configuration?
Goldberg and Nivre (2013) show that with the
monotonic arc-eager actions, the following arcs
are reachable from an arbitrary configuration:

1. Arcs {wi → wj : i ∈ σ, j ∈ β} — i.e. all
arcs from stack words to buffer words;

2. Arcs {wi → wj : i ∈ β, j ∈ σ, A(j) = 0}
— i.e. all arcs from buffer words to headless
stack words;

3. Arcs {wi → wj : i ∈ β, j ∈ β}— i.e. all
arcs between words in buffer.

Our non-monotonic actions additionally allow the
following arcs to be reached:

4. Arcs {wi → wj : i ∈ β, j ∈ σ,A(j) 6= 0}
(LeftArc can now ”clobber” existing heads)

5. Arcs {wi → wj or wj → wi : i, j ∈ σ, i <
j,A(j) = 0} — i.e. if a word i is on the
stack, it can reach an arc to or from a word j
ahead of it on the stack if that word does not
have a head set.

In practice, we therefore only need to add two
rules to determine the set of optimal transitions:

1. If σ0 has a head, and its true head is in the
buffer, the Reduce action is now non-optimal.

2. If σ0 does not have a head, and its true head
is in the stack, the LeftArc action is now non-
optimal.

The oracle calculation is simple because the sys-
tem preserves the arc decomposition property that
Goldberg and Nivre (2013) prove for the arc eager
system: if two arcs of a projective tree are individ-
ually reachable from a configuration, a projective
tree that includes both arcs is also reachable. To

see that this property is preserved in our system,
consider that an arc h → d between two stack
words is only unreachable if h < d and A(d) 6= 0.
But a projective tree with arc h → d cannot also
have an arc x → y such that h < x < d < y.
So there can be no other arc part of the same pro-
jective tree as h → d that would require d to be
assigned to some other head.

3 Training Procedure

We follow Honnibal et al. (2013) in using the
dynamic oracle-based search-and-learn training
strategy introduced by Goldberg and Nivre (2012).
A dynamic oracle is a function that labels config-
urations with gold-standard actions. Importantly,
a dynamic oracle can label arbitrary configura-
tions, while a so-called ‘static’ oracle can only as-
sign labels to configurations that are part of gold-
standard derivations.

We employ the dynamic oracle in an on-
line learning strategy, similar to imitation-based
learning, where the examples are configurations
produced by following the current model’s pre-
dictions. The configurations are labelled by
the dynamic oracle, which determines which of
the available actions excludes the fewest gold-
standard arcs.

Often, multiple actions will be labelled as gold-
standard for a given configuration. This implies ei-
ther spurious ambiguity (the same analysis reach-
able via different derivations) or previous errors,
such that the best parse reachable by different ac-
tions are equally bad. When this occurs, we base
the perceptron update on the highest-scoring gold-
standard label.

3.1 Single class for Unshift/Reduce

The Unshift and Reduce actions are applicable to
a disjoint set of configurations. If the word on top
of the stack already has an incoming arc, the Re-
duce move is valid; otherwise, the Unshift move
is valid. For the purpose of training and predic-
tion, we therefore model these actions as a single
class, which we interpret based on the configura-
tion. This allows us to learn the Unshift action
more effectively, as it is allowed to share a repre-
sentation with the Reduce move. In preliminary
development, we found that assigning a distinct
class to the Unshift action was not effective. We
plan to evaluate this option more rigorously in fu-
ture work.
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4 Experiments

We implemented a greedy transition-based parser,
and used rich contextual features following Zhang
and Nivre (2011). We extended the feature set to
include Brown cluster features, using the cluster
prefix trick described by Koo and Collins (2010).
Brown clusters are a standard way to improve
the cross-domain performance of supervised lin-
ear models. The use of Brown cluster features ac-
counts for the 0.7% improvement in accuracy ob-
served between our baseline parser and the Gold-
berg and Nivre (2012) result shown in Table 2.
The two models are otherwise the same.

Part-of-speech tags were predicted using a
greedy averaged perceptron model that achieved
97.2% accuracy on the evaluation data. Most pre-
vious work uses a n-way jack-knifing to train the
stacked tagger/parser model. For convenience, we
instead train the tagger at the same time as the
parser, as both allow online learning. We find this
makes no difference to accuracy.

Our parsers are trained and evaluated on the
same data used by Tetreault et al. (2015) in their
recent ‘bake-off’ of leading dependency pars-
ing models. Specifically, we use the OntoNotes
corpus converted into dependencies using the
ClearNLP 3.1 converter, with the train / dev / test
split of the CoNLL 2012 shared task.

5 Results

We implemented three previous versions of the
arc-eager transition system, in order to evaluate
the effect of our proposed transition-system on
parser accuracy. The four systems differ only in
their transition system — they are otherwise iden-
tical. All use identical features, and all are trained
with the dynamic oracle.

Orig. Arc Eager (Nivre, 2003): the origi-
nal arc-eager system, which constrains the Re-
duce and Left-Arc actions to ensure monotonic-
ity; Prev. Non-Monotic (Honnibal et al., 2013):
relaxes the monotonicity constraints, allowing
Left-Arc to ”clobber” existing arcs, and insert-
ing missing arcs on Reduce with a simple heuris-
tic; Tree Constrained (Nivre and Fernandez-
Gonzalez, 2014): adds an Unshift action to the
arc-eager system, that is only employed when the
buffer is exhausted; This work: merges the Un-
shift action into our previous non-monotonic tran-
sition system.

Transition System Search UAS LAS

Orig. Arc Eager Greedy 91.25 89.40
Tree Constrained Greedy 91.40 89.50
Prev. Non-Monotonic Greedy 91.36 89.52
This work Greedy 91.85 89.91
Chen and Manning (2014) Greedy 89.59 87.63
Goldberg and Nivre (2012) Greedy 90.54 88.75
Choi and Mccallum (2013) Branch 92.26 90.84
Zhang and Nivre (2011) Beam32 92.24 90.50
Bohnet (2010) Graph 92.50 90.70

Table 2: Our non-monotonic transition system improves
accuracy by 0.6% unlabelled attachment score, for a final
score of 91.85 on the OntoNotes corpus.

Table 2 shows the unlabelled and labelled at-
tachment scores of the parsers on the evaluation
data. The two previous non-monotonic systems,
Prev. Non-monotonic and Tree Constrained, were
slightly more accurate than the Orig. Arc Eager
system. Our new transition-system had a much
bigger impact, improving UAS by 0.6% and LAS

by 0.51%. To put the scores in context, we have
also included figures reported in a recent sur-
vey of the current state-of-the-art (Tetreault et al.,
2015). Our parser out-performs existing greedy
parsers, and is much more efficient than non-
greedy parsers.

6 Conclusions and Future Work

This paper integrates innovations from Honnibal
et al. (2013) and Nivre and Fernandez-Gonzalez
(2014) to produce a novel non-monotonic set of
transitions for transition-based dependency pars-
ing. Doing this required us to use the dynamic
oracle of Goldberg and Nivre (2012) during train-
ing in order to produce configurations that exercise
the non-monotonic transitions. We show that this
combination of innovations results in a parser with
91.85% directed accuracy, which is an improve-
ment of 0.6% directed accuracy over an equivalent
arc-standard parser. Interestingly, the Honnibal et
al and Nivre et al innovations applied on their own
only produce improvements of 0.11% and 0.15%
respectively, so it seems that these improvements
taken together do interact synergistically.

Because our innovation largely affects the
search space of a greedy one-best parser, it is
likely to be independent of the recent improve-
ments in parsing accuracy that come from using
neural networks to predict the best next parsing
transition. In future work we plan to combine
such neural network models with a version of our
parser that incorporates a much larger set of non-
monotonic parsing transitions.
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Abstract

The multilingual Paraphrase Database
(PPDB) is a freely available automatically
created resource of paraphrases in mul-
tiple languages. In statistical machine
translation, paraphrases can be used to
provide translation for out-of-vocabulary
(OOV) phrases. In this paper, we show
that a graph propagation approach that
uses PPDB paraphrases can be used to im-
prove overall translation quality. We pro-
vide an extensive comparison with previ-
ous work and show that our PPDB-based
method improves the BLEU score by up
to 1.79 percent points. We show that
our approach improves on the state of the
art in three different settings: when faced
with limited amount of parallel training
data; a domain shift between training
and test data; and handling a morpho-
logically complex source language. Our
PPDB-based method outperforms the use
of distributional profiles from monolin-
gual source data.

1 Introduction

Translation coverage is a major concern in statis-
tical machine translation (SMT) which relies on
large amounts of parallel, sentence-aligned text. In
(Callison-Burch et al., 2006), even with a training
data size of 10 million word tokens, source vocab-
ulary coverage in unseen data does not go above
90%. The problem is worse with multi-word OOV
phrases. Copying OOVs to the output is the most
common solution. However, even noisy transla-
tions of OOVs can improve reordering and lan-
guage model scores (Zhang et al., 2012). Translit-
eration is useful but not a panacea for the OOV
problem (Irvine and Callison-Burch, 2014b). We
find and remove the named entities, dates, etc. in

the source and focus on the use of paraphrases to
help translate the remaining OOVs. In Sec. 5.2 we
show that handling such OOVs correctly does im-
prove translation scores.

In this paper, we build on the following re-
search: Bilingual lexicon induction is the task
of learning translations of words from monolin-
gual data in source and target languages (Schafer
and Yarowsky, 2002; Koehn and Knight, 2002;
Haghighi et al., 2008). The distributional pro-
file (DP) approach uses context vectors to link
words as potential paraphrases to translation can-
didates (Rapp, 1995; Koehn and Knight, 2002;
Haghighi et al., 2008; Garera et al., 2009). DPs
have been used in SMT to assign translation can-
didates to OOVs (Marton et al., 2009; Daumé
and Jagarlamudi, 2011; Irvine et al., 2013; Irvine
and Callison-Burch, 2014a). Graph-based semi-
supervised methods extend this approach and
propagate translation candidates across a graph
with phrasal nodes connected via weighted para-
phrase relationships (Razmara et al., 2013; Saluja
et al., 2014; Zhao et al., 2015). Saluja et al. (2014)
extend paraphrases for SMT from the words to
phrases, which we also do in this work. Bilin-
gual pivoting uses parallel data instead of con-
text vectors for paraphrase extraction (Mann and
Yarowsky, 2001; Schafer and Yarowsky, 2002;
Bannard and Callison-Burch, 2005; Callison-
Burch et al., 2006; Zhao et al., 2008; Callison-
Burch, 2008). Ganitkevitch and Callison-Burch
(2014) published a large-scale multilingual Para-
phrase Database (PPDB) http://paraphrase.

org which includes lexical, phrasal, and syntactic
paraphrases (available for 22 languages with up to
170 million paraphrases each).

To our knowledge, this paper is the first com-
prehensive study of the use of PPDB for statistical
machine translation model training. Our frame-
work has three stages: 1) a novel graph con-
struction approach for PPDB paraphrases linked
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with phrases from parallel training data. 2) Graph
propagation that uses PPDB paraphrases. 3) An
SMT model that incorporates new translation can-
didates. Sec. 3 explains these three stages in detail.

Using PPDB has several advantages: 1) Re-
sources such as PPDB can be built and used for
many different tasks including but not limited to
SMT. 2) PPDB contains many features that are
useful to rank the strength of a paraphrase con-
nection and with more information than distribu-
tional profiles. 3) Paraphrases in PPDB are often
better than paraphrases extracted from monolin-
gual or comparable corpora because a large-scale
multilingual paraphrase database such as PPDB
can pivot through a large amount of data in many
different languages. It is not limited to using
the source language data for finding paraphrases
which distinguishes it from previous uses of para-
phrases for SMT.

PPDB is a natural resource for paraphrases.
However, PPDB was not built with the specific ap-
plication to SMT in mind. Other applications such
as text-to-text generation have used PPDB (Gan-
itkevitch et al., 2011) but SMT brings along a
specific set of concerns when using paraphrases:
translation candidates should be transferred suit-
ably across paraphrases. There are many cases,
e.g. when faced with different word senses where
transfer of a translation is not appropriate. Our
proposed methods of using PPDB use graph prop-
agation to transfer translation candidates in a way
that is sensitive to SMT concerns.

In our experiments (Sec. 5) we compare our
approach with the state-of-the-art in three differ-
ent settings in SMT: 1) when faced with limited
amount of parallel training data; 2) a domain shift
between training and test data; and 3) handling
a morphologically complex source language. In
each case, we show that our PPDB-based approach
outperforms the distributional profile approach.

2 Paraphrase Extraction

Our goal is to produce translations for OOV
phrases by exploiting paraphrases from the mul-
tilingual PPDB (Ganitkevitch and Callison-Burch,
2014) by using graph propagation. Since our ap-
proach relies on phrase-level paraphrases we com-
pare with the current state of the art approaches
that use monolingual data and distributional pro-
files to construct paraphrases and use graph prop-
agation (Razmara et al., 2013; Saluja et al., 2014).

2.1 Paraphrases from Distributional Profiles
A distributional profile (DP) of a word or phrase
was first proposed in (Rapp, 1995) for SMT. Given
a word f , its distributional profile is:

DP (f) = {〈A(f, wi)〉 | wi ∈ V }

V is the vocabulary and the surrounding words
wi are taken from a monolingual corpus using a
fixed window size. We use a window size of 4
words based on the experiments in (Razmara et al.,
2013). DPs need an association measure A(·, ·) to
compute distances between potential paraphrases.
A comparison of different association measures
appears in (Marton et al., 2009; Razmara et al.,
2013; Saluja et al., 2014) and our preliminary ex-
periments validated the choice of the same asso-
ciation measure as in these papers, namely Point-
wise Mutual Information (Lin, 1998) (PMI). For
each potential context word wi:

A(f, wi) = log2
P (f, wi)
P (f)P (wi)

(1)

To evaluate the similarity between two phrases we
use cosine similarity. The cosine coefficient of two
phrases f1 and f2 is:

S(f1, f2) = cos(DP (f1), DP (f2)) =∑
wi∈V A(f1, wi)A(f2, wi)√∑

wi∈V A(f1, wi)2
√∑

wi∈V A(f2, wi)2
(2)

where V is the vocabulary. Note that in Eqn. (2)
wi’s are the words that appear in the context of f1

or f2, otherwise the PMI values would be zero.
Considering all possible candidate paraphrases

is very expensive. Thus, we use the heuristic ap-
plied in previous works (Marton et al., 2009; Raz-
mara et al., 2013; Saluja et al., 2014) to reduce the
search space. For each phrase we keep candidate
paraphrases which appear in one of the surround-
ing context (e.g. Left Right) among all occur-
rences of the phrase.

2.2 Paraphrases from bilingual pivoting
Bilingual pivoting uses parallel corpora between
the source language, F , and a pivot language T .
If two phrases, f1 and f2, in a same language are
paraphrases, then they share a translation in other
languages with p(f1|f2) as a paraphrase score:

S(f1, f2) = p(f1|f2) =
∑
t

p(f1|t)p(t|f2) (3)
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Figure 2: A small sample of the real graph constructed from the Arabic PPDB for Arabic to English translation. Filled nodes
(1 and 6) are phrases from the SMT phrase table (unfilled nodes are not). Edge weights are set using a log-linear combination
of scores from PPDB. Phrase #6 has different senses (‘gold’ or ‘left’); and it has a paraphrase in phrase #7 for the ‘gold’ sense
and a paraphrase in phrase #2 for the ‘left’ sense. After propagation, phrase #2 receives translation candidates from phrase #6
and phrase #1 reducing the probability of translation from unrelated senses (like the ‘gold’ sense). Phrase #8 is a misspelling
of phrase #7 and is also captured as a paraphrase. Phrase #6 propagates translation candidates to phrase #8 through phrase
#7. Morphological variants of phrase #6 (shown in bold) also receive translation candidates through graph propagation giving
translation candidates for morphologically rich OOVs.

Figure 1: English paraphrases extracted by pivot-
ing over German shared translation (Bannard and
Callison-Burch, 2005).

where t is a phrase in language T . p(f1|t) and
p(t|f2) are taken from the phrase table extracted
from parallel data for languages F and T . In Fig. 1
from (Bannard and Callison-Burch, 2005) we see
that paraphrase pairs like (in check, under con-
trol) can be extracted by pivoting over the German
phrase unter kontrolle.

The multilingual Paraphrase Database
(PPDB) (Ganitkevitch and Callison-Burch,
2014) is a published resource for paraphrases
extracted using bilingual pivoting. It leverages
syntactic information and other resources to filters
and scores each paraphrase pair using a large set
of features. These features can be used by a log
linear model to score paraphrases (Zhao et al.,
2008). We used a linear combination of these fea-
tures using the equation in Sec. 3 of (Ganitkevitch
and Callison-Burch, 2014) to score paraphrase
pairs. PPDB version 1 is broken into different
levels of coverage. The smaller sizes contain only
better-scoring, high-precision paraphrases, while
larger sizes aim for high coverage.

Algorithm 1 PPDB Graph Propagation for SMT
PhrTable = PhraseTableGeneration();
ParaDB = ParaphraseExtraction(); (Sec. 2)
InitGraph = GraphConstruct(PhrTable, ParaDB); (Sec. 3.1)
PropGraph = GraphPropagation(InitGraph); (Sec. 3.2)
for phrase ∈ {OOVs} do

newTrans = TranslationFinder(PropGraph, phrase);
Augment(PhrTable, newTrans); (Sec. 3.3)

TuneMT(PhrTable);

3 Methodology

After paraphrase extraction we have paraphrase
pairs, (f1, f2) and a score S(f1, f2) we can in-
duce new translation rules for OOV phrases us-
ing the steps in Algo. (1): 1) A graph of source
phrases is constructed as in (Razmara et al., 2013);
2) translations are propagated as labels through the
graph as explained in Fig. 2; and 3) new trans-
lation rules obtained from graph-propagation are
integrated with the original phrase table.

3.1 Graph Construction
We construct a graph G(V,E,W ) over all source
phrases in the paraphrase database and the source
language phrases from the SMT phrase table ex-
tracted from the available parallel data. V cor-
responds to the set of vertices (source phrases),
E is the set of edges between phrases and W is
weight of each using the score function S defined
in Sec. 2. V has two types of nodes: seed (labeled)
nodes, Vs, from the SMT phrase table, and regu-
lar nodes, Vr. Note that in this step OOVs are part
of these regular nodes, and we try to find transla-
tion in the propagation step for all of these regu-
lar nodes. In graph construction and propagation,
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we do not know which phrasal nodes correspond
to OOVs in the dev and test set. Fig. 2 shows a
small slice of the actual graph used in one of our
experiments; This graph is constructed using the
paraphrase database on the right side of the figure.
Filled nodes have a distribution over translations
(the possible “labels” for that node). In our setting,
we consider the translation e to be the “label” and
so we propagate the labeling distribution p(e|f)
which is taken from the feature function for the
SMT log-linear model that is taken from the SMT
phrase table and we propagate this distribution to
unlabeled nodes in the graph.

3.2 Graph Propagation
Considering the translation candidates of known
phrases in the SMT phrase table as the “labels” we
apply a soft label propagation algorithm in order to
assign translation candidates to “unlabeled” nodes
in the graph, which include our OOV phrases.
As described by the example in Fig. 2 we wish
two outcomes: 1) transfer of translations (or “la-
bels”) to unlabeled nodes (OOV phrases) from la-
beled nodes, and 2) smoothing the label distribu-
tion at each node. We use the Modified Adsorption
(MAD) algorithm (Talukdar and Crammer, 2009)
for graph propagation. Suppose we have m dif-
ferent possible labels plus one dummy label, a soft
label Ŷ ∈ ∆m+1 is a m + 1 dimension probabil-
ity vector. The dummy label is used when there is
low confidence on correct labels. Based on MAD,
we want to find soft label vectors for each node by
optimizing the objective function below:

min
Ŷ

µ1

∑
v∈Vs

P1,v||Yv − Ŷ ||22 +

µ2

∑
v∈V,u∈N(v)

P2,vWv,u||Ŷv − Ŷu||22 +

µ3

∑
v∈V

P3,v||Ŷv −Rv||22

(4)

In this objective function, µi and Pi,v are hyper-
parameters (∀v : ΣiPi,v = 1). Rv ∈ ∆m+1 is
our prior belief about labeling. First component
of the function tries to minimize the difference of
new distribution to the original distribution for the
seed nodes. The second component insures that
nearby neighbours have similar distributions, and
the final component is to make sure that the dis-
tribution does not stray from a prior distribution.
At the end of propagation, we wish to find a la-
bel distribution for our OOV phrases. We describe

in Sec. 4.2.2 the reasons for choosing MAD over
other graph propagation algorithms. The MAD
graph propagation generalizes the approach used
in (Razmara et al., 2013). The Structured Label
Propagation algorithm (SLP) was used in (Saluja
et al., 2014; Zhao et al., 2015) which uses a graph
structure on the target side phrases as well. How-
ever, we have found that in our diverse experimen-
tal settings (see Sec. 5) MAD had two properties
we needed compared to SLP: one was the use of
graph random walks which allowed us to control
translation candidates and MAD also has the abil-
ity to penalize nodes with a large number of edges
(also see Sec. 4.2.2).

3.3 Phrase Table Integration

After propagation, for each potential OOV phrase
we have a list of possible translations with corre-
sponding probabilities. A potential OOV is any
phrase which does not appear in training, but could
appear in unseen data. We do not look at the dev
or test data to produce the augmented phrase ta-
ble. The original phrase table is now augmented
with new entries providing translation candidates
for potential OOVs; Last column in Table 2 shows
how many entries have been added to the phrase
table for each experimental settings. A new fea-
ture is added to the standard SMT log-linear dis-
criminative model and introduced into the phrase
table. This new feature is set to either 1.0 for
the phrase table entries that already existed; or `i
which is the log probability (from graph propaga-
tion) for the translation candidate i for potential
OOVs. In case the dummy label exists with high
probability or the label distribution is uniform, an
identity rule is added to the phrase table (copy over
source to target).

4 Analysis of the Framework

4.1 Propagation of poor translations

Automatic paraphrase extraction generates many
possible paraphrase candidates and many of them
are likely to be false positives for finding transla-
tion candidates for OOVs. Distributional profiles
rely on context information which is not sufficient
to derive accurate paraphrases for many phrases
and this results in many low quality paraphrase
candidates. Bilingual pivoting uses word align-
ments which can also introduce errors depending
on the size and quality of the bilingual data used.
Alignment errors also introduce poor translations.
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Size Nodes Edges Max
Neigh.

Ave
Neigh.

S 23K 31K 32 1.38
M 41K 69K 33 1.69
L 74K 199K 67 2.69
XL 103K 548K 330 5.33
XXL 122K 2073K 1231 16.968
XXXL 125K 7558K 5255 60.27

Table 1: Statistics of the graph constructed using
the English lexical PPDB. We have built similar
graphs for French and Arabic.

In graph propagation, these errors may be propa-
gated and result in poor translations for OOVs.

We could address this issue by aggressively
pruning the potential paraphrase candidates to im-
prove the precision. However, this results in a dra-
matic drop in coverage and many OOV phrases do
not obtain any translation candidates. We use a
combination of the following three steps to aug-
ment our graph propagation framework.

4.1.1 Graph pruning and PPDB sizes
Pruning the graph avoids error propagation by re-
moving unreliable edges. Pruning removes edges
with an edge weight lower than a minimum thresh-
old or by limiting the number of neighbours to the
top-K edges (Talukdar, 2009). PPDB has different
sizes with different levels of accuracy and cover-
age. We can do graph pruning simply by choosing
to use different sizes of PPDB. As we can see in
Fig. 3 results vary from language to language de-
pending on the pruning used. For instance, the L
size results in the best score for French-English.
We choose the best size of PPDB for each lan-
guage based on a separate held-out set and inde-
pendently from each of the SMT-based tasks in our
experimental results. Our conclusion from our ex-
periments with the different sizes of PPDB is that
removing phrases (or nodes in our graph) is not
desirable. However, removing unreliable edges is
useful. As seen in Table 1, increasing the size
of PPDB leads to a rapid increase in nodes fol-
lowed by a larger number of edges in the very large
PPDB sizes.

4.1.2 Pruning the translation candidates
Another solution to the error propagation issue is
to propagate all translation candidates but when
providing translations to OOVs in the final phrase

Base S M L XL

29

29.5

30

B
L

E
U

sc
or

e

Spanish - English French - English

Figure 3: Effect of PPDB size on improving
BLEU score for Spanish and French

table to eliminate all but the top L translations
for each phrase (which is the usual ttable limit in
phrase-based SMT (Koehn et al., 2003)). Based
on a development set, separate from the test sets
we used, we found that the best value of L was 10.

4.1.3 External Resources for Filtering
Applying more informative filters can be also used
to improve paraphrase quality. This can be done
through additional features for paraphrase pairs.
For example, edit distance can be used to capture
misspelled paraphrases. We use a Named Entity
Recognizer to exclude names, numbers and dates
from the paraphrase candidates. Even after remov-
ing these tokens, 3.32% of tokens of test set are
still OOVs . In addition, we use a list of stop words
to remove nodes which have too many connec-
tions. These two filters improve our results (more
in Sec. 5).

4.2 Path sensitivity

Graph propagation has been used in many NLP
tasks like POS tagging, parsing, etc. but propa-
gating translations in a graph as labels is much
more challenging. Due to huge number of pos-
sible labels (translations) and many low quality
edges, it is very likely that many wrong transla-
tions are rapidly propagated in few steps. Raz-
mara et al. (2013) show that unlabeled nodes in-
side the graph, called bridge nodes, are useful for
the transfer of translations when there is no other
connection between an OOV phrase and a node
with known translation candidates. However, they
show that using the full graph with long paths of
bridge nodes hurts performance. Thus the propa-
gation has to be constrained using path sensitivity.
Fig. 4 shows this issue in a part of an English para-
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stock bank margin majoritystock

Lager

iter1 iter2 iter3

Figure 4: Sensitivity issue in graph propagation
for translations. “Lager” is a translation candidate
for “stock”, which is transferred to “majority” af-
ter 3 iterations.

phrase graph. After three iterations, German trans-
lation “Lager” reaches “majority” which is totally
irrelevant as a translation candidate. Transfer of
translation candidates should prefer close neigh-
bours and only with a very low probability to other
nodes in the graph.

4.2.1 Pre-structuring the graph
Razmara et al. (2013) avoid a fully connected
graph structure. They pre-structure the graph
into bipartite graphs (only connections between
phrases with known translation and OOV phrases)
and tripartite graphs (connections can also go from
a known phrasal node to an OOV phrasal node
through one node that is a paraphrase of both
but does not have translations, i.e. it is an unla-
beled node). In these pre-structured graphs there
are no connections between nodes of the same
type (known, OOV or unlabeled). We apply this
method in our low resource setting experiments
(Sec. 5.3) to compare our bipartite and tripartite
results to Razmara et al. (2013). In the rest of the
experiments we use the tripartite approach since it
outperforms the bipartite approach.

4.2.2 Graph random walks
Our goal is to limit the number of hops in the prop-
agation of translation candidates preferring closely
connected and highly probable edge weights. Op-
timization for the Modified Adsorption (MAD)
objective function in Sec. 3.2 can be viewed as
a controlled random walk (Talukdar et al., 2008;
Talukdar and Crammer, 2009). This is formal-
ized as three actions: inject, continue and aban-
don with corresponding pre-defined probabilities
Pinj , Pcont and Pabnd respectively as in (Taluk-
dar and Crammer, 2009). A random walk through
the graph will transfer labels from one node to an-
other node, and probabilities Pcont and Pabnd con-
trol exploration of the graph. By reducing the val-
ues of Pcont and increasing Pabnd we can control

the label propagation process to optimize the qual-
ity of translations for OOV phrases. Again, this is
done on a held-out development set and not on the
test data. The optimal values in our experiments
for these probabilities are Pinj = 0.9, Pcont =
0.001, Pabnd = 0.01.

4.2.3 Early stopping of propagation
In Modified Adsorption (MAD) (see Sec. 3.2)
nodes in the graph that are closely linked will tend
to similar label distributions as the number of it-
erations increase (even when the path lengths in-
crease). In our setting, smoothing the label distri-
bution helps in the first few iterations, but is harm-
ful as the number of iterations increase due to the
factors shown in Fig. 4. We use early stopping
which limits the number of iterations. We varied
the number of iterations from 1 to 10 on a held-out
dev set and found that 5 iterations was optimal.

5 Evaluation

We first show the effect of OOVs on translation
quality, then evaluate our approach in three dif-
ferent SMT settings: low resource SMT, domain
shift, and morphologically complex languages.
In each case, we compare results of using para-
phrases extracted by Distributional Profile (DP)
and PPDB in an end-to-end SMT system.
Important: no subset of the test data sentences
are used in the bilingual corpora for paraphrase ex-
traction process.

5.1 Experimental Setup
We use CDEC1 (Dyer et al., 2010) as an end-
to-end SMT pipeline with its standard features2.
fast align (Dyer et al., 2013) is used for word
alignment, and weights are tuned by minimizing
BLEU loss on the dev set using MIRA (Cram-
mer and Singer, 2003). This setup is used for
most of our experiments: oracle (Sec. 5.2), do-
main adaptation (Sec. 5.4) and morphologically
complex languages (Sec. 5.5). But as we wish
to fairly compare our approach with Razmara et
al. (2013) on low resource setting, we follow their
setup in Sec. 5.3: Moses (Koehn et al., 2007) as
SMT pipeline, GIZA++ (Och and Ney, 2003) for
word alignment and MERT (Och, 2003) for tun-
ing. We add our own feature to the SMT log-linear
model as described in Sec. 3.3.

1http://www.cdec-decoder.org
2EgivenFCoherent, SampleCountF, CountEF, MaxLexF-

givenE, MaxLexEgivenF, IsSingletonF, IsSingletonEF
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Experiments OOV type/token Rules added
Case 1 1830 / 2163 7.0K
Case 2 - Med. 2294 / 4190 7.8K
Case 2 - Sci. 5272 / 14121 10.4K
Case 3 1543 / 1895 8.1K

Table 2: Statistics of settings in Sec. 5. Last col-
umn shows how many rules added in the phrase
table integration step.

KenLM (Heafield, 2011) is used to train a 5-
gram language model on English Gigaword (V5:
LDC2011T07). For scalable graph propagation
we use the Junto framework3. We use maximum
phrase length 10. For our experiments we use
the Hadoop distributed computing framework ex-
ecuted on a cluster with 12 nodes (each node has
8 cores and 16GB of RAM). Each graph propaga-
tion iteration takes about 3 minutes.

For French, we apply a simple heuristic to de-
tect named entities: words that are capitalized in
the original dev/test set that do not appear at the
beginning of a sentence are named entities. Based
on eyeballing the results, this works very well in
our data. For Arabic, AQMAR is used to exclude
named-entities (Mohit et al., 2012). For each of
the experimental settings below we show the OOV
statistics in Table 2.

5.2 Impact of OOVs: Oracle experiment

This oracle experiment shows that translation of
OOVs beyond named entities, dates, etc. is poten-
tially very useful in improving output translation.
We trained a SMT system on 10K French-English
sentences from the Europarl corpus(v7) (Koehn,
2005). WMT 2011 and WMT 2012 are used as
dev and test data respectively. Table 4 shows the
results in terms of BLEU on dev and test. The
first row is baseline which simply copies OOVs to
output. The second and third rows show the re-
sult of augmenting phrase-table by adding transla-
tions for single-word OOVs and phrases contain-
ing OOVs. The last row shows the oracle result
where dev and test sentences exist inside the train-
ing data and all the OOVs are known (Fully ob-
servers cannot avoid model and search errors).

5.3 Case 1: Limited Parallel Data

In this experiment we use a setup similar to (Raz-
mara et al., 2013). To have fair comparison,

3Junto : https://github.com/parthatalukdar/junto

Fr-En Dev Test
Baseline 27.90 28.08
+ Lexical OOV 28.10 28.31
+ Phrasal OOV 28.50 28.85
Fully observed 46.88 49.21

Table 4: The impact of translating OOVs.

we use 10K French-English parallel sentences,
randomly chosen from Europarl to train trans-
lation system, as reported in (Razmara et al.,
2013). ACL/WMT 20054 is used for dev and test
data. We re-implement their paraphrase extraction
method (DP) to extract paraphrases from French
side of Europarl (2M sentences). We use unigram
nodes to construct graphs for both DP and PPDB.
In bipartite graphs, each node is connected to at
most 20 nodes. For tripartite graphs, each node is
connected to 15 labeled and 5 unlabeled nodes.

For intrinsic evaluation, we use Mean-
Reciprocal-Rank (MRR) and Recall. MRR is
the mean of reciprocal rank of the candidate list
compared to the gold list (Eqn. 5). Recall shows
percentage of gold list covered by the candidate
list (Eqn. 6). Gold translations for OOVs are
given by concatenating the test data to training
and running a word aligner.

MRR =
1
|O|

|O|∑
i=1

1
ranki

for O = {OOVs} (5)

Recall =
|{gold list} ∩ {candidate list}|

|{gold list}| (6)

Table 5 compares DP and PPDB in terms of
BLEU, MRR and Recall. It indicates that PPDB
(large size) outperforms DP in both intrinsic and
extrinsic evaluation measures. Although tripartite
graph did not improve the results for DP, it results
in statistically significantly better BLEU score for
PPDB in comparison to DP (evaluated by MultE-
val (Clark et al., 2011)). Thus we use tripartite
graph in the rest of experiments. The last row in
the table shows the result of combining DP and
PPDB by multiplying the normalized scores of
both paraphrase lists.

This setting is included for three reasons: 1)
we exploit the small data size to explore differ-
ent choices in our approach such as, e.g. choos-
ing bipartite versus tripartite graph structures; 2)

4http://www.statmt.org/wpt05/mt-shared-task/
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OOV PPDB NNs DP NNs Reference sentence PPDB output DP output
procédés processus méthodes

outils
matériaux

... an agreement on proce-
dures in itself is a good
thing ...

... an agreement on the
procedure is a good ...

... an agreement on
products is a good ...

quantique quantiques - ... allowed us to achieve
quantum degeneracy ...

... allowed quantum de-
generacy ...

... quantique allowed
degeneracy ...

mlzm mlzmA ADTr ... voted 97-0 last week for
a non-binding resolution ...

... voted 97 last week on
not binding resolution ...

... voted 97 last week on
having resolution ...

Table 3: Examples comparing DP versus PPDB outputs on the test sets. NNs refer to nearest neighbours
in the graph for OOV phrase. Each row respectively corresponds to experimental settings (cases 1 to 3).

System MRR Recall BLEU
baseline - - 28.89
DP-bipartite 5.34 11.90 29.27
DP-tripartite 5.34 11.95 29.27
PPDBfr (L)-bipartite 12.05 22.08 29.46
PPDBfr (L)-tripartite 10.22 22.87 29.52
Combined-tripartite - - 29.28

Table 5: Results of PPDB and DP techniques.

to show how well our PPDB approach does com-
pared to the DP approach in terms of MRR and
recall; and 3) to show applicability of our ap-
proach for a low-resource language. However we
used French instead of a language which is truly
resource-poor due to the lack of available para-
phrases for a true resource poor language, e.g.
Malagasy.

5.4 Case 2: Domain Adaptation

Domain adaptation is another case that suffers
from massive number of OOVs. We compare our
approach with Marginal Matching (Irvine et al.,
2013), a state of the art approach in SMT domain
adaptation. We use their setup and data and com-
pare our results to their reported results (Irvine et
al., 2013). 250K lines of Hansard parliamentary
proceeding are used for training MT. Dev and test
sets are available for two different domains: Medi-
cal and Science domains. For medical domain ran-
dom subset of EMEA corpus (Tiedemann, 2009)
and for the science domain a corpus of scientific
articles (Carpuat et al., 2012) has been used. Un-
igram paraphrases using DP are extracted from
French side of Europarl.

Table 6 compares the results in terms of BLEU
score. In both medical and science domains,
graph-propagation approach using PPDB (large)
performs significantly better than DP (p < 0.02),
and has comparable results to Marginal Matching.

Systems Science Medical
baseline 22.20 25.32
DP-tripartite 22.76 25.81
PPDBfr (L)-tripartite 22.97 27.11
Marginal Matching 23.62 26.97

Table 6: BLEU scores for domain adaptation.

Systems BLEU
baseline 29.59
DP-tripartite 30.08
PPDBarabic (L)-tripartite 31.12

Table 7: BLEU score results for Arabic-English.

Marginal Matching performs better in science do-
main but graph-propagation approach with PPDB
outperforms it in medical domain getting a +1.79
BLEU score improvement over the baseline.

5.5 Case 3: Morphologically Rich Languages

Both Distribution Profiling and Bilingual Pivot-
ing propose morphological variants of a word as
paraphrase pairs. Even more so in PPDB due to
pivoting over English. We choose Arabic-English
task for this experiment. We train the SMT system
on 685K sentence pairs (randomly selected from
LDC2007T08 and LDC2008T09) and use NIST
OpenMT 2012 for dev and test data. Arabic side of
1M sentences of LDC2007T08 and LDC2008T09
is used to extract unigram paraphrases for DP. Ta-
ble 7 shows that PPDB (large; with phrases) re-
sulted in +1.53 BLEU score improvement over
DP which only slightly improved over baseline.

6 Related Work

Sentence level paraphrasing has been used for gen-
erating alternative reference translations (Madnani
et al., 2007; Kauchak and Barzilay, 2006), or
augmenting the training data with sentential para-
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phrases (Bond et al., 2008; Nakov, 2008; Mirkin et
al., 2009). Phrase level paraphrasing was done us-
ing crowdsourcing (Resnik et al., 2010) or by us-
ing paraphrases in lattice decoding (Onishi et al.,
2010; Du et al., 2010).

Daumé and Jagarlamudi (2011) apply a genera-
tive model to domain adaptation based on canon-
ical correlation analysis Haghighi et al. (2008).
However, they use artificially created monolingual
corpora very related to the same domain as test
data. Irvine and Callison-Burch (2014a) gener-
ate a large, noisy phrase table by composing un-
igram translations which are obtained by a super-
vised method (Irvine and Callison-Burch, 2013).
Comparable monolingual data is used to re-score
and filter the phrase table. Zhang and Zong (2013)
use a large manually generated lexicon for do-
main adaptation. In contrast to these methods, our
method is unsupervised.

Alexandrescu and Kirchhoff (2009) use a
graph-based semi-supervised model determine
similarities between sentences, then use it to re-
rank the n-best translation hypothesis. Liu et al.
(2012) extend this model to derive some features
to be used during decoding. These approaches are
orthogonal to our approach. Saluja et al. (2014)
use Structured Label Propagation (Liu et al., 2012)
in two parallel graphs constructed on source and
target paraphrases. In their case the graph con-
struction is extremely expensive. Leveraging a
morphological analyzer, they reach significant im-
provement on Arabic. We can not directly com-
pare our results to (Saluja et al., 2014) because
they exploit several external resources such as
a morphological analyzer and also had different
sizes of training and test. In experiments (Sec. 5)
we obtained comparable BLEU score improve-
ment on Arabic-English by using bilingual pivot-
ing only on source phrases. (Saluja et al., 2014)
also use methods similar to (Habash, 2008) that
expand the phrase table with spelling and morpho-
logical variants of OOVs in test data. We do not
use the dev/test data to augment the phrase table.

Using comparable corpora to extract parallel
sentences and phrases (Munteanu and Marcu,
2006; Smith et al., 2010; Tamura et al., 2012) are
orthogonal to the approach we discuss here.

Bilingual and multilingual word and phrase rep-
resentation using neural networks have been ap-
plied to machine translation (Zou et al., 2013;
Mikolov et al., 2013a; Zhang et al., 2014). How-

ever, most of these methods focus on frequent
words or an available bilingual phrase table (Zou
et al., 2013; Zhang et al., 2014; Gao et al., 2014).
Mikolov et al. (2013a) learn a global linear projec-
tion from source to target using representation of
frequent words on both sides. This model can be
used to generate translations for new words, but a
large amounts of bilingual data is required to cre-
ate such a model. (Mikolov et al., 2013b) also
uses bilingual data to project new translation rules.
Zhao et al. (2015) extend Mikolov’s model to learn
one local linear projection for each phrase. Their
model reaches comparable results to Saluja et al.
(2014) while works faster. Alkhouli et al. (2014)
use neural network phrase representation for para-
phrasing OOVs and find translation for them using
a phrase-table created from limited parallel data.
Our experimental settings is different from the ap-
proaches in (Alkhouli et al., 2014; Mikolov et al.,
2013a; Mikolov et al., 2013b).

7 Conclusion and Future work

In future work, we would like to include transla-
tions for infrequent phrases which are not OOVs.
We would like to explore new propagation meth-
ods that can directly use confidence estimates and
control propagation based on label sparsity. We
also would like to expand this work for mor-
phologically rich languages by exploiting other
resources like morphological analyzer and cam-
pare our approach to the current state of art ap-
proaches which are using these types of resources.
In conclusion, we have shown significant improve-
ments to the quality of statistical machine transla-
tion in three different cases: low resource SMT,
domain shift, and morphologically complex lan-
guages. Through the use of semi-supervised graph
propagation, a large scale multilingual paraphrase
database can be used to improve the quality of sta-
tistical machine translation.
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Marine Carpuat, H Daumé III, Alexander Fraser, Chris
Quirk, Fabienne Braune, Ann Clifton, Ann Irvine,
Jagadeesh Jagarlamudi, John Morgan, Majid Raz-
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Abstract

In hierarchical phrase-based translation,
coarse-grained nonterminal Xs may gen-
erate inappropriate translations due to the
lack of sufficient information for phrasal
substitution. In this paper we propose a
framework to refine nonterminals in hier-
archical translation rules with real-valued
semantic representations. The semantic
representations are learned via a weighted
mean value and a minimum distance
method using phrase vector representa-
tions obtained from large scale monolin-
gual corpus. Based on the learned se-
mantic vectors, we build a semantic non-
terminal refinement model to measure se-
mantic similarities between phrasal sub-
stitutions and nonterminal Xs in transla-
tion rules. Experiment results on Chinese-
English translation show that the proposed
model significantly improves translation
quality on NIST test sets.

1 Introduction

Hierarchical phrase-based translation (Chiang,
2007) explores formal synchronous context free
grammar (SCFG) rules for translation. Two types
of nonterminal symbols are used in translation
rules: nonterminal X in ordinary SCFG rules and
nonterminal S in glue rules that are specially intro-
duced to concatenate nonterminal Xs in a mono-
tonic manner. The same generic symbol X for all
ordinary nonterminals makes it difficult to distin-
guish and select proper translation rules.

In order to address this issue, researchers ei-
ther use syntactic labels to annotate nontermi-
nal Xs (Zollmann and Venugopal, 2006; Zoll-
mann and Vogel, 2011; Li et al., 2012; Hanneman
and Lavie, 2013), or employ syntactic information

∗Corresponding author

from parse trees to refine nonterminals with real-
valued vectors (Venugopal et al., 2009; Huang et
al., 2013). In addition to syntactic knowledge, se-
mantic structures are also leveraged to refine non-
terminals (Gao and Vogel, 2011). All these efforts
focus on incorporating linguistic knowledge into
hierarchical translation rules.

Unfortunately, syntactic or semantic parsers for
many languages are not accessible due to the
lack of labeled training data. In contrast, a large
amount of unlabeled data are easily available.
Therefore, can we mine syntactic or semantic
properties for nonterminals from unlabeled data?
Or can we exploit these data to refine nontermi-
nals for SMT?

Learning semantic representations for terminals
(words, multi-word phrases or sentences) from un-
labeled data has achieved substantial progress in
recent years (Mitchell and Lapata, 2008; Turian
et al., 2010; Socher et al., 2010; Mikolov et
al., 2013c; Blunsom et al., 2014). These rep-
resentations have been used successfully in var-
ious NLP tasks. However, there is no attempt
to learn semantic representations for nontermi-
nals from unlabeled data. In this paper we pro-
pose a framework to learn semantic representa-
tions for nonterminal Xs in translation rules. Our
framework is established on the basis of real-
valued vector representations learned for multi-
word phrases, which are substituted with nonter-
minal Xs during hierarchical rule extraction. We
propose a weighted mean value and a minimum
distance method to obtain nonterminal representa-
tions from representations of their phrasal substi-
tutions. We further build a semantic nonterminal
refinement model with semantic representations
of nonterminals to compute similarities between
phrasal substitutions and nonterminals. In doing
so, we want to enhance phrasal substitution and
translation rule selection during decoding.

The big challenge here is that thousands of tar-
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get phrasal substitutions will be generated for one
single nonterminal during decoding. Computing
vector representations for all these phrases will be
very time-consuming. We therefore introduce two
different methods to handle it. In the first method,
we project representations of source phrases onto
their target counterparts linearly/nonlinearly via
a neural network. These projected vectors are
used as approximations to real target representa-
tions to compute semantic similarities. In the sec-
ond method, we decode sentences in two passes.
The first pass collects target phrase candidates
from n-best translations of sentences generated by
the baseline. The second pass calculates vector
representations of these collected target phrases
and then computes similarities between them and
target-side nonterminals.

Our contributions are two-fold. First, we learn
semantic representations for nonterminals from
their phrasal substitutions with two different meth-
ods. This is the first time, to the best of our knowl-
edge, to induce semantic representations for non-
terminals from unlabeled data in the context of
SMT. Second, we successfully address the issue
of time-consuming target-side phrase-nonterminal
similarity computation mentioned above. We in-
corporate both source-/target-side semantic non-
terminal refinement model and their combination
based on learned nonterminal representations into
translation system. Experiment results show that
our method can achieve an improvement of 1.16
BLEU points over the baseline system on NIST
MT evaluation test sets.

The rest of this paper is organized as follows.
Section 2 briefly reviews related work. Section 3
presents our approach of learning semantic vectors
for nonterminals, followed by Section 4 describing
the details of our semantic nonterminal refinement
model. Section 5 introduces the integration of the
proposed model into SMT. Experiment results are
reported in Section 6. Finally, we conclude our
work in Section 7.

2 Related Work

A variety of approaches have been explored for
nonterminal refinement in hierarchical phrase-
based translation. These approaches can be cat-
egorized into two groups: 1) augmenting the non-
terminal symbol X with informative labels, and
2) attaching distributional linguistic knowledge to
each nonterminal in hierarchical rules. The former

only allows substitution operations with matched
labels. The latter normally builds an additional
model as a new feature of the log-linear model to
incorporate attached knowledge.

Among approaches which directly refine the
single label to more fine-grained labels, syntac-
tic and semantic knowledge are explored in vari-
ous ways. The syntactically augmented translation
model (SAMT) proposed by Zollmann and Venu-
gopal (2006) uses syntactic categories extracted
from target-side parse trees to augment nontermi-
nals in hierarchical rules. Unfortunately, there is
a data sparseness problem in this model due to
thousands of extracted syntactic categories. One
solution to address this issue is to reduce the num-
ber of syntactic categories. Zollmann and Vogel
(2011) use word tags, generated by either POS
tagger or unsupervised word class induction, in-
stead of syntactic categories. Hanneman and Lavie
(2013) coarsen the label set by introducing a label
collapsing algorithm to SAMT grammars (Zoll-
mann and Venugopal, 2006). Yet another solution
is easing restrictions on label matching. Shen et al.
(2009) penalize substitution with unmatched la-
bels while Chiang (2010) uses soft match features
to model substitutions with various labels. Simi-
lar to Zollmann and Venugopal (2006), Hoang and
Koehn (2010) decorate some hierarchical rules
with source-side syntax information and use un-
decorated, decorated, and partially decorated rules
in their translation model. Mylonakis and Sima’an
(2011) employ source-side syntax-based labels to
define a joint probability synchronous grammar.
Combinatory Categorial Grammar (CCG) labels
or CCG contextual labels are also used to enrich
nonterminals (Almaghout et al., 2011; Weese et
al., 2012). Li et al. (2012) incorporate head in-
formation extracted from source-side dependency
structures into translation rules. Besides, seman-
tic knowledge is also used to refine nonterminals.
Gao and Vogel (2011) utilize target-side semantic
roles to form SRL-aware SCFG rules. Most of ap-
proaches introduced here explicitly require syntac-
tic or semantic parsers trained on manually labeled
data.

On the other hand, efforts have also been di-
rected towards attaching distributional linguistic
knowledge to nonterminals. Venugopal et al.
(2009) propose a preference grammar to annotate
nonterminals based on preference distributions of
syntactic categories. Huang et al. (2010) learn la-
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tent syntactic distributions for each nonterminal.
They use these distributions to decorate nontermi-
nal Xs in SCFG rules with a real-valued feature
vectors and utilize these vectors to measure the
similarities between source phrases and applied
rules. Similar to this work, Huang et al. (2013)
utilize treebank tags based on dependency parsing
to learn latent distributions. Cao et al. (2014) at-
tach translation rules with dependency knowledge,
which contains both dependency relations inside
rules and dependency relations between rules and
their contexts.

The difference of our work from these studies
is that our semantic representations are learned
from unlabeled bilingual (or monolingual) data
and do not depend on any linguistic resources,
e.g., parsers. We also believe that our model is
able to exploit both syntactic and semantic infor-
mation for nonterminals since vector representa-
tions learned in our way are able to capture both
syntactic and semantic properties (Turian et al.,
2010; Socher et al., 2010).

3 Learning Semantic Representations for
Nonterminals

In our framework, semantic representations for
nonterminal Xs are automatically induced from
word-aligned parallel corpus. In this section, we
detail the essential component of our approach,
i.e., how to learn semantic vectors for nonter-
minals and how to project source semantic vec-
tors onto target language semantic space. Be-
fore discussing nonterminal representations, we
briefly introduce vector representations for words
and phrases.

3.1 Prerequisite: Learning Words and
Phrases Representations

We employ a neural method, specifically the
continuous bag-of-words model (Mikolov et al.,
2013a) to learn high-quality vector representations
for words. Once we complete the training of
the continuous bag-of-words model, word embed-
dings form an embedding matrix M ∈ Rd×|V |,
where d is a pre-determined embedding dimen-
sionality and each word w in the vocabulary V
corresponds to a vector ~v ∈ Rd. Given the em-
bedding matrix M , mapping words to vectors can
be done by simply looking up their respective
columns in M .

We further feed these learned word embeddings

to recursive autoencoders (RAE) (Socher et al.,
2011) for learning phrase representations. In tra-
ditional RAE (shown in Figure 1), given two in-
put children representation vectors ~c1 ∈ Rd and
~c2 ∈ Rd , their parent representation ~p can be cal-
culated as follows:

~p = f (1)(W (1)[~c1; ~c2] + b(1)) (1)

where [~c1; ~c2] ∈ R2d is the concatenation of vec-
tors of two children, W (1) ∈ Rd×2d is a weight
matrix, b(1) ∈ Rd is a bias term, and f (1) is
an element-wise activation function such as tanh.
The above output representation ~p can be used as
a child vector to construct the representation for a
larger subphrase. This process is repeated until a
binary tree covering the whole input phrase is gen-
erated.

In order to evaluate how well the parent vector
represents its children, we can reconstruct the chil-
dren in a reconstruction layer:

[~c1
′
; ~c2
′
] = f (2)(W (2)~p+ b(2)) (2)

where ~c1
′

and ~c2
′

are the reconstructed children,
W (2) is a weight matrix for reconstruction, b(2)

is a bias term for reconstruction, and f (2) is an
element-wise activation function.

For each node in the generated binary tree, we
compute Euclidean distance between the original
input vectors and the reconstructed vectors to mea-
sure the reconstruction error:

Erec([~c1; ~c2]) =
1
2
‖[~c1; ~c2]− [~c1

′
; ~c2
′
]‖2 (3)

By minimizing the total reconstruction error over
all nonterminal nodes, we can learn parameters of
RAE.

Socher et al. (2011) propose a greedy unsuper-
vised RAE as an extension to the above traditional
RAE. The main difference is that in the unsuper-
vised RAE there is no tree structure which is given
for traditional RAE. It can learn both representa-
tions and tree structures of phrases or sentences.
In this work, we adopt the unsupervised RAE to
learn vector representations for phrases.

3.2 Inducing Nonterminal Representations
from Phrase Representations

As we extract hierarchical rules from phrases by
replacing subphrases with nonterminal symbols, a
nonterminal X is generalized from a number of
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  Figure 1: The architecture of a recursive autoen-

coder, adapted from (Socher et al., 2011). Blue
nodes are original vectors and yellow nodes are
reconstructed vectors which are used to compute
reconstruction errors.

subphrases. We believe that these subphrases de-
termine syntactic and semantic properties of the
nonterminal X . We therefore enrich each nonter-
minalX with a semantic vector induced from vec-
tor representations of phrases that are replaced by
the nonterminal during rule extraction.

For an SCFG rule, we can learn semantic vec-
tors for nonterminals on both the source and target
side. Due to the space limitation, we introduce the
procedure of learning nonterminal vectors on the
source side. Semantic vectors on the target side
can be learned analogically.

For each source-side nonterminal X of a hi-
erarchical rule, we collect all source subphrases
replaced by X in a source subphrase set P =
{p1, p2, · · · , pm}. We also count the number of
times of these phrases being replaced by non-
terminal X on training data during rule extrac-
tion. We collect these numbers in a count set
C = {c1, c2, · · · , cm}. Based on the phrase set P ,
count set C and learned phrase vector representa-
tions in P , we can compute a semantic vector ~vx
for nonterminal X in each SCFG rule.

We propose two general approaches to obtain
semantic vectors for nonterminals: a weighted
mean value method and a minimum distance
method. Given phrase vector representations
~Pr = {~p1, ~p2, . . . , ~pm} , we calculate the seman-
tic vector for a nonterminal generalized from these
phrases as follows.

Weighted mean value method (MV) computes
semantic vector ~vx as:

~vx =
∑m

i=1 ci · ~pi∑m
i=1 ci

(4)

Minimum distance method (MD) finds a point
in semantic space to minimize the sum of Eu-

clidean distances of vectors in ~Pr to this point.
Formally,

~vx = argmin
~vx

m∑
i=1

√√√√ d∑
j=1

(pij − vxj)2 (5)

We use the stochastic gradient descent algorithm
to find the minimal distance and the point ~vx. The
component vxj can be updated by vxj ← vxj +

λ ∂f
∂vxj

where f is
∑m

i=1

√∑d
j=1(pij − vxj)2 and

λ is the learning rate.
Similar to the center of gravity, the semantic

vector ~vx learned by this method acts as a semantic
centroid for all vectors of phrases that are substi-
tuted by X . Nonterminals in different hierarchical
translation rules will have different semantic cen-
troids. These centroids will help translation model
capture semantic diversity to a certain degree.

3.3 Mapping Source-Side Representations
onto Target-Side Semantic Space

As we discussed in Section 1, directly learning
vector representations for target phrases is very
costly in practice. Inspired by Mikolov et al.
(2013b), we adopt vector projection to alleviate
this problem. Different from mapping represen-
tations from the source side to the target side
by learning a linear matrix on word alignments
(Mikolov et al., 2013b), we project source multi-
word phrase representations onto the target seman-
tic space in a nonlinear manner as we believe that
nonlinear relations between languages are more
reasonable. Specifically, we use a neural network
to achieve this goal. Our neural network is a multi-
layer feed-forward neural network with one hid-
den layer. The functional form can be written in
the following equation:

~p = tanh(W (4)(tanh(W (3) ~src) + b(3)) + b(4))
(6)

where ~src is the input vector which is learned
in the source semantic space, W (3) denotes the
weight matrix for connections between input and
hidden neurons and W (4) denotes the weight ma-
trix for links between hidden neurons and output,
b(3) and b(4) are bias terms. To train the neural
network, we optimize the following objective:

J = argmin
W (3),W (4)

1
N

N∑
i=1

‖ ~trgi − ~pi‖2 +R(θ) (7)
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where N is the number of training examples, ~trgi
is the target vector representation for the ith ex-
ample learned by RAE and ~pi is the output of the
neural network for the source vector representa-
tion ~srci of ith example. R(θ) is the regularizer
on parameters:

R(θ) =
λL
2
‖W‖2 (8)

where W denotes parameters for parameter matri-
ces W (3), W (4) and bias terms b(3) , b(4).

4 Semantic Nonterminal Refinement
Model

In this section, we describe our semantic nonter-
minal refinement model on the basis of induced
real-valued semantic vectors for nonterminals.

4.1 Nonterminal Representations in
Hierarchical Rules

We incorporate learned semantic representa-
tions of nonterminals into hierarchical rules. In
particular, ordinary hierarchical rules take the fol-
lowing form:

X → 〈aXsb, cXtd〉 (9)

where a/b, c/d are strings of terminals on the
source and target side, s and t are placeholders de-
noting the nonterminal X on the source or target
side, Xs and Xt are aligned to each other.

Representations for nonterminals can be on ei-
ther the source or target side. They are attached to
hierarchical rules as follows:

X → 〈aXsb, cXtd, ~vxs, ~vxt〉 (10)

where ~vx. is the source- or target-side semantic
representation for nonterminal. In this way, we
keep original translation rules intact and decorate
nonterminals with their semantic representations.

4.2 The Model

The proposed semantic nonterminal refinement
model estimates the semantic similarity between
a phrase p and nonterminal X . The phrase p and
nonterminal X will have a high similarity score in
the representation space if they are semantically
similar. The higher semantic similarity scores are,
the more compatible nonterminals are with corre-
sponding phrases.

There is another nonterminal S in glue rules,
which are formalized as follows:

S → 〈S1X2, S1X2〉 (11)

S → 〈X1, X1〉 (12)

This nonterminal S is different from X . We there-
fore treat it as a special case in the computation of
semantic similarity.

In this work, we explore two approaches to
compute similarity: one based on cosine similarity
and the other based on Euclidean distance.

Given a phrase vector representation ~p and non-
terminalX semantic vector ~vx, Cosine Similarity
(CS) is computed as:

cos(~p, ~vx) =
~p · ~vx
‖~p‖‖ ~vx‖ (13)

We set α for the Cosine Similarity between the
glue rule and its corresponding phrase as follows:

SeSim =
{
cos(~p, ~vx) hierarchical rules

α glue rules
(14)

As for Euclidean Distance (ED), it is computed
according to the following formula:

dist(~p, ~vx) =

√√√√ d∑
i=1

(pi − vxi)2 (15)

and similarly we set β for glue rules:

SeSim =
{
dist(~p, ~vx) hierarchical rules

β glue rules
(16)

5 Decoding

We incorporate the proposed model as a new
feature into the hierarchical phrase-based transla-
tion system. Specifically, two features are added
into the baseline system:

1. Source-side semantic similarity between
source phrases and nonterminals

2. Target-side semantic similarity between tar-
get phrases and nonterminals

We compute source- and target-side similari-
ties based on representations of nonterminals and
phrasal substitutions for each applied rule, and
sum up these similarities to calculate the total
score of a derivation on the two features.
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  Figure 2: Architecture of SMT system with the
proposed semantic nonterminal refinement model.

The integration of the source-side semantic
nonterminal refinement model into the decoder is
trivial. For the target-side model, however, we
have to consider the efficiency issue as we men-
tioned in Section 1. We introduce two different
methods to integrate the target-side model into the
decoder: 1) projection and 2) two-pass decoding.
In the first integration method, a mapping neu-
ral network is trained to map source phrase rep-
resentations onto the target semantic space as de-
scribed in Section 3.3. The projection can be lin-
ear if we remove the hidden layer in the projection
neural network. This is similar to the mapping
matrix learned by Mikolov et al. (2013b). We
calculate semantic similarities between projected
representations of phrases and those of nontermi-
nals. In the two-pass decoding, we collect tar-
get phrase candidates from 100-best translations
for each source sentence generated by the base-
line in the first pass and learn vector represen-
tations for these target phrase candidates. Then
in the second pass, we decode source sentence
with our target semantic nonterminal refinement
model using learned target phrase vector represen-
tations. If a target phrase appears in the collected
set, the target-side semantic nonterminal refine-
ment model will calculate the semantic similarity
between the target phrase and the corresponding
nonterminal on the target semantic space; other-
wise the model will give a penalty. This is because
this phrase is not a desirable phrase as it is not used
in 100-best translations.

The weights of these two features are tuned by
the Minimum Error Rate Training (MERT)(Och,
2003), together with weights of other sub-models
on a development set. Figure 2 shows the architec-
ture of SMT system with the proposed semantic
nonterminal refinement model.

6 Experiment

In this section, we conducted a series of exper-
iments on Chinese-to-English translation using
large-scale bilingual training data, aiming at the
following questions:

1. Which approach is better for learning nonter-
minal representations, weighted mean value
or minimum distance?

2. Can the target-side semantic nonterminal re-
finement model improve translation quality?
And which method is better for integrating
the target-side semantic model into transla-
tion, projection or two-pass decoding?

3. Does the combination of source and target se-
mantic nonterminal refinement models pro-
vide further improvement?

6.1 Setup

Our training corpus contains 2.9M sentence pairs
with 80.9M Chinese words and 86.4M English
words from LDC data1. We used NIST MT03 as
our development set, NIST MT06 as our develop-
ment test set and MT08 as our final test set.

We ran Giza++ on the training corpus in both
Chinese-to-English and English-to-Chinese direc-
tions and applied the “grow-diag-final” refine-
ment rule (Koehn et al., 2003) to obtain word
alignments. We used the SRI Language Model-
ing Toolkit2 (Stolcke and others, 2002) to train
our language models. MERT (Och, 2003) was
adopted to tune feature weights of the decoder.
We used the case-insensitive BLEU3 as our eval-
uation metric. In order to alleviate the instabil-
ity of MERT , we followed Clark et al. (2011) to
perform three runs of MERT and reported average
BLEU scores over the three runs for all our exper-
iments.

We used word2vec toolkit4 to train our word
embeddings and set the vector dimension d to 30.
In our training experiment, we used the continu-
ous bag-of-words model with a context window of
size 5. The monolingual corpus, which was used
to pre-train word embeddings, is extracted from

1The corpora include LDC2003E14, LDC2004T07,
LDC2005T06, LDC2005T10 and LDC2004T08 (Hong Kong
Hansards/Laws/News).

2http://www.speech.sri.com/projects/srilm/download.html
3ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v11b.pl
4https://code.google.com/p/word2vec/
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the above parallel corpus in SMT. To train vec-
tor representations for multi-word phrases, we ran-
domly selected 1M bilingual sentences 5 as train-
ing set and used the unsupervised greedy RAE fol-
lowing (Socher et al., 2011). We used a learning
rate of 10−3 for our minimum distance method
that learned the centroid of phrase representations
as the vector representation of the corresponding
nonterminal.

For projection neural network in Section 3.3,
we set 300 units for the hidden layer and dimen-
sionality of 30 for both input and output vectors.
Learning rate was set to 10−3 and the regulariza-
tion coefficient λL was set to 10−3. To construct
the training set for the projection neural network,
we selected phrase pairs from our rule table and
used their representations on the source and target
side as training examples. We randomly selected
5M examples as training set, 10k examples as de-
velopment set and 10k examples as test set. The
multi-layer projection neural network was trained
with the back-propagation and stochastic gradient
descent algorithm with a mini-batch size of 5k.

Our baseline system is an in-house hierarchical
phrase-based system (Chiang, 2007). The features
used in the baseline system includes a 4-gram
language model trained on the Xinhua section of
the English Gigaword corpus, a 3-gram language
model trained on the target part of the bilingual
training data, bidirectional translation probabili-
ties, bidirectional lexical weights, a word count,
a phrase count and a glue rule count.

In order to compare our proposed models with
previous methods on nonterminal refinement, we
re-implemented a syntax mismatch model (Syn-
Mis) which was used by Huang et al. (2013) and
integrated it into hierarchical phrase-based sys-
tem. Syn-Mis model decorates each nontermi-
nal with a distribution of head POS tags and uses
this distribution to measure the degree of syntactic
compatibility of translation rules with correspond-
ing source spans. In order to obtain head POS tags
for Syn-Mis model, we used the Stanford depen-
dency parser 6 (Chang et al., 2009) to parse Chi-
nese sentences in our training corpus and NIST de-
velopment/test sets.

5We choose bilingual sentences because we want to ob-
tain bilingual training examples to train our projection neural
network as described in Section 3.3.

6http://nlp.stanford.edu/software/lex-parser.shtml

MT06 MT08 Avg
Baseline 30.54 23.58 27.06
Syn-Mis 31.23∗ 24.38∗ 27.81
MV + CS α = 1.0 31.44+ 24.23∗ 27.84
MV + CS α = 0 31.63∗ 24.51∗ 28.07
MV + CS α = -1.0 31.13 24.07∗ 27.60
MD + ED β = 0 31.02+ 23.74 27.38
MD + ED β = 0.5 31.35+ 24.08∗ 27.72
MD + ED β = 1.0 31.06 23.90+ 27.48

Table 1: BLEU scores of our models against the
baseline and Syn-Mis model. /*” and/+” : sig-
nificantly better than Baseline at significance level
p < 0.01 and p < 0.05 respectively.

6.2 Different Approaches to Learn Vector
Representations for Nonterminals

Our first group of experiments were carried out
to investigate which approach is more appropri-
ate to learn semantic vectors for nonterminals. We
only used the source-side semantic nonterminal
refinement model in these experiments. In order
to validate the effectiveness of the proposed ap-
proaches for learning nonterminal semantic vec-
tors, we combined the minimum distance method
(MD) with the Euclidean Distance (ED) because
both of them are distance-based, and combined
the weighted mean value method (MV) with the
Cosine Similarity model (CS) as they belong to
vector-based approaches. We chose α = 1.0, 0,
-1.0 and β = 0, 0.5, 1.0 for glue rules to study
the impact of these parameters. We compared our
model with the baseline and Syn-Mis model.

Results are shown in Table 1. From Table 1, we
observe that the proposed two approaches are able
to achieve significant improvements over the base-
line. (MV + CS) and (MD + ED) achieve up to an
absolute improvement of 1.09 and 0.81 (when α =
0 and β = 0.5) BLEU points respectively over the
baseline on the development test set MT06. And
the approach (MV + CS) with α = 0 outperforms
Syn-Mis by 0.4 BLEU points on MT06 without
using any syntactic information. The approach
(MV + CS) achieves better performance and it is
more efficient than (MD + ED) where the com-
putation of semantic centroids is time-consuming.
Therefore, we adopt the approach (MV + CS) with
α = 0 to learn semantic vectors for nonterminals
and compute semantic similarities in the follow-
ing experiments.
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MT06 MT08 Avg
Baseline 30.54 23.58 27.06
Linear Projection 30.70 23.66 27.18
Nonlinear Projection 31.16 24.11∗ 27.64
Two-pass decoding 31.29+ 24.24∗ 27.77

Table 2: Comparison of two-pass decoding, linear
and nonlinear projection methods for integrating the
target-side semantic nonterminal refinement model
in terms of BLEU scores. /*” and /+” : sig-
nificantly better than Baseline at significance level
p < 0.01 and p < 0.05 respectively.

6.3 Effect of the Target Semantic
Nonterminal Refinement Models

In the second set of experiments, we further val-
idate the effectiveness of semantic nonterminal
vectors learned on the target side. In these exper-
iments, learning vector representations and com-
puting semantic similarities were performed on
the target language semantic space. We also com-
pared the two integration methods discussed in
Section 5 for the target-side model. With regard
to the projection method, we further compared the
linear projection (the projection neural network
without hidden layer) with the nonlinear projec-
tion (with hidden layer). Experiment results are
shown in Table 2.

From Table 2, we can see that

• Two-pass decoding achieves the highest
BLEU scores, which are higher than those of
the baseline by 0.75 and 0.66 BLEU points
on MT06 and MT08 respectively. The rea-
son may be that noisy translation candidates
are filtered out in the first pass. This finding
is consistent with many other multiple-pass
systems in natural language processing, e.g.,
two-pass parsing (Zettlemoyer and Collins,
2007).

• Nonlinear projection achieves an improve-
ment of 0.62 BLEU points over the baseline
on MT06. It outperforms linear projection
method on both sets. These empirical results
support our assumption that nonlinear rela-
tions between languages are more reasonable
than linear relations.

• The results prove that the target-side seman-
tic nonterminal refinement model is also able

MT06 MT08 Avg
Baseline 30.54 23.58 27.06
Syn-Mis 31.23∗ 24.38∗ 27.81
Src Model 1 31.63∗ 24.51∗ 28.07
Trg Model 2 31.16 24.11∗ 27.64
Combined-Model 31.71∗ 24.72∗ 28.22
1 (MV + CS α = 0) is used.
2 Nonlinear Projection is used.

Table 3: BLEU scores of the combination of the
source- and target-side semantic nonterminal re-
fine model. /*” and/+” : significantly better
than Baseline at significance level p < 0.01 and
p < 0.05 respectively.

to improve the baseline system, although the
gain is less than that of the source-side coun-
terpart.

6.4 Combination of the Source and Target
Models

Finally, we integrated both the source- and target-
side semantic nonterminal refinement models into
the baseline system. In this experiment, we
adopted nonlinear projection to obtain target se-
mantic vector representations for target phrases.
These two models collectively achieve a gain of
up to 1.16 BLEU points over the baseline and
0.41 BLEU points over Syn-Mis model on aver-
age, which is shown in Table 3.

7 Conclusion

We have presented a framework to refine non-
terminal X in hierarchical translation rules with
semantic representations. The semantic vectors
are derived from vector representations of phrasal
substitutions, which are automatically learned us-
ing an unsupervised RAE. As the semantic non-
terminal refinement model is capable of select-
ing more semantically similar translation rules,
it achieves statistically significant improvements
over the baseline on Chinese-to-English transla-
tion. Experiment results have shown that

• Using (MV + CS) approach to learn semantic
representations for nonterminals can achieve
better performance than (MD + ED) in terms
of BLEU scores.

• Target-side semantic nonterminal refinement
model is able to substantially improve trans-
lation quality over the baseline. Two-pass de-
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coding method is superior to the projection
method.

• The simultaneous incorporation of the
source- and target-side models can achieve
further improvements over a single-side
model.

For the future work, we are interested in learn-
ing bilingual representations (Lauly et al., 2014;
Gouws et al., 2014) for nonterminals. We also
would like to extend our work by using more con-
textual lexical information to derive semantic vec-
tors for nonterminals.
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Abstract

We propose a conversion of bilingual
sentence pairs and the corresponding
word alignments into novel linear se-
quences. These are joint translation
and reordering (JTR) uniquely defined
sequences, combining interdepending
lexical and alignment dependencies on
the word level into a single framework.
They are constructed in a simple manner
while capturing multiple alignments
and empty words. JTR sequences can
be used to train a variety of models.
We investigate the performances of n-
gram models with modified Kneser-Ney
smoothing, feed-forward and recur-
rent neural network architectures when
estimated on JTR sequences, and com-
pare them to the operation sequence
model (Durrani et al., 2013b). Evalua-
tions on the IWSLT German→English,
WMT German→English and BOLT
Chinese→English tasks show that JTR
models improve state-of-the-art phrase-
based systems by up to 2.2 BLEU.

1 Introduction

Standard phrase-based machine translation (Och
et al., 1999; Zens et al., 2002; Koehn et al., 2003)
uses relative frequencies of phrase pairs to esti-
mate a translation model. The phrase table is ex-
tracted from a bilingual text aligned on the word
level, using e.g. GIZA++ (Och and Ney, 2003). Al-
though the phrase pairs capture internal dependen-
cies between the source and target phrases aligned
to each other, they fail to model dependencies that
extend beyond phrase boundaries. Phrase-based
decoding involves concatenating target phrases.
The burden of ensuring that the result is linguisti-
cally consistent falls on the language model (LM).

This work proposes word-based translation
models that are potentially capable of capturing
long-range dependencies. We do this in two steps:
First, given bilingual sentence pairs and the asso-
ciated word alignments, we convert the informa-
tion into uniquely defined linear sequences. These
sequenecs encode both word reordering and trans-
lation information. Thus, they are referred to as
joint translation and reordering (JTR) sequences.
Second, we train an n-gram model with modi-
fied Kneser-Ney smoothing (Chen and Goodman,
1998) on the resulting JTR sequences. This yields
a model that fuses interdepending reordering and
translation dependencies into a single framework.

Although JTR n-gram models are closely re-
lated to the operation sequence model (OSM)
(Durrani et al., 2013b), there are three main dif-
ferences. To begin with, the OSM employs min-
imal translation units (MTUs), which are essen-
tially atomic phrases. As the MTUs are extracted
sentence-wise, a word can potentially appear in
multiple MTUs. In order to avoid overlapping
translation units, we define the JTR sequences
on the level of words. Consequently, JTR se-
quences have smaller vocabulary sizes than OSM
sequences and lead to models with less sparsity.
Moreover, we argue that JTR sequences offer a
simpler reordering approach than operation se-
quences, as they handle reorderings without the
need to predict gaps. Finally, when used as an
additional model in the log-linear framework of
phrase-based decoding, an n-gram model trained
on JTR sequences introduces only one single fea-
ture to be tuned, whereas the OSM additionally
uses 4 supportive features (Durrani et al., 2013b).
Experimental results confirm that this simplifica-
tion does not make JTR models less expressive, as
their performance is on par with the OSM.

Due to data sparsity, increasing the n-gram or-
der of count-based models beyond a certain point
becomes useless. To address this, we resort to neu-
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ral networks (NNs), as they have been successfully
applied to machine translation recently (Sunder-
meyer et al., 2014; Devlin et al., 2014). They are
able to score any word combination without re-
quiring additional smoothing techniques. We ex-
periment with feed-forward and recurrent trans-
lation networks, benefiting from their smoothing
capabilities. To this end, we split the linear se-
quence into two sequences for the neural transla-
tion models to operate on. This is possible due to
the simplicity of the JTR sequence. We show that
the count and NN models perform well on their
own, and that combining them yields even better
results.

In this work, we apply n-gram models with
modified Kneser-Ney smoothing during phrase-
based decoding and neural JTR models in rescor-
ing. However, using a phrase-based system is not
required by the model, but only the initial step to
demonstrate the strength of JTR models, which
can be applied independently of the underlying de-
coding framework. While the focus of this work is
on the development and comparison of the models,
the long-term goal is to decode using JTR mod-
els without the limitations introduced by phrases,
in order to exploit the full potential of JTR mod-
els. The JTR models are estimated on word align-
ments, which we obtain using GIZA++ in this pa-
per. The future aim is to also generate improved
word alignments by a joint optimization of both
the alignments and the models, similar to the train-
ing of IBM models (Brown et al., 1990; Brown et
al., 1993). In the long run, we intend to achieve a
consistency between decoding and training using
the introduced JTR models.

2 Previous Work

In order to address the downsides of the phrase
translation model, various approaches have been
taken. Mariño et al. (2006) proposed a bilingual
language model (BILM) that operates on bilin-
gual n-grams, with an own n-gram decoder re-
quiring monotone alignments. The lexical re-
ordering model introduced in (Tillmann, 2004)
was integrated into phrase-based decoding. Crego
and Yvon (2010) adapted the approach to BILMs.
The bilingual n-grams are further advanced in
(Niehues et al., 2011), where they operate on non-
monotone alignments within a phrase-based trans-
lation framework. Compared to our JTR models,
their BILMs treat jointly aligned source words as
minimal translation units, ignore unaligned source

words and do not include reordering information.
Durrani et al. (2011) developed the OSM which

combined dependencies on bilingual word pairs
and reordering information into a single frame-
work. It used an own decoder that was based on n-
grams of MTUs and predicted single translation or
reordering operations. This was further advanced
in (Durrani et al., 2013a) by a decoder that was
capable of predicting whole sequences of MTUs,
similar to a phrase-based decoder. In (Durrani et
al., 2013b), a slightly enhanced version of OSM
was integrated into the log-linear framework of
the Moses system (Koehn et al., 2007). Both the
BILM (Stewart et al., 2014) and the OSM (Durrani
et al., 2014) can be smoothed using word classes.

Guta et al. (2015) introduced the extended trans-
lation model (ETM), which operates on the word
level and augments the IBM models by an addi-
tional bilingual word pair and a reordering opera-
tion. It is implemented into the log-linear frame-
work of a phrase-based decoder and shown to be
competitive with a 7-gram OSM.

The JTR n-gram models proposed within this
work can be seen as an extension of the ETM.
Nevertheless, JTR models utilize linear sequences
of dependencies and combine the translation of
bilingual word pairs and reoderings into a sin-
gle model. The ETM, however, features separate
models for the translation of individual words and
reorderings and provides an explicit treatment of
multiple alignments. As they operate on linear se-
quences, JTR count models can be implemented
using existing toolkits for n-gram language mod-
els, e.g. the KenLM toolkit (Heafield et al., 2013).

An HMM approach for word-to-phrase align-
ments was presented in (Deng and Byrne, 2005),
showing performance similar to IBM Model 4 on
the task of bitext alignment. Feng et al. (2013)
propose several models which rely only on the in-
formation provided by the source side and pre-
dict reorderings. Contrastingly, JTR models in-
corporate target information as well and predict
both translations and reorderings jointly in a sin-
gle framework.

Zhang et al. (2013) explore different Markov
chain orderings for an n-gram model on MTUs
in rescoring. Feng and Cohn (2013) present an-
other generative word-based Markov chain trans-
lation model which exploits a hierarchical Pitman-
Yor process for smoothing, but it is only applied
to induce word alignments. Their follow-up work
(Feng et al., 2014) introduces a Markov-model on
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MTUs, similar to the OSM described above.
Recently, neural machine translation has

emerged as an alternative to phrase-based decod-
ing, where NNs are used as standalone models to
decode source input. In (Sutskever et al., 2014),
a recurrent NN was used to encode a source
sequence, and output a target sentence once the
source sentence was fully encoded in the network.
The network did not have any explicit treatment
of alignments. Bahdanau et al. (2015) introduced
soft alignments as part of the network architecture.
In this work, we make use of hard alignments
instead, where we encode the alignments in the
source and target sequences, requiring no mod-
ifications of existing feed-forward and recurrent
NN architectures. Our feed-forward models are
based on the architectures proposed in (Devlin et
al., 2014), while the recurrent models are based
on (Sundermeyer et al., 2014). Further recent
research on applying NN models for extended
context was carried out in (Le et al., 2012; Auli
et al., 2013; Hu et al., 2014). All of these works
focus on lexical context and ignore the reordering
aspect covered in our work.

3 JTR Sequences

The core idea of this work is the interpretation of
a bilingual sentence pair and its word alignment
as a linear sequence of K joint translation and re-
ordering (JTR) tokens gK

1 . Formally, the sequence
gK

1 ( f J
1 ,e

I
1,b

I
1) is a uniquely defined interpretation

of a given source sentence f J
1 , its translation eI

1 and
the inverted alignment bI

1, where bi denotes the
ordered sequence of source positions j aligned to
target position i. We drop the explicit mention of
( f J

1 ,e
I
1,b

I
1) to allow for a better readability. Each

JTR token is either an aligned bilingual word pair
〈 f ,e〉 or a reordering class ∆ j′ j.

Unaligned words on the source and target side
are processed as if they were aligned to the empty
word ε . Hence, an unaligned source word f gener-
ates the token 〈 f ,ε〉, and an unaligned target word
e the token 〈ε,e〉.

Each word of the source and target sentences is
to appear in the corresponding JTR sequence ex-
actly once. For multiply-aligned target words e,
the first source word f that is aligned to e gener-
ates the token 〈 f ,e〉. All other source words f ′,
that are also aligned to e, are processed as if they
were aligned to the artificial word σ . Thus, each
of these f ′ generates a token 〈 f ′,σ〉. The same
approach is applied to multiply-aligned source

Algorithm 1 JTR Conversion Algorithm

1: procedure JTRCONVERSION( f J
1 , eI

1, bI
1)

2: gK
1← /0

3: // last translated source position j′
4: j′← 0
5: for i← 1 to I do
6: if ei is unaligned then
7: // align ei to the empty word ε
8: APPEND(gK

1 , 〈ε,ei〉)
9: continue

10: // ei is aligned to at least one source word
11: j← first source position in bi
12: if j = j′ then
13: // ei is aligned to the same f j as ei−1
14: APPEND(gK

1 , 〈σ ,ei〉)
15: continue
16: if j 6= j′+1 then
17: // alignment step is non-monotone
18: REORDERINGS( f J

1 , bI
1, gK

1 , j′, j)
19: // 1-to-1 translation: f j is aligned to ei
20: APPEND(gK

1 , 〈 f j,ei〉)
21: j′← j
22: // generate all other f j that are also
23: // aligned to the current target word ei
24: for all remaining j in bi do
25: APPEND(gK

1 , 〈 f j,σ〉)
26: j′← j
27: // check last alignment step at sentence end
28: if j′ 6= J then
29: // last alignment step is non-monotone
30: REORDERINGS( f J

1 , bI
1, gK

1 , j′, J +1)
31: return gK

1
32:
33: // called when a reordering class is appended
34: procedure REORDERINGS( f J

1 , bI
1, gK

1 , j′, j)
35: // check if the predecessor is unaligned
36: if f j−1 is unaligned then
37: // get unaligned predecessors
38: f j−1

j0 ← unaligned predecessors of f j
39: // check if the alignment step to the first
40: // unaligned predecessor is monotone
41: if j0 6= j′+1 then
42: // non-monotone: add reordering class
43: APPEND(gK

1 , ∆ j′, j0 )
44: // translate unaligned predecessors by ε
45: for f ← f j0 to f j−1 do
46: APPEND(gK

1 , 〈 f ,ε〉)
47: else
48: // non-monotone: add reordering class
49: APPEND(gK

1 , ∆ j′, j)

words. Similar to Feng and Cohn (2013), we clas-
sify the reordered source positions j′ and j by ∆ j′ j:

∆ j′ j =


step backward (←), j = j′−1
jump forward (y), j > j′+1
jump backward (x), j < j′−1.

The reordering classes are illustrated in Figure 1.
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j

i−1

i

j′

(a) step backward (←)
j

i−1

i

j′

(b) jump forward (y)
j′

i−1

i

j

(c) jump backward (x)

Figure 1: Overview of the different reordering classes in JTR sequences.

3.1 Sequence Conversion
Algorithm 1 presents the formal conversion of a
bilingual sentence pair and its alignment into the
corresponding JTR sequence gK

1 . At first, gK
1 is

initialized by an empty sequence (line 2). For each
target position i = 1, . . . , I it is extended by at least
one token. During the generation process, we store
the last visited source position j′ (line 4). If a tar-
get word ei is

• unaligned, we align it to the empty word ε
and append 〈ε,ei〉 to the current gK

1 (line 8),
• if it is aligned to the same f j as ei−1, we only

add 〈σ ,ei〉 (line 14),
• otherwise we append 〈 f j,ei〉 (line 20) and
• in case there are more source words aligned

to ei, we additionally append 〈 f j,σ〉 for each
of these (line 24).

Before a token 〈 f j,ei〉 is generated, we have to
check whether the alignment step from j′ to j is
monotone (line 16). In case it is not, we have to
deal with reorderings (line 34). We define that
a token 〈 f j−1,ε〉 is to be generated right before
the generation of the token containing f j. Thus,
if f j−1 is not aligned, we first determine the con-
tiguous sequence of unaligned predecessors f j−1

j0
(line 38). Next, if the step from j′ to j0 is not
monotone, we add the corresponding reordering
class (line 43). Afterwards we append all 〈 f j0 ,ε〉
to 〈 f j−1,ε〉. If f j−1 is aligned, we do not have to
process unaligned source words and only append
the corresponding reordering class (line 49).

Figure 2 illustrates the generation steps of a
JTR sequence, whose result is presented in Ta-
ble 1. The alignment steps are denoted by the ar-
rows connecting the alignment points. The first
dashed alignment point indicates the 〈ε, ,〉 token
that is generated right after the 〈Feld,field〉 to-
ken. The second dashed alignment point indicates
the 〈ein,ε〉 token, which corresponds to the un-
aligned source word ein. Note, that the 〈ein,ε〉

in

the

Command

field

,

enter

your

code

.

g
e
b
e
n

S
i
e

i
m

F
e
l
d

B
e
f
e
h
l

I
h
r
e
n

C
o
d
e

e
i
n .

Figure 2: This example illustrates the JTR se-
quence gK

1 for a German→English sentence pair
including the word-to-word alignment.

token has to be generated right before 〈., .〉 is
generated. Therefore, there is no forward jump
from 〈Code,code〉 to 〈., .〉, but a monotone step
to 〈ein,ε〉 followed by 〈., .〉.
3.2 Training of Count Models
As the JTR sequence gK

1 is a unique interpretation
of a bilingual sentence pair and its alignment, the
probability p( f J

1 ,e
I
1,b

I
1) can be computed as:

p( f J
1 ,e

I
1,b

I
1) = p(gK

1 ). (1)

The probability of gK
1 can be factorized and ap-

proximated by an n-gram model.

p(gK
1 ) =

K

∏
k=1

p(gk|gk−1
k−n+1) (2)

Within this work, we first estimate the Viterbi
alignment for the bilingual training data using
GIZA++ (Och and Ney, 2003). Secondly, the con-
version presented in Algorithm 1 is applied to ob-
tain the JTR sequences, on which we estimate an
n-gram model with modified Kneser-Ney smooth-
ing as described in (Chen and Goodman, 1998) us-
ing the KenLM toolkit1 (Heafield et al., 2013).

1https://kheafield.com/code/kenlm/
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k gk sk tk

1 y δ y
2 〈im,in〉 im in
3 〈σ ,the〉 σ the
4 y δ y
5 〈Befehl,Command〉 Befehl Command
6 ← δ ←
7 〈Feld,field〉 Feld field
8 〈ε, ,〉 ε ,
9 x δ x

10 〈geben,enter〉 geben enter
11 〈Sie,σ〉 Sie σ
12 y δ y
13 〈Ihren,your〉 Ihren your
14 〈Code,code〉 Code code
15 〈ein,ε〉 ein ε
16 〈., .〉 . .

Table 1: The left side of this table presents the JTR
tokens gk corresponding to Figure 2. The right
side shows the source and target tokens sk and tk
obtained from the JTR tokens gk. They are used
for the training of NNs (cf. Section 4).

3.3 Integration into Phrase-based Decoding
Basically, each phrase table entry is annotated
with both the word alignment information, which
also allows to identify unaligned source words,
and the corresponding JTR sequence. The JTR
model is added to the log-linear framework as an
additional n-gram model. Within the phrase-based
decoder, we extend each search state such that it
additionally stores the JTR model history.

In comparison to the OSM, the JTR model does
not predict gaps. Local reorderings within phrases
are handled implicitly. On the other hand, we rep-
resent long-range reorderings between phrases by
the coverage vector and limit them by reordering
constraints.

Phrase-pairs ending with unaligned source
words at their right boundary prove to be a prob-
lem during decoding. As shown in Subsection 3.1,
the conversion from word alignments to JTR se-
quences assumes that each token corresponding to
an unaligned source word is generated immedi-
ately before the token corresponding to the closest
aligned source position to its right. However, if a
phrase ends with an unaligned f j as its rightmost
source word, the generation of the 〈 f j,ε〉 token has
to be postponed until the next word f j+1 is to be
translated or, even worse, f j+1 has already been
translated before.

To address this issue, we constrained the phrase
table extraction to discard entries with unaligned
source tokens at the right boundary. For IWSLT

De→En, this led to a baseline weaker by 0.2 BLEU

than the one described in Section 5. In order to
have an unconstrained and fair baseline, we there-
after removed this constraint and forced such dele-
tion tokens to be generated at the end of the se-
quence. Hence, we accept that the JTR model
might compute the wrong score in these special
cases.

4 Neural Networks

Usually, smoothing techniques are applied to
count-based models to handle unseen events. A
neural network does not suffer from this, as it
is able to score unseen events without additional
smoothing techniques. In the following, we will
describe how to adapt JTR sequences to be used
with feed-forward and recurrent NNs.

The first thing to notice is the vocabulary size,
mainly determined by the number of bilingual
word pairs, which constituted atomic units in the
count-based models. NNs that compute probabil-
ity values at the output layer evaluate a softmax
function that produces normalized scores that sum
up to unity. The softmax function is given by:

p(ei|ei−1
1 ) =

eoei (e
i−1
1 )

∑|V |w=1 eow(ei−1
1 )

(3)

where oei and ow are the raw unnormalized output
layer values for the words ei and w, respectively,
and |V | is the vocabulary size. The output layer
is a function of the context ei−1

1 . Computing the
denominator is expensive for large vocabularies,
as it requires computing the output for all words.
Therefore, we split JTR tokens gk and use indi-
vidual words as input and output units, such that
the NN receives jumps, source and target words as
input and outputs target words and jumps. Hence,
the resulting neural model is not a LM, but a trans-
lation model with different input and output vo-
cabularies. A JTR sequence gK

1 is split into its
source and target parts sK

1 and tK
1 . The construc-

tion of the JTR source sequence sK
1 proceeds as

follows: Whenever a bilingual pair is encountered,
the source word is kept and the target word is dis-
carded. In addition, all jump classes are replaced
by a special token δ . The JTR target sequence tK

1 is
constructed similarly by keeping the target words
and dropping source words, and the jump classes
are also kept. Table 1 shows the JTR source and
target sequences corresponding to JTR sequence
of Figure 2.
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Due to the design of the JTR sequence, pro-
ducing the source and target JTR sequences is
straightforward. The resulting sequences can then
be used with existing NN architectures, without
further modifications to the design of the net-
works. This results in powerful models that re-
quire little effort to implement.

4.1 Feed-forward Neural JTR

First, we will apply a feed-forward NN (FFNN) to
the JTR sequence. FFNN models resemble count-
based models in using a predefined limited context
size, but they do not encounter the same smooth-
ing problems. In this work, we use a FFNN similar
to that proposed in (Devlin et al., 2014), defined
as:

p(tK
1 |sK

1 )≈
K

∏
k=1

p(tk|tk−1
k−n ,s

k
k−n). (4)

It scores the JTR target word tk at position k us-
ing the current source word sk, and the history of
n JTR source words. In addition, the n JTR target
words preceding tk are used as context. The FFNN
computes the score by looking up the vector em-
beddings of the source and target context words,
concatenating them, then evaluating the rest of the
network. We reduce the output layer to a short-
list of the most frequent words, and compute word
class probabilities for the remaining words.

4.2 Recurrent Neural JTR

Unlike feed-forward NNs, recurrent NNs (RNNs)
enable the use of unbounded context. Following
(Sundermeyer et al., 2014), we use bidirectional
recurrent NNs (BRNNs) to capture the full JTR
source side. The BRNN uses the JTR target side
as well as the full JTR source side as context, and
it is given by:

p(tK
1 |sK

1 ) =
K

∏
k=1

p(tk|tk−1
1 ,sK

1 ) (5)

This equation is realized by a network that uses
forward and backward recurrent layers to capture
the complete source sentence. By a forward layer
we imply a recurrent hidden layer that processes
a given sequence from left to right, while a back-
ward layer does the processing backwards, from
right to left. The source sentence is basically split
at a given position k, then past and future represen-
tations of the sentence are recursively computed
by the forward and backward layers, respectively.
To include the target side, we provide the forward

layer with the target input tk−1 as well, that is,
we aggregate the embeddings of the input source
word sk and the input target word tk−1 before they
are fed into the forward layer. Due to recurrency,
the forward layer encodes the parts (tk−1

1 ,sk
1), and

the backward layer encodes sK
k , and together they

encode (tk−1
1 ,sK

1 ), which is used to score the out-
put target word tk. For the sake of comparison
to FFNN and count models, we also experiment
with a recurrent model that does not include future
source information, this is obtained by replacing
the term sK

1 with sk
1 in Eq. 5. It will be referred

to as the unidirectional recurrent neural network
(URNN) model in the experiments.

Note that the JTR source and target sides
include jump information, therefore, the RNN
model described above explicitly models reorder-
ing. In contrast, the models proposed in (Sunder-
meyer et al., 2014) do not include any jumps, and
hence do not provide an explicit way of includ-
ing word reordering. In addition, the JTR RNN
models do not require the use of IBM-1 lexica to
resolve multiply-aligned words. As discussed in
Section 3, these cases are resolved by aligning the
multiply-aligned word to the first word on the op-
posite side.

The integration of the NNs into the decoder is
not trivial, due to the dependence on the target
context. In the case of RNNs, the context is un-
bounded, which would affect state recombination,
and lead to less variety in the beam used to prune
the search space. Therefore, the RNN scores are
computed using approximations instead (Auli et
al., 2013; Alkhouli et al., 2015). In (Alkhouli et
al., 2015), it is shown that approximate RNN inte-
gration into the phrase-based decoder has a slight
advantage over n-best rescoring. Therefore, we
apply RNNs in rescoring in this work, and to al-
low for a direct comparison between FFNNs and
RNNs, we apply FFNNs in rescoring as well.

5 Evaluation

We perform experiments on the large-
scale IWSLT 20132 (Cettolo et al.,
2014) German→English, WMT 20153

German→English and the DARPA BOLT
Chinese→English tasks. The statistics for the
bilingual corpora are shown in Table 2. Word
alignments are generated with the GIZA++ toolkit

2http://www.iwslt2013.org
3http://www.statmt.org/wmt15/
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IWSLT WMT BOLT
German English German English Chinese English

Sentences 4.32M 4.22M 4.08M
Run. Words 108M 109M 106M 108M 78M 86M
Vocabulary 836K 792K 814K 773K 384K 817K

Table 2: Statistics for the bilingual training data of the IWSLT 2013 German→English, WMT 2015
German→English, and the DARPA BOLT Chinese→English translation tasks.

(Och and Ney, 2003). We use a standard phrase-
based translation system (Koehn et al., 2003).
The decoding process is implemented as a beam
search. All baselines contain phrasal and lexical
smoothing models for both directions, word and
phrase penalties, a distance-based reordering
model, enhanced low frequency features (Chen
et al., 2011), a hierarchical reordering model
(HRM) (Galley and Manning, 2008), a word
class LM (Wuebker et al., 2013) and an n-gram
LM. The lexical and phrase translation models of
all baseline systems are trained on all provided
bilingual data. The log-linear feature weights are
tuned with minimum error rate training (MERT)
(Och, 2003) on BLEU (Papineni et al., 2001). All
systems are evaluated with MultEval (Clark et al.,
2011). The reported BLEU scores are averaged
over three MERT optimization runs.

All LMs, OSMs and count-based JTR models
are estimated with the KenLM toolkit (Heafield et
al., 2013). The OSM and the count-based JTR
model are implemented in the phrasal decoder.
NNs are used only in rescoring. The 9-gram
FFNNs are trained with two hidden layers. The
short lists contain the 10k most frequent words,
and all remaining words are clusterd into 1000
word classes. The projecton layer has 17× 100
nodes, the first hidden layer 1000 and the sec-
ond 500. The RNNs have LSTM architectures.
The URNN has 2 hidden layers while the BRNN
has one forward, one backward and one addi-
tional hidden layer. All layers have 200 nodes,
while the output layer is class-factored using 2000
classes. For the count-based JTR model and OSM
we tuned the n-gram size on the tuning set of each
task. For the full data, 7-grams were used for the
IWSLT and WMT tasks, and 8-grams for BOLT.
When using in-domain data, smaller n-gram sizes
were used. All rescoring experiments used 1000-
best lists without duplicates.

5.1 Tasks description

The domain of IWSLT consists of lecture-type
talks presented at TED conferences which are also
available online4. All systems are optimized on
the dev2010 corpus, named dev here. Some
of the OSM and JTR systems are trained on the
TED portions of the data containing 138K sen-
tences. To estimate the 4-gram LM, we addi-
tionally make use of parts of the Shuffled News,
LDC English Gigaword and 109-French-English
corpora, selected by a cross-entropy difference cri-
terion (Moore and Lewis, 2010). In total, 1.7 bil-
lion running words are taken for LM training. The
BOLT Chinese→English task is evaluated on the
“discussion forum” domain. The 5-gram LM is
trained on 2.9 billion running words in total. The
in-domain data consists of a subset of 67.8K sen-
tences and we used a set of 1845 sentences for tun-
ing. The evaluation set test1 contains 1844 and
test2 1124 sentences. For the WMT task, we
used the target side of the bilingual data and all
monolingual data to train a pruned 5-gram LM on
a total of 4.4 billion running words. We concate-
nated the newstest2011 and newstest2012
corpora for tuning the systems.

5.2 Results

We start with the IWSLT 2013 German→ English
task, where we compare between the different JTR
and OSM models. The results are shown in Ta-
ble 3. When comparing the in-domain n-gram
JTR model trained using Kneser-Ney smoothing
(KN) to OSM, we observe that the n-gram KN
JTR model improves the baseline by 1.4 BLEU

on both test and eval11. The OSM model
performs similarly, with a slight disadvantage on
eval11. In comparison, the FFNN of Eq. (4) im-
proves the baseline by 0.7–0.9 BLEU, compared to
the slightly better 0.8–1.1 BLEU achieved by the
URNN. The difference between the FFNN and the

4http://www.ted.com/
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data dev test eval11

baseline full 33.3 30.8 35.7

+OSM TED 34.5 32.2 36.8
+FFNN TED 34.0 31.7 36.4
+URNN TED 34.2 31.9 36.5
+BRNN TED 34.4 32.1 36.8
+KN TED 34.6 32.2 37.1

+BRNN TED 35.0 32.8 37.7

+OSM full 34.1 31.6 36.5
+FFNN full 33.9 31.5 36.0
+KN full 34.2 31.6 36.6

+KN TED 34.9 32.4 37.1
+FFNN TED 35.2 32.7 37.2
+FFNN full 35.1 32.7 37.2

+BRNN TED 35.5 33.0 37.4
+BRNN TED 35.4 33.0 37.3

Table 3: Results measured in BLEU for the IWSLT
German→English task.

train data test1 test2

baseline 18.1 17.0

+OSM indomain 18.8 17.2
+FFNN indomain 18.6 17.6
+BRNN indomain 18.6 17.6
+KN indomain 18.8 17.5

+OSM full 18.5 17.2
+FFNN full 18.4 17.4
+KN full 18.8 17.3

+KN indomain 19.0 17.7
+FFNN full 19.2 18.3

+RNN indomain 19.3 18.4

Table 4: Results measured in BLEU for the BOLT
Chinese→English task.

URNN is that the latter captures the unbounded
source and target history that extends until the be-
ginning of the sentences, giving it an advantage
over the FFNN. The performance of the URNN
can be improved by including the future part of the
source sentence, as described in Eq. (5), resulting
in the BRNN model. Next, we explore whether the
models are additive. When rescoring the n-gram
KN JTR output with the BRNN, an additional im-
provement of 0.6 BLEU is obtained. There are two
reasons for this: The BRNN includes the future

part of the source input when scoring target words.
This information is not used by the KN model.
Moreover, the BRNN is able to score word com-
binations unseen in training, while the KN model
uses backing off to score unseen events.

When training the KN, FFNN, and OSM mod-
els on the full data, we observe less gains in com-
parison to in-domain data training. However, com-
bining the KN models trained on in-domain and
full data gives additional gains, which suggests
that although the in-domain model is more adapted
to the task, it still can gain from out-of-domain
data. Adding the FFNN on top improves the com-
bination. Note here that the FFNN sees the same
information as the KN model, but the difference is
that the NN operates on the word level rather than
the word-pair level. Second, the FFNN is able to
handle unseen sequences by design, without the
need for the backing off workaround. The BRNN
improves the combination more than the FFNN,
as the model captures an unbounded source and
target history in addition to an unbounded future
source context. Combining the KN, FFNN and
BRNN JTR models leads to an overall gain of 2.2
BLEU on both dev and test.

Next, we present the BOLT Chinese→English
results, shown in Table 4. Comparing n-gram
KN JTR and OSM trained on the in-domain data
shows they perform equally well on test1, im-
proving the baseline by 0.7 BLEU, with a slight ad-
vantage for the JTR model on test2. The feed-
forward and the recurrent in-domain networks
yield the same results in comparison to each other.
Training the OSM and JTR models on the full data
yields slightly worse results than in-domain train-
ing. However, combining the two types of training
improves the results. This is shown when adding
the in-domain KN JTR model on top of the model
trained on full data, improving it by up to 0.4
BLEU. Rescoring with the feed-forward and the
recurrent network improves this even further, sup-
porting the previous observation that the n-gram
KN JTR and NNs complement each other. The
combination of the 4 models yields an overall im-
provement of 1.2–1.4 BLEU.

Finally, we compare KN JTR and OSM models
on the WMT German→English task in Table 5.
The two models perform almost similar to each
other. The JTR model improves the baseline by
up to 0.7 BLEU. Rescoring the KN JTR with the
FFNN improves it by up to 0.3 BLEU leading to an
overall improvement between 0.5 and 1.0 BLEU.
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newstest
2013 2014 2015

baseline 28.1 28.6 29.4

+OSM 28.6 28.9 30.0
+FFNN 28.7 28.9 29.7
+KN 28.8 28.9 29.9

+FFNN 29.1 29.1 30.0

Table 5: Results measured in BLEU for the WMT
German→English task.

5.3 Analysis

To investigate the effect of including jump infor-
mation in the JTR sequence, we trained a BRNN
using jump classes and another excluding them.
The BRNNs were used in rescoring. Below, we
demonstrate the difference between the systems:

source: wir kommen später noch auf diese Leute zurück .
reference: We’ll come back to these people later .
Hypothesis 1:
JTR source: wir kommen δ zurück δ später noch auf
diese Leute δ .
JTR target: we come y back x later σ to these people
y .
Hypothesis 2:
JTR source: wir kommen später noch auf diese Leute
zurück .
JTR target: we come later σ on these guys back .

Note the German verb “zurückkommen”, which
is split into “kommen” and “zurück”. German
places “kommen” at the second position and
“zurück” towards the end of the sentence. Unlike
German, the corresponding English phrase “come
back” has the words adjacent to each other. We
found that the system including jumps prefers the
correct translation of the verb, as shown in Hy-
pothesis 1 above. The system translates “kom-
men” to “come”, jumps forward to “zurück”,
translates it to “back”, then jumps back to continue
translating the word “später”. In contrast, the sys-
tem that excludes jump classes is blind to this sep-
aration of words. It favors Hypothesis 2 which is
a strictly monotone translation of the German sen-
tence. This is also reflected by the BLEU scores,
where we found the system including jump classes
outperforming the one without by up to 0.8 BLEU.

6 Conclusion

We introduced a method that converts bilingual
sentence pairs and their word alignments into joint
translation and reordering (JTR) sequences. They
combine interdepending lexical and alignment de-
pendencies into a single framework. A main ad-
vantage of JTR sequences is that a variety of mod-
els can be trained on them. Here, we have esti-
mated n-gram models with modified Kneser-Ney
smoothing, FFNN and RNN architectures on JTR
sequences.

We compared our count-based JTR model to the
OSM, both used in phrase-based decoding, and
showed that the JTR model performed at least as
good as OSM, with a slight advantage for JTR. In
comparison to the OSM, the JTR model operates
on words, leading to a smaller vocabulary size.
Moreover, it utilizes simpler reordering structures
without gaps and only requires one log-linear fea-
ture to be tuned, whereas the OSM needs 5. Due
to the flexibility of JTR sequences, we can ap-
ply them also to FFNNs and RNNs. Utilizing
two count models and applying both networks in
rescoring gains the overall highest improvement
over the phrase-based system by up to 2.2 BLEU,
on the German→English IWSLT task. The com-
bination outperforms OSM by up to 1.2 BLEU on
the BOLT Chinese→English tasks.

The JTR models are not dependent on the
phrase-based framework, and one of the long-
term goals is to perform standalone decoding with
the JTR models independently of phrase-based
systems. Without the limitations introduced by
phrases, we believe that JTR models could per-
form even better. In addition, we aim to use JTR
models to obtain the alignment, which would then
be used to train the JTR models in an iterative
manner, achieving consistency and hoping for im-
proved models.
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de Gispert, Patrik Lambert, José A R Fonollosa, and
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Abstract
An attentional mechanism has lately been
used to improve neural machine transla-
tion (NMT) by selectively focusing on
parts of the source sentence during trans-
lation. However, there has been little
work exploring useful architectures for
attention-based NMT. This paper exam-
ines two simple and effective classes of at-
tentional mechanism: a global approach
which always attends to all source words
and a local one that only looks at a subset
of source words at a time. We demonstrate
the effectiveness of both approaches on the
WMT translation tasks between English
and German in both directions. With local
attention, we achieve a significant gain of
5.0 BLEU points over non-attentional sys-
tems that already incorporate known tech-
niques such as dropout. Our ensemble
model using different attention architec-
tures yields a new state-of-the-art result in
the WMT’15 English to German transla-
tion task with 25.9 BLEU points, an im-
provement of 1.0 BLEU points over the
existing best system backed by NMT and
an n-gram reranker.1

1 Introduction

Neural Machine Translation (NMT) achieved
state-of-the-art performances in large-scale trans-
lation tasks such as from English to French (Luong
et al., 2015) and English to German (Jean et al.,
2015). NMT is appealing since it requires minimal
domain knowledge and is conceptually simple.
The model by Luong et al. (2015) reads through all
the source words until the end-of-sentence symbol
<eos> is reached. It then starts emitting one tar-
get word at a time, as illustrated in Figure 1. NMT

1All our code and models are publicly available at http:
//nlp.stanford.edu/projects/nmt.

B C D <eos> X Y Z

X Y Z <eos>

A

Figure 1: Neural machine translation – a stack-
ing recurrent architecture for translating a source
sequence A B C D into a target sequence X Y
Z. Here, <eos> marks the end of a sentence.

is often a large neural network that is trained in an
end-to-end fashion and has the ability to general-
ize well to very long word sequences. This means
the model does not have to explicitly store gigantic
phrase tables and language models as in the case
of standard MT; hence, NMT has a small memory
footprint. Lastly, implementing NMT decoders is
easy unlike the highly intricate decoders in stan-
dard MT (Koehn et al., 2003).

In parallel, the concept of “attention” has gained
popularity recently in training neural networks, al-
lowing models to learn alignments between dif-
ferent modalities, e.g., between image objects
and agent actions in the dynamic control problem
(Mnih et al., 2014), between speech frames and
text in the speech recognition task (Chorowski et
al., 2014), or between visual features of a picture
and its text description in the image caption gen-
eration task (Xu et al., 2015). In the context of
NMT, Bahdanau et al. (2015) has successfully ap-
plied such attentional mechanism to jointly trans-
late and align words. To the best of our knowl-
edge, there has not been any other work exploring
the use of attention-based architectures for NMT.

In this work, we design, with simplicity and ef-
fectiveness in mind, two novel types of attention-
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based models: a global approach in which all
source words are attended and a local one whereby
only a subset of source words are considered at a
time. The former approach resembles the model
of (Bahdanau et al., 2015) but is simpler architec-
turally. The latter can be viewed as an interesting
blend between the hard and soft attention models
proposed in (Xu et al., 2015): it is computation-
ally less expensive than the global model or the
soft attention; at the same time, unlike the hard at-
tention, the local attention is differentiable, mak-
ing it easier to implement and train.2 Besides, we
also examine various alignment functions for our
attention-based models.

Experimentally, we demonstrate that both of
our approaches are effective in the WMT trans-
lation tasks between English and German in both
directions. Our attentional models yield a boost
of up to 5.0 BLEU over non-attentional systems
which already incorporate known techniques such
as dropout. For English to German translation,
we achieve new state-of-the-art (SOTA) results
for both WMT’14 and WMT’15, outperforming
previous SOTA systems, backed by NMT mod-
els and n-gram LM rerankers, by more than 1.0
BLEU. We conduct extensive analysis to evaluate
our models in terms of learning, the ability to han-
dle long sentences, choices of attentional architec-
tures, alignment quality, and translation outputs.

2 Neural Machine Translation

A neural machine translation system is a neural
network that directly models the conditional prob-
ability p(y|x) of translating a source sentence,
x1, . . . , xn, to a target sentence, y1, . . . , ym.3 A
basic form of NMT consists of two components:
(a) an encoder which computes a representation s
for each source sentence and (b) a decoder which
generates one target word at a time and hence de-
composes the conditional probability as:

log p(y|x) =
∑m

j=1
log p (yj|y<j , s) (1)

A natural choice to model such a decomposi-
tion in the decoder is to use a recurrent neural net-
work (RNN) architecture, which most of the re-

2There is a recent work by Gregor et al. (2015), which is
very similar to our local attention and applied to the image
generation task. However, as we detail later, our model is
much simpler and can achieve good performance for NMT.

3All sentences are assumed to terminate with a special
“end-of-sentence” token <eos>.

cent NMT work such as (Kalchbrenner and Blun-
som, 2013; Sutskever et al., 2014; Cho et al., 2014;
Bahdanau et al., 2015; Luong et al., 2015; Jean et
al., 2015) have in common. They, however, dif-
fer in terms of which RNN architectures are used
for the decoder and how the encoder computes the
source sentence representation s.

Kalchbrenner and Blunsom (2013) used an
RNN with the standard hidden unit for the decoder
and a convolutional neural network for encoding
the source sentence representation. On the other
hand, both Sutskever et al. (2014) and Luong et
al. (2015) stacked multiple layers of an RNN with
a Long Short-Term Memory (LSTM) hidden unit
for both the encoder and the decoder. Cho et al.
(2014), Bahdanau et al. (2015), and Jean et al.
(2015) all adopted a different version of the RNN
with an LSTM-inspired hidden unit, the gated re-
current unit (GRU), for both components.4

In more detail, one can parameterize the proba-
bility of decoding each word yj as:

p (yj|y<j, s) = softmax (g (hj)) (2)

with g being the transformation function that out-
puts a vocabulary-sized vector.5 Here, hj is the
RNN hidden unit, abstractly computed as:

hj = f(hj−1, s), (3)

where f computes the current hidden state given
the previous hidden state and can be either a
vanilla RNN unit, a GRU, or an LSTM unit. In
(Kalchbrenner and Blunsom, 2013; Sutskever et
al., 2014; Cho et al., 2014; Luong et al., 2015),
the source representation s is only used once to
initialize the decoder hidden state. On the other
hand, in (Bahdanau et al., 2015; Jean et al., 2015)
and this work, s, in fact, implies a set of source
hidden states which are consulted throughout the
entire course of the translation process. Such an
approach is referred to as an attention mechanism,
which we will discuss next.

In this work, following (Sutskever et al., 2014;
Luong et al., 2015), we use the stacking LSTM
architecture for our NMT systems, as illustrated
in Figure 1. We use the LSTM unit defined in
(Zaremba et al., 2015). Our training objective is
formulated as follows:

Jt =
∑

(x,y)∈D
− log p(y|x) (4)

4They all used a single RNN layer except for the latter two
works which utilized a bidirectional RNN for the encoder.

5One can provide g with other inputs such as the currently
predicted word yj as in (Bahdanau et al., 2015).
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with D being our parallel training corpus.

3 Attention-based Models

Our various attention-based models are classifed
into two broad categories, global and local. These
classes differ in terms of whether the “attention”
is placed on all source positions or on only a few
source positions. We illustrate these two model
types in Figure 2 and 3 respectively.

Common to these two types of models is the fact
that at each time step t in the decoding phase, both
approaches first take as input the hidden state ht

at the top layer of a stacking LSTM. The goal is
then to derive a context vector ct that captures rel-
evant source-side information to help predict the
current target word yt. While these models differ
in how the context vector ct is derived, they share
the same subsequent steps.

Specifically, given the target hidden state ht and
the source-side context vector ct, we employ a
simple concatenation layer to combine the infor-
mation from both vectors to produce an attentional
hidden state as follows:

h̃t = tanh(Wc[ct;ht]) (5)

The attentional vector h̃t is then fed through the
softmax layer to produce the predictive distribu-
tion formulated as:

p(yt|y<t, x) = softmax(Wsh̃t) (6)

We now detail how each model type computes
the source-side context vector ct.

3.1 Global Attention
The idea of a global attentional model is to con-
sider all the hidden states of the encoder when de-
riving the context vector ct. In this model type,
a variable-length alignment vector at, whose size
equals the number of time steps on the source side,
is derived by comparing the current target hidden
state ht with each source hidden state h̄s:

at(s) = align(ht, h̄s) (7)

=
exp

(
score(ht, h̄s)

)∑
s′ exp

(
score(ht, h̄s′)

)
Here, score is referred as a content-based function
for which we consider three different alternatives:

score(ht, h̄s) =


h⊤t h̄s dot

h⊤t Wah̄s general
Wa[ht; h̄s] concat

(8)

yt

h̃t

ct

at

ht

h̄s

Global align weights

Attention Layer

Context vector

Figure 2: Global attentional model – at each time
step t, the model infers a variable-length align-
ment weight vector at based on the current target
state ht and all source states h̄s. A global context
vector ct is then computed as the weighted aver-
age, according to at, over all the source states.

Besides, in our early attempts to build attention-
based models, we use a location-based function
in which the alignment scores are computed from
solely the target hidden state ht as follows:

at = softmax(Waht) location (9)

Given the alignment vector as weights, the context
vector ct is computed as the weighted average over
all the source hidden states.6

Comparison to (Bahdanau et al., 2015) – While
our global attention approach is similar in spirit
to the model proposed by Bahdanau et al. (2015),
there are several key differences which reflect how
we have both simplified and generalized from the
original model. First, we simply use hidden states
at the top LSTM layers in both the encoder and
decoder as illustrated in Figure 2. Bahdanau et
al. (2015), on the other hand, use the concatena-
tion of the forward and backward source hidden
states in the bi-directional encoder and target hid-
den states in their non-stacking uni-directional de-
coder. Second, our computation path is simpler;
we go from ht → at → ct → h̃t then make
a prediction as detailed in Eq. (5), Eq. (6), and
Figure 2. On the other hand, at any time t, Bah-
danau et al. (2015) build from the previous hidden
state ht−1 → at → ct → ht, which, in turn,

6Eq. (9) implies that all alignment vectors at are of the
same length. For short sentences, we only use the top part of
at and for long sentences, we ignore words near the end.
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yt

h̃t

ct

at

ht

pt

h̄s

Attention Layer

Context vector

Local weights

Aligned position

Figure 3: Local attention model – the model first
predicts a single aligned position pt for the current
target word. A window centered around the source
position pt is then used to compute a context vec-
tor ct, a weighted average of the source hidden
states in the window. The weights at are inferred
from the current target state ht and those source
states h̄s in the window.

goes through a deep-output and a maxout layer
before making predictions.7 Lastly, Bahdanau et
al. (2015) only experimented with one alignment
function, the concat product; whereas we show
later that the other alternatives are better.

3.2 Local Attention

The global attention has a drawback that it has to
attend to all words on the source side for each tar-
get word, which is expensive and can potentially
render it impractical to translate longer sequences,
e.g., paragraphs or documents. To address this
deficiency, we propose a local attentional mech-
anism that chooses to focus only on a small subset
of the source positions per target word.

This model takes inspiration from the tradeoff
between the soft and hard attentional models pro-
posed by Xu et al. (2015) to tackle the image cap-
tion generation task. In their work, soft attention
refers to the global attention approach in which
weights are placed “softly” over all patches in the
source image. The hard attention, on the other
hand, selects one patch of the image to attend to at
a time. While less expensive at inference time, the
hard attention model is non-differentiable and re-
quires more complicated techniques such as vari-
ance reduction or reinforcement learning to train.

7We will refer to this difference again in Section 3.3.

Our local attention mechanism selectively fo-
cuses on a small window of context and is differ-
entiable. This approach has an advantage of avoid-
ing the expensive computation incurred in the soft
attention and at the same time, is easier to train
than the hard attention approach. In concrete de-
tails, the model first generates an aligned position
pt for each target word at time t. The context vec-
tor ct is then derived as a weighted average over
the set of source hidden states within the window
[pt−D, pt+D]; D is empirically selected.8 Unlike
the global approach, the local alignment vector at

is now fixed-dimensional, i.e., ∈ R2D+1. We con-
sider two variants of the model as below.

Monotonic alignment (local-m) – we simply set
pt = t assuming that source and target sequences
are roughly monotonically aligned. The alignment
vector at is defined according to Eq. (7).9

Predictive alignment (local-p) – instead of as-
suming monotonic alignments, our model predicts
an aligned position as follows:

pt = S · sigmoid(v⊤p tanh(Wpht)), (10)

Wp and vp are the model parameters which will
be learned to predict positions. S is the source sen-
tence length. As a result of sigmoid, pt ∈ [0, S].
To favor alignment points near pt, we place a
Gaussian distribution centered around pt . Specif-
ically, our alignment weights are now defined as:

at(s) = align(ht, h̄s) exp
(
−(s− pt)2

2σ2

)
(11)

We use the same align function as in Eq. (7) and
the standard deviation is empirically set as σ= D

2 .
It is important to note that pt is a real nummber;
whereas s is an integer within the window cen-
tered at pt.10

Comparison to (Gregor et al., 2015) – have pro-
posed a selective attention mechanism, very simi-
lar to our local attention, for the image generation
task. Their approach allows the model to select an
image patch of varying location and zoom. We,
instead, use the same “zoom” for all target posi-
tions, which greatly simplifies the formulation and
still achieves good performance.

8If the window crosses the sentence boundaries, we sim-
ply ignore the outside part and consider words in the window.

9local-m is the same as the global model except that the
vector at is fixed-length and shorter.

10local-p is similar to the local-m model except that we
dynamically compute pt and use a Gaussian distribution
to modify the original alignment weights align(ht, h̄s) as
shown in Eq. (11). By utilizing pt to derive at, we can com-
pute backprop gradients for Wp and vp.
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h̃t

Attention Layer

B C D <eos> X Y Z

X Y Z <eos>

A

Figure 4: Input-feeding approach – Attentional
vectors h̃t are fed as inputs to the next time steps to
inform the model about past alignment decisions.

3.3 Input-feeding Approach

In our proposed global and local approaches,
the attentional decisions are made independently,
which is suboptimal. Whereas, in standard MT,
a coverage set is often maintained during the
translation process to keep track of which source
words have been translated. Likewise, in atten-
tional NMTs, alignment decisions should be made
jointly taking into account past alignment infor-
mation. To address that, we propose an input-
feeding approach in which attentional vectors h̃t

are concatenated with inputs at the next time steps
as illustrated in Figure 4.11 The effects of hav-
ing such connections are two-fold: (a) we hope
to make the model fully aware of previous align-
ment choices and (b) we create a very deep net-
work spanning both horizontally and vertically.

Comparison to other work – Bahdanau et al.
(2015) use context vectors, similar to our ct, in
building subsequent hidden states, which can also
achieve the “coverage” effect. However, there has
not been any analysis of whether such connections
are useful as done in this work. Also, our approach
is more general; as illustrated in Figure 4, it can be
applied to general stacking recurrent architectures,
including non-attentional models.

Xu et al. (2015) propose a doubly attentional
approach with an additional constraint added to
the training objective to make sure the model pays
equal attention to all parts of the image during the
caption generation process. Such a constraint can

11If n is the number of LSTM cells, the input size of the
first LSTM layer is 2n; those of subsequent layers are n.

also be useful to capture the coverage set effect
in NMT that we mentioned earlier. However, we
chose to use the input-feeding approach since it
provides flexibility for the model to decide on any
attentional constraints it deems suitable.

4 Experiments

We evaluate the effectiveness of our models on the
WMT translation tasks between English and Ger-
man in both directions. newstest2013 (3000 sen-
tences) is used as a development set to select our
hyperparameters. Translation performances are
reported in case-sensitive BLEU (Papineni et al.,
2002) on newstest2014 (2737 sentences) and new-
stest2015 (2169 sentences). Following (Luong et
al., 2015), we report translation quality using two
types of BLEU: (a) tokenized12 BLEU to be com-
parable with existing NMT work and (b) NIST13

BLEU to be comparable with WMT results.

4.1 Training Details

All our models are trained on the WMT’14 train-
ing data consisting of 4.5M sentences pairs (116M
English words, 110M German words). Similar to
(Jean et al., 2015), we limit our vocabularies to
be the top 50K most frequent words for both lan-
guages. Words not in these shortlisted vocabular-
ies are converted into a universal token <unk>.

When training our NMT systems, following
(Bahdanau et al., 2015; Jean et al., 2015), we fil-
ter out sentence pairs whose lengths exceed 50
words and shuffle mini-batches as we proceed.
Our stacking LSTM models have 4 layers, each
with 1000 cells, and 1000-dimensional embed-
dings. We follow (Sutskever et al., 2014; Luong
et al., 2015) in training NMT with similar set-
tings: (a) our parameters are uniformly initialized
in [−0.1, 0.1], (b) we train for 10 epochs using
plain SGD, (c) a simple learning rate schedule is
employed – we start with a learning rate of 1; after
5 epochs, we begin to halve the learning rate ev-
ery epoch, (d) our mini-batch size is 128, and (e)
the normalized gradient is rescaled whenever its
norm exceeds 5. Additionally, we also use dropout
for our LSTMs as suggested by (Zaremba et al.,
2015). For dropout models, we train for 12 epochs
and start halving the learning rate after 8 epochs.

Our code is implemented in MATLAB. When

12All texts are tokenized with tokenizer.perl and
BLEU scores are computed with multi-bleu.perl.

13With the mteval-v13a script as per WMT guideline.
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System Ppl BLEU
Winning WMT’14 system – phrase-based + large LM (Buck et al., 2014) 20.7
Existing NMT systems
RNNsearch (Jean et al., 2015) 16.5
RNNsearch + unk replace (Jean et al., 2015) 19.0
RNNsearch + unk replace + large vocab + ensemble 8 models (Jean et al., 2015) 21.6
Our NMT systems
Base 10.6 11.3
Base + reverse 9.9 12.6 (+1.3)
Base + reverse + dropout 8.1 14.0 (+1.4)
Base + reverse + dropout + global attention (location) 7.3 16.8 (+2.8)
Base + reverse + dropout + global attention (location) + feed input 6.4 18.1 (+1.3)
Base + reverse + dropout + local-p attention (general) + feed input

5.9
19.0 (+0.9)

Base + reverse + dropout + local-p attention (general) + feed input + unk replace 20.9 (+1.9)
Ensemble 8 models + unk replace 23.0 (+2.1)

Table 1: WMT’14 English-German results – shown are the perplexities (ppl) and the tokenized BLEU
scores of various systems on newstest2014. We highlight the best system in bold and give progressive
improvements in italic between consecutive systems. local-p referes to the local attention with predictive
alignments. We indicate for each attention model the alignment score function used in pararentheses.

running on a single GPU device Tesla K40, we
achieve a speed of 1K target words per second.
It takes 7–10 days to completely train a model.

4.2 English-German Results
We compare our NMT systems in the English-
German task with various other systems. These
include the winning system in WMT’14 (Buck et
al., 2014), a phrase-based system whose language
models were trained on a huge monolingual text,
the Common Crawl corpus. For end-to-end neu-
ral machine translation systems, to the best of our
knowledge, (Jean et al., 2015) is the only work ex-
perimenting with this language pair and currently
the SOTA system. We only present results for
some of our attention models and will later ana-
lyze the rest in Section 5.

As shown in Table 1, we achieve progressive
improvements when (a) reversing the source sen-
tence, +1.3 BLEU, as proposed in (Sutskever et
al., 2014) and (b) using dropout, +1.4 BLEU. On
top of that, (c) the global attention approach gives
a significant boost of +2.8 BLEU, making our
model slightly better than the base attentional sys-
tem of Bahdanau et al. (2015) (row RNNSearch).
When (d) using the input-feeding approach, we
seize another notable gain of +1.3 BLEU and out-
perform their system. The local attention model
with predictive alignments (row local-p) proves
to be even better, giving us a further improve-
ment of +0.9 BLEU on top of the global attention

model. It is interesting to observe the trend pre-
viously reported in (Luong et al., 2015) that per-
plexity strongly correlates with translation quality.
In total, we achieve a significant gain of 5.0 BLEU
points over the non-attentional baseline, which al-
ready includes known techniques such as source
reversing and dropout.

The unknown replacement technique proposed
in (Luong et al., 2015; Jean et al., 2015) yields
another nice gain of +1.9 BLEU, demonstrating
that our attentional models do learn useful align-
ments for unknown works. Finally, by ensembling
8 different models of various settings, e.g., using
different attention approaches, with and without
dropout etc., we were able to achieve a new SOTA
result of 23.0 BLEU, outperforming the existing
best system (Jean et al., 2015) by +1.4 BLEU.

System BLEU
SOTA – NMT + 5-gram rerank (MILA) 24.9
Our ensemble 8 models + unk replace 25.9

Table 2: WMT’15 English-German results –
NIST BLEU scores of the existing WMT’15 SOTA
system and our best one on newstest2015.

Latest results in WMT’15 – despite the fact that
our models were trained on WMT’14 with slightly
less data, we test them on newstest2015 to demon-
strate that they can generalize well to different test
sets. As shown in Table 2, our best system es-
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System Ppl. BLEU
WMT’15 systems
SOTA – phrase-based (Edinburgh) 29.2
NMT + 5-gram rerank (MILA) 27.6
Our NMT systems
Base (reverse) 14.3 16.9
+ global (location) 12.7 19.1 (+2.2)
+ global (location) + feed 10.9 20.1 (+1.0)
+ global (dot) + drop + feed

9.7
22.8 (+2.7)

+ global (dot) + drop + feed + unk 24.9 (+2.1)

Table 3: WMT’15 German-English results –
performances of various systems (similar to Ta-
ble 1). The base system already includes source
reversing on which we add global attention,
dropout, input feeding, and unk replacement.

tablishes a new SOTA performance of 25.9 BLEU,
outperforming the existing best system backed by
NMT and a 5-gram LM reranker by +1.0 BLEU.

4.3 German-English Results

We carry out a similar set of experiments for the
WMT’15 translation task from German to En-
glish. While our systems have not yet matched
the performance of the SOTA system, we never-
theless show the effectiveness of our approaches
with large and progressive gains in terms of BLEU
as illustrated in Table 3. The attentional mech-
anism gives us +2.2 BLEU gain and on top of
that, we obtain another boost of up to +1.0 BLEU
from the input-feeding approach. Using a better
alignment function, the content-based dot product
one, together with dropout yields another gain of
+2.7 BLEU. Lastly, when applying the unknown
word replacement technique, we seize an addi-
tional +2.1 BLEU, demonstrating the usefulness
of attention in aligning rare words.

5 Analysis

We conduct extensive analysis to better understand
our models in terms of learning, the ability to han-
dle long sentences, choices of attentional archi-
tectures, and alignment quality. All models con-
sidered here are English-German NMT systems
tested on newstest2014.

5.1 Learning curves

We compare models built on top of one another as
listed in Table 1. It is pleasant to observe in Fig-
ure 5 a clear separation between non-attentional
and attentional models. The input-feeding ap-
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Figure 5: Learning curves – test cost (ln perplex-
ity) on newstest2014 for English-German NMTs
as training progresses.

proach and the local attention model also demon-
strate their abilities in driving the test costs lower.
The non-attentional model with dropout (the blue
+ curve) learns slower than other non-dropout
models, but as time goes by, it becomes more ro-
bust in terms of minimizing test errors.

5.2 Effects of Translating Long Sentences

We follow (Bahdanau et al., 2015) to group sen-
tences of similar lengths together and compute a
BLEU score per group. As demonstrated in Fig-
ure 6, our attentional models are more effective
than the other non-attentional model in handling
long sentences: the translation quality does not de-
grade as sentences become longer. Our best model
(the blue + curve) outperforms all other systems in
all length buckets.
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WMT’14 best (BLEU 20.7)
Jeans et al., 2015 (BLEU 21.6)

Figure 6: Length Analysis – translation qualities
of different systems as sentences become longer.

5.3 Choices of Attentional Architectures

We examine different attention models (global,
local-m, local-p) and different alignment func-
tions (location, dot, general, concat) as described
in Section 3. Due to limited resources, we can-
not run all the possible combinations. However,
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System Ppl BLEU
Before After unk

global (location) 6.4 18.1 19.3 (+1.2)
global (dot) 6.1 18.6 20.5 (+1.9)
global (general) 6.1 17.3 19.1 (+1.8)
local-m (dot) >7.0 x x
local-m (general) 6.2 18.6 20.4 (+1.8)
local-p (dot) 6.6 18.0 19.6 (+1.9)
local-p (general) 5.9 19 20.9 (+1.9)

Table 4: Attentional Architectures – perfor-
mances of different attentional models. We trained
two local-m (dot) models; both have ppl > 7.0.

results in Table 4 do give us some idea about dif-
ferent choices. The location-based function does
not learn good alignments: the global (location)
model can only obtain a small gain when perform-
ing unknown word replacement compared to using
other alignment functions.14 For content-based
functions, our implementation of concat does not
yield good performances and more analysis should
be done to understand the reason.15 It is interest-
ing to observe that dot works well for the global
attention and general is better for the local atten-
tion. Among the different models, the local atten-
tion model with predictive alignments (local-p) is
best, both in terms of perplexities and BLEU.

5.4 Alignment Quality

A by-product of attentional models are word align-
ments. While (Bahdanau et al., 2015) visualized
alignments for some sample sentences and ob-
served gains in translation quality as an indica-
tion of a working attention model, no work has as-
sessed the alignments learned as a whole. In con-
trast, we set out to evaluate the alignment quality
using the alignment error rate (AER) metric.

Given the gold alignment data provided by
RWTH for 508 English-German Europarl sen-
tences, we “force” decode our attentional models
to produce translations that match the references.
We extract only one-to-one alignments by select-
ing the source word with the highest alignment

14There is a subtle difference in how we retrieve align-
ments for the different alignment functions. At time step t in
which we receive yt−1 as input and then compute ht,at, ct,
and h̃t before predicting yt, the alignment vector at is used
as alignment weights for (a) the predicted word yt in the
location-based alignment functions and (b) the input word
yt−1 in the content-based functions.

15With concat, the perplexities achieved by different mod-
els are 6.7 (global), 7.1 (local-m), and 7.1 (local-p).

Method AER
global (location) 0.39
local-m (general) 0.34
local-p (general) 0.36

ensemble 0.34
Berkeley Aligner 0.32

Table 6: AER scores – results of various models
on the RWTH English-German alignment data.

weight per target word. Nevertheless, as shown in
Table 6, we were able to achieve AER scores com-
parable to the one-to-many alignments obtained
by the Berkeley aligner (Liang et al., 2006).16

We also found that the alignments produced by
local attention models achieve lower AERs than
those of the global one. The AER obtained by
the ensemble, while good, is not better than the
local-m AER, suggesting the well-known observa-
tion that AER and translation scores are not well
correlated (Fraser and Marcu, 2007). Due to space
constraint, we can only show alignment visualiza-
tions in the arXiv version of our paper.17

5.5 Sample Translations
We show in Table 5 sample translations in both
directions. It it appealing to observe the ef-
fect of attentional models in correctly translat-
ing names such as “Miranda Kerr” and “Roger
Dow”. Non-attentional models, while producing
sensible names from a language model perspec-
tive, lack the direct connections from the source
side to make correct translations.

We also observed an interesting case in the
second English-German example, which requires
translating the doubly-negated phrase, “not in-
compatible”. The attentional model correctly
produces “nicht . . . unvereinbar”; whereas the
non-attentional model generates “nicht vereinbar”,
meaning “not compatible”.18 The attentional
model also demonstrates its superiority in trans-
lating long sentences as in the last example.

6 Conclusion

In this paper, we propose two simple and effec-
tive attentional mechanisms for neural machine

16We concatenate the 508 sentence pairs with 1M sentence
pairs from WMT and run the Berkeley aligner.

17http://arxiv.org/abs/1508.04025
18The reference uses a more fancy translation of “incom-

patible”, which is “im Widerspruch zu etwas stehen”. Both
models, however, failed to translate “passenger experience”.
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English-German translations
src Orlando Bloom and Miranda Kerr still love each other
ref Orlando Bloom und Miranda Kerr lieben sich noch immer

best Orlando Bloom und Miranda Kerr lieben einander noch immer .
base Orlando Bloom und Lucas Miranda lieben einander noch immer .
src ′′ We ′ re pleased the FAA recognizes that an enjoyable passenger experience is not incompatible

with safety and security , ′′ said Roger Dow , CEO of the U.S. Travel Association .
ref “ Wir freuen uns , dass die FAA erkennt , dass ein angenehmes Passagiererlebnis nicht im Wider-

spruch zur Sicherheit steht ” , sagte Roger Dow , CEO der U.S. Travel Association .
best ′′ Wir freuen uns , dass die FAA anerkennt , dass ein angenehmes ist nicht mit Sicherheit und

Sicherheit unvereinbar ist ′′ , sagte Roger Dow , CEO der US - die .
base ′′ Wir freuen uns über die <unk> , dass ein <unk> <unk> mit Sicherheit nicht vereinbar ist mit

Sicherheit und Sicherheit ′′ , sagte Roger Cameron , CEO der US - <unk> .
German-English translations
src In einem Interview sagte Bloom jedoch , dass er und Kerr sich noch immer lieben .
ref However , in an interview , Bloom has said that he and Kerr still love each other .

best In an interview , however , Bloom said that he and Kerr still love .
base However , in an interview , Bloom said that he and Tina were still <unk> .
src Wegen der von Berlin und der Europäischen Zentralbank verhängten strengen Sparpolitik in

Verbindung mit der Zwangsjacke , in die die jeweilige nationale Wirtschaft durch das Festhal-
ten an der gemeinsamen Währung genötigt wird , sind viele Menschen der Ansicht , das Projekt
Europa sei zu weit gegangen

ref The austerity imposed by Berlin and the European Central Bank , coupled with the straitjacket
imposed on national economies through adherence to the common currency , has led many people
to think Project Europe has gone too far .

best Because of the strict austerity measures imposed by Berlin and the European Central Bank in
connection with the straitjacket in which the respective national economy is forced to adhere to
the common currency , many people believe that the European project has gone too far .

base Because of the pressure imposed by the European Central Bank and the Federal Central Bank
with the strict austerity imposed on the national economy in the face of the single currency ,
many people believe that the European project has gone too far .

Table 5: Sample translations – for each example, we show the source (src), the human translation (ref),
the translation from our best model (best), and the translation of a non-attentional model (base). We
italicize some correct translation segments and highlight a few wrong ones in bold.

translation: the global approach which always
looks at all source positions and the local one
that only attends to a subset of source positions
at a time. We test the effectiveness of our mod-
els in the WMT translation tasks between En-
glish and German in both directions. Our local
attention yields large gains of up to 5.0 BLEU
over non-attentional models that already incorpo-
rate known techniques such as dropout. For the
English to German translation direction, our en-
semble model has established new state-of-the-art
results for both WMT’14 and WMT’15.

We have compared various alignment functions
and shed light on which functions are best for
which attentional models. Our analysis shows that
attention-based NMT models are superior to non-
attentional ones in many cases, for example in

translating names and handling long sentences.
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Abstract

Document level sentiment classification
remains a challenge: encoding the intrin-
sic relations between sentences in the se-
mantic meaning of a document. To ad-
dress this, we introduce a neural network
model to learn vector-based document rep-
resentation in a unified, bottom-up fash-
ion. The model first learns sentence rep-
resentation with convolutional neural net-
work or long short-term memory. After-
wards, semantics of sentences and their
relations are adaptively encoded in docu-
ment representation with gated recurren-
t neural network. We conduct documen-
t level sentiment classification on four
large-scale review datasets from IMDB
and Yelp Dataset Challenge. Experimen-
tal results show that: (1) our neural mod-
el shows superior performances over sev-
eral state-of-the-art algorithms; (2) gat-
ed recurrent neural network dramatically
outperforms standard recurrent neural net-
work in document modeling for sentiment
classification.1

1 Introduction

Document level sentiment classification is a fun-
damental task in sentiment analysis, and is cru-
cial to understand user generated content in so-
cial networks or product reviews (Manning and
Schütze, 1999; Jurafsky and Martin, 2000; Pang
and Lee, 2008; Liu, 2012). The task calls for iden-
tifying the overall sentiment polarity (e.g. thumbs
up or thumbs down, 1-5 stars on review sites) of a
document. In literature, dominant approaches fol-
low (Pang et al., 2002) and exploit machine learn-

∗Corresponding author.
1 Codes and datasets are publicly available at

http://ir.hit.edu.cn/˜dytang.

ing algorithm to build sentiment classifier. Many
of them focus on designing hand-crafted features
(Qu et al., 2010; Paltoglou and Thelwall, 2010) or
learning discriminate features from data, since the
performance of a machine learner is heavily de-
pendent on the choice of data representation (Ben-
gio et al., 2015).

Document level sentiment classification re-
mains a significant challenge: how to encode the
intrinsic (semantic or syntactic) relations between
sentences in the semantic meaning of documen-
t. This is crucial for sentiment classification be-
cause relations like “contrast” and “cause” have
great influences on determining the meaning and
the overall polarity of a document. However, ex-
isting studies typically fail to effectively capture
such information. For example, Pang et al. (2002)
and Wang and Manning (2012) represent docu-
ments with bag-of-ngrams features and build SVM
classifier upon that. Although such feature-driven
SVM is an extremely strong performer and hardly
to be transcended, its “sparse” and “discrete” char-
acteristics make it clumsy in taking into account of
side information like relations between sentences.
Recently, Le and Mikolov (2014) exploit neural
networks to learn continuous document represen-
tation from data. Essentially, they use local ngram
information and do not capture semantic relations
between sentences. Furthermore, a person asked
to do this task will naturally carry it out in a se-
quential, bottom-up fashion, analyze the meanings
of sentences before considering semantic relation-
s between them. This motivates us to develop an
end-to-end and bottom-up algorithm to effectively
model document representation.

In this paper, we introduce a neural network ap-
proach to learn continuous document representa-
tion for sentiment classification. The method is
on the basis of the principle of compositionality
(Frege, 1892), which states that the meaning of
a longer expression (e.g. a sentence or a docu-
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Figure 1: The neural network model for document level sentiment classification. wni stands for the i-th
word in the n-th sentence, ln is sentence length.

ment) depends on the meanings of its constituents.
Specifically, the approach models document rep-
resentation in two steps. In the first step, it us-
es convolutional neural network (CNN) or long
short-term memory (LSTM) to produce sentence
representations from word representations. After-
wards, gated recurrent neural network is exploit-
ed to adaptively encode semantics of sentences
and their inherent relations in document represen-
tations. These representations are naturally used
as features to classify the sentiment label of each
document. The entire model is trained end-to-end
with stochastic gradient descent, where the loss
function is the cross-entropy error of supervised
sentiment classification2.

We conduct document level sentiment classi-
fication on four large-scale review datasets from
IMDB3 and Yelp Dataset Challenge4. We com-
pare to neural network models such as paragraph
vector (Le and Mikolov, 2014), convolutional neu-
ral network, and baselines such as feature-based
SVM (Pang et al., 2002), recommendation algo-
rithm JMARS (Diao et al., 2014). Experimental
results show that: (1) the proposed neural model
shows superior performances over all baseline al-
gorithms; (2) gated recurrent neural network dra-
matically outperforms standard recurrent neural

2A similar work can be found at: http:
//deeplearning.net/tutorial/lstm.html

3http://www.imdb.com/
4http://www.yelp.com/dataset_challenge

network in document modeling. The main con-
tributions of this work are as follows:
• We present a neural network approach to en-

code relations between sentences in document rep-
resentation for sentiment classification.
•We report empirical results on four large-scale

datasets, and show that the approach outperforms
state-of-the-art methods for document level senti-
ment classification.
•We report empirical results that traditional re-

current neural network is weak in modeling docu-
ment composition, while adding neural gates dra-
matically improves the classification performance.

2 The Approach

We introduce the proposed neural model in this
section, which computes continuous vector repre-
sentations for documents of variable length. These
representations are further used as features to clas-
sify the sentiment label of each document. An
overview of the approach is displayed in Figure 1.

Our approach models document semantics
based on the principle of compositionality (Frege,
1892), which states that the meaning of a longer
expression (e.g. a sentence or a document) comes
from the meanings of its constituents and the rules
used to combine them. Since a document consist-
s of a list of sentences and each sentence is made
up of a list of words, the approach models docu-
ment representation in two stages. It first produces
continuous sentence vectors from word represen-
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tations with sentence composition (Section 2.1).
Afterwards, sentence vectors are treated as inputs
of document composition to get document repre-
sentation (Section 2.2). Document representations
are then used as features for document level senti-
ment classification (Section 2.3).

2.1 Sentence Composition

We first describe word vector representation, be-
fore presenting a convolutional neural network
with multiple filters for sentence composition.

Each word is represented as a low dimension-
al, continuous and real-valued vector, also known
as word embedding (Bengio et al., 2003). Al-
l the word vectors are stacked in a word embed-
ding matrix Lw ∈ Rd×|V |, where d is the dimen-
sion of word vector and |V | is vocabulary size.
These word vectors can be randomly initialized
from a uniform distribution (Socher et al., 2013b),
or be pre-trained from text corpus with embedding
learning algorithms (Mikolov et al., 2013; Pen-
nington et al., 2014; Tang et al., 2014). We adopt
the latter strategy to make better use of semantic
and grammatical associations of words.

We use convolutional neural network (CNN)
and long short-term memory (LSTM) to compute
continuous representations of sentences with se-
mantic composition. CNN and LSTM are state-
of-the-art semantic composition models for senti-
ment classification (Kim, 2014; Kalchbrenner et
al., 2014; Johnson and Zhang, 2015; Li et al.,
2015a). They learn fixed-length vectors for sen-
tences of varying length, captures words order in
a sentence and does not depend on external de-
pendency or constituency parse results. One could
also use tree-based composition method such as
Recursive Neural Tensor Network (Socher et al.,
2013b) or Tree-Structured LSTM (Tai et al., 2015;
Zhu et al., 2015) as alternatives.

Specifically, we try CNN with multiple con-
volutional filters of different widths (Tang et al.,
2015) to produce sentence representation. Fig-
ure 2 displays the method. We use multiple con-
volutional filters in order to capture local seman-
tics of n-grams of various granularities, which
have been proven effective for sentiment classifi-
cation. For example, a convolutional filter with a
width of 2 essentially captures the semantics of bi-
grams in a sentence. In this work, we use three
convolutional filters whose widths are 1, 2 and
3 to encode the semantics of unigrams, bigram-

Average

w1

Lookup

Convolution

Pooling

w2 w3 w4 w𝑛−1 w𝑛

Tanh

Filter 1 Filter 2 Filter 3

……

Figure 2: Sentence composition with convolution-
al neural network.

s and trigrams in a sentence. Each filter consists
of a list of linear layers with shared parameter-
s. Formally, let us denote a sentence consisting
of n words as {w1, w2, ...wi, ...wn}, let lc be the
width of a convolutional filter, and let Wc, bc be
the shared parameters of linear layers in the fil-
ter. Each word wi is mapped to its embedding
representation ei ∈ Rd. The input of a linear lay-
er is the concatenation of word embeddings in a
fixed-length window size lc, which is denoted as
Ic = [ei; ei+1; ...; ei+lc−1] ∈ Rd·lc . The output of
a linear layer is calculated as

Oc = Wc · Ic + bc (1)

where Wc ∈ Rloc×d·lc , bc ∈ Rloc , loc is the output
length of linear layer. To capture global semantics
of a sentence, we feed the outputs of linear layers
to an average pooling layer, resulting in an output
vector with fixed-length. We further add hyperbol-
ic tangent (tanh) to incorporate pointwise nonlin-
earity, and average the outputs of multiple filters
to get sentence representation.

We also try lstm as the sentence level semantic
calculator, the performance comparison between
these two variations is given in Section 3.

2.2 Document Composition with Gated
Recurrent Neural Network

The obtained sentence vectors are fed to a docu-
ment composition component to calculate the doc-
ument representation. We present a gated recur-
rent neural network approach for document com-
position in this part.

Given the vectors of sentences of variable
length as input, document composition produces
a fixed-length document vector as output. To this
end, a simple strategy is ignoring the order of sen-
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Figure 3: Document modeling with gated recurrent neural network. GNN stands for the basic computa-
tional unit of gated recurrent neural network.

tences and averaging sentence vectors as docu-
ment vector. Despite its computational efficiency,
it fails to capture complex linguistic relations (e.g.
“cause” and “contrast”) between sentences. Con-
volutional neural network (Denil et al., 2014) is an
alternative for document composition, which mod-
els local sentence relations with shared parameters
of linear layers.

Standard recurrent neural network (RNN) can
map vectors of sentences of variable length to
a fixed-length vector by recursively transforming
current sentence vector st with the output vector
of the previous step ht−1. The transition function
is typically a linear layer followed by pointwise
non-linearity layer such as tanh.

ht = tanh(Wr · [ht−1; st] + br) (2)

where Wr ∈ Rlh×(lh+loc), br ∈ Rlh , lh and loc are
dimensions of hidden vector and sentence vector,
respectively. Unfortunately, standard RNN suffer-
s the problem of gradient vanishing or exploding
(Bengio et al., 1994; Hochreiter and Schmidhu-
ber, 1997), where gradients may grow or decay
exponentially over long sequences. This makes
it difficult to model long-distance correlations in
a sequence. To address this problem, we devel-
op a gated recurrent neural network for documen-
t composition, which works in a sequential way
and adaptively encodes sentence semantics in doc-
ument representations. The approach is analo-
gous to the recently emerged LSTM (Graves et
al., 2013; Zaremba and Sutskever, 2014; Sutskev-
er et al., 2014; Xu et al., 2015) and gated neural
network (Cho et al., 2014; Chung et al., 2015).
Specifically, the transition function of the gated
RNN used in this work is calculated as follows.

it = sigmoid(Wi · [ht−1; st] + bi) (3)

ft = sigmoid(Wf · [ht−1; st] + bf ) (4)

gt = tanh(Wr · [ht−1; st] + br) (5)

ht = tanh(it � gt + ft � ht−1) (6)

where � stands for element-wise multiplication,
Wi, Wf , bi, bf adaptively select and remove histo-
ry vector and input vector for semantic composi-
tion. The model can be viewed as a LSTM whose
output gate is alway on, since we prefer not to dis-
carding any part of the semantics of sentences to
get a better document representation. Figure 3 (a)
displays a standard sequential way where the last
hidden vector is regarded as the document rep-
resentation for sentiment classification. We can
make further extensions such as averaging hidden
vectors as document representation, which takes
considerations of a hierarchy of historical seman-
tics with different granularities. The method is il-
lustrated in Figure 3 (b), which shares some char-
acteristics with (Zhao et al., 2015). We can go
one step further to use preceding histories and fol-
lowing evidences in the same way, and exploit bi-
directional (Graves et al., 2013) gated RNN as the
calculator. The model is embedded in Figure 1.

2.3 Sentiment Classification

The composed document representations can be
naturally regarded as features of documents for
sentiment classification without feature engineer-
ing. Specifically, we first add a linear layer to
transform document vector to real-valued vector
whose length is class number C. Afterwards, we
add a softmax layer to convert real values to con-
ditional probabilities, which is calculated as fol-
lows.

Pi =
exp(xi)∑C
i′=1 exp(xi′)

(7)

We conduct experiments in a supervised learn-
ing setting, where each document in the training
data is accompanied with its gold sentiment label.
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Corpus #docs #s/d #w/d |V | #class Class Distribution
Yelp 2013 335,018 8.90 151.6 211,245 5 .09/.09/.14/.33/.36
Yelp 2014 1,125,457 9.22 156.9 476,191 5 .10/.09/.15/.30/.36
Yelp 2015 1,569,264 8.97 151.9 612,636 5 .10/.09/.14/.30/.37
IMDB 348,415 14.02 325.6 115,831 10 .07/.04/.05/.05/.08/.11/.15/.17/.12/.18

Table 1: Statistical information of Yelp 2013/2014/2015 and IMDB datasets. #docs is the number of
documents, #s/d and #w/d represent average number of sentences and average number of words contained
in per document, |V | is the vocabulary size of words, #class is the number of classes.

For model training, we use the cross-entropy er-
ror between gold sentiment distribution P g(d) and
predicted sentiment distribution P (d) as the loss
function.

loss = −
∑
d∈T

C∑
i=1

P gi (d) · log(Pi(d)) (8)

where T is the training data, C is the number
of classes, d represents a document. P g(d) has
a 1-of-K coding scheme, which has the same
dimension as the number of classes, and only the
dimension corresponding to the ground truth is
1, with all others being 0. We take the deriva-
tive of loss function through back-propagation
with respect to the whole set of parameters θ =
[Wc; bc;Wi; bi;Wf ; bf ;Wr; br;Wsoftmax, bsoftmax],
and update parameters with stochastic gradient
descent. We set the widths of three convolutional
filters as 1, 2 and 3, output length of convolutional
filter as 50. We learn 200-dimensional word em-
beddings with SkipGram (Mikolov et al., 2013)
on each dataset separately, randomly initialize
other parameters from a uniform distribution
U(−0.01, 0.01), and set learning rate as 0.03.

3 Experiment

We conduct experiments to empirically evaluate
our method by applying it to document level senti-
ment classification. We describe experimental set-
tings and report empirical results in this section.

3.1 Experimental Setting

We conduct experiments on large-scale datasets
consisting of document reviews. Specifically, we
use one movie review dataset from IMDB (Diao
et al., 2014) and three restaurant review dataset-
s from Yelp Dataset Challenge in 2013, 2014 and
2015. Human labeled review ratings are regarded
as gold standard sentiment labels, so that we do
not need to manually annotate sentiment labels of

documents. We do not consider the cases that rat-
ing does not match with review texts (Zhang et al.,
2014).

Statistical information of these datasets are giv-
en in Table 1. We use the same dataset split as
in (Diao et al., 2014) on IMDB dataset, and split
Yelp datasets into training, development and test-
ing sets with 80/10/10. We run tokenization and
sentence splitting with Stanford CoreNLP (Man-
ning et al., 2014) on all these datasets. We use
accuracy (Manning and Schütze, 1999; Jurafsky
and Martin, 2000) and MSE (Diao et al., 2014)
as evaluation metrics, where accuracy is a stan-
dard metric to measure the overall sentiment clas-
sification performance. We use MSE to measure
the divergences between predicted sentiment la-
bels and ground truth sentiment labels because re-
view labels reflect sentiment strengths (e.g. one
star means strong negative and five star means
strong positive).

MSE =
∑N

i (goldi − predictedi)2
N

(9)

3.2 Baseline Methods

We compare our methods (Conv-GRNN and
LSTM-GRNN) with the following baseline meth-
ods for document level sentiment classification.

(1) Majority is a heuristic baseline, which as-
signs the majority sentiment label in training set
to each document in test set.

(2) In SVM+Ngrams, we use bag-of-unigrams
and bag-of-bigrams as features and train SVM
classifier with LibLinear (Fan et al., 2008)5.

(3) In TextFeatures, we implement sophisticated
features (Kiritchenko et al., 2014) including word
ngrams, character ngrams, sentiment lexicon fea-
tures, cluster features, et al.

5We also try discretized regression (Pang and Lee, 2005)
with fixed decision thresholds (e.g. 0.5, 1.5, 2.5, ...). Howev-
er, its performance is obviously worse than SVM classifier.
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Yelp 2013 Yelp 2014 Yelp 2015 IMDB
Accuracy MSE Accuracy MSE Accuracy MSE Accuracy MSE

Majority 0.356 3.06 0.361 3.28 0.369 3.30 0.179 17.46
SVM + Unigrams 0.589 0.79 0.600 0.78 0.611 0.75 0.399 4.23
SVM + Bigrams 0.576 0.75 0.616 0.65 0.624 0.63 0.409 3.74
SVM + TextFeatures 0.598 0.68 0.618 0.63 0.624 0.60 0.405 3.56
SVM + AverageSG 0.543 1.11 0.557 1.08 0.568 1.04 0.319 5.57
SVM + SSWE 0.535 1.12 0.543 1.13 0.554 1.11 0.262 9.16
JMARS N/A – N/A – N/A – N/A 4.97
Paragraph Vector 0.577 0.86 0.592 0.70 0.605 0.61 0.341 4.69
Convolutional NN 0.597 0.76 0.610 0.68 0.615 0.68 0.376 3.30
Conv-GRNN 0.637 0.56 0.655 0.51 0.660 0.50 0.425 2.71
LSTM-GRNN 0.651 0.50 0.671 0.48 0.676 0.49 0.453 3.00

Table 2: Sentiment classification on Yelp 2013/2014/2015 and IMDB datasets. Evaluation metrics are
accuracy (higher is better) and MSE (lower is better). The best method in each setting is in bold.

(4) In AverageSG, we learn 200-dimensional
word vectors with word2vec6 (Mikolov et al.,
2013), average word embeddings to get document
representation, and train a SVM classifier.

(5) We learn sentiment-specific word embed-
dings (SSWE), and use max/min/average pooling
(Tang et al., 2014) to get document representation.

(6) We compare with a state-of-the-art recom-
mendation algorithm JMARS (Diao et al., 2014),
which utilizes user and aspects of a review with
collaborative filtering and topic modeling.

(7) We implement a convolutional neural net-
work (CNN) baseline as it is a state-of-the-art se-
mantic composition method for sentiment analysis
(Kim, 2014; Denil et al., 2014).

(8) We implement a state-of-the-art neural net-
work baseline Paragraph Vector (Le and Mikolov,
2014) because its codes are not officially provided.
Window size is tuned on the development set.

3.3 Comparison to Other Methods

Experimental results are given in Table 2. We e-
valuate each dataset with two metrics, namely ac-
curacy (higher is better) and MSE (lower is better).
The best method in each dataset and each evalua-
tion metric is in bold.

From Table 2, we can see that majority is the
worst method because it does not capture any tex-
tual semantics. SVM classifiers with unigram and
bigram features (Pang et al., 2002) are extremely
strong, which are almost the strongest performers

6We use Skipgram as it performs slightly better than
CBOW in the experiment. We also try off-the-shell word em-
beddings from Glove, but its performance is slightly worse
than tailored word embedding from each corpus.

among all baseline methods. Designing complex
features are also effective for document level sen-
timent classification, however, it does not surpass
the bag-of-ngram features significantly as on Twit-
ter corpora (Kiritchenko et al., 2014). Further-
more, the aforementioned bag-of-features are dis-
crete and sparse. For example, the feature dimen-
sion of bigrams and TextFeatures on Yelp 2015
dataset are 899K and 4.81M after we filter out low
frequent features. Based on them, we try to con-
catenate several discourse-driven features, but the
classification performances remain unchanged.

AverageSG is a straight forward way to com-
pose document representation without feature en-
gineering. Unfortunately, we can see that it does
not work in this scenario, which appeals for pow-
erful semantic composition models for documen-
t level sentiment classification. We try to make
better use of the sentiment information to learn
a better SSWE (Tang et al., 2014), e.g. setting
a large window size. However, its performance
is still worse than context-based word embedding.
This stems from the fact that there are many sen-
timent shifters (e.g. negation or contrast words) in
document level reviews, while Tang et al. (2014)
learn SSWE by assigning sentiment label of a tex-
t to each phrase it contains. How to learn SSWE
effectively with document level sentiment super-
vision remains as an interesting future work.

Since JMARS outputs real-valued outputs, we
only evaluate it in terms ofMSE. We can see that
sophisticated baseline methods such as JMARS,
paragraph vector and convolutional NN obtain sig-
nificant performance boosts over AverageSG by
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Yelp 2013 Yelp 2014 Yelp 2015 IMDB
Accuracy MSE Accuracy MSE Accuracy MSE Accuracy MSE

Average 0.598 0.65 0.605 0.75 0.614 0.67 0.366 3.91
Recurrent 0.377 1.37 0.306 1.75 0.383 1.67 0.176 12.29
Recurrent Avg 0.582 0.69 0.591 0.70 0.597 0.74 0.344 3.71
Bi Recurrent Avg 0.587 0.73 0.597 0.73 0.577 0.82 0.372 3.32
GatedNN 0.636 0.58 0.656 0.52 0.651 0.51 0.430 2.95
GatedNN Avg 0.635 0.57 0.659 0.52 0.657 0.56 0.416 2.78
Bi GatedNN Avg 0.637 0.56 0.655 0.51 0.660 0.50 0.425 2.71

Table 3: Sentiment classification on IMDB, Yelp 2013/2014/2015 datasets. Evaluation metrics are accu-
racy (higher is better) and MSE (lower is better). The best method in each setting is in bold.

capturing deeper semantics of texts. Comparing
between CNN and AverageSG, we can conclude
that deep semantic compositionality is crucial for
understanding the semantics and the sentiment of
documents. However, it is somewhat disappoint-
ing that these models do not significantly outper-
form discrete bag-of-ngrams and bag-of-features.
The reason might lie in that semantic meanings of
documents, e.g. relations between sentences, are
not well captured. We can see that the proposed
method Conv-GRNN and LSTM-GRNN yield the
best performance on all four datasets in two evalu-
ation metrics. Compared with CNN, Conv-GRNN
shows its superior power in document composi-
tion component, which encodes semantics of sen-
tences and their relations in document representa-
tion with gated recurrent neural network. We al-
so find that LSTM (almost) consistently performs
better than CNN in modeling the sentence repre-
sentation.

3.4 Model Analysis

As discussed before, document composition con-
tributes a lot to the superior performance of Conv-
GRNN and LSTM-GRNN. Therefore, we take
Conv-GRNN as an example and compare differen-
t neural models for document composition in this
part. Specifically, after obtaining sentence vectors
with convolutional neural network as described in
Section 2.1, we carry out experiments in following
settings.

(1) Average. Sentence vectors are averaged to
get the document vector.

(2) Recurrent / GatedNN. Sentence vectors are
fed to standard (or gated) recurrent neural network
in a sequential way from the beginning of the input
document. The last hidden vector is regarded as
document representation.

(3) Recurrent Avg / GatedNN Avg. We extend
setting (2) by averaging hidden vectors of recur-
rent neural network as document vector.

(4) Bi Recurrent Avg / Bi GatedNN Avg. We ex-
tend setting (3) by calculating hidden vectors from
both preceding histories and following contexts.
Bi-directional hidden vectors are averaged as doc-
ument representation.

Table 3 shows the experimental results. We can
see that standard recurrent neural network (RN-
N) is the worst method, even worse than the sim-
ple vector average. This is because RNN suf-
fers from the vanishing gradient problem, stating
that the influence of a given input on the hidden
layer decays exponentially over time on the net-
work output. In this paper, it means that doc-
ument representation encodes rare semantics of
the beginning sentences. This is further justified
by the great improvement of Recurrent Avg over
Recurrent. Bi Recurrent Avg and Recurrent Avg
perform comparably, but disappointingly both of
them fail to transcend Average. After adding neu-
ral gates, GatedNN obtains dramatic accuracy im-
provements over Recurrent and significantly out-
performs previous settings. The results indicate
that Gated RNN is capable of handling the van-
ishing gradient problem to some extend, and it is
practical to adaptively model sentence semantics
in document representation. GatedNN Avg and Bi
GatedNN Avg obtains comparable performances
with GatedNN.

4 Related Work

Document level sentiment classification is a fun-
damental problem in sentiment analysis (Pang and
Lee, 2008; Liu, 2012), which aims at identifying
the sentiment label of a document (Pang et al.,
2002; Turney, 2002). Pang and Lee (2002; 2005)

1428



cast this problem as a classification task, and use
machine learning method in a supervised learning
framework. Turney (2002) introduces an unsuper-
vised approach by using sentiment words/phrases
extracted from syntactic patterns to determine the
document polarity. Goldberg and Zhu (2006)
place this task in a semi-supervised setting, and
use unlabelled reviews with graph-based method.
Dominant studies in literature follow Pang et al.
(2002) and work on designing effective features
for building a powerful sentiment classifier. Rep-
resentative features include word ngrams (Wang
and Manning, 2012), text topic (Ganu et al., 2009),
bag-of-opinions (Qu et al., 2010), syntactic rela-
tions (Xia and Zong, 2010), sentiment lexicon fea-
tures (Kiritchenko et al., 2014).

Despite the effectiveness of feature engineering,
it is labor intensive and unable to extract and or-
ganize the discriminative information from data
(Bengio et al., 2015). Recently, neural network e-
merges as an effective way to learn continuous text
representation for sentiment classification. Exist-
ing studies in this direction can be divided into two
groups. One line of research focuses on learning
continuous word embedding. Traditional embed-
ding learning algorithms typically leverage con-
texts of words in a context-prediction way (Ben-
gio et al., 2003; Mikolov et al., 2013; Baroni et al.,
2014). Since these methods typically map word-
s with similar contexts but opposite polarity (e.g.
“good” and “bad”) to neighboring vectors, sever-
al studies (Maas et al., 2011; Labutov and Lipson,
2013; Tang et al., 2014) learn sentiment-specific
word embeddings by taking sentiment of texts in-
to account. Another line of research concentrates
on semantic composition (Mitchell and Lapata,
2010). Yessenalina and Cardie (2011) represent
each word as a matrix and use iterated matrix mul-
tiplication as phrase-level composition function.
Socher et al. (2013b) introduce a family of recur-
sive neural networks for sentence-level semantic
composition. Recursive neural network is extend-
ed with global feedbackward (Paulus et al., 2014),
feature weight tuning (Li, 2014), deep recursive
layer (Irsoy and Cardie, 2014), adaptive composi-
tion functions (Dong et al., 2014), combined with
Combinatory Categorial Grammar (Hermann and
Blunsom, 2013), and used for opinion relation de-
tection (Xu et al., 2014). Glorot et al. (2011) use s-
tacked denoising autoencoder. Convolutional neu-
ral networks are widely used for semantic compo-

sition (Kim, 2014; Kalchbrenner et al., 2014; De-
nil et al., 2014; Johnson and Zhang, 2015) by auto-
matically capturing local and global semantics. Le
and Mikolov (2014) introduce Paragraph Vector to
learn document representation from semantics of
words. Sequential model like recurrent neural net-
work or long short-term memory (LSTM) are also
verified as strong approaches for semantic compo-
sition (Li et al., 2015a).

In this work, we represent document with
convolutional-gated recurrent neural network,
which adaptively encodes semantics of sentences
and their relations. A recent work in (Li et al.,
2015b) also investigate LSTM to model document
meaning. They verify the effectiveness of LSTM
in text generation task.

5 Conclusion

We introduce neural network models (Conv-
GRNN and LSTM-GRNN) for document level
sentiment classification. The approach encodes
semantics of sentences and their relations in doc-
ument representation, and is effectively trained
end-to-end with supervised sentiment classifica-
tion objectives. We conduct extensive experiments
on four review datasets with two evaluation met-
rics. Empirical results show that our approaches
achieve state-of-the-art performances on all these
datasets. We also find that (1) traditional recurren-
t neural network is extremely weak in modeling
document composition, while adding neural gates
dramatically boosts the performance, (2) LSTM
performs better than a multi-filtered CNN in mod-
eling sentence representation.

We briefly discuss some future plans. How to
effectively compose sentence meanings to docu-
ment meaning is a central problem in natural lan-
guage processing. In this work, we develop neu-
ral models in a sequential way, and encode sen-
tence semantics and their relations automatically
without using external discourse analysis result-
s. From one perspective, one could carefully de-
fine a set of sentiment-sensitive discourse relation-
s (Zhou et al., 2011), such as “contrast”, “condi-
tion”, “cause”, etc. Afterwards, relation-specific
gated RNN can be developed to explicitly mod-
el semantic composition rules for each relation
(Socher et al., 2013a). However, defining such a
relation scheme is linguistic driven and time con-
suming, which we leave as future work. From an-
other perspective, one could compose document
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representation over discourse tree structures rather
than in a sequential way. Accordingly, Recursive
Neural Network (Socher et al., 2013b) and Struc-
tured LSTM (Tai et al., 2015; Zhu et al., 2015)
can be used as composition algorithms. Howev-
er, existing discourse structure learning algorithm-
s are difficult to scale to massive review texts on
the web. How to simultaneously learn document
structure and composition function is an interest-
ing future work.
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Abstract

The tasks in fine-grained opinion mining
can be regarded as either a token-level se-
quence labeling problem or as a semantic
compositional task. We propose a gen-
eral class of discriminative models based
on recurrent neural networks (RNNs) and
word embeddings that can be successfully
applied to such tasks without any task-
specific feature engineering effort. Our
experimental results on the task of opin-
ion target identification show that RNNs,
without using any hand-crafted features,
outperform feature-rich CRF-based mod-
els. Our framework is flexible, allows us to
incorporate other linguistic features, and
achieves results that rival the top perform-
ing systems in SemEval-2014.

1 Introduction

Fine-grained opinion mining involves identifying
the opinion holder who expresses the opinion, de-
tecting opinion expressions, measuring their inten-
sity and sentiment, and identifying the target or
aspect of the opinion (Wiebe et al., 2005). For ex-
ample, in the sentence “John says, the hard disk is
very noisy”, John, the opinion holder, expresses a
very negative (i.e., sentiment with intensity) opin-
ion towards the target “hard disk” using the opin-
ionated expression “very noisy”. A number of
NLP applications can benefit from fine-grained
opinion mining including opinion summarization
and opinion-oriented question answering.

The tasks in fine-grained opinion mining can be
regarded as either a token-level sequence labeling
problem or as a semantic compositional task at the
sequence (e.g., phrase) level. For example, iden-
tifying opinion holders, opinion expressions and
opinion targets can be formulated as a token-level
sequence tagging problem, where the task is to

The hard disk is very noisy
O B-TARG I-TARG O O O
O O O O B-EXPR I-EXPR

Table 1: An example sentence annotated with BIO
labels for opinion target (TARG tags) and for opin-
ion expression (EXPR tags) extraction.

label each word in a sentence using the conven-
tional BIO tagging scheme. For example, Table
1 shows a sentence tagged with BIO scheme for
opinion target (middle row) and for opinion ex-
pression (bottom row) identification tasks. On the
other hand, characterizing intensity and sentiment
of an opinionated expression can be regarded as a
semantic compositional problem, where the task is
to aggregate vector representations of tokens in a
meaningful way and later use them for sentiment
classification (Socher et al., 2013).

Conditional random fields (CRFs) (Lafferty et
al., 2001) have been quite successful for different
fine-grained opinion mining tasks, e.g., opinion
expression extraction (Yang and Cardie, 2012).
The state-of-the-art model for opinion target ex-
traction is also based on a CRF (Pontiki et al.,
2014). However, the success of CRFs depends
heavily on the use of an appropriate feature set and
feature function expansion, which often requires a
lot of engineering effort for each task in hand.

An alternative approach of deep learning auto-
matically learns latent features as distributed vec-
tors and have recently been shown to outperform
CRFs on similar tasks. For example, Irsoy and
Cardie (2014) apply deep recurrent neural net-
works (RNNs) to extract opinion expressions from
sentences and show that RNNs outperform CRFs.
Socher et al. (2013) propose recursive neural net-
works for a semantic compositional task to iden-
tify the sentiments of phrases and sentences hier-
archically using the syntactic parse trees.

Meanwhile, recent advances in word embed-
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ding induction methods (Collobert and Weston,
2008; Mikolov et al., 2013b) have benefited re-
searchers in two ways: (i) they have contributed
to significant gains when used as extra word fea-
tures in existing NLP systems (Turian et al., 2010;
Lebret and Lebret, 2013), and (ii) they have en-
abled more effective training of RNNs by provid-
ing compact input representations of the words
(Mesnil et al., 2013; Irsoy and Cardie, 2014).

Motivated by the recent success of deep learn-
ing, in this paper we propose a general class of
models based on RNN architecture and word em-
beddings, that can be successfully applied to fine-
grained opinion mining tasks without any task-
specific feature engineering effort. We experiment
with several important RNN architectures includ-
ing Elman-RNN, Jordan-RNN, long short term
memory (LSTM) and their variations. We acquire
pre-trained word embeddings from several exter-
nal sources to give better initialization to our RNN
models. The RNN models then fine-tune the word
vectors during training to learn task-specific em-
beddings. We also present an architecture to in-
corporate other linguistic features into RNNs.

Our results on the task of opinion target extrac-
tion show that word embeddings improve the per-
formance of state-of-the-art CRF models, when
included as additional features. They also improve
RNNs when used as pre-trained word vectors and
fine-tuning them on the task gives the best results.
A comparison between models demonstrates that
RNNs outperform CRFs, even when they use word
embeddings as the only features. Incorporating
simple linguistic features into RNNs improves the
performance even further. Our best results with
LSTM RNN outperform the top performing sys-
tem on the Laptop dataset and achieve the second
best on the Restaurant dataset in SemEval-2014.
We make our source code available.1

In the remainder of this paper, after discussing
related work in Section 2, we present our RNN
models in Section 3. In Section 4, we briefly de-
scribe the pre-trained word embeddings. The ex-
periments and analysis of results are presented in
Section 5. Finally, we summarize our contribu-
tions with future directions in Section 6.

2 Related Work

A line of previous research in fine-grained opinion
mining focused on detecting opinion (subjective)

1https://github.com/ppfliu/opinion-target

expressions, e.g., (Wilson et al., 2005; Breck et al.,
2007). The common approach was to formulate
the problem as a sequence tagging task and use
a CRF model. Later approaches extended this to
jointly identify opinion holders (Choi et al., 2005),
and intensity and polarity (Choi and Cardie, 2010).

Extracting aspect terms or opinion targets have
been actively investigated in the past. Typical ap-
proaches include association mining to find fre-
quent item sets (i.e., co-occurring words) as can-
didate aspects (Hu and Liu, 2004), classification-
based methods such as hidden Markov model (Jin
et al., 2009) and CRF (Shariaty and Moghaddam,
2011; Yang and Cardie, 2012; Yang and Cardie,
2013), as well as topic modeling techniques using
Latent Dirichlet Allocation (LDA) model and its
variants (Titov and McDonald, 2008; Lin and He,
2009; Moghaddam and Ester, 2012).

Conventional RNNs (e.g., Elman type) and
LSTM have been successfully applied to vari-
ous sequence prediction tasks, such as language
modeling (Mikolov et al., 2010; Sundermeyer et
al., 2012), speech recognition (Graves and Jaitly,
2014; Sak et al., 2014) and spoken language un-
derstanding (Mesnil et al., 2013). For sentiment
analysis, Socher et al. (2013) propose to use re-
cursive neural networks to hierarchically compose
semantic word vectors based on syntactic parse
trees, and use the vectors to identify the sentiments
of the phrases and sentences. Le and Zuidema
(2015) extended recursive neural networks with
LSTM to compute a parent vector in parse trees by
combining information of both output and LSTM
memory cells from its two children.

Most relevant to our work is the recent work of
Irsoy and Cardie (2014), where they apply deep
Elman-type RNN to extract opinion expressions
and show that deep RNN outperforms CRF, semi-
CRF and shallow RNN. They used word embed-
dings from Google without fine-tuning them.

Although inspired, our work differs from the
work of Irsoy and Cardie (2014) in many ways.
(i) We experiment with not only Elman-type, but
also with a Jordan-type and with a more advanced
LSTM RNN, and demonstrate the performance of
various RNN models. (ii) We use not only Google
embeddings as pre-trained word vectors, but also
other embeddings including SENNA and Amazon,
and show their performances. (iii) We also fine-
tune the embeddings for our task, which is shown
to be very crucial. (iv) We present an RNN ar-
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chitecture to include other linguistic features and
show its effectiveness. (v) Finally, we present
a comprehensive experiment exploring different
embedding dimensions and hidden layer sizes for
all the variations of the RNNs (i.e., including fea-
tures and bi-directionality).

3 Recurrent Neural Models

The recurrent neural models in this section com-
pute compositional vector representations for
word sequences of arbitrary length. These high-
level (i.e., hidden-layer) distributed representa-
tions are then used as features to classify each to-
ken in the sentence. We first describe the com-
mon properties shared among the RNNs below,
followed by the descriptions of the specific RNNs.

Each word in the vocabulary V is represented
by a D dimensional vector in the shared look-up
table L ∈ R|V |×D. Note that L is considered as
a model parameter to be learned. We can initial-
ize L randomly or by pre-trained word embedding
vectors (see Section 4). Given an input sentence
s = (s1, · · · , sT ), we first transform it into a fea-
ture sequence by mapping each word token st ∈ s
to an index in L. The look-up layer then cre-
ates a context vector xt ∈ RmD covering m − 1
neighboring tokens for each st by concatenating
their respective vectors in L. For example, given
the context size m = 3, the context vector xt

for the word disk in Figure 1 is formed by con-
catenating the embeddings of hard, disk and is.
This window-based approach is intended to cap-
ture short-term dependencies between neighbor-
ing words in a sentence (Collobert et al., 2011).

The concatenated vector is then passed through
non-linear recurrent hidden layers to learn high-
level compositional representations, which are in
turn fed to the output layer for classification using
softmax. Formally, the probability of k-th label
in the output for classification into K classes:

P (yt = k|s, θ) =
exp (wT

k ht)∑K
k=1 exp (wT

k ht)
(1)

where, ht = φ(xt) defines the transformations
of xt through the hidden layers, and wk are the
weights from the last hidden layer to the output
layer. We fit the models by minimizing the nega-
tive log likelihood (NLL) of the training data. The
NLL for the sentence s can be written as:

J(θ) =
T∑
t=1

K∑
k=1

ytk log P (yt = k|s, θ) (2)

where, ytk = I(yt = k) is an indicator variable
to encode the gold labels, i.e., ytk = 1 if the gold
label yt = k, otherwise 0.2 The loss function mini-
mizes the cross-entropy between the predicted dis-
tribution and the target distribution (i.e., gold la-
bels). The main difference between the models
described below is how they compute ht = φ(xt).

3.1 Elman-type RNN (Elman, 1990)
In an Elman-type RNN (Fig. 1a), the output of the
hidden layer ht at time t is computed from a non-
linear transformation of the current input xt and
the previous hidden layer output ht−1. Formally,

ht = f(Uht−1 + V xt + b) (3)

where f is a nonlinear function (e.g., sigmoid)
applied to the hidden units. U and V are weight
matrices between two consecutive hidden layers,
and between the input and the hidden layers, re-
spectively, and b is the bias vector.

This RNN thus creates internal states by re-
membering previous hidden layer, which allows it
to exhibit dynamic temporal behavior. We can in-
terpret ht as an intermediate representation sum-
marizing the past, which is in turn used to make a
final decision on the current input.

3.2 Jordan-type RNN (Jordan, 1997)
Jordan-type RNNs (Fig. 1b) are similar to Elman-
type RNNs except that the hidden layer ht at time
t is fed from the previous output layer yt−1 instead
of the previous hidden layer ht−1. Formally,

ht = f(Uyt−1 + V xt + b) (4)

where U , V , b, and f are similarly defined as be-
fore. Both Elman-type and Jordan-type RNNs are
known as simple RNNs. These types of RNNs
are generally trained using stochastic gradient de-
scent (SGD) with backpropagation through time
(BPTT), where errors (i.e., gradients) are propa-
gated back through the edges over time.

One common issue with BPTT is that as the er-
rors get propagated, they may soon become very
small or very large that can lead to undesired val-
ues in weight matrices, causing the training to fail.

2This is also known as one-hot vector representation.
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Figure 1: Elman-type, Jordan-type and LSTM RNNs with a lookup-table layer, a hidden layer and an
output layer. The concatenated context vector for the word “disk” at time t is xt = [xhard, xdisk, xis]
with a context window of size 3. One memory block in the LSTM hidden layer has been enlarged.

This is known as the vanishing and the exploding
gradients problem (Bengio et al., 1994). One sim-
ple way to overcome this issue is to use a truncated
BPTT (Mikolov, 2012) for restricting the back-
propagation to only few steps like 4 or 5. However,
this solution limits the RNN to capture long-range
dependencies. In the following, we describe an el-
egant RNN architecture to address this problem.

3.3 Long Short-Term Memory RNN
Long Short-Term Memory or LSTM (Hochreiter
and Schmidhuber, 1997) is specifically designed
to model long term dependencies in RNNs. The
recurrent layer in a standard LSTM is constituted
with special (hidden) units called memory blocks
(Fig. 1c). A memory block is composed of four
elements: (i) a memory cell c (i.e., a neuron) with
a self-connection, (ii) an input gate i to control the
flow of input signal into the neuron, (iii) an out-
put gate o to control the effect of the neuron ac-
tivation on other neurons, and (iv) a forget gate
f to allow the neuron to adaptively reset its cur-
rent state through the self-connection. The follow-
ing sequence of equations describe how a layer of
memory blocks is updated at every time step t:

it = σ(Uiht−1 + Vixt + Cict−1 + bi) (5)
ft = σ(Ufht−1 + Vfxt + Cfct−1 + bf ) (6)
ct = it � g(Ucht−1 + Vcxt + bc) + ft � ct−1 (7)
ot = σ(Uoht−1 + Voxt + Coct + bo) (8)
ht = ot � h(ct) (9)

where Uk, Vk and Ck are the weight matrices be-
tween two consecutive hidden layers, between the
input and the hidden layers, and between two con-
secutive cell activations, respectively, which are
associated with gate k (i.e., input, output, forget
and cell), and bk is the associated bias vector. The
symbol � denotes a element-wise product of the

two vectors. The gate function σ is the sigmoid
activation, and g and h are the cell input and cell
output activations, typically a tanh. LSTMs are
generally trained using truncated or full BPTT.

3.4 Bidirectionality

Notice that the RNNs defined above only get infor-
mation from the past. However, information from
the future could also be crucial. In our example
sentence (Table 1), to correctly tag the word hard
as a B-TARG, it is beneficial for the RNN to know
that the next word is disk. Our window-based ap-
proach, by considering the neighboring words, al-
ready captures short-term dependencies like this
from the future. However, it requires tuning to find
the right window size, and it disregards long-range
dependencies that go beyond the context window,
which is typically of size 1 (i.e., no context) to 5
(see Section 5.2). For instance, consider the two
sentences: (i) Do you know about the crunchy tuna
here, it is to die for. and (ii) Do you know about
the crunchy tuna here, it is imported from Norway.
The phrase crunchy tuna is an aspect term in the
first (subjective) sentence, but not in the second
(objective) one. The RNN models described above
will assign the same labels to crunchy and tuna in
both sentences, since the preceding sequences and
the context window (of size 1 to 5) are the same.

To capture long-range dependencies from the
future as well as from the past, we propose to use
bidirectional RNNs (Schuster and Paliwal, 1997),
which allow bidirectional links in the network. In
an Elman-type bidirectional RNN (Fig. 2a), the
forward hidden layer

−→
ht and the backward hidden

layer
←−
ht at time t are computed as follows:

−→
ht = f(

−→
U ht−1 +

−→
V xt +

−→
b ) (10)

←−
ht = f(

←−
U ht−1 +

←−
V xt +

←−
b ) (11)
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Figure 2: (a) Bidirectional Elman-type RNN and
(b) Linguistic features concatenated with the hid-
den layer output in Elman-type RNN.

where
−→
U ,
−→
V and

−→
b are the forward weight ma-

trices as before; and
←−
U ,
←−
V and

←−
b are their back-

ward counterparts. The concatenated vector ht =
[
−→
ht,
←−
ht] is passed to the output layer. We can thus

interpret ht as an intermediate representation sum-
marizing the past and the future, which is then
used to make a final decision on the current input.

Similarly, the unidirectional LSTM RNN can be
extended to bidirectional LSTM by allowing bidi-
rectional connections in the hidden layer. This
amounts to having a backward counterpart for
each of the equations from 5 to 9.

Notice that the forward and the backward com-
putations of bidirectional RNNs are independently
done until they are combined in the output layer.
This means, during training, after backpropagat-
ing the errors from the output layer to the forward
and to the backward hidden layers, two indepen-
dent BPTT can be applied – one to each direction.

3.5 Fine-tuning of Embeddings

In our RNN framework, we intend to avoid manual
feature engineering efforts by using word embed-
dings as the only features. As mentioned before,
we can initialize the embeddings randomly and
learn them as part of model parameters by back-
propagating the errors to the look-up layer. One
issue with random initialization is that it may lead
the SGD to get stuck in local minima (Murphy,
2012). On the other hand, one can plug the readily
available embeddings from external sources (Sec-
tion 4) in the RNN model and use them as features
without tuning them further for the task, as is done
in any other machine learning model. However,
this approach does not exploit the automatic fea-

ture learning capability of NN models, which is
one of the main motivations of using them.

In our work, we use the pre-trained word em-
beddings to better initialize our models, and we
fine-tune them for our task in training, which turns
out to be quite beneficial (see Section 5.2).

3.6 Incorporating other Linguistic Features

Although NNs learn word features (i.e., embed-
dings) automatically, we may still be interested in
incorporating other linguistic features like part-of-
speech (POS) tags and chunk information to guide
the training and to learn a better model. However,
unlike word embeddings, we want these features
to be fixed during training. As shown in Figure
2b, this can be done in our RNNs by feeding these
additional features directly to the output layer, and
learn their associated weights in training.

4 Word Embeddings

Word embeddings are distributed representations
of words, represented as real-valued, dense, and
low-dimensional vectors. Each dimension poten-
tially describes syntactic or semantic properties of
the word. Here we briefly describe the three types
of pre-trained embeddings that we use in our work.

4.1 SENNA Embeddings

Collobert et al. (2011) present a unified NN archi-
tecture for various NLP tasks (e.g., POS tagging,
chunking, semantic role labeling, named entity
recognition) with a window-based approach and
a sentence-based approach (i.e., the input layer
is a sentence). Each word in the input layer is
represented by M features, each of which has an
embedding vector associated with it in a lookup
table. To give their network a better initializa-
tion, they learn word embeddings using a non-
probabilistic language model, which was trained
on English Wikipedia for about 2 months. They
released their 50-dimensional word embeddings
(vocabulary size 130K) under the name SENNA.3

4.2 Google Embeddings

Mikolov et al. (2013a) propose two log-linear
models for computing word embeddings from
large corpora efficiently: (i) a bag-of-words model
CBOW that predicts the current word based on the
context words, and (ii) a skip-gram model that pre-
dicts surrounding words given the current word.

3http://ronan.collobert.com/senna/
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They released their pre-trained 300-dimensional
word embeddings (vocabulary size 3M ) trained
by the skip-gram model on part of Google news
dataset containing about 100 billion words.4

4.3 Amazon Embeddings

Since we work on customer reviews, which are
less formal than Wikipedia and news, we have also
trained domain-specific embeddings (vocabulary
size 1M ) using the CBOW model of word2vec
tool (Mikolov et al., 2013b) from a large cor-
pus of Amazon reviews.5 The corpus contains
34, 686, 770 reviews (4.7 billion words) on Ama-
zon products from June 1995 to March 2013
(McAuley and Leskovec, 2013). For comparison
with SENNA and Google, we learn word embed-
dings of 50- and 300-dimensions.

5 Experiments

In this section, we present our experimental set-
tings and results for the task of opinion target ex-
traction from customer reviews.

5.1 Experimental Settings

Datasets: In our experiments, we use the two
review datasets provided by the SemEval-2014
task 4: aspect-based sentiment analysis evaluation
campaign (Pontiki et al., 2014), namely the Laptop
and the Restaurant datasets. Table 2 shows some
basic statistics about the datasets. The majority
of aspect terms have only one word, while about
one third of them have multiple words. In both
datasets, some sentences have no aspect terms and
some have more than one aspect terms. We use the
standard train:test split to compare our results with
the SemEval best systems. In addition, we show a
more general performance of our models on the
two datasets based on 10–fold cross validation.

Laptop Restaurant
Train Test Train Test

Sentences 3045 800 3041 800
Sentence length 15 13 14 14
One-word targets 1494 364 2786 818
Multi-word targets 864 290 907 316
Total targets 2358 654 3693 1134

Table 2: Corpora statistics.

4https://code.google.com/p/word2vec/
5https://snap.stanford.edu/data/web-Amazon.html

Evaluation Metric: The evaluation metric mea-
sures the standard precision, recall and F1 score
based on exact matches. This means that a candi-
date aspect term is considered to be correct only if
it exactly matches with the aspect term annotated
by the human. In all our experiments when com-
paring two models, we use paired t-test on the F1

scores to measure statistical significance and re-
port the corresponding p-value.

CRF Baseline: We use a linear-chain CRF (Laf-
ferty et al., 2001) of order 2 as our baseline, which
is the state-of-the-art model for opinion target ex-
traction (Pontiki et al., 2014). Specifically, the
CRF generates (binary) feature functions of order
1 and 2; see (Cuong et al., 2014) for higher or-
der CRFs. The features used in the baseline model
include the current word, its POS tag, its prefixes
and suffixes between one to four characters, its po-
sition, its stylistics (e.g., case, digit, symbol, al-
phanumeric), and its context (i.e., the same fea-
tures for the two preceding and the two following
words). In addition to the hand-crafted features,
we also include the three different types of word
embeddings described in Section 4.

RNN Settings: We pre-processed each dataset by
lowercasing all words and spelling out each digit
number as DIGIT. We then built the vocabulary
from the training set by marking rare words with
only one occurrence as UNKNOWN, and adding a
PADDDING word to make context windows for
boundary words.

To implement early stopping in SGD, we prepared
a validation set by separating out randomly 10%
of the available training data. The remaining 90%
is used for training. The weights in the network
were initialized by sampling from a small random
uniform distribution U(−0.2, 0.2). The time step
in the truncated BPTT was fixed to 6 based on the
performance on the validation set; smaller values
hurt the performance, while larger values showed
no significant gains but increased the training time.

We use a fixed learning rate of 0.01, but we change
the batch size depending on the sentence length
following Mesnil et al. (2013). The net effect is a
variable step size in the SGD. We run SGD for 30
epochs, calculate the F1 score on the validation set
after each epoch, and stop if the accuracy starts to
decrease. The size of the context window and the
hidden layer are empirically set based on the per-
formance on the validation set. We experimented
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with the window size∈ {1, 3, 5}, and found 3 to be
the optimal on the validation set. The hidden layer
sizes we experimented with are 50, 100, 150, and
200; we report the optimal values in Table 3 (see
|hl| and |hr| columns).

Linguistic Features in RNNs: In addition to the
neural features, we also explore the contribution
of simple linguistic features in our RNN mod-
els using the architecture described in Section
3.6. Specifically, we encode four POS tag classes
(noun, adjective, verb, adverb) and BIO-tagged
chunk information (NP, VP, PP, ADJP, ADVP) as
binary features. We feed these extra features di-
rectly to the output layer of the RNNs and learn
their relative weights. Part-of-speech and phrasal
information are arguably the most informative
features for identifying aspect terms (i.e., aspect
terms are generally noun phrases). BIO tags could
be useful to find the right text spans (i.e., aspect
terms are unlikely to violate phrasal boundaries).

5.2 Results and Discussion
Table 3 presents our results of aspect term extrac-
tion on the standard testset in F1 scores. In Table
4, we show the results on the whole datasets based
on 10-fold cross validation. RNNs in Table 4 are
trained using SENNA embeddings. We perform
significance tests on the 10-fold results. In the fol-
lowing, we highlight our main findings.

Contributions of Word Embeddings in CRF:
From the first group of results in Table 3, we
can observe that even though CRF uses a hand-
ful of hand-designed features, including word
embeddings still leads to sizable improvements
on both datasets. The domain-specific Amazon
embeddings (300 dim.) yield more general
performance across the datasets, delivering the
best gain of absolute 3.54% on the Laptop and
the second best on the Restaurant dataset. Google
embeddings give the best gain on the Restaurant
dataset (absolute 3.08%). The contribution of
embeddings in CRF is also validated by the
10-fold results in Table 4 (see first two rows),
where SENNA embeddings yield significant
improvements – absolute 1.47% on Laptop (p
< 0.03) and absolute 1.24% on Restaurant (p <
0.01). This demonstrates that word embeddings
offer generalizations that complement other strong
features, and thus should be considered.

CRF vs. RNNs: When we compare the results of

System Dim. |hl| Laptop |hr| Restaurant
CRF Base - - 68.66 - 77.28
+SENNA 50 - 71.38 - 78.54
+Amazon 50 - 70.61 - 79.46
+Google 300 - 68.81 - 80.36
+Amazon 300 - 72.20 - 79.66
Jordan-RNN
+SENNA 50 200 71.41 200 78.83
+Amazon 50 100 73.21 150 79.01
+Google 300 150 73.42 200 79.89
+Amazon 300 50 72.43 200 78.30
Elman-RNN
+SENNA 50 100 73.86 150 79.89
+Amazon 50 100 74.43 100 80.37
+Google 300 100 72.91 100 79.54
+Amazon 300 200 73.67 100 79.82
Elman-RNN + Feat.
+SENNA 50 50 73.70 100 81.36
+Amazon 50 200 73.30 50 81.66
+Google 300 150 74.25 100 80.57
+Amazon 300 50 73.92 100 80.24
Bi-Elman-RNN
+SENNA 50 100 72.38 100 80.10
+Amazon 50 50 73.93 50 79.97
+Google 300 50 72.67 100 79.52
+Amazon 300 50 71.12 50 79.09
Bi-Elman-RNN + Feat.
+SENNA 50 100 73.30 50 80.34
+Amazon 50 50 74.57 50 82.06
+Google 300 50 74.56 100 78.99
+Amazon 300 50 73.56 100 79.97
LSTM-RNN
+SENNA 50 100 73.40 150 79.43
+Amazon 50 50 72.44 50 79.79
+Google 300 100 72.11 50 79.20
+Amazon 300 50 73.52 50 78.99
LSTM-RNN + Feat.
+SENNA 50 50 73.19 150 80.28
+Amazon 50 100 75.00 50 80.82
+Google 300 50 72.19 50 81.37
+Amazon 300 100 72.85 100 80.60
Bi-LSTM-RNN
+SENNA 50 50 72.60 150 79.89
+Amazon 50 100 74.03 100 79.36
+Google 300 50 70.90 50 78.80
+Amazon 300 150 71.25 150 78.88
Bi-LSTM-RNN + Feat.
+SENNA 50 100 74.02 150 81.06
+Amazon 50 100 73.58 50 80.51
+Google 300 100 71.05 50 79.39
+Amazon 300 100 73.81 150 80.67
SemEval-14 top systems
IHS RD - - 74.55 - 79.62
DLIREC - - 73.78 - 84.01

Table 3: F1-score performance for CRF baselines,
RNNs and SemEval’14 best systems on the stan-
dard Laptop and Restaturant testsets. |hl| and |hr|
columns show the number of hidden units.
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Model Laptop Restaurant
P R F1 P R F1

CRF Base 79.77 64.09 70.87 82.59 74.63 78.36
+ SENNA 78.23 67.38 72.34 81.21 78.12 79.60
Elman-RNN 82.03 72.68 76.97 81.96 78.41 80.08
+ Feat. 80.02 76.60 78.22 81.91 81.22 81.52
+ Bidir. 81.92 73.70 77.47 81.69 78.46 79.97
+ Feat. + Bidir. 81.00 75.70 78.17 82.80 80.44 81.57
LSTM-RNN 81.92 73.30 77.14 83.64 77.45 80.36
+ Feat. 80.70 75.82 78.00 81.80 81.39 81.54
+ Bidir. 81.31 74.20 77.37 81.66 79.23 80.37
+ Feat. + Bidir. 80.81 74.48 77.27 82.96 80.42 81.56

Table 4: 10-fold cross validation results of the models on the two datasets. Elman- and LSTM-RNNs are
trained using SENNA embeddings.

System Dim. Laptop Restaurant
Elman-RNN -tune +tune -tune +tune
+SENNA 50 60.85 73.86 75.78 79.89
+Amazon 50 15.51 74.43 22.85 80.37
+Random 50 38.26 72.99 56.98 78.44
+Google 300 67.91 72.91 74.73 79.54
+Amazon 300 15.51 73.67 22.85 79.82
Jordan-RNN -tune +tune -tune +tune
+SENNA 50 58.81 71.41 74.68 78.83
+Amazon 50 15.51 73.21 22.85 79.01
+Random 50 38.05 71.46 55.65 77.38
+Google 300 69.39 73.42 77.33 79.89
+Amazon 300 15.51 72.43 22.85 78.30

Table 5: Effects of fine-tuning in Elman-RNN and Jordan-RNN.

RNNs with those of CRF in Table 3, we see that
most of our RNN models outperform CRF mod-
els with the maximum absolute gains of 2.80% by
LSTM-RNN+Feat. on Laptop and 1.70% by Bi-
Elman-RNN+Feat. on Restaurant. What is re-
markable is that RNNs without any hand-crafted
features outperform feature-rich CRF models by a
good margin – absolute maximum gains of 2.23%
by Elman-RNN and 1.83% by Bi-LSTM-RNN
on Laptop. When we compare their general per-
formance on the 10-folds in Table 4, we observe
similar gains, maximum 5.88% on Laptop and
1.97% on Restaurant, which are significant with
p < 6 × 10−6 on Laptop and p < 2 × 10−4 on
Restaurant. These results demonstrate that RNNs
as sequence labelers are more effective than CRFs
for fine-grained opinion mining tasks. This can be
attributed to RNN’s ability to learn better features
automatically and to capture long-range sequential
dependencies between the output labels.

Comparison among RNN Models: A compari-
son among the RNN models in Table 3 tells that
Elman RNN generally outperforms Jordan RNN.

However, bi-directionality and LSTM do not pro-
vide clear gains over the simple Elman RNN.
In fact, bi-directionality hurts the performance
in most cases. This finding contrasts the find-
ing of Irsoy and Cardie (2014) in opinion ex-
pression detection task, where bi-directional El-
man RNNs outperform their uni-directional coun-
terparts. However, when we analyzed the data,
we found it to be unsurprising because aspect
terms are generally shorter than opinion expres-
sions. For example, the average length of an aspect
term in our Restaurant dataset is 1.4, where the
average length of an expressive subjective expres-
sion in their MPQA corpus is 3.3. Therefore, the
information required to correctly identify aspect
terms (e.g., hard disk) is already captured by the
simple (as opposed to LSTM) unidirectional link
and the context window covering the neighboring
words. LSTM and Bi-directionality increase the
number of parameters in the RNNs, which might
contribute to overfitting on this specific task.6

6Bi-directional links double the number of parameters in
RNNs.
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As a partial solution to this problem, we experi-
mented with a bi-directional Elman-RNN, where
both directions share the same parameters. There-
fore, the number of parameters remains the same
as the uni-directional one. This modification im-
proves the performance over the non-shared one
slightly but not significantly. This demands for
better modeling of the two sources of information
rather than simple concatenation or sharing.

Contributions of Linguistic Features in RNNs:
Although our linguistic features are quite simple
(i.e., POS tags and chunk), they give gains on
both datasets when incorporated into Elman and
LSTM RNNs. The maximum gains on the stan-
dard testset (Table 3) are 0.64% on Laptop and
1.96% on Restaurant for Bi-Elman, and 1.48%
on Laptop and 1.58% on Restaurant for LSTM.
Similar gains are also observed on the 10-folds
in Table 4, where the maximum gains are 1.25%
on Laptop and 1.44% on Restaurant. These gains
are significant with p < 0.004 on Laptop and p <
6 × 10−5 on Restaurant. Linguistic features thus
complement word embeddings in RNNs.

Importance of Fine-tuning in RNNs: Finally,
in order to show the importance of fine-tuning
the word embeddings in RNNs on our task, we
present in Table 5 the performance of Elman and
Jordan RNNs, when the embeddings are used as
they are (‘-tune’), and when they are fine-tuned
(‘+tune’) on the task. The table also shows
the contributions of pre-trained embeddings as
compared to random initialization. Surprisingly,
Amazon embeddings without fine-tuning deliver
the worst performance, even lower than the Ran-
dom initialization. We found that with Amazon
embeddings the network gets stuck in a local
minimum from the very first epoch.

Other pre-trained (untuned) embeddings improve
over the Amazon and Random by providing better
initialization. In most cases fine-tuning makes a
big difference. For example, the absolute gains for
fine-tuning SENNA embeddings in Elman RNN
are 13.01% in Laptop and 4.11% in Restaurant.
Remarkably, fine-tuning brings both Random and
Amazon embeddings close to the best ones.

Comparison with SemEval-2014 Systems:
When our RNN results are compared with the
top performing systems in the SemEval-2014
(last two rows in Table 3), we see that RNNs

without using any linguistic features achieve the
second best results on both Laptop and Restaurant
datasets. Note that these RNNs only use word
embeddings, while IHS RD and DLIREC use
complex features like dependency relations,
named entity, sentiment orientation of words,
word cluster and many more in their CRF models,
most of which are expensive to compute; see
(Toh and Wang, 2014; Chernyshevich, 2014).
The performance of our RNNs improves when
they are given access to very simple features like
POS tags and chunks, and LSTM-RNN+Feat.
achieves the best results on the Laptop dataset.

6 Conclusion and Future Direction

We presented a general class of discriminative
models based on recurrent neural network (RNN)
architecture and word embeddings, that can be
successfully applied to fine-grained opinion min-
ing tasks without any task-specific manual feature
engineering effort. We used pre-trained word em-
beddings from three external sources in different
RNN architectures including Elman-type, Jordan-
type, LSTM and their several variations.

Our results on the opinion target extraction task
demonstrate that word embeddings improve the
performance of both CRF and RNN models, how-
ever, fine-tuning them in RNNs on the task gives
the best results. RNNs outperform CRFs, even
when they use word embeddings as the only fea-
tures. Incorporating simple linguistic features into
RNNs improves the performance further. Our
best results with LSTM RNN outperform the top
performing system on the Laptop dataset and
achieve the second best on the Restaurant dataset
in SemEval-2014 evaluation campaign. We made
our code publicly available for research purposes.

In the future, we would like apply our models
to other fine-grained opinion mining tasks includ-
ing opinion expression detection and characteriz-
ing the intensity and sentiment of the opinion ex-
pressions. We would also like to explore to what
extent these tasks can be jointly modeled in an
RNN-based multi-task learning framework.
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Abstract

Joint models of syntactic and semantic
parsing have the potential to improve
performance on both tasks—but to date,
the best results have been achieved with
pipelines. We introduce a joint model us-
ing CCG, which is motivated by the close
link between CCG syntax and semantics.
Semantic roles are recovered by labelling
the deep dependency structures produced
by the grammar. Furthermore, because
CCG is lexicalized, we show it is possible
to factor the parsing model over words and
introduce a new A∗ parsing algorithm—
which we demonstrate is faster and more
accurate than adaptive supertagging. Our
joint model is the first to substantially im-
prove both syntactic and semantic accu-
racy over a comparable pipeline, and also
achieves state-of-the-art results for a non-
ensemble semantic role labelling model.

1 Introduction

Joint models of syntactic and semantic parsing
are attractive; they can potentially avoid the error
propagation that is inherent in pipelines by using
semantic models to inform syntactic attachments.
However, in practice, the performance of joint sys-
tems for semantic role labelling (SRL) has been
substantially beneath that of pipelines (Sutton and
McCallum, 2005; Lluís et al., 2009; Johansson,
2009; Titov et al., 2009; Naradowsky et al., 2012;
Lluís et al., 2013; Henderson et al., 2013). In
this paper, we present the first approach to break
this trend, by building on the close relationship of
syntax and semantics in CCG grammars to enable
both (1) a simple but highly effective joint model
and (2) an efficient A∗ parsing algorithm.

Semantic dependencies can span an unbounded
number of syntactic dependencies, causing signif-
icant inference and sparsity challenges for joint

He refused to confirm or deny the reports

nsubj
xcomp

mark cc
conj

det

dobj

ARG0 ARG1

ARG0
ARG1

ARG0

ARG1

Figure 1: Mismatch between syntactic and se-
mantic dependencies.

He refused to confirm or deny reports
NP (S\NP)/(S\NP) S/S (S\NP)/NP conj (S\NP)/NP NP

ARG0 ARG1

∅

ARG0 ARG1

ARG0

ARG1

Figure 2: Dependencies produced by a CCG
parse. SRL dependencies can be recovered by la-
belling the edges with a semantic role or ∅. Figure
3 shows a CCG derivation for these dependencies.

models. For example, in the Figure 1, the se-
mantic dependency between He and deny spans
three syntactic edges. This fact makes it difficult
to jointly parse syntactic and semantic dependen-
cies with dynamic programs, and means that de-
pendency path features can be sparse. Syntactic
dependencies also often have ambiguous seman-
tic interpretations—for example in He opened the
door and The door opened, the syntactic subject
corresponds to different semantic roles.

We address these challenges with a new joint
model of CCG syntactic parsing and semantic
role labelling. The CCG formalism is particu-
larly well suited; it models both short- and long-
range syntactic dependencies which correspond
directly to the semantic roles we aim to recover.
The joint model simply involves labelling a subset
of these dependencies with the appropriate roles,
as seen in Figure 2. This labelling decision can
be easily integrated into existing parsing algo-
rithms. CCG also helps resolve cases where in-
terpretation depends on the valency of the pred-
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he refused to confirm or deny reports

NPhe (Srefuse\NPi)/(Sj\NPi)j Sz/Sz (Sconfirm\NPu)/NPv conj (Sdeny\NPx )/NPy NPreports

{} {refuse ?−→i, refuse ?−→j} {to ?−→z} {confirm ?−→u, confirm ?−→v} {} {deny ?−→x, deny ?−→y} {}
>

((Sp\NPx )/NPy)\((Sp\NPx )/NPy)

{deny ?−→x, deny ?−→y, p ?−→x, p ?−→y}
<

(Sconfirm\NPx )/NPy

{confirm ?−→x, confirm ?−→y, deny ?−→x, deny ?−→y}
>

Sconfirm\NPx

{confirm ?−→x, confirm A1−−→reports, deny ?−→x, deny A1−−→reports}
>

Sconfirm\NPx

{confirm ?−→x, confirm A1−−→reports, deny ?−→x, deny A1−−→reports, to ∅−→confirm}
>

Srefuse\NPx

{refuse ?−→x, refuse A1−−→confirm, confirm ?−→x, confirm A1−−→reports, deny ?−→x, deny A1−−→reports, to ∅−→confirm}
<

Srefuse

{refuse A0−−→he, refuse A1−−→confirm, confirm A0−−→he, confirm A1−−→reports, deny A0−−→he, deny A1−−→reports, to ∅−→confirm}

Figure 3: Jointly building a CCG parse and semantic dependencies representation. Subscripts beneath
categories denote heads, which are unified when spans combine. One dependency is created for each
argument of each lexical category. In our approach, dependency labels are initially underspecified (rep-
resented f ?−→a) until an attachment is determined by the derivation and a label is chosen by the model.

icate, such as ergative verbs, by learning lexical
entries that pair syntactic arguments with seman-
tic roles, such as open : S\NPARG1 and open :
(S\NPARG0 )/NPARG1 . Figure 3 shows a de-
tailed trace of how the example from Figure 2 is
parsed with our model.

We also present a new A∗ algorithm for the joint
model. Because CCG is strongly lexicalized, we
are able to introduce a new type of extended lexi-
cal entries that allows us to factor the model over
words and develop effective new upper bounds on
the Viterbi outside parse score. A∗ parsing algo-
rithms have previously been developed for models
with tree-structured syntactic dependencies (Klein
and Manning, 2003; Auli and Lopez, 2011b), and
models with no bi-lexical dependencies, includ-
ing supertag-factored CCGs (Lewis and Steed-
man, 2014a). We generalize these techniques to
SRL-style graph-structured dependencies.

Experiments demonstrate that our model not
only outperforms pipeline semantic role labelling
models, but improves the quality of the syntactic
parser. PropBank SRL performance is 1.6 points
higher than comparable existing work, and se-
mantic features improve syntactic accuracy by 1.6
points. Our A∗ algorithm is 5 times faster than
CKY parsing, with no loss in accuracy. The com-
bination of CCG-based joint modelling and A∗ de-
coding gives an efficient, accurate, and linguisti-
cally principled parser.1

1The parser is available from: https://github.com/
mikelewis0/EasySRL

2 Background

2.1 CCG Dependencies

CCG parses define an implicit dependency graph,
by associating each argument of each category
with a dependency. In contrast to Stanford de-
pendency trees, CCG dependency graphs can be
non-projective, and words can have multiple par-
ents. For example, in Figure 2, He is an argument
of refuse, confirm and deny.

To create dependencies, categories are marked
with headedness information—which we denote
with subscripts. For example, in the category
(Sdeny\NPx )/NPy , the final head for the sentence
S will be deny, and that two dependencies will be
introduced from deny to unspecified arguments x
and y. During parsing, variables are unified with
heads, creating fully specified dependencies.

Re-using variables allows dependencies to
propagate. For example, the determiner category
NPi/Ni marks that the head of the resulting NP is
equal to the head of its N argument (e.g. the head
of the report is report), as in the following parse:

deny the report

(Sdeny\NPx )/NPy NPz/Nz Nreport

{deny−→x, deny−→y} {the−→z} {}
>

NPreport

{the−→report}
>

Sdeny\NPx

{deny−→x, deny−→report, the−→report}
The same mechanism allows long-range argu-

ments to be propagated. Figure 3 shows several
long-range arguments, such as how co-indexation
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propagates the subject of deny to he. For more de-
tails, see Hockenmaier (2003).

2.2 A∗ CCG parsing

A∗ parsing searches for an optimal parse, with-
out building a complete chart (in contrast to CKY
parsing). This is particularly attractive for CCG,
because the formalism’s lexical and derivational
ambiguity causes the parse charts to be very dense,
in practice. Lewis and Steedman (2014a) showed
that A∗ CCG parsing can be highly efficient, but
used a restricted model without bi-lexical features.

In A∗ parsing, entries y are added to the chart
in order of their cost f(y) = g(y) + h(y), where
g(y) is the inside score for the entry, and h(y) is
an upper bound on the Viterbi outside score. Be-
cause partial parses are built in order of increasing
f(y), the first complete parse added to the chart is
guaranteed to be optimal. The key to making A∗

parsing efficient is computing tight upper bounds
on the outside score. In Lewis and Steedman’s
supertag-factored model, the bound can be com-
puted as the sum of the highest-scoring supertags
in the outside parse.

The agenda is initialized with items represent-
ing every category for every word. Then, after
each item is added to the chart, the agenda is up-
dated with all binary and unary rules that can be
applied to the new item. For more details, see
Lewis and Steedman (2014a).

3 Model

Our joint model of CCG and SRL parsing sim-
ply involves labelling CCG syntactic dependen-
cies (which are implicit in CCG parses), with SRL
roles (or null). This formulation allows us to easily
adapt the log-linear CCG parsing model of Clark
and Curran (2007) to the joint setting by working
with extended dependencies that including syntac-
tic and semantic information.

More formally, we can define a notion of con-
sistency to specify the labelling of syntactic de-
pendencies. A set of semantic dependencies π
is consistent with a CCG derivation d if each se-
mantic dependency corresponds to a single syntac-
tic dependency—for example, see the dependen-
cies in Figure 3. The CCG derivation in Figure 3
would also be consistent with the SRL dependency
refuse

ARG2−−−−→he, but not refuse ARG1−−−−→reports
(because the derivation does not produce the re-
quired syntactic dependency).

Now, we can define a log-linear model over
pairs of consistent CCG derivations d and SRL de-
pendencies π:

p(d, π|x) =
eθ·φ(x,d,π)∑

(d′,π′)∈GEN(x) e
θ·φ(x,d′,π′)

whereGEN(x) is the space of consistent pairs for
sentence x.

3.1 Dependencies
Because we enforce consistency, we can work
with joint dependencies that are a combination of
CCG and SRL dependencies. We denote a depen-
dency as a 6-tuple of functor f , lexical category c,
argument number n, preposition p, argument a and
semantic role r: 〈f, c, n, p, a, r〉. The first three of
these (f ,c,n) are lexically specified, but a and r
are lexically underspecified until the attachment is
determined by the derivation, and a label is cho-
sen by the model. For example, in Figure 3, the
lexical entry for deny has two underspecified de-
pendencies: 〈deny, (S\NP)/NP , 1,∅, ?, ?〉 and
〈deny, (S\NP)/NP, 2,∅, ?, ?〉.2 At the end of
the derivation, the dependencies are specified
as: 〈deny, (S\NP)/NP , 1,∅, he,ARG0〉 and
〈deny, (S\NP)/NP, 2,∅, reports, ARG1〉.

The preposition p is lexically underspecified for
PP arguments, but otherwise ∅. Prepositions are
marked lexically on PP/∗ categories, and then
propagated, for example:

fly to Lisbon

(Sfly\NPx )/PPp
y PP to

z /NPz NPLisbon

{fly ?−→x, fly ?−→y} {to ?−→z} {}
<

PP to
Lisbon

{to ∅−→Lisbon}
<

Sfly\NPx

{fly ?−→x, fly ARG1−−−−→Lisbon, to ∅−→Lisbon}

In the above example, the dependency from
fly to Lisbon corresponds to the tuple:
〈fly, (S\NP)/PP, 2, to, Lisbon,ARG1〉.
Propagating both the noun and preposition from
prepositional phrases allows the model to use both
for features, and improved results.

3.2 Features
We use the following feature classes, which de-
compose over categories, dependencies, and local
rule instantiations.
2Bold-face is used to highlight the argument of a category
corresponding to a dependency. For example (S\NP)/NP
denotes the first (subject) dependency of a transitive verb.
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3.2.1 Supertagging Features
Supertagging features φCAT score categories for
words. A single feature is used, which is the
(unnormalized) score from Lewis and Steedman
(2014b)’s supertagging model. The supertagger
outputs a distribution over categories for each
word independently. The model is trained on su-
pertags extracted from an adaptation of CCGre-
bank (Honnibal et al., 2010). The adaptation
makes minor changes to better match PropBank.

3.2.2 Preposition Features
Preposition features φPP score whether the nth
argument of the word at index f with category c
should take a PP argument headed by preposition
p. We use features xf+p, lf+c and lf+c+n+p,
where xf is the f th word, and lf is its lemma.

3.2.3 Labelling Features
Labelling features φROLE determine whether the
nth argument of a word with lemma l, and
category c should take a role r. We use
n+r, c+n+r, c+n+p+r, l+c+n+p+r, n+r, r,
l+p+r, c+n+r, l+r, h+r, where h is an indica-
tor of whether l is hyphenated, and p is the prepo-
sition of PP arguments.

3.2.4 Dependency Features
Dependency features φDEP score dependencies,
based on the functor index f , argument index a
and role r. We use lf+r+la, lf+r+ca, d+r,
cf+o+r, ca+o+r, where o is an offset from
−3 . . .+3, d is the distance between f and a, ci is
a cluster or POS tag for word i, and li is the lemma
of word i. Clusters were created from pre-trained
word embeddings (Levy and Goldberg (2014)) us-
ing k-means, with k = 20, 50, 200, 1000, 2500.
These features only apply when the role r 6= ∅.

3.2.5 Derivation Features
Derivation features φDERIV score properties of
the syntactic derivation. To simplify computation
of the upper bounds for the A∗ parsing algorithm
given in Section 5, the weights of these features
are constrained to be ≤ 0. For simplicity, we only
use features for unary rules—for example, a fea-
ture records when the unary rule N → NP con-
verts a determiner-less N to a NP .

4 Lexical Factorization

In this section, we show how to factor the model
into extended lexical entries. This factorization al-

lows us to efficiently compute upper bounds on the
scores of partial parses, which is crucial to the A∗

algorithm described in Section 5.
The key observation is that our supertagging,

labelling and dependency features can each be as-
sociated with exactly one word (using the functor
for the dependency features). Therefore, we can
equivalently view the complete parse as a series of
extended lexical entries: y = y0...yN . Extended
lexical entries are composed of a lexical category,
and a role and attachment for each argument of
the category. The set of extended lexical entries
specifies the yield of the parse. For example, the
parse from Figure 2 can be represented as the
following extended lexical entries:

he ` NP
refused ` (S\NPARG0=he)/(S\NP)ARG1=confirm

to ` S/S∅=confirm

confirm ` (S\NPARG0=he)/NPARG1=reports

or ` conj
deny ` (S\NPARG0=he)/NPARG1=reports

reports ` NP

The score for a sentence x and joint SRL-CCG
parse y, θ ·φ(x, y), can be decomposed into scores
of its extended lexical entries yi, plus a score for
the derivation features:

θ · φ(x, y) =
∑
yi∈y

θ · φ(x, yi) + θ · φDERIV (x, y)

The space of possible extended lexical entries
for word xi is defined by GENLEX (xi), which is
expressed with a CFG, as shown in Figure 4a.

The features defined in Section 3.2 decom-
pose over the rules of GENLEX —so it can be
weighted with the globally trained feature weights.

Expressing GENLEX (xi) as a CFG allows us
to efficiently compute upper bounds on the score
of yi when it is only partially specified, using the
Viterbi algorithm—which we will make use of in
Section 5. Making the attachment choice indepen-
dent of the syntactic category greatly improves the
efficiency of these calculations.

5 A∗ Parsing

To efficiently decode our model, we introduce a
new A∗ parsing algorithm. As discussed in Sec-
tion 2.2, the key to efficient A∗ parsing is comput-
ing tight upper bounds on the Viterbi outside score
of partial parses, with the function h.

The intuition behind our algorithm is that we
can use the lexical factorization of Section 4 to
compute upper bounds for words individually,
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Lexical Category Choice
xi →NP | S\NP | (S\NP)/PP | . . .
One dependency is created for every argument of the category
S\NP → S\NP
(S\NP)/PP → (S\NP)/PP, (S\NP)/PP
. . .
Preposition choice for PP arguments
(S\NP)/PP → (S\NP)/PPin | (S\NP)/PPfor | . . .
. . .
Semantic role label choice for the argument
S\NP → S\NPARG0 | S\NPARG1 | . . .
(S\NP)/PP → (S\NPARG0)/PP | (S\NPARG1)/PP . . .
(S\NP)/PPX → (S\NP)/PPX

ARG0 | (S\NP)/PPX
ARG1 . . .

. . .
Attachment choice
ARG0 → x0 | . . . | xi−1 | xi+1 | . . . | xN

ARG1 → x0 | . . . | xi−1 | xi+1 | . . . | xN

. . .

(a) The grammar GENLEX (xi)

confirm

S\NP (S\NP)/NP NP

S\NP (S\NP)/NP (S\NP)/NP

ARG0 ARG1 ∅

He reports refused

(b) Visualization of a fragment of GENLEX (confirm)

Figure 4: (a) The grammar GENLEX (xi), which defines the space of extended lexical entries,
and (b) a visualization of a fragment of GENLEX (confirm). Extended lexical entries, including
confirm `(S\NPARG0=he)/NPARG1=reports and confirm `NP , are specified by choosing one cate-
gory (top level in both a and b), enumerating all arguments (second level), selecting the preposition for
PP arguments (when present), selecting a semantic role label for each, and finally choosing the argument
head word. The features are local to the grammar rules, enabling efficient dynamic programs for upper
bound computations on partially specified entries, such as confirm `(S\NPr=a)/NPARG1=reports .

then create an upper bound for the parse as a sum
of upper bounds for words. The bound is not exact,
because the grammar may not allow the combina-
tion of the best lexical entry for each word.

Section 5.1 gives a declarative definition of h
for any partial parse, and 5.2 explains how to effi-
ciently compute h during parsing.

5.1 Upper Bounds for Partial Parses

This section defines the upper bound on the Viterbi
outside score h(yi,j) for any partial parse yi,j of
span i . . . j. For example, in the parse in Figure
3, y3,5 is the partial parse of confirm or deny with
category (S\NP)/NP .

As explained in Section 4, a parse can be de-
composed into a series of extended lexical entries.
Similarly, a partial parse can be viewed as a se-
ries of partially specified extended lexical entries
y0 . . . yN . For example, in Figure 3, the partial
parse of the span confirm or deny reports, the ex-
tended lexical entries for the words outside the
span (He, refused and to) are completely unspeci-
fied. The extended lexical entries for words inside
the span have specified categories, but can contain
underspecified dependencies:

confirm ` (S\NPr=a)/NPARG1=reports

or ` conj
deny ` (S\NPr ′=a ′)/NPARG1=reports

reports ` NP

Therefore, we can compute an upper bound for

the outside score of a partial parse as a sum of
the upper bounds of the unspecified components of
each extended lexical entry. Note that because the
derivation features are constrained to be ≤ 0, they
do not affect the calculation of the upper bound.

We can then find an upper bound for completely
unspecified spans using by summing the upper
bounds for the words. We can pre-compute an up-
per bound for the span hi,j for every span i, j as:

hi,j =
j∑
k=i

max
yk∈GENLEX (xk)

θ · φ(x, yk)

The max can be efficiently computed using the
Viterbi algorithm on GENLEX (xk) (as described
in Section 4).

The upper bound on the outside score of a par-
tial parse is then the sum of the upper bounds of
the words outside the parse, and the sum of the
scores of the best possible specifications for each
underspecified dependency:

h(yi,j) =
∑

〈f,c,n,?,?,?〉∈deps(yi,j)

max
a′,p′,r′

θ · φ(〈f, c, n, p′, a′, r′〉)

+ h0,i−1 + hj+1,N

where deps(y) returns the underspecified depen-
dencies from partial parse.

For example, in Figure 3, the upper bound for
the outside score of the partial parse of confirm
or deny reports is the sum of the upper bounds
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for the other words independently (h0,3) added to
the score of the best attachments and roles for the
subjects of confirm and deny independently.

5.2 Additive Updates
During parsing, the upper bound h can be ef-
ficiently computed recursively with additive up-
dates. Initially h is the sum of the upper bounds
for each word independently h0,N . Then, when
specifying categories or labelling dependencies,
the score is updated.

• When specifying a category for a word xi, the
Viterbi score of GENLEX (xi) is subtracted
from h, and the sum of Viterbi scores for each
of the category’s (underspecified) dependen-
cies is added to h.

• When specifying a semantic role for a de-
pendency with functor f , causing the depen-
dency to be fully specified, the Viterbi score
for the node representing that dependency in
GENLEX (xf ) is subtracted from h.

• When a binary rule combines two partial
parses yi,j and yj+1,k, the bound on the out-
side score is updated by summing the bounds
of the outside scores of the child parses, and
subtracting the overall upper bound for the
sentence (to avoid double-counting):
h(yi,k) = h(yi,j) + h(yj+1,k)− h0,N

This update can be derived from the defini-
tion of h.

These are the only cases where h is updated.

6 Training

During training, we optimize parameters θ for
the marginal likelihood of the semantic depen-
dencies πi given a sentence xi, treating syntactic
derivations d as a latent variable and using L2

regularization.

L(θ) = log
∏
i

pθ(πi|xi)−
∑
j θ

2
j

2σ2

=
∑
i

log

∑
d∈∆(xi,πi) e

θ·φ(xi,d,πi)∑
(d′,π′)∈GEN(xi) e

θ·φ(xi,d′,π′)
−

∑
j θ

2
j

2σ2

where GEN(xi) is the set of consistent CCG and
SRL parses for a sentence xi (see Section 3), and
∆(xi, πi) is the set of CCG derivations that are
maximally consistent with gold SRL parses πi.
More formally, if labelled(y) returns the set of

labelled dependencies from parse y, then:

∆(x, π) = arg max
y∈GEN(x)

|π ∩ labelled(y)|

The arguments of PropBank dependencies can
span multiple words, so CCG dependencies are
marked as equivalent if their argument is any-
where within the PropBank span.

The approach is closely related to the hy-
brid dependency model (Clark and Curran, 2007).
However the CCGbank dependencies used by
Clark and Curran’s model constrain all lexical
and attachment decisions (only allowing ‘spuri-
ous’ derivational ambiguity) whereas our use of
semantic dependencies models most of the syntac-
tic parse as latent.

6.1 Hyperparameters

Calculating the gradient of the loss function re-
quires computing the marginal probability of the
correct parses. Computing marginal probabilities
exactly involves summing over all possible CCG
parses, which is intractable. Instead, following
Clark and Curran, we limit the size of training
charts using a variable-width supertagger beam β,
initially 10−3. If the chart size exceeds 100000
nodes, we double β and re-parse. For computing
∆, we use a more restrictive beam of β = 0.01
to improve the quality of the positive training ex-
amples. We optimize using L-BFGS (Liu and No-
cedal, 1989), with σ2 = 0.06.

6.2 Pruning

To improve efficiency, we compute a number of
thresholds, by aligning gold CCGbank dependen-
cies with PropBank. If an argument of a cate-
gory occurs with a particular semantic role less
than 3 times in the aligned data, it is pruned from
the training and decoding charts. We also fil-
ter infrequent features before training. We count
the number of times each feature occurs in the
aligned data, and filter features occurring less than
3 times. During decoding, we prune lexical cate-
gories whose probability under the supertagging
model is less than a factor of 10−2 of that of
the best category for that word. If the chart size
exceeds 20000 nodes, we back off to a pipeline
model (roughly 3% of sentences). Finally, we
build and use a tag dictionary in the same way as
Lewis and Steedman (2014a).
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7 Experiments

7.1 Experimental Setup
We used PropBank Section 00 for development,
Sections 02-21 for training, and Section 23 for
testing. The Pipeline baseline first parses with a
supertag-factored A∗ model, and chooses a seman-
tic role for each CCG dependency with a log-linear
classifier. The classifier uses the role and attach-
ment features used by the parser.

7.2 Semantic Role Labelling
We evaluate our parser as a dependency-based
SRL model on PropBank, comparing with
CoNLL-2008 systems (Surdeanu et al., 2008).

Comparison systems Following Täckström et
al. (2015), we compare with the best ‘single
parser’ SRL models, which use only a single syn-
tactic parse.3

Much recent work has evaluated using gold
predicate identification (Hajič et al., 2009;
FitzGerald et al., 2015). This setting is particu-
larly unrealistic for our joint model, where gold
predicate identification would be a highly useful
feature for the supertagger; we only compare with
models that use automatic predicate identification.
To the best of our knowledge, the best SRL re-
sults with automatic predicate identification were
achieved at CoNLL-2008.

A number of other models have been evaluated
on CoNLL-2008 data. While we cannot com-
pare directly on our metric, the best reported joint
model (Johansson, 2009) scored 1.4 points lower
than the Che et al. (2008) system we compare to
on the CoNLL metric on PropBank. Other joint
models, such as those of Titov et al. (2009) and
Lluís et al. (2013), achieve similar performance.

Evaluation Metric Comparing fairly with ex-
isting work is complicated by the mismatch be-
tween heads found by our model and those used in
other evaluations. Headedness decisions are often
arbitrary—for example, whether a prepositional
phrase is headed by the noun or preposition—and
different choices were made in the design of CCG-
bank and the CoNLL-2008 headedness rules.

To solve this problem, we introduce a new
within-constituent metric, which awards depen-
3The best models use reranking with powerful global features
(Toutanova et al., 2008; Johansson and Nugues, 2008) or en-
semble methods (Surdeanu et al., 2007; Punyakanok et al.,
2008). These techniques have the potential to improve any
SRL system, including ours, at some expense in speed.

PropBank Brown
Model P R F1 P R F1
Vickrey 87.3 77.3 82.0 74.0 64.5 68.9
Che 85.3 78.6 81.8 71.1 65.7 68.0
Zhao 82.4 79.8 81.1 66.6 64.9 65.7
Riedel 83.6 74.7 78.9 69.3 62.7 65.8
Pipeline 79.2 73.9 76.4 69.3 64.0 66.1
Joint 84.8 82.2 83.5 71.2 69.2 70.2

Table 1: Comparison with the best single-parser
SRL models on PropBank from CoNLL-2008.
The comparison models are Vickrey and Koller
(2008), Che et al. (2008), Zhao and Kit (2008) and
Riedel and Meza-Ruiz (2008).

dencies as correct if they attach anywhere within
the original PropBank-annotated argument spans.
For example, if the PropBank annotates that the
ARG0 of owned is by Google, a dependency to
either by or Google is judged correct. We com-
pute new scores for the CoNLL-2008 submissions
on our metric, filtering reference and continuation
arguments (which are artifacts of the CoNLL con-
version of PropBank, but not required by our met-
ric), and nominal predicates based on POS tag.
The ranking of the top 5 CoNLL-2008 open-track
models is identical under our metric and the orig-
inal one (up to statistical significance), suggesting
that our metric is equally discriminative. However,
perhaps interestingly, the ranking of Vickrey and
Koller (2008) does improve—likely due to the use
of a syntactic formalism with different headedness
rules. For simplicity, we do not include predicate
senses in the evaluation.

Results are given in Table 1 and show that our
joint model greatly outperforms the pipeline ver-
sion, demonstrating the value of joint reasoning.
It also scores 1.5 points higher than the best com-
parable models in-domain, and 1.3 points higher
out-of-domain. To the best of our knowledge, this
is the first joint syntax/SRL model to outperform
strong pipeline models.

7.3 Efficiency Experiments

We explore whether our A∗ decoding is more ef-
ficient than alternatives, including both algorith-
mic and feature computation. While the A∗ search
builds very small charts, the features must be pre-
computed for the heuristic. In CKY parsing, fea-
tures can be computed lazily.
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Model Sentences
per second

PropBank
F1

Pipeline A∗ 38.3 76.4
Joint CKY 6.0 83.5
Joint AST 20.3 83.0
Joint A∗ 31.3 83.5

Table 2: Parser speed on PropBank Section 23

We compare with a CKY parsing over the same
space. If no parse is found, or the chart size ex-
ceeds 400000 nodes, we back off to the pipeline
(tuned so that the backoff is used roughly as often
as for the A∗ parser). We also compare with adap-
tive supertagging (AST, Clark and Curran (2007)),
which is the same except for first attempting to
parse with a restrictive supertagger beam β = 0.1.

Table 2 shows the results. The A∗ pipeline is
fast, but inaccurate. CKY is 5 times slower than
A∗ in the same space, whereas adaptive supertag-
ging trades accuracy for speed. The best previ-
ously reported speed improvement using A∗ pars-
ing is a factor of 1.2 times faster (Auli and Lopez,
2011b). Our new A∗ algorithm dominates existing
alternatives in both speed and accuracy.

7.4 Syntactic Parsing

We also evaluate our model for CCG parsing ac-
curacy, using CCGrebank (Honnibal et al., 2010),
and comparing with a C&C parser model adapted
to this dataset. Results are shown in Table 3. Of
course, given our latent syntax, and the fact we
have no model of CCGbank dependencies, we do
not expect state-of-the-art accuracy. However, the
1.6 point improvement over the pipeline shows
that SRL dependencies are useful for disambiguat-
ing syntactic attachment decisions. Many errors
were caused by disagreements between CCGbank
and PropBank—PropBank is likely to be more ac-
curate as it was hand-annotated, rather than auto-
matically converted from the Penn Treebank. In
effect, our latent model of syntax is successfully
learning a grammar that better produces the cor-
rect semantics.

Table 4 shows the syntactic dependencies which
are improved most by modelling semantics. Un-
surprisingly, verb arguments and adjuncts rela-
tions show large improvements. However, we also
see more accurate attachment of relative clauses.
While we do not model relative clauses explicitly,
correctly attaching them is essential for propagat-

Model P R F1
C&C 81.8 81.2 81.5
Pipeline 76.6 77.7 77.2
Joint 78.3 79.4 78.8

Table 3: Labelled F1 for CCGbank dependencies
on CCGrebank Section 23

Dependency Type ∆ F1
((Sdcl\NP)/PP)/NP +12.6
((Sdcl\NP)/PP)/NP +11.0
((Sb\NP)/PP)/NP Verb +10.7
(Sdcl\NP)/PP arguments +8.1
(Sng\NP)/NP +7.6
(Spt\NP)/NP +6.8
((S\NP)\(S\NP))/NP Verb +16.9
((S\NP)\(S\NP))/Sdcl adjuncts +11.9
(N \N)/(Sdcl\NP) Relative +12.5
(NP\NP)/(Sdcl\NP) clauses +8.5

Table 4: CCG syntactic dependencies with the
largest change in F1 between the Pipeline and
Joint models (of those occurring at least 100 times
in the development set).

ing certain verb arguments (e.g. the subject of
broke in the glass on the table that broke).

7.5 Error Analysis

Table 5 gives an analysis of recall errors from the
first 100 sentences of PropBank Section 00. One
third of errors were syntactic attachment errors.
A further 14% were triggered by cases where the
parser found the correct attachment, but gave an
adjunct a core argument CCG category (or vice
versa). Many of these decisions are not obvious—
for example in rose sharply, PropBank considers
sharply to be an argument and not an adverb. 21%
of errors were caused by choosing the wrong SRL

Error Percentage
Attachment error 33%
Correct attachment, wrong label 21%
Correct attachment, unlabelled 20%
Argument/adjunct distinction 14%
Problematic constructions 9%
Dubious annotation 4%

Table 5: Error analysis of recall errors from 100
development set sentences.
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label. Another 20% were caused by predicates as-
signing arguments the null semantic role ∅. The
major cause of these errors is predicates that act
syntactically like adjectives (e.g. publishing in
Dutch publishing group) where syntactic cues are
weak. Finally, 9% involved long-range arguments
that our current grammar is unable to project. One
common case is constructions like X has a plan
to buy Y, where the grammar does not propagate
the subject of buy to X. Further improvements to
CCGbank may help to resolve these cases.

8 Related Work

Joint syntactic and SRL models There have
been many proposals for jointly parsing syntac-
tic and semantic dependencies. Lluís et al. (2013)
introduce a joint arc-factored model for parsing
syntactic and semantic dependencies, using dual-
decomposition to maximize agreement between
the models. SRL performance is slightly worse
than a pipeline version. Naradowsky et al. (2012)
introduce a SRL model with latent syntax repre-
sentations, by modelling a latent dependency tree
during training, which is marginalized out at test
time. However, performance at English SRL is
roughly 7 points beneath state of the art. Other
notable models include those of Johansson (2009)
and Titov et al. (2009).

CCG parsing Our log-linear model is closely
related to that of Clark and Curran (2007), but
we model SRL dependencies instead of CCG de-
pendencies. The best CCG parsing results were
achieved by Auli and Lopez (2011a), who, like us,
score CCG parses based jointly on supertagging
and dependency model scores. Decoding their
model requires dual-decomposition, to maximize
agreement between the separate models. We avoid
the need for this technique by using a unigram su-
pertagging model, rather than a sequence model.

CCG semantics Work on semantic parsing has
mapped sentences onto semantic representations
with latent CCGs (Zettlemoyer and Collins, 2009;
Kwiatkowski et al., 2010; Kwiatkowski et al.,
2013) for restricted domains. Recent work has
scaled these techniques to wide-coverage datasets
(Artzi et al., 2015). Krishnamurthy and Mitchell
(2014) also explore joint CCG syntactic and se-
mantic parsing. They use a smaller semantic lex-
icon, containing 130 predicates, rather than the
3257 PropBank verbs. In contrast to our re-

sults, jointly modelling the semantics lowers their
model’s syntactic accuracy.

Other CCG-based SRL models haved used
CCG dependencies as features for predicting se-
mantic roles (Gildea and Hockenmaier, 2003;
Boxwell et al., 2009), but performance is limited
by relying on 1-best parses—a problem we re-
solved with a joint model.

A∗ parsing A∗ parsing has previously been ex-
plored for less general models than ours. Klein
and Manning (2003) and Auli and Lopez (2011b)
use A∗ parsing for models with tree-structured de-
pendencies. The best reported speed improvement
is parsing 1.2 times faster, whereas we improve
by a factor of 5. Our model also allows the more
complex graph-structured dependencies required
for semantic role labelling. Lewis and Steedman
(2014a) demonstrate an efficient A∗ algorithm for
CCG, but cannot model dependencies.

9 Conclusions and Future Work

We have shown that using CCG can allow joint
models of syntax and semantics to outperform
pipelines, and achieve state-of-the-art results on
PropBank SRL. Our new A∗ parsing algorithm
is 5 times faster than CKY parsing, without
loss of accuracy. Using latent syntax allows us
to train the model purely from semantic depen-
dencies, enabling future work to train against
other annotations such as FrameNet (Baker et al.,
1998), Ontonotes (Hovy et al., 2006) or QA-
SRL (He et al., 2015). The semantic labels pro-
vided by PropBank can also be integrated into
wide-coverage CCG semantic parsers (Bos, 2008;
Lewis and Steedman, 2013) to improve perfor-
mance on downstream applications.
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Abstract

Semantic parsing maps a sentence in natu-
ral language into a structured meaning rep-
resentation. Previous studies show that se-
mantic parsing with synchronous context-
free grammars (SCFGs) achieves favor-
able performance over most other alter-
natives. Motivated by the observation
that the performance of semantic pars-
ing with SCFGs is closely tied to the
translation rules, this paper explores ex-
tending translation rules with high qual-
ity and increased coverage in three ways.
First, we introduce structure informed
non-terminals, better guiding the parsing
in favor of well formed structure, instead
of using a uninformed non-terminal in
SCFGs. Second, we examine the differ-
ence between word alignments for seman-
tic parsing and statistical machine transla-
tion (SMT) to better adapt word alignment
in SMT to semantic parsing. Finally, we
address the unknown word translation is-
sue via synthetic translation rules. Eval-
uation on the standard GeoQuery bench-
mark dataset shows that our approach
achieves the state-of-the-art across various
languages, including English, German and
Greek.

1 Introduction

Semantic parsing, the task of mapping natural
language (NL) sentences into a formal meaning
representation language (MRL), has recently re-
ceived a significant amount of attention with vari-
ous models proposed over the past few years. Con-
sider the NL sentence paired with its correspond-
ing MRL in Figure 1(a). Semantic parsing can be

	
  	
  	
  NL:	
  What	
  is	
  the	
  area	
  of	
  Sea0le	
  
MRL:	
  answer(area_1(cityid(‘sea0le’,	
  _)))	
  

	
  	
  	
  NL’:	
  what	
  be	
  the	
  area	
  of	
  sea0le	
  
MRL’:	
  answer@1	
  area_1@1	
  cityid@2	
  sea0le@s	
  _@0	
  

	
  	
  	
  (a)	
  before	
  pre-­‐processing	
  

	
  	
  	
  (b)	
  aGer	
  pre-­‐processing	
  

Figure 1: Example of a sentence pair in NL and MRL.

naturally viewed as a statistical machine transla-
tion (SMT) task, which translates a sentence in NL
(i.e., the source language in SMT) into its mean-
ing representation in MRL (i.e., the target lan-
guage in SMT). Indeed, many attempts have been
made to directly apply statistical machine transla-
tion (SMT) systems (or methodologies) to seman-
tic parsing (Papineni et al., 1997; Macherey et al.,
2001; Wong and Mooney, 2006; Andreas et al.,
2013). However, although recent studies (Wong
and Mooney, 2006; Andreas et al., 2013) show that
semantic parsing with SCFGs, which form the ba-
sis of most existing statistical syntax-based trans-
lation models (Yamada and Knight, 2001; Chiang,
2007), achieves favorable results, this approach is
still behind the most recent state-of-the-art. For
details, please see performance comparison in An-
dreas et al. (2013) and Lu (2014).

The key issues behind the limited success of ap-
plying SMT systems directly to semantic parsing
lie in the difference between semantic parsing and
SMT: MRL is not a real natural language with
different properties from natural language. First,
MRL is machine-interpretable and thus strictly
structured with the meaning representation in a
nested structure of functions and arguments. Sec-
ond, the two languages are intrinsically asymmet-
ric since each token in MRL carries specific mean-
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ing1 while this does not hold in NL since auxil-
iary words and some function words usually have
no counterparts in MRL. Third and finally, the ex-
pressions in NL are more flexible with respect to
lexicon selection and token ordering. For exam-
ple, since sentences in NL ‘could you tell me the
states that utah borders’, ‘what states does utah
border’, and ‘utah borders what states’ convey the
same meaning, they should have the same expres-
sion in MRL.

Motivated by the above observations, we be-
lieve that semantic parsing with standard SMT
components is not an ideal approach. Alterna-
tively, this paper proposes an effective, yet simple
way to enrich SCFG in hierarchical phrase-based
SMT for better semantic parsing. Specifically,
since the translation rules play a critical role in
SMT, we explore to improve translation rule qual-
ity and increase its coverage in three ways. First,
we enrich non-terminal symbols as to capture con-
textual and structured information. The enrich-
ment of non-terminal symbols not only guides the
translation in favor of well formed structures, but
also is beneficial to translation. Second, we ex-
amine the difference between word alignments for
semantic parsing and SMT to better adapt word
alignment in SMT to semantic parsing. Third,
unlike most existing SMT systems that keep un-
known words untranslated and intact in transla-
tion, we exploit the translation of unknown words
via synthetic translation rules. Evaluation on Geo-
Query benchmark dataset shows that our approach
obtains consistent improvement and achieves the
state-of-the-art across various languages, includ-
ing English, German and Greek.

2 Background: Semantic Parsing as
Statistical Machine Translation

In this section, we present the framework of
semantic parsing as SMT, which was proposed
in Andreas et al. (2013).
Pre-Processing Various semantic formalisms
have been considered for semantic parsing. Ex-
amples include the variable-free semantic repre-
sentations (that is, the meaning representation for
each utterance is tree-shaped), the lambda calculus
expressions, and dependency-based compositional
semantic representations. In this work, we specifi-

1As seen in Section 2, delimiters, including parentheses
and commas which do not carry any meaning will be removed
in pre-processing and be recovered in post-processing

cally focus on the variable-free semantic represen-
tations, as shown in Figure 1. On the target side,
we convert these meaning representations to series
of strings similar to NL. To do so, we simply take a
preorder traversal of every functional form, and la-
bel every function with the number of arguments
it takes. Figure 1(b) shows an example of con-
verted meaning representation, where each token
is in the format of A@B where A is the symbol
while B is either s indicating that the symbol is
a string or a number indicating the symbol’s arity
(constants, including strings, are treated as zero-
argument functions).

On the source side, we perform stemming (for
English and German) and lowercasing to over-
come data sparseness.

Hereafter, we refer to the pre-processed NL and
MRL as NL′ and MRL′ respectively.
Translation Given a corpus of NL′ sentences
paired with MRL′, we learn a semantic parser
by adopting a string-to-string translation system.
Typical components in such a translation system
include word alignments between the source and
the target languages, translation rule extraction,
language model learning, parameter tuning and
decoding. For more details about each component,
please refer to (Chiang, 2007). In the rest of this
paper, we refer to the source language (side) as
NL′, and the target language (side) as MRL′.
Post-Processing We convert MRL′ back into
MRL by recovering parentheses and commas to
reconstruct the corresponding tree structure in
MRL. This can be easily done by examining each
symbol’s arity. It eliminates any possible ambi-
guity from the tree reconstruction: given any se-
quence of tokens in MRL′, we can always recon-
struct the tree structure (if one exists). For those
translations that can not be successfully converted,
we call them ill-formed translations.

3 Semantic Parsing with Enriched SCFG

In this section, we present the details of our en-
riched SCFG for semantic parsing.

3.1 Enriched SCFG

In hierarchical phrase-based (HPB) translation
models, synchronous rules take the form X →
〈γ, α,∼〉, where X is the non-terminal sym-
bol, γ and α are strings of lexical items and
non-terminals in the source and target side re-
spectively, and ∼ indicates the one-to-one cor-
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respondence between non-terminals in γ and α.
From an aligned phrase pair <state that border,
state@1 next to 2@1> in Figure 2(a), for ex-
ample, we can get a synchronous rule X →〈
state X 1 , state@1 X 1

〉
, where we use boxed in-

dices to indicate which nonterminal occurrences
are linked by∼. The fact that SCFGs in HPB mod-
els contain only one type of non-terminal symbol2

is responsible for ill-formed translation (e.g., an-
swer@1 state@1). To this end, we enrich the non-
terminals to capture the tree structure information,
guiding the translation in favor of well-formed
translations. The enrichment of non-terminals is
two-fold: first, it can handle MRL with a nested
structure to guarantee the well-formed transla-
tions; second, related studies in SMT have shown
that introducing multiple non-terminal symbols in
SCFGs benefits translation (Zollmann and Venu-
gopal, 2006; Li et al., 2012).

Given a word sequence eij from position i to
position j in MRL′, we enrich the non-terminal
symbol X to reflect the internal structure of the
word sequence of eij . A correct translation rule
selection therefore not only maps source termi-
nals into target terminals, but is both constrained
and guided by structure information in the non-
terminals. As mentioned earlier, we regard the
nested structure in MRL′ as function-argument
structure, where each function takes one or more
arguments as input while its return serves as an ar-
gument to the outside function. As in Figure 1,
function cityid holds two arguments and returns as
an argument to function area 1. For a word se-
quence eij , we examine its completeness, which is
defined as:

Definition 1. For word sequence eij , it is regarded
as complete if it satisfies 1) every function (if ex-
ists) meets its argument requirement; and 2) it can
serve as one argument to another function.

We use symbol C to label word sequences
which are complete. For an incomplete word se-
quence, we examine 1) the number of arguments
it requires on the right to be complete; and 2)
the arity of a function it requires on the left to
be complete. Then the sequence is labeled as
(C\Fm)/An, indicating it requires n arguments on
the right and a function withm arities on the left. 3

2In practice, non-terminal symbol S is used in glue rules.
However, this is not relevant in the present discussion.

3This is similar to the naming convention in combinatory
categorial grammar (CCG) (Steedman, 2000)

texas, stateid@1 texas@s
C→ 〈texas, stateid@1 texas@s〉
seattle, seattle@s @0
C\F2→ 〈seattle, seattle@s @0〉
that border, next to 2@1
C/A1→ 〈that border, next to 2@1〉
state that border, state@1 next to 2@1
C/A1→

〈
state C/A1 1 , state@1 C/A1 1

〉
(a) Examples of phrase pairs in enriched SCFG.

state
::
that

::::::
border , state@1

:::::::::
next to 2@1

C/A1→
〈

C/A1 1 C/A1 2 , C/A1 1 C/A1 2

〉
state that border

::::
texas

::::
have

::
the

::::::
highest

::::::::
population,

:::::::
l.. one@1

:::::::
p.. 1@1 state@1 n..@1 s..@1 t..@s

C→
〈

C 1 C/A1 2 , C/A1 2 C 1

〉
(b) Examples of glue rules in enriched SCFG.

Table 1: Example of translation rules in enriched SCFG,
where underline and

::::::::
underwave indicate the first and the sec-

ond phrases respectively.

Specifically, we omit \Fm and /An if m = 0 and
n = 0 respectively.4

Table 1(a) demonstrates examples of phrase
pairs in our enriched SCFG. For instance, word
sequence stateid@1 texas@s is complete, and thus
labeled as C. Similarly, to be complete, word se-
quence next to 2@1 requires one argument on the
right side, labeled as C/A1 accordingly.

When extracting translation rules from aligned
datasets, we follow Chiang (2007) except that
we use enriched non-terminal symbols rather than
X . Each translation rule is associated with a
set of translation model features {φi}, including
phrase translation probability p (α | γ) and its in-
verse p (γ | α), the lexical translation probability
plex (α | γ) and its inverse plex (γ | α), and a rule
penalty that learns the preference for longer or
shorter derivations.
Inverted Glue Rules In SMT decoding (Chiang,
2007), if no rule (e.g., a rule whose left-hand side
is X) can be applied or the length of the poten-
tial source span is larger than a pre-defined length
(e.g., 10 as in Chiang (2007)), a glue rule (either
S → 〈

X 1 , X 1

〉
or S → 〈

S 1X 2 , S 1X 2

〉
) will

be used to simply stitch two consequent translated
phrases together in a monotone way. Although
this will reduce computational and modeling chal-
lenges, it obviously prevents some reasonable
translation derivations because in certain cases,
the order of phrases may be inverted on the target

4If m = 0, it indicates that no function is needed.

1457



side. In this work, we additionally use an inverted
glue rule which combines two non-terminals in
a swapped way. Each glue rule, either straight
or inverted, contains only two non-terminal sym-
bols and is associated with two features, includ-
ing phrase translation probability p (α | γ), and a
glue rule penalty. Table 1(b) shows examples of
a straight and an inverted glue rules. Moreover,
these glue rules can be applied to any two neigh-
boring translation nodes if the non-terminal sym-
bols are matched.

3.2 Word Alignment for Semantic Parsing

Word alignment is an essential step for rule ex-
traction in SMT, where recognizing that wo shi in
Chinese is a good translation for I am in English
requires establishing a correspondence between
wo and I, and between shi and am. In the SMT
community, researchers have developed standard,
proven alignment tools such as GIZA++ (Och and
Ney, 2003), which can be used to train IBM Mod-
els 1-5. However, there is one fundamental prob-
lem with the IBM models (Brown et al., 1993):
each word on one side can be traced back to ex-
actly one particular on the other word (or the null
token which indicates the word aligns to no word
on the other side). Figure 2(a) shows an example
of GIZA++ alignment output from source side to
target side, from which we can see that each source
word aligns to exactly one target word. While
alignment of multiple target words to one source
word is common in SMT, a trick is then to run
IBM model training in both directions. Then two
resulting word alignments can be symmetrized, for
instance, taking the intersection or the union of
alignment points of each alignment. For example,
Figure 2(b) shows GIZA++ alignment output from
target side to source side while Figure 2(c) shows
the symmetrization result with widely used grow-
diag-final-and strategy.

Although symmetrization of word alignments
works for SMT, can it be applied to semantic pars-
ing? There are reasons to be doubtful. Word align-
ment for semantic parsing differs from alignment
for SMT in several important aspects, at least in-
cluding:

1. It is intrinsically asymmetric: within the se-
mantic formalism used in this paper, NL′ is
often longer than MRL′, and commonly con-
tains words which have no counterpart in
MRL′.

2. Little training data is available. SMT align-
ment models are typically trained in unsu-
pervised fashion, inducing lexical correspon-
dences from massive quantities of sentence-
aligned bitexts.

Consequently, the symmetrization of word align-
ments may not work perfectly for semantic pars-
ing. According to word alignment in Figure 2(c),
a phrase extractor will generate a phrase pair
〈have the highest, largest one@1〉, which is non-
intuitive. By contrast, a more useful and general
phrase pair 〈highest, largest one@1〉 is typically
excluded because largest one@1 aligns to all of
have, the, and highest. Similarly, another useful
phrase pair 〈texas, texas@s〉 is prohibited since
texas aligns to both stateid@1 and texas@s.

Ideally a new semantic parsing aligner should
be able to capture the semantic equivalence. Un-
fortunately we are not aware of any research on
alignment for semantic parsing, possibly due to
lack of a paucity of high quality, publicly avail-
able data from which to learn. Instead of de-
veloping new alignment algorithm for semantic
parsing, we make use of all the alignments as
shown in Figure 2. That is to say, we triple
the training data with each sentence pair having
three alignments, i.e., two alignments in both di-
rections, and the symmetrization alignment.5 The
advantages include: first, considering more pos-
sible alignments would increase the phrase cov-
erage, especially when the training data is little;
second, including the alignment from both direc-
tions would alleviate the error propagation caused
by mis-aligned stop words (e.g., be, the in NL′ and
stateid@1 in MRL′). As a result, the phrase ex-
tractor will include phrase pairs of both 〈highest,
largest one@1〉 and 〈texas, texas@s〉. Our exper-
iment shows that using the combination of all the
three alignments achieve better performance than
using any one, or any combination of two. More-
over, we found that we could achieve comparable
performance even with manual alignment.

5Combining multiple alignments from different alignment
models usually improves translation performance in SMT (Tu
et al., 2012). However, our preliminary experiments showed
that this did not yield higher improvement in semantic pars-
ing, which in turn also demonstrates the difference in align-
ments for semantic parsing and SMT.
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  that	
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  texas	
  	
  	
  	
  	
  have	
  	
  	
  	
  	
  the	
  	
  	
  	
  	
  highest	
  	
  	
  	
  	
  popula3on	
  

answer@1	
  largest_one@1	
  popula3on_1@1	
  state@1	
  next_to_2@1	
  stateid@1	
  texas@s	
  

what	
  	
  	
  	
  	
  state	
  	
  	
  	
  	
  	
  that	
  	
  	
  	
  	
  border	
  	
  	
  	
  	
  texas	
  	
  	
  	
  	
  	
  have	
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(a)	
  word	
  alignment	
  from	
  source	
  to	
  target	
  direc3on	
  

(b)	
  word	
  alignment	
  from	
  target	
  to	
  source	
  direc3on	
  

(c)	
  symmetriza3on	
  of	
  word	
  alignment	
  using	
  grow-­‐diag-­‐final-­‐and	
  strategy	
  

	
  	
  	
  

Figure 2: Example of a sentence pair with different alignments.

3.3 Synthetic Translation Rules for Unknown
Word Translation

Most NLP tasks face the problem of unknown
words, especially if only little training data is
available. For example, it is estimated that 5.7%
sentences in the (English) test data in our exper-
iments have unknown words. Unknown words
usually remain intact in the translation in most
machine translation systems (Koehn et al., 2007;
Dyer et al., 2010), resulting in the fact that cer-
tain translations can not be converted back to tree
structures. This indicates that in semantic pars-
ing the translation of a word can be from two cat-
egories: 1) a token in MRL; or 2) null (i.e., not
translated at all), we generate synthetic translation
rules for unknown word translation.

As a baseline, we simply skip unknown words
as Kwiatkowski et al. (2010) by adding translation
rules that translate them to null in MRL′. Each
such rule is accompanied with one feature indicat-
ing that it is a translation rule for unknown word.

Alternatively, taking advantage of publicly
available resources, we generate synthetic trans-
lation rules for unknown words pivoted by their
semantically close words. Algorithm 1 illustrates
the process to generate synthetic translation rules
for unknown word translation. Given an unknown
word wu, it generates its synthetic rules in two
steps: 1) finding top n (e.g., 5 as in our experi-
ments) close words via Word2Vec;6 and 2) gener-
ating synthetic translation rules based on the close

6It is available at http://code.google.com/p/word2vec/.
We use Word2Vec rather than other linguistic resources like
WordNet because the approach can be easily adopted to other
languages only if there exists large monolingual data to train
Word2Vec models.

Algorithm 1: Generating synthetic translation
rules for unknown words

Input: Unknown word wu in the source language
Source side training data vocabulary: W
Lexical translation tables T1 and T2 (two
directions)

Output: Synthetic translation rule set R for wu

1. foreach word wi in W
2. si = sim(wu, wi)
3. get the top n words WB = {wb1...wbn}

with the highest {si}
4. R = φ
5. foreach wbi in WB
6. foreach tj such 〈wbi, tj〉 in T1 and T2
7. R ∪ = generate rule(wu, wbi, tj , T1, T2)
8. return R

sim: returns the similarity between wu and wi.

generate rule: returns rule 〈wu, tj〉 with a feature
indicating the similarity between wu and wbi, and
two features indicating the lexical translation prob-
abilities from wbi to tj and the way around.

words. Note that it may generate a synthetic rule
with null at the target side since the lexical transla-
tion table derived from aligned training data con-
tains translation to null. Each synthetic translation
rule for unknown words is associated with three
features returned from function generate rule.

4 Experimentation

In this section, we test our approach on the Geo-
Query dataset, which is publicly available.

4.1 Experimental Settings
Data GeoQuery dataset consists of 880 questions
paired with their corresponding tree structured se-
mantic representations. Following the experimen-
tal setup in Jones et al. (2012), we use the 600
question pairs to train and tune our SMT de-
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coder, and evaluated on the remaining 280. Note
that there is another version of GeoQuery dataset
where the semantic representation is annotated
with lambda calculus expressions and which is ex-
tensively studied (Zettlemoyer and Collins, 2005;
Wong and Mooney, 2007; Liang et al., 2011;
Kwiatkowski et al., 2013). Performance on the
version of lambda calculus is higher than that on
the tree structured version, however, the results ob-
tained over the two versions are not directly com-
parable.

SMT Setting We use cdec (Dyer et al., 2010) as
our HPB decoder. As mentioned above, 600 in-
stances are used to train and tune our decoder. To
get fair results, we split the 600 instances into 10
folds, each having 60 instances. Then for each
fold, we use it as the tuning data while the other
540 instances and the NP list are used as train-
ing data.7 We use IRSTLM toolkit (Federico et
al., 2008) to train a 5-gram LM on the MRL′ side
of the training data, using modified Kneser-Ney
smoothing. We use Mira (Chiang et al., 2008)
to tune the parameters of the system to maximize
BLEU (Papineni et al., 2002). When extracting
translation rules from aligned training data, we in-
clude both tight and untight phrases.

Evaluation We use the standard evaluation crite-
ria for evaluation by executing both the predicted
MRL and the gold standard against the database
and obtaining their respective answer. Specifi-
cally, we convert a translation from MRL′ into
MRL (if exists). The translation then is consid-
ered correct if and only if its MRL retrieves the
same answers as the gold standard MRL (Jones et
al., 2012), allowing for a fair comparison between
our systems and previous works. As in Jones et
al. (2012), we report accuracy, i.e. the percent-
age of translations with correct answers, and F1,
i.e. the harmonic mean of precision (the propor-
tion of correct answers out of translations with an
answer) and recall (the proportion of correct an-
swers out of all translations). In this section, we
report our performance scores and analysis num-
bers averaged on our 10 SMT models.

7The NP list is from GeoQUery dataset in Jones et al.
(2012), which contains MRs for every noun phrase that ap-
pears in the NL utterances of each language. As in Andreas
et al. (2013), the NP list is included by appending all entries
as extra training sentences with 50 times the weight of regular
training examples, to ensure that they are learned as transla-
tion rules.

SCFG alignment Acc. F1

non-enriched

src2tgt 75.0 82.5
tgt2src 78.5 82.5
gdfa 77.5 83.5
src2tgt + tgt2src 81.4 85.0
src2tgt + gdfa 77.1 83.1
tgt2src + gdfa 80.6 83.9
all 81.5 85.2
gold 82.4 86.2

enriched

src2tgt 76.3 82.9
tgt2src 82.0 85.2
gdfa 78.9 83.9
src2tgt + tgt2src 82.6 85.9
src2tgt + gdfa 78.8 83.7
tgt2src + gdfa 83.1 86.1
all 82.9 86.1
gold 84.1 87.1

Table 2: Performance of our (non-) enriched
SCFG systems with different alignment settings.

4.2 Experimental Results

Table 2 shows the results of (non-) enriched SCFG
systems over different alignment settings. In Ta-
ble 2, src2tgt and tgt2src indicate alignment of
source to target direction and alignment of tar-
get to source direction, respectively; gdfa indi-
cates symmetrization of alignment with grow-
diag-final-and strategy; src2tgt+tgt2src indicates
doubling the training data with each sentence pair
having both src2tgt and tgt2src alignments, sim-
ilar for src2tgt+gdfa and tgt2src+gdfa; all indi-
cates tripling the training data with each sentence
pair having three alignments. Finally, gold indi-
cates using gold alignment. 8

Effect of Enriched SCFG From Table 2, we
observe that enriched SCFG systems outperform
non-enriched SCFG systems over all alignment
settings, indicating the effect of enriching non-
terminals. In particular for tgt2src alignment, it
obtains improvements of 3.5% in accuracy and
2.7% in F1.

As mentioned earlier, the non-enriched SCFG
system may result in ill-formed translations,
which can not be converted back to tree struc-
ture. One natural way to overcome this issue,
as in Andreas et al. (2013), would be to simply
filter n-best translation till a well-formed one is
found. However, we see very limited performance
changes in accuracy and F1, suggesting that the ef-
fect of using n-best translation is very limited. For
example, after using n-best translation, the non-
enriched SCFG system with all alignment obtains
82.0 in accuracy (increased from 81.5) and 84.5 in

8We manually aligned sentence pairs in NL′ and MRL′.
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alignment Rec. Pre. F1
src2tgt 96.3 68.8 80.3
tgt2src 90.0 77.0 83.0
gdfa 95.1 62.7 75.6

Table 3: Alignment performance.

F1 (reduced from 85.2).
Effect of Word Alignment With respect to the
performance over different alignment settings, we
have the following observations from Table 2:

• Semantic parsing is substantially sensitive
to alignment. Surprisingly, gdfa alignment,
which is widely adopted in SMT, is inferior
to tgt2src alignment. As expected, src2tgt
alignment achieves the worst performance.

• Thanks to the increased coverage, dou-
bling the training data (e.g., rows
of src2tgt+tgt2src, src2tgt+gdfa, and
tgt2src+gdfa) usually outperforms its cor-
responding single alignment. Moreover,
tripling the training data (e.g., rows of all)
achieves slightly better performance than
any way of doubling the training data. This
is expected since the gdfa alignment actually
comes from the alignments of src2tgt and
tgt2src, thus doubling the training with
src2tgt and tgt2src have already included
most aligns in gdfa alignment.

• Our approach of tripling the training data
achieves comparable performance to the one
with gold alignment, suggesting that instead
of developing a brand new algorithm for se-
mantic parsing alignment, we can simply
make use of GIZA++ alignment output.

In terms of the src2tgt, tgt2src and gdfa align-
ments, the trend of the results is consistent over
both non-enriched and enriched SCFG systems:
the systems with tgt2src alignment work best
while the systems with src2tgt alignment work
worst. Next we look at the non-enriched SCFG
systems to explore the behavior differences among
the three alignments.

We examine the alignment accuracy against the
gold alignment on training data (except the NP list
part). As shown in Table 3, src2tgt has the high-
est recall while tgt2src has the highest precision.
This is partly due to: 1) In src2tgt alignment, each
source word aligns to exactly one particular tar-
get word (or the null token), resulting in frequent

enriched + gdfa
correct wrong

non-enriched + gdfa correct 211 6
wrong 10 53

enriched + all correct 215 17
wrong 6 42

Table 4: Confusion matrices of three SMT systems
on English test sentences.

alignment errors for source side words that have
no counterpart in target side. For example, both
words of the and be on source side, which play
functional roles in NL, rather than semantic roles,
align to 15 different target words. 2) Except for
a few words on target side, including stateid@1,
all@0 which have strong occurrence patterns (e.g.,
stateid@1 is always followed by a state name),
each word has counterpart on source side.

As to have a clearer understanding on the
individual contribution of using enriched non-
terminals and multiple word alignments, Table 4
presents two confusion matrices which show num-
bers of sentences that are correctly/wrongly parsed
by three SMT systems on English test sentences.
It shows that, for example, 211 sentences are cor-
rectly parsed by both non-enriched and enriched
SCFG systems with gdfa alignment. Moving
from performance of the non-enriched SMT sys-
tem with gdfa alignment to that of the enriched
SMT system with all alignment, we observe that
on average more than half of the improvement
comes from using multiple word alignments, the
rest from using enriched non-terminals.
Effect of Unknown Word Translation Since
each of our SMT model is actually trained on 540
instances (plus the NP list), the rate of unknown
words in the test data tends to be higher than that
in a system trained with the whole 600 instances.
Based on the system of enriched SCFG with all
alignment, Table 5 shows the results of applying
unknown word translation. It shows that translat-
ing all unknown words into null obtains 2.4 points
in accuracy over the system without it (e.g., 85.3
vs. 82.9). However, the slight improvement in F1
(e.g., 86.3 vs. 86.1) suggests that there are many
scenarios that translating unknown words into null
is incorrect. Fortunately, our semantic approach is
partially able to generate correct translation rules
for those unknown words which have translation
in MRL′. Actually, the effect of our approach is
highly dependent on the quality of the close words
found via Word2Vec. With a manual examination
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System Acc. F1
No unknown word translation 82.9 86.1
null: baseline 85.3 86.3
semantic: ours 86.3 87.1

Table 5: Performance with unknown word translation.

on the test data, we found that 11 out of all 17
unknown words should be translated into a corre-
sponding token in MRL. For 8 of them, the syn-
thetic translation rule set returned by Algorithm 1
contains correct translation rules.

Effect across Different Languages We have also
tested our approach on the same dataset with other
three languages. Specifically, while we are not
aware of public resources to looking for seman-
tically close words in German, Greek and Thai,
we translate unknown words into null for the three
languages. Table 6 shows the performance over
four different languages. It shows that our ap-
proach, including enriched SCFG, tripling train-
ing data with three alignments, and unknown word
translation, obtains consistent improvement over
the four languages.

Decoding Time Analysis We analyze the effect
on the decoding time of our approach, which is
closely related to the size of phrase tables. Firstly,
splitting non-terminal X into enriched ones in-
creases the size of phrase tables. 9 This is not
surprising since a phrase with non-terminal X
(e.g., the X on the source side) may be further
specified as multiple phrases with various non-
terminals (e.g., the C, the C/A1, etc.). As a re-
sult, the average number of phrases per sentence
(in English test data, hereafter) increases from 453
to 893 while the decoding time of the SMT de-
coder increases from 0.11 seconds to 0.19 seconds
per sentence on average. Secondly, using multiple
alignments also leads to larger phrase tables. This
is illustrated by the increase of average number of
phrases per sentence from 893 to 2055 while the
decoding time moves from 0.19 seconds to 0.38
seconds per sentence on average. Finally, finding
similar words via Word2Vec, however, is quite fast
since this is bounded by the vocabulary size of our
training set. Thanks to the small size of unknown
words, adding unknown word translation rules has
a very limited impact on the size of phrase ta-
ble, consequently negligible changes on decoding
time.

9In cdec, we generate a phrase table for each sentence.

5 Related Work

While there has been substantial work on seman-
tic parsing, we focus our discussions on several
approaches (e.g., SCFG approach, hybrid tree ap-
proach, and others approaches) that focus on the
variable-free semantic representations.

WASP (Wong and Mooney, 2006) was strongly
influenced by SMT techniques. Although WASP
was also using multiple non-terminal symbols in
SCFG to guarantee well-formed translations, our
work differs from theirs in at least three ways.
First, we use a different inventory of non-terminal
symbols from theirs which was derived from MRL
parses in the GeoQuery dataset. Second, to avoid
the issues caused by word alignment between NL
and MRL, we triple training data with each sen-
tence pair having multiple alignments. However,
WASP used a sequence of productions to repre-
sent MRL before running GIZA++. Third, we use
typical features in HPB SMT (e.g., phrase transla-
tion probabilities, lexical translation probabilities,
language model feature, etc.) while WASP used
rule identity features. SMT-SemParse (Andreas et
al., 2013) adapted standard SMT components for
semantic parsing. The present work is based on
theirs with all the extensions detailed in Section 3.

HYBRIDTREE+ (Lu et al., 2008) learned a
synchronous generative model which simultane-
ously generated a NL sentence and an MRL tree.
tsVB (Jones et al., 2012) used tree transducers,
which were similar to the hybrid tree structures, to
learn a generative process under a Bayesian frame-
work. RHT (Lu, 2014) defined distributions over
relaxed hybrid tree structures that jointly repre-
sented both sentences and semantics. Most re-
cently, f-RHT (Lu, 2015) introduced constrained
semantic forests to improve RHT model.

SCISSOR (Ge and Mooney, 2005) augmented
syntactic parse tree with semantic information and
then performed integrated semantic and syntac-
tic parsing to NL sentences. KRISP (Mooney,
2006) used string classifiers to label substrings of
an NL with entities from the meaning representa-
tion. UBL (Kwiatkowski et al., 2010) performed
semantic parsing with an automatically-induced
CCG lexicon.

Table 7 shows the evaluation results of our sys-
tem as well as those of several other compara-
ble related works which share the same experi-
ment setup as ours. We can observe from Table 7
that semantic parsing with SMT components gives
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System English German Greek Thai
Acc. F1 Acc. F1 Acc. F1 Acc. F1

non-enriched + gdfa 77.5 83.5 66.0 74.9 65.6 74.1 65.4 72.4
non-enriched + all 81.5 85.2 72.1 76.8 75.2 80.5 72.7 76.4

enriched + gdfa 78.9 83.9 66.7 74.6 67.8 76.1 68.5 74.1
enriched + all 82.9 86.1 75.4 79.5 76.5 81.2 75.2 77.9

enriched + all + unknown word translation 86.3 87.1 79.1 80.3 80.5 81.6 76.3 77.9

Table 6: Performance for the multilingual GeoQuery test set.

System English German Greek Thai
Acc. F1 Acc. F1 Acc. F1 Acc. F1

WASP 71.1 77.7 65.7 74.9 70.7 78.6 71.4 75.0
SMT-SemParse 80.5 81.8 68.9 71.8 69.1 72.3 70.4 70.7

HYBRIDTREE+ 76.8 81.0 62.1 68.5 69.3 74.6 73.6 76.7
tsVB 79.3 79.3 74.6 74.6 75.4 75.4 78.2 78.2
RHT 83.6 83.6 74.3 74.3 78.2 78.2 79.3 79.3

f-RHT 86.8 86.8 75.7 75.7 79.3 79.3 80.7 80.7
UBL 82.1 82.1 73.6 73.7 75.0 75.0 66.4 66.4

this work 86.3 87.1 79.1 80.3 80.5 81.6 76.3 77.9

Table 7: Performance comparison for the multilingual GeoQuery test set. The performance of WASP,
HYBRIDTREE+, tsVB and UBL is taken from Jones et al. (2012).

competitive performance when all the extensions
(described in Section 3) are used. Specifically, it
significantly outperforms the semantic parser with
standard SMT components (Andreas et al., 2013).
Our approach reports the best accuracy and F1
scores on English, German, and Greek. While
we are able to obtain improvement on Thai, the
performance is still lower than those of RHT and
TREETRANS. This is probably because of the
low quality of word alignment output between this
Asian language and MRL.

6 Conclusion and Future Work

In this paper, we have presented an enriched SCFG
approach for semantic parsing which realizes the
potential of the SMT approach. The performance
improvement is contributed from the extension of
translation rules with informative symbols and in-
creased coverage. Such an extension share a sim-
ilar spirit as generalization of a CCG lexicon for
CCG-based semantic parser (Kwiatkowski et al.,
2011; Wang et al., 2014). Experiments on bench-
mark data have shown that our model is competi-
tive to previous work and achieves state-of-the-art
performance across a few different languages.

Recently the research of semantic parsing in
open domain with weakly (or un-) supervised se-
tups, under different settings where the goal was to
optimize the performance of certain downstream
NLP tasks such as answering questions, has re-
ceived a significant amount of attention (Poon and
Domingos, 2009; Clarke et al., 2010; Berant et
al., 2013; Berant and Liang, 2014). One direc-

tion of our future work is to extend the current
framework to support the generation of synthetic
translation rules from weaker signals (e.g., from
question-answer pairs), rather than from aligned
parallel data.

We also noticed recent advance in tree-based
SMT. Applying such string-to-tree or tree-to-tree
translation models (Yamada and Knight, 2001;
Shen et al., 2008) to semantic parsing will nat-
urally resolve the inconsistent semantic structure
issue, though they require additional information
to generate tree labels on the target side. However,
due to the constraint that each target phrase needs
to map to a syntactic constituent, phrase tables in
tree-based translation models usually suffer from
the low coverage issue, especially if the training
data size is small. Therefore, another direction of
our future work is to explore specific problems that
will emerge when employing tree-based SMT sys-
tems to semantic parsing, and provide solutions to
them.
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Abstract
This paper introduces GEOS, the first au-
tomated system to solve unaltered SAT ge-
ometry questions by combining text un-
derstanding and diagram interpretation.
We model the problem of understanding
geometry questions as submodular opti-
mization, and identify a formal problem
description likely to be compatible with
both the question text and diagram. GEOS
then feeds the description to a geometric
solver that attempts to determine the cor-
rect answer. In our experiments, GEOS
achieves a 49% score on official SAT ques-
tions, and a score of 61% on practice ques-
tions.1 Finally, we show that by integrat-
ing textual and visual information, GEOS
boosts the accuracy of dependency and se-
mantic parsing of the question text.

1 Introduction

This paper introduces the first fully-automated
system for solving unaletered SAT-level geomet-
ric word problems, each of which consists of text
and the corresponding diagram (Figure 1). The ge-
ometry domain has a long history in AI, but previ-
ous work has focused on geometric theorem prov-
ing (Feigenbaum and Feldman, 1963) or geomet-
ric analogies (Evans, 1964). Arithmetic and alge-
braic word problems have attracted several NLP
researchers (Kushman et al., 2014; Hosseini et al.,
2014; Roy et al., 2015), but geometric word prob-
lems were first explored only last year by Seo et al.
(2014). Still, this system merely aligned diagram
elements with their textual mentions (e.g., “Circle
O”)—it did not attempt to fully represent geome-
try problems or solve them. Answering geometry
questions requires a method that interpert question
text and diagrams in concert.

1The source code, the dataset and the annotations are pub-
licly available at geometry.allenai.org.

In	
  the	
  diagram	
  at	
  
the	
  le.,	
  circle	
  O	
  
has	
  a	
  radius	
  of	
  5,	
  
and	
  CE	
  =	
  2.	
  
Diameter	
  AC	
  is	
  
perpendicular	
  to	
  
chord	
  BD.	
  What	
  is	
  
the	
  length	
  of	
  BD?	
  

In	
  isosceles	
  
triangle	
  ABC	
  at	
  
the	
  le.,	
  lines	
  AM	
  
and	
  CM	
  are	
  the	
  
angle	
  bisectors	
  of	
  
angles	
  BAC	
  and	
  
BCA.	
  What	
  is	
  the	
  
measure	
  of	
  angle	
  
AMC?	
  

In	
  the	
  figure	
  at	
  le.,	
  
The	
  bisector	
  of	
  
angle	
  BAC	
  is	
  
perpendicular	
  to	
  BC	
  
at	
  point	
  D.	
  If	
  AB	
  =	
  6	
  
and	
  BD	
  =	
  3,	
  what	
  is	
  
the	
  measure	
  of	
  
angle	
  BAC?	
  

Equals(RadiusOf(O), 5) 
IsCircle(O) 
Equals(LengthOf(CE), 2) 
IsDiameter(AC) 
IsChord(BD) 
Perpendicular(AC), BD) 
Equals(what, Length(BD)) 
 
 

IsIsoscelesTriangle(ABC) 
BisectsAngle(AM, BAC) 
IsLine(AM) 
CC(AM, CM) 
CC(BAC, BCA) 
IsAngle(BAC) 
IsAngle(AMC) 
Equals(what, MeasureOf(AMC)) 
 
 
a)	
  110	
  	
  	
  	
  b)	
  115	
  	
  	
  c)	
  120	
  	
  	
  d)	
  125	
  	
  	
  e)	
  130	
  
 

IsAngle(BAC) 
BisectsAngle(line, BAC) 
Perpendicular (line, BC) 
Equals(LengthOf(AB), 6) 
Equals(LengthOf(BD), 3) 
IsAngle(BAC) 
Equals(what, MeasureOf(BAC)) 
 
a)	
  15	
  	
  	
  	
  b)	
  30	
  	
  	
  c)	
  45	
  	
  	
  d)	
  60	
  	
  	
  	
  e)	
  75	
  
 
 

correct	
  

correct	
  

correct	
  

(a)	
  

(b)	
  

(c)	
  

Ques*ons	
  

a)	
  12	
  	
  	
  	
  	
  b)	
  10	
  	
  	
  	
  	
  	
  c)	
  8	
  	
  	
  	
  	
  	
  d)	
  6	
  	
  	
  	
  	
  	
  e)	
  4	
  

Interpreta*ons	
  

Figure 1: Questions (left column) and interpretations (right
column) derived by GEOS.

The geometry genre has several distinctive char-
acteristics. First, diagrams provide essential in-
formation absent from question text. In Figure 1
problem (a), for example, the unstated fact that
lines BD and AC intersect at E is necessary to
solve the problem. Second, the text often includes
difficult references to diagram elements. For ex-
ample, in the sentence “In the diagram, the longer
line is tangent to the circle”, resolving the ref-
erent of the phrase “longer line” is challenging.
Third, the text often contains implicit relations.
For example, in the sentence “AB is 5”, the rela-
tions IsLine(AB) and length(AB)=5 are implicit.
Fourth, geometric terms can be ambiguous as well.
For instance, radius can be a type identifier in “the
length of radius AO is 5”, or a predicate in “AO
is the radius of circle O”. Fifth, identifying the
correct arguments for each relation is challeng-
ing. For example, in sentence “Lines AB and CD
are perpendicular to EF”, the parser has to deter-
mine what is perpendicular to EF—line AB? line
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CD? Or both AB and CD? Finally, it is hard to
obtain large number of SAT-level geometry ques-
tions; Learning from a few examples makes this a
particularly challenging NLP problem.

This paper introduces GEOS, a system that
maps geometry word problems into a logical rep-
resentation that is compatible with both the prob-
lem text and the accompanying diagram (Fig-
ure 1). We cast the mapping problem as the prob-
lem of selecting the subset of relations that is most
likely to correspond to each question.

We compute the mapping in three main steps
(Figure 2). First, GEOS uses text- and diagram-
parsing to overgenerate a set of relations that po-
tentially correspond to the question text, and asso-
ciates a score with each. Second, GEOS generates
a set of relations (with scores) that corresponds to
the diagram. Third, GEOS selects a subset of the
relations that maximizes the joint text and diagram
scores. We cast this maximization as a submodu-
lar optimization problem, which enables GEOS to
use a close-to-optimal greedy algorithm. Finally,
we feed the derived formal model of the problem
to a geometric solver, which computes the answer
to the question.

GEOS is able to solve unseen and unaltered
multiple-choice geometry questions. We report on
experiments where GEOS achieves a 49% score
on official SAT questions, and a score of 61% on
practice questions, providing the first results of
this kind. Our contributions include: (1) designing
and implementing the first end-to-end system that
solves SAT plane geometry problems; (2) formal-
izing the problem of interpreting geometry ques-
tions as a submodular optimization problem; and
(3) providing the first empirical results on the ge-
ometry genre, making the data and software avail-
able for future work.

2 Related Work

Semantic parsing is an important area of NLP re-
search (Zettlemoyer and Collins, 2005; Ge and
Mooney, 2006; Flanigan et al., 2014; Eisenstein
et al., 2009; Kate and Mooney, 2007; Goldwasser
and Roth, 2011; Poon and Domingos, 2009; Be-
rant and Liang, 2014; Kwiatkowski et al., 2013;
Reddy et al., 2014). However, semantic parsers do
not tackle diagrams—a critical element of the ge-
ometry genre. In addition, the overall number of
available geometry questions is quite small com-
pared to the size of typical NLP corpora, making it

challenging to learn semantic parsers directly from
geometry questions. Relation extraction is another
area of NLP that is related to our task (Cowie
and Lehnert, 1996; Culotta and Sorensen, 2004).
Again, both diagrams and small corpora are prob-
lematic for this body of work.

Our work is part of grounded language acqui-
sition research (Branavan et al., 2012; Vogel and
Jurafsky, 2010; Chen et al., 2010; Hajishirzi et
al., 2011; Liang et al., 2009; Koncel-Kedziorski et
al., 2014; Bordes et al., 2010; Kim and Mooney,
2013; Angeli and Manning, 2014; Hixon et al.,
2015; Koncel-Kedziorski et al., 2014; Artzi and
Zettlemoyer, 2013) that involves mapping text
to a restricted formalism (instead of a full, do-
main independent representation). In the geom-
etry domain, we recover the entities (e.g., circles)
from diagrams, derive relations compatible with
both text and diagram, and re-score relations de-
rived from text parsing using diagram information.
Casting the interpretation problem as selecting the
most likely subset of literals can be generalized to
grounded semantic parsing domains such as navi-
gational instructions.

Coupling images and the corresponding text has
attracted attention in both vision and NLP (Farhadi
et al., 2010; Kulkarni et al., 2011; Gupta and
Mooney, 2010; Gong et al., 2014; Fang et al.,
2014). We build on this powerful paradigm, but
instead of generating captions we show how pro-
cessing multimodal information help improve tex-
tual or visual interpretations for solving geometry
questions.

Diagram understanding has been explored since
early days in AI (Lin et al., 1985; Hegarty and Just,
1989; Novak, 1995; O’Gorman and Kasturi, 1995;
Bulko, 1988; Srihari, 1994; Lovett and Forbus,
2012). Most previous approaches differ from our
method because they address the twin problems of
diagram understanding and text understanding in
isolation. Often, previous work relies on manual
identification of visual primitives, or on rule-based
system for text analysis. The closest work to ours
is the recent work of Seo et al. (2014) that aligns
geometric shapes with their textual mentions, but
does not identify geometric relations or solve ge-
ometry problems.

3 Problem Formulation

A geometry question is a tuple (t, d, c) consist-
ing of a text t in natural language, a diagram d
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Figure 2: Overview of our method for solving geometry
questions.

in raster graphics, and multiple choice answers
c = {c1, . . . , cM} (M = 5 in SAT). Answering
a geometry question is to find a correct choice ci.

Our method, GEOS, consists of two steps (Fig-
ure 2): (1) interpreting a geometry question by
deriving a logical expression that represents the
meaning of the text and the diagram, and (2) solv-
ing the geometry question by checking the satis-
fiablity of the derived logical expression. In this
paper we mainly focus on interpreting geometry
questions and use a standard algebraic solver (see
section 7 for a brief description of the solver).

Definitions: We formally represent logical ex-
pressions in the geometry domain with the lan-
guage Ω, a subset of typed first-order logic that
includes:
• constants, corresponding to known numbers

(e.g., 5 and 2 in Figure 1) or entities with known
geometric coordinates.
• variables, corresponding to unknown numbers

or geometrical entities in the question (e.g., O
and CE in Figure 1).
• predicates, corresponding to geometric or arith-

metic relations (e.g., Equals, IsDiameter,
IsTangent).
• functions, corresponding to properties of geo-

metrical entities (e.g., LengthOf, AreaOf) or
arithmetic operations (e.g., SumOf, RatioOf).

Each element in the geometry language has either
boolean (e.g., true), numeric (e.g., 4), or entity
(e.g., line, circle) type. We refer to all symbols

in the language Ω as concepts.
We use the term literal to refer to the application

of a predicate to a sequence of arguments (e.g.,
IsTriangle(ABC)). Literals are possibly negated
atomic formulas in the language Ω. Logical for-
mulas contain constants, variables, functions, ex-
istential quantifiers and conjunctions over literals
(e.g., ∃x, IsTriangle(x)∧IsIsosceles(x)).

Interpretation is the task of mapping a new ge-
ometry question with each choice, (t, d, cm), into
a logical formula γ in Ω. More formally, the
goal is to find γ∗ = arg maxγ∈Γ score(γ; t, d, cm)
where Γ is the set of all logical formulas in Ω and
score measures the interpretation score of the for-
mula according to both text and diagram. The
problem of deriving the best formula γ∗ can be
modeled as a combinatorial search in the space of
literals L (note that each logical formula γ is rep-
resented as a conjunction over literals li).

GEOS efficiently searches this combinatorial
space taking advantage of a submodular set func-
tion that scores a subset of literals using both text
and diagram. The best subset of literals is the one
that has a high affinity with both text and diagram
and is coherent i.e., does not suffer from redun-
dancy (see Section 6). More formally,2

L∗ = arg max
L′⊂L

λA(L′, t, d)︸ ︷︷ ︸
Affinity

+H(L′, t, d)︸ ︷︷ ︸
Coherence

, (1)

where A(L′, t, d) measures the affinity of the lit-
erals in L′ with both the text and the diagram,
H(L′, t, d) measures the coverage of the literals
in L′ compared to the text and discourages redun-
dancies, and λ is a trade-off parameter between A
andH.

The affinity A is decomposed into text-
based affinity, Atext, and diagram-based affinity,
Adiagram. The text-based affinity closely mirrors
the linguistic structure of the sentences as well as
type matches in the geometry language Ω. For
modeling the text score for each literal, we learn
a log-linear model. The diagram-based affinity
Adiagram grounds literals into the diagram, and
scores literals according to the diagram parse. We
describe the details on how to compute Atext in
section 4 and Adiagram in section 5.

4 Text Parser

The text-based scoring function Atext(L, t) com-
putes the affinity score between the set of liter-

2We omit the argument cm for the ease of notation.
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1. {lj},Atext ← TEXT PARSING(language Ω, text-choice pair (t, ci)) (Section 4)
(i) concept identification: initialize a hypergraph G with concept nodes.

(ii) relation identification: add a hyperedge (relation) rj between two or three related concept nodes and assign a
weight Atext(rj , t; θ) based on the learned classifier.

(iii) literals parsing: obtain all subtrees of G, which are equivalent to all possible literals, {l′j}. LetAtext(lj , t) =∑
j Atext(rj , t; θ) for all rj in the literal li.

(iv) relation completion: obtain a complete literal lj for each (under-specified) l′j , dealing with implication and
coordinating conjunctions.

2. L∆,Adiagram ← DIAGRAM PARSING(diagram image d, literals {lj}) (Section 5)
3. L∗ ← GREEDY MAXIMIZATION(literals L = {lj}, score functions Atext and Adiagram) (Section 6)

(i) initialization: L′ ← {}
(ii) greedy addition: add(L′, lj) s.t. lj = argmaxlj∈L\L′F(L′ ∪ {lj})−F(L′), where F = λA+H

(iii) iteration: repeat step (ii) while the gain is positive.
4. Answer c∗ ← one of choices s.t. L∗ ∪ L∆ are simultaneously satisfiable according to SOLVER (Section 7)

Figure 3: Solving geometry questions with GEOS.
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Figure 4: Hypergraph representation of the sentence “A
tangent line is drawn to circle O with radius of 5”.

als L and the question text t. This score is the
sum of the affinity scores of individual literals
lj ∈ L i.e., Atext(L, t) =

∑
j Atext(lj , t) where

Atext(lj , t) 7→ [−∞, 0].3 GEOS learns a discrim-
inative model Atext(lj , t; θ) that scores the affin-
ity of every literal lj ∈ L and the question text t
through supervised learning from training data.

We represent literals using a hypergraph (Fig-
ure 4) (Klein and Manning, 2005; Flanigan et al.,
2014). Each node in the graph corresponds to a
concept in the geometry language (i.e. constants,
variables, functions, or predicates). The edges
capture the relations between concepts; concept
nodes are connected if one concept is the argument
of the other in the geometry language. In order to
interpret the question text (Figure 3 step 1), GEOS
first identifies concepts evoked by the words or
phrases in the input text. Then, it learns the affin-
ity scores which are the weights of edges in the
hypergraph. It finally completes relations so that
type matches are satistfied in the formal language.

4.1 Concept Identification

Concepts are defined as symbols in the geometry
language Ω. The concept identification stage maps
words or phrases to their corresponding concepts

3For the ease of notation, we use Atext as a function tak-
ing sets of literals or a literal.

in the geometry language. Note that a phrase can
be mapped to several concepts. For instance, in
the sentence “ABCD is a square with an area of
1”, the word “square” is a noun referring to some
object, so it maps to a variable square. In a similar
sentence “square ABCD has an area 1”, the word
“square” describes the variable ABCD, so it maps to
a predicate IsSquare.

GEOS builds a lexicon from training data that
maps stemmed words and phrases to the con-
cepts in the geometry language Ω. The lexicon
is derived from all correspondences between ge-
ometry keywords and concepts in the geometry
language as well as phrases and concepts from
manual annotations in the training data. For in-
stance, the lexicon contains (“square”, {square,
IsSquare}) including all possible concepts for the
phrase “square”. Note that GEOS does not make
any hard decision on which identification is cor-
rect in this stage, and defers it to the relation iden-
tification stage (Section 4.2). To identify num-
bers and explicit variables (e.g. “5”, “AB”, “O”),
GEOS uses regular expressions. For an input text
t, GEOS assigns one node in the graph (Figure 4)
for each concept identified by the lexicon.

4.2 Relation Identification

A relation is a directed hyperedge between
concept nodes. A hyperedge connects two
nodes (for unary relations such as the edge be-
tween RadiusOf and O in Figure 4) or three nodes
(for binary relations such as the hyperedge be-
tween Equals and its two arguments RadiusOf

and 5 in Figure 4).
We use a discriminative model (logistic re-

gression) to predict the probability of a rela-
tion ri being correct in text t: Pθ(yi|ri, t) =

1
1+exp (ftext(ri,t)·θ) , where yi ∈ {0, 1} is the label
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Dependency tree distance Shortest distance between the words of the concept nodes in the dependency tree. We use
indicator features for distances of -3 to 3. Positive distance shows if the child word is at the
right of the parent’s in the sentence, and negative otherwise.

Word distance Distance between the words of the concept nodes in the sentence.
Dependency tree edge label Indicator functions for the outgoing edges of the parent and child for the shortest path

between them.
Part of speech tag Indicator functions for the POS tags of the parent and the child.
Relation type Indicator functions for unary / binary parent and child nodes.
Return type Indicator functions for the return types of the parent and the child nodes. For example,

return type of Equals is boolean, and that of LengthOf is numeric.

Table 1: The features of the unary relations. The features of the binary relations is computed in a similar way.

(a) sentence: “What is the perimeter of ABCE?”
intermediate: ∃ what, ABCE: Bridged(what, PerimeterOf(ABCE))

final: ∃ what, ABCE: Equals(what, PerimeterOf(ABCE))

(b) sentence: “AM and CM bisect BAC and BCA.”
intermediate: ∃ AM, CM, BAC, BCA: BisectsAngle(AM, BAC) ∧ CC(AM, CM) ∧ CC(BAC, BCA)

final: ∃ AM, CM, BAC, BCA: BisectsAngle(AM, BAC) ∧ BisectsAngle(CM, BCA)

Figure 5: Showing the two-stage learning with the intermediate representation that demonstrates implication.

for ri being correct in t, ftext(ri, t) is a feature
vector of t and ri, and θ is a vector of parameters
to be learned. We define the affinity score of ri
by Atext(ri, t; θ) = logPθ(yi|ri, t). The weight
of the corresponding hyperedge is the relation’s
affinity score. We learn θ using the maximum like-
lihood estimation of the training data (details in
Section 8), with L2 regularization.

We train two separate models for learning unary
and binary relations. The training data consists
of sentence-relation-label tuples (t, r, y); for in-
stance, (“A tangent line is drawn to circle O”,
IsTangent(line, O), 1) is a positive training
example. All incorrect relations in the sen-
tences of the training data are negative exam-
ples (e.g. (“A tangent line is drawn to circle O”,
IsCircle(line), 0)).

The features for the unary and binary models
are shown in Table 1 for the text t and the relation
ri. We use two main feature categories. Structural
features: these features capture the syntactic cues
of the text in the form of text distance, dependency
tree labels, and part of speech tags for the words
associated with the concepts in the relation. Ge-
ometry language features: these features capture
the cues available in the geometry language Ω in
the form of the types and the truth values of the
corresponding concepts in the relation.

At inference, GEOS uses the learned models
to calculate the affinity scores of all the literals
derived from the text t. The affinity score of
each literal lj is calculated from the edge (rela-
tion) weights in the corresponding subgraph, i.e.
Atext(lj , t) =

∑
iAtext(ri, t; θ) for all ri in the

literal lj .

4.3 Relation Completion

So far, we have explained how to score the affini-
ties between explicit relations and the question
text. Geometry questions usually include implicit
concepts. For instance, “Circle O has a radius of
5” implies the Equals relationship between “Ra-
dius of circle O” and “5”. In addition, geometry
questions include coordinating conjunctions be-
tween entities. In “AM and CM bisect BAC and
BCA”, “bisect” is shared by two lines and two an-
gles (Figure 5 (b)). Also, consider two sentences:
“AB and CD are perpendicular” and “AB is per-
pendicular to CD”. Both have the same semantic
annotation but very different syntactic structures.

It is difficult to directly fit the syntactic struc-
ture of question sentences into the formal language
Ω for implications and coordinating conjunctions,
especially due to small training data. We, instead,
adopt a two-stage learning inspired by recent work
in semantic parsing (Kwiatkowski et al., 2013).
Our solution assumes an intermediate representa-
tion that is syntactically sound but possibly under-
specified. The intermediate representation closely
mirrors the linguistic structure of the sentences. In
addition, it can easily be transferred to the formal
representation in the geometry language Ω.

Figure 5 shows how implications and coordinat-
ing conjunctions are modeled in the intermediate
representation. Bridged in Figure 5 (a) indicates
that there is a special relation (edge) between the
two concepts (e.g., what and PerimeterOf), but
the alignment to the geometry language L is not
clear. CC in Figure 5 (b) indicates that there is a
special relation between two concepts that are con-
nected by “and” in the sentence. GEOS completes
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the under-specified relations by mapping them to
the corresponding well-defined relations in the for-
mal language.

Implication: We train a log-linear classifier to
identify if a Bridged relation (implied concept)
exists between two concepts. Intuitively, the clas-
sification score indicates the likelihood that certain
two concepts (e.g., What and PerimeterOf) are
bridged. For training, positive examples are pairs
of concepts whose underlying relation is under-
specified, and negative examples are all other pairs
of concepts that are not bridged. For instance,
(what, PerimeterOf) is a positive training exam-
ple for the bridged relation. We use the same fea-
tures in Table 1 for the classifier.

We then use a deterministic rule to map bridged
relations in the intermediate representation to the
correct completed relations in the final represen-
tation. In particular, we map bridged to Equals

if the two children concepts are of type number,
and to IsA if the concepts are of type entity (e.g.
point, line, circle).

Coordinating Conjunctions: CC relations model
coordinating conjunctions in the intermediate rep-
resentation. For example, Figure 5 (b) shows the
conjunction between the two angles BAC and BCA.
We train a log-linear classifier for the CC relations,
where the setup of the model is identical to that of
the binary relation model in Section 4.2.

After we obtain a list of CC(x,y) in the interme-
diate representation, we use deterministic rules to
coordinate the entities x and y in each CC relation
(Figure 5 (b)). First, GEOS forms a set {x, y} for
every two concepts x and y that appear in CC(x,y)

and transforms every x and y in other literals to
{x, y}. Second, GEOS transforms the relations
with expansion and distribution rules (Figure 3
Step 1 (iv)). For instance, Perpendicular({x,y})
will be transferred to Perpendicular(x, y) (ex-
pansion rule), and LengthOf{x,y}) will be trans-
ferred to LengthOf(x) ∧ LengthOf(y) (distribu-
tion rule).

5 Diagram Parser

We use the publicly available diagram parser (Seo
et al., 2014) to obtain the set of all visual elements
(points, lines, circles, etc.), their coordinates, their
relationships in the diagram, and their alignment
with entity references in the text (e.g. “line AB”,
“circle O”). The diagram parser serves two pur-
poses: (a) computing the diagram score as a mea-

sure of the affinity of each literal with the diagram;
(b) obtaining high-confidence visual literals which
cannot be obtained from the text.

Diagram score: For each literal lj from
the text parsing, we obtain its diagram score
Adiagram(lj , d) 7→ [−∞, 0]. GEOS grounds each
literal derived from the text by replacing every
variable (entity or numerical variable) in the re-
lation to the corresponding variable from the dia-
gram parse. The score function is the relaxed in-
dicator function of whether a literal is true accord-
ing to the diagram. For instance, in Figure 1 (a),
consider the literal l = Perpendicular(AC, BD).
In order to obtain its diagram score, we compute
the angle between the lines AC and BD in the di-
agram and compare it with π/2. The closer the
two values, the higher the score (closer to 0), and
the farther they are, the lower the score. Note that
the variables AC and BD are grounded into the dia-
gram before we obtain the score; that is, they are
matched with the actual corresponding lines AC
and BD in the diagram.

The diagram parser is not able to evaluate
the correctness of some literals, in which case
their diagram scores are undefined. For instance,
Equals(LengthOf(AB), 5) cannot be evaluated
in the diagram because the scales in the diagram
(pixel) and the text are different. For another ex-
ample, Equals(what, RadiusOf(circle)) can-
not be evaluated because it contains an un-
grounded (query) variable, what. When the dia-
gram score of a literal lj is undefined, GEOS lets
Adiagram(lj) = Atext(lj).

If the diagram score of a literal is very low,
then it is highly likely that the literal is false. For
example, in Figure 2, Parallel(AC, DB) has a
very low diagram score, 0.02, and is apparently
false in the diagram. Concretely, if for some lit-
eral lj , Adiagram(li) < ε, then GEOS disregards
the text score of li by replacing Atext(lj) with
Adiagram(lj). On the other hand, even if the dia-
gram score of a literal is very high, it is still possi-
ble that the literal is false, because many diagrams
are not drawn to scale. Hence, GEOS adds both
text and diagram scores in order to score literals
(Section 6).

High-confidence visual literals: Diagrams often
contain critical information that is not present in
the text. For instance, to solve the question in Fig-
ure 1, one has to know that the points A, E, and C

are colinear. In addition, diagrams include numer-
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ical labels (e.g. one of the labels in Figure 1(b) in-
dicates the measure of the angle ABC = 40 degrees).
This kind of information is confidently parsed with
the diagram parser by Seo et al. (2014). We denote
the set of the high-confidence literals by L∆ that
are passed to the solver (Section 7).

6 Optimization

Here, we describe the details of the objective func-
tion (Equation 1) and how to efficiently maximize
it. The integrated affinity score of a set of literals
L′ (the first term in Equation 1) is defined as:

A(L′, t, d) =
∑
l′j∈L′

[Atext(l′j , t) +Adiagram(l′j , d)
]

where Atext and Adiagram are the text and dia-
gram affinities of l′j , respectively.

To encourage GEOS to pick a subset of literals
that cover the concepts in the question text and, at
the same time, avoid redundancies, we define the
coherence function as:

H(L′, t, d) = Ncovered(L′)−Rredundant(L′)

where Ncovered is the number of the concept nodes
used by the literals inL′, andNredundant is the num-
ber of redundancies among the concept nodes of
the literals. To account for the different scales be-
tween A and H, we use the trade-off parameter λ
in Equation 1 learned on the validation dataset.

Maximizing the objective function in Equation
1 is an NP-hard combinatorial optimization prob-
lem. However, we show that our objective func-
tion is submodular (see Appendix (Section 11) for
the proof of submodularity). This means that there
exists a greedy method that can provide a reliable
approximation. GEOS greedily maximizes Equa-
tion 1 by starting from an empty set of literals and
adding the next literal lj that maximizes the gain of
the objective function until the gain becomes nega-
tive (details of the algorithm and the gain function
are explained in Figure 3 step 3).

7 Solver

We now have the best set of literals L∗ from the
optimization, and the high-confidence visual lit-
erals L∆ from the diagram parser. In this step,
GEOS determines if an assignment exists to the
variables X in L∗ ∪ L∆ that simultaneously satis-
fies all of the literals. This is known as the problem

of automated geometry theorem proving in com-
putational geometry (Alvin et al., 2014).

We use a numerical method to check the satis-
fiablity of literals. For each literal lj in L∗ ∪ L∆,
we define a relaxed indicator function gj : S 7→
zj ∈ [−∞, 0]. The function zj = gj(S) indi-
cates the relaxed satisfiability of lj given an as-
signment S to the variables X . The literal lj
is completely satisfied if gj(S) = 0. We for-
mulate the problem of satisfiability of literals as
the task of finding the assignment S∗ to X such
that sum of all indicator functions gj(S∗) is maxi-
mized, i.e. S∗ = arg maxS

∑
j gj(S). We use the

basing-hopping algorithm (Wales and Doye, 1997)
with sequential least squares programming (Kraft,
1988) to globally maximize the sum of the indica-
tor functions. If there exists an assignment such
that

∑
j gj(S) = 0, then GEOS finds an assign-

ment to X that satisfies all literals. If such assign-
ment does not exist, then GEOS concludes that the
literals are not satisfiable simultaneously. GEOS
chooses to answer a geometry question if the lit-
erals of exactly one answer choice are simultane-
ously satisfiable.

8 Experimental Setup

Logical Language Ω: Ω consists of 13 types of
entities and 94 function and predicates observed
in our development set of geometry questions.
Implementation details: Sentences in geometry
questions often contain in-line mathematical ex-
pressions, such as “If AB=x+5, what is x?”. These
mathematical expressions cause general purpose
parsers to fail. GEOS uses an equation analyzer
and pre-processes question text by replacing “=”
with “equals”, and replacing mathematical terms
(e.g., “x+5”) with a dummy noun so that the de-
pendency parser does not fail.

GEOS uses Stanford dependency parser (Chen
and Manning, 2014) to obtain syntactic informa-
tion, which is used to compute features for rela-
tion identification (Table 1). For diagram parsing,
similar to Seo et al. (2014), we assume that GEOS
has access to ground truth optical character recog-
nition for labels in the diagrams. For optimization,
we tune the parameters λ to 0.5, based on the train-
ing examples.4

Dataset: We built a dataset of SAT plane ge-
ometry questions where every question has a tex-

4In our dataset, the number of all possible literals for each
sentence is at most 1000.
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Total Training Practice Official
Questions 186 67 64 55
Sentences 336 121 110 105
Words 4343 1435 1310 1598
Literals 577 176 189 212
Binary relations 337 110 108 119
Unary relations 437 141 150 146

Table 2: Data and annotation statistics

tual description in English accompanied by a dia-
gram and multiple choices. Questions and answers
are compiled from previous official SAT exams
and practice exams offered by the College Board
(Board, 2014). In addition, we use a portion of
the publicly available high-school plane geometry
questions (Seo et al., 2014) as our training set.

We annotate ground-truth logical forms for all
questions in the dataset. Table 2 shows details
of the data and annotation statistics. For evaluat-
ing dependency parsing, we annotate 50 questions
with the ground truth dependency tree structures
of all sentences in the questions. 5

Baselines: Rule-based text parsing + GEOS dia-
gram solves geometry questions using literals ex-
tracted from a manually defined set of rules over
the textual dependency parser, and scored by dia-
gram. For this baseline, we manually designed 12
high-precision rules based on the development set.
Each rule compares the dependency tree of each
sentence to pre-defined templates, and if a tem-
plate pattern is matched, the rule outputs the re-
lation or function structure corresponding to that
template. For example, a rule assigns a relation
parent(child-1, child-2) for a triplet of (parent,
child-1, child-2) where child-1 is the subject of
parent and child-2 is the object of the parent.

GEOS without text parsing solves geometry
questions using a simple heuristic. With simple
textual processing, this baseline extracts numeri-
cal relations from the question text and then com-
putes the scale between the units in the question
and the pixels in the diagram. This baseline rounds
the number to the closest choice available in the
multiple choices.

GEOS without diagram parsing solves geom-
etry questions only relying on the literals inter-
preted from the text. It outputs all literals whose
text scores are higher than a tuned threshold, 0.6
on the training set.

GEOS without relation completion solves ge-

5The source code, the dataset and the annotations are pub-
licly available at geometry.allenai.org.

ometry questions when text parsing does not use
the intermediate representation and does not in-
clude the relation completion step.

9 Experiments

We evaluate our method on three tasks: solving
geometry question, interpreting geometry ques-
tions, and dependency parsing.
Solving Geometry Questions: Table 3 compares
the score of GEOS in solving geometry questions
in practice and official SAT questions with that
of baselines. SAT’s grading scheme penalizes a
wrong answer with a negative score of 0.25. We
report the SAT score as the percentage of correctly
answered questions penalized by the wrong an-
swers. For official questions, GEOS answers 27
questions correctly, 1 questions incorrectly, and
leaves 27 un-answered, which gives it a score of
26.75 out of 55, or 49%. Thus, GEOS’s preci-
sion exceeds 96% on the 51% of questions that
it chooses to answer. For practice SAT questions,
GEOS scores 61%.6

In order to understand the effect of individ-
ual components of GEOS, we compare the full
method with a few ablations. GEOS signifi-
cantly outperforms the two baselines GEOS with-
out text parsing and GEOS without diagram pars-
ing, demonstrating that GEOS benefits from both
text and diagram parsing. In order to understand
the text parsing component, we compare GEOS
with Rule-based text parsing + GEOS Diagram
and GEOS without relation completion. The re-
sults show that our method of learning to interpret
literals from the text is substantially better than the
rule-based baseline. In addition, the relation com-
pletion step, which relies on the intermediate rep-
resentation, helps to improve text interpretation.
Error Analysis: In order to understand the errors
made by GEOS, we use oracle text parsing and or-
acle diagram parsing (Table 3). Roughly 38% of
the errors are due to failures in text parsing, and
about 46% of errors are due to failures in diagram
parsing. Among them, about 15% of errors were
due to failures in both diagram and text parsing.
For an example of text parsing failure, the liter-
als in Figure 6 (a) are not scored accurately due
to missing coreference relations (Hajishirzi et al.,
2013). The rest of errors are due to problems that
require more complex reasoning (Figure 6 (b)).

6Typically, 50th percentile (penalized) score in SAT math
section is 27 out of 54 (50%).
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SAT score (%)
Method Practice Official
GEOS w/o diagram parsing 7 5
GEOS w/o text parsing 10 10
Rule-based text parsing + GEOS diagram 31 24
GEOS w/o relation completion 42 33
GEOS 61 49
Oracle text parsing + GEOS diagram parsing 78 75
GEOS text parsing + oracle diagram parsing 81 79
Oracle text parsing + oracle diagram parsing 88 84

Table 3: SAT scores of solving geometry questions.

P R F1
Rule-based text parsing 0.99 0.23 0.37
GEOS w/o diagram 0.57 0.82 0.67
GEOS 0.92 0.76 0.83

Table 4: Precision and recall of text interpretation.

Interpreting Question Texts: Table 4 details
the precision and recall of GEOS in deriving lit-
erals for geometry question texts for official SAT
questions. The rule-based text parsing baseline
achieves a high precision, but at the cost of lower
recall. On the other hand, the baseline GEOS with-
out diagram achieves a high recall, but at the cost
of lower precision. Nevertheless, GEOS attains
substantially higher F1 score compared to both
baselines, which is the key factor in solving the
questions. Direct application of a generic seman-
tic parser (Berant et al., 2013) with full supervi-
sion does not perform well in the geometry do-
main, mainly due to lack of enough training data.
Our initial investigations show the performance of
33% F1 in the official set.

Improving Dependency Parsing: Table 5 shows
the results of different methods in dependency
parsing. GEOS returns a dependency parse tree by
selecting the dependency tree that maximizes the
text score in the objective function from the top
50 trees produced by a generic dependency parser,
Stanford parser (Chen and Manning, 2014). Note
that Stanford parser cannot handle mathematical
symbols and equations. We report the results of
a baseline that extends the Stanford dependency
parser by adding a pre-processing step to separate
the mathematical expressions from the plain sen-
tences (Section 8).

We evaluate the performance of GEOS against
the best tree returned by Stanford parser by re-
porting the fraction of the questions whose depen-
dency parse structures match the ground truth an-
notations. Our results show an improvement of
16% over the Stanford dependency parser when
equipped with the equation analyzer. For exam-
ple, in “AB is perpendicular to CD at E”, the Stan-

Accuracy
Stanford dep parse 0.05
Stanford dep parse + eq. analyzer 0.64
GEOS 0.78

Table 5: Accuracy of dependency parsing.

In	
  the	
  figure	
  at	
  the	
  le-,	
  the	
  smaller	
  circles	
  
each	
  have	
  radius	
  3.	
  They	
  are	
  tangent	
  to	
  the	
  
larger	
  circle	
  at	
  points	
  A	
  and	
  C,	
  and	
  are	
  tangent	
  
to	
  each	
  other	
  at	
  point	
  B,	
  which	
  is	
  the	
  center	
  of	
  
the	
  larger	
  circle.	
  What	
  is	
  the	
  perimeter	
  of	
  the	
  
shaded	
  region?	
  

In	
  the	
  figure	
  at	
  the	
  le-,	
  a	
  shaded	
  
polygon	
  which	
  has	
  equal	
  angles	
  is	
  
parCally	
  covered	
  with	
  a	
  sheet	
  of	
  
blank	
  paper.	
  If	
  x+y=80,	
  how	
  many	
  
sides	
  does	
  the	
  polygon	
  have?	
  	
  

 
 
(a)	
  6*pi	
  	
  	
  (b)	
  8*pi	
  	
  	
  (c)	
  9*pi	
  	
  	
  (d)	
  8*pi	
  	
  	
  (e)	
  15*pi	
  

(a)	
  10	
  	
  	
  (b)	
  9	
  	
  	
  	
  (c)	
  8	
  	
  	
  	
  (d)	
  7	
  	
  	
  (e)	
  6	
  
 

(a)	
  

(b)	
  

Fails	
  to	
  resolve	
  “they”	
  to	
  “each	
  other”	
  

Requires	
  complex	
  reasoning:	
  	
  
Cannot	
  understand	
  that	
  the	
  polygon	
  
is	
  “hidden”	
  

Figure 6: Examples of Failure: reasons are in red.

ford dependency parser predicts that “E” depends
on “CD”, while GEOS predicts the correct parse
in which “E” depends on “perpendicular”.

10 Conclusion

This paper introduced GEOS, an automated sys-
tem that combines diagram and text interpretation
to solve geometry problems. Solving geometry
questions was inspired by two important trends in
the current NLP literature. The first is in designing
methods for grounded language acquisition to map
text to a restricted formalism (instead of a full,
domain independent representation). We demon-
strate a new algorithm for learning to map text to
a geometry language with a small amount of train-
ing data. The second is designing methods in cou-
pling language and vision and show how process-
ing multimodal information help improve textual
or visual interpretations.

Our experiments on unseen SAT geometry
problems achieve a score of 49% of official ques-
tions and a score of 61% on practice questions,
providing a baseline for future work. Future work
includes expanding the geometry language and
the reasoning to address a broader set of geom-
etry questions, reducing the amount of supervi-
sion, learning the relevant geometry knowledge,
and scaling up the dataset.
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11 Appendix: Proof of Submodularity of
Equation 1

We prove that the objective function in equation
(1), λA(L′) + H(L′) is submodular by showing
that A(L′) andH(L′) are submodular functions.
Submodularity of A. Consider L′ ⊂ L, and
a new literal to be added, li ∈ L \ L′. By the
definition of A, it is clear that A(L′ ∪ {lj}) =
A(L′) +A({lj}). Hence, for all L′′ ⊂ L′ ⊂ L,

A(L′′ ∪ {lj})−A(L′′) = A(L′ ∪ {lj})−A(L′)

. Thus A is submodular.
Submodularity of H. We prove that the cover-
age function, Hcov, and the negation of the redun-
dancy function, −Hred are submodular indepen-
dently, and thus derive that their sum is submodu-
lar. For both, consider we are given L′′ ⊂ L′ ⊂ L,
and a new literal lj ∈ L \ L′. Also, let K ′′ and
K ′ denote the the sets of concepts covered by L′′

and L′, respectively, and let Kj denote the set of
concepts covered by lj .
Coverage: Since K ′′ ⊂ K ′, |K ′′ ∪Kj | − |K ′′| ≥
|K ′ ∪Kj | − |K ′|, which is equivalent to

Hcov(L′′ ∪ {lj})−Hcov(L′′)
≥ Hcov(L′ ∪ {lj})−Hcov(L′)

Redundancy: Note that Hred(L′′ ∪ {lj}) −
Hred(L′′) = |K ′′ ∩Kj |, and similarly, Hred(L′ ∪
{lj}) − Hred(L′) = |K ′ ∩Kj |. Since K ′′ ⊂ K ′,
thus |K ′′ ∩Kj | ≤ |K ′ ∩Kj |. Hence,

Hred(L′′ ∪ {lj})−Hred(L′′)
≤ Hred(L′ ∪ {lj})−Hred(L′),

By negating both sides, we derive that the negation
of the redundancy function is submodular.
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Abstract

Understanding language goes hand in
hand with the ability to integrate complex
contextual information obtained via per-
ception. In this work, we present a novel
task for grounded language understanding:
disambiguating a sentence given a visual
scene which depicts one of the possible
interpretations of that sentence. To this
end, we introduce a new multimodal cor-
pus containing ambiguous sentences, rep-
resenting a wide range of syntactic, se-
mantic and discourse ambiguities, coupled
with videos that visualize the different in-
terpretations for each sentence. We ad-
dress this task by extending a vision model
which determines if a sentence is depicted
by a video. We demonstrate how such a
model can be adjusted to recognize dif-
ferent interpretations of the same under-
lying sentence, allowing to disambiguate
sentences in a unified fashion across the
different ambiguity types.

1 Introduction

Ambiguity is one of the defining characteristics
of human languages, and language understand-
ing crucially relies on the ability to obtain un-
ambiguous representations of linguistic content.
While some ambiguities can be resolved using
intra-linguistic contextual cues, the disambigua-
tion of many linguistic constructions requires in-
tegration of world knowledge and perceptual in-
formation obtained from other modalities.

In this work, we focus on the problem of
grounding language in the visual modality, and in-
troduce a novel task for language understanding
which requires resolving linguistic ambiguities by
utilizing the visual context in which the linguistic
content is expressed. This type of inference is fre-
quently called for in human communication that
occurs in a visual environment, and is crucial for
language acquisition, when much of the linguis-
tic content refers to the visual surroundings of the
child (Snow, 1972).

Our task is also fundamental to the problem of
grounding vision in language, by focusing on phe-
nomena of linguistic ambiguity, which are preva-
lent in language, but typically overlooked when
using language as a medium for expressing un-
derstanding of visual content. Due to such ambi-
guities, a superficially appropriate description of
a visual scene may in fact not be sufficient for
demonstrating a correct understanding of the rel-
evant visual content. Our task addresses this issue
by introducing a deep validation protocol for vi-
sual understanding, requiring not only providing
a surface description of a visual activity but also
demonstrating structural understanding at the lev-
els of syntax, semantics and discourse.

To enable the systematic study of visually
grounded processing of ambiguous language, we
create a new corpus, LAVA (Language and Vision
Ambiguities). This corpus contains sentences with
linguistic ambiguities that can only be resolved us-
ing external information. The sentences are paired
with short videos that visualize different interpre-
tations of each sentence. Our sentences encom-
pass a wide range of syntactic, semantic and dis-
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course ambiguities, including ambiguous preposi-
tional and verb phrase attachments, conjunctions,
logical forms, anaphora and ellipsis. Overall, the
corpus contains 237 sentences, with 2 to 3 inter-
pretations per sentence, and an average of 3.37
videos that depict visual variations of each sen-
tence interpretation, corresponding to a total of
1679 videos.

Using this corpus, we address the problem of
selecting the interpretation of an ambiguous sen-
tence that matches the content of a given video.
Our approach for tackling this task extends the
sentence tracker introduced in (Siddharth et al.,
2014). The sentence tracker produces a score
which determines if a sentence is depicted by a
video. This earlier work had no concept of ambi-
guities; it assumed that every sentence had a sin-
gle interpretation. We extend this approach to rep-
resent multiple interpretations of a sentence, en-
abling us to pick the interpretation that is most
compatible with the video.

To summarize, the contributions of this paper
are threefold. First, we introduce a new task for vi-
sually grounded language understanding, in which
an ambiguous sentence has to be disambiguated
using a visual depiction of the sentence’s con-
tent. Second, we release a multimodal corpus
of sentences coupled with videos which covers a
wide range of linguistic ambiguities, and enables
a systematic study of linguistic ambiguities in vi-
sual contexts. Finally, we present a computational
model which disambiguates the sentences in our
corpus with an accuracy of 75.36%.

2 Related Work

Previous language and vision studies focused on
the development of multimodal word and sentence
representations (Bruni et al., 2012; Socher et al.,
2013; Silberer and Lapata, 2014; Gong et al.,
2014; Lazaridou et al., 2015), as well as methods
for describing images and videos in natural lan-
guage (Farhadi et al., 2010; Kulkarni et al., 2011;
Mitchell et al., 2012; Socher et al., 2014; Thoma-
son et al., 2014; Karpathy and Fei-Fei, 2014; Sid-
dharth et al., 2014; Venugopalan et al., 2015;
Vinyals et al., 2015). While these studies handle
important challenges in multimodal processing of
language and vision, they do not provide explicit
modeling of linguistic ambiguities.

Previous work relating ambiguity in language to
the visual modality addressed the problem of word

sense disambiguation (Barnard et al., 2003). How-
ever, this work is limited to context independent
interpretation of individual words, and does not
consider structure-related ambiguities. Discourse
ambiguities were previously studied in work on
multimodal coreference resolution (Ramanathan
et al., 2014; Kong et al., 2014). Our work ex-
pands this line of research, and addresses further
discourse ambiguities in the interpretation of el-
lipsis. More importantly, to the best of our knowl-
edge our study is the first to present a systematic
treatment of syntactic and semantic sentence level
ambiguities in the context of language and vision.

The interactions between linguistic and visual
information in human sentence processing have
been extensively studied in psycholinguistics and
cognitive psychology (Tanenhaus et al., 1995). A
considerable fraction of this work focused on the
processing of ambiguous language (Spivey et al.,
2002; Coco and Keller, 2015), providing evidence
for the importance of visual information for lin-
guistic ambiguity resolution by humans. Such in-
formation is also vital during language acquisition,
when much of the linguistic content perceived by
the child refers to their immediate visual environ-
ment (Snow, 1972). Over time, children develop
mechanisms for grounded disambiguation of lan-
guage, manifested among others by the usage of
iconic gestures when communicating ambiguous
linguistic content (Kidd and Holler, 2009). Our
study leverages such insights to develop a com-
plementary framework that enables addressing the
challenge of visually grounded disambiguation of
language in the realm of artificial intelligence.

3 Task

In this work we provide a concrete framework
for the study of language understanding with vi-
sual context by introducing the task of grounded
language disambiguation. This task requires to
choose the correct linguistic representation of a
sentence given a visual context depicted in a video.
Specifically, provided with a sentence, n candidate
interpretations of that sentence and a video that
depicts the content of the sentence, one needs to
choose the interpretation that corresponds to the
content of the video.

To illustrate this task, consider the example in
figure 1, where we are given the sentence “Sam
approached the chair with a bag” along with two
different linguistic interpretations. In the first in-
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Figure 1: An example of the visually grounded
language disambiguation task. Given the sentence
“Sam approached the chair with a bag”, two poten-
tial parses, (a) and (b), correspond to two different
semantic interpretations. In the first interpretation
Sam has the bag, while in the second reading the
bag is on the chair. The task is to select the correct
interpretation given the visual context (c).

terpretation, which corresponds to parse 1(a), Sam
has the bag. In the second interpretation associ-
ated with parse 1(b), the bag is on the chair rather
than with Sam. Given the visual context from fig-
ure 1(c), the task is to choose which interpretation
is most appropriate for the sentence.

4 Approach Overview

To address the grounded language disambiguation
task, we use a compositional approach for deter-
mining if a specific interpretation of a sentence is
depicted by a video. In this framework, described
in detail in section 6, a sentence and an accom-
panying interpretation encoded in first order logic,
give rise to a grounded model that matches a video
against the provided sentence interpretation.

The model is comprised of Hidden Markov
Models (HMMs) which encode the semantics of
words, and trackers which locate objects in video
frames. To represent an interpretation of a sen-
tence, word models are combined with trackers
through a cross-product which respects the seman-
tic representation of the sentence to create a single
model which recognizes that interpretation.

Given a sentence, we construct an HMM based
representation for each interpretation of that sen-
tence. We then detect candidate locations for ob-
jects in every frame of the video. Together the re-
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Figure 2: Linguistic and visual interpretations of
the sentence “Bill held the green chair and bag”. In
the first interpretation (a,c) both the chair and bag
are green, while in the second interpretation (b,d)
only the chair is green and the bag has a different
color.

forestation for the sentence and the candidate ob-
ject locations are combined to form a model which
can determine if a given interpretation is depicted
by the video. We test each interpretation and re-
port the interpretation with highest likelihood.

5 Corpus

To enable a systematic study of linguistic ambi-
guities that are grounded in vision, we compiled
a corpus with ambiguous sentences describing vi-
sual actions. The sentences are formulated such
that the correct linguistic interpretation of each
sentence can only be determined using external,
non-linguistic, information about the depicted ac-
tivity. For example, in the sentence “Bill held
the green chair and bag”, the correct scope of
“green” can only be determined by integrating ad-
ditional information about the color of the bag.
This information is provided in the accompany-
ing videos, which visualize the possible interpreta-
tions of each sentence. Figure 2 presents the syn-
tactic parses for this example along with frames
from the respective videos. Although our videos
contain visual uncertainty, they are not ambiguous
with respect to the linguistic interpretation they are
presenting, and hence a video always corresponds
to a single candidate representation of a sentence.

The corpus covers a wide range of well
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known syntactic, semantic and discourse ambigu-
ity classes. While the ambiguities are associated
with various types, different sentence interpreta-
tions always represent distinct sentence meanings,
and are hence encoded semantically using first or-
der logic. For syntactic and discourse ambiguities
we also provide an additional, ambiguity type spe-
cific encoding as described below.

• Syntax Syntactic ambiguities include Prepo-
sitional Phrase (PP) attachments, Verb Phrase
(VP) attachments, and ambiguities in the in-
terpretation of conjunctions. In addition to
logical forms, sentences with syntactic am-
biguities are also accompanied with Context
Free Grammar (CFG) parses of the candidate
interpretations, generated from a determinis-
tic CFG parser.

• Semantics The corpus addresses several
classes of semantic quantification ambigui-
ties, in which a syntactically unambiguous
sentence may correspond to different logical
forms. For each such sentence we provide the
respective logical forms.

• Discourse The corpus contains two types
of discourse ambiguities, Pronoun Anaphora
and Ellipsis, offering examples comprising
two sentences. In anaphora ambiguity cases,
an ambiguous pronoun in the second sen-
tence is given its candidate antecedents in the
first sentence, as well as a corresponding log-
ical form for the meaning of the second sen-
tence. In ellipsis cases, a part of the second
sentence, which can constitute either the sub-
ject and the verb, or the verb and the object,
is omitted. We provide both interpretations
of the omission in the form of a single unam-
biguous sentence, and its logical form, which
combines the meanings of the first and the
second sentences.

Table 2 lists examples of the different ambiguity
classes, along with the candidate interpretations of
each example.

The corpus is generated using Part of Speech
(POS) tag sequence templates. For each template,
the POS tags are replaced with lexical items from
the corpus lexicon, described in table 3, using all
the visually applicable assignments. This gener-
ation process yields an overall of 237 sentences,

Ambiguity Templates #

Sy
nt

ax

PP NNP V DT [JJ] NN1 IN DT [JJ] NN2. 48

VP NNP1 V [IN] NNP2 V [JJ] NN. 60

Conjunction NNP1 [and NNP2] V DT JJ NN1 and NN2. 40
NNP V DT NN1 or DT NN2 and DT NN3.

Se
m

an
tic

s Logical Form NNP1 and NNP2 V a NN. 35
Someone V the NNS.

D
is

co
ur

se Anaphora NNP V DT NN1 and DT NN2. It is JJ. 36

Ellipsis NNP1 V NNP2. Also NNP3. 18

Table 1: POS templates for generating the sen-
tences in our corpus. The rightmost column rep-
resents the number of sentences in each category.
The sentences are produced by replacing the POS
tags with all the visually applicable assignments
of lexical items from the corpus lexicon shown in
table 3.

of which 213 sentences have 2 candidate interpre-
tations, and 24 sentences have 3 interpretations.
Table 1 presents the corpus templates for each am-
biguity class, along with the number of sentences
generated from each template.

The corpus videos are filmed in an indoor
environment containing background objects and
pedestrians. To account for the manner of per-
forming actions, videos are shot twice with differ-
ent actors. Whenever applicable, we also filmed
the actions from two different directions (e.g. ap-
proach from the left, and approach from the right).
Finally, all videos were shot with two cameras
from two different view points. Taking these vari-
ations into account, the resulting video corpus
contains 7.1 videos per sentence and 3.37 videos
per sentence interpretation, corresponding to a to-
tal of 1679 videos. The average video length is
3.02 seconds (90.78 frames), with in an overall of
1.4 hours of footage (152434 frames).

A custom corpus is required for this task be-
cause no existing corpus, containing either videos
or images, systematically covers multimodal am-
biguities. Datasets such as UCF Sports (Ro-
driguez et al., 2008), YouTube (Liu et al., 2009),
and HMDB (Kuehne et al., 2011) which come out
of the activity recognition community are accom-
panied by action labels, not sentences, and do not
control for the content of the videos aside from the
principal action being performed. Datasets for im-
age and video captioning, such as MSCOCO (Lin
et al., 2014) and TACOS (Regneri et al., 2013),
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Ambiguity Example Linguistic interpretations Visual setups

Sy
nt

ax
PP Claire left the green chair with

a yellow bag.
Claire [left the green chair] [with a yellow bag]. The bag is with Claire.

Claire left [the green chair with a yellow bag]. Bag is on the chair.
VP Claire looked at Bill picking

up a chair.
Claire looked at [Bill [picking up a chair]]. Bill picks up the chair.

Claire [looked at Bill] [picking up a chair]. Claire picks up the chair.
Conjunction Claire held a green bag and

chair.
Claire held a [green [bag and chair]]. The chair is green.

Claire held a [[green bag] and [chair]]. The chair is not green.
Claire held the chair or the
bag and the telescope.

Claire held [[the chair] or [the bag and the telescope]]. Claire holds the chair.

Claire held [[the chair or the bag] and [the telescope]]. Claire holds the chair and the telescope.

Se
m

an
tic

s

Logical Form Claire and Bill moved a chair. chair(x), move(Claire, x), move(Bill, x) Claire and Bill move the same chair.
chair(x), chair(y), move(Claire, x),
move(Bill, y), x 6= y

Claire and Bill move different chairs.

Someone moved the two
chairs.

chair(x), chair(y), x 6= y, person(u),
move(u, x), move(u, y)

One person moves both chairs.

chair(x), chair(y), x 6= y, person(u), person(v),
u 6= v, move(u, x), move(v, y)

Each chair moved by a different person.

D
is

co
ur

se

Anaphora Claire held the bag and the It = bag The bag is yellow.
chair. It is yellow. It = chair The chair is yellow.

Ellipsis Claire looked at Bill. Claire looked at Bill and Sam. Claire looks at Bill and Sam.
Also Sam. Claire and Sam looked at Bill. Claire and Sam look at Bill.

Table 2: An overview of the different ambiguity types, along with examples of ambiguous sentences
with their linguistic and visual interpretations. Note that similarly to semantic ambiguities, syntactic
and discourse ambiguities are also provided with first order logic formulas for the resulting sentence
interpretations. Table 4 shows additional examples for each ambiguity type, with frames from sample
videos corresponding to the different interpretations of each sentence.

Syntactic Category Visual Category Words
Nouns Objects, People chair, bag, telescope, someone, proper names

Verbs Actions pick up, put down, hold, move (transitive), look at, approach, leave

Prepositions Spacial Relations with, left of, right of, on

Adjectives Visual Properties yellow, green

Table 3: The lexicon used to instantiate the templates in figure 1 in order to generate the corpus.

aim to control for more aspects of the videos than
just the main action being performed but they do
not provide the range of ambiguities discussed
here. The closest dataset is that of Siddharth et al.
(2014) as it controls for object appearance, color,
action, and direction of motion, making it more
likely to be suitable for evaluating disambiguation
tasks. Unfortunately, that dataset was designed to
avoid ambiguities, and therefore is not suitable for
evaluating the work described here.

6 Model

To perform the disambiguation task, we extend
the sentence recognition model of Siddharth et
al. (2014) which represents sentences as compo-
sitions of words. Given a sentence, its first order
logic interpretation and a video, our model pro-
duces a score which determines if the sentence is
depicted by the video. It simultaneously tracks the
participants in the events described by the sentence
while recognizing the events themselves. This al-

lows it to be flexible in the presence of noise by
integrating top-down information from the sen-
tence with bottom-up information from object and
property detectors. Each word in the query sen-
tence is represented by an HMM (Baum et al.,
1970), which recognizes tracks (i.e. paths of de-
tections in a video for a specific object) that satisfy
the semantics of the given word. In essence, this
model can be described as having two layers, one
in which object tracking occurs and one in which
words observe tracks and filter tracks that do not
satisfy the word constraints.

Given a sentence interpretation, we construct
a sentence-specific model which recognizes if a
video depicts the sentence as follows. Each pred-
icate in the first order logic formula has a cor-
responding HMM, which can recognize if that
predicate is true of a video given its arguments.
Each variable has a corresponding tracker which
attempts to physically locate the bounding box
corresponding to that variable in each frame of a
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PP Attachment Sam looked at Bill with a telescope.

VP Attachment Bill approached the person holding a green chair.

Conjunction Sam and Bill picked up the yellow bag and chair.

Logical Form Someone put down the bags.

Anaphora Sam picked up the bag and the chair. It is yellow.

Ellipsis Sam left Bill. Also Clark.

Table 4: Examples of the six ambiguity classes described in table 2. The example sentences have at
least two interpretations, which are depicted by different videos. Three frames from each such video are
shown on the left and on the right below each sentence.
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track 1 track L

person person moved chair

agent1-track agent2-track patient-track

6=

person person moved chair

agent1-track agent2-track patient1-track patient2-track

6= 6=

Figure 3: (left) Tracker lattices for every sentence participant are combined with predicate HMMs. The
MAP estimate in the resulting cross-product lattice simultaneously finds the best tracks and the best state
sequences for every predicate. (right) Two interpretations of the sentence “Claire and Bill moved a chair”
having different first order logic formulas. The top interpretation corresponds to Bill and Claire moving
the same chair, while the bottom one describes them moving different chairs. Predicates are highlighted
in blue at the top and variables are highlighted in red at the bottom. Each predicate has a corresponding
HMM which recognizes its presence in a video. Each variable has a corresponding tracker which locates
it in a video. Lines connect predicates and the variables which fill their argument slots. Some predicates,
such as move and 6=, take multiple arguments. Some predicates, such as move, are applied multiple times
between different pairs of variables.

video. This creates a bipartite graph: HMMs that
represent predicates are connected to trackers that
represent variables. The trackers themselves are
similar to the HMMs, in that they comprise a lat-
tice of potential bounding boxes in every frame.
To construct a joint model for a sentence interpre-
tation, we take the cross product of HMMs and
trackers, taking only those cross products dictated
by the structure of the formula corresponding to
the desired interpretation. Given a video, we em-
ploy an object detector to generate candidate de-
tections in each frame, construct trackers which
select one of these detections in each frame, and fi-
nally construct the overall model from HMMs and
trackers.

Provided an interpretation and its correspond-
ing formula composed of P predicates and V vari-
ables, along with a collection of object detections,
bframe

detection index, in each frame of a video of length
T the model computes the score of the video-
sentence pair by finding the optimal detection for
each participant in every frame. This is in essence
the Viterbi algorithm (Viterbi, 1971), the MAP al-
gorithm for HMMs, applied to finding optimal ob-
ject detections jframe

variable for each participant, and the
optimal state kframe

predicate for each predicate HMM, in
every frame. Each detection is scored by its con-
fidence from the object detector, f and each ob-
ject track is scored by a motion coherence metric g
which determines if the motion of the track agrees
with the underlying optical flow. Each predicate,

p, is scored by the probability of observing a par-
ticular detection in a given state hp, and by the
probability of transitioning between states ap. The
structure of the formula and the fact that multi-
ple predicates often refer to the same variables is
recorded by θ, a mapping between predicates and
their arguments. The model computes the MAP
estimate as:

max
j11 ,..., jT1

...
j1V ,..., jTV

max
k1
1,..., kT1

...
k1
P ,..., kTP

V∑
v=1

T∑
t=1

f(btjtv ) +

T∑
t=2

g(bt−1

jt−1
v

, btjtv )+

P∑
p=1

T∑
t=1

hp(kt
p, b

t
jt
θ1p

, btjt
θ2p

) +

T∑
t=2

ap(kt−1
p , kt

p)

for sentences which have words that refer to at
most two tracks (i.e. transitive verbs or binary
predicates) but is trivially extended to arbitrary ar-
ities. Figure 3 provides a visual overview of the
model as a cross-product of tracker models and
word models.

Our model extends the approach of Siddharth et
al. (2014) in several ways. First, we depart from
the dependency based representation used in that
work, and recast the model to encode first order
logic formulas. Note that some complex first or-
der logic formulas cannot be directly encoded in
the model and require additional inference steps.
This extension enables us to represent ambiguities
in which a given sentence has multiple logical in-
terpretations for the same syntactic parse.
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Second, we introduce several model compo-
nents which are not specific to disambiguation, but
are required to encode linguistic constructions that
are present in our corpus and could not be handled
by the model of Siddharth et al. (2014). These new
components are the predicate “not equal”, disjunc-
tion, and conjunction. The key addition among
these components is support for the new predicate
“not equal”, which enforces that two tracks, i.e.
objects, are distinct from each other. For example,
in the sentence “Claire and Bill moved a chair”
one would want to ensure that the two movers are
distinct entities. In earlier work, this was not re-
quired because the sentences tested in that work
were designed to distinguish objects based on con-
straints rather than identity. In other words, there
might have been two different people but they
were distinguished in the sentence by their actions
or appearance. To faithfully recognize that two ac-
tors are moving the chair in the earlier example,
we must ensure that they are disjoint from each
other. In order to do this we create a new HMM
for this predicate, which assigns low probability
to tracks that heavily overlap, forcing the model to
fit two different actors in the previous example. By
combining the new first order logic based seman-
tic representation in lieu of a syntactic represen-
tation with a more expressive model, we can en-
code the sentence interpretations required to per-
form the disambiguation task.

Figure 3(left) shows an example of two differ-
ent interpretations of the above discussed sentence
“Claire and Bill moved a chair”. Object track-
ers, which correspond to variables in the first order
logic representation of the sentence interpretation,
are shown in red. Predicates which constrain the
possible bindings of the trackers, corresponding to
predicates in the representation of the sentence,
are shown in blue. Links represent the argument
structure of the first order logic formula, and de-
termine the cross products that are taken between
the predicate HMMs and tracker lattices in order
to form the joint model which recognizes the en-
tire interpretation in a video.

The resulting model provides a single unified
formalism for representing all the ambiguities in
table 2. Moreover, this approach can be tuned to
different levels of specificity. We can create mod-
els that are specific to one interpretation of a sen-
tence or that are generic, and accept multiple inter-
pretations by eliding constraints that are not com-

mon between the different interpretations. This al-
lows the model, like humans, to defer deciding on
a particular interpretation or to infer that multiple
interpretation of the sentence are plausible.

7 Experimental Results

We tested the performance of the model described
in the previous section on the LAVA dataset pre-
sented in section 5. Each video in the dataset was
pre-processed with object detectors for humans,
bags, chairs, and telescopes. We employed a mix-
ture of CNN (Krizhevsky et al., 2012) and DPM
(Felzenszwalb et al., 2010) detectors, trained on
held out sections of our corpus. For each object
class we generated proposals from both the CNN
and the DPM detectors, and trained a scoring func-
tion to map both results into the same space. The
scoring function consisted of a sigmoid over the
confidence of the detectors trained on the same
held out portion of the training set. As none of the
disambiguation examples discussed here rely on
the specific identity of the actors, we did not detect
their identity. Instead, any sentence which con-
tains names was automatically converted to one
which contains arbitrary “person” labels.

The sentences in our corpus have either two or
three interpretations. Each interpretation has one
or more associated videos where the scene was
shot from a different angle, carried out either by
different actors, with different objects, or in differ-
ent directions of motion. For each sentence-video
pair, we performed a 1-out-of-2 or 1-out-of-3 clas-
sification task to determine which of the interpre-
tations of the corresponding sentence best fits that
video. Overall chance performance on our dataset
is 49.04%, slightly lower than 50% due to the 1-
out-of-3 classification examples.

The model presented here achieved an accuracy
of 75.36% over the entire corpus averaged across
all error categories. This demonstrates that the
model is largely capable of capturing the under-
lying task and that similar compositional cross-
modal models may do the same. For each of the
3 major ambiguity classes we had an accuracy of
84.26% for syntactic ambiguities, 72.28% for se-
mantic ambiguities, and 64.44% for discourse am-
biguities.

The most significant source of model failures
are poor object detections. Objects are often ro-
tated and presented at angles that are difficult to
recognize. Certain object classes like the telescope
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are much more difficult to recognize due to their
small size and the fact that hands tend to largely
occlude them. This accounts for the degraded per-
formance of the semantic ambiguities relative to
the syntactic ambiguities, as many more seman-
tic ambiguities involved the telescope. Object de-
tector performance is similarly responsible for the
lower performance of the discourse ambiguities
which relied much more on the accuracy of the
person detector as many sentences involve only
people interacting with each other without any ad-
ditional objects. This degrades performance by re-
moving a helpful constraint for inference, accord-
ing to which people tend to be close to the objects
they are manipulating. In addition, these sentences
introduced more visual uncertainty as they often
involved three actors.

The remaining errors are due to the event mod-
els. HMMs can fixate on short sequences of events
which seem as if they are part of an action, but in
fact are just noise or the prefix of another action.
Ideally, one would want an event model which has
a global view of the action, if an object went up
from the beginning to the end of the video while
a person was holding it, it’s likely that the object
was being picked up. The event models used here
cannot enforce this constraint, they merely assert
that the object was moving up for some number of
frames; an event which can happen due to noise
in the object detectors. Enforcing such local con-
straints instead of the global constraint of the mo-
tion of the object over the video makes joint track-
ing and event recognition tractable in the frame-
work presented here but can lead to errors. Finding
models which strike a better balance between local
information and global constraints while maintain-
ing tractable inference remains an area of future
work.

8 Conclusion

We present a novel framework for studying am-
biguous utterances expressed in a visual context.
In particular, we formulate a new task for resolv-
ing structural ambiguities using visual signal. This
is a fundamental task for humans, involving com-
plex cognitive processing, and is a key challenge
for language acquisition during childhood. We
release a multimodal corpus that enables to ad-
dress this task, as well as support further inves-
tigation of ambiguity related phenomena in visu-
ally grounded language processing. Finally, we

present a unified approach for resolving ambigu-
ous descriptions of videos, achieving good perfor-
mance on our corpus.

While our current investigation focuses on
structural inference, we intend to extend this line
of work to learning scenarios, in which the agent
has to deduce the meaning of words and sentences
from structurally ambiguous input. Furthermore,
our framework can be beneficial for image and
video retrieval applications in which the query is
expressed in natural language. Given an ambigu-
ous query, our approach will enable matching and
clustering the retrieved results according to the dif-
ferent query interpretations.
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Abstract

We explore some of the practicalities
of using random walk inference meth-
ods, such as the Path Ranking Algorithm
(PRA), for the task of knowledge base
completion. We show that the random
walk probabilities computed (at great ex-
pense) by PRA provide no discernible
benefit to performance on this task, so they
can safely be dropped. This allows us
to define a simpler algorithm for gener-
ating feature matrices from graphs, which
we call subgraph feature extraction (SFE).
In addition to being conceptually simpler
than PRA, SFE is much more efficient, re-
ducing computation by an order of mag-
nitude, and more expressive, allowing for
much richer features than paths between
two nodes in a graph. We show experi-
mentally that this technique gives substan-
tially better performance than PRA and its
variants, improving mean average preci-
sion from .432 to .528 on a knowledge
base completion task using the NELL KB.

1 Introduction

Knowledge bases (KBs), such as Freebase (Bol-
lacker et al., 2008), NELL (Mitchell et al., 2015),
and DBPedia (Mendes et al., 2012) contain large
collections of facts about things, people, and
places in the world. These knowledge bases are
useful for various tasks, including training rela-
tion extractors and semantic parsers (Hoffmann et
al., 2011; Krishnamurthy and Mitchell, 2012), and
question answering (Berant et al., 2013). While
these knowledge bases may be very large, they are
still quite incomplete, missing large percentages
of facts about common or popular entities (West et
al., 2014; Choi et al., 2015). The task of knowl-
edge base completion—filling in missing facts by

examining the facts already in the KB, or by look-
ing in a corpus—is one attempt to mitigate the
problems of this knowledge sparsity.

In this work we examine one method for
performing knowledge base completion that is
currently in use: the Path Ranking Algorithm
(PRA) (Lao et al., 2011; Dong et al., 2014). PRA
is a method for performing link prediction in a
graph with labeled edges by computing feature
matrices over node pairs in the graph. The method
has a strong connection to logical inference (Gard-
ner et al., 2015), as the feature space considered by
PRA consists of a restricted class of horn clauses
found in the graph. While PRA can be applied
to any link prediction task in a graph, its primary
use has been in KB completion (Lao et al., 2012;
Gardner et al., 2013; Gardner et al., 2014).

PRA is a two-step process, where the first step
finds potential path types between node pairs to
use as features in a statistical model, and the sec-
ond step computes random walk probabilities as-
sociated with each path type and node pair (these
are the values in a feature matrix). This second
step is very computationally intensive, requiring
time proportional to the average out-degree of the
graph to the power of the path length for each cell
in the computed feature matrix. In this paper we
consider whether this computational effort is well-
spent, or whether we might more profitably spend
computation in other ways. We propose a new way
of generating feature matrices over node pairs in a
graph that aims to improve both the efficiency and
the expressivity of the model relative to PRA.

Our technique, which we call subgraph fea-
ture extraction (SFE), is similar to only doing the
first step of PRA. Given a set of node pairs in a
graph, we first do a local search to characterize
the graph around each node. We then run a set
of feature extractors over these local subgraphs to
obtain feature vectors for each node pair. In the
simplest case, where the feature extractors only
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look for paths connecting the two nodes, the fea-
ture space is equivalent to PRA’s, and this is the
same as running PRA and binarizing the resultant
feature vectors. However, because we do not have
to compute random walk probabilities associated
with each path type in the feature matrix, we can
extract much more expressive features, including
features which are not representable as paths in the
graph at all. In addition, we can do a more exhaus-
tive search to characterize the local graph, using a
breadth-first search instead of random walks. SFE
is a much simpler method than PRA for obtaining
feature matrices over node pairs in a graph. De-
spite its simplicity, however, we show experimen-
tally that it substantially outperforms PRA, both in
terms of running time and prediction performance.
SFE decreases running time over PRA by an order
of magnitude, it improves mean average precision
from .432 to .528 on the NELL KB, and it im-
proves mean reciprocal rank from .850 to .933.

In the remainder of this paper, we first describe
PRA in more detail. We then situate our meth-
ods in the context of related work, and provide ad-
ditional experimental motivation for the improve-
ments described in this paper. We then formally
define SFE and the feature extractors we used,
and finally we present an experimental compari-
son between PRA and SFE on the NELL KB. The
code and data used in this paper is available at
http://rtw.ml.cmu.edu/emnlp2015 sfe/.

2 The Path Ranking Algorithm

The path ranking algorithm was introduced by Lao
and Cohen (2010). It is a two-step process for gen-
erating a feature matrix over node pairs in a graph.
The first step finds a set of potentially useful path
types that connect the node pairs, which become
the columns of the feature matrix. The second step
then computes the values in the feature matrix by
finding random walk probabilities as described be-
low. Once the feature matrix has been computed,
it can be used with whatever classification model
is desired (or even incorporated as one of many
factors in a structured prediction model), though
almost all prior work with PRA simply uses logis-
tic regression.

More formally, consider a graph G with nodes
N , edges E , and edge labels R, and a set of node
pairs (sj , tj) ∈ D that are instances of some rela-
tionship of interest. PRA will generate a feature
vector for each (sj , tj) pair, where each feature is

some sequence of edge labels -e1-e2-. . .-el-. If the
edge sequence, or path type, corresponding to the
feature exists between the source and target nodes
in the graph, the value of that feature in the feature
vector will be non-zero.

Because the feature space considered by PRA
is so large,1 and because computing the feature
values is so computationally intensive, the first
step PRA must perform is feature selection, which
is done using random walks over the graph. In
this step of PRA, we find path types π that are
likely to be useful in predicting new instances of
the relation represented by the input node pairs.
These path types are found by performing random
walks on the graph G starting at the source and
target nodes in D and recording which paths con-
nect some source node with its target.2 Note that
these are two-sided, unconstrained random walks:
the walks from sources and targets can be joined
on intermediate nodes to get a larger set of paths
that connect the source and target nodes. Once
connectivity statistics have been computed in this
way, k path types are selected as features. Lao et
al. (2011) use measures of the precision and recall
of each feature in this selection, while Gardner et
al. (2014) simply pick those most frequently seen.

Once a set of path features has been selected,
the second step of PRA is to compute values for
each cell in the feature matrix. Recall that rows
in this matrix correspond to node pairs, and the
columns correspond to the path types found in the
first step. The cell value assigned by PRA is the
probability of arriving at the target node of a node
pair, given that a random walk began at the source
node and was constrained to follow the path type:
p(t|s, π). There are several ways of computing
this probability. The most straightforward method
is to use a path-constrained breadth-first search to
exhaustively enumerate all possible targets given a
source node and a path type, count how frequently
each target is seen, and normalize the distribution.
This calculates the desired probability exactly, but
at the cost of doing a breadth-first search (with

1The feature space consists of the set of all possible edge
label sequences, with cardinality

∑l

i=1
|R|i, assuming a

bound l on the maximum path length.
2A deterministic algorithm, such as a breadth-first search,

could obviously be used here instead of random walks, and
indeed Lao’s original work did use a more exhaustive search.
However, when moving to the larger graphs corresponding
to the NELL and Freebase KBs, Lao (2011) (and all future
work) switched to using random walks, because the graph
was too large.
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complexity proportional to the average per-edge-
label out-degree to the power of the path length)
per source node per path type.

There are three methods that can potentially re-
duce the computational complexity of this proba-
bility calculation. The first is to use random walks
to approximate the probability via rejection sam-
pling: for each path type and source node, a num-
ber of random walks are performed, attempting
to follow the edge sequence corresponding to the
path type. If a node is reached where it is no
longer possible to follow the path type, the ran-
dom walk is restarted. This does not reduce the
time necessary to get an arbitrarily good approxi-
mation, but it does allow us to decrease computa-
tion time, even getting a fixed complexity, at the
cost of accepting some error in our probability es-
timates. Second, Lao (2012) showed that when the
target node of a query is known, the exponent can
be cut in half by using a two-sided BFS. In this
method, some careful bookkeeping is done with
dynamic programming such that the probability
can be computed correctly when the two-sided
search meets at an intermediate node. Lao’s dy-
namic programming technique is only applicable
when the target node is known, however, and only
cuts the exponent in half—this is still quite compu-
tationally intensive. Lastly, we could replace the
BFS with a multiplication of adjacency matrices,
which performs the same computation. The effi-
ciency gain comes from the fact that we can just
do the multiplication once per path type, instead of
once per path type per source node. However, to
correctly compute the probabilities for a (source,
target) pair, we need to exclude from the graph the
edge connecting that training instance. This means
that the matrix computed for each path type should
be different for each training instance, and so we
either lose our efficiency gain or we accept incor-
rect probability estimates. In this work we use the
rejection sampling technique.

As mentioned above, once the feature matrix
has been computed in the second step of PRA, one
can use any kind of classifier desired to learn a
model and make predictions on test data.

3 Related Work

The task of knowledge base completion has seen
a lot of attention in recent years, with entire work-
shops devoted to it (Suchanek et al., 2013). We
will touch on three broad categories related to KB

completion: the task of relation extraction, embed-
ding methods for KB completion, and graph meth-
ods for KB completion.

Relation extraction. Relation extraction and
knowledge base completion have the same goal:
to predict new instances of relations in a formal
knowledge base such as Freebase or NELL. The
difference is that relation extraction focuses on de-
termining what relationship is expressed by a par-
ticular sentence, while knowledge base comple-
tion tries to predict which relationships hold be-
tween which entities. A relation extraction system
can be used for knowledge base completion, but
typical KB completion methods do not make pre-
dictions on single sentences. This is easily seen
in the line of work known as distantly-supervised
relation extraction (Mintz et al., 2009; Hoffmann
et al., 2011; Surdeanu et al., 2012); these models
use the relation instances in a knowledge base as
their only supervision, performing some heuristic
mapping of the entities in text to the knowledge
base, then using that mapping to train extractors
for each relation in the KB. The cost of using these
methods is that is it generally difficult to incorpo-
rate richer features from the knowledge base when
predicting whether a particular sentence expresses
a relation, and so techniques that make fuller use
of the KB can perform better on the KB comple-
tion task (Weston et al., 2013; Riedel et al., 2013).

Embedding methods for KB completion.
There has been much recent work that attempts
to perform KB completion by learning an embed-
ded representation of entities and relations in the
KB and then using these representations to infer
missing relationships. Some of earliest work along
these lines were the RESCAL model (Nickel et al.,
2011) and Structured Embeddings (Bordes et al.,
2011). These were soon followed by TransE (Bor-
des et al., 2013), Neural Tensor Networks (Socher
et al., 2013), and many variants on all of these
algorithms (Chang et al., 2014; Garcı́a-Durán et
al., 2014; Wang et al., 2014). These methods
perform well when there is structural redundancy
in the knowledge base tensor, but when the ten-
sor (or individual relations in the tensor) has high
rank, learning good embeddings can be challeng-
ing. The ARE model (Nickel et al., 2014) at-
tempted to address this by only making the em-
beddings capture the residual of the tensor that
cannot be readily predicted from the graph-based
techniques mentioned below.
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Dataset Method MAP

Freebase
Probabilities .337
Binarized .344

NELL
Probabilities .303
Binarized .319

Table 1: Using binary feature values instead of
random walk probabilities gives statistically in-
distinguishable performance. The p-value on the
Freebase data is .55, while it is .25 for NELL.

Graph-based methods for KB completion. A
separate line of research into KB completion can
be broadly construed as performing some kind of
inference over graphs in order to predict missing
instances in a knowledge base. Markov logic net-
works (Richardson and Domingos, 2006) fall into
this category, as does ProPPR (Wang et al., 2013)
and many other logic-based systems. PRA, the
main subject of this paper, also fits in this line
of work. Work specifically with PRA has ranged
from incorporating a parsed corpus as additional
evidence when doing random walk inference (Lao
et al., 2012), to introducing better representations
of the text corpus (Gardner et al., 2013; Gardner
et al., 2014), and using PRA in a broader context
as part of Google’s Knowledge Vault (Dong et al.,
2014). An interesting piece of work that combines
embedding methods with graph-based methods is
that of Neelakantan et al. (2015), which uses a re-
cursive neural network to create embedded repre-
sentations of PRA-style paths.

4 Motivation

We motivate our modifications to PRA with three
observations. First, it appears that binarizing the
feature matrix produced by PRA, removing most
of the information gained in PRA’s second step,
has no significant impact on prediction perfor-
mance in knowledge base completion tasks. We
show this on the NELL KB and the Freebase KB in
Table 1.3 The fact that random walk probabilities
carry no additional information for this task over
binary features is surprising, and it shows that the
second step of PRA spends a lot of its computation
for no discernible gain in performance.

Second, Neelakantan et al. (2015) presented ex-

3The NELL data and experimental protocol is described
in Section 6.1. The Freebase data consists of 24 relations
from the Freebase KB; we used the same data used by Gard-
ner et al. (2014).

periments showing a substantial increase in perfor-
mance from using a much larger set of features in
a PRA-like model.4 All of their experiments used
binary features, so this is not a direct comparison
of random walk probabilities versus binarized fea-
tures, but it shows that increasing the feature size
beyond the point that is computationally feasible
with random walk probabilities seems useful. Ad-
ditionally, they showed that using path bigram fea-
tures, where each sequential pair of edges types in
each path was added as an additional feature to the
model, gave a significant increase in performance.
These kind of features are not representable in the
traditional formulation of PRA.

Lastly, the method used to compute the random
walk probabilities—rejection sampling—makes
the inclusion of more expressive features problem-
atic. Consider the path bigrams mentioned above;
one could conceivably compute a probability for a
path type that only specifies that the last edge type
in the path must be r, but it would be incredibly
inefficient with rejection sampling, as most of the
samples would end up rejected (leaving aside the
additional issues of an unspecified path length). In
contrast, if the features simply signify whether a
particular path type exists in the graph, without
any associated probability, these kinds of features
are very easy to compute.

Given this motivation, our work attempts to im-
prove both the efficiency and the expressivity of
PRA by removing the second step of the algo-
rithm. Efficiency is improved because the sec-
ond step is the most computationally expensive,
and expressivity is improved by allowing features
that cannot be reasonably computed with rejec-
tion sampling. We show experimentally that the
techniques we introduce do indeed improve per-
formance quite substantially.

5 Subgraph Feature Extraction

In this section we discuss how SFE constructs fea-
ture matrices over node pairs in a graph using
just a single search over the graph for each node
(which is comparable to only using the first step
of PRA). As outlined in Section 2, the first step
of PRA does a series of random walks from each
source and target node (sj , tj) in a dataset D. In

4Note that while Neelakantan et al. called the baseline
they were comparing to “PRA”, they only used the first step
of the algorithm to produce path types, and thus did not really
compare against PRA per se. It is their version of “PRA” that
we formalize and expand as SFE in this work.

1491



PRA these random walks are used to find a rela-
tively small set of potentially useful path types for
which more specific random walk probabilities are
then computed, at great expense. In our method,
subgraph feature extraction (SFE), we stop after
this first set of random walks and instead construct
a binary feature matrix.

More formally, for each node n in the data
(where n could be either a source node or a target
node), SFE constructs a subgraph centered around
that node using k random walks. Each random
walk that leaves n follows some path type π and
ends at some intermediate node i. We keep all
of these (π, i) pairs as the characterization of the
subgraph around n, and we will refer to this sub-
graph as Gn. To construct a feature vector for
a source-target pair (sj , tj), SFE takes the sub-
graphs Gsj and Gtj and merges them on the in-
termediate nodes i. That is, if an intermediate
node i is present in both Gsj and Gtj , SFE takes
the path types π corresponding to i and combines
them (reversing the path type coming from the tar-
get node tj). If some intermediate node for the
source sj happens to be tj , no combination of path
types is necessary (and similarly if an intermediate
node for the target tj is sj—the path only needs to
be reversed in this case). This creates a feature
space that is exactly the same as that constructed
by PRA: sequences of edge types that connect a
source node to a target node. To construct the fea-
ture vector SFE just takes all of these combined
path types as binary features for (sj , tj). Note,
however, that we need not restrict ourselves to
only using the same feature space as PRA; Sec-
tion 5.1 will examine extracting more expressive
features from these subgraphs.

This method for generating a feature matrix
over node pairs in a graph is much simpler and less
computationally expensive than PRA, and from
looking at Table 1 we would expect that it would
perform on par with PRA with drastically reduced
computation costs. Some experimentation shows
that it is not that simple. Table 2 shows a com-
parison between PRA and SFE on 10 NELL rela-
tions.5 SFE has a higher mean average precision,
but the difference is not statistically significant.
There is a large variance in SFE’s performance,
and on some relations PRA performs better.

We examined the feature matrices computed
5The data and evaluation methods are described more

fully in Section 6.1. These experiments were conducted on
a different development split of the same data.

Method MAP Ave. Features
PRA .3704 835
SFE .4007 8275

Table 2: Comparison of PRA and SFE on 10
NELL relations. The difference shown is not sta-
tistically significant.

by these methods and discovered that the reason
for the inconsistency of SFE’s improvement is
because its random walks are all unconstrained.
Consider the case of a node with a very high de-
gree, say 1000. If we only do 200 random walks
from this node, we cannot possibly get a complete
characterization of the graph even one step away
from the node. If a particularly informative path is
<CITYINSTATE, STATEINCOUNTRY>, and both
the city from which a random walk starts and the
intermediate state node have very high degree, the
probability of actually finding this path type using
unconstrained random walks is quite low. This is
the benefit gained by the path-constrained random
walks performed by PRA; PRA leverages training
instances with relatively low degree and aggrega-
tion across a large number of instances to find path
types that are potentially useful. Once they are
found, significant computational effort goes into
discovering whether each path type exists for all
(s, t) pairs. It is this computational effort that
allows the path type <CITYINSTATE, STATEIN-
COUNTRY> to have a non-zero value even for
very highly connected nodes.

How do we mitigate this issue, so that SFE can
consistently find these path types? It seems the
only option without resorting to a similar two-step
process to what PRA uses is to do a more exhaus-
tive search. PRA uses random walks to improve
scalability on very large graphs, particularly be-
cause the second step of the algorithm is so ex-
pensive. However, if we are only doing a single
search, and the graph fits in memory, a few steps of
a breadth-first search (BFS) per node is not infea-
sible. We can make the BFS more tractable by ex-
cluding edge types whose fan out is too high. For
example, at a type node in Freebase, there could be
thousands of edges of type /TYPE/OBJECT/TYPE;
if there are a large number of edges of the same
type leaving a node, we do not include those edges
in the BFS. Note that because the type node will
still be counted as an intermediate node in the sub-
graph, we can still find paths that go through that
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Method MAP Ave. Features Time
PRA .3704 835 44 min.
SFE-RW .4007 8275 6 min.
SFE-BFS .4799 237853 5 min.

Table 3: Comparison of PRA and SFE (with PRA-
style features) on 10 NELL relations. SFE-RW is
not statistically better than PRA, but SFE-BFS is
(p < 0.05).

node; we just do not continue searching if the out-
degree of a particular edge type is too high.

When using a BFS instead of random walks to
obtain the subgraphs Gsj and Gtj for each node
pair, we saw a dramatic increase in the number of
path type features found and a substantial increase
in performance.6 These results are shown in Ta-
ble 3; SFE-RW is our SFE implementation using
random walks, and SFE-BFS uses a BFS.

5.1 More expressive features
The description above shows how to recreate the
feature space used by PRA using our simpler sub-
graph feature extraction technique. As we have
mentioned, however, we need not restrict our-
selves to merely recreating PRA’s feature space.
Eliminating random walk probabilities allows us
to extract a much richer set of features from the
subgraphs around each node, and here we present
the feature extractors we have experimented with.
Figure 1 contains an example graph that we will
refer to when describing these features.

PRA-style features. We explained these fea-
tures in Section 5, but we repeat them here for con-
sistency, and use the example to make the feature
extraction process more clear. Relying on the no-
tation introduced earlier, these features are gener-
ated by intersecting the subgraphs Gs and Gt on
the intermediate nodes. That is, when the sub-
graphs share an intermediate node, we combine
the path types found from the source and target to
that node. In the example in Figure 1, there are two
common intermediate nodes (“Barack Obama”
and “Michelle Obama”), and combining the path
types corresponding to those nodes gives the same
path type: -ALIAS-“is married to”-ALIAS-1-.

Path bigram features. In Section 4, we
mentioned that Neelakantan et al. (2015) experi-
mented with using path bigrams as features. We

6One should not read too much into the decrease in run-
ning time between SFE-RW and SFE-BFS, however, as it was
mostly an implementation detail.

/m/Barack Obama /m/Michelle Obama

“Barack Obama” “Michelle Obama”

/m/Male /m/Female

ALIAS

GENDER

ALIAS

GENDER

“is married to”

Subgraph for /m/Barack Obama
π i

-ALIAS- “Barack Obama”
-GENDER- /m/Male

-ALIAS-“is married to”- “Michelle Obama”

Subgraph for /m/Michelle Obama
π i

-ALIAS- “Michelle Obama”
-GENDER- /m/Female

-ALIAS-“is married to”-1- “Barack Obama”

Figure 1: An example graph, with subgraphs ex-
tracted for two nodes.

include those features here as well. For any path
π between a source node s and a target node t, we
create a feature for each relation bigram in the path
type. In the example in Figure 1, this would result
in the features “BIGRAM:@START@-ALIAS”,
“BIGRAM:ALIAS-is married to”, “BIGRAM:is
married to-ALIAS”, and “BIGRAM:ALIAS-
@END@”.

One-sided features. We use one-sided path to
describe a sequence of edges that starts at a source
or target node in the data, but does not necessarily
terminate at a corresponding target or source node,
as PRA features do. Following the notation intro-
duced in Section 5, we use as features each (π,
i) pair in the subgraph characterizations Gs and
Gt, along with whether the feature came from the
source node or the target node. The motivation
for these one-sided path types is to better model
which sources and targets are good candidates for
participating in a particular relation. For example,
not all cities participate in the relation CITYCAPI-
TALOFCOUNTRY, even though the domain of the
relation is all cities. A city that has a large number
of sports teams may be more likely to be a capi-
tal city, and these one-sided features could easily
capture that kind of information.

Example one-sided features from the ex-
ample in Figure 1 would be “SOURCE:-
GENDER-:male”, “TARGET:-GENDER-:female”,
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“SOURCE:-ALIAS-:Barack Obama”, and
“SOURCE:-ALIAS-is married to-:Michelle
Obama”.

One-sided feature comparisons. We can ex-
pand on the one-sided features introduced above
by allowing for comparisons of these features in
certain circumstances. For example, if both the
source and target nodes have an age or gender en-
coded in the graph, we might profitably use com-
parisons of these values to make better predictions.

Drawing again on the notation from Section 5,
we can formalize these features as analogous to
the pairwise PRA features. To get the PRA
features, we intersect the intermediate nodes i
from the subgraphs Gs and Gt, and combine the
path types π when we find common intermediate
nodes. To get these comparison features, we in-
stead intersect the subgraphs on the path types,
and combine the intermediate nodes when there
are common path types. That is, if we see a com-
mon path type, such as -GENDER-, we will con-
struct a feature representing a comparison between
the intermediate node for the source and the target.
If the values are the same, this information can be
captured with a PRA feature, but it cannot be eas-
ily captured by PRA when the values are different.

In the example in Figure 1, there are two
common path types: -ALIAS-, and -GENDER-
. The feature generated from the path type -
GENDER- would be “COMPARISON:-GENDER-
:/m/Male:/m/Female”.

Vector space similarity features. Gardner et
al. (2014) introduced a modification of PRA’s ran-
dom walks to incorporate vector space similarity
between the relations in the graph. On the data
they were using, a graph that combined a formal
knowledge base with textual relations extracted
from text, they found that this technique gave a
substantial performance improvement. The vector
space random walks only affected the second step
of PRA, however, and we have removed that step
in SFE. While it is not as conceptually clean as
the vector space random walks, we can obtain a
similar effect with a simple feature transformation
using the vectors for each relation. We obtain vec-
tor representations of relations through factoriza-
tion of the knowledge base tensor as did Gardner
et al., and replace each edge type in a PRA-style
path with edges that are similar to it in the vec-
tor space. We also introduce a special “any edge”
symbol, and say that all other edge types are simi-

lar to this edge type.
To reduce the combinatorial explosion of the

feature space that this feature extractor cre-
ates, we only allow replacing one relation at
a time with a similar relation. In the ex-
ample graph in Figure 1, and assuming that
“spouse of” is found to be similar to “is mar-
ried to”, some of the features extracted would be
the following: “VECSIM:-ALIAS-is married to-
ALIAS-”, “VECSIM:-ALIAS-spouse of-ALIAS-”,
“VECSIM:-ALIAS-@ANY REL@-ALIAS-”, and
“VECSIM:-@ANY REL@-is married to-ALIAS-
”. Note that the first of those features, “VECSIM:-
ALIAS-is married to-ALIAS-”, is necessary even
though it just duplicates the original PRA-style
feature. This allows path types with different but
similar relations to generate the same features.

Any-Relation features. It turns out that
much of the benefit gained from Gardner et
al.’s vector space similarity features came from
allowing any path type that used a surface edge
to match any other surface edge with non-zero
probability.7 To test whether the vector space
similarity features give us any benefit over just
replacing relations with dummy symbols, we
add a feature extractor that is identical to the
one above, assuming an empty vector similarity
mapping. The features extracted from Figure 1
would thus be “ANYREL:-@ANY REL@-
is married to-ALIAS”, “ANYREL:-ALIAS-
@ANY REL@-ALIAS”, “ANYREL:-ALIAS-is
married to-@ANY REL@”.

6 Experiments

Here we present experimental results evaluating
the feature extractors we presented, and a com-
parison between SFE and PRA. As we showed in
Section 5 that using a breadth-first search to ob-
tain subgraphs is superior to using random walks,
all of the experiments presented here use the BFS
implementation of SFE.

6.1 Data

To evaluate SFE and the feature extractors we in-
troduced, we learned models for 10 relations in
the NELL KB. We used the same data as Gardner
et al. (2014), using both the formal KB relations
and the surface relations extracted from text in our

7Replacing all surface edges with a single dummy rela-
tion gives performance close to vector space PRA. The vec-
tor space walks do statistically outperform this, but the extra
gain is small.
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graph. We used logistic regression with elastic net
(L1 and L2) regularization. We tuned the L1 and
L2 parameters for each method on a random de-
velopment split of the data, then used a new split
of the data to run the final tests presented here.

The evaluation metrics we use are mean aver-
age precision (MAP) and mean reciprocal rank
(MRR). We judge statistical significance using a
paired permutation test, where the average preci-
sion8 on each relation is used as paired data.

6.2 On Obtaining Negative Evidence

One important practical issue for most uses of
PRA is the selection of negative examples for
training a model. Typically a knowledge base only
contains positive examples of a relation, and it is
not clear a priori what the best method is for ob-
taining negative evidence. Prior work with PRA
makes a closed world assumption, treating any (s,
t) pair not seen in the knowledge base as a negative
example. Negative instances are selected when
performing the second step of PRA—if a random
walk from a source ends at a target that is not a
known correct target for that source, that source-
target pair is used as a negative example.

SFE only scores (source, target) pairs; it has no
mechanism similar to PRA’s that will find poten-
tial targets given a source node. We thus need
a new way of finding negative examples, both at
training time and at test time. We used a simple
technique to find negative examples from a graph
given a set of positive examples, and we used
this to obtain the training and testing data used in
the experiments below. Our technique takes each
source and target node in the given positive exam-
ples and finds other nodes in the same category
that are close in terms of personalized page rank
(PPR). We then sample new (source, target) pairs
from these lists of similar nodes, weighted by their
PPR score (while also allowing the original source
and target to be sampled). These become our neg-
ative examples, both at training and at testing time.

Because this is changing the negative evidence
available to PRA at training time, we wanted to be
sure we were not unfairly hindering PRA in our
comparisons. If it is in fact better to let PRA find
its own negative examples at training time, instead
of the ones sampled based on personalized page
rank, then we should let PRA get its own nega-

8Average precision is equivalent to the area under a preci-
sion/recall curve.

Method MAP
PRA’s random walks .359
PPR-based sampling .363

Table 4: Comparing methods for obtaining nega-
tive evidence available at training time. The differ-
ence seen is not statistically significant (p = .77).

tive evidence. We thus ran an experiment to see
under which training regime PRA performs bet-
ter. We created a test set with both positive and
negative examples as described in the paragraph
above, and at training time we compared two tech-
niques: (1) letting PRA find its own negative ex-
amples through its random walks, and (2) only
using the negative examples selected by PPR. As
can be seen in Table 4, the difference between the
two training conditions is very small, and it is not
statistically significant. Because there is no sig-
nificant difference between the two conditions, in
the experiments that follow we give both PRA and
SFE the same training data, created through the
PPR-based sampling technique described above.

6.3 Results
We first examine the effect of each of the fea-
ture types introduced in Section 5.1. The results
are shown in Table 5. We can see that, for this
data, the comparisons and one-sided features did
not improve performance (and the decreases are
not statistically significant). Bigram features do
appear to improve performance, though the im-
provement was not consistent enough across rela-
tions to achieve statistical significance. The vector
similarity features do improve performance, with
p-values hovering right at 0.05 when comparing
against only PRA features and PRA + bigram fea-
tures. The any rel features, however, do statisti-
cally improve over all other methods (p <= 0.01)
except the PRA + vec sim result (p = .21).

Finally, we present a comparison between PRA,
PRA with vector space random walks, and the best
SFE result from the ablation study. This is shown
in Table 6. SFE significantly outperforms PRA,
both with and without the vector space random
walks presented by Gardner et al. (2014).

6.4 Discussion
When using only PRA-style features with SFE,
the highest weighted features were almost always
those of the form -ALIAS-[some textual relation]-
ALIAS-1-. For example, for the relation WRITER-
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Feature Types MAP MRR Features
PRA-style features .431 .806 240k
+ Comparisons .405 .833 558k
+ One-sided .389 .800 1,227k
+ One-sided + Comps. .387 .817 1,544k
+ Bigrams .483 1.00 320k
+ Vector similarity .514 .910 3,993k
+ Bigrams + vec sim. .490 .950 4,073k
+ Any Rel .528 .933 649k

Table 5: SFE feature ablation study. All rows use
PRA features. PRA + any rel is statistically better
than all other methods except PRA + vec sim, and
most of the other differences are not significant.

Method MAP MRR
PRA .362 .717
Vector space PRA .432 .850
SFE (PRA + any rel features) .528 .933

Table 6: Results of final comparison between SFE
and PRA, with and without vector space similarity
features. SFE is statistically better than both PRA
methods (p < 0.005).

WROTEBOOK, the textual relations used in this
feature might be “wrote”, “describes in”, “writes
in”, and “expresses in”. These are the same fea-
ture types that PRA itself finds to have the high-
est weight, also, though SFE finds many more of
them than PRA does, as PRA has to do aggres-
sive feature selection. For this particular dataset,
where the graph consists of edges from a formal
KB mixed with edges from extracted textual rela-
tions, these kinds of features are by far the most
useful, and most of the improvements seen by the
additional feature types we used with SFE come
from more compactly encoding these features.

For example, the path bigram features can en-
code the fact that there exists a path from the
source to the target that begins or ends with an
ALIAS edge. This captures in just two features
all path types of the form -ALIAS-[some textual
relation]-ALIAS-1-, and those two bigram features
are almost always the highest weighted features in
models where they are used.

However, the bigram features do not capture
those path types exactly. The Any-Rel features
were designed in part specifically for this path
type, and they capture it exactly with a single fea-
ture. For all 10 relations, the feature “ANYREL:-
ALIAS-@ANY REL@-ALIAS-1” is the highest

weighted feature. This is because, for the relations
we experimented with, knowing that some rela-
tionship is expressed in text between a particular
pair of KB entities is a very strong indication of a
single KB relation. There are only so many possi-
ble relationships between cities and countries, for
instance. These features are much less informative
between entity types where more than one relation
is possible, such as between people.

While the bigram and any-rel features capture
succintly whether textual relations are present be-
tween two entities, the one-sided features are more
useful for determining whether an entity fits into
the domain or range of a particular relation. We
saw a few features that did this, capturing fine-
grained entity types. Most of the features, how-
ever, tended towards memorizing (and thus over-
fitting) the training data, as these features con-
tained the names of the training entities. We be-
lieve this overfitting to be the main reason these
features did not improve performance, along with
the fact that the relations we tested do not need
much domain or range modeling (as opposed to,
e.g., SPOUSEOF or CITYCAPITALOFCOUNTRY).

7 Conclusion

We have explored several practical issues that
arise when using the path ranking algorithm for
knowledge base completion. An analysis of sev-
eral of these issues led us to propose a sim-
pler algorithm, which we called subgraph fea-
ture extraction, which characterizes the subgraph
around node pairs and extracts features from that
subgraph. SFE is both significantly faster and
performs better than PRA on this task. We
showed experimentally that we can reduce run-
ning time by an order of magnitude, while at
the same time improving mean average preci-
sion from .432 to .528 and mean reciprocal rank
from .850 to .933. This thus constitutes the
best published results for knowledge base com-
pletion on NELL data. The code and data used
in the experiments in this paper are available at
http://rtw.ml.cmu.edu/emnlp2015 sfe/.
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Abstract

Models that learn to represent textual and
knowledge base relations in the same con-
tinuous latent space are able to perform
joint inferences among the two kinds of re-
lations and obtain high accuracy on knowl-
edge base completion (Riedel et al., 2013).
In this paper we propose a model that cap-
tures the compositional structure of tex-
tual relations, and jointly optimizes entity,
knowledge base, and textual relation rep-
resentations. The proposed model signifi-
cantly improves performance over a model
that does not share parameters among tex-
tual relations with common sub-structure.

1 Introduction

Representing information about real-world enti-
ties and their relations in structured knowledge
base (KB) form enables numerous applications.
Large, collaboratively created knowledge bases
have recently become available e.g., Freebase
(Bollacker et al., 2008), YAGO (Suchanek et al.,
2007), and DBPedia (Auer et al., 2007), but even
though they are impressively large, their coverage
is far from complete. This has motivated research
in automatically deriving new facts to extend a
manually built knowledge base, by using infor-
mation from the existing knowledge base, textual
mentions of entities, and semi-structured data such
as tables and web forms (Nickel et al., 2015).

In this paper we build upon the work of Riedel
et al. (2013), which jointly learns continuous rep-
resentations for knowledge base and textual rela-
tions. This common representation in the same
vector space can serve as a kind of “universal
schema” which admits joint inferences among

∗This research was conducted during the author’s intern-
ship at Microsoft Research.

Knowledge Base

Barack 
Obama

United 
States

Honolulu

Textual Mentions

Barack Obama is the 44th and current 
President of United States.

Obama was born in the United States 
just as he has always said.

…

ClueWeb

place_of_birth
city_of

nationality

Figure 1: A knowledge base fragment coupled with textual
mentions of pairs of entities.

KBs and text. The textual relations represent the
relationships between entities expressed in indi-
vidual sentences (see Figure 1 for an example).
Riedel et al. (2013) represented each textual men-
tion of an entity pair by the lexicalized depen-
dency path between the two entities (see Figure 2).
Each such path is treated as a separate relation in
a combined knowledge graph including both KB
and textual relations. Following prior work in la-
tent feature models for knowledge base comple-
tion, every textual relation receives its own contin-
uous representation, learned from the pattern of its
co-occurrences in the knowledge graph.

However, largely synonymous textual relations
often share common sub-structure, and are com-
posed of similar words and dependency arcs.
For example, Table 1 shows a collection of
dependency paths co-occurring with the per-
son/organizations founded relation.

In this paper we model this sub-structure
and share parameters among related dependency
paths, using a unified loss function learning entity
and relation representations to maximize perfor-
mance on the knowledge base link prediction task.

We evaluate our approach on the FB15k-237
dataset, a knowledge base derived from the Free-
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base subset FB15k (Bordes et al., 2013) and
filtered to remove highly redundant relations
(Toutanova and Chen, 2015). The knowledge base
is paired with textual mentions for all entity pairs
derived from ClueWeb121 with Freebase entity
mention annotations (Gabrilovich et al., 2013).

We show that using a convolutional neural net-
work to derive continuous representations for tex-
tual relations boosts the overall performance on
link prediction, with larger improvement on entity
pairs that have textual mentions.

2 Related Work

There has been a growing body of work on learn-
ing to predict relations between entities without re-
quiring sentence-level annotations of textual men-
tions at training time. We group such related work
into three groups based on whether KB, text, or
both sources of information are used. Addition-
ally, we discuss related work in the area of super-
vised relation extraction using continuous repre-
sentations of text, even though we do not use su-
pervision at the level of textual mentions.

Knowledge base completion

Nickel et al. (2015) provide a broad overview of
machine learning models for knowledge graphs,
including models based on observed graph fea-
tures such as the path ranking algorithm (Lao et
al., 2011), models based on continuous represen-
tations (latent features), and model combinations
(Dong et al., 2014). These models predict new
facts in a given knowledge base, based on infor-
mation from existing entities and relations. From
this line of work, most relevant to our study is
prior work evaluating continuous representation
models on the FB15k dataset. Yang et al. (2015)
showed that a simple variant of a bilinear model
DISTMULT outperformed TRANSE (Bordes et al.,
2013) and more richly parameterized models on
this dataset. We therefore build upon the best per-
forming prior model DISTMULT from this line of
work, as well as additional models E and F devel-
oped in the context of text-augmented knowledge
graphs (Riedel et al., 2013), and extend them to in-
corporate compositional representations of textual
relations.

1http://lemurproject.org/clueweb12/
FACC1/

Relation extraction using distant supervision

A number of works have focused on extracting
new instances of relations using information from
textual mentions, without sophisticated model-
ing of prior knowledge from the knowledge base.
Mintz et al. (2009) demonstrated that both surface
context and dependency path context were help-
ful for the task, but did not model the composi-
tional sub-structure of this context. Other work
proposed more sophisticated models that reason
about sentence-level hidden variables (Riedel et
al., 2010; Hoffmann et al., 2011; Surdeanu et al.,
2012) or model the noise arising from the incom-
pleteness of knowledge bases and text collections
(Ritter et al., 2013), inter alia. Our work focuses
on representing the compositional structure of sen-
tential context for learning joint continuous repre-
sentations of text and knowledge bases.

Combining knowledge base and text
information

A combination of knowledge base and textual in-
formation was first shown to outperform either
source alone in the framework of path-ranking al-
gorithms in a combined knowledge base and text
graph (Lao et al., 2012). To alleviate the spar-
sity of textual relations arising in such a com-
bined graph, (Gardner et al., 2013; Gardner et al.,
2014) showed how to incorporate clusters or con-
tinuous representations of textual relations. Note
that these vector representations are based on the
co-occurrence patterns for the textual relations
and not on their compositional structure. Co-
occurrence based textual relation representations
were also learned in (Neelakantan et al., 2015).
Wang et al. (2014a) combined knowledge base and
text information by embedding knowledge base
entities and the words in their names in the same
vector space, but did not model the textual co-
occurrences of entity pairs and the expressed tex-
tual relations. Weston et al. (2013) combined con-
tinuous representations from a knowledge base
and textual mentions for prediction of new rela-
tions. The two representations were trained inde-
pendently of each other and using different loss
functions, and were only combined at inference
time. Additionally, the employed representations
of text were non-compositional.

In this work we train continuous representations
of knowledge base and textual relations jointly,
which allows for deeper interactions between the
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sources of information. We directly build on the
universal schema approach of Riedel et al. (2013)
as well as the universal schema extension of the
DISTMULT model mentioned previously, to im-
prove the representations of textual relations by
capturing their compositional structure. Addition-
ally, we evaluate the approach on a dataset that
contains rich prior information from the training
knowledge base, as well as a wealth of textual in-
formation from a large document collection.

Continuous representations for supervised
relation extraction

In contrast to the work reviewed so far, work on
sentence-level relation extraction using direct su-
pervision has focused heavily on representing sen-
tence context. Models using hand-crafted fea-
tures have evolved for more than a decade, and
recently, models using continuous representations
have been found to achieve new state-of-the-art
performance (Zeng et al., 2014; Gormley et al.,
2015). Compared to work on representation learn-
ing for sentence-level context, such as this recent
work using LSTM models on constituency or de-
pendency trees (Tai et al., 2015), our approach us-
ing a one-hidden-layer convolutional neural net-
work is relatively simple. However, even such a
simple approach has been shown to be very com-
petitive (Kim, 2014).

3 Models for knowledge base completion

We begin by introducing notation to define the
task, largely following the terminology in Nickel
et al. (2015). We assume knowledge bases are rep-
resented using RDF triples, in the form (subject,
predicate, object), where the subject and object are
entities and the predicate is the type of relation.
For example, the KB fragment shown in Figure 1
is shown as a knowledge graph, where the enti-
ties are the nodes, and the relations are shown as
directed labeled edges: we see three entities par-
ticipating in three relation instances indicated by
the edges. For brevity, we will denote triples by
(es, r, eo), where es and eo denote the subject and
object entities, respectively.

The task is, given a training KB consisting of
entities with some relations between them, to pre-
dict new relations (links) that do not appear in the
training KB. More specifically, we will build mod-
els that rank candidate entities for given queries
(es, r, ?) or (?, r, eo), which ask about the object

Barack Obama is the 44th and currrent President of United States .

nsubj prep pobj

SUBJECT
nsubj �� president

prep��! of
obj�! OBJECT

1

Figure 2: Textual relation extracted from an entity
pair mention.

or subject of a given relation.
This task setting has been used in models for

KB completion previously, e.g. (Dong et al., 2014;
Gardner et al., 2014), even though it has not been
standard in evaluations of distant supervision for
relation extraction (Mintz et al., 2009; Riedel et
al., 2013). The advantage of this evaluation set-
ting is that it enables automatic evaluation without
requiring humans to label candidate extractions,
while making only a local closed world assump-
tion for the completeness of the knowledge base
— i.e., if one object eo for a certain subject / rela-
tion pair (es, r) is present in the knowledge base,
it is assumed likely that all other objects (es, r, e′o)
will be present. Such an assumption is particularly
justified for nearly functional relations.

To incorporate textual information, we follow
prior work (Lao et al., 2012; Riedel et al., 2013)
and represent both textual and knowledge base re-
lations in a single graph of “universal” relations.
The textual relations are represented as full lexi-
calized dependency paths, as illustrated in Figure

2. An instance of the textual relation SUBJECT
nsubj←−−−

president
prep−−→ of

obj−→OBJECT connecting the entities
BARACK OBAMA and UNITED STATES, is added to the
knowledge graph based on this sentential occur-
rence.

To present the models for knowledge base
completion based on such combined knowledge
graphs, we first introduce some notation. Let E
denote the set of entities in the knowledge graph
and let R denote the set of relation types. We de-
note each possible triple as T = (es, r, eo) where
es, eo ∈ E , r ∈ R, and model its presence with
a binary random variable yT ∈ {0, 1} which in-
dicates whether the triple exists. The models we
build score possible triples (es, r, eo) using contin-
uous representations (latent features) of the three
elements of the triple. The models use scoring
function f(es, r, eo) to represent the model’s con-
fidence in the existence of the triple. We present
the models and then the loss function used to train
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Figure 3: The continuous representations for
model F, E and DISTMULT.

their parameters.

3.1 Basic Models

We begin with presenting the three models from
prior work that this research builds upon. They
all learn latent continuous representations of rela-
tions and entities or entity pairs, and score possible
triples based on the learned continuous represen-
tations. Each of the models can be defined on a
knowledge graph containing entities and KB rela-
tions only, or on a knowledge graph additionally
containing textual relations. We use models F and
E from (Riedel et al., 2013) where they were used
for a combined KB+text graph, and model DIST-
MULT from (Yang et al., 2015), which was origi-
nally used for a knowledge graph containing only
KB relations.

As shown in Figure 3, model F learns a K-
dimensional latent feature vector for each can-
didate entity pair (es, eo), as well as a same-
dimensional vector for each relation r, and the
scoring function is simply defined as their inner
product: f(es, r, eo) = v(r)ᵀv(es, eo). Therefore,
different pairs sharing the same entity would not
share parameters in this model.

Model E does not have parameters for entity
pairs, and instead has parameters for individual
entities. It aims to capture the compatibility be-

tween entities and the subject and object posi-
tions of relations. For each relation type r, the
model learns two latent feature vectors v(rs) and
v(ro) of dimension K. For each entity (node) ei,
the model also learns a latent feature vector of
the same dimensionality. The score of a candi-
date triple (es, r, eo) is defined as f(es, r, eo) =
v(rs)ᵀv(es) + v(ro)ᵀv(eo). It can be seen that
when a subject entity is fixed in a query (es, r, ?),
the ranking of candidate object entity fillers ac-
cording to f does not depend on the subject entity
but only on the relation type r.

The third model DISTMULT, is a special form
of a bilinear model like RESCAL (Nickel et al.,
2011), where the non-diagonal entries in the rela-
tion matrices are assumed to be zero. This model
was proposed in Yang et al. (2015) and was shown
to outperform prior work on the FB15k dataset.
In this model, each entity ei and each relation r
is assigned a latent feature vector of dimensionK.
The score of a candidate triple (es, r, eo) is defined
as f(es, r, eo) = v(r)ᵀ (v(es) ◦ v(eo)), where ◦
denotes the element-wise vector product. In this
model, entity pairs which share an entity also share
parameters, and the ranking of candidate objects
for queries (es, r, ?) depends on the subject entity.

Denote Ne = |E|, Nr = |R|, and K = di-
mension of latent feature vectors, then model E
has KNe + 2KNr parameters and model DIST-
MULT has KNe + KNr parameters. Model F
has KN2

e + KNr parameters, although most en-
tity pairs will not co-occur in the knowledge base
or text.

In the basic models, knowledge base and textual
relations are treated uniformly, and each textual re-
lation receives its own latent representation of di-
mensionality K. When textual relations are added
to the training knowledge graph, the total number
of relations |R| grows substantially (it increases
from 237 to more than 2.7 million for the dataset
in this study), resulting in a substantial increase in
the total number of independent parameters.

Note that in all of these models queries
about the arguments of knowledge base relations
(es, r, ?) are answered by scoring functions look-
ing only at the entity and KB relation represen-
tations, without using representations of textual
mentions. The textual mention information and
representations are only used at training time to
improve the learned representations of KB rela-
tions and entities.
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3.2 CONV: Compositional Representations of
Textual Relations

In the standard latent feature models discussed
above, each textual relation is treated as an atomic
unit receiving its own set of latent features. How-
ever, many textual relations differ only slightly
in the words or dependency arcs used to express
the relation. For example, Table 1 shows sev-
eral textual patterns that co-occurr with the re-
lation person/organizations founded in the train-
ing KB. While some dependency paths occur fre-
quently, many very closely related ones have been
observed only once. The statistical strength of the
model could be improved if similar dependency
paths have a shared parameterization. We build on
work using similar intuitions for other tasks and
learn compositional representations of textual re-
lations based on their internal structure, so that the
derived representations are accurate for the task of
predicting knowledge base relations.

We use a convolutional neural network applied
to the lexicalized dependency paths treated as a se-
quence of words and dependency arcs with direc-
tion. Figure 4 depicts the neural network archi-
tecture. In the first layer, each word or directed la-
beled arc is mapped to a continuous representation
using an embedding matrix V. In the hidden layer,
every window of three elements is mapped to a
hidden vector using position-specific maps W, a
bias vector b, and a tanh activation function. A
max-pooling operation over the sequence is ap-
plied to derive the final continuous representation
for the dependency path.

The CONV representation of textual relations
can be used to augment any of the three basic mod-
els. The difference between a basic model and its
CONV-augmented variant is in the parameteriza-
tion of textual mentions. The basic models learn
distinct latent feature vectors of dimensionality K
for all textual relation types, whereas the CONV

models derive the K-dimensional latent feature
vectors for textual relation types as the activation
at the top layer of the convolutional network in
Figure 4, given the corresponding lexicalized de-
pendency path as input.

3.3 Training loss function

All basic and CONV-augmented models use the
same training loss function. Our loss function
is motivated by the link prediction task and the
performance measures used. As previously men-

tioned, the task is to predict the subject or ob-
ject entity for given held-out triples (es, r, eo),
i.e., to rank all entities with respect to their like-
lihood of filling the respective position in the
triple2. We would thus like the model to score cor-
rect triples (es, r, eo) higher than incorrect triples
(e′, r, eo) and (es, r, e′) which differ from the cor-
rect triple by one entity. Several approaches
(Nickel et al., 2015) use a margin-based loss func-
tion. We use an approximation to the negative log-
likelihood of the correct entity filler instead3. We
define the conditional probabilities p(eo|es, r) and
p(es|r, eo) for object and subject entities given the
relation and the other argument as follows:

p(eo|es, r; Θ) =
ef(es,r,eo;Θ)∑

e′∈Neg(es,r,?) e
f(es,r,e′;Θ)

Conditional probabilities for subject entities
p(es|eo, r; Θ) are defined analogously. Here Θ de-
notes all the parameters of latent features. The
denominator is defined using a set of entities
that do not fill the object position in any relation
triple (es, r, ?) in the training knowledge graph.
Since the number of such entities is impractically
large, we sample negative triples from the full
set. We also limit the candidate entities to ones
that have types consistent with the position in the
relation triple (Chang et al., 2014; Yang et al.,
2015), where the types are approximated follow-
ing Toutanova and Chen (2015). Additionally,
since the task of predicting textual relations is aux-
iliary to the main task, we use a weighting factor τ
for the loss on predicting the arguments of textual
relations (Toutanova and Chen, 2015).

Denote T as a set of triples, we define the loss
L(T ; Θ) as:

L(T ; Θ) = −
∑

(es,r,eo)∈T
log p(eo|es, r; Θ)

−
∑

(es,r,eo)∈T
log p(es|eo, r; Θ)

Let TKB and Ttext represent the set of knowl-
edge base triples and textual relation triples re-
spectively. The final training loss function is de-

2Our experimental comparison focuses on predicting ob-
ject entities only, but we consider both argument types in the
training loss function.

3Note that both margin-based and likelihood-based loss
functions are susceptible to noise from potential selection of
false negative examples. An empirical comparison of training
loss functions would be interesting.
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Textual Pattern Count

SUBJECT
appos−−−→founder

prep−−→of
pobj−−→OBJECT 12

SUBJECT
nsubj←−−−co-founded

dobj−−→OBJECT 3

SUBJECT
appos−−−→co-founder

prep−−→of
pobj−−→OBJECT 3

SUBJECT
conj−−→co-founder

prep−−→of
pobj−−→OBJECT 3

SUBJECT
pobj←−−with

prep←−−co-founded
dobj−−→OBJECT 2

SUBJECT
nsubj←−−−signed

xcomp−−−→establishing
dobj−−→OBJECT 2

SUBJECT
pobj←−−with

prep←−−founders
prep−−→of

pobj−−→OBJECT 2

SUBJECT
appos−−−→founders

prep−−→of
pobj−−→OBJECT 2

SUBJECT
nsubj←−−−one

prep−−→of
pobj−−→founders

prep−−→of
pobj−−→OBJECT 2

SUBJECT
nsubj←−−−founded

dobj−−→production
conj−−→OBJECT 2

SUBJECT
appos←−−−partner

pobj←−−with
prep←−−founded

dobj−−→production
conj−−→OBJECT 2

SUBJECT
pobj←−−by

prep←−−co-founded rcmod←−−−OBJECT 1

SUBJECT
nn←−co-founder

prep−−→of
pobj−−→OBJECT 1

SUBJECT
dep−−→co-founder

prep−−→of
pobj−−→OBJECT 1

SUBJECT
nsubj←−−−helped

xcomp−−−→establish
dobj−−→OBJECT 1

SUBJECT
nsubj←−−−signed

xcomp−−−→creating
dobj−−→OBJECT 1

Table 1: Textual patterns occurring with entity pairs in a person/organizations founded relationship. The
count indicates the number of training set instances that have this KB relation, which co-occur with each
textual pattern.

SUBJECT
appos���! co-founder

prep��! of
pobj��! OBJECT

vi = V ei

hi = tanh(W�1vi�1 + W 0vi + W 1vi+1 + b)

r = max{hi}

1

Figure 4: The convolutional neural network architecture for representing textual relations.

fined as:

L(TKB; Θ) + τL(Ttext; Θ) + λ‖Θ‖2,

where λ is the regularization parameter, and τ is
the weighing factor of the textual relations.

The parameters of all models are trained using a
batch training algorithm. The gradients of the ba-
sic models are straightforward to compute, and the
gradients of the convolutional network parameters
for the CONV-augmented models are also not hard
to derive using back-propagation.

4 Experiments

Dataset and Evaluation Protocol
We use the FB15k-237 4 dataset, which is a sub-
set of FB15k (Bordes et al., 2013) that excludes
redundant relations and direct training links for
held-out triples, with the goal of making the task
more realistic (Toutanova and Chen, 2015). The
FB15k dataset has been used in multiple stud-
ies on knowledge base completion (Wang et al.,
2014b; Yang et al., 2015). Textual relations for

4Check the first author’s website for a release of the
dataset.
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FB15k-237 are extracted from 200 million sen-
tences in the ClueWeb12 corpus coupled with
Freebase mention annotations (Gabrilovich et al.,
2013), and include textual links of all co-occurring
entities from the KB set. After pruning5, there are
2.7 million unique textual relations that are added
to the knowledge graph. The set of textual rela-
tions is larger than the set used in Toutanova and
Chen (2015) (25,000 versus 2.7 million), leading
to improved performance.

The number of relations and triples in the train-
ing, validation and test portions of the data are
given in Table 2. The two rows list statistics for
the KB and text portions of the data separately.
The 2.7 million textual relations occur in 3.9 mil-
lion text triples. Almost all entities occur in tex-
tual relations (13,937 out of 14,541). The num-
bers of triples for textual relations are shown as
zero for the validation and test sets because we
don’t evaluate on prediction of textual relations
(all text triples are used in training). The per-
centage of KB triples that have textual relations
for their pair of entities is 40.5% for the training,
26.6% for the validation, and 28.1% for the test
set. While 26.6% of the validation set triples have
textual mentions, the percentage with textual re-
lations that have been seen in the training set is
18.4%. Having a mention increases the chance
that a random entity pair has a relation from 0.1%
to 5.0% — a fifty-fold increase.

Given a set of triples in a set disjoint from a
training knowledge graph, we test models on pre-
dicting the object of each triple, given the subject
and relation type. We rank all entities in the train-
ing knowledge base in order of their likelihood of
filling the argument position. We report the mean
reciprocal rank (MRR) of the correct entity, as
well as HITS@10 — the percentage of test triples
for which the correct entity is ranked in the top
10. We use filtered measures following the pro-
tocol proposed in Bordes et al. (2013) — that is,
when we rank entities for a given position, we re-
move all other entities that are known to be part of
an existing triple in the training, validation, or test
set. This avoids penalizing the model for ranking
other correct fillers higher than the tested entity.

5The full set of 37 million textual patterns connecting the
entity pairs of interest was pruned based on the count of pat-
terns and their tri-grams, and their precision in indicating that
entity pairs have KB relations.

Implementation details

We used a value of λ = 1 for the weight of the
L2 penalty for the main results in Table 3, and
present some results on the impact of λ at the end
of this section. We used batch optimization af-
ter initial experiments with AdaGrad showed in-
ferior performance. L-BFGS (Liu and Nocedal,
1989) and RProp (Riedmiller and Braun, 1993)
were found to converge to similar function values,
with RProp converging significantly faster. We
thus used RProp for optimization. We initialized
the KB+text models from the KB-only models and
also from random initial values (sampled from a
Gaussian distribution), and stopped optimization
when the overall MRR on the validation set de-
creased. For each model type, we chose the better
of random and KB-only initialization. The word
embeddings in the CONV models were initialized
using the 50-dimensional vectors from Turian et
al. (2010) in the main experiments, with a slight
positive impact. The effect of initialization is dis-
cussed at the end of the section.

The number of negative examples for each triple
was set to 200. Performance improved substan-
tially when the number of negative examples was
increased and reached a plateau around 200. We
chose the optimal number of latent feature dimen-
sions via a grid search to optimize MRR on the
validation set, testing the values 5, 10, 15, 35, 50,
100, 200 and 500. We also performed a grid search
over the values of the parameter τ , testing values
in the set {0.01, 0.1, 0.25, 0.5, 1}. The best dimen-
sion for latent feature vectors was 10 for most KB-
only models (not including model F), and 5 for the
two model configurations including F. We used
K = 10 for all KB+text models, as higher dimen-
sion was also not helpful for them.

Experimental results

In Table 3 we show the performance of differ-
ent models and their combinations6, both when
using textual mentions (KB+text), and when us-
ing only knowledge base relations (KB only). In
the KB+text setting, we evaluate the contribution
of the CONV representations of the textual rela-
tions. The upper portion of the Table shows the
performance of models that have been trained us-
ing knowledge graphs including only knowledge

6Different models are combined by simply defining a
combined scoring function which adds the scores from in-
dividual models. Combined models are trained jointly.
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# Relations # Entities # Triples in Train / Validation / Test
KB 237 14,541 272,115 / 17,535 / 20, 466
Text 2,740k 13,937 3,978k / 0 / 0

Table 2: The statistics of dataset FB15k-237.

Model Overall With mentions Without mentions
MRR HITS@10 MRR HITS@10 MRR HITS@10

KB only
F 16.9 24.5 26.4 49.1 13.3 15.5
E 33.2 47.6 25.5 37.8 36.0 51.2
DISTMULT 35.7 52.3 26.0 39.0 39.3 57.2
E+DISTMULT 37.3 55.2 28.6 42.9 40.5 59.8
F+E+DISTMULT 33.8 50.1 15.0 26.1 40.7 59.0

KB and text
F (τ = 1) 19.4 27.9 35.4 61.6 13.4 15.5
CONV-F (τ = 1) 19.2 28.4 34.9 63.7 13.3 15.4
E (τ = 0) 33.2 47.6 25.5 37.8 36.0 51.2
CONV-E (τ = 0) 33.2 47.6 25.5 37.8 36.0 51.2
DISTMULT (τ = 0.01) 36.1 52.7 26.5 39.5 39.6 57.5
CONV-DISTMULT (τ = 0.25) 36.6 53.5 28.3 43.4 39.7 57.2
E + DISTMULT (τ = 0.01) 37.7 55.7 28.9 43.4 40.9 60.2
CONV-E + CONV-DISTMULT (τ = 0.25) 40.1 58.1 33.9 49.9 42.4 61.1

Table 3: Results on FB15k-237 for KB only and KB+text inference, with basic models versus the pro-
posed CONV-augmented models. The values of the hyper-parameter τ (as shown in the Table) were
chosen to maximize MRR on the validation set. The reported numbers were obtained for the test set.

base relations, and are not using any information
from textual mentions. The lower portion of the
Table shows the performance when textual rela-
tions are added to the training knowledge graph
and the corresponding training loss function. Note
that all models predict based on the learned knowl-
edge base relation and entity representations, and
the textual relations are only used at training time
when they can impact these representations.

The performance of all models is shown as an
overall MRR (scaled by 100) and HITS@10, as
well as performance on the subset of triples that
have textual mentions (column With mentions),
and ones that do not (column Without mentions).
Around 28% of the test triples have mentions and
contribute toward the measures in the With men-
tions column, and the other 72% of the test triples
contribute to the Without mentions column.

For the KB-only models, we see the perfor-
mance of each individual model F, E, and DIST-
MULT. Model F was the best performing single
model from (Riedel et al., 2013), but it does not
perform well when textual mentions are not used.
In our implementation of model F, we created en-
tity pair parameters only for entity pairs that co-
occur in the text data (Riedel et al. (2013) also
trained pairwise vectors for co-occuring entities

only, but all of the training and test tuples in their
study were co-occurring)7. Without textual in-
formation, model F is performing essentially ran-
domly, because entity pairs in the test sets do not
occur in training set relations (by construction of
the dataset). Model E is able to do surprisingly
well, given that it is making predictions for each
object position of a relation without considering
the given subject of the relation. DISTMULT is
the best performing single model. Unlike model
F, it is able to share parameters among entity pairs
with common subject or object entities, and, un-
like model E, it captures some dependencies be-
tween the subject and object entities of a relation.
The combination of models E+DISTMULT im-
proves performance, but combining model F with
the other two is not helpful.

The lower portion of Table 3 shows results when
textual relations are added to the training knowl-
edge graph. The basic models treat the textual re-
lations as atomic and learn a separate latent feature
vector for each textual relation. The CONV- mod-
els use the compositional representations of tex-

7Learning entity pair parameters for all entity pairs would
result in 2.2 billion parameters for vectors with dimensional-
ity 10 for our dataset. This was infeasible and was also not
found useful based on experiments with vectors of lower di-
mensionality.
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tual relations learned using the convolutional neu-
ral network architecture shown in Figure 4. We
show the performance of each individual model
and its corresponding variant with a CONV pa-
rameterization. For each model, we also show the
optimal value of τ , the weight of the textual re-
lations loss. Model F is able to benefit from tex-
tual relations and its performance increases by 2.5
points in MRR, with the gain in performance be-
ing particularly large on test triples with textual
mentions. Model F is essentially limiting its space
of considered argument fillers to ones that have co-
occurred with the given subject entity. This gives it
an advantage on test triples with textual mentions,
but model F still does relatively very poorly over-
all when taking into account the much more nu-
merous test triples without textual mentions. The
CONV parameterization performs slightly worse
in MRR, but slightly better in HITS@10, com-
pared to the atomic parameterization. For model
E and its CONV variant, we see that text does not
help as its performance using text is the same as
that when not using text and the optimal weight
of the text is zero. Model DISTMULT benefits
from text, and its convolutional text variant CONV-
DISTMULT outperforms the basic model, with the
gain being larger on test triples with mentions.

The best model overall, as in the KB-only
case, is E+DISTMULT. The basic model bene-
fits from text slightly and the model with compo-
sitional representations of textual patterns CONV-
E+CONV-DISTMULT, improves the performance
further, by 2.4 MRR overall, and by 5 MRR on
triples with textual mentions. It is interesting
that the text and the compositional representations
helped most for this combined model. One hy-
pothesis is that model E, which provides a prior
over relation arguments, is needed in combination
with DISTMULT to prevent the prediction of un-
likely arguments based on noisy inference from
textual patterns and their individual words and de-
pendency links.

Hyperparameter Sensitivity

To gain insight into the sensitivity of the model to
hyper-parameters and initialization, we report on
experiments starting with the best model CONV-
E + CONV-DISTMULT from Table 3 and varying
one parameter at a time. This model has weight
of the textual relations loss τ = 0.25, weight of
the L2 penalty λ = 1, convolution window size of

three, and is initialized randomly for the entity and
KB relation vectors, and from pre-trained embed-
dings for word vectors (Turian et al., 2010). The
overall MRR of the model is 40.4 on the validation
set (test results are shown in the Table).

When the weight of τ is changed to 1 (i.e., equal
contribution of textual and KB relations), the over-
all MRR goes down to 39.6 from 40.4, indicat-
ing the usefulness of weighting the two kinds of
relations non-uniformly. When λ is reduced to
0.04, MRR is 40.0 and when λ is increased to
25, MRR goes down to 38.9. This indicates the
L2 penalty hyper-parameter has a large impact on
performance. When we initialize the word embed-
dings randomly instead of using pre-trained word
vectors, performance drops only slightly to 40.3.
If we initialize from a model trained using KB-
only information, performance goes down sub-
stantially to 38.7. This indicates that initialization
is important and there is a small gain from using
pre-trained word embeddings. There was a drop
in performance to MRR 40.2 when using a win-
dow size of one for the convolutional architecture
in Figure 4, and an increase to 40.6 when using a
window size of five.

5 Conclusion and Future Work

Here we explored an alternative representation
of textual relations for latent feature models that
learn to represent knowledge base and textual re-
lations in the same vector space. We showed that
given the large degree of sharing of sub-structure
in the textual relations, it was beneficial to com-
pose their continuous representations out of the
representations of their component words and de-
pendency arc links. We applied a convolutional
neural network model and trained it jointly with a
model mapping entities and knowledge base rela-
tions to the same vector space, obtaining substan-
tial improvements over an approach that treats the
textual relations as atomic units having indepen-
dent parameterization.
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Abstract

Authoring a scientific paper is a complex
process involving many decisions. We in-
troduce a probabilistic model of some of
the important aspects of that process: that
authors have individual preferences, that
writing a paper requires trading off among
the preferences of authors as well as ex-
trinsic rewards in the form of commu-
nity response to their papers, that prefer-
ences (of individuals and the community)
and tradeoffs vary over time. Variants of
our model lead to improved predictive ac-
curacy of citations given texts and texts
given authors. Further, our model’s pos-
terior suggests an interesting relationship
between seniority and author choices.

1 Introduction

Why do we write? As researchers, we write pa-
pers to report new scientific findings, but this is
not the whole story. Authoring a paper involves
a huge amount of decision-making that may be
influenced by factors such as institutional incen-
tives, attention-seeking, and pleasure derived from
research on topics that excite us.

We propose that text collections and associated
metadata can be analyzed to reveal optimizing be-
havior by authors. Specifically, we consider the
ACL Anthology Network Corpus (Radev et al.,
2013), along with author and citation metadata.
Our main contribution is a method that infers two
kinds of quantities about an author: her associ-
ations with interpretable research topics, which
might correspond to relative expertise or merely
to preferences among topics to write about; and
a tradeoff coefficient that estimates the extent to
which she writes papers that will be cited versus
papers close to her preferences.

The method is based on a probabilistic model
that incorporates assumptions about how authors

decide what to write, how joint decisions work
when papers are coauthored, and how individual
and community preferences shift over time. Cen-
tral to our model is a low-dimensional topic rep-
resentation shared by authors (in defining prefer-
ences), papers (i.e., what they are “about”), and
the community as a whole (in responding with ci-
tations). This method can be used to make predic-
tions; empirically, we find that:

1. topics discovered by generative models out-
perform a strong text regression baseline (Yo-
gatama et al., 2011) for citation count predic-
tion;

2. such models do better at that task without mod-
eling author utility as we propose; and

3. the author utility model leads to better pre-
dictive accuracy when answering the question,
“given a set of authors, what are they likely to
write?”

This method can also be used for exploration
and to generate hypotheses. We provide an in-
triguing example relating author tradeoffs to age
within the research community.

2 Notation and Representations

In the following, a document d will be represented
by a vector θd ∈ RK . The dimensions of this vec-
tor might correspond to elements of a vocabulary,
giving a “bag of words” encoding; in this work
they correspond to latent topics.

Document d is assumed to elicit from the scien-
tific community an observable response yd, which
might correspond to the number of citations (or
downloads) of the paper.

Each author a is associated with a vector ηa ∈
RK , with dimensions indexed the same as docu-
ments. Below, we will refer to this vector as a’s
“preferences,” though it is important to remember
that they could also capture an author’s expertise,
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and the model makes no attempt to distinguish be-
tween them. We use “preferences” because it is a
weaker theoretical commitment.

3 Author Utility Model

We describe the components of our model—
author utility (§3.1), coauthorship (§3.2), topics
(§3.3), and temporal dynamics (§3.4)—then give
the full form in §3.5.

3.1 Modeling Utility
Our main assumption about author a is that she is
an optimizer: when writing document d she seeks
to increase the response yd while keeping the con-
tents of d, θd, “close” to her preferences ηa. We
encode her objectives as a utility function to be
maximized with respect to θd:

U(θd) = κayd − 1
2
‖θd − (ηa + εd,a)‖22 (1)

where εd,a is an author-paper-specific idiosyn-
cratic randomness that is unobserved to us but as-
sumed known to the author. (This is a common
assumption in discrete choice models. It is often
called a “random utility model.”)

Notice the tradeoff between maximizing the re-
sponse yd and staying close to one’s preferences.
We capture these competing objectives by formu-
lating the latter as a squared Euclidean distance
between ηa and θd, and encoding the tradeoff
between extrinsic (citation-seeking) and intrinsic
(preference-satisfying) objectives as the (positive)
coefficient κa. If κa is large, a might be un-
derstood as a citation-maximizing agent; if κa is
small, a might appear to care much more about
certain kinds of papers (ηa) than about citation.

This utility function considers only two partic-
ular facets of author writing behavior; it does not
take into account other factors that may contribute
to an author’s objective. For this reason, some care
is required in interpreting quantities like κa. For
example, divergence between a particular ηa and
θd might suggest that a is open to new topics, not
merely hungry for citations. Other motivations,
such as reputation (notoriously difficult to mea-
sure), funding maintenance, and the preferences of
peer referees are not captured in this model. Sim-
ilarly for preferences ηa, a large value in this vec-
tor might reflect a’s skill or the preferences of a’s
sponsors rather than a’s personal interest the topic.

Next, we model the response yd. We assume
that responses are driven largely by topics, with

some noise, so that

yd = β>θd + ξd (2)

where ξd ∼ N (0, 1). Because the community’s
interest in different topics varies over time, β is
given temporal dynamics, discussed in §3.4.

Under this assumption, the author’s expected
utility assuming she is aware of β (often called
“rational expectations” in discrete choice models),
is:

E[U(θd)] = κaβ
>θd− 1

2
‖θd−(ηa+εd,a)‖22 (3)

(This is obtained by plugging the expected value
of yd, from Eq. 2, into Eq. 1.)

An author’s decision will therefore be

θ̂d = arg max
θ

κaβ
>θ− 1

2
‖θ−(ηa+εd,a)‖22 (4)

Optimality implies that θ̂d solves the first-order
equations

κaβj − (θ̂d,j − (ηa,j + εd,a,j)) = 0, ∀1 ≤ j ≤ K
(5)

Eq. 5 highlights the tradeoff the author faces:
when βj > 0, the author will write more on θd,j ,
while straying too far from ηa,j incurs a penalty.

3.2 Modeling Coauthorship
Matters become more complicated when multiple
authors write a paper together. Suppose the docu-
ment d is authored by set of authors ad. We model
the joint expected utility of ad in writing θd as the
average of the group’s utility.1

E[U(θd)] =
1
|ad|

∑
a∈ad

(
κaβ

>θd

−1
2
cd,a‖θd − (ηa + εd,a)‖22

)
(6)

where the “cost” term is scaled by cd,a, denoting
the fractional “contribution” of author a to docu-
ment d. Thus,

∑
a∈ad cd,a = 1, and we treat cd as

a latent categorical distribution to be inferred. The
first-order equation becomes∑

a∈ad
κaβ − cd,a(θd − (ηa + εd,a)) = 0 (7)

1This assumption is a convenient starting place, but we
can imagine revisiting it in future work. For example, an
economist and a linguist with different expertise might de-
rive “utility” from the collaboration that is non-linear in each
one’s individual preferences (Anderson, 2012). Further, con-
tributions by complementary authors are not expected to be
independent of each other.
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3.3 Modeling Document Content

As noted before, there are many possible ways to
represent and model document content θd. We
treat θd as (an encoding of) a mixture of topics.
Following considerable past work, a “topic” is de-
fined as a categorical distribution over observable
tokens (Blei et al., 2003; Hofmann, 1999). Letwd

be the observed bag of tokens constituting docu-
ment d. We assume each token is drawn from a
mixture over topics:

p(wd | θd) =
∑
zd

Nd∏
i=1

p(zd,i | θd)p(wd,i | φzd,i)

where Nd is the number of tokens in document d,
zd,i is the topic assignment for d’s ith token wd,i,
and φ1, . . . ,φK are topic-term distributions. Note
that θd ∈ RK ; we define p(z | θd) as a categorical
draw from the softmax-transformed θd (Blei and
Lafferty, 2007).

Using topic mixtures instead of a bag of words
provides us with a low-dimensional interpretable
representation that is useful for analyzing authors’
behaviors and preferences. Each dimension j of
an author’s preference is grounded in topic j. If
we ignore document responses, this component of
model closely resembles the author-topic model
(Rosen-Zvi et al., 2004), except that we assume
a different prior for the topic mixtures.

3.4 Modeling Temporal Dynamics

Individual preferences shift over time, as do those
of the research community. We extend our model
to allow variation at different timesteps. Let t ∈
〈1, . . . , T 〉 index timesteps (in our experiments,
each t is a calendar year). We let β(t), η(t)

a , and
κ

(t)
a denote the community’s response coefficients,

author a’s preferences, and author a’s tradeoff co-
efficient at timestep t.

Again, we must take care in interpreting these
quantities. Do changes in community interest
drive authors to adjust their preferences or exper-
tise? Or do changing author preferences aggregate
into community-wide shifts? Or do changes in the
economy or funding availability change authors’
tradeoffs? Our model cannot differentiate among
these different causal patterns. Our method is use-
ful for tracking these changes, but it does not pro-
vide an explanation for why they take place.

Modeling the temporal dynamics of a vector-
valued random variable can be accomplished us-

ing a multivariate Gaussian distribution. Follow-
ing Yogatama et al. (2011), we assume the prior
for β(·)

j = 〈β(1)
j , . . . , β

(T )
j 〉 has a tridiagonal pre-

cision matrix Λ(λ, α) ∈ RT×T :

Λ(λ, α) = λ


1 + α −α 0 0 . . .
−α 1 + 2α −α 0 . . .
0 −α 1 + 2α −α . . .
0 0 −α 1 + 2α . . .
...

...
...

...
. . .



The two hyperparameters α and λ capture, respec-
tively, autocorrelation (the tendency of β(t+1)

j to

be similar to β(t)
j ) and overall variance. This ap-

proach to modeling time series allows us to cap-
ture temporal dynamics while sharing statistical
strength of evidence across all time steps.

We use the notation T (λ, α) ≡ N (0,Λ(λ, α))
for this multivariate Gaussian distribution, in-
stances of which are used as priors over response
coefficients β, author preferences ηa, and (trans-
formed) author tradeoffs log κa.

.

Observed evidence
wd,i ith token in document d
V vocabulary size
Nd number of tokens in document d
yd response to document d
A the set of authors
ad set of authors of document d (⊆ A)
T number of timesteps
Dt the set of documents from timestep t
D the set of all documents (=

⋃T
t=1Dt)

Latent variables
β(t) response coefficients at time t (∈ RK )
η

(t)
a author a’s topic preferences at time t

(∈ RK )
κ

(t)
a author a’s tradeoff coefficient at time t

(∈ R≥0)
θd document d topic associations (∈ RK )
cd,a author a contrtibution to document d

(
∑
a∈ad

cd,a = 1)
φk distribution over terms for topic k
zd,i topic assignment of wd,i

Constants and hyperparameters
K number of topics
ρ symmetric Dirichlet hyperparameter

for φk
σ2
c variance hyperparameter for author

contributions cd
{λ(β), α(β)},
{λ(η), α(η)},
{λ(κ), α(κ)}

hyperparameters for priors of β,η,
and log κ respectively

Table 1: Table of notation.
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3.5 Full Model
Table 1 summarizes all of the notation. The log-
likelihood of our model is:

L = log p(β) +
∑
d∈D

log p(cd)

+
∑
d∈D

log p(yd | θd,β) + log p(wd | θd)

+
∑
a∈A

log p(ηa) + log p(κa)

+
∑
d∈D

∑
a∈ad

log p(θd | β,ηa, κa, cd,a) (8)

We adopt a Bayesian approach to parameter esti-
mation. The generative story, including all priors,
is as follows. Recall that T (·, ·) denotes the time
series prior discussed in §3.4. See also the plate
diagram for the graphical model in Fig. 1.

1. For each topic k ∈ {1, . . . ,K}:
(a) Draw response coefficients β

(·)
k ∼

T (λ(β), α(β)) and term distribution φk ∼
Dirichlet(ρ).

(b) For each author a ∈ A, draw pref-
erence strengths for topic k over time,
〈η(1)
a,k, . . . , η

(t)
a,k〉 ∼ T (λ(η), α(η)).

2. For each author a ∈ A, draw (transformed)
tradeoff parameters 〈log κ(1)

a , . . . , log κ(T )
a 〉 ∼

T (λ(κ), α(κ)).
3. For each timestep t ∈ {1, . . . , T}, and each

document d ∈ Dt:
(a) Draw author contributions cd ∼

Softmax(N (0, σ2
c I)). This is known

as a logistic normal distribution (Aitchi-
son, 1986).

(b) Draw d’s topic distributions (this distribu-
tion is discussed further below):

θd ∼ N
 ∑
a∈ad

κ(t)
a β

(t) + cd,aη
(t)
a , ‖cd‖22I


(9)

(c) For each token i ∈ {1, . . . , Nd}, draw
topic zd,i ∼ Categorical(Softmax(θd))
and term wd,i ∼ Categorical(φzd,i).

(d) Draw response yd ∼ N (β(td)>θd, 1
)
;

note that it collapses out ξd, which is
drawn from a standard normal.

Eq. 9 captures the choice by authors ad of a dis-
tribution over topics θd. Assuming that the εd,as
are i.i.d. and Gaussian, from Eq. 7, we get

θd =
∑
a∈ad

κaβ + cd,aηa + cd,aεd,a,

w z θ y

ηφ βκ

c

N

A

D

K A T

Figure 1: Plate diagram for author utility model.
Hyperparameters and edges between consecutive
time steps of β,η and κ are omitted for clarity.

and the linear additive property of Gaussians gives
us

θd ∼ N
(∑
a∈ad

κaβ + cd,aηa, ‖cd‖22I
)

In §3.1 we described a utility function for each
author. The model we are estimating is similar
to those estimated in discrete choice economet-
rics (McFadden, 1974). We assumed that authors
are utility maximizing (optimizing) and that their
optimal topic distribution satisfies the first-order
conditions (Eq. 7). However, we cannot see the
idiosyncratic component, εd,a, which is assumed
to be Gaussian; as noted, this is known as a ran-
dom utility model. Together, these assumptions
give the structure of the distribution over topics
in terms of (estimated) utility, which allows us to
naturally incorporate the utility function into our
probabilistic model in a familiar way (Sim et al.,
2015).

4 Learning and Inference

Exact inference in our model is intractable, so
we resort to an approximate inference technique
based on Monte Carlo EM (Wei and Tanner,
1990). During the E-step, we perform Bayesian
inference over latent parameters (η,κ, z,θ, c,φ)
using a Metropolis-Hastings within Gibbs algo-
rithm (Tierney, 1994), and in the M-step, we
compute maximum a posteriori estimates of β
by directly optimizing the log-likelihood function.
Since we are using conjugate priors for φ, we can
integrate it out. We did not perform Bayesian pos-
terior inference over β because the coupling of β
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would slow mixing of the MCMC chain.

E-step. We sample each η(td)
a , cd, logκ(·)

a , and
θd blockwise using the Metropolis-Hastings algo-
rithm with a multivariate Gaussian proposal distri-
bution, tuning the diagonal covariance matrix to a
target acceptance rate of 15-45% (see appendix §A
for sampling equations).

For z, we integrate out φ and sample each zd,i
directly from

p(zd,i = k | θd,φk) ∝ exp(θd,k)
C−d,ik,wd,i

+ ρ

C−d,ik,· + V ρ

where C−d,ik,w and C−d,ik,· are the number of times
w is associated with topic k, and the number of
tokens associated with topic k respectively.

We run the E-step Gibbs sampler to collect
3,500 samples, discarding the first 500 samples for
burn-in and only saving samples at every third it-
eration.

M-step. We approximate the expectations of our
latent variables using the samples collected dur-
ing the E-step, and directly optimize β(t) using L-
BFGS (Liu and Nocedal, 1989),2 which requires a
gradient. The gradient of the log-likelihood with
respect to β(t)

j is

∂L
∂β

(t)
j

= −2λ(β)β
(t)
j

− 2λ(β)α(β)1{t > 1}(β(t)
j − β(t−1)

j )

− 2λ(β)α(β)1{t < T}(β(t)
j − β(t+1)

j )

+ 2
∑
d∈Dt

θd,j(yd − β(t)
j θd,j)

+ 2
∑
d∈Dt

κ
(t)
d

(
θd,j − κ(t)

d β
(t)
j −

∑
a∈ad

η
(t)
a,j

|ad|

)
(10)

where κ(t)
d = 1

|ad|
∑

a∈ad κ
(t)
a .

We ran L-BFGS until convergence3 and slice
sampled the hyperparameters λ(η), α(η), λ(κ), α(κ)

(with vague priors) at the end of the M-step. We
fix the symmetric Dirichlet hyperparameter ρ =
1/V , and tuned λ(β), α(β) on a held-out develope-
ment dataset by grid search over {0.01, 0.1, 1, 10}.

2We used libLBFGS, an open source C++ implementation
(https://github.com/chokkan/liblbfgs).

3Relative tolerance of 10−4.

During initialization, we randomly set the topic as-
signments, while the other latent parameters are
set to 0. We ran the model for 10 EM iterations.

Inference. During inference, we fix the model
parameters and only sample (θ, z) for each doc-
ument. As in the E-step, we discard the first 500
samples, and save samples at every third iteration,
until we have 500 posterior samples. In our ex-
periments, we found the posterior samples to be
reasonably stable after the initial burn in.

5 Experiments

Data. The ACL Anthology Network Corpus
contains 21,212 papers published in the field of
computational linguistics between 1965 and 2013
and written by 17,792 authors. Additionally, the
corpus provides metadata such as authors, venue
and in-community citation networks. For our ex-
periments, we focused on conference papers pub-
lished between 1980 and 2010.4 We tokenized the
texts, tagged the tokens using the Stanford POS
tagger (Toutanova et al., 2003), and extracted n-
grams with tags that follow the simple (but effec-
tive) pattern of (Adj|Noun)∗ Noun (Justeson
and Katz, 1995), representing the dth document
as a bag of phrases (wd). Note that phrases can
also be unigrams. We pruned phrases that appear
in < 1% or > 95% of the documents, obtaining
a vocabulary of V = 6,868 types. The pruned
corpus contains 5,498 documents and 2,643,946
phrase tokens written by 5,575 authors. We let re-
sponses

yd = log(1 + # of incoming citations in 3 years)

For our experiments, we used 3 different ran-
dom splits of our data (70% train, 20% test, and
10% development) and averaged quantities of in-
terest. Furthermore, we remove an author from a
paper in the development or test set if we have not
seen him before in the training data.

5.1 Examples of Authors and Topics

Table 2 illustrates ten manually selected topics
(out of 64) learned by the author utility model.
Each topic is labeled with the top 10 words most
likely to be generated conditioned on the topic

4The conferences we included are: ACL, CoNLL, EACL,
EMNLP, HLT, and NAACL. We ignored journal papers, as
well as workshop papers, since they are characteristically dif-
ferent from conference papers.
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(φk). For each topic, we compute an author’s topic
preference score:

TPS(a, k) = η
(td)
a,k

∑
d∈Da

[Softmax(θd)]k × yd

where Softmax(x) = exp(x)∑
i exp(xi)

. The TPS scales
the author’s η preferences by the relative num-
ber of citations that the author received for the
topic. This way, we can account for different
ηs over time, and reduce variance due to authors
who publish less frequently.5 For each topic, the
five authors with the highest TPS are displayed
in the rightmost column of Table 2. These top-
ics were among the roughly one third (out of 64)
that seemed to coherently map to research topics
within NLP. Some others corresponded to parts of
a paper (e.g., explaining notation and formulae,
experiments) or to stylistic groups (e.g., “ratio-
nal words” including rather, fact, clearly, argue,
clear, perhaps). Others were not interpretable to
us.

5.2 Predicting Responses

We compare against two baselines for predicting
in-community citations. Yogatama et al. (2011) is
a strong baseline for predicting responses; they in-
corporated n-gram features and metadata features
in a generalized linear model with the time series
prior discussed in §3.4.6 We also compare against
a version of our model without the author utility
component. This equates to replacing Yogatama
et al.’s features with LDA topic mixtures, and per-
forming joint learning of the topics and citations;
we therefore call it “TimeLDA.” Without the time
series component, TimeLDA would instantiate su-
pervised LDA (McAuliffe and Blei, 2008). Fig-
ure 2 shows the mean absolute error (MAE) for
the three models.

With sufficiently many topics (K ≥ 16), topic
representations achieve lower error than surface
features. Removing the author utility component
from our model leads to better predictive perfor-
mance. This is unsurprising, since our model
forces β to explain both the responses (what is

5The TPS is only a measure of an author’s propensity to
write papers in a specific topic area and is not meant to be
a measure of an author’s reputation in a particular research
sub-field.

6For the ACL dataset, Yogatama et al. (2011)’s model
predicts whether a paper will receive at least 1 citation
within three years, while here, we train it to predict log(1 +
#citations) instead.

8 16 32 64 1282.6

2.8

3.0

3.2

3.4

Yogatama et al (2011)

TimeLDA

Author utility

Figure 2: Mean absolute error (in citation counts)
for predicted citation counts (y-axis) against the
number of topics K (x-axis). Errors are in ac-
tual citation counts, while the models are trained
with log counts. TimeLDA significantly outper-
forms Yogatama et al. (2011) for K ≥ 64 (paired
t-test, p < 0.01), while the differences between
Yogatama et al. (2011) and author utility are not
significant. The MAE is calculated over 3 random
splits of the data with 809, 812, and 811 docu-
ments in the test set respectively.

evaluated here) and the divergence between author
preferences ηa and what is actually written. The
utility model is nonetheless competitive with the
Yogatama et al. baseline.

5.3 Predicting Words
“Given a set of authors, what are they likely to
write?” — we use perplexity as a proxy to mea-
sure the content predictive ability of our model.
Perplexity on a test set is commonly used to quan-
tify the generalization ability of probabilistic mod-
els and make comparisons among models over the
same observation space. For a document wd writ-
ten by authors ad, perplexity is defined as

perplexity(wd | ad) = exp
(
− log p(wd | ad)

Nd

)
and a lower perplexity indicates better generaliza-
tion performance. Using S samples from the in-
ference step, we can compute

p(wd | ad) =
1
S

S∑
s=1

Nd∏
i=1

1
|ad|

∑
a∈ad,k

θsd,kφ
s
k,wdi

where θs is the sth sample of θ, and φs is the
topic-word distribution estimated from the sth
sample of z.

We compared the Author-Topic model of
Rosen-Zvi et al. (2004). The AT model is simi-
lar to setting κa = 0 for all authors, cd = 1

|ad| ,
and using a Dirichlet prior instead of logistic nor-
mal on ηa. Figure 3 present the perplexity of these
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Topic Top words Authors
“MT” alignment, translation, align, decode, phrase, och,

bleu, ney, bleu score, target language
Philipp Koehn, Chris Dyer, Qun Liu, Hermann
Ney, David Chiang

“Empirical
methods”

model, parameter, learn, iteration, maximize, prior,
initialize, distribution, weight, crf

Noah Smith, Dan Klein, Percy Liang, John DeN-
ero, Andrew McCallum

“Parsing” parse, sentence, parser, accuracy, collins, depen-
dency, tree, parse tree, head, charniak

Michael Collins, Joakim Nivre, Jens Nilsson, Dan
Klein, Ryan McDonald

“Dialogue
systems”

speak, speech, utterance, user, speaker, dialogue
system, turn, act, recognition, transcription

Diane Litman, Marilyn Walker, Julia Hirschberg,
Oliver Lemon, Amanda Stent

“NER” name, entity, identify, person, location, list, organi-
zation, system, entity recognition, mention

Jenny Rose Finkel, Satoshi Sekine, Rion Snow,
Christopher Manning, Abraham Ittycheriah

“Semantics” argument, verb, predicate, syntactic, relation, se-
mantic role, annotated, frame, assign

Martha Palmer, Alessandro Moschitti, Daniel Ju-
rafsky, Sanda Harabagiu, Mirella Lapata

“Lexical
semantics”

wordnet, noun, sense, concept, context, sens, rela-
tion, meaning, pair, disambiguate

Rion Snow, Rob Koeling, Eneko Agirre, Ido Da-
gan, Patrick Pantel

“Tagging &
chunking”

method, sentence, propose, japanese, noun phrase,
extract, table, analyze, precision, technology

Yuji Matsumoto, Hitoshi Isahara, Junichi Tsujii,
Sadao Kurohashi, Kentaro Torisawa

“Coreference” mention, instance, create, approach, report, due,
text, pair, exist, system

Vincent Ng, Aria Haghighi, Xiaofeng Yang, Claire
Cardie, Pascal Denis

“Sentiment
classification”

classify, label, accuracy, positive, classification, an-
notated, annotator, classifier, review, negative

Janyce Wiebe, Soo Min Kim, Eduard Hovy, Car-
men Banea, Ryan McDonald

Table 2: Top words from selected topics and authors with preferences in those topics. We manually
labeled each of these topics.

8 16 32 64 128

1.8

2.2

2.6

3.0 Author-Topic
Author utility (-Time)
Author utility

Figure 3: Held-out perplexity (×103, y-axis) with
varying number of topics K (x-axis). The differ-
ences are significant between all models at K ≥
64 (paired t-test, p < 0.01). There are 523,381,
529,397, 533,792 phrase tokens in the random test
sets.

models at different values of K. We include a ver-
sion of our author utility model that ignores tem-
poral information (“–time”), i.e., setting T = 1
and collapsing all timesteps. We find that perplex-
ity improves with the addition of the utility model
as well as the temporal dynamics.

5.4 Exploration: Tradeoffs and Seniority

Recall that κa encodes author a’s tradeoff between
increasing citations (high κa) and writing papers
on topics a prefers (low κa). We do not claim
that individual κa values consistently represent
authors’ tradeoffs between citations and writing
about preferred topics. We have noted a number
of potentially confounding factors that affect au-
thors’ choices, for which our data do not allow us
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Figure 4: Plot of authors’ median κ (blue,
solid) and mean citation counts (magenta, dashed)
against their academic age in this dataset (see text
for explanation).

to control.
However, in aggregate, κa values can be ex-

plored in relation to other quantities. Given our
model’s posterior, one question we can ask is:
do an author’s tradeoffs tend to change over the
course of her career? In Figure 4, we plot the me-
dian of κ (and 95% credible intervals) for authors
at different “ages.” Here, “age” is defined as the
number of years since an author’s first publication
in this dataset.7

A general trend over the long term is observed:
researchers appear to move from higher to lower
κa. Statistically, there is significant dependence
between κ of an author and her age; the Spear-
man’s rank correlation coefficient is ρ = −0.870
with p-value < 10−5. This finding is consis-

7This means that larger ages correspond to seniority, but
smaller ages are a blend of junior researchers and researchers
of any seniority new to this publication community.
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tent with the idea that greater seniority brings
increased and more stable resources and greater
freedom to pursue idiosyncratic interests with less
concern about extrinsic payoff. It is also consistent
with decreased flexibility or openness to shifting
topics over time.

To illustrate the importance of our model in
making these observations, we also plot the mean
number of citations per paper published (across
all authors) against their academic age (magenta
lines). There is no clear statistical trend between
the two variables (ρ = −0.017). This suggests
that through κ, our model is able to pick up evi-
dence of author’s optimizing behaviors, which is
not possible using simple citation counts.

There is a noticeable effect during years 5–10,
in which κ tends to rise by around 40% and then
fall back. (Note that the model maintains consider-
able uncertainty—wider intervals—about this ef-
fect.) Recall that, for a researcher trained within
the field and whose primary publication venue is
in the ACL community, our measure of age cor-
responds roughly to academic age. Years 5–10
would correspond to the later part of a Ph.D. pro-
gram and early postgraduate life, when many re-
searchers begin faculty careers. Insofar as it re-
flects a true effect, this rise and fall suggests a
stage during which a researcher focuses more on
writing papers that will attract citations. How-
ever, more in-depth study based on data that is not
merely observational is required to quantify this
effect and, if it persists under scrutiny, determine
its cause.

The effect in year 24 of mean citations per paper
(magenta line) can be attributed to well cited pa-
pers co-authored by senior researchers in the field
who published very few papers in their 24th year.
Since there are relatively few authors in the dataset
at that academic age, there is more variance in
mean citations counts.

6 Related Work

Previous work on modeling author interests
mostly focused on characterizing authors by their
style (Holmes and Forsyth, 1995, inter alia),8

through latent topic mixtures of documents they
have co-authored (Rosen-Zvi et al., 2004) and
their collaboration networks (Johri et al., 2011).

8A closely related problem is that of authorship attribu-
tion. There has been extensive research on authorship attri-
bution focusing mainly on learning “stylometric” features of
authors; see Stamatatos (2009) for a detailed review.

Like our paper, the latter two are based on topic
models, which have been popular for modeling the
content of scientific articles. For instance, Gerrish
and Blei (2010) measured scholarly impact using
dynamic topic models, while Hall et al. (2008) an-
alyzed the output of topic models to study the “his-
tory of ideas.”

Predicting responses to scientific articles was
explored in two shared tasks at KDD Cup 2003
(Brank and Leskovec, 2003; McGovern et al.,
2003) and by Yogatama et al. (2011), which served
as a baseline for our experiments and whose time-
series prior we used in our model. Furthermore,
there has been considerable research using topic
models to predict (or recommend) citations (in-
stead of aggregate counts), such as modeling link
probabilities within the LDA framework (Cohn
and Hofmann, 2000; Erosheva et al., 2004; Nal-
lapati and Cohen, 2008; Kataria et al., 2010; Zhu
et al., 2013) and augmenting topics with discrimi-
native author features (Liu et al., 2009; Tanner and
Charniak, 2015).

We modeled both interests of authors and re-
sponses to their articles jointly, by assuming
authors’ text production is an expected utility-
maximizing decision. This approach is similar
to our earlier work (Sim et al., 2015), where au-
thors are rational agents writing texts to maximize
the chance of a favorable decision by a judicial
court. In that study, we did not consider the unique
preferences of each decision making agent, nor
the extrinsic-intrinsic reward tradeoffs that these
agents face when authoring a document.

Our utility model can also be viewed as a form
of natural language generator, where we take into
account the context of an author (i.e., his prefer-
ences, the tradeoff coefficient, and what is popu-
lar) to generate his document. This is related to
natural language pragmatics, where text is influ-
enced by context.9 Hovy (1990) approached the
problem of generating text under pragmatic cir-
cumstances from a planning and goal-orientation
perspective, while Vogel et al. (2013) used multi-
agent decision-theoretic models to show cooper-
ative pragmatic behavior. Vogel et al.’s models
suggest an interesting extension of ours for future
work: modeling cooperation among co-authors
and, perhaps, in the larger scientific discourse.

9The β vectors can be seen as a naı̈ve representation of
world knowledge that motivates an author to select content
that reflects his behavioral preferences and intentions.
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7 Conclusions

We presented a model of scientific authorship in
which authors trade off between seeking citation
by others and staying true to their individual pref-
erences among research topics. We find that topic
modeling improves over state-of-the-art text re-
gression models for predicting citation counts, and
that the author utility model generalizes better than
simpler models when predicting what a particular
group of authors will write. Inspecting our model
suggests interesting patterns in behavior across a
researcher’s career.
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A Appendix: Sampling equations

We sample each ηa,j , for j = 1 . . .K, and
κa blockwise across time steps using Metropolis-
Hastings algorithm with a multivariate Gaussian
proposal distribution and likelihood:

p(ηa,j | η−(a,j),θ, c,κ,β,Λ
(η))

∝ exp
(
−1

2
ηa,jΛ(η)η>a,j

−
∑
t∈T
d∈Dt

(
θd,j −

∑
a′∈ad κ

(t)
a′ β

(t)
j + cd,a′η

(t)
a′,j

)2

2‖cd‖22



p(κa | κ−(a),θ, c,η,β,Λ
(κ))

∝ exp
(
−1

2
log(κa)Λ(κ) log(κ>a )

−
∑
t∈T
d∈Dt

‖θd −
∑

a′∈ad κ
(t)
a′ β

(t) + cd,a′η
(t)
a′ ‖22

2‖cd‖22


Λ(η) and Λ(κ) are shorthands for the precision ma-
trices Λ(λ(η), α(η)) and Λ(λ(κ), α(κ)) respectively.
Likewise, θd is sampled blockwise for each docu-
ment with a multivariate Gaussian distribution and

likelihood:

p(θd | cd,η,κ,β)

∝ exp

(
−(yd − β(td)>θd)2

2

− ‖θd −
∑

a∈ad κ
(td)
a β(td) + cd,aη

(td)
a ‖22

2‖cd‖22

)
For cd, we first sampled each cd from a multivari-
ate Gaussian distribution, and applied a logistic
transformation to map it onto the simplex. The
likelihood for cd is:

p(cd | θd,η,κ,β)

∝ exp

(
− 1

2σ2
c

∥∥∥∥log
(

cd
cd,|ad|

)∥∥∥∥2

2

− ‖θd −
∑

a∈ad κ
(td)
a β(td) + cd,aη

(td)
a ‖22

2‖cd‖22

)
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Abstract

We introduce a model for construct-
ing vector representations of words by
composing characters using bidirectional
LSTMs. Relative to traditional word rep-
resentation models that have independent
vectors for each word type, our model
requires only a single vector per char-
acter type and a fixed set of parame-
ters for the compositional model. De-
spite the compactness of this model and,
more importantly, the arbitrary nature
of the form–function relationship in lan-
guage, our “composed” word representa-
tions yield state-of-the-art results in lan-
guage modeling and part-of-speech tag-
ging. Benefits over traditional baselines
are particularly pronounced in morpholog-
ically rich languages (e.g., Turkish).

1 Introduction

Good representations of words are important for
good generalization in natural language process-
ing applications. Of central importance are vec-
tor space models that capture functional (i.e., se-
mantic and syntactic) similarity in terms of ge-
ometric locality. However, when word vectors
are learned—a practice that is becoming increas-
ingly common—most models assume that each
word type has its own vector representation that
can vary independently of other model compo-
nents. This paper argues that this independence
assumption is inherently problematic, in particular
in morphologically rich languages (e.g., Turkish).
In such languages, a more reasonable assumption
would be that orthographic (formal) similarity is
evidence for functional similarity.

However, it is manifestly clear that similarity in
form is neither a necessary nor sufficient condi-
tion for similarity in function: small orthographic
differences may correspond to large semantic or
syntactic differences (butter vs. batter), and large
orthographic differences may obscure nearly per-
fect functional correspondence (rich vs. affluent).
Thus, any orthographically aware model must be
able to capture non-compositional effects in addi-
tion to more regular effects due to, e.g., morpho-
logical processes. To model the complex form–
function relationship, we turn to long short-term
memories (LSTMs), which are designed to be able
to capture complex non-linear and non-local dy-
namics in sequences (Hochreiter and Schmidhu-
ber, 1997). We use bidirectional LSTMs to “read”
the character sequences that constitute each word
and combine them into a vector representation of
the word. This model assumes that each charac-
ter type is associated with a vector, and the LSTM
parameters encode both idiosyncratic lexical and
regular morphological knowledge.

To evaluate our model, we use a vector-
based model for part-of-speech (POS) tagging
and for language modeling, and we report ex-
periments on these tasks in several languages
comparing to baselines that use more tradi-
tional, orthographically-unaware parameteriza-
tions. These experiments show: (i) our character-
based model is able to generate similar representa-
tions for words that are semantically and syntacti-
cally similar, even for words are orthographically
distant (e.g., October and January); our model
achieves improvements over word lookup tables
using only a fraction of the number of parameters
in two tasks; (iii) our model obtains state-of-the-
art performance on POS tagging (including estab-
lishing a new best performance in English); and
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(iv) performance improvements are especially dra-
matic in morphologically rich languages.

The paper is organized as follows: Section 2
presents our character-based model to generate
word embeddings. Experiments on Language
Modeling and POS tagging are described in Sec-
tions 4 and 5. We present related work in Sec-
tion 6; and we conclude in Section 7.

2 Word Vectors and Wordless Word
Vectors

It is commonplace to represent words as vectors.
In contrast to naı̈ve models in which all word types
in a vocabulary V are equally different from each
other, vector space models capture the intuition
that words may be different or similar along a va-
riety of dimensions. Learning vector representa-
tions of words by treating them as optimizable pa-
rameters in various kinds of language models has
been found to be a remarkably effective means
for generating vector representations that perform
well in other tasks (Collobert et al., 2011; Kalch-
brenner and Blunsom, 2013; Liu et al., 2014; Chen
and Manning, 2014). Formally, such models de-
fine a matrix P ∈ Rd×|V |, which contains d pa-
rameters for each word in the vocabulary V . For a
given word type w ∈ V , a column is selected by
right-multiplying P by a one-hot vector of length
|V |, which we write 1w, that is zero in every di-
mension except for the element corresponding to
w. Thus, P is often referred to as word lookup
table and we shall denote by eWw ∈ Rd the embed-
ding obtained from a word lookup table for w as
eWw = P ·1w. This allows tasks with low amounts
of annotated data to be trained jointly with other
tasks with large amounts of data and leverage the
similarities in these tasks. A common practice to
this end is to initialize the word lookup table with
the parameters trained on an unsupervised task.
Some examples of these include the skip-n-gram
and CBOW models of Mikolov et al. (2013).

2.1 Problem: Independent Parameters

There are two practical problems with word
lookup tables. Firstly, while they can be pre-
trained with large amounts of data to learn se-
mantic and syntactic similarities between words,
each vector is independent. That is, even though
models based on word lookup tables are often ob-
served to learn that cats, kings and queens exist in
roughly the same linear correspondences to each

other as cat, king and queen do, the model does
not represent the fact that adding an s at the end
of the word is evidence for this transformation.
This means that word lookup tables cannot gen-
erate representations for previously unseen words,
such as Frenchification, even if the components,
French and -ification, are observed in other con-
texts.

Second, even if copious data is available, it is
impractical to actually store vectors for all word
types. As each word type gets a set of parameters
d, the total number of parameters is d×|V |, where
|V | is the size of the vocabulary. Even in rela-
tively morphological poor English, the number of
word types tends to scale to the order of hundreds
of thousands, and in noisier domains, such as on-
line data, the number of word types raises con-
siderably. For instance, in the English wikipedia
dump with 60 million sentences, there are approx-
imately 20 million different lowercased and tok-
enized word types, each of which would need its
own vector. Intuitively, it is not sensible to use the
same number of parameters for each word type.

Finally, it is important to remark that it is
uncontroversial among cognitive scientists that
our lexicon is structured into related forms—i.e.,
their parameters are not independent. The well-
known “past tense debate” between connection-
ists and proponents of symbolic accounts con-
cerns disagreements about how humans represent
knowledge of inflectional processes (e.g., the for-
mation of the English past tense), not whether
such knowledge exists (Marslen-Wilson and Tyler,
1998).

2.2 Solution: Compositional Models

Our solution to these problems is to construct
a vector representation of a word by composing
smaller pieces into a representation of the larger
form. This idea has been explored in prior work
by composing morphemes into representations of
words (Luong et al., 2013; Botha and Blunsom,
2014; Soricut and Och, 2015). Morphemes are an
ideal primitive for such a model since they are—
by definition—the minimal meaning-bearing (or
syntax-bearing) units of language. The drawback
to such approaches is they depend on a morpho-
logical analyzer.

In contrast, we would like to compose repre-
sentations of characters into representations of
words. However, the relationship between words
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forms and their meanings is non-trivial (de Saus-
sure, 1916). While some compositional relation-
ships exist, e.g., morphological processes such as
adding -ing or -ly to a stem have relatively reg-
ular effects, many words with lexical similarities
convey different meanings, such as, the word pairs
lesson⇐⇒ lessen and coarse⇐⇒ course.

3 C2W Model

Our compositional character to word (C2W)
model is based on bidirectional LSTMs (Graves
and Schmidhuber, 2005), which are able to
learn complex non-local dependencies in sequence
models. An illustration is shown in Figure 1. The
input of the C2W model (illustrated on bottom) is
a single word type w, and we wish to obtain is
a d-dimensional vector used to represent w. This
model shares the same input and output of a word
lookup table (illustrated on top), allowing it to eas-
ily replace then in any network.

As input, we define an alphabet of characters
C. For English, this vocabulary would contain an
entry for each uppercase and lowercase letter as
well as numbers and punctuation. The input word
w is decomposed into a sequence of characters
c1, . . . , cm, where m is the length of w. Each ci
is defined as a one hot vector 1ci , with one on the
index of ci in vocabulary M . We define a projec-
tion layer PC ∈ RdC×|C|, where dC is the number
of parameters for each character in the character
set C. This of course just a character lookup table,
and is used to capture similarities between charac-
ters in a language (e.g., vowels vs. consonants).
Thus, we write the projection of each input char-
acter ci as eci = PC · 1ci .

Given the input vectors x1, . . . ,xm, a LSTM
computes the state sequence h1, . . . ,hm+1 by it-
eratively applying the following updates:

it = σ(Wixxt + Wihht−1 + Wicct−1 + bi)
ft = σ(Wfxxt + Wfhht−1 + Wfcct−1 + bf )
ct = ft � ct−1+

it � tanh(Wcxxt + Wchht−1 + bc)
ot = σ(Woxxt + Wohht−1 + Wocct + bo)
ht = ot � tanh(ct),

where σ is the component-wise logistic sig-
moid function, and � is the component-wise
(Hadamard) product. LSTMs define an extra cell
memory ct, which is combined linearly at each

cats
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c a t s

a
c

t

....

....

s

Character
Lookup
Table
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Word 
Lookup 
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embeddings 
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embeddings 
for word "cats"

Figure 1: Illustration of the word lookup tables
(top) and the lexical Composition Model (bottom).
Square boxes represent vectors of neuron activa-
tions. Shaded boxes indicate that a non-linearity.

timestamp t. The information that is propagated
from ct−1 to ct is controlled by the three gates it,
ft, and ot, which determine the what to include
from the input xt, the what to forget from ct−1 and
what is relevant to the current state ht. We write
W to refer to all parameters the LSTM (Wix,
Wfx, bf , . . . ). Thus, given a sequence of charac-
ter representations eCc1 , . . . , e

C
cm as input, the for-

ward LSTM, yields the state sequence sf0 , . . . , s
f
m,

while the backward LSTM receives as input the re-
verse sequence, and yields states sbm, . . . , s

b
0. Both

LSTMs use a different set of parameters Wf and
Wb. The representation of the word w is obtained
by combining the forward and backward states:

eCw = Dfsfm + Dbsb0 + bd,

where Df , Db and bd are parameters that deter-
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mine how the states are combined.

Caching for Efficiency. Relative to eWw , com-
puting eCw is computational expensive, as it re-
quires two LSTMs traversals of length m. How-
ever, eCw only depends on the character sequence
of that word, which means that unless the parame-
ters are updated, it is possible to cache the value of
eCw for each different w’s that will be used repeat-
edly. Thus, the model can keep a list of the most
frequently occurring word types in memory and
run the compositional model only for rare words.
Obviously, caching all words would yield the same
performance as using a word lookup table eWw , but
also using the same amount of memory. Conse-
quently, the number of word types used in cache
can be adjusted to satisfy memory vs. perfor-
mance requirements of a particular application.

At training time, when parameters are changing,
repeated words within the same batch only need to
be computed once, and the gradient at the output
can be accumulated within the batch so that only
one update needs to be done per word type. For
this reason, it is preferable to define larger batches.

4 Experiments: Language Modeling

Our proposed model is similar to models used to
compute composed representations of sentences
from words (Cho et al., 2014; Li et al., 2015).
However, the relationship between the meanings
of individual words and the composite meaning
of a phrase or sentence is arguably more regular
than the relationship of representations of charac-
ters and the meaning of a word. Is our model capa-
ble of learning such an irregular relationship? We
now explore this question empirically.

Language modeling is a task with many appli-
cations in NLP. An effective LM requires syntactic
aspects of language to be modeled, such as word
orderings (e.g., “John is smart” vs. “John smart
is”), but also semantic aspects (e.g., “John ate fish”
vs. “fish ate John”). Thus, if our C2W model
only captures regular aspects of words, such as,
prefixes and suffixes, the model will yield worse
results compared to word lookup tables.

4.1 Language Model
Language modeling amounts to learning a func-
tion that computes the log probability, log p(w),
of a sentence w = (w1, . . . , wn). This quantity
can be decomposed according to the chain rule
into the sum of the conditional log probabilities

∑n
i=1 log p(wi | w1, . . . , wi−1). Our language

model computes log p(wi | w1, . . . , wi−1) by
composing representations of words w1, . . . , wi−1

using an recurrent LSTM model (Mikolov et al.,
2010; Sundermeyer et al., 2012).

The model is illustrated in Figure 2, where we
observe on the first level that each word wi is pro-
jected into their word representations. This can be
done by using word lookup tables eWwi

, in which
case, we will have a regular recurrent language
model. To use our C2W model, we can sim-
ply replace the word lookup table with the model
f(wi) = eCwi

. Each LSTM block si, is used to
predict word wi+1. This is performed by project-
ing the si into a vector of size of the vocabulary V
and performing a softmax.

cats fisheat

........ ........ ........

cats eat fish

LSTM

Word Lookup
or

Lexical 
Composition 

Model

Softmax
over

Vocabulary

embedings 
for words

</s>

Figure 2: Illustration of our neural network for
Language Modeling.

The softmax is still simply a d × V table,
which encodes the likelihood of every word type
in a given context, which is a closed-vocabulary
model. Thus, at test time out-of-vocabulary
(OOV) words cannot be addressed. A strategy
that is generally applied is to prune the vocabu-
lary V by replacing word types with lower fre-
quencies as an OOV token. At test time, the prob-
ability of words not in vocabulary is estimated as
the OOV token. Thus, depending on the number
of word types that are pruned, the global perplexi-
ties may decrease, since there are fewer outcomes
in the softmax, which makes the absolute value of
perplexity not informative when comparing mod-
els of different vocabulary sizes. Yet, the rela-
tive perplexity between different models indicates
which models can better predict words based on
their contexts.
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To address OOV words in the baseline setup,
these are replaced by an unknown token, and also
associated with a set of embeddings. During train-
ing, word types that occur once are replaced with
the unknown token stochastically with 0.5 proba-
bility. The same process is applied at the character
level for the C2W model.

4.2 Experiments

Datasets We look at the language model perfor-
mance on English, Portuguese, Catalan, German
and Turkish, which have a broad range of morpho-
logical typologies. While all these languages con-
tain inflections, in agglutinative languages affixes
tend to be unchanged, while in fusional languages
they are not. For each language, Wikipedia articles
were randomly extracted until 1 million words are
obtained and these were used for training. For de-
velopment and testing, we extracted an additional
set of 20,000 words.

Setup We define the size of the word represen-
tation d to 50. In the C2W model requires set-
ting the dimensionality of characters dC and cur-
rent states dCS . We set dC = 50 and dCS = 150.
Each LSTM state used in the language model se-
quence si is set to 150 for both states and cell
memories. Training is performed with mini-batch
gradient descent with 100 sentences. The learn-
ing rate and momentum were set to 0.2 and 0.95.
The softmax over words is always performed on
lowercased words. We restrict the output vocabu-
lary to the most frequent 5000 words. Remaining
word types will be replaced by an unknown token,
which must also be predicted. The word represen-
tation layer is still performed over all word types
(i.e., completely open vocabulary). When using
word lookup tables, the input words are also low-
ercased, as this setup produces the best results. In
the C2W, case information is preserved.

Evaluation is performed by computing the per-
plexities over the test data, and the parameters that
yield the highest perplexity over the development
data are used.

Perplexities Perplexities over the testset are re-
ported on Table 4. From these results, we can see
that in general, it is clear that C2W always outper-
forms word lookup tables (row “Word”), and that
improvements are especially pronounced in Turk-
ish, which is a highly morphological language,
where word meanings differ radically depending

Fusional Agglutinative
Perplexity EN PT CA DE TR
5-gram KN 70.72 58.73 39.83 59.07 52.87
Word 59.38 46.17 35.34 43.02 44.01
C2W 57.39 40.92 34.92 41.94 32.88
#Parameters
Word 4.3M 4.2M 4.3M 6.3M 5.7M
C2W 180K 178K 182K 183K 174K

Table 1: Language Modeling Results

on the suffixes used (evde→ in the house vs. ev-
den→ from the house).

Number of Parameters As for the number of
parameters (illustrated for block “#Parameters”),
the number of parameters in word lookup tables is
V ×d. If a language contains 80,000 word types (a
conservative estimate in morphologically rich lan-
guages), 4 million parameters would be necessary.
On the other hand, the compositional model con-
sists of 8 matrices of dimensions dCS×dC+2dCS .
Additionally, there is also the matrix that com-
bines the forward and backward states of size
d × 2dCS . Thus, the number of parameters is
roughly 150,000 parameters—substantially fewer.
This model also needs a character lookup table
with dC parameters for each entry. For English,
there are 618 characters, for an additional 30,900
parameters. So the total number of parameters for
English is roughly 180,000 parameters (2 to 3 pa-
rameters per word type), which is an order of mag-
nitude lower than word lookup tables.

Performance As for efficiency, both representa-
tions can label sentences at a rate of approximately
300 words per second during training. While this
is surprising, due to the fact that the C2W model
requires a composition over characters, the main
bottleneck of the system is the softmax over the
vocabulary. Furthermore, caching is used to avoid
composing the same word type twice in the same
batch. This shows that the C2W model, is rela-
tively fast compared operations such as a softmax.

Representations of (nonce) words While is is
promising that the model is not simply learning
lexical features, what is most interesting is that the
model can propose embeddings for nonce words,
in stark contrast to the situation observed with
lookup table models. We show the 5-most-similar
in-vocabulary words (measured with cosine simi-
larity) as computed by our character model on two
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increased John Noahshire phding
reduced Richard Nottinghamshire mixing

improved George Bucharest modelling
expected James Saxony styling
decreased Robert Johannesburg blaming
targeted Edward Gloucestershire christening

Table 2: Most-similar in-vocabular words under
the C2W model; the two query words on the left
are in the training vocabulary, those on the right
are nonce (invented) words.

in-vocabulary words and two nonce words1.This
makes our model generalize significantly better
than lookup tables that generally use unknown to-
kens for OOV words. Furthermore, this ability to
generalize is much more similar to that of human
beings, who are able to infer meanings for new
words based on its form.

5 Experiments: Part-of-speech Tagging

As a second illustration of the utility of our model,
we turn to POS tagging. As morphology is a
strong indicator for syntax in many languages,
a much effort has been spent engineering fea-
tures (Nakagawa et al., 2001; Mueller et al., 2013).
We now show that some of these features can be
learnt automatically using our model.

5.1 Bi-LSTM Tagging Model

Our tagging model is likewise novel, but very
straightforward. It builds a Bi-LSTM over words
as illustrated in Figure 3. The input of the model
is a sequence of features f(w1), . . . , f(wn). Once
again, word vectors can either be generated us-
ing the C2W model f(wi) = eCwi

, or word
lookup tables f(wi) = eWwi

. We also test the us-
age of hand-engineered features, in which case
f1(wi), . . . , fn(wi). Then, the sequential fea-
tures f(w1), . . . , f(wn) are fed into a bidirec-
tional LSTM model, obtaining the forward states
sf0 , . . . , s

f
n and the backward states sbN+1, . . . , s

b
0.

Thus, state sfi contains the information of all
words from 0 to i and sbi from n to i. The for-
ward and backward states are combined, for each
index from 1 to n, as follows:

li = tanh(Lfsfi + Lbsbi + bl),

where Lf , Lb and bl are parameters defining how
the forward and backward states are combined.

1software submitted as supplementary material

The size of the forward sf and backward states
sb and the combined state l are hyperparameters
of the model, denoted as dfWS , dbWS and dWS , re-
spectively. Finally, the output labels for index i
are obtained as a softmax over the POS tagset, by
projecting the combined state li.

cats fisheat

........ ........ ........

NNS VBP NN

Bi-LSTM

Word Lookup
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Lexical 
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Model

Softmax
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embedings 
for words

embedings 
for words 
in context

Figure 3: Illustration of our neural network for
POS tagging.

5.2 Experiments

Datasets For English, we conduct experiments
on the Wall Street Journal of the Penn Treebank
dataset (Marcus et al., 1993), using the standard
splits (sections 1–18 for train, 19–21 for tuning
and 22–24 for testing). We also perform tests on
4 other languages, which we obtained from the
CoNLL shared tasks (Martı́ et al., 2007; Brants
et al., 2002; Afonso et al., 2002; Atalay et al.,
2003). While the PTB dataset provides standard
train, tuning and test splits, there are no tuning sets
in the datasets in other languages, so we withdraw
the last 100 sentences from the training dataset and
use them for tuning.

Setup The POS model requires two sets of hy-
perparameters. Firstly, words must be converted
into continuous representations and the same hy-
perparametrization as in language modeling (Sec-
tion 4) is used. Additionally, we also compare to
the convolutional model of Santos and Zadrozny
(2014), which also requires the dimensionality
for characters and the word representation size,
which are set to 50 and 150, respectively. Sec-
ondly, words representations are combined to en-
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code context. Our POS tagger has three hyperpa-
rameters dfWS , dbWS and dWS , which correspond
to the sizes of LSTM states, and are all set to 50.
As for the learning algorithm, use the same setup
(learning rate, momentum and mini-batch sizes) as
used in language modeling.

Once again, we replace OOV words with an un-
known token, in the setup that uses word lookup
tables, and the same with OOV characters in the
C2W model. In setups using pre-trained word em-
beddings, we consider a word an OOV if it was not
seen in the labelled training data as well as in the
unlabeled data used for pre-training.

Compositional Model Comparison A compar-
ison of different recurrent neural networks for the
C2W model is presented in Table 3. We used our
proposed tagger tagger in all experiments and re-
sults are reported for the English Penn Treebank.
Results on label accuracy test set is shown in the
column “acc”. The number of parameters in the
word composition model is shown in the column
“parameters”. Finally, the number of words pro-
cessed at test time per second are shown in column
“words/sec”.

We observe that approaches using RNN yield
worse results than their LSTM counterparts with
a difference of approximately 2%. This suggests
that while regular RNNs can learn shorter char-
acter sequence dependencies, they are not ideal
to learn longer dependencies. LSTMs, on the
other hand, seem to effectively obtain relatively
higher results, on par with using word look up ta-
bles (row “Word Lookup”), even when using for-
ward (row “Forward LSTM”) and backward (row
“Backward LSTM”) LSTMs individually. The
best results are obtained using the bidirectional
LSTM (row “Bi-LSTM”), which achieves an ac-
curacy of 97.29% on the test set, surpassing the
word lookup table. The convolution model (San-
tos and Zadrozny, 2014) obtained slightly lower
results (row “Convolutional (S&Z)”), we think
this is because the convolutional model uses a
max-pooling layer over series of window convolu-
tions. As order is only perserved within windows,
longer distance dependences are unobserved.

There are approximately 40k lowercased word
types in the training data in the PTB dataset. Thus,
a word lookup table with 50 dimensions per type
contains approximately 2 million parameters. In
the C2W models, the number of characters types
(including uppercase and lowercase) is approxi-

acc parameters words/sec
Word Lookup 96.97 2000k 6K

Convolutional (S&Z) 96.80 42.5k 4K
Forward RNN 95.66 17.5k 4K

Backward RNN 95.52 17.5k 4K
Bi-RNN 95.93 40k 3K

Forward LSTM 97.12 80k 3K
Backward LSTM 97.08 80k 3K

Bi-LSTM dCS = 50 97.22 70k 3K
Bi-LSTM 97.36 150k 2K

Table 3: POS accuracy results for the English PTB
using word representation models.

mately 80. Thus, the character look up table con-
sists of only 4k parameters, which is negligible
compared to the number of parameters in the com-
positional model, which is once again 150k pa-
rameters. One could argue that results in the Bi-
LSTM model are higher than those achieved by
other models as it contains more parameters, so
we set the state size dCS = 50 (row “Bi-LSTM
dCS = 50”) and obtained similar results.

In terms of computational speed, we can ob-
serve that there is a more significant slowdown
when applying the C2W models compared to lan-
guage modeling. This is because there is no longer
a softmax over the whole word vocabulary as the
main bottleneck of the network. However, we can
observe that while the Bi-LSTM system is 3 times
slower, it is does not significantly hurt the perfor-
mance of the system.

Results on Multiple Languages Results on 5
languages are shown in Table 4. In general, we
can observe that the model using word lookup
tables (row “Word”) performs consistently worse
than the C2W model (row “C2W”). We also com-
pare our results with Stanford’s POS tagger, with
the default set of features, found in Table 4. Re-
sults using these tagger are comparable or bet-
ter than state-of-the-art systems. We can observe
that in most cases we can slightly outperform
the scores obtained using their tagger. This is a
promising result, considering that we use the same
training data and do not handcraft any features.
Furthermore, we can observe that for Turkish, our
results are significantly higher (>4%).

Comparison with Benchmarks Most state-of-
the-art POS tagging systems are obtained by ei-
ther learning or handcrafting good lexical fea-
tures (Manning, 2011; Sun, 2014) or using ad-
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System Fusional Agglutinative
EN PT CA DE TR

Word 96.97 95.67 98.09 97.51 83.43
C2W 97.36 97.47 98.92 98.08 91.59
Stanford 97.32 97.54 98.76 97.92 87.31

Table 4: POS accuracies on different languages

ditional raw data to learn features in an unsuper-
vised fashion. Generally, optimal results are ob-
tained by performing both. Table 5 shows the
current Benchmarks in this task for the English
PTB. Accuracies on the test set is reported on col-
umn “acc”. Columns “+feat” and “+data” de-
fine whether hand-crafted features are used and
whether additional data was used. We can see that
even without feature engineering or unsupervised
pretraining, our C2W model (row “C2W”) is on
par with the current state-of-the-art system (row
“structReg”). However, if we add hand-crafted
features, we can obtain further improvements on
this dataset (row “C2W + features”).

However, there are many words that do not con-
tain morphological cues to their part-of-speech.
For instance, the word snake does not contain any
morphological cues that determine its tag. In these
cases, if they are not found labelled in the training
data, the model would be dependent on context to
determine their tags, which could lead to errors in
ambiguous contexts. Unsupervised training meth-
ods such as the Skip-n-gram model (Mikolov et
al., 2013) can be used to pretrain the word rep-
resentations on unannotated corpora. If such pre-
training places cat, dog and snake near each other
in vector space, and the supervised POS data con-
tains evidence that cat and dog are nouns, our
model will be likely to label snake with the same
tag.

We train embeddings using English wikipedia
with the dataset used in (Ling et al., 2015), and
the Structured Skip-n-gram model. Results using
pre-trained word lookup tables and the C2W with
the pre-trained word lookup tables as additional
parameters are shown in rows “word(sskip)” and
“C2W + word(sskip)”. We can observe that both
systems can obtain improvements over their ran-
dom initializations (rows “word” and (C2W)).

Finally, we also found that when using the C2W
model in conjunction pre-trained word embed-
dings, that adding a non-linearity to the repre-
sentations extracted from the C2W model eCw im-
proves the results over using a simple linear trans-

+feat +data acc
word no no 96.70
C2W no no 97.36
word+features yes no 97.34
C2W+features yes no 97.57
Stanford 2.0 (Manning, 2011) yes no 97.32
structReg (Sun, 2014) yes no 97.36
word (sskip) no yes 97.42
C2W+word (sskip) no yes 97.54
C2W(tanh)+word (sskip) no yes 97.78
Morče (Spoustová et al., 2009) yes yes 97.44
SCCN (Søgaard, 2011) yes yes 97.50

Table 5: POS accuracy result comparison with
state-of-the-art systems for the English PTB.

formation (row “C2W(tanh)+word (sskip)”). This
setup, obtains 0.28 points over the current state-of-
the-art system(row “SCCN”).

5.3 Discussion
It is important to refer here that these results do
not imply that our model always outperforms ex-
isting benchmarks, in fact in most experiments,
results are typically fairly similar to existing sys-
tems. Even in Turkish, using morphological anal-
ysers in order to extract additional features could
also accomplish similar results. The goal of our
work is not to overcome existing benchmarks, but
show that much of the feature engineering done in
the benchmarks can be learnt automatically from
the task specific data. More importantly, we wish
to show large dimensionality word look tables can
be compacted into a lookup table using characters
and a compositional model allowing the model
scale better with the size of the training data. This
is a desirable property of the model as data be-
comes more abundant in many NLP tasks.

6 Related Work

Our work, which learns representations without
relying on word lookup tables has not been ex-
plored to our knowledge. In essence, our model
attempts to learn lexical features automatically
while compacting the model by reducing the re-
dundancy found in word lookup tables. Individ-
ually, these problems have been the focus of re-
search in many areas.

Lexical information has been used to augment
word lookup tables. Word representation learn-
ing can be thought of as a process that takes a
string as input representing a word and outputs
a set of values that represent a word in vector
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space. Using word lookup tables is one possi-
ble approach to accomplish this. Many meth-
ods have been used to augment this model to
learn lexical features with an additional model
that is jointly maximized with the word lookup
table. This is generally accomplished by either
performing a component-wise addition of the em-
beddings produced by word lookup tables (Chen
et al., 2015), and that generated by the additional
lexical model, or simply concatenating both rep-
resentations (Santos and Zadrozny, 2014). Many
models have been proposed, the work in (Col-
lobert et al., 2011) refers that additional features
sets Fi can be added to the one-hot representa-
tion and multiple lookup tables IFi can be learnt
to project each of the feature sets to the same
low-dimensional vector eWw . For instance, the
work in (Botha and Blunsom, 2014) shows that us-
ing morphological analyzers to generate morpho-
logical features, such as stems, prefixes and suf-
fixes can be used to learn better representations
for words. A problem with this approach is the
fact that the model can only learn from what has
been defined as feature sets. The models proposed
in (Santos and Zadrozny, 2014; Chen et al., 2015)
allow the model to arbitrary extract meaningful
lexical features from words by defining composi-
tional models over characters. The work in (Chen
et al., 2015) defines a simple compositional model
by summing over all characters in a given word,
while the work in (Santos and Zadrozny, 2014)
defines a convolutional network, which combines
windows of characters and a max-pooling layer to
find important morphological features. The main
drawback of these methods is that character or-
der is often neglected, that is, when summing over
all character embeddings, words such as dog and
god would have the same representation accord-
ing to the lexical model. Convolutional model are
less susceptible to these problems as they com-
bine windows of characters at each convolution,
where the order within the window is preserved.
However, the order between extracted windows is
not, so the problem still persists for longer words,
such as those found in agglutinative languages.
Yet, these approaches work in conjunction with a
word lookup table, as they compensate for this in-
ability. Aside from neural approaches, character-
based models have been applied to address mul-
tiple lexically oriented tasks, such as translitera-
tion (Kang and Choi, 2000) and twitter normaliza-

tion (Xu et al., 2013; Ling et al., 2013).
Compacting models has been a focus of re-

search in tasks, such as language modeling and
machine translation, as extremely large models
can be built with the large amounts of training
data that are available in these tasks. In language
modeling, it is frequent to prune higher order n-
grams that do not encode any additional infor-
mation (Seymore and Rosenfeld, 1996; Stolcke,
1998; Moore and Quirk, 2009). The same be ap-
plied in machine translation (Ling et al., 2012;
Zens et al., 2012) by removing longer translation
pairs that can be replicated using smaller ones. In
essence our model learns regularities at the sub-
word level that can be leveraged for building more
compact word representations.

Finally, our work has been applied to depen-
dency parsing and found similar improvements
over word models in morphologically rich lan-
guages (Ballesteros et al., 2015).

7 Conclusion

We propose a C2W model that builds word em-
beddings for words without an explicit word
lookup table. Thus, it benefits from being sen-
sitive to lexical aspects within words, as it takes
characters as atomic units to derive the embed-
dings for the word. On POS tagging, our mod-
els using characters alone can still achieve com-
parable or better results than state-of-the-art sys-
tems, without the need to manually engineer such
lexical features. Although both language model-
ing and POS tagging both benefit strongly from
morphological cues, the success of our models in
languages with impoverished morphological cues
shows that it is able to learn non-compositional as-
pects of how letters fit together.

The code for the C2W model and our language
model and POS tagger implementations is avail-
able from https://github.com/wlin12/
JNN.
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Abstract

Deep compositional models of meaning
acting on distributional representations of
words in order to produce vectors of larger
text constituents are evolving to a pop-
ular area of NLP research. We detail
a compositional distributional framework
based on a rich form of word embeddings
that aims at facilitating the interactions
between words in the context of a sen-
tence. Embeddings and composition lay-
ers are jointly learned against a generic
objective that enhances the vectors with
syntactic information from the surround-
ing context. Furthermore, each word is
associated with a number of senses, the
most plausible of which is selected dy-
namically during the composition process.
We evaluate the produced vectors qualita-
tively and quantitatively with positive re-
sults. At the sentence level, the effective-
ness of the framework is demonstrated on
the MSRPar task, for which we report re-
sults within the state-of-the-art range.

1 Introduction

Representing the meaning of words by using their
distributional behaviour in a large text corpus is
a well-established technique in NLP research that
has been proved useful in numerous tasks. In
a distributional model of meaning, the semantic
representation of a word is given as a vector in
some high dimensional vector space, obtained ei-
ther by explicitly collecting co-occurrence statis-
tics of the target word with words belonging to a
representative subset of the vocabulary, or by di-
rectly optimizing the word vectors against an ob-
jective function in some neural-network based ar-
chitecture (Collobert and Weston, 2008; Mikolov
et al., 2013).

Regardless their method of construction, distri-
butional models of meaning do not scale up to

larger text constituents such as phrases or sen-
tences, since the uniqueness of multi-word expres-
sions would inevitably lead to data sparsity prob-
lems, thus to unreliable vectorial representations.
The problem is usually addressed by the provision
of a compositional function, the purpose of which
is to prepare a vectorial representation for a phrase
or sentence by combining the vectors of the words
therein. While the nature and complexity of these
compositional models may vary, approaches based
on deep-learning architectures have been shown to
be especially successful in modelling the meaning
of sentences for a variety of tasks (Socher et al.,
2012; Kalchbrenner et al., 2014).

The mutual interaction of distributional word
vectors by a means of a compositional model pro-
vides many opportunities for interesting research,
the majority of which still remains to be explored.
One such direction is to investigate in what way
lexical ambiguity affects the compositional pro-
cess. In fact, recent work has shown that shal-
low multi-linear compositional models that explic-
itly handle extreme cases of lexical ambiguity in a
step prior to composition present consistently bet-
ter performance than their “ambiguous” counter-
parts (Kartsaklis and Sadrzadeh, 2013; Kartsaklis
et al., 2014). A first attempt to test these obser-
vations in a deep compositional setting has been
presented by Cheng et al. (2014) with promising
results.

Furthermore, a second important question re-
lates to the very nature of the word embeddings
used in the context of a compositional model. In a
setting of this form, word vectors are not any more
just a means for discriminating words based on
their underlying semantic relationships; the main
goal of a word vector is to contribute to a bigger
whole—a task in which syntax, along with seman-
tics, also plays a very important role. It is a central
point of this paper, therefore, that in a composi-
tional distributional model of meaning word vec-
tors should be injected with information that re-
flects their syntactical roles in the training corpus.
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The purpose of this work is to improve the
current practice in deep compositional models of
meaning in relation to both the compositional pro-
cess itself and the quality of the word embed-
dings used therein. We propose an architecture
for jointly training a compositional model and a
set of word embeddings, in a way that imposes
dynamic word sense induction for each word dur-
ing the learning process. Note that this is in con-
trast with recent work in multi-sense neural word
embeddings (Neelakantan et al., 2014), in which
the word senses are learned without any composi-
tional considerations in mind.

Furthermore, we make the word embeddings
syntax-aware by introducing a variation of the
hinge loss objective function of Collobert and We-
ston (2008), in which the goal is not only to predict
the occurrence of a target word in a context, but to
also predict the position of the word within that
context. A qualitative analysis shows that our vec-
tors reflect both semantic and syntactic features in
a concise way.

In all current deep compositional distributional
settings, the word embeddings are internal param-
eters of the model with no use for any other pur-
pose than the task for which they were specifically
trained. In this work, one of our main consid-
erations is that the joint training step should be
generic enough to not be tied in any particular
task. In this way the word embeddings and the de-
rived compositional model can be learned on data
much more diverse than any task-specific dataset,
reflecting a wider range of linguistic features. In-
deed, experimental evaluation shows that the pro-
duced word embeddings can serve as a high qual-
ity general-purpose semantic word space, present-
ing performance on the Stanford Contextual Word
Similarity (SCWS) dataset of Huang et al. (2012)
competitive to and even better of the performance
of well-established neural word embeddings sets.

Finally, we propose a dynamic disambiguation
framework for a number of existing deep compo-
sitional models of meaning, in which the multi-
sense word embeddings and the compositional
model of the original training step are further re-
fined according to the purposes of a specific task
at hand. In the context of paraphrase detection, we
achieve a result very close to the current state-of-
the-art on the Microsoft Research Paraphrase Cor-
pus (Dolan and Brockett, 2005). An interesting
aspect at the sideline of the paraphrase detection
experiment is that, in contrast to mainstream ap-
proaches that mainly rely on simple forms of clas-

sifiers, we approach the problem by following a
siamese architecture (Bromley et al., 1993).

2 Background and related work

2.1 Distributional models of meaning
Distributional models of meaning follow the dis-
tributional hypothesis (Harris, 1954), which states
that two words that occur in similar contexts have
similar meanings. Traditional approaches for con-
structing a word space rely on simple counting: a
word is represented by a vector of numbers (usu-
ally smoothed by the application of some func-
tion such as point-wise mutual information) which
show how frequently this word co-occurs with
other possible context words in a corpus of text.

In contrast to these methods, a recent class of
distributional models treat word representations as
parameters directly optimized on a word predic-
tion task (Bengio et al., 2003; Collobert and We-
ston, 2008; Mikolov et al., 2013; Pennington et
al., 2014). Instead of relying on observed co-
occurrence counts, these models aim to maximize
the objective function of a neural net-based ar-
chitecture; Mikolov et al. (2013), for example,
compute the conditional probability of observ-
ing words in a context around a target word (an
approach known as the skip-gram model). Re-
cent studies have shown that, compared to their
co-occurrence counterparts, neural word vectors
reflect better the semantic relationships between
words (Baroni et al., 2014) and are more effective
in compositional settings (Milajevs et al., 2014).

2.2 Syntactic awareness
Since the main purpose of distributional models
until now was to measure the semantic relatedness
of words, relatively little effort has been put into
making word vectors aware of information regard-
ing the syntactic role under which a word occurs
in a sentence. In some cases the vectors are POS-
tag specific, so that ‘book’ as noun and ‘book’
as verb are represented by different vectors (Kart-
saklis and Sadrzadeh, 2013). Furthermore, word
spaces in which the context of a target word is de-
termined by means of grammatical dependencies
(Padó and Lapata, 2007) are more effective in cap-
turing syntactic relations than approaches based
on simple word proximity.

For word embeddings trained in neural settings,
syntactic information is not usually taken explic-
itly into account, with some notable exceptions.
At the lexical level, Levy and Goldberg (2014)
propose an extension of the skip-gram model
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based on grammatical dependencies. Following a
different approach, Mnih and Kavukcuoglu (2013)
weight the vector of each context word depending
on its distance from the target word. With regard
to compositional settings (discussed in the next
section), Hashimoto et al. (2014) use dependency-
based word embeddings by employing a hinge loss
objective, while Hermann and Blunsom (2013)
condition their objectives on the CCG types of the
involved words.

As we will see in Section 3, the current paper
offers an appealing alternative to those approaches
that does not depend on grammatical relations or
types of any form.

2.3 Compositionality in distributional models
The methods that aim to equip distributional mod-
els of meaning with compositional abilities come
in many different levels of sophistication, from
simple element-wise vector operators such as ad-
dition and multiplication (Mitchell and Lapata,
2008) to category theory (Coecke et al., 2010).
In this latter work relational words (such as verbs
or adjectives) are represented as multi-linear maps
acting on vectors representing their arguments
(nouns and noun phrases). In general, the above
models are shallow in the sense that they do not
have functional parameters and the output is pro-
duced by the direct interaction of the inputs; yet
they have been shown to capture the compositional
meaning of sentences to an adequate degree.

The idea of using neural networks for compo-
sitionality in language appeared 25 years ago in
a seminal paper by Pollack (1990), and has been
recently re-popularized by Socher and colleagues
(Socher et al., 2011a; Socher et al., 2012). The
compositional architecture used in these works
is that of a recursive neural network (RecNN)
(Socher et al., 2011b), where the words get com-
posed by following a parse tree. A particular
variant of the RecNN is the recurrent neural net-
work (RNN), in which a sentence is assumed to
be generated by aggregating words in sequence
(Mikolov et al., 2010). Furthermore, some re-
cent work (Kalchbrenner et al., 2014) models the
meaning of sentences by utilizing the concept of a
convolutional neural network (LeCun et al., 1998),
the main characteristic of which is that it acts on
small overlapping parts of the input vectors. In all
the above models, the word embeddings and the
weights of the compositional layers are optimized
against a task-specific objective function.

In Section 3 we will show how to remove
the restriction of a supervised setting, introduc-

ing a generic objective that can be trained on any
general-purpose text corpus. While we focus on
recursive and recurrent neural network architec-
tures, the general ideas we will discuss are in prin-
ciple model-independent.

2.4 Disambiguation in composition

Regardless of the way they address composition,
all the models of Section 2.3 rely on ambiguous
word spaces, in which every meaning of a poly-
semous word is merged into a single vector. Es-
pecially for cases of homonymy (such as ‘bank’,
‘organ’ and so on), where the same word is used
to describe two or more completely unrelated con-
cepts, this approach is problematic: the semantic
representation of the word becomes the average of
all senses, inadequate to express any of them in a
reliable way.

To address this problem, a prior disambiguation
step on the word vectors is often introduced, the
purpose of which is to find the word representa-
tions that best fit to the given context, before com-
position takes place (Reddy et al., 2011; Kartsak-
lis et al., 2013; Kartsaklis and Sadrzadeh, 2013;
Kartsaklis et al., 2014). This idea has been tested
on algebraic and tensor-based compositional func-
tions with very positive results. Furthermore, it
has been also found to provide minimal benefits
for a RecNN compositional architecture in a num-
ber of phrase and sentence similarity tasks (Cheng
et al., 2014). This latter work clearly suggests that
explicitly dealing with lexical ambiguity in a deep
compositional setting is an idea that is worth to be
further explored. While treating disambiguation
as only a preprocessing step is a strategy less than
optimal for a neural setting, one would expect that
the benefits should be greater for an architecture
in which the disambiguation takes place in a dy-
namic fashion during training.

We are now ready to start detailing a compo-
sitional model that takes into account the above
considerations. The issue of lexical ambiguity is
covered in Section 4; Section 3 below deals with
generic training and syntactic awareness.

3 Syntax-based generic training

We propose a novel architecture for learning word
embeddings and a compositional model to use
them in a single step. The learning takes places
in the context of a RecNN (or an RNN), and both
word embeddings and parameters of the composi-
tional layer are optimized against a generic objec-
tive function that uses a hinge loss function.
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Figure 1: Recursive (a) and recurrent (b) neural
networks.

Figure 1 shows the general form of recursive
and recurrent neural networks. In architectures of
this form, a compositional layer is applied on each
pair of inputs x1 and x2 in the following way:

p = g(Wx[1:2] + b) (1)

where x[1:2] denotes the concatenation of the two
vectors, g is a non-linear function, and W,b are
the parameters of the model. In the RecNN case,
the compositional process continues recursively
by following a parse tree until a vector for the
whole sentence or phrase is produced; on the other
hand, an RNN assumes that a sentence is gener-
ated in a left-to-right fashion, taking into consider-
ation no dependencies other than word adjacency.

We amend the above setting by introducing a
novel layer on the top of the compositional one,
which scores the linguistic plausibility of the com-
posed sentence or phrase vector with regard to
both syntax and semantics. Following Collobert
and Weston (2008), we convert the unsupervised
learning problem to a supervised one by corrupt-
ing training sentences. Specifically, for each sen-
tence s we create two sets of negative examples.
In the first set, S′, the target word within a given
context is replaced by a random word; as in the
original C&W paper, this set is used to enforce
semantic coherence in the word vectors. Syntac-
tic coherence is enforced by a second set of nega-
tive examples, S′′, in which the words of the con-
text have been randomly shuffled. The objective
function is defined in terms of the following hinge
losses:∑

s∈S

∑
s′∈S′

max(0,m− f(s) + f(s′)) (2)

∑
s∈S

∑
s′′∈S′′

max(0,m− f(s) + f(s′′)) (3)

where S is the set of sentences, f the composi-
tional layer, and m a margin we wish to retain
between the scores of the positive training ex-
amples and the negative ones. During training,
all parameters in the scoring layer, the composi-
tional layers and word representations are jointly
updated by error back-propagation. As output,
we get both general-purpose syntax-aware word
representations and weights for the corresponding
compositional model.

4 From words to senses

We now extend our model to address lexical ambi-
guity. We achieve that by applying a gated archi-
tecture, similar to the one used in the multi-sense
model of Neelakantan et al. (2014), but advancing
the main idea to the compositional setting detailed
in Section 3.

We assume a fixed number of n senses per
word.1 Each word is associated with a main vector
(obtained for example by using an existing vector
set, or by simply applying the process of Section
3 in a separate step), as well as with n vectors de-
noting cluster centroids and an equal number of
sense vectors. Both cluster centroids and sense
vectors are randomly initialized in the beginning
of the process. For each word wt in a training sen-
tence, we prepare a context vector by averaging
the main vectors of all other words in the same
context. This context vector is compared with the
cluster centroids of wt by cosine similarity, and
the sense corresponding to the closest cluster is se-
lected as the most representative of wt in the cur-
rent context. The selected cluster centroid is up-
dated by the addition of the context vector, and the
associated sense vector is passed as input to the
compositional layer. The selected sense vectors
for each word in the sentence are updated by back-
propagation, based on the objectives of Equations
2 and 3. The overall architecture of our model, as
described in this and the previous section, is illus-
trated in Figure 2.

5 Task-specific dynamic disambiguation

The model of Figure 2 decouples the training of
word vectors and compositional parameters from

1Note that in principle the fixed number of senses assump-
tion is not necessary; Neelakantan et al. (2014), for exam-
ple, present a version of their model in which new senses are
added dynamically when appropriate.
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Figure 2: Training of syntax-aware multi-sense
embeddings in the context of a RecNN.

a specific task, and as a consequence from any
task-specific training dataset. However, note that
by replacing the plausibility layer with a classi-
fier trained for some task at hand, you get a task-
specific network that transparently trains multi-
sense word embeddings and applies dynamic dis-
ambiguation on the fly. While this idea of a single-
step direct training seems appealing, one consid-
eration is that the task-specific dataset used for the
training will not probably reflect the linguistic va-
riety that is required to exploit the expressiveness
of the setting in its full. Additionally, in many
cases the size of datasets tied to specific tasks is
prohibiting for training a deep architecture.

It is a merit of this proposal that, in cases like
these, it is possible for one to train the generic
model of Figure 2 on any large corpus of text, and
then use the produced word vectors and compo-
sitional weights to initialize the parameters of a
more specific version of the architecture. As a
result, the trained parameters will be further re-
fined according to the task-specific objective. Fig-
ure 3 illustrates the generic case of a composi-
tional framework applying dynamic disambigua-
tion. Note that here sense selection takes place by
a soft-max layer, which can be directly optimized
on the task objective.

6 A siamese network for paraphrase
detection

We will test the dynamic disambiguation frame-
work of Section 5 in a paraphrase detection task.
A paraphrase is a restatement of the meaning of a

sentence using different words and/or syntax. The
goal of a paraphrase detection model, thus, is to
examine two sentences and decide if they express
the same meaning.

While the usual way to approach this problem is
to utilize a classifier that acts (for example) on the
concatenation of the two sentence vectors, in this
work we follow a novel perspective: specifically,
we apply a siamese architecture (Bromley et al.,
1993), a concept that has been extensively used
in computer vision (Hadsell et al., 2006; Sun et
al., 2014). While siamese networks have been also
used in the past for NLP purposes (for example,
by Yih et al. (2011)), to the best of our knowledge
this is the first time that such a setting is applied
for paraphrase detection.

In our model, two networks sharing the same
parameters are used to compute the vectorial rep-
resentations of two sentences, the paraphrase rela-
tion of which we wish to detect; this is achieved by
employing a cost function that compares the two
vectors. There are two commonly used cost func-
tions: the first is based on the L2 norm (Hadsell
et al., 2006; Sun et al., 2014), while the second on
the cosine similarity (Nair and Hinton, 2010; Sun
et al., 2014). The L2 norm variation is capable of
handling differences in the magnitude of the vec-
tors. Formally, the cost function is defined as:

Ef =

{
1
2
‖f(s1)− f(s2)‖22 , if y = 1

1
2

max(0,m− ‖f(s1)− f(s2)‖2)2, o.w.

where s1, s2 are the input sentences, f the com-
positional layer (so f(s1) and f(s2) refer to sen-
tence vectors), and y = 1 denotes a paraphrase re-
lationship between the sentences; m stands for the
margin, a hyper-parameter chosen in advance. On

classifier

main (ambiguous)
vectors

sense vectors

soft-max layer

selected sense 
vectors

compositional layer(s)

sentence vector

Figure 3: Dynamic disambiguation in a generic
compositional deep net.
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Figure 4: A siamese network for paraphrase detec-
tion.

the other hand, the cost function based on cosine
similarity handles only directional differences, as
follows:

Ef =
1
2
(y − σ(wd+ b))2 (4)

where d = f(s1)·f(s2)
‖f(s1)‖2‖f(s2)‖2 is the cosine similar-

ity of the two sentence vectors, w and b are the
scaling and shifting parameters to be optimized, σ
is the sigmoid function and y is the label. In the
experiments that will follow in Section 7.4, both
of these cost functions are evaluated. The overall
architecture is shown in Figure 4.

In Section 7.4 we will use the pre-trained vec-
tors and compositional weights for deriving sen-
tence representations that will be subsequently fed
to the siamese network. When the dynamic disam-
biguation framework is used, the sense vectors of
the words are updated during training so that the
sense selection process is gradually refined.

7 Experiments

We evaluate the quality of the compositional
word vectors and the proposed deep compositional
framework in the tasks of word similarity and
paraphrase detection, respectively.

7.1 Model pre-training

In all experiments the word representations and
compositional models are pre-trained on the
British National Corpus (BNC), a general-purpose
text corpus that contains 6 million sentences of
written and spoken English. For comparison we
train two sets of word vectors and compositional
models, one ambiguous and one multi-sense (fix-

ing 3 senses per word). The dimension of the em-
beddings is set to 300.

As our compositional architectures we use a
RecNN and an RNN. In the RecNN case, the
words are composed by following the result of an
external parser, while for the RNN the composi-
tion takes place in sequence from left to right. To
avoid the exploding or vanishing gradient problem
(Bengio et al., 1994) for long sentences, we em-
ploy a long short-term memory (LSTM) network
(Hochreiter and Schmidhuber, 1997). During the
training of each model, we minimize the hinge loss
in Equations 2 and 3. The plausibility layer is im-
plemented as a 2-layer network, with 150 units at
the hidden layer, and is applied at each individ-
ual node (as opposed to a single application at the
sentence level). All parameters are updated with
mini-batches by AdaDelta (Zeiler, 2012) gradient
descent method (λ = 0.03, initial α = 0.05).

7.2 Qualitative evaluation of the word vectors

As a first step, we qualitatively evaluate the trained
word embeddings by examining the nearest neigh-
bours lists of a few selected words. We com-
pare the results with those produced by the skip-
gram model (SG) of Mikolov et al. (2013) and
the language model (CW) of Collobert and Weston
(2008). We refer to our model as SAMS (Syntax-
Aware Multi-Sense). The results in Table 1 show
clearly that our model tends to group words that
are both semantically and syntactically related; for
example, and in contrast with the compared mod-
els which group words only at the semantic level,
our model is able to retain tenses, numbers (singu-
lars and plurals), and gerunds.

The observed behaviour is comparable to that of
embedding models with objective functions con-
ditioned on grammatical relations between words;
Levy and Goldberg (2014), for example, present a
similar table for their dependency-based extension
of the skip-gram model. The advantage of our ap-
proach against such models is twofold: firstly, the
word embeddings are accompanied by a generic
compositional model that can be used for creat-
ing sentence representations independently of any
specific task; and secondly, the training is quite
forgiving to data sparsity problems that in gen-
eral a dependency-based approach would intensify
(since context words are paired with the grammati-
cal relations they occur with the target word). As a
result, a small corpus such as the BNC is sufficient
for producing high quality syntax-aware word em-
beddings.
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SG CW SAMS
begged beg, begging, cried begging, pretended, beg persuaded, asked, cried
refused refusing, refuses, refusal refusing , declined, refuse declined, rejected, denied

interrupted interrupting, punctuated,
interrupt interrupts, interrupt, interrupting punctuated, preceded, disrupted

themes thematic, theme, notions theme, concepts, subtext meanings, concepts, ideas
patiently impatiently, waited, waits impatiently, queue, expectantly impatiently, siliently, anxiously
player players, football, league game, club, team athlete, sportsman, team
prompting prompted, prompt, sparking prompt, amid, triggered sparking, triggering, forcing
reproduce reproducing, replicate, humans reproducing, thrive, survive replicate, produce, repopulate

predictions prediction, predict, forecasts predicting, assumption,
predicted

expectations, projections,
forecasts

Table 1: Nearest neighbours for a number of words with various embedding models.

7.3 Word similarity
We now proceed to a quantitative evaluation of
our embeddings on the Stanford Contextual Word
Similarity (SCWS) dataset of Huang et al. (2012).
The dataset contains 2,003 pairs of words and the
contexts they occur in. We can therefore make
use of the contextual information in order to select
the most appropriate sense for each ambiguous
word. Similarly to Neelakantan et al. (2014), we
use three different metrics: globalSim measures
the similarity between two ambiguous word vec-
tors; localSim selects a single sense for each word
based on the context and computes the similarity
between the two sense vectors; avgSim represents
each word as a weighted average of all senses in
the given context and computes the similarity be-
tween the two weighted sense vectors.

We compute and report the Spearman’s corre-
lation between the embedding similarities and hu-
man judgments (Table 2). In addition to the skip-
gram and Collobert and Weston models, we also
compare against the CBOW model (Mikolov et
al., 2013) and the multi-sense skip-gram (MSSG)
model of Neelakantan et al. (2014).

Model globalSim localSim avgSim
CBOW 59.5 – –
SG 61.8 – –
CW 55.3 – –
MSSG 61.3 56.7 62.1
SAMS 59.9 58.5 62.5

Table 2: Results for the word similarity task
(Spearman’s ρ × 100).

Among all methods, only the MSSG model and
ours are capable of learning multi-prototype word
representations. Our embeddings show top per-
formance for localSim and avgSim measures, and
performance competitive to that of MSSG and SG
for globalSim, both of which use a hierarchical

soft-max as their objective function. Compared to
the original C&W model, our version presents an
improvement of 4.6%—a clear indication for the
effectiveness of the proposed learning method and
the enhanced objective.

7.4 Paraphrase detection

In the last set of experiments, the proposed com-
positional distributional framework is evaluated
on the Microsoft Research Paraphrase Corpus
(MSRPC) (Dolan and Brockett, 2005), which con-
tains 5,800 pairs of sentences. This is a binary
classification task, with labels provided by human
annotators. We apply the siamese network detailed
in Section 6.

While MSRPC is one of the most used datasets
for evaluating paraphrase detection models, its
size is prohibitory for any attempt of training a
deep architecture. Therefore, for our training
we rely on a much larger external dataset, the
Paraphrase Database (PPDB) (Ganitkevitch et al.,
2013). The PPDB contains more than 220 million
paraphrase pairs, of which 73 million are phrasal
paraphrases and 140 million are paraphrase pat-
terns that capture syntactic transformations of sen-
tences. We use these phrase- and sentence-level
paraphrase pairs as additional training contexts
to fine-tune the generic compositional model pa-
rameters and word embeddings and to train the
baseline models. The original training set of the
MSRPC is used as validation set for deciding hy-
perparameters, such as the margin of the error
function and the number of training epochs.

The evaluations were conducted on various as-
pects, and the models are gradually refined to
demonstrate performance within the state-of-the-
art range.

Comparison of the two error functions In the
first evaluation, we compare the two error func-
tions of the siamese network using only ambigu-
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ous vectors. As we can see in Table 3, the co-
sine error function consistently outperforms the
L2 norm-based one for both compositional mod-
els, providing a yet another confirmation of the
already well-established fact that similarity in se-
mantic vector spaces is better reflected by length-
invariant measures.

Model L2 Cosine
RecNN 73.8 74.9
RNN 73.0 74.3

Table 3: Results with different error functions for
the paraphrase detection task (accuracy × 100).

Effectiveness of disambiguation We now pro-
ceed to compare the effectiveness of the two com-
positional models when using ambiguous vectors
and multi-sense vectors, respectively. Our error
function is set to cosine similarity, following the
results of the previous evaluation. When dynamic
disambiguation is applied, we test two methods of
selecting sense vectors: in the hard case the vector
of the most plausible sense is selected, while in the
soft case a new vector is prepared as the weighted
average of all sense vectors according to proba-
bilities returned by the soft-max layer (see Figure
3). As a baseline we use a simple compositional
model based on vector addition.

The dynamic disambiguation models and the
additive baseline are compared with variations that
use a simple prior disambiguation step applied on
the word vectors. This is achieved by first se-
lecting for each word the sense vector that is the
closest to the average of all other word vectors
in the same sentence, and then composing the se-
lected sense vectors without further considerations
regarding ambiguity. The baseline model and the
prior disambiguation variants are trained as sepa-
rate logistic regression classifiers. The results are
shown in Table 4.

Model Ambig. Prior Hard DD Soft DD
Addition 69.9 71.3 – –
RecNN 74.9 75.3 75.7 76.0
RNN 74.3 74.6 75.1 75.2

Table 4: Different disambiguation choices for the
paraphrase detection task (accuracy × 100).

Overall, disambiguated vectors work better than
the ambiguous ones, with the improvement to be
more significant for the additive model; there, a
simple prior disambiguation step produces 1.4%
gains. For the deep compositional models, simple

prior disambiguation is still helpful with small im-
provements, a result which is consistent with the
findings of Cheng et al. (2014). The small gains
of the prior disambiguation models over the am-
biguous models clearly show that deep architec-
tures are quite capable of performing this elemen-
tary form of sense selection intrinsically, as part
of the learning process itself. However, the situ-
ation changes when the dynamic disambiguation
framework is used, where the gains over the am-
biguous version become more significant. Com-
paring the two ways of dynamic disambiguation
(hard method and soft method), the numbers that
the soft method gives are slightly higher, produc-
ing a total gain of 1.1% over the ambiguous ver-
sion for the RecNN case.2

Note that, at this stage, the advantage of us-
ing the dynamic disambiguation framework over
simple prior disambiguation is still small (0.7%
for the case of RecNN). We seek the reason be-
hind this in the recursive nature of our architecture,
which tends to progressively “hide” local features
of word vectors, thus diminishing the effect of the
fine-tuned sense vectors produced by the dynamic
disambiguation mechanism. The next section dis-
cusses the problem and provides a solution.

The role of pooling One of the problems of the
recursive and recurrent compositional architec-
tures, especially in grammars with strict branching
structure such as in English, is that any given com-
position is usually the product of a terminal and a
non-terminal; i.e. a single word can contribute to
the meaning of a sentence to the same extent as the
rest of a sentence on its whole, as below:

[[kids]NP [play ball games in the park]VP]S

In the above case, the contribution of the words
within the verb phrase to the final sentence rep-
resentation will be faded out due to the recursive
composition mechanism. Inspired by related work
in computer vision (Sun et al., 2014), we attempt
to alleviate this problem by introducing an aver-
age pooling layer at the sense vector level and
adding the resulting vector to the sentence repre-
sentation. By doing this we expect that the new
sentence vector will reflect local features from all
words in the sentence that can help in the clas-
sification in a more direct way. The results for
the new deep architectures are shown in Table 5,
where we see substantial improvements for both
deep nets. More importantly, the effect of dynamic

2For all subsequent experiments, the reported results are
based on the soft selection method.
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disambiguation now becomes more significant, as
expected by our analysis.

Table 5 also includes results for two models
trained in a single step, with word and sense vec-
tors randomly initialized at the beginning of the
process. We see that, despite the large size of the
training set, the results are much lower than the
ones obtained when using the pre-training step.
This demonstrates the importance of the initial
training on a general-purpose corpus: the result-
ing vectors reflect linguistic information that, al-
though not obtainable from the task-specific train-
ing, can make great difference in the result of the
classification.

Model Ambig. Prior Dynamic
RecNN+pooling 75.5 76.3 77.6
RNN+pooling 74.8 75.9 76.6
1-step RecNN+pooling 74.4 – 72.9
1-step RNN+pooling 73.6 – 73.1

Table 5: Results with average pooling for the para-
phrase detection task (accuracy × 100).

Cross-model comparison In this section we
propose a method to further improve the perfor-
mance of our models, and we present an evaluation
against some of the previously reported results.

We notice that using distributional properties
alone cannot capture efficiently subtle aspects of a
sentence, for example numbers or human names.
However, even small differences on those aspects
between two sentences can lead to a different clas-
sification result. Therefore, we train (using the
MSPRC training data) an additional logistic re-
gression classifier which is based not only on the
embeddings similarity, but also on a few hand-
engineered features. We then ensemble the new
classifier (C1) with the original one. In terms of
feature selection, we follow Socher et al. (2011a)
and Blacoe and Lapata (2012) and add the fol-
lowing features: the difference in sentence length,
the unigram overlap among the two sentences, fea-
tures related to numbers (including the presence or
absence of numbers from a sentence and whether
or not the numbers in the two sentences are the
same). In Table 6 we report results of the original
model and the ensembled model, and we compare
with the performance of other existing models.

In all of the implemented models (including the
additive baseline), disambiguation is performed to
guarantee the best performance. We see that by
ensembling the original classifier with C1, we im-
prove the result of the previous section by another
1%. This is the second best result reported so far

Model Acc. F1

B
L All positive 66.5 79.9

Addition (disamb.) 71.3 81.1

D
yn

am
ic

D
is

. RecNN 76.0 84.0
RecNN+Pooling 77.6 84.7
RecNN+Pooling+C1 78.6 85.3
RNN 75.2 83.6
RNN+Pooling 76.6 84.3
RNN+Pooling+C1 77.5 84.6

Pu
bl

is
he

d
re

su
lts

Mihalcea et al. (2006) 70.3 81.3
Rus et al. (2008) 70.6 80.5
Qiu et al. (2006) 72.0 81.6
Islam and Inkpen (2009) 72.6 81.3
Fernando and Stevenson (2008) 74.1 82.4
Wan et al. (2006) 75.6 83.0
Das and Smith (2009) 76.1 82.7
Socher et al. (2011a) 76.8 83.6
Madnani et al. (2012) 77.4 84.1
Ji and Eisenstein (2013) 80.4 85.9

Table 6: Cross-model comparison in the para-
phrase detection task.

for the specific task, with a 0.6 difference in F-
score from the first (Ji and Eisenstein, 2013).3

8 Conclusion and future work

The main contribution of this paper is a deep com-
positional distributional model acting on linguis-
tically motivated word embeddings.4 The effec-
tiveness of the syntax-aware, multi-sense word
vectors and the dynamic compositional disam-
biguation framework in which they are used was
demonstrated by appropriate tasks at the lexical
and sentence level, respectively, with very posi-
tive results. As an aside, we also demonstrated the
benefits of a siamese architecture in the context of
a paraphrase detection task. While the architec-
tures tested in this work were limited to a RecNN
and an RNN, the ideas we presented are in prin-
ciple directly applicable to any kind of deep net-
work. As a future step, we aim to test the proposed
models on a convolutional compositional architec-
ture, similar to that of Kalchbrenner et al. (2014).
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Abstract

Online forum discussions proceed differ-

ently from face-to-face conversations and

any single thread on an online forum con-

tains posts on different subtopics. This

work aims to characterize the content of

a forum thread as a conversation tree of

topics. We present models that jointly per-

form two tasks: segment a thread into sub-

parts, and assign a topic to each part. Our

core idea is a definition of topic struc-

ture using probabilistic grammars. By

leveraging the flexibility of two grammar

formalisms, Context-Free Grammars and

Linear Context-Free Rewriting Systems,

our models create desirable structures for

forum threads: our topic segmentation is

hierarchical, links non-adjacent segments

on the same topic, and jointly labels the

topic during segmentation. We show that

our models outperform a number of tree

generation baselines.

1 Introduction

Online forums are commonplace today and used

for various purposes: product support and trou-

bleshooting, opining about events and people, and

student interaction on online course platforms.

Threads in these forums become long, involve

posts from multiple users, and the chronological

order of the posts in a thread does not represent

a continuous flow of dialog. Adding structure to

these threads is important for tasks such as infor-

mation extraction, search, and summarization.

One such aspect of structure is topic. Figure 1

shows a computer-troubleshooting related thread

with six posts. The first post is the troubleshoot-

ing question and the remaining posts can be seen

as focusing on either of two topics, the driver soft-

ware (posts p1, p2, p5) or the speaker hardware

p0 Bob: When I play a recorded video on my camera, it
looks and sounds fine. On my computer, it plays
at a really fast rate and sounds like Alvin and the
Chipmunks!

p1 Kate: I’d find and install the latest audio driver.
p2 Mary: The motherboard supplies the clocks for audio

feedback. So update the audio and motherboard
drivers.

p3 Chris: Another fine mess in audio is volume and speaker
settings. You checked these?

p4 Jane: Yes, under speaker settings, look for hardware ac-
celeration. Turning it off worked for me.

p5 Matt: Audio drivers are at this link. Rather than just
audio drivers, I would also just do all drivers.

Table 1: Example forum thread conversation

(p3, p4). By categorizing posts into such topics,

we can provide a useful division of content in a

thread and even across multiple threads. Note that

the driver topic is not a contiguous sequence but

present in non-adjacent parts, (p1, p2) and (p5).
We tackle the problem of joint topic segmenta-

tion and topic labeling of forum threads. Given

a thread’s posts in chronological order (the order

in which they were posted), we create a phrase

structure tree indicating how the posts are grouped

hierarchically into subtopics and super-topics. In

these conversation trees, leaves span entire posts.

Each non-terminal identifies the topic character-

izing the posts in its span. Topics are concepts or

themes which summarize the content of a group of

posts. Specifically, a topic is a set of words which

frequently co-occur in posts which are similar in

content and other conversation regularities.

Our key insight in this work is to formalize

topic structure using probabilistic grammars. We

define a base grammar for topic structure of fo-

rum threads and refine it to represent finer topics

and subtrees. We learn to predict trees under our

grammar based on two formalisms: Probabilis-

tic Context-Free Grammars (PCFG) and Proba-

bilistic Linear Context-Free Rewriting Systems

(PLCFRS). In the PCFG model, a non-terminal

spans a contiguous sequence of posts. In the
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PLCFRS model, non-terminals are allowed to

span discontinuous segments of posts. We lever-

age algorithms from probabilistic parsing of nat-

ural language sentences and modify them for our

domain. We show that our model performs well

and sidesteps a number of limitations of prior

topic segmentation approaches. In particular:

• Our models perform joint topic segmentation

and topic labeling while most existing models

identify unlabeled segments. Labeling topics on

segments creates richer annotation, and links non-

adjacent segments on the same topic.

• Our grammar-based probabilistic models have

two key benefits. They naturally create tree struc-

tures which are considered linguistically suitable

for topic segmentation but were difficult to create

under previous approaches. Second, the flexibility

of grammars such as PLCFRS allow our models

to seamlessly learn to produce trees where non-

adjacent segments on the same topic are explicitly

linked, an issue that was not addressed before.

We present large-scale experiments on a col-

lection of forum threads from the computer-

troubleshooting domain.1 We show that our gram-

mar models achieve a good balance between iden-

tifying when posts should be in the same topic ver-

sus a different topic. These grammar models out-

perform other tree generation baselines by a sig-

nificant margin especially on short threads.

2 Related work

The ideas in this paper are related to three areas of

prior research.

Forum thread analysis. Finding structure in fo-

rum threads has been previously addressed in two

ways. The first is reply structure prediction where

a parent post is linked to its children (replies)

which were posted later in time (Wang et al.,

2008; Cong et al., 2008). Reply links are some-

times augmented with a dialog act label indicat-

ing whether the child post is a question, answer, or

confirmation to the parent post (Kim et al., 2010;

Wang et al., 2011). The second set of methods

partition sentences in emails or blog comments

into topical clusters and then show salient words

per cluster as topic tags (Joty et al., 2013).

We focus on producing rich hierarchical seg-

mentation going beyond clusters which do not

contain any cluster-internal structure. We also be-

1Our corpus is available from http://

kinloch.inf.ed.ac.uk/public/CTREES/

ConversationTrees.html

lieve that topic structure is complementary to di-

alog act and reply link annotations. Tasks on fo-

rum data such as user expertise (Lui and Baldwin,

2009) and post quality prediction (Agichtein et al.,

2008), and automatic summarization (Nenkova

and Bagga, 2003) can be carried out on a fine-

grained level using topic information.

Conversation disentanglement. A related prob-

lem of clustering utterances is defined specifically

for Internet Relay Chat (IRC) and speech conver-

sations. In this case, multiple conversations, on

different topics, are mixed in and systems extract

threads which separate out individual conversa-

tions (Shen et al., 2006; Adams and Martell, 2008;

Elsner and Charniak, 2010).

Disentanglement is typically applied for the

coarse-level problem of identifying a coherent

conversation. In addition, these methods do not

create any structure upon the clustered utterances

in contrast to the focus of this work.

Topic Segmentation. is a task which directly fo-

cuses on the topic aspect of text and speech. This

task is of greater importance for speech which

lacks explicit structure such as paragraphs and

sections. Many approaches perform linear seg-

mentation where boundaries are inserted in the

text or speech to divide it into a flat set of topic

segments (Hearst, 1994; Utiyama and Isahara,

2001; Galley et al., 2003; Malioutov and Barzilay,

2006; Eisenstein and Barzilay, 2008). Very few

methods recursively combine smaller segments

into larger ones. Such hierarchical models (Eisen-

stein, 2009) have been applied at a coarse level

for segmenting very long texts such as books into

sections. Other work has focused on linear seg-

mentation for documents within the same domain

and having a regular structure (Chen et al., 2009;

Jeong and Titov, 2010; Du et al., 2015). These

latter approaches rely on three assumptions: that

the documents contain a regular set of topics, that

these topics are discussed in a fairly regular con-

sensus order, and that the same topic does not re-

cur in the same document.

Our models address two deficiencies in these

approaches. First, text is commonly understood

to have a hierarchical structure (Grosz and Sidner,

1986) and our grammar model is an ideal frame-

work for this goal. Tree structures also have other

advantages, for example, we do not predefine the

number of expected topic segments in a conversa-

tion tree, a requirement posed by many prior seg-
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mentation algorithms. The second limitation of

prior studies is assuming that topics do not recur

in the same document. But linguistic theories al-

low for non-adjacent utterances to belong to the

same topic segment (Grosz and Sidner, 1986) and

this fact is empirically true in chat and forum con-

versations (Elsner and Charniak, 2010; Wang et

al., 2011). Our models can flexibly handle and

link recurring topics within and across threads.

As a final note, because of the annotations re-

quired, most prior work on forums or IRC chats

have typically used few hundred threads. We

present a heuristically derived large corpus of

topic structure on which we evaluate our models.

3 Background

Our topic discovery methods are based on two

constituency grammar formalisms.

3.1 Probabilistic Context-Free Grammars

A PCFG is defined by a 5-tuple GC =(N , T ,

P , S, D) where N is a set of non-terminal sym-

bols, T a set of terminal symbols, and S is the

start symbol. P is a set of production rules of

the form A → β where A is a non-terminal and

β ∈ {N ∪ T}∗. D is a function that associates

each production rule with a conditional probabil-

ity of the form p(A → β|A). This probability in-

dicates how often the non-terminal A expands into

β. The probabilities of all the rules conditioned on

a particular non-terminal should sum to 1.

The joint probability of a tree T with yield Y ,

P (T, Y ), is the product of the probabilities of all
the productions used to construct T . The parsing

problem is to find the tree T̂ which is most likely

given the yield Y . T̂ = arg maxT P (T |Y ) =
arg maxT P (T, Y ).

Given training trees, we can enumerate the pro-

ductions and compute their probabilities using

maximum likelihood estimates (MLE):

p(A → β|A) =
count(A → β)

count(A)

which is the fraction of the times the non-terminal

A expands into β.
The most likely parse tree can be found using

a number of algorithms. In this work, we use

the CYK algorithm for PCFGs in Chomsky Nor-

mal Form. This algorithm has complexity O(n3)
where n is the length of the yield.

PCFGs do not capture a frequently occurring

property of forum threads, discontinuous seg-

ments on the same topic. Indirectly however, a

PCFG may assign the same non-terminal for each

of these segments. To model these discontinuities

more directly, we present a second model based

on PLCFRS where non-terminals are allowed to

span discontinuous yield strings.

3.2 Probabilistic Linear Context-Free

Rewriting Systems

LCFRS grammars (Vijay-Shanker et al., 1987)

generalize CFGs, where non-terminals can span

discontinuous constituents. Formally, the span

of an LCFRS non-terminal is a tuple, with size

k ≥ 1, of strings, where k is the non-terminal

“fan-out”. As such, the fan-out of a CFG non-

terminal is 1.

An LCFRS GL =(N , T , P , S, V ) where N is

the set of non-terminals, T the terminals and S is

the start symbol. A function f : N → N gives

the fan-out of each non-terminal. P is the set of

productions or otherwise called rewriting rules of

the LCFRS. V is a set of variables used to indicate

the spans of each non-terminal in these rules. A

rewriting rule has the form:

A(α1, α2, . . . , αf(A)) →
A1(x1

1 . . . , x1
f(A1)), . . . , Am(xm

1 , . . . , xm
f(Am))

Here A,A1,. . .,Am ∈ N . Since there are m
non-terminals on the RHS, this rule has rank m.

xi
j ∈ V for 1 ≤ i ≤ m and 1 ≤ j ≤ f(Ai) indi-

cate the f(Ai) discontinuous spans dominated by

Ai. αi ∈ (T ∪ V )∗, 1 ≤ i ≤ f(A) are the spans
of the LHS non-terminal A.

A rewriting rule explains how the left-hand

side (LHS) non-terminal’s span can be com-

posed from the yields of the right-hand side

(RHS) non-terminals. For example, in the rule

A(x1x2, x3) → B(x1)C(x2, x3), A and C have

fan-out 2, B has fan-out 1. The two spans of A,

x1x2 and x3, are composed from the spans of B
and C . For comparison, the productions of a CFG

take the single spans of each non-terminal on the

RHS and concatenate them in the same order to

yield a single span of the LHS non-terminal.

A Probabilistic LCFRS (PLCFRS) (Levy,

2005) also contains D, a function which assigns

conditional probabilities p(A(~x) → ~φ|A(~x)) to
the rules. The probabilities conditioned on a par-

ticular non-terminal and span configuration, A(~x)
should sum to 1. Given a training corpus, LCFRS

rules can be read out and probabilities computed

similar to CFG rules.
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To find the most likely parse tree, we use the

parsing algorithm proposed by Kallmeyer and

Maier (2013) for binary PLCFRS. The approach

uses weighted deduction rules (Shieber et al.,

1995; Nederhof, 2003), which specify how to

compute a new item from other existing items.

Each item is of the form [A, ~ρ] where A is a

non-terminal and ~ρ is a vector indicating the spans

dominated by A. A weight w is attached to each

item which gives the |log| of the Viterbi inside

probability of the subtree under that item. A set

of goal items specify the form of complete parse

trees. By using the Knuth’s generalization (Knuth,

1977) of the shortest paths algorithm, the most

likely tree can be found without exhaustive pars-

ing as in Viterbi parsing of CFGs. The complexity

of parsing is O(n3k) where k is the fan-out of the

grammar (the maximum fan-out of its rules).

4 Problem Formulation

Given a thread consisting of a sequence of posts

(p1, p2, . . . , pn) in chronological order, the task

is to produce a constituency tree with yield (p1,

p2 . . . pn). A leaf in this tree spans an entire

post. Non-terminals identify the topic of the posts

within their span. Non-terminals at higher levels

of the tree represent coarser topics in the conver-

sation (the span covered by these nodes contain

more posts) than those lower in the tree. The root

topic node indicates the overall topic of the thread.

Below we define a Context-Free Grammar

(CFG) for such trees.

4.1 A Grammar for Conversation Trees

GB is our base grammar which is context-free

and has four non-terminals {S, X, T , C}. Each

post p in the corpus is a terminal symbol (i.e. a ter-

minal symbol is a bag of words). The productions

in GB are: S → T X∗, X → T X∗ and T → p.

GB generates trees with the following structure.

A root-level topic S characterizes the content of

the entire thread. Thread-starting rules are of the

form, S → T X∗, where X∗ indicates a sequence
of zero or more X non-terminals. T nodes are

pre-terminals analogous to part-of-speech tags in

the case of syntactic parsing. In our grammar,

the T → p rule generates a post in the thread.

In the thread-starting rules, T generates the first

post of the thread which poses the query or com-

ment that elicits the rest of the conversation. The

X∗ sequence denotes topic branches, the subtree

under each X is assumed to correspond to a dif-

S[11]

T[3]

p0

X[5]

T[6]

p1

X[8]

T[7]

p2

X[12]

T[2]

p3

X[7]

T[4]

p4

X[5]

T[6]

p5

Figure 1: Example conversation tree for the thread

in Table 1

ferent topic. These X’s characterize all but the

first post of the thread. The continuation rules,

X → T X∗, recursively subdivide the X subtrees

into topics spanning fewer posts. In each case, the

T node on the right-hand side of these rules gener-

ates the first post (in terms of posting time) in that

subtree. Therefore posts made earlier in time al-

ways dominate (in the tree structure) those which

come later in the thread. We define the head of a

non-terminal as the first post as per the chronolog-

ical order of posts in the span of the non-terminal.

This grammar does not generate binary trees.

We binarize the tree with C nodes to obtain an

equivalent grammar in Chomsky Normal Form

(CNF) (CNF yields parsing algorithms with lower

complexity)2 : S → T C | T , X → T C | T ,

T → p and C → X | X X| X C . The C nodes

can be collapsed and its daughters attached to the

parent of C to revert back to the non-binary tree.

While this CFG defines the structure of conver-

sation trees, by itself this grammar is insufficient

for our task. In particular, it contains a single non-

terminal of each type (S, X, T , C) and so does

not distinguish between topics. We extend this

grammar to create GE which has a set of non-

terminals corresponding to each non-terminal in

GB , these fine-grained non-terminals correspond

to different topics. GE is created using latent an-

notations (Matsuzaki et al., 2005) on the X, T ,

S and C non-terminals from GB . The resulting

non-terminals for GE are S[i], X[j], T [k] and

C[l], such that 1 ≤ i ≤ NS , 1 ≤ j ≤ NX ,

1 ≤ k ≤ NT , 1 ≤ l ≤ NC . i, j, k and l identify
specific topics attached to a particular node type.

Our output trees are created with GE to depict

the topic segmentation of the thread and are non-

binary. The binary trees produced by our algo-

rithms are converted by collapsing the C . As a

result, conversation trees have S[i], X[j] and T [k]
2Any context-free grammar can be converted to an equiv-

alent CNF grammar. Our algorithms support unary rules.
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nodes but no C[l] nodes.
An example conversation tree for the thread in

Table 1 is shown in Figure 1. At level 1, T [3] de-
scribes the topic of the first post while the remain-

ing posts are under X[5] which may indicate a

driver topic, and X[12], a speaker hardware topic.
Note how X[5] may re-occur in the conversation

to accommodate post p5 on the driver topic.

4.2 Supervised learning framework

We use a supervised framework for learning the

models. We assume that we have training trees

according to the base grammar, GB . The follow-

ing section describes our data and how we obtain

these GB-based trees. In Section 6, we present

a method for creating GE-type trees with non-

terminal refinements. Estimates of rule probabili-

ties from this augmented training corpus are used

to develop the parsers for topic segmentation.

5 Data

We collected 13,352 computer-troubleshooting

related threads from http://forums.cnet.

com/. The number of posts per thread varies

greatly between 1 and 394, and the average is

around 5 posts. We divide these threads into train-

ing, development and test sets. The most frequent

100 words from the training set are used as stop-

words. After filtering stopwords, a post contains

39 tokens on average and the vocabulary size of

our corpus is 81,707. For development and test-

ing, we only keep threads with a minimum of 3

posts (so that the problem is non-trivial) and a

maximum of 50 posts (due to complexity of pars-

ing). We have 9,243 training threads, 2,014 for

development, and 2,071 for testing.

A particular feature of the forums on cnet.

com is the explicit reply structure present in the

threads. The forum interface elicits these reply re-

lationships as users develop a thread. When a user

replies in a particular thread, she has to choose

(only) one of the earlier posts in the thread (in-

cluding the question post) to attach her reply to. In

this way, each post is linked to a unique post ear-

lier in time in the same thread. This reply structure

forms a dependency tree. Figure 2 (a) is a possible

reply tree for the thread in Table 1.

5.1 Deriving conversation trees

Next we convert these reply-link trees into phrase-

structure conversation trees. We developed a de-

terministic conversion method that uses the gen-

(a)
hp0h hp1h hp2h hp3h hp4h hp5h

(b) S

T X X

p0 T X T X

p1 T T T X

p2 p3 p4 T

p5

Figure 2: (a) A reply structure tree for the thread

in Table 1 and (b) the derived conversation tree

erative process defined by the base grammar GB .

The key idea is to track when the conversation

branches into sub-topics and when the replies are

proceeding within the same topic.

The algorithm traverses the nodes of the depen-

dency tree D in breadth-first order, starting at the

root (first) post. We create a root S node in the

phrase structure tree H . Then the thread-starting

rule from GB , S → T X∗, is used to create one

T and k X nodes as children of S. The first post
p0 is attached as a child of the T node. k is equal

to the number of replies to p0 (children of p0 in

D). For each of these k X nodes, we instanti-

ate a X → T X∗ rule in H . The k replies of p0

are attached one each as a child of the T nodes

in these rules. Any set of children are always in-

stantiated in chronological order. So the span of a

non-terminal in H always contains posts in non-

decreasing time order. We continue the procedure

with the next post from D in the traversal order.

This procedure converts the reply tree of Figure

2 (a) into the conversation tree (b). Note that (a) is

a possible reply structure for our example thread

in Table 1. The conversation tree (b) derived ac-

cording to this reply structure has a non-projective

structure where p1, p2 and p5 are linked under one

X node (at level 1). Such a tree can be produced

by our LCFRS model. The ideal PCFG tree will

repeat the topic branch as in Figure 1.

The derived trees at this stage follow GB and

contain only the S, X, T non-terminals (without

any latent annotations). This tree is converted into

Chomsky Normal Form using C nodes.

5.2 Discontinuous topic segments

As in our example above, non-projective edges

in the reply structure are rather frequent. Of the
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total threads in our corpus 14.5% contain a non-

projective edge. A thread should have a mini-

mum of four posts to have the possibility of non-

projective edges. Among the 7,691 threads with at

least four posts, the percentage of non-projective

trees is even higher, 25%. This finding suggests

that in any thread of reasonable size which we

wish to summarize or categorize, non-projective

edges will be common. Hence a direct approach

for addressing discontinuous segments such as our

PLCFRS model is important for this domain.

6 Parsers for Conversation Trees

The training data are conversation trees with rules

from GB . We refine the non-terminals to cre-

ate GE , extract PCFG or PLCFRS rules from the

training trees, and build a CYK parser that pre-

dicts the most likely tree according to GE .

6.1 Refining the non-terminals

We use a clustering approach, akin to the spectral

algorithm of Cohen et al. (2013) and Narayan and

Cohen (2015),3 to create finer grained categories

corresponding to GB’s non-terminals: S, X, C
and T . Each node in each tree in the training data

is associated with a feature vector, which is a func-

tion of the tree and the anchor node. These vectors

are clustered (for each of the non-terminals sepa-

rately) and then, each node is annotated with the

corresponding cluster. This process gives us the

non-terminals S[i], X[j], T [k] and C[l] of GE .

The features for a node nl are: depth of nl in the

tree, root is at depth 0; maximum depth of the sub-

tree under nl; number of siblings of nl; number of

children of nl; number of posts in the span of nl;

average length (in terms of tokens) of the posts in

the span of nl; average similarity of the span of nl

with the span of nl’s siblings
4 ; similarity of nl’s

span with the span of its left-most sibling; elapsed

time between the first and last posts in nl’s span.

We use CLUTO toolkit (Karypis, 2002) to per-

form clustering. The algorithm maximizes the

pairwise cosine similarity between the feature

vectors of nodes within the same cluster. The

3The main difference between our algorithm and the al-
gorithm by Narayan and Cohen (2015) is that we do not de-
compose the trees into “inside” trees and “outside” trees, or
use a singular value decomposition step before clustering the
features.

4The span of nl and that of a sibling are each represented
by binary vectors indicating the presence and absence of a
term in the span. The similarity value is computing using
cosine overlap between the vectors and the average across all
siblings is recorded.

best number of clusters for the four non-terminal

node types are tuned jointly to give the best per-

formance on our final topic segmentation task.

6.2 Learning rule probabilities

As mentioned previously, each terminal in our

grammar is an entire post’s text. For the pre-

terminal to terminal productions in our grammar

T [j] → pi, we compute p(T [j] → pi|T [j]) as

the probability under a unigram language model

Lj which is trained on the collection of the posts

from the training corpus which are dominated by

T [j] nodes. p(T [j] → pi|T [j]) =
∏Npi

k=1 Lj(wi
k)

where wi
1, w

i
2...w

i
Npi

are the tokens in post pi.

The rest of the production probabilities are

learned using MLE on the training trees. In the

case of LCFRS rules, the gap information is also

obtained during the extraction.

6.3 CYK parsing

For both PCFG and LCFRS we use CYK style

algorithms, as outlined in §3, to obtain the most

likely tree. For the more computationally com-

plex LCFRS model, we make a number of addi-

tions to improve speed. First, we restrict the fan-

out of the grammar to 2, i.e. any non-terminal

can only span a maximum of two discontinuous

segments. 97% of the productions in fact have

only non-terminals with fan-out ≤ 2. Second, we

use A∗ search (Maier et al., 2012) to prioritize

our agenda. Last, we reduce the number of items

added to the agenda. An item has the form [A,

~ρ], A is a non-terminal and ~ρ is the spans cov-

ered by A. For every span, we only keep the top 5

non-terminal items according to the score. In ad-

dition, we only allow spans with a gap of at most

2 since 77% of all gaps (dominated by fan-out ≤
2) non-terminals are ≤ 2 posts. Moreover, after

a certain number of items (10,000) are added to

the chart, we only allow the creation of new items

which have a contiguous span.

7 Systems for comparison

We compare our models to two types of systems.

7.1 STRUCTURE ONLY

The first type generate tree structures without con-

sidering the content of the threads.

Right-branching tree (RBT). produces a

strictly right branching tree where each post is

dominated by the immediately previous (accord-

ing to time) post in the thread. It uses the grammar
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with the rules {S → TX, X → TX, X → T ,

T → p}. This method does not perform use-

ful topic segmentation as it produces only a single

topic branch containing all the posts.

Attach-to-root tree (ART). attaches each post

to the root of the tree. The grammar rules are

{S → TX1...Xn, X → T , T → p}, where n is

the number of posts in the thread. This approach

assumes each post belongs to a different topic in

the thread. In contrast to RBT, ART contains too

many topic branches, one per post in the thread.

Random tree (RAND).mixes decisions to cre-

ate a new topic branch or continue in the same

branch. The generation process is top down, at

each step, the algorithm chooses a certain num-

ber of topic branches (Xs) to create (≤ number of

posts left to add to the tree). Then, the number

of posts under each branch is sampled (such that

each branch has at least one post). This process is

then recursively done at the new topic branches.

7.2 STRUCTURE AND CONTENT

These approaches produce tree structures in-

formed by content. We build these parsers by

modifying prior models for chat disentanglement

and linear topic segmentation of documents.

Similarity tree (SIM). produces trees by at-

taching each post as a child of the most similar of

the previous (by time) posts (Wang et al., 2008).

We use cosine similarity between vector represen-

tations of two posts in order to compute similar-

ity. When the similarity exceeds a threshold value,

the post is added under the topic branch of the

prior post. Otherwise the post is under a new topic

branch attached to the root of the tree. A thresh-

old of 0.15 was chosen after tuning on the devel-

opment data.

Cluster tree (CLUS). uses an approach re-

lated to chat disentanglement (Elsner and Char-

niak, 2010). The posts within each thread are clus-

tered separately into kl clusters where kl = l/h
depends on the number of posts in the thread, l.
h = 6 was chosen by tuning. The posts in each

cluster are ordered by time and a right branching

tree is created over them. These kl cluster-level

trees are then attached as children of a new node

to create a thread-level tree. The cluster-trees are

ordered left to right in the thread-tree according to

the time of the earliest post in each cluster.

Linear segmentation tree (LSEG). is based

on postprocessing the output of a Bayesian linear

topic segmentation model (Eisenstein and Barzi-

lay, 2008). Each post’s content is treated as a sen-

tence and a document is created for each thread by

appending its posts in their time order. The model

is then used to group consecutive sentences into kl

segments. For each thread of length l, kl = l/h,
h = 6 was chosen by tuning. For each segment, a

right branching tree is created and these segment-

level trees are made siblings in a thread-level tree.

The segments are added left to right in the thread-

tree as per their order in the text.

All STRUCTURE trees contain thread structure

but no topic labels. In other words, they have

coarse non-terminals (X, T and S) only. The

STRUCTURE AND CONTENT trees, LSEG and

CLUS contain topics or groups but only at one top

level, and further the number and labels of these

topics are different per thread. Hence there is no

linking across threads. Within a thread, the SIM

and CLUS tree can link non-adjacent posts under

the same topic. These links are also not available

from a LSEG tree.

8 Evaluation metrics

To evaluate the topic segmentation, we develop a

node-governance based measure. Our score com-

pares two conversation trees g and h, where g is

the gold-standard tree and h is the hypothesized

one. We assume that g and h are in dependency

format, reversing the transformation from §5.1.
We break g (and h) into a set of pairs, for each

pair of nodes in the tree (each node is a post in the

thread). For each such pair, p and q, we find their

least common ancestor, ℓ(p, q|g) (or ℓ(p, q|h). If
these nodes are in a governing relation (p domi-

nates q or vice versa), then ℓ(p, q) is the dominat-

ing node. We then define the following sets and

quantities for · ∈ {g, h}:
• S1(·) = {(p, q, ℓ(p, q)) | ℓ(p, q|·) ∈ {p, q}}.
• S2(·) = {(p, q, ℓ(p, q)) | ℓ(p, q|·) /∈ {p, q}}.
• n1(g, h) = |S1(g) ∩ S1(h)|.
• n2(g, h) = |S2(g) ∩ S2(h)|.

s1(·) and s2(·) are defined as the size of

S1(·) and S2(·), repsectively. Let g1, . . . , gn and

h1, . . . , hn be a corpus of gold-standard conver-

sation trees and their corresponding hypothesized

conversation trees. Then the evaluation metric

we compute is the harmonic mean (Fscore) of the

micro-average of the precision for governing (G-

p) and non-governing (NG-p) pairs, and recall for

governing (G-r) and non-governing (NG-r) pairs.

For example, G-p is calculated as
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G-p =
∑n

i=1 n1(gi, hi)∑n
i=1 s1(hi)

.

Traditional parsing evaluation measures such as

constituency bracketting and dependency attach-

ment scores were too local for our purpose. For

example, if a long chain of posts is placed in a dif-

ferent topic but their local dependencies are main-

tained, we only penalize one constituent and one

node’s parent in the constituency and dependency

scores respectively. But the topic segmentation

created by this change has several posts placed in

the wrong topic branch. Our scores overcome this

problem by considering the relationship between

all pairs of posts and also dividing the relationship

in the pair as governing or non-governing.

9 Results and discussion

We tune the number of latent topic annotations for

the non-terminals using grid search on the devel-

opment set. The best settings are 40 S, 100 X, 20

C , 80 T clusters for PCFG and 10 S, 5 X, 15 C ,

40 T for LCFRS.

Below we show an example non-projective tree

created by our LCFRS parser. The topics are indi-

cated with the most frequent 5 words in the match-

ing cluster.
S[9]: problem, time,

windows, pc, could

T[1]:thank, time, i’ll,

really, try

p0

X[4]:power, time, go,

problem, same

T[17]:printer,

ink, hp,

printers, print

p1

X[4]

T[17]

p4

X[3]:drive, try, windows,

hard, problem

T[6]: cd, drive,

windows,

problem, dvd

p2

X[3]

T[6]

p3

Here post p4 though later in posting time is pre-

dicted to be on the same topic as p1.

The non-terminals in our trees enable useful

topic segmentation and we found that perfor-

mance is extremely sensitive to the number of

non-terminals of each type S, X, C and T . Cur-

rently, we do not have a direct method to evaluate

the non-terminals in our tree but we plan to use the

information in other applications as an evaluation.

Table 2 and 3 shows the segmentation perfor-

mance of the models (as percentages). The per-

formance varied greatly depending on the length

of the threads and hence we show the results sepa-

rately for threads with up to 15 posts (SHORT) and

those with 16 to 50 posts (LONG). The results are

divided into sections based on the subset of test

data on which the evaluation is performed. The

first section (R1.) is performance on all threads,

(R2.) only on the projective threads in the test

data, and (R3.) only on the non-projective threads.

Among the baselines, the Right-branching trees

(RBT) or Attaching to the root (ART) have some

advantages: the RBT receives 100% recall of the

governing pairs and the ART tree has high recall

of the non-governing pairs. However, their Fs-

cores are 0. Recall that the RBT contains a single

topic branch and hence no useful segmentation is

done; ART is the other extreme where every post

is put in a separate topic branch. RAND is the av-

erage performance of 3 randomly generated trees

for each thread. This method has a better balance

between branching and depth leading to 33.4 Fs-

core for SHORT and 21.5 for LONG threads.

The PCFG and the LCFRS models clearly out-

perform these baselines. The Fscore improves up

to 15% over RAND on SHORT and LONG threads.

The grammar models also consistently outperform

SIM systems.

With regard to CLUS and LSEG, there is a

difference in performance between SHORT and

LONG threads and based on whether the desired

structure was projective or non-projective. On

SHORT threads, the grammar models outperform

LSEG and CLUS particularly on the projective

threads (the LCFRS model has a 22% higher Fs-

core). On the longer threads however, the CLUS

and LSEG models perform best overall and for

non-projective threads. CLUS and LSEG directly

model the content similarity of posts while the

grammar models make many decisions at level of

topic nodes. Remember that the clustering is done

per thread in CLUS and LSEG compared to using

a common set of topics across all threads. Making

such fine-grained similarity comparison appears

to be helpful especially for longer threads and

even though LSEG does not make non-projective

decisions, its accuracy is high on the attachments

it makes leading to good performance on non-

projective threads too. In future work, we plan

to explore how we can combine the advantages of

direct similarity with the grammar models.

Between the two grammar models, the LCFRS

model is better than PCFG, even on projective

threads, and can produce non-projective trees.

Part of this improvement on projective trees could

be due to more data being available in the LCFRS

model since all the data can be used for training it.
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Model Ex G-p G-r NG-p NG-r F

R1. On all gold threads
(1,971 threads, 24,620 post pairs)

RBT 20.4 50.8 100.0 100.0 0.0 0.0
ART 5.6 100.0 0.0 42.3 86.0 0.0
RAND 5.2 55.5 19.4 39.2 65.5 33.4

SIM 5.7 68.2 13.3 43.1 79.0 27.9
CLUS 20.2 52.9 85.5 47.5 17.2 42.8
LSEG 20.2 53.0 88.2 52.2 16.5 42.8

PCFG 9.7 52.7 60.4 41.0 34.9 48.3
LCFRS 11.4 53.3 62.5 43.6 35.9 49.9

R2. On projective gold threads only

RBT 24.4 59.8 100.0 100.0 0.0 0.0
ART 6.7 100.0 0.0 35.1 87.4 0.0
RAND 6.2 62.0 22.0 32.4 63.5 35.3

SIM 5.9 73.8 13.9 36.0 79.6 28.4
CLUS 24.2 59.8 90.6 31.3 7.3 26.8
LSEG 24.2 60.1 91.9 35.6 7.6 27.9

PCFG 11.7 61.2 60.5 35.8 36.4 49.5
LCFRS 13.5 62.0 64.5 37.6 35.3 50.8

R3. On non-projective gold threads only

RBT 0.0 39.1 100.0 100.0 0.0 0.0
ART 0.0 100.0 0.0 51.7 84.8 0.0
RAND 0.0 42.0 14.3 47.3 67.3 26.9

SIM 4.3 58.1 12.1 52.1 78.5 26.0
CLUS 0.0 41.2 75.1 54.4 25.8 45.4
LSEG 0.0 41.8 80.7 59.8 24.1 45.9

PCFG 0.0 41.1 60.1 47.6 33.5 45.2
LCFRS 0.3 40.8 58.5 50.4 36.4 46.0

Table 2: Results on threads with up to 15 posts:

for the grammar models (PCFG and LCFRS) and

comparison systems (See Section 7). ‘Ex’ is per-

centage of fully correct trees and other scores are

from Section 8. Top two Fscores are in bold.

For the PCFG model, only the projective data can

be used for training.

Overall, the LCFRS model is powerful on pro-

jective threads and SHORT non-projective threads.

Compared to PCFG, the LCFRSmodel has a num-

ber of advantages: we can use more data, can pre-

dict non-projective trees. Some of the constraints

we imposed on the LCFRS parser, such as restrict-

ing the gap degree are likely to have limited the

ability of the model to generate more flexible non-

projective edges. We believe that as we figure out

how to make these parsers faster, we will see even

more improvements from the LCFRS models.

10 Conclusions

This work represents a first approach to learn dis-

course structure of forum threads within an ex-

plicit grammar framework. We show that a coarse

Model Ex G-p G-r NG-p NG-r F

R1. On all gold threads
(100 threads, 27,590 post pairs)

RBT 0.0 21.2 100.0 100.0 0.0 0.0
ART 0.0 100.0 0.0 69.8 88.6 0.0
RAND 0.0 38.9 10.0 65.4 78.4 21.5

SIM 0.0 37.0 8.9 67.2 80.9 19.6
CLUS 0.0 32.6 37.3 73.3 70.5 42.0
LSEG 0.0 35.4 50.4 76.8 68.0 48.4

PCFG 0.0 24.6 54.1 54.3 36.8 36.6
LCFRS 0.0 22.8 71.4 68.7 29.4 36.5

R2. On projective gold threads only

RBT 0.0 36.7 100.0 100.0 0.0 0.0
ART 0.0 100.0 0.0 57.1 90.3 0.0
RAND 0.0 59.9 11.0 56.0 82.6 24.3

SIM 0.0 45.9 8.3 54.4 80.2 19.1
CLUS 0.0 42.0 38.1 60.0 63.2 45.3
LSEG 0.0 51.3 55.0 68.0 65.1 56.9

PCFG 0.0 42.2 66.6 34.5 22.9 39.9
LCFRS 0.0 49.0 65.3 51.6 41.7 52.3

R3. On non-projective gold threads only

RBT 0.0 19.6 100.0 100.0 0.0 0.0
ART 0.0 100.0 0.0 71.1 88.5 0.0
RAND 0.0 36.1 9.9 66.3 78.1 20.9

SIM 0.0 35.8 9.0 68.5 81.0 19.7
CLUS 0.0 31.2 37.1 74.6 71.1 41.3
LSEG 0.0 33.2 49.6 77.6 68.2 46.8

PCFG 0.0 22.3 51.6 55.8 37.9 34.8
LCFRS 0.0 20.9 72.6 71.6 28.4 34.8

Table 3: Results on threads with > 15 posts

grammar for structure can be refined using latent

annotations to indicate the finer topic differences.

Our trees have good segmentation performance

and provide useful summaries of the thread con-

tent at the non-terminal nodes. A main goal for

future work is to incorporate further domain spe-

cific constraints on the models to improve parsing

speed and at the same time allow more flexible

trees. We also plan to evaluate the usefulness of

conversation trees in tasks such as predicting if a

thread is resolved, and user expertise.
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Abstract

Weak topic correlation across document
collections with different numbers of
topics in individual collections presents
challenges for existing cross-collection
topic models. This paper introduces
two probabilistic topic models, Correlated
LDA (C-LDA) and Correlated HDP (C-
HDP). These address problems that can
arise when analyzing large, asymmetric,
and potentially weakly-related collections.
Topic correlations in weakly-related col-
lections typically lie in the tail of the topic
distribution, where they would be over-
looked by models unable to fit large num-
bers of topics. To efficiently model this
long tail for large-scale analysis, our mod-
els implement a parallel sampling algo-
rithm based on the Metropolis-Hastings
and alias methods (Yuan et al., 2015).
The models are first evaluated on syn-
thetic data, generated to simulate vari-
ous collection-level asymmetries. We then
present a case study of modeling over
300k documents in collections of sciences
and humanities research from JSTOR.

1 Introduction

Comparing large text collections is a critical task
for the curation and analysis of human cultural
history. Achievements of research and schol-
arship are most accessible through textual arti-
facts, which are increasingly available in digital
archives. Text-based research, often undertaken
by humanists, historians, lexicographers, and cor-

pus linguists, explores patterns of words in docu-
ments across time-periods and distinct collections
of text. Here, we introduce two new topic models
designed to compare large collections, Correlated
LDA (C-LDA) and Correlated HDP (C-HDP),
which are sensitive to document-topic asymme-
try (where collections have different topic distribu-
tions) and topic-word asymmetry (where a single
topic has different word distributions in each col-
lection). These models seek to address termino-
logical questions, such as how a topic on physics
is articulated distinctively in scientific compared
to humanistic research. Accommodating poten-
tial collection-level asymmetries is particularly
important when researchers seek to analyze col-
lections with little prior knowledge about shared
or collection-specific topic structure. Our mod-
els extend existing cross-collection approaches to
accommodate these asymmetries and implement
an efficient parallel sampling algorithm enabling
users to examine the long tail of topics in particu-
larly large collections.

Using topic models for comparative text min-
ing was introduced by Zhai et al. (2004), who de-
veloped the ccMix model which extended pLSA
(Hofmann, 1999). Later work by Paul and Girju
(2009) developed ccLDA, which adopted the hier-
archical Bayes framework of Latent Dirichlet Al-
location or LDA (Blei et al., 2003). These mod-
els account for topic-word asymmetry by assum-
ing variation in the vocabularies of topics is due
to collection-level differences. Nevertheless, they
require the same topics to be present in each col-
lection. These models are useful for comparing
collections under specific assumptions, but cannot
accommodate collection-topic asymmetry (which
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arises in collections that do not share every topic
or that have different numbers of topics). In situa-
tions where collections do not share all topics, the
results often include junk, mixed, or sparse top-
ics, making them difficult to interpret (Paul and
Girju, 2009). Such asymmetries make it difficult
to use models like ccLDA and ccMix when little
is known about collections in advance. This mo-
tivates our efforts to model variation in the long
tail of topic distributions, where correlations are
more likely to appear when collections are weakly
related.

C-LDA and C-HDP extend ccLDA (Paul and
Girju, 2009) to accommodate collection-topic
level asymmetries, particularly by allowing non-
common topics to appear in each collection. This
added flexibility allows our models to discover
topic correlations across arbitrary collections with
different numbers of topics, even when there are
few (or unknown) numbers of common topics. To
demonstrate the effectiveness of our models, we
evaluate them on synthetic data and show that they
outperform related models such as ccLDA and dif-
ferential topic models (Chen et al., 2014). We then
fit C-LDA to two large collections of humanities
and sciences documents from JSTOR. Such histor-
ical analyses of text would be intractable without
an efficient sampler. An optimized sampler is re-
quired in such situations because common topics
in weakly-correlated collections are usually found
in the tail of the document-topic distribution of a
sufficiently large set of topics. To make this fea-
sible on large datasets such as JSTOR, we employ
a parallelized Metropolis-Hastings (Kronmal and
Peterson Jr, 1979) and alias-table sampling frame-
work, adapted from LightLDA (Yuan et al., 2015).
These optimizations, which achieve O(1) amor-
tized sampling time per token, allow our models
to be fit to large corpora with up to thousands of
topics in a matter of hours — an order of magni-
tude speed-up from ccLDA.

After reviewing work related to topic modeling
across collections, section 3 describes C-LDA and
C-HDP, and then details their technical relation-
ship to existing models. Section 5 introduces the
synthetic data and part of the JSTOR corpus used
in our evaluations. We then compare our models’
performances to other models in terms of held-
out perplexity and a measure of distinguishabil-
ity. The final results section exemplifies the use
of C-LDA in a qualitative analysis of humanities

and sciences research. We conclude with a brief
discussion of the strengths of C-LDA and C-HDP,
and outline directions for future work and applica-
tions.

2 Related Work

Our models seek to enable users to compare large
collections that may only be weakly correlated
and that may contain different numbers of topics.
While topic models could be fit to separate collec-
tions to make post-hoc comparisons (Denny et al.,
2014; Yang et al., 2011), our goal is to account for
both document-topic asymmetry and topic-word
asymmetry “in-model”. In short, we seek to model
the correlation between arbitrary collections. Pri-
oritizing in-model solutions for document-topic
asymmetry has been explored elsewhere, such as
in hierarchical Dirichlet processes (HDP), which
use an additional level to account for collection
variations in document-topic distributions (Teh et
al., 2006).

One method designed to model topic-word
asymmetry is ccMix (Zhai et al., 2004), which
models the generative probability of a word in
topic z from collection c as a mixture of shared
and collection-specific distributions θz:

p(w) = λc p(w|θz) + (1− λc) p(w|θz,c)

where θz,c is collection-specific and λc controls
the mixing between shared and collection-specific
topics. ccLDA extends ccMix to the LDA frame-
work and adds a beta prior over λc that reduces
sensitivity to input parameters (Paul and Girju,
2009). Another approach, differential topic mod-
els (Chen et al., 2014), is based on hierarchical
Bayesian models over topic-word distributions.
This method uses the transformed Pitman-Yor pro-
cess (TPYP) to model topic-word distributions in
each collection, with shared common base mea-
sures. As (Paul and Girju, 2009) note, ccLDA
cannot accommodate a topic if it is not com-
mon across collections — an assumption made by
ccMix, ccLDA and the TPYP. In a situation where
a topic is found in only one collection, it would
either dominate the shared topic portion (resulting
in a noisy, collection-specific portion), or it would
appear as a mixed topic, revealing two sets of un-
related words (Newman et al., 2010b). C-LDA
ameliorates this situation by allowing the number
of common and non-common topics to be speci-
fied separately and by efficiently sampling the tail
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of the document-topic distribution, allowing users
to examine less prominent regions of the topic
space. C-HDP also grants collections document-
topic independence using a hierarchical structure
to model the differences between collections.

Due to increased demand for scalable topic
model implementations, there has been a prolif-
eration of optimized methods for efficient infer-
ence, such as SparseLDA (Yao et al., 2009) and
AliasLDA (Li et al., 2014). AliasLDA achieves
O(Kd) complexity by using the Metropolis-
Hastings-Walker algorithm and an alias table to
sample topic-word distributions in O(1) time. Al-
though this strategy introduces temporal staleness
in the updates of sufficient statistics, the lag is
overcome by more iterations, and converges sig-
nificantly faster. A similar technique by Yuan et al.
(2015), LightLDA, employs cycle-based Metropo-
lis Hastings mixing with alias tables for both
document-topic and topic-word distributions. De-
spite introducing lag in the sufficient statistics,
this method achieves O(1) amortized sampling
complexity and results in even faster convergence
than AliasLDA. In addition to being fully paral-
lelized, C-LDA adopts this sampling framework to
make comparing large collections more tractable
for large numbers of topics. Our models’ efficient
sampling methods allow users to fit large num-
bers of topics to big datasets where variation might
not be observed in sub-sampled datasets or models
with fewer topics.

3 The Models

3.1 Correlated LDA

In ccLDA (and ccMix), each topic has shared
and collection-specific components for each col-
lection. C-LDA extends ccLDA to make it more
robust with respect to topic asymmetries between
collections (Figure 1a). The crucial extension is
that by allowing each collection to define a set of
non-common topics in addition to common top-
ics, the model removes an assumption imposed by
ccLDA and other inter-collection models, namely
that collections have the same number of topics.
As a result, C-LDA is suitable for collections with-
out a large proportion of common topics, and can
also reduce noise (discussed in Section 2). To
achieve this, C-LDA assumes document d in col-
lection c has a multinomial document-topic dis-
tribution θ with an asymmetric Dirichlet prior
for Kc topics, where the first K∅ are common

across collections. It is also possible to introduce
a tree structure into the model that uses a bino-
mial distribution to decide whether a word was
drawn from common or non-common topics. This
yields collection-specific background topics by us-
ing a binomial distribution instead of a multino-
mial. However, we prefer the simpler, non-tree
version because background topics are unneces-
sary when using an asymmetric α prior (Wallach
et al., 2009a).

The generative process for C-LDA is as follows:

1. Sample a distribution φk (shared component) from Dir(β)
and a distribution σk from Beta(δ1, δ2) for each common
topic k ∈ {1, . . . ,K∅};

2. For each collection c, sample a distribution φck (collection-
specific component) from Dir(β) for each common topic
k ∈ {1, . . . ,K∅} and non-common topic k ∈ {K∅ +
1, . . . ,Kc};

3. For each document d in c, sample a distribution θ from
Dir(αc);

4. For each word wi in d:

(a) Sample a topic zi ∈ {1, . . . ,Kc} from Multi(θ);
(b) If zi ≤ K∅, sample yi from Binomial(σzi);
(c) Sample wi from Multi(φξzi

), where

ξ =

{
null , zi ≤ K∅ and yi = 0;
c , otherwise.

Note that to capture common topics, K∅ should
be set such that ∃ c where Kc = K∅. Other-
wise, words sampled as a non-common topic will
not have information about non-common topics in
other collections. Then a “common-topic word”
is found among non-common topics in all col-
lections (a local minima) and it will take a long
time to stabilize as a common topic. To avoid
this, when determining the number of topics for
sampling, the number of non-common topics for
the collection with the smallest number of total
topics should be zero. After inference, to distin-
guish common and non-common topics in this col-
lection, we model σ independently by assuming
collections have the same mixing ratio for com-
mon topics. With this reasonable assumption and
an asymmetric α, common topics become sparse
enough that some σ distributions reduce nearly to
0, distinguishing them as non-common topics. Al-
though this may seem counterintuitive, it does not
negatively affect results.

Three kinds of collection-level imbalance can
confound inter-collection topic models: 1) in the
numbers of topics between collections, 2) in the
numbers of documents between collections, and
3) in the document-topic distributions. Each of
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Figure 1: Graphical models of C-LDA (a; left) and C-HDP (b; right).

these can cause topics in different collections to
have significantly different numbers of words as-
signed to the same topic. In this way, a topic can
be dominated by the collection comprising most
of its words. C-LDA addresses imbalances in the
document-topic distributions between collections
by estimating α. For imbalance in the number of
topics and documents, C-LDA mimics document
over-sampling in the Gibbs sampler using a differ-
ent unit-value in the word count table for each col-
lection. Specifically, a unit ηc is chosen for each
collection such that the average equivalent num-
ber of assigned words per-topic (

∑
d∈c ηcNd/Kc,

where Nd is the length of document d) is equal.
This process both increases the topic quality (in
terms of collection balance) in the resulting held-
out perplexity of the model.

3.2 Correlated HDP
To alleviate C-LDA’s requirement that ∃ c such
that Kc = K∅, we introduce a variant of the
model, the correlated hierarchical Dirichlet pro-
cess (C-HDP), that uses a 3-level hierarchical
Dirichlet process (Teh et al., 2006). The gener-
ative process for C-HDP is the same as C-LDA
shown above, except that here we assume a word’s
topic, z, is generated by a hierarchical Dirichlet
process:

G0|γ,H ∼ DP(γ,H)
Gc|α0, G0 ∼ DP(α0, G0)
Gd|α1, Gc ∼ DP(α1, Gc)

z|Gd ∼ Gd

where G0 is a base measure for each collection-
level Dirichlet process, and Gc are base measures
of document-level Dirichlet processes in each col-
lection (Figure 1b). Thus, documents from the

same collection will have similar topic distribu-
tions compared to those from other collections,
and collections are allowed to have distinct sets of
topics due to the use of HDP.

4 Inference

4.1 Posterior Inference in C-LDA
C-LDA can be trained using collapsed Gibbs sam-
pling with φ, θ, and σ integrated out. Given the
status assignments of other words, the sampling
distribution for word wi is given by:

p(yi, zi|w,y−i, z−i, δ, α, β)
∝ (N(d, zi) + αc,zi)︸ ︷︷ ︸

qd

×


N(yi, zi) + δyi
N(zi) +

∑
k δk
× N(wi, yi, zi, ζ) + β

N(yi, zi, ζ) + V β
zi ≤ K∅

N(wi, zi, c) + β

N(zi, c) + V β
zi > K∅︸ ︷︷ ︸

qw

(1)

where ζ =
{ ∗ yi = 0
c yi = 1

,N(· · · ) is the number of

status assignments for (· · · ), not including wi.
Inference in C-LDA employs two optimiza-

tions: a parallelized sampler and an efficient sam-
pling algorithm (Algorithm 1). We use the paral-
lel schema in (Smola and Narayanamurthy, 2010;
Lu et al., 2013) which applies atomic updates to
the sufficient statistics to avoid race conditions.
The key idea behind the optimized sampler is the
combination of alias tables and the Metropolis-
Hastings method (MH), adapted from (Yuan et al.,
2015; Li et al., 2014). Metropolis-Hastings is a
Markov chain Monte Carlo method that uses a pro-
posal distribution to approximate the true distribu-
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Algorithm 1 Sampling in C-LDA
repeat

for all documents {d} in parallel do
for words {w} in d do

z ← CYCLEMH(p, qw, qd, z)
sample y given z

Atomic update sufficient statics
Estimate α

until convergence

procedure CYCLEMH(p, qw, qd, z)
for i = 1 to N do

if i is even then
proposal q ← qw

else
proposal q ← qd

sample z′ ∼ ALIASTABLE(q)
if RandUnif(1) < min(1, p(z

′)q(z)
p(z)q(z′) ) then

z ← z′return z

tion when exact sampling is difficult. In a compli-
mentary way, Walker’s alias method (2004) allows
one to effectively sample from a discrete distribu-
tion by using an alias table, constructed in O(K)
time, from which we can sample in O(1). Thus,
reusing the samplerK times as the proposal distri-
bution for Metropolis-Hastings yields O(1) amor-
tized sampling time per-token.

Notice that in Eq. 1, the sampling distribution is
the product of a single document-dependent term
qd and a single word-dependent term qw. After
burn-in, both terms will be sparse (without the
smoothing factor). It is therefore reasonable to use
qd and qw as cycle proposals (Yuan et al., 2015),
alternating them in each Metropolis-Hastings step.
Our experiments show that the primary drawback
of this method — stale sufficient statistics — does
not empirically affect convergence. Our imple-
mentation uses proposal distributions qw and qd,
with y marginalized out. After the Metropolis-
Hastings steps, y is sampled to update z, to reduce
the size of the alias tables, yielding even faster
convergence.

Lastly, the use of an asymmetric α allows C-
LDA to discover correlations between less dom-
inant topics across collections (Wallach et al.,
2009a). We use Minka’s fixed-point method, with
a gamma hyper-prior to optimize αc for each col-
lection separately (Wallach, 2008). All other hy-
perparameters were fixed during inference.

4.2 Posterior Inference in C-HDP

C-HDP uses the block sampling algorithm de-
scribed in (Chen et al., 2011), which is based on

the Chinese restaurant process metaphor. Here,
rather than tracking all assignments (as the sam-
plers given in (Teh et al., 2006)), table indicators
are used to track only the start of new tables, which
allows us to adopt the same sampling framework
as C-LDA. In the Chinese restaurant process, each
Dirichlet process in the hierarchical structure is
represented as a restaurant with an infinite num-
ber of tables, each serving the same dish. New
customers can either join a table with existing cus-
tomers, or start a new table. If a new table is cho-
sen, a proxy customer will be sent to the parent
restaurant to determine the dish served to that ta-
ble.

In the block sampler, indicators are used to de-
note a customer creating a table (or tables) up to
level u (0 as the root, 1 for collection level, and 2
for the document level), and u = ∅ indicates no
table has been created. For example, when a cus-
tomer creates a table at the collection level, and
the proxy customer in the collection level creates
a table at the root level, u is 0. With this metaphor,
let nlz be the number of customers (including their
proxies) served dish z at restaurant l, and let tlz be
the number of tables serving dish z at restaurant
l (l = 0 for root, l = c for collection level or
l = d for document level), with N0 =

∑
z n0z and

Nc =
∑

z ncz . By the chain rule, the conditional
probability of the state assignments for wi, given
all others, is
p(yi, zi, ui|w,y−i,z−i,u−i, . . .)

∝ N(y, z) + δy
N(z) +

∑
k δk
× N(w, y, z, ζ) + β

N(y, z, ζ) + V β

×



γα0
γ+N0

u = 0

α0
γ+N0

S
ncz+1
tcz+1
S

ncz
tcz

S
ndz+1
tdz+1

S
ndz
tdz

n2
0z(tcz+1)(tdz+1)

(n0z+1)(ncz+1)(ndz+1)
u = 1

S
ncz+1
tcz

S
ncz
tcz

S
ndz+1
tdz+1

S
ndz
tdz

(tdz+1)(ncz−tcz+1)
(ncz+1)(ndz+1)

u = 2

α0+N1
α1

S
ndz+1
tdz

S
ndz
tdz

ndz−tdz+1
ndz+1

u = ∅

Here, Snt is the Stirling number, the ratios of which
can be efficiently precomputed (Buntine and Hut-
ter, 2010). The concentration parameters γ, α0,
and α1 can be sampled using the auxiliary variable
method (Teh et al., 2006).

Note that because conditional probability has
the same separability as C-LDA (to give term qw
and qd), the same sampling framework can be
used with two alterations: 1) when a new topic
is created or removed at the root, collection, or
document level, the related alias tables must be
reset, which makes the sampling slightly slower
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Figure 2: Held-out perplexity of C-LDA, C-HDP, ccLDA and TPYP fit to synthetic data, where K1 =
K2 = K (a; left) and data with an asymmetric number of topics (b; right).

than O(1), and 2) while the document alias table
samples z and u simultaneously, after sampling z
from the word alias table u must be sampled using
tlc/nlz (Chen et al., 2011). Parallelizing C-HDP
requires an additional empirical method of merg-
ing new topics between threads (Newman et al.,
2009), which is outside of the scope of this work.
Our implementation of both models, C-LDA and
C-HDP, are open-sourced online 1.

5 Experiments

5.1 Model Comparison
We use perplexity on held-out documents to eval-
uate the performance of C-LDA and C-HDP. In all
experiments, the gamma prior for α in C-LDA was
set to (1, 1), and (5, 0.1), (5, 0.1), (0.1, 0.1) for
γ, α0, α1 respectively in C-HDP. In the hold-out
procedure, 20% of documents were randomly se-
lected as test data. LDA, C-LDA and ccLDA were
run for 1,000 iterations and C-HDP and the TII-
variant of TPYP for 1,500 iterations (unless oth-
erwise noted), all of which converged to a state
where change in perplexity was less than 1% for
ten consecutive iterations.

Perplexity was calculated from the marginal
likelihood of a held-out document p(w|Φ, α), es-
timated using the “left-to-right” method (Wallach
et al., 2009b). Because it is difficult to vali-
date real-world data that exhibits different kinds
of asymmetry, we use synthetic data generated
specifically for our evaluation tasks (AlSumait et
al., 2009; Wallach et al., 2009b; Kucukelbir and
Blei, 2014).

5.1.1 Topic Correlation
C-LDA is unique in the amount of freedom it al-
lows when setting the number of topics for col-

1https://github.com/iceboal/correlated-lda

lections. To assess the models’ performances with
various topic correlations in a fair setting, we gen-
erated two collections of synthetic data by fol-
lowing the generative process (varying the num-
ber of topics) and measured the models’ perplex-
ities against the ground truth parameters. In each
experiment, two collections were generated, each
with 1,000 documents containing 50 words each,
over a vocabulary of 3,000. β and δ were fixed at
0.01 and 1.0 respectively, and α was asymmetri-
cally defined as 1/(i+

√
Kc) for i ∈ [0,Kc − 1].

Completely shared topics The assumptions im-
posed by ccLDA and TPYP effectively make them
a special case of our model where K∅ = K1 =
K2 = . . .. To compare results, data was gener-
ated such that all numbers of topics were equal to
K ∈ [10, 90]. Additionally, all models were con-
figured to use this ground truth parameter when
training. Not surprisingly, ccLDA, C-LDA, and C-
HDP have almost the same perplexity with respect
to K because their structure is the same when all
topics are shared (Figure 2a).

Asymmetric numbers of topics To explore the
effect of asymmetry in the number of topics, data
was generated such that one collection had K1 ∈
[20, 60] topics while a second had a fixedK2 = 40
topics. The number of shared topics was set to
K∅ = 20. The parameters for C-LDA and C-HDP
(initial values) were set to ground truths, and, to
retain a fair comparison, versions of ccLDA and
TPYP were fit with both K = K1 and K = K2.

We find that ccLDA performs nearly as well as
C-LDA and C-HDP when there is more symme-
try between collection, namely when K1 ≈ K2

(Figure 2b). TPYP, on the other hand, performs
well with more topics (2 × max(K1,K2) where
the ground truth is K1 & K2). In contrast, C-LDA
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and C-HDP perform more consistently than other
models across varying degrees of asymmetry.

Partially-shared topics When collections have
the same number of topics, C-LDA, C-HDP and
ccLDA exhibit adequate flexibility, resulting in
similar perplexities. When collections have in-
creasingly few common topics, however, common
and non-common topics from ccLDA are con-
siderably less distinguishable than those from C-
LDA. To evaluate the models’ abilities in such sit-
uations, data was generated for two collections
having K1 = K2 = 50 topics, but with the
shared number of topics K∅ ∈ [5, 45]. We also
set δ(0) = δ(1) = 5, and for comparison to ccLDA
we used K = 50.

To measure this distinguishability, we examine
the inferred σ. Recall that σ indicates what per-
centage of a common topic is shared. When a topic
is actually non-common, the value of σ should be
small. We sort σk for k ∈ [1,K] in reverse and
use

σ̄common = 1
K∅
∑K∅

k=1 σk

σ̄non-common = 1
K−K∅

∑K
k=K∅+1 σk

(2)

as measures of how well common and non-
common topics were learned2. σ̄common is the av-
erage of the K∅ largest σ values, and σ̄non-common
is the average of the rest. When δ(0) = δ(1) in the
synthetic data, σ in the common portion should be
0.5, whereas it should be 0 in the non-common
part. Figure 3 shows that C-LDA better distin-
guishes between common and non-common top-
ics, especially whenK∅ is small. This allows non-
common topics to be separated from the results by
examining the value of σ. C-HDP has similar per-
formance but larger σ values. In ccLDA, all topics
are shared between collections which means that
common and non-common topics are mixed. As
expected, ccLDA performs similarly when all top-
ics are common across collections.

5.2 Semantic Coherence

Semantic coherence is a corpus-based metric of
the quality of a topic, defined as the average pair-
wise similarity of the top n words (Newman et al.,
2010a; Mimno et al., 2011). A PMI-based form
of coherence, which has been found to be the best

2TPYP is not comparable using this metric, but its hierar-
chical structure will cause topics to mix naturally.

10 20 30 40
K∅

0.0
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0.8
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ccLDA
C-LDA
C-HDP
ideal

Figure 3: Distinguishability (Eq. 2) of topics fit
with C-LDA,C-HDP and ccLDA. Blues lines de-
note σ̄common and red denote σ̄non-common.

proxy human judgements of topic quality, is de-
fined for a topic k as:

C(k) =
2

n(n− 1)

n∑
(wi,wj)∈k

i<j

log
D(wi, wj) + 1
D(wi)D(wj)

where D(·) computes the document co-
occurrence. To accommodate coherence with
common topics in C-LDA that have shared and
collection-specific components we define mutual
coherence, MC(k), as

MC(k) =
1
n2

n∑
wi∈shared,

wj∈collection-specific

log
D(wi, wj) + 1
D(wi)D(wj)

so that for each collection, C(k) (2n words) is
equal to C(k, shared) + C(k, collection-specific)
+ MC(k). Table 1 shows the semantic coherence
of topics fit with ccLDA and C-LDA. We used a
10% sample of JSTOR due to the limited speed of
ccLDA, using 50 (common) topics for ccLDA / C-
LDA, and 250 non-common humanities topics for
C-LDA. Although these settings are different for
the models, the science topics are still comparable
because they both have 50 topics. We found that
C-LDA provides improved coherence in nearly all
situations.

5.2.1 Inference Efficiency
To compare the model efficiency, we timed runs
on a sample of 5,036 documents from JSTOR (in-
troduced in the next section) with a 20% held-
out and set K = K1 = K2 = 200 run on a
commodity computer with four cores and 16GB
of memory. Figure 4a shows the perplexity over
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Coherence Mutual Coherence
shared component collection-specific shared & collection-specific

all documents science humanities science humanities science humanities
C-LDA -8.83 -7.73 -8.04 -8.38 -8.14 -8.54 -8.37
ccLDA -9.04 -8.22 -8.27 -8.38 -8.15 -8.69 -8.40
C-LDA -7.22 -3.68 -6.11 -8.25 -8.09 -7.75 -7.97
ccLDA -8.11 -5.68 -7.12 -8.24 -7.88 -8.22 -7.95

Table 1: Average semantic coherence of the 50 common topics from JSTOR (top) and the average of the
10 best common topics judged by the mean value of different types of coherence (bottom).

time and iterations. The inference algorithm intro-
duces some staleness, which yields slower conver-
gence in the first 200 iterations. This effect, how-
ever, is outweighed in both C-LDA and C-HDP by
the increased sampling speed. With 8 threads, C-
LDA not only converges faster, but yields lower
perplexity, likely due to threads introducing addi-
tional stochasticity.

5.3 Performance on JSTOR

To compare our models against slower models, we
sampled 2,465 documents from JSTOR, withhold-
ing 20% as testing set. We fit a model with 100
common and 50 non-common initial topics us-
ing C-HDP, which produced 272 root topics after
2,000 iterations.The perplexity scores are roughly
the same when C-LDA uses the same average
number of topics per collection (Figure 4b), ex-
cept when numbers of topics are very asymmet-
ric. Our model begins to outperform ccLDA after
80 topics. C-HDP did not, however, out-perform
C-LDA despite the original HDP outperforming
LDA. This could be do to the fact that the hier-
archical structure of C-HDP is considerably differ-
ent than the typical 2-level HDP. Held-out perplex-
ity on real data provides a quantitative evaluation
of our models’ performance in a real-world set-
ting. However, the goal of our models is to enable
a deeper analysis of large, weakly-related corpora,
which we next discuss.

5.4 Qualitative Analysis

Our models are designed to enable researchers to
compare collections of text in a way that is scal-
able and sensitive to collection-level asymmetries.
To demonstrate that C-LDA can fill this role, we
fit a model to the entire JSTOR sciences and hu-
manities collections with 100 science topics and
1000 humanities topics (to reveal the less popu-
lar science-related topics in the humanities), and
β = 0.01, δ = 1.0. JSTOR includes books and
journal publications in over 9 million documents
across nearly 3 thousand journals. We used the
journal Science to represent a collection of scien-
tific research and 76 humanist journals to repre-
sent humanities research3. Words were lemma-
tized, and the most and least frequent words dis-
carded. The final humanities collection contained
149,734 documents and the sciences collection
had 160,680 documents, with a combined vocabu-
lary of 21,513 unique words. Together, these col-
lections typify a real-world situation where there
is likely some, but not overwhelming correlation.

The results indicate that the sciences and hu-
manities share several topics. Both exhibit an in-
terest in a “non-human” theme (common topic #2;
Table 2). This topic is quite similar in both collec-
tions (pig and monkey for science documents; bird
and gorilla for humanities documents), while their
shared component forms a cohesive topic (animal,

3The list is available at http://j.mp/humanities-txt.
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Topic 2 Topic 21 Topic 23
shared science humanities shared science humanities shared science humanities
animal pig beast economic cost rural particle energy universe
specie fly creature government industry local physic electron quantum
dog monkey nonhuman economy company community physicist ray physic
wild guinea natural trade price village energy ion technical
wolf primate humanity major market region experiment atom scientific

monkey worm bird growth product urban event particle relativity
horse dog living capital income country measurement mass physical
sheep cat gorilla industry industrial area atom neutron mechanic
lion mammal brute institution business regional interaction proton law
cat cattle ape support private population atomic nucleus reality

Table 2: Three topics from the JSTOR collections with their top words in shared and specific components.
Complete results available at http://j.mp/jstor-html.

specie, and monkey). This kind of correlation is
also evident in topic #23, about physics. While the
science documents clearly represent research in
particle physics, it is interesting to find the topic is
also represented by humanist research focused on
cultural representations of science. This reflects a
growing interest in science and technology studies
that has gained recent traction in the humanities.
Despite their differences, both collections engage
with a similar theme, seen in the shared compo-
nent with words like particle, energy and atom.

The results also indicate that while sciences and
humanities documents can share themes, they of-
ten diverge in how they are discussed. For exam-
ple, common topic #21 could be identified as eco-
nomic or capitalist, but in the collection-specific
components, the two disciplines differ in their ar-
ticulatation. Science uses terms like price and
market, indicating an acceptance of free-market
capitalism (especially as it affects the practice of
science), while the humanities, which has long
been critical of free-market capitalism, uses terms
like rural and community, highlighting cultural
facets of modern economics. These results pro-
vide evidence about how ideas move between the
sciences and humanities — a phenomenon that
constitutes a growing area of research for histori-
ans (Galison, 2003; Canales, 2015). C-LDA pro-
vides empirical, measurable, and reproducible ev-
idence of the shared research between these disci-
plines, as well as how concepts are articulated.

6 Discussion

Our models provide a robust way to explore
large and potentially weakly-related text collec-
tions without imposing assumptions about the
data. Like ccLDA and TPYP, our models ac-
count for topic-word variation at the collection
level. The models accommodate asymmetry in

the numbers of topics (set in C-LDA, fit in C-
HDP) and provide an efficient inference method
which allows them to fit data with large values
for K, which can help find correlations in less
prevalent topics. Our primary contribution is our
models’ ability to accommodate asymmetries be-
tween arbitrary collections. JSTOR, the world’s
largest digital collection of humanities research,
was an ideal application setting given the size,
asymmetry, and comprehensiveness of the human-
ities collection. As we show, humanities and
science research exhibit asymmetries with regard
to vocabulary and topic structure — asymmetries
that would be systematically overlooked using ex-
isting models. By characterizing common top-
ics as mixtures of shared and collection-specific
components, we can capture a kind of topic-level
homophily, where similar themes are articulated
in different ways due to word-, document-, and
collection-level variation. Future work on these
models could explore methods to fit non-common
topics for both collections. In general, C-LDA and
C-HDP can be used whenever documents are sam-
pled from ostensibly different populations, where
the nature of the difference is unknown.
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Abstract

The success of deep learning often de-
rives from well-chosen operational build-
ing blocks. In this work, we revise the
temporal convolution operation in CNNs
to better adapt it to text processing. In-
stead of concatenating word representa-
tions, we appeal to tensor algebra and use
low-rank n-gram tensors to directly exploit
interactions between words already at the
convolution stage. Moreover, we extend
the n-gram convolution to non-consecutive
words to recognize patterns with interven-
ing words. Through a combination of low-
rank tensors, and pattern weighting, we
can efficiently evaluate the resulting con-
volution operation via dynamic program-
ming. We test the resulting architecture on
standard sentiment classification and news
categorization tasks. Our model achieves
state-of-the-art performance both in terms
of accuracy and training speed. For in-
stance, we obtain 51.2% accuracy on the
fine-grained sentiment classification task.1

1 Introduction

Deep learning methods and convolutional neural
networks (CNNs) among them have become de
facto top performing techniques across a range
of NLP tasks such as sentiment classification,
question-answering, and semantic parsing. As
methods, they require only limited domain knowl-
edge to reach respectable performance with in-
creasing data and computation, yet permit easy
architectural and operational variations so as to
fine tune them to specific applications to reach top
performance. Indeed, their success is often con-
tingent on specific architectural and operational
choices.

1Our code and data are available at https://github.
com/taolei87/text_convnet

CNNs for text applications make use of tem-
poral convolution operators or filters. Similar
to image processing, they are applied at multi-
ple resolutions, interspersed with non-linearities
and pooling. The convolution operation itself is
a linear mapping over “n-gram vectors” obtained
by concatenating consecutive word (or character)
representations. We argue that this basic build-
ing block can be improved in two important re-
spects. First, the power of n-grams derives pre-
cisely from multi-way interactions and these are
clearly missed (initially) with linear operations on
stacked n-gram vectors. Non-linear interactions
within a local context have been shown to improve
empirical performance in various tasks (Mitchell
and Lapata, 2008; Kartsaklis et al., 2012; Socher
et al., 2013). Second, many useful patterns are
expressed as non-consecutive phrases, such as se-
mantically close multi-word expressions (e.g.,“not
that good”, “not nearly as good”). In typical
CNNs, such expressions would have to come to-
gether and emerge as useful patterns after several
layers of processing.

We propose to use a feature mapping operation
based on tensor products instead of linear opera-
tions on stacked vectors. This enables us to di-
rectly tap into non-linear interactions between ad-
jacent word feature vectors (Socher et al., 2013;
Lei et al., 2014). To offset the accompanying
parametric explosion we maintain a low-rank rep-
resentation of the tensor parameters. Moreover,
we show that this feature mapping can be applied
to all possible non-consecutive n-grams in the se-
quence with an exponentially decaying weight de-
pending on the length of the span. Owing to the
low rank representation of the tensor, this oper-
ation can be performed efficiently in linear time
with respect to the sequence length via dynamic
programming. Similar to traditional convolution
operations, our non-linear feature mapping can be
applied successively at multiple levels.
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We evaluate the proposed architecture in the
context of sentence sentiment classification and
news categorization. On the Stanford Sentiment
Treebank dataset, our model obtains state-of-the-
art performance among a variety of neural net-
works in terms of both accuracy and training
cost. Our model achieves 51.2% accuracy on fine-
grained classification and 88.6% on binary clas-
sification, outperforming the best published num-
bers obtained by a deep recursive model (Tai et al.,
2015) and a convolutional model (Kim, 2014). On
the Chinese news categorization task, our model
achieves 80.0% accuracy, while the closest base-
line achieves 79.2%.

2 Related Work

Deep neural networks have recently brought about
significant advancements in various natural lan-
guage processing tasks, such as language model-
ing (Bengio et al., 2003; Mikolov et al., 2010),
sentiment analysis (Socher et al., 2013; Iyyer
et al., 2015; Le and Zuidema, 2015), syntactic
parsing (Collobert and Weston, 2008; Socher et
al., 2011a; Chen and Manning, 2014) and ma-
chine translation (Bahdanau et al., 2014; Devlin
et al., 2014; Sutskever et al., 2014). Models
applied in these tasks exhibit significant archi-
tectural differences, ranging from recurrent neu-
ral networks (Mikolov et al., 2010; Kalchbrenner
and Blunsom, 2013) to recursive models (Pollack,
1990; Küchler and Goller, 1996), and including
convolutional neural nets (Collobert and Weston,
2008; Collobert et al., 2011; Yih et al., 2014; Shen
et al., 2014; Kalchbrenner et al., 2014; Zhang and
LeCun, 2015).

Our model most closely relates to the latter.
Since these models have originally been developed
for computer vision (LeCun et al., 1998), their
application to NLP tasks introduced a number of
modifications. For instance, Collobert et al. (2011)
use the max-over-time pooling operation to aggre-
gate the features over the input sequence. This
variant has been successfully applied to seman-
tic parsing (Yih et al., 2014) and information re-
trieval (Shen et al., 2014; Gao et al., 2014). Kalch-
brenner et al. (2014) instead propose (dynamic)
k-max pooling operation for modeling sentences.
In addition, Kim (2014) combines CNNs of dif-
ferent filter widths and either static or fine-tuned
word vectors. In contrast to the traditional CNN
models, our method considers non-consecutive n-

grams thereby expanding the representation ca-
pacity of the model. Moreover, our model cap-
tures non-linear interactions within n-gram snip-
pets through the use of tensors, moving beyond
direct linear projection operator used in standard
CNNs. As our experiments demonstrate these ad-
vancements result in improved performance.

3 Background

Let x ∈ RL×d be the input sequence such as a
document or sentence. Here L is the length of the
sequence and each xi ∈ Rd is a vector represent-
ing the ith word. The (consecutive) n-gram vector
ending at position j is obtained by simply concate-
nating the corresponding word vectors

vj = [xj−n+1; xj−n+2; · · · ; xj ]

Out-of-index words are simply set to all zeros.
The traditional convolution operator is parame-

terized by filter matrix m ∈ Rnd×h which can be
thought of as n smaller filter matrices applied to
each xi in vector vj . The operator maps each n-
gram vector vj in the input sequence to m>vj ∈
Rh so that the input sequence x is transformed into
a sequence of feature representations,[

m>v1, · · · ,m>vL
]
∈ RL×h

The resulting feature values are often passed
through non-linearities such as the hyper-tangent
(element-wise) as well as aggregated or reduced
by “sum-over” or “max-pooling” operations for
later (similar stages) of processing.

The overall architecture can be easily modified
by replacing the basic n-gram vectors and the con-
volution operation with other feature mappings.
Indeed, we appeal to tensor algebra to introduce a
non-linear feature mapping that operates on non-
consecutive n-grams.

4 Model

N-gram tensor Typical n−gram feature map-
pings where concatenated word vectors are
mapped linearly to feature coordinates may be in-
sufficient to directly capture relevant information
in the n−gram. As a remedy, we replace concate-
nation with a tensor product. Consider a 3-gram
(x1,x2,x3) and the corresponding tensor product
x1 ⊗ x2 ⊗ x3. The tensor product is a 3-way ar-
ray of coordinate interactions such that each ijk
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entry of the tensor is given by the product of the
corresponding coordinates of the word vectors

(x1 ⊗ x2 ⊗ x3)ijk = x1i · x2j · x3k

Here ⊗ denotes the tensor product operator. The
tensor product of a 2-gram analogously gives a
two-way array or matrix x1⊗x2 ∈ Rd×d. The n-
gram tensor can be seen as a direct generalization
of the typical concatenated vector2.

Tensor-based feature mapping Since each n-
gram in the sequence is now expanded into a
high-dimensional tensor using tensor products, the
set of filters are analogously maintained as high-
order tensors. In other words, our filters are linear
mappings over the higher dimensional interaction
terms rather than the original word coordinates.

Consider again mapping a 3-gram (x1,x2,x3)
into a feature representation. Each filter is a 3-way
tensor with dimensions d× d× d. The set of h fil-
ters, denoted as T , is a 4-way tensor of dimension
d × d × d × h, where each d3 slice of T repre-
sents a single filter and h is the number of such
filters, i.e., the feature dimension. The resulting
h−dimensional feature representation z ∈ Rh for
the 3-gram (x1,x2,x3) is obtained by multiplying
the filter T and the 3-gram tensor as follows. The
lth coordinate of z is given by

zl =
∑
ijk

Tijkl · (x1 ⊗ x2 ⊗ x3)ijk

=
∑
ijk

Tijkl · x1i · x2j · x3k (1)

The formula is equivalent to summing over all
the third-order polynomial interaction terms where
tensor T stores the coefficients.

Directly maintaining the filters as full tensors
leads to parametric explosion. Indeed, the size of
the tensor T (i.e. h× dn) would be too large even
for typical low-dimensional word vectors where,
e.g., d = 300. To this end, we assume a low-rank
factorization of the tensor T, represented in the
Kruskal form. Specifically, T is decomposed into
a sum of h rank-1 tensors

T =
h∑
i=1

Pi ⊗Qi ⊗Ri ⊗Oi

2To see this, consider word vectors with a “bias” term
xi

′ = [xi; 1]. The tensor product of n such vectors includes
the concatenated vector as a subset of tensor entries but, in
addition, contains all up to nth-order interaction terms.

where P,Q,R ∈ Rh×d and O ∈ Rh×h are four
smaller parameter matrices. Pi (similarly Qi, Ri

and Oi) denotes the ith row of the matrix. Note
that, for simplicity, we have assumed that the num-
ber of rank-1 components in the decomposition
is equal to the feature dimension h. Plugging
the low-rank factorization into Eq.(1), the feature-
mapping can be rewritten in a vector form as

z = O> (Px1 �Qx2 �Rx3) (2)

where � is the element-wise product such that,
e.g., (a � b)k = ak × bk for a, b ∈ Rm. Note
that while Px1 (similarly Qx2 and Rx3) is a lin-
ear mapping from each word x1 (similarly x2 and
x3) into a h-dimensional feature space, higher or-
der terms arise from the element-wise products.

Non-consecutive n-gram features Traditional
convolution uses consecutive n-grams in the fea-
ture map. Non-consecutive n-grams may nev-
ertheless be helpful since phrases such as “not
good”, “not so good” and “not nearly as good” ex-
press similar sentiments but involve variable spac-
ings between the key words. Variable spacings are
not effectively captured by fixed n-grams.

We apply the feature-mapping in a weighted
manner to all n-grams thereby gaining access to
patterns such as “not ... good”. Let z[i, j, k] ∈ Rh

denote the feature representation corresponding to
a 3-gram (xi,xj ,xk) of words in positions i, j,
and k along the sequence. This vector is calcu-
lated analogously to Eq.(2),

z[i, j, k] = O> (Pxi �Qxj �Rxk)

We will aggregate these vectors into an
h−dimensional feature representation at each
position in the sequence. The idea is similar to
neural bag-of-words models where the feature
representation for a document or sentence is
obtained by averaging (or summing) of all the
word vectors. In our case, we define the aggregate
representation z3[k] in position k as the weighted
sum of all 3-gram feature representations ending
at position k, i.e.,

z3[k] =
∑
i<j<k

z[i, j, k] · λ(k−j−1)+(j−i−1)

=
∑
i<j<k

z[i, j, k] · λk−i−2 (3)

where λ ∈ [0, 1) is a decay factor that down-
weights 3-grams with longer spans (i.e., 3-grams
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that skip more in-between words). As λ → 0
all non-consecutive 3-grams are omitted, z3[k] =
z[k − 2, k − 1, k], and the model acts like a
traditional model with only consecutive n-grams.
When λ > 0, however, z3[k] is a weighted aver-
age of many 3-grams with variable spans.

Aggregating features via dynamic program-
ming Directly calculating z3[·] according to
Eq.(3) by enumerating all 3-grams would require
O(L3) feature-mapping operations. We can, how-
ever, evaluate the features more efficiently by re-
lying on the associative and distributive properties
of the feature operation in Eq.(2).

Let f3[k] be a dynamic programming table rep-
resenting the sum of 3-gram feature representa-
tions before multiplying with matrix O. That is,
z3[k] = O>f3[k] or, equivalently,

f3[k] =
∑
i<j<k

λk−i−2 · (Pxi �Qxj �Rxk)

We can analogously define f1[i] and f2[j] for 1-
grams and 2-grams,

f1[i] = Pxi

f2[j] =
∑
i<j

λj−i−1 · (Pxi �Qxj)

These dynamic programming tables can be calcu-
lated recursively according to the following for-
mulas:

f1[i] = Pxi
s1[i] = λ · s1[i− 1] + f1[i]

f2[j] = s1[j − 1]�Qxj
s2[j] = λ · s2[j − 1] + f2[j]

f3[k] = s2[k − 1]�Rxk

z[k] = O> (f1[k] + f2[k] + f3[k])

where s1[·] and s2[·] are two auxiliary tables. The
resulting z[·] is the sum of 1, 2, and 3-gram fea-
tures. We found that aggregating the 1,2 and 3-
gram features in this manner works better than us-
ing 3-gram features alone. Overall, the n-gram
feature aggregation can be performed in O(Ln)
matrix multiplication/addition operations, and re-
mains linear in the sequence length.

The overall architecture The dynamic pro-
gramming algorithm described above maps the
original input sequence to a sequence of feature
representations z = z[1 : L] ∈ RL×h. As in
standard convolutional architectures, the resulting
sequence can be used in multiple ways. One can
directly aggregate it to a classifier or expose it to
non-linear element-wise transformations and use
it as an input to another sequence-to-sequence fea-
ture mapping.

The simplest strategy (adopted in neural bag-
of-words models) would be to average the fea-
ture representations and pass the resulting aver-
aged vector directly to a softmax output unit

z̄ =
1
L

L∑
i=1

z[i]

ỹ = softmax
(
W>z̄

)
Our architecture, as illustrated in Figure 1, in-
cludes two additional refinements. First, we add
a non-linear activation function after each feature
representation, i.e. z′ = ReLU (z + b), where b
is a bias vector and ReLU is the rectified linear
unit function. Second, we stack multiple tensor-
based feature mapping layers. That is, the input
sequence x is first processed into a feature se-
quence and passed through the non-linear trans-
formation to obtain z(1). The resulting feature
sequence z(1) is then analogously processed by
another layer, parameterized by a different set of
feature-mapping matrices P, · · · ,O, to obtain a
higher-level feature sequence z(2), and so on. The
output feature representations of all these layers
are averaged within each layer and concatenated
as shown in Figure 1. The final prediction is there-
fore obtained on the basis of features across the
levels.

5 Learning the Model

Following standard practices, we train our model
by minimizing the cross-entropy error on a given
training set. For a single training sequence x and
the corresponding gold label y ∈ [0, 1]m, the error
is defined as,

loss (x, y) =
m∑
l=1

yl log (ỹl)

where m is the number of possible output label.
The set of model parameters (e.g. P, · · · ,O

in each layer) are updated via stochastic gradient
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Figure 1: Illustration of the model architecture. The input is represented as a matrix where each row is a
d-dimensional word vector. Several feature map layers (as described in Section 4) are stacked, mapping
the input into different levels of feature representations. The features are averaged within each layer and
then concatenated. Finally a softmax layer is applied to obtain the prediction output.

descent using AdaGrad algorithm (Duchi et al.,
2011).

Initialization We initialize matrices P,Q,R
from uniform distribution

[
−√3/d,

√
3/d
]

and

similarly O ∼ U
[
−√3/h,

√
3/h
]
. In this way,

each row of the matrices is an unit vector in expec-
tation, and each rank-1 filter slice has unit variance
as well,

E
[‖Pi ⊗Qi ⊗Ri ⊗Oi‖2

]
= 1

In addition, the parameter matrix W in the soft-
max output layer is initialized as zeros, and the
bias vectors b for ReLU activation units are ini-
tialized to a small positive constant 0.01.

Regularization We apply two common tech-
niques to avoid overfitting during training. First,
we add L2 regularization to all parameter values
with the same regularization weight. In addition,
we randomly dropout (Hinton et al., 2012) units
on the output feature representations z(i) at each
level.

6 Experimental Setup

Datasets We evaluate our model on sentence
sentiment classification task and news categoriza-
tion task. For sentiment classification, we use the
Stanford Sentiment Treebank benchmark (Socher
et al., 2013). The dataset consists of 11855
parsed English sentences annotated at both the
root (i.e. sentence) level and the phrase level us-
ing 5-class fine-grained labels. We use the stan-

dard 8544/1101/2210 split for training, develop-
ment and testing respectively. Following previ-
ous work, we also evaluate our model on the bi-
nary classification variant of this benchmark, ig-
noring all neutral sentences. The binary version
has 6920/872/1821 sentences for training, devel-
opment and testing.

For the news categorization task, we evaluate on
Sogou Chinese news corpora.3 The dataset con-
tains 10 different news categories in total, includ-
ing Finance, Sports, Technology and Automobile
etc. We use 79520 documents for training, 9940
for development and 9940 for testing. To obtain
Chinese word boundaries, we use LTP-Cloud4, an
open-source Chinese NLP platform.

Baselines We implement the standard SVM
method and the neural bag-of-words model
NBoW as baseline methods in both tasks. To as-
sess the proposed tensor-based feature map, we
also implement a convolutional neural network
model CNN by replacing our filter with traditional
linear filter. The rest of the framework (such as
feature averaging and concatenation) remains the
same.

In addition, we compare our model with a wide
range of top-performing models on the sentence
sentiment classification task. Most of these mod-
els fall into either the category of recursive neural
networks (RNNs) or the category of convolutional
neural networks (CNNs). The recursive neural

3http://www.sogou.com/labs/dl/c.html
4http://www.ltp-cloud.com/intro/en/
https://github.com/HIT-SCIR/ltp
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Model Fine-grained Binary Time (in seconds)
Dev Test Dev Test per epoch per 10k samples

RNN 43.2 82.4 - -
RNTN 45.7 85.4 1657 1939
DRNN 49.8 86.8 431 504
RLSTM 51.0 88.0 140 164
DCNN 48.5 86.9 - -
CNN-MC 47.4 88.1 2452 156
CNN 48.8 47.2 85.7 86.2 32 37
PVEC 48.7 87.8 - -
DAN 48.2 86.8 73 5
SVM 40.1 38.3 78.6 81.3 - -
NBoW 45.1 44.5 80.7 82.0 1 1
Ours 49.5 50.6 87.0 87.0 28 33

+ phrase labels 53.4 51.2 88.9 88.6 445 28

Table 1: Comparison between our model and other baseline methods on Stanford Sentiment Treebank.
The top block lists recursive neural network models, the second block are convolutional network mod-
els and the third block contains other baseline methods, including the paragraph-vector model (Le and
Mikolov, 2014), the deep averaging network model (Iyyer et al., 2015) and our implementation of neural
bag-of-words. The training time of baseline methods is taken from (Iyyer et al., 2015) or directly from
the authors. For our implementations, timings were performed on a single core of a 2.6GHz Intel i7
processor.

network baselines include standard RNN (Socher
et al., 2011b), RNTN with a small core tensor in
the composition function (Socher et al., 2013), the
deep recursive model DRNN (Irsoy and Cardie,
2014) and the most recent recursive model using
long-short-term-memory units RLSTM (Tai et al.,
2015). These recursive models assume the in-
put sentences are represented as parse trees. As
a benefit, they can readily utilize annotations at
the phrase level. In contrast, convolutional neu-
ral networks are trained on sequence-level, taking
the original sequence and its label as training in-
put. Such convolutional baselines include the dy-
namic CNN with k-max pooling DCNN (Kalch-
brenner et al., 2014) and the convolutional model
with multi-channel CNN-MC by Kim (2014). To
leverage the phrase-level annotations in the Stan-
ford Sentiment Treebank, all phrases and the cor-
responding labels are added as separate instances
when training the sequence models. We follow
this strategy and report results with and without
phrase annotations.

Word vectors The word vectors are pre-trained
on much larger unannotated corpora to achieve
better generalization given limited amount of
training data (Turian et al., 2010). In particu-
lar, for the English sentiment classification task,

we use the publicly available 300-dimensional
GloVe word vectors trained on the Common Crawl
with 840B tokens (Pennington et al., 2014). This
choice of word vectors follows most recent work,
such as DAN (Iyyer et al., 2015) and RLSTM (Tai
et al., 2015). For Chinese news categorization,
there is no widely-used publicly available word
vectors. Therefore, we run word2vec (Mikolov
et al., 2013) to train 200-dimensional word vec-
tors on the 1.6 million Chinese news articles. Both
word vectors are normalized to unit norm (i.e.
‖w‖22 = 1) and are fixed in the experiments with-
out fine-tuning.

Hyperparameter setting We perform an exten-
sive search on the hyperparameters of our full
model, our implementation of the CNN model
(with linear filters), and the SVM baseline. For
our model and the CNN model, the initial learn-
ing rate of AdaGrad is fixed to 0.01 for sentiment
classification and 0.1 for news categorization, and
the L2 regularization weight is fixed to 1e − 5
and 1e−6 respectively based on preliminary runs.
The rest of the hyperparameters are randomly cho-
sen as follows: number of feature-mapping lay-
ers ∈ {1, 2, 3}, n-gram order n ∈ {2, 3}, hidden
feature dimension h ∈ {50, 100, 200}, dropout
probability ∈ {0.0, 0.1, 0.3, 0.5}, and length de-
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cay λ ∈ {0.0, 0.3, 0.5}. We run each config-
uration 3 times to explore different random ini-
tializations. For the SVM baseline, we tune L2
regularization weight C ∈ {0.01, 0.1, 1.0, 10.0},
word cut-off frequency ∈ {1, 2, 3, 5} (i.e. pruning
words appearing less than this times) and n-gram
feature order n ∈ {1, 2, 3}.
Implementation details The source code is
implemented in Python using the Theano li-
brary (Bergstra et al., 2010), a flexible lin-
ear algebra compiler that can optimize user-
specified computations (models) with efficient
automatic low-level implementations, including
(back-propagated) gradient calculation.

7 Results

7.1 Overall Performance
Table 1 presents the performance of our model
and other baseline methods on Stanford Sentiment
Treebank benchmark. Our full model obtains the
highest accuracy on both the development and test
sets. Specifically, it achieves 51.2% and 88.6%
test accuracies on fine-grained and binary tasks re-
spectively5. As shown in Table 2, our model per-
formance is relatively stable – it remains high ac-
curacies with around 0.5% standard deviation un-
der different initializations and dropout rates.

Our full model is also several times faster than
other top-performing models. For example, the
convolutional model with multi-channel (CNN-
MC) runs over 2400 seconds per training epoch.
In contrast, our full model (with 3 feature layers)
runs on average 28 seconds with only root labels
and on average 445 seconds with all labels.

Our results also show that the CNN model,
where our feature map is replaced with traditional
linear map, performs worse than our full model.
This observation confirms the importance of the
proposed non-linear, tensor-based feature map-
ping. The CNN model also lags behind the DCNN
and CNN-MC baselines, since the latter two pro-
pose several advancements over standard CNN.

Table 3 reports the results of SVM, NBoW and
our model on the news categorization task. Since
the dataset is much larger compared to the senti-
ment dataset (80K documents vs. 8.5K sentences),
the SVM method is a competitive baseline. It
achieves 78.5% accuracy compared to 74.4% and

5Best hyperparameter configuration based on dev accu-
racy: 3 layers, 3-gram tensors (n=3), feature dimension d =
200 and length decay λ = 0.5

Dataset Accuracy

Fine-grained
Dev 52.5 (±0.5) %
Test 51.4 (±0.6) %

Binary
Dev 88.4 (±0.3) %
Test 88.4 (±0.5) %

Table 2: Analysis of average accuracy and stan-
dard deviation of our model on sentiment classifi-
cation task.

Model Dev Acc. Test Acc.
SVM (1-gram) 77.5 77.4
SVM (2-gram) 78.2 78.0
SVM (3-gram) 78.2 78.5
NBoW 74.4 74.4
CNN 79.5 79.2
Ours 80.0 80.0

Table 3: Performance of various methods on Chi-
nese news categorization task. Our model obtains
better results than the SVM, NBoW and traditional
CNN baselines.

79.2% obtained by the neural bag-of-words model
and CNN model. In contrast, our model obtains
80.0% accuracy on both the development and test
sets, outperforming the three baselines by a 0.8%
absolute margin. The best hyperparameter con-
figuration in this task uses less feature layers and
lower n-gram order (specifically, 2 layers and n =
2) compared to the sentiment classification task.
We hypothesize that the difference is due to the
nature of the two tasks: the document classifica-
tion task requires to handle less compositions or
context interactions than sentiment analysis.

7.2 Hyperparameter Analysis
We next investigate the impact of hyperparame-
ters in our model performance. We use the mod-
els trained on fine-grained sentiment classification
task with only root labels.

Number of layers We plot the fine-grained sen-
timent classification accuracies obtained during
hyperparameter grid search. Figure 2 illustrates
how the number of feature layers impacts the
model performance. As shown in the figure,
adding higher-level features clearly improves the
classification accuracy across various hyperpa-
rameter settings and initializations.

Non-consecutive n-gram features We also an-
alyze the effect of modeling non-consecutive n-
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Figure 5: Example sentences and their sentiments predicted by our model trained with root labels. The
predicted sentiment scores at each word position are plotted. Examples (1)-(5) are synthetic inputs, (6)
and (7) are two real inputs from the test set. Our model successfully identifies negation, double negation
and phrases with different sentiment in one sentence.
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Figure 2: Dev accuracy (x-axis) and test accuracy
(y-axis) of independent runs of our model on fine-
grained sentiment classification task. Deeper ar-
chitectures achieve better accuracies.

grams. Figure 3 splits the model accuracies ac-
cording to the choice of span decaying factor λ.
Note when λ = 0, the model applies feature ex-
tractions to consecutive n-grams only. As shown
in Figure 3, this setting leads to consistent perfor-
mance drop. This result confirms the importance
of handling non-consecutive n-gram patterns.

Non-linear activation Finally, we verify the ef-
fectiveness of rectified linear unit activation func-
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Figure 3: Comparison of our model variations
in sentiment classification task when considering
consecutive n-grams only (decaying factor λ = 0)
and when considering non-consecutive n-grams
(λ > 0). Modeling non-consecutive n-gram fea-
tures leads to better performance.

tion (ReLU) by comparing it with no activation (or
identity activation f(x) = x). As shown in Fig-
ure 4, our model with ReLU activation generally
outperforms its variant without ReLU. The obser-
vation is consistent with previous work on convo-
lutional neural networks and other neural network
models.
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Figure 4: Applying ReLU activation on top of
tensor-based feature mapping leads to better per-
formance in sentiment classification task. Runs
with no activation are plotted as blue circles.

7.3 Example Predictions
Figure 5 gives examples of input sentences and
the corresponding predictions of our model in
fine-grained sentiment classification. To see how
our model captures the sentiment at different lo-
cal context, we apply the learned softmax ac-
tivation to the extracted features at each posi-
tion without taking the average. That is, for
each index i, we obtain the local sentiment p =
softmax

(
W> (z(1)[i]⊕ z(2)[i]⊕ z(3)[i]

))
. We

plot the expected sentiment scores
∑2

s=−2 s ·p(s),
where a score of 2 means “very positive”, 0 means
“neutral” and -2 means “very negative”. As shown
in the figure, our model successfully learns nega-
tion and double negation. The model also iden-
tifies positive and negative segments appearing in
the sentence.

8 Conclusion

We proposed a feature mapping operator for con-
volutional neural networks by modeling n-gram
interactions based on tensor product and evaluat-
ing all non-consecutive n-gram vectors. The as-
sociated parameters are maintained as a low-rank
tensor, which leads to efficient feature extraction
via dynamic programming. The model achieves
top performance on standard sentiment classifica-
tion and document categorization tasks.
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Abstract

Modeling sentence similarity is compli-
cated by the ambiguity and variability of
linguistic expression. To cope with these
challenges, we propose a model for com-
paring sentences that uses a multiplicity of
perspectives. We first model each sentence
using a convolutional neural network that
extracts features at multiple levels of gran-
ularity and uses multiple types of pooling.
We then compare our sentence representa-
tions at several granularities using multi-
ple similarity metrics. We apply our model
to three tasks, including the Microsoft Re-
search paraphrase identification task and
two SemEval semantic textual similarity
tasks. We obtain strong performance on all
tasks, rivaling or exceeding the state of the
art without using external resources such
as WordNet or parsers.

1 Introduction

Measuring the semantic relatedness of two pieces
of text is a fundamental problem in language
processing tasks like plagiarism detection, query
ranking, and question answering. In this paper, we
address the sentence similarity measurement prob-
lem: given a query sentence S1 and a comparison
sentence S2, the task is to compute their similar-
ity in terms of a score sim(S1, S2). This simi-
larity score can be used within a system that de-
termines whether two sentences are paraphrases,
e.g., by comparing it to a threshold.

Measuring sentence similarity is challenging
because of the variability of linguistic expression
and the limited amount of annotated training data.
This makes it difficult to use sparse, hand-crafted
features as in conventional approaches in NLP. Re-
cent successes in sentence similarity have been ob-
tained by using neural networks (Tai et al., 2015;

Yin and Schütze, 2015). Our approach is also
based on neural networks: we propose a modular
functional architecture with two components, sen-
tence modeling and similarity measurement.

For sentence modeling, we use a convolutional
neural network featuring convolution filters with
multiple granularities and window sizes, followed
by multiple types of pooling. We experiment with
two types of word embeddings as well as part-
of-speech tag embeddings (Sec. 4). For similar-
ity measurement, we compare pairs of local re-
gions of the sentence representations, using multi-
ple distance functions: cosine distance, Euclidean
distance, and element-wise difference (Sec. 5).

We demonstrate state-of-the-art performance on
two SemEval semantic relatedness tasks (Agirre et
al., 2012; Marelli et al., 2014), and highly com-
petitive performance on the Microsoft Research
paraphrase (MSRP) identification task (Dolan et
al., 2004). On the SemEval-2014 task, we match
the state-of-the-art dependency tree Long Short-
Term Memory (LSTM) neural networks of Tai
et al. (2015) without using parsers or part-of-
speech taggers. On the MSRP task, we outper-
form the recently-proposed convolutional neural
network model of Yin and Schütze (2015) with-
out any pretraining. In addition, we perform ab-
lation experiments to show the contribution of our
modeling decisions for all three datasets, demon-
strating clear benefits from our use of multiple per-
spectives both in sentence modeling and structured
similarity measurement.

2 Related Work

Most previous work on modeling sentence simi-
larity has focused on feature engineering. Sev-
eral types of sparse features have been found use-
ful, including: (1) string-based, including n-gram
overlap features on both the word and character
levels (Wan et al., 2006) and features based on
machine translation evaluation metrics (Madnani
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et al., 2012); (2) knowledge-based, using exter-
nal lexical resources such as WordNet (Fellbaum,
1998; Fern and Stevenson, 2008); (3) syntax-
based, e.g., modeling divergence of dependency
syntax between the two sentences (Das and Smith,
2009); (4) corpus-based, using distributional mod-
els such as latent semantic analysis to obtain fea-
tures (Hassan, 2011; Guo and Diab, 2012).

Several strongly-performing approaches used
system combination (Das and Smith, 2009; Mad-
nani et al., 2012) or multi-task learning. Xu et
al. (2014) developed a feature-rich multi-instance
learning model that jointly learns paraphrase rela-
tions between word and sentence pairs.

Recent work has moved away from hand-
crafted features and towards modeling with dis-
tributed representations and neural network archi-
tectures. Collobert and Weston (2008) used con-
volutional neural networks in a multitask setting,
where their model is trained jointly for multiple
NLP tasks with shared weights. Kalchbrenner et
al. (2014) introduced a convolutional neural net-
work for sentence modeling that uses dynamic
k-max pooling to better model inputs of varying
sizes. Kim (2014) proposed several modifications
to the convolutional neural network architecture of
Collobert and Weston (2008), including the use of
both fixed and learned word vectors and varying
window sizes of the convolution filters.

For the MSRP task, Socher et al. (2011) used
a recursive neural network to model each sen-
tence, recursively computing the representation
for the sentence from the representations of its
constituents in a binarized constituent parse. Ji
and Eisenstein (2013) used matrix factorization
techniques to obtain sentence representations, and
combined them with fine-tuned sparse features us-
ing an SVM classifier for similarity prediction.
Both Socher et al. and Ji and Eisenstein incor-
porated sparse features to improve performance,
which we do not use in this work.

Hu et al. (2014) used convolutional neural net-
works that combine hierarchical sentence mod-
eling with layer-by-layer composition and pool-
ing. While they performed comparisons directly
over entire sentence representations, we instead
develop a structured similarity measurement layer
to compare local regions. A variety of other neural
network models have been proposed for similarity
tasks (Weston et al., 2011; Huang et al., 2013; An-
drew et al., 2013; Bromley et al., 1993).

Most recently, Tai et al. (2015) and Zhu et al.
(2015) concurrently proposed a tree-based LSTM
neural network architecture for sentence model-
ing. Unlike them, we do not use syntactic parsers,
yet our performance matches Tai et al. (2015)
on the similarity task. This result is appealing
because high-quality parsers are difficult to ob-
tain for low-resource languages or specialized do-
mains. Yin and Schütze (2015) concurrently de-
veloped a convolutional neural network architec-
ture for paraphrase identification, which we com-
pare to in our experiments. Their best results rely
on an unsupervised pretraining step, which we do
not need to match their performance.

Our model architecture differs from previous
work in several ways. We exploit multiple per-
spectives of input sentences in order to maxi-
mize information utilization and perform struc-
tured comparisons over particular regions of the
sentence representations. We now proceed to de-
scribe our model in detail, and we compare to the
above related work in our experimental evaluation.

3 Model Overview

Modeling textual similarity is complicated by the
ambiguity and variability of linguistic expression.
We designed a model with these phenomena in
mind, exploiting multiple types of input which are
processed by multiple types of convolution and
pooling. Our similarity architecture likewise uses
multiple similarity functions.

To summarize, our model (shown in Figure 1)
consists of two main components:

1. A sentence model for converting a sentence
into a representation for similarity measure-
ment; we use a convolutional neural network
architecture with multiple types of convolution
and pooling in order to capture different granu-
larities of information in the inputs.

2. A similarity measurement layer using multi-
ple similarity measurements, which compare lo-
cal regions of the sentence representations from
the sentence model.

Our model has a “Siamese” structure (Bromley
et al., 1993) with two subnetworks each process-
ing a sentence in parallel. The subnetworks share
all of their weights, and are joined by the simi-
larity measurement layer, then followed by a fully
connected layer for similarity score output.
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Cats Sit On The Mat

b b

On The Mat There Sit Cats

b b

Structured Similarity Measurement Layer

Fully Connected Layer

Output: Similarity Score

bc bc bc

bc

b b
b b

bc bc bc bc bc bc bc

b
b

b
b

Figure 1: Model overview. Two input sentences
(on the bottom) are processed in parallel by iden-
tical neural networks, outputting sentence repre-
sentations. The sentence representations are com-
pared by the structured similarity measurement
layer. The similarity features are then passed to a
fully-connected layer for computing the similarity
score (top).

Importantly, we do not require resources like
WordNet or syntactic parsers for the language of
interest; we only use optional part-of-speech tags
and pretrained word embeddings. The main dif-
ference from prior work lies in our use of multiple
types of convolution, pooling, and structured sim-
ilarity measurement over local regions. We show
later in our experiments that the bulk of our perfor-
mance comes from this use of multiple “perspec-
tives” of the input sentences.

We describe our sentence model in Section 4
and our similarity measurement layer in Section 5.

4 Sentence Modeling

In this section we describe our convolutional neu-
ral network for modeling each sentence. We use
two types of convolution filters defined on differ-
ent perspectives of the input (Sec. 4.1), and also
use multiple types of pooling (Sec. 4.2).

Our inputs are streams of tokens, which can be
interpreted as a temporal sequence where nearby
words are likely to be correlated. Let sent ∈
Rlen×Dim be a sequence of len input words rep-
resented by Dim-dimensional word embeddings,
where sent i ∈ RDim is the embedding of the i-th
word in the sequence and sent i:j represents the
concatenation of embeddings from word i up to
and including word j. We denote the k-th dimen-
sion of the i-th word vector by sent [k]

i and we de-
note the vector containing the k-th dimension of
words i to j by sent [k]

i:j .

w1 w2 w3 w4 w5 w1 w2 w3 w4 w5

Figure 2: Left: a holistic filter matches entire word
vectors (here, ws = 2). Right: per-dimension fil-
ters match against each dimension of the word em-
beddings independently.

4.1 Convolution on Multiple Perspectives
We define a convolution filter F as a tuple
〈ws, wF , bF , hF 〉, where ws is the sliding window
width, wF ∈ Rws×Dim is the weight vector for
the filter, bF ∈ R is the bias, and hF is the activa-
tion function (a nonlinear function such as tanh).
When filter F is applied to sequence sent , the
inner product is computed between wF and each
possible window of word embeddings of length
ws in sent , then the bias is added and the activa-
tion function is applied. This results in an output
vector outF ∈ R1+len−ws where entry i equals

outF [i] = hF (wF · sent i:i+ws−1 + bF ) (1)

where i ∈ [1, 1 + len − ws]. This filter can be
viewed as performing “temporal” convolution, as
it matches against regions of the word sequence.
Since these filters consider the entirety of each
word embedding at each position, we call them
holistic filters; see the left half of Figure 2.

In addition, we target information at a finer
granularity by constructing per-dimension filters
F [k] for each dimension k of the word embed-
dings, where wF [k] ∈ Rws . See the right half
of Figure 2. The per-dimension filters are simi-
lar to “spatial convolution” filters except that we
limit each to a single, predefined dimension. We
include separate per-dimension filters for each di-
mension of the input word embeddings.
Applying a per-dimension filter F [k] =
〈ws, wF [k] , bF [k] , hF [k]〉 for dimension k re-
sults in an output vector outF [k] ∈ R1+len−ws

where entry i (for i ∈ [1, 1 + len − ws]) equals

outF [k] [i] = hF [k](wF [k] · sent [k]
i:i+ws−1 + bF [k])

Our use of word embeddings in both ways allows
more information to be extracted for richer sen-
tence modeling. While we typically do not expect
individual dimensions of neural word embeddings
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Figure 3: Each building block consists of multiple
independent pooling layers and convolution layers
with width ws1. Left: blockA operates on entire
vectors of word embeddings. Right: blockB oper-
ates on individual dimensions of word vectors to
capture information of a finer granularity.

to be interpretable to humans, there may still be
distinct information captured by the different di-
mensions that our model could exploit. Further-
more, if we update the word embeddings during
learning, different dimensions could be encour-
aged further to capture distinct information.

We define a convolution layer as a set of con-
volution filters that share the same type (holistic
or per-dimension), activation function, and width
ws . The type, width, activation function, and num-
ber of filters numFilter in the layer are chosen by
the modeler and the weights of each filter (wF and
bF ) are learned.

4.2 Multiple Pooling Types
The output vector outF of a convolution filter F is
typically converted to a scalar for subsequent use
by the model using some method of pooling. For
example, “max-pooling” applies a max operation
across the entries of outF and returns the max-
imum value. In this paper, we experiment with
two additional types of pooling: “min-pooling”
and “mean-pooling”.

A group, denoted group(ws, pooling , sent), is
an object that contains a convolution layer with
width ws , uses pooling function pooling , and op-
erates on sentence sent . We define a building
block to be a set of groups. We use two types of
building blocks, blockA and blockB , as shown in
Figure 3. We define blockA as

{groupA(wsa, p, sent) : p ∈ {max,min,mean}}.
That is, an instance of blockA has three convolu-
tion layers, one corresponding to each of the three
pooling functions; all have the same window size
wsa. An alternative choice would be to use the
multiple types of pooling on the same filters (Ren-
nie et al., 2014); we instead use independent sets

of filters for the different pooling types.1 We use
blocks of type A for all holistic convolution layers.

We define blockB as

{groupB (wsb, p, sent) : p ∈ {max,min}}.

That is, blockB contains two groups of convolu-
tion layers of width wsb, one with max-pooling
and one with min-pooling. Each groupB (∗) con-
tains a convolution layer with Dim per-dimension
convolution filters. That is, we use blocks of type
B for convolution layers that operate on individual
dimensions of word vectors.

We use these multiple types of pooling to ex-
tract different types of information from each type
of filter. The design of each group(∗) allows a
pooling function to interact with its own underly-
ing convolution layers independently, so each con-
volution layer can learn to recognize distinct phe-
nomena of the input for richer sentence modeling.

For a groupA(wsa, poolinga, sent) with a con-
volution layer with numFilterA filters, we define
the output oGA as a vector of length numFilterA
where entry j is

oGA[j] = poolinga(outFj ) (2)

where filters are indexed as Fj . That is, the output
of groupA(∗) is a numFilterA-length vector con-
taining the output of applying the pooling function
on each filter’s vector of filter match outputs.2

A component groupB (∗) of blockB contains
Dim filters, each operating on a particular di-
mension of the word embeddings. We define the
output oGB of groupB (wsb, poolingb, sent) as a
Dim × numFilterB matrix where entry [k][j] is

oGB[k][j] = poolingb(out
F

[k ]
j

)

where filter F [k]
j is filter j for dimension k.

4.3 Multiple Window Sizes

Similar to traditional n-gram-based models, we
use multiple window sizes ws in our building
blocks in order to learn features of different
lengths. For example, in Figure 4 we use four
building blocks, each with one window size ws =

1We note that max and min are not both strictly necessary
when using certain activation functions, but they still may
help us find a more felicitous local optimum.

2We note that there is no pooling across multiple filters
in a layer/group, or across groups. Each pooling operation is
performed independently on the matches of a single filter.
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Figure 4: Example neural network architecture for
a single sentence, containing 3 instances of blockA

(with 3 types of pooling) and 2 instances of blockB

(with 2 types) on varying window sizes ws = 1, 2
and ws =∞; blockA operates on entire word vec-
tors while blockB contains filters that operate on
individual dimensions independently.

1 or 2 for its own convolution layers. In order to
retain the original information in the sentences, we
also include the entire matrix of word embeddings
in the sentence, which essentially corresponds to
ws =∞.

The width ws represents how many words are
matched by a filter, so using larger values of ws
corresponds to matching longer n-grams in the
input sentences. The ranges of ws values and
the numbers of filters numFilter of blockA and
blockB are empirical choices tuned based on vali-
dation data.

5 Similarity Measurement Layer

In this section we describe the second part of our
model, the similarity measurement layer.

Given two input sentences, the first part of our
model computes sentence representations for each
of them in parallel. One straightforward way to
compare them is to flatten the sentence represen-
tations into two vectors, then use standard met-
rics like cosine similarity. However, this may
not be optimal because different regions of the
flattened sentence representations are from differ-
ent underlying sources (e.g., groups of different
widths, types of pooling, dimensions of word vec-
tors, etc.). Flattening might discard useful com-
positional information for computing similarity.
We therefore perform structured comparisons over
particular regions of the sentence representations.

One important consideration is how to iden-
tify suitable local regions for comparison so that
we can best utilize the compositional information
in the sentence representations. There are many
possible ways to group local comparison regions.
In doing so, we consider the following four as-

pects: 1) whether from the same building block; 2)
whether from convolutional layers with the same
window size; 3) whether from the same pooling
layer; 4) whether from the same filter of the under-
lying convolution layers.3 We focus on comparing
regions that share at least two of these conditions.

To concretize this, we provide two algorithms
below to identify meaningful local regions. While
there exist other sets of comparable regions that
share the above conditions, we do not explore
them all due to concerns about learning efficiency;
we find that the subset we consider performs
strongly in practice.

5.1 Similarity Comparison Units
We define two comparison units for comparing
two local regions in the sentence representations:

comU 1(
−→x ,−→y ) = {cos(−→x ,−→y ), L2Euclid(−→x ,−→y ),

|−→x −−→y |} (3)

comU 2(
−→x ,−→y ) = {cos(−→x ,−→y ), L2Euclid(−→x ,−→y )} (4)

Cosine distance (cos) measures the distance of
two vectors according to the angle between them,
while L2 Euclidean distance (L2Euclid ) and
element-wise absolute difference measure magni-
tude differences.

5.2 Comparison over Local Regions
Algorithms 1 and 2 show how the two sentence
representations are compared in our model. Algo-
rithm 1 works on the output of blockA only, while
Algorithm 2 deals with both blockA and blockB ,
focusing on regions from the output of the same
pooling type and same block type, but with differ-
ent filters and window sizes of convolution layers.

Given two sentences S1 and S2, we set the max-
imum window size ws of blockA and blockB to be
n, let regM∗ represent a numFilterA by n+1 ma-
trix, and assume that each group∗ outputs its cor-
responding oG∗. The output features are accumu-
lated in a final vector fea .

5.3 One Simplified Example
We provide a simplified working example to show
how the two algorithms compare outputs of blockA

only. If we arrange the sentence representations
into the shape of sentence matrices as in Figure 5,

3We note that since we apply the same network to both
sentences, the same filters are used to match both sentences,
so we can directly compare filter matches of individual filters
across the two sentences.
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Algorithm 1 Horizontal Comparison
1: for each pooling p = max,min,mean do
2: for each width ws1 = 1...n,∞ do
3: regM 1[∗][ws1] = groupA(ws1, p, S1)
4: regM 2[∗][ws1] = groupA(ws1, p, S2)
5: end for
6: for each i = 1...numFilterA do
7: feah = comU 2(regM 1[i], regM 2[i])
8: accumulate feah for final layer
9: end for

10: end for

Algorithm 2 Vertical Comparison
1: for each pooling p = max,min,mean do
2: for each width ws1 = 1...n,∞ do
3: oG1A = groupA(ws1, p, S1)
4: for each width ws2 = 1...n,∞ do
5: oG2A = groupA(ws2, p, S2)
6: feaa = comU 1(oG1A, oG2A)
7: accumulate feaa for final layer
8: end for
9: end for

10: for each width ws1 = 1...n do
11: oG1B = groupB (ws1, p, S1)
12: oG2B = groupB (ws1, p, S2)
13: for each i = 1...numFilterB do
14: feab =comU 1(oG1B [∗][i], oG2B [∗][i])
15: accumulate feab for final layer
16: end for
17: end for
18: end for

then in Algorithms 1 and 2 we are essentially com-
paring local regions of the two matrices in two di-
rections: along rows and columns.

In Figure 5, each column of the max/min/mean
groups is compared with all columns of the same
pooling group for the other sentence. This is
shown in red dotted lines in the Figure and listed in
lines 2 to 9 in Algorithm 2. Note that both ws1 and
ws2 columns within each pooling group should be
compared using red dotted lines, but we omit this
from the figure for clarity.

In the horizontal direction, each equal-sized
max/min/mean group is extracted as a vector and
is compared to the corresponding one for the other
sentence. This process is repeated for all rows and
comparisons are shown in green solid lines, as per-
formed by Algorithm 1.

5.4 Other Model Details

Output Fully-Connected Layer. On top of the
similarity measurement layer (which outputs a
vector containing all fea∗), we stack two linear
layers with an activation layer in between, fol-
lowed by a log-softmax layer as the final output
layer, which outputs the similarity score.

Activation Layers. We used element-wise tanh

bc

b
⊗

Max

ws1

bc

b
⊗

Min

bc

b
⊗

Mean

ws2 ws1 ws2 ws1 ws2

bc

b
⊗

Max

ws1

bc

b
⊗

Min

bc

b
⊗

Mean

ws2 ws1 ws2 ws1 ws2

Figure 5: Simplified example of local region com-
parisons over two sentence representations that
use blockA only. The “horizontal comparison”
(Algorithm 1) is shown with green solid lines and
“vertical comparison” (Algorithm 2) with red dot-
ted lines. Each sentence representation uses win-
dow sizes ws1 and ws2 with max/min/mean pool-
ing and numFilterA = 3 filters.

as the activation function for all convolution filters
and for the activation layer placed between the fi-
nal two layers.

6 Experiments and Results

Everything necessary to replicate our experimen-
tal results can be found in our open-source code
repository.4

6.1 Tasks and Datasets

We consider three sentence pair similarity tasks:

1. Microsoft Research Paraphrase Corpus
(MSRP). This data was collected from news
sources (Dolan et al., 2004) and contains
5,801 pairs of sentences, with 4,076 for
training and the remaining 1,725 for testing.
Each sentence pair is annotated with a binary
label indicating whether the two sentences
are paraphrases, so the task here is binary
classification.

2. Sentences Involving Compositional Knowl-
edge (SICK) dataset. This data was collected
for the 2014 SemEval competition (Marelli
et al., 2014) and consists of 9,927 sentence
pairs, with 4,500 for training, 500 as a devel-
opment set, and the remaining 4,927 in the
test set. The sentences are drawn from image
and video descriptions. Each sentence pair is
annotated with a relatedness score ∈ [1, 5],
with higher scores indicating the two sen-
tences are more closely-related.

4http://hohocode.github.io/textSimilarityConvNet/
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3. Microsoft Video Paraphrase Corpus
(MSRVID). This dataset was collected
for the 2012 SemEval competition and
consists of 1,500 pairs of short video de-
scriptions which were then annotated (Agirre
et al., 2012). Half of it is for training and the
other half is for testing. Each sentence pair
has a relatedness score ∈ [0, 5], with higher
scores indicating the two sentences are more
closely-related.

6.2 Training
We use a hinge loss for the MSRP paraphrase
identification task. This is simpler than log loss
since it only penalizes misclassified cases. The
training objective is to minimize the following loss
(summed over examples 〈x, ygold 〉):

loss(θ, x, ygold ) =∑
y′ 6=ygold

max(0, 1 + fθ(x, y′)− fθ(x, ygold )) (5)

where ygold is the ground truth label, input x is
the pair of sentences x = {S1, S2}, θ is the
model weight vector to be trained, and the func-
tion fθ(x, y) is the output of our model.

We use regularized KL-divergence loss for the
semantic relatedness tasks (SICK and MSRVID),
since the goal is to predict the similarity of the two
sentences. The training objective is to minimize
the KL-divergence loss plus an L2 regularizer:

loss(θ) =
1
m

m∑
k=1

KL
(
fk || f̂kθ

)
+
λ

2
||θ||22 (6)

where f̂θ is the predicted distribution with model
weight vector θ, f is the ground truth, m is the
number of training examples, and λ is the regu-
larization parameter. Note that we use the same
KL-loss function and same sparse target distribu-
tion technique as Tai et al. (2015).

6.3 Experiment Settings
We conduct experiments with ws values in the
range [1, 3] as well as ws =∞ (no convolution).

We use multiple kinds of embeddings to rep-
resent each sentence, both on words and part-of-
speech (POS) tags. We use the Dimg = 300-
dimensional GloVe word embeddings (Pennington
et al., 2014) trained on 840 billion tokens. We
use Dimk = 25-dimensional PARAGRAM vec-
tors (Wieting et al., 2015) only on the MSRP task

since they were developed for paraphrase tasks,
having been trained on word pairs from the Para-
phrase Database (Ganitkevitch et al., 2013). For
POS embeddings, we run the Stanford POS tag-
ger (Manning et al., 2014) on the English side
of the Xinhua machine translation parallel cor-
pus, which consists of Xinhua news articles with
approximately 25 million words. We then train
Dimp = 200-dimensional POS embeddings us-
ing the word2vec toolkit (Mikolov et al., 2013).
Adding POS embeddings is expected to retain syn-
tactic information which is reported to be effec-
tive for paraphrase identification (Das and Smith,
2009). We use POS embeddings only for the
MSRP task.

Therefore for MSRP, we concatenate all word
and POS embeddings and obtain Dim = Dimg +
Dimp + Dimk = 525-dimension vectors for each
input word; for SICK and MSRVID we only use
Dim = 300-dimension GloVe embeddings.

We use 5-fold cross validation on the MSRP
training data for tuning, then largely re-use the
same hyperparameters for the other two datasets.
However, there are two changes: 1) for the MSRP
task we update word embeddings during train-
ing but not so on SICK and MSRVID tasks; 2)
we set the fully connected layer to contain 250
hidden units for MSRP, and 150 for SICK and
MSRVID. These changes were done to speed up
our experimental cycle on SICK and MSRVID; on
SICK data they are the same experimental settings
as used by Tai et al. (2015), which makes for a
cleaner empirical comparison.

We set the number of holistic filters in blockA
to be the same as the input word embeddings,
therefore numFilterA = 525 for MSRP and
numFilterA = 300 for SICK and MSRVID. We
set the number of per-dimension filters in blockB
to be numFilterB = 20 per dimension for all
three datasets, which corresponds to 20 ∗Dim fil-
ters in total.

We perform optimization using stochastic gra-
dient descent (Bottou, 1998). The backpropaga-
tion algorithm is used to compute gradients for
all parameters during training (Goller and Kuch-
ler, 1996). We fix the learning rate to 0.01 and
regularization parameter λ = 10−4.

6.4 Results on Three Datasets

Results on MSRP Data. We report F1 scores
and accuracies from prior work in Table 1. Ap-
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Model Acc. F1
Hu et al. (2014) ARC-I 69.6% 80.3%
Hu et al. (2014) ARC-II 69.9% 80.9%
Blacoe and Lapata (2012) 73.0% 82.3%
Fern and Stevenson (2008) 74.1% 82.4%
Finch (2005) 75.0% 82.7%
Das and Smith (2009) 76.1% 82.7%
Wan et al. (2006) 75.6% 83.0%
Socher et al. (2011) 76.8% 83.6%
Madnani et al. (2012) 77.4% 84.1%
Ji and Eisenstein (2013) 80.41% 85.96%
Yin and Schütze (2015)
(without pretraining) 72.5% 81.4%
Yin and Schütze (2015)
(with pretraining) 78.1% 84.4%
Yin and Schütze (2015)
(pretraining+sparse features) 78.4% 84.6%

This work 78.60% 84.73%

Table 1: Test set results on MSRP for paraphrase
identification. Rows in grey are neural network-
based approaches.

proaches shown in gray rows of the table are
based on neural networks. The recent approach
by Yin and Schütze (2015) includes a pretraining
technique which significantly improves results, as
shown in the table. We do not use any pretrain-
ing but still slightly outperform their best results
which use both pretraining and additional sparse
features from Madnani et al. (2012).

When comparing to their model without pre-
training, we outperform them by 6% absolute in
accuracy and 3% in F1. Our model is also supe-
rior to other recent neural network models (Hu et
al., 2014; Socher et al., 2011) without requiring
sparse features or unlabeled data as in (Yin and
Schütze, 2015; Socher et al., 2011). The best re-
sult on MSRP is from Ji and Eisenstein (2013)
which uses unsupervised learning on the MSRP
test set and rich sparse features.

Results on SICK Data. Our results on the SICK
task are summarized in Table 2, showing Pearson’s
r, Spearman’s ρ, and mean squared error (MSE).
We include results from the literature as reported
by Tai et al. (2015), including prior work using re-
current neural networks (RNNs), the best submis-
sions in the SemEval-2014 competition, and vari-
ants of LSTMs. When measured by Pearson’s r,
the previous state-of-the-art approach uses a tree-
structured LSTM (Tai et al., 2015); note that their
best results require a dependency parser.

On the contrary, our approach does not rely on
parse trees, nor do we use POS/PARAGRAM em-
beddings for this task. The word embeddings,

Model r ρ MSE
Socher et al. (2014) DT-RNN 0.7863 0.7305 0.3983
Socher et al. (2014) SDT-RNN 0.7886 0.7280 0.3859
Lai and Hockenmaier (2014) 0.7993 0.7538 0.3692
Jimenez et al. (2014) 0.8070 0.7489 0.3550
Bjerva et al. (2014) 0.8268 0.7721 0.3224
Zhao et al. (2014) 0.8414 - -
LSTM 0.8477 0.7921 0.2949
Bi-LSTM 0.8522 0.7952 0.2850
2-layer LSTM 0.8411 0.7849 0.2980
2-layer Bidirectional LSTM 0.8488 0.7926 0.2893
Tai et al. (2015) Const. LSTM 0.8491 0.7873 0.2852
Tai et al. (2015) Dep. LSTM 0.8676 0.8083 0.2532
This work 0.8686 0.8047 0.2606

Table 2: Test set results on SICK, as reported
by Tai et al. (2015), grouped as: (1) RNN vari-
ants; (2) SemEval 2014 systems; (3) sequential
LSTM variants; (4) dependency and constituency
tree LSTMs (Tai et al., 2015). Evaluation metrics
are Pearson’s r, Spearman’s ρ, and mean squared
error (MSE).

Model Pearson’s r
Rios et al. (2012) 0.7060
Wang and Cer (2012) 0.8037
Beltagy et al. (2014) 0.8300
Bär et al. (2012) 0.8730
Šarić et al. (2012) 0.8803
This work 0.9090

Table 3: Test set results on MSRVID data. The Bär
et al. (2012) and Šarić et al. (2012) results were
the top two submissions in the Semantic Textual
Similarity task at the SemEval-2012 competition.

sparse distribution targets, and KL loss function
are exactly the same as used by Tai et al. (2015),
therefore representing comparable conditions.

Results on MSRVID Data. Our results on the
MSRVID data are summarized in Table 3, which
includes the top 2 submissions in the Seman-
tic Textual Similarity (STS) task from SemEval-
2012. We find that we outperform the top system
from the task by nearly 3 points in Pearson’s r.

6.5 Model Ablation Study

We report the results of an ablation study in Ta-
ble 4. We identify nine major components of our
approach, remove one at a time (if applicable),
and perform re-training and re-testing for all three
tasks. We use the same experimental settings in
Sec. 6.3 and report differences (in accuracy for
MSRP, Pearson’s r for SICK/MSRVID) compared
to our results in Tables 1–3.
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Gp ID Ablation Component MSRP
Accuracy
Diff.

MSRVID
Pearson
Diff.

SICK
Pearson
Diff.

1 1 Remove POS embeddings (Sec. 6.3) -0.81 NA NA
2 Remove PARAGRAM embeddings (Sec. 6.3) -1.33 NA NA

2
3 Remove per-dimension embeddings, building block A only (Sec. 4.1) -0.75 -0.0067 -0.0014
4 Remove min and mean pooling, use max pooling only (Sec. 4.2) -0.58 -0.0112 +0.0001
5 Remove multiple widths, ws = 1 and ws =∞ only (Sec. 4.3) -2.14 -0.0048 -0.0012

3 6 Remove cosine and L2Euclid distance in comU ∗ (Sec. 5.1) -2.31 -0.0188 -0.0309

4
7 Remove Horizontal Algorithm (Sec. 5.2) -0.92 -0.0097 -0.0117
8 Remove Vertical Algorithm (Sec. 5.2) -2.15 -0.0063 -0.0027
9 Remove similarity layer (completely flatten) (Sec. 5) -1.90 -0.0121 -0.0288

Table 4: Ablation study over test sets of all three datasets. Nine components are divided into four groups.
We remove components one at a time and show differences.

The nine components can be divided into four
groups: (1) input embeddings (components 1–2);
(2) sentence modeling (components 3–5); (3) sim-
ilarity measurement metrics (component 6); (4)
similarity measurement layer (components 7–9).
For MSRP, we use all nine components. For SICK
and MSRVID, we use components 3–9 (as de-
scribed in Sec. 6.3).

From Table 4 we find drops in performance for
all components, with the largest differences ap-
pearing when removing components of the simi-
larity measurement layer. For example, conduct-
ing comparisons over flattened sentence represen-
tations (removing component 9) leads to large
drops across tasks, because this ignores struc-
tured information within sentence representations.
Groups (1) and (2) are also useful, particularly for
the MSRP task, demonstrating the extra benefit
obtained from our multi-perspective approach in
sentence modeling.

We see consistent drops when ablating the Ver-
tical/Horizontal algorithms that target particular
regions for comparison. Also, removing group
(3) hinders both the Horizontal and Vertical al-
gorithms (as described in Section 5.1), so its
removal similarly causes large drops in perfor-
mance. Though convolutional neural networks al-
ready perform strongly when followed by flattened
vector comparison, we are able to leverage the
full richness of the sentence models by performing
structured similarity modeling on their outputs.

7 Discussion and Conclusion

On the SICK dataset, the dependency tree
LSTM (Tai et al., 2015) and our model achieve
comparable performance despite taking very dif-
ferent approaches. Tai et al. use syntactic parse
trees and gating mechanisms to convert each sen-

tence into a vector, while we use large sets of flex-
ible feature extractors in the form of convolution
filters, then compare particular subsets of features
in our similarity measurement layer.

Our model architecture, with its many paths of
information flow, is admittedly complex. Though
we have removed hand engineering of features,
we have added a substantial amount of functional
architecture engineering. This may be necessary
when using the small training sets provided for the
tasks we consider here. We conjecture that a sim-
pler, deeper neural network architecture may out-
perform our model when given large amounts of
training data, but we leave an investigation of this
direction to future work.

In summary, we developed a novel model for
sentence similarity based on convolutional neural
networks. We improved both sentence modeling
and similarity measurement. Our model achieves
highly competitive performance on three datasets.
Ablation experiments show that the performance
improvement comes from our use of multiple per-
spectives in both sentence modeling and structured
similarity measurement over local regions of sen-
tence representations. Future work could extend
this model to related tasks including question an-
swering and information retrieval.
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abelle Guyon, Yann LeCun, Cliff Moore, Eduard
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Abstract
Many models in natural language process-
ing define probabilistic distributions over
linguistic structures. We argue that (1)
the quality of a model’s posterior distribu-
tion can and should be directly evaluated,
as to whether probabilities correspond to
empirical frequencies; and (2) NLP uncer-
tainty can be projected not only to pipeline
components, but also to exploratory data
analysis, telling a user when to trust and
not trust the NLP analysis. We present a
method to analyze calibration, and apply
it to compare the miscalibration of sev-
eral commonly used models. We also con-
tribute a coreference sampling algorithm
that can create confidence intervals for a
political event extraction task.1

1 Introduction

Natural language processing systems are imper-
fect. Decades of research have yielded analyzers
that mis-identify named entities, mis-attach syn-
tactic relations, and mis-recognize noun phrase
coreference anywhere from 10-40% of the time.
But these systems are accurate enough so that their
outputs can be used as soft, if noisy, indicators of
language meaning for use in downstream analysis,
such as systems that perform question answering,
machine translation, event extraction, and narra-
tive analysis (McCord et al., 2012; Gimpel and
Smith, 2008; Miwa et al., 2010; Bamman et al.,
2013).

To understand the performance of an ana-
lyzer, researchers and practitioners typically mea-
sure the accuracy of individual labels or edges
among a single predicted output structure y, such
as a most-probable tagging or entity clustering
arg maxy P (y|x) (conditional on text data x).

1See the extended version of this paper for software, ap-
pendix, and acknowledgments sections:
http://brenocon.com/nlpcalib/
http://arxiv.org/abs/1508.05154

But a probabilistic model gives a probability
distribution over many other output structures that
have smaller predicted probabilities; a line of work
has sought to control cascading pipeline errors by
passing on multiple structures from earlier stages
of analysis, by propagating prediction uncertainty
through multiple samples (Finkel et al., 2006),
K-best lists (Venugopal et al., 2008; Toutanova
et al., 2008), or explicitly diverse lists (Gimpel
et al., 2013); often the goal is to marginalize over
structures to calculate and minimize an expected
loss function, as in minimum Bayes risk decod-
ing (Goodman, 1996; Kumar and Byrne, 2004), or
to perform joint inference between early and later
stages of NLP analysis (e.g. Singh et al., 2013;
Durrett and Klein, 2014).

These approaches should work better when the
posterior probabilities of the predicted linguistic
structures reflect actual probabilities of the struc-
tures or aspects of the structures. For example, say
a model is overconfident: it places too much prob-
ability mass in the top prediction, and not enough
in the rest. Then there will be little benefit to us-
ing the lower probability structures, since in the
training or inference objectives they will be incor-
rectly outweighed by the top prediction (or in a
sampling approach, they will be systematically un-
dersampled and thus have too-low frequencies). If
we only evaluate models based on their top pre-
dictions or on downstream tasks, it is difficult to
diagnose this issue.

Instead, we propose to directly evaluate the cal-
ibration of a model’s posterior prediction distri-
bution. A perfectly calibrated model knows how
often it’s right or wrong; when it predicts an event
with 80% confidence, the event empirically turns
out to be true 80% of the time. While perfect
accuracy for NLP models remains an unsolved
challenge, perfect calibration is a more achievable
goal, since a model that has imperfect accuracy
could, in principle, be perfectly calibrated. In this
paper, we develop a method to empirically analyze
calibration that is appropriate for NLP models (§3)
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and use it to analyze common generative and dis-
criminative models for tagging and classification
(§4).

Furthermore, if a model’s probabilities are
meaningful, that would justify using its proba-
bility distributions for any downstream purpose,
including exploratory analysis on unlabeled data.
In §6 we introduce a representative corpus explo-
ration problem, identifying temporal event trends
in international politics, with a method that is de-
pendent on coreference resolution. We develop
a coreference sampling algorithm (§5.2) which
projects uncertainty into the event extraction, in-
ducing a posterior distribution over event frequen-
cies. Sometimes the event trends have very high
posterior variance (large confidence intervals),2

reflecting when the NLP system genuinely does
not know the correct semantic extraction. This
highlights an important use of a calibrated model:
being able to tell a user when the model’s predic-
tions are likely to be incorrect, or at least, not giv-
ing a user a false sense of certainty from an erro-
neous NLP analysis.

2 Definition of calibration

Consider a binary probabilistic prediction prob-
lem, which consists of binary labels and proba-
bilistic predictions for them. Each instance has a
ground-truth label y ∈ {0, 1}, which is used for
evaluation. The prediction problem is to gener-
ate a predicted probability or prediction strength
q ∈ [0, 1]. Typically, we use some form of a prob-
abilistic model to accomplish this task, where q
represents the model’s posterior probability3 of the
instance having a positive label (y = 1).

Let S = {(q1, y1), (q2, y2), · · · (qN , yN )} be
the set of prediction-label pairs produced by the
model. Many metrics assess the overall quality
of how well the predicted probabilities match the
data, such as the familiar cross entropy (negative
average log-likelihood),

L`(~y, ~q) =
1
N

∑
i

yi log
1
qi

+ (1− yi) log
1

1− qi
or mean squared error, also known as the Brier
score when y is binary (Brier, 1950),

L2(~y, ~q) =
1
N

∑
i

(yi − qi)2

2We use the terms confidence interval and credible inter-
val interchangeably in this work; the latter term is debatably
more correct, though less widely familiar.

3Whether q comes from a Bayesian posterior or not is ir-
relevant to the analysis in this section. All that matters is that
predictions are numbers q ∈ [0, 1].

Both tend to attain better (lower) values when q is
near 1 when y = 1, and near 0 when y = 0; and
they achieve a perfect value of 0 when all qi = yi.4

Let P(y, q) be the joint empirical distribution
over labels and predictions. Under this notation,
L2 = Eq,y[y − q]2. Consider the factorization

P(y, q) = P(y | q) P(q)

where P(y | q) denotes the label empirical fre-
quency, conditional on a prediction strength (Mur-
phy and Winkler, 1987).5 Applying this factor-
ization to the Brier score leads to the calibration-
refinement decomposition (DeGroot and Fienberg,
1983), in terms of expectations with respect to the
prediction strength distribution P(q):

L2 = Eq[q − pq]2︸ ︷︷ ︸
Calibration MSE

+ Eq[pq(1− pq)]︸ ︷︷ ︸
Refinement

(1)

where we denote pq ≡ P(y = 1 | q) for brevity.
Here, calibration measures to what extent a

model’s probabilistic predictions match their cor-
responding empirical frequencies. Perfect calibra-
tion is achieved when P(y = 1 | q) = q for all
q; intuitively, if you aggregate all instances where
a model predicted q, they should have y = 1 at q
percent of the time. We define the magnitude of
miscalibration using root mean squared error:
Definition 1 (RMS calibration error).

CalibErr =
√

Eq[q − P(y = 1 | q)]2

The second term of Eq 1 refers to refinement,
which reflects to what extent the model is able
to separate different labels (in terms of the con-
ditional Gini entropy pq(1 − pq)). If the predic-
tion strengths tend to cluster around 0 or 1, the re-
finement score tends to be lower. The calibration-
refinement breakdown offers a useful perspective
on the accuracy of a model posterior. This paper
focuses on calibration.

There are several other ways to break down
squared error, log-likelihood, and other probabilis-
tic scoring rules.6 We use the Brier-based calibra-
tion error in this work, since unlike cross-entropy

4These two loss functions are instances of proper scoring
rules (Gneiting and Raftery, 2007; Bröcker, 2009).

5 We alternatively refer to this as label frequency or empir-
ical frequency. The P probabilities can be thought of as fre-
quencies from the hypothetical population the data and pre-
dictions are drawn from. P probabilities are, definitionally
speaking, completely separate from a probabilistic model that
might be used to generate q predictions.

6They all include a notion of calibration corresponding to
a Bregman divergence (Bröcker, 2009); for example, cross-
entropy can be broken down such that KL divergence is the
measure of miscalibration.
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Algorithm 1 Estimate calibration error using
adaptive binning.
Input: A set of N prediction-label pairs
{(q1, y1), (q2, y2), · · · , (qN , yN )}.
Output: Calibration error.
Parameter: Target bin size β.
Step 1: Sort pairs by prediction values qk in ascending order.

Step 2: For each, assign bin label bk =
⌊
k−1
β

⌋
+ 1.

Step 3: Define each bin Bi as the set of indices of pairs that
have the same bin label. If the last bin has size less than
β, merge it with the second-to-last bin (if one exists). Let
{B1, B2, · · · , BT } be the set of bins.
Step 4: Calculate empirical and predicted probabilities per
bin:

p̂i =
1

|Bi|
∑
k∈Bi

yk and q̂i =
1

|Bi|
∑
k∈Bi

qk

Step 5: Calculate the calibration error as the root mean
squared error per bin, weighted by bin size in case they are
not uniformly sized:

CalibErr =

√√√√ 1

N

T∑
i=1

|Bi|(q̂i − p̂i)2

it does not tend toward infinity when near prob-
ability 0; we hypothesize this could be an issue
since both p and q are subject to estimation error.

3 Empirical calibration analysis

From a test set of labeled data, we can analyze
model calibration both in terms of the calibration
error, as well as visualizing the calibration curve
of label frequency versus predicted strength. How-
ever, computing the label frequencies P(y = 1|q)
requires an infinite amount of data. Thus approx-
imation methods are required to perform calibra-
tion analysis.

3.1 Adaptive binning procedure

Previous studies that assess calibration in super-
vised machine learning models (Niculescu-Mizil
and Caruana, 2005; Bennett, 2000) calculate la-
bel frequencies by dividing the prediction space
into deciles or other evenly spaced bins—e.g. q ∈
[0, 0.1), q ∈ [0.1, 0.2), etc.—and then calculat-
ing the empirical label frequency in each bin. This
procedure may be thought of as using a form of
nonparametric regression (specifically, a regres-
sogram; Tukey 1961) to estimate the function
f(q) = P(y = 1 | q) from observed data points.
But models in natural language processing give
very skewed distributions of confidence scores q
(many are near 0 or 1), so this procedure performs
poorly, having much more variable estimates near

Algorithm 2 Estimate calibration error’s confi-
dence interval by sampling.
Input: A set of N prediction-label pairs
{(q1, y1), (q2, y2), · · · , (qN , yN )}.
Output: Calibration error with a 95% confidence interval.
Parameter: Number of samples, S.

Step 1: Calculate {p̂1, p̂2, · · · , p̂T } from step 4 of Algo-
rithm 1.
Step 2: Draw S samples. For each s = 1..S,

• For each bin i = 1..T , draw p̂
(s)
i ∼ N

(
p̂i, σ̂

2
i

)
, where

σ̂2
i = p̂i(1 − p̂i)/|Bi|. If necessary clip to [0, 1]:
p̂
(s)
i := min(1,max(0, p̂

(s)
i ))

• Calculate the sample’s CalibErr from using the pairs
(q̂i, p̂

(s)
i ) as per Step 5 of Algorithm 1.

Step 3: Calculate the 95% confidence interval for the calibra-
tion error as:

CalibErravg ± 1.96 ŝerror

where CalibErravg and ŝerror are the mean and the stan-
dard deviation, respectively, of the CalibErrs calculated
from the samples.

the middle of the q distribution (Figure 1).
We propose adaptive binning as an alterna-

tive. Instead of dividing the interval [0, 1] into
fixed-width bins, adaptive binning defines the bins
such that there are an equal number of points
in each, after which the same averaging proce-
dure is used. This method naturally gives wider
bins to area with fewer data points (areas that re-
quire more smoothing), and ensures that these ar-
eas have roughly similar standard errors as those
near the boundaries, since for a bin with β num-
ber of points and empirical frequency p, the stan-
dard error is estimated by

√
p(1− p)/β, which is

bounded above by 0.5/
√
β. Algorithm 1 describes

the procedure for estimating calibration error us-
ing adaptive binning, which can be applied to any
probabilistic model that predicts posterior proba-
bilities.

3.2 Confidence interval estimation
Especially when the test set is small, estimating
calibration error may be subject to error, due to
uncertainty in the label frequency estimates. Since
how to estimate confidence bands for nonparamet-
ric regression is an unsolved problem (Wasserman,
2006), we resort to a simple method based on the
binning. We construct a binomial normal approx-
imation for the label frequency estimate in each
bin, and simulate from it; every simulation across
all bins is used to construct a calibration error;
these simulated calibration errors are collected to
construct a normal approximation for the calibra-
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Figure 1: (a) A skewed distribution of predictions on whether a word has the NN tag (§4.2.2). Calibration curves produced
by equally-spaced binning with bin width equal to 0.02 (b) and 0.1 (c) can have wide confidence intervals. Adaptive binning
(with 1000 points in each bin) (d) gives small confidence intervals and also captures the prediction distribution. The confidence
intervals are estimated as described in §3.1.

tion error estimate. Since we use bin sizes of at
least β ≥ 200 in our experiments, the central limit
theorem justifies these approximations. We report
all calibration errors along with their 95% confi-
dence intervals calculated by Algorithm 2.7

3.3 Visualizing calibration
In order to better understand a model’s
calibration properties, we plot the pairs
(p̂1, q̂1), (p̂2, q̂2), · · · , (p̂T , q̂T ) obtained from
the adaptive binning procedure to visualize the
calibration curve of the model—this visualization
is known as a calibration or reliability plot. It
provides finer grained insight into the calibra-
tion behavior in different prediction ranges. A
perfectly calibrated curve would coincide with
the y = x diagonal line. When the curve lies
above the diagonal, the model is underconfident
(q < pq); and when it is below the diagonal, the
model is overconfident (q > pq).

An advantage of plotting a curve estimated from
fixed-size bins, instead of fixed-width bins, is that
the distribution of the points hints at the refinement
aspect of the model’s performance. If the points’
positions tend to cluster in the bottom-left and top-
right corners, that implies the model is making
more refined predictions.

4 Calibration for classification and
tagging models

Using the method described in §3, we assess the
quality of posterior predictions of several classi-
fication and tagging models. In all of our exper-

7A major unsolved issue is how to fairly select the bin
size. If it is too large, the curve is oversmoothed and calibra-
tion looks better than it should be; if it is too small, calibra-
tion looks worse than it should be. Bandwidth selection and
cross-validation techniques may better address this problem
in future work. In the meantime, visualizations of calibration
curves help inform the reader of the resolution of a particular
analysis—if the bins are far apart, the data is sparse, and the
specific details of the curve are not known in those regions.

iments, we set the target bin size in Algorithm 1
to be 5,000 and the number of samples in Algo-
rithm 2 to be 10,000.

4.1 Naive Bayes and logistic regression
4.1.1 Introduction
Previous work on Naive Bayes has found its prob-
abilities to have calibration issues, in part due
to its incorrect conditional independence assump-
tions (Niculescu-Mizil and Caruana, 2005; Ben-
nett, 2000; Domingos and Pazzani, 1997). Since
logistic regression has the same log-linear repre-
sentational capacity (Ng and Jordan, 2002) but
does not suffer from the independence assump-
tions, we select it for comparison, hypothesizing
it may have better calibration.

We analyze a binary classification task of Twit-
ter sentiment analysis from emoticons. We col-
lect a dataset consisting of tweets identified by the
Twitter API as English, collected from 2014 to
2015, with the “emoticon trick” (Read, 2005; Lin
and Kolcz, 2012) to label tweets that contain at
least one occurrence of the smiley emoticon “:)”
as “happy” (y = 1) and others as y = 0. The
smiley emoticons are deleted in positive examples.
We sampled three sets of tweets (subsampled from
the Decahose/Gardenhose stream of public tweets)
with Jan-Apr 2014 for training, May-Dec 2014 for
development, and Jan-Apr 2015 for testing. Each
set contains 105 tweets, split between an equal
number of positive and negative instances. We
use binary features based on unigrams extracted
from the twokenize.py8 tokenization. We use the
scikit-learn (Pedregosa et al., 2011) implementa-
tions of Bernoulli Naive Bayes and L2-regularized
logistic regression. The models’ hyperparameters
(Naive Bayes’ smoothing paramter and logistic re-
gression’s regularization strength) are chosen to

8https://github.com/myleott/
ark-twokenize-py
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Figure 2: Calibration curve of (a) Naive Bayes and (b) lo-
gistic regression on predicting whether a tweet is a “happy”
tweet.

maximize the F-1 score on the development set.

4.1.2 Results
Naive Bayes attains a slightly higher F-1 score
(NB 73.8% vs. LR 72.9%), but logistic regression
has much lower calibration error: less than half
as much RMSE (NB 0.105 vs. LR 0.041; Figure
2). Both models have a tendency to be undercon-
fident in the lower prediction range and overconfi-
dent in the higher range, but the tendency is more
pronounced for Naive Bayes.

4.2 Hidden Markov models and conditional
random fields

4.2.1 Introduction
Hidden Markov models (HMM) and linear chain
conditional random fields (CRF) are another com-
monly used pair of analogous generative and dis-
criminative models. They both define a posterior
over tag sequences P (y|x), which we apply to
part-of-speech tagging.

We can analyze these models in the binary cal-
ibration framework (§2-3) by looking at marginal
distribution of binary-valued outcomes of parts of
the predicted structures. Specifically, we examine
calibration of predicted probabilities of individual
tokens’ tags (§4.2.2), and of pairs of consecutive
tags (§4.2.3). These quantities are calculated with
the forward-backward algorithm.

To prepare a POS tagging dataset, we ex-
tract Wall Street Journal articles from the En-
glish CoNLL-2011 coreference shared task dataset
from Ontonotes (Pradhan et al., 2011), using the
CoNLL-2011 splits for training, development and
testing. This results in 11,772 sentences for train-
ing, 1,632 for development, and 1,382 for testing,
over a set of 47 possible tags.

We train an HMM with Dirichlet MAP us-
ing one pseudocount for every transition and
word emission. For the CRF, we use the L2-
regularized L-BFGS algorithm implemented in
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Figure 3: Calibration curves of (a) HMM, and (b) CRF, on
predictions over all POS tags.

CRFsuite (Okazaki, 2007). We compare an HMM
to a CRF that only uses basic transition (tag-tag)
and emission (tag-word) features, so that it does
not have an advantage due to more features. In
order to compare models with similar task perfor-
mance, we train the CRF with only 3000 sentences
from the training set, which yields the same accu-
racy as the HMM (about 88.7% on the test set).
In each case, the model’s hyperparameters (the
CRF’s L2 regularizer, the HMM’s pseudocount)
are selected by maximizing accuracy on the devel-
opment set.

4.2.2 Predicting single-word tags

In this experiment, we measure miscalibration of
the two models on predicting tags of single words.
First, for each tag type, we produce a set of 33,306
prediction-label pairs (for every token); we then
concatenate them across the tags for calibration
analysis. Figure 3 shows that the two models
exhibit distinct calibration patterns. The HMM
tends to be very underconfident whereas the CRF
is overconfident, and the CRF has a lower (better)
overall calibration error.

We also examine the calibration errors of the
individual POS tags (Figure 4(a)). We find that
CRF is significantly better calibrated than HMM
in most but not all categories (39 out of 47). For
example, they are about equally calibrated on pre-
dicting the NN tag. The calibration gap between
the two models also differs among the tags.

4.2.3 Predicting two-consecutive-word tags

There is no reason to restrict ourselves to model
predictions of single words; these models define
marginal distributions over larger textual units.
Next we examine the calibration of posterior pre-
dictions of tag pairs on two consecutive words in
the test set. The same analysis may be impor-
tant for, say, phrase extraction or other chunk-
ing/parsing tasks.
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Figure 4: Calibration errors of HMM and CRF on predict-
ing (a) single-word tags and (b) two-consecutive-word tags.
Lower errors are better. The last two columns in each graph
are the average calibration errors over the most common la-
bels.

We report results for the top 5 and 100 most fre-
quent tag pairs (Figure 4(b)). We observe a simi-
lar pattern as seen from the experiment on single
tags: the CRF is generally better calibrated than
the HMM, but the HMM does achieve better cali-
bration errors in 29 out of 100 categories.

These tagging experiments illustrate that, de-
pending on the application, different models can
exhibit different levels of calibration.

5 Coreference resolution

We examine a third model, a probabilistic model
for within-document noun phrase coreference,
which has an efficient sampling-based inference
procedure. In this section we introduce it and ana-
lyze its calibration, in preparation for the next sec-
tion where we use it for exploratory data analysis.

5.1 Antecedent selection model

We use the Berkeley coreference resolution sys-
tem (Durrett and Klein, 2013), which was origi-
nally presented as a CRF; we give it an equivalent
a series of independent logistic regressions (see
appendix for details). The primary component of
this model is a locally-normalized log-linear dis-
tribution over clusterings of noun phrases, each
cluster denoting an entity. The model takes a fixed
input of N mentions (noun phrases), indexed by i
in their positional order in the document. It posits
that every mention i has a latent antecedent selec-
tion decision, ai ∈ {1, . . . , i− 1, NEW}, denoting

which previous mention it attaches to, or NEW if it
is starting a new entity that has not yet been seen
at a previous position in the text. Such a mention-
mention attachment indicates coreference, while
the final entity clustering includes more links im-
plied through transitivity. The model’s generative
process is:

Definition 2 (Antencedent coreference model and
sampling algorithm).

• For i = 1..N , sample
ai ∼ 1

Zi
exp(wTf(i, ai, x))

• Calculate the entity clusters as e := CC(a),
the connected components of the antecedent
graph having edges (i, ai) for i where ai 6=
NEW.

Here x denotes all information in the document
that is conditioned on for log-linear features f .
e = {e1, ...eM} denotes the entity clusters, where
each element is a set of mentions. There areM en-
tity clusters corresponding to the number of con-
nected components in a. The model defines a joint
distribution over antecedent decisions P (a|x) =∏
i P (ai|x); it also defines a joint distribution over

entity clusterings P (e|x), where the probability of
an e is the sum of the probabilities of all a vectors
that could give rise to it. In a manner similar to
a distance-dependent Chinese restaurant process
(Blei and Frazier, 2011), it is non-parametric in the
sense that the number of clusters M is not fixed in
advance.

5.2 Sampling-based inference
For both calibration analysis and exploratory ap-
plications, we need to analyze the posterior distri-
bution over entity clusterings. This distribution is
a complex mathematical object; an attractive ap-
proach to analyze it is to draw samples from this
distribution, then analyze the samples.

This antecedent-based model admits a very
straightforward procedure to draw independent e
samples, by stepping through Def. 2: indepen-
dently sample each ai then calculate the connected
components of the resulting antecedent graph.
By construction, this procedure samples from the
joint distribution of e (even though we never com-
pute the probability of any single clustering e).

Unlike approximate sampling approaches, such
as Markov chain Monte Carlo methods used in
other coreference work to sample e (Haghighi and
Klein, 2007), here there are no questions about
burn-in or autocorrelation (Kass et al., 1998).
Every sample is independent and very fast to
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Figure 5: Coreference calibration curve for predicting
whether two mentions belong to the same entity cluster.

compute—only slightly slower than calculating
the MAP assignment (due to the exp and normal-
ization for each ai). We implement this algorithm
by modifying the publicly available implementa-
tion from Durrett and Klein.9

5.3 Calibration analysis
We consider the following inference query: for a
randomly chosen pair of mentions, are they coref-
erent? Even if the model’s accuracy is compara-
tively low, it may be the case that it is correctly
calibrated—if it thinks there should be great vari-
ability in entity clusterings, it may be uncertain
whether a pair of mentions should belong together.

Let `ij be 1 if the mentions i and j are predicted
to be coreferent, and 0 otherwise. Annotated data
defines a gold-standard `

(g)
ij value for every pair

i, j. Any probability distribution over e defines a
marginal Bernoulli distribution for every proposi-
tion `ij , marginalizing out e:

P (`ij = 1 | x) =
∑
e

1{(i, j) ∈ e}P (e | x) (2)

where (i, j) ∈ e is true iff there is an entity in e
that contains both i and j.

In a traditional coreference evaluation of the
best-prediction entity clustering, the model as-
signs 1 or 0 to every `ij and the pairwise precision
and recall can be computed by comparing them to
the corresponding `(g)ij . Here, we instead compare
the qij ≡ P (`ij = 1 | x, e) prediction strengths
against `(g)ij empirical frequencies to assess pair-
wise calibration, with the same binary calibration
analysis tools developed in §3 by aggregating pairs
with similar qij values. Each qij is computed by
averaging over 1,000 samples, simply taking the
fraction of samples where the pair (i, j) is coref-
erent.

9Berkeley Coreference Resolution System, version
1.1: http://nlp.cs.berkeley.edu/projects/
coref.shtml

We perform this analysis on the develop-
ment section of the English CoNLL-2011 data
(404 documents). Using the sampling inference
method discussed in §5.2, we compute 4.3 mil-
lions prediction-label pairs and measure their cali-
bration error. Our result shows that the model pro-
duces very well-calibrated predictions with less
than 1% CalibErr (Figure 5), though slightly
overconfident on middle to high-valued predic-
tions. The calibration error indicates that it is the
most calibrated model we examine within this pa-
per. This result suggests we might be able to trust
its level of uncertainty.

6 Uncertainty in Entity-based
Exploratory Analysis

6.1 Entity-syntactic event aggregation
We demonstrate one important use of calibration
analysis: to ensure the usefulness of propagating
uncertainty from coreference resolution into a sys-
tem for exploring unannotated text. Accuracy can-
not be calculated since there are no labels; but
if the system is calibrated, we postulate that un-
certainty information can help users understand
the underlying reliability of aggregated extractions
and isolate predictions that are more likely to con-
tain errors.

We illustrate with an event analysis application
to count the number of “country attack events”:
for a particular country of the world, how many
news articles describe an entity affiliated with that
country as the agent of an attack, and how does
this number change over time? This is a simpli-
fied version of a problem where such systems have
been built and used for political science analysis
(Schrodt et al., 1994; Schrodt, 2012; Leetaru and
Schrodt, 2013; Boschee et al., 2013; O’Connor
et al., 2013). A coreference component can im-
prove extraction coverage in cases such as “Rus-
sian troops were sighted . . . and they attacked . . . ”

We use the coreference system examined in §5
for this analysis. To propagate coreference un-
certainty, we re-run event extraction on multiple
coreference samples generated from the algorithm
described in §5.2, inducing a posterior distribution
over the event counts. To isolate the effects of
coreference, we use a very simple syntactic depen-
dency system to identify affiliations and events.
Assume the availability of dependency parses for
a document d, a coreference resolution e, and a
lexicon of country names, which contains a small
set of words w(c) for each country c; for example,
w(FRA) = {france, french}. The binary function
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f(c, e;xd) assesses whether an entity e is affiliated
with country c and is described as the agent of an
attack, based on document text and parses xd; f
returns true iff both:10

• There exists a mention i ∈ e described
as country c: either its head word is in
w(c) (e.g. “Americans”), or its head word
has an nmod or amod modifier in w(c)
(e.g. “American forces”, “president of the
U.S.”); and there is only one unique country
c among the mentions in the entity.

• There exists a mention j ∈ e which is the
nsubj or agent argument to the verb “attack”
(e.g. “they attacked”, “the forces attacked”,
“attacked by them”).

For a given c, we first calculate a binary variable
for whether there is at least one entity fulfilling f
in a particular document,

a(d, c, ed) =
∨
e∈ed

f(c, e;xd) (3)

and second, the number of such documents in d(t),
the set of New York Times articles published in a
given time period t,

n(t, c, ed(t)) =
∑
d∈d(t)

a(d, c, ed) (4)

These quantities are both random variables, since
they depend on e; thus we are interested in the
posterior distribution of n, marginalizing out e,

P (n(t, c, ed(t)) | xd(t)) (5)

If our coreference model was highly certain (only
one structure, or a small number of similar struc-
tures, had most of the probability mass in the space
of all possible structures), each document would
have an a posterior near either 0 or 1, and their
sum in Eq. 5 would have a narrow distribution. But
if the model is uncertain, the distribution will be
wider. Because of the transitive closure, the prob-
ability of a is potentially more complex than the
single antecedent linking probability between two
mentions—the affiliation and attack information
can propagate through a long coreference chain.

6.2 Results
We tag and parse a 193,403 article subset of the
Annotated New York Times LDC corpus (Sand-
haus, 2008), which includes articles about world

10Syntactic relations are Universal Dependencies
(de Marneffe et al., 2014); more details for the extrac-
tion rules are in the appendix.

news from the years 1987 to 2007 (details in ap-
pendix). For each article, we run the coreference
system to predict 100 samples, and evaluate f on
every entity in every sample.11 The quantity of
interest is the number of articles mentioning at-
tacks in a 3-month period (quarter), for a given
country. Figure 6 illustrates the mean and 95%
posterior credible intervals for each quarter. The
posterior mean m is calculated as the mean of the
samples, and the interval is the normal approxima-
tion m± 1.96 s, where s is the standard deviation
among samples for that country and time period.

Uncertainty information helps us understand
whether a difference between data points is real.
In the plots of Figure 6, if we had used a 1-best
coreference resolution, only a single line would be
shown, with no assessment of uncertainty. This
is problematic in cases when the model genuinely
does not know the correct answer. For example,
the 1993-1996 period of the USA plot (Figure 6,
top) shows the posterior mean fluctuating from 1
to 5 documents; but when credible intervals are
taken into consideration, we see that model does
not know whether the differences are real, or were
caused by coreference noise.

A similar case is highlighted at the bottom plot
of Figure 6. Here we compare the event counts
for Yugoslavia and NATO, which were engaged in
a conflict in 1999. Did the New York Times de-
vote more attention to the attacks by one particu-
lar side? To a 1-best system, the answer would be
yes. But the posterior intervals for the two coun-
tries’ event counts in mid-1999 heavily overlap,
indicating that the coreference system introduces
too much uncertainty to obtain a conclusive an-
swer for this question. Note that calibration of the
coreference model is important for the credible in-
tervals to be useful; for example, if the model was
badly calibrated by being overconfident (too much
probability over a small set of similar structures),
these intervals would be too narrow, leading to in-
correct interpretations of the event dynamics.

Visualizing this uncertainty gives richer infor-
mation for a potential user of an NLP-based sys-
tem, compared to simply drawing a line based on
a single 1-best prediction. It preserves the gen-
uine uncertainty due to ambiguities the system was
unable to resolve. This highlights an alternative
use of Finkel et al. (2006)’s approach of sampling
multiple NLP pipeline components, which in that
work was used to perform joint inference. Instead

11We obtained similar results using only 10 samples. We
also obtained similar results with a different query function,
the total number of entities, across documents, that fulfill f .
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of focusing on improving an NLP pipeline, we can
pass uncertainty on to exploratory purposes, and
try to highlight to a user where the NLP system
may be wrong, or where it can only imprecisely
specify a quantity of interest.

Finally, calibration can help error analysis. For
a calibrated model, the more uncertain a predic-
tion is, the more likely it is to be erroneous. While
coreference errors comprise only one part of event
extraction errors (alongside issues in parse qual-
ity, factivity, semantic roles, etc.), we can look at
highly uncertain event predictions to understand
the nature of coreference errors relative to our
task. We manually analyzed documents with a
50% probability to contain an “attack”ing country-
affiliated entity, and found difficult coreference
cases.

In one article from late 1990, an “attack” event
for IRQ is extracted from the sentence “But some
political leaders said that they feared that Mr. Hus-
sein might attack Saudi Arabia”. The mention
“Mr. Hussein” is classified as IRQ only when it
is coreferent with a previous mention “President
Saddam Hussein of Iraq”; this occurs only 50%
of the time, since in some posterior samples the
coreference system split apart these two “Hussein”
mentions. This particular document is addition-
ally difficult, since it includes the names of more
than 10 countries (e.g. United States, Saudi Ara-
bia, Egypt), and some of the Hussein mentions are
even clustered with presidents of other countries
(such as “President Bush”), presumably because
they share the “president” title. These types of er-
rors are a major issue for a political analysis task;
further analysis could assess their prevalence and
how to address them in future work.

7 Conclusion

In this work, we argue that the calibration of pos-
terior predictions is a desirable property of prob-
abilistic NLP models, and that it can be directly
evaluated. We also demonstrate a use case of
having calibrated uncertainty: its propagation into
downstream exploratory analysis.

Our posterior simulation approach for ex-
ploratory and error analysis relates to posterior
predictive checking (Gelman et al., 2013), which
analyzes a posterior to test model assumptions;
Mimno and Blei (2011) apply it to a topic model.

One avenue of future work is to investigate
more effective nonparametric regression methods
to better estimate and visualize calibration error,
such as Gaussian processes or bootstrapped kernel
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Figure 6: Number of documents with an “attack”ing country
per 3-month period, and coreference posterior uncertainty for
that quantity. The dark line is the posterior mean, and the
shaded region is the 95% posterior credible interval. More
examples in appendix.

density estimation.
Another important question is: what types of in-

ferences are facilitated by correct calibration? In-
tuitively, we think that overconfidence will lead
to overly narrow confidence intervals; but in what
sense are confidence intervals “good” when cal-
ibration is perfect? Also, does calibration help
joint inference in NLP pipelines? It may also assist
calculations that rely on expectations, such as in-
ference methods like minimum Bayes risk decod-
ing, or learning methods like EM, since calibrated
predictions imply that calculated expectations are
statistically unbiased (though the implications of
this fact may be subtle). Finally, it may be in-
teresting to pursue recalibration methods, which
readjust a non-calibrated model’s predictions to
be calibrated; recalibration methods have been de-
veloped for binary (Platt, 1999; Niculescu-Mizil
and Caruana, 2005) and multiclass (Zadrozny and
Elkan, 2002) classification settings, but we are
unaware of methods appropriate for the highly
structured outputs typical in linguistic analysis.
Another approach might be to directly constrain
CalibErr = 0 during training, or try to reduce it
as a training-time risk minimization or cost objec-
tive (Smith and Eisner, 2006; Gimpel and Smith,
2010; Stoyanov et al., 2011; Brümmer and Dod-
dington, 2013).

Calibration is an interesting and important prop-
erty of NLP models. Further work is necessary to
address these and many other questions.
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Abstract

Most existing word embedding methods
can be categorized into Neural Embedding
Models and Matrix Factorization (MF)-
based methods. However some mod-
els are opaque to probabilistic interpre-
tation, and MF-based methods, typically
solved using Singular Value Decomposi-
tion (SVD), may incur loss of corpus in-
formation. In addition, it is desirable to
incorporate global latent factors, such as
topics, sentiments or writing styles, into
the word embedding model. Since gen-
erative models provide a principled way
to incorporate latent factors, we propose a
generative word embedding model, which
is easy to interpret, and can serve as a
basis of more sophisticated latent factor
models. The model inference reduces to
a low rank weighted positive semidefinite
approximation problem. Its optimization
is approached by eigendecomposition on a
submatrix, followed by online blockwise
regression, which is scalable and avoids
the information loss in SVD. In experi-
ments on 7 common benchmark datasets,
our vectors are competitive to word2vec,
and better than other MF-based methods.

1 Introduction

The task of word embedding is to model the distri-
bution of a word and its context words using their
corresponding vectors in a Euclidean space. Then
by doing regression on the relevant statistics de-
rived from a corpus, a set of vectors are recovered
which best fit these statistics. These vectors, com-
monly referred to as the embeddings, capture se-
mantic/syntactic regularities between the words.

The core of a word embedding method is the
link function that connects the input — the embed-
dings, with the output — certain corpus statistics.

Based on the link function, the objective function
is developed. The reasonableness of the link func-
tion impacts the quality of the obtained embed-
dings, and different link functions are amenable
to different optimization algorithms, with different
scalability. Based on the forms of the link func-
tion and the optimization techniques, most meth-
ods can be divided into two classes: the traditional
neural embedding models, and more recent low
rank matrix factorization methods.

The neural embedding models use the softmax
link function to model the conditional distribution
of a word given its context (or vice versa) as a
function of the embeddings. The normalizer in the
softmax function brings intricacy to the optimiza-
tion, which is usually tackled by gradient-based
methods. The pioneering work was (Bengio et
al., 2003). Later Mnih and Hinton (2007) propose
three different link functions. However there are
interaction matrices between the embeddings in all
these models, which complicate and slow down
the training, hindering them from being trained
on huge corpora. Mikolov et al. (2013a) and
Mikolov et al. (2013b) greatly simplify the condi-
tional distribution, where the two embeddings in-
teract directly. They implemented the well-known
“word2vec”, which can be trained efficiently on
huge corpora. The obtained embeddings show ex-
cellent performance on various tasks.

Low-Rank Matrix Factorization (MF in short)
methods include various link functions and opti-
mization methods. The link functions are usu-
ally not softmax functions. MF methods aim to
reconstruct certain corpus statistics matrix by the
product of two low rank factor matrices. The ob-
jective is usually to minimize the reconstruction
error, optionally with other constraints. In this
line of research, Levy and Goldberg (2014b) find
that “word2vec” is essentially doing stochastic
weighted factorization of the word-context point-
wise mutual information (PMI) matrix. They then
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factorize this matrix directly as a new method.
Pennington et al. (2014) propose a bilinear regres-
sion function of the conditional distribution, from
which a weighted MF problem on the bigram log-
frequency matrix is formulated. Gradient Descent
is used to find the embeddings. Recently, based
on the intuition that words can be organized in se-
mantic hierarchies, Yogatama et al. (2015) add hi-
erarchical sparse regularizers to the matrix recon-
struction error. With similar techniques, Faruqui
et al. (2015) reconstruct a set of pretrained embed-
dings using sparse vectors of greater dimensional-
ity. Dhillon et al. (2015) apply Canonical Corre-
lation Analysis (CCA) to the word matrix and the
context matrix, and use the canonical correlation
vectors between the two matrices as word embed-
dings. Stratos et al. (2014) and Stratos et al. (2015)
assume a Brown language model, and prove that
doing CCA on the bigram occurrences is equiva-
lent to finding a transformed solution of the lan-
guage model. Arora et al. (2015) assume there is a
hidden discourse vector on a random walk, which
determines the distribution of the current word.
The slowly evolving discourse vector puts a con-
straint on the embeddings in a small text window.
The maximum likelihood estimate of the embed-
dings within this text window approximately re-
duces to a squared norm objective.

There are two limitations in current word em-
bedding methods. The first limitation is, all MF-
based methods map words and their context words
to two different sets of embeddings, and then em-
ploy Singular Value Decomposition (SVD) to ob-
tain a low rank approximation of the word-context
matrix M . As SVD factorizes M>M , some in-
formation in M is lost, and the learned embed-
dings may not capture the most significant regu-
larities inM . Appendix A gives a toy example on
which SVD does not work properly.

The second limitation is, a generative model for
documents parametered by embeddings is absent
in recent development. Although (Stratos et al.,
2014; Stratos et al., 2015; Arora et al., 2015) are
based on generative processes, the generative pro-
cesses are only for deriving the local relationship
between embeddings within a small text window,
leaving the likelihood of a document undefined.
In addition, the learning objectives of some mod-
els, e.g. (Mikolov et al., 2013b, Eq.1), even have
no clear probabilistic interpretation. A genera-
tive word embedding model for documents is not

only easier to interpret and analyze, but more im-
portantly, provides a basis upon which document-
level global latent factors, such as document topics
(Wallach, 2006), sentiments (Lin and He, 2009),
writing styles (Zhao et al., 2011b), can be incor-
porated in a principled manner, to better model the
text distribution and extract relevant information.

Based on the above considerations, we pro-
pose to unify the embeddings of words and con-
text words. Our link function factorizes into three
parts: the interaction of two embeddings capturing
linear correlations of two words, a residual captur-
ing nonlinear or noisy correlations, and the uni-
gram priors. To reduce overfitting, we put Gaus-
sian priors on embeddings and residuals, and ap-
ply Jelinek-Mercer Smoothing to bigrams. Fur-
thermore, to model the probability of a sequence
of words, we assume that the contributions of
more than one context word approximately add up.
Thereby a generative model of documents is con-
structed, parameterized by embeddings and resid-
uals. The learning objective is to maximize the
corpus likelihood, which reduces to a weighted
low-rank positive semidefinite (PSD) approxima-
tion problem of the PMI matrix. A Block Co-
ordinate Descent algorithm is adopted to find an
approximate solution. This algorithm is based
on Eigendecomposition, which avoids information
loss in SVD, but brings challenges to scalability.
We then exploit the sparsity of the weight matrix
and implement an efficient online blockwise re-
gression algorithm. On seven benchmark datasets
covering similarity and analogy tasks, our method
achieves competitive and stable performance.

The source code of this method is provided at
https://github.com/askerlee/topicvec.

2 Notations and Definitions

Throughout the paper, we always use a uppercase
bold letter asS,V to denote a matrix or set, a low-
ercase bold letter as vwi to denote a vector, a nor-
mal uppercase letter as N,W to denote a scalar
constant, and a normal lowercase letter as si, wi to
denote a scalar variable.

Suppose a vocabulary S = {s1, · · · , sW} con-
sists of all the words, where W is the vocab-
ulary size. We further suppose s1, · · · , sW are
sorted in decending order of the frequency, i.e.
s1 is most frequent, and sW is least frequent.
A document di is a sequence of words di =
(wi1, · · · , wiLi), wij ∈ S. A corpus is a collec-
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Name Description
S Vocabulary {s1, · · · , sW}
V Embedding matrix (vs1 , · · · ,vsW )

D Corpus {d1, · · · , dM}
vsi Embedding of word si

asisj Bigram residual for si, sj

P̃ (si,sj) Empirical probability of si, sj in the corpus

u Unigram probability vector (P (s1),· · ·, P (sW ))

A Residual matrix (asisj )

B Conditional probability matrix
(
P (sj |si)

)
G PMI matrix

(
PMI(si, sj)

)
H Bigram empirical probability matrix

(
P̃ (si, sj)

)
Table 1: Notation Table

tion of M documents D = {d1, · · · , dM}. In the
vocabulary, each word si is mapped to a vector vsi

in N -dimensional Euclidean space.
In a document, a sequence of words is referred

to as a text window, denoted by wi, · · · , wi+l, or
wi:wi+l in shorthand. A text window of chosen
size c before a word wi defines the context of wi
as wi−c, · · · , wi−1. Here wi is referred to as the
focus word. Each context word wi−j and the focus
word wi comprise a bigram wi−j , wi.

The Pointwise Mutual Information between two
words si, sj is defined as

PMI(si, sj) = log
P (si, sj)
P (si)P (sj)

.

3 Link Function of Text

In this section, we formulate the probability of a
sequence of words as a function of their embed-
dings. We start from the link function of bigrams,
which is the building blocks of a long sequence.
Then this link function is extended to a text win-
dow with c context words, as a first-order approx-
imation of the actual probability.

3.1 Link Function of Bigrams
We generalize the link function of “word2vec” and
“GloVe” to the following:

P (si, sj) = exp
{
v>sj
vsi + asisj

}
P (si)P (sj) (1)

The rationale for (1) originates from the idea of
the Product of Experts in (Hinton, 2002). Sup-
pose different types of semantic/syntactic regu-
larities between si and sj are encoded in differ-
ent dimensions of vsi ,vsj . As exp{v>sj

vsi} =∏
l exp{vsi,l · vsj ,l}, this means the effects of dif-

ferent regularities on the probability are combined

by multiplying together. If si and sj are indepen-
dent, their joint probability should be P (si)P (sj).
In the presence of correlations, the actual joint
probability P (si, sj) would be a scaling of it. The
scale factor reflects how much si and sj are pos-
itively or negatively correlated. Within the scale
factor, v>sj

vsi captures linear interactions between
si and sj , the residual asisj captures nonlinear or
noisy interactions. In applications, only v>sj

vsi is
of interest. Hence the bigger magnitude v>sj

vsi is
of relative to asisj , the better.

Note that we do not assume asisj = asjsi .
This provides the flexibility P (si, sj) 6= P (sj , si),
agreeing with the asymmetry of bigrams in natu-
ral languages. At the same time, v>sj

vsi imposes a
symmetric part between P (si, sj) and P (sj , si).

(1) is equivalent to

P (sj |si)=exp
{
v>sj
vsi + asisj + logP (sj)

}
, (2)

log
P (sj |si)
P (sj)

= v>sj
vsi + asisj . (3)

(3) of all bigrams is represented in matrix form:

V >V +A = G, (4)

whereG is the PMI matrix.

3.1.1 Gaussian Priors on Embeddings
When (1) is employed on the regression of empir-
ical bigram probabilities, a practical issue arises:
more and more bigrams have zero frequency as
the constituting words become less frequent. A
zero-frequency bigram does not necessarily imply
negative correlation between the two constituting
words; it could simply result from missing data.
But in this case, even after smoothing, (1) will
force v>sj

vsi + asisj to be a big negative number,
making vsi overly long. The increased magnitude
of embeddings is a sign of overfitting.

To reduce overfitting of embeddings of infre-
quent words, we assign a Spherical Gaussian prior
N (0, 1

2µi
I) to vsi :

P (vsi) ∼ exp{−µi‖vsi‖2},
where the hyperparameter µi increases as the fre-
quency of si decreases.

3.1.2 Gaussian Priors on Residuals
We wish v>sj

vsi in (1) captures as much corre-
lations between si and sj as possible. Thus the
smaller asisj is, the better. In addition, the more
frequent si, sj is in the corpus, the less noise
there is in their empirical distribution, and thus the
residual asisj should be more heavily penalized.
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To this end, we penalize the residual asisj

by f(P̃(si, sj))a2
sisj

, where f(·) is a nonnega-
tive monotonic transformation, referred to as the
weighting function. Let hij denote P̃ (si, sj), then
the total penalty of all residuals are the square of
the weighted Frobenius norm ofA:∑

si,sj∈S
f(hij)a2

sisj
= ‖A‖2f(H). (5)

By referring to “GloVe”, we use the following
weighting function, and find it performs well:

f(hij) =


√
hij

Ccut

√
hij < Ccut, i 6= j

1
√
hij ≥ Ccut, i 6= j

0 i = j

,

where Ccut is chosen to cut the most frequent
0.02% of the bigrams off at 1. When si = sj , two
identical words usually have much smaller proba-
bility to collocate. Hence P̃ (si, si) does not reflect
the true correlation of a word to itself, and should
not put constraints to the embeddings. We elimi-
nate their effects by setting f(hii) to 0.

If the domain of A is the whole space RW×W ,
then this penalty is equivalent to a Gaussian prior
N
(

0, 1
2f(hij)

)
on each asisj . The variances of the

Gaussians are determined by the bigram empirical
probability matrixH .

3.1.3 Jelinek-Mercer Smoothing of Bigrams
As another measure to reduce the impact of miss-
ing data, we apply the commonly used Jelinek-
Mercer Smoothing (Zhai and Lafferty, 2004)
to smooth the empirical conditional probability
P̃ (sj |si) by the unigram probability P̃ (sj) as:

P̃smoothed(sj |si) = (1−κ)P̃ (sj |si)+κP (sj). (6)

Accordingly, the smoothed bigram empirical
joint probability is defined as

P̃ (si, sj) = (1−κ)P̃ (si, sj)+κP (si)P (sj). (7)

In practice, we find κ = 0.02 yields good re-
sults. When κ ≥ 0.04, the obtained embeddings
begin to degrade with κ, indicating that smoothing
distorts the true bigram distributions.

3.2 Link Function of a Text Window
In the previous subsection, a regression link func-
tion of bigram probabilities is established. In
this section, we adopt a first-order approximation
based on Information Theory, and extend the link
function to a longer sequence w0, · · · , wc−1, wc.

Decomposing a distribution conditioned on n
random variables as the conditional distributions

on its subsets roots deeply in Information The-
ory. This is an intricate problem because there
could be both (pointwise) redundant information
and (pointwise) synergistic information among the
conditioning variables (Williams and Beer, 2010).
They are both functions of the PMI. Based on an
analysis of the complementing roles of these two
types of pointwise information, we assume they
are approximately equal and cancel each other
when computing the pointwise interaction infor-
mation. See Appendix B for a detailed discussion.

Following the above assumption, we have
PMI(w2;w0, w1) ≈ PMI(w2;w0)+PMI(w2;w1):

log
P(w0, w1|w2)
P(w0, w1)

≈log
P(w0|w2)
P(w0)

+log
P(w1|w2)
P(w1)

.

Plugging (1) and (3) into the above, we obtain

P (w0, w1, w2)

≈ exp
{ 2∑
i,j=0
i 6=j

(v>wi
vwj + awiwj ) +

2∑
i=0

logP (wi)
}
.

We extend the above assumption to that the
pointwise interaction information is still close to
0 within a longer text window. Accordingly the
above equation extends to a context of size c > 2:

P (w0, · · · , wc)

≈ exp
{ c∑
i,j=0
i 6=j

(v>wi
vwj + awiwj ) +

c∑
i=0

logP (wi)
}
.

From it derives the conditional distribution of
wc, given its context w0, · · · , wc−1:

P (wc | w0 : wc−1)=
P (w0, · · · , wc)
P (w0, · · · , wc−1)

≈P (wc) exp
{
v>wc

c−1∑
i=0

vwi +
c−1∑
i=0

awiwc

}
. (8)

4 Generative Process and Likelihood

We proceed to assume the text is generated from a
Markov chain of order c, i.e., a word only depends
on words within its context of size c. Given the
hyperparameter µ = (µ1, · · ·, µW ), the generative
process of the whole corpus is:

1. For each word si, draw the embedding vsi

from N (0, 1
2µi
I);

2. For each bigram si, sj , draw the residual

asisj from N
(

0, 1
2f(hij)

)
;

3. For each document di, for the j-th word,
draw word wij from S with probability
P (wij | wi,j−c : wi,j−1) defined by (8).
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Figure 1: The Graphical Model of PSDVec

The above generative process for a document d is
presented as a graphical model in Figure 1.

Based on this generative process, the probabil-
ity of a document di can be derived as follows,
given the embeddings and residuals V ,A:

P (di|V ,A)

=
Li∏
j=1

P (wij) exp
{
v>wij

j−1∑
k=j−c

vwik
+

j−1∑
k=j−c

awikwij

}
.

The complete-data likelihood of the corpus is:

p(D,V ,A)

=
W∏
i=1

N (0,
I

2µi
)
W,W∏
i,j=1

N
(

0,
1

2f(hij)

) M∏
i=1

p(di|V,A)

=
1

Z(H,µ)
exp
{
−
W,W∑
i,j=1

f(hi,j)a2
sisj
−

W∑
i=1

µi‖vsi‖2
}

·
M,Li∏
i,j=1

P (wij) exp
{
v>wij

j−1∑
k=j−c

vwik
+

j−1∑
k=j−c

awikwij

}
,

where Z(H,µ) is the normalizing constant.
Taking the logarithm of both sides of

p(D,A,V ) yields

log p(D,V ,A)

=C0 − logZ(H,µ)− ‖A‖2f(H)−
W∑
i=1

µi‖vsi‖2

+
M,Li∑
i,j=1

{
v>wij

j−1∑
k=j−c

vwik
+

j−1∑
k=j−c

awikwij

}
, (9)

where C0 =
∑M,Li

i,j=1 logP (wij) is constant.

5 Learning Algorithm

5.1 Learning Objective
The learning objective is to find the embeddings
V that maximize the corpus log-likelihood (9).

Let xij denote the (smoothed) frequency of bi-
gram si, sj in the corpus. Then (9) is sorted as:

log p(D,V ,A)

=C0 − logZ(H,µ)− ‖A‖2f(H) −
W∑
i=1

µi‖vsi‖2

+
W,W∑
i,j=1

xij(v>si
vsj + asisj ). (10)

As the corpus size increases,∑W,W
i,j=1 xij(v

>
si
vsj +asisj ) will dominate the

parameter prior terms. Then we can ignore the
prior terms when maximizing (10).

max
∑

xij(v>si
vsj +asisj )

=
(∑

xij

)
·max

∑
P̃smoothed(si, sj) logP (si, sj).

As both {P̃smoothed(si, sj)} and {P (si, sj)}
sum to 1, the above sum is maximized when
P (si, sj) = P̃smoothed(si, sj).

The maximum likelihood estimator is then:

P (sj |si) = P̃smoothed(sj |si),

v>si
vsj + asisj = log

P̃smoothed(sj |si)
P (sj)

. (11)

Writing (11) in matrix form:

B∗ =
(
P̃smoothed(sj |si)

)
si,sj∈S

G∗ = logB∗ − logu⊗ (1 · · · 1), (12)

where “⊗” is the outer product.

Now we fix the values of v>si
vsj + asisj at the

above optimal. The corpus likelihood becomes

log p(D,V ,A) =C1 − ‖A‖2f(H) −
W∑
i=1

µi‖vsi‖2,

subject to V >V +A = G∗, (13)

where C1 = C0 +
∑
xij log P̃smoothed(si, sj) −

logZ(H,µ) is constant.

5.2 Learning V as Low Rank PSD
Approximation

OnceG∗ has been estimated from the corpus using
(12), we seek V that maximizes (13). This is to
find the maximum a posteriori (MAP) estimates
of V ,A that satisfy V >V +A = G∗. Applying
this constraint to (13), we obtain
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Algorithm 1 BCD algorithm for finding a unreg-
ularized rank-N weighted PSD approximant.
Input: matrixG∗, weight matrixW = f(H),
iteration number T , rank N

Randomly initializeX(0)

for t = 1, · · · , T do
Gt = W ◦G∗ + (1−W ) ◦X(t−1)

X(t) = PSD Approximate(Gt, N)
end for
λ,Q = Eigen Decomposition(X(T ))
V ∗ = diag(λ

1
2 [1:N ]) ·Q>[1:N ]

Output: V ∗

arg max
V

log p(D,V ,A)

= arg min
V

‖G∗−V >V ‖f(H) +
W∑
i=1

µi‖vsi‖2. (14)

Let X = V >V . Then X is positive semidef-
inite of rank N . Finding V that minimizes (14)
is equivalent to finding a rank-N weighted posi-
tive semidefinite approximant X ofG∗, subject to
Tikhonov regularization. This problem does not
admit an analytic solution, and can only be solved
using local optimization methods.

First we consider a simpler case where all the
words in the vocabulary are enough frequent, and
thus Tikhonov regularization is unnecessary. In
this case, we set ∀µi = 0, and (14) becomes an
unregularized optimization problem. We adopt the
Block Coordinate Descent (BCD) algorithm1 in
(Srebro et al., 2003) to approach this problem. The
original algorithm is to find a generic rank-N ma-
trix for a weighted approximation problem, and
we tailor it by constraining the matrix within the
positive semidefinite manifold.

We summarize our learning algorithm in Al-
gorithm 1. Here “◦” is the entry-wise prod-
uct. We suppose the eigenvalues λ returned by
Eigen Decomposition(X) are in descending or-
der. Q>[1:N ] extracts the 1 to N rows fromQ>.

One key issue is how to initialize X . Srebro et
al. (2003) suggest to set X(0)=G∗, and point out
that X(0) = 0 is far from a local optimum, thus
requires more iterations. However we find G∗ is
also far from a local optimum, and this setting con-
verges slowly too. Setting X(0) = G∗/2 usually

1It is referred to as an Expectation-Maximization algo-
rithm by the original authors, but we think this is a misnomer.

yields a satisfactory solution in a few iterations.
The subroutine PSD Approximate() computes

the unweighted nearest rank-N PSD approxima-
tion, measured in F-norm (Higham, 1988).

5.3 Online Blockwise Regression of V

In Algorithm 1, the essential subroutine
PSD Approximate() does eigendecomposi-
tion on Gt, which is dense due to the logarithm
transformation. Eigendecomposition on a W ×W
dense matrix requires O(W 2) space and O(W 3)
time, difficult to scale up to a large vocabulary. In
addition, the majority of words in the vocabulary
are infrequent, and Tikhonov regularization is
necessary for them.

It is observed that, as words become less fre-
quent, fewer and fewer words appear around them
to form bigrams. Remind that the vocabulary
S = {s1, · · · , sW } are sorted in decending or-
der of the frequency, hence the lower-right blocks
of H and f(H) are very sparse, and cause these
blocks in (14) to contribute much less penalty rela-
tive to other regions. Therefore these blocks could
be ignored when doing regression, without sacri-
ficing too much accuracy. This intuition leads to
the following online blockwise regression.

The basic idea is to select a small set (e.g.
30,000) of the most frequent words as the core
words, and partition the remaining noncore words
into sets of moderate sizes. Bigrams consist-
ing of two core words are referred to as core bi-
grams, which correspond to the top-left blocks of
G and f(H). The embeddings of core words
are learned approximately using Algorithm 1, on
the top-left blocks of G and f(H). Then we fix
the embeddings of core words, and find the em-
beddings of each set of noncore words in turn.
After ignoring the lower-right regions of G and
f(H) which correspond to bigrams of two non-
core words, the quadratic terms of noncore em-
beddings are ignored. Consequently, finding these
embeddings becomes a weighted ridge regression
problem, which can be solved efficiently in closed-
form. Finally we combine all embeddings to get
the embeddings of the whole vocabulary. The de-
tails are as follows:

1. Partition S into K consecutive groups
S1, · · · ,Sk. Take K = 3 as an example.
The first group is core words;

2. Accordingly partitionG into K ×K blocks,
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in this example as

 G11 G12 G13

G21 G22 G23

G31 G32 G33

 .

Partition f(H),A in the same way.
G11, f(H)11,A11 correspond to core bi-

grams. Partition V into

(
︸︷︷︸
S1

V 1 ︸︷︷︸
S2

V 2 ︸︷︷︸
S3

V 3

)
;

3. Solve V >
1V 1 +A11 = G11 using Algorithm

1, and obtain core embeddings V ∗1;
4. Set V 1 = V ∗1, and find V ∗2 that minimizes

the total penalty of the 12-th and 21-th blocks
of residuals (the 22-th block is ignored due to
its high sparsity):

arg min
V 2

‖G12 − V >
1V 2‖2f(H)12

+ ‖G21 − V >
2V 1‖2f(H)21

+
∑
si∈S2

µi‖vsi‖2

= arg min
V 2

‖G12−V >
1V 2‖2f̄(H)12

+
∑
si∈S2

µi‖vsi‖2,

where f̄(H)12 = f(H)12 + f(H)>21;

G12 =
(
G12 ◦ f(H)12 + G>

21 ◦ f(H)>21

)
/
(
f(H)12 + f(H)>21

)
is the weighted aver-

age ofG12 andG>
21, “◦” and “/” are element-

wise product and division, respectively. The
columns in V 2 are independent, thus for each
vsi , it is a separate weighted ridge regression
problem, whose solution is (Holland, 1973):
v∗si

=(V >
1 diag(f̄ i)V 1+µiI)−1V >

1 diag(f̄ i)ḡi,
where f̄ i and ḡi are columns corresponding
to si in f̄(H)12 andG12, respectively;

5. For any other set of noncore words Sk, find
V ∗k that minimizes the total penalty of the 1k-
th and k1-th blocks, ignoring all other kj-th
and jk-th blocks;

6. Combine all subsets of embeddings to form
V ∗. Here V ∗ = (V ∗1,V

∗
2,V

∗
3).

6 Experimental Results

We trained our model along with a few state-of-
the-art competitors on Wikipedia, and evaluated
the embeddings on 7 common benchmark sets.

6.1 Experimental Setup
Our own method is referred to as PSD. The com-
petitors include:

• (Mikolov et al., 2013b): word2vec2, or
SGNS in some literature;

2https://code.google.com/p/word2vec/

• (Levy and Goldberg, 2014b): the PPMI ma-
trix without dimension reduction, and SVD
of PPMI matrix, both yielded by hyperwords;

• (Pennington et al., 2014): GloVe3;

• (Stratos et al., 2015): Singular4, which does
SVD-based CCA on the weighted bigram fre-
quency matrix;

• (Faruqui et al., 2015): Sparse5, which learns
new sparse embeddings in a higher dimen-
sional space from pretrained embeddings.

All models were trained on the English Wikipedia
snapshot in March 2015. After removing non-
textual elements and non-English words, 2.04 bil-
lion words were left. We used the default hyperpa-
rameters in Hyperwords when training PPMI and
SVD. Word2vec, GloVe and Singular were trained
with their own default hyperparameters.

The embedding sets PSD-Reg-180K and PSD-
Unreg-180K were trained using our online block-
wise regression. Both sets contain the embed-
dings of the most frequent 180,000 words, based
on 25,000 core words. PSD-Unreg-180K was
traind with all µi = 0, i.e. disabling Tikhonov
regularization. PSD-Reg-180K was trained with

µi =


2 i ∈ [25001, 80000]
4 i ∈ [80001, 130000]
8 i ∈ [130001, 180000]

, i.e. increased

regularization as the sparsity increases. To con-
trast with the batch learning performance, the per-
formance of PSD-25K is listed, which contains the
core embeddings only. PSD-25K took advantages
that it contains much less false candidate words,
and some test tuples (generally harder ones) were
not evaluated due to missing words, thus its scores
are not comparable to others.

Sparse was trained with PSD-180K-reg as the
input embeddings, with default hyperparameters.

The benchmark sets are almost identical to
those in (Levy et al., 2015), except that (Luong et
al., 2013)’s Rare Words is not included, as many
rare words are cut off at the frequency 100, mak-
ing more than 1/3 of test pairs invalid.

Word Similarity There are 5 datasets: Word-
Sim Similarity (WS Sim) and WordSim Related-
ness (WS Rel) (Zesch et al., 2008; Agirre et al.,
2009), partitioned from WordSim353 (Finkelstein
et al., 2002); Bruni et al. (2012)’s MEN dataset;

3http://nlp.stanford.edu/projects/glove/
4https://github.com/karlstratos/singular
5https://github.com/mfaruqui/sparse-coding
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Similarity Tasks Analogy Tasks
Method WS Sim WS Rel MEN Turk SimLex Google MSR

word2vec 0.742 0.543 0.731 0.663 0.395 0.734 / 0.742 0.650 / 0.674
PPMI 0.735 0.678 0.717 0.659 0.308 0.476 / 0.524 0.183 / 0.217
SVD 0.687 0.608 0.711 0.524 0.270 0.230 / 0.240 0.123 / 0.113

GloVe 0.759 0.630 0.756 0.641 0.362 0.535 / 0.544 0.408 / 0.435
Singular 0.763 0.684 0.747 0.581 0.345 0.440 / 0.508 0.364 / 0.399
Sparse 0.739 0.585 0.725 0.625 0.355 0.240 / 0.282 0.253 / 0.274

PSD-Reg-180K 0.792 0.679 0.764 0.676 0.398 0.602 / 0.623 0.465 / 0.507
PSD-Unreg-180K 0.786 0.663 0.753 0.675 0.372 0.566 / 0.598 0.424 / 0.468

PSD-25K 0.801 0.676 0.765 0.678 0.393 0.671 / 0.695 0.533 / 0.586

Table 2: Performance of each method across different tasks.

Radinsky et al. (2011)’s Mechanical Turk dataset;
and (Hill et al., 2014)’s SimLex-999 dataset. The
embeddings were evaluated by the Spearman’s
rank correlation with the human ratings.

Word Analogy The two datasets are MSR’s
analogy dataset (Mikolov et al., 2013c), with 8000
questions, and Google’s analogy dataset (Mikolov
et al., 2013a), with 19544 questions. After filtering
questions involving out-of-vocabulary words, i.e.
words that appear less than 100 times in the cor-
pus, 7054 instances in MSR and 19364 instances
in Google were left. The analogy questions were
answered using 3CosAdd as well as 3CosMul pro-
posed by Levy and Goldberg (2014a).

6.2 Results

Table 2 shows the results on all tasks. Word2vec
significantly outperformed other methods on anal-
ogy tasks. PPMI and SVD performed much worse
on analogy tasks than reported in (Levy et al.,
2015), probably due to sub-optimal hyperparam-
eters. This suggests their performance is unstable.
The new embeddings yielded by Sparse systemat-
ically degraded compared to the old embeddings,
contradicting the claim in (Faruqui et al., 2015).

Our method PSD-Reg-180K performed well
consistently, and is best in 4 similarity tasks.
It performed worse than word2vec on analogy
tasks, but still better than other MF-based meth-
ods. By comparing to PSD-Unreg-180K, we see
Tikhonov regularization brings 1-4% performance
boost across tasks. In addition, on similarity tasks,
online blockwise regression only degrades slightly
compared to batch factorization. Their perfor-
mance gaps on analogy tasks were wider, but this
might be explained by the fact that some hard
cases were not counted in PSD-25K’s evaluation,

due to its limited vocabulary.

7 Conclusions and Future Work

In this paper, inspired by the link functions in
previous works, with the support from Informa-
tion Theory, we propose a new link function of a
text window, parameterized by the embeddings of
words and the residuals of bigrams. Based on the
link function, we establish a generative model of
documents. The learning objective is to find a set
of embeddings maximizing their posterior likeli-
hood given the corpus. This objective is reduced to
weighted low-rank positive-semidefinite approxi-
mation, subject to Tikhonov regularization. Then
we adopt a Block Coordinate Descent algorithm,
jointly with an online blockwise regression algo-
rithm to find an approximate solution. On seven
benchmark sets, the learned embeddings show
competitive and stable performance.

In the future work, we will incorporate global
latent factors into this generative model, such as
topics, sentiments, or writing styles, and develop
more elaborate models of documents. Through
learning such latent factors, important summary
information of documents would be acquired,
which are useful in various applications.
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Appendix A Possible Trap in SVD

SupposeM is the bigram matrix of interest. SVD
embeddings are derived from the low rank approx-
imation ofM>M , by keeping the largest singular
values/vectors. When some of these singular val-
ues correspond to negative eigenvalues, undesir-
able correlations might be captured. The follow-
ing is an example of approximating a PMI matrix.

A vocabulary consists of 3 words s1, s2, s3.
Two corpora derive two PMI matrices:

M (1) =
(

1.4 0.8 0
0.8 2.6 0
0 0 2

)
, M (2) =

(
0.2 −1.6 0
−1.6 −2.2 0

0 0 2

)
.

They have identical left singular matrix and sin-
gular values (3, 2, 1), but their eigenvalues are
(3, 2, 1) and (−3, 2, 1), respectively.

In a rank-2 approximation, the largest two
singular values/vectors are kept, and M (1) and
M (2) yield identical SVD embeddings V =
( 0.45 0.89 0

0 0 1 ) (the rows may be scaled depending on
the algorithm, without affecting the validity of the
following conclusion). The embeddings of s1 and
s2 (columns 1 and 2 of V ) point at the same di-
rection, suggesting they are positively correlated.
However as M (2)

1,2 = M
(2)
2,1 = −1.6 < 0, they are

actually negatively correlated in the second cor-
pus. This inconsistency is because the principal
eigenvalue of M (2) is negative, and yet the corre-
sponding singular value/vector is kept.

When using eigendecomposition, the largest
two positive eigenvalues/eigenvectors are kept.
M (1) yields the same embeddings V . M (2)

yields V (2) =
(−0.89 0.45 0

0 0 1.41

)
, which correctly

preserves the negative correlation between s1, s2.

Appendix B Information Theory

Redundant information refers to the reduced un-
certainty by knowing the value of any one of the
conditioning variables (hence redundant). Syner-
gistic information is the reduced uncertainty as-
cribed to knowing all the values of conditioning
variables, that cannot be reduced by knowing the
value of any variable alone (hence synergistic).

The mutual information I(y;xi) and the redun-
dant information Rdn(y;x1, x2) are defined as:

I(y;xi) = EP (xi,y)[log
P (y|xi)
P (y)

]

Rdn(y;x1, x2) = EP (y)

[
min
x1,x2

EP (xi|y)[log
P (y|xi)
P (y)

]
]

The synergistic information Syn(y;x1, x2) is
defined as the PI-function in (Williams and Beer,
2010), skipped here.

I(y;x1) I(y;x2)

Syn(y;x1,x2)
I(y;x1,x2)

Rdn(y;x1,x2)

Figure 2: Different types of information among
3 random variables y, x1, x2. I(y;x1, x2) is
the mutual information between y and (x1, x2).
Rdn(y;x1, x2) and Syn(y;x1, x2) are the redun-
dant information and synergistic information be-
tween x1, x2, conditioning y, respectively.

The interaction information Int(x1, x2, y) mea-
sures the relative strength of Rdn(y;x1, x2) and
Syn(y;x1, x2) (Timme et al., 2014):

Int(x1, x2, y)
=Syn(y;x1, x2)− Rdn(y;x1, x2)
=I(y;x1, x2)− I(y;x1)− I(y;x2)

=EP (x1,x2,y)[log
P (x1)P (x2)P (y)P (x1, x2, y)
P (x1, x2)P (x1, y)P (x2, y)

]

Figure 2 shows the relationship of different
information among 3 random variables y, x1, x2

(based on Fig.1 in (Williams and Beer, 2010)).
PMI is the pointwise counterpart of mutual

information I . Similarly, all the above concepts
have their pointwise counterparts, obtained by
dropping the expectation operator. Specifically,
the pointwise interaction information is defined as
PInt(x1, x2, y) = PMI(y;x1, x2)− PMI(y;x1)−
PMI(y;x2) = log P (x1)P (x2)P (y)P (x1,x2,y)

P (x1,x2)P (x1,y)P (x2,y) .
If we know PInt(x1, x2, y), we can recover
PMI(y;x1, x2) from the mutual information over
the variable subsets, and then recover the joint
distribution P (x1, x2, y).

As the pointwise redundant information
PRdn(y;x1, x2) and the pointwise synergistic
information PSyn(y;x1, x2) are both higher-
order interaction terms, their magnitudes are
usually much smaller than the PMI terms. We
assume they are approximately equal, and thus
cancel each other when computing PInt. Given
this, PInt is always 0. In the case of three
words w0, w1, w2, PInt(w0, w1, w2) = 0 leads to
PMI(w2;w0, w1) = PMI(w2;w0)+PMI(w2;w1).
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Abstract

Modeling non-stationary time-series data
for making predictions is a challenging
but important task. One of the key is-
sues is to identify long-term changes accu-
rately in time-varying data. Bayesian On-
line Change Point Detection (BO-CPD)
algorithms efficiently detect long-term
changes without assuming the Markov
property which is vulnerable to local sig-
nal noise. We propose a Document
based BO-CPD (DBO-CPD) model which
automatically detects long-term temporal
changes of continuous variables based on
a novel dynamic Bayesian analysis which
combines a non-parametric regression, the
Gaussian Process (GP), with generative
models of texts such as news articles and
posts on social networks. Since texts often
include important clues of signal changes,
DBO-CPD enables the accurate predic-
tion of long-term changes accurately. We
show that our algorithm outperforms exist-
ing BO-CPDs in two real-world datasets:
stock prices and movie revenues.

1 Introduction

Time series data depends on the latent dependence
structure which changes over time. Thus, sta-
tionary parametric models are not appropriate to
represent such dynamic non-stationary processes.
Change point analysis (Smith, 1975; Stephens,
1994; Chib, 1998; Barry and Hartigan, 1993) fo-
cuses on formal frameworks to determine whether
a change has taken place without assuming the
Markov property which is vulnerable to local sig-
nal noise. When change points are identified, each
part of the time series is approximated by specified
parametric models under the stationary assump-
tions. Such change point detection models have

successfully been applied to a variety of data, such
as stock markets (Chen and Gupta, 1997; Hsu,
1977; Koop and Potter, 2007), analyzing bees’ be-
havior (Xuan and Murphy, 2007), forecasting cli-
mates (Chu and Zhao, 2004; Zhao and Chu, 2010),
and physics experiments (von Toussaint, 2011).
However, offline-based change point analysis suf-
fers from slow retrospective inference which pre-
vents real-time analysis.

Bayesian Online Change Point Detection (BO-
CPD) (Adams and MacKay, 2007; Steyvers and
Brown, 2005; Osborne, 2010; Gu et al., 2013)
overcomes this restriction by exploiting efficient
online inference algorithms. BO-CPD algorithms
efficiently detect long-term changes by analyzing
continuous target values with the Gaussian Pro-
cess (GP), a non-parametric regression method.
The GP-based CPD model is simple and flexible.
However, it is not straightforward to utilize rich
external data such as texts in news articles and
posts in social networks.

In this paper, we propose a novel BO-CPD
model that improves the detection of change
points in continuous signals by incorporating the
rich external information implicitly written in texts
on top of the long-term change analysis of the
GP. In particular, our model finds causes of sig-
nal changes in news articles which are influential
sources of markets of interests.

Given a set of news articles extracted from the
Google News service and a sequence of target,
continuous values, our new model, Document-
based Bayesian Online Change Point Detection
(DBO-CPD), learns a generative model which rep-
resents the probability of a news article given the
run length (a length of consecutive observations
without a change). By using the new prior, DBO-
CPD models a dynamic hazard rate (h) which de-
termines the rate at which change points occur.

In the literature, important information is ex-
tracted from news articles (Nothman et al., 2012;
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(a) BO-CPD

(b) DBO-CPD (this work)

Figure 1: This figures illustrates a graphical repre-
sentation of BO-CPD and our DBO-CPD model.
xt, rt, and Dt represent a continuous variable of
interest, the run length (hidden) variable, and doc-
uments, respectively. Our modeling contribution
is to add texts D1:t for the accurate prediction of
the run length rt+1.

Schumaker and Chen, 2009; Gidófalvi and Elkan,
2001; Fung et al., 2003; Fung et al., 2002; Schu-
maker and Chen, 2006), tweets on Twitter (Si et
al., 2013; Wang et al., 2012; Bollen et al., 2011;
St Louis et al., 2012), online chats (Kim et al.,
2010; Gruhl et al., 2005), and blog posts (Peng et
al., 2015; Mishne and Glance, 2006).

In experiments, we show that DBO-CPD can ef-
fectively distinguish whether an abrupt change is a
change point or not in real-world datasets (see Sec-
tion 3.1). Compared to previous BO-CPD models
which explain the changes by human manual map-
pings, our DBO-CPD automatically explains the
reasons why a change point has occurred by con-
necting the numerical sequence of data and textual
features of news articles.

2 Bayesian Online Change Point
Detection

This section will review our research problem, the
change point detection (CPD) (Barry and Harti-
gan, 1993), and the Bayesian Online Change Point
Detection (BO-CPD) (Adams and MacKay, 2007)
and our model, Document Based Online Change
Point Detection (DBO-CPD).

Let xt∈R be a data observation at time t. We
assume that a sequence of data (x1, x2, ..., xt)
is composed of several non-overlapping produc-
tive partitions (Barry and Hartigan, 1992). The
boundaries that separate the partitions is called the
change points. Let r be the random variable that
denotes the run length, which is the number of
time steps since the last change point was detected.
rt is the current run at time t. x

(rt)
t denotes the

most recent data corresponding to the run rt.

2.1 Online Recursive Detection
To make an optimal prediction of the next data
xt+1, one may need to consider all possible run
lengths rt∈N and a probability distribution over
run length rt. Given a sequence of data up to time
t, x1:t = (x1, x2, ..., xt), the run length prediction
problem is formalized as computing the joint prob-
ability of random variables P (xt+1, x1:t). This
distribution can be calculated in terms of the poste-
rior distribution of run length at time t, P (rt|x1:t),
as follows:

P (xt+1, x1:t) =
∑
rt

P (xt+1|rt, x(rt)
t )P (rt|x1:t)

=
∑
rt

P (xt+1|x(rt)
t )P (rt|x1:t).(1)

The predictive distribution P (xt+1|rt, x(rt)
t ) de-

pends only on the most recent rt observations
x

(rt)
t . The posterior distribution of run length
P (rt|x1:t) can be computed recursively:

P (rt|x1:t) =
P (rt, x1:t)
P (x1:t)

(2)

where:
P (x1:t) =

∑
rt

P (rt, x1:t). (3)

The joint distribution over run length rt and data
x1:t can be derived by summing P (rt, rt−1, x1:t)
over rt−1:

P (rt, x1:t) =
∑
rt−1

P (rt, rt−1, x1:t)

=
∑
rt−1

P (rt, xt|rt−1, x1:t−1)P (rt−1, x1:t−1)

=
∑
rt−1

P (rt|rt−1)P (xt|rt−1, x
(rt)
t )P (rt−1, x1:t−1).

This formulation updates the posterior distribution
of the run length given the prior over rt from rt−1

and the predictive distribution of new data.

1611



However, the existing BO-CPD model (Adams
and MacKay, 2007) specifies the conditional prior
on the change point P (rt|rt−1) in advance. This
approach may lead to model biased predictions be-
cause the update formula highly relies on the pre-
defined, fixed hazard rate (h). Furthermore, BO-
CPD is incapable of incorporating external infor-
mation that implicitly influences the observation
and explains the reasons for the current change of
the long-term trend.

Figure 2: This figure illustrates the recursive up-
dates of the posterior probability in the DBO-CPD
model. Even the BO-CPD model only uses current
and previous run length to calculate the posterior,
DBO-CPD can utilize the series of text documents
to compute the conditional probability accurately.

2.2 Document-based Bayesian Online
Change Point Detection

This section explains our DBO-CPD model. To
represent the text documents, we add a variable D
which denotes a series of text documents related
to the observed data as shown in Figure 1. Let
Dt be a set of Nt text documents D1

t , D
2
t , ..., D

Nt
t

that are indexed at time of publication t, where Nt

is the number of documents observed at time t.
Then, we can rewrite the joint probability over the
run length as:

P (rt, x1:t) =
∑
rt−1

∑
D

(rt−1)

t

P
(
rt|rt−1, D

(rt−1)
t

)
·

P
(
xt|rt−1, x

(rt−1)
t

)
P (rt−1, x1:t−1) (4)

whereD(rt)
t (= Dt−rt+1:t) is the set of the rt most

recent documents. Figure 2 illustrates the recur-
sive updates of posterior probability where solid
lines indicate that the probability mass is passed
upwards and dotted lines indicate the probability
that the current run length rt is set to zero.

Given documents D(rt)
t , the conditional proba-

bility is represented as follows:

P
(
rt = γ+1|rt−1 = γ,D

(γ)
t

)
=
P
(
rt−1 = γ,D

(γ)
t |rt = γ+1

)
P (rt = γ+1)

γ+1∑̄
γ=1

P
(
rt−1 = γ,D

(γ)
t |rt = γ̄

)
P (rt = γ̄)

=
P
(
rt−1 = γ,D

(γ)
t |rt = γ + 1

)
Pgap(γ+1)

γ+1∑̄
γ=1

P
(
rt−1 = γ,D

(γ)
t |rt = γ̄

)
Pgap(γ̄)

where Pgap is the distribution of intervals be-
tween consecutive change-points. As the BO-CPD
model (Adams and MacKay, 2007), we assume the
simplest case where the probability of a change-
point at every step is constant if the length of a
segment is modeled by a discrete exponential (ge-
ometric) distribution as:

Pgap(rt|λ) = λexp−λrt (5)

where λ > 0, a rate parameter, is the parameter
of the distribution.

The update rule for the prior distribution on rt
makes the computation of the joint distribution
tractable,

∑γ+1
γ̄=1 P (rt−1=γ,D(γ)

t |rt=γ̄)·Pgap(γ̄).
Because rt can only be increased to γ+ 1 or set to
0, the conditional probability is as follows:

P (rt = γ + 1|rt−1 = γ,D
(γ)
t )

=
TD(t, γ|γ+1)

TD(t, γ|γ+1) + TD(t, γ|0)

(6)

where the function TD(t, α|ᾱ) is an abbrevia-
tion of P

(
rt−1=α,D(α)

t |rt=ᾱ
)

. In Equation (6),

TD(t, γ|γ+1)=P (rt−1=γ,D(γ)
t |rt=γ+1) is the

joint probability of the run length rt−1 and a set
of documents D(γ)

t when no change has occurred
at time t and the run length becomes γ+1. There-
fore, we can simplify the equation by removing
rt−1=γ from the condition as follows:

TD(t, γ|γ+1) = P (D(γ)
t |rt=γ + 1). (7)

We represent the distribution of words by the bag-
of-words model. Let Di

t be the set of M words
that is part of the ith document at time t, i.e.
Di
t = {di,1t , di,2t , ..., di,Mt }. In the model, we as-

sume that the probability of word di,jt is indepen-
dent and identically distributed (iid) given a run
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length parameter rt. In this setting, the conditional
probability of the words takes the following form:

P
(
D

(γ)
t |rt = γ+1

)
=

1
Z

∏
i,j

P
(
di,jt |rt = γ+1

)
.

(8)
The conditional probability P (di,jt |rt=γ+1) is
represented by two generative models, φwf and
φwi which illustrates word frequency and word im-
pact, respectively. The key intuition of word fre-
quency is that a word tends to close to a change
point if a word has been frequently seen in arti-
cles, published when there was a rapid change.
The key intuition of word impact is that how
much does a word lose information in time which
will be discussed in next section. In our paper,
we use the unnormalized beta distribution of the
weights of words to represent the exponential de-
cays. The probability P

(
D

(γ)
t |rt=γ + 1

)
can be

represented recursively as:

P
(
D

(γ)
t |rt=γ+1

)
=P

(
D

(γ)
t |γ+1

)
∝ φwi(D

(γ)
t |γ+1) · φwf(D

(γ)
t |γ+1)

= φwi(Dt|γ+1) · φwf(Dt|γ+1)

·φwi(D
(γ−1)
t−1 |rt−1=γ) · φwf(D

(γ−1)
t−1 |rt−1=γ)

=
∏
i,j

φwi(d
i,j
t |γ+1) · φwf(d

i,j
t |γ+1) (9)

·φwi(D
(γ−1)
t−1 |rt−1=γ) · φwf(D

(γ−1)
t−1 |rt−1=γ)

where:

φwf(d
x,y
t |γ) =

count(dx,yt , rt = γ)∑
i,j count(di,jt , rt = γ)

.

Here, φwi(d
x,y
t |γ) and φwf(d

x,y
t |γ) are empirical

potentials which contribute to represent P (di,jt |γ).
φwi(·) is explained in Section 2.3. Here, count(E)
is the number of times event E appears in the
dataset. In Equation (9), τt is the time gap (dif-
ference) between t and the time when a document
is generated, and di,j represents a document with-
out considering the time domain.
TD(t, γ|0) is represented as follows:

P (rt−1=γ,D(γ)
t |rt=0)

= P (rt−1=γ|rt = 0)P (D(γ)
t |rt=0)

= H(γ+1)P (D(γ)
t |rt=0)

where H(τ) is the hazard function (Forbes et al.,
2011),

H(τ) =
Pgap(τ)∑∞
t=τ Pgap(t)

. (10)

Figure 3: This figure illustrates how our Equa-
tion (9) is calculated and how it determines
whether a change occurs or not. If the same data
is given, BO-CPD gives us the same answer to a
question whether an abrupt change at time t is a
change point or not. However, DBO-CPD uses
documents Dγ

t for its prediction to incorporate
the external information which cannot be inferred
only from the data.

When Pgap is the discrete exponential distribution,
the hazard function is constant at H(τ) = 1/λ
(Adams and MacKay, 2007).

As an illustrative example, suppose that we
found a rapid change in Google stock three days
ago. Today at t = 3, we want to know how the
articles are written and whether it will affect the
change tomorrow (t = 4). As shown in Figure 3,
we can calculate what degree a word, for example
rises or stays, is likely to appear in articles pub-
lished since today, which is P (D(γ)

t |rt = γ+1),
and this probability leads us to predict run lengths
from the texts. Documents for each τt = 0, 1 and
2 are generated from the generative models with
a given predicted run length through recursive cal-
culation of the Bayesian models which enables on-
line prediction as shown in Equation (9). This
is the main contribution of this paper that enables
DBO-CPD to infer change points accurately with
information included in text documents.
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2.3 Generative Models Trained from
Regression

Let D ∈ RT×N×M be N documents of news arti-
cles which consist of M vocabulary over time do-
main T . Di

t ∈ RM is the ith document of a set of
documents generated at time t, and define r ∈ RN

as the corresponding set of the run length, which is
a time gap between the time when the document is
generated and the next change point occurs. Then,
given a text document Di

t, we seek to predict the
value of run length r by learning a parameterized
function f :

r̂ = f(Di
t; w) (11)

where w ∈ Rd are the weights of text features for
di,1t , d

i,2
t , ..., d

i,M
t which compose documents Di

t.
From a collection of N documents, we use linear
regression which is trained by solving the follow-
ing optimization problem:

min
w,Dit

f(Di
t; w) ≡ C

N∑
i=1

ξ(w,Di
t, rt) + r(w)

(12)
where r(w) is the regularization term and
ξ(w,Di

t, rt) is the loss function. Parameter C >
0 is a user-specified constant for balancing r(w)
and the sum of losses.

Let h be a function from a document into a
vector-space representation∈ Rd. In linear regres-
sion, the function f takes the form:

f(Di
t; w) = h(Di

t)
>w + ε (13)

where ε is Gaussian noise.
Figure 4 illustrates how we trained a linear re-

gression model on a sample article. One issue
is that the run length can not be trained directly.
Suppose that we train r5 = 0 into regression, the
weight w of the model will become 0 even though
the set of words contained in Dj

5, ∀j ∈ {1, ..., T}
is composed of salient words which can incur a
possible future change point. To solve this inter-
pretability problem, we trained the weight in the
inverse exponential domain for the predicted vari-
able, predicting e−rt instead of rt. In this setting,
the predicted run-length takes the form:

e−r̂t = h(Dt)>w + ε. (14)

By this method, the regression model can give a
high weight to a word which often appears close
to change points. We can interpret that highly

Figure 4: This figure illustrates a graphical rep-
resentation of how we train a generative model
from a regression problem. We use a regression
model to predict time gap rt between the release
date of article and the nearest future change point.
The weights of regression model are changed into
the negative exponential scale to be considered as
word impact.

weighted words d are more closely related to an
outbreak of changes than lower weighted words.

With w, we can rewrite the probability of d, τt
given w as:

φwi(d, τt) ∝ wd · (exp(−1/wd))τt

= wd · exp(−τt/wd). (15)

The potential, φwi, can also be represented recur-
sively as follows:

φwi(d, τt+1) = φwi(d, τt) · exp(−1/wd), (16)

since given a word d, τt+1 = τt+1 holds.

3 Experiments

Now we explain experiments of DBO-CPD in two
real-world datasets, stock prices and movie rev-
enues. The first case is the historical end-of-day
stock prices of five information technology corpo-
rations. In the second dataset, we examine daily
film revenues averaged by the number of theaters.

3.1 Datasets
In the stock price dataset, we gather data for
five different companies: Apple (AAPL), Google
(GOOG), IBM (IBM), Microsoft (MSFT), and
Facebook (FB). These companies were selected
because they were the top 5 ranked in market value
in 2015.

We chose these technology companies because
the announcement of new IT products and features
and the interests of public media tend to be higher
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Figure 5: (a) Two plots show the results of BO-CPD (top) and DBO-CPD (middle) on Apple stock
prices in January 2014. The stock price is plotted in light gray, with the predictive change points drawn
as small circles. The red line represents the most likely predicted run-lengths for each day. The bottom
figures are a set of visualizations of the top 15 strongly weighted words which are found at selected
change points which BO-CPD is unable to predict. The size of each word represents the weight of its
textual features learned during the training of the regression model.

and lead to many news articles. We use the his-
torical stock price data from the Google Finance
service.1.

category words documents words/doc
AAPL 15.0M 29,459 509
AAPL:N 11.0M 18,896 581
GOOG 15.0M 29,422 511
GOOG:N 8.2M 13,658 603
IBM 26.7M 45,741 583
IBM:N 3.4M 4,741 726
MSFT 20.5M 35,905 570
MSFT:N 3.5M 5,070 681
FB 18.9M 38,168 495
FB:N 4.3M 6,625 645
KNGHT 14.4M 16,874 852
INCPT 12.1M 17,155 705
AVGR 3.5M 6,476 537
FRZ 6.8M 15,021 454
INTRS 4.2M 7,846 538

Table 1: Dimensions of the datasets used in this
paper, after tokenizing and filtering the news ar-
ticles. ‘:N’ means the articles are collected with
additional ‘NASDAQ:’ search query.

The second dataset is a set of movie revenues
averaged by the number of theaters for five months
from the release date of film. We target 5 different

1https://www.google.com/finance

movies: The Dark Knight (KNGHT), Inception
(INCPT), The Avengers (AVGR), Frozen (FRZ)
and Interstellar (INTRS), because these movies
are on highest-grossing movie list and also are
screened recently. The cumulative daily revenue
per theater is collected from ‘Box Office Mojo’
(www.boxofficemojo.com).

News articles are collected from Google News
and we use Google search queries to extract spe-
cific articles related to each dataset in a specific
time period. During the online article crawling,
we store not only the titles of articles, HTML doc-
uments, and publication dates, but also the num-
ber of related articles. The number of articles is
used to differentiate the weight of news articles
during the training of regression. In the case of
stock price data, we use two different queries to
decrease noise. First, we search with the company
name such as ‘Google’. Then, we use queries spe-
cific to stock ‘NASDAQ:’ to make the content of
articles to be highly relevant to the stock market.
In case of movie data, we search with the movie
title with the additional word ‘movie’ to only col-
lect articles related to the target movie.

With these collected articles, we used two ar-
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ticle extractors, newspaper (Ou-Yang, 2013) and
python-goose (Grangier, 2013), to automate the
text extraction of 291,057 HTML documents. Af-
ter preprocessing, we could successfully extract
texts from 287,389 (98.74%) HTMLs.

3.2 Textual Feature Representation
After extracting texts from HTMLs, we tokenize
the texts into words. We use three different tok-
enization methods which are downcasing the char-
acters, punctuation removal, and removing En-
glish stop words. Table 1 shows the statistics on
the corpora of collected news articles.

With these article corpora, we use a bag-of-
words (BoW) representation to change each word
into a vector representation where words from ar-
ticles are indexed and then weighted. Using these
vectors, we adopt three document representations,
TF, TFIDF, and LOG1P, which extend BoW rep-
resentation. TF and TFIDF (Sparck Jones, 1972)
calculate the importance of a word to a set of doc-
uments based on term frequency. LOG1P (Kogan
et al., 2009) calculates the logarithm of the word
frequencies.

3.3 Training BO-CPD
As we noted earlier, we use BO-CPD to train the
regression model to learn high weight for words
which are more related to changes. When we
choose the parameters for the Gaussian Process of
BO-CPD, we try to find the value which makes
the distance of intervals between predicted change
points around 1-2 weeks. This is because we as-
sume that the information included in the articles
will have an immediate effect on the data right af-
ter it is published to the public, so the external
information in texts will indicate the short-term
causes for a future change.

For the reasonable comparison of BO-CPD and
DBO-CPD, we use the same parameter for the
Gaussian Process in both models. After several
experiments we found that a = 1 and b = 1 for
the Gaussian Process and λgap = 250 is appropri-
ate to train BO-CPD in the stock and film datasets.
We separate the training and testing examples for
cross-validation at a ratio of 2 : 1 for each year.
Then we train each model differently by year.

3.4 Learning the strength parameter w from
Regression

The weight w of the regression model gives us an
intuition of how a word is important which affect

2010 2011 2012 2013 2014
AAPL BO-CPD 14.93 16.33 16.24 14.44 17.63
AAPL DBO-CPD I 14.81 16.22 16.20 14.21 17.12
AAPL DBO-CPD II 15.15 16.20 16.14 14.40 17.11
GOOG BO-CPD 15.03 15.65 15.49 19.43 19.04
GOOG DBO-CPD I 15.48 15.92 15.21 19.24 19.07
GOOG DBO-CPD II 15.31 15.62 15.36 19.20 19.02
IBM BO-CPD 17.10 17.83 17.42 16.25 16.30
IBM DBO-CPD I 17.66 17.81 17.40 16.20 16.04
IBM DBO-CPD II 17.04 17.82 17.38 16.14 16.39
MSFT BO-CPD 12.41 11.91 14.51 15.60 17.25
MSFT DBO-CPD I 12.33 12.60 14.48 14.92 16.43
MSFT DBO-CPD II 12.21 11.79 14.46 15.00 16.46
FB BO-CPD N/A N/A 12.32 13.07 16.68
FB DBO-CPD I N/A N/A 12.34 13.00 16.24
FB DBO-CPD II N/A N/A 12.43 12.98 16.25

Table 2: Negative log likelihood of five stocks
(Apple, Google, IBM, Microsoft, and Facebook)
without and with our model per year from 2010
to 2014. DBO-CPD I represents the experiments
without ‘NASDAQ:’ as a search query and DBO-
CPD II is the result of articles searched with
‘NASDAQ:’. Facebook data is not available be-
fore the year 2012.

to the length of the current run. With the predicted
run length calculated in Section 3.3, we change the
run length domain r ∈ R into 0 ≤ r ≤ 1 by pre-
dicting ert rather than rt to solve the interpretabil-
ity problem. Therefore, we can think of a high
weight wi as a powerful word which changes the
current run length r to 0. To maintain the scala-
bility of w, we normalize the weight by rescaling
the range into w ∈ [−1, 1]. With the word rep-
resentation calculated in Section 3.2, we train the
regression model by using the number of relevant
articles as the importance weight of training.

3.5 Results
We evaluate the performance of BO-CPD and
DBO-CPD by comparing the negative log likeli-
hood (NLL) (Turner et al., 2009) of two models at
time t as:

log p(x1:T |w) =
T∑
t=1

log p(xt|x1:t−1,w).

We calculate the marginal NLL by year and the re-
sults are described in Table 2 and Table 3. (Face-
book data is not available before the year 2012.)
The difference between DBO-CPD I and DBO-
CPD II is whether the search queries include
‘NASDAQ’. In stock data sets of 5 years, our
model outperforms BO-CPD in Apple, Google,
IBM, Microsoft dataset. The improvements of
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Figure 6: (b) The left plot illustrates daily stock prices of Google in 2013 from early January to late May.
The black line represents the stock price, black circles indicate the predicted change points, and the red
line shows the predicted run length calculated by DBO-CPD. The middle plot shows the negative log
likelihood (NLL) of BO-CPD and DBO-CPD on the same data. The overall marginal NLL of DBO-CPD
(19.1964) is smaller than BO-CPD (19.3438). The two zoomed intervals are the two longest intervals
where the negative log likelihood of DBO-CPD is smaller than BO-CPD. The right table shows the
sentences whose run length predicted by the regression model (described in Section 2.3) are the highest
at the two zoomed points, which means the sentences are likely to appear near feature change points.
The boldface words are the top 5 most strongly-weighted terms in the regression model.

DBO-CPD compared to the BO-CPD is statisti-
cally significant with 90% confidence in the four
stocks except for stock of Facebook. We also
found that most of the DBO-CPD II shows bet-
ter results than DBO-CPD I and BO-CPD in most
datasets due to noise reduction of texts through the
additional search query ‘NASDAQ:’. Out of 23
datasets, APPL in 2010 and FB in 2012 are the
only datasets where NLLs of BO-CPD is smaller
(better) than NLLs of DBO-CPD.

One of the advantages of using a linear model
is that we can investigate what the model discov-
ers about different terms. As shown in Figure 5,
we can find negative semantic words such as vi-
cious, whip, and desperately, and words represent-

ing the status of a company like propel, innova-
tions, and grateful are the most strongly-weighted
terms in the regression model. We analyze and vi-
sualize some change points where NLL of DBO-
CPD is lower than NLL of BO-CPD. The results
are shown in Figure 6 and three sentences are the
top 3 most weighted sentences in the regression
model for two changes with the boldface words
of top 5 strongly weighted terms like the terms
big, money, and steadily. A particularly interest-
ing case is the term earth which is found between
Jan. 25 and Feb. 13 in 2013. After we investigated
articles where the sentence is included, we found
that Google announced a new tour guide feature in
Google Earth on Jan. 31 and after this announce-

1617



NLL
KNGHT BO-CPD 39.76
KNGHT DBO-CPD I 39.54
INCPT BO-CPD 55.60
INCPT DBO-CPD I 55.54
AVGR BO-CPD 32.12
AVGR DBO-CPD I 32.10
FRZ BO-CPD 51.25
FRZ DBO-CPD I 51.04
INT BO-CPD 38.49
INT DBO-CPD I 38.31

Table 3: Negative log likelihood (NLL) of five
movies (The Dark Knight, Inception, Avengers,
Frozen, and Interstellar) without and with our
model for 1 year from the release date of each
movie.

ment the stock price increased. We can also find
that the word million is also a positive term which
can predict a new change in the near feature.

4 Conclusions

In this paper, we propose a novel generative model
for online inference to find change points from
non-stationary time-series data. Unlike previ-
ous approaches, our model can incorporate exter-
nal information in texts which may includes the
causes of signal changes. The main contribution
of this paper is to combine the generative model
for online change points detection and a regres-
sion model learned from the weights of words in
documents. Thus, our model accurately infers the
conditional prior of the change points and auto-
matically explains the reasons of a change by con-
necting the numerical sequence of data and textual
features of news articles.

5 Future work

Our DBO-CPD can be improved further by incor-
porating more external information beyond docu-
ments. In principle, our DBO-CPD can incorpo-
rate other features if they are vectorized into a ma-
trix form. Our implementation currently only uses
the simple bag of words models (TF, TFIDF and
LOG1P) to improve the baseline GP-based CPD
models by bringing documents into change point
detection. One possible direction of future work
would explore ways to fully represent the rich in-
formation in texts by extending the text features
and language representations like continuous bag-
of-words (CBOW) models (Mikolov et al., 2013)
or Global vectors for word representation (GloVe)
(Pennington et al., 2014).
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Abstract

Recognizing Text Entailment (RTE) plays
an important role in NLP applications in-
cluding question answering, information
retrieval, etc. In recent work, some re-
search explore “deep” expressions such as
discourse commitments or strict logic for
representing the text. However, these ex-
pressions suffer from the limitation of in-
ference inconvenience or translation loss.
To overcome the limitations, in this paper,
we propose to use the predicate-argument
structures to represent the discourse com-
mitments extracted from text. At the same
time, with the help of the YAGO knowl-
edge, we borrow the distant supervision
technique to mine the implicit facts from
the text. We also construct a probabilistic
network for all the facts and conduct infer-
ence to judge the confidence of each fact
for RTE. The experimental results show
that our proposed method achieves a com-
petitive result compared to the previous
work.

1 Introduction

For the natural language, a common phenomenon
is that there exist a lot of ways to express the
same or similar meaning. To discover such dif-
ferent expressions, the Recognising Textual En-
tailment (RTE) task is proposed to judge whether
the meaning of one text (denoted as H) can be in-
ferred (entailed) from the other one (T )(Dagan et
al., 2006). For many natural language processing
applications like question answering, information
retrieval which involve the diversity of natural lan-
guage, recognising textual entailments is a critical
step.

PASCAL Recognizing Textual Entailment
(RTE) Challenges (Dagan et al., 2006) have

witnessed a variety of excellent systems which
intend to recognize the textual entailment in-
stances. These systems mainly employ “shallow”
techniques, including heuristics, term overlap,
syntactic dependencies(Vanderwende et al., 2006;
Jijkoun and de Rijke, 2005; Malakasiotis and
Androutsopoulos, 2007; Haghighi et al., 2005).
As Hickl (2008) stated, the shallow approaches do
not work well for long sentences for the missing
of underlying information which needs to be
mined from the surface level expression.

Recently, some deep techniques are developed
to mine the facts latent in the text. Hickl (2008)
proposed the concept of discourse commitments
which can be seen as the set of propositions in-
ferred from the text, and used a series of syntax-
level and semantic-level rules to extract the com-
mitments from the T -H pairs. Then the RTE task
is reduced to the identification of the commitments
from T which are most likely to support the infer-
ence of the commitments from H . From the work
of Hickl (2008), we can see that a deep under-
standing of text is critical to the RTE performance
and discourse commitments can serve a good me-
dia to understanding text. However, the limitation
of Hickl (2008)’s work is, the extracted discourse
commitments are still from the original text and do
not explore the implicit meaning latent behind the
text.

Another kind of deep methods involves first
transferring natural language to logic represen-
tation and then conducting strict logic inference
based on the logic representations (de Salvo Braz
et al., 2006; Tatu and Moldovan, 2006; Wotzlaw
and Coote, 2013). Through logic inference, some
implicit knowledge behind the text can be mined.
However, it is not easy to translate the natural lan-
guage text into formal logic expressions and the
translation process inevitably suffer from great in-
formation loss.

Through analysis above, in our work, we pro-
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T: Ayrton Senna was married to a doctor who 

lives in Austin, the capital of Texas, in 1998.

H: Ayrton Senna lives in Texas.

T: R1(e11,e12)

    R2(e21,e22)

    R3(e31,e32)

H: RH(eH1,eH2)

Discourse commitment 

extract
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...
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 R1(e11,e12)^R2(e21,e22)=>R3(e31,e32) 

 R4(e41,e42)^R5(e51,e52)=>R6(e61,e62) 

 R7(e71,e72)^R8(e81,e82)=>R9(e91,e92) 
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...
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Logic Network
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MLN

P(RH)

H is True or false?

Figure 1: The Framework of our RTE system

pose to use the predicate-argument structure to
represent the extracted discourse commitments.
Inspired by the work of (Mintz et al., 2009), we
make use of the external knowledge YAGO and
borrow the distant supervision technique to mine
implicit facts for the extracted predicates. For ex-
ample,

Ayrton Senna was married to a doctor who lives
in Austin, the capital of Texas, in 1998.

We translate this example into the predicate-
argument structures such as bemarried(Senna,
doctor), livein(doctor, Austin), captial(Austin,
Texas). Then through distant supervision, we
can get some new facts livein(Senna, Austin),
livein(Senna, Texas).

To judge the confidence of the new facts, we
construct a probabilistic network with all the facts
and adopt the Markov Logic Network (MLN) to
calculate the probability of each new fact, which
can be further used to recognize text entailments.

2 Our RTE System

To make full use of the underlying information in
sentences and lessen the effect brought by natu-
ral language’s vagueness, we design a RTE sys-
tem which is composed of three stages, as shown
in Figure 1.

First, we decompose the sentences in T -H pair
to a series of discourse commitments as Hickl
(2008) did. Since the syntax of these commit-
ments are very simple, we can directly transform
them to predicates (or 3-arg tuples). Then we use

YAGO, a large semantic database including sev-
eral thousands relations, to provide distant super-
vision. The predicates in T are matched to YAGO
facts due to some metrics. At last, we use the
Markov Logic Network(MLN) (Richardson and
Domingos, 2006) to infer the correctness of the
predicates in H . The MLN is constructed us-
ing the inference rules (“soft” rules) generated by
AMIE system (Galárraga et al., 2013) on YAGO.
Each rule has a weight which should be trained by
real world facts. Using this framework, we can ap-
ply the “soft” logic to the textual entailment recog-
nition task.

2.1 Extracting Predicates from Sentences
Discourse commitment is our baseline system pro-
posed by Hickl (2008) which can decompose one
sentence to a series of shorter and simpler sen-
tences which completely contain the origin sen-
tence’s information. One of the advantages of
discourse commitments is that it can use a lot of
syntax-level and semantic level rules to extract the
underlying information of one sentence. For ex-
ample, the following T -H pair can be decomposed
as Figure 2. The discourse commitments of T con-
tains the information: Ayrton Senna married in
1998, which is not easy to be captured by “shal-
low” methods.

T : Ayrton Senna was married to a doctor who
lives in Austin, the capital of Texas, in 1998.

H : Ayrton Senna lives in Texas.

Since we need to infer new facts using the ex-
tracted commitments, we transfer all the commit-
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Text: Ayrton Senna was married to a doctor who lives in 

Austin, the capital of Texas.

T1. Ayrton Senna was married to a doctor

T2. [The] doctor lives in Austin

T3. Austin [is] the capital of Texas 

Hypothesis: Ayrton Senna lives in Texas.

Figure 2: Text Commitments Example

Text: Ayrton Senna was married to a doctor who lives in 

Austin, the capital of Texas.

T1. bemarriedTo(Ayrton Senna,Doctor)

T2. livein(Doctor, Austin)

T3. beCapitalof(Austin, Texas) 

Hypothesis: Ayrton Senna lives in Texas.

H1. livein(Ayrton Senna, Texas) 

Figure 3: Text Predicates Example

ments to predicates. For example, the commit-
ments in Figure 2 can be transformed to the pred-
icates (or triples) shown in Figure 3. We use RE-
VERB (Fader et al., 2011) to extract the triples
(predicate + 2 Arguments). To make the infer-
ence process in the next section more convenient,
we order that all of the arguments should be NPs.
Therefore, we check if the arguments in the triples
contain or have overlap with any of the NPs, re-
place it with that NP, and the predicates are suc-
cessfully extracted.

2.2 Distant supervision with YAGO

The goal of distant supervision is to use the knowl-
edge of YAGO (Mahdisoltani et al., 2014) to help
the textual entailment recognition task. The facts
in YAGO have various type of connections with
each other. We think this connection is very useful
for RTE. Therefore, the predicates in the T -H pair
should be matched to the YAGO facts for making
advantage of the connection information.

Since YAGO is very large, the common predi-
cates can easily matched to YAGO facts in most
cases. However, YAGO cannot contain every
predicate in T . We run DIRT (Lin and Pan-
tel, 2001) system on 1GB text random sampled
from Gigaword corpus and for each predicate we
choose the top-10 similar predicates as its synony-
mous predicate. If the origin predicate cannot be
found in YAGO, we instead check for the top-10
similar predicates. If we still cannot find a match,
that means this predicate has very little connection
with other predicates and cannot be supervised by
YAGO.

2.3 Probabilistic Inference

The goal of MLN (Richardson and Domingos,
2006) is to implement the probabilistic inference,
or “soft” logic inference. MLN is constructed by
an inference rule base. Each rule has a weight
which needs to be well trained by real word

facts. We use AMIE to mine inference rules from
YAGO.

AMIE1 (Galárraga et al., 2013) is a state-of-
the-art inference rule mining system. The motiva-
tion of AMIE is that KBs themselves often already
contain enough information to derive and add new
facts. If, for example, a KB contains the fact that
a child has a mother, then the mother’s husband is
most likely the father.

motherOf(m, c)∧marriedTo(m, f)⇒ fatherOf(f, c)

AMIE can mine such inference rules from large
KBs. The inference rules can be directly used for
constructing Markov logic network in the next sec-
tion. In addition, the process of mining inference
rules is quite efficient so that it is very helpful for
our RTE task.

We use AMIE only to extract the inference
rules. After the inference rules are prepared, we
can construct a MLN. We give the related facts in
YAGO to the MLN, then the weights of each infer-
ence rule can tune to a best fit for these facts. After
the weights of each inference rule are well trained,
the MLN is well prepared to use. Given the pred-
icates in T , we first select all the related rules to
construct a simple MLN, and then give the MLN
some facts. After that, the MLN will calculate the
probabilities of the unknown new facts. The ar-
guments of the new facts are the permutations of
all the ground atoms (or entities). For example, if
we give the facts “hasChild (Cliton, Chelsea)” and
“IsMarriedto (Cliton, Hillary)”, the MLN will out-
put the probability of “hasChild (Cliton, Hillary)”,
“hasChild (Hillary, Chelsea)”, “IsMarriedto (Cli-
ton, Chelsea)”, etc. Obviously, the probability of
“hasChild (Hillary, Chelsea)” may be the highest,
so that it is most likely to be true. The MLN
constructing and inferring can be implemented by

1http://www.mpi-inf.mpg.de/departments/databases-and-
information-systems/research/yago-naga/amie/
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Approach Accuracy
Term overlap (Zanzotto and Moschitti, 2006) 67.50%
Graph Matching (MacCartney et al., 2006) 65.33%
Classification-Based (Hickl et al., 2006) 77.00%
Discourse Commitment (Hickl, 2008) 84.93%
Strict logic (Tatu and Moldovan, 2006) 71.59%
Our Framework 85.16%

Table 1: Performance of Inference based RTE

Alchemy2, which provides a series of algorithms
for statistical relational learning and probabilistic
logic inference, based on the Markov logic repre-
sentation.

After the new facts are inferred, we check if
these facts can cover the predicates in H . If so,
we decide T entails H .

3 Experiment

We evaluate the performance of our framework
for RTE on the PASCAL RTE-23 and RTE-34

datasets, which has 1600 examples. We use the
YAGO2 for aligning predicates and mining infer-
ence rules. YAGO2 contains more than 940K facts
and about 470K entities. We run the AMIE sys-
tem on YAGO2 for only one time to get all infer-
ence rules (about more than 1.8K in total). For
each T -H pair, we only choose a portion of re-
lated inference rules to construct MLN. The cho-
sen rules must contain at least one predicate which
occurred in the predicates of T -H pair. We only
use the MLN to infer when the discourse commit-
ment paraphrasing cannot identify a T -H pair as
”Entailment”, which is a back-off method.

We compare our result with 5 baseline systems:
(1) Zanzotto and Moschitti (2006)’s simple term-
overlap measure, (2) MacCartney et al. (2006)’s
semantic graph-mapping approach, (3) Hickl et al.
(2006)’s classification-based term alignment ap-
proach. (4) Hickl (2008)’s discourse commitment
based Alignment, (5) Tatu and Moldovan (2006)’s
strict logic based method. The comparison of the 5
baselines and our framework is shown in Table 1.
Since we only need to judge “Yes” or “No” for the
1600 examples, the precision is equal to the recall,
so that we only report the precision.

According to the Table 1, the performance of
our framework is higher than Hickl (2008)’s base-
line, which is significant (Wilcoxon signed-rank
test, p < 0.05). The reason is that we have

2http://alchemy.cs.washington.edu/
3http://pascallin.ecs.soton.ac.uk/Challenges/RTE2/
4http://pascallin.ecs.soton.ac.uk/Challenges/RTE3/

added the inference portion to Hickl (2008)’s
method. Therefore, some T -H pairs which had to
be judged by semantic reasoning can be corrected
by our framework. For instance, T is “Hughes
loved his wife, Gracia, and was absolutely ob-
sessed with his little daughter Elicia.” and H is
“Gracia’s daughter is Elicia.” It is not easy for the
former baselines to recognize this entailment, but
our framework can easily recognize it to be “true”.
In this way, our framework has achieved a higher
result.

4 Related work

Textual Entailment Recognizing (RTE) task has
been widely studied by many previous works.
Firstly, the method based on similarity and over-
lap (Malakasiotis and Androutsopoulos, 2007; Ji-
jkoun and de Rijke, 2005; Wan et al., 2006). This
kind of methods can help solve the paraphrase
recognition problem, which is a subset of RTE.
Another important similarity-based method is tree
kernel (Zanzotto and Moschitti, 2006), which rely
on the cross-pair similarity between two pairs
(T ′, H ′) and (T ′′, H ′′).

Secondly, some approaches extract the knowl-
edge in T -H pair and check if the knowledge in T
contains the knowledge in H . Hickl (2008) trans-
formed the T -H pair into discourse commitments,
reducing the RTE task to the identification of the
commitments from a T which support the infer-
ence of theH . Other works map the text to logical
meaning representations, and then strict logic en-
tailment methods, possibly by invoking theorem
provers.

Thirdly, some works make use of statistical
classifiers which leverages a wide variety of fea-
tures. The language expression of each T -H pair
are represented by a feature vector 〈f1, f2 · · · fm〉.
The feature vector contains the scores of different
similarity measures applied to the pair, and possi-
bly other features.

There are also other works based on predicate-
argument representations with Markov Logic for
RTE, such as Rios et al. (2014) and Beltagy et al.
(2013). However, they did not use discourse com-
mitments to extract predicate-argument triples,
which may lead to severe information loss.

5 Conclusion

This paper introduced a new framework to solve
the Textual Entailment Recognizing task. This
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framework makes full use of Markov logic net-
work for probabilistic inference. We hold that
probabilistic inference is better than strict logic
method since transforming from language form
to strict logic form could lose a lot of informa-
tion. Therefore it is extremely hard for the theo-
rem provers to perform well.

In addition, we use YAGO database for distant
supervision. The predicates extracted from T -H
pair are first aligned with YAGO. If it succeeds, the
inference procedure of MLN will become much
more accurate. In addition, the inference rules for
constructing MLN are also extracted from YAGO
database using AIME system.

This framework can correctly recognize the en-
tailment T -H pairs which must be judged using
inference. This is our improvement over the pre-
vious work.
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Abstract

Traditional approaches to Chinese Seman-
tic Role Labeling (SRL) almost heavily re-
ly on feature engineering. Even worse,
the long-range dependencies in a sentence
can hardly be modeled by these method-
s. In this paper, we introduce bidirection-
al recurrent neural network (RNN) with
long-short-term memory (LSTM) to cap-
ture bidirectional and long-range depen-
dencies in a sentence with minimal fea-
ture engineering. Experimental results on
Chinese Proposition Bank (CPB) show a
significant improvement over the state-of-
the-art methods. Moreover, our model
makes it convenient to introduce hetero-
geneous resource, which makes a further
improvement on our experimental perfor-
mance.

1 Introduction

Semantic Role Labeling (SRL) is defined as the
task to recognize arguments for a given predicate
and assign semantic role labels to them. Because
of its ability to encode semantic information, there
has been an increasing interest in SRL on many
languages (Gildea and Jurafsky, 2002; Sun and Ju-
rafsky, 2004). Figure 1 shows an example in Chi-
nese Proposition Bank (CPB) (Xue and Palmer,
2003), which is a Chinese corpus annotated with
semantic role labels.

Traditional approaches to Chinese SRL often
extract a large number of handcrafted features
from the sentence, even its parse tree, and feed
these features to statistical classifiers such as CRF,
MaxEnt and SVM (Sun and Jurafsky, 2004; Xue,
2008; Ding and Chang, 2008; Ding and Chang,
2009; Sun, 2010). However, these methods suf-
fer from three major problems. Firstly, their per-
formances are heavily dependent on feature engi-

Figure 1: A sentence with semantic roles labeled
from CPB.

neering, which needs domain knowledge and la-
borious work of feature extraction and selection.
Secondly, although sophisticated features are de-
signed, the long-range dependencies in a sentence
can hardly be modeled. Thirdly, a specific anno-
tated dataset is often limited in its scalability, but
the existence of heterogenous resource, which has
very different semantic role labels and annotation
schema but related latent semantic meaning, can
alleviate this problem. However, traditional meth-
ods cannot relate distinct annotation schemas and
introduce heterogeneous resource with ease.

Concerning these problems, in this paper, we
propose bidirectional recurrent neural network
(RNN) with long-short-term memory (LSTM) to
solve the problem of Chinese SRL. Our approach
makes the following contributions:

• We formulate Chinese SRL with bidirection-
al LSTM RNN model. With bidirectional
RNN, the dependencies in a sentence from
both directions can be captured, and with L-
STM architecture, long-range dependencies
can be well modeled. The test results on the
bechmark dataset CPB show a significant im-
provement over the state-of-the-art methods.

• Compared with previous work that relied on
a huge number of handcrafted features, our
model can achieve much better performance
only with minimal feature engineering.

• The framework of our model makes the intro-
duction of heterogeneous resource efficient
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Figure 2: The model architecture.

and convenient, and this can further improve
our experimental performance.

2 Chinese SRL with RNN

Following previous work, we regard Chinese S-
RL as a task of sequence labeling, which assigns
a label for each word in the sequence. To iden-
tify the boundary information of semantic roles,
we adopt the IOBES tagging schema for the la-
bels as shown in Figure 1. For sequence labeling,
it is important to capture dependencies in the se-
quence, especially for the problem of SRL, where
the semantic role label for a word not only relies
on its local information, but also is determined by
long-range dependencies from other words. The
advantage of RNN is the ability to better capture
the contextual information, which is beneficial to
capture dependencies in SRL. Moreover, we en-
rich the basic RNN model with bidirectional LST-
M RNN, which can model bidirectional and long-
range dependencies simultaneously.

2.1 Model Architecture

The architecture of our approach is illustrated in
Figure 2. Given a sentence, we first get repre-
sentation for each word to be labeled. Then af-
ter a nonlinear transformation, bidirectional LST-
M RNN layer is designed to combine the local in-

formation of a word and its contextual information
from both directions. With a nonlinear layer to
form more complex features, a linear output lay-
er follows. For each word to be labeled, there is
an output vector, whose each dimension is a score
corresponding to a kind of semantic role label.

2.2 Word Representation
Word representation captures the features locally
embedded around the word. The features used in
our work are: the current word, the current POS
tag, the predicate, left and right words, left and
right POS tags, distance to the predicate. Note that
these features are all basic information about the
word, hence we alleviate the heavy job of feature
engineering. All these features are introduced by
embeddings. After concatenation, we get the word
representation feature vector.

To get more complex features, we adopt a non-
linear transformation:

zt = f(W1xt) 1 ≤ t ≤ N
where xt is the word representation of the t-th
word, W1 ∈ Rn1×n0 , n0 is the length of word rep-
resentation, f is an activation function and we use
tanh in our experiments,N is the number of words
to be labeled in the sequence.

2.3 Bidirectional LSTM RNN
Representation zt only captures the local informa-
tion. Here we adopt RNN to capture contextual
information. Traditional RNN has the problem of
vanishing or exploding gradients, which means the
long-term dependencies can hardly be modeled.
LSTM is designed to mitigate this problem.

At each word position t, the LSTM RNN com-
putes six internal vectors: C̃, gi, gf , go, Ct and ht
for the memory cell, which is a structure used in
LSTM to store information. C̃ computes the can-
didate value for the state of the memory cell:

C̃ = f(Wczt + Ucht−1 + bc)

The activations of the memory cell’s input gate,
forget gate and output gate are defined as:

gj = σ(Wjzi + Ujht−1 + bj)

where j stands for i, f or o. σ is taken sigmoid in
experiments. Then we can compute Ct, the mem-
ory cell’s new state at position t:

Ct = gi � C̃ + gf � Ct−1
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where � indicates elementwise vector multiplica-
tion. With the new state of the memory cell, we
can compute the value of output state ht:

ht = go � f(Ct)

ht contains the information not only from local
representation zt, but also from previous output
state ht−1, hence can capture dependencies in
a sentence. Because the dependencies forward
and backward are both important to label seman-
tic roles, we extend LSTM with bidirectional ap-
proach, resulting in:

at = [
−→
ht
T ,
←−
ht
T ]T 1 ≤ t ≤ N

Further, a nonlinear transformation follows:

vt = f(W2at) 1 ≤ t ≤ N

where W2 ∈ Rn3×n2 , n2 is the dimension of at.

2.4 Output Representation
For each word to be labeled, we adopt linear trans-
formation to get the output vector ot:

ot = W3vt 1 ≤ t ≤ N

W3 ∈ Rn4×n3 , where n4 is the number of seman-
tic role labels in IOBES tagging schema. There-
fore, the resulting vector ot for the t-th word is of
length n4, and each dimension corresponds to the
score of a certain semantic role label.

2.5 Training Criteria
Because there are dependencies among word la-
bels in a sentence, isolated training approach
which independently considers each word will be
inappropriate. Therefore, we adopt sentence tag
approach, in which we encourage the correct path
of tags, while discouraging all other valid paths.

Given all our training examples:

T = (x(i), y(i))

where x(i) denotes the i-th training sentence, y(i)

is the corresponding Ni (the number of words to
be labeled) dimension vector, which indicates the
correct path of tags, and y(i)

t = k means the t-th
word has the k-th semantic role label. The score
of x(i) along the path y(i) is defined as follows:

s(x(i), y(i), θ) =
Ni∑
t=1

o
ty

(i)
t

where θ is an ensemble of all the parameters in the
network.

The log likelihood with a single sample is then:

logp(y(i)|x(i), θ) = log
exp

(
s(x(i), y(i), θ)

)∑
y′ exp

(
s(x(i), y′, θ))

= s(x(i), y(i), θ)− log
∑
y′

exp
(
s(x(i), y′, θ)

)
where y′ ranges from all the valid paths of tags.

The full log likelihood of the whole training cor-
pus is as follows:

J(θ) =
T∑
i=1

logp(y(i)|x(i), θ)

To compute the network parameter θ, we maxi-
mize the log likelihood J(θ) using stochastic gra-
dient ascent in the experiments.

2.6 Introducing Heterogeneous Resource

A single annotated corpus with semantic role la-
bels is often limited in its scalability. Heteroge-
neous resource in our work is defined as another
dataset annotated with semantic roles, which also
provides predicate-argument structure annotation,
but uses very different semantic role labels and an-
notation schema. However, in spite of these differ-
ences, the latent semantic meaning may be highly
correlated. Therefore, the introduction of hetero-
geneous data can alleviate the problem of scalabil-
ity with a single annotated corpus.

Traditional approaches hardly concern the ex-
istence of heterogeneous resource and are diffi-
cult to relate different annotation schemas, but in
the framework of our model, heterogeneous data
can be introduced in a relatively convenient way.
Specifically, we learn a bidirectional LSTM RN-
N model based on heterogeneous data, then with
the fine-tuned word embeddings we initialize the
model on our experimental dataset. The princi-
ple behind is that the words almost convey the
same semantic meaning albeit in distinct annota-
tion schemas. The introduction of heterogenous
resource in this way is efficient and can lead to
performance improvement on our experiment.

3 Experiments

We conduct experiments to compare our model
with previous landmark methods on the bench-
mark dataset CPB for Chinese SRL. The result
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Remark Choice
Word embedding dimension nword = 50
POS tag dimension npos = 20
Distance dimension ndis = 20
Nonlinear layer n1 = 200
RNN layer nh = 100
Nonlinear layer n3 = 100
Learning rate α = 10−3

Table 1: Hyper parameters of our model.

reveals that even with our basic model, which
does not resort to other resources, our approach
can significantly outperform all of the competitors.
Moreover, we enrich our work with introducing
heterogenous resource to make a further improve-
ment on performance. And the result also shows
the influence of heterogeneous resource is more
evident than the standard method of pre-training
for word embeddings.

3.1 Experimental Setting

To facilitate comparison with previous work, we
conduct experiments on the standard benchmark
dataset CPB 1.0.1 We follow the same data setting
as previous work (Xue, 2008; Sun et al., 2009),
which divided the dataset into three parts: 648
files (from chtb 081.fid to chtb 899.fid) are used
as the training set. The development set includes
40 files, from chtb 041.fid to chtb 080.fid. The
test set includes 72 files, which are chtb 001.fid
to chtb 040.fid, and chtb 900.fid to chtb 931.fid.
We use another annotated corpus2 with distinct se-
mantic role labels and annotation schema, which is
designed by ourselves for other projects, as hetero-
geneous resource. This labeled dataset has 17,308
annotated sentences, and the semantic roles con-
cerned are like “agent” and “patient”, resulting in
21 kinds of types, which are all distinct from the
semantic roles defined in CPB. We use the devel-
opment set of CPB for model selection, and the
hyper parameter setting of our model is reported
in Table 1.

3.2 Chinese SRL Performance

Table 2 summarizes our SRL performance com-
pared to previous landmark results. The work of
Collobert and Weston (2008) was conducted on
English SRL, we implement their approach on CP-

1https://catalog.ldc.upenn.edu/LDC2005T23
2This Chinese dataset is available on request.

Method F1(%)
Xue (2008) 71.90
Collobert and Weston (2008) 74.05
Sun et al. (2009) 74.12
Yang and Zong (2014) 75.31
Ours (Random Initialization) 77.09
+ Standard Pre-training 77.21
+ Heterogenous Resource 77.59

Table 2: Results comparison on CPB dataset.

B for comparison. As indicated by this table, our
approach significantly outperforms previous state-
of-the-art methods even with all parameters ran-
domly initialized, that is without introducing other
resources. This result can prove the ability of our
model to capture useful dependencies for Chinese
SRL with minimal feature engineering.

Further, we conduct experiments with the intro-
duction of heterogenous resource. Previous work
found that the performance can be improved by
pre-training the word embeddings on large unla-
beled data and using the obtained embeddings to
make initialization. With the result in Table 2,
it is true that these pre-trained word embeddings
have a good effect on our performance (we use
word2vec3 on Chinese Gigaword Corpus for word
pre-training). However, as shown in Table 2, com-
pared to standard pre-training, the influence of het-
erogenous data is more evident. We can explain
this difference via the distinction between these
two kinds of methods for performance improve-
ment. The information provided by standard pre-
training with unlabeled data is more general, while
that of heterogenous resource is more relevant to
our task, hence is more informative and evident.

4 Related Work

Semantic Role Labeling (SRL) was first defined
by Gildea and Jurafsky (2002), who presented a
a system based on statistical classifiers trained on
hand-annotated corpus FrameNet. Sun and Ju-
rafsky (2004) did the preliminary work on Chi-
nese SRL without any large semantically annotat-
ed corpus and produced promising results. Af-
ter CPB (Xue and Palmer, 2003) was built, X-
ue and Palmer (2005) and Xue (2008) produced
more complete and systematic research on Chi-
nese SRL. Ding and Chang (2009) established a

3https://code.google.com/p/word2vec/
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word based Chinese SRL system, which is quite
different from the previous parsing based ones.
Sun et al. (2009) extended the work of Chen et
al. (2006), performed Chinese SRL with shallow
parsing, which took partial parses as inputs. Yang
and Zong (2014) proposed multi-predicate SRL,
which showed improvements both on English and
Chinese Proposition Bank. Different from most
work relying on a large number of handcrafted
features, Collobert and Weston (2008) proposed a
convolutional neural network for SRL. Their ap-
proach achieved competitive performance on En-
glish SRL without requiring task specific feature
engineering. However, by max-pooling operation,
the convolution approach only preserved the most
evident features in a sentence, thus can only weak-
ly model the dependencies. With our bidirectional
LSTM RNN model, this problem can be well alle-
viated.

Our model is based on recurrent neural network
(RNN), which uses iterative function loops to store
contextual information. To remedy the problem
of vanishing and exploding gradients when train-
ing the standard RNN, Hochreiter and Schmidhu-
ber (1997) proposed long-short-term memory (L-
STM), which has been shown capable of storing
and accessing information over very long time s-
pans. Bidirectional RNN (Schuster and Paliwal,
1997) and bidirectional LSTM RNN (Graves et
al., 2005) are the extensions of RNN and LSTM
RNN with the capability of capturing contextual
information from both directions in the sequence.
In recent years, RNN has shown the state-of-the-
art results in many NLP problems such as lan-
guage modeling (Mikolov et al., 2010) and ma-
chine translation (Sutskever et al., 2014; Bah-
danau et al., 2014). Sundermeyer et al. (2014)
also used bidirectional LSTM RNN model to im-
prove strong baselines when modeling translation.
More recently, Zhou and Xu (2015) proposed L-
STM RNN approach for English Semantic Role
Labeling, which shared similar idea with our mod-
el. However, the features used and the network ar-
chitecture were different from ours. Moreover, it is
delightful that our work can achieve a rather good
result with a relatively simpler model architecture.

5 Conclusion

In this paper, we formulate Chinese SRL problem
with the framework of bidirectional LSTM RN-
N model. In our approach, the bidirectional and

long-range dependencies in a sentence, which are
important for Chinese SRL, can be well modeled.
And with the framework of deep neural network,
the heavy job of feature engineering is much alle-
viated. Moreover, our model makes the introduc-
tion of heterogenous data, which can alleviate the
problem of scalability with a single annotated cor-
pus, more convenient. Experiments show that our
approach achieves much better results than previ-
ous work, and the introduction of heterogenous re-
source can make further improvement on perfor-
mance.
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Abstract 

Due to the commonality in natural language, 
negation focus plays a critical role in deep 
understanding of context. However, existing 
studies for negation focus identification ma-
jor on supervised learning which is time-
consuming and expensive due to manual 
preparation of annotated corpus. To address 
this problem, we propose an unsupervised 
word-topic graph model to represent and 
measure the focus candidates from both lexi-
cal and topic perspectives. Moreover, we 
propose a document-sensitive biased Pag-
eRank algorithm to optimize the ranking 
scores of focus candidates. Evaluation on the 
*SEM 2012 shared task corpus shows that 
our proposed method outperforms the state of 
the art on negation focus identification. * 

1 Introduction 

Negation is used to reverse the polarity of part of 
statements that are otherwise affirmative by de-
fault (Blanco and Moldovan, 2011), which is 
common in natural language. Negation focus is 
defined as the special part in sentence, which is 
most prominently or explicitly negated by a neg-
ative expression. For example, sentence (1) could 
be interpreted as He stopped, but not until he got 
to Jackson Hole with a positive part he stopped 
and a negative part until he got to Jackson Hole. 

(1) He didn't stop until he got to Jackson Hole. 

Our previous work (Zou et al., 2014) showed 
that contextual information plays a critical role 
on negation focus identification. For better illus-
tration of this conclusion, they manually analyze 
the evidences for 100 negation focuses. It is sur-

                                                 
* Corresponding author 

prising that 77 focuses can be identified with 
help of contextual information. This indicates 
that negation focus is often related with what 
authors repeatedly states in context. In this paper, 
we thus focus on graph-based ranking methods 
(Mihalcea and Tarau, 2004) which first build a 
word graph according to word co-occurrences 
within document, and then use random walk al-
gorithms (e.g., PageRank) to measure word im-
portance. 

However, for negation focus identification, the 
graph-based methods may suffer from the fol-
lowing two problems: (a) the words in graph-
based methods are strongly connected by co-
occurrence rather than semantic content, which 
do not necessarily guarantee that they are rele-
vant to the negation focus in context; and (b) 
identifying a negation focus may be affected by 
not only the relatedness of surrounding words 
but also its importance in current document 
which is not considered in standard random walk 
algorithms. 

To address the above problems, we propose a 
word-topic graph model by adding a topical layer 
on the original word layer to capture the seman-
tic clues from both lexical and topic perspectives. 
Besides, a document-sensitive PageRank algo-
rithm is also proposed to optimize the graph 
model by considering the document’s major top-
ics. Experimental results indicate that our word-
topic graph model outperforms other baseline 
methods. Moreover, our model is unsupervised 
and requires only un-annotated text for training. 

The rest of this paper is organized as follows. 
Section 2 overviews the related work. Section 3 
introduces our word-topic graph model with con-
textual discourse information. Section 4 reports 
the experimental results and analysis. Finally, we 
conclude our work in Section 5. 
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2 Related Work 

So far there is little work on negation focus iden-
tification, which was pioneered by Blanco and 
Moldovan (2011) who investigated the negation 
phenomenon in semantic relations and proposed 
a supervised learning approach to identify the 
focus of a negation expression. However, alt-
hough Morante and Blanco (2012) proposed ne-
gation focus identification as one of the 
*SEM’2012 shared tasks, only one team (Rosen-
berg and Bergler, 2012) participated in. They 
identified negation focus by three heuristic rules. 

Our previous work (Zou et al., 2014) demon-
strates the effectiveness of contextual infor-
mation for negation focus identification. On this 
basis, we further optimize the graph model in 
both the topical layer and the PageRank algo-
rithm in this paper. 

In recent years, many algorithms are widely 
used to incorporate word graph models and topi-
cal information within random walk. Our work is 
originally inspired by Liu et al. (2010). Their 
method runs decomposed Topical PageRank 
(TPR) for each topic separately, and then calcu-
lates the word scores with respect to different 
topics. When setting the edge weights, only word 
co-occurrence is considered. Different from their 
work, our word-topic graph model runs on a two-
layers (word layer and topical layer) graph model 
and sets the edge weights by measuring both 
word similarity and topic distribution. 

3 Methods 

The word-topic graph model consists of word 
layer and topical layer, as shown in Figure 1. 
While the word layer is constructed according to 
word co-occurrence within a sliding window, 
which expresses the cohesion relationship be-
tween words in the context, the topical layer is to 
refine the graph model over the discourse con-
textual information. 

 
Figure 1. Word-topic graph model. 

3.1 Constructing Word Layer 

The word layer is constructed according to word 
co-occurrence within a sliding window, which 
expresses the cohesion relationship between 
words in the context. It can be denoted as Lword 

(W, Ew), where vertex set W={wi} represents the 
set of words in one document and link set Ew 
={eij|wi, wj∈W} represents the set of directed 
edges between these words. Note that only con-
tent words are considered. Namely, we consider 
nouns, verbs, adjectives, and adverbs. 

The link directions are added from the first 
word pointing to other words within a sliding s-
width sentence window. Directed edge ewij is 
weighted to represent the relatedness between 
word wi and word wj in a document with transi-
tion probability Pw(j|i) from i to j, which is nor-
malized as follows: 

:

( , )
( | ) ,

( , )
i k

i j
w

i k
k w w

sim w w
P j i

sim w w



                (1) 

where the denominator represents the out-degree 
of vertex wi , and sim(wi,wj) denotes the similari-
ty between word wi and wj. In this paper, both 
corpus-based and knowledge-based methods are 
evaluated to calculate the similarity between 
words. 
 Word co-occurrence. If word wi and word wj 

occur in a s-width sliding sentence window, 
sim(wi,wj) increases 1. 

 WordNet similarity (Miller, 1995). In this 
paper, we adopt the path similarity function 
to measure relatedness of nouns and verbs, 
and adopt the similar to function to measure 
relatedness of adjectives and adverbs by us-
ing the NLTK toolkit1 (Bird et al., 2009). 

Note that sim(wi,wi) = 0 to avoid self-transition, 
and sim(wi,wj) and sim(wj,wi) may not be equal. 

3.2 Preliminaries for Topical Layer 

To infer the latent topic distributions of words, 
Latent Dirichlet Allocation (LDA) (Blei et al., 
2003), a typical of topic model, is directly ap-
plied. By the set of topics which derive from a 
corpus, we can obtain: 
 P(t|w), the probability of topic t given word 

w, which indicates how much that word w 
focuses on topic t, and 

 P(t|d), the probability of topic t given doc-
ument d, which indicates how much that 
document d focuses on topic t. 

                                                 
1 http://www.nltk.org/ 
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Then, the similarity between two words or be-
tween word wi and document d can be measured 
by the similarity between their corresponding 
topic distributions. Formally, we denote a topic 
distribution as θ, and measure the similarity by 
using: 
 Dot-product. We consider the topic distribu-

tions as vectors and apply the dot-product, a 
geometrically motivated function, to calcu-
late the similarity: 

( , ) ( | ) ( | ),
i j i j k

w w w w k i k jt T
Inner P t w P t w   


      (2) 

( , ) ( | ) ( | ).
i i k

w d w d k i kt T
Inner P t w P t d   


          (3) 

 Kullback Leibler (KL) divergence (Lin, 
1991). Considering the asymmetry (Eq.(4)), 
we obtain a symmetrized measure by Eq.(5). 

2

( )
( , ) ( ) log .

( )k

i k
i j i kt T

j k

P t
D P t

P t
 


             (4) 

( , ) ( , ) ( , ).KL i j i j j iD D D                    (5) 

Note that DKL(θi, θj) is undefined if Pi(tk)=0 
or Pj(tk)=0 for any tk ∈T. For this reason, 
only the topics which make both Pi(tk)≠0 
and Pj(tk)≠0 are adopted to calculate the KL 
divergence between two topic distributions. 

3.3 Word-Topic Graph Model 

The word layer can well capture the relatedness 
between words, but just partially model the nega-
tion focus since it is more directly related with 
topic than content. Therefore, we add one more 
layer to refine the graph model over the topical 
information, as shown in Figure 1. Formally, the 
word-topic graph is defined as Gtopic(W, T, Ew, Et), 
where vertex set T={ti} represents the set of top-
ics in all of documents in corpus and link set Et 
={etij|wi∈W, tj ∈T} represents the set of undi-
rected edges between words and topics. 

Considering that the topical layer can provide 
more contextual semantic information, we refine 
the relatedness between words by using a topical 
transition probability Pt(j|i) which is calculated 
by two kinds of measurements: 

:

( , )
( | ) .

( , )
i j

i k

i k

w w

t
w w

k w w

sim
P j i

sim

 

 



              (6) 

Here, the similarity is measured by the dot-
product or the KL divergence (using reciprocals). 
On this basis, the word transition probability 
Pw(j|i) is updated as following: 

' ( | ) ( | ) (1 ) ( | ).w w tP j i P j i P j i            (7) 

where µ∈[0,1] is the coefficient controlling the 
relative contributions from the lexical infor-
mation and the topical information. 

Moreover, the weights of word vertices are 
calculated by a PageRank algorithm. In standard 
PageRank (Page et al., 1998), words are set to be 
the same value, which indicates there is equal 
importance to all of words in a document. How-
ever, intuitively, we should allocate higher 
weights to those words with high relevance to the 
document. Therefore, we assign a document-
sensitive value to word wi: 

( , )
( )

( , )
i

kk

w d
d i

w dw W

sim
R w

sim

 
 




                    (8) 

and calculate the weights of word vertices itera-
tively by using a biased PageRank algorithm: 

( 1) ( ) '( ) ( ) ( | )

(1 ) ( ).

n n
i j wj i

d i

Score w Score w P j i

R w










 


    (9)

 

All of the PageRank algorithms are terminated 
when the number of iterations reaches 100 or the 
difference of each vertex between consecutive 
iterations is less than 0.001. 

Finally, according to the annotation guidelines 
(Blanco and Moldovan, 2011), the focus is al-
ways a full text of a semantic role. Thus, we se-
lect all of semantic roles in sentence as candidate 
focuses for ranking. The ranking score of a can-
didate focus f is computed by averaging the 
scores of all words inside the candidate: 

( )
( ) ,

( , )
i

iw f
avg

score w
score f

Count f





         (10) 

where count(f,•) denotes the number of content 
words within the candidate. Then the top ranked 
candidate is chosen as the negation focus. 

4 Experimental Results 

To evaluate the performance of our word-topic 
graph model for negation focus identification, we 
carry out experiments on the *SEM'2012 shared 
task corpus2. As a freely downloadable resource, 
the corpus is annotated on top of PropBank, 
which uses the WSJ section of the Penn Tree-
Bank. In particular, negation focus annotation on 
this corpus is restricted to verbal negations 
(Blanco and Moldovan, 2011). In total, this cor-
pus provides 3,544 instances of negation focus 
annotations. Although for each instance, the cor-
pus only provides the current sentence, the pre-
vious and next sentences as its context, we sort to 

                                                 
2 http://www.clips.ua.ac.be/sem2012-st-neg/ 
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the Penn TreeBank3 to obtain the corresponding 
document as its discourse context. For fair com-
parison, we adopt the same partition as 
*SEM’2012 shared task in our experiments. 

We evaluate our results in terms of accuracy. 
To see whether an improvement is statistically 
significant, we conduct significance testing using 
the paired t-test. 

For estimating the topical transition probabil-
ity Pt(j|i) and the document-sensitive value Rd(wi), 
we employ GibbsLDA++4, an LDA model using 
Gibbs Sampling technique for parameter estima-
tion and inference (Griffiths, 2002). We set the 
parameters α = 50/T and β = 0.1 as Griffiths and 
Steyvers (2004) suggested. 

4.1 Influences of Parameters 

There are two major parameters in our models 
that may influence the performance, including: (a) 
the damping factor µ of the word transition prob-
ability P’

w(j|i) (Eq.(7)) and (b) the damping fac-
tor λ of the word-topic graph model (Eq.(9)). 

Figure 2 shows the accuracy when varying µ 
from 0.1 to 0.9 with an interval of 0.1 and when 
varying λ from 0.05 to 1 with an interval of 0.05. 
We notice that the best performance is achieved 
when µ=0.6. It indicates that the direct lexical 
information contributes slightly more than the 
topical information. The results also show the 
complementarity between these two kinds of in-
formation on negation focus identification.  

For λ, it has very little, if any, effect on per-
formance, when λ is set from 0.5 to 0.85. It indi-
cates that the contextual information (the first 
term in Eq.(9)) contributes more than the docu-
ment information (the second term in Eq.(9)) on 
negation focus identification. 

 
Figure 2. Influence of the damping factors µ and λ. 

Moreover, the results also show that these two 
parameters have little impact in a certain range 
on performance (µ:0.4~0.6; λ:0.5~0.85), which 
suggests that the approach is robust to a certain 

                                                 
3 http://www.cis.upenn.edu/~treebank/ 
4 http://gibbslda.sourceforge.net/ 

extent. Therefore, we set µ=0.6 and λ=0.7 in the 
following experiments. 

Besides, we also evaluate the other minor pa-
rameters in our model. Due to space limit, we do 
not report all of results here and set parameters to 
the following values: setting window size s=1 
(the previous and next sentences) and the number 
of topic T=40, adopting the word co-occurrence 
similarity to calculate the similarity between 
words, and using dot-product to measure both 
Pt(j|i) and Rd(wi). 

4.2 Comparison with Other Methods 

In the word-topic graph models, two primary 
improvements are proposed: (a) updating the 
word transition probability Pw(j|i) by adding a 
topical layer (“TL”), and (b) assigning a docu-
ment-sensitive value to word node (“DS”).  

model Acc. 
WLM 52.61 
WTGM (TL) 65.74 
WTGM(TL+DS) 69.39 

Table 1. Performance of the word-topic graph 
model. 

Table 1 shows that the word-topic graph mod-
el (WTGM) is significantly better (+16.78%, 
p<0.01) than the graph model with only word 
layer (WLM), which justifies the effectiveness of 
the topical layer. In addition, the results also in-
dicate that the word-topic graph model not only 
takes the topical information into account (“TL”), 
but also considers the semantic relationship in 
current document (“DS”). 

We select two supervised baseline methods to 
compare with our word-topic graph model. One 
is a decision tree-based system described in 
Blanco and Moldovan (2011), and the other one 
is a SVM-based system which takes advantage of 
both syntactic features and contextual features 
(Zou et al., 2014). 

system Acc. 
B&M(2011) 63.20 
Zou et al.(2014) 67.14 
Ours 69.39 

Table 2. Comparison Results. 

Table 2 shows that our word-topic graph 
model performs significantly better than the two 
others by 6.19% (p<0.01) and 2.25% (p<0.01), 
respectively. The results support our viewpoint 
that the topical information in context can help 
to find the negation focus, and the word-topic 
graph model we proposed is effective. Moreo-
ver, it is also worth noting that our method is 
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unsupervised, which does not need the prior 
knowledge for training, while the other two su-
pervised baselines employ the golden features, 
such as the POS tag, constituent tree, and de-
pendency tree. 

5 Conclusion 

In this paper, we propose an unsupervised word-
topic graph model, which represents and 
measures the word importance by using contex-
tual information from both lexical and topical 
perspectives. And then, we propose a document-
sensitive biased PageRank algorithm to calculate 
the ranking scores of negation focus candidates. 
Experimental results show that our method 
achieves better performance than other baselines 
without any annotated data. 

The main shortcoming of our method is that 
not all of negation focus can be identified by the 
context. As our statistics, at least 17% of samples 
are hard to be determined by human beings when 
ignoring the information in current sentence. 
Therefore, in future work, we will focus on in-
vestigating an effective method to integrate the 
local lexical/syntactic information and the global 
contextual discourse information. 
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Abstract

In this paper we analyze the perfor-
mance of different composition models
on a large dataset of German compound
nouns. Given a vector space model for the
German language, we try to reconstruct
the observed representation (the corpus-
estimated vector) of a compound by com-
posing the observed representations of its
two immediate constituents. We explore
the composition models proposed in the
literature and also present a new, simple
model that achieves the best performance
on our dataset.

1 Introduction

Vector space models of language like the ones
presented in (Collobert et al., 2011b; Mikolov et
al., 2013; Pennington et al., 2014) create good
representations for the individual words of a lan-
guage. However, the words in a language can
be combined into infinitely many distinct, well-
formed phrases and sentences. Creating meaning-
ful, reusable representations for such longer word
sequences is still an open problem.

In this paper we focus on building represen-
tations for syntactic units just above the word
level, by exploring compositional models for com-
pounds. Bauer (2001) defines a compound as “a
lexical unit made up of two or more elements,
each of which can function as a lexeme indepen-
dent of the other(s) in other contexts” (e.g. apple
tree). The vast majority of compounds are com-
positional, i.e. we can understand the meaning of
the compound if we know the meaning of its con-
stituent words. We would like to equip the vector
space model with a composition function able to
construct a composite representation for apple tree
from the representations of apple and tree. The
composite representation should ideally be indis-
tinguishable from its observed representation, i.e.

the representation learned directly by the language
model if the compound is part of the dictionary.

We situate our investigations in the context of
the German language, a language where com-
pounds represent an important fraction of the vo-
cabulary. Baroni et al. (2002) analyzed the 28 mil-
lion words German APA news corpus and discov-
ered that compounds account for 47% of the word
types but only 7% of the overall token count, with
83% of compounds having a corpus frequency of 5
or lower. The high productivity of the compound-
ing process makes the compositional approach the
most tractable way to create meaningful represen-
tations for all the compounds that have been or will
be coined by the speakers of the German language.

German compounds have a strategic advantage
for our study: they are generally written as a
contiguous word, irrespective of how many con-
stituents they have. Our example English com-
pound, apple tree, translates into the German com-
pound Apfelbaum, with the head Baum “tree” and
the modifier Apfel “apple”. Because the com-
pound is written as a single word, we can di-
rectly learn the representations for the compound
and for its constituents. Given a large dataset of
German compounds together with their immedi-
ate constituents, and the corresponding distributed
representations for each of the individual words,
one can try to reverse-engineer the compounding
process and learn the parameters of a function that
combines the representation of the constituents
into the representation of the compound. More
formally, we are interested in learning a compo-
sition function f such that

ccomp = f(mobs, hobs)

where ccomp ∈ Rn is the composite representa-
tion of the compound and mobs, hobs ∈ Rn are
the observed representations of its modifier and its
head. The function should minimize J , the mean
squared error between the composite (ccomp) and
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the observed (cobs) representations of the |C| com-
pounds in the training set:

J =
|C|∑
i=1

1
n

n∑
j=1

(ccompij − cobsij )2

Several compositionality models have already
been proposed in the literature (Mitchell and La-
pata, 2010; Baroni and Zamparelli, 2010; Socher
et al., 2012). In this paper we evaluate several
of the proposed composition functions and also
present a new composition model which outper-
forms all previous models on a dataset of German
compounds.

2 Word Representations and
Compounds Dataset

We trained 4 vector space language models for
German (with 50, 100, 200 and 300 dimensions
respectively) using the GloVe package (Penning-
ton et al., 2014) and a 10 billion token raw-text
corpus extracted from the DECOW14AX corpus
(Schäfer, 2015). We use a vocabulary of 1,029,270
(1M) words, obtained by selecting all the words
with a minimum frequency of 100 (the full vocab-
ulary had 50M unique words). We used the default
GloVe training parameters, the only modifications
being the use of a symmetric context when con-
structing the co-occurence matrix (10 words to the
left and to the right of the target word) and training
each model for 15 iterations. All the vector spaces
were normalized to the L2-norm, first across fea-
tures then across samples using scikit-learn (Pe-
dregosa et al., 2011).

The German compounds dataset used in the ex-
periments is a subset of the 54759 compounds
available in GermaNet 9.01. The compounds
in the list were automatically split and manu-
ally post-corrected (Henrich and Hinrichs, 2011).
Each entry in the list is a triple of the form (com-
pound, modifier, head). We filtered the entries in
the list, keeping only those where all three words
have a minimum frequency of 500 in the support
corpus used to create the vector space represen-
tations. The reason for the filtering step is that
a “well-learned” representation (based on a suffi-
ciently large number of contexts) should allow for
a more accurate reconstruction than a representa-
tion based only on a few contexts. The filtered
dataset contains 34497 entries. This dataset was

1http://www.sfs.uni-tuebingen.de/lsd/compounds.shtml

randomized and partitioned into train, test
and dev splits according to the 70-20-10 rule. The
dataset contains 8580 unique modifiers and heads,
and a dictionary of 41732 unique words. 1345
compounds appear as the modifier or head of an-
other compound.

3 12 ways to Represent A Compound

We adopt a notation similar to the one introduced
in (Mitchell and Lapata, 2010), where the compos-
ite representation p is the result of applying a com-
position function f to the vectors u and v. In this
study we tested the following composition func-
tions:

1. p = v, the second constituent of the com-
pound

2. p = u, the first constituent of the compound
3. p = u � v, component-wise vector multipli-

cation
4. p = (u · u)v + (λ− 1)(u · v)u, dilation
5. p = 0.5u+ 0.5v, vector addition
6. p = λu + βv, weighted vector addition,

where the λ and β are estimated using the
training set. Models 1 through 6 were intro-
duced in (Mitchell and Lapata, 2010).

7. p = Uv, where v ∈ Rn is the vectorial
representation of the head word (given) and
U ∈ Rn×n is a matrix representation for the
modifier, estimated with the help of the train-
ing data. The model estimates one matrix for
each word that is used as a modifier. Referred
to as alm in (Baroni and Zamparelli, 2010)
and as Lexfunc in (Dinu et al., 2013b).

8. p = M1u + M2v, where M1,M2 ∈ Rn×n

are two matrices that modify the first and the
second constituent vectors, respectively. In
contrast to the previous model, this model es-
timates just one matrix for all the modifiers
and one matrix for all the head words. Ref-
ered to as EAM in (Zanzotto et al., 2010) and
as Fulladd in (Dinu et al., 2013b).

9. p = g(W [u; v]), where: [u; v] ∈ R2n×1 is the
concatenation of the individual word vectors;
W ∈ Rn×2n is a global matrix that: (i) com-
bines the individual dimensions of the con-
catenated input vector [u; v]; (ii) brings the
composite representation back into the Rn×1

space; g is an element-wise function, in our
experiments the hyperbolic tangent tanh. In-
troduced in (Socher et al., 2010).

10. p = g(W [V u;Uv]). Introduced in (Socher
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et al., 2012), it is a generalization of model 7.
Each word is represented using an Rn×n ma-
trix and a Rn vector. The vectors are given,
while the matrices are estimated using the
training data. Referred to as Fulllex in (Dinu
et al., 2013b).

11. p = u�u′+v�v′′, the additive mask model
(Addmask) and

12. p = g(W [u � u′; v � v′′]), the global ma-
trix mask model (Wmask), both presented in
subsection 3.1.

Models 1 through 8 were tested using the im-
plementations available in the DISSECT toolkit
(Dinu et al., 2013a). As a side note, the Lex-
func implementation in DISSECT does not pro-
duce a composite representation for 11.5% of the
our test data, where a word does not appear as a
modifier during training. Therefore, we reimple-
mented the Lexfunc model and solved the missing
training material problem by initializing the ma-
trix for all the words in the dictionary with I + ε,
the identity matrix plus a small amount of Gaus-
sian noise. This type of initialization was proposed
by (Socher et al., 2012), and allows the model to
back-off to the model p = v when there is no data
to estimate the parameters of the modifier matrix.
We also reimplemented models 9 and 10, which
were used in (Socher et al., 2010; Socher et al.,
2012), as the existing implementations are part of
a more complex recursive architecture aimed at
constructing representations for full sentences.

3.1 The mask models

The newly introduced mask models build upon the
idea that when a word w enters a composition pro-
cess, there is some variation in its meaning de-
pending on whether it is the first or the second el-
ement of the composition. Think, for instance, of
the compounds company car and car factory. In
the first case, car has its primary denotation, that
of a road vehicle. In the second case, what mat-
ters more about the car is its product aspect, the
fact that it is an “artifact produced in a factory”. A
good representation of the word car should encode
both aspects. Likewise, a good composition model
should be able to select from the individual word
representations only those aspects that are relevant
for the composition process.

We want to give the composition model the pos-
sibility to deal with these slight sense variations,
so we train, for each word in the dictionary, two

masks, one for the case when it is the first word
in the composition process and one for when it is
the second word. The masks of the word w rep-
resented by u ∈ Rn are two vectors u′, u′′ ∈ Rn.
The mask vectors are initialized with a vector of
all ones, 1, and estimated with the help of the train-
ing data. Each time w is the first word in the com-
position process, it is represented as the element-
wise multiplication of the vector u and the mask
u′, u � u′. When w is the second word in the
composition, it is represented by the element-wise
multiplication of u and the mask u′′, u� u′′.

It is important to note that the initial vector rep-
resentations remain fixed during the learning pro-
cess. The learning process only affects the mask
vectors. The composite representation of a com-
pound like car factory is obtained by combin-
ing the masked representations, ucar � u′car and
vfactory � v′′factory. We tried two different combi-
nation methods: (i) p = u � u′ + v � v′′, called
Addmask (model 11), where the masked represen-
tations are combined via component-wise addi-
tion, and (ii) p = g(W [u � u′; v � v′′]), called
Wmask (model 12), where the combination of the
masked representations is made via a global ma-
trix W ∈ Rn×2n and a nonlinearity g (tanh), sim-
ilar to model 10.

3.2 Implementing composition models

Models 7, 9 and 10 and the mask models were im-
plemented using neural network architectures in
the Torch7 library (Collobert et al., 2011a). We
use the mean squared error as a training criterion,
and optimize all models using Adagrad (Duchi et
al., 2011) and a mini-batch of 100 samples. The
hyperparameters were chosen by testing different
parameter values and evaluating their performance
on the dev set. To avoid overfitting we used early
stopping (Prechelt, 1998). All the implemented
models keep the input vectors fixed during the
composition process.

Training the mask models entails estimating
modifier and head masks for every word in the dic-
tionary D. The two types of masks to be learned
can be formalized as two matrices WM ,WH ∈
Rn×|D|, where n is the size of the initial word
representations. The masks of the word wi ∈ D
are the ith rows in WM and WH . In Torch7 such
representations can be learned using lookup table
layers (Collobert et al., 2011b), which map matrix
indices to the corresponding row vector.
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The masked representation of the modifier is
obtained by first feeding the index of the word to
LTWM

, the modifier lookup table, to obtain the
modifier mask, and then multiplying the modifier
mask with the initial representation for the modi-
fier. The masked representation of the head is ob-
tained in a similar manner via a lookup operation
in LTWH

, the head lookup table. The Addmask
and Wmask models differ only in the composi-
tion method used after the masking process: the
masked representations are directly added together
in the case of Addmask and are passed through a
composition matrix W ∈ Rn×2n and a nonlin-
earity g in the case of Wmask. The two matri-
ces WM ,WH are initialized with all ones and are
modified via backpropagation during the training
process.

4 Evaluation and Results

The twelve composition models presented in Sec-
tion 3 were evaluated using word representations
of increasing size (described in Section 2). All
the models are trained on the train split and
tested on the test split. We used the rank eval-
uation method proposed by (Baroni and Zampar-
elli, 2010) for a similar task: first, we generate
a composite representation for each of the 6901
compounds in the test set; then, we use the co-
sine similarity to rank each composite representa-
tion with respect to the observed representations
of the 41732 unique words in the dataset dictio-
nary. If the observed representation is the nearest
neighbour, the composition is assigned the rank 1.
Similar to (Baroni and Zamparelli, 2010), we as-
sign the rank 1000 (≥1K) when the observed rep-
resentation is not one of the nearest 1000 neigh-
bours of the composite representation. We then
compute the first, second and third quartiles (Q1,
Q2, Q3) across all the compounds in the test set.
A Q1 value of 2 means that the first 25% of the
data was only assigned ranks 1 and 2. Similarly,
Q2 and Q3 refer to the ranks assigned to the first
50% and 75% of data, respectively. The results of
our evaluation are displayed in Table 1.

The observed representation of the head (model
1) was used as a strong baseline for the compound
composition task. Two of the tested models, mul-
tiplicative (model 3) and dilation (model 4) score
worse than the head baseline, while the additive
models (5 and 6) score only slightly above it. The
fact that the worst performing model is the multi-

plicative model is surprising considering its good
performance in previous studies (Mitchell and La-
pata, 2010). This might be either a side-effect of
the normalization procedure, or a genuine incom-
patibility of this compositionality model with the
vectorial representations produced by GloVe.

The new Addmask and Wmask models (intro-
duced in Section 3.1) perform very well, with
Wmask producing the best results on the test
dataset across all dimensions. It is interesting to
note that the linguistically motivated Lexfunc and
Fulllex models, which build dedicated representa-
tions for each individual constituent, are outper-
formed by a simple model like Fulladd, that only
learns two modification matrices, one for each po-
sition. The explanation is, in our opinion, that the
available training material is not enough for train-
ing all the parameters of the complex Lexfunc and
Fulllex models, but good enough for the more sim-
ple Fulladd.

The mask models are computationally cheaper
than models like Lexfunc and Fulllex, as they they
only train 2n parameters for each word in the vo-
cabulary, and not n2 parameters like the aforemen-
tioned models. They manage to strike a balance
and learn a dedicated representation for each con-
stituent with a small number of parameters, thus
performing better than the more complex models.

We used non-parametric statistical tests to de-
tect significant differences between the results ob-
tained by the models. We focused our analysis on
the best performing 4 models: model 9, which we
will label the Matrix model, Fulladd (model 8),
Addmask (model 11) and Wmask (model 12). The
comparison takes into account two separate fac-
tors: (i) differences between the models using rep-
resentations of the same size; (ii) differences in the
performance of the same model using representa-
tions of different sizes.

A Friedman test on the ranks obtained by the
4 selected models on representations of size 300
showed that there is a significant difference be-
tween the models (p < 0.01). Pairwise compar-
isons (using the Wilcoxon signed rank test and
Bonferroni corrections) showed that there is a sig-
nificant difference (p < 0.01) between all but one
pair of models, namely the Matrix and the Ad-
dmask models (p = 0.9). The same test confirmed
that there are significant differences in the perfor-
mance of the best model Wmask when using repre-
sentations of different sizes (p < 0.01). Pairwise
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no f I 50d 100d 200d 300d
Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

1 p = v D 66 445 ≥1K 36 202 ≥1K 33 197 989 29 174 884
2 p = u D 445 ≥1K ≥1K 215 ≥1K ≥1K 171 917 ≥1K 144 808 ≥1K
3 p = u� v D ≥1K ≥1K ≥1K ≥1K ≥1K ≥1K ≥1K ≥1K ≥1K ≥1K ≥1K ≥1K
4 p = (u · u)v + (λ− 1)(u · v)u D 75 492 ≥1K 38 213 ≥1K 35 209 ≥1K 30 181 926
5 p = 0.5u+ 0.5v D 85 408 ≥1K 29 137 600.5 28 140 637 24 120 553
6 p = λu+ βv D 62 329 ≥1K 23.5 118 556 23 121 568 20 105 503
7 p = Uv (on 88.5% of test data) D 38 415 ≥1K 15 147 ≥1K 9 61 636 8 47 443
7 p = Uv R 10 88 829 8 64 595 7 48 479.5 7 51 526.5
10 p = g(W [V u;Uv]) R 3 18 178 3 12 111 3 16 188 4 26 334
9 p = g(W [u; v]) R 4 19 137 3 11 64 2 7 33 2 7 29
11 p = u� u′ + v � v′′ N 3 12 85 3 8 45 3 7 30 3 7 27
8 p = M1u+M2v D 4 19 135 3 10 61 2 7 33 2 6 27
12 p = g(W [u� u′; v � v′′]) N 2 9 62 2 7 35 2 6 25 2 6 24

Table 1: Quartiles for the 6901 composite representations in the test set, ranked with respect to the
observed representations. Best possible rank is 1. D marks the models tested with DISSECT, R marks
reimplementations of existing models and N marks new models.

comparisons showed that Wmask model signifi-
cantly improves its performance (p < 0.01) when
using word representations of increasing size (50,
100, 200 and 300 dimensions).

The twelve composition models were also com-
pared in terms of the mean squared error (MSE)
objective function, by computing the MSE be-
tween the composite and the observed represen-
tation of the compounds in the test set. The best
scoring models in the rank evaluation were also
the best in the MSE evaluation. However, the dif-
ference in performance between the best and the
worst models was considerably smaller: the MSE
of the multiplicative model is only twice as large
as the MSE of the best performing Wmask model.
This is in contrast to the rank evaluation where the
multiplicative model assigned the observed repre-
sentations in the test set only ranks ≥ 1000, while
Wmask assigned ranks ≤ 25 to 75% of the test
data. Additional investigations are necessary to es-
timate the impact of different objective functions
on the performance of compositional models.

5 Comparison to related work

The experiments reported in this paper are, to the
best of our knowledge, the first large scale experi-
ments on the composition of German compounds.
Other studies (Kisselew et al., 2015; Lazaridou
et al., 2013) focused on morphologically complex
words in German and English respectively. In
terms of the size of the training and test material,
our experiments are closest to the adjective-noun
experiments in (Baroni and Zamparelli, 2010) and
(Dinu et al., 2013b) where the lexical function

model performed the best, with lowest reported
median ranks (Q2) above 100.

6 Conclusions

Twelve composition models were evaluated on the
task of building compositional representations for
German compounds. The best results (median
rank 6) were obtained by the newly introduced
Wmask model, p = g(W [u� u′; v� v′′]). The re-
sults show that it is possible to learn a composition
function specific to compounds, an idea which we
would like to further explore using existing com-
pound datasets for English (Ó Séaghdha, 2008;
Tratz and Hovy, 2010). The implementation of
the newly introduced composition methods can be
downloaded from the author’s website.
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Abstract

Events are communicated in natural lan-
guage with varying degrees of certainty.
For example, if you are “hoping for a
raise,” it may be somewhat less likely than
if you are “expecting” one. To study these
distinctions, we present scalable, high-
quality annotation schemes for event de-
tection and fine-grained factuality assess-
ment. We find that non-experts, with
very little training, can reliably provide
judgments about what events are men-
tioned and the extent to which the author
thinks they actually happened. We also
show how such data enables the develop-
ment of regression models for fine-grained
scalar factuality predictions that outper-
form strong baselines.

1 Introduction

Interpretation of events—determining what the
author claims did or did not happen—is impor-
tant for many NLP applications, such as news arti-
cle summarization or biomedical information ex-
traction. However, detecting events and assessing
their factuality is challenging. For example, while
most non-copular verbs are events, words in gen-
eral vary with use (e.g. “trade route” vs “trade
with Iraq”). Events also have widely varying,
context-dependent factuality cues, such as event
interactions (e.g. “prevent easy access) and cue
words (e.g. “ordered to” vs. “expected to”). As
shown in Figure 1, these are common challenges
that a model of event factuality must address.

In this paper, we present new data and mod-
els for these tasks, demonstrating that non-experts
can provide high-quality annotations which en-
able fine-grained, scalar judgments of factuality.
Unlike previous work, we do not use a detailed

∗Work done at the University of Washington.

(1) U.S. embassies and military installations
around the world were ordered(3.0) to set(2.6) up
barriers and tighten(2.6) security to prevent(1.8)

easy access(-2.4) by unauthorized people.

(2) Intel’s most powerful computer chip has
flaws that could delay(0.8) several computer
makers’ marketing efforts(2.6), but the “bugs”
aren’t expected(-2.6) to hurt(-2.0) Intel.

(3) President Bush on Tuesday said(3.0)

the United States may extend(1.6) its naval
quarantine(2.6) to Jordan’s Red Sea port of
Aqaba to shut(1.4) off Iraq’s last unhindered
trade route.

(4) He also said(3.0) of trade(-0.8) with Iraq:
“There are no shipments at the moment.”

Figure 1: Example annotations with italicized
event mentions and crowdsourced scalar factuality
values u ∈ [−3.0, 3.0]. Positive (or negative) val-
ues indicate the extent to which the author claims
the events happened (or not).

specification of exactly what events and factual-
ity classes should be. Instead, we simply ask
non-experts to find words describing things that
the author claims could have happened, and rate
each possibility on a scale of -3 (certainly did
not happen) to 3 (certainly did). Figure 1 shows
that non-expert workers—when their judgments
are aggregated—consistently find a wide range of
events and recognize the subtle differences in im-
plied factuality. For example, the event set gets a
score of 2.6, indicating that it likely but not cer-
tainly occurred, since it was ordered, whereas the
ordered event, gets a score of 3.0.

We gather data for event detection and factual-
ity, reusing sentences from the TempEval-3 cor-
pus (Uzzaman et al., 2013). Our approach pro-
duces high-quality labels with modest costs. We
also introduce simple but highly effective models
for both tasks that outperform strong baselines. In
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particular, our factuality regression model uses a
learning objective that combines the advantages of
LASSO and support vector regression, enabling it
to effectively consider sparse lexical cues. By pro-
viding scalar factuality judgments for events, our
models enable more fine-grained reasoning than
previously considered. The corpus and learned
models are available online.1

2 Related Work

While event definitions have been proposed in
several prior studies, existing approaches vary in
how they model various linguistic forms such as
nominal events, stative events, generic events, and
light verbs (Pustejovsky et al., 2003; Palmer et
al., 2005; Meyers et al., 2004; Kim et al., 2009;
Song et al., 2015). Even with a formal and precise
account of events, training annotators to learn all
such linguistic intricacies remains a practical chal-
lenge. Instead of definition-driven instructions,
we propose example-driven instructions and show
their effectiveness.

Previous studies have modeled event factuality
assessment as a binary (Diab et al., 2009; Prab-
hakaran et al., 2010) or multi-class (Sauri and
Pustejovsky, 2009) classification task, and they re-
lied on expert annotators. A softer representation
was proposed and crowdsourced by de Marneffe
et al. (2012), who advocated for representing fac-
tuality from the reader’s perspective as a distribu-
tion of categories, but their annotation process re-
quires manual normalization of the text. In con-
trast, we model factuality from the author’s per-
spective with scalar values, and we have an end-
to-end crowdsourced annotation pipeline.

More recently, Soni et al. (2014) investigated a
related problem for quoted statements on Twitter,
and they also crowdsourced factuality annotations
to learn regression models. While their approach
is similar, we focus on predicting factuality for
events that occur in every sentence. Without the
restrictions of their task, we must reason about a
larger variety of contextual cues.

Our method of evaluating annotator agreement
(Section 3) is related to the crowdsourcing study
by Snow et al. (2008), who showed that pooled
non-experts can match or outperform single ex-
pert annotators. In contrast, we approximate ex-
pert judgments by independently sampling and ag-
gregating sets of non-expert judgments.

1http://lil.cs.washington.edu/fact

Data Documents Sentences Tokens
Train 192 2909 73220
Dev. 64 1060 26146
Test 20 274 7004

Figure 2: Corpus statistics.

3 Data Annotation

We use a two-stage annotation pipeline to create
the labels shown in Figure 1. Event mentions are
first detected, followed by factuality judgments.
As motivated in Section 1, we use instructions that
are easily understandable by workers with no lin-
guistic training and improve overall quality by ag-
gregating multiple judgments to get the final label.

Event Annotation Given a sentence, we high-
light one token at a time and ask workers if it refers
to an event. We use the following instructions:

We consider events to be things that may or
may not occur either in the past, present or fu-
ture (e.g., earthquake, meeting, jumping, talk-
ing, etc.). In some cases, it is not so clear
whether a word is referring to an event or not.
Consider these harder cases to be events.

along with 25 example annotations that covered a
large variety of cases such as nominals, statives,
generic events, light verbs, and non-events. These
examples include both toy sentences and sentences
from the corpus to annotate. For efficiency, we
did not annotate a short list of stop words, copular
verbs, and auxiliaries.

Factuality Annotation For factuality, we
present a sentence with one highlighted event
token at a time with the following prompt:

On a scale from 3 to -3, rate how likely the high-
lighted event did or will happen according to
the author of the sentence.

along with 17 examples to calibrate the annota-
tor’s judgments, including negated, conditional,
hedged, generic, and nested events. The responses
-3, 0, and 3 were given explicit interpretations. 3
and -3 denote respectively that the target event cer-
tainly did or did not happen according to the au-
thor. 0 denotes that the author is neutral and ex-
presses no bias towards the event’s factuality.
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Figure 3: Agreement statistics as a function of k,
the number of judgments aggregated. We choose
k = 5 in both tasks for our experiments, as de-
noted by the red square.

Data collection We gathered data on Crowd-
Flower.2 For quality control, annotators are ran-
domly presented test questions with known an-
swers. For each example, we collect and aggregate
5 judgments, as described below. For comparison,
we annotated TempEval-3 (Uzzaman et al., 2013),
keeping the existing test split and randomly hold-
ing out a quarter of the training examples to create
a development set. Figure 2 shows data statistics.
The annotation cost is 0.5¢ per judgment for de-
tection and 2¢ per judgment for factuality.

Aggregated Agreement We introduce a simple
scheme to measure agreement with aggregate data,
for example when the majority class from a pool
of judgments is used for the final label. Instead
of comparing individuals, we want to know how
often the aggregates will agree, if we were to have
different groups of annotators doing the task.

Formally, we assume N samples {(xi, yi) | i =
1, . . . , N}, where each xi is a token within a sen-
tence, and yi = {yji | j = 1, . . . ,M} is the set of
M judgments for xi. Let Y be the set of possible
labels, Y = {−1, 1} for detection andY = [−3, 3]
for factuality. Let AGG : Yk → Y be an ag-
gregation function, which maps k judgments to a
single aggregate one. For event detection, we set
AGG(y1, . . . , yk) to return the majority value from
the set of judgments {y1, . . . , yk}. For factual-
ity, we set AGG(y1, . . . , yk) = 1

k

∑k
j=1 y

j , which
computes the mean value.

To estimate the agreement between aggregates
of k judgments, we collect pairs of disjoint sub-
sets of size k from the M judgments. Given yi,
we define the set of aggregate judgment pairs:

2http://crowdflower.com

FactBank Labels
CT- PR- PS- PS+ PR+ CT+ CTu NA Uu
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-3 39 0 0 0 0 0 0 0 29
-2 29 2 0 0 0 0 0 0 44
-1 16 4 1 0 0 3 0 0 58
0 15 0 5 2 0 7 0 1 95
1 7 0 1 30 4 27 2 0 337
2 4 1 0 20 42 260 0 0 564
3 2 0 0 1 10 2760 0 0 771

Figure 4: Confusion matrix between FactBank la-
bels and our discretized factuality ratings.

{(AGG(y′),AGG(y′′)) | y′, y′′ ⊂ yi ∧ |y′| =
|y′′| = k ∧ y′ ∩ y′′ = ∅}.3 To measure how
well these aggregates agree, we treat AGG(y′) as a
candidate hypothesis and AGG(y′′) as the gold la-
bel and compute the appropriate evaluation metric
to measure aggregate agreement. We use the F1
score for detection and Pearson’s correlation for
factuality, as described in Section 5.

We experiment with k = 1, . . . , 9 for 100 sen-
tences, allowing aggregates of up to 9 judgments,
as seen in Figure 3. Aggregate agreement for both
tasks improve with larger k, but returns quickly
diminish. Therefore, we chose k = 5 for the
full data collection to reasonably trade off between
quality and quantity. In absolute terms, the agree-
ment at this level is strong (92.6% F1 for detection
and 83.1% correlation for factuality), demonstrat-
ing that aggregate non-expert judgments can pro-
duce high-quality annotations.

Comparison to FactBank We compare our fac-
tuality ratings, rounded to the nearest integer,
to FactBank annotations (author source only) for
overlapping events. The confusion matrix from
Figure 4 shows there is strong correlation between
our ratings and FactBank labels with specified cer-
tainties and polarities. These labels are CT-, PR-,
PS-, PS+, PR+, and CT+, corresponding to events
that are seen as (certainly/probably/possibly) (not
happening/happening).

We differ most significantly in events labeled
Uu (underspecified) by FactBank, which consist
largely of nested events, such as “Sandors said
he’d double his money” or “Sandors hoped he’d
double his money.” While FactBank annotators
would label both double events as Uu, our anno-
tations can indicate nuances based on the author’s
wording (i.e., said vs. hoped). The large variation

3In practice, we sample judgment pairs rather then com-
puting all possible combinations.
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in the Uu column of the confusion matrix suggests
that the factuality of an event is rarely perceived as
completely neutral, even when the author does not
commit to a belief in the event’s occurrence.

4 Approach

Learning For the detection task, we learn a lin-
ear SVM classification model. For the factuality
task, we assume a dataset with N examples of la-
beled events {(xi, yi) | i = 1, . . . , N}, and we
learn a regression model: yi = w>φ(xi). We in-
troduce a learning objective for regression:

min
w
‖w‖1 + C

N∑
i=1

max(0, |yi − w>φ(xi)| − ε)

that combines the advantages of LASSO (Tibshi-
rani, 1996) and support vector regression (Drucker
et al., 1997). It induces sparse feature weights
while being insensitive to errors less than ε.

Features For the detection model, we include
features given the input word x: (1) lemma of x,
(2) part of speech of x, (3) indicator for whether x
is a hyponym of the event synset in WordNet and
the part of speech of x, (4) Brown clusters of x and
its part of speech, and (5) all dependency paths
from x up to length 1. For the factuality model,
given the input event mention x, we include: (1)
lemma of x, (2) part of speech of x, and (3) all
dependency paths from x up to length 2.

For dependency paths, we include all edge
labels, the target word is omitted, and each node
may or may not be lexicalized; we include all
possible configurations. For example in “John
did not expect to return”, the dependency path:
not←[neg]—expect—[xcomp]→return, would
produce the following features:

not←[neg]—expect—[xcomp]→〈∗〉
〈∗〉←[neg]—expect—[xcomp]→〈∗〉
not←[neg]—〈∗〉—[xcomp]→〈∗〉
〈∗〉←[neg]—〈∗〉—[xcomp]→〈∗〉

These dependency features allow for context-
dependent reasoning, including many of the cases
in Figure 1 where the factuality of an event de-
pends on the identity of a neighboring verb.

5 Experimental Setup

Baselines For detection, we include a baseline
reimplementation of the NAVYTIME (Chambers,

2013) classification detector, one of the top per-
formers in the TempEval-3 event detection task.

For factuality, we include three baselines: (1) A
one-vs.-rest multi-class classifier (DISCRETE) us-
ing our features (Section 4) and labels that are dis-
cretized by rounding to the nearest integer, (2) a
regression model (SVR) trained with the standard
SVR objective using our features, and (3) a re-
gression model (PRABHAKARAN) trained with the
standard SVR objective using features from Prab-
hakaran et al. (2010). These features are highly
informative, but their lexical features are restricted
to a small set of manually defined words.

Implementation Details The SVM models
(NAVYTIME, DISCRETE, SVR, PRABHAKARAN,
and our detection model) were trained with SVM-
Light (Joachims, 1999). We use CPLEX4 to solve
the linear program optimizing the regression ob-
jective in Section 4. All hyperparameters were
tuned on the development set.

We use the Stanford dependency parser (de
Marneffe et al., 2006) for extracting dependency
path and part-of-speech features. We use WordNet
(Miller, 1995) to generate lemma and hyponym
features. Brown clusters with 100, 320, 1000, and
3200 clusters from Turian et al. (2010) are used in
the detection features.

Evaluation Metrics We use the standard F1
score for the evaluation of detection. For event
factuality, we report two metrics, the mean abso-
lute error (MAE) relative to the gold standard la-
bels and Pearson’s correlation coefficient. While
MAE is an intuitive metric that evaluates the abso-
lute fit of the model, Pearson’s r better captures
how well a system is able to recover the varia-
tion of the annotations. Pearson’s r is also con-
veniently normalized such that r = 0 for a system
that blindly chooses the best a priori output and
r = 1 for a system that makes no error.

6 Results

Detection Results Figure 5 shows development
and test results for detection event mentions.5 We
see a small drop in precision and large gains in
recall, but a significant increase in F1, primarily

4http://tiny.cc/cplex
5We performed two-sided bootstrap resampling statistical

significance tests (Graham et al., 2014). In Figures 5 and 6,
asterisks indicate that the difference from the best system is
statistically significant (p < 0.05).
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Model Dev. Test
P R F1 P R F1

Our system 90.1 90.9 90.5 85.5* 87.8 86.6
NAVYTIME 84.7* 79.6* 82.1* 87.7 78.3* 82.7*

Figure 5: Results for the detection task.

Model Dev. Test
MAE r MAE r

Our system 46.2 74.9 51.1 70.8
SVR 50.3* 74.8 57.1* 69.4
DISCRETE 50.3* 68.6* 52.4 62.2*
PRABHAKARAN 58.7* 51.1* 62.0* 50.8*

Figure 6: Results for the factuality task.

due to the use of distributional features and more
general dependency features.

Factuality Results Figure 6 shows development
and test results for predicting the factuality of
gold-labeled event mentions. Our system shows
an overall improvement in performance over all
baselines, demonstrating that the regression model
works well for this data. It is able to make more
graded judgments that correlate with the aggre-
gate opinions of untrained annotators. As shown
in Figure 8, which compares the mean average er-
ror for different buckets of factuality labels, we
observe the largest gains over PRABHAKARAN in
examples with low factuality, where lexical cues
are especially critical.

Error Analysis We manually studied 50 devel-
opment samples where our factuality model pro-
duced the largest absolute errors. Figure 7 summa-
rizes the error types. The biggest challenge is the
wide variety of sparse lexical cues. For example,
the sentences “Wong Kwan will be lucky to break
even” and “That sale could still fall through if fi-
nancing problems develop” require modeling the
influence of “lucky to” and “fall through.” Even
when these types of features do appear in the train-
ing data, they tend to be very rare.

We also find cases that require inference over
longer distances than our model permits. Con-
sider the sentence “Mesa had rejected a general
proposal from StatesWest to combine the two car-
riers.” To know that combine is not likely to hap-
pen, we must infer that it is conditioned on the
proposal, which was rejected. Finally, we find
that world knowledge and pragmatic inference is
sometimes required. For example, in the sen-
tence “There was no hint of trouble in the last

Error type %
Missed lexical cue (unseen in training) 52
Missed lexical cue (seen in training) 12
Long distance inference 16
World knowledge & pragmatics 12
Annotation error 8

Figure 7: Error types for the 50 examples with the
largest absolute development error.
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Figure 8: Mean absolute error in the development
set for different labels rounded to the nearest inte-
ger. Our system’s improvement is greater when
predicting events with low factuality, which re-
quires modeling sparse lexical cues.

conversation between controllers and TWA pilot
Steven Snyder,” the pragmatic implication that
trouble likely happened requires common knowl-
edge about flights.

7 Conclusion

We studied event detection and scalar factuality
prediction, demonstrating that non-expert annota-
tor can, in aggregate, provide high-quality data
and introducing simple models that perform well
on each task. There is significant room for fu-
ture work to improve the results, including jointly
modeling the factuality of multiple events and in-
tegrating factuality models into information ex-
traction and question answering systems.
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Abstract
We propose a novel method for acquiring
entailment pairs of binary patterns on a
large-scale. This method exploits the tran-
sitivity of entailment and a self-training
scheme to improve the performance of an
already strong supervised classifier for en-
tailment, and unlike previous methods that
exploit transitivity, it works on a large-
scale. With it we acquired 138.1 million
pattern pairs with 70% precision with such
non-trivial lexical substitution as “use Y
to distribute X”→“X is available on Y”
whose extraction is considered difficult.
This represents 50.4 million more pattern
pairs (a 57.5% increase) than what our
supervised baseline extracted at the same
precision.

1 Introduction

Recognizing textual entailment (Geffet and Da-
gan, 2005; Androutsopoulos and Malakasiotis,
2009; Zanzotto et al., 2009; Berant et al., 2011) is
an important task for many NLP applications, such
as relation extraction (Romano et al., 2006) or
question-answering (Harabagiu and Hickl, 2006).
Text L entails text R if the information written
in the latter can be deduced from the information
written in the former. As building blocks to rec-
ognize entailment relations between texts, numer-
ous works have focused on recognizing entailment
relations between patterns, such as “grew up in
X”→“lived in X” or “X grew up in Y”→“X lived in
Y” (Lin and Pantel, 2001; Weeds and Weir, 2003a;
Hashimoto et al., 2009; Berant et al., 2011; Kloet-
zer et al., 2013b).

We propose in this paper a method for ac-
quiring on a very large-scale, entailment pairs of

Quantity of training data Average
precision

Baseline plus 5,000 training data samples 49.0%
Baseline: 83,800 training data samples 48.8%
Baseline minus 10,000 training data samples 48.5%
Baseline minus 20,000 training data samples 47.8%

Table 1: Average precision for baseline method
with various amounts of training data

such class-dependent binary patterns as “under-
went Xexam on Ydate”→“Xexam carried out on
Ydate”. Our starting point is a supervised baseline
trained with 83,800 manually labeled pattern pairs
detailed in Kloetzer et al. (2013b). Its top 205 mil-
lion output pairs have an estimated 80% precision,
but this baseline’s performance is saturated. Ta-
ble 1 shows the baseline’s average precision when
varying its amount of hand-labeled training data.
Since the average precision only improves slightly
with additional training data, the investment in
hand-labeling additional training data is difficult
to justify.

To improve our baseline further, we exploit the
transitivity property of entailment to automatically
generate new features for it. The entailment is
transitive; if we detect that L entails C and C en-
tails R, we can infer an entailment relation be-
tween L and R even if no such relation was de-
tected beforehand. Based on this idea, we pro-
pose a self-training scheme that works in the fol-
lowing way. For pattern pair 〈P ,Q〉, we use the
baselines output to find all the chains of patterns
from P to Q that are linked by entailment rela-
tions, which we call transitivity paths, and encode
the information related to them as new features to
judge the validity of pair 〈P ,Q〉. Our expectation
is that even if our supervised baseline fails to judge
〈P ,Q〉 as an entailment pair, the existence of paths
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from P to Q that are comprised of pairs judged as
entailments by our baseline might strongly suggest
that P entails Q; hence, adding our new features to
the baseline should help it make better decisions
based on the information encoded in the features.
This self-training approach is the first that encodes
the information contained in transitivity paths as
features for a classifier, and as such it differs from
previous state-of-the-art methods that exploit tran-
sitivity to extract new pairs using Integer Linear
Programming (Berant et al., 2011) or that auto-
generate training data (Kloetzer et al., 2013a).

From a corpus of 600 million web pages, we
show that our proposed method extracted 217.8
million entailment pairs in Japanese with 80% pre-
cision1, which is a 6% increase over the 205.3
million pairs output by our baseline with identi-
cal precision. It also extracted 138.1 million en-
tailment pairs with 70% precision with non-trivial
lexical substitution (generally deemed difficult to
extract), which is a 50.4 million pair increase
(57.5% size improvement) over the 87.7 million
pairs output by our baseline with the same preci-
sion. These include such pairs as “use X to dis-
tribute Y”→“Y is available on X”, “underwent X
on Y”→“X carried out on Y”, “start X at Y”→“Y’s
X” or “attach X to Y”→“put X on Y”. Even though
we only present results for the Japanese language,
we believe that our method should be applicable to
other languages as well. This is because none of
the few language dependent features of our classi-
fier are strictly needed by the baseline or our pro-
posed method, and its performance boost is unre-
lated to these features.

2 Related Works

The task of recognizing entailment between texts
has been proposed by Dagan et al. (2006) and in-
tensively researched (Malakasiotis and Androut-
sopoulos, 2007; Szpektor et al., 2004; Androut-
sopoulos and Malakasiotis, 2009; Dagan et al.,
2009; Hashimoto et al., 2009; Berant et al.,
2011) using a various range of techniques, includ-
ing Integer Linear Programming (Berant et al.,
2011), machine learning with SVMs (Malakasio-
tis and Androutsopoulos, 2007), and probabilis-
tic models (Wang and Manning, 2010; Shnarch
et al., 2011). Entailment recognizer or entail-
ment data sets have been used in such fields
as relation extraction (Romano et al., 2006) and

1Examples are given in English for convenience

question-answering (Harabagiu and Hickl, 2006;
Tanaka et al., 2013). In this work, we are inter-
ested into recognizing entailment between syntac-
tic patterns, which can then be used as building
blocks in a complete entailment recognition sys-
tem (Shnarch et al., 2011). Recognizing entail-
ment between patterns has generally been stud-
ied using unsupervised techniques (Szpektor et
al., 2004; Hashimoto et al., 2009; Weeds and
Weir, 2003b), although we showed that supervised
techniques naturally obtain stronger performance
(Kloetzer et al., 2013b).

The two works that are most closely related to
our work are Berant et al. (2011) and Kloetzer et
al. (2013a), both of which exploit transitivity to
improve the result of a baseline classifier. Berant
et al. (2011) proposed an entailment recognition
method for binary patterns that exploits Integer
Linear Programming techniques (ILP) to expand
the results of an SVM classifier. This method en-
codes into an ILP problem an entailment graph,
which is a valued graph where nodes and edges re-
spectively represent patterns and their entailment
relations, and the values equal the SVM classi-
fiers score output. The problems variables EPQ ∈
{0, 1} indicate whether pattern pairs (here, 〈P ,Q〉)
have an entailment relation, and the goal is to max-
imize the sum of the scores of the pairs selected
as entailment relations {〈P,Q〉|EPQ = 1}. In
(Kloetzer et al., 2013a), we proposed a contradic-
tion acquisition method that uses a training data
expansion scheme; it automatically generates new
contradictions by exploiting transitivity and adds
the highest scoring contradictions based on a novel
score (CDP) to the training data of the original
classifier. The score is based on the assumption
that if pair 〈P ,Q〉, when chained by transitivity to
other pairs 〈Q,Ri〉, generally leads to correct en-
tailment pairs 〈P ,Ri〉, then all pairs 〈P ,Ri〉 should
be correct entailment pairs. Although this work
was designed for contradiction recognition, it is
easily adapted to entailment.

3 Target Data and Baseline Classifiers

Target Pattern Pairs We extracted our binary
patterns from the TSUBAKI corpus (Shinzato et
al., 2008) of 600 million Japanese web pages. Bi-
nary patterns are defined as sequences of words on
the path of dependency relations connecting two
nouns in a sentence and have two variables. “use Y
to distribute X” and “X is available on Y” are such
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binary patterns. Like previous works (De Saeger
et al., 2009; Berant et al., 2011; Kloetzer et al.,
2013a), we pose restrictions on the noun-pairs
that co-occur with each pattern using word classes
to disambiguate their various potential meanings:
“Xbook by Yauthor” and “Xbuilding by Ylocation”.
We used the EM-based noun clustering algorithm
presented inKazama and Torisawa (2008) to clas-
sify one million nouns into 500 semantic classes.
Our target set, to which we apply all of our classi-
fiers, is set Σ of around 11 billion class-dependent
pattern pairs for which both patterns share at least
three co-occurring noun-pairs.

Baseline Classifier Our baseline classifier
(BASE) is an SVM classifier trained with about
83,800 binary pattern pairs that were hand-labeled
as entailment (25,436 pairs, 30.4% of the total)
or non-entailment (58,361 pairs). We trained
the classifier using SVMlight software2 with a
polynomial kernel of degree 2.

Following previous work (Kloetzer et al.,
2013b), we used three types of features in BASE:
surface features indicate clues like the presence
of n-grams or measure the string overlap between
two patterns; database features exploit existing
language resources; and distributional similar-
ity scores measure the patterns’ semantic similar-
ity based on the nouns that co-occur with them.
See Kloetzer et al. (2013b) for more details about
BASE s features.

4 Proposed Method

Our method consists of the following three steps:

Step 1 Chain together the entailment pairs pro-
vided by our baseline classifier BASE to
form transitivity paths; if P → Q and Q →
R, then create path P → Q→ R.

Step 2 Train new classifiers with features that en-
code the information contained in the transi-
tivity paths obtained in Step 1.

Step 3 Combine the output of these classifiers
with that of baseline classifier BASE.

Figure 1 shows an overview of our method, and
we describe its details in the following sections.

2http://svmlight.joachims.org/

Figure 1: Overview of proposed method

4.1 Step 1: Transitivity Paths
We generate chains of entailment pairs (or tran-
sitivity paths) in the following way. First, we
extract from the output of the baseline classifier
BASE set E(θ) of the pattern pairs for which
BASE returns a score over given threshold θ:
E(θ) = {〈P,Q〉 ∈ Σ|SBASE(P,Q) ≥ θ}, where
SBASE(P,Q) is the score returned by BASE for
pattern pair 〈P ,Q〉. The higher θ is, the greater the
precision of the pairs in E(θ) should be. Then by
chaining the entailment pairs from E(θ) together,
we build sets of transitivity paths composed of two
entailment pairs Tr(θ, 1) for θ ∈ {0,−∞} and of
three entailment pairs Tr(θ, 2) for θ = 0. Since
additional chaining is computationally expensive,
we stopped at paths that consist of three pairs.

4.2 Step 2: Training New Classifiers
In this step, we train new classifiers by adding
new features to BASE. The training data, the
classifier software, and the settings are the same
as for BASE. For given pattern pair 〈P ,R〉,
Path(P,R, θ,N) is the set of all the transitivity
paths in Tr(θ,N) that lead to pair 〈P ,R〉. We en-
code the information contained in these paths in
three new feature sets.

Before explaining these three new feature sets,
we define three scoring functions for the transi-
tivity paths to assess their quality; the MinScore
of a path is the minimum of scores returned by
BASE for each pair in the path, and ArScore and
GeoScore are the arithmetic and geometric aver-
ages of the scores returned by BASE for each pair
in the path. Each of the three feature sets is com-
puted for each of the three scoring functions, but
we just mention MinScore in our explanations due
to space limitations.

Feature set 1: scores of top-ranked paths Here
we select the top ten paths of Path(P,R, θ,N)
ranked by MinScore and use as features a new vec-
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tor that consists of the following values: (1) the
MinScore of each path and (2) the scores returned
by BASE for each of the pairs in the ten paths.
When there are fewer than ten paths, the missing
features are set to 0.

Feature set 2: BASE features of the pairs in the
highest ranking transitivity paths Here we se-
lect the transitivity path of Path(P,R, θ,N) with
the highest MinScore and use the BASE feature
values for each pair in the transitivity path as a new
feature vector for pair 〈P ,R〉.
Feature set 3: score distribution Given thresh-
old α, we count the number of paths whose Min-
Score exceeds α. By varying α from lower
bound low to upper bound up, we derive vec-
tor [|{p ∈ Path(P,R, θ,N)|MinScore(p) ≥
α}|]α∈{low,low+β,low+2∗β,...,up} and use it as a new
feature vector for pair 〈P ,R〉. We set β = 0.1 and
low and up such that the score values returned by
BASE are bounded by low and up.

4.3 Step 3: Optimization and Weighted Sum
Classifier Combination

The final output of our method combines the out-
puts of BASE and two new classifiers: (1) a classi-
fier with new features computed with 1-step tran-
sitivity paths (N = 1), and (2) another with new
features computed with up to 2-step transitivity
paths (N ∈ {1, 2}). We then use a weighted
sum and compute score SPROPOSED(P,Q) =∑

i ni ∗ Si(P,Q) for each pair 〈P ,Q〉. Si repre-
sents the scores of the respective classifiers, and
we set n0 + n1 + n2 = 100 (ni are all natural
numbers).

For each potential combination of three weights
ni, we computed the average precision returned
by our method on DEV, our development set, and
selected for our final output the weight combina-
tion that gave the best average precision on DEV.
The final classifiers weights obtained in our ex-
periments were 62 for BASE, 30 for the classifier
with 1-step transitivity features, and 8 for the one
with the 1- and 2-step transitivity features.

Using the same method, we also performed ab-
lation tests to remove the features that harmed the
classifiers and ensured that every proposed new
feature set and every scoring function were useful.

Finally, we confirmed that using a weighted
sum for our proposed method returned higher av-
erage precision than Stacking (Wolpert, 1992),

Figure 2: Precision curves for PROPOSED and
baseline methods for non-similar pairs

which is a more standard combination method, or
than using the output of any of the new classifiers
alone.

5 Experiments

In this section, we evaluate our proposed method
in a large-scale setting and compare it to BASE
and to state-of-the-art methods based on ILP (Be-
rant et al., 2011) and automatic training data ex-
pansion (Kloetzer et al., 2013a). We also indicate
that our method shows the best performance gain
for pattern pairs with non-trivial lexical substitu-
tions, which are more difficult to acquire.

Evaluation Method For our evaluation, we pre-
pared test set TEST of 15,000 pattern pairs ran-
domly sampled from Σ (our target set of 11 bil-
lion pairs). The pairs were annotated by three hu-
mans (not the authors) who voted to settle labeling
discrepancies. We also prepared development set
DEV of 5, 000 pattern pairs from Σ for tuning our
method. The Kappa score was 0.55 for the anno-
tation of these two sets.

We measured the performance of each method
by computing its average precision (Manning and
Schütze, 1999) on the TEST set. We used the av-
erage precision instead of the traditional F-value
because the latters value greatly varies depend-
ing on where the classification boundary is drawn,
even for similar rankings. We also drew precision
curves for each method using the same TEST set.

Proposed Methods Performance We first show
the performance of PROPOSED (our proposed
method) and BASE (the baseline classifier). As
another baseline, we consider BASE +DEV where
the 5,000 samples of the DEV set were added to
the BASE training data. We show the average pre-
cision for each of these three classifiers and the
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Classifier Average Million pairs
precision at 80% prec.

PROPOSED 50.64% 217.8
BASE + DEV 48.96% 202.4

BASE 48.79% 205.3
ILP N/A 205.2
CDP 48.42% 198.0

Table 2: Average precision and entailment pairs
obtained (in millions) for proposed method, base-
line classifiers, and state-of-the-art methods

Classifier Av. precision Av. precision

(similar) (non-similar)
PROPOSED 78.73% 39.53%
BASE + DEV 77.72% 37.24%

BASE 77.85% 36.98%

Table 3: Average precision for similar and non-
similar pairs

number of pairs obtained at 80% precision in Ta-
ble 2. We also show the performance of these
classifiers over similar pattern pairs (both patterns
share a content word) and non-similar pairs (they
do not share a content word) in Table 3.

As mentioned in the introduction, BASE +DEV
shows that the addition of 5,000 hand-labeled sam-
ples to the training data of BASE (a 6% increase)
only improves the average precision performance
by 0.17%. Our proposed method, on the other
hand, exploits the same 5,000 new annotated sam-
ples for tuning its parameters and obtains a 1.85%
gain of average precision. Using PROPOSED, we
acquired 217.8 million pattern pairs with 80% pre-
cision, an improvement of 6.0% over BASE.

As shown in Table 3, BASE s performance is
much lower for non-similar pairs like “use Y to
distribute X”→“X is available on Y”, which have
non-trivial lexical substitutions and are more dif-
ficult to acquire than similar pairs. This is also
where PROPOSED obtains the biggest gain in
performance: an average precision of 39.53 com-
pared to 36.98 for BASE. We show the preci-
sion curves we obtained when ranking the non-
similar pairs with BASE and PROPOSED in
Fig. 2. PROPOSED acquired 138.1 million non-
similar pairs at 70% precision, which is an in-
crease of 50.4 million pairs (a 57.5% size im-
provement) compared to BASE with the same pre-
cision. We believe that the strong performance of
BASE for similar entailment pairs helped it dis-
cover, through transitivity, the variations of non-
similar entailment pairs it could already detect.

Comparison to State-of-the-art Methods We
also compared PROPOSED with two state-of-
the-art methods that exploit transitivity: the ILP-
based method of Berant et al. (2011) (ILP) and
the training data expansion method we proposed
in Kloetzer et al. (2013a) (CDP). The latter, which
was initially designed for acquiring contradiction
pairs, was adapted to acquire entailment for com-
parison purposes. The results of this compari-
son are summarized in Table 2, and the precision
curves for these two methods as well over non-
similar pairs are shown in Fig. 2. Our proposed
method is the only one that provides stable im-
provement in our large-scale setting; at best, the
other two just slightly outperform BASE. We be-
lieve that our feature encoding provides more in-
formation to the classifier than the raw scores in
the transitivity paths that are exploited by the other
state-of-the-art methods, and as such strengthens
the performance.

As for explaining the poor performance of the
state-of-the-art methods, ILP is unfortunately not
tractable for big problems; our ILP solver failed to
solve 82% of the independent problems we fed it
due to insufficient memory even on 64-Gb mem-
ory machines, making ILP just slightly better than
BASE. Our pattern graph is also sparser than that
in Berant et al. (2011), and as such ILP might
not be completely efficient. But we assume that
even if we had used the graphs whole closure, the
ILP problem instances would have become even
less tractable, resulting in performance that only
slightly exceeds BASE. As for CDP, since our
baseline classifier already has more than 80,000
hand-annotated samples as training data, the addi-
tion of automatically generated training samples is
actually harmful.

6 Conclusion

In this work, we proposed a method that exploits
the transitivity relation of entailment in a self-
training scheme and combines classifiers with a
weighted sum. In our large-scale setting, our
method outperforms state-of-the-art methods that
are also based on a transitivity approach, includ-
ing an ILP-based method. Using our proposed
method, we acquired 217.8 million Japanese en-
tailment pairs with 80% precision and 138.1 mil-
lion non-trivial pairs with 70% precision. We are
considering an extrinsic evaluation for these data
such as the RTE test in future research.
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Abstract

We consider the problem of embedding
knowledge graphs (KGs) into continuous
vector spaces. Existing methods can on-
ly deal with explicit relationships within
each triple, i.e., local connectivity pattern-
s, but cannot handle implicit relationship-
s across different triples, i.e., contextual
connectivity patterns. This paper proposes
context-dependent KG embedding, a two-
stage scheme that takes into account both
types of connectivity patterns and obtain-
s more accurate embeddings. We evaluate
our approach on the tasks of link predic-
tion and triple classification, and achieve
significant and consistent improvements
over state-of-the-art methods.

1 Introduction

Knowledge Graphs (KGs) like WordNet (Miller,
1995), Freebase (Bollacker et al., 2008), and DB-
pedia (Lehmann et al., 2014) have become ex-
tremely useful resources for many NLP-related ap-
plications. A KG is a directed graph whose nodes
correspond to entities and edges to relations. Each
edge is a triple of the form (h, r, t), indicating that
entities h and t are connected by relation r. Al-
though powerful in representing complex data, the
symbolic nature makes KGs hard to manipulate.

Recently, knowledge graph embedding has at-
tracted much attention (Bordes et al., 2011; Bor-
des et al., 2013; Socher et al., 2013; Wang et al.,
2015). It attempts to embed entities and relations
in a KG into a continuous vector space, so as to
simplify the manipulation while preserving the in-
herent structure of the original graph.

Most of the existing KG embedding methods
model triples individually, ignoring the fact that

∗Corresponding author: Quan Wang.
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Figure 1: LCPs and CCPs.

entities connected to a same node are usually im-
plicitly related to each other, even if they are not
directly connected. Figure 1 gives two examples.
Shaquille O Neal and NBA in the former ex-
ample and Nevada and Utah in the latter exam-
ple are implicitly related to each other, through the
intermediate nodes Phoenix Suns and USA re-
spectively. We refer to such implicit relationships
as contextual connectivity patterns (CCPs). Re-
lationships explicitly represented in triples are re-
ferred to as local connectivity patterns (LCPs). In
most of the existing methods, only LCPs are ex-
plicitly modeled.

This paper proposes a two-stage embedding
scheme that explicitly takes into account both C-
CPs and LCPs, called context-dependent KG em-
bedding. In the first stage, each CCP is formalized
as a knowledge path, i.e., a sequence of entities
and relations occurring in the pattern. A word em-
bedding model is adopted to learn embeddings of
entities and relations, by taking them as pseudo-
words. The embeddings are enforced compatible
within each knowledge path, and hence can cap-
ture CCPs. In the second stage, the learned em-
beddings are fine-tuned by an existing KG embed-
ding technique. Since such a technique requires
the embeddings to be compatible on each individ-
ual triple, LCPs are also encoded.

The advantages of our approach are three-fold.
1) It fully exploits both CCPs and LCPs, and can
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obtain more accurate embeddings. 2) It is a gen-
eral scheme, applicable to a wide variety of word
embedding models in the first stage and KG em-
bedding models in the second. 3) No auxiliary
data is further required in the two-stage process,
except for the original graph.

We evaluate our approach on two publicly avail-
able data sets, and achieve significant and consis-
tent improvements over state-of-the-art methods in
the link prediction and triple classification tasks.
The learned embeddings are not only more accu-
rate but also more stable.

2 Context-Dependent KG Embedding

We are given a KG with nodes corresponding to
entities and edges to relations. Each edge is denot-
ed by a triple (h, r, t), where h is the head entity,
t the tail entity, and r the relation between them.
Entities and relations are represented as vectors,
matrices, or tensors in a continuous vector space.
Context-dependent KG embedding aims to auto-
matically learn entity and relation embeddings, by
using observed triples O in a two-stage process.

2.1 Modeling CCPs
The first stage models CCPs conveyed in the KG.
Each CCP is formalized as a knowledge path, i.e.,
a sequence of entities and relations occurring in
the pattern. For the CCPs in Figure 1, the associ-
ated knowledge paths are:

“Shaquille O Neal, AthletePlaysForTeam,

Phoenix Suns, TeamPlaysInLeague, NBA”

“Nevada, StateLocatedInCountry, USA,

StateLocatedInCountry, Utah”.
We fix the length of knowledge paths to 5. Dur-
ing path extraction, we ignore the directionality of
edges, and treat the KG as an undirected graph.1

Given the extracted knowledge paths, we em-
ploy word embedding models to pre-train the em-
beddings of entities and relations, by taking them
as pseudo-words. We use two word embedding
models: CBOW and Skip-gram (Mikolov et al.,
2013a; Mikolov et al., 2013b). In CBOW, words in
the context are projected to their embeddings and
then summed. Based on the summed embedding,
log-linear classifiers are employed to predict the
current word. In Skip-gram, the current word is
projected to its embedding, and log-linear classi-
fiers are further adopted to predict its context. We

1Two entities connected to a same node are always expect-
ed to have some implicit relationships, no matter how they are
connected to the intermediate node.

restrain the context of a word (i.e. entity/relation)
within each knowledge path. The entity and re-
lation embeddings pre-trained in this way are re-
quired to be compatible within each knowledge
path, and thus can encode CCPs.

Perozzi et al. (2014) and Goikoetxea et al.
(2015) have proposed similar ideas, i.e., to gener-
ate random walks from online social networks or
from the WordNet knowledge base, and then em-
ploy word embedding techniques on these random
walks. But our approach has two differences. 1)
It deals with heterogeneous graphs with differen-
t types of edges. Both nodes (entities) and edges
(relations) are included during knowledge path ex-
traction. However, the previous studies focus only
on nodes. 2) We devise a two-stage scheme where
the embeddings learned in the first stage will be
fine-tuned in the second one, while the previous
studies take such embeddings as final output.

2.2 Modeling LCPs

The second stage models LCPs conveyed in the
KG. We employ three state-of-the-art KG embed-
ding models, namely SME (Bordes et al., 2014),
TransE (Bordes et al., 2013), and SE (Bordes et
al., 2011) to fine-tune the pre-trained embeddings.
These three models work in the following way.
First, entities are represented as vectors, and re-
lations as operators in an embedding space, char-
acterized by vectors (SME and TransE) or matri-
ces (SE). Then, for each triple (h, r, t), an energy
function fr(h, t) is defined to measure its plausi-
bility. Plausible triples are assumed to have low
energies. Finally, to obtain entity and relation em-
beddings, a margin-based ranking loss, i.e.,

L =
∑
t+∈O

∑
t−∈Nt+

[
γ + fr(h, t)− fr(h′, t′)

]
+
,

is minimized. Here, t+ = (h, r, t) ∈ O is an ob-
served (positive) triple; Nt+ is the set of negative
triples constructed by replacing entities in t+, and
t− = (h′, r, t′) ∈ Nt+ ; γ is a margin separating
positive and negative triples; [x]+ = max(0, x).
Table 1 summarizes the entity/relation embed-
dings and the energy functions used in SME,
TansE, and SE. For other KG embedding models,
please refer to (Nickel et al., 2011; Riedel et al.,
2013; Wang et al., 2014; Chang et al., 2014).

We adopt stochastic gradient descent to solve
the minimization problem, by taking entity and re-
lation embeddings pre-trained in the first stage as
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Method Entity/Relation embedding Energy function

SME (linear) (Bordes et al., 2014) h, t ∈ Rk, r ∈ Rk fr (h, t) = (Wu1r + Wu2h + bu)T (Wv1r + Wv2t + bv)

SME (bilinear) (Bordes et al., 2014) h, t ∈ Rk, r ∈ Rk fr (h, t) = ((Wu×̄3r) h + bu)T ((Wv×̄3r) t + bv)
TransE (Bordes et al., 2013) h, t ∈ Rk, r ∈ Rk fr (h, t) = ‖h + r− t‖`1
SE (Bordes et al., 2011) h, t ∈ Rk, Ru,Rv ∈ Rk×k fr (h, t) = ‖Ruh−Rvt‖`1

Table 1: Entity/Relation embeddings and energy functions used in KG embedding methods.

# rel. # ent. # trip. (train/valid/test) # path

WN18 18 40,943 141,442 5,000 5,000 5,674,308
NELL186 186 14,463 31,134 5,000 5,000 1,914,475

Table 2: Statistics of the data sets.

initial values.2 The entity and relation embeddings
fine-tuned in this way are required to be compati-
ble within each triple, and thus can encode LCPs.

Socher et al. (2013) have proposed a similar
idea, i.e., to use embeddings learned from an aux-
iliary corpus as initial values. However, linking
entities recognized in an auxiliary corpus to those
occurring in the KG is always a non-trivial task.
Our approach requires no auxiliary data, and nat-
urally avoids the entity linking task.

3 Experiments

We test our approach on the tasks of link predic-
tion and triple classification. Two publicly avail-
able data sets are used. The first is WN18 released
by Bordes et al. (2013)3. It is a subset of Word-
Net, consisting of 18 relations and the entities con-
nected by them. The second is NELL186 released
by Guo et al. (2015)4, containing the most fre-
quent 186 relations in NELL (Carlson et al., 2010)
and the associated entities. Triples are split into
training/validation/test sets, used for model train-
ing, parameter tuning, and evaluation respectively.
Knowledge paths are extracted from training sets.
Table 2 gives some statistics of the data sets.

To perform context-dependent KG embedding,
we use CBOW and Skip-gram in the pre-training
stage, and SME, TransE, and SE in the fine-tuning
stage. We take randomly initialized SME, TransE,
and SE as baselines, denoted as *-Random. We
do not compare to the setting that employs only
CBOW or Skip-gram, since it does not provide
an energy function to calculate triple plausibility,
which hinders the evaluation of both tasks.

2For SE, only entity vectors are initialized by pre-trained
embeddings. Relation matrices are randomly initialized.

3https://everest.hds.utc.fr/doku.php?id=en:smemlj12
4http://www.aclweb.org/anthology/P/P15/

3.1 Link Prediction
Link prediction is to predict whether there is a spe-
cific relation between two entities.

Evaluation Protocol. For each test triple, the
head is replaced by every entity in the KG, and
the energy is calculated for each corrupted triple.
Ranking the energies in ascending order, we get
the rank of the correct answer. We can get another
rank by corrupting the tail. We report two metrics
on the test sets: Mean (averaged rank) and Hit-
s@10 (proportion of ranks no larger than 10).

Implementation Details. To train CBOW and
Skip-gram, we use the word2vec implementation-
s5. 20 negative samples are drawn for each pos-
itive one. The context size is fixed to 5. To train
SME, TransE, and SE, we use the implementation-
s provided by the authors6, with 100 mini-batches.
We vary the learning rate in {0.01, 0.1, 1, 10}, the
dimension k in {20, 50}, and the margin γ in
{1, 2, 4}. The best model is selected by monitor-
ing Hits@10 on the validation sets, with a total of
at most 1000 iterations over the training sets.

Results. Table 3 reports the results on the test
sets of WN18 and NELL186. The improvements
of CBOW/Skip-gram over Random are also given.
Statistically significant improvements are marked
by ‡ (sign test, significance level 0.05). The result-
s show that a pre-training stage consistently im-
proves over the baselines for all the methods on
both data sets. Almost all of the improvements are
statistically significant.

3.2 Triple Classification
Triple classification aims to verify whether an un-
seen triple is correct or not.

Evaluation Protocol. Triples in the validation
and test sets are labeled as positive instances. For
each positive instance, we construct a negative in-
stance by randomly corrupting the entities. During

5https://code.google.com/p/word2vec/
6https://github.com/glorotxa/SME
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Mean Hits@10 (%)
Random CBOW Skip-gram Random CBOW Skip-gram

W
N

18

SME (linear) 463.2 ‡286.5 (↓38%) 226.9 (↓51%) 63.98 ‡68.65 (↑7%) ‡70.01 (↑9%)
SME (bilinear) 551.8 ‡308.8 (↓44%) ‡279.2 (↓49%) 63.83 ‡67.65 (↑6%) ‡67.53 (↑6%)
TransE 723.1 ‡293.0 (↓59%) ‡290.0 (↓60%) 78.50 ‡79.67 (↑1%) ‡79.87 (↑2%)
SE 960.0 ‡426.2 (↓56%) ‡289.4 (↓70%) 71.53 ‡76.05 (↑6%) ‡75.89 (↑6%)

N
E

L
L

18
6 SME (linear) 595.5 ‡371.9 (↓38%) ‡340.3 (↓43%) 29.82 ‡34.22 (↑15%) ‡35.57 (↑19%)

SME (bilinear) 375.2 ‡305.0 (↓19%) ‡292.9 (↓22%) 37.45 ‡39.31 (↑ 5%) ‡39.70 (↑ 6%)
TransE 732.6 ‡384.6 (↓48%) ‡384.6 (↓48%) 27.60 ‡28.71 (↑ 4%) ‡30.52 (↑11%)
SE 2307.0 ‡1314.7 (↓43%) ‡412.2 (↓82%) 19.53 ‡26.15 (↑34%) ‡31.12 (↑59%)

Table 3: Link prediction results on the test sets of WN18 and NELL186.

Micro-ACC (%) Macro-ACC (%)
Random CBOW Skip-gram Random CBOW Skip-gram

W
N

18

SME (linear) 84.70 89.54 (↑6%) 89.16 (↑5%) 85.11 89.11 (↑5%) 90.57 (↑6%)
SME (bilinear) 84.30 91.83 (↑9%) 90.68 (↑8%) 85.36 90.49 (↑6%) 89.89 (↑5%)
TransE 94.60 96.98 (↑3%) 97.23 (↑3%) 86.74 93.46 (↑8%) 94.49 (↑9%)
SE 94.71 96.46 (↑2%) 96.42 (↑2%) 87.99 92.05 (↑5%) 91.70 (↑4%)

N
E

L
L

18
6 SME (linear) 88.59 89.95 (↑2%) 91.19 (↑3%) 84.42 85.70 (↑2%) 86.67 (↑3%)

SME (bilinear) 88.74 93.22 (↑5%) 92.86 (↑5%) 83.41 89.70 (↑8%) 89.65 (↑7%)
TransE 82.54 85.65 (↑4%) 85.33 (↑3%) 76.74 80.06 (↑4%) 80.06 (↑4%)
SE 89.00 93.37 (↑5%) 93.07 (↑5%) 83.01 87.89 (↑6%) 87.98 (↑6%)

Table 4: Triple classification results on the test sets of WN18 and NELL186.

classification, a triple is predicted to be positive
if the energy is below a relation-specific thresh-
old δr; otherwise negative. We report two metric-
s on the test sets: micro-averaged accuracy (per-
instance average) and macro-averaged accuracy
(per-relation average).

Implementation Details. We use the same pa-
rameter settings as in the link prediction task.
The relation-specific threshold δr is determined by
maximizing Micro-ACC on the validation sets.

Results. Table 4 reports the results on the test
sets of WN18 and NELL186. The results again
demonstrate both the superiority and the generali-
ty of our approach.

3.3 Discussions

This section is to explore why pre-training helps
in KG embedding, specifically in link prediction.

We first test different random initializations in
traditional KG embedding models. We run SME
(linear) twice on WN18, with two different initial-
ization settings. Both are randomly sampled from
the same uniform distribution, but with differen-
t seeds, referred to as Random-I and Random-
II. Each setting finally gets 10,000 ranks on the
test set.7 To better understand the difference be-

7For each of the 5,000 test triples, both the head and the

tween the two settings, we analyze the ranks indi-
vidually, rather than reporting aggregated metrics
(Mean and Hits@10). Specifically, we distribute
the 10,000 instances into different bins according
to the ranks given by one setting (e.g. Random-
I). Instances assigned to the i-th bin have the same
rank of i, that means, they are all ranked in the i-th
position by this setting. Then, within each bin, we
calculate the average rank of the instances given
by the other setting (e.g. Random-II). If the av-
erage rank differs drastically from the bin ID, the
instances in this bin are ranked significantly dif-
ferently by the two settings. Figures 2(a) and 2(b)
show the results, with the instances distributed ac-
cording to Random-I and Random-II respectively.
In both cases, we retain the bins with ID no larger
than 50, covering about 85% of the instances. In
most of the bins, the average rank (red bars in the
figures) differs drastically from the bin ID (black
bars in the figures), indicating that the ranks giv-
en by Random-I and Random-II are significantly
different at the instance level. The results demon-
strate the non-convexity of SME (linear): different
initial values lead to different local minimum.

We further compare the settings of initial val-
ues 1) randomly sampled from a uniform distri-
bution (Random) and 2) pre-trained by Skip-gram

tail are corrupted and ranked.
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Figure 2: Ranks obtained by different initialization strategies (best viewed in color).

(Skip-gram). The results are given in Figures 2(c)
and 2(d). In most of the bins Skip-gram has an
average rank lower than the bin ID (Figure 2(c)),
while Random has an average rank much higher
than the bin ID (Figure 2(d)), implying that Skip-
gram performs better than Random-I at the in-
stance level. The results indicate that pre-training
might help in finding better initial values which
lead to better local minimum.

Finally we test our two-stage KG embedding
scheme where the skip-gram model itself is giv-
en two different initialization settings, say Skip-
gram-I and Skip-gram-II. The results are given in
Figures 2(e) and 2(f). In each of the first 20 bins,
Skip-gram-I and Skip-gram-II get an average rank
almost the same with the bin ID, implying that the
two settings perform quite similarly, particularly
at the highest ranking levels. The results indicate
that a pre-training stage might help in obtaining
more stable embeddings.

4 Conclusion

We have proposed a novel two-stage scheme for
KG embedding, called context-dependent KG em-
bedding. In the pre-training stage CCPs are encod-
ed by a word embedding model, and in the fine-
tuning stage LCPs are encoded by a traditional KG
embedding model. Since both types of connectiv-

ity patterns are explicitly taken into account, our
approach can obtain more accurate embeddings.
Moreover, our approach is quite general, applica-
ble to various word embedding and KG embed-
ding models. Experimental results on link predic-
tion and triple classification demonstrate the supe-
riority, generality, and stability of our approach.

As future work, we plan to 1) Investigate the ef-
ficacy of longer CCPs (i.e. knowledge paths with
lengths longer than 5). 2) Design a joint model that
encodes LCPs and CCPs simultaneously. More-
over, our approach actually reveals the possibili-
ty of a broad idea, i.e., initializing an embedding
model by another embedding model. We would
also like to test the feasibility of other such strate-
gies, e.g., initializing SME by TransE, so as to
combine the benefits of both models.
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Abstract

A prerequisite relation describes a basic
relation among concepts in cognition, ed-
ucation and other areas. However, as a se-
mantic relation, it has not been well stud-
ied in computational linguistics. We inves-
tigate the problem of measuring prereq-
uisite relations among concepts and pro-
pose a simple link-based metric, namely
reference distance (RefD), that effectively
models the relation by measuring how dif-
ferently two concepts refer to each other.
Evaluations on two datasets that include
seven domains show that our single metric
based method outperforms existing super-
vised learning based methods.

1 Introduction

What should one know/learn before starting to
learn a new area such as “deep learning”? A key
for answering this question is to understand what
a prerequisite is. A prerequisite is usually a con-
cept or requirement before one can proceed to a
following one. And the prerequisite relation exists
as a natural dependency among concepts in cog-
nitive processes when people learn, organize, ap-
ply, and generate knowledge (Laurence and Mar-
golis, 1999). While there has been serious effort
in understanding prerequisite relations in learning
and education (Bergan and Jeska, 1980; Ohland
et al., 2004; Vuong et al., 2011), it has not been
well studied as a semantic relation in computa-
tional linguistics, where researchers focus more
on lexical relations among lexical items (Miller,
1995) and fine-grained entity relations in knowl-
edge bases (Mintz et al., 2009).

Instead of treating it as a relation extraction or
link prediction problem using traditional machine
learning approaches (Talukdar and Cohen, 2012;
Yang et al., 2015), we seek to better understand

prerequisite relations from a perspective of cog-
nitive semantics (Croft and Cruse, 2004). Par-
tially motivated by the theory of frame seman-
tics (Fillmore, 2006), or, to understand a concept,
one needs to understand all the related concepts
in its “frame”, we propose a metric that measures
prerequisite relations based on a simple observa-
tion of human learning. When learning conceptA,
if one needs to refer to concept B for a lot of A’s
related concepts but not vice versa, B would more
likely be a prerequisite of A than A of B. Specif-
ically, we model a concept in a vector space using
its related concepts and measure the prerequisite
relation between two concepts by computing how
differently the two’s related concepts refer to each
other, or reference distance (RefD).

Our simple metric RefD successfully reflects
some properties of the prerequisite relation such
as asymmetry and irreflexivity; and can be prop-
erly implemented for various applications using
different concept models. We present an imple-
mentation of the metric using Wikipedia by lever-
aging the links as reference relations among con-
cepts; and present a scalable prerequisite dataset
construction method by crawling public available
university course prerequisite websites and map-
ping them to Wikipedia concepts. Experimental
results on two datasets that include seven domains
demonstrate its effectiveness and robustness on
measuring prerequisites. Surprisingly, our single
metric based approach significantly outperforms
baselines which use more sophisticated supervised
learning. All the datasets are publicly available
upon request.

Our main contributions include:

• A novel metric to measure the prerequisite re-
lation among concepts that outperforms ex-
isting supervised learning baselines.

• A new dataset containing 1336 concept pairs
in Computer Science and Math.
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Figure 1: An example of the reference structure
for two concepts (“Data mining” and “Algorithm”)
with a prerequisite relation.

2 Measuring Prerequisite Relations

Our goal is to design a function f : C2 → R that
maps a concept pair (A,B) to a real value that
measures the extent to which A requires B as a
prerequisite, where C is the concept space. How
should a concept be represented in C? According
to the theory of frame semantics, one cannot un-
derstand a concept without access to all essential
knowledge related to it. Such knowledge can be
actually viewed as a set of related concepts. Thus,
a concept could be represented by its related con-
cepts in C. For example, the concept “deep learn-
ing” may be represented by concepts such as “ma-
chine learning”, “artificial neural network”, etc.

Compared to prerequisites, a more common and
observable relation among concepts is a reference,
which widely exists in various forms such as hy-
perlinks, citations, notes, etc. Although a single
evidence of reference does not indicate a prereq-
uisite relation, a large number of such evidences
might make a difference. For example, if most re-
lated concepts of A refer to B but few related con-
cepts of B refer to A, then B is more likely to be
a prerequisite of A, as shown in Figure 1. In or-
der to measure prerequisite relations, we propose
a reference distance (RefD), which is defined as

RefD(A,B) =
∑k

i=1 r(ci,B)·w(ci,A)∑k
i=1 w(ci,A)

−∑k
i=1 r(ci,A)·w(ci,B)∑k

i=1 w(ci,B)

(1)

where C = {c1, ..., ck} is the concept space;
w(ci, A) weights the importance of ci to A; and
r(ci, A) is an indicator showing whether ci refers
to A, which could be links in Wikipedia, mentions
in books, citations in papers, etc.
RefD enables several useful properties

for the prerequisite relation: 1) normalized:
RefD(A,B) ∈ [−1, 1]; 2) asymmetric:
RefD(A,B)+RefD(B,A)=0, which means if
A is a prerequisite of B then B is not a prereq-
uisite of A; and 3) irreflexive: RefD(A,A)=0,
which means A is not a prerequisite of itself. To
capture all three possible prerequisite relations

between a concept pair, RefD is expected to satisfy
the following constraints:

RefD(A,B)∈


(θ, 1], if B is a prerequisite of A
[−θ, θ], if no prerequisite relation
[−1,−θ), if A is a prerequisite of B

where θ is a positive threshold.
Equation 1 provides a general framework to cal-

culate RefD. In practice, we need to specify the
concept space C, the weight w, and the reference
indicator function r.

3 Wikipedia-based RefD Implementation

We now implement RefD using Wikipedia. As a
widely used open-access encyclopedia, Wikipedia
provides relatively up-to-date and high quality
knowledge and has been successfully utilized as
explicit concepts (Gabrilovich and Markovitch,
2007). Moreover, the rich hyperlinks created by
Wiki editors provide a natural way to calculate the
reference indicator function r.

Specifically, the concept space C consists of
all Wikipedia articles. r(c, A) represents whether
there is a link from Wiki article c to A. For
w(c, A), we experiment with two methods:

• EQUAL: A is represented by the concepts
linked from it (L(A)) with equal weights.

w(c, A) =

{
1 if c ∈ L(A)
0 if c /∈ L(A)

• TFIDF: A is represented by the concepts
linked from it with TFIDF weights.

w(c, A) =

{
tf(c, A) ∗ log N

df(c) if c ∈ L(A)

0 if c /∈ L(A)

where tf(c, A) is the number of times c be-
ing linked from A; N is the total number of
Wikipedia articles; and df(c) is the number
of Wikipedia articles where c appears.

4 Experiments

In order to evaluate the proposed metric, we apply
it to predicting prerequisite relations in Wikipedia,
i.e., whether one article in Wikipedia is a prereq-
uisite of another article. Given a pair of concepts
(A,B), we predict whether B is a prerequisite of
A or not. Both pairs where A is a prerequisite of
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Dataset Domain # Pairs # Prerequisites

CrowdComp

Meiosis 400 67
Public-key Cryp. 200 27
Parallel Postulate 200 25
Newton’s Laws 400 44
Global Warming 400 43

Course
CS 678 108
MATH 658 75

Table 1: Statistics of CrowdComp and Course
Datasets

Domain MaxEnt† MaxEnt EQUAL TFIDF
Meiosis 51 60.2 53 55.7
Public-key Cryp. 67.1 60.3 55.1 57.7
Parallel Postulate 64.7 73.6 70.5 67.9
Newton’s Laws 53.9 57.7 63.7 64.6
Global Warming 56.8 50.0 57.4 60.1
Average 58.7 60.4 60.0∗ 61.2∗

Table 2: Comparison of out-of-domain training
accuracies of a MaxEnt classifier and RefD using
EQUAL and TFIDF weighting. MaxEnt† is the
number reported by Talukdar et al. (2012). Max-
Ent shows the performance of our implementation.
* indicates the difference between RefD and Max-
Ent is statistically significant (p < 0.01).

B and pairs where no prerequisite relation exists
will be viewed as negative examples.

RefD is tested on two datasets: CrowdComp
dataset (Talukdar and Cohen, 2012) and a Course
prerequisite dataset collected by us. We compare
RefD with a Maximum Entropy (MaxEnt) classi-
fier which exploits graph-based features such as
PageRank scores and content-based features such
as the category information, whether a title of con-
cept is mentioned in the first sentence of the other
concept, the number of times a concept is linked
from the other, etc. (Talukdar and Cohen, 2012).
All experiments use a Wikipedia dump of Dec 8,
2014.

4.1 Results on the CrowdComp Dataset

The CrowdComp dataset was collected us-
ing Amazon Mechanical Turk by Talukdar et
al. (2012). It contains binary-labeled concept
pairs from five different domains, including meio-
sis, public-key cryptography, the parallel postu-
late, Newton’s laws of motion, and global warm-
ing. The label of the prerequisite relation for each
pair is assigned using majority vote. Details of the
dataset are shown in Table 1.

Following Talukdar et al. (2012), we evaluate

CS MATH
A P R F A P R F

MaxEnt 72.8 87.6 53.2 66.1 69.0 78.1 53 63.1
EQUAL 76.4∗ 80.4 69.9 74.7∗ 73.9∗ 78.4 67.3 71.9∗
TFIDF 77.1∗ 82.3 69.1 75.1∗ 70.3∗ 76.3 60.1 66.7∗

Table 3: Comparison of in-domain training accu-
racies, precision, recall, and F1 measure of Max-
Ent and RefD using EQUAL and TFIDF weight-
ing. * indicates the improvement over MaxEnt is
statistically significant (p < 0.01).

different methods in a “leave one domain out”
manner, where data from one domain is used
for testing and data from other four for training.
Classes in the training and testing set are balanced
by oversampling the minority class. Table 2 lists
the accuracies of different methods. In terms of
average performance, RefD achieves comparable
average accuracy as MaxEnt. When TFIDF is
used to calculate w, RefD performs better than
MaxEnt. Also we notice that our implementation
of MaxEnt classifier achieves higher accuracy than
reported in the original paper, which may be due
to the difference between Wiki dumps used. In ad-
dition, we can see that there are large differences
in performance across different domains, which is
mainly due to two reasons. First, the coverage of
Wikipedia for different domains may vary a lot.
Some domains are more popular and thus edited
more frequently, leading to a better quality of ar-
ticles and a more complete link structure. Sec-
ond, since the ground-truth labels are collected by
crowdsourcing and there is no guarantee for work-
ers’ knowledge about a certain domain, the quality
of labels for different domains varies.

4.2 Results on the Course Dataset

We also built a Course dataset with the help
of information available on a university’s course
website containing prerequisite relations between
courses. For example, “CS 331 Data Structures
and Algorithms” is a prerequisite for “CS 422
Data mining”. We get the prerequisite pairs by
crawling the website and linking the course to
Wikipedia using simple rules such as title match-
ing and content similarity. In order to get nega-
tive samples, we randomly sample 600 pairs using
concepts appearing in the prerequisite pairs. All
pairs are then checked by two domain experts by
removing pairs with incorrect labels. Table 1 lists
the information of the dataset.

Evaluation uses in-domain 5-fold cross-
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Figure 2: Comparison of Precision-Recall curves
of MaxEnt and RefD (using EQUAL and TFIDF
weighting) on the Course dataset.

validation and classes are balanced by over-
sampling the minority class. Table 3 lists the
performance comparison of different methods on
accuracy, precision, recall and F1 score. We can
see that RefD outperforms MaxEnt in terms of
accuracy, recall, and F1 score on both CS and
MATH domain. Because MaxEnt relies on many
features but there are only limited distinct positive
samples in the dataset, it is more likely to overfit
the training data, which leads to high precision but
low recall on test set. In order to better compare
precision and recall, we plot the Precision-Recall
curves of different methods, as shown in Figure 2.
RefD shows a clear improvement in the area under
the Precision-Recall curve.

Comparing two weighting methods, we find that
TFIDF performs slightly better than EQUAL on
CS while EQUAL has higher scores than TFIDF
on MATH. Since how to compute w in RefD is
a crucial problem, our ongoing work is to ex-
plore more sophisticated semantic representations
to measure prerequisite relations. A natural exten-
sion to the two simple methods here is to represent
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Figure 3: Average accuracy on two datasets with a
given threshold of RefD using TFIDF weighting.

a concept using WordNet (Miller, 1995), Explicit
Semantic Analysis (Gabrilovich and Markovitch,
2007), or Word2vec embeddings (Mikolov et al.,
2013). Incorporating these representations may
improve the performance of RefD.

4.3 Parameter Analysis and Case Study

Since using RefD to predict prerequisites requires
setting a threshold θ, we also investigate the rela-
tion between the threshold and the performance of
prediction, as shown in Figure 3. We can see that a
threshold of 0.05 for RefD using TFIDF achieves
the highest average accuracy on the CrowdComp
dataset while a threshold of 0.02 works the best for
Course dataset. Empirically we find that a thresh-
old between 0.02 and 0.1 yields a good perfor-
mance for prerequisite prediction task.

We further explore the performance of RefD
through a case study for the concept “deep learn-
ing” (denoted as c′). Specifically, for any con-
cept c linked from c′ we calculate RefD(c′, c).
Table 4 lists the RefD scores for different con-
cepts using EQUAL weighting. The concepts on
the left have negative RefD scores with high abso-
lute values, which means that “deep learning” is a
prerequisite of them. Meanwhile concepts on the
right have high positive RefD scores, which means
that “deep learning” requires knowing them first.
For example, people may first need to have some
knowledge of “machine learning”, “artificial intel-
ligence” and “algorithm” in order to learn “deep
learning”. Also we notice that concepts in the mid-
dle have RefD scores which are very close to 0,
showing that there is no prerequisite relations be-
tween these concepts and “deep learning”. How-
ever, since our RefD implementation is based on
Wikipedia, it might not give an accurate measure
for concepts if they have no Wikipedia articles or
their articles are too short to provide an encyclope-
dic coverage, such as “discriminative model” and
“feature engineering”.
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Concept RefD Concept RefD Concept RefD
Deep belief network -0.38 List of Nobel laureates 0.009 Machine learning 0.32

Neocognitron -0.28 Neural development 0.009 Artificial neural network 0.31
Word embedding -0.24 Watson (computer) 0.003 Artificial intelligence 0.15

Vanishing gradient problem -0.22 Self-organization 8e-5 Algorithm 0.14
Feature learning -0.17 Language model -0.004 Statistical classification 0.13

Table 4: RefD scores between “deep learning” and the concepts linked from it. All scores are calculated
by RefD(‘deep learning’, concept).

Please note that our Wikipedia-based imple-
mentation is computationally efficient especially
after precomputing weights and references and
can be easily incorporated as a feature into exist-
ing supervised learning based methods.

5 Related Work

In the area of education, researchers have tried
to find prerequisites based on the assessment data
of students’ performance (Scheines et al., 2014;
Vuong et al., 2011). However, prerequisite rela-
tions have not been well studied in computer sci-
ence, with only a few exceptions. Liu et al. (2011)
studied learning-dependency between knowledge
units using classification where a knowledge unit
is a special text fragment containing concepts.
We focus on more general prerequisite relations
among concepts. Talukdar and Cohen (2012) ap-
plied a Maximum Entropy classifier to predict
prerequisite structures in Wikipedia using various
features such as a random walk with restart score
and PageRank score. Instead of doing feature en-
gineering, we propose to measure prerequisite re-
lations using a single metric. Yang et al. (2015)
proposed Concept Graph Learning to induce rela-
tions among concepts from prerequisite relations
among courses, where the learned concept prereq-
uisite relations are implicit and thus can not be
evaluated. Our method is more interpretable for
measuring prerequisite relations.

Our work is closely related to the study of se-
mantic relations. One direction is automatic lex-
ical relation extraction. Different methods have
been proposed to discover hypernym-hyponym re-
lations based on lexical patterns (Hearst, 1992;
McNamee et al., 2008; Ritter et al., 2009), dis-
tributional similarity (Kotlerman et al., 2010), se-
mantic word embeddings (Fu et al., 2014), etc.
Another line is entity relation extraction, which
can be performed by distant supervision (Mintz
et al., 2009; Riedel et al., 2010), Open IE (Fader
et al., 2011), and neural networks (Bordes et al.,

2011; Lin et al., 2015).
In addition, semantic relatedness measures have

been widely studied, where the key is to model
the semantic representation based on a latent
space, such as LSA (Deerwester et al., 1990),
PLSA (Hofmann, 1999), LDA (Blei et al., 2003)
and distributed word embeddings (Huang et al.,
2012; Mikolov et al., 2013), or an explicit concept
space, such as ESA (Gabrilovich and Markovitch,
2007), SSA (Hassan and Mihalcea, 2011), and
SaSA (Wu and Giles, 2015). Our work can also
be served as a basis for building concept hierar-
chy (Wang et al., 2015) and teaching/learning as-
sistant tools (Liang et al., 2015).

6 Conclusions and Future Work
We studied the problem of measuring prerequi-
site relations among concepts and proposed RefD,
a general, light-weight, and effective metric, to
capture the relation. We presented Wikipedia-
based implementations of RefD with two different
weighting strategies. Experiments on two datasets
including seven domains showed that our pro-
posed metric outperformed existing baselines us-
ing supervised learning.

Promising future directions would be applying
the framework of RefD to other contexts such as
measuring the prerequisite relations or reading or-
ders between papers and textbooks. In addition,
RefD can be incorporated into existing supervised
models for a more accurate measure. Also it
would be meaningful to explore ranking different
prerequisites of a concept. Besides the rich link
structure we could take advantage of more content
information from Wikipedia and other resources
such as textbooks and scientific papers.
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Abstract

Previous studies have shown that health
reports in social media, such as Dai-
lyStrength and Twitter, have potential for
monitoring health conditions (e.g. adverse
drug reactions, infectious diseases) in par-
ticular communities. However, in order
for a machine to understand and make in-
ferences on these health conditions, the
ability to recognise when laymen’s terms
refer to a particular medical concept (i.e.
text normalisation) is required. To achieve
this, we propose to adapt an existing
phrase-based machine translation (MT)
technique and a vector representation of
words to map between a social media
phrase and a medical concept. We eval-
uate our proposed approach using a col-
lection of phrases from tweets related to
adverse drug reactions. Our experimen-
tal results show that the combination of a
phrase-based MT technique and the simi-
larity between word vector representations
outperforms the baselines that apply only
either of them by up to 55%.

1 Introduction

Social media, such as DailyStrength1 and Twit-
ter2, is a fast growing and potentially rich source
of voice of the patient data about experience in
terms of benefits and side-effects of drugs and
treatments (O’Connor et al., 2014). However,
natural language understanding from social me-
dia messages is a difficult task because of the
lexical and grammatical variability of the lan-
guage (Baldwin et al., 2013; O’Connor et al.,
2014). Indeed, language understanding by ma-
chines requires the ability to recognise when a
phrase refers to a particular concept. Given a

1http://www.dailystrength.org/
2http://twitter.com

variable length phrase, an effective system should
return a concept with the most similar mean-
ing. Table 1 shows examples of mappings be-
tween Twitter phrases and medical concepts. For
example, a Twitter phrase ‘No way I’m gettin
any sleep 2nite’ might be mapped to the med-
ical concept ‘Insomnia’ (SNOMED:193462001),
when using the SNOMED-CT ontology (Spack-
man et al., 1997). The success of the mapping
between social media phrases and formal medi-
cal concepts would enable an automatic integra-
tion between patient experiences and biomedical
databases (Limsopatham and Collier, 2015). We
refer to this mapping from social media phrases to
medical concepts as medical term normalisation,
which aims to determine the unique identifier of
a medical concept that is mentioned in different
forms in a free-text (Morgan et al., 2008).

Existing works, e.g. (Elkin et al., 2012; Gob-
bel et al., 2014; Wang et al., 2009), mostly fo-
cused on identifying medical concepts in medi-
cal documents. For example, Gobbel et al. (2014)
proposed a naı̈ve Bayesian-based technique to
map phrases from clinical notes to medical con-
cepts in the SNOMED-CT ontology. Wang et
al. (2009) identified medical concepts regarding
adverse drug events in electronic medical records.
On the other hand, O’Connor et al. (2014) in-
vestigated the normalisation of medical terms in
Twitter messages. In particular, they proposed to
use the Lucene retrieval engine3 to retrieve medi-
cal concepts that could be potentially mapped to
a given Twitter phrase, when mapping between
Twitter phrases and medical concepts.

In contrast, we argue that the medical text nor-
malisation task can be achieved by using well-
established phrase-based MT techniques, where
we translate a text written in a social media lan-
guage (e.g. ‘No way I’m gettin any sleep 2nite’) to
a text written in a formal medical language (e.g.

3http://lucene.apache.org/
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Table 1: Examples of the mappings between social media messages and medical concepts.
Social media message Description of corresponding medical concept
No way I’m gettin any sleep 2nite Insomnia (SNOMED ID: 193462001)
kept me up for days Insomnia (SNOMED ID: 193462001)
can’t even focus forreal Unable to concentrate (SNOMED ID: 60032008)
I should be studying for but literally can’t Unable to concentrate (SNOMED ID: 60032008)
DRUG makes u skinny Weight loss (SNOMED ID: 89362005)

still tired as shit Fatigue (SNOMED ID: 84229001)
wiggin out a little bit Fidgeting (SNOMED ID: 247910009)
I’m happiest with DRUG Cheerful mood (SNOMED ID: 112080002)
DRUG made me the most chipper person Cheerful mood (SNOMED ID: 112080002)

‘Insomnia’) and then calculate the similarity be-
tween the translated phrase and the description of
a medical concept. Indeed, in this work we investi-
gate an effective adaptation of phrase-based MT to
map a Twitter phrase to a medical concept. More-
over, we propose to combine the adapted phrase-
based MT technique and the similarity between
word vector representations to effectively map a
Twitter phrase to a medical concept.

The main contributions of this paper are three-
fold:

1. We investigate the adaptation of phrase-based
MT to map a Twitter phrase to a SNOMED-
CT concept.

2. We propose to combine our adaptation of
phrase-based MT and the similarity between
word vector representations to map Twitter
phrases to formal medical concepts.

3. We thoroughly evaluate the proposed ap-
proach using phrases from our collection of
tweets related to the topic of adverse drug re-
actions (ADRs).

2 Related Work

Phrase-based MT models, e.g. (Koehn et al., 2003;
Och and Ney, 2004), have been shown to be effec-
tive in translation between languages, as they learn
local term dependencies, such as collocations, re-
orderings, insertions and deletions. Koehn et
al. (2003) showed that a phrase-based MT tech-
nique markedly outperformed traditional word-
based MT techniques on several benchmarks. In
this work, we adapt the phrase-based MT tech-
nique of Koehn et al. (2003) for the medical
text normalisation task. In particular, we use the
phrase-based MT technique to translate phrases
from Twitter language to formal medical lan-
guage, before mapping the translated phrases to

medical concepts based on the ranked similarity
of their word vector representations.

Traditional approaches for creating word vec-
tor representations treated words as atomic
units (Mikolov et al., 2013b; Turian et al., 2010).
For instance, the one-hot representation used a
vector with a length of the size of the vocabu-
lary, where one dimension is on, to represent a
particular word (Turian et al., 2010). Recently,
techniques for learning high-quality word vec-
tor representations (i.e. distributed word repre-
sentations) that could capture the semantic sim-
ilarity between words, such as continuous bags
of words (CBOW) (Mikolov et al., 2013b) and
global vectors (GloVe) (Pennington et al., 2014),
have been proposed. Indeed, these distributed
word representations have been effectively ap-
plied in different systems that achieve state-of-
the-art performances for several NLP tasks, such
as MT (Mikolov et al., 2013a) and named entity
recognition (Passos et al., 2014). In this work, be-
side using word vector representations to measure
the similarity between translated Twitter phrases
and the description of medical concepts, we use
the similarity between word vector representations
of the original Twitter phrase and the descrip-
tion of a medical concept to augment the adapted
phrase-based MT technique.

3 Medical Term Normalisation

We discuss our adaptation of phrase-based MT for
medical text normalisation in Section 3.1. Sec-
tion 3.2 introduces our proposed approach for
combining similarity score of word vector repre-
sentations with the adapted phrase-based MT tech-
nique.
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3.1 Adapting Phrase-based MT
We aim to learn a translation between a Twitter
phrase (i.e. a phrase from a Twitter message) and
a formal medical phrase (i.e. the description of a
medical concept). For a given Twitter phrase phrt,
we find a suitable medical phrase phrm using a
translation score, based on a phrase-based model,
as follows:

scoretranslation(phrm|phrt) = p(phrm|phrt) (1)

where p(phrm|phrt) can be calculated using any
phrase-based MT technique, e.g. (Koehn et al.,
2003; Och and Ney, 2004). We then rank trans-
lated phrases phrm based on this translation score.
The top-k translated phrases are used for identify-
ing the corresponding medical concept.

However, the translated phrase phrm may not
be exactly matched with the description of any
target medical concepts. We propose two tech-
niques to deal with this problem. For the first
technique, we rank the target concepts based on
the cosine similarity between the vector represen-
tation of phrm and the vector representation of the
description of each concept descc:

simcos(phrm, descc) =
Vphrm · Vdescc

||Vphrm || × ||Vdescc ||
(2)

where Vphrm and Vdescc are the vector represen-
tations of phrm and descc, respectively. Any
technique for creating word vector representations
(e.g. one-hot, CBOW and GloVe) can be used.
Note that if a phrase (e.g. phrm) contains several
terms, we create a vector representation by sum-
ming the value of the same dimension of the vec-
tor representation of each word (i.e. element-wise
addition).

On the other hand, the second technique also
incorporates the ranked position r of the trans-
lated phrase phrm when translated from the orig-
inal phrase phrt using Equation (1). Indeed, the
second technique calculates the similarity score as
follows:

simrcos(phrm, descc) =
1

r
· Vphrm · Vdescc

||Vphrm || × ||Vdescc ||
(3)

3.2 Combining Similarity Score with
Phrase-based MT

As discussed in Section 2, word vector represen-
tations (e.g. created by CBOW or GloVe) can cap-
ture semantic similarity between words by itself.
Hence, we propose to map a Twitter phrase phrt

to a medical concept c, which is represented with
a description descc, by linearly combining the co-
sine similarity, between vector representations of
the Twitter phrase phrt and the description descc,
with the similarity score computed using one of
the adapted phrased-based MT techniques (intro-
duced in Section 3.1), as follows:

simcombine(phrt, descc) =
Vphrt · Vdescc

||Vphrt || × ||Vdescc ||
(4)

+MTa(phrt, descc)

where MTa(phrt, descc) is calculated using one
of the adapted phrase-based MT techniques de-
scribed in Section 3.1.

4 Experimental Setup

4.1 Test Collection4

To evaluate our approach, we use a collection of
25 million tweets related to adverse drug reac-
tions (ADRs), from cognitive enhancers (Hanson
et al., 2013) and anti-depressants (Schneeweiss et
al., 2010). These tweets were collected using the
Twitter Streaming API5 by filtering on the name
of a particular set of drugs that can have adverse
reactions to the patients. Note that terms regard-
ing adverse drug reaction (e.g. insomnia) were
not used for capturing tweets. From this collec-
tion, we use 201 ADR phrases and their corre-
sponding SNOMED-CT concepts annotated by a
PhD-level computational linguist. These phrases
were anonymised by replacing numbers, user IDs,
URIs, locations, email addresses, dates and drug
names with appropriate tokens e.g. NUMBER .

4.2 Evaluation Approach

We conduct experiments using 10-fold cross val-
idation, where the Twitter phrases are randomly
divided into 10 separated folds. We address this
task as a ranking task, where we aim to rank the
medical concept with the highest similarity score,
e.g. calculated using Equation (2), at the top rank.
Hence, we evaluate our approach using Mean Re-
ciprocal Rank (MRR) measure (Craswell, 2009),
which is an information retrieval measure based
on the user model where the user wants to see

4The gold-standard mapping between the Twitter phrases
and the SNOMED-CT concepts are available on Zenodo.org
(DOI: http://dx.doi.org/10.5281/zenodo.27354)

5https://dev.twitter.com/streaming/
public
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only one relevant concept. In particular, MRR is
based on the the reciprocal of the rank at which
the first relevant concept is viewed in the rank-
ing (e.g. MRR = 0.5 if the first mapped concept
is wrong but the second is correct). We limit our
evaluation at top 5 of the ranking (i.e. MRR-5). In
addition, we compare the significant difference be-
tween the performance achieved by our proposed
approach and the baselines using the paired t-test
(p < 0.05).

4.3 Word Vector Representation

We use three different techniques, including one-
hot, CBOW and GloVe, to create word vector
representations used in our approach (see Sec-
tion 3). In particular, the vocabulary for creating
the one-hot representation includes all terms in the
Twitter phrases and the descriptions of the target
SNOMED-CT concepts. Meanwhile, we create
word vector representations based on CBOW and
GloVe by using the word2vec6 and GloVe7 imple-
mentations. We learn the vector representations
from the collections of tweets and medical arti-
cles, respectively, using window size of 10 words.
The tweet collection (denoted Twitter) contains
419,702,147 English tweets, which are related to
11 drug names and 6 cities, while the medical ar-
ticle collection (denoted BMC) includes all med-
ical articles from the BioMed Central8. For both
CBOW and GloVe, we create vector representa-
tions with vector sizes 50 and 200, respectively.

4.4 Learning Phrase-based Model

We use the phrase-based MT technique of Koehn
et al. (2003), as implemented in the Moses
toolkit (Koehn et al., 2007)9 with default settings,
to learn to translate from the Twitter language to
the medical language. In particular, when train-
ing the translator, we show the learner pairs of
the Twitter phrases and descriptions of the corre-
sponding SNOMED-CT concepts.

5 Experimental Results

We evaluate 6 different instantiations of the pro-
posed approach discussed in Section 3, including:

6https://code.google.com/p/word2vec/
7http://nlp.stanford.edu/projects/

glove/
8http://www.biomedcentral.com/about/

datamining
9http://www.statmt.org/moses/

1. bestMT: set k = 1, when finding the trans-
lated phrase phrm for a Twitter phrase phrt
(Equation (1)), before ranking target medical
concepts for the translated phrase phrm using
Equation (2).

2. top5MT: similar to bestMT, but set k = 5.
3. top5MTr: similar to top5MT, but also con-

sider the rank position of the translate phrases
when ranking the target medical concepts by
using Equation (3).

4. bestMT+vSim: incorporate with the ranking
generated from bestMT, the cosine similar-
ity between the vector representations of the
Twitter phrase phrt and the description descc
of target medical concepts by using Equa-
tion (4).

5. top5MT+vSim: similar to bestMT+vSim, but
use the ranking from top5MT.

6. top5MTr+vSim: similar to bestMT+vSim, but
use the ranking from top5MTr.

Another baseline is vSim, where we consider only
the cosine similarity between the vector represen-
tations of the Twitter phrase phrt and the descrip-
tion descc of target medical concepts.

Table 2 compares the performance of these 6
instantiations and the vSim baseline in terms of
MRR-5. We firstly observe that for the vSim base-
line, excepting for word vector representation with
vector size 50 learned using GloVe from the Twit-
ter collection, word vector representations learned
using either CBOW or GloVe are more effective
than the one-hot representation. However, the dif-
ference between the MRR-5 performance is not
statistically significant (p > 0.05, paired t-test). In
addition, word vector representations learned ei-
ther using CBOW or GloVe with vector size 200
is more effective than those with vector size 50.

Next, we find that our adaptation of phrase-
based MT (i.e. bestMT, top5MT and top5MTr) sig-
nificantly (p < 0.05) outperforms the vSim base-
line. For example, with the one-hot representation,
top5MT (MRR-5 0.2491) and top5MTr (MRR-5
0.2458) perform significantly (p < 0.05) better
than vSim (MRR-5 0.1675) by up to 49%. Mean-
while, when using word vector representations
with the vector size 200 learned using GloVe from
the BMC collection, top5MT (MRR-5 0.2638) sig-
nificantly (p < 0.05) outperforms vSim with either
the GloVe vector representation (MRR-5 0.1869)
or the one-hot representation (MRR-5 0.1675).
We observe the similar trends in performance
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Table 2: MRR-5 performance of the proposed approach and the baselines. Significant differences (p <
0.05) compared to the cosine similarity (vSim) baselines with the one-hot representation, and with the
corresponding distributed word representation (e.g. CBOW or GloVe) are denoted 4 and N, respectively.

Approach One-hot
BMC Twitter

CBOW GloVe CBOW GloVe
50 200 50 200 50 200 50 200

vSim 0.1675 0.1771 0.1896 0.1840 0.1869 0.1812 0.1813 0.0936 0.1807
bestMT 0.2232 0.1926 0.2070 0.1803 0.25004 0.2014 0.2047 0.1258 0.2138
top5MT 0.24914 0.1994 0.2104 0.1879 0.26384N 0.2037 0.2095 0.1322 0.2362
top5MTr 0.24584 0.1982 0.2109 0.1894 0.26174 0.2037 0.2096 0.1322 0.2310

bestMT+vSim 0.24204 0.1910 0.1953 0.1860 0.25324 0.1891 0.1954 0.1078 0.2374
top5MT+vSim 0.25564 0.1916 0.2144 0.1726 0.26004 0.1978 0.2068 0.1079 0.24054

top5MTr+vSim 0.25944 0.1861 0.2070 0.1802 0.25904 0.1959 0.2027 0.1129 0.24064

when using vector representations learned from
the Twitter collection. These results show that our
adapted phrase-based MT techniques are effective
for the medical term normalisation task.

In addition, we observe the effectiveness
of our combined approach (i.e. bestMT+vSim,
top5MT+vSim and top5MTr+vSim), as it further
improves the performance of the adapted phrase-
based MT (i.e. bestMT, top5MT and top5MTr, re-
spectively), when using the one-hot representa-
tion. For example, top5MTr+vSim achieves the
MRR-5 of 0.2594, while the MRR-5 of top5MTr
is 0.2458. However, the performance difference is
not statistically significant. Meanwhile, when us-
ing the CBOW and GloVe vectors, the achieved
performance is varied based on the collection (i.e.
BMC or Twitter) used for learning the vectors and
the size of the vectors.

6 Conclusions

We have introduced our approach that adapts a
phrase-based MT technique to normalise medical
terms in Twitter messages. We evaluate our pro-
posed approach using a collection of phrases from
tweets related to ADRs. Our experimental results
show that the proposed approach significantly out-
performs an effective baseline by up to 55%. For
future work, we aim to investigate the modelling
of learned vector representation, such as CBOW
and GloVe, within a phrase-based MT model when
normalising medical terms.
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Abstract

The narrative cloze is an evaluation met-
ric commonly used for work on automatic
script induction. While prior work in this
area has focused on count-based meth-
ods from distributional semantics, such as
pointwise mutual information, we argue
that the narrative cloze can be productively
reframed as a language modeling task. By
training a discriminative language model
for this task, we attain improvements of up
to 27 percent over prior methods on stan-
dard narrative cloze metrics.

1 Introduction

Although the concept of scripts in artificial intelli-
gence dates back to the 1970s (Schank and Abel-
son, 1977), interest in this topic has renewed with
recent efforts to automatically induce scripts from
text on a large scale. One particularly influential
work in this area, Chambers and Jurafsky (2008),
treats the problem of script induction as one of
learning narrative chains, which they accomplish
using simple textual co-occurrence statistics. For
the novel task of learning narrative chains, they
introduce a new evaluation metric, the narrative
cloze test, which involves predicting a missing
event from a chain of events drawn from text.
Several follow-up works (Chambers and Jurafsky,
2009; Jans et al., 2012; Pichotta and Mooney,
2014; Rudinger et al., 2015) employ and ex-
tend Chambers and Jurafsky (2008)’s methods for
learning narrative chains, each using the narrative
cloze to evaluate their work. 1

In this paper, we take the position that the nar-
rative cloze test, which has been treated predom-

1A number of related works on script induction use alter-
native task formulations and evaluations. (Chambers, 2013;
Cheung et al., 2013; Cheung and Penn, 2013; Frermann et
al., 2014; Manshadi et al., 2008; Modi and Titov, 2014; Reg-
neri et al., 2010)

inantly as a method for evaluating script knowl-
edge, is more productively thought of simply as a
language modeling task.2 To support this claim,
we demonstrate a marked improvement over pre-
vious methods on this task using a powerful dis-
criminative language model – the Log-Bilinear
model (LBL). Based on this finding, we believe
one of the following conclusions must follow: ei-
ther discriminative language models are a more
effective technique for script induction than pre-
vious methods, or the narrative cloze test is not a
suitable evaluation for this task.3

2 Task Definition

Following the definitions of Chambers and Juraf-
sky (2008), a narrative chain is “a partially or-
dered set of narrative events that share a common
actor,” where a narrative event is “a tuple of an
event (most simply a verb) and its participants,
represented as typed dependencies.” (De Marneffe
et al., 2006) Formally, e := (v, d), where e is a
narrative event, v is a verb lemma, and d is the
syntactic dependency (nsubj or dobj) between v
and the protagonist. As an example, consider the
following narrative:

John studied for the exam and aced it.
His teacher congratulated him.

With John as protagonist, we have a se-
quence of three narrative events: (study, nsubj),
(ace, nsubj), and (congratulate, dobj).

In the narrative cloze test, a sequence of nar-
rative events (like the example provided here) is
extracted automatically from a document, and one

2Manshadi et al. (2008) also take a language modeling
approach to event prediction, although their experiments are
not directly comparable.

3We note that, whether the narrative cloze was originally
intended as a rigorous evaluation of script induction tech-
niques or merely a preliminary metric, we are motivated by
the observation that this evaluation has nonetheless become a
standard metric for this task.
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narrative event is removed; the task is to predict
the missing event.

Data Each of the models discussed in the fol-
lowing section are trained and tested on chains of
narrative events extracted from stories in the New
York Times portion of the Gigaword corpus (Graff
et al., 2003) with Concrete annotations (Ferraro et
al., 2014). Training is on the entirety of the 1994–
2006 portion (16,688,422 chains with 58,515,838
narrative events); development is a subset of the
2007–2008 portion (10,000 chains with 35,109
events); and test is a subset of the 2009–2010 por-
tion (5,000 chains with 17,836 events). All ex-
tracted chains are of length two or greater.

Chain Extraction To extract chains of narra-
tive events for training and testing, we rely on
the (automatically-generated) coreference chains
present in Concretely Annotated Gigaword. Each
narrative event in an extracted chain is derived
from a single mention in the corresponding coref-
erence chain, i.e., it consists of the verb and syn-
tactic dependency (nsubj or dobj) that governs
the head of the mention, if such a dependency ex-
ists. Overlapping mentions within a coreference
chain are collapsed to a single mention to avoid
redundant extractions.

3 Models

In this section we present each of the models we
train for the narrative cloze evaluation. In a sin-
gle narrative cloze test, a sequence of narrative
events, (e1, · · · , eL), with an insertion point, k,
for the missing event is provided. Given a fixed
vocabulary of narrative events, V , a candidate se-
quence is generated for each vocabulary item by
inserting that item into the sequence at index k.
Each model generates a score for the candidate se-
quences, yielding a ranking over the vocabulary
items. The rank assigned to the actual missing vo-
cabulary item is the score the model receives on
that cloze test. In this case, we set V to include
all narrative events, e, that occur at least ten times
in training, yielding a vocabulary size of 12,452.
All out-of-vocabulary events are converted to (and
scored as) the symbol UNK.

3.1 Count-based Methods

Unigram Baseline (UNI) A simple but strong
baseline introduced by Pichotta and Mooney
(2014) for this task is the unigram model: can-

didates are ranked by their observed frequency in
training, without regard to context.

Unordered PMI (UOP) The original model for
this task, proposed by Chambers and Jurafsky
(2008), is based on the pointwise mutual informa-
tion (PMI) between events.

pmi(e1, e2) ∝ log
C(e1, e2)

C(e1, ∗)C(∗, e2) (1)

Here, C(e1, e2) is the number of times e1 and e2
occur in the same narrative event sequence, i.e.,
the number of times they “had a coreferring entity
filling the values of [their] dependencies,” and the
ordering of e1 and e2 is not considered. In our
implementation, individual counts are defined as
follows:

C(e, ∗) :=
∑
e′∈V

C(e, e′) (2)

This model selects the best candidate event in a
given cloze test according to the following score:

ê = arg max
e∈V

L∑
i=1

pmi(e, ei) (3)

We tune this model with an option to apply a mod-
ified version of discounting for PMI from Pantel
and Ravichandran (2004).

Ordered PMI (OP) This model is a slight vari-
ation on Unordered PMI introduced by Jans et al.
(2012). The only distinction is that C(e1, e2) is
treated as an asymmetric count, sensitive to the or-
der in which e1 and e2 occur within a chain.

Bigram Probability (BG) Another variant intro-
duced by Jans et al. (2012), the “bigram proba-
bility” model uses conditional probabilities rather
than PMI to compute scores. In a cloze test, this
model selects the following event:

ê = arg max
e∈V

k∏
i=1

p(e|ei)
L∏

i=k+1

p(ei|e) (4)

where p(e2|e1) = C(e1,e2)
C(e1,∗) and C(e1, e2) is asym-

metric. We tune this model with an option to per-
form absolute discounting. Note that this model is
not a bigram model in the typical language mod-
eling sense.
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Len UNI UOP OP BG LBL2 LBL4 Tests
2 490 1887 2363 1613 369 371 5668
3 452 1271 1752 1009 330 334 2793
4 323 806 1027 502 229 232 1616
5 364 735 937 442 254 243 1330
6 347 666 891 483 257 249 942
7 330 629 838 468 241 237 630
8 259 466 510 278 208 201 512
9 299 610 639 348 198 195 396

10+ 331 472 397 277 240 229 3949
ALL 400 1115 1382 868 294 292 17836

(a) Average Rank

Len UNI UOP OP BG LBL2 LBL4 Tests
2 .148 .053 .077 .149 .205 .204 5668
3 .179 .043 .065 .164 .217 .215 2793
4 .226 .042 .064 .195 .253 .253 1616
5 .225 .049 .076 .213 .261 .266 1330
6 .213 .054 .079 .214 .254 .263 942
7 .213 .061 .092 .215 .243 .247 630
8 .235 .063 .091 .244 .268 .278 512
9 .259 .058 .107 .252 .280 .278 396

10+ .191 .082 .113 .193 .198 .205 3949
ALL .186 .057 .083 .181 .221 .223 17836

(b) Mean Reciprocal Rank (MRR)

Len UNI UOP OP BG LBL2 LBL4 Tests
2 23.9 09.4 11.9 23.8 34.0 34.1 5668
3 28.8 08.2 11.1 28.0 36.3 35.6 2793
4 33.9 07.7 14.4 32.2 38.7 38.7 1616
5 33.4 10.1 18.7 34.0 39.6 40.3 1330
6 34.8 10.9 22.2 36.8 40.5 41.9 942
7 32.5 12.2 24.0 34.9 39.4 39.2 630
8 36.7 13.7 21.7 38.7 41.6 43.2 512
9 37.9 15.2 28.5 39.1 41.7 43.2 396

10+ 31.4 18.5 24.0 32.7 35.7 35.7 3949
ALL 29.5 11.6 16.8 29.8 36.5 36.6 17836

(c) Percent Recall at 10

Len UNI UOP OP BG LBL2 LBL4 Tests
2 41.7 16.9 25.5 38.6 51.2 51.0 5668
3 46.8 20.2 30.2 45.0 54.8 54.0 2793
4 53.8 25.3 37.8 54.0 59.0 60.0 1616
5 52.5 29.9 40.5 54.3 59.1 61.1 1330
6 53.9 33.2 40.7 55.2 60.6 61.7 942
7 51.8 34.3 42.7 56.5 61.6 63.8 630
8 58.2 42.2 47.7 61.3 67.2 67.0 512
9 58.1 42.2 47.7 60.1 66.2 67.0 396

10+ 49.9 47.4 50.1 54.2 58.4 59.8 3949
ALL 48.0 28.6 36.4 48.3 56.3 56.8 17836

(d) Percent Recall at 50

Table 1: Narrative cloze results bucketed by chain length for each model and scoring metric with best results in bold. The
models are Unigram Model (UNI), Unordered PMI (UOP), Ordered PMI (OP), Bigram Probability Model (BG), Log-Bilinear
Model N=2 (LBL2), Log-Bilinear Model N=4 (LBL4)

Skip N-gram We tune the previous three
models (UOP, OP, and BG) with the skip n-gram
counting methods introduced by Jans et al. (2012)
for this task, varying the ways in which the
counts, C(e1, e2), are collected. Using skip-n
counting, C(e1, e2) is incremented every time e1
and e2 co-occur within a window of size n. We
experiment with skip-0 (consecutive events only),
skip-3 (window size 3), and skip-all (entire chain
length) settings.

For each of the four narrative cloze scoring
metrics we report on (average rank, mean re-
ciprocal rank, recall at 10, and recall at 50),
we tune the Unordered PMI, Ordered PMI, and
Bigram Probability models over the following
parameter space: {skip-0, skip-3, skip-all} ×
{discount,no-discount} × {T=4,T=10,T=20},
where T is a pairwise count threshold.

3.2 A Discriminative Method

Log-Bilinear Language Model (LBL) The
Log-Bilinear language model is a language model
that was introduced by Mnih and Hinton (2007).
Like other language models, the LBL produces
a probability distribution over the next possible
word given a sequence of N previously observed
words. N is a hyper-parameter that determines the
size of the context used for computing the prob-
abilities. While many variants of the LBL have
been proposed since its introduction, we use the

simple variant described below.
Formally, we associate one context vector ce ∈

Rd, one bias parameter be ∈ R, and one tar-
get vector te ∈ Rd to each narrative event
e ∈ V ∪ { UNK, BOS, EOS }. V is the vocab-
ulary of events and BOS, EOS, and UNK are the
beginning-of-sequence, end-of-sequence, and out-
of-vocabulary symbols, respectively. The proba-
bility of an event e that appears after a sequence
s = [s1, s2, . . . , sN ] of context words is defined
as:

p(e|s) =
exp(tᵀ

e t̂s + be)∑
e′∈V∪{ UNK, EOS }

exp(tᵀ
e′ t̂s + be′)

where t̂s =
N∑
j=1

mj � csj

The� operator performs element-wise multiplica-
tion of two vectors. The parameters that are opti-
mized during training are mj ∀j ∈ [1, . . . , N ] and
ce, te ∀e ∈ V ∪ { UNK, BOS, EOS }. To calcu-
late the log-probability of a sequence of narrative
events E = (e1, . . . , eL) we compute:

l(S) =

(
n∑
i=1

log(p(ei|fE(ei)))

)
+ log(p(EOS|fE(EOS)))

(5)

Here fE is a function that returns the sequence
of N words that precede the event ei in the se-
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Figure 1: Narrative cloze results over all chain lengths. Unigram Model (UNI), Unordered PMI Model (UOP), Ordered PMI
Model (OP), Bigram Probability Model (BG), Log-Bilinear Model with context size 2 or 4 (LBL2, LBL4). Average Rank
(avgrnk), Mean Reciprocal Rank (mrr), % Recall at 10 (rec10), % Recall at 50 (rec50).

quence E′ made by prependingN BOS tokens and
appending a single EOS token to E.

The LBL models are trained by minimizing
the objective described in Equation 5 for all the
sequences in the training corpus. We used the
OxLM toolkit (Paul et al., 2014) which internally
uses Noise-Contrastive Estimation (NCE) (Gut-
mann and Hyvärinen, 2010) and processor paral-
lelization for speeding up the training. For this
task, we train LBL models with N = 2 (LBL2)
and N = 4 (LBL4). In our experiments, increas-
ing context size to N = 6 did not significantly
improve (or degrade) performance.

4 Experimental Results

Table 1 shows the results of 17,836 narrative cloze
tests (derived from 5,000 held-out test chains),
with results bucketed by chain length. Perfor-
mance is reported on four metrics: average rank,
mean reciprocal rank, recall at 10, and recall at 50.

For each of the four metrics, the best overall
performance is achieved by one of the two LBL
models (context size 2 or 4); the LBL models
also achieve the best performance on every chain
length. Not only are the gains achieved by the
discriminative LBL consistent across metrics and

chain length, they are large. For average rank, the
LBL achieves a 27.0% relative improvement over
the best non-discriminative model; for mean re-
ciprocal rank, a 19.9% improvement; for recall at
10, a 22.8% improvement; and for recall at 50,
a 17.6% improvement. (See Figure 1.) Further-
more, note that both PMI models and the Bigram
model have been individually tuned for each met-
ric, while the LBL models have not. (The two LBL
models are tuned only for overall perplexity on the
development set.)

All models trend toward improved performance
on longer chains. Because the unigram model also
improves with chain length, it appears that longer
chains contain more frequent events and are thus
easier to predict. However, LBL performance is
also likely improving on longer chains because
of additional contextual information, as is evident
from LBL4’s slight relative gains over LBL2 on
longer chains.

5 Conclusion

Pointwise mutual information and other related
count-based techniques have been used widely
to identify semantically similar words (Church
and Hanks, 1990; Lin and Pantel, 2001; Tur-
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ney and Pantel, 2010), so it is natural that these
techniques have also been applied to the task
of script induction. Qualitatively, PMI often
identifies intuitively compelling matches; among
the top 15 events to share a high PMI with
(eat, nsubj) under the Unordered PMI model, for
example, we find events such as (overeat, nsubj),
(taste, nsubj), (smell, nsubj), (cook, nsubj),
and (serve, dobj). When evaluated by the narra-
tive cloze test, however, these count-based meth-
ods are overshadowed by the performance of a
general-purpose discriminative language model.

Our decision to attempt this task with the Log-
Bilinear model was motivated by the simple ob-
servation that the narrative cloze test is, in reality,
a language modeling task. Does the LBL’s suc-
cess on this task mean that work in script induc-
tion should abandon traditional count-based meth-
ods for discriminative language modeling tech-
niques? Or does it mean that an alternative eval-
uation metric is required to measure script knowl-
edge? While we believe our results are sufficient
to conclude that one of these alternatives is the
case, we leave the task of determining which to
future research.
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Abstract

Word embeddings encode semantic mean-
ings of words into low-dimension word
vectors. In most word embeddings, one
cannot interpret the meanings of specific
dimensions of those word vectors. Non-
negative matrix factorization (NMF) has
been proposed to learn interpretable word
embeddings via non-negative constraints.
However, NMF methods suffer from scale
and memory issue because they have to
maintain a global matrix for learning. To
alleviate this challenge, we propose on-
line learning of interpretable word embed-
dings from streaming text data. Exper-
iments show that our model consistently
outperforms the state-of-the-art word em-
bedding methods in both representation a-
bility and interpretability. The source code
of this paper can be obtained from http:
//github.com/skTim/OIWE.

1 Introduction

Word embeddings (Turian et al., 2010) aim to
encode semantic meanings of words into low-
dimensional dense vectors. As compared with tra-
ditional one-hot representation and distributional
representation, word embeddings can better ad-
dress the sparsity issue and have achieved success
in many NLP applications recent years.

There are two typical approaches for word em-
beddings. The neural-network (NN) approach
(Bengio et al., 2006) employs neural-based tech-
niques to learn word embeddings. The matrix fac-
torization (MF) approach (Pennington et al., 2014)
builds word embeddings by factorizing word-
context co-occurrence matrices. The MF approach
requires a global statistical matrix, while the N-
N approach can flexibly perform learning from

∗Corresponding author: Z. Liu (liuzy@tsinghua.edu.cn)

streaming text data, which is efficient in both com-
putation and memory. For example, two recen-
t NN methods, Skip-Gram and Continuous Bag-
of-Word Model (CBOW) (Mikolov et al., 2013a;
Mikolov et al., 2013b), have achieved impressive
impact due to their simplicity and efficiency.

For most word embedding methods, a critical
issue is that, we are unaware of what each dimen-
sion represent in word embeddings. Hence, the
latent dimension for which a word has its largest
value is difficult to interpret. This makes word em-
beddings like a black-box, and prevents them from
being human-readable and further manipulation.

People have proposed non-negative matrix fac-
torization (NMF) for word representation, denoted
as non-negative sparse embedding (NNSE) (Mur-
phy et al., 2012). NNSE realizes interpretable
word embeddings by applying non-negative con-
straints for word embeddings. Although NNSE
learns word embeddings with good interpret-
abilities, like other MF methods, it also requires a
global matrix for learning, thus suffers from heavy
memory usage and cannot well deal with stream-
ing text data.

Inspired by the characteristics of NMF meth-
ods (Lee and Seung, 1999), we note that, non-
negative constraints only allow additive combi-
nations instead of subtractive combinations, and
lead to a parts-based representation. Hence, the
non-negative constraints derive interpretabilities
of word embeddings. In this paper, we aim to de-
sign an online NN method to efficiently learn in-
terpretable word embeddings. In order to achieve
the goal of interpretable embeddings, we design
projected gradient descent (Lin, 2007) for opti-
mization so as to apply non-negative constraints
on NN methods such as Skip-Gram. We also em-
ploy adaptive gradient descent (Sun et al., 2012)
to speedup learning convergence. We name the
proposed models as online interpretable word em-
beddings (OIWE).
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For experiments, we implement OIWE based
on Skip-Gram. We evaluate the representation
performance of word embedding methods on the
word similarity computation task. Experiment re-
sults show that, our OIWE models are signifi-
cantly superior to other baselines including Skip-
Gram, RNN and NNSE. We also evaluate the in-
terpretability performance on the word intrusion
detection task. The results demonstrate the effec-
tiveness of OIWE as compared to NNSE.

2 Our Model

In this section, we first introduce Skip-Gram and
then introduce the proposed online interpretable
word embeddings based on Skip-Gram.

2.1 Skip-Gram
Skip-Gram (Mikolov et al., 2013b) is simple and
effective to learn word embeddings. The objec-
tive of Skip-Gram is to make word vectors good
at predicting its context words. More specifically,
given a word sequence {w1, w2, . . . , wT }, Skip-
Gram aims to maximize the average log probabil-
ity

1
T

T∑
1

( ∑
−k≤j≤k,j 6=0

log Pr(wt+j |wt)
)
, (1)

where k is the context window size, and
Pr(wt+j |wt) indicates the probability of seeing
wt+j in the context of wt, which are measured
with softmax function

Pr(wt+j |wt) =
exp

(
wt+j ·wt

)∑
w∈W exp

(
w ·wt

) , (2)

where wt+j and wt are word embeddings of wt+j
and wt, and W is the vocabulary size. Since the
computation of full softmax is time consuming,
the techniques of hierarchical softmax and nega-
tive sampling (Mikolov et al., 2013b) are proposed
for approximation.

Take negative sampling for example. The log
probability Pr(wt+j |wt) can be approximate by

log σ
(
wt+j ·wt

)
+
∑
w∈Nt

log σ
(
w ·wt

)
, (3)

where σ(x) = 1/(1 + exp(−x)), and Nt is the
set of negative samples as compared to the cor-
responding context word wt+j . The task can be
regarded as to distinguish the context word wt+j

from negative samples.

For Skip-Gram with negative sampling, we can
perform stochastic gradient descent for learning.
The update rule for the positive/negative context
words u ∈ {wt+j} ∪Nt is

ui+1 = ui + γ
[
Iwt(u)− σ(u ·wt)

]
wi
t, (4)

where Iwt(u) = 1 when w is the positive contex-
t word of wt and Iwt(u) = 0 when w is nega-
tive, i is the iteration number, and γ is the learning
rate. Correspondingly, the update rule for the in-
put word wt is

wi+1
t = wi

t+γ
∑

u∈{wt}∪Nt

[
Iwt(u)−σ(u ·wt)

]
uit.

(5)
We note that, the learning rate γ in Skip-Gram is
shared by all word embeddings.

2.2 OIWE
In order to learn interpretable word embeddings,
we have to make the word embeddings learned in
Skip-Gram keep non-negative. In order to achieve
this goal, we have to constrain the update rules in
Equation (4) and (5) as follows:

xi+1
k = P

[
xik + γ∇f(xk)

]
, (6)

where xmay be u orwt, k is the corresponding di-
mension in word embedding x, ∇f(xk) indicates
the gradient corresponding to xk, and P [·] is de-
fined as

P [x] =

{
x if x > 0,
0 if x ≤ 0.

(7)

Motivated by the projected gradient descent meth-
ods for NMF (Lin, 2007), in this paper we pro-
pose two methods for Skip-Gram to realize the
constraint in Equation (6).

Naive Projected Gradient (NPG). In NPG, we
consider the most straightforward update strategy
by simply setting

xi+1
k = max

(
0,xik + γ∇f(xk)

)
. (8)

The method has been used for NMF (Lin, 2007)
although the details are not discussed.

The NPG method only constrains the violated
dimensions without taking the update consisten-
cy among dimensions of a word embedding into
account. For example, if many dimensions en-
counter xik + γ∇f(xk) < 0 at the same time,
which are set to 0 with Equation (8) with other
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dimensions unchanged, the updated word embed-
ding may heavily deviate from its semantic mean-
ing. Hence, NPG may suffer from instable updat-
ing results. To address this issue, we propose to
employ the following improved projected gradient
method.

Improved Projected Gradient (IPG). In order
to make the non-negative update more consistent
among dimensions, we design an improved pro-
jected gradient by iteratively finding the most ap-
propriate learning rate γ. The basic idea is that,
we will find a good learning rate γ to make less
dimensions violate the non-negative constraint.

More specifically, in Equation (6), for a learning
rate γ, we define the violation ratio as

R(γ) =

∣∣{k|xik > 0,xik + γ∇f(xk) < 0}∣∣
K

, (9)

where K is the dimension size of word embed-
dings. The violation ratio indicates how many di-
mensions violate the non-negative constraint and
require to be set to 0. When the learning rate γ de-
creases, the violation ratio will also decrease, and
the zero-setting in Equation (8) will bring less de-
viation to word embeddings.

We set a threshold δ for the violation ratio R(γ)
and a lower bound γL for the learning rate γ. S-
tarting from an initial learning rate γ0, we will re-
peatedly decrease the learning rate by

γm+1 = γm · β (10)

with 0 < β < 1 until

R(γm+1) < δ or γm+1 ≤ γL, (11)

and then update with Equation (8) using γm+1.
In nature, the updating constraint of learning rate
in Equation (11) play a similar role to Equation
(13) in (Lin, 2007), which aims to prevent the pro-
jection operation from heavily deviating the word
embeddings.

2.3 More Optimization Details
In experiments, we explore many optimization
methods and find the following two strategies
are important: (1) Adaptive Gradient Descen-
t. Following the idea from (Sun et al., 2012),
we maintain different learning rates γw for each
word w, and the learning rates for those high-
frequency words may decrease faster than those
low-frequency words. This will speedup the con-
vergence of word embedding learning. (2) Unified

Word Embedding Space. Different from original
Skip-Gram (Mikolov et al., 2013b) which learn
embeddings of wt and its context words wt+j in
two separate spaces, in this paper both wt and it-
s context words wt+j share the same embedding
space. Hence, a word embedding may get more
opportunities for learning.

3 Experiments

In this section, we investigate the representation
performance and interpretability of our OIWE
models with other baselines including typical N-
N and MF methods.

The representation performance is evaluated
with the word similarity computation task, and the
interpretability is evaluated with the word intru-
sion detection task. For the both tasks, we train our
OIWE models using the text8 corpus obtained
from word2vec website1, and the OIWE models
achieve the best performance by setting the dimen-
sion number K = 300, β = 0.6, δ = 1/60, and
γL = 2.5× 10−6.

3.1 Word Similarity Computation

Following the settings in (Murphy et al., 2012),
we also select the following three sets for word
similarity computation: (1) WS-203, the strict-
similarity subset of 203 pairs (Agirre et al., 2009)
selected from the wordsim-353 (Finkelstein et al.,
2001), (2) RG-65, 65 concrete word pairs built
by (Rubenstein and Goodenough, 1965) and (3)
MEN, 3, 000 word pairs built by (Bruni et al.,
2014). The performance is evaluated with the S-
pearman coefficient between human judgements
and similarities calculated using word embed-
dings.

We select three baselines including Skip-Gram
(Mikolov et al., 2013b), recurrent neural networks
(RNN) (Mikolov et al., 2011) and NNSE (Mur-
phy et al., 2012). For Skip-Gram, we report the
result we learned using word2vec on text8 cor-
pus. The result of RNN is from (Faruqui and Dyer,
2014) and the one of NNSE is from (Murphy et al.,
2012).

The evaluation results of word similarity com-
putation are shown in Table 1. We can ob-
serve that: (1) The OIWE models consistently
outperform other baselines. (2) IPG generally
achieves better representation performance than

1https://code.google.com/p/word2vec/
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Model WS-203 RG-65 MEN
Skip-Gram 67.35 50.49 52.56
RNN 49.28 50.19 43.44
NNSE 51.06 56.48 -
OIWE-NPG 63.71 56.85 57.60
OIWE-IPG 71.74 57.16 56.68

Table 1: Spearman coefficient results (%) on word
similarity computation.

NPG. This indicates consistent updates are im-
portant for learning of word embeddings. One
can refer to http://github.com/skTim/
OIWE for the evaluation results on more evalua-
tion datasets.

3.2 Word Intrusion Detection
We evaluate interpretability of word embeddings
with the task of word intrusion detection proposed
by (Murphy et al., 2012). In this task, for each
dimension we create a word set containing top-5
words in this dimension, and intruce a noisy word
from the bottom half of this dimension which
ranks high in other dimensions. Human editors
are asked to check each word set and try to pick
out the intrusion words, and the detection preci-
sion indicates the interpretability of word embed-
ding models. Note that, for this task we do not
perform normalization for word vectors.

Model Precision
Skip-Gram 32.62
NNSE 92.00
OIWE-NPG 61.40
OIWE-IPG 94.80

Table 2: Experiment results (%) on word intrusion
detection.

The evaluation results are shown in Table 2. We
can observe that: (1) Skip-Gram performs poor
in word intrusion detection without doubt since it
is uninterpretable in nature. (2) The OIWE-NPG
model achieves better interpretability as compared
to Skip-Gram, but performs much worse than
the OIWE-IPG model. The OIWE-IPG model
achieves competitive interpretability with NNSE.
This indicates that reducing violation rations in
word embedding learning is crucial for preserving
interpretability.

In Table 3, we show top-5 words for some
dimensions, which clearly demonstrate semantic

meanings of these dimensions. One can also
refer to http://github.com/skTim/OIWE
to find top-5 words for all dimensions.

No. Top Words
1 type, form, way, kind, manner
2 translates, describes, combines, includ-

ed, includes
3 gospel, baptism, jesus, faith, judaism
4 Franz, Johann, Wilhelm, Friedrich, von
25 prominent, famous, important, influen-

tial, popular

Table 3: Top words of some dimensions in word
embeddings.

3.3 Influence of Dimension Numbers
The dimension number is an important configura-
tion in word embeddings. In Fig. 1 we show the
performance of OIWE and Skip-Gram on word
similarity computation with varying dimension
numbers.

From the figure, we can observe that: (1) The
both models achieve their best performance un-
der the same dimension number. This indicates
that OIWE, to some extent, inherits the represen-
tation power of Skip-Gram. (2) The performance
of OIWE seems to be more sensitive to dimension
numbers. When the dimension number changes
from 300 to 200 or 400, the performance drops
much quickly than Skip-Gram. The reason may
be as follows. OIWE has to concern about both
representation ability of word embeddings and in-
terpretability of each dimension. An appropri-
ate dimension number is critical to make each di-
mension interpretable, just like the cluster num-
ber is important for clustering. On the contrary,
Skip-Gram is much free to learn word embeddings
only concerning about representation ability. (3)
The performance of OIWE with various dimen-
sions also varies on different evaluation dataset-
s. For example, OIWE-IPG with K = 400 get-
s 68.74 on MEN, which is much better than that
with K = 300. In future work, we will exten-
sively investigate the characteristics of OIWE with
respect to dimension numbers and other hyperpa-
rameters.

4 Conclusion and Future Work

In this paper, we present online interpretable word
embeddings. The OIWE models perform project-
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Figure 1: Influence of Dimension Number on
Words Similarity

ed gradient descent to apply non-negative con-
straints on NN methods such as Skip-Gram. Ex-
periment results on word similarity computation
and word intrusion detection demonstrate the ef-
fectiveness and efficiency of our models in both
representation ability and interpretability. We al-
so note that, our models can be easily extended to
other NN methods.

In future, we will explore the following re-
search issues: (1) We will extensively investigate
the characteristics of OIWE with respect to var-
ious hyperparameters including dimension num-
bers. (2) We will evaluate the performance of
our OIWE models in various NLP applications.
(3) We will also investigate possible extensions of
our OIWE models, including multiple-prototype
models for word sense embeddings (Huang et al.,
2012; Chen et al., 2014), semantic composition-
s for phrase embeddings (Zhao et al., 2015) and
knowledge representation (Bordes et al., 2013; Lin
et al., 2015).
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Abstract

Machine comprehension of text is the
overarching goal of a great deal of re-
search in natural language processing. The
Machine Comprehension Test (Richard-
son et al., 2013) was recently proposed to
assess methods on an open-domain, exten-
sible, and easy-to-evaluate task consisting
of two datasets. In this paper we develop
a lexical matching method that takes into
account multiple context windows, ques-
tion types and coreference resolution. We
show that the proposed method outper-
forms the baseline of Richardson et al.
(2013), and despite its relative simplicity,
is comparable to recent work using ma-
chine learning. We hope that our approach
will inform future work on this task. Fur-
thermore, we argue that MC500 is harder
than MC160 due to the way question an-
swer pairs were created.

1 Introduction

Machine comprehension of text is the central goal
in NLP. The academic community has proposed
a variety of tasks, such as information extrac-
tion (Sarawagi, 2008), semantic parsing (Mooney,
2007) and textual entailment (Androutsopoulos
and Malakasiotis, 2010). However, these tasks as-
sess performance on each task individually, rather
than on overall progress towards machine compre-
hension of text.

To this end, Richardson et al. (2013) proposed
the Machine Comprehension Test (MCTest), a
new challenge that aims at evaluating machine
comprehension. It does so through an open-
domain multiple-choice question answering task
on fictional stories requiring the common sense
reasoning typical of a 7-year-old child. It is easy
to evaluate as it consists of multiple choice ques-
tions. Richardson et al. (2013) also showed how

the creation of stories and questions can be crowd-
sourced efficiently, constructing two datasets for
the task, namely MC160 and MC500. In ad-
dition, the authors presented a lexical matching
baseline which is combined with the textual en-
tailment recognition system BIUTEE (Stern and
Dagan, 2011).

In this paper we develop an approach based on
lexical matching which we extend by taking into
account the type of the question and coreference
resolution. These components improve the per-
formance on questions that are difficult to han-
dle with pure lexical matching. When combined
with BIUTEE, we achieved 74.27% accuracy on
MC160 and 65.96% on MC500, which are signif-
icantly better than those reported by Richardson
et al. (2013). Despite the simplicity of our ap-
proach, these results are comparable with the re-
cent machine learning-based approaches proposed
by Narasimhan and Barzilay (2015), Wang et al.
(2015) and Sachan et al. (2015).

Furthermore, we examine the types of questions
and answers in the two datasets. We argue that
some types are relatively simple to answer, partly
due to the limited vocabulary used, which explains
why simple lexical matching methods can per-
form well. On the other hand, some questions re-
quire understanding of higher level concepts such
as those of the story and its characters, and/or re-
quire inference. This is still beyond the scope of
current NLP systems. However, we believe our
analysis will be useful in developing new methods
and datasets for the task. To that extent, we will
make our code and analysis publicly available.1

2 Task description

MCTest is an open-domain multiple-choice ques-
tion answering task on fictional stories consist-
ing of two datasets, MC160 and MC500. The

1http://github.com/elleryjsmith/
UCLMCTest
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It was a terrible day to live in the zoo again for Pauly. It
wasn’t a terrible day for Zip, the monkey next to him,
or Garth, the giraffe down the sidewalk, or Pat, the
alligator in the pond, or for Bam the prairie dog, but it
was a terrible day in the monkey cage for Pauly. Pauly
didn’t feel he belonged in the monkey cage because
he wasn’t a monkey. He was a sailor who had visited
the zoo on vacation and fallen asleep on a bench right
before closing time. The zoo worker saw how hairy
he was and thought he was a monkey that had escaped
from his cage, so they put him in a cage.

1. Where was Pauly when the zoo worker saw
him?
A) Looking at the monkeys
B) Sailing on a boat
C) Asleep on a bench
D) Walking down a path

2. Why did Pauly feel he didn’t belong in the
monkey cage?
A) Because he wasn’t a monkey
B) Because he was a zoo worker
C) Because he didn’t fall asleep
D) Because he was hairy

Figure 1: An excerpt from story mc500.train.44

two datasets contain 160 and 500 stories respec-
tively, with 4 questions per story, and 4 candi-
date answers per question (Figure 1). All stories
and questions were crowd-sourced using Amazon
Mechanical Turk.2 MC160 was manually curated
by Richardson et al., while MC500 was curated
by crowdworkers. Both datasets are divided into
training, development, and test sets. All develop-
ment was conducted on the training and develop-
ment sets; the test sets were used only to report the
final results.

3 Scoring function

Richardson et al. (2013) proposed a sliding win-
dow algorithm that ranks the answers by form-
ing the bag-of-words vector of each answer paired
with the question text and then scoring them ac-
cording to their overlap with the story text. We
propose a modified version of this algorithm,
which combines the scores across a range of win-
dow sizes.

More concretely, the algorithm of Richardson et
al. (2013) passes a sliding window over the story,
size of which is equal to the number of words
in the question-answer pair. The highest over-
lap score between a story text window and the
question-answer pair is taken as the score for the

2http://www.mturk.com

answer. Therefore, their algorithm makes a single
pass over the story text per answer. In compar-
ison, our system scores each answer by making
multiple passes and summing the obtained scores.
Concretely, on the first pass, we set the sliding
window size to 2 tokens, and increment this size
on each subsequent pass, up to a length of 30 to-
kens. We then combine this score with the over-
all number of matches of the question-answer pair
across the story as a whole. This enables our algo-
rithm to catch long-distance relations in the story.
Similar to Richardson et al. (2013), we use a lin-
ear combination of this score with their distance-
based scoring function, and we weigh tokens with
their inverse document frequencies in each indi-
vidual story.

By itself, this simple enhancement gives sub-
stantial improvements over the MSR baseline as
shown in Table 1 (Enhanced SW+D), as it mea-
sures the overlap of the question-answer pair with
multiple portions of the story text.

4 Incorporating linguistic analyses

We build upon our enhanced scoring function us-
ing stemming, rules taking into account the type of
the question, and coreference. The improvements
due to each of these components are presented in
Table 1, and we discuss the application of corefer-
ence and the rules used in more detail in the fol-
lowing subsections.

MC160 MC500
MSR SW+D 69.43% 63.01%

Enhanced SW+D 72.65% 63.57%
+Coreference Rules +2.38% +1.36%

+Negation +0.75% +0.36%
+Stemming +2.04% +0.50%
Final system 75.77% 65.43%

Table 1: Performance improvements on combined
train and dev sets.

4.1 Coreference resolution

The entities mentioned in MCTest stories are
frequently referred to by anaphoric expressions
throughout the story and the questions, which
is ignored by the described scoring function.
Therefore, we substituted each mention in a co-
reference chain with its representative mention,
applied the scoring function on the processed text
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and added the score to the original one. The
chains and their represenatative mentions were ob-
tained using the Stanford CoreNLP toolkit (Man-
ning et al., 2014). We found that coreference im-
proved performance on some question types, but
decreased performance on others. Thus we devel-
oped a set of question rules in order to apply it
selectively, which we discuss in the next section.

4.2 Rules

ROOT Which food was not eaten ?

det

nsubjpass

auxpass

neg

ROOT

Figure 2: Dependency tree to detect negation

To account for the variety of questions in
MCTest, we developed a set of rules to handle cer-
tain question types differently. To this purpose,
we created rules which detect numerical, tempo-
ral, narrative and negation-based questions, and
additionally partition questions by their wh-word.

By partitioning questions in different types, we
found that who questions, which primarily deal
with identifying a character in the story, benefit
from the use of coreference chains described in
the previous section. In addition, performance in
questions aimed at selecting an appropriate noun,
such as which, where or numerical questions, also
improved with coreference. However, other ques-
tion types, such as why questions, or questions
concerning the story narrative, did not register any
consistent improvement, and we opted not to use
co-reference for them. This selective application
of co-reference resulted in improvements on both
datasets (Table 1).

We also identified negation questions as requir-
ing special treatment. Some negation questions
are trivially solvable by selecting an answer which
does not appear in the text. However, our proposed
function that scores answers according to the lexi-
cal overlap with the story text is unlikely to score
answers not appearing in text highly. Motivated by
this observation we invert the score of each word
when a question with a negated root verb was de-
tected, e.g. “What did James not eat for dinner?”,
using Stanford Typed Dependencies (De Marneffe
and Manning, 2008), as depicted in Figure 2. Due
to this inversion a higher lexical overlap results in

a lower score, improving accuracy on both MC160
and MC500 (+negation in Table 1)

In a similar fashion we detected numerical ques-
tions based on the presence of a POS tag for a
cardinal number in either the question or any of
the answers choices. Questions concerning the
story’s narrative (e.g. “Which is the first char-
acter mentioned in the story”) were detected us-
ing keywords (e.g. character, book, etc.). Addi-
tionally, we detected temporal questions such as
“What did Jane do before she went home?” by
the presence of a temporal modifier or temporal
prepositions (e.g. before, while, etc.). Then we
attempted to account for them by searching the
text for the sentence indicating that she had gone
home and reducing the weight for all subsequent
sentences. However, since the improvements due
to these rules were negligible, we did not include
them in our final system. Nevertheless, these rules
were helpful in analyzing problem areas in the
datasets, as discussed in Section 6.

5 Results

We evaluated our system on MC160 and MC500
test sets and the results are shown in Table 2.
Our proposed baseline outperforms the baseline
of Richardson et al. (2013) by 4 and 3 points
in accuracy on MC160 and MC500 respectively.3

Our system is comparable to the MSR baseline
with the RTE system BIUTEE (Stern and Dagan,
2011). If we linearly combine the RTE scores used
in the MSR baseline with our method, we achieve
5 and 2.5 accuracy points higher than the best re-
sults achieved by Richardson et al. (2013).

Concurrently with ours, three other approaches
to solving MCTest were developed and sub-
sequently published a few months before our
method. Narasimhan and Barzilay (2015) pre-
sented a discourse-level approach, which chooses
an answer by utilising relations between sentences
chosen as important. Despite is simplicity, our
method is comparable in performance, suggesting
that better lexical matching could help improve
their model. Sachan et al. (2015) treated MCTest
as a structured prediction problem, searching for
a latent structure connecting the question, answer
and the text, dubbed the answer-entailing struc-
ture. Their model performs better on MC500 (was

3We consider the updated MSR algorithms and re-
sults, together with partial credit accuracies, provided at
http://research.microsoft.com/en-us/um/
redmond/projects/mctest/results.html
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MC160 MC500
MSR SW+D 68.02% 59.93%
Final system 72.19% 62.67%∗

MSR SW+D + RTE 69.27% 63.33%
Final system + RTE 74.27%∗ 65.96%∗

Narasimhan & Barzilay 73.23% 63.75%
Sachan et al. - 67.83%
Wang et al. 75.27% 69.94%

Table 2: Performance on the MC160 and MC500
test sets, including the results of all previous work.
* denotes statistically significant (p < 0.05) im-
provement using McNemar’s test, with respect to
the MSR baseline (SW+D)

not tested on MC160), however the strength of
our model is obtaining comparable results with a
much simpler model. The work of Wang et al.
(2015) is the most similar to ours, in the sense that
they combine a baseline feature set with more ad-
vanced linguistic analyses, namely syntax, frame
semantics, coreference, and word embeddings. In-
stead of a rule-based approach, they combine them
through a latent-variable classifier achieving the
current state-of-the-art performance on MCTest.

6 Discussion

Using the question-filtering rules mentioned in
Section 4.2, we obtained individual accuracy
scores per question type for the final system com-
bined with RTE (Table 3). Note that these types
are in three groups: i) wh-word questions (dis-
joint, questions without an wh-word are in Other),
ii) classes of questions requiring non-trivial lin-
guistic analysis and reasoning (not disjoint, not all
questions considered), and iii) questions originally
classified by crowdworkers, classifying whether
the question can be answered by a single or multi-
ple sentences in the story (disjoint).

Compared to the wh-word question type re-
sults of Narasimhan and Barzilay (2015), our ap-
proach performs better primarily on why questions
(72.97% and 80.65% vs. 59.45% and 69.35% on
MC160 and MC500 respectively) and slightly bet-
ter on how, when and what questions on MC500.
Additionally, our system is more successful in
questions requiring multiple sentences to be an-
swered correctly (70.31% and 63.3%vs. 65.23%
and 59.9% on MC160 and MC500 respectively).

If we remove the RTE component from our sys-

Category MC160 MC500
What 76.98% (126) 68.77% (317)
Who 71.43% (28) 58.44% (77)
When 80.00% (5) 100.00% (7)
How 72.62% (21) 50.58% (43)

Which 66.67% (6) 40.00% (25)
Where 91.67% (12) 68.97% (58)
Why 72.97% (37) 80.65% (62)

Whose - 66.67% (3)
Other 0.00% (5) 25.00% (8)

Negation 53.33% (15) 34.48% (29)
Temporal 58.82% (17) 56.41% (39)
Numerical 69.32% (22) 48.26% (43)
Narrative 81.82% (11) 58.41% (26)

Quantifiers 70.00% (20) 53.38% (37)
Single 78.79% (112) 69.12% (272)
Multi 70.31% (128) 63.34% (328)

Table 3: Performance of our final system + RTE
per question type on the test sets. The number of
relevant questions is in parentheses.

tem, the performance on relatively simple question
types such as what, who and where remains practi-
cally the same, thus confirming that our approach
can handle simple questions well. On the other
hand, the performance on why questions drops
without RTE, thus stressing the need for deeper
text understanding.

There are several clear deficiencies in certain
question types, particularly in handling negation.
These errors provide a broad overview of the cases
in which simple lexical techniques are not suffi-
cient to determine the correct answer.

Many numerical questions, particularly in
MC500, require the use of simple algebra over
story elements, including counting characters and
objects, and understanding temporal order. One
question even requires calculating the probability
of an event occurring, while another one calls for
complex volumetric calculation. Answering ques-
tions such as these is beyond the capabilities of
a lexical algorithm, and accuracies in this cate-
gory are worse than on all questions. Addition-
ally, lexical algorithms such as ours, which ig-
nore predicate-argument structure, perform worse
in the presence of quantifiers.

In MC500, the performance of our system on
more abstract questions, concerning the overall
narrative of the story, also demonstrates a sig-
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nificant inadequacy of lexical-based algorithms.
Questions such as “What was the first character
mentioned in the story?”, which relate to the over-
all narrative flow of the passage, or questions con-
cerning the state of the story environment, such
as “Where is the story set?”, are difficult to solve
without a system which understands the concept
of a story. Typical question-answering methods
would also struggle here.

Another type of challenging question are those
which require an implicit temporal understanding
of the text, i.e. questions concerning time without
using a temporal modifier. For example, given a
story which states that “John is at the beach”, then
later “John went home”, a question such as “What
did John do at home?” would prove itself difficult
for traditional methods to answer. These questions
are difficult to identify automatically by the form
of the question alone, thus we cannot provide ac-
curacies for them.

Our results confirm that it is easier to achieve
better performance on MC160 with simple lexi-
cal techniques, while the MC500 has proved more
resilient to the same improvements. We also ob-
served that the MC500 registers smaller improve-
ments in accuracy when adding components such
as co-reference. This is a consequence of the de-
sign and curation process of the MC500 dataset,
which stipulated that answers must not be con-
tained directly within the story text, or if they are,
that two or more misleading choices included.

Richardson et al. (2013) demonstrate that the
MC160 and MC500 have similar ratings for clar-
ity and grammar, and that humans perform equally
well on both. However, in many cases MC500 ap-
pears to be designed in such a way to confuse lex-
ical algorithms and encourage the use of more so-
phisticated techniques necessary to deal with phe-
nomena such as elimination questions, negation,
and common knowledge not explicitly written in
the story.

7 Related work

The use of shallow methods for machine compre-
hension has been explored in previous work, for
example Hirschman et al. (1999) used a bag-of-
words to match question-answer pairs to sentences
in the text, and choose the best pair with the best
matching sentence. As discussed in our analysis,
such systems cannot handle well questions involv-
ing negation and quantification. Numerical ques-

tions, which we found to be particularly challeng-
ing, have been the focus of recent work on algebra
word problems (Kushman et al., 2014) for which
dedicated systems have been developed.

MacCartney et al. (2006) demonstrated that a
large set of rules can be used to recognize valid
textual entailments. These consider phenomena
such as polarity and quantification, similar to those
we used in our analysis of the MCTest datasets.
More complex methods, which attempt deeper
modeling of text include Natural Logic (Angeli
and Manning, 2014) and Combinatorial Catego-
rial Grammars (Lewis and Steedman, 2013) com-
bined with distributional models. While promis-
ing, these approaches have been developed pri-
marily on sentence-level tasks, thus the stories in
MCTest are likely to present additional challenges.

The recently proposed class of methods called
Memory Network (Weston et al., 2014), uses neu-
ral networks and external memory to answer a
simpler comprehension task. Though quite suc-
cessful on toy tasks, those methods cannot yet be
applied to MCTest as they require much larger
training datasets than the ones available for this
task.

A recent approach by Hermann et al. (2015)
uses attention-based recurrent neural networks to
attack the problem of machine comprehension.
In this work, the authors show how to generate
large amounts of data for machine comprehension
exploiting news websites, and how to use novel
architectures in deep learning to solve the task.
However, due to the need for a large dataset for
training, and the focus only on questions that take
entities as answers, this approach has not been ap-
plied to MCTest.

8 Conclusion

In this paper we developed an approach to MCTest
that combines lexical matching with simple lin-
guistic analysis. We evaluated it on the two
MCTest datasets, MC160 and MC500, and we
showed that it improves upon the original baseline
by 4 and 3 percentage points respectively, while
being comparable to more complex approaches. In
addition, our analysis highlighted the challenges
involved and in particular in the MC500 dataset.
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Abstract

We propose a grammar induction tech-
nique for AMR semantic parsing. While
previous grammar induction techniques
were designed to re-learn a new parser for
each target application, the recently anno-
tated AMR Bank provides a unique op-
portunity to induce a single model for un-
derstanding broad-coverage newswire text
and support a wide range of applications.
We present a new model that combines
CCG parsing to recover compositional
aspects of meaning and a factor graph
to model non-compositional phenomena,
such as anaphoric dependencies. Our ap-
proach achieves 66.2 Smatch F1 score on
the AMR bank, significantly outperform-
ing the previous state of the art.

1 Introduction

Semantic parsers map sentences to formal repre-
sentations of their meaning (Zelle and Mooney,
1996; Zettlemoyer and Collins, 2005; Liang et al.,
2011). Existing learning algorithms have primar-
ily focused on building actionable meaning repre-
sentations which can, for example, directly query
a database (Liang et al., 2011; Kwiatkowski et al.,
2013) or instruct a robotic agent (Chen, 2012;
Artzi and Zettlemoyer, 2013b). However, due to
their end-to-end nature, such models must be re-
learned for each new target application and have
only been used to parse restricted styles of text,
such as questions and imperatives.

Recently, AMR (Banarescu et al., 2013) was
proposed as a general-purpose meaning represen-
tation language for broad-coverage text, and work
is ongoing to study its use for variety of appli-
cations such as machine translation (Jones et al.,
2012) and summarization (Liu et al., 2015). The

∗Work done at the University of Washington.

AMR meaning bank provides a large new corpus
that, for the first time, enables us to study the
problem of grammar induction for broad-coverage
semantic parsing. However, it also presents sig-
nificant challenges for existing algorithms, in-
cluding much longer sentences, more complex
syntactic phenomena and increased use of non-
compositional semantics, such as within-sentence
coreference. In this paper, we introduce a new,
scalable Combinatory Categorial Grammar (CCG;
Steedman, 1996, 2000) induction approach that
solves these challenges with a learned joint model
of both compositional and non-compositional se-
mantics, and achieves state-of-the-art performance
on AMR Bank parsing.

We map sentences to AMR structures in a two-
stage process (Section 5). First, we use CCG to
construct lambda-calculus representations of the
compositional aspects of AMR. CCG is designed
to capture a wide range of linguistic phenomena,
such as coordination and long-distance dependen-
cies, and has been used extensively for semantic
parsing. To use CCG for AMR parsing we define a
simple encoding for AMRs in lambda calculus, for
example, as seen with the logical form z and AMR
a in Figure 1 for the sentence Pyongyang officials
denied their involvement. However, using CCG to
construct such logical forms requires a new mech-
anism for non-compositional reasoning, for exam-
ple to model the long-range anaphoric dependency
introduced by their in Figure 1.

To represent such dependencies while main-
taining a relatively compact grammar, we fol-
low Steedman’s (2011) use of generalized Skolem
terms, a mechanism to allow global references in
lambda calculus. We then allow the CCG deriva-
tion to mark when non-compositional reasoning is
required with underspecified placeholders. For ex-
ample, Figure 1 shows an underspecified logical
form u that would be constructed by the grammar
with the bolded placeholder ID indicating an un-
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resolved anaphoric reference. These placeholders
are resolved by a factor graph model that is defined
over the output logical form and models which
part of it they refer to, for example to find the ref-
erent for a pronoun. Although primarily motivated
by non-compositional reasoning, we also use this
mechanism to underspecify certain relations dur-
ing parsing, allowing for more effective search.

Following most work in semantic parsing, we
consider two learning challenges: grammar in-
duction, which assigns meaning representations
to words and phrases, and parameter estimation,
where we learn a model for combining these
pieces to analyze full sentences. We introduce a
new CCG grammar induction algorithm which in-
corporates ideas from previous algorithms (Zettle-
moyer and Collins, 2005; Kwiatkowski et al.,
2010) in a way that scales to the longer sentences
and more varied syntactic constructions observed
in newswire text. During lexical generation (Sec-
tion 6.1), the algorithm first attempts to use a set
of templates to hypothesize new lexical entries. It
then attempts to combine bottom-up parsing with
top-down recursive splitting to select the best en-
tries and learn new templates for complex syntac-
tic and semantic phenomena, which are re-used in
later sentences to hypothesize new entries.

Finally, while previous algorithms (e.g., Zettle-
moyer and Collins, 2005) have assumed the ex-
istence of a grammar that can parse nearly every
sentence to update its parameters, this does not
hold for AMR Bank. Due to sentence complex-
ity and search errors, our model cannot produce
fully correct logical forms for a significant portion
of the training data. To learn from as much of the
data as possible and accelerate learning, we adopt
an early update strategy to generate effective up-
dates from partially correct analyses (Section 6.2).

We evaluate performance on the publicly avail-
able AMR Bank (Banarescu et al., 2013) and
demonstrate that our modeling and learning con-
tributions are crucial for grammar induction at this
scale and achieve new state-of-the-art results for
AMR parsing (Section 8). In addition, we also
present, for the first time, results without surface-
form alignment heuristics, which demonstrates the
need for future work, especially to generalize to
other languages. The source code and learned
models are available online.1

1http://yoavartzi.com/amr

x: Pyongyang officials denied their involvement.

a: (d/deny-01
:ARG0 (p/person

:ARG0-of (h/have-org-role-91
:ARG1 (c/city

: name (n/name :op1“Pyongyang”))
:ARG2(o/official)))

:ARG1 (i/involve-01 :ARG1 p))

u: A1(λd.deny-01(d) ∧
ARG0(d,A2(λp.person(p) ∧

REL-ofREL-ofREL-of(p,A3(λh.have-org-role-91(h) ∧
ARG1(h,A4(λc.city(c) ∧

name(c,A5(λn.name(n) ∧
op1(n,PYONGYANG))))) ∧

RELRELREL(h,A6(λo.official(o)))))) ∧
ARG1(d,A7(λi.involve-01(i) ∧

ARG1(i,R(IDIDID))))))

z: A1(λd.deny-01(d) ∧
ARG0(d,A2(λp.person(p) ∧

ARG0-of(p,A3(λh.have-org-role-91(h) ∧
ARG1(h,A4(λc.city(c) ∧

name(c,A5(λn.name(n) ∧
op1(n,PYONGYANG))))) ∧

ARG2(h,A6(λo.official(o)))))) ∧
ARG1(d,A7(λi.involve-01(i) ∧

ARG1(i,R(2))))))

Figure 1: A sentence (x) paired with its AMR (a), un-
derspecified logical form (u), which contains under-
specified constants in bold that are mapped to AMR re-
lations to generate the fully specified logical form (z).

2 Technical Overview
Task Let X be the set of all possible sentences
and A the set of all AMR structures. Given a sen-
tence x ∈ X , we aim to generate an AMR a ∈ A.
We define a simple, deterministic and invertible
conversion process between AMRs and lambda-
calculus logical forms; roughly speaking, each
AMR variable gets its own lambda term, which
is scoped as low as possible, and each AMR role
becomes a binary predicate applied to these vari-
ables. Figure 1 shows an example, and the full de-
tails are provided in the supplementary materials.
Therefore, henceforth we discuss the task of map-
ping a sentence x ∈ X to a logical form z ∈ Z ,
where Z is the set of all logical forms. For ex-
ample, in Figure 1, we would map the sentence x
to the logical form z. We evaluate system perfor-
mance using SMATCH (Cai and Knight, 2013).

Model Given a sentence x and lexicon Λ, we
generate the set of possible derivations GEN(x,Λ)
using a two-stage process (Section 5). First,
we use a weighted CCG to map x to an under-
specified logical form u (Section 5.1), a logical
form with placeholder constants for unresolved el-
ements. For example, in the underspecified log-
ical form u in Figure 1, the constants REL-of ,
REL and ID are placeholders. We then resolve
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these placeholders by defining a factor graph to
find their optimal mapping and generate the final
logical form z. In the figure, REL-of is mapped to
ARG0-of , REL to ARG2 and ID to 2.

Learning We assume access to a training set of
N examples {(xi, zi) : i = 1 . . . N}, each con-
taining a sentence xi and a logical form zi. Our
goal is to learn a CCG, which constitutes learn-
ing the lexicon and estimating the parameters of
both the grammar and the factor graph. We de-
fine a learning procedure (Section 6) that alter-
nates between expanding the lexicon and updating
the parameters. Learning new lexical entries relies
on a two-pass process that combines learning the
meaning of words and new syntactic structures,
and supports learning with and without alignment
heuristics (e.g., from Flanigan et al., 2014).

3 Related Work

The problem of learning semantic parsers has re-
ceived significant attention. Algorithms have been
developed for learning from different forms of
supervision, including logical forms (Wong and
Mooney, 2007; Muresan, 2011), question-answer
pairs (Clarke et al., 2010; Liang et al., 2011; Cai
and Yates, 2013; Kwiatkowski et al., 2013), sen-
tences paired with demonstrations (Goldwasser
and Roth, 2011; Chen and Mooney, 2011), con-
versational logs (Artzi and Zettlemoyer, 2011),
distant supervision (Krishnamurthy and Mitchell,
2012, 2015; Reddy et al., 2014) and without ex-
plicit semantic supervision (Poon, 2013).

Although we are first to consider using CCG to
build AMR representations, our work is closely re-
lated to existing methods for CCG semantic pars-
ing. Previous CCG induction techniques have ei-
ther used hand-engineered lexical templates (e.g.,
Zettlemoyer and Collins, 2005) or learned tem-
plates from the data directly (e.g., Kwiatkowski
et al., 2010, 2012). Our two-pass reasoning for
lexical generation combines ideas from both meth-
ods in a way that greatly improves scalability to
long, newswire-style sentences. CCG has also
been used for broad-coverage recovery of first-
order logic representations (Bos, 2008; Lewis and
Steedman, 2013). However, this work lacked cor-
pora to evaluate the logical forms recovered.

AMR (Banarescu et al., 2013) is a general-
purpose meaning representation and has been used
in a number of applications (Pan et al., 2015; Liu
et al., 2015). There is also work on recovering

Happy people dance

N[x]/N[x] N[pl] S\NP[pl]
λf.λx.f(x) ∧ ARG1-of(x, λp.people(p) λx.λd.dance-01(d)
A(λc.content-01(c))) ∧ARG0(d, x)

>
N[pl]

λp.people(p) ∧ ARG1-of(x,A(λc.content-01(c)))

NP[pl]
A(λp.people(p) ∧ ARG1-of(x,
A(λc.content-01(c))))

>
S

λd.dance-01(d) ∧ ARG0(d,A(λp.people(p) ∧ ARG1-of(x,
A(λc.content-01(c)))))

Figure 2: Example CCG tree with three lexical entries,
two forward applications (>) and type-shifting of a plu-
ral noun to a noun phrase.

AMRs, including graph parsing (Flanigan et al.,
2014), methods to build AMRs from dependency
trees (Wang et al., 2015) and algorithms for align-
ing words to AMRs (Pourdamghani et al., 2014).

4 Background
Combinatory Categorial Grammar CCG is a
categorial formalism that provides a transparent
interface between syntax and semantics (Steed-
man, 1996, 2000). Section 7 details our instan-
tiation of CCG. In CCG trees, each node is a
category. Figure 2 shows a simple CCG tree.
For example, S\NP[pl] : λx.λd.dance-01(d) ∧
ARG0(d, x) is a category for an intransitive verb
phrase. The syntactic type S\NP[pl] indicates that
an argument of type NP[pl] is expected and the
returned syntactic type will be S. The backward
slash \ indicates the argument is expected on the
left, while a forward slash / indicates it is ex-
pected on the right. The syntactic attribute pl spec-
ifies that the argument must be plural. Attribute
variables enforce agreement between syntactic at-
tributes. For example, as in Figure 2, adjectives
are assigned the syntax N[x]/N[x], where x is used
to indicate that the attribute of the argument will
determine the attribute of the returned category.
The simply-typed lambda calculus logical form in
the category represents its semantic meaning. The
typing system includes basic types (e.g., entity e,
truth value t) and functional types (e.g., 〈e, t〉 is
the type of a function from e to t). In the example
category, λx.λd.dance-01(d) ∧ ARG0(d, x) is a
〈e, 〈e, t〉〉-typed function expecting an ARG0 ar-
gument, and the conjunction specifies the roles of
the dance-01 frame.

A CCG is defined by a lexicon and a set of com-
binators. The lexicon pairs words and phrases with
their categorial meaning. For example, dance `
λx.λd.dance-01(d) ∧ ARG0(d, x) pairs dance
with the category above. We adopt a factored
representation of the lexicon (Kwiatkowski et al.,
2011), where entries are dynamically generated by
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combining lexemes and templates. For example,
the above lexical entry can be generated by pair-
ing the lexeme 〈dance, {dance-01}〉with the tem-
plate λv1.[S\NP : λx.λa.v1(a) ∧ARG0(a, x)].

Skolem Terms and IDs Generalized Skolem
terms (henceforth, Skolem terms) for CCG were
introduced by Steedman (2011) to capture com-
plex dependencies with relatively local quantifi-
cation. We define here a simplified version of
the theory to represent entities and allow distant
references. Let A be a 〈〈e, t〉, e〉-typed predi-
cate. Given a 〈e, t〉-typed logical expression C,
the logical form An(C) is a Skolem term with
the Skolem ID n. For example, A2(λy.boy(y))
is a Skolem term that could represent the noun
phrase the boy, which introduces a new entity.
Skolem IDs are globally scoped, i.e., they can
be referred from anywhere in the logical form
without scoping constraints. To refer to Skolem
terms, we define the 〈id, e〉-typed predicate R.
For example, the sentence the boy loves him-
self may be represented with A1(λx.love-01(x) ∧
ARG0(x,A2(λy.boy(y))) ∧ ARG1(x,R(2))),
whereR(2) references A2(λy.boy(y)).

5 Mapping Sentences to Logical Form

Given a sentence x and lexicon Λ, the function
GEN(x,Λ) defines the set of possible derivations.
Each derivation d is a tuple 〈y,M〉, where y is a
CCG parse tree andM is a mapping of constants
from u, the underspecified logical form at the root
of y, to their fully specified form.

5.1 Underspecified Logical Forms

An underspecified logical form represents multi-
ple logical forms via a mapping function that maps
its constants to sets of constants and Skolem IDs.
For example, consider the underspecified logical
form u at the top of Figure 3b. If, for example,
REL can be mapped to manner or ARG2, then
the sub-expression REL(h,A6(λo.official(o)))
represents manner(h,A6(λo.official(o))) or
ARG2(h,A6(λo.official(o))). During learning,
we assume access to fully specified logical forms,
which we convert to underspecified form as
needed. In practice, all binary relations, except
ARG0 and ARG1, and all Skolem ID references
are underspecified.

Formally, let C be the set of all constants and
I(u) the set of all Skolem IDs in the logical form
u. Let Su : C → 2C∪I(u) be a specification func-

tion, such that its inverse is deterministic. We call
a constant c a placeholder if |Su(c)| > 1. Given
an underspecified logical form u, applying Su to
all constants u contains, generates a set of fully
specified logical forms.

We define Su to be (a) Su(ID) = I(u),
the set of Skolem IDs in u, (b) Su(REL) =
{part,ARG2, . . . }, all 67 active AMR relations
except ARG0 and ARG1, (c) Su(REL-of) =
{part-of,ARG0-of, . . . }, all 33 passive relations,
and otherwise (d) Su(c) = c. For example, in u in
Figure 3b, the set of assignments to the ID place-
holder is I(u) = {1, 2, 3, 4, 5, 6, 7}.
5.2 Derivations
The first part of a derivation d = 〈y,M〉 is a CCG
parse tree y with an underspecified logical form u
at its root. For example, Figure 3a shows such a
CCG parse tree, where the logical form contains
the placeholders REL, REL-of and ID.

The second part of the derivation is a func-
tion M : CONSTS(u) → C ∪ I(u), where
CONSTS(u) is the set of all occurrences of con-
stants in u. For example, in Figure 3b, CONSTS(u)
contains, among others, three different occur-
rences of ARG1 and one of ID, and M maps
REL to ARG2, REL-of to ARG0-of and ID to
the Skolem ID 2. The set of potential assignments
for each occurrence of constant c is Su(c), andM,
which returns a single element for each constant,
is a disambiguation of Su. ApplyingM to all con-
stants in u results in the final logical form z.

Decomposing the derivation provides two ad-
vantages. First, we are able to defer decisions from
the CCG parse to the factor graph, thereby consid-
ering fewer hypotheses during parsing and sim-
plifying the computation. Second, we can repre-
sent distant references while avoiding the complex
parse trees that would have been required to repre-
sent these dependencies with scoped variables in-
stead of Skolem IDs.2

5.3 Model
Given a sentence x, we use a weighted log-linear
CCG (Lafferty et al., 2001; Clark and Curran,
2007) to rank the space of possible parses under
the grammar Λ. At the root of each CCG deriva-
tion is the underspecified logical form u.

To represent a probability distribution overM,
we build for each u a factor graphGu = 〈V, F,E〉,

2Similar to mention clustering methods for co-reference
resolution (Ng, 2010), IDs can be viewed as creating clusters.
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(a) CCG parse y: Maps the sentence x to an underspecified logical form u (Section 5.1) with placeholders for
unresolved decisions: ID for reference identifiers and the predicates REL and REL-of for unresolved relations.

x: Pyongyang officials denied their involvement

NP[sg] N[pl]\(N[pl]/N[pl]) S\NP/NP NP[pl] N[nb]
A1(λc.city(c)∧ λf.λp.person(p)∧ λx.λy.λd.deny-01(d)∧ R(ID) λi.involve-01(i)

name(c,A2(λn.name(n)∧ REL-of(p,A3(f(λh.have-org-role-91(h)∧ ARG0(d, y)∧
op(n,PYONGYANG)))) REL(h,A4(λo.official(o)))))) ARG1(d, x)

< >
>
<

A
u: A1(λd.deny-01(d) ∧ ARG0(d,A2(λp.person(p) ∧ REL-of(p,A3(λh.have-org-role-91(h) ∧ ARG1(h,A4(λc.city(c) ∧ name(c,

A5(λn.name(n) ∧ op(n,PYONGYANG))))) ∧ REL(h,A6(λo.official(o)))))) ∧ ARG1(d,A7(λi.involve-01(i) ∧ ARG1(i,R(ID))))))

(b) Constant mappingM: Each constant in u, the logical form at the root of y, is mapped to a Skolem ID or a
logical constant to create the fully specified logical form z, which can be converted to an AMR. Only mappings
that modify constants are illustrated.

u: A1(λd.deny-01(d) ∧ARG0(d,A2(λp.person(p) ∧ REL-of(p,A3(λh.have-org-role-91(h) ∧
ARG1(h,A4(λc.city(c) ∧ name(c,A5(λn.name(n) ∧ op(n,PYONGYANG))))) ∧
REL(h,A6(λo.official(o)))))) ∧ARG1(d,A7(λi.involve-01(i) ∧ARG1(i,R(ID))))))

z: A1(λd.deny-01(d) ∧ARG0(d,A2(λp.person(p) ∧ARG0-of(p,A3(λh.have-org-role-91(h) ∧
ARG1(h,A4(λc.city(c) ∧ name(c,A5(λn.name(n) ∧ op(n,PYONGYANG))))) ∧
ARG2(h,A6(λo.official(o)))))) ∧ARG1(d,A7(λi.involve-01(i) ∧ARG1(i,R(2))))))

Figure 3: A complete derivation for the sentence Pyongyang officials denied their involvement.

B

A

unit, prep-with, frequency,

prep-against, compared-to,

employed-by, ARG2, . . .

unit-of, prep-with-of, frequency-of,
prep-against-of, compared-to-of,
employed-by-of, ARG0-of, . . .

C2

C31, 2, 3, 4, 5, 6, 7

A1(�d.deny-01(d)^
ARG0(d,A2(�p.person(p)^

REL-of(p,A3(�h.have-org-role-91(h)^
ARG1(h,A4(�c.city(c)^

name(c,A5(�n.name(n) ^ op(n, PYONGYANG)))))^
REL(h,A6(�o.o�cial(o))))))^

ARG1(d,A7(�i.involve-01(i)^
ARG1(i,R(ID))))))

Figure 4: A visualization of the factor graph constructed for the derivation in Figure 3. Variables are marked with
gray background. The set of possible assignments, marked with a dashed arrow, is only specified for placeholders
(REL-of , REL and ID). Only a subset of the factors are included (A, B, C2 and C3). Solid lines represent edges.
Factor A captures selectional preference between the types have-org-role-91 and official to determine the relation
REL. Factor B does the same for person and have-org-role-91 to determine REF-of . Factors C2 and C3 account
for selectional preferences when resolving ID. In C2, we consider the assignment 2, which will create a relation
of type ARG1 between the types involve-01 and person. C3 similarly considers the assignment 3.

where V = CONSTS(u) is the set of variables,
F is the set of factors and E is the set of edges.
Each edge is of the form (v, f) where v ∈ V and
f ∈ F . Figure 4 shows the factor graph used in
generating the derivation in Figure 3, including all
the variables and a subset of the factors. For each
variable vc ∈ V such that c ∈ CONSTS(u) the set
of possible assignments is determined by Su(c).

To generate the factors F and edges E we use
the function Φ(V ′) that maps a set of variables
V ′ ⊆ V to a factor f and a set of edges, each
one of the form (v, f), where v ∈ V ′. Factors ex-
press various features (Section 7), such as selec-
tional preferences and control structures. In the
figure, Factor A captures the selectional prefer-
ence for the assignment of the relation REL be-
tween have-org-role-91 and official. Factor B
captures a similar preference, this time to resolve

REL-of . Factor C2 captures a selectional pref-
erence triplet involve-01/ARG1/person that will
be created if ID is resolved to the Skolem ID 2.
Finally, C3 captures a similar preference for re-
solving ID to 3. Since the assignment of many of
the variables is fixed, i.e., they are fully specified
constants, in practice our factor graph representa-
tion simply conditions on them.

Derivations are scored using a log-linear model
that includes both CCG parse features and those
defined by the factor graph. Let D(z) be the sub-
set of derivations with the final logical form z and
θ ∈ Rl be a l-dimensional parameter vector. We
define the probability of the logical form z as

p(z|x; θ,Λ) =
∑

d∈D(z)

p(d|x; θ,Λ) ,

and the probability of a derivation d is defined as

p(d|x; θ,Λ) =
eθ·φ(x,d)∑

d′∈GEN(x,Λ) e
θ·φ(x,d′) , (1)
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where φ(x, d) ∈ Rl is a feature vector (Section 7).

5.4 Inference

To compute the set of derivations GEN(x,Λ) we
define a two-stage process. We first run the
CCG parser to generate underspecified logical
forms. Following previous work (Zettlemoyer and
Collins, 2005), we use CKY parsing to enumer-
ate the top-K underspecified logical forms.3 Dur-
ing the CKY chart construction, we ignore Skolem
IDs when comparing categories. This allows us to
properly combine partial derivations and to fully
benefit from the dynamic programming. We dy-
namically generate lexical entries for numbers and
dates using regular expression patterns and for
named-entities using a recognizer. For every un-
derspecified logical form u, we construct a factor
graph and use beam search to find the top-L con-
figurations of the graph.4

During learning, we use the function
GENMAX(x, z, θ,Λ) to get all derivations
that map the sentence x to the logical form z,
given parameters θ and lexicon Λ. To compute
GENMAX, we follow Zettlemoyer and Collins
(2005) and collect constant co-occurrence counts
from z to prune from the CKY chart any category
that cannot participate in a derivation leading to
z. Since only constant names are changed during
the second stage, setting the factor graph to get
z is trivial: if the underspecified logical form is
identical to z except the placeholders, we replace
the placeholders with the correct final assignment,
otherwise the derivation cannot result in z.

6 Learning

Learning the two-stage model requires inducing
the entries of the CCG lexicon Λ and estimating
the parameters θ, which score both stages of the
derivation. We assume access to a training set
of N examples D = {(xi, zi) : i = 1 . . . N},
each containing a sentence xi and a logical form
zi. This data does not include information about
the lexical entries and CCG parsing operations re-
quired to construct the correct derivations. We
consider all these decisions as latent.

The main learning algorithm (Algorithm 1)
starts by initializing the lexicon (line 1) and then

3See Artzi et al. (2014) for a description of this process
and how to approximate the partition function in Equation 1.

4Experiments with loopy belief propagation showed it to
be slower and less effective for our task.

Algorithm 1 The main learning algorithm.

Input: Training set D = {(xi, zi) : i = 1 . . . N}, number
of iterations T , mini-batch size M , seed lexicon Λ0 and
learning rate µ.

Definitions: SUB(D, i, j) is the set of the next j sam-
ples from D starting at i. GENMAX(x, z, θ,Λ) is
the set of viterbi derivations from x with the final re-
sult z given parameters θ and lexicon Λ. LEX(d)
is the set of lexical entries used in the derivation d.
COMPUTEGRAD(x, z, θ,Λ) computes the gradient for
sentence x and logical form z, given the parame-
ters θ and lexicon Λ, and it described in Section 6.2.
ADAGRAD(∆) applies a per-feature learning rate to the
gradient ∆ (Duchi et al., 2011).

Output: Lexicon Λ and model parameters θ.
1: Λ← Λ0

2: for t = 1 to T do
3: » Generate entries and update the lexicon.
4: for i = 1 to N do
5: λnew ← λnew ∪ GENENTRIES(xi, zi, θ,Λ)

6: Λ← Λ ∪ λnew
7: » Compute and apply mini-batch gradient updates.
8: for i = 1 to d N

M
e do

9: ∆← ~0
10: for (x, z) in SUB(D, i,M) do
11: » Compute and aggregate the gradient.
12: ∆← ∆ + COMPUTEGRAD(x, z, θ,Λ)

13: θ ← θ + µADAGRAD(∆)

14: » Get all correct viterbi derivations.
15: V ← ⋃

(x,z)∈D GENMAX(x, z, θ,Λ)

16: » Retain only entries from derivations in V .
17: Λ← ⋃

d∈V LEX(d)

18: return Λ and θ

Algorithm 2 GENENTRIES: Procedure to generate lexical
entries from one training sample. See Section 6.1 for details.

Input: Sample (x, z), model parameters θ and lexicon Λ.
Definitions: GENLEX(x, z,Λ) and

RECSPLIT(z, z, θ,Λ) are defined in Section 6.1.
Output: Set of lexical entries λ.

1: » Augment lexicon with sample-specific entries.
2: Λ+ ← Λ ∪ GENLEX(x, z,Λ)
3: » Get max-scoring correct derivations.
4: D+ ← GENMAX(x, z,Λ+, θ)
5: if |D+| > 0 then
6: » Return entries from max-scoring derivations.
7: return

⋃
d∈D+

LEX(d)

8: else
9: » Top-down splitting to generate new entries.

10: return RECSPLIT(x, z, θ,Λ+)

processes the data T times (line 2), each time al-
ternating between batch expansion of the lexicon
and a sequence of mini-batch parameter updates.
An iteration starts with a batch pass to expand the
lexicon. The subroutine GENENTRIES, described
in Section 6.1 and Algorithm 2, is called to gener-
ate a set of new entries for each sample (line 5).

Next, we update the parameters θ with mini-
batch updates. Given a mini-batch size of M ,
we use the procedure SUB(D, i,M) to get the
i-th segment of the data D of size M . We pro-
cess this segment (line 10) to accumulate the
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mini-batch gradient ∆ by calling the procedure
COMPUTEGRAD(x, z, θ,Λ) (line 12), which com-
putes the gradient for x and z given θ and Λ, as
described in Section 6.2. We use AdaGrad (Duchi
et al., 2011) parameter updates (line 13).

Each iteration concludes with removing all lexi-
cal entries not used in max-scoring correct deriva-
tions, to correct for overgeneration (lines 14-17).

6.1 Lexicon Expansion: GENENTRIES

Given a sentence x, a logical form z, parameters θ
and a lexicon Λ, GENENTRIES(x, z, θ,Λ) (Algo-
rithm 2) computes a set of lexical entries, such that
there exists at least one derivation d using these
entries from x to z. We first use GENLEX(x, z,Λ)
to generate a large set of potential lexical entries
from u, the underspecified form of z, by generat-
ing lexemes (Section 4) and pairing them with all
templates in Λ. We then use a two-pass process
to select the entries to return. The set of gener-
ated lexemes is a union of: (a) the set Ggen that
includes all pairings of subsets of constants from
z with spans in x up to length kgen and (b) the
set that is constructed by matching named-entity
constants5 in z with their corresponding mentions
in the text to create new lexemes with potentially
any other constant (for lexemes with multiple con-
stants). Λ is augmented with the generated set of
lexical entries to create Λ+ (line 2).

First Pass Given the augmented lexicon Λ+, we
compute the set D+ = GENMAX(x, z, θ,Λ+)
(line 4). Following Artzi and Zettlemoyer
(2013b), we constrain the set of derivations to in-
clude only those that use at most one lexeme from
Ggen. If generating new lexemes is sufficient to
derive z from x, D+ will contain these derivations
and we return their lexical entries to be added to
the lexicon Λ (lines 5-7). Otherwise, we proceed
to do a second pass, where we try to generate new
templates to parse the sentence.

Second Pass: RECSPLIT In this pass we try
to generate max-scoring derivations in a top-down
process. Starting from u, the underspecified form
of z, we search for CCG parsing steps that will
connect to existing partial derivations in the CKY
chart to create a complete parse tree. Since the
space of possible operations is extremely large,

5Named-entity constants are created from name instances
when converting from AMR to lambda calculus. See the sup-
plementary material for the exact procedure.

we use CCGBank (Hockenmaier and Steedman,
2007) categories to prune, as described below.

The second pass is executed by calling
RECSPLIT(x, z, θ,Λ+), which returns a set of lex-
ical entries to add to the model (line 10). We recur-
sively apply the splitting operation introduced by
Kwiatkowski et al. (2010). Given a CCG category,
splitting outputs all possible category pairs that
could have originally generated it. For example,
given the category S\NP ` λy.λd.deny-01(d) ∧
ARG0(d, y) ∧ ARG1(d,A1(λi.involve-01(i) ∧
ARG1(i,R(ID)))), one of the possi-
ble splits will include the categories
S\NP/NP ` λx.λy.λd.deny-01(d) ∧
ARG0(d, y) ∧ ARG1(d, x) and NP `
A1(λi.involve-01(i) ∧ ARG1(i,R(ID))) which
would combine with forward application (>).
Kwiatkowski et al. (2010) present the full details.6

The process starts from u, the underspecified
form of z, and recursively applies the splitting
operation while ensuring that: (1) there is at most
one entry from Ggen or one entry where both the
template and lexemes are new in the derivation,
(2) each parsing step must have at least one child
that may be constructed from an existing partial
derivation, and (3) for each new parsing step, the
syntax of a newly generated child must match the
syntax of a CCGBank category for the same span.
To search the space of derivations we populate a
CKY chart and do a top-down beam search, where
in each step we split categories for smaller spans.

6.2 Gradient Computation: COMPUTEGRAD

Given a sentence x, its labeled logical form
z, parameters θ and lexicon Λ, the procedure
COMPUTEGRAD(x, z, θ,Λ) computes the gradi-
ent for the sample (x, z). Let D∗(z) =
GENMAX(x, z, θ,Λ), the set of max-scoring cor-
rect derivations. The hard gradient update is:

1

|D∗(z)|
∑

d∈D∗(z)
φ(xi, d)− Ep(d,|xi;θ,Λ)[φ(xi, d)] , (2)

where φ(x, d) ∈ Rl is a l-dimensional feature vec-
tor (Section 5.3) and the positive portion of the
gradient, rather than using expected features, av-
erages over all max-scoring correct derivations.

Early updates To generate an effective update
when no correct derivation is observed, we fol-
low Collins and Roark (2004) and do an early up-
date if D∗(z) is empty or if GEN(x,Λ), the set

6Unlike Kwiatkowski et al. (2010), we also introduce syn-
tactic attributes (e.g., pl, sg) when splitting.
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of derivations for x, does not contain a derivation
with the correct final logical form z. Given the par-
tial derivations, our gradient computation is identi-
cal to Equation 2. However, in contrast to Collins
and Roark (2004) our data does not include gold
derivations. Therefore, we attempt to identify
max-scoring partial derivations that may lead to
the correct derivation. We extract sub-expressions
from u,7 the underspecified form of z, and search
the CKY chart for the top-scoring non-overlapping
spans that contain categories with these logical
forms. We use the partial derivations leading to
these cells to compute the gradient.

The benefit of early updates is two-fold. First,
as expected, it leads to higher quality updates that
are focused on the errors the model makes. Sec-
ond, given the complexity of the data, it allows us
to have updates for many examples that would be
otherwise ignored. In our experiments, we observe
this behavior with nearly 40% of the training set.

7 Experimental Setup
Data, Tools and Metric For evaluation, we use
AMR Bank release 1.0 (LDC2014T12). We use
the proxy report portion, which includes newswire
articles from the English Gigaword corpus, and
follow the official split for training, development
and evaluation (6603/826/823 sentences). We use
EasyCCG (Lewis and Steedman, 2014) trained
with the re-banked CCGBank (Hockenmaier and
Steedman, 2007; Honnibal et al., 2010) to gener-
ate CCGBank categories, the Illinois Named En-
tity Tagger (Ratinov and Roth, 2009) for NER,
Stanford CoreNLP (Manning et al., 2014) for to-
kenization and part-of-speech tagging and UW
SPF (Artzi and Zettlemoyer, 2013a) to develop our
system. We use SMATCH (Cai and Knight, 2013)
to evaluate logical forms converted back to AMRs.

CCG We use three syntactic attributes: singular
sg, mass nouns nb and plural pl. When factor-
ing lexical entries, we avoid extracting binary re-
lations and references, and leave them in the tem-
plate. We use backward and forward binary com-
binators for application, composition and cross-
ing composition. We allow non-crossing compo-
sition up to the third order. We also add rules
to handle punctuation and unary rules for type-
shifting non-adjectives in adjectival positions and
verb phrases in adverbial positions. We allow

7We extract all sub-expressions of type e, 〈e, t〉,
〈e, t〉, 〈e, t〉〉 or 〈e, 〈e, t〉〉 from u.

shifting of bare plurals, mass nouns and named
entities to noun phrases. To avoid spurious am-
biguity during parsing, we use normal-form con-
straints (Hockenmaier and Bisk, 2010). We use
five basic lambda calculus types: entity e, truth
value t, identifier id, quoted text txt and integer i.

Features During CCG parsing, we use indicator
features for unary type shifting, crossing compo-
sition, lexemes, templates and dynamically gen-
erated lexical entries. We also use indicators for
co-occurrence of part-of-speech tags and syntac-
tic attributes, repetitions in logical conjunctions
and attachments in the logical form. In the factor
graph, we use indicator features for control struc-
tures, parent-relation-child selectional preferences
and for mapping a relation to its final form. See the
supplementary material for a detailed description.

Initialization and Parameters We created the
seed lexicon from the training data by sampling
and annotating 50 sentences with lexical entries,
adding entries for pronouns and adding lexemes
for all alignments generated by JAMR (Flanigan
et al., 2014). We initialize features weights as fol-
lows: 10 for all lexeme feature for seed entries
and entries generated by named-entity matching
(Section 6.1), IBM Model 1 scores for all other
lexemes (Kwiatkowski et al., 2011), -3 for unary
type shifting and crossing composition features, 3
for features that pair singular and plural part-of-
speech tags with singular and plural attributes and
0 for all other features. We set the number of it-
erations T = 10 and select the best model based
on development results. We set the max number
of tokens for lexical generation kgen = 2, learning
rate µ = 0.1, CCG parsing beam K = 50, factor
graph beam L = 100, mini batch size M = 40
and use a beam of 100 for GENMAX.

Two-pass Inference During testing, we perform
two passes of inference for every sentence. First,
we run our inference procedure (Section 5.4). If no
derivations are generated, we run inference again,
allowing the parser to skip words at a fixed cost
and use the entries for related words if a word is
unknown. We find related words in the lexicon us-
ing case, plurality and inflection string transforma-
tions. Finally, if necessary, we heuristically trans-
form the logical forms at the root of the CCG parse
trees to valid AMR logical forms. We set the cost
of logical form transformation and word skipping
to 10 and the cost of using related entries to 5.
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8 Results

Table 1 shows SMATCH test results. We com-
pare our approach to the latest, fixed version of
JAMR (Flanigan et al., 2014) available online,8

the only system to report test results on the official
LDC release. Our approach outperforms JAMR
by 3 SMATCH F1 points, with a significant gain
in recall. Given consensus inter-annotator agree-
ment of 83 SMATCH F1 (Flanigan et al., 2014),
this improvement reduces the gap between auto-
mated methods and human performance by 15%.
Although not strictly comparable, Table 1 also in-
cludes results on the pre-release AMR Bank cor-
pus, including the published JAMR results, their
fixed results and the results of Wang et al. (2015).

Table 2 shows SMATCH scores for the devel-
opments set, with ablations. The supplementary
material includes example output derivations and
qualitative comparison to JAMR outputs. We first
remove underspecifying constants, which leaves
the factor graph to resolve only references. While
the expressivity of the model remains the same,
more decisions are considered during parsing,
modestly impacting performance.

We also study the different methods for lexical
generation. Skipping the second recursive split-
ting pass in GENENTRIES creates an interesting
tradeoff. As we are unable to learn templates with-
out splitting, we induce a significantly smaller lex-
icon (500K vs. 1.6M entries). Although we are
unable to recover many syntactic constructions,
our search problem is in general much simpler. We
therefore see a relatively mild drop in overall per-
formance (1.1 F1). Removing Ggen during lexi-
cal generation (Section 6.1) creates a more signif-
icant drop in performance (3.4 F1), demonstrating
how considering all possible lexemes allows the
system to recover entries that are not covered by
heuristic alignments. We are also able for the first
time to report AMR parsing results without any
surface-form similarity heuristics, by removing
both JAMR alignments and named-entity match-
ing lexical generation (Section 6.1). The signifi-
cant drop in performance (20 points F1) demon-
strates the need for better alignment algorithm.

Finally, Figure 5 plots development SMATCH

F1 with and without early updates. As expected,
early updates increase the learning rate signifi-
cantly and have a large impact on overall perfor-
mance. Without early updates we are unable to

8JAMR is available at http://tiny.cc/jamr.

P R F1
JAMR (fixed) 67.8 59.2 63.2
Our approach 66.8 65.7 66.3
Pre-release corpus results
JAMR (Flanigan et al., 2014) 52.0 66.0 58.0
JAMR (fixed) 66.8 58.3 62.3
Wang et al. (2015) 64.0 62.0 63.0

Table 1: Test SMATCH results.
P R F1

Full system 67.2 65.1 66.1
w/o underspecified constants 66.9 64.2 65.5

Lexical learning ablations
w/o splitting 65.0 65.0 65.0
w/o Ggen 62.6 62.7 62.6
w/o surface-form similarity 55.9 38.5 45.6

Table 2: Development SMATCH results.

1 2 3 4 5 6 7 8 9 10
45
50
55
60
65

Iteration number
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M
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T
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H

F1
Figure 5: Development SMATCH F1 without early up-
dates (•) and with early updates (�).

learn from almost half of the data, and perfor-
mance drops by nearly 15 points.

9 Conclusion
We described an approach for broad-coverage
CCG induction for semantic parsing, including
a joint representation of compositional and non-
compositional semantics, a new grammar induc-
tion technique and an early update procedure. We
used AMR as the target representation and present
new state-of-the-art AMR parsing results.

While we focused on recovering non-
compositional dependencies, other non-
compositional phenomena remain to be studied.
Although our technique is able to learn certain id-
ioms as multi-word phrases, learning to recognize
discontinuous idioms remains open. Similarly,
resolving cross-sentence references, which are not
annotated in AMR Bank, is important future work.
Finally, we would like to reduce the dependency
on surface-form heuristics, for example to better
generalize to other languages.
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Abstract

Natural language generation (NLG) is a
critical component of spoken dialogue and
it has a significant impact both on usabil-
ity and perceived quality. Most NLG sys-
tems in common use employ rules and
heuristics and tend to generate rigid and
stylised responses without the natural vari-
ation of human language. They are also
not easily scaled to systems covering mul-
tiple domains and languages. This pa-
per presents a statistical language gener-
ator based on a semantically controlled
Long Short-term Memory (LSTM) struc-
ture. The LSTM generator can learn from
unaligned data by jointly optimising sen-
tence planning and surface realisation us-
ing a simple cross entropy training crite-
rion, and language variation can be eas-
ily achieved by sampling from output can-
didates. With fewer heuristics, an objec-
tive evaluation in two differing test do-
mains showed the proposed method im-
proved performance compared to previ-
ous methods. Human judges scored the
LSTM system higher on informativeness
and naturalness and overall preferred it to
the other systems.

1 Introduction

The natural language generation (NLG) compo-
nent provides much of the persona of a spoken
dialogue system (SDS), and it has a significant
impact on a user’s impression of the system. As
noted in Stent et al. (2005), a good generator usu-
ally depends on several factors: adequacy, flu-
ency, readability, and variation. Previous ap-
proaches attacked the NLG problem in different
ways. The most common and widely adopted
today is the rule-based (or template-based) ap-
proach (Cheyer and Guzzoni, 2007; Mirkovic and

Cavedon, 2011). Despite its robustness and ade-
quacy, the frequent repetition of identical, rather
stilted, output forms make talking to a rule-based
generator rather tedious. Furthermore, the ap-
proach does not easily scale to large open domain
systems(Young et al., 2013; Gašić et al., 2014;
Henderson et al., 2014). Hence approaches to
NLG are required that can be readily scaled whilst
meeting the above requirements.

The trainable generator approach exemplified
by the HALOGEN (Langkilde and Knight, 1998)
and SPaRKy system (Stent et al., 2004) provides
a possible way forward. These systems include
specific trainable modules within the generation
framework to allow the model to adapt to different
domains (Walker et al., 2007), or reproduce cer-
tain style (Mairesse and Walker, 2011). However,
these approaches still require a handcrafted gen-
erator to define the decision space within which
statistics can be used for optimisation. The result-
ing utterances are therefore constrained by the pre-
defined syntax and any domain-specific colloquial
responses must be added manually.

More recently, corpus-based methods (Oh and
Rudnicky, 2000; Mairesse and Young, 2014; Wen
et al., 2015) have received attention as access to
data becomes increasingly available. By defin-
ing a flexible learning structure, corpus-based
methods aim to learn generation directly from
data by adopting an over-generation and rerank-
ing paradigm (Oh and Rudnicky, 2000), in which
final responses are obtained by reranking a set of
candidates generated from a stochastic generator.
Learning from data directly enables the system to
mimic human responses more naturally, removes
the dependency on predefined rules, and makes
the system easier to build and extend to other do-
mains. As detailed in Sections 2 and 3, however,
these existing approaches have weaknesses in the
areas of training data efficiency, accuracy and nat-
uralness.
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This paper presents a statistical NLG based on
a semantically controlled Long Short-term Mem-
ory (LSTM) recurrent network. It can learn from
unaligned data by jointly optimising its sentence
planning and surface realisation components us-
ing a simple cross entropy training criterion with-
out any heuristics, and good quality language vari-
ation is obtained simply by randomly sampling
the network outputs. We start in Section 3 by
defining the framework of the proposed neural lan-
guage generator. We introduce the semantically
controlled LSTM (SC-LSTM) cell in Section 3.1,
then we discuss how to extend it to a deep structure
in Section 3.2. As suggested in Wen et al. (2015),
a backward reranker is introduced in Section 3.3
to improve fluency. Training and decoding details
are described in Section 3.4 and 3.5.

Section 4 presents an evaluation of the proposed
approach in the context of an application provid-
ing information about venues in the San Francisco
area. In Section 4.2, we first show that our genera-
tor outperforms several baselines using objective
metrics. We experimented on two different on-
tologies to show not only that good performance
can be achieved across domains, but how easy and
quick the development lifecycle is. In order to as-
sess the subjective performance of our system, a
quality test and a pairwise preference test are pre-
sented in Section 4.3. The results show that our
approach can produce high quality utterances that
are considered to be more natural and are preferred
to previous approaches. We conclude with a brief
summary and future work in Section 5.

2 Related Work

Conventional approaches to NLG typically divide
the task into sentence planning and surface real-
isation. Sentence planning maps input semantic
symbols into an intermediary form representing
the utterance, e.g. a tree-like or template struc-
ture, then surface realisation converts the interme-
diate structure into the final text (Walker et al.,
2002; Stent et al., 2004). Although statistical sen-
tence planning has been explored previously, for
example, generating the most likely context-free
derivations given a corpus (Belz, 2008) or max-
imising the expected reward using reinforcement
learning (Rieser and Lemon, 2010), these meth-
ods still rely on a pre-existing, handcrafted gener-
ator. To minimise handcrafting, Stent and Molina
(2009) proposed learning sentence planning rules

directly from a corpus of utterances labelled with
Rhetorical Structure Theory (RST) discourse rela-
tions (Mann and Thompson, 1988). However, the
required corpus labelling is expensive and addi-
tional handcrafting is still needed to map the sen-
tence plan to a valid syntactic form.

As noted above, corpus-based NLG aims at
learning generation decisions from data with min-
imal dependence on rules and heuristics. A pi-
oneer in this direction is the class-based n-gram
language model (LM) approach proposed by Oh
and Rudnicky (2000). Ratnaparkhi (2002) later
addressed some of the limitations of class-based
LMs in the over-generation phase by using a mod-
ified generator based on a syntactic dependency
tree. Mairesse and Young (2014) proposed a
phrase-based NLG system based on factored LMs
that can learn from a semantically aligned corpus.
Although active learning (Mairesse et al., 2010)
was also proposed to allow learning online directly
from users, the requirement for human annotated
alignments limits the scalability of the system.
Another similar approach casts NLG as a template
extraction and matching problem, e.g., Angeli et
al. (2010) train a set of log-linear models to make
a series of generation decisions to choose the most
suitable template for realisation. Kondadadi et al.
(2013) later show that the outputs can be further
improved by an SVM reranker making them com-
parable to human-authored texts. However, tem-
plate matching approaches do not generalise well
to unseen combinations of semantic elements.

The use of neural network-based (NN) ap-
proaches to NLG is relatively unexplored. The
stock reporter system ANA by Kukich (1987) is
perhaps the first NN-based generator, although
generation was only done at the phrase level. Re-
cent advances in recurrent neural network-based
language models (RNNLM) (Mikolov et al., 2010;
Mikolov et al., 2011a) have demonstrated the
value of distributed representations and the ability
to model arbitrarily long dependencies. Sutskever
et al. (2011) describes a simple variant of the RNN
that can generate meaningful sentences by learn-
ing from a character-level corpus. More recently,
Karpathy and Fei-Fei (2014) have demonstrated
that an RNNLM is capable of generating image
descriptions by conditioning the network model
on a pre-trained convolutional image feature rep-
resentation. Zhang and Lapata (2014) also de-
scribes interesting work using RNNs to generate
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Chinese poetry. A forerunner of the system pre-
sented here is described in Wen et al. (2015), in
which a forward RNN generator, a CNN reranker,
and a backward RNN reranker are trained jointly
to generate utterances. Although the system was
easy to train and extend to other domains, a heuris-
tic gate control was needed to ensure that all of
the attribute-value information in the system’s re-
sponse was accurately captured by the generated
utterance. Furthermore, the handling of unusual
slot-value pairs by the CNN reranker was rather
arbitrary. In contrast, the LSTM-based system de-
scribed in this paper can deal with these problems
automatically by learning the control of gates and
surface realisation jointly.

Training an RNN with long range dependencies
is difficult because of the vanishing gradient prob-
lem (Bengio et al., 1994). Hochreiter and Schmid-
huber (1997) mitigated this problem by replacing
the sigmoid activation in the RNN recurrent con-
nection with a self-recurrent memory block and a
set of multiplication gates to mimic the read, write,
and reset operations in digital computers. The re-
sulting architecture is dubbed the Long Short-term
Memory (LSTM) network. It has been shown to
be effective in a variety of tasks, such as speech
recognition (Graves et al., 2013b), handwriting
recognition (Graves et al., 2009), spoken language
understanding (Yao et al., 2014), and machine
translation (Sutskever et al., 2014). Recent work
by Graves et al. (2014) has demonstrated that an
NN structure augmented with a carefully designed
memory block and differentiable read/write op-
erations can learn to mimic computer programs.
Moreover, the ability to train deep networks pro-
vides a more sophisticated way of exploiting rela-
tions between labels and features, therefore mak-
ing the prediction more accurate (Hinton et al.,
2012). By extending an LSTM network to be both
deep in space and time, Graves (2013) shows the
resulting network can used to synthesise handwrit-
ing indistinguishable from that of a human.

3 The Neural Language Generator

The generation model proposed in this paper is
based on a recurrent NN architecture (Mikolov et
al., 2010) in which a 1-hot encoding wt of a token1

wt is input at each time step t conditioned on a re-

1We use token instead of word because our model operates
on text for which slot values are replaced by its corresponding
slot tokens. We call this procedure delexicalisation.

current hidden layer ht and outputs the probability
distribution of the next token wt+1. Therefore, by
sampling input tokens one by one from the output
distribution of the RNN until a stop sign is gen-
erated (Karpathy and Fei-Fei, 2014) or some con-
straint is satisfied (Zhang and Lapata, 2014), the
network can produce a sequence of tokens which
can be lexicalised 2 to form the required utterance.

3.1 Semantic Controlled LSTM cell

Figure 1: Semantic Controlled LSTM cell pro-
posed in this paper. The upper part is a traditional
LSTM cell in charge of surface realisation, while
the lower part is a sentence planning cell based on
a sigmoid control gate and a dialogue act (DA).

Long Short-term Memory (Hochreiter and
Schmidhuber, 1997) is a recurrent NN architecture
which uses a vector of memory cells ct ∈ Rn and
a set of elementwise multiplication gates to control
how information is stored, forgotten, and exploited
inside the network. Of the various different con-
nectivity designs for an LSTM cell (Graves, 2013;
Zaremba et al., 2014), the architecture used in this
paper is illustrated in Figure 3.1 and defined by the
following equations,,

it = σ(Wwiwt + Whiht−1) (1)

ft = σ(Wwfwt + Whfht−1) (2)

ot = σ(Wwowt + Whoht−1) (3)

ĉt = tanh(Wwcwt + Whcht−1) (4)

ct = ft � ct−1 + it � ĉt (5)

ht = ot � tanh(ct) (6)

2The process of replacing slot token by its value.
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where σ is the sigmoid function, it, ft,ot ∈ [0, 1]n

are input, forget, and output gates respectively, and
ĉt and ct are proposed cell value and true cell
value at time t. Note that each of these vectors
has a dimension equal to the hidden layer h.

In order to ensure that the generated utter-
ance represents the intended meaning, the gen-
erator is further conditioned on a control vec-
tor d, a 1-hot representation of the dialogue act
(DA) type and its slot-value pairs. Although a re-
lated work (Karpathy and Fei-Fei, 2014) has sug-
gested that reapplying this auxiliary information
to the RNN at every time step can increase perfor-
mance by mitigating the vanishing gradient prob-
lem (Mikolov and Zweig, 2012; Bengio et al.,
1994), we have found that such a model also omits
and duplicates slot information in the surface re-
alisation. In Wen et al. (2015) simple heuristics
are used to turn off slot feature values in the con-
trol vector d once the corresponding slot token
has been generated. However, these heuristics can
only handle cases where slot-value pairs can be
identified by exact matching between the delexi-
calised surface text and the slot value pair encoded
in d. Cases such as binary slots and slots that take
don’t care values cannot be explicitly delexicalised
in this way and these cases frequently result in
generation errors.

To address this problem, an additional control
cell is introduced into the LSTM to gate the DA
as shown in Figure 1. This cell plays the role
of sentence planning since it manipulates the DA
features during the generation process in order to
produce a surface realisation which accurately en-
codes the input information. We call the result-
ing architecture Semantically Controlled LSTM
(SC-LSTM). Starting from the original DA 1-hot
vector d0, at each time step the DA cell decides
what information should be retained for future
time steps and discards the others,

rt = σ(Wwrwt + αWhrht−1) (7)

dt = rt � dt−1 (8)

where rt ∈ [0, 1]d is called the reading gate, and
α is a constant. Here Wwr and Whr act like key-
word and key phrase detectors that learn to asso-
ciate certain patterns of generated tokens with cer-
tain slots. Figure 3 gives an example of how these
detectors work in affecting DA features inside the
network. Equation 5 is then modified so that the

cell value ct also depends on the DA,

ct = ft � ct−1 + it � ĉt + tanh(Wdcdt) (9)

After updating Equation 6 by Equation 9, the out-
put distribution is formed by applying a softmax
function g, and the distribution is sampled to ob-
tain the next token,

P (wt+1|wt, wt−1, ...w0,dt) = g(Whoht) (10)

wt+1 ∼ P (wt+1|wt, wt−1, ...w0,dt). (11)

3.2 The Deep Structure

Deep Neural Networks (DNN) enable increased
discrimination by learning multiple layers of fea-
tures, and represent the state-of-the-art for many
applications such as speech recognition (Graves et
al., 2013b) and natural language processing (Col-
lobert and Weston, 2008). The neural language
generator proposed in this paper can be easily ex-
tended to be deep in both space and time by stack-
ing multiple LSTM cells on top of the original
structure. As shown in Figure 2, skip connections
are applied to the inputs of all hidden layers as
well as between all hidden layers and the outputs
(Graves, 2013). This reduces the number of pro-
cessing steps between the bottom of the network
and the top, and therefore mitigates the vanishing
gradient problem (Bengio et al., 1994) in the ver-
tical direction. To allow all hidden layer informa-
tion to influence the reading gate, Equation 7 is
changed to

rt = σ(Wwrwt +
∑
l

αlWl
hrh

l
t−1) (12)

where l is the hidden layer index and αl is a
layer-wise constant. Since the network tends to
overfit when the structure becomes more complex,
the dropout technique (Srivastava et al., 2014) is
used to regularise the network. As suggested in
(Zaremba et al., 2014), dropout was only applied
to the non-recurrent connections, as shown in the
Figure 2. It was not applied to word embeddings
since pre-trained word vectors were used.

3.3 Backward LSTM reranking

One remaining problem in the structure described
so far is that the LSTM generator selects words
based only on the preceding history, whereas some
sentence forms depend on the backward context.
Previously, bidirectional networks (Schuster and
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Figure 2: The Deep LSTM generator structure by stacking multiple LSTM layers on top of the DA cell.
The skip connection was adopted to mitigate the vanishing gradient, while the dropout was applied on
dashed connections to prevent co-adaptation and overfitting.

Paliwal, 1997) have been shown to be effective for
sequential problems (Graves et al., 2013a; Sunder-
meyer et al., 2014). However, applying a bidirec-
tional network directly in the SC-LSTM generator
is not straightforward since the generation process
is sequential in time. Hence instead of integrating
the bidirectional information into one network, we
trained another SC-LSTM from backward context
to choose best candidates from the forward gen-
erator outputs. In our experiments, we also found
that by tying the keyword detector weights Wwr

(see Equations 7 and 12) of both the forward and
backward networks together makes the generator
less sensitive to random initialisation.

3.4 Training

The forward generator and the backward reranker
were both trained by treating each sentence as a
mini-batch. The objective function was the cross
entropy error between the predicted word distri-
bution pt and the actual word distribution yt in
the training corpus. An l2 regularisation term
was added to the objective function for every 10
training examples as suggested in Mikolov et al.
(2011b). However, further regularisation was re-
quired for the reading gate dynamics. This re-
sulted in the following modified cost function for
each mini-match (ignoring standard l2),

F (θ) =
∑

t p
ᵀ
t log(yt) + ‖dT ‖+

∑T−1
t=0 ηξ‖dt+1−dt‖

(13)

where dT is the DA vector at the last word index
T , and η and ξ are constants set to 10−4 and 100,
respectively. The second term is used to penalise
generated utterances that failed to render all the re-
quired slots, while the third term discourages the
network from turning more than one gate off in
a single time step. The forward and backward
networks were structured to share the same set
of word embeddings, initialised with pre-trained
word vectors (Pennington et al., 2014). The hid-
den layer size was set to be 80 for all cases, and
deep networks were trained with two hidden lay-
ers and a 50% dropout rate. All costs and gradients
were computed and stochastic gradient descent
was used to optimise the parameters. Both net-
works were trained with back propagation through
time (Werbos, 1990). In order to prevent over-
fitting, early stopping was implemented using a
held-out validation set.

3.5 Decoding

The decoding procedure is split into two phases:
(a) over-generation, and (b) reranking. In the
over-generation phase, the forward generator con-
ditioned on the given DA, is used to sequentially
generate utterances by random sampling of the
predicted next word distributions. In the reranking
phase, the cost of the backward reranker Fb(θ) is
computed. Together with the cost Ff (θ) from the
forward generator, the reranking score R is com-
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puted as:

R = −(Ff (θ) + Fb(θ) + λERR) (14)

where λ is a tradeoff constant, and the slot error
rate ERR is computed by exact matching the slot
tokens in the candidate utterances,

ERR =
p+ q

N
(15)

where N is the total number of slots in the DA, and
p, q is the number of missing and redundant slots
in the given realisation. Note that the ERR rerank-
ing criteria cannot handle arbitrary slot-value pairs
such as binary slots or slots that take the don’t care
value because they cannot be delexicalised and ex-
actly matched. λ is set to a large value in order to
severely penalise nonsensical outputs.

4 Experiments

4.1 Experimental Setup
The target application for our generation system
is a spoken dialogue system providing informa-
tion about certain venues in San Francisco. In or-
der to demonstrate the scalability of the proposed
method and its performance in different domains,
we tested on two domains that talk about restau-
rants and hotels respectively. There are 8 system
dialogue act types such as inform to present infor-
mation about restaurants, confirm to check that a
slot value has been recognised correctly, and re-
ject to advise that the user’s constraints cannot be
met. Each domain contains 12 attributes (slots),
some are common to both domains and the oth-
ers are domain specific. The detailed ontologies
for the two domains are provided in Table 1. To
form a training corpus for each domain, dialogues
collected from a previous user trial (Gašić et al.,
2015) of a statistical dialogue manager were ran-
domly sampled and shown to workers recruited
via the Amazon Mechanical Turk (AMT) service.
Workers were shown each dialogue turn by turn
and asked to enter an appropriate system response
in natural English corresponding to each system
DA. For each domain around 5K system utter-
ances were collected from about 1K randomly
sampled dialogues. Each categorical value was re-
placed by a token representing its slot, and slots
that appeared multiple times in a DA were merged
into one. After processing and grouping each ut-
terance according to its delexicalised DA, we ob-
tained 248 distinct DAs in the restaurant domain

SF Restaurant SF Hotel

ac
tt

yp
e inform, inform only, reject,

confirm, select, request,
reqmore, goodbye

sh
ar

ed

name, type, *pricerange, price,
phone, address, postcode,
*area, *near

sp
ec

ifi
c *food *hasinternet

*goodformeal *acceptscards
*kids-allowed *dogs-allowed

bold=binary slots, *=slots can take “don’t care” value

Table 1: Ontologies used in the experiments.

and 164 in the hotel domain. The average number
of slots per DA for each domain is 2.25 and 1.95,
respectively.

The system was implemented using the Theano
library (Bergstra et al., 2010; Bastien et al., 2012),
and trained by partitioning each of the collected
corpus into a training, validation, and testing set
in the ratio 3:1:1. The frequency of each ac-
tion type and slot-value pair differs quite markedly
across the corpus, hence up-sampling was used to
make the corpus more uniform. Since our gener-
ator works stochastically and the trained networks
can differ depending on the initialisation, all the
results shown below3 were averaged over 5 ran-
domly initialised networks. For each DA, we over-
generated 20 utterances and selected the top 5 real-
isations after reranking. The BLEU-4 metric was
used for the objective evaluation (Papineni et al.,
2002). Multiple references for each test DA were
obtained by mapping them back to the distinct
set of DAs, grouping those delexicalised surface
forms that have the same DA specification, and
then lexicalising those surface forms back to ut-
terances. In addition, the slot error rate (ERR) as
described in Section 3.5 was computed as an aux-
iliary metric alongside the BLEU score. However,
for the experiments it is computed at the corpus
level, by averaging slot errors over each of the top
5 realisations in the entire corpus. The trade-off
weights α between keyword and key phrase detec-
tors as mentioned in Section 3.1 and 3.2 were set
to 0.5.

4.2 Objective Evaluation
We compared the single layer semantically con-
trolled LSTM (sc-lstm) and a deep version with

3Except human evaluation, in which only one set of net-
works was used.
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Method
SF Restaurant SF Hotel

BLEU ERR(%) BLEU ERR(%)
hdc 0.451 0.0 0.560 0.0
kNN 0.602 0.87 0.676 1.87
classlm 0.627 8.70 0.734 5.35
rnn w/o 0.706 4.15 0.813 3.14
lstm w/o 0.714 1.79 0.817 1.93
rnn w/ 0.710 1.52 0.815 1.74
lstm w/ 0.717 0.63 0.818 1.53
sc-lstm 0.711 0.62 0.802 0.78
+deep 0.731 0.46 0.832 0.41

Table 2: Objective evaluation of the top 5 re-
alisations. Except for handcrafted (hdc) and k-
nearest neighbour (kNN) baselines, all the other
approaches ranked their realisations from 20 over-
generated candidates.

two hidden layers (+deep) against several base-
lines: the handcrafted generator (hdc), k-nearest
neighbour (kNN), class-based LMs (classlm) as
proposed in Oh and Rudnicky (2000), the heuris-
tic gated RNN as described in Wen et al. (2015)
and a similar LSTM variant (rnn w/ & lstm w/),
and the same RNN/LSTM but without gates (rnn
w/o & lstm w/o). The handcrafted generator was
developed over a long period of time and is the
standard generator used for trialling end-to-end di-
alogue systems (for example (Gašić et al., 2014)).
The kNN was implemented by computing the sim-
ilarity of the test DA 1-hot vector against all of
the training DA 1-hot vectors, selecting the nearest
and then lexicalising to generate the final surface
form. The objective results are shown in Table
2. As can be seen, none of the baseline systems
shown in the first block (hdc, kNN, & classlm)
are comparable to the systems described in this
paper (sc-lstm & +deep) if both metrics are con-
sidered. Setting aside the difficulty of scaling to
large domains, the handcrafted generator’s (hdc)
use of predefined rules yields a fixed set of sen-
tence plans, which can differ markedly from the
real colloquial human responses collected from
AMT, while the class LM approach suffers from
inaccurate rendering of information. Although
the kNN method provides reasonable adequacy i.e.
low ERR, the BLEU is low, probably because of
the errors in the collected corpus which kNN can-
not handle but statistical approaches such as LMs
can by suppressing unlikely outputs.

The last three blocks in Table 2 compares the
proposed method with previous RNN approaches.

Method Informativeness Naturalness

+deep 2.58 2.51

sc-lstm 2.59 2.50
rnn w/ 2.53 2.42*

classlm 2.46** 2.45
* p < 0.05 ** p < 0.005

Table 3: Real user trial for utterance quality
assessment on two metrics (rating out of 3),
averaging over top 5 realisations. Statistical
significance was computed using a two-tailed
Student’s t-test, between deep and all others.

Pref.% classlm rnn w/ sc-lstm +deep

classlm - 46.0 40.9** 37.7**

rnn w/ 54.0 - 43.0 35.7*

sc-lstm 59.1* 57 - 47.6
+deep 62.3** 64.3** 52.4 -

* p < 0.05 ** p < 0.005

Table 4: Pairwise preference test among four sys-
tems. Statistical significance was computed using
two-tailed binomial test.

LSTM generally works better than vanilla RNN
due to its ability to model long range dependen-
cies more efficiently. We also found that by us-
ing gates, whether learned or heuristic, gave much
lower slot error rates. As an aside, the ability of
the SC-LSTM to learn gates is also exemplified in
Figure 3. Finally, by combining the learned gate
approach with the deep architecture (+deep), we
obtained the best overall performance.

4.3 Human Evaluation

Since automatic metrics may not consistently
agree with human perception (Stent et al., 2005),
human testing is needed to assess subjective qual-
ity. To do this, a set of judges were recruited using
AMT. For each task, two systems among the four
(classlm, rnn w/, sc-lstm, and +deep) were ran-
domly selected to generate utterances from a set of
newly sampled dialogues in the restaurant domain.
In order to evaluate system performance in the
presence of language variation, each system gen-
erated 5 different surface realisations for each in-
put DA and the human judges were asked to score
each of them in terms of informativeness and nat-
uralness (rating out of 3), and also asked to state a
preference between the two. Here informativeness

1717



(a) An example realisation from SF restaurant domain

(b) An example realisation from SF hotel domain

Figure 3: Examples showing how the SC-LSTM controls the DA features flowing into the network via
its learned semantic gates. Despite errors due to sparse training data for some slots, each gate generally
learned to detect words and phrases describing a particular slot-value pair.

is defined as whether the utterance contains all the
information specified in the DA, and naturalness
is defined as whether the utterance could plausibly
have been produced by a human. In order to de-
crease the amount of information presented to the
judges, utterances that appeared identically in both
systems were filtered out. We tested 1000 DAs in
total, and after filtering there were approximately
1300 generated utterances per system.

Table 3 shows the quality assessments which
exhibit the same general trend as the objective re-
sults. The SC-LSTM systems (sc-lstm & +deep)
outperform the class-based LMs (classlm) and the
RNN with heuristic gates (rnn w/) in both metrics.
The deep SC-LSTM system (+deep) is signifi-
cantly better than the class LMs (classlm) in terms
of informativeness, and better than the RNN with
heuristic gates (rnn w/) in terms of naturalness.
The preference test results are shown in Table 4.
Again, the SC-LSTM systems (sc-lstm & +deep)
were significantly preferred by the judges. More-
over, the judges recorded a strong preference for

the deep approach (+deep) compared to the others,
though the preference is not significant when com-
paring to its shallow counterpart (sc-lstm). Exam-
ple dialogue acts and their top-5 realisations are
shown in Table 5.

5 Conclusion and Future Work

In this paper we have proposed a neural network-
based generator that is capable of generating natu-
ral linguistically varied responses based on a deep,
semantically controlled LSTM architecture which
we call SC-LSTM. The generator can be trained
on unaligned data by jointly optimising its sen-
tence planning and surface realisation components
using a simple cross entropy criterion without any
heuristics or handcrafting. We found that the SC-
LSTM model achieved the best overall perfor-
mance on two objective metrics across two differ-
ent domains. An evaluation by human judges also
confirmed that the SC-LSTM approach is strongly
preferred to a variety of existing methods.

This work represents a line of research that tries
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# Example Dialogue Acts and Realizations from SF Restaurant Domain
1 inform(name=”red door cafe”, goodformeal=”breakfast”, area=”cathedral hill”, kidsallowed=”no”)

red door cafe is a good restaurant for breakfast in the area of cathedral hill and does not allow children .
red door cafe is a good restaurant for breakfast in the cathedral hill area and does not allow children .
red door cafe is a good restaurant for breakfast in the cathedral hill area and does not allow kids .
red door cafe is good for breakfast and is in the area of cathedral hill and does not allow children .
red door cafe does not allow kids and is in the cathedral hill area and is good for breakfast .

2 informonly(name=”dosa on fillmore and kiss seafood”, pricerange=”expensive”, near=”lower pacific heights”)
there is no place other than dosa on fillmore and kiss seafood that are expensive near to lower pacific heights .
dosa on fillmore and kiss seafood is the only expensive restaurant near lower pacific heights .
the only listed restaurant near lower pacific heights in the expensive price range is dosa on fillmore and kiss seafood .
i apologize , dosa on fillmore and kiss seafood is the only expensive restaurant near lower pacific heights .
i apologize , dosa on fillmore and kiss seafood are the only expensive restaurants near lower pacific heights .

# Example Dialogue Acts and Realizations from SF Hotel Domain
3 inform(type=”hotel”,count=”182”,dogsallowed=”dontcare”)

there are 182 hotels if you do not care whether dogs are allowed .
there are 182 hotels if you do not care whether they allow dogs .
182 hotels are available if dogs allowed or not is not an issue .
there are 182 hotels if allowing dogs or not is not an issue .
there are 182 hotels if whether dogs are allowed does not matter .

4 informonly(name=”red victorian bed breakfast”,acceptscreditcards=”yes”,near=”haight”,hasinternet=”yes”)
red victorian bed breakfast is the only hotel near haight and accepts credit cards and has internet .
red victorian bed breakfast is the only hotel near haight and has internet and accepts credit cards .
red victorian bed breakfast is the only hotel near haight that accept credit cards and offers internet .
the red victorian bed breakfast has internet and near haight , it does accept credit cards .
the red victorian bed breakfast is the only hotel near haight that accepts credit cards , and offers internet .

Table 5: Samples of top 5 realisations from the deep SC-LSTM (+deep) system output.

to model the NLG problem in a unified architec-
ture, whereby the entire model is end-to-end train-
able from data. We contend that this approach can
produce more natural responses which are more
similar to colloquial styles found in human conver-
sations. Another key potential advantage of neu-
ral network based language processing is the im-
plicit use of distributed representations for words
and a single compact parameter encoding of the
information to be conveyed. This suggests that it
should be possible to further condition the gener-
ator on some dialogue features such discourse in-
formation or social cues during the conversation.
Furthermore, adopting a corpus based regime en-
ables domain scalability and multilingual NLG to
be achieved with less cost and a shorter lifecycle.
These latter aspects will be the focus of our future
work in this area.
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Abstract

Learning a distinct representation for each
sense of an ambiguous word could lead
to more powerful and fine-grained mod-
els of vector-space representations. Yet
while ‘multi-sense’ methods have been
proposed and tested on artificial word-
similarity tasks, we don’t know if they im-
prove real natural language understanding
tasks. In this paper we introduce a multi-
sense embedding model based on Chinese
Restaurant Processes that achieves state of
the art performance on matching human
word similarity judgments, and propose
a pipelined architecture for incorporating
multi-sense embeddings into language un-
derstanding.

We then test the performance of our model
on part-of-speech tagging, named entity
recognition, sentiment analysis, semantic
relation identification and semantic relat-
edness, controlling for embedding dimen-
sionality. We find that multi-sense embed-
dings do improve performance on some
tasks (part-of-speech tagging, semantic re-
lation identification, semantic relatedness)
but not on others (named entity recogni-
tion, various forms of sentiment analysis).
We discuss how these differences may be
caused by the different role of word sense
information in each of the tasks. The re-
sults highlight the importance of testing
embedding models in real applications.

1 Introduction

Enriching vector models of word meaning so
they can represent multiple word senses per word
type seems to offer the potential to improve
many language understanding tasks. Most tra-
ditional embedding models associate each word

type with a single embedding (e.g., Bengio et al.
(2006)). Thus the embedding for homonymous
words like bank (with senses including ‘sloping
land’ and ‘financial institution’) is forced to rep-
resent some uneasy central tendency between the
various meanings. More fine-grained embeddings
that represent more natural regions in semantic
space could thus improve language understanding.

Early research pointed out that embeddings
could model aspects of word sense (Kintsch,
2001) and recent research has proposed a number
of models that represent each word type by dif-
ferent senses, each sense associated with a sense-
specific embedding (Kintsch, 2001; Reisinger and
Mooney, 2010; Neelakantan et al., 2014; Huang et
al., 2012; Chen et al., 2014; Pina and Johansson,
2014; Wu and Giles, 2015; Liu et al., 2015). Such
sense-specific embeddings have shown improved
performance on simple artificial tasks like match-
ing human word similarity judgments— WS353
(Rubenstein and Goodenough, 1965) or MC30
(Huang et al., 2012).

Incorporating multisense word embeddings into
general NLP tasks requires a pipelined architec-
ture that addresses three major steps:

1. Sense-specific representation learning:
learn word sense specific embeddings from a
large corpus, either unsupervised or aided by
external resources like WordNet.

2. Sense induction: given a text unit (a phrase,
sentence, document, etc.), infer word senses
for its tokens and associate them with corre-
sponding sense-specific embeddings.

3. Representation acquisition for phrases or
sentences: learn representations for text
units given sense-specific embeddings and
pass them to machine learning classifiers.

Most existing work on multi-sense embeddings
emphasizes the first step by learning sense spe-
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cific embeddings, but does not explore the next
two steps. These are important steps, however,
since it isn’t clear how existing multi-sense em-
beddings can be incorporated into and benefit real-
world NLU tasks.

We propose a pipelined architecture to address
all three steps and apply it to a variety of NLP
tasks: part-of-speech tagging, named entity recog-
nition, sentiment analysis, semantic relation iden-
tification and semantic relatedness. We find:

• Multi-sense embeddings give improved per-
formance in some tasks (e.g., semantic sim-
ilarity for words and sentences, seman-
tic relation identification part-of-speech tag-
ging), but not others (e.g., sentiment analysis,
named entity extraction). In our analysis we
offer some suggested explanations for these
differences.

• Some of the improvements for multi-sense
embeddings are no longer visible when us-
ing more sophisticated neural models like
LSTMs which have more flexibility in fil-
tering away the informational chaff from the
wheat.

• It is important to carefully compare against
embeddings of the same dimensionality.

• When doing so, the most straightforward way
to yield better performance on these tasks is
just to increase embedding dimensionality.

After describing related work, we introduce the
new unsupervised sense-learning model in section
3, give our sense-induction algorithm in section 4,
and then in following sections evaluate its perfor-
mance for word similarity, and then various NLP
tasks.

2 Related Work

Neural embedding learning frameworks represent
each token with a dense vector representation, op-
timized through predicting neighboring words or
decomposing co-occurrence matrices (Bengio et
al., 2006; Collobert and Weston, 2008; Mnih and
Hinton, 2007; Mikolov et al., 2013; Mikolov et al.,
2010; Pennington et al., 2014). Standard neural
models represent each word with a single unique
vector representation.

Recent work has begun to augment the neu-
ral paradigm to address the multi-sense problem

by associating each word with a series of sense
specific embeddings. The central idea is to aug-
ment standard embedding learning models like
skip-grams by disambiguating word senses based
on local co-occurrence— e.g., the fruit “apple”
tends to co-occur with the words “cider, tree, pear”
while the homophonous IT company co-occurs
with words like “iphone”, “Google” or “ipod”.

For example Reisinger and Mooney (2010) and
Huang et al. (2012) propose ways to develop mul-
tiple embeddings per word type by pre-clustering
the contexts of each token to create a fixed num-
ber of senses for each word, and then relabel-
ing each word token with the clustered sense be-
fore learning embeddings. Neelakantan et al.
(2014) extend these models by relaxing the as-
sumption that each word must have a fixed num-
ber of senses and using a non-parametric model
setting a threshold to decide when a new sense
cluster should be split off; Liu et al. (2015)
learns sense/topic specific embeddings by com-
bining neural frameworks with LDA topic mod-
els. Wu and Giles (2015) disambiguate sense em-
beddings from Wikipedia by first clustering wiki
documents. Chen et al. (2014) turn to external re-
sources and used a predefined inventory of senses,
building a distinct representation for every sense
defined by the Wordnet dictionary. Other rele-
vant work includes Qiu et al. (2014) who main-
tains separate representations for different part-of-
speech tags of the same word.

Recent work is mostly evaluated on the rela-
tively artificial task of matching human word sim-
ilarity judgments.

3 Learning Sense-Specific Embeddings

We propose to build on this previous literature,
most specifically Huang et al. (2012) and Nee-
lakantan et al. (2014), to develop an algorithm
for learning multiple embeddings for each word
type, each embedding corresponding to a distinct
induced word sense. Such an algorithm should
have the property that a word should be associated
with a new sense vector just when evidence in the
context (e.g., neighboring words, document-level
co-occurrence statistics) suggests that it is suffi-
ciently different from its early senses. Such a line
of thinking naturally points to Chinese Restau-
rant Processes (CRP) (Blei et al., 2004; Teh et
al., 2006) which have been applied in the related
field of word sense induction. In the analogy of
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CRP, the current word could either sit at one of
the existing tables (belonging to one of the exist-
ing senses) or choose a new table (a new sense).
The decision is made by measuring semantic re-
latedness (based on local context information and
global document information) and the number of
customers already sitting at that table (the popu-
larity of word senses). We propose such a model
and show that it improves over the state of the art
on a standard word similarity task.

3.1 Chinese Restaurant Processes

We offer a brief overview of Chinese Restaurant
Processes in this section; readers interested in
more details can consult the original papers (Blei
et al., 2004; Teh et al., 2006; Pitman, 1995).
CRP can be viewed as a practical interpretation
of Dirichlet Processes (Ferguson, 1973) for non-
parametric clustering. In the analogy, each data
point is compared to a customer in a restaurant.
The restaurant has a series of tables t, each of
which serves a dish dt. This dish can be viewed as
the index of a cluster or a topic. The next customer
w to enter would either choose an existing table,
sharing the dish (cluster) already served or choos-
ing a new cluster based on the following probabil-
ity distribution:

Pr(tw = t) ∝
{
NtP (w|dt) if t already exists

γP (w|dnew) if t is new
(1)

where Nt denotes the number of customers al-
ready sitting at table t and P (w|dt) denotes the
probability of assigning the current data point to
cluster dt. γ is the hyper parameter controlling the
preference for sitting at a new table.

CRPs exhibit a useful “rich get richer” prop-
erty because they take into account the popular-
ity of different word senses. They are also more
flexible than a simple threshold strategy for set-
ting up new clusters, due to the robustness intro-
duced by adopting the relative ratio of P (w|dt)
and P (w|dnew).

3.2 Incorporating CRP into Distributed
Language Models

We describe how we incorporate CRP into a stan-
dard distributed language model1.

1We omit details about training standard distributed mod-
els; see Collobert and Weston (2008) and Mikolov et al.
(2013).

As in the standard vector-space model, each to-
ken w is associated with a K dimensional global
embedding ew. Additionally, it is associated with
a set of senses Zw = {z1

w, z
2
w, ..., z

|Zw|
w } where

|Zw| denotes the number of senses discovered for
word w. Each sense z is associated with a distinct
sense-specific embedding ezw. When we encounter
a new token w in the text, at the first stage, we
maximize the probability of seeing the current to-
ken given its context as in standard language mod-
els using the global vector ew:

p(ew|eneigh) = F (ew, eneigh) (2)

F() can take different forms in different learn-
ing paradigms, e.g., F =

∏
w′∈neigh p(ew, ew′)

for skip-gram or F = p(ew, g(ew)) for SENNA
(Collobert and Weston, 2008) and CBOW, where
g(eneigh) denotes a function that projects the con-
catenation of neighboring vectors to a vector with
the same dimension as ew for SENNA and the
bag-or-word averaging for CBOW (Mikolov et al.,
2013).

Unlike traditional one-word-one-vector frame-
works, eneigh includes sense information in addi-
tion to the global vectors for neighbors. eneigh can
therefore be written as2.

eneigh = {en−k, , ..., en−1, en+1, ..., en−k}
(3)

Next we would use CRP to decide which sense
the current occurrence corresponds to, or construct
a new sense if it is a new meaning that we have not
encountered before. Based on CRP, the probabil-
ity that assigns the current occurrence to each of
the discovered senses or a new sense is given by:

Pr(zw = z) ∝


Nw
z P (ezw|context)

if z already exists

γP (w|znew) if z is new

(4)

where Nw
z denotes the number of times already

assigned to sense z for token w. P (ezw|context)
denotes the probability that current occurrence be-
longing to (or generated by) sense z.

The algorithm for parameter update for the one
token predicting procedure is illustrated in Figure

2For models that predict succeeding words, sense labels
for preceding words have already been decided. For models
that predict words using both left and right contexts, the la-
bels for right-context words have not been decided yet. In
such cases we just use its global word vector to fill up the
position.
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01: Input : Token sequence {wn, wneigh}.
02: Update parameters involved in Equ (3)(4)
based on current word prediction.
03: Sample sense label z from CRP.
04: If a new sense label z is sampled:
05: - add z to Zwn

06: - ezwn
= argmax p(wn|zm)

07: else: update parameters involved based on
sampled sense label z.

Figure 1: Incorporating CRP into Neural Lan-
guage Models.

1: Line 2 shows parameter updating through pre-
dicting the occurrence of current token. Lines 4-6
illustrate the situation when a new word sense is
detected, in which case we would add the newly
detected sense z into Zwn . The vector representa-
tion ezw for the newly detected sense would be ob-
tained by maximizing the function p(ezw|context).

As we can see, the model performs word-sense
clustering and embedding learning jointly, each
one affecting the other. The prediction of the
global vector of the current token (line2) is based
on both the global and sense-specific embeddings
of its neighbors, as will be updated through pre-
dicting the current token. Similarly, once the sense
label is decided (line7), the model will adjust the
embeddings for neighboring words, both global
word vectors and sense-specific vectors.

Training We train embeddings using Giga-
word5 + Wikipedia2014. The training approach
is implemented using skip-grams (SG) (Mikolov
et al., 2013). We induced senses for the top
200,000 most frequent words (and used a unified
“unknown” token for other less-frequent tokens).
The window size is set to 11. We iterate three
times over the corpus.

4 Obtaining Word Representations for
NLU tasks

Next we describe how we decide sense labels for
tokens in context. The scenario is treated as a in-
ference procedure for sense labels where all global
word embeddings and sense-specific embeddings
are kept fixed.

Given a document or a sentence, we have an
objective function with respect to sense labels
by multiplying Eq.2 over each containing token.

Computing the global optimum sense labeling—
in which every word gets an optimal sense label—
requires searching over the space of all senses for
all words, which can be expensive. We therefore
chose two simplified heuristic approaches:

• Greedy Search: Assign each token the lo-
cally optimum sense label and represent the
current token with the embedding associated
with that sense.

• Expectation: Compute the probability of
each possible sense for the current word, and
represent the word with the expectation vec-
tor:

~ew =
∑
z∈Zw

p(w|z, context) · ezw

5 Word Similarity Evaluation

We evaluate our embeddings by comparing with
other multi-sense embeddings on the standard ar-
tificial task for matching human word similarity
judgments.

Early work used similarity datasets like WS353
(Finkelstein et al., 2001) or RG (Rubenstein and
Goodenough, 1965), whose context-free nature
makes them a poor evaluation. We therefore adopt
Stanford’s Contextual Word Similarities (SCWS)
(Huang et al., 2012), in which human judgments
are associated with pairs of words in context. Thus
for example “bank” in the context of “river bank”
would have low relatedness with “deficit” in the
context “financial deficit”.

We first use the Greedy or Expectation strate-
gies to obtain word vectors for tokens given their
context. These vectors are then used as input to get
the value of cosine similarity between two words.

Performances are reported in Table 1. Con-
sistent with earlier work (e.g.., Neelakantan
et al. (2014)), we find that multi-sense em-
beddings result in better performance in the
context-dependent SCWS task (SG+Greedy and
SG+Expect are better than SG). As expected, per-
formance is not as high when global level in-
formation is ignored when choosing word senses
(SG+Greedy) as when it is included (SG+Expect),
as neighboring words don’t provide sufficient in-
formation for word sense disambiguation.

To note, the proposed CRF models work a little
better than earlier baselines, which gives some ev-
idence that it is sufficiently strong to stand in for
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Model SCWS Correlation
SkipGram 66.4

SG+Greedy 69.1
SG+Expect 69.7

Chen 68.4
Neelakantan 69.3

Table 1: Performances for different set of multi-
sense embeddings (300d) evaluated on SCWS
by measuring the Spearman correlation between
each model’s similarity and the human judgments.
Baselines performances are reprinted from Nee-
lakantan et al. (2014) and Chen et al. (2014);
we report the best performance across all settings
mentioned in their paper.

this class of multi-sense models and serves as a
promise for being extended to NLU tasks.

Visualization Table 2 shows examples of se-
mantically related words given the local context.
Word embeddings for tokens are obtained by using
the inferred sense labels from the Greedy model
and are then used to search for nearest neighbors in
the vector space based on cosine similarity. Like
earlier models (e.g., Neelakantan et al. (2014)).,
the model can disambiguate different word senses
(in examples like bank, rock and apple) based on
their local context; although of course the model
is also capable of dealing with polysemy—senses
that are less distinct.

6 Experiments on NLP Tasks

Having shown that multi-sense embeddings im-
prove word similarity tasks, we turn to ask
whether they improve real-world NLU tasks: POS
tagging, NER tagging, sentiment analysis at the
phrase and sentence level, semantic relationship
identification and sentence-level semantic related-
ness. For each task, we experimented on the fol-
lowing sets of embeddings, which are trained us-
ing the word2vec package on the same corpus:

• Standard one-word-one-vector embeddings
from skip-gram (50d).

• Sense disambiguated embeddings from Sec-
tion 3 and 4 using Greedy Search and Expec-
tation (50d)

• The concatenation of global word embed-
dings and sense-specific embeddings (100d).

• Standard one-word-one-vector skip-gram
embeddings with dimensionality doubled
(100d) (100d is the correct corresponding

baseline since the concatenation above
doubles the dimensionality of word vectors)

• Embeddings with very high dimensionality
(300d).

As far as possible we try to perform an apple-
to-apple comparison on these tasks, and our goal
is an analytic one—to investigate how well se-
mantic information can be encoded in multi-sense
embeddings and how they can improve NLU
performances—rather than an attempt to create
state-of-the-art results. Thus for example, in tag-
ging tasks (e.g., NER, POS), we follow the proto-
cols in (Collobert et al., 2011) using the concate-
nation of neighboring embeddings as input fea-
tures rather than treating embeddings as auxiliary
features which are fed into a CRF model along
with other manually developed features as in Pen-
nington et al. (2014). Or for experiments on senti-
ment and other tasks where sentence level embed-
dings are required we only employ standard recur-
rent or recursive models for sentence embedding
rather than models with sophisticated state-of-the-
art methods (e.g., Tai et al. (2015; Irsoy and Cardie
(2014)).

Significance testing for comparing models is
done via the bootstrap test (Efron and Tibshirani,
1994). Unless otherwise noted, significant testing
is performed on one-word-one-vector embedding
(50d) versus multi-sense embedding using Expec-
tation inference (50d) and one-vector embedding
(100d) versus Expectation (100d).

6.1 The Tasks

Named Entity Recognition We use the
CoNLL-2003 English benchmark for training,
and test on the CoNLL-2003 test data. We follow
the protocols in Collobert et al. (2011), using
the concatenation of neighboring embeddings as
input to a multi-layer neural model. We employ
a five-layer neural architecture, comprised of
an input layer, three convolutional layers with
rectifier linear activation function and a softmax
output layer. Training is done by gradient descent
with minibatches where each sentence is treated
as one batch. Learning rate, window size, number
of hidden units of hidden layers, L2 regulariza-
tions and number of iterations are tuned on the
development set.

Part-of-Speech Tagging We use Sections 0–18
of the Wall Street Journal (WSJ) data for train-
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Context Nearest Neighbors
Apple is a kind of fruit. pear, cherry, mango, juice, peach, plum, fruit, cider, apples, tomato, orange, bean, pie

Apple releases its new ipads. microsoft, intel, dell, ipad, macintosh, ipod, iphone, google, computer, imac, hardware
He borrowed the money from banks. banking, credit, investment, finance, citibank, currency, assets, loads, imf, hsbc

along the shores of lakes,
banks of rivers land, coast, river, waters, stream, inland, area, coasts, shoreline, shores, peninsula

Basalt is the commonest volcanic rock. boulder, stone, rocks, sand, mud, limestone, volcanic, sedimentary, pelt, lava, basalt
Rock is the music of teenage rebellion. band, pop, bands, song, rap, album, jazz. blues, singer, hip-pop, songs, guitar, musician

Table 2: Nearest neighbors of words given context. The embeddings from context words are first in-
ferred with the Greedy strategy; nearest neighbors are computed by cosine similarity between word
embeddings. Similar phenomena have been observed in earlier work (Neelakantan et al., 2014)

Standard (50) Greedy (50) Expectation( 50)
0.852 0.852 (+0) 0.854 (+0.02)

Standard (100) Global+G (100) Global+E (100)
0.867 0.866 (-0.01) 0.871 (+0.04)

Standard (300)
0.882

Table 3: Accuracy for Different Models on
Name Entity Recognition. Global+E stands
for Global+Expectation inference and Global+G
stands for Global+Greedy inference. p-value
0.223 for Standard(50) verse Expectation (50) and
0.310 for Standard(100) verse Expectation (100).

ing, sections 19–21 for validation and sections
22–24 for testing. Similar to NER, we trained 5-
layer neural models which take the concatenation
of neighboring embeddings as inputs. We adopt a
similar training and parameter tuning strategy as
for POS tagging.

Standard (50) Greedy (50) Expectation (50)
0.925 0.934 (+0.09) 0.938 (+0.13)

Standard (100) Global+G (100) Global+E (100)
0.940 0.946 (+0.06) 0.952 (+0.12)

Standard (300)
0.954

Table 4: Accuracy for Different Models on Part of
Speech Tagging. P-value 0.033 for 50d and 0.031
for 100d.

Sentence-level Sentiment Classification (Pang)
The sentiment dataset of Pang et al. (2002) con-
sists of movie reviews with a sentiment label for
each sentence. We divide the original dataset
into training(8101)/dev(500)/testing(2000). Word
embeddings are initialized using the aforemen-
tioned types of embeddings and kept fixed in the
learning procedure. Sentence level embeddings
are achieved by using standard sequence recur-
rent neural models (Pearlmutter, 1989) (for de-
tails, please refer to Appendix section). The ob-

tained embedding is then fed into a sigmoid clas-
sifier. Convolutional matrices at the word level are
randomized from [-0.1, 0.1] and learned from se-
quence models. For training, we adopt AdaGrad
with mini-batch. Parameters (i.e., L2 penalty,
learning rate and mini batch size) are tuned on
the development set. Due to space limitations, we
omit details of recurrent models and training.

Standard (50) Greedy (50) Expectation (50)
0.750 0.752(+0.02) 0.750(+0.00)

Standard (100) Global+G (100) Global+E (100)
0.768 0.765(-0.03) 0.763(-0.05)

Standard (300)
0.774

Table 5: Accuracy for Different Models on Sen-
timent Analysis (Pang et al.’s dataset). P-value
0.442 for 50d and 0.375 for 100d.

Sentiment Analysis–Stanford Treebank The
Stanford Sentiment Treebank (Socher et al., 2013)
contains gold-standard labels for each constituent
in the parse tree (phrase level), thus allowing us to
investigate a sentiment task at a finer granularity
than the dataset in Pang et al. (2002) where
labels are only found at the top of each sentence,
The sentences in the treebank were split into a
training(8544)/development(1101)/testing(2210)
dataset.

Following Socher et al. (2013) we obtained em-
beddings for tree nodes by using a recursive neu-
ral network model, where the embedding for par-
ent node is obtained in a bottom-up fashion based
on its children. The embeddings for each parse
tree constituent are output to a softmax layer; see
Socher et al. (2013).

We focus on the standard version of recursive
neural models. Again we fixed word embeddings
to each of the different embedding settings de-
scribed above3. Similarly, we adopted AdaGrad

3Note that this is different from the settings used in
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with mini-batch. Parameters (i.e., L2 penalty,
learning rate and mini batch size) are tuned on
the development set. The number of iterations is
treated as a variable to tune and parameters are
harvested based on the best performance on the
development set.

Standard (50) Greedy (50) Expectation (50)
0.818 0.815 (-0.03) 0.820 (+0.02)

Standard (100) Global+G (100) Global+E (100)
0.838 0.840 (+0.02) 0.838 (+0.00)

Standard (300)
0.854

Table 6: Accuracy for Different Models on Sen-
timent Analysis (binary classification on Stanford
Sentiment Treebank.). P-value 0.250 for 50d and
0.401 for 100d.

Semantic Relationship Classification
SemEval-2010 Task 8 (Hendrickx et al., 2009)
is to find semantic relationships between pairs of
nominals, e.g., in “My [apartment]e1 has a pretty
large [kitchen]e2” classifying the relation between
[apartment] and [kitchen] as component-whole.
The dataset contains 9 ordered relationships, so
the task is formalized as a 19-class classifica-
tion problem, with directed relations treated as
separate labels; see Hendrickx et al. (2009) for
details.

We follow the recursive implementations de-
fined in Socher et al. (2012). The path in the parse
tree between the two nominals is retrieved, and the
embedding is calculated based on recursive mod-
els and fed to a softmax classifier. For pure com-
parison purpose, we only use embeddings as fea-
tures and do not explore other combination of ar-
tificial features. We adopt the same training strat-
egy as for the sentiment task (e.g., Adagrad, mini-
batches, etc).

Standard (50) Greedy (50) Expectation (50)
0.748 0.760 (+0.12) 0.762 (+0.14)

Standard(100) Global+G (100) Global+E (100)
0.770 0.782 (+0.12) 0.778 (+0.18)

Standard(300)
0.798

Table 7: Accuracy for Different Models on Se-
mantic Relationship Identification. P-value 0.017
for 50d and 0.020 for 100d.

(Socher et al., 2013) where word vectors were treated as pa-
rameters to optimize.

Sentence Semantic Relatedness We use the
Sentences Involving Compositional Knowledge
(SICK) dataset (Marelli et al., 2014) consist-
ing of 9927 sentence pairs, split into train-
ing(4500)/development(500)/Testing(4927). Each
sentence pair is associated with a gold-standard la-
bel ranging from 1 to 5, indicating how semanti-
cally related are the two sentences, from 1 (the two
sentences are unrelated) to 5 (the two are very re-
lated).

In our setting, the similarity between two sen-
tences is measured based on sentence-level em-
beddings. Let s1 and s2 denote two sentences
and es1 and es2 denote corresponding embeddings.
es1 and es2 are achieved through recurrent or re-
cursive models (as illustrated in Appendix sec-
tion). Again, word embeddings are obtained by
simple table look up in one-word-one-vector set-
tings and inferred using the Greedy or Expecta-
tion strategy in multi-sense settings. We adopt two
different recurrent models for acquiring sentence-
level embeddings, a standard recurrent model and
an LSTM model (Hochreiter and Schmidhuber,
1997).

The similarity score is predicted using a regres-
sion model built on the structure of a three layer
convolutional model, with concatenation of es1
and es2 as input, and a regression score from 1-
5 as output. We adopted the same training strat-
egy as described earlier. The trained model is then
used to predict the relatedness score between two
new sentences. Performance is measured using
Pearson’s r between the predicted score and gold-
standard labels.

Standard( 50) Greedy (50) Expectation (50)
0.824 0.838(+0.14) 0.836(+0.12)

Standard (100) Global+G (100) Global+E (100)
0.835 0.840 (+0.05) 0.845 (+0.10)

Standard(300)
0.850

Table 8: Pearson’s r for Different Models on Se-
mantic Relatedness for Standard Models. P-value
0.028 for 50d and 0.042 for 100d.

6.2 Discussions

Results for different tasks are represented in Ta-
bles 3-9.

At first glance it seems that multi-sense em-
beddings do indeed offer superior performance,
since combining global vectors with sense-specific
vectors introduces a consistent performance boost
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Standard(50) Greedy(50) Expectation(50)
0.843 0.848 (+0.05) 0.846 (+0.03)

Standard(100) Global+G (100) Global+E (100)
0.850 0.853 (+0.03) 0.854 (+0.04)

Standard(300)
0.850

Table 9: Pearson’s r for Different Models on Se-
mantic Relatedness for LSTM Models. P-value
0.145 for 50d and 0.170 for 100d.

for every task, when compared with the standard
(50d) setting. But of course this is an unfair
comparison; combining global vector with sense-
specific vector doubles the dimensionality of vec-
tor to 100, making comparison with standard di-
mensionality (50d) unfair. When comparing with
standard (100), the conclusions become more nu-
anced.

For every task, the +Expectation method has
performances that often seem to be higher than the
simple baseline (both for the 50d case or the 100d
case). However, only some of these differences are
significant.

(1) Using multi-sense embeddings is signifi-
cantly helpful for tasks like semantic relatedness
(Tables 7-8). This is sensible since sentence mean-
ing here is sensitive to the semantics of one partic-
ular word, which could vary with word sense and
which would directly be reflected on the related-
ness score.

(2) By contrast, for sentiment analysis (Tables
5-6), much of the task depends on correctly identi-
fying a few sentiment words like “good” or “bad”,
whose senses tend to have similar sentiment val-
ues, and hence for which multi-sense embeddings
offer little help. Multi-sense embeddings might
promise to help sentiment analysis for some cases,
like disambiguating the word “sound” in “safe and
sound” versus “movie sound”. But we suspect that
such cases are not common, explaining the non-
significance of the improvement. Furthermore, the
advantages of neural models in sentiment analysis
tasks presumably lie in their capability to capture
local composition like negation, and it’s not clear
how helpful multi-sense embeddings are for that
aspect.

(3) Similarly, multi-sense embeddings help for
POS tagging, but not for NER tagging (Table 3-4).
Word senses have long been known to be related
to POS tags. But the largest proportion of NER
tags consists of the negative not-a-NER (“O”) tag,
each of which is likely correctly labelable regard-

less of whether senses are disambiguated or not
(since presumably if a word is not a named entity,
most of its senses are not named entities either).

(4) As we apply more sophisticated models like
LSTM to semantic relatedness tasks (in Table 9),
the advantages caused by multi-sense embeddings
disappears.

(5) Doubling the number of dimensions is suf-
ficient to increase performance as much as using
the complex multi-sense algorithm. (Of course in-
creasing vector dimensionality (to 300) boosts per-
formance even more, although at the significant
cost of exponentially increasing time complexity.)
We do larger one-word-one-vector embeddings do
so well? We suggest some hypotheses:

• though information about distinct senses is
encoded in one-word-one-vector embeddings
in a mixed and less structured way, we sus-
pect that the compositional nature of neural
models is able to separate the informational
chaff from the wheat and choose what infor-
mation to take up, bridging the gap between
single vector and multi-sense paradigms. For
models like LSTMs which are better at do-
ing such a job by using gates to control in-
formation flow, the difference between two
paradigms should thus be further narrowed,
as indeed we found.

• The pipeline model proposed in the work re-
quires sense-label inference (i.e., step 2). We
proposed two strategies: GREEDY and EX-
PECTATION, and found that GREEDY mod-
els perform worse than EXPECTATION, as
we might expect4. But even EXPECTATION

can be viewed as another form of one-word-
one-vector models, just one where different
senses are entangled but weighted to empha-
size the important ones. Again, this suggests
another cause for the strong relative perfor-
mance of larger-dimensioned one-word-one-
vector models.

7 Conclusion

In this paper, we expand ongoing research into
multi-sense embeddings by first proposing a new
version based on Chinese restaurant processes that
achieves state of the art performance on simple

4GREEDY models work in a more aggressive way and
likely make mistakes due to the non-global-optimum nature
and limited context information
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word similarity matching tasks. We then intro-
duce a pipeline system for incorporating multi-
sense embeddings into NLP applications, and ex-
amine multiple NLP tasks to see whether and
when multi-sense embeddings can introduce per-
formance boosts. Our results suggest that sim-
ply increasing the dimensionality of baseline
skip-gram embeddings is sometimes sufficient to
achieve the same performance wins that come
from using multi-sense embeddings. That is, the
most straightforward way to yield better perfor-
mance on these tasks is just to increase embedding
dimensionality.

Our results come with some caveats. In partic-
ular, our conclusions are based on the pipelined
system that we introduce, and other multi-sense
embedding systems (e.g., a more advanced sense
learning model or a better sense label model or
a completely different pipeline system) may find
stronger effects of multi-sense models. Nonethe-
less we do consistently find improvements for
multi-sense embeddings in some tasks (part-of-
speech tagging and semantic relation identifica-
tion), suggesting the benefits of our multi-sense
models and those of others. Perhaps the most im-
portant implication of our results may be the ev-
idence they provide for the importance of going
beyond simple human-matching tasks, and testing
embedding models by using them as components
in real NLP applications.

8 Appendix

In sentiment classification and sentence seman-
tic relatedness tasks, classification models require
embeddings that represent the input at a sentence
or phrase level. We adopt recurrent networks
(standard ones or LSTMs) and recursive networks
in order to map a sequence of tokens with various
length to a vector representation.

Recurrent Networks A recurrent network suc-
cessively takes wordwt at step t, combines its vec-
tor representation et with the previously built hid-
den vector ht−1 from time t− 1, calculates the re-
sulting current embedding ht, and passes it to the
next step. The embedding ht for the current time t
is thus:

ht = tanh(W · ht−1 + V · et) (5)

whereW and V denote compositional matrices. If
Ns denote the length of the sequence, hNs repre-
sents the whole sequence S.

Recursive Networks Standard recursive models
work in a similar way by working on neighbor-
ing words by parse tree order rather than sequence
order. They compute the representation for each
parent node based on its immediate children re-
cursively in a bottom-up fashion until reaching the
root of the tree. For a given node η in the tree
and its left child ηleft (with representation eleft) and
right child ηright (with representation eright), the
standard recursive network calculates eη:

eη = tanh(W · eηleft + V · eηright) (6)

Long Short Term Memory (LSTM) LSTM
models (Hochreiter and Schmidhuber, 1997) are
defined as follows: given a sequence of inputs
X = {x1, x2, ..., xnX}, an LSTM associates each
timestep with an input, memory and output gate,
respectively denoted as it, ft and ot. We nota-
tionally disambiguate e and h, where et denote the
vector for an individual text unit (e.g., word or sen-
tence) at time step t while ht denotes the vector
computed by the LSTM model at time t by com-
bining et and ht−1. σ denotes the sigmoid func-
tion. W ∈ R4K×2K . The vector representation ht
for each time-step t is given by:

[ it
ft
ot
lt

]
=

[ σ
σ
σ

tanh

]
W ·

[
ht−1

et

]
(7)

ct = ft · ct−1 + it · lt (8)

hst = ot · ct (9)
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Abstract

Non-compositionality of multiword ex-
pressions is an intriguing problem that
can be the source of error in a variety
of NLP tasks such as language genera-
tion, machine translation and word sense
disambiguation. We present methods
of non-compositionality detection for En-
glish noun compounds using the unsu-
pervised learning of a semantic compo-
sition function. Compounds which are
not well modeled by the learned semantic
composition function are considered non-
compositional. We explore a range of dis-
tributional vector-space models for seman-
tic composition, empirically evaluate these
models, and propose additional methods
which improve results further. We show
that a complex function such as polyno-
mial projection can learn semantic compo-
sition and identify non-compositionality
in an unsupervised way, beating all other
baselines ranging from simple to complex.
We show that enforcing sparsity is a useful
regularizer in learning complex composi-
tion functions. We show further improve-
ments by training a decomposition func-
tion in addition to the composition func-
tion. Finally, we propose an EM algo-
rithm over latent compositionality annota-
tions that also improves the performance.

1 Introduction

Multiword Expressions (MWEs) are sequences of
words that exhibit some kind of idiosyncrasy. This
idiosyncrasy can be semantic, statistical, or syn-
tactic1. Ivory tower, speed limit, and at large

1MWEs can have other less significant kinds of idiosyn-
crasies. For instance lexical idiosyncrasy as in ad hoc, and
pragmatic idiosyncrasy as in good morning (Baldwin and
Kim, 2010)

are examples of semantically, statistically and syn-
tactically idiosyncratic MWEs respectively. Note
that an MWE can be idiosyncratic at several lev-
els. In general, semantically idiosyncratic MWEs
are commonly referred to as non-compositional
(Baldwin and Kim, 2010) and statistically idiosyn-
cratic MWEs are commonly referred to as col-
locations (Sag et al., 2002). Non-compositional
MWEs are those whose meaning can not be read-
ily inferred from the meaning of their constituents
and collocations are those MWEs whose con-
stituents co-occur more than expected by chance.
Collocations constitute the largest subset of all
kinds of MWEs, however, non-compositional ones
cause more problems in various NLP tasks, for ex-
ample word sense disambiguation (McCarthy et
al., 2003) and machine translation (Lin, 1999).
It may also be more challenging to model non-
compositionality than collocational weight as the
former has to do with modelling the semantics and
the latter can to some extent be modeled by con-
ventional statistical measures such as mutual in-
formation. Detecting non-compositionality in an
automatic fashion has been the aim of much pre-
vious research.

In this paper, we capture non-compositionality
of English Noun Compounds (NCs)2 based on the
assumption that the majority of the compounds
are compositional, for which a composition func-
tion can be learned. This implies that the com-
pounds for which a composition function cannot
be learned with a relatively low error are non-
compositional.

In previous work on vector-space models of dis-
tributional semantics, semantic composition has
been commonly assumed to be a trivial predeter-
mined function such as addition, multiplication,

2MWEs have various syntactic categories such as noun
compounds, verb particle constructions, light verb construc-
tions, etc., with noun compounds and verb particle construc-
tions constituting the most prominent categories of MWEs.
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and their weighted variations (Mitchell and Lap-
ata, 2008; Reddy et al., 2011; Salehi et al., 2015).
Nevertheless there is some work that regards com-
position as a more complex function. For in-
stance Widdows (2008) who propose (but doesn’t
empirically test) the use of Tensor and Convolu-
tion products for modelling non-compositionality,
Baroni and Zamparelli (2010) who regard adjec-
tives in adjectival-noun compositions as matri-
ces that can be learned by linear regression, and
Socher et al. (2012) who present a model that
learns phrase composition by means of a recursive
neural network. The two latter works show that
complex composition models significantly outper-
form additive and multiplicative functions. In
this work, we too assume that composition is ar-
guably a complex function. We believe simpli-
fied composition functions, such as additive and
multiplicative functions and their weighted varia-
tions, while having advantages such as being im-
pervious to overfitting, can not completely cap-
ture semantic composition. Nevertheless mod-
elling composition by means of a powerful func-
tion can be equally inadequate for our purposes.
An overly powerful composition function mem-
orizes all compositional and non-compositional
compounds, resulting in overfitting and low learn-
ing error that hinders discrimination between com-
positional and non-compositional compounds. We
examine various classes of composition functions,
ranging from the least to the most powerful (in
terms of learning capacity). We show that com-
plex functions clearly do a better job in mod-
elling semantic composition and in detecting non-
compositionality compared to commonly used ad-
ditive and multiplicative functions.

Compositional compounds are also decompos-
able; intuitively, their semantics is the union of
the semantics of their components. More for-
mally, conditioned on the vector of the com-
pound, vectors of the component words should
be independently predictable. This principle, to-
gether with the assumption that most of the com-
pounds are compositional, leads to the conclusion
that a model of composition should be able to
be auto-reconstructive: the composition function
that maps component-words’ vectors to their com-
pound vector should have an associated decom-
position function that independently predicts each
of the component-words’ vectors from this com-
pound vector. An auto-reconstructive model en-

ables us to exploit more data in order to learn se-
mantic composition and predict compositionality.
We show that auto-reconstruction can improve the
accuracy of composition functions and improve
detecting non-compositionality.

To further improve non-compositionality de-
tection, we propose an EM-like detection algo-
rithm based on hidden compositionality annota-
tions. The best composition is the one that is
the best fit on all the data points except the non-
compositional ones. Since we don’t use annotated
data at training time, we assume annotations to be
hidden variables and iteratively alternate between
optimizing the composition function and optimiz-
ing the hidden compositionality annotations. We
show that this iterative algorithm increases the
accuracy of non-compositionality detection com-
pared to the case when training is done on all ex-
amples.

We run our experiments on the data set of
Farahmand et al. (2015) who provide a set of
English NCs which are annotated with non-
compositionality judgments. We show that
quadratic regression significantly outperforms ad-
ditive and multiplicative baselines and all other
models in modelling semantic composition and
identifying the non-compositional NCs. In short,
the contributions of our work are: to empirically
evaluate various composition functions ranging
from simple to overly complex in order to find the
most accurate function; to propose, to the best of
our knowledge for the first time, a method of iden-
tifying non-compositional phrases as phrases for
which a composition function cannot be readily
learned; to propose learning decomposability as
another criterion to detect non-compositionality;
and to examine possible ways of improving the ac-
curacy of the models by means of EM on hidden
compositionality annotations.

2 Related Work

To the best of our knowledge, attempts to extract
non-compositionality in computational linguistics
go back to 1998. Tapanainen et al. (1998) pro-
pose a method to identify non-compositional verb-
object collocations based on the semantic asym-
metry of verb-object relation. They assume that
in a verb-object idiomatic expression, the object
is a more interesting element in the sense that
if the object appears with one (or only a few)
verbs in a large corpus, it presumably has an id-
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iomatic nature. Lin (1999) argues that the mu-
tual information between the constituents of a
non-compositional phrase is significantly differ-
ent from that of a phrase created by substitut-
ing the constituents of that phrase with their sim-
ilar words. Their evaluation reveals a low pre-
cision (16 − 39%) and recall (14 − 21%). In
any case this method is not able to discrimi-
nate non-compositional MWEs from collocational
MWEs as they share the same property of non-
substitutability (their constituents cannot be re-
placed with their synonyms). Baldwin et al.
(2003) present a method that decides about the
non-compositionality of English NCs and verb
particle constructions by using latent semantic
analysis to calculate the similarity between a
MWE and its components. They argue that a
higher similarity indicates a higher degree of com-
positionality. McCarthy et al. (2003) devise a
number of measures based on comparison of the
neighbors of phrasal verbs and their correspond-
ing simplex verbs. They evaluate these measures
by calculating their correlation with human com-
positionality judgments on a set of phrasal verbs.
They show that some of the measures have signifi-
cant correlations with human judgments. Venkata-
pathy and Joshi (2005) present a supervised model
that benefits from both collocational and con-
textual information and ranks the MWE candi-
dates based on their non-compositionality. Katz
and Giesbrecht (2006) use distributional semantics
and LSA as a model of context similarity to test
whether the local context of a MWE can distin-
guish its idiomatic use from literal use. They fur-
ther compare the context of a MWE with the con-
text of its components and show that this can be
used to decide whether the expression is idiomatic
or not. Cook et al. (2007) is a relatively differ-
ent work where the authors propose a syntactic ap-
proach to identify semantic non-compositionality
of verb-noun MWEs. McCarthy et al. (2007) use
various models of selectional preferences for de-
tecting non-compositional verb-object pairs.

Reddy et al. (2011) employ the additive and
multiplicative composition functions presented by
Mitchell and Lapata (2008)3 and several similar-

3Mitchell and Lapata (2008) present an analysis of vector-
based additive and multiplicative semantic composition mod-
els where each words is represented by its distributional vec-
tor. They conclude that multiplicative and combined models
do a better job in modelling vector-based semantic composi-
tion than other models.

ity based models to measure the compositionality
of MWEs. Similarity based models measure the
similarity of a MWE vector and sum/product of
its constituents’ vectors. Their evaluation (which
is carried out on a set of 90 annotated NCs) shows
that there is a relatively high correlation (Spear-
man ρ of between 0.51 and 0.71) between their
models’ predictions and human judgments on non-
compositionality of English NCs, with weighted
additive function outperforming all the other mod-
els. Kiela and Clark (2013) present a model of de-
tecting non-compositionality based on the hypoth-
esis that the average distance between a phrase
vector and its substituted phrase vectors is related
to its compositionality. In particular composi-
tional phrases are less similar to their neighbors in
semantic space. The distributional vectors repre-
senting the semantics of words were created using
the standard window method and 50,000 most fre-
quent context words. They show that their model
slightly (+0.014 and +0.007) outperforms their
baselines (Venkatapathy and Joshi, 2005; Mc-
Carthy et al., 2007).

All of the models mentioned so far are based on
conventional4 or count based vector space repre-
sentation of the words. More recent works how-
ever are based on representation learning of word
embeddings. Baroni and Zamparelli (2010) regard
adjective as matrices and nouns as real-valued vec-
tors for Italian adjective noun composition. They
learn the adjective matrices by linear regression.
In this work, however, every adjective is presented
by a new matrix which leads to a large number
of parameters. Socher et al. (2012) suggest that
composition function is a matrix that multiplies
on the word vectors, and Mikolov et al. (2013b)
present a model of learning non-compositional
phrases by calculating a data-driven score for cer-
tain frequent phrases (up to size two) and learn
them as a whole. Salehi et al. (2015) borrow the
word embeddings from (Mikolov et al., 2013a)
to model the semantics of words and use sev-
eral composition functions from (Mitchell and La-
pata, 2008; Reddy et al., 2011) to predict the
non-compositionality of MWEs. They compare
the performance of word embeddings with con-
ventional distributional vector representations and
discover the superiority of word embeddings in
predicting non-compositionality of MWEs.

4Conventional or count based models of distributional
similarity as oppose to word embeddings (Salehi et al., 2015;
Baroni et al., 2014).
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3 Representation of Words and
Compounds

In order to represent words and compounds we
use word embeddings, which are a form of vec-
tor space models. Vector space models represent
the semantics of words and phrases with real val-
ued vectors. Word embeddings have proven to
be effective models of semantic representation of
words and outperform the count-based models in
various NLP tasks (Baroni et al., 2014; Collobert
et al., 2011; Collobert and Weston, 2008; Yaz-
dani and Popescu-Belis, 2013; Huang et al., 2012;
Mikolov et al., 2013c). They have been success-
fully applied to semantic composition (Mikolov
et al., 2013b) and outperformed the conventional
count based contextual models in predicting non-
compositionality of MWEs (Salehi et al., 2015).

In this work we use word embeddings of
Mikolov et al. (2013a) to represent the seman-
tics of words and compounds. We chose an En-
glish Wikipedia dump as our corpus. After fil-
tering HTML tags and noise we POS-tagged the
corpus and extracted ≈ 70k compounds whose
frequency of occurrence was above 50. We learn
the embeddings of these compounds as single to-
kens using the word2vec5 bag-of-word model. We
also learn the embeddings of the compounds of the
evaluation set, plus the embeddings of all the com-
pounds’ component words. Compounds’ sizes are
restricted to two (i.e. bigrams) for the sake of sim-
plicity and to respect the evaluation set standards.
The compounds and word embeddings are then
used as supervised signals to learn a composition
function.

4 Supervised Models of Composition on
Word Embeddings

After the unsupervised learning of word embed-
dings and candidate compound embeddings (see
section 3), we use these embeddings as supervised
signals in order to train our composition func-
tions. The term supervised might be misleading
as the models do not have any information about
the compositionality of the compounds during the
training phase, and in that respect it is unsuper-
vised. To describe the models in a formal way,
throughout the paper we use the following nota-
tions: d represents the size of embeddings, φ(wi)
represents embedding of wi, and φ̃(wi−wj) =

5https://code.google.com/p/word2vec/

f(φ(wi), φ(wj)) represents the learned embed-
ding of bigram wi−wj by the composition func-
tion f . The training error of bigram wi−wj by f
is eij = ‖φ̃(wi−wj)−φ(wi, wj)‖, and ‖‖ is norm
2. The composition functions are described in the
following sections.

Given unsupervised embeddings for both words
and compounds, a composition model is trained
to map the word embeddings to the compound
embeddings, with norm 2 error eij defined
above. Then this same error for this same
task (norm 2 between predicted and unsupervised
compound embeddings) is used to measure non-
compositionality. In other words, we learn a com-
position function (with several models) and iden-
tify non-compositional expressions as those for
which the error of this composition function is
high.

We explore various classes of composition
functions of word embeddings, ranging from sim-
ple to complex, to find the most effective one.
We want a composition function that is pow-
erful enough to learn composition for composi-
tional compounds, but simple enough that it fails
to learn composition for non-compositional com-
pounds. To this end, we investigate linear pro-
jections, polynomial projections, and neural net-
works. We try these models with and without spar-
sity regularisation, which reduces the number of
non-zero parameters while otherwise keeping the
complexity of the function that can be learned.

4.1 Linear Projection

In this model we assume that the embedding of
a bigram is a linear projection of its component
words’ embeddings.

f(φ(wi), φ(wj)) = [φ(wi), φ(wj)]θ2d×d

To train this function we optimize the least square
error, which gives us a multi-variant linear regres-
sion.

min
θ
‖[φ(wi), φ(wj)]θ2d×d − φ(wi, wj)‖

As mentioned earlier, a composition function
that doesn’t overfit the training data and induces
a more meaningful error is more suitable for our
purpose. One effective way of reducing overfitting
and increasing generalization is by keeping only
the important parameters of the model, which is
done by enforcing sparsity on model parameters.
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(a) Linear Projection (b) Sparse Linear Projection

Figure 1: Linear transformation matrix of compositionality for embeddings of size 50

(a) Pure Quadratic (b) Sparse Pure Quadratic

Figure 2: Pure quadratic transformation matrix of compositionality for embeddings of size 50

In case of sparse linear projections, only a few el-
ements of the projection matrix θ are non-zero.
This means that not all dimensions of the latent
space has a role in all dimensions of the compound
embedding.

To apply sparsity on θ, we add a norm 1 penalty
on it and add that to the least square optimization.
This forms a multi-variant lasso regression (Tib-
shirani, 2011).

min
θ
‖[φ(wi), φ(wj)]θ − φ(wi, wj)‖+ λ|θ|

Figure 1 shows the transformation matrices of
linear projection and sparse linear projection. The
two diagonals of the matrices correspond to the
sum of the two embeddings, which we can see are
the main component of the sparse function, and
play an important role in the non-sparse one. We
will see that despite being an important compo-
nent of these functions, sum alone is not capable
of accurately modelling semantic composition.

4.2 Polynomial Projection

Polynomial projection is a non-linear projection
that assumes the relation between compound em-
bedding and the component words’ embeddings

should be a polynomial of degree n. This can be
viewed as a form of linear regression where first
a polynomial transformation is applied to the in-
put vector and then a linear projection is fitted. If
ψ shows the polynomial transformation then we
have:

f(φ(wi), φ(wj)) = ψ([φ(wi), φ(wj)])θ

We couldn’t successfully apply any polynomial
beyond quadratic transformation without overfit-
ting. The case of a quadratic ψ transformation is:

ψ(x) = x2
1, · · ·x2

n︸ ︷︷ ︸
Pure quadratic

, x1x2, · · ·xn−1xn︸ ︷︷ ︸
interaction terms

, x1, · · ·xn︸ ︷︷ ︸
linear terms

Similar to the linear case we can have sparse
version of the polynomial regression in which we
allow the presence of only a few non-zero ele-
ments in the θ matrix. The sparsity regularizer
is more important in the case of polynomial re-
gression as we have many more parameters. The
quadratic model is similar to Recursive Neural
Tensor compositionality model of Socher et al.
(2013). But in our model the tensor is symmet-
ric around the diagonal. Figure 2 shows the pure
quadratic transformation matrices.
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4.3 Neural Networks
A feed forward neural network is a universal ap-
proximator (Cybenko, 1989): feed-forward net-
work with a single hidden layer can approximate
any continuous function, provided it has enough
hidden units. Therefore we use neural networks
as a powerful class of learning models to learn se-
mantic composition. The number of hidden units
gives us a measure to control expressiveness of our
model.

f(φ(wi), φ(wj)) = σ([φ(wi), φ(wj)]Wih)Who

Similar to the previous models, we optionally
impose sparsity over weight matrices of the neu-
ral network to be able to induce more meaningful
learning errors.

4.4 Experimental Results
We evaluated the above models on the data set of
Farahmand et al. (2015). They provide a set of
1042 English NCs with four non-compositionality
judgments. The judgments are binary decisions
taken by four experts about whether or not a com-
pound is non-compositional. We calculate a vote-
based non-compositionality score for each of the
data set compounds by summing over its non-
compositionality judgments. The neural network
models are trained using stochastic gradient de-
scent. We use the additive and multiplicative mod-
els of modelling composition and detecting non-
compositionality presented by Salehi et al. (2015)
and (Reddy et al., 2011) as state of the art base-
lines.

The results are shown in Table 1. The sec-
ond column shows the correlation between dif-
ferent models’ predictions and the annotated
data in terms of Spearman ρ. The last three
columns show the performance of different mod-
els in terms of Normalized Discounted Cumu-
lative Gain (NDCG), F1 score and and Preci-
sion at 100 (P@100). For these three scores
we consider the problem of predicting non-
compositional NCs a problem with a binary so-
lution where we assume compounds (of the evalu-
ation set) with at least two non-compositionality
votes are non-compositional. NDCG assigns a
higher score to a ranked list of compounds if
the non-compositional ones are ranked higher in
the list. F1 column represents the maximum F1

score on the top-n elements of the ranked list re-
turned by the corresponding model for all n in

Model Spearman ρ NDCG F1 P@100

Additive model 20.83 81.39 36.95 43
(Salehi et al., 2015);
(Reddy et al., 2011)
Multiplicative model 9.18 76 35.61 22
(Reddy et al., 2011)
Sparse Linear 37.58 84.25 46.40 48
Linear 38.09 84.25 46.41 49
Sparse Pure Quad. 37.85 84.11 47.05 48
Pure Quad. 38.57 84.68 47.01 47
Sparse Interaction 41.03 85.82 48.71 54
Interaction 40.25 85.69 48.64 50
Quadratic 40.25 85.59 48.34 49
Sparse NN (H=1000) 37.08 85.04 46.35 52
NN (H=1000) 37.51 84.97 45.47 51

Table 1: Results for each model’s ability to predict
non-compositionality.

[1 − size-of-ranked-list]. P@100 shows the pre-
cision at the first 100 compounds ranked as non-
compositional. The models are listed in the or-
der of complexity of the composition function.
The addition-based baseline which was explored
in a variety of previous work does not seem to
be as powerful as the other models. It is outper-
formed by almost all learned models. In general,
we can see that more complex functions tend to
learn compositionality in a more effective way.

As mentioned earlier, overly powerful learners
overfit and do not produce meaningful errors for
the detection task. Sparsity seems to address this
issue by reducing the number of non-zero param-
eters while the function can still keep the complex
terms if needed. In general sparse models show
improvement over their non-sparse counterparts,
specifically for more powerful models.

5 Auto-reconstructive Models

In this section, we investigate the hypothesis that
we can detect non-compositionality better by not
only modelling a composition function, but also
modelling a decomposition function. For com-
positional compounds, given the meaning of the
compound, the meaning of the two component
words should be conditionally independent. We
therefore assume that the decomposition function
predicts the component words’ vectors indepen-
dently. Let us illustrate this assumption by exam-
ining the non-compositional compound flag stop.
Given the semantics of this compound (a point at
which a vehicle in public transportation stops only
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on prearrangement or signal6), we can not readily
predict one of its component words without know-
ing the other. Now consider the compositional
compound hip injury. Given the semantics of this
compound it is much easier to predict each of its
component words independently.

In the previous section, the training signals
came from the embeddings of the candidate com-
pounds and their component words. In this section
we extend our model such that it can benefit from
more training signals. To this end, we formal-
ize the assumption that a compositional compound
is also decomposable as an auto-reconsructive
model. We thus add this hypothesis to the learn-
ing process: a good composition function not only
builds the semantics of the compound from the
semantics of its component words, but it also al-
lows the independent prediction of the semantics
of its component words from the compound se-
mantics. In the following sections we add this as-
sumption to both linear projection (which encom-
passes polynomial) and Neural Network models.

5.1 Auto-reconstructive Linear Models
Let YM×d be a matrix whose rows are the pre-
computed compound embeddings, and XM×2d be
a matrix whose rows are the concatenation of the
embeddings for the words of these compounds.
Let AN×2d be another matrix where every row
contains the concatenation of the embeddings for
the words of a compound, but this matrix in-
cludes many compounds for which we did not pre-
compute compound embeddings. We assume that
the rows of matrixA include the rows of matrixX .
In linear models the auto-reconstructive objective
function is as follows:

min
θ,θ′ ‖Xθ − Y ‖+ λ‖Aθθ′ −A‖

where λ is a meta-parameter for the importance
of the auto-reconstruction in the objective. A
schematic of this model is shown in Figure 3a.

We can look at this problem as the following
weighted least square problem:

min
θ,θ′ ‖

(
X
A

)
θ −

(
Y

Aθ′T (θ′θ′T )−1

)
‖

1
...
λ


In the above matrix formula we transformed the
auto-reconstruction part of the objective to a

6Definition taken from Merriam-Webster Dictionary

(a) Linear auto-reconstructive (b) NN Auto-reconstructive

Figure 3: Auto-reconstructive linear and neural
network models

pseudo regressand of the least square. To solve
this optimization we design an efficient alternat-
ing least squares algorithm.

First we initialize θ0 to be the answer of the
original multi-variant linear regression, θ0=X \Y
where X \ =(XTX)−1XT is the pseudoinverse
of X . Let us assume W is the diagonal matrix
with first M elements of the diagonal being 1 and
the remaining N being λ. We alternate between
the following formulas until the algorithm con-
verges. First we approximate the next θ′ based on
the current approximation of θ, then we use this
value of θ′ to calculate the pseudo regressand part
of the least square. In the final step we solve the
weighted least square for this new regressand ma-
trix and continue iterating these stages until the al-
gorithm converges.

θ′t = (Aθt) \A (1)

X2 =
(
X
A

)
Y2 =

(
Y

Aθ′Tt−1(θ
′
t−1θ

′T
t−1)

−1

)
(2)

θt = (XT
2 WX2)−1(X2)TWY2 (3)

The above algorithm can also be used in the
case of polynomial regression. The only thing that
needs to be done is to replace X and A by their
polynomial transformations.

5.2 Auto-reconstructive Neural Networks
The auto-reconstructive neural network follows
the same idea. The objective function changes to:

min
Wih,Whi,Woh

‖σ(XWih)Who − Y ‖+
λ‖σ(AWih)Whi −A‖ (4)
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Composition Spearman ρ NDCG F1 P@100

Linear 38.09 84.25 46.41 49
Linear+ auto 37.52 84.55 46.55 49
Interaction 40.25 85.69 48.64 50
Interaction+ auto 39.29 85.71 48.95 56
NN (H=1000) 37.40 84.50 46.34 49
NN (H=1000) + auto 39.98 85.17 49.12 55

Table 2: Results comparing the auto-
reconstructive models’ ability to predict non-
compositionality.

Figure 3b shows the schematic of this model.
We optimize this objective using stochastic gradi-
ent descent with early stopping. The results are
shown in Table 2. We choose the first 300K fre-
quent noun-noun compounds from the corpus in
order to build matrix A. Each row of A cre-
ated by concatenating the component words vec-
tors. The results show that the auto-reconstructive
models generally improve over their counterparts.
As mentioned earlier, the improvement comes
from two facts. On the one hand we increase
the training signals by implementing the decom-
posability hypothesis. On the other hand, the
auto-reconstructive model enables us to exploit
more data in addition to the candidate compounds.
There is almost no improvement in the case of
linear model because this model does not have
enough learning capacity to benefit from a higher
number of training signals.

6 Non-compositionality Detection Using
Latent Annotations

All the models discussed in this paper are unsu-
pervised since they don’t have any access to la-
bels specifying compositionality of compounds.
The above models simply assume that most com-
pounds are compositional, and therefore train their
composition and decomposition functions on all
compounds. In this section we incorporate in the
models an intrinsic uncertainty about the compo-
sitionality annotation of the training set.

The best (optimum) composition function is
the one that fits well all the compositional com-
pounds and does not fit the non-compositional
ones. But we assume that we do not have train-
ing labels indicating compositionality. To over-
come this uncertainty and improve the learning
process, we introduce latent compositionality la-
bels to the model. We assume each candidate com-
pound has a latent annotation, 1 or 0, showing

Composition Spearman ρ NDCG F1 P@100

Linear 38.09 84.25 46.41 49
Linear+ LA 37.80 84.60 46.29 48
Interaction 40.25 85.69 48.64 50
Interaction+ LA 40.56 86.30 48.34 51
NN (H=1000) 37.40 84.50 46.34 49
NN (H=1000) + LA 39.23 85.36 48.15 55

Table 3: Results comparing the latent annotation
models’ ability to predict non-compositionality.

whether or not it is compositional. Let us assume
a non-compositionality detection system that re-
turns B non-compositional candidates that should
have their own lexical unit and parameters. The
objective of this composition function training is
to minimize the error of compositional compounds
and not the error of non-compositional ones. In
order to implement this objective we use the fol-
lowing loss function:

min
λij ,θ

∑
ij

λije
2
ij

s.t λij ∈ {0, 1},∑
ij

λij = N −B

where λij represents the hidden compositionality
annotation and eij is again the learning error for
the pairwi−wj . We want to find theB points such
that annotating them as non-compositional results
in the minimum error of this objective. The algo-
rithm that alternates between optimizing the com-
position learning and the hidden annotations even-
tually converges to this solution.

If the errors are fixed, the B compounds with
the biggest errors are the answers to the non-
compositional annotation optimization of that it-
eration. Therefore to solve this optimization we
follow an EM-like algorithm: First we set all λij
to 1 and perform the optimization on the compo-
sition function. Then we sort the compounds by
their error and set the λij of the biggest B el-
ements to 0, and the rest to 1. In other words
we assume the compounds with big error are pre-
sumably non-compositional according to what we
know until that iteration. We continue alternat-
ing between training the composition function and
annotating high error points until the algorithm
reaches convergence. The results are shown in Ta-
ble 3. Models that use latent annotations clearly
outperform their counterparts, especially in terms
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of precision at 100. This is expected since at train-
ing time we consider a model that returns B non-
compositional compounds and therefore precision
at 100 is optimized. The latent annotations do not
improve the linear model since the model is simple
and there is not much room to improve its learning.

7 Conclusions

We proposed a framework to detect non-
compositional compounds as the compounds that
stand out as outliers in the process of learning
compositionality of English noun compounds. We
proposed and evaluated a range of functions with a
variety of complexities that model semantic com-
position. We showed that learners such as poly-
nomial projection and neural networks which are
distinctly more complex than commonly used ad-
ditive and multiplicative functions can model se-
mantic composition more effectively. We showed
that a function as complex as quadratic projection
is a better learner of compositionality than simpler
models. We further showed that enforcing sparsity
is an effective way of learning a complex compo-
sition function while avoiding overfitting and pro-
ducing meaningful learning errors. Furthermore,
we improved our models by incorporating an auto-
reconstructive loss function that enables us to ben-
efit from more training signals and cover more
data. Finally, we addressed the intrinsic label un-
certainty in training data by considering latent an-
notations, and showed that it can further improve
the results.
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Abstract
This paper presents a novel approach to au-
tomatically solving arithmetic word problems.
This is the first algorithmic approach that
can handle arithmetic problems with multi-
ple steps and operations, without depending
on additional annotations or predefined tem-
plates. We develop a theory for expression
trees that can be used to represent and evalu-
ate the target arithmetic expressions; we use
it to uniquely decompose the target arithmetic
problem to multiple classification problems;
we then compose an expression tree, combin-
ing these with world knowledge through a con-
strained inference framework. Our classifiers
gain from the use of quantity schemas that sup-
ports better extraction of features. Experimen-
tal results show that our method outperforms
existing systems, achieving state of the art per-
formance on benchmark datasets of arithmetic
word problems.

1 Introduction
In recent years there is growing interest in understand-
ing natural language text for the purpose of answering
science related questions from text as well as quanti-
tative problems of various kinds. In this context, un-
derstanding and solving arithmetic word problems is of
specific interest. Word problems arise naturally when
reading the financial section of a newspaper, following
election coverage, or when studying elementary school
arithmetic word problems. These problems pose an in-
teresting challenge to the NLP community, due to its
concise and relatively straightforward text, and seem-
ingly simple semantics. Arithmetic word problems are
usually directed towards elementary school students,
and can be solved by combining the numbers men-
tioned in text with basic operations (addition, subtrac-
tion, multiplication, division). They are simpler than
algebra word problems which require students to iden-
tify variables, and form equations with these variables
to solve the problem.

Initial methods to address arithmetic word problems
have mostly focussed on subsets of problems, restrict-
ing the number or the type of operations used (Roy et
al., 2015; Hosseini et al., 2014) but could not deal with

multi-step arithmetic problems involving all four basic
operations. The template based method of (Kushman
et al., 2014), on the other hand, can deal with all types
of problems, but implicitly assumes that the solution is
generated from a set of predefined equation templates.

In this paper, we present a novel approach which
can solve a general class of arithmetic problems with-
out predefined equation templates. In particular, it can
handle multiple step arithmetic problems as shown in
Example 1.

Example 1
Gwen was organizing her book case making sure each
of the shelves had exactly 9 books on it. She has 2 types
of books - mystery books and picture books. If she had 3
shelves of mystery books and 5 shelves of picture books,
how many books did she have in total?

The solution involves understanding that the number
of shelves needs to be summed up, and that the total
number of shelves needs to be multiplied by the num-
ber of books each shelf can hold. In addition, one has
to understand that the number “2” is not a direct part of
the solution of the problem.

While a solution to these problems eventually re-
quires composing multi-step numeric expressions from
text, we believe that directly predicting this complex
expression from text is not feasible.

At the heart of our technical approach is the novel
notion of an Expression Tree. We show that the arith-
metic expressions we are interested in can always be
represented using an Expression Tree that has some
unique decomposition properties. This allows us to de-
compose the problem of mapping the text to the arith-
metic expression to a collection of simple prediction
problems, each determining the lowest common ances-
tor operation between a pair of quantities mentioned in
the problem. We then formulate the decision problem
of composing the final expression tree as a joint infer-
ence problem, via an objective function that consists of
all these decomposed prediction problems, along with
legitimacy and background knowledge constraints.

Learning to generate the simpler decomposed ex-
pressions allows us to support generalization across
problems types. In particular, our system could solve
Example 1 even though it has never seen a problem that
requires both addition and multiplication operations.
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We also introduce a second concept, that of quantity
schema, that allows us to focus on the information rel-
evant to each quantity mentioned in the text. We show
that features extracted from quantity schemas help rea-
soning effectively about the solution. Moreover, quan-
tity schemas help identify unnecessary text snippets in
the problem text. For instance, in Example 2, the in-
formation that “Tom washed cars over the weekend” is
irrelevant; he could have performed any activity to earn
money. In order to solve the problem, we only need to
know that he had $76 last week, and now he has $86.

Example 2
Last week Tom had $74. He washed cars over the week-
end and now has $86. How much money did he make
from the job?

We combine the classifiers’ decisions using a con-
strained inference framework that allows for incorpo-
rating world knowledge as constraints. For example,
we deliberatively incorporate the information that, if
the problems asks about an “amount”, the answer must
be positive, and if the question starts with “how many”,
the answer will most likely be an integer.

Our system is evaluated on two existing datasets of
arithmetic word problems, achieving state of the art
performance on both. We also create a new dataset of
multistep arithmetic problems, and show that our sys-
tem achieves competitive performance in this challeng-
ing evaluation setting.

The next section describes the related work in the
area of automated math word problem solving. We then
present the theory of expression trees and our decom-
position strategy that is based on it. Sec. 4 presents the
overall computational approach, including the way we
use quantity schemas to learn the mapping from text
to expression tree components. Finally, we discuss our
experimental study and conclude.

2 Related Work

Previous work in automated arithmetic problem solvers
has focussed on a restricted subset of problems. The
system described in (Hosseini et al., 2014) handles
only addition and subtraction problems, and requires
additional annotated data for verb categories. In con-
trast, our system does not require any additional an-
notations and can handle a more general category of
problems. The approach in (Roy et al., 2015) sup-
ports all four basic operations, and uses a pipeline of
classifiers to predict different properties of the prob-
lem. However, it makes assumptions on the number of
quantities mentioned in the problem text, as well as the
number of arithmetic steps required to solve the prob-
lem. In contrast, our system does not have any such
restrictions, effectively handling problems mentioning
multiple quantities and requiring multiple steps. Kush-
man’s approach to automatically solving algebra word
problems (Kushman et al., 2014) might be the most re-

lated to ours. It tries to map numbers from the prob-
lem text to predefined equation templates. However,
they implicitly assume that similar equation forms have
been seen in the training data. In contrast, our system
can perform competitively, even when it has never seen
similar expressions in training.

There is a recent interest in understanding text for
the purpose of solving scientific and quantitative prob-
lems of various kinds. Our approach is related to work
in understanding and solving elementary school stan-
dardized tests (Clark, 2015). The system described in
(Berant et al., 2014) attempts to automatically answer
biology questions, by extracting the structure of bio-
logical processes from text. There has also been efforts
to solve geometry questions by jointly understanding
diagrams and associated text (Seo et al., 2014). A re-
cent work (Sadeghi et al., 2015) tries to answer science
questions by visually verifying relations from images.

Our constrained inference module falls under the
general framework of Constrained Conditional Mod-
els (CCM) (Chang et al., 2012). In particular, we use
the L + I scheme of CCMs, which predicts structured
output by independently learning several simple com-
ponents, combining them at inference time. This has
been successfully used to incorporate world knowledge
at inference time, as well as getting around the need
for large amounts of jointly annotated data for struc-
tured prediction (Roth and Yih, 2005; Punyakanok et
al., 2005; Punyakanok et al., 2008; Clarke and Lapata,
2006; Barzilay and Lapata, 2006; Roy et al., 2015).

3 Expression Tree and Problem
Decomposition

We address the problem of automatically solving arith-
metic word problems. The input to our system is
the problem text P , which mentions n quantities
q1, q2, . . . , qn. Our goal is to map this problem to a
read-once arithmetic expression E that, when evalu-
ated, provides the problem’s solution. We define a
read-once arithmetic expression as one that makes use
of each quantity at most once. We say that E is a valid
expression, if it is such a Read-Once arithmetic expres-
sion, and we only consider in this work problems that
can be solved using valid expressions (it’s possible that
they can be solved also with invalid expressions).

An expression tree T for a valid expression E is a
binary tree whose leaves represent quantities, and each
internal node represents one of the four basic opera-
tions. For a non-leaf node n, we represent the operation
associated with it as �(n), and its left and right child
as lc(n) and rc(n) respectively. The numeric value of
the quantity associated with a leaf node n is denoted
as Q(n). Each node n also has a value associated with
it, represented as VAL(n), which can be computed in a
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recursive way as follows:

VAL(n) ={
Q(n) if n is a leaf
VAL(lc(n))�(n) VAL(rc(n)) otherwise

(1)

For any expression tree T for expression E with root
node nroot, the value of VAL(nroot) is exactly equal
to the numeric value of the expression E. Therefore,
this gives a natural representation of numeric expres-
sions, providing a natural parenthesization of the nu-
meric expression. Fig 1 shows an example of an arith-
metic problem with solution expression and an expres-
sion tree for the solution expression.

Problem
Gwen was organizing her book case making sure each
of the shelves had exactly 9 books on it. She has 2 types
of books - mystery books and picture books. If she had 3
shelves of mystery books and 5 shelves of picture books,
how many books did she have total?
Solution Expression Tree of Solution

(3 + 5)× 9 = 72

3

+

5

×

9

Figure 1: An arithmetic word problem, solution expression
and the corresponding expression tree

Definition An expression tree T for a valid expression
E is called monotonic if it satisfies the following con-
ditions:

1. If an addition node is connected to a subtraction
node, then the subtraction node is the parent.

2. If a multiplication node is connected to a division
node, then the division node is the parent.

Fig 2 shows two different expression trees for the
same expression. Fig 2b is monotonic whereas fig 2a is
not.

3

+

5

−

9

7

8

×

+

(a)

3

+

5

−

97 8×

+

(b)

Figure 2: Two different expression trees for the numeric ex-
pression (3 × 5) + 7 − 8 − 9. The right one is monotonic,
whereas the left one is not.

Our decomposition relies on the idea of monotonic
expression trees. We try to predict for each pair of

quantities qi, qj , the operation at the lowest common
ancestor (LCA) node of the monotonic expression tree
for the solution expression. We also predict for each
quantity, whether it is relevant to the solution. Finally,
an inference module combines all these predictions.

In the rest of the section, we show that for any pair of
quantities qi, qj in the solution expression, any mono-
tonic tree for the solution expression has the same LCA
operation. Therefore, predicting the LCA operation be-
comes a multiclass classification problem.

The reason that we consider the monotonic represen-
tation of the expression tree is that different trees could
otherwise give different LCA operation for a given pair
of quantities. For example, in Fig 2, the LCA opera-
tion for quantities 5 and 8 can be + or−, depending on
which tree is considered.

Definition We define an addition-subtraction chain
of an expression tree to be the maximal connected set
of nodes labeled with addition or subtraction.

The nodes of an addition-subtraction (AS) chain C
represent a set of terms being added or subtracted.
These terms are sub-expressions created by subtrees
rooted at neighboring nodes of the chain. We call these
terms the chain terms of C, and the whole expression,
after node operations have been applied to the chain
terms, the chain expression of C. For example, in fig
2, the shaded nodes form an addition-subtraction chain.
The chain expression is (3×5)+7−8−9, and the chain
terms are 3×5, 7, 8 and 9. We define a multiplication-
division (MD) chain in a similar way.

Theorem 3.1. Every valid expression can be repre-
sented by a monotonic expression tree.

Proof. The proof is procedural, that is, we provide a
method to convert any expression tree to a monotonic
expression tree for the same expression. Consider a
non-monotonic expression tree E, and without loss of
generality, assume that the first condition for mono-
tonicity is not valid. Therefore, there exists an addi-
tion node ni and a subtraction node nj , and ni is the
parent of nj . Consider an addition-subtraction chain C
which includes ni, nj . We now replace the nodes of C
and its subtrees in the following way. We add a sin-
gle subtraction node n−. The left subtree of n− has all
the addition chain terms connected by addition nodes,
and the right subtree of n− has all the subtraction chain
terms connected by addition nodes. Both subtrees of
n− only require addition nodes, hence monotonicity
condition is satisfied. We can construct the monotonic
tree in Fig 2b from the non-monotonic tree of Fig 2a us-
ing this procedure. The addition chain terms are 3 × 5
and 7, and the subtraction chain terms are 8 and 9. As
as was described above, we introduce the root subtrac-
tion node in Fig 2b and attach the addition chain terms
to the left and the subtraction chain terms to the right.
The same line of reasoning can be used to handle the
second condition with multiplication and division re-
placing addition and subtraction, respectively.
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Theorem 3.2. Consider two valid expression trees T 1

and T 2 for the same expression E. Let C1, C2 be
the chain containing the root nodes of T 1 and T2 re-
spectively. The chain type (addition-subtraction or
multiplication-division) as well as the the set of chain
terms of C1 and C2 are identical.

Proof. We first prove that the chains containing the
roots are both AS or both MD, and then show that the
chain terms are also identical.

We prove by contradiction that the chain type is
same. LetC1’s type be “addition-subtraction” andC2’s
type be “multiplication-division” (without loss of gen-
erality). Since both C1 and C2 generate the same ex-
pression E, we have that E can be represented as sum
(or difference) of two expressions as well as product(or
division) of two expressions. Transforming a sum (or
difference) of expressions to a product (or division)
requires taking common terms from the expressions,
which imply that the sum (or difference) had dupli-
cate quantities. The opposite transformation adds same
term to various expressions leading to multiple uses of
the same quantity. Therefore, this will force at least one
of C1 and C2 to use the same quantity more than once,
violating validity.

We now need to show that individual chain terms are
also identical. Without loss of generality, let us assume
that both C1 and C2 are “addition-subtraction” chains.
Suppose the chain terms of C1 and C2 are not identi-
cal. The chain expression for both the chains will be the
same (since they are root chains, the chain expressions
has to be the same as E). Let the chain expression for
C1 be

∑
i ti −

∑
i t
′
i, where ti’s are the addition chain

terms and t′i are the subtraction chain terms. Similarly,
let the chain expression for C2 be

∑
i si −

∑
i s
′
i. We

know that
∑

i ti −
∑

i t
′
i =

∑
i si −

∑
i s
′
i, but the set

of ti’s and t′i’s is not the same as the set of si and s′i’s.
However it should be possible to transform one form
to the other using mathematical manipulations. This
transformation will involve taking common terms, or
multiplying two terms, or both. Following previous
explanation, this will force one of the expressions to
have duplicate quantities, violating validity. Hence, the
chain terms of C1 and C2 are identical.

Consider an expression tree T for a valid expres-
sion E. For a distinct pair of quantities qi, qj par-
ticipating in expression E, we denote by ni, nj the
leaves of the expression tree T representing qi, qj , re-
spectively. Let nLCA(qi, qj ; T ) to be the lowest com-
mon ancestor node of ni and nj . We also define
order(qi, qj ; T ) to be true if ni appears in the left
subtree of nLCA(qi, qj ; T ) and nj appears in the right
subtree of nLCA(qi, qj ; T ) and set order(qi, qj ; T ) to
false otherwise. Finally we define �LCA(qi, qj ; T ) for
a pair of quantities qi, qj as follows :

�LCA(qi, qj , T ) =

+ if �(nLCA(qi, qj ; T )) = +
× if �(nLCA(qi, qj ; T )) = ×
− if �(nLCA(qi, qj ; T )) = − and

order(qi, qj ; T ) = true

−reverse if �(nLCA(qi, qj ; T )) = − and
order(qi, qj ; T ) = false

÷ if �(nLCA(qi, qj ; T )) = ÷ and
order(qi, qj ; T ) = true

÷reverse if �(nLCA(qi, qj ; T )) = ÷ and
order(qi, qj ; T ) = false

(2)

Definition Given two expression trees T 1 and T 2 for
the same expression E, T 1 is LCA-equivalent to T 2 if
for every pair quantities qi, qj in the expression E, we
have �LCA(qi, qj , T 1) = �LCA(qi, qj , T 2).

Theorem 3.3. All monotonic expression trees for an
expression are LCA-equivalent to each other.

Proof. We prove by induction on the number of quanti-
ties used in an expression. For all expressions E with 2
quantities, there exists only one monotonic expression
tree, and hence, the statement is trivially true. This sat-
isfies our base case.

For the inductive case, we assume that for all expres-
sions with k < n quantities, the theorem is true. Now,
we need to prove that any expression with n nodes will
also satisfy the property.

Consider a valid (as in all cases) expression E, with
monotonic expression trees T 1 and T 2. From theorem
3.2, we know that the chains containing the roots of
T 1 and T 2 have identical type and terms. Given two
quantities qi, qj of E, the lowest common ancestor of
both T 1 and T 2 will either both belong to the chain
containing the root, or both belong to one of the chain
terms. If the LCA node is part of the chain for both
T 1 and T 2, monotonic property ensures that the LCA
operation will be identical. If the LCA node is part of a
chain term (which is an expression tree of size less than
n), the property is satisfied by induction hypothesis.

The theory just presented suggests that it is possible
to uniquely decompose the overall problem to simpler
steps and this will be exploited in the next section.

4 Mapping Problems to Expression Trees
Given the uniqueness properties proved in Sec. 3, it is
sufficient to identify the operation between any two rel-
evant quantities in the text, in order to determine the
unique valid expression. In fact, identifying the op-
eration between any pair of quantities provides much
needed redundancy given the uncertainty in identifying
the operation from text, and we exploit it in our final
joint inference.
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Consequently, our overall method proceeds as fol-
lows: given the problem text P , we detect quantities
q1, q2, . . . , qn. We then use two classifiers, one for rel-
evance and other to predict the LCA operations for a
monotonic expression tree of the solution. Our training
makes use of the notion of quantity schemas, which we
describe in Section 4.2. The distributional output of
these classifiers is then used in a joint inference proce-
dure that determines the final expression tree.

Our training data consists of problem text paired
with a monotonic expression tree for the solution ex-
pression. Both the relevance and LCA operation clas-
sifiers are trained on gold annotations.

4.1 Global Inference for Expression Trees
In this subsection, we define the scoring functions cor-
responding to the decomposed problems, and show
how we combine these scores to perform global infer-
ence. For a problem P with quantities q1, q2, . . . , qn,
we define the following scoring functions:

1. PAIR(qi, qj , op) : Scores the likelihood of
�LCA(qi, qj , T ) = op, where T is a monotone
expression tree of the solution expression of P . A
multiclass classifier trained to predict LCA opera-
tions (Section 4.4) can provide these scores.

2. IRR(q) : Scores the likelihood of quantity q being
an irrelevant quantity in P , that is, q is not used in
creating the solution. A binary classifier trained
to predict whether a quantity q is relevant or not
(Section 4.3), can provide these scores.

For an expressionE, let I(E) be the set of all quanti-
ties inP which are not used in expressionE. Let T be a
monotonic expression tree for E. We define Score(E)
of an expression E in terms of the above scoring func-
tions and a scaling parameter wIRR as follows:

Score(E) =wIRR

∑
q∈I(E)

IRR(q)+ (3)

∑
qi,qj /∈I(E)

PAIR(qi, qj ,�LCA(qi, qj , T ))

Our final expression tree is an outcome of a con-
strained optimization process, following (Roth and
Yih, 2004; Chang et al., 2012). Our objective function
makes use of the scores returned by IRR(·) and PAIR(·)
to determine the expression tree and is constrained by
legitimacy and background knowledge constraints, de-
tailed below.

1. Positive Answer: Most arithmetic problems ask-
ing for amounts or number of objects usually have
a positive number as an answer. Therefore, while
searching for the best scoring expression, we re-
ject expressions generating negative answer.

2. Integral Answer: Problems with questions such
as ‘how many” usually expect integral solutions.

We only consider integral solutions as legitimate
outputs for such problems.

Let C be the set of valid expressions that can be
formed using the quantities in a problem P , and which
satisfy the above constraints. The inference algorithm
now becomes the following:

arg max
E∈C

Score(E) (4)

The space of possible expressions is large, and we
employ a beam search strategy to find the highest
scoring constraint satisfying expression (Chang et al.,
2012). We construct an expression tree using a bottom
up approach, first enumerating all possible sets of irrel-
evant quantities, and next over all possible expressions,
keeping the top k at each step. We give details below.

1. Enumerating Irrelevant Quantities: We gener-
ate a state for all possible sets of irrelevant quan-
tities, ensuring that there is at least two relevant
quantities in each state. We refer to each of the rel-
evant quantities in each state as a term. Therefore,
each state can be represented as a set of terms.

2. Enumerating Expressions: For generating a next
state S′ from S, we choose a pair of terms ti and tj
in S and one of the four basic operations, and form
a new term by combining terms ti and tj with the
operation. Since we do not know which of the
possible next states will lead to the optimal goal
state, we enumerate all possible next states (that
is, enumerate all possible pairs of terms and all
possible operations); we prune the beam to keep
only the top k candidates. We terminate when all
the states in the beam have exactly one term.

Once we have a top k list of candidate expression
trees, we choose the highest scoring tree which satisfies
the constraints. However, there might not be any tree
in the beam which satisfies the constraints, in which
case, we choose the top candidate in the beam. We use
k = 200 in our experiments.

In order to choose the value for the wIRR, we search
over the set {10−6, 10−4, 10−2, 1, 102, 104, 106}, and
choose the parameter setting which gives the highest
accuracy on the training data.

4.2 Quantity Schema

In order to generalize across problem types as well
as over simple manipulations of the text, it is neces-
sary to train our system only with relevant information
from the problem text. E.g., for the problem in exam-
ple 2, we do not want to take decisions based on how
Tom earned money. Therefore, there is a need to ex-
tract the relevant information from the problem text.
To this end, we introduce the concept of a quantity
schema which we extract for each quantity in the prob-
lem’s text. Along with the question asked, the quantity
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schemas provides all the information needed to solve
most arithmetic problems.

A quantity schema for a quantity q in problem P
consists of the following components.

1. Associated Verb For each quantity q, we detect
the verb associated with it. We traverse up the
dependency tree starting from the quantity men-
tion, and choose the first verb we reach. We used
the easy first dependency parser (Goldberg and El-
hadad, 2010).

2. Subject of Associated Verb We detect the noun
phrase, which acts as subject of the associated
verb (if one exists).

3. Unit We use a shallow parser to detect the phrase
p in which the quantity q is mentioned. All to-
kens of the phrase (other than the number itself)
are considered as unit tokens. Also, if p is fol-
lowed by the prepositional phrase “of” and a noun
phrase (according to the shallow parser annota-
tions), we also consider tokens from this second
noun phrase as unit tokens. Finally, if no unit
token can be extracted, we assign the unit of the
neighboring quantities as the unit of q (following
previous work (Hosseini et al., 2014)).

4. Related Noun Phrases We consider all noun
phrases which are connected to the phrase p con-
taining quantity q, with NP-PP-NP attachment. If
only one quantity is mentioned in a sentence, we
consider all noun phrases in it as related.

5. Rate We determine whether quantity q refers to a
rate in the text, as well as extract two unit compo-
nents defining the rate. For example, “7 kilome-
ters per hour” has two components “kilometers”
and “hour”. Similarly, for sentences describing
unit cost like “Each egg costs 2 dollars”, “2” is
a rate, with units “dollars” and “egg”.

In addition to extracting the quantity schemas for
each quantity, we extract the surface form text which
poses the question. For example, in the question sen-
tence, “How much will John have to pay if he wants to
buy 7 oranges?”, our extractor outputs “How much will
John have to pay” as the question.

4.3 Relevance Classifier

We train a binary SVM classifier to determine, given
problem text P and a quantity q in it, whether q is
needed in the numeric expression generating the solu-
tion. We train on gold annotations and use the score of
the classifier as the scoring function IRR(·).
4.3.1 Features
The features are extracted from the quantity schemas
and can be broadly categorized into three groups:

1. Unit features: Most questions specifically men-
tion the object whose amount needs to be com-
puted, and hence questions provide valuable clue
as to which quantities can be irrelevant. We add a
feature for whether the unit of quantity q is present
in the question tokens. Also, we add a feature
based on whether the units of other quantities have
better matches with question tokens (based on the
number of tokens matched), and one based on the
number of quantities which have the maximum
number of matches with the question tokens.

2. Related NP features: Often units are not enough
to differentiate between relevant and irrelevant
quantities. Consider the following:

Example 3
Problem : There are 8 apples in a pile on the
desk. Each apple comes in a package of 11. 5
apples are added to the pile. How many apples
are there in the pile?
Solution : (8 + 5) = 13

The relevance decision depends on the noun
phrase “the pile”, which is absent in the second
sentence. We add a feature indicating whether
a related noun phrase is present in the question.
Also, we add a feature based on whether the re-
lated noun phrases of other quantities have bet-
ter match with the question. Extraction of related
noun phrases is described in Section 4.2.

3. Miscellaneous Features: When a problem men-
tions only two quantities, both of them are usually
relevant. Hence, we also add a feature based on
the number of quantities mentioned in text.

We include pairwise conjunction of the above fea-
tures.

4.4 LCA Operation Classifier
In order to predict LCA operations, we train a multi-
class SVM classifier. Given problem text P and a pair
of quantities pi and pj , the classifier predicts one of the
six labels described in Eq. 2. We consider the confi-
dence scores for each label supplied by the classifier as
the scoring function PAIR(·).
4.4.1 Features
We use the following categories of features:

1. Individual Quantity features: Dependent verbs
have been shown to play significant role in solv-
ing addition and subtraction problems (Hosseini
et al., 2014). Hence, we add the dependent verb
of the quantity as a feature. Multiplication and
division problems are largely dependent on rates
described in text. To capture that, we add a fea-
ture based on whether the quantity is a rate, and
whether any component of rate unit is present in
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the question. In addition to these quantity schema
features, we add selected tokens from the neigh-
borhood of the quantity mention. Neighborhood
of quantities are often highly informative of LCA
operations, for example, “He got 80 more mar-
bles”, the term “more” usually indicates addition.
We add as features adverbs and comparative ad-
jectives mentioned in a window of size 5 around
the quantity mention.

2. Quantity Pair features: For a pair (qi, qj) we add
features to indicate whether they have the same
dependent verbs, to indicate whether both depen-
dent verbs refer to the same verb mention, whether
the units of qi and qj are the same and, if one
of them is a rate, which component of the unit
matches with the other quantity’s unit. Finally, we
add a feature indicating whether the value of qi is
greater than the value of qj .

3. Question Features: Finally, we add a few fea-
tures based on the question asked. In particular,
for arithmetic problems where only one operation
is needed, the question contains signals for the re-
quired operation. Specifically, we add indicator
features based on whether the question mentions
comparison-related tokens (e.g., “more”, “less” or
“than”), or whether the question asks for a rate
(indicated by tokens such as “each” or “one”).

We include pairwise conjunction of the above fea-
tures. For both classifiers, we use the Illinois-SL pack-
age 1 under default settings.

5 Experimental Results

In this section, we evaluate the proposed method on
publicly available datasets of arithmetic word prob-
lems. We evaluate separately the relevance and LCA
operation classifiers, and show the contribution of var-
ious features. Lastly, we evaluate the performance of
the full system, and quantify the gains achieved by the
constraints.

5.1 Datasets

We evaluate our system on three datasets, each of
which comprise a different category of arithmetic word
problems.

1. AI2 Dataset: This is a collection of 395 addition
and subtraction problems, released by (Hosseini
et al., 2014). They performed a 3-fold cross vali-
dation, with every fold containing problems from
different sources. This helped them evaluate ro-
bustness to domain diversity. We follow the same
evaluation setting.

1http://cogcomp.cs.illinois.edu/page/software view/Illinois-
SL

2. IL Dataset: This is a collection of arithmetic
problems released by (Roy et al., 2015). Each of
these problems can be solved by performing one
operation. However, there are multiple problems
having the same template. To counter this, we per-
form a few modifications to the dataset. First, for
each problem, we replace the numbers and nouns
with the part of speech tags, and then we cluster
the problems based on unigrams and bigrams from
this modified problem text. In particular, we clus-
ter problems together whose unigram-bigram sim-
ilarity is over 90%. We next prune each cluster to
keep at most 5 problems in each cluster. Finally
we create the folds ensuring all problems in a clus-
ter are assigned to the same fold, and each fold has
similar distribution of all operations. We have a fi-
nal set of 562 problems, and we use a 5-fold cross
validation to evaluate on this dataset.

3. Commoncore Dataset: In order to test our sys-
tem’s ability to handle multi-step problems, we
create a new dataset of multi-step arithmetic
problems. The problems were extracted from
www.commoncoresheets.com. In total, there were
600 problems, 100 for each of the following types:

(a) Addition followed by Subtraction

(b) Subtraction followed by Addition

(c) Addition and Multiplication

(d) Addition and Division

(e) Subtraction and Multiplication

(f) Subtraction and Division

This dataset had no irrelevant quantities. There-
fore, we did not use the relevance classifier in our
evaluations.

In order to test our system’s ability to generalize
across problem types, we perform a 6-fold cross
validation, with each fold containing all the prob-
lems from one of the aforementioned categories.
This is a more challenging setting relative to the
individual data sets mentioned above, since we are
evaluating on multi-step problems, without ever
looking at problems which require the same set of
operations.

5.2 Relevance Classifier

Table 2 evaluates the performance of the relevance clas-
sifier on the AI2 and IL datasets. We report two accu-
racy values: Relax - fraction of quantities which the
classifier got correct, and Strict - fraction of math prob-
lems, for which all quantities were correctly classified.
We report accuracy using all features and then remov-
ing each feature group, one at a time.
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AI2 IL CC
Relax Strict Relax Strict Relax Strict

All features 88.7 85.1 75.7 75.7 60.0 25.8
No Individual Quantity features 73.6 67.6 52.0 52.0 29.2 0.0
No Quantity Pair features 83.2 79.8 63.6 63.6 49.3 16.5
No Question features 86.8 83.9 73.3 73.3 60.5 28.3

Table 1: Performance of LCA Operation classifier on the datasets AI2, IL and CC.

AI2 IL
Relax Strict Relax Strict

All features 94.7 89.1 95.4 93.2
No Unit features 88.9 71.5 92.8 91.0
No NP features 94.9 89.6 95.0 91.2
No Misc. features 92.0 85.9 93.7 89.8

Table 2: Performance of Relevance classifier on the datasets
AI2 and IL.

We see that features related to units of quantities play
the most significant role in determining relevance of
quantities. Also, the related NP features are not helpful
for the AI2 dataset.

5.3 LCA Operation Classifier

Table 1 evaluates the performance of the LCA Oper-
ation classifier on the AI2, IL and CC datasets. As
before, we report two accuracies - Relax - fraction of
quantity pairs for which the classifier correctly pre-
dicted the LCA operation, and Strict - fraction of math
problems, for which all quantity pairs were correctly
classified. We report accuracy using all features and
then removing each feature group, one at a time.

The strict and relaxed accuracies for IL dataset are
identical, since each problem in IL dataset only re-
quires one operation. The features related to individual
quantities are most significant; in particular, the accu-
racy goes to 0.0 in the CC dataset, without using indi-
vidual quantity features. The question features are not
helpful for classification in the CC dataset. This can be
attributed to the fact that all problems in CC dataset re-
quire multiple operations, and questions in multi-step
problems usually do not contain information for each
of the required operations.

5.4 Global Inference Module

Table 3 shows the performance of our system in cor-
rectly solving arithmetic word problems. We show
the impact of various contraints, and also compare
against previously best known results on the AI2 and
IL datasets. We also show results using each of the two
constraints separately, and using no constraints at all.

AI2 IL CC
All constraints 72.0 73.9 45.2
Positive constraint 78.0 72.5 36.5
Integral constraint 71.8 73.4 39.0
No constraint 77.7 71.9 29.6
(Hosseini et al., 2014) 77.7 - -
(Roy et al., 2015) - 52.7 -
(Kushman et al., 2014) 64.0 73.7 2.3

Table 3: Accuracy in correctly solving arithmetic problems.
First four rows represent various configurations of our sys-
tem. We achieve state of the art results in both AI2 and IL
datasets.

The previously known best result in the AI2 dataset
is reported in (Hosseini et al., 2014). Since we follow
the exact same evaluation settings, our results are di-
rectly comparable. We achieve state of the art results,
without having access to any additional annotated data,
unlike (Hosseini et al., 2014), who use labeled data for
verb categorization. For the IL dataset, we acquired the
system of (Roy et al., 2015) from the authors, and ran
it with the same fold information. We outperform their
system by an absolute gain of over 20%. We believe
that the improvement was mainly due to the depen-
dence of the system of (Roy et al., 2015) on lexical and
neighborhood of quantity features. In contrast, features
from quantity schemas help us generalize across prob-
lem types. Finally, we also compare against the tem-
plate based system of (Kushman et al., 2014). (Hos-
seini et al., 2014) mentions the result of running the
system of (Kushman et al., 2014) on AI2 dataset, and
we report their result here. For IL and CC datasets, we
used the system released by (Kushman et al., 2014).

The integrality constraint is particularly helpful
when division is involved, since it can lead to fractional
answers. It does not help in case of the AI2 dataset,
which involves only addition and subtraction problems.
The role of the constraints becomes more significant in
case of multi-step problems and, in particular, they con-
tribute an absolute improvement of over 15% over the
system without constraints on the CC dataset. The tem-
plate based system of (Kushman et al., 2014) performs
on par with our system on the IL dataset. We believe
that it is due to the small number of equation templates
in the IL dataset. It performs poorly on the CC dataset,
since we evaluate on unseen problem types, which do
not ensure that equation templates in the test data will
be seen in the training data.
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5.5 Discussion

The leading source of errors for the classifiers are er-
roneous quantity schema extraction and lack of under-
standing of unknown or rare verbs. For the relevance
classifier on the AI2 dataset, 25% of the errors were
due to mistakes in extracting the quantity schemas and
20% could be attributed to rare verbs. For the LCA
operation classifier on the same dataset, 16% of the er-
rors were due to unknown verbs and 15% were due to
mistakes in extracting the schemas. The erroneous ex-
traction of accurate quantity schemas is very significant
for the IL dataset, contributing 57% of the errors for the
relevance classifier and 39% of the errors for the LCA
operation classifier. For the operation classifier on the
CC dataset, 8% of the errors were due to verbs and 16%
were due to faulty quantity schema extraction. Quan-
tity Schema extraction is challenging due to parsing is-
sues as well as some non-standard rate patterns, and it
will be one of the future work targets. For example, in
the sentence, “How many 4-dollar toys can he buy?”,
we fail to extract the rate component of the quantity 4.

6 Conclusion

This paper presents a novel method for understanding
and solving a general class of arithmetic word prob-
lems. Our approach can solve all problems whose so-
lution can be expressed by a read-once arithmetic ex-
pression, where each quantity from the problem text
appears at most once in the expression. We develop a
novel theoretical framework, centered around the no-
tion of monotone expression trees, and showed how
this representation can be used to get a unique decom-
position of the problem. This theory naturally leads to a
computational solution that we have shown to uniquely
determine the solution - determine the arithmetic oper-
ation between any two quantities identified in the text.
This theory underlies our algorithmic solution - we de-
velop classifiers and a constrained inference approach
that exploits redundancy in the information, and show
that this yields strong performance on several bench-
mark collections. In particular, our approach achieves
state of the art performance on two publicly available
arithmetic problem datasets and can support natural
generalizations. Specifically, our approach performs
competitively on multistep problems, even when it has
never observed the particular problem type before.

Although we develop and use the notion of expres-
sion trees in the context of numerical expressions, the
concept is more general. In particular, if we allow
leaves of expression trees to represent variables, we
can express algebraic expressions and equations in this
framework. Hence a similar approach can be targeted
towards algebra word problems, a direction we wish to
investigate in the future.

The datasets used in the paper are available for
download at http://cogcomp.cs.illinois.edu/page/resource view/98.
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Abstract

Two problems arise when using distant su-
pervision for relation extraction. First, in
this method, an already existing knowl-
edge base is heuristically aligned to texts,
and the alignment results are treated as la-
beled data. However, the heuristic align-
ment can fail, resulting in wrong label
problem. In addition, in previous ap-
proaches, statistical models have typically
been applied to ad hoc features. The noise
that originates from the feature extraction
process can cause poor performance.

In this paper, we propose a novel
model dubbed the Piecewise Convolu-
tional Neural Networks (PCNNs) with
multi-instance learning to address these
two problems. To solve the first prob-
lem, distant supervised relation extraction
is treated as a multi-instance problem in
which the uncertainty of instance labels
is taken into account. To address the lat-
ter problem, we avoid feature engineering
and instead adopt convolutional architec-
ture with piecewise max pooling to auto-
matically learn relevant features. Exper-
iments show that our method is effective
and outperforms several competitive base-
line methods.

1 Introduction

In relation extraction, one challenge that is faced
when building a machine learning system is the
generation of training examples. One common
technique for coping with this difficulty is distant
supervision (Mintz et al., 2009) which assumes
that if two entities have a relationship in a known
knowledge base, then all sentences that mention
these two entities will express that relationship in
some way. Figure 1 shows an example of the auto-

Freebase
Mentions from free texts

Figure 1: Training instances generated through
distant supervision. Upper sentence: correct la-
beling; lower sentence: incorrect labeling.

matic labeling of data through distant supervision.
In this example, Apple and Steve Jobs are two re-
lated entities in Freebase1. All sentences that con-
tain these two entities are selected as training in-
stances. The distant supervision strategy is an ef-
fective method of automatically labeling training
data. However, it has two major shortcomings
when used for relation extraction.

First, the distant supervision assumption is too
strong and causes the wrong label problem. A sen-
tence that mentions two entities does not necessar-
ily express their relation in a knowledge base. It is
possible that these two entities may simply share
the same topic. For instance, the upper sentence
indeed expresses the “company/founders” relation
in Figure 1. The lower sentence, however, does not
express this relation but is still selected as a train-
ing instance. This will hinder the performance of
a model trained on such noisy data.

Second, previous methods (Mintz et al., 2009;
Riedel et al., 2010; Hoffmann et al., 2011) have
typically applied supervised models to elaborately
designed features when obtained the labeled data
through distant supervision. These features are
often derived from preexisting Natural Language
Processing (NLP) tools. Since errors inevitably
exist in NLP tools, the use of traditional features
leads to error propagation or accumulation. Dis-
tant supervised relation extraction generally ad-

1http://www.freebase.com/
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Figure 2: The sentence length distribution of
Riedel’s dataset.

dresses corpora from the Web, including many
informal texts. Figure 2 shows the sentence
length distribution of a benchmark distant super-
vision dataset that was developed by Riedel et
al. (2010). Approximately half of the sentences
are longer than 40 words. McDonald and Nivre
(2007) showed that the accuracy of syntactic pars-
ing decreases significantly with increasing sen-
tence length. Therefore, when using traditional
features, the problem of error propagation or ac-
cumulation will not only exist, it will grow more
serious.

In this paper, we propose a novel model dubbed
Piecewise Convolutional Neural Networks (PC-
NNs) with multi-instance learning to address the
two problems described above. To address the first
problem, distant supervised relation extraction is
treated as a multi-instance problem similar to pre-
vious studies (Riedel et al., 2010; Hoffmann et al.,
2011; Surdeanu et al., 2012). In multi-instance
problem, the training set consists of many bags,
and each contains many instances. The labels of
the bags are known; however, the labels of the in-
stances in the bags are unknown. We design an
objective function at the bag level. In the learning
process, the uncertainty of instance labels can be
taken into account; this alleviates the wrong label
problem.

To address the second problem, we adopt con-
volutional architecture to automatically learn rel-
evant features without complicated NLP prepro-
cessing inspired by Zeng et al. (2014). Our pro-
posal is an extension of Zeng et al. (2014), in
which a single max pooling operation is utilized
to determine the most significant features. Al-
though this operation has been shown to be effec-
tive for textual feature representation (Collobert et
al., 2011; Kim, 2014), it reduces the size of the

hidden layers too rapidly and cannot capture the
structural information between two entities (Gra-
ham, 2014). For example, to identify the relation
between Steve Jobs and Apple in Figure 1, we need
to specify the entities and extract the structural
features between them. Several approaches have
employed manually crafted features that attempt
to model such structural information. These ap-
proaches usually consider both internal and exter-
nal contexts. A sentence is inherently divided into
three segments according to the two given entities.
The internal context includes the characters inside
the two entities, and the external context involves
the characters around the two entities (Zhang et
al., 2006). Clearly, single max pooling is not suf-
ficient to capture such structural information. To
capture structural and other latent information, we
divide the convolution results into three segments
based on the positions of the two given entities and
devise a piecewise max pooling layer instead of
the single max pooling layer. The piecewise max
pooling procedure returns the maximum value in
each segment instead of a single maximum value
over the entire sentence. Thus, it is expected to
exhibit superior performance compared with tra-
ditional methods.

The contributions of this paper can be summa-
rized as follows.

• We explore the feasibility of performing dis-
tant supervised relation extraction without
hand-designed features. PCNNS are pro-
posed to automatically learn features without
complicated NLP preprocessing.

• To address the wrong label problem, we de-
velop innovative solutions that incorporate
multi-instance learning into the PCNNS for
distant supervised relation extraction.

• In the proposed network, we devise a piece-
wise max pooling layer, which aims to cap-
ture structural information between two enti-
ties.

2 Related Work

Relation extraction is one of the most important
topics in NLP. Many approaches to relation ex-
traction have been developed, such as bootstrap-
ping, unsupervised relation discovery and super-
vised classification. Supervised approaches are
the most commonly used methods for relation
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extraction and yield relatively high performance
(Bunescu and Mooney, 2006; Zelenko et al., 2003;
Zhou et al., 2005). In the supervised paradigm, re-
lation extraction is considered to be a multi-class
classification problem and may suffer from a lack
of labeled data for training. To address this prob-
lem, Mintz et al. (2009) adopted Freebase to per-
form distant supervision. As described in Sec-
tion 1, the algorithm for training data generation
is sometimes faced with the wrong label problem.
To address this shortcoming, (Riedel et al., 2010;
Hoffmann et al., 2011; Surdeanu et al., 2012) de-
veloped the relaxed distant supervision assump-
tion for multi-instance learning. The term ‘multi-
instance learning was coined by (Dietterich et al.,
1997) while investigating the problem of predict-
ing drug activity. In multi-instance learning, the
uncertainty of instance labels can be taken into ac-
count. The focus of multi-instance learning is to
discriminate among the bags.

These methods have been shown to be effec-
tive for relation extraction. However, their per-
formance depends strongly on the quality of the
designed features. Most existing studies have con-
centrated on extracting features to identify the
relations between two entities. Previous meth-
ods can be generally categorized into two types:
feature-based methods and kernel-based methods.
In feature-based methods, a diverse set of strate-
gies is exploited to convert classification clues
(e.g., sequences, parse trees) into feature vec-
tors (Kambhatla, 2004; Suchanek et al., 2006).
Feature-based methods suffer from the necessity
of selecting a suitable feature set when convert-
ing structured representations into feature vectors.
Kernel-based methods provide a natural alterna-
tive to exploit rich representations of input classifi-
cation clues, such as syntactic parse trees. Kernel-
based methods enable the use of a large set of fea-
tures without needing to extract them explicitly.
Several kernels have been proposed, such as the
convolution tree kernel (Qian et al., 2008), the sub-
sequence kernel (Bunescu and Mooney, 2006) and
the dependency tree kernel (Bunescu and Mooney,
2005).

Nevertheless, as mentioned in Section 1, it is
difficult to design high-quality features using ex-
isting NLP tools. With the recent revival of in-
terest in neural networks, many researchers have
investigated the possibility of using neural net-
works to automatically learn features (Socher et

al., 2012; Zeng et al., 2014). Inspired by Zeng
et al. (2014), we propose the use of PCNNs with
multi-instance learning to automatically learn fea-
tures for distant supervised relation extraction. Di-
etterich et al. (1997) suggested that the design
of multi-instance modifications for neural net-
works is a particularly interesting topic. Zhang
and Zhou (2006) successfully incorporated multi-
instance learning into traditional Backpropagation
(BP) and Radial Basis Function (RBF) networks
and optimized these networks by minimizing a
sum-of-squares error function. In contrast to their
method, we define the objective function based on
the cross-entropy principle.

3 Methodology

Distant supervised relation extraction is formu-
lated as multi-instance problem. In this section,
we present innovative solutions that incorporate
multi-instance learning into a convolutional neu-
ral network to fulfill this task. PCNNs are pro-
posed for the automatic learning of features with-
out complicated NLP preprocessing. Figure 3
shows our neural network architecture for distant
supervised relation extraction. It illustrates the
procedure that handles one instance of a bag. This
procedure includes four main parts: Vector Rep-
resentation, Convolution, Piecewise Max Pooling
and Softmax Output. We describe these parts in
detail below.

3.1 Vector Representation
The inputs of our network are raw word tokens.
When using neural networks, we typically trans-
form word tokens into low-dimensional vectors.
In our method, each input word token is trans-
formed into a vector by looking up pre-trained
word embeddings. Moreover, we use position fea-
tures (PFs) to specify entity pairs, which are also
transformed into vectors by looking up position
embeddings.

3.1.1 Word Embeddings
Word embeddings are distributed representations
of words that map each word in a text to a ‘k’-
dimensional real-valued vector. They have re-
cently been shown to capture both semantic and
syntactic information about words very well, set-
ting performance records in several word similar-
ity tasks (Mikolov et al., 2013; Pennington et al.,
2014). Using word embeddings that have been
trained a priori has become common practice for
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Figure 3: The architecture of PCNNs (better viewed in color) used for distant supervised relation extrac-
tion, illustrating the procedure for handling one instance of a bag and predicting the relation between
Kojo Annan and Kofi Annan.

enhancing many other NLP tasks (Parikh et al.,
2014; Huang et al., 2014).

A common method of training a neural network
is to randomly initialize all parameters and then
optimize them using an optimization algorithm.
Recent research (Erhan et al., 2010) has shown
that neural networks can converge to better local
minima when they are initialized with word em-
beddings. Word embeddings are typically learned
in an entirely unsupervised manner by exploiting
the co-occurrence structure of words in unlabeled
text. Researchers have proposed several methods
of training word embeddings (Bengio et al., 2003;
Collobert et al., 2011; Mikolov et al., 2013). In
this paper, we use the Skip-gram model (Mikolov
et al., 2013) to train word embeddings.

3.1.2 Position Embeddings
In relation extraction, we focus on assigning labels
to entity pairs. Similar to Zeng et al. (2014), we
use PFs to specify entity pairs. A PF is defined
as the combination of the relative distances from
the current word to e1 and e2. For instance, in the
following example, the relative distances from son
to e1 (Kojo Annan) and e2 (Kofi Annan) are 3 and
-2, respectively.

... hired Kojo Annan , the son of Kofi Annan , in ...3 -2
Two position embedding matrixes (PF1 and

PF2) are randomly initialized. We then transform
the relative distances into real valued vectors by
looking up the position embedding matrixes. In
the example shown in Figure 3, it is assumed that

the size of the word embedding is dw = 4 and that
the size of the position embedding is dp = 1. In
combined word embeddings and position embed-
dings, the vector representation part transforms an
instance into a matrix S ∈ Rs×d, where s is the
sentence length and d = dw + dp ∗ 2. The matrix
S is subsequently fed into the convolution part.

3.2 Convolution
In relation extraction, an input sentence that is
marked as containing the target entities corre-
sponds only to a relation type; it does not predict
labels for each word. Thus, it might be necessary
to utilize all local features and perform this predic-
tion globally. When using a neural network, the
convolution approach is a natural means of merg-
ing all these features (Collobert et al., 2011).

Convolution is an operation between a vector of
weights, w, and a vector of inputs that is treated as
a sequence q. The weights matrix w is regarded
as the filter for the convolution. In the example
shown in Figure 3, we assume that the length of
the filter is w (w = 3); thus, w ∈ Rm (m = w∗d).
We consider S to be a sequence {q1,q2, · · · ,qs},
where qi ∈ Rd. In general, let qi:j refer to the
concatenation of qi to qj . The convolution op-
eration involves taking the dot product of w with
each w-gram in the sequence q to obtain another
sequence c ∈ Rs+w−1:

cj = wqj−w+1:j (1)

where the index j ranges from 1 to s+w−1. Out-
of-range input values qi, where i < 1 or i > s, are
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taken to be zero.
The ability to capture different features typi-

cally requires the use of multiple filters (or feature
maps) in the convolution. Under the assumption
that we use n filters (W = {w1,w2, · · · ,wn}),
the convolution operation can be expressed as fol-
lows:

cij = wiqj−w+1:j 1 ≤ i ≤ n (2)

The convolution result is a matrix C =
{c1, c2, · · · , cn} ∈ Rn×(s+w−1). Figure 3 shows
an example in which we use 3 different filters in
the convolution procedure.

3.3 Piecewise Max Pooling
The size of the convolution output matrix C ∈
Rn×(s+w−1) depends on the number of tokens s
in the sentence that is fed into the network. To
apply subsequent layers, the features that are ex-
tracted by the convolution layer must be com-
bined such that they are independent of the sen-
tence length. In traditional Convolution Neural
Networks (CNNs), max pooling operations are of-
ten applied for this purpose (Collobert et al., 2011;
Zeng et al., 2014). This type of pooling scheme
naturally addresses variable sentence lengths. The
idea is to capture the most significant features
(with the highest values) in each feature map.

However, despite the widespread use of single
max pooling, this approach is insufficient for rela-
tion extraction. As described in the first section,
single max pooling reduces the size of the hidden
layers too rapidly and is too coarse to capture fine-
grained features for relation extraction. In addi-
tion, single max pooling is not sufficient to cap-
ture the structural information between two enti-
ties. In relation extraction, an input sentence can
be divided into three segments based on the two
selected entities. Therefore, we propose a piece-
wise max pooling procedure that returns the max-
imum value in each segment instead of a single
maximum value. As shown in Figure 3, the output
of each convolutional filter ci is divided into three
segments {ci1, ci2, ci3} by Kojo Annan and Kofi
Annan. The piecewise max pooling procedure can
be expressed as follows:

pij = max(cij) 1 ≤ i ≤ n, 1 ≤ j ≤ 3 (3)

For the output of each convolutional filter,
we can obtain a 3-dimensional vector pi =
{pi1, pi2, pi3}. We then concatenate all vectors

p1:n and apply a non-linear function, such as the
hyperbolic tangent. Finally, the piecewise max
pooling procedure outputs a vector:

g = tanh(p1:n) (4)

where g ∈ R3n. The size of g is fixed and is no
longer related to the sentence length.

3.4 Softmax Output
To compute the confidence of each relation, the
feature vector g is fed into a softmax classifier.

o = W1g + b (5)

W1 ∈ Rn1×3n is the transformation matrix, and
o ∈ Rn1 is the final output of the network, where
n1 is equal to the number of possible relation types
for the relation extraction system.

We employ dropout (Hinton et al., 2012) on the
penultimate layer for regularization. Dropout pre-
vents the co-adaptation of hidden units by ran-
domly dropping out a proportion p of the hidden
units during forward computing. We first apply a
“masking” operation (g◦r) on g, where r is a vec-
tor of Bernoulli random variables with probability
p of being 1. Eq.(5) becomes:

o = W1(g ◦ r) + b (6)

Each output can then be interpreted as the con-
fidence score of the corresponding relation. This
score can be interpreted as a conditional probabil-
ity by applying a softmax operation (see Section
3.5). In the test procedure, the learned weight vec-
tors are scaled by p such that Ŵ1 = pW1 and are
used (without dropout) to score unseen instances.

3.5 Multi-instance Learning
In order to alleviate the wrong label problem,
we use multi-instance learning for PCNNs. The
PCNNs-based relation extraction can be stated as a
quintuple θ = (E,PF1,PF2,W,W1)2. The in-
put to the network is a bag. Suppose that there are
T bags {M1, M2, · · · ,MT } and that the i-th bag
contains qi instances Mi = {m1

i ,m
2
i , · · · , mqi

i }.
The objective of multi-instance learning is to pre-
dict the labels of the unseen bags. In this paper, all
instances in a bag are considered independently.
Given an input instance mj

i , the network with the
parameter θ outputs a vector o, where the r-th
component or corresponds to the score associated

2E represents the word embeddings.
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Algorithm 1 Multi-instance learning

1: Initialize θ. Partition the bags into mini-
batches of size bs.

2: Randomly choose a mini-batch, and feed the
bags into the network one by one.

3: Find the j-th instance mj
i (1 ≤ i ≤ bs) in each

bag according to Eq. (9).
4: Update θ based on the gradients of mj

i (1 ≤
i ≤ bs) via Adadelta.

5: Repeat steps 2-4 until either convergence or
the maximum number of epochs is reached.

with relation r. To obtain the conditional probabil-
ity p(r|m, θ), we apply a softmax operation over
all relation types:

p(r|mj
i ; θ) =

eor

n1∑
k=1

eok

(7)

The objective of multi-instance learning is to dis-
criminate bags rather than instances. To do so,
we must define the objective function on the bags.
Given all (T ) training bags (Mi, yi), we can define
the objective function using cross-entropy at the
bag level as follows:

J (θ) =
T∑

i=1

log p(yi|mj
i ; θ) (8)

where j is constrained as follows:

j∗ = arg max
j

p(yi|mj
i ; θ) 1 ≤ j ≤ qi (9)

Using this defined objective function, we max-
imize J(θ) through stochastic gradient descent
over shuffled mini-batches with the Adadelta
(Zeiler, 2012) update rule. The entire training pro-
cedure is described in Algorithm 1.

From the introduction presented above, we
know that the traditional backpropagation algo-
rithm modifies a network in accordance with all
training instances, whereas backpropagation with
multi-instance learning modifies a network based
on bags. Thus, our method captures the nature
of distant supervised relation extraction, in which
some training instances will inevitably be incor-
rectly labeled. When a trained PCNN is used for
prediction, a bag is positively labeled if and only
if the output of the network on at least one of its
instances is assigned a positive label.

4 Experiments

Our experiments are intended to provide evidence
that supports the following hypothesis: automat-
ically learning features using PCNNs with multi-
instance learning can lead to an increase in perfor-
mance. To this end, we first introduce the dataset
and evaluation metrics used. Next, we test several
variants via cross-validation to determine the pa-
rameters to be used in our experiments. We then
compare the performance of our method to those
of several traditional methods. Finally, we evalu-
ate the effects of piecewise max pooling and multi-
instance learning3.

4.1 Dataset and Evaluation Metrics

We evaluate our method on a widely used dataset4

that was developed by (Riedel et al., 2010) and
has also been used by (Hoffmann et al., 2011; Sur-
deanu et al., 2012). This dataset was generated by
aligning Freebase relations with the NYT corpus,
with sentences from the years 2005-2006 used as
the training corpus and sentences from 2007 used
as the testing corpus.

Following previous work (Mintz et al., 2009),
we evaluate our method in two ways: the held-out
evaluation and the manual evaluation. The held-
out evaluation only compares the extracted rela-
tion instances against Freebase relation data and
reports the precision/recall curves of the experi-
ments. In the manual evaluation, we manually
check the newly discovered relation instances that
are not in Freebase.

4.2 Experimental Settings

4.2.1 Pre-trained Word Embeddings
In this paper, we use the Skip-gram model
(word2vec)5 to train the word embeddings on the
NYT corpus. Word2vec first constructs a vocab-
ulary from the training text data and then learns
vector representations of the words. To obtain the
embeddings of the entities, we concatenate the to-
kens of a entity using the ## operator when the
entity has multiple word tokens. Since a compar-
ison of the word embeddings is beyond the scope

3With regard to the position feature, our experiments yield
the same positive results described in Zeng et al. (2014). Be-
cause the position feature is not the main contribution of this
paper, we do not present the results without the position fea-
ture.

4http://iesl.cs.umass.edu/riedel/ecml/
5https://code.google.com/p/word2vec/
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Window
size

Feature
maps

Word
dimension

Position
dimension

Batch
size

Adadelta parameter Dropout
probability

w = 3 n = 230 dw = 50 dp = 5 bs = 50 ρ = 0.95, ε = 1e−6 p = 0.5

Table 1: Parameters used in our experiments.

of this paper, our experiments directly utilize 50-
dimensional vectors.

4.2.2 Parameter Settings
In this section, we experimentally study the ef-
fects of two parameters on our models: the win-
dow size, w, and the number of feature maps, n.
Following (Surdeanu et al., 2012), we tune all of
the models using three-fold validation on the train-
ing set. We use a grid search to determine the op-
timal parameters and manually specify subsets of
the parameter spaces: w ∈ {1, 2, 3, · · · , 7} and
n ∈ {50, 60, · · · , 300}. Table 1 shows all parame-
ters used in the experiments. Because the position
dimension has little effect on the result, we heuris-
tically choose dp = 5. The batch size is fixed
to 50. We use Adadelta (Zeiler, 2012) in the up-
date procedure; it relies on two main parameters,
ρ and ε, which do not significantly affect the per-
formance (Zeiler, 2012). Following (Zeiler, 2012),
we choose 0.95 and 1e−6, respectively, as the val-
ues of these parameters. In the dropout operation,
we randomly set the hidden unit activities to zero
with a probability of 0.5 during training.

4.3 Comparison with Traditional Approaches
4.3.1 Held-out Evaluation
The held-out evaluation provides an approximate
measure of precision without requiring costly hu-
man evaluation. Half of the Freebase relations are
used for testing. The relation instances discovered
from the test articles are automatically compared
with those in Freebase.

To evaluate the proposed method, we select
the following three traditional methods for com-
parison. Mintz represents a traditional distant-
supervision-based model that was proposed by
(Mintz et al., 2009). MultiR is a multi-instance
learning method that was proposed by (Hoffmann
et al., 2011). MIML is a multi-instance multi-
label model that was proposed by (Surdeanu et al.,
2012). Figure 4 shows the precision-recall curves
for each method, where PCNNs+MIL denotes
our method, and demonstrates that PCNNs+MIL
achieves higher precision over the entire range of
recall. PCNNs+MIL enhances the recall to ap-

Figure 4: Performance comparison of the pro-
posed method with traditional approaches.

Top N Mintz MultiR MIML PCNNs+MIL
Top 100 0.77 0.83 0.85 0.86
Top 200 0.71 0.74 0.75 0.80
Top 500 0.55 0.59 0.61 0.69
Average 0.676 0.720 0.737 0.783

Table 2: Precision values for the top 100, top 200,
and top 500 extracted relation instances upon man-
ual evaluation.

proximately 34% without any loss of precision. In
terms of both precision and recall, PCNNs+MIL
outperforms all other evaluated approaches. No-
tably, the results of the methods evaluated for com-
parison were obtained using manually crafted fea-
tures. By contrast, our result is obtained by au-
tomatically learning features from original words.
The results demonstrate that the proposed method
is an effective technique for distant supervised re-
lation extraction. Automatically learning features
via PCNNs can alleviate the error propagation that
occurs in traditional feature extraction. Incorpo-
rating multi-instance learning into a convolutional
neural network is an effective means of addressing
the wrong label problem.

4.3.2 Manual Evaluation
It is worth emphasizing that there is a sharp de-
cline in the held-out precision-recall curves of PC-
NNs+MIL at very low recall (Figure 4). A manual
check of the misclassified examples that were pro-
duced with high confidence reveals that the ma-
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jorities of these examples are false negatives and
are actually true relation instances that were mis-
classified due to the incomplete nature of Free-
base.

Thus, the held-out evaluation suffers from false
negatives in Freebase. We perform a manual eval-
uation to eliminate these problems. For the manual
evaluation, we choose the entity pairs for which
at least one participating entity is not present in
Freebase as a candidate. This means that there is
no overlap between the held-out and manual can-
didates. Because the number of relation instances
that are expressed in the test data is unknown, we
cannot calculate the recall in this case. Instead, we
calculate the precision of the top N extracted rela-
tion instances. Table 2 presents the manually eval-
uated precisions for the top 100, top 200, and top
500 extracted instances. The results show that PC-
NNs+MIL achieves the best performance; more-
over, the precision is higher than in the held-out
evaluation. This finding indicates that many of the
false negatives that we predict are, in fact, true re-
lational facts. The sharp decline observed in the
held-out precision-recall curves is therefore rea-
sonable.

4.4 Effect of Piecewise Max Pooling and
Multi-instance Learning

In this paper, we develop a method of piecewise
max pooling and incorporate multi-instance learn-
ing into convolutional neural networks for distant
supervised relation extraction. To demonstrate the
effects of these two techniques, we empirically
study the performance of systems in which these
techniques are not implemented through held-out
evaluations (Figure 5). CNNs represents convolu-
tional neural networks to which single max pool-
ing is applied. Figure 5 shows that when piecewise
max pooling is used (PCNNs), better results are
produced than those achieved using CNNs. More-
over, compared with CNNs+MIL, PCNNs achieve
slightly higher precision when the recall is greater
than 0.08. Since the parameters for all the model
are determined by grid search, we can observe that
CNNs cannot achieve competitive results com-
pared to PCNNs when increasing the size of the
hidden layer of convolutional neural networks. It
means that we cannot capture more useful infor-
mation by simply increasing the network param-
eter. These results demonstrate that the proposed
piecewise max pooling technique is beneficial and

Figure 5: Effect of piecewise max pooling and
multi-instance learning.

can effectively capture structural information for
relation extraction. A similar phenomenon is also
observed when multi-instance learning is added to
the network. Both CNNs+MIL and PCNNs+MIL
outperform their counterparts CNNs and PCNNs,
respectively, thereby demonstrating that incorpo-
ration of multi-instance learning into our neural
network was successful in solving the wrong label
problem. As expected, PCNNs+MIL obtains the
best results because the advantages of both tech-
niques are achieved simultaneously.

5 Conclusion

In this paper, we exploit Piecewise Convolutional
Neural Networks (PCNNs) with multi-instance
learning for distant supervised relation extraction.
In our method, features are automatically learned
without complicated NLP preprocessing. We also
successfully devise a piecewise max pooling layer
in the proposed network to capture structural in-
formation and incorporate multi-instance learning
to address the wrong label problem. Experimental
results show that the proposed approach offers sig-
nificant improvements over comparable methods.
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Abstract

We propose CORE, a novel matrix fac-
torization model that leverages contextual
information for open relation extraction.
Our model is based on factorization ma-
chines and integrates facts from various
sources, such as knowledge bases or open
information extractors, as well as the con-
text in which these facts have been ob-
served. We argue that integrating contex-
tual information—such as metadata about
extraction sources, lexical context, or type
information—significantly improves pre-
diction performance. Open information
extractors, for example, may produce ex-
tractions that are unspecific or ambiguous
when taken out of context. Our experi-
mental study on a large real-world dataset
indicates that CORE has significantly bet-
ter prediction performance than state-of-
the-art approaches when contextual infor-
mation is available.

1 Introduction

Open relation extraction (open RE) is the task of
extracting new facts for a potentially unbounded
set of relations from various sources such as
knowledge bases or natural language text. The
task is closely related to targeted information ex-
traction (IE), which aims to populate a knowledge
base (KB) with new facts for the KB’s relations,
such as wasBornIn(Sepp Herberger, Mannheim).
Existing methods either reason within the KB it-
self (Franz et al., 2009; Nickel et al., 2011; Dru-
mond et al., 2012) or leverage large text corpora
to learn patterns that are indicative of KB rela-
tions (Mintz et al., 2009; Surdeanu et al., 2012;
Min et al., 2013). In both cases, targeted IE meth-
ods are inherently limited to an (often small) set
of predefined relations, i.e., they are not “open”.

The open RE task is also related to open infor-
mation extraction (open IE) (Banko et al., 2007;
Del Corro and Gemulla, 2013), which extracts
large amounts of surface relations and their ar-
guments from natural language text; e.g., “critiz-
ices”(“Dante”, “Catholic Church”).1 Although
open IE is a domain-independent approach, the ex-
tracted surface relations are purely syntactic and
often ambiguous or noisy. Moreover, open IE
methods usually do not “predict” facts that have
not been explicitly observed in the input data.
Open RE combines the above tasks by predicting
new facts for an open set of relations. The key
challenge in open RE is to reason jointly over the
universal schema consisting of KB relations and
surface relations (Riedel et al., 2013).

A number of matrix or tensor factorization mod-
els have recently been proposed in the context of
relation extraction (Nickel et al., 2012; Riedel et
al., 2013; Huang et al., 2014; Chang et al., 2014).
These models use the available data to learn la-
tent semantic representations of entities (or entity
pairs) and relations in a domain-independent way;
the latent representations are subsequently used to
predict new facts. Existing models often focus
on either targeted IE or open RE. Targeted mod-
els are used for within-KB reasoning; they rely
on the closed-world assumption and often do not
scale with the number of relations. Open RE mod-
els use the open-world assumption, which is more
suitable for the open RE task because the avail-
able data is often highly incomplete. In this paper,
we propose CORE, a novel open RE factorization
model that incorporates and exploits contextual in-
formation to improve prediction performance.

Consider for example the sentence “Tom Peloso
joined Modest Mouse to record their fifth studio
album”. Open IE systems may extract the sur-
face fact “join”(TP, MM) from this sentence. Note

1We mark (non-disambiguated) mentions of entities and
relations in quotation marks throughout this paper.
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that surface relation “join” is unspecific; in this
case, it refers to becoming a member of a music
band (as opposed to, say, an employee of a com-
pany). Most existing open RE systems use the
extracted surface fact for further reasoning, but
they ignore the context from which the fact was
extracted. We argue in this paper that exploiting
contextual information is beneficial for open RE.
For our example, we may use standard NLP tools
like a named entity recognizer to detect that TP is
a person and MM an organization. These coarse-
grained types give us hints about the domain and
range of the “join” relation for the surface fact, al-
though the actual meaning of “join” still remains
opaque. Now imagine that the above sentence was
extracted from a newspaper article published in
the music section. This information can help to
infer that “join” indeed refers to joining a band.
Other contextual information, such as the words
“record” and “album” that occur in the sentence,
further strengthen this interpretation. A context-
aware open RE system should leverage such in-
formation to accurately predict facts like “is band
member of”(TP, MM) and “plays with”(TP, MM).

Note that the prediction of the fact “is band
member of”(TP, MM) is facilitated if we make use
of a KB that knows that TP is a musician and MM
is a music band. If TP and/or MM are not present
in the knowledge base, however, such a reason-
ing does not apply. In our work, we consider both
linked entities (in-KB) and non-linked entity men-
tions (out of-KB). Since KB are often incomplete,
this open approach to handle named entities allows
us to extract facts for all entities, even if they do
not appear in the KB.

In this paper, we propose CORE, a flexible
open RE model that leverages contextual infor-
mation. CORE is inspired by the combined fac-
torization and entity model (FE) of Riedel et al.
(2013). As FE, CORE associates latent semantic
representations with entities, relations, and argu-
ments. In contrast to FE, CORE uses factorization
machines (Rendle, 2012) as its underlying frame-
work, which allows us to incorporate context in a
flexible way. CORE is able to leverage and inte-
grate arbitrary contextual information associated
with the input facts into its open RE factoriza-
tion model. To support reasoning under the open-
world assumption, we propose an efficient method
for parameter estimation in factorization machines
based on Bayesian personalized ranking (Rendle

et al., 2009).
We conducted an experimental study on a real-

world dataset using contextual information along
the lines mentioned above. Our model is exten-
sible, i.e., additional contextual information can
be integrated when available. Even with limited
amount of contextual information used in our ex-
periments, our CORE model provided higher pre-
diction performance than previous models. Our
findings validate the usefulness of contextual in-
formation for the open RE task.

2 Related Work

There is a large body of related work on relation
extraction; we restrict attention to methods that are
most similar to our work.

Targeted IE. Targeted IE methods aim to ex-
tract from natural-language text new instances of
a set of predefined relations, usually taken from
a KB. Most existing methods make use of distant
supervision, i.e., they start with a set of seed in-
stances (pairs of entities) for the relations of inter-
est, search for these seed instances in text, learn
a relation extractor from the so-obtained training
data, and optionally iterate (Mintz et al., 2009;
Surdeanu et al., 2012; Min et al., 2013). Open RE
models are more general then targeted IE meth-
ods in that they additionally reason about surface
relations that do not correspond to KB relations.
For this reason, Riedel et al. (2013) argued and
experimentally validated that open RE models can
outperform targeted IE methods.

Open IE. In contrast to targeted IE, the goal of
open IE is to extract all (or most) relations ex-
pressed in natural-language text, whether or not
these relations are defined in a KB (Banko et al.,
2007; Fader et al., 2011; Del Corro and Gemulla,
2013). The facts obtained by open IE meth-
ods are often not disambiguated, i.e., the enti-
ties and/or the relation are not linked to a knowl-
edge base; e.g., “criticizes”(“Dante”, “Catholic
Church”). The goal of our work is to reason about
extracted open-IE facts and their contextual infor-
mation. Our method is oblivious to the actual open
IE method being used.

Relation clustering. One way to reason about
KB and surface relations is to cluster the relations:
whenever two relations appear in the same clus-
ter, they are treated as synonymous (Hasegawa
et al., 2004; Shinyama and Sekine, 2006; Yao
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et al., 2011; Takamatsu et al., 2011; Min et al.,
2012; Akbik et al., 2012; de Lacalle and La-
pata, 2013). For example, if “criticizes” and
“hates” are clustered together, then we may pre-
dict “hates”(“Dante”, “Catholic Church”) from the
above fact (which is actually not true). The general
problem with relation clustering is its “black and
white” approach to relations: either two relations
are the same or they are different. This assumption
generally does not hold for the surface relations
extracted by open IE systems (Riedel et al., 2013);
examples of other types of relationships between
relations include implication or mutual exclusion.

Tensor factorization. Matrix or tensor factor-
ization approaches try to address the above prob-
lem: instead of clustering relations, they directly
predict facts. Both matrix and tensor models learn
and make use of semantic representations of rela-
tions and their arguments. The semantic represen-
tations ideally captures all the information present
in the data; it does not, however, establish a direct
relationship (such as synonymy) between different
KB or surface relations.

Tensor factorization models conceptually
model the input data as a subject×relation×object
tensor, in which non-zero values correspond to
input facts. The tensor is factored to construct
a new tensor in which predicted facts take large
non-zero values. Examples of such tensor fac-
torization models are TripleRank (Franz et al.,
2009), RESCAL (Nickel et al., 2011; Nickel et
al., 2012), or PITF (Drumond et al., 2012). Tensor
factorization models are generally well-suited to
reason within a KB because they are able to pre-
dict relations between arbitrary pairs of subjects
and objects. In the context of open RE, however,
these methods suffer from limited scalability with
the number of relations as well as from their large
prediction space (Chang et al., 2014).

Matrix factorization. The key difference be-
tween matrix and tensor factorization models is
that the former restrict the prediction space, i.e.,
these models generally cannot predict arbitrary
facts. Similar to distant supervision approaches,
matrix factorization models focus on predicting
facts for which some direct evidence exists. In
more detail, most methods restrict the prediction
space to the set of facts for which the subject and
the object share at least some relation in the input
data. For this reason, matrix factorization models

are not suited for in-KB reasoning; an individual
pair of entities usually does not occur in more than
one KB relation. In the open RE context, how-
ever, input relations are semantically related so
that many subject-object pairs belong to multiple
relations. The key advantage of matrix methods
is (1) that this restriction allows them to use addi-
tional features—such as features for each subject-
object pair—and (2) that they scale much better
with the number of relations. Examples of such
matrix factorization models include (Tresp et al.,
2009; Jiang et al., 2012; Fan et al., 2014; Huang
et al., 2014). Chang et al. (2014) have also shown
that a combination of matrix and tensor factoriza-
tion models can be fruitful. Closest to our work
is the “universal schema” matrix factorization ap-
proach of Riedel et al. (2013), which combines a
latent features model, a neighborhood model and
an entity model but does not incorporate context.
Our CORE model follows the universal schema
idea, but uses a more general factorization model,
which includes the information captured by the la-
tent features and entity model (but not the neigh-
borhood model), and incorporates contextual in-
formation.

Using contextual information. It is well known
that contextual information can improve IE meth-
ods. Information such as bag-of-words, part-of-
speech tags, entity types, or parse trees have been
integrated into many existing systems (Mintz et
al., 2009; Zhang et al., 2012; Takamatsu et al.,
2011; Zhou et al., 2007; de Lacalle and Lapata,
2013; Akbik et al., 2012). Our work differs in
that we integrate contextual information into an
open RE system. To do so, we leverage factoriza-
tion machines (Rendle et al., 2011; Rendle, 2012),
which have been successfully applied to exploit
contextual information in the context of recom-
mender systems. We show how to model open RE
data and context with factorization machines and
provide a method for parameter estimation under
the open-world assumption.

3 The CORE Model

Input data. We model the input data as a set
of observations of the form (r, t, c), where r re-
fer to a KB or surface relation, t refer to a
subject-object pair of entities (or entity mentions)
and c to contextual information. An observa-
tion obtained from the example of the introduction
may be (“join”, (TP, MM), { types:(person,org),
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Figure 1: Example for representing a context-aware open RE problem with CORE

topic:music, word:record, word:album, . . . }). De-
note by R the set of all observed relations, by E
the set of all observed entities, and by T ⊆ E×E
the set of all observed entity pairs, which we refer
to as tuples. A fact takes form r(t) and is com-
posed of a relation r ∈ R and a tuple t ∈ T ; e.g.,
“join”(TP, MM). Note that there may be multiple
observations for a fact. Finally, denote by C the
set of all contextual variables; each observation is
associated with a set c ⊆ C of context variables.
In this paper we restrict attention to categorical
context variables; our model can potentially han-
dle continuous context as in (Rendle, 2012).

Problem definition. The open RE task is to pro-
duce a ranked list of tuples Tr ⊆ T for each rela-
tion r ∈ R; the list is restricted to new tuples, i.e.,
tuples t ∈ T for which r(t) has not been observed
in the input. The rank of each tuple reflects the
model’s prediction of the likelihood that the corre-
sponding fact is indeed true. A good model thus
ranks correct facts higher than incorrect ones.

Modeling facts. Denote by V = R∪T ∪E ∪C
the set of all observed relations, tuples, entities,
and contextual variables. For ease of exposition,
we refer to the elements of V as variables. We
model the input data in terms of a matrix in which
each row corresponds to a fact (i.e., not an obser-
vation) and each column to a variable. We group
columns according to the type of the variables; e.g,
there are relation columns, tuple columns, entity
columns, and a group of columns for each type of
contextual information. The matrix is populated
such that in each row the values of each column
group sum up to unity, i.e., we normalize values
within column groups. In particular, we set to 1
the values of the variable of the relation and the
tuple of the corresponding fact. We set to 0.5 the
variables corresponding to the two entities referred

to by the fact. An example is shown in Fig. 1.
Here the first row, for instance, corresponds to the
fact “born in”(Caesar, Rome). Note that we model
tuples and entities separately: the entity variables
expose which arguments belong to the fact, the tu-
ple variables expose their order.

Modeling context. As described above, we
model the data in terms of a matrix in which rows
corresponds to facts (instead of observations). The
reasoning behind this approach is as follows. First,
we may see a fact in multiple observations; our
goal is to leverage all the available context. Sec-
ond, facts but not observations are the target of our
predictions. Finally, we are interested in predict-
ing new facts, i.e., facts that we have not seen in
the input data. For these facts, there is no corre-
sponding observation so that we cannot directly
obtain contextual information. To address these
points, our model aggregates the context of rele-
vant observations for each fact; this approach al-
lows us to provide comprehensive contextual in-
formation for both observed and unobserved facts.

We group contextual information by the type of
information: examples include metadata about the
extraction sources (e.g., from an article on music),
types of the entities of a tuple (e.g., (person, lo-
cation)), or the bag-of-words in the sentence from
which an extraction has been obtained. We ag-
gregate the contextual information for each tuple
t ∈ T ; this tuple-level approach allows us to pro-
vide contextual information for unobserved facts.
In more detail, we count in how many observations
each contextual variable has been associated with
the tuple, and then normalize the count values to
1 within each group of columns. The so-obtained
values can be interpreted as the relative frequen-
cies with which each contextual variable is associ-
ated with the tuple. The contextual information as-
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sociated with each fact is given by the aggregated,
normalized context of its tuple.

Fig. 1 shows context information arranged in
two groups: tuple types and tuple topics. We cap-
ture information such as that the tuple (Caesar,
Rome) has only been seen in articles on history
or that tuple (Fermi, Rome) is mentioned in both
physics and history articles (slightly more often in
the former). Since context is associated with tu-
ples, facts 2 and 4 on (Fermi, Sapienza) share con-
textual information. This form of context sharing
(as well as entity sharing) allows us to propagate
information about tuples across various relations.

Factorization model. CORE employs a matrix
factorization model based on factorization ma-
chines and the open-world assumption to capture
latent semantic information about the individual
variables. In particular, we associate with each
variable v ∈ V a bias term bv ∈ R and a latent
feature vector fv ∈ Rd, where the dimensionality
d of the latent feature space is a hyperparameter of
our model. Denote by X the set of rows in the in-
put matrix, which we henceforth refer to as train-
ing points. For each training point x ∈ X , denote
by xv the value of variable v ∈ V in the corre-
sponding row of the matrix. Our model associates
with training point x ∈ X a score s(x) computed
as follows:

s(x) =
∑
v∈V

xvbv +
∑

v1∈V

∑
v2∈V \{v1}

xv1xv2f
T
v1
fv2

(1)

Here the bias terms models the contribution of
each individual variable to the final score, whereas
the latent feature vectors model the contribution of
all pairwise interactions between variables. Note
that only bias terms and feature vectors corre-
sponding to non-zero entries in x affect the score
and that x is often sparse. Since we can compute
s(x) in time linear to both the number of nonzero
entries in x and the dimensionality d (Rendle,
2012), score computation is fast. As discussed
below, we (roughly) estimate bias terms and fea-
ture vectors such that observed facts achieve high
scores. We may thus think of each feature vector
as a low-dimensional representation of the global
information contained in the corresponding vari-
able.

Prediction. Given estimates for bias terms and
latent feature vectors, we rank unobserved facts as
follows. Fix a relation r ∈ R and a tuple t ∈ T

such that r(t) has not been observed. As indicated
above, our model overcomes the key problem that
there is no observation, and thus no context, for
r(t) by context aggregation and sharing. In par-
ticular, we create an test point x̂ for tuple r(t) in
a way similar to creating data points, i.e., we set
the relation, tuple, and entity variables accordingly
and add the aggregated, normalized context of t.
Once test point x̂ has been created, we can predict
its score s(x̂) using Eq. (1). We then rank each un-
observed tuple by its so-obtained score, i.e., tuples
with higher scores are ranked higher. The resulting
ranking constitutes the list Tr of predicted facts for
relation r.

Bayesian personalized ranking. The parame-
ters of our model are given by Θ = { bv,fv | v ∈
V }. In approaches based on the closed-world as-
sumption, Θ is estimated by minimizing the error
between model predictions and target values (e.g.,
1 for true facts, 0 for false facts). In our setting
of open RE, all our observations are positive, i.e.,
we do not have negative training data. One way
to handle the absence of negative training data is
to associate a target value of 0 to all unobserved
facts. This closed-world approach essentially as-
sumes that all unobserved facts are false, which
may not be a suitable assumption for the sparsely
observed relations of open RE. Following Riedel
et al. (2013), we adopt the open-world assump-
tion instead, i.e., we treat each unobserved facts
as unknown. Since factorization machines origi-
nally require explicit target values (e.g., feedback
in recommender systems), we need to adapt pa-
rameter estimation to the open-world setting.

In more detail, we employ a variant of the
Bayesian personalized ranking (BPR) optimiza-
tion criterion (Rendle et al., 2009). We asso-
ciate with each training point x a set of negative
samples X−x . Each negative sample x− ∈ X−x
is an unobserved fact with its associated context
(constructed as described in the prediction section
above). Generally, the negative samples x− should
be chosen such that they are “less likely” to be true
than fact x. We maximize the following optimiza-
tion criterion:

1

|X|
∑
x∈X

 ∑
x−∈X−x

lnσ(δ(x, x−))

|X−x |
− λ‖Θx‖2

 (2)

where σ(x) = 1
1+e−x denotes the logistic func-

tion, δ(x, x−) = s(x)− s(x−) denotes the differ-
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ence of scores, and Θx = { bv,fv | xv 6= 0 } the
subset of the model parameters relevant for train-
ing point x. Here we use L2 regularization con-
trolled by a single hyperparameter λ. In essence,
the BPR criterion aims to maximize the average
“difference” lnσ(δ(x, x−)) between the score of
fact x and each of its negative samples x−, av-
eraged over all facts. In other words, we aim to
score x higher than each x−. (Note that under the
closed-world assumption, we would instead con-
sider x− as being false.) For a more in-depth dis-
cussion of BPR, see (Rendle et al., 2009).

Sampling negative evidence. To make BPR ef-
fective, the set of negative samples needs to be
chosen carefully. A naive approach is to take the
set of all unobserved facts between each relation
r ∈ R and each tuple t ∈ T (or E × E) as the
set X−x . The reasoning is that, after all, we ex-
pect “random” unobserved facts to be less likely
to be true than observed facts. This naive approach
is problematic, however, because the set of nega-
tive samples is independent of x and thus not suf-
ficiently informative (i.e., it contains many irrele-
vant samples).

To overcome this problem, the negative sample
set needs to be related to x in some way. Since we
ultimately use our model to rank tuples for each
relation individually, we consider as negative evi-
dence for x only unobserved facts from the same
relation (Riedel et al., 2013). In more detail, we
(conceptually) build a negative sample set X−r for
each relation r ∈ R. We include into X−r all facts
r(t)—again, along with their context—such that
t ∈ T is an observed tuple but r(t) is an unob-
served fact. Thus the subject-object pair t of enti-
ties is not observed with relation r in the input data
(but with some other relation). The set of negative
samples associated with each training point x is
defined by the relation r of the fact contained in x,
that is X−x = X−r . Note that we do not actually
construct the negative sample sets; see below.

Parameter estimation. We maximize Eq. (2)
using stochastic gradient ascent. This allows us
to avoid constructing the sets X−x , which are of-
ten infeasibly large, and worked well in our ex-
periments. In particular, in each stochastic gra-
dient step, we randomly sample a training point
x ∈ X , and subsequently randomly sample a neg-
ative sample x− ∈ X−x . This sampling procedure
can be implemented very efficiently. We then per-

size info

facts 453.9k
14.7k Freebase,
174.1k surface linked,
184.5k surface partially-linked,
80.6k surface non-linked.

relations 4.7k 94 Freebase,
4.6k surface.

tuples 178.5k
69.5k linked,
71.5k partially-linked,
37.5k non-linked.

entities 114.2k 36.8k linked,
77.4k non-linked.

Table 1: Dataset statistics.

form the following ascent step with learning rate
η:

Θ← Θ + η∇Θ

(
lnσ(d(x, x−))− λ‖Θx‖2

)
One can show that the stochastic gradient used in
the formula above is an unbiased estimate of the
gradient of Eq. (2). To speed up parameter es-
timation, we use a parallel lock-free version of
stochastic gradient ascent as in Recht et al. (2011).
This allows our model to handle (reasonably) large
datasets.

4 Experiments

We conducted an experimental study on real-
world data to compare our CORE model with
other state-of-the-art approaches.2 Our experi-
mental study closely follows the one of Riedel et
al. (2013).

4.1 Experimental Setup

Dataset. We made use of the dataset of Riedel
et al. (2013), but extended it with contextual in-
formation. The dataset consisted of 2.5M sur-
face facts extracted from the New York Times cor-
pus (Sandhaus, 2008), as well as 16k facts from
Freebase. Surface facts have been obtained by
using a named-entity recognizer, which addition-
ally labeled each named entity mention with its
coarse-grained type (i.e., person, organization, lo-
cation, miscellaneous). For each pair of entities
found within a sentence, the shortest dependency
path between these pairs was taken as surface rela-
tion. The entity mentions in each surface fact were
linked to Freebase using a simple string matching

2Source code, datasets, and supporting material are avail-
able at http://dws.informatik.uni-mannheim.
de/en/resources/software/core/
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Relation # PITF NFE CORE CORE+m CORE+t CORE+w CORE+mt CORE+mtw
person/company 208 70 (0.47) 92 (0.81) 91 (0.83) 90 (0.84) 91 (0.87) 92 (0.87) 95 (0.93) 96 (0.94)

person/place of birth 117 1 (0.0) 92 (0.9) 90 (0.88) 92 (0.9) 92 (0.9) 89 (0.87) 93 (0.9) 92 (0.9)

location/containedby 102 7 (0.0) 63 (0.47) 62 (0.47) 63 (0.46) 61 (0.47) 61 (0.44) 62 (0.49) 68 (0.55)

parent/child 88 9 (0.01) 64 (0.6) 64 (0.56) 64 (0.59) 64 (0.62) 64 (0.57) 67 (0.67) 68 (0.63)

person/place of death 71 1 (0.0) 67 (0.93) 67 (0.92) 69 (0.94) 67 (0.93) 67 (0.92) 69 (0.94) 67 (0.92)

person/parents 67 20 (0.1) 51 (0.64) 52 (0.62) 51 (0.61) 49 (0.64) 47 (0.6) 53 (0.67) 53 (0.65)

author/works written 65 24 (0.08) 45 (0.59) 49 (0.62) 51 (0.69) 50 (0.68) 50 (0.68) 51 (0.7) 52 (0.67)

person/nationality 61 21 (0.08) 25 (0.19) 27 (0.17) 28 (0.2) 26 (0.2) 29 (0.19) 27 (0.18) 27 (0.21)

neighbor./neighborhood of 39 3 (0.0) 24 (0.44) 23 (0.45) 26 (0.5) 27 (0.47) 27 (0.49) 30 (0.51) 30 (0.52)

film/directed by 15 7 (0.06) 7 (0.15) 11 (0.22) 9 (0.25) 10 (0.27) 15 (0.52) 11 (0.28) 12 (0.31)

company/founders 11 0 (0.0) 10 (0.34) 10 (0.34) 10 (0.26) 10 (0.21) 10 (0.22) 10 (0.22) 10 (0.24)

sports team/league 11 1 (0.0) 7 (0.24) 10 (0.23) 10 (0.3) 7 (0.22) 10 (0.27) 8 (0.29) 9 (0.3)

structure/architect 11 7 (0.63) 7 (0.63) 9 (0.7) 11 (0.84) 11 (0.73) 11 (0.9) 11 (0.8) 10 (0.77)

team/arena stadium 9 2 (0.01) 6 (0.14) 6 (0.19) 6 (0.18) 6 (0.15) 6 (0.18) 7 (0.29) 7 (0.2)

team owner/teams owned 9 4 (0.05) 6 (0.17) 7 (0.18) 7 (0.33) 6 (0.27) 7 (0.19) 6 (0.22) 8 (0.34)

film/produced by 8 1 (0.03) 4 (0.06) 3 (0.13) 2 (0.12) 3 (0.03) 6 (0.09) 3 (0.13) 6 (0.15)

roadcast/area served 5 0 (0.0) 4 (0.71) 4 (0.73) 4 (0.65) 4 (0.66) 4 (0.66) 5 (0.64) 5 (0.72)

person/religion 5 2 (0.0) 3 (0.21) 2 (0.22) 1 (0.2) 3 (0.22) 3 (0.25) 2 (0.21) 3 (0.21)

composer/compositions 3 2 (0.1) 2 (0.34) 2 (0.35) 2 (0.34) 2 (0.35) 1 (0.33) 2 (0.22) 2 (0.36)

Average MAP100
# 0.09 0.46 0.47 0.49 0.47 0.49 0.49 0.51

Weighted Average MAP100
# 0.14 0.64 0.64 0.66 0.67 0.66 0.70 0.70

Table 2: True facts and MAP100
# (in parentheses) in the top-100 evaluation-set tuples for Freebase rela-

tions. We consider as context the article metadata (m), the tuple types (t) and the bag-of-words (w). Best
value per relation in bold (unique winner) or italic (multiple winners). Average weighs are # column
values.

method. If no match was found, the entity men-
tion was kept as is. There were around 2.2M tu-
ples (distinct entity pairs) in this dataset, out of
which 580k were fully linked to Freebase. For
each of these tuples, the dataset additionally in-
cluded all of the corresponding facts from Free-
base. Using the metadata3 of each New York
Times article, we enriched each surface fact by
the following contextual information: news desk
(e.g., sports desk, foreign desk), descriptors (e.g.,
finances, elections), online section (e.g., sports,
business), section (e.g., a, d), publication year, and
bag-of-words of the sentence from which the sur-
face fact has been extracted.

Training data. From the raw dataset described
above, we filtered out all surface relations with
less than 10 instances, and all tuples with less than
two instances, as in Riedel et al. (2013). Tab. 1
summarizes statistics of the resulting dataset. Here
we considered a fact or tuple as linked if both of
its entities were linked to Freebase, as partially-
linked if only one of its entities was linked, and
as non-linked otherwise. In contrast to previous
work (Riedel et al., 2013; Chang et al., 2014), we
retain partially-linked and non-linked facts in our
dataset.

3Further information can be found at htps://
catalog.ldc.upenn.edu/LDC2008T19.

Evaluation set. Open RE models produce pre-
dictions for all relations and all tuples. To keep
the experimental study feasible and comparable to
previous studies, we use the full training data but
evaluate each model’s predictions on only the sub-
sample of 10k tuples (≈ 6% of all tuples) of Riedel
et al. (2013). The subsample consisted of 20%
linked, 40% partially-linked and 40% non-linked
tuples. For each (surface) relation and method, we
predicted the top-100 new facts (not in training)
for the tuples in the subsample.

Considered methods. We compared various
forms of our CORE model with PITF and the
matrix factorization model NFE. Our study fo-
cused on these two factorization models because
they outperformed other models (including non-
factorization models) in previous studies (Riedel
et al., 2013; Chang et al., 2014). All models were
trained with the full training data described above.

PITF (Drumond et al., 2012). PITF is a recent
tensor factorization method designed for within-
KB reasoning. PITF is based on factorization ma-
chines so that we used our scalable CORE imple-
mentation for training the model.

NFE (Riedel et al., 2013). NFE is the full
model proposed in the “universal schema” work
of Riedel et al. (2013). It uses a linear combina-
tion of three component models: a neighborhood
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Relation # PITF NFE CORE CORE+m CORE+t CORE+w CORE+mt CORE+mtw
head 162 34 (0.18) 80 (0.66) 83 (0.66) 82 (0.63) 76 (0.57) 77 (0.57) 83 (0.69) 88 (0.73)

scientist 144 44 (0.17) 76 (0.6) 74 (0.55) 73 (0.56) 74 (0.6) 73 (0.59) 78 (0.66) 78 (0.69)

base 133 10 (0.01) 85 (0.71) 86 (0.71) 86 (0.78) 88 (0.79) 85 (0.75) 83 (0.76) 89 (0.8)

visit 118 4 (0.0) 73 (0.6) 75 (0.61) 76 (0.64) 80 (0.68) 74 (0.64) 75 (0.66) 82 (0.74)

attend 92 11 (0.02) 65 (0.58) 64 (0.59) 65 (0.63) 62 (0.6) 66 (0.63) 62 (0.58) 69 (0.64)

adviser 56 2 (0.0) 42 (0.56) 47 (0.58) 44 (0.58) 43 (0.59) 45 (0.63) 43 (0.53) 44 (0.63)

criticize 40 5 (0.0) 31 (0.66) 33 (0.62) 33 (0.7) 33 (0.67) 33 (0.61) 35 (0.69) 37 (0.69)

support 33 3 (0.0) 19 (0.27) 22 (0.28) 18 (0.21) 19 (0.28) 22 (0.27) 23 (0.27) 21 (0.27)

praise 5 0 (0.0) 2 (0.0) 2 (0.01) 4 (0.03) 3 (0.01) 3 (0.02) 5 (0.03) 2 (0.01)

vote 3 2 (0.01) 3 (0.63) 3 (0.63) 3 (0.32) 3 (0.49) 3 (0.51) 3 (0.59) 3 (0.64)

Average MAP100
# 0.04 0.53 0.53 0.51 0.53 0.53 0.55 0.59

Weighted Average MAP100
# 0.08 0.62 0.61 0.63 0.63 0.61 0.65 0.70

Table 3: True facts and MAP100
# (in parentheses) in the top-100 evaluation-set tuples for surface relations.

We consider as context the article metadata (m), the tuple types (t) and the bag-of-words (w). Best value
per relation in bold (unique winner) or italic (multiple winners). Average weighs are # column values.

model (N), a matrix factorization model (F), and
an entity model (E). The F and E models together
are similar (but not equal) to our CORE model
without context. The NFE model outperformed
tensor models (Chang et al., 2014) as well as clus-
tering methods and distantly supervised methods
in the experimental study of Riedel et al. (2013)
for open RE tasks. We use the original source code
of Riedel et al. (2013) for training.

CORE. We include multiple variants of our
model in the experimental study, each differing
by the amount of context being used. We con-
sider as context the article metadata (m), the tu-
ple types (t) and the bag-of-words (w). Each tuple
type is a pair of subject-object types of (e.g. (per-
son, location)). The basic CORE model uses rela-
tions, tuples and entities as variables. We addition-
ally consider the CORE+t, CORE+w, CORE+mt,
and CORE+mtw models, where the suffix indi-
cates which contextual information has been in-
cluded. The total number of variables in the re-
sulting models varied between 300k (CORE) to
350k (CORE+mtw). We used a modified version
of libfm for training.4 Our version adds support
for BPR and parallelizes the training algorithm.

Methodology. To evaluate the prediction perfor-
mance of each method, we followed Riedel et al.
(2013). We considered a collection of 19 Freebase
relations (Tab. 2) and 10 surface relations (Tab. 3)
and restrict predictions to tuples in the evaluation
set.

Evaluation metrics. For each relation and
method, we computed the top-100 evaluation set
predictions and labeled them manually. We used

4http://www.libfm.org

as evaluation metrics the mean average precision
defined as:

MAP100
# =

∑100
k=1 Ik · P@k

min{100,#} (3)

where indicator Ik takes value 1 if the k-th pre-
diction is true and 0 otherwise, and # denotes the
number of true tuples for the relation in the top-
100 predictions of all models. The denominator
is included to account for the fact that the eval-
uation set may include less than 100 true facts.
MAP100

# reflects how many true facts are found
by each method as well as their ranking. If all #
facts are found and ranked top, then MAP100

# = 1.
Note that our definition of MAP100

# differs slightly
from Riedel et al. (2013); our metric is more ro-
bust because it is based on completely labeled
evaluation data. To compare the prediction per-
formance of each system across multiple rela-
tions, we averaged MAP100

# values, in both an un-
weighted and a weighted (by #) fashion.

Parameters. For all systems, we used d = 100
latent factors, λ = 0.01 for all variables, a
constant learning rate of η = 0.05, and ran
1000 epochs of stochastic gradient ascent. These
choices correspond to the ones of Riedel et al.
(2013); no further tuning was performed.

4.2 Results.
Prediction performance. The results of our ex-
perimental study are summarized in Tab. 2 (Free-
base relations) and Tab. 3 (surface relations). As
mentioned before, all reported numbers are with
respect to our evaluation set. Each entry shows
the number of true facts in the top-100 predictions
and, in parentheses, the MAP100

# value. The # col-
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author(x,y)  
 

ranked list of tuples 
 

1 (Winston Groom, Forrest Gump) 
2 (D. M. Thomas, White Hotel) 
3 (Roger Rosenblatt, Life Itself) 
4 (Edmund White, Skinned Alive) 
5 (Peter Manso, Brando: The Biography) 
6 (Edward J. Renehan Jr., The Lion's Pride) 
7 (Richard Taruskin, Stravinsky and …) 
… 

 
 

similar relations 
 

0.98  “reviews x by y”(x,y) 
0.97  “book by”(x,y) 
0.95  “author of”(x,y) 
0.95  ” ‘s novel”(x,y) 
0.95  “ ‘s book”(x,y) 
0.91  “who wrote”(x,y) 
0.89  “ ’s poem”(x,y) 
... 

 
 

similar relations 
 

0.87  “scientist”(x,y) 
0.84  “scientist with”(x,y) 
0.80  “professor at”(x,y) 
0.79  “scientist for”(x,y) 
0.78  “neuroscientist at”(x,y) 
0.76  “geneticist at”(x,y) 
0.75  “physicist at”(x,y) 
… 

 
 

ranked list of tuples 
 

1 (Riordan Roett, Johns Hopkins University) 
2 (Dr. R. M. Roberts, University of Missouri) 
3 (Linda Mayes, Yale University) 
4 (Daniel T. Jones, Cardiff Business School) 
5 (Russell Ross, University of Iowa) 
6 (Eva Richter, Kingsborough College) 
7 (M.L. Weidenbaum, Washington University) 
… 

“scientist at”(x,y) 

Figure 2: Some facts predicted by our model for the Freebase relation author(x,y) and the surface relation
”scientist at”(x,y). Most similar relations also reported, using cosine similarity between the correspond-
ing latent feature vectors as distance.

umn list the total number of true facts found by at
least one method. The last two lines show the ag-
gregated MAP100

# scores.

We start our discussion with the results for Free-
base relations (Tab. 2). First note that the PITF
model generally did not perform well; as dis-
cussed before, tensor factorization models such
as PITF suffer from a large prediction space and
cannot incorporate tuple-level information. NFE
and CORE, both matrix factorization models, per-
formed better and were on par with each other.
This indicates that our use of factorization ma-
chines does not affect performance in the ab-
sence of context; after all, both methods essen-
tially make use of the same amount of informa-
tion. The key advantage of our model over NFE
is that we can incorporate contextual informa-
tion. Our results indicate that using such informa-
tion indeed improves prediction performance. The
CORE+mtw model performed best overall; it in-
creased the average MAP100

# by four points (six
points weighted) compared to the best context-
unware model. Note that for some relations, in-
cluding only subsets of the contextual informa-
tion produced better results than using all contex-
tual information (e.g., film/directed by). We thus
conjecture that extending our model by variable-
specific regularization terms may be beneficial.

Tab. 3 summarizes our results for surface rela-
tions. In general, the relative performance of the
models agreed with the one on Freebase relations.
One difference is that using bag-of-word context
significantly boosted prediction performance. One
reason for this boost is that related surface rela-
tions often share semantically related words (e.g.,
“professor at” and “scientist at”) and may occur in
similar sentences (e.g., mentioning “university”,
“research”, ...).

Anecdotal results. Fig. 2 shows the top test-set
predictions of CORE+mtw for the author and “sci-
entist at” relations. In both cases, we also list re-
lations that have a similar semantic representation
in our model (highest cosine similarity). Note that
semantic similarity of relations is one aspect of our
model; predictions incorporate other aspects such
as context (i.e., two “similar” relations in different
contexts are treated differently).

Training time. We used a machine with 16-
cores Intel Xeon processor and 128GB of mem-
ory. Training CORE took roughly one hour, NFE
roughly six hours (single core only), and training
CORE+mtw took roughly 20 hours. Our imple-
mentation can handle reasonably large data, but
an investigation of faster, more scalable training
methods appears worthwhile.

5 Conclusion

We proposed CORE, a matrix factorization model
for open RE that incorporates contextual informa-
tion. Our model is based on factorization ma-
chines and the open-world assumption, integrates
various forms of contextual information, and is ex-
tensible. Our experimental study suggests that ex-
ploiting context can significantly improve predic-
tion performance.

References
Alan Akbik, Larysa Visengeriyeva, Priska Herger,

Holmer Hemsen, and Alexander Löser. 2012. Un-
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Abstract

Compositional embedding models build
a representation (or embedding) for a
linguistic structure based on its compo-
nent word embeddings. We propose
a Feature-rich Compositional Embedding
Model (FCM) for relation extraction that
is expressive, generalizes to new domains,
and is easy-to-implement. The key idea
is to combine both (unlexicalized) hand-
crafted features with learned word em-
beddings. The model is able to directly
tackle the difficulties met by traditional
compositional embeddings models, such
as handling arbitrary types of sentence an-
notations and utilizing global information
for composition. We test the proposed
model on two relation extraction tasks,
and demonstrate that our model outper-
forms both previous compositional models
and traditional feature rich models on the
ACE 2005 relation extraction task, and the
SemEval 2010 relation classification task.
The combination of our model and a log-
linear classifier with hand-crafted features
gives state-of-the-art results. We made our
implementation available for general use1.

1 Introduction

Two common NLP feature types are lexical
properties of words and unlexicalized linguis-
tic/structural interactions between words. Prior
work on relation extraction has extensively stud-
ied how to design such features by combining dis-
crete lexical properties (e.g. the identity of a word,

⇤⇤Gormley and Yu contributed equally.
1https://github.com/mgormley/pacaya

its lemma, its morphological features) with as-
pects of a word’s linguistic context (e.g. whether it
lies between two entities or on a dependency path
between them). While these help learning, they
make generalization to unseen words difficult. An
alternative approach to capturing lexical informa-
tion relies on continuous word embeddings2 as
representative of words but generalizable to new
words. Embedding features have improved many
tasks, including NER, chunking, dependency pars-
ing, semantic role labeling, and relation extrac-
tion (Miller et al., 2004; Turian et al., 2010; Koo
et al., 2008; Roth and Woodsend, 2014; Sun et
al., 2011; Plank and Moschitti, 2013; Nguyen and
Grishman, 2014). Embeddings can capture lexi-
cal information, but alone they are insufficient: in
state-of-the-art systems, they are used alongside
features of the broader linguistic context.

In this paper, we introduce a compositional
model that combines unlexicalized linguistic con-
text and word embeddings for relation extraction,
a task in which contextual feature construction
plays a major role in generalizing to unseen data.
Our model allows for the composition of embed-
dings with arbitrary linguistic structure, as ex-
pressed by hand crafted features. In the follow-
ing sections, we begin with a precise construction
of compositional embeddings using word embed-
dings in conjunction with unlexicalized features.
Various feature sets used in prior work (Turian et
al., 2010; Nguyen and Grishman, 2014; Hermann
et al., 2014; Roth and Woodsend, 2014) are cap-

2Such embeddings have a long history in NLP, in-
cluding term-document frequency matrices and their low-
dimensional counterparts obtained by linear algebra tools
(LSA, PCA, CCA, NNMF), Brown clusters, random projec-
tions and vector space models. Recently, neural networks /
deep learning have provided several popular methods for ob-
taining such embeddings.
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Class M1 M2 Sentence Snippet
(1) ART(M1,M2) a man a taxicab A man driving what appeared to be a taxicab
(2) PART-WHOLE(M1,M2) the southern suburbs Baghdad direction of the southern suburbs of Baghdad
(3) PHYSICAL(M2,M1) the united states 284 people in the united states , 284 people died

Table 1: Examples from ACE 2005. In (1) the word “driving” is a strong indicator of the relation ART3 between M1 and M2.
A feature that depends on the embedding for this context word could generalize to other lexical indicators of the same relation
(e.g. “operating”) that don’t appear with ART during training. But lexical information alone is insufficient; relation extraction
requires the identification of lexical roles: where a word appears structurally in the sentence. In (2), the word “of” between
“suburbs” and “Baghdad” suggests that the first entity is part of the second, yet the earlier occurrence after “direction” is of no
significance to the relation. Even finer information can be expressed by a word’s role on the dependency path between entities.
In (3) we can distinguish the word “died” from other irrelevant words that don’t appear between the entities.

tured as special cases of this construction. Adding
these compositional embeddings directly to a stan-
dard log-linear model yields a special case of our
full model. We then treat the word embeddings
as parameters giving rise to our powerful, efficient,
and easy-to-implement log-bilinear model. The
model capitalizes on arbitrary types of linguistic
annotations by better utilizing features associated
with substructures of those annotations, including
global information. We choose features to pro-
mote different properties and to distinguish differ-
ent functions of the input words.

The full model involves three stages. First, it
decomposes the annotated sentence into substruc-
tures (i.e. a word and associated annotations).
Second, it extracts features for each substructure
(word), and combines them with the word’s em-
bedding to form a substructure embedding. Third,
we sum over substructure embeddings to form a
composed annotated sentence embedding, which
is used by a final softmax layer to predict the out-
put label (relation).

The result is a state-of-the-art relation extractor
for unseen domains from ACE 2005 (Walker et al.,
2006) and the relation classification dataset from
SemEval-2010 Task 8 (Hendrickx et al., 2010).

Contributions This paper makes several contri-
butions, including:

1. We introduce the FCM, a new compositional
embedding model for relation extraction.

2. We obtain the best reported results on ACE-
2005 for coarse-grained relation extraction in
the cross-domain setting, by combining FCM

with a log-linear model.
3. We obtain results on on SemEval-2010 Task

8 competitive with the best reported results.
Note that other work has already been published
that builds on the FCM, such as Hashimoto et al.
(2015), Nguyen and Grishman (2015), dos Santos

3In ACE 2005, ART refers to a relation between a person
and an artifact; such as a user, owner, inventor, or manufac-
turer relationship

et al. (2015), Yu and Dredze (2015) and Yu et al.
(2015). Additionally, we have extended FCM to
incorporate a low-rank embedding of the features
(Yu et al., 2015), which focuses on fine-grained
relation extraction for ACE and ERE. This paper
obtains better results than the low-rank extension
on ACE coarse-grained relation extraction.

2 Relation Extraction

In relation extraction we are given a sentence as in-
put with the goal of identifying, for all pairs of en-
tity mentions, what relation exists between them,
if any. For each pair of entity mentions in a sen-
tence S, we construct an instance (y,x), where
x = (M1, M2, S, A). S = {w1, w2, ..., wn} is
a sentence of length n that expresses a relation
of type y between two entity mentions M1 and
M2, where M1 and M2 are sequences of words in
S. A is the associated annotations of sentence S,
such as part-of-speech tags, a dependency parse,
and named entities. We consider directed rela-
tions: for a relation type Rel, y=Rel(M1, M2)
and y0=Rel(M2, M1) are different relations. Ta-
ble 1 shows ACE 2005 relations, and has a strong
label bias towards negative examples. We also
consider the task of relation classification (Se-
mEval), where the number of negative examples
is artificially reduced.

Embedding Models Word embeddings and
compositional embedding models have been suc-
cessfully applied to a range of NLP tasks, however
the applications of these embedding models to re-
lation extraction are still limited. Prior work on
relation classification (e.g. SemEval 2010 Task 8)
has focused on short sentences with at most one
relation per sentence (Socher et al., 2012; Zeng
et al., 2014). For relation extraction, where neg-
ative examples abound, prior work has assumed
that only the named entity boundaries and not
their types were available (Plank and Moschitti,
2013; Nguyen et al., 2015). Other work has as-
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sumed that the order of two entities in a relation
are given while the relation type itself is unknown
(Nguyen and Grishman, 2014; Nguyen and Grish-
man, 2015). The standard relation extraction task,
as adopted by ACE 2005 (Walker et al., 2006),
uses long sentences containing multiple named en-
tities with known types4 and unknown relation di-
rections. We are the first to apply neural language
model embeddings to this task.

Motivation and Examples Whether a word is
indicative of a relation depends on multiple prop-
erties, which may relate to its context within the
sentence. For example, whether the word is in-
between the entities, on the dependency path be-
tween them, or to their left or right may provide
additional complementary information. Illustra-
tive examples are given in Table 1 and provide
the motivation for our model. In the next section,
we will show how we develop informative repre-
sentations capturing both the semantic information
in word embeddings and the contextual informa-
tion expressing a word’s role relative to the entity
mentions. We are the first to incorporate all of
this information at once. The closest work is that
of Nguyen and Grishman (2014), who use a log-
linear model for relation extraction with embed-
dings as features for only the entity heads. Such
embedding features are insensitive to the broader
contextual information and, as we show, are not
sufficient to elicit the word’s role in a relation.

3 A Feature-rich Compositional
Embedding Model for Relations

We propose a general framework to construct an
embedding of a sentence with annotations on its
component words. While we focus on the rela-
tion extraction task, the framework applies to any
task that benefits from both embeddings and typi-
cal hand-engineered lexical features.

3.1 Combining Features with Embeddings

We begin by describing a precise method for con-
structing substructure embeddings and annotated
sentence embeddings from existing (usually un-
lexicalized) features and embeddings. Note that
these embeddings can be included directly in a
log-linear model as features—doing so results in

4Since the focus of this paper is relation extraction, we
adopt the evaluation setting of prior work which uses gold
named entities to better facilitate comparison.

a special case of our full model presented in the
next subsection.

An annotated sentence is first decomposed into
substructures. The type of substructures can vary
by task; for relation extraction we consider one
substructure per word5. For each substructure in
the sentence we have a hand-crafted feature vec-
tor fwi and a dense embedding vector ewi . We
represent each substructure as the outer product
⌦ between these two vectors to produce a matrix,
herein called a substructure embedding: hwi =
fwi ⌦ ewi . The features fwi are based on the local
context in S and annotations in A, which can in-
clude global information about the annotated sen-
tence. These features allow the model to pro-
mote different properties and to distinguish differ-
ent functions of the words. Feature engineering
can be task specific, as relevant annotations can
change with regards to each task. In this work
we utilize unlexicalized binary features common
in relation extraction. Figure 1 depicts the con-
struction of a sentence’s substructure embeddings.

We further sum over the substructure embed-
dings to form an annotated sentence embedding:

ex =
nX

i=1

fwi ⌦ ewi (1)

When both the hand-crafted features and word em-
beddings are treated as inputs, as has previously
been the case in relation extraction, this anno-
tated sentence embedding can be used directly as
the features of a log-linear model. In fact, we
find that the feature sets used in prior work for
many other NLP tasks are special cases of this
simple construction (Turian et al., 2010; Nguyen
and Grishman, 2014; Hermann et al., 2014; Roth
and Woodsend, 2014). This highlights an im-
portant connection: when the word embeddings
are constant, our constructions of substructure and
annotated sentence embeddings are just specific
forms of polynomial (specifically quadratic) fea-
ture combination—hence their commonality in the
literature. Our experimental results suggest that
such a construction is more powerful than directly
including embeddings into the model.

3.2 The Log-Bilinear Model
Our full log-bilinear model first forms the sub-
structure and annotated sentence embeddings from

5We use words as substructures for relation extraction, but
use the general terminology to maintain model generality.
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Based on above ideas, we achieve a general model and can easily apply to model to an NLP task
without the need for designing model structures or selecting features from scratch. Specifically, if
we denote a instance as (y, S), where S is an arbitrary language structure and y is the label for
the structure. Then we decompose the structure to some factors following S = {f}. For each
factor f , there is a list of m associated features g = g1, g2, ..., gm, and a list of t associated words
wf,1, wf,2, ..., wf,t 2 f . Here we suppose that each factor has the same number of words, and there
is a transformation from the words in a factor to a hidden layer as follows:

hf = �
��

ewf,1 : ewf,2 : ... : ewf,t

� · W�
, (1)

where ewi
is the word embedding for word wi. Suppose the word embeddings have de dimensions

and the hidden layer has dh dimensions. Here W = [W1W2...Wt], each Wj is a de ⇥ dh matrix,
is a transformation from the concatenation of word embeddings to the inputs of the hidden layer.
Then the sigmoid transformation � will be used to get the values of hidden layer from its inputs.
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SUM
- - 46.95 35.29 30.69 52.63 41.19 37.32
Y PPDB 50.81 36.81 32.92 57.23 45.01 41.23

RNN (d=50) Y PPDB 45.67 30.86 27.05 54.84 39.25 35.49
RNN (d=200) Y PPDB 48.97 33.50 31.13 53.59 40.50 38.57

FCT
N PPDB 47.53 35.58 31.31 54.33 41.96 39.10
Y PPDB 51.22 36.76 33.59 61.11 46.99 44.31

FCT
- LM 49.43 37.46 32.22 53.56 42.63 39.44
Y LM + PPDB 53.82 37.48 34.43 65.47 49.44 45.65

joint LM + PPDB 56.53 41.41 36.45 68.52 51.65 46.53

Table 9: Performance on the semantic similarity task with PPDB data.
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Based on above ideas, we achieve a general model and can easily apply to model to an NLP task
without the need for designing model structures or selecting features from scratch. Specifically, if
we denote a instance as (y, S), where S is an arbitrary language structure and y is the label for
the structure. Then we decompose the structure to some factors following S = {f}. For each
factor f , there is a list of m associated features g = g1, g2, ..., gm, and a list of t associated words
wf,1, wf,2, ..., wf,t 2 f . Here we suppose that each factor has the same number of words, and there
is a transformation from the words in a factor to a hidden layer as follows:

hf = �
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� · W�
, (1)

where ewi
is the word embedding for word wi. Suppose the word embeddings have de dimensions

and the hidden layer has dh dimensions. Here W = [W1W2...Wt], each Wj is a de ⇥ dh matrix,
is a transformation from the concatenation of word embeddings to the inputs of the hidden layer.
Then the sigmoid transformation � will be used to get the values of hidden layer from its inputs.

Figure 1: Tensor representation of the FCT model. (a) Representation of an input sentence. (b)
Representation for the parameter space.

Based on above notations, we can represent each factor as the outer product between the feature
vector and the hidden layer of transformed embedding gf⌦hf . The we use a tensor T = L⌦E⌦F
as in Figrure 1(b) to transform this input matrix to the labels. Here L is the set of labels, E refers to
all dimensions of hidden layer (|E| = 200) and F is the set of features.

In order to predict the conditional probability of a label y given the structure S, we have

P (y|S; T ) =
exp{s(y, S; T )}P

y�2L exp{s(y�, S; T )} , (2)

where s(y, S; T ) is the score of label y computed with our model. Since we decompose the struc-
ture S to factors, each factor fi 2 S will contribute to the score based on the model parameters.
Specifically, each label y corresponds to a slice of the tensor Ty , which is a matrix �(y, ·, ·). Then
each factor fi will contribute a score

s(y, fi) = Ty � gf � hf , (3)

where � correspond to tensor product, while in the case of Eq.(3), it has the equivalent form:

Ty � gf � hf = Ty � (gf ⌦ hf ) = (�(y, ·, ·) · gf )T hf .

In this way, the target score of label y given an instance S and parameter tensor T can be written as:

s(y, S; T ) =
nX

i=1

s(y, fi; T ) =
nX

i=1

Ty � gfi
� hfi

. (4)

The FCM model only performs linear transformations on each view of the tensor, making the model
efficient and easy to implement.

Learning In order to train the parameters we optimize the following cross-entropy objective:

`(D; T, W ) =
X

(y,S)2D

log P (y|S; T, W )

where D is the set of all training data. We used AdaGrad [9] to optimize above
objective. Therefore we are performing stochastic training; and for each in-
stance (y, S) the loss function ` = `(y, S; T, W ) = log P (y|S; T, W ). Then
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Classifier Features F1
SVM [] POS, prefixes, morphological, WordNet, dependency parse, 82.2
(Best in SemEval2010) Levin classed, ProBank, FrameNet, NomLex-Plus,

Google n-gram, paraphrases, TextRunner

RNN word embeddings, syntactic parse 74.8
word embeddings, syntactic parse, POS, NER, WordNet 77.6

MVRNN word embeddings, syntactic parse 79.1
word embedding, syntactic parse, POS, NER, WordNet 82.4

FCM (fixed-embedding) word embeddings, dependency parse, WordNet 82.0
FCM (fine-tuning) word embeddings, dependency parse, WordNet 82.3
FCM + linear word embeddings, dependency parse, WordNet

Table 2: Feature sets used in FCM.
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Based on above notations, we can represent each factor as the outer product between the feature
vector and the hidden layer of transformed embedding gf⌦hf . The we use a tensor T = L⌦E⌦F
as in Figrure 1(b) to transform this input matrix to the labels. Here L is the set of labels, E refers to
all dimensions of hidden layer (|E| = 200) and F is the set of features.

In order to predict the conditional probability of a label y given the structure S, we have

P (y|S; T ) =
exp{s(y, S; T )}P
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where s(y, S; T ) is the score of label y computed with our model. Since we decompose the struc-
ture S to factors, each factor fi 2 S will contribute to the score based on the model parameters.
Specifically, each label y corresponds to a slice of the tensor Ty , which is a matrix �(y, ·, ·). Then
each factor fi will contribute a score

s(y, fi) = Ty � gf � hf , (3)

where � correspond to tensor product, while in the case of Eq.(3), it has the equivalent form:

Ty � gf � hf = Ty � (gf ⌦ hf ) = (�(y, ·, ·) · gf )T hf .

In this way, the target score of label y given an instance S and parameter tensor T can be written as:

s(y, S; T ) =
nX

i=1

s(y, fi; T ) =
nX

i=1

Ty � gfi
� hfi

. (4)

The FCM model only performs linear transformations on each view of the tensor, making the model
efficient and easy to implement.

Learning In order to train the parameters we optimize the following cross-entropy objective:

`(D; T, W ) =
X

(y,S)2D

log P (y|S; T, W )

where D is the set of all training data. We used AdaGrad [9] to optimize above
objective. Therefore we are performing stochastic training; and for each in-
stance (y, S) the loss function ` = `(y, S; T, W ) = log P (y|S; T, W ). Then
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Classifier Features F1
SVM [] POS, prefixes, morphological, WordNet, dependency parse, 82.2
(Best in SemEval2010) Levin classed, ProBank, FrameNet, NomLex-Plus,

Google n-gram, paraphrases, TextRunner

RNN word embeddings, syntactic parse 74.8
word embeddings, syntactic parse, POS, NER, WordNet 77.6

MVRNN word embeddings, syntactic parse 79.1
word embedding, syntactic parse, POS, NER, WordNet 82.4

FCM (fixed-embedding) word embeddings, dependency parse, WordNet 82.0
FCM (fine-tuning) word embeddings, dependency parse, WordNet 82.3
FCM + linear word embeddings, dependency parse, WordNet

Table 2: Feature sets used in FCM.
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Figure 1: Tensor representation of the FCT model. (a) Representation of an input structure. (b)
Representation for the parameter space.

Based on above notations, we can represent each factor as the outer product between the feature
vector and the hidden layer of transformed embedding gf⌦hf . The we use a tensor T = L⌦E⌦F
as in Figrure 1(b) to transform this input matrix to the labels. Here L is the set of labels, E refers to
all dimensions of hidden layer (|E| = 200) and F is the set of features.

In order to predict the conditional probability of a label y given the structure S, we have
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y�2L exp{s(y�, S; T )} , (2)
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efficient and easy to implement.
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objective. Therefore we are performing stochastic training; and for each in-
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bc cts wl
Model P R F1 P R F1 P R F1
HeadEmb
CNN (wsize=1) + local features
CNN (wsize=3) + local features
FCT local only
FCT global 60.69 42.39 49.92 56.41 34.45 42.78 41.95 31.77 36.16
FCT global (Brown) 63.15 39.58 48.66 62.45 36.47 46.05 54.95 29.93 38.75
FCT global (WordNet) 59.00 44.79 50.92 60.20 39.60 47.77 50.95 34.18 40.92
PET (Plank and Moschitti, 2013) 51.2 40.6 45.3 51.0 37.8 43.4 35.4 32.8 34.0
BOW (Plank and Moschitti, 2013) 57.2 37.1 45.0 57.5 31.8 41.0 41.1 27.2 32.7
Best (Plank and Moschitti, 2013) 55.3 43.1 48.5 54.1 38.1 44.7 39.9 35.8 37.8

Table 7: Performance on ACE2005 test sets. The first part of the table shows the performance of different models on
different sources of entity types, where ”G” means that the gold types are used and ”P” means that we are using the
predicted types. The second part of the table shows the results under the low-resource setting, where the entity types
are unknown.

Dev MRR Test MRR
Model Fine-tuning 1,000 10,000 100,000 1,000 10,000 100,000
SUM - 46.95 35.29 30.69 52.63 41.19 37.32
SUM Y 50.81 36.81 32.92 57.23 45.01 41.23
Best Recursive NN (d=50) Y 45.67 30.86 27.05 54.84 39.25 35.49
Best Recursive NN (d=200) Y 48.97 33.50 31.13 53.59 40.50 38.57
FCT N 47.53 35.58 31.31 54.33 41.96 39.10
FCT Y 51.22 36.76 33.59 61.11 46.99 44.31
FCT + LM - 49.43 37.46 32.22 53.56 42.63 39.44
FCT + LM +supervised Y 53.82 37.48 34.43 65.47 49.44 45.65

joint 56.53 41.41 36.45 68.52 51.65 46.53

Table 8: Performance on the semantic similarity task with PPDB data.
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Figure 1: Example construction of substructure embeddings. Each substructure is a word wi in S, augmented by the target
entity information and related information from annotation A (e.g. a dependency tree). We show the factorization of the
annotated sentence into substructures (left), the concatenation of the substructure embeddings for the sentence (middle), and a
single substructure embedding from that concatenation (right). The annotated sentence embedding (not shown) would be the
sum of the substructure embeddings, as opposed to their concatenation.

the previous subsection. The model uses its pa-
rameters to score the annotated sentence embed-
ding and uses a softmax to produce an output la-
bel. We call the entire model the Feature-rich
Compositional Embedding Model (FCM).

Our task is to determine the label y (relation)
given the instance x = (M1, M2, S, A). We for-
mulate this as a probability.

P (y|x; T, e) =
exp (

Pn
i=1 Ty � (fwi ⌦ ewi))

Z(x)
(2)

where � is the ‘matrix dot product’ or Frobe-
nious inner product of the two matrices. The
normalizing constant which sums over all possi-
ble output labels y0 2 L is given by Z(x) =P

y02L exp
�Pn

i=1 Ty0 � (fwi ⌦ ewi)
�
. The pa-

rameters of the model are the word embeddings
e for each word type and a list of weight matrix
T = [Ty]y2L which is used to score each label
y. The model is log-bilinear 6 (i.e. log-quadratic)
since we recover a log-linear model by fixing ei-
ther e or T . We study both the full log-bilinear and
the log-linear model obtained by fixing the word
embeddings.

3.3 Discussion of the Model

Substructure Embeddings Similar words (i.e.
those with similar embeddings) with similar func-
tions in the sentence (i.e. those with similar fea-
tures) will have similar matrix representations. To
understand our selection of the outer product, con-
sider the example in Fig. 1. The word “driving”
can indicate the ART relation if it appears on the

6Other popular log-bilinear models are the log-bilinear
language models (Mnih and Hinton, 2007; Mikolov et al.,
2013).

dependency path between M1 and M2. Suppose
the third feature in fwi indicates this on-path
feature. Our model can now learn parameters
which give the third row a high weight for the
ART label. Other words with embeddings similar
to “driving” that appear on the dependency path
between the mentions will similarly receive high
weight for the ART label. On the other hand, if the
embedding is similar but is not on the dependency
path, it will have 0 weight. Thus, our model gen-
eralizes its model parameters across words with
similar embeddings only when they share similar
functions in the sentence.

Smoothed Lexical Features Another intuition
about the selection of outer product is that it is
actually a smoothed version of traditional lexical
features used in classical NLP systems. Consider
a lexical feature f = u ^ w, which is a conjunc-
tion (logic-and) between non-lexical property u
and lexical part (word) w. If we represent w as
a one-hot vector, then the outer product exactly re-
covers the original feature f . Then if we replace
the one-hot representation with its word embed-
ding, we get the current form of our FCM. There-
fore, our model can be viewed as a smoothed ver-
sion of lexical features, which keeps the expres-
sive strength, and uses embeddings to generalize
to low frequency features.

Time Complexity Inference in FCM is much
faster than both CNNs (Collobert et al., 2011) and
RNNs (Socher et al., 2013b; Bordes et al., 2012).
FCM requires O(snd) products on average with
sparse features, where s is the average number of
per-word non-zero feature values, n is the length
of the sentence, and d is the dimension of word
embedding. In contrast, CNNs and RNNs usually
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have complexity O(C · nd2), where C is a model
dependent constant.

4 Hybrid Model

We present a hybrid model which combines the
FCM with an existing log-linear model. We do so
by defining a new model:

pFCM+loglin(y|x) =
1
Z

pFCM(y|x)ploglin(y|x) (3)

The log-linear model has the usual form:
ploglin(y|x) / exp(✓ · f(x, y)), where ✓ are the
model parameters and f(x, y) is a vector of fea-
tures. The integration treats each model as a pro-
viding a score which we multiply together. The
constant Z ensures a normalized distribution.

5 Training

FCM training optimizes a cross-entropy objective:

`(D; T, e) =
X

(x,y)2D

log P (y|x; T, e)

where D is the set of all training data and e
is the set of word embeddings. To optimize
the objective, for each instance (y,x) we per-
form stochastic training on the loss function ` =
`(y,x; T, e) = log P (y|x; T, e). The gradi-
ents of the model parameters are obtained by
backpropagation (i.e. repeated application of
the chain rule). We define the vector s =
[
P

i Ty � (fwi ⌦ ewi)]1yL, which yields

@`

@s
=
h�

I[y0 = y]� P (y0|x; T, e)
�
1yL

iT
,

where the indicator function I[x] equals 1 if x is
true and 0 otherwise. We have the following gradi-
ents: @`

@T = @`
@s ⌦

Pn
i=1 fwi ⌦ ewi , which is equiv-

alent to:

@`

@Ty0
=
�
I[y = y0]� P (y0|x; T, e)

� ·
nX

i=1

fwi ⌦ ewi .

When we treat the word embeddings as parameters
(i.e. the log-bilinear model), we also fine-tune the
word embeddings with the FCM model:

@`

@ew
=

nX
i=1

  X
y

@`

@sy
Ty

!
· fi

!
· I[wi = w].

As is common in deep learning, we initialize
these embeddings from an neural language model
and then fine-tune them for our supervised task.
The training process for the hybrid model (§ 4)
is also easily done by backpropagation since each
sub-model has separate parameters.

Set Template
HeadEmb {I[i = h1], I[i = h2]}

(wi is head of M1/M2)⇥{�, th1 , th2 , th1 � th2}
Context I[i = h1 ± 1] (left/right token of wh1 )

I[i = h2 ± 1] (left/right token of wh2 )
In-between I[i > h1]&I[i < h2] (in between )

⇥{�, th1 , th2 , th1 � th2}
On-path I[wi 2 P ] (on path)

⇥{�, th1 , th2 , th1 � th2}

Table 2: Feature sets used in FCM.

6 Experimental Settings

Features Our FCM features (Table 2) use a fea-
ture vector fwi over the word wi, the two tar-
get entities M1, M2, and their dependency path.
Here h1, h2 are the indices of the two head words
of M1, M2, ⇥ refers to the Cartesian product be-
tween two sets, th1 and th2 are entity types (named
entity tags for ACE 2005 or WordNet supertags for
SemEval 2010) of the head words of two entities,
and � stands for the empty feature. � refers to the
conjunction of two elements. The In-between
features indicate whether a word wi is in between
two target entities, and the On-path features in-
dicate whether the word is on the dependency
path, on which there is a set of words P , between
the two entities.

We also use the target entity type as a feature.
Combining this with the basic features results in
more powerful compound features, which can help
us better distinguish the functions of word embed-
dings for predicting certain relations. For exam-
ple, if we have a person and a vehicle, we know
it will be more likely that they have an ART rela-
tion. For the ART relation, we introduce a corre-
sponding weight vector, which is closer to lexical
embeddings similar to the embedding of “drive”.

All linguistic annotations needed for fea-
tures (POS, chunks7, parses) are from Stanford
CoreNLP (Manning et al., 2014). Since SemEval
does not have gold entity types we obtained Word-
Net and named entity tags using Ciaramita and
Altun (2006). For all experiments we use 200-
d word embeddings trained on the NYT portion
of the Gigaword 5.0 corpus (Parker et al., 2011),
with word2vec (Mikolov et al., 2013). We use the
CBOW model with negative sampling (15 nega-
tive words). We set a window size c=5, and re-
move types occurring less than 5 times.

Models We consider several methods. (1) FCM

in isolation without fine-tuning. (2) FCM in isola-
tion with fine-tuning (i.e. trained as a log-bilinear

7Obtained from the constituency parse using the CONLL
2000 chunking converter (Perl script).
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model). (3) A log-linear model with a rich binary
feature set from Sun et al. (2011) (Baseline)—
this consists of all the baseline features of Zhou et
al. (2005) plus several additional carefully-chosen
features that have been highly tuned for ACE-style
relation extraction over years of research. We ex-
clude the Country gazetteer and WordNet features
from Zhou et al. (2005). The two remaining meth-
ods are hybrid models that integrate FCM as a sub-
model within the log-linear model (§ 4). We con-
sider two combinations. (4) The feature set of
Nguyen and Grishman (2014) obtained by using
the embeddings of heads of two entity mentions
(+HeadOnly). (5) Our full FCM model (+FCM).
All models use L2 regularization tuned on dev
data.

6.1 Datasets and Evaluation

ACE 2005 We evaluate our relation extraction
system on the English portion of the ACE 2005
corpus (Walker et al., 2006).8 There are 6 do-
mains: Newswire (nw), Broadcast Conversation
(bc), Broadcast News (bn), Telephone Speech
(cts), Usenet Newsgroups (un), and Weblogs
(wl). Following prior work we focus on the do-
main adaptation setting, where we train on one set
(the union of the news domains (bn+nw), tune
hyperparameters on a dev domain (half of bc)
and evaluate on the remainder (cts, wl, and
the remainder of bc) (Plank and Moschitti, 2013;
Nguyen and Grishman, 2014). We assume that
gold entity spans and types are available for train
and test. We use all pairs of entity mentions to
yield 43,518 total relations in the training set. We
report precision, recall, and F1 for relation extrac-
tion. While it is not our focus, for completeness
we include results with unknown entity types fol-
lowing Plank and Moschitti (2013) (Appendix 1).

SemEval 2010 Task 8 We evaluate on the Se-
mEval 2010 Task 8 dataset9 (Hendrickx et al.,
2010) to compare with other compositional mod-
els and highlight the advantages of FCM. This task
is to determine the relation type (or no relation)
between two entities in a sentence. We adopt the
setting of Socher et al. (2012). We use 10-fold

8Many relation extraction systems evaluate on the ACE
2004 corpus (Mitchell et al., 2005). Unfortunately, the most
common convention is to use 5-fold cross validation, treating
the entirety of the dataset as both train and evaluation data.
Rather than continuing to overfit this data by perpetuating the
cross-validation convention, we instead focus on ACE 2005.

9
http://docs.google.com/View?docid=dfvxd49s_36c28v9pmw

cross validation on the training data to select hy-
perparameters and do regularization by early stop-
ping. The learning rates for FCM with/without
fine-tuning are 5e-3 and 5e-2 respectively. We
report macro-F1 and compare to previously pub-
lished results.

7 Results

ACE 2005 Despite FCM’s (1) simple feature set,
it is competitive with the log-linear baseline (3)
on out-of-domain test sets (Table 3). In the typi-
cal gold entity spans and types setting, both Plank
and Moschitti (2013) and Nguyen and Grishman
(2014) found that they were unable to obtain im-
provements by adding embeddings to baseline fea-
ture sets. By contrast, we find that on all do-
mains the combination baseline + FCM (5) obtains
the highest F1 and significantly outperforms the
other baselines, yielding the best reported results
for this task. We found that fine-tuning of em-
beddings (2) did not yield improvements on our
out-of-domain development set, in contrast to our
results below for SemEval. We suspect this is be-
cause fine-tuning allows the model to overfit the
training domain, which then hurts performance on
the unseen ACE test domains. Accordingly, Ta-
ble 3 shows only the log-linear model.

Finally, we highlight an important contrast be-
tween FCM (1) and the log-linear model (3): the
latter uses over 50 feature templates based on a
POS tagger, dependency parser, chunker, and con-
stituency parser. FCM uses only a dependency
parse but still obtains better results (Avg. F1).

SemEval 2010 Task 8 Table 4 shows FCM

compared to the best reported results from the
SemEval-2010 Task 8 shared task and several
other compositional models.

For the FCM we considered two feature sets. We
found that using NE tags instead of WordNet tags
helps with fine-tuning but hurts without. This may
be because the set of WordNet tags is larger mak-
ing the model more expressive, but also introduces
more parameters. When the embeddings are fixed,
they can help to better distinguish different func-
tions of embeddings. But when fine-tuning, it be-
comes easier to over-fit. Alleviating over-fitting is
a subject for future work (§ 9).

With either WordNet or NER features, FCM

achieves better performance than the RNN and
MVRNN. With NER features and fine-tuning, it
outperforms a CNN (Zeng et al., 2014) and also
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bc cts wl Avg.
Model P R F1 P R F1 P R F1 F1

(1) FCM only (ST) 66.56 57.86 61.90 65.62 44.35 52.93 57.80 44.62 50.36 55.06
(3) Baseline (ST) 74.89 48.54 58.90 74.32 40.26 52.23 63.41 43.20 51.39 54.17
(4) + HeadOnly (ST) 70.87 50.76 59.16 71.16 43.21 53.77 57.71 42.92 49.23 54.05
(5) + FCM (ST) 74.39 55.35 63.48 74.53 45.01 56.12 65.63 47.59 55.17 58.26

Table 3: Comparison of models on ACE 2005 out-of-domain test sets. Baseline + HeadOnly is our
reimplementation of the features of Nguyen and Grishman (2014).

Classifier Features F1
SVM (Rink and Harabagiu, 2010) POS, prefixes, morphological, WordNet, dependency parse,

82.2(Best in SemEval2010) Levin classed, ProBank, FrameNet, NomLex-Plus,
Google n-gram, paraphrases, TextRunner

RNN word embedding, syntactic parse 74.8
RNN + linear word embedding, syntactic parse, POS, NER, WordNet 77.6
MVRNN word embedding, syntactic parse 79.1
MVRNN + linear word embedding, syntactic parse, POS, NER, WordNet 82.4
CNN (Zeng et al., 2014) word embedding, WordNet 82.7
CR-CNN (log-loss) word embedding 82.7
CR-CNN (ranking-loss) word embedding 84.1
RelEmb (word2vec embedding) word embedding 81.8
RelEmb (task-spec embedding) word embedding 82.8
RelEmb (task-spec embedding) + linear word embedding, dependency paths, WordNet, NE 83.5
DepNN word embedding, dependency paths 82.8
DepNN + linear word embedding, dependency paths, WordNet, NER 83.6

(1) FCM (log-linear) word embedding, dependency parse, WordNet 82.0
word embedding, dependency parse, NER 81.4

(2) FCM (log-bilinear) word embedding, dependency parse, WordNet 82.5
word embedding, dependency parse, NER 83.0

(5) FCM (log-linear) + linear (Hybrid) word embedding, dependency parse, WordNet 83.1
word embedding, dependency parse, NER 83.4

Table 4: Comparison of FCM with previously published results for SemEval 2010 Task 8.

the combination of an embedding model and a tra-
ditional log-linear model (RNN/MVRNN + lin-
ear) (Socher et al., 2012). As with ACE, FCM uses
less linguistic resources than many close competi-
tors (Rink and Harabagiu, 2010).

We also compared to concurrent work on en-
hancing the compositional models with task-
specific information for relation classification, in-
cluding Hashimoto et al. (2015) (RelEmb), which
trained task-specific word embeddings, and dos
Santos et al. (2015) (CR-CNN), which proposed
a task-specific ranking-based loss function. Our
Hybrid methods (FCM + linear) get comparable re-
sults to theirs. Note that their base compositional
model results without any task-specific enhance-
ments, i.e. RelEmb with word2vec embeddings
and CR-CNN with log-loss, are still lower than the
best FCM result. We believe that FCM can be also
improved with these task-specific enhancements,
e.g. replacing the word embeddings to the task-
specific ones from (Hashimoto et al., 2015) in-
creases the result to 83.7% (see §7.2 for details).
We leave the application of ranking-based loss to
future work.

Finally, a concurrent work (Liu et al., 2015)
proposes DepNN, which builds representations for
the dependency path (and its attached subtrees)
between two entities by applying recursive and
convolutional neural networks successively. Com-
pared to their model, our FCM achieves compa-
rable results. Of note, our FCM and the RelEmb
are also the most efficient models among all above
compositional models since they have linear time
complexity with respect to the dimension of em-
beddings.

7.1 Effects of the embedding sub-models

We next investigate the effects of different types of
features on FCM using ablation tests on ACE 2005
(Table 5.) We focus on FCM alone with the fea-
ture templates of Table 2. Additionally, we show
results of using only the head embedding features
from Nguyen and Grishman (2014) (HeadOnly).
Not surprisingly, the HeadOnly model performs
poorly (F1 score = 14.30%), showing the impor-
tance of our rich binary feature set. Among all the
features templates, removing HeadEmb results in
the largest degradation. The second most im-
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Feature Set Prec Rec F1
HeadOnly 31.67 9.24 14.30
FCM 69.17 56.73 62.33

-HeadEmb 66.06 47.00 54.92
-Context 70.89 55.27 62.11
-In-between 66.39 51.86 58.23
-On-path 69.23 53.97 60.66

FCM-EntityTypes 71.33 34.68 46.67

Table 5: Ablation test of FCM on development set.

portant feature template is In-between, while
Context features have little impact. Remov-
ing all entity type features (thi

) does significantly
worse than the full model, showing the value of
our entity type features.

7.2 Effects of the word embeddings

Good word embeddings are critical for both FCM

and other compositional models. In this section,
we show the results of FCM with embeddings
used to initialize other recent state-of-the-art mod-
els. Those embeddings include the 300-d baseline
embeddings trained on English Wikipedia (w2v-
enwiki-d300) and the 100-d task-specific embed-
dings (task-specific-d100)10 from the RelEmb pa-
per (Hashimoto et al., 2015), the 400-d embed-
dings from the CR-CNN paper (dos Santos et al.,
2015). Moreover, we list the best result (DepNN)
in Liu et al. (2015), which uses the same embed-
dings as ours. Table 6 shows the effects of word
embeddings on FCM and provides relative compar-
isons between FCM and the other state-of-the-art
models. We use the same hyperparameters and
number of iterations in Table 4.

The results show that using different embed-
dings to initialize FCM can improve F1 beyond
our previous results. We also find that increas-
ing the dimension of the word embeddings does
not necessarily lead to better results due to the
problem of over-fitting (e.g.w2v-enwiki-d400 vs.
w2v-enwiki-d300). With the same initial embed-
dings, FCM usually gets better results without any
changes to the hyperparameters than the compet-
ing model, further confirming the advantage of
FCM at the model-level as discussed under Ta-
ble 4. The only exception is the DepNN model,
which gets better result than FCM on the same
embeddings. The task-specific embeddings from
(Hashimoto et al., 2015) leads to the best perfor-
mance (an improvement of 0.7%). This observa-

10In the task-specific setting, FCM will represent entity
words and context words with separate sets of embeddings.

Embeddings Model F1

w2v-enwiki-d300 RelEmb 81.8
(2) FCM (log-bilinear) 83.4

task-specific-d100
RelEmb 82.8
RelEmb+linear 83.5
(2) FCM (log-bilinear) 83.7

w2v-enwiki-d400 CR-CNN 82.7
(2) FCM (log-bilinear) 83.0

w2v-nyt-d200 DepNN 83.6
(2) FCM (log-bilinear) 83.0

Table 6: Evaluation of FCMs with different word
embeddings on SemEval 2010 Task 8.

tion suggests that the other compositional models
may also benefit from the work of Hashimoto et
al. (2015).

8 Related Work

Compositional Models for Sentences In order
to build a representation (embedding) for a sen-
tence based on its component word embeddings
and structural information, recent work on compo-
sitional models (stemming from the deep learning
community) has designed model structures that
mimic the structure of the input. For example,
these models could take into account the order of
the words (as in Convolutional Neural Networks
(CNNs)) (Collobert et al., 2011) or build off of
an input tree (as in Recursive Neural Networks
(RNNs) or the Semantic Matching Energy Func-
tion) (Socher et al., 2013b; Bordes et al., 2012).

While these models work well on sentence-level
representations, the nature of their designs also
limits them to fixed types of substructures from the
annotated sentence, such as chains for CNNs and
trees for RNNs. Such models cannot capture arbi-
trary combinations of linguistic annotations avail-
able for a given task, such as word order, depen-
dency tree, and named entities used for relation
extraction. Moreover, these approaches ignore the
differences in functions between words appearing
in different roles. This does not suit more general
substructure labeling tasks in NLP, e.g. these mod-
els cannot be directly applied to relation extraction
since they will output the same result for any pair
of entities in a same sentence.

Compositional Models with Annotation Fea-
tures To tackle the problem of traditional com-
positional models, Socher et al. (2012) made the
RNN model specific to relation extraction tasks by
working on the minimal sub-tree which spans the
two target entities. However, these specializations
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to relation extraction does not generalize easily to
other tasks in NLP. There are two ways to achieve
such specialization in a more general fashion:

1. Enhancing Compositional Models with Fea-
tures. A recent trend enhances compositional
models with annotation features. Such an ap-
proach has been shown to significantly improve
over pure compositional models. For example,
Hermann et al. (2014) and Nguyen and Grishman
(2014) gave different weights to words with dif-
ferent syntactic context types or to entity head
words with different argument IDs. Zeng et al.
(2014) use concatenations of embeddings as fea-
tures in a CNN model, according to their posi-
tions relative to the target entity mentions. Be-
linkov et al. (2014) enrich embeddings with lin-
guistic features before feeding them forward to a
RNN model. Socher et al. (2013a) and Hermann
and Blunsom (2013) enhanced RNN models by
refining the transformation matrices with phrase
types and CCG super tags.

2. Engineering of Embedding Features. A dif-
ferent approach to combining traditional linguistic
features and embeddings is hand-engineering fea-
tures with word embeddings and adding them to
log-linear models. Such approaches have achieved
state-of-the-art results in many tasks including
NER, chunking, dependency parsing, semantic
role labeling, and relation extraction (Miller et al.,
2004; Turian et al., 2010; Koo et al., 2008; Roth
and Woodsend, 2014; Sun et al., 2011; Plank and
Moschitti, 2013). Roth and Woodsend (2014) con-
sidered features similar to ours for semantic role
labeling.

However, in prior work both of above ap-
proaches are only able to utilize limited informa-
tion, usually one property for each word. Yet there
may be different useful properties of a word which
can contribute to the performances of the task. By
contrast, our FCM can easily utilize these features
without changing the model structures.

In order to better utilize the dependency anno-
tations, recently work built their models according
to the dependency paths (Ma et al., 2015; Liu et
al., 2015), which share similar motivations to the
usage of On-path features in our work.

Task-Specific Enhancements for Relation Clas-
sification An orthogonal direction of improving
compositional models for relation classification is
to enhance the models with task-specific informa-
tion. For example, Hashimoto et al. (2015) trained

task-specific word embeddings, and dos Santos et
al. (2015) proposed a ranking-based loss function
for relation classification.

9 Conclusion

We have presented FCM, a new compositional
model for deriving sentence-level and substruc-
ture embeddings from word embeddings. Com-
pared to existing compositional models, FCM can
easily handle arbitrary types of input and handle
global information for composition, while remain-
ing easy to implement. We have demonstrated
that FCM alone attains near state-of-the-art perfor-
mances on several relation extraction tasks, and
in combination with traditional feature based log-
linear models it obtains state-of-the-art results.

Our next steps in improving FCM focus on en-
hancements based on task-specific embeddings or
loss functions as in Hashimoto et al. (2015; dos
Santos et al. (2015). Moreover, as the model pro-
vides a general idea for representing both sen-
tences and sub-structures in language, it has the
potential to contribute useful components to vari-
ous tasks, such as dependency parsing, SRL and
paraphrasing. Also as kindly pointed out by one
anonymous reviewer, our FCM can be applied to
the TAC-KBP (Ji et al., 2010) tasks, by replac-
ing the training objective to a multi-instance multi-
label one (e.g. Surdeanu et al. (2012)). We plan to
explore the above applications of FCM in the fu-
ture.
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Abstract

Relation classification is an important re-
search arena in the field of natural lan-
guage processing (NLP). In this paper, we
present SDP-LSTM, a novel neural net-
work to classify the relation of two enti-
ties in a sentence. Our neural architecture
leverages the shortest dependency path
(SDP) between two entities; multichan-
nel recurrent neural networks, with long
short term memory (LSTM) units, pick
up heterogeneous information along the
SDP. Our proposed model has several dis-
tinct features: (1) The shortest dependency
paths retain most relevant information (to
relation classification), while eliminating
irrelevant words in the sentence. (2) The
multichannel LSTM networks allow ef-
fective information integration from het-
erogeneous sources over the dependency
paths. (3) A customized dropout strategy
regularizes the neural network to allevi-
ate overfitting. We test our model on the
SemEval 2010 relation classification task,
and achieve an F1-score of 83.7%, higher
than competing methods in the literature.

1 Introduction

Relation classification is an important NLP task.
It plays a key role in various scenarios, e.g., in-
formation extraction (Wu and Weld, 2010), ques-
tion answering (Yao and Van Durme, 2014), med-
ical informatics (Wang and Fan, 2014), ontol-
ogy learning (Xu et al., 2014), etc. The aim
of relation classification is to categorize into pre-
defined classes the relations between pairs of
marked entities in given texts. For instance, in
the sentence “A trillion gallons of [water]e1 have
been poured into an empty [region]e2 of outer

∗Corresponding authors.

space,” the entities water and region are of rela-
tion Entity-Destination(e1, e2).

Traditional relation classification approaches
rely largely on feature representation (Kambhatla,
2004), or kernel design (Zelenko et al., 2003;
Bunescu and Mooney, 2005). The former method
usually incorporates a large set of features; it is
difficult to improve the model performance if the
feature set is not very well chosen. The latter ap-
proach, on the other hand, depends largely on the
designed kernel, which summarizes all data infor-
mation. Deep neural networks, emerging recently,
provide a way of highly automatic feature learning
(Bengio et al., 2013), and have exhibited consid-
erable potential (Zeng et al., 2014; dos Santos et
al., 2015). However, human engineering—that is,
incorporating human knowledge to the network’s
architecture—is still important and beneficial.

This paper proposes a new neural network,
SDP-LSTM, for relation classification. Our model
utilizes the shortest dependency path (SDP) be-
tween two entities in a sentence; we also design a
long short term memory (LSTM)-based recurrent
neural network for information processing. The
neural architecture is mainly inspired by the fol-
lowing observations.

• Shortest dependency paths are informative
(Fundel et al., 2007; Chen et al., 2014). To
determine the two entities’ relation, we find it
mostly sufficient to use only the words along
the SDP: they concentrate on most relevant
information while diminishing less relevant
noise. Figure 1 depicts the dependency parse
tree of the aforementioned sentence. Words
along the SDP form a trimmed phrase (gal-
lons of water poured into region) of the orig-
inal sentence, which conveys much informa-
tion about the target relation. Other words,
such as a, trillion, outer space, are less infor-
mative and may bring noise if not dealt with
properly.
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• Direction matters. Dependency trees are a
kind of directed graph. The dependency re-
lation between into and region is PREP; such
relation hardly makes any sense if the di-
rected edge is reversed. Moreover, the enti-
ties’ relation distinguishes its directionality,
that is, r(a, b) differs from r(b, a), for a same
given relation r and two entities a, b. There-
fore, we think it necessary to let the neu-
ral model process information in a direction-
sensitive manner. Out of this consideration,
we separate an SDP into two sub-paths, each
from an entity to the common ancestor node.
The extracted features along the two sub-
paths are concatenated to make final classi-
fication.

• Linguistic information helps. For exam-
ple, with prior knowledge of hyponymy, we
know “water is a kind of substance.” This
is a hint that the entities, water and region,
are more of Entity-Destination rela-
tion than, say, Communication-Topic.
To gather heterogeneous information along
SDP, we design a multichannel recurrent neu-
ral network. It makes use of information
from various sources, including words them-
selves, POS tags, WordNet hypernyms, and
the grammatical relations between governing
words and their children.

For effective information propagation and inte-
gration, our model leverages LSTM units during
recurrent propagation. We also customize a new
dropout strategy for our SDP-LSTM network to
alleviate the problem of overfitting. To the best
of our knowledge, we are the first to use LSTM-
based recurrent neural networks for the relation
classification task.

We evaluate our proposed method on the
SemEval 2010 relation classification task, and
achieve an F1-score of 83.7%, higher than com-
peting methods in the literature.

In the rest of this paper, we review related work
in Section 2. In Section 3, we describe our SDP-
LSTM model in detail. Section 4 presents quan-
titative experimental results. Finally, we have our
conclusion in Section 5.

2 Related Work

Relation classification is a widely studied task
in the NLP community. Various existing meth-

poured

gallons have been into

trillion of [region]

A [water] an empty of

space

outer

e1

e2

Figure 1: The dependency parse tree correspond-
ing to the sentence “A trillion gallons of water
have been poured into an empty region of outer
space.” Red lines indicate the shortest dependency
path between entities water and region. An edge
a → b refers to a being governed by b. Depen-
dency types are labeled by the parser, but not pre-
sented in the figure for clarity.

ods mainly fall into three classes: feature-based,
kernel-based, and neural network-based.

In feature-based approaches, different sets of
features are extracted and fed to a chosen classifier
(e.g., logistic regression). Generally, three types of
features are often used. Lexical features concen-
trate on the entities of interest, e.g., entities per se,
entity POS, entity neighboring information. Syn-
tactic features include chunking, parse trees, etc.
Semantic features are exemplified by the concept
hierarchy, entity class, entity mention. Kamb-
hatla (2004) uses a maximum entropy model to
combine these features for relation classification.
However, different sets of handcrafted features are
largely complementary to each other (e.g., hyper-
nyms versus named-entity tags), and thus it is hard
to improve performance in this way (GuoDong et
al., 2005).

Kernel-based approaches specify some measure
of similarity between two data samples, with-
out explicit feature representation. Zelenko et
al. (2003) compute the similarity of two trees by
utilizing their common subtrees. Bunescu and
Mooney (2005) propose a shortest path depen-
dency kernel for relation classification. Its main
idea is that the relation strongly relies on the de-
pendency path between two given entities. Wang
(2008) provides a systematic analysis of several
kernels and show that relation extraction can bene-
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fit from combining convolution kernel and syntac-
tic features. Plank and Moschitti (2013) introduce
semantic information into kernel methods in ad-
dition to considering structural information only.
One potential difficulty of kernel methods is that
all data information is completely summarized by
the kernel function (similarity measure), and thus
designing an effective kernel becomes crucial.

Deep neural networks, emerging recently, can
learn underlying features automatically, and have
attracted growing interest in the literature. Socher
et al. (2011) propose a recursive neural network
(RNN) along sentences’ parse trees for sentiment
analysis; such model can also be used to clas-
sify relations (Socher et al., 2012). Hashimoto et
al. (2013) explicitly weight phrases’ importance
in RNNs to improve performance. Ebrahimi and
Dou (2015) rebuild an RNN on the dependency
path between two marked entities. Zeng et al.
(2014) explore convolutional neural networks, by
which they utilize sequential information of sen-
tences. dos Santos et al. (2015) also use the convo-
lutional network; besides, they propose a ranking
loss function with data cleaning, and achieve the
state-of-the-art result in SemEval-2010 Task 8.

In addition to the above studies, which mainly
focus on relation classification approaches and
models, other related research trends include in-
formation extraction from Web documents in a
semi-supervised manner (Bunescu and Mooney,
2007; Banko et al., 2007), dealing with small
datasets without enough labels by distant super-
vision techniques (Mintz et al., 2009), etc.

3 The Proposed SDP-LSTM Model

In this section, we describe our SDP-LSTM model
in detail. Subsection 3.1 delineates the overall ar-
chitecture of our model. Subsection 3.2 presents
the rationale of using SDPs. Four different infor-
mation channels along the SDP are explained in
Subsection 3.3. Subsection 3.4 introduces the re-
current neural network with long short term mem-
ory, which is built upon the dependency path. Sub-
section 3.5 customizes a dropout strategy for our
network to alleviate overfitting. We finally present
our training objective in Subsection 3.6.

3.1 Overview

Figure 2 depicts the overall architecture of our
SDP-LSTM network.

First, a sentence is parsed to a dependency tree

by the Stanford parser;1 the shortest dependency
path (SDP) is extracted as the input of our net-
work. Along the SDP, four different types of
information—referred to as channels—are used,
including the words, POS tags, grammatical rela-
tions, and WordNet hypernyms. (See Figure 2a.)
In each channel, discrete inputs, e.g., words, are
mapped to real-valued vectors, called embeddings,
which capture the underlying meanings of the in-
puts.

Two recurrent neural networks (Figure 2b) pick
up information along the left and right sub-paths
of the SDP, respecitvely. (The path is separated by
the common ancestor node of two entities.) Long
short term memory (LSTM) units are used in the
recurrent networks for effective information prop-
agation. A max pooling layer thereafter gathers
information from LSTM nodes in each path.

The pooling layers from different channels are
concatenated, and then connected to a hidden
layer. Finally, we have a softmax output layer for
classification. (See again Figure 2a.)

3.2 The Shortest Dependency Path

The dependency parse tree is naturally suitable for
relation classification because it focuses on the ac-
tion and agents in a sentence (Socher et al., 2014).
Moreover, the shortest path between entities, as
discussed in Section 1, condenses most illuminat-
ing information for entities’ relation.

We also observe that the sub-paths, separated by
the common ancestor node of two entities, provide
strong hints for the relation’s directionality. Take
Figure 1 as an example. Two entities water and
region have their common ancestor node, poured,
which separates the SDP into two parts:

[water]e1 → of→ gallons→ poured

and
poured← into← [region]e2

The first sub-path captures information of e1,
whereas the second sub-path is mainly about
e2. By examining the two sub-paths sepa-
rately, we know e1 and e2 are of relation
Entity-Destination(e1, e2), rather than
Entity-Destination(e2, e1).

Following the above intuition, we design
two recurrent neural networks, which propagate

1http://nlp.stanford.edu/software/lex-parser.shtml
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Figure 2: (a) The overall architecture of SDP-LSTM. (b) One channel of the recurrent neural networks
built upon the shortest dependency path. The channels are words, part-of-speech (POS) tags, grammatical
relations (abbreviated as GR in the figure), and WordNet hypernyms.

bottom-up from the entities to their common an-
cestor. In this way, our model is direction-
sensitive.

3.3 Channels

We make use of four types of information along
the SDP for relation classification. We call them
channels as these information sources do not inter-
act during recurrent propagation. Detailed channel
descriptions are as follows.

• Word representations. Each word in a given
sentence is mapped to a real-valued vector by
looking up in a word embedding table. Un-
supervisedly trained on a large corpus, word
embeddings are thought to be able to well
capture words’ syntactic and semantic infor-
mation (Mikolov et al., 2013b).

• Part-of-speech tags. Since word embed-
dings are obtained on a generic corpus of a
large scale, the information they contain may
not agree with a specific sentence. We deal
with this problem by allying each input word
with its POS tag, e.g., noun, verb, etc.
In our experiment, we only take into use a
coarse-grained POS category, containing 15
different tags.

• Grammatical relations. The dependency
relations between a governing word and its
children makes a difference in meaning. A
same word pair may have different depen-
dency relation types. For example, “beats
nsubj−−−→ it” is distinct from “beats

dobj−−−→ it.”
Thus, it is necessary to capture such gram-

matical relations in SDPs. In our experi-
ment, grammatical relations are grouped into
19 classes, mainly based on a coarse-grained
classification (De Marneffe et al., 2006).

• WordNet hypernyms. As illustrated in Sec-
tion 1, hyponymy information is also useful
for relation classification. (Details are not re-
peated here.) To leverage WordNet hyper-
nyms, we use a tool developed by Ciaramita
and Altun (2006).2 The tool assigns a hy-
pernym to each word, from 41 predefined
concepts in WordNet, e.g., noun.food,
verb.motion, etc. Given its hypernym,
each word gains a more abstract concept,
which helps to build a linkage between dif-
ferent but conceptual similar words.

As we can see, POS tags, grammatical rela-
tions, and WordNet hypernyms are also discrete
(like words per se). However, no prevailing em-
bedding learning method exists for POS tags, say.
Hence, we randomly initialize their embeddings,
and tune them in a supervised fashion during train-
ing. We notice that these information sources con-
tain much fewer symbols, 15, 19, and 41, than the
vocabulary size (greater than 25,000). Hence, we
believe our strategy of random initialization is fea-
sible, because they can be adequately tuned during
supervised training.

3.4 Recurrent Neural Network with Long
Short Term Memory Units

The recurrent neural network is suitable for mod-
eling sequential data by nature, as it keeps a hid-

2http://sourceforge.net/projects/supersensetag
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den state vector h, which changes with input data
at each step accordingly. We use the recurrent net-
work to gather information along each sub-path in
the SDP (Figure 2b).

The hidden state ht, for the t-th word in the
sub-path, is a function of its previous state ht−1

and the current word xt. Traditional recurrent net-
works have a basic interaction, that is, the input is
linearly transformed by a weight matrix and non-
linearly squashed by an activation function. For-
mally, we have

ht = f(Winxt +Wrecht−1 + bh)

where Win and Wrec are weight matrices for the
input and recurrent connections, respectively. bh
is a bias term for the hidden state vector, and fh a
non-linear activation function (e.g., tanh).

One problem of the above model is known
as gradient vanishing or exploding. The train-
ing of neural networks requires gradient back-
propagation. If the propagation sequence (path) is
too long, the gradient may probably either grow, or
decay, exponentially, depending on the magnitude
of Wrec. This leads to the difficulty of training.

Long short term memory (LSTM) units are pro-
posed in Hochreiter (1998) to overcome this prob-
lem. The main idea is to introduce an adaptive gat-
ing mechanism, which decides the degree to which
LSTM units keep the previous state and memo-
rize the extracted features of the current data in-
put. Many LSTM variants have been proposed in
the literature. We adopt in our method a variant

introduced by Zaremba and Sutskever (2014), also
used in Zhu et al. (2015).

Concretely, the LSTM-based recurrent neural
network comprises four components: an input gate
it, a forget gate ft, an output gate ot, and a mem-
ory cell ct (depicted in Figure 3 and formalized
through Equations 1–6 as bellow).

The three adaptive gates it, ft, and ot depend
on the previous state ht−1 and the current input
xt (Equations 1–3). An extracted feature vector
gt is also computed, by Equation 4, serving as the
candidate memory cell.

it = σ(Wi ·xt + Ui ·ht−1 + bi) (1)

ft = σ(Wf ·xt + Uf ·ht−1 + bf ) (2)

ot = σ(Wo ·xt + Uo ·ht−1 + bo) (3)

gt = tanh(Wg ·xt + Ug ·ht−1 + bg) (4)

The current memory cell ct is a combination of
the previous cell content ct−1 and the candidate
content gt, weighted by the input gate it and forget
gate ft, respectively. (See Equation 5 below.)

ct = it ⊗ gt + ft ⊗ ct−1 (5)

The output of LSTM units is the the recur-
rent network’s hidden state, which is computed by
Equation 6 as follows.

ht = ot ⊗ tanh(ct) (6)

In the above equations, σ denotes a sigmoid
function; ⊗ denotes element-wise multiplication.

3.5 Dropout Strategies
A good regularization approach is needed to al-
leviate overfitting. Dropout, proposed recently
by Hinton et al. (2012), has been very successful
on feed-forward networks. By randomly omitting
feature detectors from the network during train-
ing, it can obtain less interdependent network units
and achieve better performance. However, the
conventional dropout does not work well with re-
current neural networks with LSTM units, since
dropout may hurt the valuable memorization abil-
ity of memory units.

As there is no consensus on how to drop
out LSTM units in the literature, we try several
dropout strategies for our SDP-LSTM network:

• Dropout embeddings;

• Dropout inner cells in memory units, includ-
ing it, gt, ot, ct, and ht; and

1789



• Dropout the penultimate layer.

As we shall see in Section 4.2, dropping out
LSTM units turns out to be inimical to our model,
whereas the other two strategies boost in perfor-
mance.

The following equations formalize the dropout
operations on the embedding layers, where D de-
notes the dropout operator. Each dimension in the
embedding vector, xt, is set to zero with a prede-
fined dropout rate.

it = σ(Wi ·D(xt) + Ui ·ht−1 + bi) (7)

ft = σ(Wf ·D(xt) + Uf ·ht−1 + bf ) (8)

ot = σ(Wo ·D(xt) + Uo ·ht−1 + bo) (9)

gt = tanh
(
Wg ·D(xt) + Ug ·ht−1 + bg

)
(10)

3.6 Training Objective

The SDP-LSTM described above propagates in-
formation along a sub-path from an entity to the
common ancestor node (of the two entities). A
max pooling layer packs, for each sub-path, the
recurrent network’s states, h’s, to a fixed vector
by taking the maximum value in each dimension.

Such architecture applies to all channels,
namely, words, POS tags, grammatical relations,
and WordNet hypernyms. The pooling vectors in
these channels are concatenated, and fed to a fully
connected hidden layer. Finally, we add a softmax
output layer for classification. The training objec-
tive is the penalized cross-entropy error, given by

J = −
nc∑
i=1

ti log yi+λ

(
ω∑
i=1

‖Wi‖2F +
υ∑
i=1

‖Ui‖2F
)

where t ∈ Rnc is the one-hot represented ground
truth and y ∈ Rnc is the estimated probability for
each class by softmax. (nc is the number of target
classes.) ‖ · ‖F denotes the Frobenius norm of a
matrix; ω and υ are the numbers of weight matri-
ces (for W ’s and U ’s, respectively). λ is a hyper-
parameter that specifies the magnitude of penalty
on weights. Note that we do not add `2 penalty to
biase parameters.

We pretrained word embeddings by word2vec
(Mikolov et al., 2013a) on the English Wikipedia
corpus; other parameters are initialized randomly.
We apply stochastic gradient descent (with mini-
batch 10) for optimization; gradients are computed
by standard back-propagation. Training details are
further introduced in Section 4.2.

4 Experiments

In this section, we present our experiments in de-
tail. Our implementation is built upon Mou et al.
(2015). Section 4.1 introduces the dataset; Section
4.2 describes hyperparameter settings. In Section
4.3, we compare SDP-LSTM’s performance with
other methods in the literature. We also analyze
the effect of different channels in Section 4.4.

4.1 Dataset
The SemEval-2010 Task 8 dataset is a widely used
benchmark for relation classification (Hendrickx
et al., 2009). The dataset contains 8,000 sentences
for training, and 2,717 for testing. We split 1/10
samples out of the training set for validation.

The target contains 19 labels: 9 directed rela-
tions, and an undirected Other class. The di-
rected relations are list as below.
• Cause-Effect
• Component-Whole
• Content-Container
• Entity-Destination
• Entity-Origin
• Message-Topic
• Member-Collection
• Instrument-Agency
• Product-Producer
In the following are illustrated two sample sen-

tences with directed relations.

[People]e1 have been moving back into
[downtown]e2 .

Financial [stress]e1 is one of the main
causes of [divorce]e2 .

The target labels are Entity-Destination
(e1, e2), and Cause-Effect(e1, e2), respec-
tively.

The dataset also contains an undirected Other
class. Hence, there are 19 target labels in total.
The undirected Other class takes in entities that
do not fit into the above categories, illustrated by
the following example.

A misty [ridge]e1 uprises from the
[surge]e2 .

We use the official macro-averaged F1-score to
evaluate model performance. This official mea-
surement excludes the Other relation. Nonethe-
less, we have no special treatment of Other class
in our experiments, which is typical in other stud-
ies.
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(a) Dropout word embeddings
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(b) Dropout inner cells of memory units
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(c) Dropout the penultimate layer

Figure 4: F1-scores versus dropout rates. We first evaluate the effect of dropout embeddings (a). Then
the dropout of the inner cells (b) and the penultimate layer (c) is tested with word embeddings being
dropped out by 0.5.

4.2 Hyperparameters and Training Details

This subsection presents hyperparameter tuning
for our model. We set word-embeddings to
be 200-dimensional; POS, WordNet hyponymy,
and grammatical relation embeddings are 50-
dimensional. Each channel of the LSTM network
contains the same number of units as its source
embeddings (either 200 or 50). The penultimate
hidden layer is 100-dimensional. As it is not fea-
sible to perform full grid search for all hyperpa-
rameters, the above values are chosen empirically.

We add `2 penalty for weights with coefficient
10−5, which was chosen by validation from the set
{10−2, 10−3, · · · , 10−7}.

We thereafter validate the proposed dropout
strategies in Section 3.5. Since network units in
different channels do not interact with each other
during information propagation, we herein take
one channel of LSTM networks to assess the ef-
ficacy. Taking the word channel as an example,
we first drop out word embeddings. Then with a
fixed dropout rate of word embeddings, we test the
effect of dropping out LSTM inner cells and the
penultimate units, respectively.

We find that, dropout of LSTM units hurts the
model, even if the dropout rate is small, 0.1,
say (Figure 4b). Dropout of embeddings im-
proves model performance by 2.16% (Figure 4a);
dropout of the penultimate layer further improves
by 0.16% (Figure 4c). This analysis also provides,
for other studies, some clues for dropout in LSTM
networks.

4.3 Results

Table 4 compares our SDT-LSTM with other state-
of-the-art methods. The first entry in the ta-

ble presents the highest performance achieved by
traditional feature engineering. Hendrickx et al.
(2009) leverage a variety of handcrafted features,
and use SVM for classification; they achieve an
F1-score of 82.2%.

Neural networks are first used in this task in
Socher et al. (2012). They build a recursive neural
network (RNN) along a constituency tree for re-
lation classification. They extend the basic RNN
with matrix-vector interaction and achieve an F1-
score of 82.4%.

Zeng et al. (2014) treat a sentence as sequen-
tial data and exploit the convolutional neural net-
work (CNN); they also integrate word position
information into their model. dos Santos et al.
(2015) design a model called CR-CNN; they pro-
pose a ranking-based cost function and elaborately
diminish the impact of the Other class, which is
not counted in the official F1-measure. In this way,
they achieve the state-of-the-art result with the F1-
score of 84.1%. Without such special treatment,
their F1-score is 82.7%.

Yu et al. (2014) propose a Feature-rich Com-
positional Embedding Model (FCM) for relation
classification, which combines unlexicalized lin-
guistic contexts and word embeddings. They
achieve an F1-score of 83.0%.

Our proposed SDT-LSTM model yields an F1-
score of 83.7%. It outperforms existing compet-
ing approaches, in a fair condition of softmax with
cross-entropy error.

It is worth to note that we have also conducted
two controlled experiments: (1) Traditional RNN
without LSTM units, achieving an F1-score of
82.8%; (2) LSTM network over the entire depen-
dency path (instead of two sub-paths), achieving
an F1-score of 82.2%. These results demonstrate
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Classifier Feature set F1

SVM
POS, WordNet, prefixes and other morphological features,

82.2depdency parse, Levin classes, PropBank, FanmeNet,
NomLex-Plus, Google n-gram, paraphrases, TextRunner

RNN
Word embeddings 74.8
Word embeddings, POS, NER, WordNet 77.6

MVRNN
Word embeddings 79.1
Word embeddings, POS, NER, WordNet 82.4

CNN
Word embeddings 69.7
Word embeddings, word position embeddings, WordNet 82.7

Chain CNN Word embeddings, POS, NER, WordNet 82.7

FCM
Word embeddings 80.6
Word embeddings, depedency parsing, NER 83.0

CR-CNN
Word embeddings 82.8†

Word embeddings, position embeddings 82.7
Word embeddings, position embeddings 84.1†

SDP-LSTM
Word embeddings 82.4
Word embeddings, POS embeddings, WordNet embeddings, 83.7
grammar relation embeddings

Table 1: Comparison of relation classification systems. The “†” remark refers to special treatment for
the Other class.

the effectiveness of LSTM and directionality in re-
lation classification.

4.4 Effect of Different Channels

This subsection analyzes how different channels
affect our model. We first used word embeddings
only as a baseline; then we added POS tags, gram-
matical relations, and WordNet hypernyms, re-
spectively; we also combined all these channels
into our models. Note that we did not try the latter
three channels alone, because each single of them
(e.g., POS) does not carry much information.

We see from Table 2 that word embeddings
alone in SDP-LSTM yield a remarkable perfor-
mance of 82.35%, compared with CNNs 69.7%,
RNNs 74.9–79.1%, and FCM 80.6%.

Adding either grammatical relations or Word-
Net hypernyms outperforms other existing meth-
ods (data cleaning not considered here). POS tag-
ging is comparatively less informative, but still
boosts the F1-score by 0.63%.

We notice that, the boosts are not simply added
when channels are combined. This suggests that
these information sources are complementary to
each other in some linguistic aspects. Nonethe-
less, incorporating all four channels further pushes
the F1-score to 83.70%.

Channels F1

Word embeddings 82.35
+ POS embeddings (only) 82.98
+ GR embeddings (only) 83.21
+ WordNet embeddings (only) 83.03
+ POS + GR + WordNet embeddings 83.70

Table 2: Effect of different channels.

5 Conclusion

In this paper, we propose a novel neural network
model, named SDP-LSTM, for relation classifi-
cation. It learns features for relation classifica-
tion iteratively along the shortest dependency path.
Several types of information (word themselves,
POS tags, grammatical relations and WordNet hy-
pernyms) along the path are used. Meanwhile,
we leverage LSTM units for long-range infor-
mation propagation and integration. We demon-
strate the effectiveness of SDP-LSTM by evalu-
ating the model on SemEval-2010 relation clas-
sification task, outperforming existing state-of-art
methods (in a fair condition without data clean-
ing). Our result sheds some light in the relation
classification task as follows.
• The shortest dependency path can be a valu-

able resource for relation classification, cov-
ering mostly sufficient information of target
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relations.
• Classifying relation is a challenging task due

to the inherent ambiguity of natural lan-
guages and the diversity of sentence expres-
sion. Thus, integrating heterogeneous lin-
guistic knowledge is beneficial to the task.
• Treating the shortest dependency path as two

sub-paths, mapping two different neural net-
works, helps to capture the directionality of
relations.
• LSTM units are effective in feature detec-

tion and propagation along the shortest de-
pendency path.
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Abstract

A key challenge in vocabulary acquisition
is learning which of the many possible
meanings is appropriate for a word. The
word generalization problem refers to how
children associate a word such as dog with
a meaning at the appropriate category level
in a taxonomy of objects, such as Dalma-
tians, dogs, or animals. We present the
first computational study of word general-
ization integrated within a word-learning
model. The model simulates child and
adult patterns of word generalization in a
word-learning task. These patterns arise
due to the interaction of type and token
frequencies in the input data, an influence
often observed in people’s generalization
of linguistic categories.

1 Introduction

Learning word meanings is a challenging early
step in child language acquisition. Imagine a
child hears the word dax for the first time while
observing a white rabbit jumping around – dax
might mean WHITE RABBIT, RABBIT, ANIMAL,
CUTE, LOOK, etc. (Quine, 1960). How does the
child learn the correct meaning of a word from
a large pool of potential meanings? A possi-
ble explanation is that children infer a word’s
meaning by identifying the commonalities across
the situations in which the word occurs (Pinker,
1989). One mechanism for achieving this is cross-
situational learning (e.g., Siskind, 1996; Frank
et al., 2007; Fazly et al., 2010; Kachergis et al.,
2012). Recent word learning experiments con-
firm that both adults and children infer the cor-
rect word-meaning mappings by keeping track of
cross-situational statistics across individually am-
biguous learning trials (Yu and Smith, 2007; Smith
and Yu, 2008; Yurovsky et al., 2014).

Although cross-situational learning is a general
mechanism for narrowing down the meaning of a
word, it does not explain how children overcome
an interesting challenge in word learning: deter-
mining the correct level of a hierarchical taxon-
omy that a word refers to. For example, children
learn that the word dog refers to all kinds of dogs,
and not to a specific breed, such as Dalmatians,
or to a more general category, such as animals –
even though some of these choices (e.g., animals)
are compatible with all the cross-situational evi-
dence available for dog (because all dogs are also
animals). We use the term “word generalization”
to refer to this problem of associating a word with
the meaning at an appropriate category level, given
some sample of experiences with the word.

Previous research has argued that children use
a specific bias or constraint – the basic-level as-
sumption – to focus their word generalizations
appropriately (Markman, 1991; Golinkoff et al.,
1994). According to this bias, children prefer to
associate a word to a set of objects that form a
basic-level category, such as dogs or trucks, and
that share a significant number of attributes. It
is less preferred to associate a new word to much
more specific subordinate categories, such as Dal-
matians or bulldozers, or to more general superor-
dinate ones, like animals or vehicles, whose mem-
bers share fewer attributes (Rosch, 1973; Rosch et
al., 1976). It remains an important open question
of whether a word learner requires such a bias to
acquire appropriate mappings.

Xu and Tenenbaum (2007) (X&T henceforth)
studied the word generalization problem in a set
of experiments in which children and adults were
asked to determine which level of a taxonomy a
novel word referred to. X&T further examined
this behavioral data through computational mod-
elling. They proposed a Bayesian model that,
given a few exemplars of a novel word, matches
human behaviour in how it maps the word to its
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meanings in a taxonomic category.
The Bayesian model of X&T is important in

providing insight into how people might reason
about samples of data that exemplify categories.
However, it relies on having complete, built-in
knowledge about the taxonomic hierarchy, includ-
ing both the detailed composition of categories
and the values for between-object similarities,
drawn from adult similarity judgments. Further-
more, the X&T model does not address the issue
of word generalization in the broader context of
word learning: While their model reasons over
samples of data associated with a word label, it
does not develop a meaning representation of the
word over time, as a child must do. It is impor-
tant to understand how word generalization occurs
when embedded in the natural process of learning
a word meaning and in the context of more limited
category knowledge.

We address these issues by providing a uni-
fied account of word learning and word gener-
alization within a computational model of cross-
situational learning. Unlike the X&T model, our
model is an incremental learner that gradually ac-
quires the meaning of words, and uses these devel-
oping meanings in determining the appropriate ex-
tension of a word to elements of a taxonomy. Our
model has general knowledge of category struc-
ture without having an elaborated taxonomy en-
coding known object similarities. Moreover, in the
absence of any bias toward generalization to par-
ticular kinds of categories, the model exhibits the
observed “basic-level bias” due to general mech-
anisms of productivity that have been proposed
to apply to many aspects of linguistic knowledge
(e.g., Bybee, 1985; Croft and Cruse, 2004).1

In what follows, we first describe the human ex-
periments of X&T, and then present our computa-
tional model and the experiments that simulate the
X&T data.

2 Novel Word Generalization in People

X&T perform a set of empirical studies to inves-
tigate how children and adults generalize novel
words learned from a few examples to the appro-

1Computational cognitive models are often categorized
with respect to Marr’s levels of analysis, i.e., their degree
of abstraction (Marr, 1982). The model of X&T is at the
computational level, providing a Bayesian framework for the
problem of word generalization. In contrast, our model in-
vestigates more detailed mechanisms and thus lies between
the algorithmic and computational levels of analysis.

priate level of meaning in a taxonomy. In each
training trial of an experiment, participants hear a
novel word (such as fep) and observe one or more
instances exemplifying the word (in the form of
pictures for adults and toy objects for children).
The conditions vary in that the make-up of the set
of training instances is representative of different
levels of a taxonomy (e.g., all Dalmatians vs. var-
ious kinds of dogs vs. various kinds of animals).
In the testing phase, participants are asked to se-
lect all objects that they think are feps from a set
of test items. Both children and adults make var-
ious inferences about what a fep is depending on
the levels of the taxonomy from which the training
instances are drawn.

Specifically, X&T use a taxonomy with ani-
mals, vehicles, and vegetables, from which in-
stances are drawn to produce the training condi-
tions in Fig. 1(a). For example, in one training
condition, participants are shown a Dalmatian, a
poodle, and a beagle in three consecutive trials,
hearing the word fep to refer to each object. Af-
ter training, participants are asked to select all feps
from the set of test objects, which includes items
from all 3 superordinate categories. As illustrated
in Fig. 1(b), each test object is assessed as one of
the following types of match to the training data:

• a subordinate match: an object of the
same subordinate category as a training ob-
ject (e.g., Dalmatians in Fig. 1)

• a basic-level match: an object of the same
basic-level category as a training object (e.g.,
a dog, but not the same breed as one in train-
ing [which would be a subordinate match])

• a superordinate match: an object of the
same superordinate category as the training
objects (e.g., another kind of animal, but not
one seen in training [which would be a sub-
ordinate or basic-level match])

X&T report the percentage of test objects of each
type of match that are selected by participants
within each training condition; see Fig. 2. (For
example, the reported value for “super. match”
would be 75% if participants on average chose 3
of the 4 superordinate matches in the test set.)

Consider first the data from adults. After see-
ing a single object (1-example condition – e.g., a
Dalmatian), adults show a strong basic-level bias
– i.e., they tend to generalize the word fep to refer
to both Dalmatians (subordinate matches) and to
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Training Example Trials:
condition: Trial 1 Trial 2 Trial 3
1 example Dalmatian ∅ ∅
3 subord. Dalmatian Dalmatian Dalmatian
3 basic Dalmatian poodle beagle
3 super. Dalmatian penguin sheep

(a) An example of the training conditions.

Example test Type of
object selected: test match:
Dalmatian subordinate match
bulldog basic match
cat superordinate match

(b) An example of the test responses.

Figure 1: The training and testing conditions of X&T; see text in Section 2.

other dogs (basic-level matches), but not to other
animals (superordinate matches). But with 3 in-
stances of a Dalmatian (3-subordinate condition),
this behaviour is attenuated – the number of basic-
level matches is much lower. For the 3-basic-level
and 3-superordinate conditions, the adults show
generalization up to categories consistent with the
evidence – i.e., at the basic and superordinate lev-
els, respectively.

Interestingly, children also show a basic-level
bias, but differ from adults in that it is less pro-
nounced – e.g., they are less likely than adults
to select basic-level matches (other dogs) having
seen a single Dalmatian or having seen 3 Dalma-
tians. In the other conditions, children’s behaviour
is similar to adults, but shows somewhat less gen-
eralization to unseen types of objects (e.g., other
kinds of dogs/animals than those in training).
(a) Adult data:

(b) Child data:

Figure 2: X&T data for (a) adults and (b) children. Each
bar is the percentage of chosen test objects of a type of test
match: i.e., subord(inate), basic(-level), or super(ordinate).

3 The Word Learning Framework

Our computational model is based on the cross-
situational word learner of Fazly et al. (2010)
(henceforth, FAS), which accounts for a range of
observed patterns in child and adult vocabulary ac-

quisition. Here we give an overview of the FAS
model; the next section explains extensions to han-
dle the novel word generalization task.

A naturalistic language learning scenario con-
sists of both linguistic data (what a child a hears)
and non-linguistic data (what a child perceives).
This input is modeled as a sequence of utterance–
scene (U–S) pairs, where an utterance is a group
of words and a scene is a set of semantic features
representing the meaning of those words:

U : { look, a, fep, . . . }
S: { PERCEPTION, LOOK, . . . , DALMATIAN, DOG, . . . }

Given such input, for each word w, the model
of FAS learns a probability distribution over all
semantic features, Pt(.|w), which represents the
word’s meaning at time t. Initially, at time t =
0, P0(.|w) is a uniform distribution. The word
meanings are incrementally learned using an algo-
rithm that implements cross-situational learning:
for each pair of a wordw and a semantic feature f ,
the model learns Pt(f |w) from co-occurrences of
w and f across all the utterance–scene pairs seen
up to time t, as follows.

Given an utterance–scene pair U–S at time t,
and drawing on its learned knowledge of word
meanings up to time t−1, the model of FAS calcu-
lates an alignment probability for each wj–fi pair.
This probability reflects how strongly the feature
fi is associated with wj compared to its associa-
tion with other words in U :

Pt(aij |U, fi) =
Pt−1(fi|wj)∑

w′∈U
Pt−1(fi|w′) (1)

where aij indicates the mapping between the word
wj and the semantic feature fi.

These probabilities are incrementally accumu-
lated for each wj–fi pair, capturing the overall
strength of association of wj and fi at time t:

assoct(fi, wj) = assoct−1(fi, wj)
+ Pt(aij |U, fi)

(2)
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The (normalized) association scores then serve as
the basis for the incremental adjustment of the
meaning probabilities of all features fi for each
word wj seen in the input at time t:

Pt(fi|wj) =
assoct(fi, wj) + γ∑

fm∈M
assoct(fm, wj) + k γ

(3)

HereM is the group of all features that the model
has observed, k is the expected number of such
features, and γ is a small smoothing parameter,
which determines the prior probability of observ-
ing a new feature.

Smoothing entails that features previously un-
seen with a word (all fi such that assoct(fi, wj) =
0) have a small but non-zero probability. That is,
when fi is unseen with wj , Eqn. (3) reduces to:

P ut (fi|wj) =
γ∑

fm∈M
assoct(fm, wj) + k γ

(4)

This unseen probability, P ut , reflects the learner’s
“openness” to the word being associated with new
features (Nematzadeh et al., 2011): a higher or
lower P ut (fi|wj) will affect how strongly a pre-
viously unseen fi can be associated with wj in the
alignment process (Eqn. (1)). We return to this
property of the model below, as it relates to the
behaviour of our model in making generalizations.

4 Extensions to the Model

We assume that the representation of meaning
can be abstracted to features that correspond to
different levels of categorization. For example,
a Dalmatian in an input scene is represented as
{DALMATIAN, DOG, ANIMAL} and a Bulldog as
{BULLDOG, DOG, ANIMAL}, where we use FEA-
TURENAME to refer to all the features that are spe-
cific to that level of object category. (Note that we
could replace each of these features with the ap-
propriate “true” set of features, but use the more
compact representation for simplicity.) To acquire
the meaning of the word Dalmatian, the model
must learn a probability distribution in which
P (f |Dalmatian) is relatively high for the features
DALMATIAN, DOG, and ANIMAL, and low for fea-
tures such as BULLDOG, CAT, and VEGETABLE.

Introducing Feature Groups. In the FAS
model, all the features for a word are dependent:
increasing the probability of any feature results in
decreasing the probability of others. However, this

interaction is not always desirable, as many fea-
tures regularly co-occur in the world. This is es-
pecially an issue for features from a category hi-
erarchy, where features of a subordinate category
should not compete with features of the parent.
That is, while a higher probability of DALMATIAN

features (e.g., black spotted coat) may lessen the
likelihood of BULLDOG features (e.g., wrinkles),
it should not decrease the probability of DOG fea-
tures (e.g., having 4 legs).

To address this, we extend the model by using
feature groups that collect together sets of features
that sensibly compete. Each feature group is com-
prised of all features at the same level of specificity
in the category hierarchy, which are therefore mu-
tually exclusive, such as DOG, CAT, and BIRD (i.e.,
different kinds of animals). Instead of learning a
single probability distribution over all features as
the meaning of a word, the extended model learns
a set of probability distributions for a word, one
for each feature group (i.e., one per level of the hi-
erarchy). Features within a group thereby compete
for the probability mass associated with a word,
but those from across groups (e.g., DALMATIAN

and DOG) can freely co-occur without competing.

The model does not know a priori all the
features in a group, but when presented with
a newly observed feature, it can identify the
appropriate group for it. In taking this ap-
proach, we assume the learner can distinguish
the level of specificity of features perceived in
the scene. For example, in the scene rep-
resentations {DALMATIAN, DOG, ANIMAL} and
{SIAMESE, CAT, ANIMAL}, the learner can recog-
nize that DOG and CAT are at the same level of
the hierarchy (kinds of animals) and that DALMA-
TIAN and SIAMESE are at the same, more specific
level in the hierarchy (finer-grained breeds of an-
imals). Our assumption is that children (at this
stage in their development) can identify a degree
of similarity among concepts that enables them to
recognize that Dalmatians and Siamese are distin-
guished by similar properties (such as fur color),
which differ from more distinguishing properties
at higher taxonomic levels (such as number of
legs). The model has no other prior knowledge of
the category structure. For example, it is not built
into the model that DALMATIAN is a type of DOG,
only that it is more specific than DOG; any asso-
ciation between them would be learned from their
pattern of co-occurrence with a word over time.
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Note that, in contrast to the model of X&T, our
model does not start with a full taxonomy (it does
not know, for example, that Dalmatians and poo-
dles are hyponyms of dogs) and it does not have
built-in knowledge of similarities among concepts.
Still, it encodes some taxonomic knowledge in the
feature groups, and an important future direction
will be to show that this knowledge is learnable
from the input.

Calculating Feature Group Probabilities. To
appropriately split the probability mass within a
feature group G (but not across feature groups),
we use a new formulation of Eqn. (3) to update
the meaning probabilities for fi ∈ G as follows:

Pt(fi|wj) =
assoct(fi, wj) + γG∑

fm∈G
assoct(fm, wj) + kGγG

(5)

where kG is the expected number of features in
G, and the smoothing factor γG reflects the prior
belief in observing a feature f in G.2

With this new formulation, the probability of a
feature fi previously unseen with wordwj now re-
duces to (cf. Eqn. (4)):

P ut (fi|wj) =
γG∑

fm∈G
assoct(fm, wj) + kGγG

(6)

for fi ∈ G. Note that the smoothing factor γG
depends on G, and thus the openness of the word
to be associated with new (previously unseen) fea-
tures can vary depending on the feature group.

This unseen probability is very important to the
model’s generalization behaviour. Generalization
involves the model accepting that a learned word
can refer to objects not seen with it before: e.g.,
in the experiments here, we would expect that the
learned meaning for fep after seeing three animals
such as a dog, a penguin, and a sheep could also
accommodate the meaning of a different animal
such as a cat. This ability of the model to asso-
ciate new meaning features with a word depends
precisely on the unseen probability formulation:
the higher the unseen probability for a feature and
a word, the more the feature will be acceptable as
a generalization of the word.

Type-Token Effects on Generalization. The
unseen probability is sensitive to how many in-
stances of features from a group have already been

2Each feature group forms a Categorical distribution with
kG categories (Cat(θ1, ..., θkG )), where the θi are drawn from
a prior Dirichlet distribution Dir(γ1, ..., γ kG ) at time t = 0,
and the θi are updated at time t to be the expected value of the
posterior Dirichlet distribution, given in Eqn. (5) or Eqn. (6).

seen with a word wj : As the model observes more
instances (tokens) of features from G with wj , the
corresponding assoct score(s) increase, thereby
increasing the denominator in Eqn. (6) and de-
creasing P ut . Thus the tendency to generalize wj
to more features in G – i.e., to accept additional
features as part of the meaning of wj – will de-
crease as the model has more evidence of (ob-
served) features in that group occurring with wj .

Generalization of a category to include new
kinds of items is typically a function of both token
and type frequency (e.g., Bybee, 1985; Croft and
Cruse, 2004): a category with more diverse types
is more easily extended to new cases. While the
evolving association scores capture the effect of
observing more feature tokens, our model as given
does not distinguish the number of different types
of features seen within a group (e.g., two DOGs vs.
one DOG and one CAT).

We address this issue by having γG depend on
the number of observed types of features in the
group:

γ tG = γ 0
G × type(G, t)2 (7)

where type(G, t) is the number of different kinds
of features seen in that group (e.g., DOG and
CAT are two different feature types from the same
group) up through time t. In this way, the P ut of a
feature that occurs in a group with more observed
feature types is higher than the P ut in a group with
fewer observed types.

Thus both the type frequency of features in G
and their token frequency of co-occurrence with
word wj will influence – the first positively and
the second negatively – how readily wj can refer
to objects with previously unseen features from G.

5 Experimental Set-up

We model X&T’s behavioural experiments with
our computational word learner as extended
above.3 Following X&T, we use a three-tiered cat-
egory hierarchy, and the four training conditions
and assessment of three types of test matches as
described in Figure 1.

Training the model. In each condition, the
model processes a sequence of 3 utterance-scene
pairs, and updates Pt(fi|wj) after each pair using
Eqns. (5) and (6). The utterance-scene pair in each
trial consists of the novel word coupled with the
scene representation of a training object from the

3Link to our code/data: github.com/eringrant/
word_learning/tree/hypothesis-space.
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category hierarchy. The object’s scene representa-
tion is given as a set of four features, each taken
from one of four feature groups: one feature cor-
responding to each of the subordinate, basic, and
superordinate levels of the hierarchy, and a unique
“instance” feature, as shown in Table 1. (The “in-
stance” feature is added to simulate the variations
in the different objects of the same subordinate
category in the X&T experiments.)

1 U: { fep }
S: { INSTANCE1, DALMATIAN, DOG, ANIMAL }

2 U: { fep }
S: { INSTANCE2, TABBY, CAT, ANIMAL }

3 U: { fep }
S: { INSTANCE3, POLAR BEAR, BEAR, ANIMAL }

Table 1: An example of a sequence of utterance-scene pair
trials in the 3-super. condition.

Testing the model. After training on a novel
word, in order to assess its level of generaliza-
tion within the category hierarchy, we compare
the model’s learned meaning of the word to test
objects that constitute various types of matches to
the training conditions: i.e., subordinate matches,
basic-level matches, and superordinate matches.
Table 2 gives an example of each type of match:

subord.: { INSTANCE4, DALMATIAN, DOG, ANIMAL }

basic: { INSTANCE5, POODLE, DOG, ANIMAL }

super.: { INSTANCE6, TOUCAN, BIRD, ANIMAL }

Table 2: An example of each level match from the test ob-
jects, given the training condition in Table 1.

To assess whether the model generalizes the
learned meaning of a word w to the various types
of test matches, we first consider the probability of
a test object Y at time t given the learned meaning
of w:

Pt(Y |w) =
∏
yi∈Y

Pt(yi|w) (8)

where yi are the features in Y , and Pt(yi|w) is
calculated using Eqn. (5) for features yi observed
with w during training, and using Eqn. (6) for yi
not observed with w. (Recall that Eqn. (5) reduces
to Eqn. (6) when a feature has not been seen with
the word.) From Pt(Y |w), we subtract the predic-
tive probability of the test object before the model
has observed any data, P0(Y |w), which gives us
its increase in preference attributable to the word

learning trials.4

Calculating Pt(Y |w)−P0(Y |w) is informative
about one test object, but we need to measure gen-
eralization of the learned word to all the objects of
a certain type of match – i.e., subordinate, basic-
level, or superordinate. We formulate the proba-
bility of generalization to a type of test match as
the relative average increase in preference for test
items of that type of match, using the Shepard-
Luce choice rule (Shepard, 1958; Luce, 1959):

Pgen(m|w) =
avgY ∈m [Pt(Y |w)-P0(Y |w)]∑

m′
avgY ′∈m′ [Pt(Y ′|w)-P0(Y ′|w)]

where m is the set of test objects at a certain level
of match, andm′ ranges over subordinate matches,
basic-level matches, and superordinate matches.

Using Pgen(m|w) to communicate our models
results has the advantage of using the learned word
meanings in a very direct way to assess the pref-
erence for the various types of test matches in the
X&T experiments. However, the disadvantage is
that this measure is not directly comparable to the
reported figures from the human data, which are
the percentage of test objects selected of a particu-
lar type of match. Hence, in presenting our results
below, we focus on the general patterns of prefer-
ences indicated by the different measures.
Parameters. To model children, whom we as-
sume to have no bias towards generalization to
specific category levels, we equate all parameters
k G and γ G across all feature groups, reflecting that
all category levels are treated equivalently. Here
we use values of k G = 100 and initial values
of γ G = 0.5 for all G as the “child” parame-
ter settings.5 In contrast, we assume that adults,
through word learning experience, have accumu-
lated biases that reflect observed differences in
feature groups. More specifically, we assume that
the probability of observing a new feature for a
group G depends on the degree of specificity of
that group: That is, over time, it is less likely to ob-
serve a completely new kind of animal, e.g., than a
new breed of dog. We simulate these biases by us-

4P0(Y |w) =
∏
G

1
kG

is the prior probability of any object
instance, given parameters drawn from the Dirichlet prior, be-
cause Eqn. (6) yields the value 1

kG
when all assoct scores are

0 – i.e., no features from G have been observed with the word.
5To determine the parameters for the “child” learner, we

examined a number of settings with equal parameter values
for all the feature groups, and observed similar results in these
settings. (We did not perform an exhaustive search over the
parameter space.)
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ing various values for the parameter γ G, which de-
termines the prior probability of a word being ob-
served with new (previously unseen) features in G
(cf. Eqn. (6)). We assume that the expected num-
ber of features (k G) is the same across groups. We
perform a non-exhaustive search on the parameter
space of γ G to select a set of values that yield the
patterns of X&T’s adult experiments. The “adult”
parameter values are given in Table 3:6

γ inst = 1.2 γ subord = 1.0 γ basic = 0.5 γ super = 0.2

k inst = 100 k subord = 100 k basic = 100 k super = 100

Table 3: “Adult” parameter settings.

6 Experimental Results

We present results of the model using both child
settings (Figure 3b) and adult settings (Figure 3a).
Recall that these values do not correspond to the
percentages reported in the human data; to evalu-
ate the patterns of generalization, we look at the
relative preference for the various types of test
match. Note also that since the generalization
probabilities sum to 1.0 within each of the 4 train-
ing conditions, we can only compare the pattern of
generalization across conditions (and not the ac-
tual value of the probabilities).

We discuss each of the child and adult sets of
results in detail below.

6.1 The Child Learner
Recall that in the simulations of a child, we use
equal values across all feature groups for the k G
and initial γ G parameter settings, to reflect that the
learner has no bias towards generalization to spe-
cific category levels.

Looking at the results in Figure 3b, we can see
that the child learner generally replicates the pat-
terns of results observed in X&T’s experiment on
children (cf. Figure 2b). Given multiple training
items (the 3-subord., 3-basic, and 3-super. con-
ditions), the model, like children, generalizes to
the lowest level category in the hierarchy that is
consistent with the training items, roughly equally
preferring items from that category or lower, with
slight preference for the lower categories. In con-
trast, after seeing a single training example (the

6For a certain range of such parameter settings – i.e., with
gradually decreasing γ G , which determines the prior proba-
bility of a word being observed with new (previously unseen)
features in G (cf. Eqn. (6)). for feature groups at successively
higher levels in the hierarchy — the model produces similar
results to the presented adult learner.

(a) Adult data:
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(b) Child data:
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Figure 3: Our model data for (a) adults and (b) children.
Each bar is the probability of a type of test match: i.e., sub-
ord(inate), basic(-level), or super(ordinate).

1-ex. condition), the model shows some tendency
to generalize to the basic-level, demonstrating a
small but notable basic-level bias — e.g., the ten-
dency to consider the word as referring to any dogs
(but less so to other animals) after seeing just a
single example of a particular kind of dog. As in
children, the difference in the model between the
preference for subordinate vs. basic-level matches
is much smaller when trained on 1 instance as op-
posed to 3 subordinates. (In Figure 3b, compare
the difference between the 1st bar [subord. match]
and 2nd bar [basic match] of the 1-ex. training
condition to that of the 3-subord. training condi-
tion.)

Interestingly, our child learner exhibits the ob-
served basic-level bias in the absence of any dif-
ference in the model in how it treats different cat-
egory levels. The observed pattern arises from a
type/token frequency interaction of the kind often
noted to influence generalization of linguistic cate-
gories (e.g., Bybee, 1985; Croft and Cruse, 2004):
here, the interaction between the token frequency
of word–feature pairs in the input and the type
frequency of different features within a group of
dependent features. For example, having seen 3
types of animals (“3 super.” condition), the model
can readily accommodate that fep refers to another
kind of animal, in contrast to the “3 basic” con-
dition, where it has seen the same number of to-
kens but only a single feature type from the feature
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group at that level (3 dogs). We can also clearly
see the inverse impact of token frequencies on gen-
eralization: the more examples of a single subor-
dinate type are seen, the less the model accepts
that fep refers to a different kind of subordinate
(the “3-subord.” vs. “1-ex.” conditions). That is,
with only 1 token of DALMATIAN, the model can
generalize to other types of dogs more readily than
when it has seen 3 tokens of DALMATIAN.

In general, interactions between the type and to-
ken frequencies of the different feature groups in-
teract to yield the observed patterns in the model.
These results indicate that properties of the input
data coupled with the model’s handling of feature
groups can account for children’s word general-
ization behaviour, without the need for an explicit
basic-level bias.

6.2 The Adult Learner
Adult participants in X&T exhibited a stronger
tendency than children to generalize to the basic-
level category, especially after seeing a single ex-
emplar. We explore whether the model can simu-
late an adult learner as well. As discussed in Sec-
tion 5, by varying the parameters γ G , we can in-
corporate biases towards different category levels
that we assume an adult has learned. More specif-
ically, we set γ G to successively larger values for
more specific feature groups G, to ensure succes-
sively greater generalization in lower levels of the
hierarchy (see Table 3). As shown in Figure 3a,
our model (using such settings of the parameters)
replicates the patterns of X&T’s adult experiments
(cf. Figure 2a), including a stronger basic-level
bias than that shown by children. That is, in the
1-ex. and 3-subord. conditions, the difference be-
tween the 1st bar [subord. match] and 2nd bar [ba-
sic match] is smaller for the adult settings of the
model (Figure 3a) than for the child settings (Fig-
ure 3b), mimicking the stronger basic-level bias
found in adults.

6.3 Variations in Basic-level Generalization
Research shows that people’s degree of basic-level
generalization depends on the overall category of
the objects. Specifically, Abbott et al. (2012) per-
form the same set of experiments as X&T on
adults, exploring three additional superordinate
categories (clothing, containers, and seats). Their
results are shown in Figure 4; for space reasons,
we focus here on the training conditions with 1-
example or 3-subordinates, which are the locus

of the basic-level effect. The results show that
people exhibit no basic-level generalization for
containers, moderate generalization for clothing,
and strong generalization for seats (compare Fig-
ures 4a, 4b and 4c).

Interestingly, the computational experiments of
Abbott et al. (2012) also reveal that the Bayesian
model of X&T mimics varying levels of basic-
level generalization in the 1-example cases, but
does not capture the differences that people exhibit
across the categories in the 3-subordinate condi-
tion (compare “3 subord.” in Figures 4 and 5):
unlike people, here the X&T model does not ex-
hibit basic-level generalization for any of the cate-
gories.

Abbott et al. (2012) note that a domain like con-
tainers may not follow a “natural taxonomy” in
having a clear basic-level category. This sugges-
tion is compatible with our view that a basic-level
bias arises in response to the particular pattern
of co-occurrence of features across the category
hierarchy. We looked more closely at the train-
ing stimuli of their experiment, and observe that
the examples of the category “containers” (with
the least basic-level generalization) vary greatly,
while those of “clothing” and “seats” are less dif-
ferentiated. Examples from “containers” include a
cigar box, trash can, and mailbox, whereas “seats”
are restricted to different types of chair (such as a
dining chair and an armchair; see Table 1 in Ab-
bott et al. (2012)).

Based on this observation, we hypothesize that
people generalize less to a basic-level category
when their mental representations for that cat-
egory’s instances have more distinguishing fea-
tures. Specifically, we assume that people dif-
ferentiate the given instances of the category
“containers” more than those for “clothing” and
“seats”. We model this difference in the granu-
larity of representations by varying the number of
feature groups used in representing an object. Re-
call that in our earlier experiments, each object
was represented as a set of features drawn from
4 different feature groups. We take this represen-
tation as the least fine-grained representation and
use it for the category “seats”. We assume that the
objects from the categories “clothing” and “con-
tainers” (that exhibit less basic-level generaliza-
tion) are represented with more feature groups (8
and 12, respectively).

Figure 6 shows the results of running our model
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Figure 4: Abbott et al. (2012) subject response data.
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Figure 5: Abbott et al. (2012) model data.

on these three categories using the “adult” pa-
rameter settings. As expected, the generalization
to the basic-level category is high for the least
distinguished category “seats”, moderate for the
category “clothing”, and low for the most distin-
guished category “containers”.7

Our results suggest that the observed varia-
tion across categories in basic-level generalization
could arise from differences in the granularity of
representations of categories. This is particularly
interesting since the model of X&T, despite encod-
ing an elaborated taxonomy, does not capture the
observed behaviour across all training conditions.

7 Conclusions

A key challenge faced by children in vocabulary
acquisition is learning which of many possible
meanings is appropriate for a word, based largely
on ambiguous situational evidence. One aspect
of this is what we term the “word generalization”
problem, which refers to how children associate a
word such as dog with a meaning at the appropri-
ate category level in a taxonomy of objects, such
as Dalmatians, dogs, or animals.

We present extensions to a cross-situational
learner that enable the first computational study
of word generalization that is integrated within a
word learning model. The model mimics child
behavior found by Xu and Tenenbaum (2007):
it shows a “basic-level” bias – a preference for
word meanings that refer to basic-level objects
(like dogs), in contrast to higher-level (animals) or
lower-level (Dalmatians) categories – and does so

7Similar results obtain using “child” parameter settings,
but (as expected) the basic-level generalization is lower.
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Figure 6: Data from our model.

under parameter settings that treat all levels of cat-
egory the same in the model (i.e., with no built-in
basic-level bias). Other (unequal) parameter set-
tings, which could reflect learned knowledge lead-
ing to differential treatment of categories, yield
behavior that mimics that of adults, who show
a stronger basic-level bias. Moreover, similarly
to people (Abbott et al., 2012), our model ex-
hibits variations in generalization to the basic level
for different types of objects, a behavior that the
model of Xu and Tenenbaum (2007) does not fully
replicate.

Overall, the results of our model arise from the
interaction of type and token frequencies of fea-
tures in the input data, which impact the model’s
evolving word representations. This mechanism
in the model captures the type-token influence of-
ten observed to underlie people’s generalization of
linguistic categories – i.e., their linguistic produc-
tivity (e.g., Bybee, 1985; Croft and Cruse, 2004).

One shortcoming of the current model is its
built-in ability to “detect” in the input that DOG

and CAT features are more specific than ANIMAL

features. The next step is to consider how the
model might learn these relationships from its
evolving knowledge of co-occurring features.

Finally, a similar problem to that of word gen-
eralization in humans arises in computational lin-
guistics: how to appropriately generalize a set of
concepts to an overarching concept that subsumes
the set. For example, this problem underlies one
way to determine the selectional preferences of a
verb: extract the set of nouns that occur as objects
of the verb, map them to the concept nodes in a hi-
erarchy such as WordNet, and then determine the
best overarching WordNet category for capturing
the salient properties of the object nouns overall
(e.g., Li and Abe, 1998; Clark and Weir, 2001).
An interesting future direction is to explore how
an extension of our work can be applied to such
problems in computational linguistics.
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“Always be yourself, unless you can
be Batman. Then always be Batman.”

– Bill Murray

Abstract

This study focuses on personality predic-
tion of protagonists in novels based on
the Five-Factor Model of personality. We
present and publish a novel collaboratively
built dataset of fictional character person-
ality and design our task as a text classifi-
cation problem. We incorporate a range
of semantic features, including WordNet
and VerbNet sense-level information and
word vector representations. We evalu-
ate three machine learning models based
on the speech, actions and predicatives of
the main characters, and show that espe-
cially the lexical-semantic features signifi-
cantly outperform the baselines. The most
predictive features correspond to reported
findings in personality psychology.

1 Introduction

Recent progress in NLP has given rise to the field
of personality profiling - automated classification
of personality traits based on written, verbal and
multimodal behavior of an individual. This re-
search builds upon findings from classical person-
ality psychology and has applications in a wide
range of areas from medicine (suicide prevention)
across security (forensics, paedophile detection,
cyberbullying) to marketing and sales (recommen-
dation systems, target group profiles). The gold
standard labels for an objective evaluation of per-
sonality are mostly obtained by means of personal-
ity tests of the Five Factor Model (FFM) (McCrae
and Costa, 1987; Goldberg, 1990), which is well-
known and widely accepted in psychology and
other research fields. The FFM defines personality

along five bipolar scales: Extraversion (sociable
vs. reserved), Emotional stability (secure vs. neu-
rotic), Agreeableness (friendly vs. unsympathic),
Conscientiousness (organized vs. careless) and
Openness to experience (insightful vs. unimagi-
native). Psychologists have shown that these five
personality traits are stable across individual lifes-
pan, demographical and cultural differences (John
and Srivastava, 1999) and affect many life aspects.
(Terracciano et al., 2008; Rentfrow et al., 2011).

It has been shown that the personality traits of
readers impact their literature preferences (Tirre
and Dixit, 1995; Mar et al., 2009). Psychology
researchers also found that perceived similarity
is predictive of interpersonal attraction (Montoya
et al., 2008; Byrne, 1961; Chartrand and Bargh,
1999). More explicitly, recent research (Kaufman
and Libby, 2012) shows that readers of a narrative
develop more favorable attitudes and less stereo-
type application towards a character, if his differ-
ence (e.g. racial) is revealed only later in the story.
We therefore hypothesize that readers might have
a preference for reading novels depicting fictional
characters that are similar to themselves. Finding a
direct link between reader’s and protagonist’s per-
sonality traits would advance the development of
content-based recommendation systems. As a first
step to explore this hypothesis further, it needs to
be determined if we are able to construct a per-
sonality profile of a fictional character in a similar
way as it is done for humans, and which aspects
of personality profiling can be exploited to autom-
atize such procedure.

In this paper, we open this research topic by
presenting a novel collaboratively built dataset
of fictional character personality in Section 3,
which we make available on our website.1 Fram-
ing the personality prediction as a text classifica-
tion task, we incorporate features of both lexical-

1https://www.ukp.tu-darmstadt.de/data/
personality-profiling/
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resource-based and vector space semantics, in-
cluding WordNet and VerbNet sense-level infor-
mation and vectorial word representations. We
evaluate three machine learning models based on
the speech (Section 4), actions (Section 5) and
predicatives (Section 6) of the protagonists, and
show that especially on the direct speech and
action data the lexical-semantic features signifi-
cantly outperform the baselines. Qualitative anal-
ysis reveals that the most predictive features corre-
spond to reported findings in psychology and NLP.

2 Related work

Research in the the area of content-based recom-
mendation systems have shown that incorporat-
ing semantic information is valuable for the user
and leads to measurable improvements (Passant,
2010; Di Noia et al., 2012; Heitmann and Hayes,
2010). De Clercq et al. (2014) incorporated se-
mantic frames from FrameNet into the recommen-
dation system for books. They represent the plot
of each book with a sequence of ca. 200 seman-
tic frames and has shown that the frame informa-
tion (such as Killing - Revenge - Death) outper-
forms the bag-of-words approach.Recent NLP ex-
periments begin to reveal the importance of entity-
centric models in a variety of tasks. Chambers
(2013) show improvement in event schema induc-
tion by learning entity-centric rules (e.g., a victim
is likely to be a person). Bamman et al. (2014) and
Smith et al. (2013) present latent variable models
for unsupervised learning of latent character types
in movie plot summaries and in English novels,
taking authorial style into account. However, even
the state-of-the-art NLP work rather describes per-
sonas of fictional characters by their role in the
story - e.g., action hero, valley girl, best friend,
villain etc. - or by their relations to other char-
acters, such as mother or daughter (Elson et al.,
2010; Kokkinakis and Malm, 2011), rather than
by their inner preferences and motivations. It is
important to note here that determining a person-
ality of a character is a very different task from
determining its role in the story. Psychological
understanding of personality, in contrast to role at-
tribution requires a certain detached objectivity -
even outright villains may have traits considered
desirable in real life. For example, the devil has
in many tales a very high aspiration level, appear-
ing highly conscientious and agreeable. We hy-
pothesize that these deeper personality aspects are

those which drive reader’s affiliation to the char-
acter, thus deserve to be examined closer.

Also literary scholars formulate ad hoc person-
ality descriptions for their experiments, for exam-
ple to test hypotheses from evolutionary psychol-
ogy (Johnson et al., 2011) or examine fictional
portrayals of physicists (Dotson, 2009). These de-
scriptions are usually adjusted to the experiment
focus (e.g. emotions, relationships, ambitions).
As McCrae et al. () point out, a standard set of
personality traits, that encompass the full range of
characteristics found in all characters in literature
(p.77), is needed for a better comparison.

Hence we base our present study primarily on
the previous NLP research on personality predic-
tion of human individuals. Correlations between
lexical and stylistic aspects of text and the five
FFM personality traits of the author have been
found in numerous experiments, with extraver-
sion receiving the most attention (Pennebaker and
King, 1999; Dewaele and Furnham, 1999; Gill and
Oberlander, 2002; Mehl et al., 2006; Aran and
Gatica-Perez, 2013; Lepri et al., 2010). The LIWC
lexicon (Pennebaker et al., 2001) established its
position as a powerful mean of such analysis.

The first machine learning experiments in this
area were conducted by Argamon et al. (2005),
Oberlander and Nowson (2006) and Mairesse
et al. (2007). Researchers predicted the five
personality traits of the authors of stream-of-
conscientiousness essays, blog posts and recorded
conversation snippets. Given balanced data sets,
Mairesse et al. (2007) report binary classification
accuracy of 50-56% on extraversion in text and
47-57% in speech, using word ngrams, LIWC,
MRC psycholinguistic database (Coltheart, 1981)
and prosodic features. Additional improvement
is reported when the extraversion was labeled by
external judges rather than by self-testing. Ex-
tended studies on larger datasets achieve accu-
racies around 55% (Nowson, 2007; Estival et
al., 2007). More recent work in this area fo-
cuses on the personality prediction in social net-
works (Kosinski et al., 2013; Kosinski et al.,
2014) and multimodal personality prediction (Biel
and Gatica-Perez, 2013; Aran and Gatica-Perez,
2013). These trends emphasized the correlation of
network features and audiovisual features with ex-
traversion, giving rise to the Workshop on Compu-
tational Personality Recognition (for an overview
see (Celli et al., 2013; Celli et al., 2014).
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3 Data set construction

Traditionally, the gold standard for this supervised
classification task is obtained by the means of per-
sonality questionnaires, used for the Five-Factor
Model, taken by each of the individuals assessed.
This poses a challenge for fictional characters.
However, strong correlations have been found be-
tween the self-reported and perceived personality
traits (Mehl et al., 2006). Our gold standard bene-
fits from the fact that readers enjoy discussing the
personality of their favourite book character on-
line. A popular layman instrument for personal-
ity classification is the Myers-Brigggs Type Indi-
cator (Myers et al., 1985), shortly MBTI, which
sorts personal preferences into four opposite pairs,
or dichotomies, such as Thinking vs. Feeling or
Judging vs. Perceiving. While the MBTI validity
has been questioned by the research community
(Pittenger, 2005), the Extraversion scale is show-
ing rather strong validity and correlation to similar
trait in the Five-Factor Model (McCrae and Costa,
1989; MacDonald et al., 1994). Our study hence
focuses on the Extraversion scale.

Our data was collected from the collabora-
tively constructed Personality Databank2 where
the readers can vote if a book character is, among
other aspects, introverted or extraverted. While the
readers used codes based on the MBTI typology,
they did not apply the MBTI assessment strate-
gies. There was no explicit annotation guideline
and the interpretation was left to readers’ intuition
and knowledge.3 This approach of gold standard
collection has several obvious drawbacks. First,
the question is posed as dichotomic, while in real-
ity the extraversion is a normally distributed trait
in human population (Goldberg, 1990). Second,
users can view the vote of previous participants,
which may influence their decision. While we ad-
dress both of these issues in our ongoing data col-
lection project based on the Five-Factor Model, we
consider them acceptable for this study due to the
exploratory character of our pilot research.

We have collected extraversion ratings for 298
book characters, of which 129 (43%) are rather ex-
traverted and 166 (56%) rather introverted. Rated

2http://www.mbti-databank.com/
3MBTI defines extraversion as “getting energy from ac-

tive involvement in events, having a lot of different activities,
enjoying being around people.” In the NEO Five-Factor In-
ventory (Costa and McCrae, 1992), underlying facets of ex-
traversion are warmth, gregariousness, assertiveness, activity,
excitement seeking and positive emotion.

characters come from a wide range of novels that
the online users are familiar with, often covering
classical literature which is part of the high school
syllabus, as well as the most popular modern fic-
tion, such as the Harry Potter series, Twilight, Star
Wars or A Game of Thrones. A sample of the most
rated introverts and extraverts is given in table 1.
The rating distribution in our data is strongly U-
shaped. The percentage agreement of voters in our
data is 84.9%, calculated as:

P =
1
N

N∑
i=1

k∑
j=1

nij(nij − 1)
n(n− 1)

where k = 2 (introvert, extravert), N is the num-
ber of book characters and n the number of votes
per character. Voters on the website were anony-
mous and cannot be uniquely identified for addi-
tional corrections. There is no correlation between
the extraversion and the gender of the character.

Character Book E I
Tyrion Lannister Game of Thrones 52 1
Cersei Lannister Game of Thrones 48 7
Joffrey Baratheon Game of Thrones 41 1
Ron Weasley Harry Potter series 37 4
Jamie Lannister Game of Thrones 38 9
Draco Malfoy Harry Potter series 33 4
Anakin Skywalker Star Wars series 30 6
Robert Baratheon Game of Thrones 28 2
Gimli Lord of the Rings 19 2
Jar Jar Binks Star Wars series 12 2
Harry Potter Harry Potter series 1 71
Severus Snape Harry Potter series 1 65
Gandalf Lord of the Rings 1 59
Yoda Star Wars series 0 58
Jon Snow Game of Thrones 1 47
Albus Dumbledore Harry Potter series 4 46
Ned Stark Game of Thrones 0 41
Aragorn Lord of the Rings 1 41
Frodo Lord of the Rings 1 40
Bran Stark Game of Thrones 1 36

Table 1: Extraverts (E) and introverts (I) with the highest
number of user votes.

Our set of English e-books covered 220 of the
characters from our gold standard. We have built
three systems to assess the following:

1. Direct speech: Does the style and content of
character’s utterances predict his extraversion
in a similar way as it was shown for living
individuals?

2. Actions: Is the behavior, of which a character
is an agent, predictive for extraversion?

3. Predicatives and adverbs: Are the explicit
(John was an exhibitionist) or implicit (John
shouted abruptly) descriptions of the charac-
ter in the book predictive for extraversion?
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In the next three sections we present the experi-
mental settings and results for each of the systems.

4 Direct speech of fictional characters

The system for the direct speech resembles the
most to the previous systems developed for author
personality profiling, e.g. on stream of conscious-
ness essays (Mairesse et al., 2007) or social media
posts (Celli et al., 2013) and therefore provides
the best opportunity for comparison between hu-
man individuals and fictional characters. On top
of the comparison to previous research, we exploit
the sense links between WordNet and VerbNet to
extract additional features - an approach which is
novel for this type of task.

4.1 Extraction and assignment of speech

We process the book text using freely available
components of the DKPro framework (Gurevych
et al., 2007). The most challenging task in build-
ing the direct speech data set is assigning to the di-
rect speech utterance the correct speaker. We ben-
efit from the epub format of the e-books which
defines a paragraph structure in such a way, that
only the indirect speech chunk immediately sur-
rounding the direct speech can be considered:

<p> John turned to Harry.
"Let’s go," he said.</p>

Given the large amount of text available in the
books we focus on precision and discard all utter-
ances with no explicit speaker (i.e., 30-70% of the
utterances, dependent on the book), as the perfor-
mance of current systems on such utterance types
is still fairly low (O’Keefe et al., 2012; He et al.,
2013; Iosif and Mishra, 2014). Similarly, conven-
tional coreference resolution systems did not per-
form well on this type of data and were therefore
not used in the final setup. We adapt the Stanford
Named Entity Recognizer(Finkel et al., 2005) to
consider titles (Mr., Mrs., Sir...) as a part of the
name and to treat the first person I as a named en-
tity. However, identifying only the named entity
PERSON in this way is not sufficient. On our eval-
uation sample consisting of A Game of Thrones
and Pride and Prejudice books (the former anno-
tated by us, the latter by He et al. (2013)), 20%
of utterances with explicit named speaker were
not recognized. Of those correctly identified as a
Person in the adjacent indirect speech, 17% were
not the speakers. Therefore we implemented a

custom heuristics (Algorithm 1), which addition-
ally benefits from the WordNet semantic classes
of verbs, enriching the speaker detection by grab-
bing the nouns . With this method we retrieve
89% of known speakers, of which 92% is assigned
correctly. Retrieved names are grouped based on
string overlap (e.g. Ser Jaime and Jaime Lannis-
ter), excluding the match on last name, and cor-
rected for non-obvious groupings (such as Mar-
garet and Peggy).
Algorithm 1 Assign speaker
1: nsubj← subjects in adjacent indirect speech
2: if count(nsubj(i) = PERSON) = 1 then speaker ←
nsubj

3: else if count(nsubj(i) = PERSON) ≥ 1 then
speaker ← the nearest one to directSpeech

4: else if directSpeech preceded by
VERB.COMMUNICATION then speaker ← the
preceding noun(s)

5: else if directSpeech followed by
VERB.COMMUNICATION then speaker ← the
following noun(s)

6: else if directSpeech followed by gap &
VERB.COMMUNICATION then speaker ← the noun(s)
in gap

7: else if directSpeech preceded by gap &
VERB.COMMUNICATION then speaker ← the noun(s)
in gap
return speaker

Our experimental data consists of usable direct
speech sets of 175 characters - 80 extraverts (E)
and 95 introverts (I) - containing 289 274 words in
21 857 utterances (on average 111 utterances for
E and 136 for I, as I are often central in books).4

4.2 Classification approach for direct speech

All speech utterances of one book character are
represented as one instance in our system. We
use the leave-one-out classification setup due to
the relatively small dataset size, using the support
vector machines (SVM-SMO) classifier, which
performs well on comparable tasks (Celli et al.,
2013). The classification is performed through the
DKPro TC Framework (Daxenberger et al., 2014).

Lexical features As a bottom-up approach we
use the 1000 most frequent word uni-, bi- and tri-
grams, 1000 dependency word pairs, 1000 charac-
ter trigrams and 500 most frequent verbs, adverbs,
adjectives and interjections as binary features.

Semantic features Since the top-down ap-
proach, i.e. not focusing on individual words, has

4The data set size is comparable to ongoing personality
profiling challenges - see http://pan.webis.de
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been found more suitable for the personality pro-
filing task on smaller data sets (Celli et al., 2013),
we aim on capturing additional phenomena on a
higher level of abstraction. The main part of our
features is extracted on sense level. We use the
most frequent sense of WordNet (Miller, 1995)
to annotate all verbs in the direct speech (a sim-
ple but well performing approach for books). We
then label the disambiguated verbs with their se-
mantic field given in WordNet (WordNet defines
14 semantic classes of verbs which group verbs
by their semantic field) and we measure frequency
and occurence of each of these classes (e.g. cogni-
tion, communication, motion, perception)5. Ad-
ditionally, we use the lexical-semantic resource
UBY (Gurevych et al., 2012) to access the Word-
Net and VerbNet information, and to exploit the
VerbNet sense-level links which connects Word-
Net senses with the corresponding 273 main Verb-
Net classes (Kipper-Schuler, 2005). These are
more fine-grained (e.g. pay, conspire, neglect, dis-
cover) than the WordNet semantic fields. WordNet
covered 90% and VerbNet 86% of all the verb oc-
curences.

On word level, we extract 81 additional fea-
tures using the Linguistic Inquiry and Word Count
(LIWC) tools (Pennebaker et al., 2001), which
consists of lexicons related to psychological pro-
cesses (cognitive, perceptual, social, biological,
affective) and personal concerns (achievement, re-
ligion, death...) and other categories such as fillers,
disfluencies or swear words6. Additionally, since
emotion detection has been found predictive in
previous personality work (Mohammad and Kir-
itchenko, 2013), we measure overall positive and
negative sentiment expressed per character, using
SentiWordNet (Esuli and Sebastiani, 2006) and
NRC Emotion Lexicon (Mohammad and Turney,
2010) for the word lookup, inverting sentiment
scores for negated dependency sub-tree given by
the Stanford Parser.

Stylistic features Features of this group cap-
ture the syntactic and stylistic properties of the ut-
terances of a character, disregarding the content.
Starting from the surfacial properties, we measure
the sentence, utterance and word length, including
the proportion of words shorter than 4 or longer
than 6 letters, frequency of each punctuation mark,

5https://wordnet.princeton.edu/man/
lexnames.5WN.html

6For complete overview refer to www.liwc.net

and endings of each adjective as per Corney et al.
(2002). On the syntax level we measure the fre-
quency of each part of speech as well as the 500
most frequent part-of-speech bi-, tri- and quadri-
grams, and the frequency of each dependency ob-
tained from the Stanford Parser. We additionally
capture the frequency of superlatives, compara-
tives and modal verbs, the proportion of verbs in
present, past and future tense, and the formality of
the language as per the part-of-speech-based for-
mality coefficient (Heylighen and Dewaele, 2002),
and measure the average depth of the parse trees.

Word embeddings as features Since vector
space semantics has been beneficial for predicting
author’s personality in previous work (Neuman
and Cohen, 2014), we use a pre-trained word vec-
tor model created by the GloVe algorithm (Pen-
nington et al., 2014) on English Wikipedia. GloVe
employs a global log-bilinear regression model
that combines the advantages of the global matrix
factorization and local context window methods.
We assign the resulting 300-dimensional vectors
to the words in character’s direct speech, exclud-
ing stopwords, and calculate an average vector for
each character. We calculate for each test charac-
ter the cosine similarity to the mean vector of ex-
travert, resp. introvert, in the training data, and to
each character in the training set individually us-
ing the DL4J NLP package7. We consider both the
final scalar outcome and the difference of each of
the individual vector dimensions as features.

4.3 Classification results on direct speech
Table 2 shows the precision, recall, F1-score and
accuracy for extraversion and introversion as a
weighted average of the two class values.

ID Feature set P R F A
1 - (baseline) .295 .543 .382 .543
2 Ngrams .519 .514 .515 .514
3 LIWC .555 .560 .552 .560
4 WordNet .527 .548 .528 .548
5 VerbNet .649 .617 .572 .617
6 Style .560 .581 .558 .581
7 Sentiment .524 .543 .419 .543
8 Vectors .295 .543 .382 .543
9 All .550 632. .588 .632
Percentage human agreement: .849

Table 2: Weighted precision (P), recall (R), F-score (F) and
accuracy (A) for a direct speech system, in each line us-
ing only the given group of features. WordNet stands for
WordNet semantic labels, VerbNet setup uses the WordNet-
VerbNet links to retrieve VerbNet labels. Highlighted F-
scores differ from the majority baseline significantly
(p <0.05), using an approximate randomization test.

7http://deeplearning4j.org/
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Introvert
Feat.group Features Merit
unigrams reason, trouble, strange, indeed .24-.19
bigrams this time, tell me, I hope .19-.16
LIWC Negate, Discrepancy,

Insight, Exclusion .18-.13
WordNet stative, creation, cognition .15-.09
VerbNet lodge, hunt, defend .23-.19
Style modal verbs, neg, sbar, articles .19-.14
Extravert
Feat.group Features Merit
ngrams we, hurry, fat, dirty .24-.19
LIWC We, Inclusion, Pronoun, Body .18-.09
WordNet motion, contact, communication,

body, perception, change .14-.07
VerbNet get, talk, substance emission .18-.15
Style pronoun We, whadjp,

type-token ratio., interjections .20-.14

Table 3: The most predictive features for each group for
speaker’s extraversion and introversion. Correlation merit,
as per the correlation feature selection in WEKA, evaluates
Pearson’s correlation between the feature and the class

Similarly to previous research (Mairesse et al.,
2007; Celli et al., 2013), the bottom-up word
based approach is outperformed by top-down se-
mantic approaches which employ a more abstract
feature representation. As in previous work,
LIWC features exhibit good performance. How-
ever, the highest performance is achieved employ-
ing the VerbNet verb classes with WordNet word-
sense disambiguation. Also stylistic features con-
tribute substantially to the classification despite
the mixture of genres in our book corpus - es-
pecially frequencies of modal verbs and part-of-
speech ratios were particularly informative. The
most predictive features from each group are listed
in Table 3 together with their correlation merit
(Hall, 1999), and compared with previous work in
Table 4.

Feature I/E Ref Feature I/E Ref
Predictive also in our data: No effect in our data:
Pronoun ’we’ -/+ [3] Neg. emot. +/- [1]
Tentative, unsure +/- [1] Pos. emot. -/+ [1]
Exclusive +/- [1] Self-ref. -/+ [1]
Inclusive -/+ [1] Formality +/- [2]
Insight +/- [1] Elaborated +/- [3]
Nouns, articles +/- [2] Long sent. +/- [3]
Lexical richness +/- [2] Social -/+ [3]
Negations +/- [2]
Body functions -/+ [2]
Interjections -/+ [3]

Source ID Author
[1] Pennebaker and King (1999)
[2] Dewaele and Furnham (1999)
[3] Mairesse et al. (2007)

Table 4: Comparison of our results to previously reported
predictive features for speaker’s extraversion (E), resp. intro-
version (I). We list publications where these features were, to
our knowledge, reported as novel.

In accordance with the experiments of Pen-
nebaker and King (1999), we observe more fre-
quent exclusions (e.g. without, but), hedging and
negation expressed by introverts, and inclusion
(e.g. with, and) by extraverts. Extraverts talk more
in first person plural, use more back-channels and
interjections, and talk more about aspects related
to their body. Introverts show more rationalization
through insight words and more factual speech us-
ing less pronouns.

Additionally, the semantic features in Table 3
confirm the broad psychological characteristics of
both types in general, i.e., for introverts the ra-
tionalization, uncertainty and preference for indi-
vidual or rather static activities, and for extraverts
their spontaneity, talkativeness and preference for
motion. Furthermore, we observe certain direct-
ness in extraverts’ speech - note the predictive
words fat and dirty and frequent descriptions of
body functions.

Discussion Exploiting the links between lexical-
semantic resources (performing WordNet word-
sense disambiguation and using VerbNet verb
classes linked to the disambiguated senses) was
particularly beneficial for this task. WordNet
semantic fields for verbs alone are too coarse-
grained to capture the nuances in direct speech,
and experiments with fine-grained VerbNet classes
without WSD resulted in noisy labels. We did not
confirm the previously reported findings on emo-
tional polarity - we observe that the genre of the
books (e.g. love romance vs horror story) have
blurred the subtle differences between individual
characters, unfortunately the dataset size did not
allow for genre distinctions. Furthermore, a per-
ceived extravert in our case can be a pure villain
(Draco Malfoy, Joffrey Baratheon...) as well as a
friendly companion (Gimli, Ron Weasley...), while
the evil extravert types are possibly rarer in the ex-
periments on human writing, or are more likely to
fit under the MBTI definition of extraversion than
FFM facets. Another potential cause, based on the
error analysis, is the different target of the same
sentiment for extraverts and introverts. For exam-
ple, the ngram ”I fear” is highly predictive for an
introvert in our data while extraverts would rather
use formulations to imply that others should fear.
Similarly to Nowson et al. (2005), we did not find
any difference in the formality measure of Hey-
lighen and Dewaele (2002). Neither we did in the
complexity of sentences as per the parse tree depth
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and sentence length. It is probable that these as-
pects were also impacted by our broad variety of
author style (F. Dostoyevsky vs J. K. Rowling).
Our basic vector-based features carried no useful
information in our case, in contrast to the person-
ality research of Neuman and Cohen (2014). We
observed that the factual content of the stories con-
tributed to the character similarity measure more
than the subtle personality differences.

5 Actions of fictional characters

While psycholinguists and consequenlty NLP re-
searchers analyzed the relation between speech,
resp. writing, and personality of an individual,
psychologists often evaluate extraversion through
behavioral personality questionnaries (Costa and
McCrae, 1992; Goldberg et al., 2006). We hypoth-
esize that similar behavior shall be predictive for
extraversion of fictional characters as perceived by
the readers.

5.1 Action extraction

For our purpose we define actions as the subject,
verb and context of a sentence, where the subject
is a named entity Person and the context is either
a direct object in relation dobj to the verb or a first
child of the adjacent verb phrase in a parse tree.
After grouping the actions per character, the sub-
ject name is removed. For example, a sample of
actions of the character Eddard Stark of Game of
Thrones would be: X paused a moment, X studied
his face, X changed his mind, X unrolled the paper,
X said etc., visualized in Figure 1. We obtained 22
030 actions for 205 characters (102 E, 116 I), with
on average 100 actions for E and 101 for I. Note
that also actions for those characters who do not
talk enough in the books (often first-person per-
spectives) could be used.

Figure 1: A revealing word cloud of the most frequent words
from the actions of which Eddard Stark (Game of Thrones) is
a subject. Size is proportional to the frequency of a word.

5.2 Action classification setup
In the system based on actions we use only a sub-
set of the features described in 4.2. From the lex-
ical features we focus on the 500 most frequent
verbs and dependency word pairs. Semantic fea-
tures are used the same way as in 4.2, profiting
from LIWC, WordNet, Verbnet and the sentiment
lexicons. Word embedding vectors for book char-
acters are in this case computed by taking only the
verbs into account rather than all content words.
From the stylistic features we use the part-of-
speech bigrams and trigrams, verb modality and
verb tense.

5.3 Classification results on actions
Table 5 shows the performance of the classifica-
tion models based on the protagonists’ actions, us-
ing different feature groups. The overall perfor-
mance is higher than for the direct speech model.

ID Feature set P R F A
1 - (baseline) .267 .517 .352 .517
2 Ngrams .539 .506 .505 .507
3 LIWC .600 .577 .567 .577
4 WordNet .517 .518 .517 .518
5 VerbNet .599 .583 .578 .583
6 Style .573 .601 .553 .601
7 Sentiment .357 .453 .382 .453
8 Vectors .504 .497 .451 .497
9 All .600 .623 .598 .623
Percentage human agreement: .849

Table 5: Weighted precision (P), recall (R), F-score (F) and
accuracy (A) for actions - in each line for a system using only
the given group of features. WordNet stands for WordNet
semantic labels, VerbNet setup uses the WordNet-VerbNet
links. Highlighted F-scores differ from the majority baseline
significantly (p <0.05), using an approx. randomization test.

Due to the lack of previous NLP experiments
on this task, we compare our features to the ac-
tions measured in the International Personality
Item Pool (Goldberg et al., 2006), frequently used
personality assesment questionnaire (Table 6).

The most predictive features of this model cap-
ture the activity and excitement seeking facets
of extraversion. Stylistic features reflect the
complexity difference of the verb phrases (John
jumped vs. John thought about it), extraverts be-
ing characterized by plain verbs. Semantic fea-
tures exhibit higher precision than stylistic ones.
Sense-linked semantic classes of VerbNet demon-
strate the preference of extraverts for being ac-
tive and expressing themselves - they jump, fight,
shout, run in and run out, eat and drink, see and
hear and get easily bored. Extraverts in books also
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Extravert
International Personality Item Pool:
likes to party, feels comfortable around people,
starts conversations, talks to many people, enjoys being
a center of attention, makes friends easily, takes charge,
captivates people, feels at ease with a company,
is skilled in handling social situations
Our experiment:
bring (VN), consume (VN), contiguous location(VN),
holding (VN), social (WN), motion (WN), emotion (WN)
Leisure (LIWC), Home (LIWC), Family (LIWC), fight,
march, care, take, jump, shriek, clear throat, bore, get to,
come in, agree, hold, hear, inform, sell, come forward
Introvert
International Personality Item Pool:
Doesn’t talk much, stays in the background, has little
to say, does not draw attention, has difficulties to
approach others, is quiet around strangers, feels
uncomfortable around others,does not show feelings,
is a private person, waits to be lead
Our experiment:
snooze (VN), conceal (VN), wish (VN), stative (WN),
creation (WN), walk, sleep, lay, know, maintain, expect,
hope, find out, might, help, explain

Table 6: Characteristic actions for extraverts and introverts
as assessed in the IPIP personality questionaire, compared to
our most informative features

often bring or hold something. Introverts, on the
other hand, seem to favor slow movements - while
they are thinking, reflecting, creating, looking for
explanations and find out solutions, they tend to lie
down, sit or walk, eventually even sleep or snooze.
The uncertainty typical for introverts is also no-
table in their actions, as they often hope or wish
for something they might like to do. Addition-
ally, semantic classes Social and Family, reported
as correlated to extraversion by Pennebaker and
King (1999) and not confirmed in our first model,
became predictive in protaonists’ actions.

5.4 Discussion

Also in this task, the VerbNet classes brought sig-
nificant improvement in performance. The clas-
sification model based on actions outperforms
not only the direct speech model, but also the
state-of-the-art systems predicting authors’ ex-
traversion from the stream-of-consciousness es-
says (Mairesse et al., 2007; Celli et al., 2013;
Neuman and Cohen, 2014). While surely not
directly comparable, this result hints to the fact
that the personality is easier to detect from be-
havior than from person’s verbal expression. This
would correspond to the findings of Mairesse et
al. (2007), Biel and Gatica-Perez (2013) and Aran
and Gatica-Perez (2013) on multimodal data sets.

6 Predicatives of fictional characters

Our third extraversion prediction system is sub-
ordinate to how fictional characters are described
and to the manners in which they behave. We are
not aware of a previous NLP work predicting ex-
traversion using descriptive adjectives of the per-
sons in question. We thus juxtapose the most pre-
dictive features of our system to the adjectival ex-
traversion markers developed by Goldberg (1992).

6.1 Extraction of descriptive properties

In this setup we extract predicatives of the named
entities PERSON in the books - relations amod
(angry John) and cop (John was smart). As these
explicit statements are very sparse in modern nov-
els, we additionally include adverbial modifiers
(advmod) related to person’s actions (John said
angrily). We extract data for 205 characters, with
on average 43 words per character.

(a) Master Yoda
(Star Wars)

(b) Sansa Stark
(Game of Thrones)

Figure 2: Frequency word clouds for character descriptions

6.2 Classification setup

This system uses similar set of lexical, semantic
and vectorial features similarly as in 5.2, this time
with the focus on adjectives, nouns and adverbs
instead of verbs. Stylistic and VerbNet features
are hence not included, word vectors are as in 4.2.

6.3 Classification results on descriptions

Table 7 reports on the performance of individual
feature groups. With only few words per character
semantic lexicons are less powerful than ngrams.

ID Feature set P R F A
1 - (baseline) .267 .517 .352 .517
2 Ngrams .686 .657 .648 .657
3 LIWC .645 .601 .586 .601
4 WordNet .518 .545 .528 .545
5 Sentiment .375 .463 .384 .463
6 Vectors .267 .517 .352 .517
7 All .692 .698 .693 .698
Percentage human agreement: .849

Table 7: Weighted precision, recall, F-score and accuracy.
Highlighted F-scores differ from the majority baseline sig-
nificantly (p <0.05).
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Table 8 displays the most predictive features in
our system contrasted to the adjectival markers.

Extravert
Goldberg (1992) :
adventurous,mischievous, playful, rambunctious,
dominant, forceful, demonstrative, exhibitionistic,
flamboyant, brave, courageous, daring, assured,...
Our experiment :
excited, restlessly, stubbornly, restless, beloved, eager,
abruptly, defiantly, darkly, eagerly, loudly, reluctant,
stubborn, unwise, ruthless, quickly, abruptly, right,
change (WN), social (WN)
Introvert
Goldberg (1992) :
bashful, shy, timid, inhibited, restrained
unadventurous, unaggressive, uncompetitive
bitter, joyless, melancholic, moody, morose,...
Our experiment :
anxious, patiently, hesitantly, backward, softly,
warily, coldly, helplessly, respectfully, slowly,
politely, thoughtfully, nervously, silent, carefully,
gratefully, dryly, sheepishly, politely, weary, calm,
gently, sadly, sideways, stative (WN)

Table 8: Characteristic adjectives for extraverts and intro-
verts as reported by L. Goldberg, compared to our most in-
formative features as per the correlation merit

6.4 Discussion on errors

All our systems had issues with characters rated by
less than five readers and with protagonists with
low agreement. Other challenges arise from au-
thorial style, age of the novel and speech individ-
uality of characters (e.g. Yoda). Varied length of
information for different characters poses issues in
measuring normally distributed features (e.g. ra-
tio of jumping verbs), being in shorter texts less
reliable. Ongoing and future work on this task ad-
dresses the limitations of these initial experiments,
especially the data set size and the gold standard
quality. Extending the data will also enable us to
examine different book genres as variables for the
personality distribution and feature impact. It will
be worth examining the relations between charac-
ters, since we observed certain patterns in our data,
such as the main introvert character supported by
his best friend extravert. Additionally, we want
to verify if the system in Section 6 is overly opti-
mistic due to the data size.

7 Conclusion and future work

Automated personality profiling of fictional char-
acters, based on rigorous models from personal-
ity psychology, has a potential to impact numer-
ous domains. We framed it as a text classifica-
tion problem and presented a novel collaboratively
built dataset of fictional personality. We incor-

porate features of both lexical resource-based and
vectorial semantics, including WordNet and Verb-
Net sense-level information and vectorial word
representations. In models based on the speech
and actions of the protagonists, we demonstrated
that the sense-linked lexical-semantic features sig-
nificantly outperform the baselines. The most pre-
dictive features correspond to the reported find-
ings in personality psychology and NLP experi-
ments on human personality. Our systems based
on actions and appearance of characters demon-
strate higher performance than systems based on
direct speech, which is in accordance with recent
research on personality in social networks (Kosin-
ski et al., 2014; Biel and Gatica-Perez, 2013), re-
vealing the importance of the metadata. We have
shown that exploiting the links between lexical re-
sources to leverage more accurate semantic infor-
mation can be beneficial for this type of tasks, ori-
ented to actions performed by the entity. How-
ever, the human annotator agreement in our task
stays high above the performance achieved. Con-
sidering that most of the sucessful novels were
produced as movies, we cannot exclude that our
annotators based their decision on the multimodal
representation of the protagonists. In the future we
aim on collecting a more detail and rigorous gold
standard through gamification and expanding our
work on all five personality traits from the Five-
Factor Model and their facets, and ultimately ex-
tend our system to a semi-supervised model deal-
ing with notably larger amount of data. We also
plan to examine closer the differences between
perceived human and fictional personality, and the
relationship between the personality of the reader
and the characters.
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Abstract

Expectation-maximization algorithms,
such as those implemented in GIZA++
pervade the field of unsupervised word
alignment. However, these algorithms
have a problem of over-fitting, leading to
“garbage collector effects,” where rare
words tend to be erroneously aligned
to untranslated words. This paper
proposes a leave-one-out expectation-
maximization algorithm for unsupervised
word alignment to address this prob-
lem. The proposed method excludes
information derived from the alignment
of a sentence pair from the alignment
models used to align it. This prevents
erroneous alignments within a sentence
pair from supporting themselves. Ex-
perimental results on Chinese-English
and Japanese-English corpora show that
the F1, precision and recall of alignment
were consistently increased by 5.0% –
17.2%, and BLEU scores of end-to-end
translation were raised by 0.03 – 1.30.
The proposed method also outperformed
l0-normalized GIZA++ and Kneser-Ney
smoothed GIZA++.

1 Introduction

Unsupervised word alignment (WA) on bilingual
sentence pairs serves as an essential foundation
for building most statistical machine translation
(SMT) systems. A lot of methods have been pro-
posed to raise the accuracy of WA in an effort to
improve end-to-end translation quality. This pa-
per contributes to this effort through refining the
widely used expectation-maximization (EM) algo-
rithm for WA (Dempster et al., 1977; Brown et al.,
1993b; Och and Ney, 2000).

∗ The author now is affiliated with Google, Japan.

The EM algorithm for WA has a great influ-
ence in SMT. Many well-known toolkits includ-
ing GIZA++ (Och and Ney, 2003), the Berkeley
Aligner (Liang et al., 2006; DeNero and Klein,
2007), Fast Align (Dyer et al., 2013) and SyM-
GIZA++ (Junczys-Dowmunt and Sza, 2012), all
employ this algorithm. GIZA++ in particular is
frequently used in systems participating in many
shared tasks (Goto et al., 2011; Cettolo et al.,
2013; Bojar et al., 2013).

However, the EM algorithm for WA is well-
known for introducing “garbage collector ef-
fects.” Rare words have a tendency to collect
garbage, that is they have a tendency to be erro-
neously aligned to untranslated words (Brown et
al., 1993a; Moore, 2004; Ganchev et al., 2008;
V Graça et al., 2010). Figure 1(a) shows a real
sentence pair, denoteds, from the GALE Chinese-
English Word Alignment and Tagging Training
corpus (GALE WA corpus)1 with it’s human-
annotated word alignment. The Chinese word
“HE ZHANG,” denotedwr, which means river
custodian, only occurs once in the whole corpus.
We performed EM training using GIZA++ on this
corpus concatenated with 442,967 training sen-
tence pairs from the NIST Open Machine Trans-
lation (OpenMT) 2006 evaluation2. The resulting
alignment is shown in Figure 1(b). It can be seen
thatwr is erroneously aligned to multiple English
words.

To find the cause of this, we checked the align-
ments in each iterationi of s, denotedai

s. We
found that in a1

s , wr together with the other
source-side words were aligned with uniform
probability to all the target-side words since the
alignment models provided no prior information.
However, ina2

s , wr became erroneously aligned,
1Released by Linguistic Data Consortium, catalog

number LDC2012T16, LDC2012T20, LDC2012T24 and
LDC2013T05.

2http://www.itl.nist.gov/iad/mig/
tests/mt/2006/
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because the alignment distribution3 of wr was
only learned froma1

s , thus consisted of non-zero
values only for generating the target-side words in
s. Therefore, the alignment probabilities from the
rare wordwr to the unaligned words ins were ex-
traordinarily high, since almost all of the proba-
bility mass was distributed among them. In other
words, the story behind these garbage collector ef-
fects is that erroneous alignments are able to pro-
vide support for themselves; the probability distri-
bution learned only froms is re-applied tos. In
this way, these “garbage collector effects” are a
form of over-fitting.

Motivated by this observation, we propose a
leave-one-out EM algorithm for WA in this pa-
per. Recently this technique has been applied
to avoid over-fitting in kernel density estima-
tion (Roux and Bach, 2011); instead of performing
maximum likelihood estimation, maximum leave-
one-out likelihood estimation is performed. Fig-
ure 1(c) shows the effect of using our technique
on the example. The garbage collection has not
occurred, and the alignment of the word “HE
ZHANG” is identical to the human annotation.

2 Related Work

The most related work to this paper is train-
ing phrase translation models with leave-one-out
forced alignment (Wuebker et al., 2010; Wuebker
et al., 2012). The differences are that their work
operates at the phrase level, and their aim is to im-
prove translation models; while our work operates
at the word level, and our aim is to provide better
word alignment. As word alignment is a founda-
tion of most MT systems, our method have a wider
application.

Recently, better estimation methods during the
maximization step of EM have been proposed
to avoid the over-fitting in WA, such as using
Kneser-Ney Smoothing to back-off the expected
counts (Zhang and Chiang, 2014) or integrating
the smoothedl0 prior to the estimation of prob-
ability (Vaswani et al., 2012). Our work differs
from theirs by addressing the over-fitting directly
in the EM algorithm by adopting a leave-one-out
approach.

Bayesian methods (Gilks et al., 1996; Andrieu
et al., 2003; DeNero et al., 2008; Neubig et al.,

3The probability distribution of generating target lan-
guage words fromwr. The description here is only based on
IBM model1 for simplicity, and the other alignment models
are similar.
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Figure 1: Examples of supervised word alignment.
(a) gold alignment; (b) standard EM (GIZA++);
(c) Leave-one-out alignment (proposed).

2011), also attempt to address the issue of over-
fitting, however EM algorithms related to the pro-
posed method have been shown to be more effi-
cient (Wang et al., 2014).

3 Methodology

This section first formulates the standard EM for
WA, then presents the leave-one-out EM for WA,
and finally briefly discusses handling singletons
and effecient implementation. The main notation
used in this section is shown in Table 1.

3.1 Standard EM for IBM Models 1, 2 and
HMM Model

To perform WA through EM, the parallel corpus
is taken as observed data, the alignments are taken
as latent data. In order to maximize the likelihood
of the alignment modelθ given the dataS, the fol-
lowing two steps are conducted iteratively (Brown
et al., 1993b; Och and Ney, 2000; Och and Ney,
2003),

Expectation Step (E step): calculating the con-
ditional probability of alignments for each sen-
tence pair,

P (a|s, θ) =
∏J

j=1 θali(aj |aj−1, I)θlex(fj |eaj ),(1)

whereθali(i|i′, I) is the alignment probability and
θlex(f |e) is the translation probability. Note that
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f a foreign sentence(f1, . . . , fJ)
e an English sentence(e1, . . . , eI)
s a sentence pair(f , e)
a an alignment(a1, . . . , aJ) wherefj is

aligned toeaj

Bi a list of the indexes of the foreign words
which are aligned toei

Bi,k the index of thek-th foreign word
which is aligned toei

Bi is the average of all elements inBi

ρi the largest index of an English word
s.t . ρi < i and|Bρi | > 0

φi the fertility of ei

Ei the word class ofei

θ· an probabilistic model
θs̄· a leave-one-out probabilistic model for

s
nx(s,a) the number of times that an eventx

happens in(s,a)
Nx(s) the marginal number of times that an

eventx happens ins

Table 1: Main Notation. Note thatNx(s) =∑
a nx(s,a)P (a|s). In practical calculation, for

IBM models 1, 2 and HMM model, this summa-
tion is performed by dynamic programming; for
IBM model 4, it is performed approximately us-
ing the best alignment and its neighbors.

(1) is a general form for IBM model 1, model 2
and the HMM model.

Maximization step (M step): re-estimating the
probability models,

θali(i|i′, I) ←
∑

s Ni|i′,I(s)∑
s Ni′,I(s)

(2)

θlex(f |e) ←
∑

s Nf |e(s)∑
s ne(s)

(3)

whereNi′,I(s) is the marginal number of timesei′

is aligned to some foreign word if the length ofe is
I, or0 otherwise;Ni|i′,I(s) is the marginal number
of times the next alignment position afteri′ is i in
a if the length ofe is I, or0 otherwise;ne(s) is the
count ofe in e; Nf |e(s,a) is the marginal number
of timese is aligned tof .

3.2 Leave-one-out EM for IBM Models 1, 2
and HMM Model

Leave-one-out EM for WA differs from standard
EM in the way the alignment and translation prob-
abilities are calculated. Each sentence pair will

have its own alignment and translation probability
models calculated by excluding the sentence pair
itself. More formally, leave-one-out EM for WA
are formulated as follows,

Leave-one-out E step: employing leave-one-
out models for eachs to calculate the conditional
probability of alignments

P (a|s, θs̄) =
∏J

j=1 θs̄
ali(aj |aj−1, I)θs̄

lex(fj |eaj ),(4)

whereθs̄
ali(i|i′, I) and θs̄

lex(fj |eaj ) are the leave-
one-out alignment probability and translation
probability, respectively.

Leave-one-out M step: re-estimating leave-
one-out probability models,

θs̄
ali(i|i′, I) ←

∑
s′ 6=s Ni|i′,I(s′)∑
s′ 6=s Ni′,I(s′)

(5)

θs̄
lex(f |e) ←

∑
s′ 6=s Nf |e(s′)∑
s′ 6=s ne(s′)

. (6)

3.3 Standard EM for IBM Model 4

The framework of the standard EM for IBM
Model 4 is similar with the one for IBM Models 1,
2 and HMM Model, but the calculation of align-
ment probability is more complicated.

E step: calculating the conditional probabil-
ity through the reverted alignment (Och and Ney,
2003),

P (a|s, θ) = P (B0|B1, . . . , BI)·
I∏

i=1

P (Bi|Bi−1, ei) ·
I∏

i=1

∏
j∈Bi

θlex(fj |ei), (7)

whereB0 means the set of foreign words aligned
with the empty word;P (B0|B1, . . . , BI) is as-
sumed to be a binomial distribution for the size
of B0 (Brown et al., 1993b) or an modified distri-
bution to relieve deficiency (Och and Ney, 2003).

The distributionP (Bi|Bi−1, ei) is decomposed
as

P (Bi|Bi−1, ei) = θfer(φi|ei)·

θhea(Bi,1 −Bρi |Eρi) ·
φi∏

k=2

θoth(Bi,k −Bi,k−1),

(8)

whereθfer is a fertility model;θhea is a probabil-
ity model for the head (first) aligned foreign word;
θoth is a probability model for the other aligned
foreign words.θhea is assumed to be conditioned
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on the word classEρi , following the paper of
(Och and Ney, 2003) and the implementation of
GIZA++ and CICADA.

M step: re-estimating the probability models,

θfer(φ|e) ←
∑

s Nφ|e(s)∑
s

∑
φ′ Nφ′|e(s)

(9)

θhea(∆i|E) ←
∑

s Nhea
∆i|E(s)∑

s

∑
∆i′ N

hea
∆i′|E(s)

(10)

θoth(∆i) ←
∑

s Noth
∆i (s)∑

s

∑
∆i′ N

oth
∆i′(s)

, (11)

where∆i is a difference of the indexes of two for-
eign words.

3.4 Leave-one-out EM for IBM Model 4

The leave-one-out treatment were applied to the
three component probability modelsθfer, θhea and
θoth of IBM model 4.

Leave-one-out E step: calculating the condi-
tional probability through leave-one-out probabil-
ity models

P (a|s, θs̄) = P (B0|B1, . . . , BI)·
I∏

i=1

P s̄(Bi|Bi−1, ei) ·
I∏

i=1

∏
j∈Bi

θs̄
lex(fj |ei), (12)

P s̄(Bi|Bi−1, ei) = θs̄
fer(φi|ei)·

θs̄
hea(Bi,1 −Bρi |Eρi) ·

φi∏
k=2

θs̄
oth(Bi,k −Bi,k−1).

(13)

Leave-one-out M step: re-estimating the leave-
one-out probability models,

θs̄
fer(φ|e) ←

∑
s′ 6=s Nφ|e(s′)∑

s′ 6=s

∑
φ′ Nφ′|e(s′)

(14)

θs̄
hea(∆i|E) ←

∑
s′ 6=s Nhea

∆i|E(s′)∑
s′ 6=s

∑
∆i′ N

hea
∆i′|E(s′)

(15)

θs̄
oth(∆i) ←

∑
s′ 6=s Noth

∆i (s
′)∑

s′ 6=s

∑
∆i′ N

oth
∆i′(s

′)
. (16)

3.5 Handling Singletons

Singletons are the words that occur only once in
corpora. Singletons cause problems when apply-
ing leave-one-out to lexicalized models such as the
translation modelθs̄

lex and the fertility modelθs̄
fer.

When calculating (6) and (14) for singletons, the

denominators become zero, thus the probabilities
are undefined.

For singletons, there is no prior information to
guide their alignment, so we back off to uniform
distributions. In that case, the alignments are pri-
marily determined by the rest of the sentence.

In addition, singletons can be in the target side
of the translation modelθs̄

lex. In that case, the prob-
abilities become zero. This is handled by setting a
minimum probability value of1.0× 10−12, which
was decided by pilot experiments.

3.6 Implementation Details

To alleviate memory requirements and increase
speed, our implementation did not build or store
the local alignment models explicitly for each sen-
tence pair. The following formula was used to effi-
ciently calculate (5), (6) and (14–16) to build tem-
porary probability models,∑

s′ 6=s

Nx(s′) = (
∑
s′

Nx(s′))−Nx(s), (17)

where x is a alignment event. Our implemen-
tation maintained global counts of all alignment
events

∑
s′ Nx(s′), and (considerably smaller) lo-

cal countsNx(s) from each sentence pairs.
Take the translation modelθs̄

lex for example. For
a sentence pairs = (f1 . . . fJ , e1 . . . eI), it is cau-
clulated as,

θs̄
lex(fj |ei) =

(
∑

s′ N(fj |ei)(s
′))−N(fj |ei)(s)

(
∑

s′ nei(s′))− nei(s)
.

(18)

The global counts to be maintained are∑
s′ N(fj |ei)(s

′) andnei(s
′), and the local counts

are
∑

s N(fj |ei)(s) and nei(s). Therefore the
memory cost is,

|E| · (|F|+ 1) +
∑
s

Is(Js + 1), (19)

where|E| is the size of English vocabulary,|F| is
the size of foreign language vocabulary,Is is the
length of the English sentence ofs, andJs is the
length of the foreign sentence ofs.

The calculation of the leave-one-out translation
model is performed for each English word and for-
eign word ins. Therefore, the time cost is,∑

s

Is(Js + 1). (20)
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In addition, because the local countsN(fj |ei)(s)
andnei(s) are read in order, storing them in a ex-
ternal memory such as a hard disk will not slow
down the running speed much. This will reduce
the memory cost to

|E| · (|F|+ 1). (21)

This cost is independent to the number of sentence
pairs4.

The speed of the proposed method can be
boosted through parallelism. These calculations
on each sentence pair can be performed indepen-
dently. We found empirically that when our im-
plementation of the proposed method is run on a
16-core computer, it finishes the task earlier than
GIZA++5.

4 Experiments

The proposed WA method was tested on two
language pairs: Chinese-English and Japanese-
English (Table 2). Performance was measured
both directly using the agreement with reference
to manual WA annotations, and indirectly using
the BLEU score in end-to-end machine translation
tasks. GIZA++ and our own implementation of
standard EM were used as baselines.

4.1 Experimental Settings

The Chinese-English experimental data consisted
of the GALE WA corpus and the OpenMT cor-
pus. They are from the same domain, both con-
tain newswire texts and web blogs. The OpenMT
evaluation 2005 was used as a development set for
MERT tuning (Och, 2003), and the OpenMT eval-
uation 2006 was used as a test set. The Japanese-
English experimental data was the Kyoto Free
Translation Task (Neubig, 2011)6. The corpus
contains a set of 1,235 sentence pairs that are man-
ually word aligned.

The corpora were processed using a standard
procedure for machine translation. The English
texts were tokenized with the tokenization script
released with Europarl corpus (Koehn, 2005) and
converted to lowercase; the Chinese texts were
segmented into words using the Stanford Word
Segmenter (Xue et al., 2002)7; the Japanese texts

4We found the memory of our server is large enough, so
we did not implement it

5We plan to make our code public available.
6http://www.phontron.com/kftt/
7http://nlp.stanford.edu/software/

segmenter.shtml

were segmented into words using the Kyoto Text
Analysis Toolkit (KyTea8). Sentences longer than
100 words or those with foreign/English word
length ratios between larger than 9 were filtered
out.

GIZA++ was run with the default Moses set-
tings (Koehn et al., 2007). The IBM model 1,
HMM model, IBM model 3 and IBM model 4
were run with 5, 5, 3 and 3 iterations. We imple-
mented the proposed leave-one-out EM and stan-
dard EM in IBM model 1, HMM model and IBM
model 4. In the original work (Och and Ney, 2003)
this combination of models achieved comparable
performance to the default Moses settings. They
were run with 5, 5 and 6 iterations.

The standard EM was re-implemented as a
baseline to provide a solid basis for comparison,
because GIZA++ contains many undocumented
details. Our implementation is based on the toolkit
of CICADA (Watanabe and Sumita, 2011; Watan-
abe, 2012; Tamura et al., 2013)9. We named the
implemented aligner AGRIPPA, to support our in-
house decoders OCTAVIAN and AUGUSTUS.

In all experiments, WA was performed indepen-
dently in two directions: from foreign languages
to English, and from English to foreign languages.
Then the grow-diag-final-and heuristic was used to
combine the two alignments from both directions
to yield the final alignments for evaluation (Och
and Ney, 2000; Och and Ney, 2003).

4.2 Word Alignment Accuracy

Word alignment accuracy of the baseline and the
proposed method is shown in Table 3 in terms of
precision, recall and F1 (Och and Ney, 2003). The
proposed method gave rise to higher quality align-
ments in all our experiments. The improvement
in F1, precision and recall based on IBM Model
4 is in the range 8.3% to 9.1% compared with the
GIZA++ baseline, and in the range 5.0% to 17.2%
compared with our own baseline.

The most meaningful result comes from the
comparison of the models trained using standard
EM log-likelihood training, and the proposed EM
leave-one-out log-likelihood training. These mod-
els are identical except for way in which the model
likelihood is calculated. In all our experiments the
proposed method gave rise to higher quality align-
ments. The standard EM implementation achieved

8http://www.phontron.com/kytea/
9http://www2.nict.go.jp/univ-com/multitrans/cicada/
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Corpus # Sent. pairs # Foreign Words # English Words
Chinese-English (GALE WA, OpenMT)

WA 18,057 392,447 518,137
Train 442,967 12,265,072 13,444,927
Eval. 05 1,082† 29,688 138,952
Eval. 06 1,664† 37,827 189,059

Japanese-English (Kyoto Free Translation)
WA 1,235 34,403 30,822
Train 329,882 6,085,131 5,911,486
Develop 1,166 26,856 24,309
Test 1,160 28,501 26,734

Table 2: Experimental Data.† Each consists of one foreign sentence and four English reference sen-
tences.

Models standard EM (GIZA++) standard EM (ours) Leave-one-out(prop.)
F1 P R F1 P R F1 P R

Chinese-English (GALE WA, OpenMT)
Model 1 0.498 0.656 0.401 0.518 0.670 0.423 0.553 0.689 0.461
HMM 0.584 0.720 0.491 0.593 0.722 0.503 0.665 0.774 0.583
Model 4 0.624 0.698 0.565 0.593 0.688 0.522 0.677 0.756 0.612

Japanese-English (Kyoto Free Translation)
Model 1 0.508 0.601 0.439 0.513 0.606 0.444 0.535 0.618 0.471
HMM 0.573 0.667 0.502 0.579 0.665 0.512 0.626 0.687 0.575
Model 4 0.577 0.594 0.561 0.570 0.617 0.530 0.628 0.648 0.609

Table 3: Word alignment accuracy measured by F1, precision and recall.

alignment performance approximately compara-
ble to GIZA++, whereas the proposed method ex-
ceeded the performance of both implementations.

4.3 End-to-end Translation Quality

BLEU scores achieved by the phrase-based and
hierachical SMT systems10 which were trained
from different alignment results, are shown in
Table 4. Each experiment was conducted three
times to mitigate the variance in the results due to
MERT. The results show that the proposed align-
ment method achieved the highest BLEU score in
all experiments. The improvement over the base-
line is in range 0.03 to 1.03 for phrase-based sys-
tems, and ranged from 0.43 to 1.30 for hierarchical
systems.

Hierarchical systems benifit more from the pro-
posed method than phrase-based systems. We
think this is because that hierarchical systems are
more sensitive to word alignment quality than
phrase-based systems. Phrase-based systems only

10from the Moses toolkit
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Figure 2: Curve of word alignment accuracy (F1)
under training corpora of different sizes.
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SMT Systems standard EM (GIZA++) standard EM (ours) Leave-one-out (prop.)
Chinese-English (GALE WA, OpenMT)

Phrase-based 31.85± 0.26 31.01± 0.18 32.04 ± 0.08
Hierarchical 32.27± 0.23 31.40± 0.26 32.70 ± 0.14

Japanese-English (Kyoto Free Translation)
Phrase-based 18.35± 0.27 18.20± 0.20 18.38 ± 0.11
Hierarchical 19.48± 0.08 19.39± 0.02 20.10 ± 0.07

Table 4: End-to-end translation quality measured by BLEU

Corpus size standard EM (GIZA++) standard EM (ours) Leave-one-out(prop.)
F1 P R F1 P R F1 P R

1K 0.429 0.466 0.397 0.419 0.463 0.382 0.470 0.568 0.402
4K 0.499 0.547 0.459 0.492 0.549 0.445 0.568 0.668 0.494
18K† 0.571 0.630 0.521 0.553 0.621 0.499 0.633 0.721 0.565
64K 0.588 0.659 0.531 0.555 0.638 0.492 0.645 0.712 0.590
256K 0.614 0.687 0.554 0.578 0.667 0.511 0.661 0.718 0.612
461K 0.624 0.698 0.565 0.593 0.688 0.522 0.677 0.756 0.612

Table 5: Effect of training corpus size on word alignment accuracy measured by F1, precision and recall
(Chinese-English).† the whole manually word aligned corpus

Corpus size stan.(GIZA++) stan.(ours) LOO(prop.) Gold
Phrase-based

1k 7.86 7.66 9.38 10.01
4k 15.27 15.49 17.06 17.57
18K† 22.15 21.72 24.41 24.11
64K 28.10 27.91 29.23 NA
256K 31.05 30.82 31.51 NA
461K 31.85 31.01 32.04 NA

Hierarchical
1k 7.53 7.54 9.19 10.62
4k 14.89 15.51 17.91 18.31
18K† 22.85 22.56 24.66 24.52
64K 28.82 28.22 29.78 NA
256K 31.47 30.21 31.72 NA
461K 32.27 31.04 32.70 NA

Table 6: Effect of training corpus size on end-to-end translation quality measured by BLEU (Chinese-
English).† the whole manually word aligned corpus

take contiguous parallel phrase pairs as translation
rules, while hierarchical systems also use patterns
made by subtracting (inner) short parallel phrases
from (outer) longer parallel phrases. Both the
outer and inner phrases typically need to be noise-
free in order to produce high quality rules. This
puts a high demand on the alignment quality.

4.4 Effect of Training Corpus Size

Training corpora of different sizes were employed
to perform unsupervised WA experiments and MT
experiments (see Tables 5 and 6).

The training corpora were randomly sampled
from the Chinese-English manual WA corpora and
the parallel training corpus. The manual WA cor-
pus has a priority for being sampled so that the
gold WA annotation is available for MT experi-
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Figure 3: Curves of translation quality (BLEU) under training corpora ofdifferent sizes. (a) Phrase-based
MT; (b) Hierarchical MT.

ments.
The settings of the unsupervised WA experi-

ments and the MT experiments are the same with
the previous experiments. In the WA experiments,
GIZA++, our implemented standard EM and the
proposed leave-one-out EM are applied to training
corpora with the same parameter settings as the
previous. In the MT experiments, the WA results
of different methods and the gold WA (if available)
are employed to extract translation rules; the rest
settings including language models, development
and test corpus, and parameters are the same as the
previous.

On word alignment accuracy, the proposed
method achieved improvements ofF1 from 0.041
to 0.090 under the different training corpora (Table
5. The maximum improvement compared with
GIZA++ is 0.069 when the training corpus has
4,000 sentence pairs. The maximum improvement
compared with our own implement is 0.090 when
the training corpus has 64,000 sentence pairs.

Figure 2 shows that the extent of improvements
slightly changes under different training corpora,
but they are all quite stable and obvious.

On translation quality, the proposed method
achieved improvements of BLEU under the dif-
ferent training corpora. The improvements ranged
from 0.19 to 1.72 for phrase-based MT and ranged
from 0.25 to 3.02 (see Table 5). The improve-
ments are larger under smaller training corpora
(see Figure 3).

In addition, the BLEUs achieved by the pro-
posed method is close to the ones achieved by gold
WA annotations. The proposed method slightly
outperforms the gold WA annotations when us-
ing the full manual WA corpus of 18,057 sentence
pairs.

4.5 Comparison to l0-Normalization and
Kneser-Ney Smoothing Methods

The proposed leave-one-word word align-
ment method was empirically compared to
l0-normalized GIZA++ (Vaswani et al., 2012)11

and Kneser-Ney smoothed GIZA++ (Zhang and
Chiang, 2014)12. l0-normalization and Kneser-
Ney smoothing methods are established methods
to overcome the sparse problem. This enables
the probability distributions on rare words to be
estimated more effectively. In this way, these
two GIZA++ variants are related to the proposed
method.

l0-normalized GIZA++ and Kneser-Ney
smoothed GIZA++ were run with the same
settings as GIZA++, which came from the
default settings of MOSES. For the settings of
l0-normalized GIZA++ that are not in common
with GIZA++ were the default settings. As for
Kneser-Ney smoothed GIZA++, the smooth
switches of IBM models 1 – 4 and HMM model

11http://www.isi.edu/ ˜ avaswani/
giza-pp-l0.html

12https://github.com/hznlp/giza-kn
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GIZA++ l0-Normalization Kneser-Ney Smooth. Leave-one-out(prop.)
Word Alignment Quality

F1 P R F1 P R F1 P R F1 P R
All Words 0.624 0.698 0.565 0.629 0.700 0.571 0.656 0.726 0.599 0.678 0.755 0.615
S.W.F=1 0.458 0.435 0.483 0.448 0.471 0.427 0.515 0.532 0.499 0.398 0.693 0.279
S.W.F≤2 0.466 0.451 0.481 0.461 0.485 0.440 0.522 0.545 0.501 0.450 0.707 0.330
S.W.F≤5 0.476 0.480 0.473 0.478 0.509 0.451 0.534 0.572 0.501 0.502 0.722 0.385
S.W.F≤10 0.485 0.505 0.466 0.491 0.531 0.456 0.541 0.593 0.498 0.529 0.733 0.414

Translation Quality (BLEU)
Phrase-based 31.85± 0.26 31.52± 0.06 31.94± 0.19 32.04 ± 0.08
Hierarchical 32.27± 0.23 32.20± 0.04 32.47± 0.33 32.70 ± 0.14

Table 7: Empirical Comparision withl0-Normalized and Kneser-Ney Smoothed GIZA++’s

were turned on.

The experimental results are presented in Ta-
ble 7. The experiments were run on the Chinese-
English language pair. The word alignment qual-
ity was evaluated separately for all words and for
various levels of rare words. The leave-one-out
method outperformed related methods in terms
of precision, recall and F1 when evaluated on all
words.

Rare words were categorized based on the num-
ber of occurences in the source-language text of
the training data. The evaluations were carried
out on the subset of alignment links that had a
rare word on the source side. Table 7 presents
the results for thresholds 1, 2, 5 and 10. The
proposed method achieved much higher preci-
sion on rare words than the other methods, but
performed poorly on recall. The Kneser-Ney
Smoothed GIZA++ had higher recall. The ex-
planation might be that the leave-one-out method
punishes rare words more than the Kneser-Ney
smoothing method, by totally removing the de-
rived expected counts of current sentence pair
from the alignment models. This leads to rare
words being passively aligned. In other words, the
leave-one-out method would align rare words un-
less the confidence is high. Therefore, we plan to
seek a method to integrate Kneser-Ney smoothing
into the proposed leave-one-out method in the fu-
ture work.

The BLEU scores achieved by phrase-based
SMT and hierarchical SMT for different align-
ment methods are presented in Table 7. The
proposed method outperforms the other methods.
The Kneser-Ney Smoothed GIZA++ performed
the second best. We tried to further analyze the
relation between word alignment and BLEU, but
found the analysis was obscured by the many
processing stages. These stages include paral-

lel phrase extraction (or translation rule extraction
from hierarchical SMT), log-linear model, MERT
tuning and practical decoding where a lot of prun-
ing happened.

5 Conclusion

This paper proposes a leave-one-out EM algo-
rithm for WA to overcome the over-fitting prob-
lem that occurs when using standard EM for WA.
The experimental results on Chinese-English and
Japanese-English corpora show that both the WA
accuracy and the end-to-end translation are im-
proved.

In addition, we have a interesting finding about
the effect of manual WA annotations on train-
ing MT systems. In a Chinese-English parallel
training corpus of 18,057 sentence pairs, the man-
ual WA annotation outperformed the unsupervised
WA results produced by standard EM algorithms.
However, the unsupervised WA results produced
by proposed leave-one-out EM algorithm outper-
formed the manual WA annotation.

Our future work will focus on increasing the
gains in end-to-end translation quality through the
proposed leave-one-out aligner. It is a interest-
ing question why GIZA++ achieved competitive
BLEU scores though its alignment accuracy mea-
sured by F1 was substantially lower. The answer
to this question which may reveal essence of good
word alignment for MT and eventually help to im-
prove MT. In addition, we plan to improve the pro-
posed method by integrating Kneser-Ney smooth-
ing.
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Abstract
While agreement-based joint training has
proven to deliver state-of-the-art align-
ment accuracy, the produced word align-
ments are usually restricted to one-to-
one mappings because of the hard cons-
traint on agreement. We propose a ge-
neral framework to allow for arbitrary loss
functions that measure the disagreement
between asymmetric alignments. The
loss functions can not only be defined
between asymmetric alignments but al-
so between alignments and other latent
structures such as phrase segmentations.
We use a Viterbi EM algorithm to train
the joint model since the inference is
intractable. Experiments on Chinese-
English translation show that joint training
with generalized agreement achieves sig-
nificant improvements over two state-of-
the-art alignment methods.

1 Introduction

Word alignment is a natural language process-
ing task that aims to specify the correspondence
between words in two languages (Brown et al.,
1993). It plays an important role in statistical
machine translation (SMT) as word-aligned bi-
lingual corpora serve as the input of translation
rule extraction (Koehn et al., 2003; Chiang, 2007;
Galley et al., 2006; Liu et al., 2006).

Although state-of-the-art generative alignment
models (Brown et al., 1993; Vogel et al., 1996)
have been widely used in practical SMT systems,
they fail to model the symmetry of word align-
ment. While word alignments in real-world bi-
lingual data usually exhibit complicated mappings
(i.e., mixed with one-to-one, one-to-many, many-
to-one, and many-to-many links), these models as-
sume that each target word is aligned to exactly

∗Corresponding author: Yang Liu.

one source word. To alleviate this problem, heuris-
tic methods (e.g., grow-diag-final) have been pro-
posed to combine two asymmetric alignments
(source-to-target and target-to-source) to generate
symmetric bidirectional alignments (Och and Ney,
2003; Koehn and Hoang, 2007).

Instead of using heuristic symmetrization,
Liang et al. (2006) introduce a principled
approach that encourages the agreement between
asymmetric alignments in two directions. The
basic idea is to favor links on which both uni-
directional models agree. They associate two
models via the agreement constraint and show that
agreement-based joint training improves align-
ment accuracy significantly.

However, enforcing agreement in joint training
faces a major problem: the two models are restrict-
ed to one-to-one alignments (Liang et al., 2006).
This significantly limits the translation accuracy,
especially for distantly-related language pairs such
as Chinese-English (see Section 5). Although pos-
terior decoding can potentially address this prob-
lem, Liang et al. (2006) find that many-to-many
alignments occur infrequently because posteriors
are sharply peaked around the Viterbi alignments.
We believe that this happens because their model
imposes a hard constraint on agreement: the two
models must share the same alignment when esti-
mating the parameters by calculating the products
of alignment posteriors (see Section 2).

In this work, we propose a general framework
for imposing agreement constraints in joint train-
ing of unidirectional models. The central idea is to
use the expectation of a loss function, which mea-
sures the disagreement between two models, to
replace the original probability of agreement. This
allows for many possible ways to quantify agree-
ment. Experiments on Chinese-English translation
show that our approach outperforms two state-of-
the-art baselines significantly.
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Figure 1: Comparison of (a) independent training without agreement, (b) joint training with agreement,
and (c) joint training with generalized agreement. Bold squares are gold-standard links and solid squares
are model predictions. The Chinese and English sentences are segmented into phrases in (c). Joint
training with agreement achieves a high precision but generally only produces one-to-one alignments. We
propose generalized agreement to account for not only the consensus between asymmetric alignments,
but also the conformity of alignments to other latent structures such as phrase segmentations.

2 Background

2.1 Asymmetric Alignment Models
Given a source-language sentence e ≡ eI1 =
e1, . . . , eI and a target-language sentence f ≡
fJ1 = f1, . . . , fJ , a source-to-target translation
model (Brown et al., 1993; Vogel et al., 1996) can
be defined as

P (f |e; θ1) =
∑
a1

P (f ,a1|e; θ1) (1)

where a1 denotes the source-to-target alignment
and θ1 is the set of source-to-target translation
model parameters.

Likewise, the target-to-source translation model
is given by

P (e|f ; θ2) =
∑
a2

P (e,a2|f ; θ2) (2)

where a2 denotes the target-to-source alignment
and θ2 is the set of target-to-source translation
model parameters.

Given a training set D = {〈f (s), e(s)〉}Ss=1, the
two models are trained independently to maximize
the log-likelihood of the training data for each
direction, respectively:

L(θ1) =
S∑
s=1

logP (f (s)|e(s); θ1) (3)

L(θ2) =
S∑
s=1

logP (e(s)|f (s); θ2) (4)

One key limitation of these generative models
is that they are asymmetric: each target word
is restricted to be aligned to exactly one source
word (including the empty cept) in the source-
to-target direction and vice versa. This is un-
desirable because most real-world word align-
ments are symmetric, in which one-to-one, one-
to-many, many-to-one, and many-to-many links
are usually mixed. See Figure 1(a) for example.
Therefore, a number of heuristic symmetrization
methods such as intersection, union, and grow-
diag-final have been proposed to combine asym-
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metric alignments (Och and Ney, 2003; Koehn and
Hoang, 2007).

2.2 Alignment by Agreement
Rather than using heuristic symmetrization meth-
ods, Liang et al. (2006) propose a principled
approach to jointly training of the two models via
enforcing agreement:

J(θ1,θ2)

=
S∑
s=1

logP (f (s)|e(s); θ1) +

logP (e(s)|f (s); θ2) +

log
∑
a

P (a|f (s), e(s); θ1)×

P (a|e(s), f (s); θ2) (5)

Note that the last term in Eq. (5) encourages the
two models to agree on asymmetric alignments.
While this strategy significantly improves align-
ment accuracy, the joint model is prone to generate
one-to-one alignments because it imposes a hard
constraint on agreement: the two models must
share the same alignment when estimating the
parameters by calculating the products of align-
ment posteriors. In Figure 1(b), the two one-
to-one alignments are almost identical except for
one link. This makes the posteriors to be sharply
peaked around the Viterbi alignments (Liang et
al., 2006). As a result, the lack of many-to-many
alignments limits the benefits of joint training to
end-to-end machine translation.

3 Generalized Agreement for
Bidirectional Alignment

Our intuition is that the agreement between two
alignments can be defined as a loss function,
which enables us to consider various ways of
quantification (Section 3.1) and even to incorpo-
rate the dependency between alignments and oth-
er latent structures such as phrase segmentations
(Section 3.2).

3.1 Agreement between Word Alignments
The key idea of generalizing agreement is to lever-
age loss functions that measure the difference be-
tween two unidirectional alignments. For exam-
ple, the last term in Eq. (5) can be re-written as

∑
a

P (a|f (s), e(s); θ1)P (a|e(s), f (s); θ2)

=
∑
a1

∑
a2

P (a1|f (s), e(s); θ1)×

P (a2|e(s), f (s); θ2)×
δ(a1,a2) (6)

Note that the last term in Eq. (6) is actually the
expected value of agreement:

Ea1|f (s),e(s);θ1

[
Ea2|e(s),f (s);θ2

[
δ(a1,a2)

]]
(7)

Our idea is to replace δ(a1,a2) in Eq. (6) with
an arbitrary loss function ∆(a1,a2) that measures
the difference between a1 and a2. This gives
the new joint training objective with generalized
agreement:

J(θ1,θ2)

=
S∑
s=1

logP (f (s)|e(s); θ1) +

logP (e(s)|f (s); θ2)−
log
∑
a1

∑
a2

P (a1|f (s), e(s); θ1)×

P (a2|e(s), f (s); θ2)×
∆(a1,a2) (8)

Obviously, Liang et al. (2006)’s training objec-
tive is a special case of our framework. We refer
to its loss function as hard matching:

∆HM(a1,a2) = 1− δ(a1,a2) (9)

We are interested in developing a soft version of
the hard matching loss function because this will
help to produce many-to-many symmetric align-
ments. For example, in Figure 1(c), the two align-
ments share most links but still allow for dis-
agreed links to capture one-to-many and many-to-
one links. Note that the union of the two asymmet-
ric alignments is almost the same with the gold-
standard alignment in this example.

While there are many possible ways to define
a soft matching loss function, we choose the dif-
ference between disagreed and agreed link counts
because it is easy and efficient to calculate during
search:

∆SM(a1,a2) = |a1 ∪ a2| − 2|a1 ∩ a2| (10)
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Figure 2: Generalized agreement between word alignments and phrase segmentations. The Chinese and
English sentences are segmented into phrases using B (beginning), I (internal), E (ending), S (single)
labels. We expect that word alignment does not violate the phrase segmentation. The word “unofficial”
in the C→ E alignment is labeled with “-” because “unofficial” and “2002” belong to the same English
phrase but their counterparts are separated in two Chinese phrases. Words that do not violate the phrase
alignment are labeled with “+”. See Section 3.2 for details.

3.2 Agreement between Word Alignments
and Phrase Segmentations

Our framework is very general and can be
extended to include the agreement between word
alignment and other latent structures such as
phrase segmentations.

The words in a Chinese sentence often con-
stitute phrases that are translated as units in
English and vice versa. Inspired by the alignment
consistency constraint widely used in translation
rule extraction (Koehn et al., 2003), we make
the following assumption to impose a structural
agreement constraint between word alignment and
phrase segmentation: source words in one source
phrase should be aligned to target words belong-
ing to the same target phrase and vice versa.

For example, consider the C→ E alignment in
Figure 2. We segment Chinese and English sen-
tences into phrases, which are sequences of con-
secutive words. Since “2002” and “APEC” belong
to the same English phrase, their counterparts on
the Chinese side should also belong to one phrase.

While this assumption can potentially improve
the correlation between word alignment and
phrase-based translation, a question naturally a-
rises: how to segment sentences into phrases?
Instead of leveraging chunking, we treat phrase
segmentation as a latent variable and train the

joint alignment and segmentation model from
unlabeled data in an unsupervised way.

Formally, given a target-language sentence f ≡
fJ1 = f1, . . . , fJ , we introduce a latent variable
b ≡ bJ1 = b1, . . . , bJ to denote a phrase segmen-
tation. Each label bj ∈ {B, I,E, S}, where B
denotes the beginning word of a phrase, I denotes
the internal word, E denotes the ending word, and
S denotes the one-word phrase. Figure 2 shows
the label sequences for the sentence pair.

We use a first-order HMM to model phrase seg-
mentation of a target sentence:

P (f ; λ1) =
∑
b1

P (f ,b1; λ1) (11)

Similarly, the hidden Markov model for the
phrase segmentation of the source sentence can be
defined as

P (e; λ2) =
∑
b2

P (e,b2; λ2) (12)

Then, we can combine word alignment and
phrase segmentation and define the joint training
objective as

J(θ1,θ2,λ1,λ2)

=
S∑
s=1

logP (f (s)|e(s); θ1) +
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1: procedure VITERBIEM(D)
2: Initialize Θ(0)

3: for all k = 1, . . . ,K do
4: Ĥ(k) ← SEARCH(D,Θ(k−1))
5: Θ(k) ← UPDATE(D, Ĥ(k))
6: end for
7: return Ĥ(K),Θ(K)

8: end procedure

Algorithm 1: A Viterbi EM algorithm for learning
the joint word alignment and phrase segmentation
model from bilingual corpus. D is a bilingual cor-
pus, Θ(k) is the set of model parameters at the k-th
iteration, H(k) is the set of Viterbi latent variables
at the k-th iteration.

logP (e(s)|f (s); θ2) +
logP (f (s); λ1) +
logP (e(s); λ2)−
log E(f (s), e(s),θ1,θ2,λ1,λ2) (13)

where the expected loss is given by

E(f (s), e(s),θ1,θ2,λ1,λ2)

=
∑
a1

∑
a2

∑
b1

∑
b2

P (a1|f (s), e(s); θ1)×

P (a2|e(s), f (s); θ2)×
P (b1|f (s); λ1)×
P (b2|e(s); λ2)×
∆(a1,a2,b1,b2) (14)

We define a new loss function segmentation
violation to measure the degree that an alignment
violates phrase segmentations.

∆SV(a1,a2,b1,b2)

=
J−1∑
j=1

β(a1, j,b1,b2) +
I−1∑
i=1

β(a2, i,b2,b1)

(15)

where β(a1, j,b1,b2) evaluates whether two links
l1 = (j, aj) and l2 = (j + 1, aj+1) violate the
phrase segmentation:

1. fj and fj+1 belong to one phrase but eaj and
eaj+1 belong to two phrases, or

2. fj and fj+1 belong to two phrases but eaj and
eaj+1 belong to one phrase.

The β function returns 1 if there is violation and
0 otherwise.

1: procedure SEARCH(D, Θ)
2: Ĥ← ∅
3: for all s ∈ {1, . . . , S} do
4: â1 ← ALIGN(f (s), e(s),θ1)
5: â2 ← ALIGN(e(s), f (s),θ2)
6: b̂1 ← SEGMENT(f (s),λ1)
7: b̂2 ← SEGMENT(e(s),λ2)
8: h0 ← 〈â1, â2, b̂1, b̂2〉
9: ĥ←HILLCLIMB(f (s), e(s),h0,Θ)

10: Ĥ← Ĥ ∪ {ĥ}
11: end for
12: return Ĥ
13: end procedure

Algorithm 2: A search algorithm for finding the
Viterbi latent variables. â1 and â2 denote Viter-
bi alignments, b̂1 and b̂2 denote Viterbi seg-
mentations. They form a starting point h0 for
the hill climbing algorithm, which keeps chang-
ing alignments and segmentations until the model
score does not increase. ĥ is the final set of Viterbi
latent variables for one sentence.

In Figure 2, we use “+” to label words that do
not violate the phrase segmentations and “-” to
label violations.

In practice, we combine the two loss functions
to enable word alignment and phrase segmentation
to benefit each other in a joint search space:

∆SM+SV(a1,a2,b1,b2)
= ∆SM(a1,a2) + ∆SV(a1,a2,b1,b2) (16)

4 Training

Liang et al. (2006) indicate that it is intractable to
train the joint model. For simplicity and efficien-
cy, they exploit a simple heuristic procedure that
leverages the product of posterior marginal prob-
abilities. The intuition behind the heuristic is that
links on which two models disagree should be dis-
counted because the products of the marginals are
small (Liang et al., 2006).

Unfortunately, it is hard to develop a similar
heuristic for our model that allows for arbitrary
loss functions. Alternatively, we resort to a
Viterbi EM algorithm, as shown in Algorithm
1. The algorithm takes the training data D =
{〈f (s), e(s)〉}Ss=1 as input (line 1). We use Θ(k) =
〈θ(k)

1 ,θ
(k)
2 ,λ

(k)
1 ,λ

(k)
2 〉 to denote the set of model

parameters at the k-th iteration. After initializing
the model parameters (line 2), the algorithm alter-
nates between searching for the Viterbi alignments
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(a) MOVE

(b) MERGE

(c) SPLIT

Figure 3: Operators used in the HILLCLIMB pro-
cedure.

and segmentations Ĥ(k) using the SEARCH proce-
dure (line 4) and updating model parameters using
the UPDATE procedure (line 5). The algorithm ter-
minates after running for K iterations.

It is challenging to search for the Viterbi align-
ments and segmentations because of complicat-
ed structural dependencies. As shown in Al-
gorithm 2, our strategy is first to find Viter-
bi alignments and segmentations independently
using the ALIGN and SEGMENT procedures (lines
4-7), which then serve as a starting point for the
HILLCLIMB procedure (lines 8-9).

Figure 3 shows three operators we use in the
HILLCLIMB procedure. The MOVE operator
moves a link in an alignment, the MERGE oper-
ator merges two phrases into one phrase, and the
SPLIT operator splits one phrase into two small-
er phrases. Note that each operator can be further
divided into two variants: one for the source side
and another for the target side.

5 Experiments

5.1 Setup

We evaluate our approach on Chinese-English
alignment and translation tasks.

The training corpus consists of 1.2M sentence
pairs with 32M Chinese words and 35.4M English
words. We used the SRILM toolkit (Stolcke,
2002) to train a 4-gram language model on the
Xinhua portion of the English GIGAWORD cor-
pus, which contains 398.6M words. For alignment
evaluation, we used the Tsinghua Chinese-English

word alignment evaluation data set.1 The evalu-
ation metric is alignment error rate (AER) (Och
and Ney, 2003). For translation evaluation, we
used the NIST 2006 dataset as the development set
and the NIST 2002, 2003, 2004, 2005, and 2008
datasets as the test sets. The evaluation metric is
case-insensitive BLEU (Papineni et al., 2002).

We used both phrase-based (Koehn et al.,
2003) and hierarchical phrase-based (Chiang,
2007) translation systems to evaluate whether our
approach improves translation performance. For
the phrase-based model, we used the open-source
toolkit Moses (Koehn and Hoang, 2007). For the
hierarchical phrase-based model, we used an in-
house re-implementation on par with state-of-the-
art open-source decoders.

We compared our approach with two state-of-
the-art generative alignment models:

1. GIZA++ (Och and Ney, 2003): unsupervised
training of IBM models (Brown et al., 1993)
and the HMM model (Vogel et al., 1996) us-
ing EM,

2. BERKELEY (Liang et al., 2006): unsuper-
vised training of joint HMMs using EM.

For GIZA++, we trained IBM Model 4 in two
directions with the default setting and used the
grow-diag-final heuristic to generate symmetric
alignments. For BERKELEY, we trained joint
HMMs using the default setting. The hyper-
parameter of posterior decoding was optimized on
the development set.

We used first-order HMMs for both word
alignment and phrase segmentation. Our joint
alignment and segmentation model were trained
using the Viterbi EM algorithm for five iterations.
Note that the Chinese-to-English and English-to-
Chinese alignments are generally non-identical
but share many links (see Figure 1(c)). Then,
we used the grow-diag-final heuristic to generate
symmetric alignments.

5.2 Comparison with GIZA++ and
BERKELEY

Table 1 shows the comparison of our approach
with GIZA++ and BERKELEY in terms of AER
and BLEU. GIZA++ trains two asymmetric
models independently and uses the grow-diag-
final (i.e., GDF) for symmetrization. BERKELEY

1http://nlp.csai.tsinghua.edu.cn/˜ly/systems/TsinghuaAlig
ner/TsinghuaAligner.html
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system training agreement loss sym. AER BLEU
GIZA++ indep. N/A N/A GDF 21.35 24.46

BERKELEY joint word-word HM PD 20.52 24.54

this work joint
word-word SM

GDF
22.19 25.11

word-word, word-phrase SM+SV 22.01 25.78

Table 1: Comparison with GIZA++ and BERKELEY. “word-word” denotes the agreement between
Chinese-to-English and English-to-Chinese word alignments. “word-phrase” denotes the agreement be-
tween word alignments and phrase segmentations. “HM” denotes the hard matching loss function, “SM”
denotes soft matching, and “SV” denotes segmentation violation. “GDF” denotes grow-diag-final. “PD”
denotes posterior decoding. The BLEU scores are evaluated on NIST08 test set.

alignment loss translation NIST06 NIST02 NIST03 NIST04 NIST05 NIST08

GIZA++ N/A phrase 29.57 31.82 31.67 32.20 30.48 24.46
hier. 30.72 33.90 33.12 33.54 32.28 24.72

BERKELEY HM phrase 29.87 32.21 32.48 32.06 30.59 24.54
hier. 29.52 33.59 32.70 32.95 29.52 24.29

this work
SM phrase 30.04∗ 32.75∗∗++ 32.35∗∗ 32.47∗+ 30.86∗+ 25.11∗∗++

hier. 30.71++ 34.50∗∗++ 33.89∗∗++ 34.02∗++ 32.83∗∗++ 24.32

SM+SV phrase 30.60∗∗++ 33.37∗∗++ 33.24∗∗++ 33.15∗∗++ 31.57∗∗++ 25.78∗∗++

hier. 30.88++ 34.53∗∗++ 34.04∗∗++ 33.66++ 32.93∗∗++ 25.17∗++

Table 2: Results on (hierarchical) phrase-based translation. The evaluation metric is case-insensitive
BLEU. “HM” denotes the hard matching loss function, “SM” denotes soft matching, and “SV” denotes
segmentation violation. “*”: significantly better than GIZA++ (p < 0.05). “**”: significantly better than
GIZA++ (p < 0.01). “+”: significantly better than BERKELEY (p < 0.05). “++”: significantly better
than BERKELEY (p < 0.01).

trains two models jointly with the hard-matching
(i.e., HM) loss function and uses posterior decod-
ing for symmetrization.

For our approach, we distinguish between two
variants:

1. Imposing agreement between word align-
ments (i.e., word-word) that uses the soft
matching loss function (i.e., SM) (see Section
3.1);

2. Imposing agreement between word align-
ments and phrase segmentations (i.e., word-
word, word-phrase) that uses both the soft
matching and segmentation violation loss
functions (i.e., SM+SV) (see Section 3.2).

We used the grow-diag-final heuristic for
symmetrization.

For the alignment evaluation, we find that our
approach achieves higher AER scores than the two
baseline systems. One possible reason is that links
in the intersection of two symmetric alignments or
two symmetric models agree usually correspond
to sure links in the gold-standard annotation. Our
approach loosens the hard constraint on agreement

and makes the posteriors less peaked around the
Viterbi alignments.

For the translation evaluation, we used the
phrase-based system Moses to report BLEU s-
cores on the NIST 2008 test set. We find that both
the two variants of our approach significantly out-
performs the two baselines (p < 0.01).

5.3 Results on (Hierarchical) Phrase-based
Translation

Table 2 shows the results on phrase-based and
hierarchical phrase-based translation systems. We
find that our approach systematically outperforms
GIZA++ and BERKELEY on all NIST datasets.

In particular, generalizing the agreement to
model the discrepancy between word alignment
and phrase segmentation is consistently beneficial
for improving translation quality, suggesting that
it is important to introduce structural constraints
into word alignment to increase the correlation
between alignment and translation.

While “SM+SV” improves over “SM” signifi-
cantly on phrase-based translation, the margins on
the hierarchical phrase-based system are relative-
ly smaller. One possible reason is that the “SV”
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system loss |AC→E | |AE→C | |AC→E ∩ AE→C | F1
GIZA++ N/A 29.39M 27.64M 17.07M 59.86

BERKELEY HM 29.12M 28.09M 21.30M 74.46

this work
SM 29.84M 29.31M 20.24M 68.42

SM+SV 30.04M 29.50M 20.54M 69.00

Table 3: Agreement evaluation of GIZA++, BERKELEY and our approach. The F1 score reflects how
well two asymmetric alignments agree with each other.

loss function can better account for phrase-based
rather than hierarchical phrase-based translation.
It is possible to design new loss functions tailored
to hierarchical phrase-based translation.

We also find that the BLEU scores of BERKE-
LEY on hierarchical phrase-based translation are
much lower than those on phrase-based transla-
tion. This might result from the fact that BERKE-
LEY is prone to produce one-to-one alignments,
which are not optimal for hierarchical phrase-
based translation.

5.4 Agreement Evaluation

Table 3 compares how well two asymmetric
models agree with each other among GIZA++,
BERKELEY and our approach. We use F1 score
to measure the degree of agreement:

2|AC→E ∩ AE→C |
|AC→E |+ |AE→C | (17)

where AC→E is the set of Chinese-to-English
alignments on the training data and AE→C is the
set of English-to-Chinese alignments.

It is clear that independent training leads to low
agreement and joint training results in high agree-
ment. BERKELEY achieves the highest value of
agreement because of the hard constraint.

6 Related Work

This work is inspired by two lines of research: (1)
agreement-based learning and (2) joint modeling
of multiple NLP tasks.

6.1 Agreement-based Learning

The key idea of agreement-based learning is to
train a set of models jointly by encouraging them
to agree on the hidden variables (Liang et al.,
2006; Liang et al., 2008). This can also be seen as
a particular form of posterior constraint or poste-
rior regularization (Graça et al., 2007; Ganchev et
al., 2010). The agreement is prior knowledge and

indirect supervision, which helps to train a more
reasonable model with biased guidance.

While agreement-based learning provides a
principled approach to training a generative mod-
el, it constrains that the sub-models must share the
same output space. Our work extends (Liang et
al., 2006) to introduce arbitrary loss functions that
can encode prior knowledge. As a result, Liang et
al. (2006)’s model is a special case of our frame-
work. Another difference is that our framework
allows for including the agreement between word
alignment and other structures such as phrase seg-
mentations and parse trees.

6.2 Joint Modeling of Multiple NLP Tasks

It is well accepted that different NLP tasks can
help each other by providing additional informa-
tion for resolving ambiguities. As a result, joint
modeling of multiple NLP tasks has received in-
tensive attention in recent years, including phrase
segmentation and alignment (Zhang et al., 2003),
alignment and parsing (Burkett et al., 2010), tok-
enization and translation (Xiao et al., 2010), pars-
ing and translation (Liu and Liu, 2010), alignment
and named entity recognition (Chen et al., 2010;
Wang et al., 2013).

Among them, Zhang et al. (2003)’s integrat-
ed search algorithm for phrase segmentation and
alignment is most close to our work. They use
Point-wise Mutual Information to identify possi-
ble phrase pairs. The major difference is we train
models jointly instead of integrated decoding.

7 Conclusion

We have presented generalized agreement for bidi-
rectional word alignment. The loss functions can
be defined both between asymmetric alignments
and between alignments and other latent structures
such as phrase segmentations. We develop a Viter-
bi EM algorithm to train the joint model. Exper-
iments on Chinese-English translation show that
joint training with generalized agreement achieves
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significant improvements over two baselines for
(hierarchical) phrase-based MT systems. In the fu-
ture, we plan to investigate more loss functions to
account for syntactic constraints.
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Abstract

We propose a transition-based model for
joint word segmentation, POS tagging and
text normalization. Different from pre-
vious methods, the model can be trained
on standard text corpora, overcoming the
lack of annotated microblog corpora. To
evaluate our model, we develop an anno-
tated corpus based on microblogs. Exper-
imental results show that our joint model
can help improve the performance of word
segmentation on microblogs, giving an er-
ror reduction in segmentation accuracy of
12.02%, compared to the traditional ap-
proach.

1 Introduction

Microblogs, such as Twitter, SMS and Weibo, has
become an important research topic in NLP. Pre-
vious work has shown that off-the-shelf NLP tools
can perform poorly on microblogs (Foster et al.,
2011; Gimpel et al., 2011; Han and Baldwin,
2011). One of the major challenges for microblog
processing is the issue of informal words. For ex-
ample, “tmrw” has been frequently used in tweets
for “tomorrow”, causing OOV problems.

Text normalization has been introduced as
a pre-processing step for microblog processing,
which transforms informal words into their stan-
dard forms. Most work in the literature focuses
on English microblog normalization, treating it as
a noisy channel problem (Pennell and Liu, 2014;
Cook and Stevenson, 2009; Yang and Eisenstein,
2013) or a translation problem (Aw et al., 2006;
Contractor et al., 2010; Li and Liu, 2012; Zhang
et al., 2014c), and training models based on words.

Lack of annotated corpora, text normalization
is more challenging for Chinese. Unlike En-
glish, Chinese informal words are more difficult

∗corresponding author

to mechanically normalize for two main reasons.
First, Chinese does not have word delimiters.
Second, Chinese informal words manifest diver-
sity, such as abbreviations, neologisms, unconven-
tional spellings and phonetic substitutions. Intu-
itively, there is mutual dependency between Chi-
nese word segmentation and normalization, and
therefore two tasks should be solved jointly.

Wang and Kan (2013) proposed a joint model
to process word segmentation and informal word
detection. However, text normalization was not
included in the joint model. Kaji et al (2014)
proposed a joint model for word segmentation,
POS tagging and normalization for Japanese Mi-
croblogs, which was trained on a partially anno-
tated microblog corpus. Their method requires
special annotation for text normalization, which
can be expensive.

In this paper, we propose a joint model for Chi-
nese text normalization, word-segmentation and
POS tagging, which can be trained using standard
segmentation and POS tagging annotation, over-
coming the lack of an annotated corpus on Chi-
nese microblogs. Our model is based on Zhang
and Clark (2010), with an extended set of transi-
tion actions to handle joint normalization. In our
model, word segmentation and POS tagging are
based on normalized text transformed from infor-
mal text. Assuming that the majority of informal
words can be normalized into formal equivalents
(Han et al., 2012; Li and Yarowsky, 2008), we
seek standard forms of informal words from an au-
tomatically constructed normalization dictionary.

To evaluate our model, we developed an anno-
tated corpus of microblog texts. Results show that
our model achieves the best performances on three
tasks compared with several baseline systems.

2 Text Normalization

Text normalization is a relatively new research
topic. There are no precise definitions of a text
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normalization task that are widely accepted by
researchers. The task is generally divided into
three categories: lexical-level, sentence-level and
discourse-level normalization. In this paper we
focus on lexical-level normalization, which aims
to transform informal words into their standard
forms.

Lexical normalization can be regarded as a
spelling correction problem. However, researches
on spelling correction focus on typographic
and cognitive/orthographic errors (Kukich, 1992),
while text normalization focuses on lexical vari-
ants, such as phonetic substitutions, abbreviation
and paraphrases.

Unlike English, for which informal words are
detected according to whether they are out of vo-
cabulary, Chinese informal words manifest diver-
sity. Wang et al. (2013) divided informal words
into three types: phonetic substitutions, abbrevi-
ations and neologisms. Li and Yarowsky (2008)
classified them into four types: homophone, ab-
breviation, transliteration and others. Due to vari-
ant characteristics, they normalise informal words
by training a model per type, leading to increased
system complexity.

Research reveals that most lexical variants have
an unambiguous standard form (Han et al., 2012;
Li and Yarowsky, 2008). The validity of this as-
sumption is also empirically assessed on our cor-
pus annotation in Section 6.1. Based on this as-
sumption, we seek standard forms of informal
words from a constructed normalization dictio-
nary, avoiding diversity on informal words.

3 Joint Segmentation and Normalization

3.1 Transition-based Segmentation
We adapt the segmenter of Zhang and Clark
(2007) as our baseline segmenter. Given an input
sentence x, the baseline segmenter finds a segmen-
tation by maximizing:

F (x) = argmax
yεGen(x)

Score(y) (1)

where Gen(x) denotes the set of all possible seg-
mentations for an input sentence.

Zhang and Clark (2007) proposed a graph-
based scoring model, with features based on com-
plete words and word sequences. We adapt their
method slightly, under a transition-based frame-
work (Zhang and Clark, 2011), which gives us a
consistent way of defining all models in this paper.

Stack Queue

S2 S1 S0 C1 Cn
... ...

Figure 1: A state of transition-based model.

Here a transition model is defined as a quadruple
M = (C, T,W,Ct), where C is a state space, T
is a set of transitions, each of which is a function:
C → C, W is an input sentence c1... cn, Ct is a
set of terminal states. A model scores the output
by scoring the corresponding transition sequence.

As shown in Figure 1, a state is a tuple ST =
(S,Q), where S contains partially segmented se-
quences, andQ = (ci, ci+1, ..., cn) is the sequence
of input characters that have not been processed.
When the character ci is processing, the transition
system would operate one of two actions that are
defined as follows:

(1) APP(ci), removing ci from Q, and append-
ing it to the last (partial) word in S.

(2) SEP(ci), removing ci from Q, making the
last word in S as completed, and adding ci as a
new partial word.

Given the sentence “å\��'J�(How
great work pressure is!)”, the sequences of ac-
tion “SEP(å), APP(\), SEP(�), APP(�),
SEP('), SEP(J), SEP(!)” can be used to ana-
lyze its structure.

3.2 Joint Segmentation and Normalization

Our SN model extends the transition-based seg-
mentation model. In addition to the actions APP
and SEP, the transition system also contains a
SEPS action, which substitutes an in formal word
on the top of S if it exists in the normalization dic-
tionary. Figure 2 gives a normalization transition
process for the sentence “å\-¨'J�(How
great work pressure is!)”. During processing the
character “'(big)”, the following actions can be
applied.

(1) APP(“'(big)”), appending “'(big)” to the
last word “-¨(yālı́, pear)” in the informal la-
beled sequence.

(2) SEP(“'(big)”), making the last word “-
¨(yālı́, pear)” in the informal labeled sequence as
a completed word, and adding “'(big)” as a new
partial word.

(3) SEPS(“'(big)”, “��(yālı̀, pressure)”),
operating the action SEP(“'(big)”), and using
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Sentence: å\-¨'J! (How great work pressure is!)
State Action Stack Queue Dictionary

Si &&

Org: å\ -¨

work pear
Nor: å\

work

'J!
big ah!

-¨-��
pear - pressure
i¸-iP
child paper - child
ô�-®Z
neckerchief - microblog
ÆË-�Ë
basin friend - friend
&&&&

Si+1

APP(“'”)

Org: å\ -¨'

work pear big
Nor: å\

work

J!
(ah!)

SEP(“'”)

Org: å\ -¨ '

work pear big
Nor: å\

work

SEPS(“'”,
“��”)

Org: å\ -¨ '

work pear big
Nor: å\ ��

work pressure

Figure 2: Transition actions for joint segmentation
and normalization.

the standard form “��(yālı̀, pressure)” for the
informal word “-¨(yālı́, pear)”.

Given the sentence “å\-¨'J�(How
great work pressure is!)”, the sequences of ac-
tion “SEP(å), APP(\), SEP(-), APP(¨),
SEPS(', ��), SEP(J), SEP(!)” can be used
to analyze its structure.

Lexical substitution is based on a normalization
dictionary whose entries consist of <lexical vari-
ant, standard form> pairs. The output is a pair
of labeled sequences, containing the informal la-
beled sequence and the corresponding formal la-
beled sequence. To rank the candidates, both la-
beled sequences can be scored. However, lacking
annotated corpora on informal texts, we only use
the score of formal labeled sequence in our model.
The advantage is that we can train our model by
using standard corpus only, overcoming the lack
of annotated corpora on informal texts.

3.3 Training and Decoding

We apply the global training and beam-search de-
coding framework of Zhang and Clark (2011). An
agenda is used by the decoder to keep the N-best
states during the incremental process. Before de-
coding starts, the agenda is initialized with the ini-
tial state. When a character is processed, existing
states are removed from the agenda and extended
with all possible actions, and the N-best newly
generated states are put back onto the agenda. Af-
ter all states have been terminal, the highest-scored
state from the agenda is taken as the output.

Algorithm 1 shows pseudocode for the decoder.
ADDITEM adds a new item into the agenda, N-
BEST returns the N highest-scored items from the
agenda, and BEST returns the highest-scored item

Algorithm 1: Decoder
Input: sent, Dictionary // sent: informal sentence
Output:Best normalization sentence
1. agenda�NULL
2. for idx in [0..LEN(sent)]:
3. for state in agenda:
4. new�APP(state, sent[idx])
5. ADDITEM(agenda, new)
6. new�SEP(state, sent[idx])
7. ADDITEM(agenda, new)
8. norWords�GETNWORD(state.lastWord)
9. for word in norWords
10. new�SEPS(state,sent[idx],word)
12. ADDITEM(agenda, new)
13. agenda�N-BEST(agenda)
14. return BEST(agenda)

from the agenda. GETNWORD returns a possible
standard form set of last word, seeking from nor-
malization dictionary. APP appends a character
to the last word in a state, SEP joins a character
as the start of a new word in a state, SEPS oper-
ates SEP and replaces the last word by a possible
standard form.

3.4 Features
In the experiments, we use the segmentation fea-
ture templates of Zhang and Clark (2011). These
features are effective for segmentation on formal
text. However, for text normalization, these fea-
tures contain insufficient information. Our exper-
iments show that by using Zhang and Clark’s fea-
tures, the F-Score on normalization is only 0.4207.

Prior work has shown that the language statis-
tic information is important for text normalization
(Wang et al., 2013; Li and Yarowsky, 2008; Kaji
and Kitsuregawa, 2014). As a result, we extract
language model features by using word-based lan-
guage model learned from a large quantity of stan-
dard texts. In particular, 1-gram, 2-gram, 3-gram
features are extracted. Every type of n-gram is di-
vided into ten probability ranges. For example, if
the probability of the word bigram: “ ��- '”
(high pressure) is in the 2nd range, the feature is
represented as “word-2-gram=2”.

In our experiments, language models are trained
on the Gigaword corpus1 with SRILM tools2. To
train a word-based language model, we segmented
the corpus using our re-implementation of Zhang
and Clark (2010). Results show that language
model information not only improves the perfor-

1https://catalog.ldc.upenn.edu/LDC2003T05
2http://www.speech.sri.com/projects/srilm/
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mance of text normalization, but also increases the
performance of word-segmentation.

4 Extension for Joint Segmentation,
Normalization and POS tagging

4.1 Joint Segmentation and POS Tagging

In order to reduce the error propagation of word
segmentation, joint models have been applied to
some NLP tasks, such as POS tagging (Zhang and
Clark, 2010; Kruengkrai et al., 2009) and Parsing
(Zhang et al., 2014a; Qian and Liu, 2012; Zhang
et al., 2014b).

We take the joint word segmentation and POS
tagging model of Zhang and Clark (2010) as the
joint baseline. It extends from transition-based
segmenter, adding POS arguments to the original
actions. In Figure 1, when the current character ci
is processing, the transition system for ST would
operate as follows :

(1) APP(ci), removing ci from Q, and append-
ing it to the last (partial) word in S with the same
POS tag, .

(2) SEP(ci, pos), removing ci from Q, making
the last word in S as completed, and adding ci as
a new partial word with a POS tag “pos”.

Given the sentence “å\��'J�(How
great work pressure is!)”, the sequences of ac-
tion “SEP(å, NN), APP(\), SEP(�, NN),
APP(�), SEP(', VA), SEP(J, SP), SEP(!,
PU)” can be used to analyze its structure.

4.2 Joint Segmentation, Normalization and
POS Tagging

Our joint model extends the model of Zhang and
Clark (2010) by adding a SEPS action, which sub-
stitutes formal word for last word in S if exists in
the dictionary. On the other hand, it can also be
regarded as an extension of the joint segmentation
and normalization model, adding POS arguments
to the original actions.

Using the same example shown in Figure 2, the
following three actions can be applied for the char-
acter “'�big)”:

(1) APP(“'(big)”), appending “'(big)” to the
last word “-¨(yālı́, pear)” in the informal la-
beled sequence, which remain with the same POS
tag “NN”.

(2) SEP(“'(big)”, VA), making the last word
“-¨(yālı́, pear)” in the informal labeled se-
quence as a completed word and adding “'(big)”
as a new partial word with a POS tag “VA”.

Text Relation
wR_ðw�� (wR,w�)
(Overseas returnees is also
referred to as turtles.)

(overseas ret-
urnee, turtle)

�õ��	¹Ø�
b��

}�º�i�Ùõ�ëØp

�ØIpf	�

(ØIpf,Øp)

(A tree, seemingly a little high,
fails a lot of people. Well,
this tree is called high number
(advanced mathematics))

(advanced mathem-
atics, high number)

Table 1: Relation patterns in microblogs.

(3) SEPS(“'(big)”, VA, “��(yālı̀, pres-
sure)”), operating the action SEP(“'(big)”, VA),
and using the standard form “��(yālı̀, pressure)”
for the informal word “-¨(yālı́, pear)”.

Given the sentence “å\-¨'J�(How
great work pressure is!)”, the sequences of ac-
tion “SEP(å, NN), APP(\), SEP(-, NN),
APP(¨), SEPS(', VA, ��), SEP(J, SP),
SEP(!, PU)” can be used to analyze its structure.

We use the same training and decoding frame-
work as our joint segmentation, normalization and
POS tagging model, as described in section 3.3.

5 Construction of Normalization
Dictionary

Although large-scale normalization dictionaries
are difficult to obtain, informal/formal relations
could be extracted from large-scale web corpora
(Li and Yarowsky, 2008), and informal words are
mainly derived using fixed word-formation pat-
terns. In this paper, we adopt two methods to con-
struct a normalization dictionary.

The first method is to extract informal/formal
pairs from large-scale text. In general, many infor-
mal and formal words co-occur in the same texts
or similar contexts. We can find their relations
with text patterns. As shown in Table 1, the first
example follows the “formal_ðinformal” (“_
ð” means “is also referred to as”) definition pat-
tern, while the second example follows the pattern
“informal(formal)”. This gives us a reliable way to
seed and bootstrap a list of informal/formal pairs.

We use a bootstrapping algorithm to extract in-
formal/formal pairs from large-scale microblogs.
First, a small set of example relations are collected
manually. Second, using these relations as a seed
set, we extract the text patterns, with which we
identify more new relations from the data and aug-

1840



informal_/formal���, formal_ðinformal,
informal(formal),:ÀH��formalð:informal,
formalv�ëinformal,informal:...ùformal�ð�,
informal�óêformal, “formal”�UØ“informal”,
(“informal”Öã“formal”, informal1/formal���,
informal	°��Iformal, formal�)�/informal,
�formalô�informal,QÜ...formalëinformal,
ð...formal:informal, informal/formal��ó,
“formal”�1��“informal”,SformalØ�informal,
informalï�\/formal��ð,�formal��informal,
QÜ...infromal���/formal.

Table 2: Examples of text patterns.

ment them into the seed set. Table 2 shows the
initial text patterns extracted form the examples.
The procedure iterates until it cannot identify new
relations. There is much noise in the extracted
informal/formal pairs. We re-rank them using a
similarity-based classifier with weak supervision,
with the positive pairs being inserted into dictio-
nary.

The second method is to generate new infor-
mal/formal pairs using word-formation patterns
extracted from informal/formal pairs. Although
Chinese informal words manifest diversity, infor-
mal words are mainly derived using fixing word-
formation methods, such as compounds, phonetic
substitutions, abbreviations, acronym, reduplica-
tion. We can learn the pattern of informal word-
formation from informal/formal pairs. For exam-
ple, in informal/formal pair “ ¹¸(mèizhı̌, sis-
ter paper)/¹P(mèizı̌, sister)”, informal word “¹
¸(mèizhı̌, sister paper)” is builded from formal
word “¹P(mèizı̌, sister)” by the pattern “P→
¸”. Using this pattern, we can generate many new
informal/formal pairs, such as “I¸(hànzhı̌, man
paper)/IP(hànzı̌, man)”, “7¸(nánzhı̌, man pa-
per)/7P(nánzı̌, man)”, “Y¸(sūnzhı̌, grandson
paper)/ YP(sūnzı̌, grandson)”, in which the for-
mal words contain character “P”.

In the experiments, we constructed the nor-
malization dictionary consisting of 32,787 infor-
mal/formal word pairs in total. The dictionary
is used to tamper the formal training data for
the joint segmentation and normalization systems
with 25% of the formal words in the dictionary be-
ing replaced with their informal equivalents.

Num Ratio Agree
Phonetic

Substitutions
572 0.870 0.95

Abbreviation 69 0.105 0.97
Paraphrases 17 0.025 0.90

Total 658 1 0.95

Table 3: Frequency distribution and annotation
agreement on various types of informal words.

6 Experiments

6.1 Microblog Corpus Annotation

To evaluate our model, we develop a microblog
corpus. Our annotated corpus is collected from
Sina Weibo3, which is the largest microblogging
platform in China. More than 1,000,000 Chinese
posts are crawled using Sina Weibo API. Among
these, 4,000 posts were randomly selected. We
follow Wang et al. (2012) and apply rules to
preprocess the corpus’URLs, emoticons, “@user-
names�and Hashtags as pre-segmented words.
As a result, we obtain 2,000 sentences as a source
of the corpus.

Two human participants annotated the 2,000
sentences by using the tools we developed. The
tools can simultaneously annotate word bound-
aries, POS and text normalization. We used the
CTB scheme for word segmentation and POS
tagging. We divided informal words into three
types: Phonetic Substitutions, Abbreviation, Para-
phrases. In total, we annotated 1,129 informal
word-pairs in the 2,000 sentences, which con-
tained 658 different informal words.

Table 3 shows the frequency distribution and
annotation agreement over three types of informal
words in corpus. The Cohen’s kappa is 0.95 for
informal words annotation, which shows that it
is easy for humans to distinguish informal words,
and validates our assumption that informal word
generally has one formal word equivalent.

6.2 Settings and Measures

Our model is trained on the Chinese Treebank
(CTB) 74, which is a large, word segmented, POS
tagged and fully bracketed Chinese news corpus.
The annotated microblog corpus is randomly di-
vided into two parts: 1,000 sentences for develop-
ment and 1,000 sentences for test.

The standard F-measure is used to measure the
3http://www.weibo.com/
4https://catalog.ldc.upenn.edu/LDC2010T07

1841



Development Test
Seg-F Nor-F Seg-F Nor-F

S;N 0.8859 0.3956 0.8885 0.4058
SN 0.8946 0.4053 0.8945 0.4207
S;N+lm 0.9101 0.5897 0.9132 0.6276
SN+lm 0.9202 0.6009 0.9240 0.6392

Table 4: Segmentation and normalization results.
S;N denotes the pipeline model. SN denotes the
joint model. lm denotes language model features.

accuracies of word segmentation, POS tagging
and text normalization, where the accuracy is F
= 2PR/(P+R). In addition, we use recall rates to
evaluate the identification accuracies of formal, in-
formal and all words. The recall rate of formal
words N-R is defined as the percentage of gold
standard output formal words that are correctly
segmented, the recall rate of informal words I-R
is defined as the percentage of gold-standard out-
put informal words that are correctly segmented
and the recall rate of all words ALL-R is defined as
the percentage of gold standard output words that
are correctly segmented.

6.3 Joint Segmentation and Normalization

Our development set is used to decide the beam
size and the number of training iterations. The best
performances on the development set are obtained
when the beam size is set to 16 and the number of
iterations is set to 32.

Comparison with pipeline We investigate the
influence of the language model and analyze the
result compared to the baseline. Table 4 shows the
results on the development and test sets, where SN
model is joint model and S;N is pipeline model.
Our SN model performs better on segmentation
than pipeline S;N model, demonstrating the effec-
tiveness of normalization.

Table 5 shows the accuracies (i.e., recall rate)
of formal and informal word identification on the
development set. After normalization, the accu-
racy of informal word identification has a large
improvement, and the accuracy of formal word
identification also increases. This shows that for-
mal words can be better recognized when infor-
mal words are identified correctly. It demonstrates
that text normalization is effective for both infor-
mal words and formal words.

The effect of language model From Table 4,
we observe that the performances increase when
using language model features. Particularly, the

Segmentation
models N-R I-R ALL-R
S;N 0.8711 0.5100 0.8624
SN 0.8716 0.6653 0.8652
S;N+lm 0.9143 0.4229 0.9025
SN+lm 0.9149 0.7752 0.9109

Table 5: Formal and informal word accuracies on
the development test. N-R denotes the recall rate
of formal words, I-R denotes the recall rate of in-
formal words, ALL-R denotes the recall rate of all
words.

normalization accuracy improves more signifi-
cantly. It indicates that statistical language model
knowledge play an important role on text normal-
ization. Using language model features, our SN
model improves more in the segmentation F-Score
compared with the baseline system.

Furthermore, we also find that the language
model features are helpful to identifying the for-
mal words, as shown in Table 5. The identification
accuracy of informal words increases on the SN
model, while the accuracy decreases on the S;N
model. Due to the relatively low frequency of in-
formal words, they score lower on informal text by
using the language model information, resulting in
incorrect word segmentations. This illustrates that
our joint model is more suitable for microblogs
than the pipeline method.

6.4 Joint Segmentation, Normalization and
POS tagging

We compare the following models on word seg-
mentation, text normalization and POS tagging.

ST Our re-implementation of Zhang and
Clark(2010). We investigate how the joint model
contributes to improving accuracy of word seg-
mentation and POS tagging in microblog domain.

S;N;T It is a pipe-line method for segmentation,
normalization and POS tagging. The segmentation
model does not use the features of POS. The nor-
malization model uses segmentation information,
but not features of POS. The POS tagging model
does not need to segmentation.

SN;T It is another pipe-line method that first
performs segmentation and normalization, then
performs POS tagging. The SN model does not
use the features of POS, and the POS tagging
model does not need to segmentation.

SNT Our joint segmentation, normalization,
and POS tagging model.
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6.4.1 Results
Table 6 shows the final results on the test set. Pre-
vious work has shown that the systems trained on
news data give poor accuracies of word segmen-
tation and POS tagging in the microblog domain.
As shown in Table 6,the F-Score of segmentation
and POS tagging is 0.902 and 0.8163 respectively
by using the Stanford segmenter and POS tagger.

Comparing ST and SNT, we find that text nor-
malization can enhance word segmentation and
POS tagging in the microblog. SNT achieved
larger improvements over the baseline with lan-
guage features, reducing segmentation errors by
12.02% and POS errors by 3.63%.

Another goal of the experiment is to illustrate
whether the three tasks benefit from each other.
Comparing SN;T to S;N;T shows that the perfor-
mance increases by join segmentation and normal-
ization. It indicates that segmentation and text
normalization benefit from each other. On other
hand, our SNT model yields better performance
than SN;T. It indicates that POS features are effec-
tive for segmentation and text normalization, and
hence three tasks benefit from each other.

The effect of the normalization dictionary
The dictionary plays an important role in our
model, which reduces the number of OOV words.
Intuitively, the performance is higher when the
coverage of dictionary is larger. In the experi-
ments, the coverage of our dictionary on the devel-
opment and tests are 45.8%,48.2% respectively.

To investigate the effect of the dictionary on
our model, we manually construct ten dictionar-
ies from our development data, with coverage be-
tween 10% and 100%. Figure 3 shows the F-
score curves of test set on segmentation and POS-
tagging for both SNT+lm and ST+lm model by
different dictionaries. With the coverage of the
dictionaries increasing from 10% to 100%, the
F-score generally increases. When the coverage
is greater than about 20%, the F-score for joint
model is higher than for the baseline model.

6.4.2 Error Analysis
We found two major categories of errors. Abbre-
viation is sometimes incorrectly normalised, es-
pecially an informal word mapping to more than
one formal word. For example, informal word “
�v” mapped to “�ývÏ” (American idol),
which consists of two words: “�ý” (American)
and “ vÏ” (idol). However, our model cannot
normalise the word “�v” in the experiment.
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Figure 3: Results of SNT+lm and ST+lm based on
different dictionaries for test set.

Seg-F POS-F Nor-F
Stanford 0.9058 0.8163
ST 0.8934 0.8263
S;N;T 0.8885 0.8197 0.4058
SN;T 0.8945 0.8287 0.4207
SNT 0.8995 0.8296 0.4391
ST+lm 0.9162 0.8401
S;N;T+lm 0.9132 0.8341 0.6276
SN;T+lm 0.9240 0.8439 0.6392
SNT+lm 0.9261 0.8459 0.6413

Table 6: Results on the test set. ST denotes the
joint segmentation and POS tagging model. S;N;T
denotes the pipeline model. SN denotes the joint
segmentation and normalization model. SNT de-
notes the joint segmentatin. normalization and
POS tagging model. lm denotes language model
features. Seg-F denotes the F-Score of segmenta-
tion. POS-F denotes the F-Score of POS tagging.
Nor-F denotes the F-Score of normalization.

Another type of error is phonetic substitutions
of numbers, which are sometimes identified incor-
rectly. For example. “7456” is identified as a num-
ber in the experiments, but it means “�{��”
(I’m so angry). To settle this problem, it needs
more context information.

6.5 Results of Lexical Normalization

It is interesting to explore how well the joint model
can normalize informal words. We compare our
results with two existing systems on text normal-
ization based on our annotated microblog corpus.

(1) WangDT We re-implement Wang et al.
(2013), which formalized the task as a classifica-
tion problem and proposed rule-based and statisti-
cal features to model three plausible channels that
explain the connection between formal and infor-
mal pairs. We use a single decision tree classifier
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P R F
SNT+lm 0.9027 0.4920 0.6413
WangDT 0.6214 0.5543 0.5859
LYTop1 0.6338 0.4920 0.5540

Table 7: Results of lexical normalization.

in the experiment.
(2) LYTop1 Li and Yarowsky (2008) formal-

ized the task as a ranking problem and proposed
a conditional log-linear model to normalization.
In the experiment, we select top 1 as the standard
form of informal word.

We use the same division with 1000 sentences
for training and 1000 for test. The training data is
used for both the WangDT and LY. We re-segment
the corpus using Stanford tools for the two base-
lines. WangDT uses CRF to detection informal
words and LYTop1 uses the informal words de-
tected using our joint model.

Although it is a little unfair for the two baselines
compared with our joint model, which uses the ex-
ternal knowledge - normalization dictionary. The
experiments can partly reflect some conclusions.
Table 7 shows the results of normalization by dif-
ferent systems. The performance of our model is
the best among the three systems. In particular,
the precision in our SNT model improves upon
the baselines significantly. The main reason is that
our model is based on global features over whole
sentences, while the two baselines based on local
windows features.

7 Related Work

There has much work on text normalization. The
task is generally treated as a noisy channel prob-
lem (Pennell and Liu, 2014; Cook and Steven-
son, 2009; Yang and Eisenstein, 2013; Sonmez
and Ozgur, 2014) or a translation problem (Aw
et al., 2006; Contractor et al., 2010; Li and Liu,
2012; Zhang et al., 2014c). For English, most
recent work (Han and Baldwin, 2011; Gouws et
al., 2011; Han et al., 2012) uses two-step unsuper-
vised approaches to first detect and then normalize
informal words. They aim to produce and use in-
formal/formal word lexicons and mappings.

In processing Chinese informal text, Wong and
Xia (2008) address the problem of informal words
in bulletin board system (BBS) chats by employ-
ing pattern matching. Xia et al. (2005) also use
SVM-based classification to recognize Chinese in-
formal sentences chats. Both methods have their

advantages: the learning-based method does bet-
ter on recall, while the pattern matching performs
better on precision.

Li and Yarowsky (2008) tackle the problem of
identifying informal/formal Chinese word pairs by
generating candidates from Baidu search engine
and ranking using a conditional log-linear model.
Zhang et al. (2014c) analyze the phenomena of
mixed text in Chinese microblogs, proposing a
two-stage method to normalise mixed texts. How-
ever, their models employ pipelined words seg-
mentation, resulting in reduced performance.

Wang and Kan (2013) propose a joint model to
process word segmentation and informal word de-
tection. However, text normalization is split to an-
other task (Wang et al., 2013). Our joint model
process word segmentation, POS tagging and nor-
malization simultaneously. Kaji et al. (2014)
propose a joint model for word segmentation,
POS tagging and normalization for Japanese Mi-
croblogs. Their model is trained on a partially an-
notated microblog corpus. In contrast, our model
can be trained on existing annotated corpora in
standard text.

Researchers have recently developed various
microblog corpora annotated with rich linguistic
information. Gimpel et al. (2011) and Foster et
al. (2011) annotate English microblog posts with
POS tags. Han and Baldwin (2011) release a mi-
croblog corpus annotated with normalized words.
Duan et al. (2012) develop a Chinese microblog
corpus annotated with segmentation for SIGHAN
bakeoff. Wang et al. (2013) release a Chinese mi-
croblog corpus for word segmentation and infor-
mal word detection. However, there are no mi-
croblog corpora annotated Chinese word segmen-
tation, POS tags, and normalized sentences.

Our work is alse related to the work of word
segmentation (Zhang and Clark, 2007; Zhang et
al., 2013; Chen et al., 2015) and joint word seg-
mentation and POS-tagging (Jiang et al., 2008;
Zhang and Clark, 2010). A comprehensive sur-
vey is out of the scope of this paper, but interested
readers can refer to Pei et al. (Pei et al., 2014) for
a recent literature review of the fields.

To evaluate our model, we develop an annotated
microblog corpus with word segmentation, POS
tags, and normalization. Furthermore, we train
our model by using a standard segmented and POS
tagged corpus. We also present a comprehensive
evaluation in terms of precision and recall on our
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microblog test corpus. Such an evaluation has not
been conducted in previous work due to the lack
of annotated corpora for Chinese microblogs.

8 Conclusion

We proposed a joint model of word segmentation,
POS tagging and normalization, in which the three
tasks benefit from each other. The model is trained
on standard corpora, hence there is no need to re-
train it for new microblog corpora. The results
demonstrated that the model can improve the per-
formance of word segmentation and POS tagging
with text normalization on microblogs, and our
model can benefit from the language statistical in-
formation, which is not suitable to segment word
and tag POS directly for microblogs because of the
relatively low frequency of informal words.

In our model, lexical substitution is based
on a normalization dictionary, which avoids
the diversity of informal words, simplifying
this problem for real world applications. The
codes of the joint model and data set are pub-
lished at the website: https://github.com/
qtxcm/JointModelNSP.
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Abstract

We provide a generalization of discrimina-
tive lexicalized shift reduce parsing tech-
niques for phrase structure grammar to a
wide range of morphologically rich lan-
guages. The model is efficient and outper-
forms recent strong baselines on almost all
languages considered. It takes advantage
of a dependency based modelling of mor-
phology and a shallow modelling of con-
stituency boundaries.

1 Introduction

Lexicalized phrase structure parsing techniques
were first introduced by Charniak (2000) and
Collins (2003) as generative probabilistic models.
Nowadays most statistical models used in natu-
ral language processing are discriminative: dis-
criminative models provide more flexibility for
modelling a large number of variables and conve-
niently expressing their interactions. This trend is
particularly striking if we consider the literature in
dependency parsing. Most state of the art multi-
lingual parsers are actually weighted by discrimi-
native models (Nivre and Scholz, 2004; McDon-
ald et al., 2005; Fernández-González and Martins,
2015).

With respect to multilingual phrase structure
parsing, the situation is quite different. Most
parsers focus on fixed word order languages like
English or Chinese as exemplified by Zhu et al.
(2013). Despite a few exceptions (Collins et al.,
1999), multilingual state of the art results are gen-
erally derived from the generative model of Petrov
et al. (2006). Although more recently Hall et
al. (2014) introduced a conditional random field
parser that clearly improved the state of the art in
the multilingual setting.

Both Petrov et al. (2006) and Hall et al. (2014)
frame their parsing model to model in priority

regular surfacic patterns and word order: Petrov
et al. (2006) crucially infers category refinements
(called category ‘splits‘) in order to specialize
the grammar on recurrent informative patterns ob-
served on input spans. Hall et al. (2014) re-
lies on a similar intuition : the model essentially
aims to capture regularities on the spans of con-
stituents and their immediate neighbourhood, fol-
lowing earlier intuitions of Klein and Manning
(2004). This modelling strategy has two main mo-
tivations. First it reduces the burden of feature en-
gineering, making it easier to generalize to multi-
ple languages. Second it avoids modeling explic-
itly bilexical dependencies for which parameters
are notoriously hard to estimate from small data
sets such as existing treebanks.

On the other hand this strategy becomes less in-
tuitive when it comes to modeling free word or-
der languages where word order and constituency
should in principle be less informative. As such,
the good results reported by Hall et al. (2014)
are surprising. It suggests that word order and
constituency might be more relevant than often
thought for modelling free word order languages.

Nevertheless, free word order languages also
tend to be morphologically rich languages. This
paper shows that a parsing model that can effec-
tively take morphology into account is key for
parsing these languages. More specifically, we
show that an efficient lexicalized phrase structure
parser - modelling both dependencies and mor-
phology - already significantly improves parsing
accuracy. But we also show that an additional
modelling of spans and constituency provides ad-
ditional robustness that contributes to yield state
of the art results on almost all languages consid-
ered, while remaining quite efficient. Moreover,
given the availability of existing multi-view tree-
banks (Bhatt et al., 2009; Seddah et al., 2013; Qiu
et al., 2014), our proposed solution only requires
a lightweight infrastructure to achieve multilin-
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gual parsing without requiring costly language-
dependent modifications such as feature engineer-
ing.

The paper is organized as follows. We first re-
view the properties of multiview treebanks (Sec-
tion 2). As these treebanks typically do not pro-
vide directly head annotation, an information re-
quired for lexicalized parsing, we provide an au-
tomated multilingual head annotation procedure
(Section 3). We then describe in section 4 a vari-
ant of lexicalized shift reduce parsing that we use
for the multilingual setting. It provides a way to
integrate morphology in the model. Section 5 fi-
nally describes a set of experiments designed to
test our main hypothesis and to point out the im-
provements over state of the art in multilingual
parsing.

2 Multi-view treebanks

Multi-view treebanks are treebanks annotated both
for constituents and dependencies that have the
property to be token-wise aligned (Bhatt et al.,
2009; Seddah et al., 2013; Qiu et al., 2014) . These
double annotations are typically obtained by con-
verting a constituency or dependency annotation
into the other annotation type. This method was
used for the construction of the dataset for the
SPMRL 2013 shared task (Seddah et al., 2013),
which contains multi-view treebanks for a num-
ber of morphologically rich languages, for which
either constituency or dependency treebanks were
available. The same kind of process was applied
to the Penn TreeBank using the Stanford conver-
sion system to produce dependency annotations
(de Marneffe et al., 2006). In this paper, we use
both of these datasets.

Although in multi-view treebanks each sentence
is annotated both for constituency and depen-
dency, they are not normalized for categories nor
lexical features accross languages such as depen-
dencies in the Google Universal Treebank (Mc-
Donald et al., 2013). What is more, the depen-
dency and constituency structures may sometimes
strongly differ. For some languages, like Hungar-
ian, the conversion has involved some manual re-
annotation (Vincze et al., 2010).

3 Head annotation procedure

Lexicalized phrase structure parsers traditionally
use hand-crafted heuristics for head annotation
(Collins, 2003). Although these heuristics are

available for some languages, for others they are
non existent or non explicit and typically hidden
in conversion procedures. In order to leverage the
burden of managing language specific heuristics,
we first automate head annotation by taking ad-
vantage of the multi-view annotation.

We begin by introducing some notation. As-
suming a sentence W = w1 . . . wn, the depen-
dency annotation of this sentence is assumed to be
a dependency forest (Kuhlmann and Nivre, 2006).
A dependency graph G = 〈V,E〉 where V =
{1 . . . n} is the set of word indexes or vertices and
E ⊆ V × V is a set of dependency links. By
convention, a dependency (i, j) means that i gov-
erns j. A dependency forest is a dependency graph
such that a node has at most a single incoming
edge and where there is no cycle. A node with no
incoming edge is a root of the dependency forest
and a dependency tree is a dependency forest with
a single root. For some languages, such as Ger-
man or Basque, the dependency structures found
in the data set are actually dependency forests.

Lexicalized parsing relies on head annotation,
in other words each node in a constituency tree is
associated with the word index of its head. More
formally, let A be the set of nodes in the c-tree,
head annotation can be represented as a function
h : A 7→ {1 . . . n} which maps each node a ∈ A
to the index of its head in the input sentence. h
is obtained by leveraging head-related information
associated with each rule in the grammar. More
precisely, each rule τ → γ, with γ = a1 . . . ak,
is associated with a head index i (1 ≤ i ≤ k) that
states that the head h(τ) of any node labeled τ in a
constituency tree that is built using this rule is the
same as the head of the right-hand side symbol ai.

A Naive h function is straightforwardly defined
as the annotation of each local rule part of the tree
in a bottom-up fashion:1

Base: h(wi) = i ∀wi ∈W
Recurrence:

h(τ) =

{
h(ai) if ∀aj :aj∈γ,i6=j (h(ai), h(aj)) ∈ E
⊥ otherwise

When ∃a ∈ A such that h(a) = ⊥ we say that the
annotation has failed.

However the naive procedure fails in a large
number of cases. Failures fall into the four pat-
terns that are illustrated in Figure 1. For each of

1The additional case of unary rules is straightforward and
left to the reader.
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Figure 1: Patterns of the causes of problems taking place during head annotation

the patterns we have highlighted in bold the sym-
bols for which the Naive procedure currently fails.
Local Restructuration I is where the c-structure is
flatter than the d-structure. Here the Naive pro-
cedure fails because (a, c) 6∈ E. Local Restruc-
turation II is where the d-structure is flatter than
the c-structure. The procedure fails because nei-
ther (a, b) ∈ E nor (b, a) ∈ E. Forest Effect is
where the d-structure is a dependency forest (here
E = ∅). And finally Non Projectivity is where the
d-tree is non projective.

We can easily correct the naive procedure for
Local Restructuration I by taking advantage of
E+, the non reflexive transitive closure of E, thus
yielding the following Corrected procedure:

Base: h(wi) = i ∀wi ∈W
Recurrence:

h(τ) =

{
h(ai) if ∀aj :aj∈γ,i6=j (h(ai), h(aj)) ∈ E+

⊥ otherwise

The three other cases are more problematic, since
their correction would somehow require altering
the structure of either the c-tree or the d-tree.
Refraining from altering the constituency data set
we instead use a catch-all procedure that essen-
tially creates the problematic head annotation by
analogy with the rest of the data, yielding a fully
Robust procedure that is guaranteed to succeed in
any case:

Base: h(wi) = i ∀wi ∈W
Recurrence:

h(τ) =

{
h(ai) if ∀aj :aj∈γ,i6=j (h(ai), h(aj)) ∈ E+

h(aKNN(τ→γ)) otherwise

where KNN(τ → γ) is a function returning a
guess for the position of the head in γ, the right
hand side of the rule, based on similarity to suc-
cessfully head annotated rules.

The details are as follows. KNN(τ → γ) sup-
poses a dataset D = (Ri,Hi)Ni=1 of successfully
head annotated rules. In this dataset, each rule

Ri = τ → γ is associated with Hi the posi-
tion of the head in γ. We define the similarity
between two rules R1 = τ (1) → a

(1)
1 . . . a

(1)
k

and R2 = τ (2) → a
(2)
1 . . . a

(2)
k′ to be the Lev-

enshtein distance between τ (1), a
(1)
1 . . . a

(1)
k and

τ (2), a
(2)
1 . . . a

(2)
k′ . In practice for a given rule R

the function returns the most frequent H among
the 5 most similar rules in the data set.

The full head annotated data set D is built by
reading off the rules from the trees successfully
annotated in the treebank by the Corrected proce-
dure in a first pass. A second pass yields the final
annotation by running the Robust procedure.

Analysis of the conversion We report in Table 1
an overall quantification of the conversion proce-
dure: % Success (Corrected) reports the number
of trees succesfully annotated by the Corrected
procedure and Silver UAS reports an UAS score
obtained by comparing the reference dependency
trees to the conversion of those obtained from the
Robust conversion of the head-annotated phrase
structure trees back to dependency structures. The
conversion works well apart from four languages
(Arabic, Basque, German and Hungarian) which
cause more difficulties.

Language % Success (Corrected) Silver UAS

ARABIC 61.7 92.0
BASQUE 54.2 82.7
ENGLISH 99.9 98.8
FRENCH 99.9 99.3
GERMAN 98.4 72.1
HEBREW 98.2 99.0
HUNGARIAN 85.9 80.1
KOREAN 100.0 100.0
POLISH 98.6 98.8
SWEDISH 99.6 98.8

Table 1: Quantification of the conversion

In order to better understand the problems faced
by the conversion procedure, we manually in-
spected the errors returned by the Corrected pro-
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cedure. For each language, we sampled 20 ex-
amples of failures encountered and we manually
categorized the errors using the four patterns illus-
trated in Figure 1. Across languages, 49.9% of the
errors come from the pattern Local Restructura-
tion II and 50% from the pattern Forest effect and
more suprisingly, we found only one example in
our sample from the pattern Non projectivity in the
Hungarian treebank. This overall average hides
however an important variation across treebanks.
The Forest effect is indeed massively found in the
Basque2 (100%) and German treebanks and more
marginally in the Hungarian data set. Most of the
time, these are cases of short word sequences (2 to
5 tokens) where all nodes are annoted as roots of
the dependency trees. The Local restructuration II
is mostly found in the Arabic, Hebrew and Polish
treebanks and less frequently in Hungarian. Ara-
bic and Hebrew tend to follow a binary annotation
scheme partially inspired by X-Bar, hence creat-
ing additional constituent structures that are not di-
rectly inferrable from the dependency annotation.
Polish uses this restructuration in patterns involv-
ing coordination. More surprisingly, non projec-
tive patterns, which we expected to be a signifi-
cant feature of these languages, remain marginal
in comparison to annotation related idiosyncrasic
problems.

4 Parsing algorithm

This section provides an overview of the design of
the constituent parsing system. There are three re-
cent proposals for beam-based discriminative shift
reduce parsing for phrase structure grammar with
a structured perceptron and beam search (Zhu et
al., 2013; Crabbé, 2014; Mi and Huang, 2015). All
three proposals point out that for weighted phrase
structure parsing, the shift reduce algorithm re-
quires a special treatment of unary rules in order to
compare derivations of the same length. They all
provide different management schemes for these
unaries.

The work described here draws on the LR algo-
rithm introduced by Crabbé (2014), but provides a
simpler algorithm, it precisely describes the man-
agement of unary rules and clarifies how spans and
morphological information is represented (see sec-
tion 5 ).

2The constituency conversion of the Basque treebank also
contains a recurrent attachment error of the punctuations
which we ignored when computing this statistic.

For each language, the grammar is induced
from a treebank using the following preprocessing
steps. The corpus is first head-annotated with the
Robust head annotation procedure. Second, the
treebank is head-markovized (order 0) and unary
productions that do not emit tokens3 are collapsed
into unique symbols. Once this has been done
we assume that tokens to be parsed are a list of
couples (tag, wordform). The preprocessing steps
ensure the binarized treebank implicitly encodes
a binary lexicalized grammar whose rules are ei-
ther in Chomsky Normal Form (CNF) like in (a)
X[h]→ A[x]B[h], X[h]→ A[h]B[x], X[t]→ t
or are also of the form (b) X[h]→ A[h] t, X[t]→
A[h] t, X[h] → tB[h], X[t] → tB[h] where
A,B,X are delexicalized non-terminals, h, x, t
are tokens (terminals) and A[h], A[x] . . . X[t] are
lexicalized non-terminals. Given a grammar in
CNF, we can prove that for a sentence of length
n, the number of derivation steps for a shift reduce
parser is 3n − 1. However our tagset-preserving
transformation also introduces rules of the form
(b), which explains why the number of derivation
steps may vary from 2n− 1 to 3n− 1.

To ensure that a derivation is of length 3n − 1,
the parser forces each shift to be followed by either
a unary reduction or an alternative dummy Ghost
Reduction (GR). Given the pre-processed treebank
we infer the set A of actions used by the parser.
Let Σ be the set of non-terminal symbols (includ-
ing temporary symbols) read off from the binary
treebank. The set of actions contains one Shift (S),
one Ghost Reduction (GR) a set of |Σ| unary re-
ductions (RU-X), one for each symbol, a set of |Σ|
binary left reductions (RL-X) and a set of |Σ| bi-
nary right reductions (RR-X) (see also Sagae and
Lavie (2006) and Figure 3 for details).

The parser itself is organized around two data
structures: a stack of symbols, S = . . . |s2|s1|s0,
whose topmost element is s0. Symbols are lexi-
calized non terminals or tokens of the form A[x].
The second structure is a queue statically filled
with tokens T = t1 . . . tn. Parsing is performed
by sequentially generating configurations C of the
form 〈j,S, ·〉 where S is a stack and j is the index
of the first element of the queue. Given an ini-
tial configuration C0 = 〈1, ε,⊥〉, a derivation step
Ct−1

at−1⇒ Ct generates a new configuration Ct by
applying an action at−1 ∈ A as defined in Fig-
ure 3. The derivation is complete and successful

3In order not to alter the tagset of the treebank.
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s2.ct[s2.wt] s1.ct[s1.wt]

s1.cl[s1.wl]

s1.lc

s1.cr[s1.wr]

s1.rc

s0.ct[s0.wt]

s0.cl[s0.wl]

s0.lc

s0.cr[s0.wr]

s0.rc q1 . . .qj

︸ ︷︷ ︸
stack

︸ ︷︷ ︸
queue

Language gen num case mood aspect other

ARABIC gender number case mood aspect -
BASQUE - NUM KAS MDN ASP DADUDIO,ERL,NOR(I|K)?

ENGLISH - - - - - -
FRENCH g n - m - mwe

GERMAN gender number case mood - -
HEBREW gen num - - - tense

HUNGARIAN - Num Cas Mood - SubPOS

KOREAN - - case-type - - verb-type

POLISH gender number case - aspect post-prepositionality

SWEDISH gender number case verbform - perfectform

Figure 2: Features available for scoring. sx denote a position in the stack. Stack positions are local trees of depth 1, features
can access its top, left and right nodes. The suffixes cp,wp, lc, rc denote respectively the delexicalized category, the head
token, the left corner token, the right corner token of a stack position. For tokens elements accessible from the stack (sx.wx)
and from the queue (qx), features can access the word form, pos tag or any morphological feature m available for that language
as described in the table at the right

INIT 〈1, ε,⊥〉 : 0
GOAL 〈n+ 1, τ,⊥〉 : w

SHIFT
〈j,S,⊥〉 :w
〈j+1,S | tj .tag[tj .word]),>〉 :w+F (S,〈j,S〉)

RL(X) 〈j,S	 | c1[t1] c0[t0],⊥〉 :w
〈j,S	 |X[t1],⊥〉 :w+F (RL(X),〈j,S〉)

RR(X) 〈j,S	 | c1[t1] c0[t0],⊥〉 :w
〈j,S	 |X[t0],⊥〉 :w+F (RR(X),〈j,S〉)

RU(X) 〈j,S	 | c0[t0],>〉 :w
〈j,S	 |X[t0],⊥〉 :w+F (RU(X),〈j,S〉)

GR(X) 〈j,S	 | c0[t0],>〉 :w
〈j,S	 | c0[t0],⊥〉 :w+F (GR,〈j,S〉)

Figure 3: Weighted inference rules

once the action C3n−1 is generated. A derivation
sequence C0⇒τ is a sequence of derivation steps
C0

a0⇒ . . .
aτ−1⇒ Cτ

Weighted prediction The choice of the action
a ∈ A at each derivation step is naturally non-
deterministic. Determinism is provided by a
weighting function based on a linear model of the
form:

W (C0⇒τ ) =
τ−1∑
i=0

w ·Φ(ai, Ci) =
τ−1∑
i=0

F (ai, Ci)

where w ∈ Rd is a weight vector and Φ(ai, Ci) ∈
{0, 1}d is a feature vector. The best parse is then
the successful derivation with the maximum score:

Ĉ0⇒3n−1 = argmax
C0⇒3n−1∈GEN3n−1

W (C0⇒3n−1)

In practice, we use a beam of size K at each time
step and lossy feature hashing, which makes the
inference approximative.

For the purpose of computing weights, we ex-
tend the representation of the stack and queue el-
ements such that the feature functions have ac-
cess to a richer context than just simple lexical-
ized symbols of the form A[x]. As described in
Figure 2 (left), features can also access the imme-
diate left and right children of s0 and s1 as well as
their left and right corner tokens. This allows us
to encode the span models described in Section 5.
We also use tuple-structured tokens encoding not
only the word-form and the tag but also additional
custom lexical features such as those enumerated
in Figure 2 (right). This allows us to express the
morphological models described in Section 5.

Finally, the parameters w are estimated with a
parallel averaged structured perceptron designed
to cope with inexact inference (beam search):
we specifically rely on max-violation updates of
Huang et al. (2012) and on minibatches to acceler-
ate and parallelize training (Shalev-Shwartz et al.,
2007; Zhao and Huang, 2013).

5 Experiments

The experiments aim to compare the contribution
of span based features approximating some intu-
itions of Hall et al. (2014) for shift reduce parsing
and morphological features for parsing free word
order languages. We start by describing the evalu-
ation protocol and by defining the models used.

We use the standard SPMRL data set (Seddah et
al., 2013). Part of speech tags are generated with
Marmot (Müller et al., 2013), a CRF tagger specif-
ically designed to provide tuple-structured tags.
The training and development sets are tagged by
10-fold jackknifing. Head annotation is supplied
by the Robust procedure described in Section 3.
The parser is systematically trained for 25 epochs
with a max violation update perceptron, a beam of
size 8 and a minibatch size of 24.
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To enable a comparison with other published re-
sults, the evaluation is performed with a version of
evalb provided by the SPMRL organizers (Sed-
dah et al., 2013) which takes punctuation into ac-
count.

Baseline model (B) The baseline model uses a
set of templates identical to those of Zhu et al.
(2013) for parsing English and Chinese except that
we have no specific templates for unary reduc-
tions.

Span-based model (B+S) This model extends
the B model by modeling spans. The span model
approximates an intuition underlying Hall et al.
(2014): constituent boundaries contain very infor-
mative tokens (typically function words). These
tokens together with the pattern of their neighbor-
hood provide key clues for detecting and (sub-
)typing constituents. Moreover, parameter esti-
mation for frequent functional words should suf-
fer less from data sparseness issues than the esti-
mation of bilexical dependencies on lexical head
words. The model includes conjunctions of non-
terminal symbols on the stack with their left and
right corners (words or tags) and also their imme-
diately adjacent tokens across constituents. Using
the notation given in Figure 2 we specifically in-
cluded the following matrix templates :

s0.ct&s0.lc.word&s0.rc.word
s1.ct&s1.lc.word&s1.rc.word
s0.ct&s0.lc.word&s1.rc.word
q1.word&s0.lc.word&s0.rc.word
q2.word&s0.lc.word&s0.rc.word

from which we derived additional backoff tem-
plates where only a single corner condition is ex-
pressed and/or words are replaced by tags.

Morphological model (B+M) This model ex-
tends the B model by adding morphological fea-
tures. This model aims to approximate the intu-
ition that morphological features such as case are
key for identifying the structure of free word order
languages. As feature engineering may become in
principle quite complex once it comes to morphol-
ogy, we targeted fairly crude models with the goal
of providing a proof of concept. Therefore the
morphologically informed models use as input a
rich set of morphological features specified in Fig-
ure 2 (right) predicted by the CRF tagger (Müller
et al., 2013) with the same jackkniffing as before.
The content of Figure 2 provides an explicit indi-
cation of the actual features defined in the original
treebanks (see Seddah et al. (2013) and references

therein for details), while the columns are indica-
tive normalized names. For Basque most of the
additional morphological features further encode
case and verbal subcategorization. For French the
mwe field abbreviates IOB predicted tags derived
from multi-word expression annotations found in
the original dataset.

Now let M be the set of values enumerated for
a language in Figure 2 (right), we systematically
added the following templates to model B:

s0.wt.m&s1.wt.m&q1.tag ∀m ∈M
s0.wt.m&s1.ct&q1.m ∀m ∈M
s0.ct.m&s1.wt.m&q1.m ∀m ∈M
s0.wt.m&q1.m&q2.tag ∀m ∈M
s0.wt.m&q1.tag&q2.m ∀m ∈M
s0.ct&q1.m&q2.m ∀m ∈M

Essentially the model expresses interactions be-
tween morphological features from the constituent
heads on the top of the stack and the morphologi-
cal features from the tokens at the beginning of the
queue.

Mixed model (B+S+M) Our last model is the
union of the span model (B+S) and the morpho-
logical model (B+M).

Results (development) We measured the im-
pact of the model variations on the development
set for c-parsing on the SPMRL data sets (Table
2). We immediately observe that modelling spans
tends to improve the results, in particular for lan-
guages where the head annotation is more prob-
lematic: Arabic4, Basque, German and Hungar-
ian and also Swedish however. So the span-based
model seems to improve the parser’s robustness in
cases when dependencies lack precision. For this
model, the average behaviour is similar to that of
Hall et al. (2014) although the variance is high.

On the other hand, the morphological model
tends to be most important for languages where
head annotation is easier: French, Korean, Polish
and Swedish. It is key for very richly inflected lan-
guages such as Basque and Hungarian even though
our head annotation is more approximative5. A

4Although not detailed in the paper, we also observe that
for Arabic, the morphological features are generally pre-
dicted with a lower accurracy by the tagger than for other
languages.

5As annotation schemes are not normalized across lan-
guages, it is important to stress that these observations are
very unlikely to be representative of the linguistic properties
of these languages.They are more likely to be a result of an-
notation choices. For example Korean is a strongly aggluti-
native language for which much of the morphology is already
encoded in the tag set.
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Model Arabic Basque French German Hebrew Hungarian Korean Polish Swedish Avg

1 Base 79.46 74.67 79.66 82.61 90.43 84.34 81.96 91.68 75.60 82.26
2 Base+S 80.59 76.39 80.15 83.63 90.63 85.62 82.21 91.75 77.49 83.16
3 Base+M 80.17 83.69 81.05 83.66 90.40 87.75 82.79 92.72 77.50 84.41
4 Base+S+M 81.25 84.01 80.87 84.08 90.69 88.27 83.09 92.78 77.87 84.77

5 Hall-Klein 14 78.89 83.74 79.40 83.28 88.06 87.44 81.85 91.10 75.95 83.30
F1-scores provided by evalb-spmrl (Seddah et al., 2013). Takes punctuation into account and penalizes unparsed sentences.

Table 2: Development F-scores

comparison with Hall et al. (2014) also reveals
that for Basque, Hungarian and Swedish, taking
into account morphological information largely
explains our improved results.

Results (test) We observe in Table 3 that our
joint B+S+M model yields a state of the art c-
parser on almost all languages considered6. It is
quite clear that both our span and morphology en-
hanced models could be dramatically improved,
but it shows that with reasonable feature engi-
neering, these two sub-models are largely suffi-
cient to improve the state of the art in c-parsing
for these languages over strong baselines. Al-
though in principle the Berkeley parsers (Petrov
et al., 2006; Hall et al., 2014) are designed to be
language-generic with an underlying design that
is surprisingly accurate for free word order lan-
guages end up suffering from a lack of sensitiv-
ity to morphological information. Finally we also
observe that our phrase structure parser clearly
outperforms the TurboParser setup described by
Fernández-González and Martins (2015) in which
an elaborate output conversion procedure gener-
ates c-parses from d-parses.

Comparison with related work We conclude
with a few comparisons with related work. This
will enable us to show that our approach is not
only accurate but also efficient. A comparison
with dependency parsers will also allow us to bet-
ter identify the properties of our proposal.

In order to test efficiency, we compared our
parser to c-parsers trained on Penn Treebank
(PTB) for which we have running times reported

6For Basque, our problem comes from a recurrent incon-
sistency in the SPMRL data set. As annotated in the c-trees,
the punctuation induces a modification of the d-structure: c-
trees encode a different governor for punctuation marks than
d-trees. This not only causes problem to our head annotation
procedure but also for the parser to solving these attachments.
A simple correction results in a significant improvement of
these parsing results. However we decided to leave the data
untouched in order to preserve fair comparisons with other
systems.

by Fernández-González and Martins (2015). This
required first assigning heads, for which we used
the Stanford tool for converting PTB to Basic De-
pendencies, and then used our Robust conversion
method. We performed a simple test using the
PTB standard split with the same experimental set-
ting as before, except that we use the standard
evalb scorer (Table 5). Although the time com-

System (single parsers) F1 (EVALB) (Toks/sec)

Hall-Klein 14 88.6 12
StanfordSR 89.1 655
Charniak 00 89.5 -
This paper (B+S) 89.7 2150 �

This paper (B+S) [Collins] 90.0 2150 �

Petrov 06 90.1 169
Fernandez-Martins 15 90.2 957
Zhu et al. 13 90.4 1290
Alls scores and times except � are measured by Fernández-
González and Martins (2015) on an intel Xeon 2.3Ghz. � de-
notes the use of a different architecture (2.4Ghz intel).

Table 5: Penn treebank test (WSJ 23)

parison remains indicative, it is clear that the pars-
ing framework described in this paper is not only
reasonably accurate on a fixed word order lan-
guage such as English but it is also quite efficient.
Parsing accuracies might be different with other
head annotation schemes (See e.g. Elming et al.
(2013) for illustrations). In our case, we compare
the (B+S) model with automated head annotation
to the Collins head annotation as implemented in
the Standord CORE NLP library (Manning et al.,
2014), where we can see that the Collins hand-
crafted head annotation yields better results than
the automated one on English7.

The question is now to which extend c-trees en-
code meaningful dependencies? As lexicalized
c-trees encode unlabeled dependency trees, our
parser also directly outputs unlabeled d-trees by

7This pattern does not seem to be systematic: on French
we could also compare with head annotations described in
(Arun and Keller, 2005) and we observed a slight improve-
ment when using the automated procedure.
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Parser (single) Arabic Basque French German Hebrew Hungarian Korean Polish Swedish Avg

Petrov 06 79.19 70.50 80.38 78.30 86.96 81.62 71.42 79.23 79.19 78.45
Petrov 06 + tags 78.66 74.74 79.76 78.28 85.42 85.22 78.56 86.75 80.64 81.17
Hall-Klein 14 78.75 83.39 79.70 78.43 87.18 88.25 80.18 90.66 82.00 83.72
Fernandez-Martins 15 - 85.90 78.75 78.66 88.97 88.16 79.28 91.20 82.80 84.22
This paper (B+S+M) 81.31 84.94 80.84 79.26 89.65 90.14 82.65 92.66 83.24 85.42

Best semi/ensemble 81.32 88.24 82.53 81.66 89.80 91.72 83.81 90.50 85.50 86.72
F-scores provided by evalb-spmrl (Seddah et al., 2013). It takes punctuation into account and penalizes unparsed sentences. The average ignores Arabic

for comparison with TurboParser. Petrov 06 + tags is the Berkeley parser with externally predicted pos tags (Seddah et al., 2013)

Table 3: Multilingual test (F-scores, phrase structure parsing)

System English French Korean Hebrew Polish Swedish Arabic Basque German Hungarian

This paper (B+S+M) 91.75 86.68 87.22 85.28 88.61 86.22 80.64 73.68 67.20 74.46
Best d-parser (single) 91.95 85.80 85.84 81.05 88.12 84.54 84.57 84.33 87.65 83.71

Best semi/ensemble - 89.19 89.10 87.41 91.75 88.48 88.32 89.96 91.64 89.81
Unlabeled Accuracy Scores. Best other is the best single parser UAS result reported either in SPMRL 13 or SPMRL 14 shared tasks.

Best ensemble is the best semi-supervised or ensemble system from either SPMRL 13 or SPMRL 14 (Björkelund et al., 2013; Björkelund et al., 2014).

Table 4: Multilingual test (UAS, dependency parsing)

simply reading them off from the lexicalized c-
structure. We report in Table 4 the UAS evalua-
tion of those dependencies and we compare them
to the best results obtained by dependency parsers
in both SPMRL13 and SPMRL14 shared tasks.
For each language, the comparison is made with
the best single dependency parsing system8. For
English we compare against Standard TurboParser
- which seems to be the most similar to our
system- when parsing to Basic Stanford dependen-
cies. The comparison with semi-supervised and
ensemble parsers still provides a reasonable upper-
line (Björkelund et al., 2013).

As can be seen in Table 4, our results partly
generalize the observation summarized by Cer et
al. (2010) and Kong and Smith (2014) that phrase
structure parsers tend to provide better dependen-
cies than genuine dependency parsers for parsing
to Stanford Dependencies. For English, our UAS
is similar to that of TurboParser, but in a broader
multilingual framework, the left side of the table
shows that the unlabeled dependencies are clearly
better than those of genuine dependency parsers.
On the right side of the table are languages for
which our dependencies are actually worse. This
is not a surprise, since these are also the languages
for which head annotation was more problematic
in the first place. This last observation suggests
that a lexicalized c-parser can also provide very
accurate dependencies. A way to further gen-

8In practice it turns out that these are either DYALOG-
SR (de La Clergerie, 2013) or sometimes MALTOPTIMIZER
(Ballesteros and Nivre, 2012)

eralize this observation to problematic languages
would be either to design a less immediate post-
processing conversion scheme or to further nor-
malize the data set to obtain the correct heads from
the outset.

6 Conclusion

Lexicalized phrase structure parsing of morpho-
logically rich languages used to be difficult since
existing implementations targeting essentially En-
glish or Chinese do not allow a straightforward
integration of morphology. Given multi-view
treebanks, we achieve multilingual parsing with
a language-agnostic head annotation procedure.
Once this procedure has created the required data
representation for lexicalized parsing, only mod-
est and weakly language dependent feature engi-
neering is required to achieve state-of-the-art ac-
curacies on all languages considered: a minimal
interface with morphology already contributes to
improving accuracy, and this is specifically the
case when heads are accurately identified. When
heads are only approximatively identified, span-
based configurational modelling tends to correct
the approximation.

Leaving aside details concerning conversion
and data normalization, we generally found that
the unlabeled dependencies modelled by the lex-
icalized c-parser also tend to be highly accu-
rate. For languages where c-annotations and d-
annotations are less compatible, additional lan-
guage renormalizations would help to get better
comparisons.
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As suggested in this paper, future work for pars-
ing morphologically rich languages will require to
focus both on feature selection and on the interface
between syntax and morphology, which means in
our case the interface between the segmenter, the
tagger and the parser.
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Abstract

Accurate multilingual transfer parsing typ-
ically relies on careful feature engineer-
ing. In this paper, we propose a hierar-
chical tensor-based approach for this task.
This approach induces a compact feature
representation by combining atomic fea-
tures. However, unlike traditional tensor
models, it enables us to incorporate prior
knowledge about desired feature interac-
tions, eliminating invalid feature combi-
nations. To this end, we use a hierar-
chical structure that uses intermediate em-
beddings to capture desired feature com-
binations. Algebraically, this hierarchi-
cal tensor is equivalent to the sum of tra-
ditional tensors with shared components,
and thus can be effectively trained with
standard online algorithms. In both unsu-
pervised and semi-supervised transfer sce-
narios, our hierarchical tensor consistently
improves UAS and LAS over state-of-the-
art multilingual transfer parsers and the
traditional tensor model across 10 differ-
ent languages.1

1 Introduction

The goal of multilingual syntactic transfer is to
parse a resource lean target language utilizing an-
notations available in other languages. Recent ap-
proaches have demonstrated that such transfer is
possible, even in the absence of parallel data. As
a main source of guidance, these methods rely on
the commonalities in dependency structures across
languages. These commonalities manifest them-
selves through a broad and diverse set of indi-
cators, ranging from standard arc features used
in monolingual parsers to typological properties

1The source code is available at https://github.
com/yuanzh/TensorTransfer.

Verb-subject:
{head POS=VERB} ∧ {modifier POS=NOUN}
∧{label=subj} ∧ {direction=LEFT}∧
{82A=SV}
Noun-adjective:
{head POS=NOUN} ∧ {modifier POS=ADJ}∧
{direction=LEFT} ∧ {87A=Adj-Noun}

Table 1: Example verb-subject and noun-adjective
typological features. 82A and 87A denote the
WALS (Dryer et al., 2005) feature codes for verb-
subject and noun-adjective ordering preferences.

needed to guide cross-lingual sharing (e.g., verb-
subject ordering preference). In fact, careful fea-
ture engineering has been shown to play a cru-
cial role in state-of-the-art multilingual transfer
parsers (Täckström et al., 2013).

Tensor-based models are an appealing alterna-
tive to manual feature design. These models auto-
matically induce a compact feature representation
by factorizing a tensor constructed from atomic
features (e.g., the head POS). No prior knowledge
about feature interactions is assumed. As a result,
the model considers all possible combinations of
atomic features, and addresses the parameter ex-
plosion problem via a low-rank assumption.

In the multilingual transfer setting, however, we
have some prior knowledge about legitimate fea-
ture combinations. Consider for instance a ty-
pological feature that encodes verb-subject pref-
erences. As Table 1 shows, it is expressed as a
conjunction of five atomic features. Ideally, we
would like to treat this composition as a single
non-decomposable feature. However, the tradi-
tional tensor model decomposes this feature into
multiple dimensions, and considers various com-
binations of these features as well as their indi-
vidual interactions with other features. Moreover,
we want to avoid invalid combinations that con-
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join the above feature with unrelated atomic fea-
tures. For instance, there is no point to construct-
ing features of the form {head POS=ADJ}∧{head
POS=VERB} ∧ · · · ∧ {82A=SV} as the head POS
takes a single value. However, the traditional
tensor technique still considers these unobserved
feature combinations, and assigns them non-zero
weights (see Section 7). This inconsistency be-
tween prior knowledge and the low-rank assump-
tion results in a sub-optimal parameter estimation.

To address this issue, we introduce a hierarchi-
cal tensor model that constrains parameter repre-
sentation. The model encodes prior knowledge
by explicitly excluding undesired feature combi-
nations over the same atomic features. At the bot-
tom level of the hierarchy, the model constructs
combinations of atomic features, generating inter-
mediate embeddings that represent the legitimate
feature groupings. For instance, these groupings
will not combine the verb-subject ordering feature
and the POS head feature. At higher levels of
the hierarchy, the model combines these embed-
dings as well as the expert-defined typological fea-
tures over the same atomic features. The hierar-
chical tensor is thereby able to capture the interac-
tion between features at various subsets of atomic
features. Algebraically, the hierarchical tensor is
equivalent to the sum of traditional tensors with
shared components. Thus, we can use standard
online algorithms for optimizing the low-rank hi-
erarchical tensor.

We evaluate our model on labeled dependency
transfer parsing using the newly released multi-
lingual universal dependency treebank (McDonald
et al., 2013). We compare our model against the
state-of-the-art multilingual transfer dependency
parser (Täckström et al., 2013) and the direct
transfer model (McDonald et al., 2011). All the
parsers utilize the same training resources but with
different feature representations. When trained on
source languages alone, our model outperforms
the baselines for 7 out of 10 languages on both
unlabeled attachment score (UAS) and labeled at-
tachment score (LAS). On average, it achieves
1.1% UAS improvement over Täckström et al.
(2013)’s model and 4.8% UAS over the direct
transfer. We also consider a semi-supervised set-
ting where multilingual data is augmented with 50
annotated sentences in the target language. In this
case, our model achieves improvement of 1.7%
UAS over Täckström et al. (2013)’s model and

4.5% UAS over the direct transfer.

2 Related Work

Multilingual Parsing The lack of annotated
parsing resources for the vast majority of world
languages has kindled significant interest in multi-
source parsing transfer (Hwa et al., 2005; Dur-
rett et al., 2012; Zeman and Resnik, 2008; Yu
et al., 2013b; Cohen et al., 2011; Rasooli and
Collins, 2015). Recent research has focused on
the non-parallel setting, where transfer is driven
by cross-lingual commonalities in syntactic struc-
ture (Naseem et al., 2010; Täckström et al., 2013;
Berg-Kirkpatrick and Klein, 2010; Cohen and
Smith, 2009; Duong et al., 2015).

Our work is closely related to the selective-
sharing approaches (Naseem et al., 2012;
Täckström et al., 2013). The core of these
methods is the assumption that head-modifier
attachment preferences are universal across
different languages. However, the sharing of arc
direction is selective and is based on typological
features. While this selective sharing idea was
first realized in the generative model (Naseem et
al., 2012), higher performance was achieved in
a discriminative arc-factored model (Täckström
et al., 2013). These gains were obtained by a
careful construction of features templates that
combine standard dependency parsing features
and typological features. In contrast, we propose
an automated, tensor-based approach that can
effectively capture the interaction between these
features, yielding a richer representation for cross-
lingual transfer. Moreover, our model handles
labeled dependency parsing while previous work
only focused on the unlabeled dependency parsing
task.

Tensor-based Models Our approach also relates
to prior work on tensor-based modeling. Lei et
al. (2014) employ three-way tensors to obtain a
low-dimensional input representation optimized
for parsing performance. Srikumar and Manning
(2014) learn a multi-class label embedding tai-
lored for document classification and POS tag-
ging in the tensor framework. Yu and Dredze
(2015), Fried et al. (2015) apply low-rank ten-
sor decompositions to learn task-specific word and
phrase embeddings. Other applications of tensor
framework include low-rank regularization (Pri-
madhanty et al., 2015; Quattoni et al., 2014; Singh
et al., 2015) and neural tensor networks (Socher et
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= e3
Figure 1: Visual representation for traditional mul-
tiway tensor.

al., 2013; Yu et al., 2013a). While these methods
can automatically combine atomic features into
a compact composite representation, they cannot
take into account constraints on feature combina-
tion. In contrast, our method can capture features
at different composition levels, and more gener-
ally can incorporate structural constraints based on
prior knowledge. As our experiments show, this
approach delivers higher transfer accuracy.

3 Hierarchical Low-rank Scoring for
Transfer Parsing

3.1 Background

We start by briefly reviewing the traditional three-
way tensor scoring function (Lei et al., 2014). The
three-way tensor characterizes each arc h → m
using the tensor-product over three feature vec-
tors: the head vector (φh ∈ Rn), the modifier vec-
tor (φm ∈ Rn) and the arc vector (φh→m ∈ Rl).
φh captures atomic features associated with the
head, such as its POS tag and its word form. Simi-
larly, φm and φh→m capture atomic features asso-
ciated with the modifier and the arc respectively.
The tensor-product of these three vectors is a rank-
1 tensor:

φh ⊗ φm ⊗ φh→m ∈ Rn×n×l

This rank-1 tensor captures all possible combina-
tions of the atomic features in each vector, and
therefore significantly expands the feature set. The
tensor score is the inner product between a three-
way parameter tensorA ∈ Rn×n×l and this rank-1
feature tensor:

vec(A) · vec(φh ⊗ φm ⊗ φh→m)

where vec(·) denotes the vector representation of a
tensor. This tensor scoring method avoids the pa-
rameter explosion and overfitting problem by as-
suming a low-rank factorization of the parameters

Mcφmc

Lφl

Hφh Mφm Dφd

Tuφtu
+

Tlφtl
+

e2

e4

Hcφhc
=

e1

=
e3

Figure 2: Visual representation for hierarchical
tensor, represented as a tree structure. The ten-
sor first captures the low-level interaction (Hφh,
Mφm and Dφd) by an element-wise product, and
then combines the intermediate embedding with
other components higher in the hierarchy, e.g. e2
and Lφl. The equations show that we composite
two representations by an element-wise sum.

A. Specifically, A is decomposed into the sum of
r rank-1 components:

A =
r∑
i=1

U(i)⊗ V (i)⊗W (i)

where r is the rank of the tensor, U, V ∈ Rr×n

and W ∈ Rr×l are parameter matrices. U(i) de-
notes the i-th row of matrix U and similarly for
V (i) and W (i). Figure 1 shows the representation
of a more general multiway factorization. With
this factorization, the model effectively alleviates
the feature explosion problem by projecting sparse
feature vectors into dense r-dimensional embed-
dings via U , V and W . Subsequently, the score is
computed as follows:

Stensor(h→ m) =
r∑
i=1

[Uφh]i[V φm]i[Wφh→m]i

where [·]i denotes the i-th element of the matrix.
In multilingual transfer, however, we want to

incorporate typological features that do not fit in
any of the components. For example, if we add
the verb-subject ordering preference into φh→m,
the tensor will represent the concatenation of this
preference with a noun-adjective arc, even though
this feature should never trigger.

3.2 Hierarchical Low-rank Tensor
To address this issue, we propose the hierarchi-
cal factorization of tensor parameters.2 The key
idea is to generate intermediate embeddings that
capture the interaction of the same set of atomic

2In this section we focus on delexicalized transfer, and
describe the lexicalization process in Section 3.3.
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features as other expert-defined features. As Fig-
ure 2 shows, this design enables the model to han-
dle expert-defined features over various subsets of
the atomic features.

Now, we will illustrate this idea in the context of
multilingual parsing. Table 2 summarizes the no-
tations of the feature vectors and the correspond-
ing parameters. Specifically, for each arc h → m
with label l, we first compute the intermediate fea-
ture embedding e1 that captures the interaction be-
tween the head φh, the modifier φm and the arc
direction and length φd, by an element-wise prod-
uct.

[e1]i = [Hφh]i[Mφm]i[Dφd]i (1)

where [·]i denotes the i-th value of the feature em-
bedding, and H , M and D are the parameter ma-
trices as in Table 2. The embedding e1 cap-
tures the unconstrained interaction over the head,
the modifier and the arc. Note that φtu includes
expert-defined typological features that rely on the
specific values of the head POS, the modifier POS
and the arc direction, such as the example noun-
adjective feature in Table 1. Therefore, the em-
bedding Tuφtu captures an expert-defined interac-
tion over the head, the modifier and the arc. Thus
e1 and Tuφtu provide two different representations
of the same set of atomic features (e.g. the head)
and our prior knowledge motivates us to exclude
the interaction between them since the low-rank
assumption would not apply. Thus, we combine
e1 and Tuφtu as e2 using an element-wise sum

[e2]i = [e1]i + [Tuφtu ]i (2)

and thereby avoid such combinations. As Fig-
ure 2 shows, e2 in turn is used to capture the higher
level interaction with arc label features φl,

[e3]i = [Lφl]i[e2]i (3)

Now e3 captures the interaction between head,
modifier, arc direction, length and label. It is over
the same set of atomic features as the typological
features that depend on arc labels φtl , such as the
example verb-subject ordering feature in Table 1.
Therefore, we sum over these embeddings as

[e4]i = [e3]i + [Tlφtl ]i (4)

Finally, we capture the interaction between
e4 and context feature embeddings Hcφhc and

Notation Description
H,φh Head/modifier POS tag
M,φm
D,φd Arc length and direction
L, φl Arc label

Tu, φtu
Typological features that depend on
head/modifier POS but not arc label

Tl, φtl
Typological features that depend
on arc label

Hc, φhc POS tags of head/modifier
Mc, φmc neighboring words

Table 2: Notations and descriptions of parame-
ter matrices and feature vectors in our hierarchical
tensor model.

Mcφmc and compute the tensor score as

Stensor(h
l−→ m) =

r∑
i=1

[Hcφhc ]i[Mcφmc ][e4]i

(5)
By combining Equation 1 to 5, we observe

that our hierarchical tensor score decomposes into
three multiway tensor scoring functions.

Stensor(h
l−→ m) =

r∑
i=1

[Hcφhc ]i[Mcφmc ]i{
[Tlφtl ]i + [Lφl]i(
[Tuφtu ]i + [Hφh]i[Mφm]i[Dφd]i

)}
=

r∑
i=1

{
[Hcφhc ]i[Mcφmc ]i[Tlφtl ]i

+[Hcφhc ]i[Mcφmc ]i[Lφl]i[Tuφtu ]i

+[Hcφhc ]i[Mcφmc ]i[Lφl]i[Hφh]i[Mφm]i[Dφd]i
}

(6)

This decomposition provides another view of
our tensor model. That is, our hierarchical tensor
is algebraically equivalent to the sum of three mul-
tiway tensors, where Hc, Mc and L are shared.3

From this perspective, we can see that our tensor
model effectively captures the following three sets
of combinations over atomic features:

f1: φhc ⊗ φmc ⊗ φtl
f2: φhc ⊗ φmc ⊗ φl ⊗ φtu
f3: φhc ⊗ φmc ⊗ φl ⊗ φh ⊗ φm ⊗ φd

3We could also associate each multiway tensor with a dif-
ferent weight. In our work, we keep them weighted equally.
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The last set of features f3 captures the interac-
tion across standard atomic features. The other
two sets of features f1 and f2 focus on combin-
ing atomic typological features with atomic label
and context features. Consequently, we explicitly
assign zero weights for invalid assignments, by ex-
cluding the combination of φtu with φh and φm.

3.3 Lexicalization Components

In order to encode lexical information in our
tensor-based model, we add two additional com-
ponents, Hwφhw and Mwφmw , for head and mod-
ifier lexicalization respectively. We compute the
final score as the interaction between the delexi-
calized feature embedding in Equation 5 and the
lexical components. Specifically:

[e5]i = [Hcφhc ]i[Mcφmc ]i[e4]i

Stensor(h
l−→ m) =

r∑
i=1

[Hwφhw ]i[Mwφmw ]i[e5]i

(7)

where e5 is the embedding that represents the
delexicalized transfer results. We describe the fea-
tures in φhw and φmw in Section 5.

3.4 Combined Scoring

Similar to previous work on low-rank tensor scor-
ing models (Lei et al., 2014; Lei et al., 2015), we
combine the traditional scoring and the low-rank
tensor scoring. More formally, for a sentence x
and a dependency tree y, our final scoring func-
tion has the form

S(x,y) = γ
∑

h
l−→m∈y

w · φ(h l−→ m)

+ (1− γ)
∑

h
l−→m∈y

Stensor(h
l−→ m) (8)

where φ(h l−→ m) is the traditional features for
arc h → m with label l and w is the correspond-
ing parameter vector. γ ∈ [0, 1] is the balanc-
ing hyper-parameter and we tune the value on the
development set. The parameters in our model
are θ = (w, H,M,D,L, Tu, Tl, Hc,Mc), and our
goal is to optimize all parameters given the train-
ing set.

4 Learning

In this section, we describe our learning method.4

Following standard practice, we optimize the pa-
rameters θ = (w, H,M,D,L, Tu, Tl, Hc,Mc) in
a maximum soft-margin framework, using online
passive-aggressive (PA) updates (Crammer et al.,
2006).

For tensor parameter update, we employ the
joint update method originally used by Lei et al.
(2015) in the context of four-way tensors. While
our tensor has a very high order (8 components for
the delexicalized parser and 10 for the lexicalized
parser) and is hierarchical, the gradient computa-
tion is nevertheless similar to that of traditional
tensors. As described in Section 3.2, we can view
our hierarchical tensor as the combination of three
multiway tensors with parameter sharing. There-
fore, we can compute the gradient of each mul-
tiway tensor and take the sum accordingly. For
example, the gradient of the label component is

∂L =
∑

h
l−→m∈y∗

(
(Hcφhc)� (Mcφmc)� [(Tuφtu)

+ (Hφh)� (Mφm)� (Dφd)]
)
⊗ φl

−
∑

h
l−→m∈ỹ

(
(Hcφhc)� (Mcφmc)� [(Tuφtu)

+ (Hφh)� (Mφm)� (Dφd)]
)
⊗ φl (9)

where � is the element-wise product and + de-
notes the element-wise addition. y∗ and ỹ are the
gold tree and the maximum violated tree respec-
tively. For each sentence x, we find ỹ via cost-
augmented decoding.

Tensor Initialization Given the high tensor or-
der, initialization has a significant impact on the
learning quality. We extend the previous power
method for high-order tensor initialization (Lei et
al., 2015) to the hierarchical structure using the al-
gebraic view as in computing the gradient.

Briefly, the power method incrementally com-
putes the most important rank-1 component for
H(i), M(i) etc, for i = 1 . . . r. In each iteration,
the algorithm updates each component by taking
the multiplication between the tensor T and the
rest of the components. When we update the label
component l, we do the multiplication for different

4Our description focuses on delexicalized transfer, and we
can easily extend the method to the lexicalized case.
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Feature Description
82A Order of Subject and Verb
83A Order of Object and Verb
85A Order of Adposition and Noun Phrase
86A Order of Genitive and Noun
87A Order of Adjective and Noun

Table 3: Typological features from WALS (Dryer
et al., 2005) used to build the feature tem-
plates in our work, inspired by Naseem et al.
(2012). Unlike previous work (Naseem et al.,
2012; Täckström et al., 2013), we use 82A and
83A instead of 81A (order of subject, object and
verb) because we can distinguish between subject
and object relations based on dependency labels.

multiway tensors and then take the sum.

l = 〈T0, hc,mc,−, tu〉+ 〈T1, hc,mc,−, h,m, d〉
where the operator 〈T0, hc,mc,−, tu〉 returns a
vector in which the i-th element is computed as∑

uvw T0(i, u, v, w)hc(u)mc(v)tu(w). The algo-
rithm updates other components in a similar fash-
ion until convergence.

5 Features

Linear Scoring Features Our traditional lin-
ear scoring features in φ(h l−→ m) are mainly
drawn from previous work (Täckström et al.,
2013). Table 3 lists the typological features
from “The World Atlas of Language Structure
(WALS)” (Dryer et al., 2005) used to build the fea-
ture templates in our work. We use 82A and 83A
for verb-subject and verb-object order respectively
because we can distinguish between these two re-
lations based on dependency labels. Table 4 sum-
marizes the typological feature templates we use.
In addition, we expand features with dependency
labels to enable labeled dependency parsing.

Tensor Scoring Features For our tensor model,
feature vectors listed in Table 2 capture the five
types of atomic features as follows:
(a) φh, φm: POS tags of the head or the modifier.
(b) φhc , φmc : POS tags of the left/right neighbor-

ing words.
(c) φl: dependency labels.
(d) φd: dependency length conjoined with direc-

tion.
(e) φtu , φtl : selectively shared typological fea-

tures, as described in Table 4.

φtl

dir·82A·δ(hp=VERB∧mp=NOUN∧subj∈ l)
dir·82A·δ(hp=VERB∧mp=PRON∧subj∈ l)
dir·83A·δ(hp=VERB∧mp=NOUN∧obj∈ l)
dir·83A·δ(hp=VERB∧mp=PRON∧obj∈ l)

φtu

dir·85A·δ(hp=ADP∧mp=NOUN)
dir·85A·δ(hp=ADP∧mp=PRON)
dir·86A·δ(hp=NOUN∧mp=NOUN)
dir·87A·δ(hp=ADJ∧mp=NOUN)

Table 4: Typological feature templates used in our
work. hp/mp are POS tags of the head/modifier.
dir ∈ {LEFT,RIGHT} denotes the arc direction.
82A-87A denote the WALS typological feature
value. δ(·) is the indicator function. subj ∈ l
denotes that the arc label l indicates a subject rela-
tion, and similarly for obj ∈ l.

We further conjoin atomic features (b) and (d) with
the family and the typological class of the lan-
guage, because the arc direction and the word or-
der distribution depends on the typological prop-
erty of languages (Täckström et al., 2013). We
also add a bias term into each feature vector.

Partial Lexicalization We utilize multilingual
word embeddings to incorporate partial lexical
information in our model. We use the CCA
method (Faruqui and Dyer, 2014) to generate
multilingual word embeddings. Specifically, we
project word vectors in each non-English language
to the English embedding space. To reduce the
noise from the automatic projection process, we
only incorporate lexical information for the top-
100 most frequent words in the following closed
classes: pronoun, determiner, adposition, conjunc-
tion, particle and punctuation mark. Therefore, we
call this feature extension partial lexicalization.5

We follow previous work (Lei et al., 2014) for
adding embedding features. For the linear scoring
model, we simply append the head and the modi-
fier word embeddings after the feature vector. For
the tensor-based model, we add each entry of the
word embedding as a feature value into φhw and
φmw . In addition, we add indicator features for the
English translation of words because this improves
performance in preliminary experiments. For ex-
ample, for the German word und, we add the word
and as a feature.

5In our preliminary experiments, we observe that our lexi-
calized model usually outperforms the unlexicalized counter-
parts by about 2%.
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6 Experimental Setup

Dataset We evaluate our model on the newly re-
leased multilingual universal dependency treebank
v2.0 (McDonald et al., 2013) that consists of 10
languages: English (EN), French (FR), German
(DE), Indonesian (ID), Italian (IT), Japanese (JA),
Korean (KO), Brazilian-Portuguese (PT), Spanish
(ES) and Swedish (SV). This multilingual tree-
bank is annotated with a universal POS tagset and
a universal dependency label set. Therefore, this
dataset is an excellent benchmark for cross-lingual
transfer evaluation. For POS tags, the gold uni-
versal annotation used the coarse tagset (Petrov et
al., 2011) that consists of 12 tags: noun, verb, ad-
jective, adverb, pronoun, determiner, adposition,
numeral, conjunction, particle, punctuation mark,
and a catch-all tag X. For dependency labels, the
universal annotation developed the Stanford de-
pendencies (De Marneffe and Manning, 2008) into
a rich set of 40 labels. This universal annota-
tion enables labeled dependency parsing in cross-
lingual transfer.

Evaluation Scenarios We first consider the un-
supervised transfer scenario, in which we assume
no target language annotations are available. Fol-
lowing the standard setup, for each target language
evaluated, we train our model on the concatenation
of the training data in all other source languages.

In addition, we consider the semi-supervised
transfer scenario, in which we assume 50 sen-
tences in the target language are available with an-
notation. However, we observe that random sen-
tence selection of the supervised sample results
in a big performance variance. Instead, we se-
lect sentences that contain patterns that are absent
or rare in source language treebanks. To this end,
each time we greedily select the sentence that min-
imizes the KL divergence between the trigram dis-
tribution of the target language and the trigram dis-
tribution of the training data after adding this sen-
tence. The training data includes both the target
and the source languages. The trigrams are based
on universal POS tags. Note that our method does
not require any dependency annotations. To incor-
porate the new supervision, we simply add the new
sentences into the original training set, weighing
their impact by a factor of 10.

Baselines We compare against different variants
of our model.
• Direct: a direct transfer baseline (McDonald et

al., 2011) that uses only delexicalized features
in the MSTParser (McDonald et al., 2005).

• NT-Select: our model without the tensor com-
ponent. This baseline corresponds to the prior
feature-based transfer method (Täckström et al.,
2013) with extensions to labeled parsing, lexi-
calization and semi-supervised parsing.6

• Multiway: tensor-based model where typolog-
ical features are added as an additional compo-
nent and parameters are factorized in the multi-
way structure similarly as in Figure 1.

• Sup50: our model trained only on the 50
sentences in the target language in the semi-
supervised scenario.

In all the experiments we incorporate partial lexi-
calization for all variants of our model and we fo-
cus on labeled dependency parsing.

Supervised Upper Bound As a performance
upper bound, we train the RBGParser (Lei et al.,
2014), the state-of-the-art tensor-based parser, on
the full target language training set. We train the
first-order model7 with default parameter settings,
using the current version of the code.8

Evaluation Measures Following standard prac-
tices, we report unlabeled attachment score (UAS)
and labeled attachment score (LAS), excluding
punctuation. For all experiments, we report results
on the test set and omit the development results be-
cause of space.

Experimental Details For all experiments, we
use the arc-factored model and use Eisner’s algo-
rithm (Eisner, 1996) to infer the projective Viterbi
parse. We train our model and the baselines for 10
epochs. We set a strong regularization C = 0.001
during learning because cross-lingual transfer con-
tains noise and the models can easily overfit. Other
hyper-parameters are set as γ = 0.3 and r = 200
(rank of the tensor). For partial lexicalization, we
set the embedding dimension to 50.

7 Results

Table 5 and 7 summarize the results for the unsu-
pervised and the semi-supervised scenarios. Aver-
aged across languages, our model outperforms all

6We use this as a re-implementation of Täckström et al.
(2013)’s model because their code is not publicly available.

7All multilingual transfer models in our work and
in Täckström et al. (2013)’s work are first-order. Therefore,
we train first-order RBGParser for consistency.

8https://github.com/taolei87/RBGParser
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Direct NT-Select Multiway Ours
UAS LAS UAS LAS UAS LAS UAS LAS

EN 65.7 56.7 67.6 55.3 69.8 56.3 70.5 59.8
FR 77.9 67.4 79.1 68.9 78.4 68.3 78.9 68.8
DE 62.1 53.1 62.1 53.3 62.1 54.0 62.5 54.1
ID 46.8 39.3 57.4 37.1 59.5 38.9 61.0 43.5
IT 77.9 67.9 79.4 69.4 79.0 69.0 79.3 69.4
JA 57.8 16.8 69.2 20.8 69.9 20.4 71.7 21.3
KO 59.9 34.3 70.4 29.1 70.5 28.1 70.7 30.5
PT 77.7 71.0 78.5 72.0 78.3 71.9 78.6 72.5
ES 76.8 65.9 77.2 67.7 77.6 68.0 78.0 68.3
SV 75.9 64.5 74.5 62.2 74.8 62.9 75.0 62.5

AVG 67.8 53.7 71.5 53.6 72.0 53.8 72.6 55.1

Table 5: Unsupervised: Unlabeled attachment scores (UAS) and Labeled attachment scores (LAS) of
different variants of our model with partial lexicalization in unsupervised scenario. “Direct” and “Multi-
way” indicate the direct transfer and the multiway variants of our model. “NT-Select” indicates our model
without tensor component, corresponding to a re-implementation of previous transfer model (Täckström
et al., 2013) with extensions to partial lexicalization and labeled parsing. The last column shows the
results by our hierarchical tensor-based model. Boldface numbers indicate the best UAS or LAS.

Feature Weight
87A∧hp=NOUN∧mp=ADJ 2.24× 10−3

87A∧hp=VERB∧mp=NOUN 8.88× 10−4

87A∧hp=VERB∧mp=PRON 1.21× 10−4

87A∧hp=NOUN∧mp=NOUN 9.48× 10−4

87A∧hp=ADP∧mp=NOUN 3.87× 10−4

Table 6: Examples of weights for feature
combinations between the typological feature
87A=Adj-Noun and different types of arcs. The
first row shows the weight for the valid feature
(conjoined with noun→adjective arcs) and the rest
show weights for the invalid features (conjoined
with other types of arcs).

the baselines in both cases. Moreover, it achieves
best UAS and LAS on 7 out of 10 languages.
The difference is more pronounced in the semi-
supervised case. Below, we summarize our find-
ings when comparing the model with the base-
lines.

Impact of Hierarchical Tensors We first ana-
lyze the impact of using a hierarchical tensor by
comparing against the Multiway baseline that im-
plements traditional tensor model. As Table 6
shows, this model learns non-zero weights even
for invalid feature combinations.

This disregard to known constraints impacts the
resulting performance. In the unsupervised sce-
nario, our hierarchical tensor achieves an aver-
age improvement of 0.5% on UAS and 1.3% on
LAS. Moreover, our model obtains better UAS on

all languages and better LAS on 9 out of 10 lan-
guages. This observation shows that the multi-
lingual transfer consistently benefits more from a
hierarchical tensor structure. In addition, we ob-
serve a similar gain over this baseline in the semi-
supervised scenario.

Impact of Tensor Models To evaluate the effec-
tiveness of tensor modeling in multilingual trans-
fer, we compare our model against the NT-Select
baseline. In the unsupervised scenario, our ten-
sor model yields a 1.1% gain on UAS and a 1.5%
on LAS. In the semi-supervised scenario, the im-
provement is more pronounced, reaching 1.7% on
UAS and 1.9% on LAS. The relative error reduc-
tion almost doubles, e.g. 7.1% vs. 3.8% on UAS.

While both our model and NT-Select outper-
form Direct baseline by a large margin on UAS,
we observe that NT-Select achieves a slightly
worse LAS than Direct. By adding a tensor com-
ponent, our model outperforms both baselines on
LAS, demonstrating that tensor scoring function is
able to capture better labeled features for transfer
comparing to Direct and NT-Select baselines.

Transfer Performance in the Context of Super-
vised Results To assess the contribution of mul-
tilingual transfer, we compare against the Sup50
results in which we train our model only on 50
target language sentences. As Table 7 shows,
our model improves UAS by 2.3% and LAS by
2.7%. We also provide a performance upper bound
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Semi-supervised Transfer Supervised Parsing (RBGParser)
Direct Sup50 NT-Select Multiway Ours Partial Lex. Full Lex.

UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS
EN 76.8 70.3 79.6 74.2 81.0 75.0 81.5 75.9 82.5 77.2 88.7 84.5 92.3 90.3
FR 78.8 70.2 76.9 66.8 79.4 71.0 79.0 71.1 79.6 71.8 83.3 76.5 83.3 76.5
DE 68.4 59.8 71.0 62.4 71.3 62.1 72.1 63.2 74.2 65.6 82.0 72.8 84.5 78.2
ID 63.7 56.1 78.2 68.9 76.9 68.2 77.8 69.3 79.1 70.4 85.0 77.1 85.8 79.8
IT 78.9 70.3 77.1 69.3 80.2 72.2 80.8 72.6 80.9 72.6 85.5 79.8 87.9 84.7
JA 68.2 42.1 76.6 61.0 73.0 58.8 75.6 60.9 76.4 61.3 79.0 64.0 82.1 70.3
KO 65.3 45.2 70.1 54.7 66.5 50.2 67.8 52.8 70.2 54.2 74.0 59.1 90.9 86.1
PT 78.6 72.9 76.0 70.0 78.7 73.1 79.3 73.9 79.3 73.5 85.2 80.8 88.5 86.5
ES 77.0 68.5 75.2 66.5 77.0 69.0 77.6 69.5 78.4 70.5 82.0 75.0 85.8 81.6
SV 77.7 67.2 74.9 64.7 77.6 66.8 77.8 67.5 78.3 67.9 84.4 75.4 87.3 82.3

AVG 73.4 62.3 75.6 65.8 76.2 66.6 76.9 67.7 77.9 68.5 82.9 74.5 87.3 83.5

Table 7: Semi-supervised and Supervised: UAS and LAS of different variants of our model when 50
annotated sentences in the target language are available. “Sup50” columns show the results of our model
when only supervised data in the target language is available. We also include in the last two columns
the supervised training results with partial or full lexicalization as the performance upper bound. Other
columns have the same meaning as in Table 5. Boldface numbers indicate the best UAS or LAS.

by training RBGParser on the full training set.9

When trained with partial lexical information as
in our model, RBGParser gives 82.9% on UAS
and 74.5% on LAS with partial lexical informa-
tion. By utilizing source language annotations, our
model closes the performance gap between train-
ing on the 50 sentences and on the full training set
by about 30% on both UAS and LAS. We further
compare to the performance upper bound with full
lexical information (87.3% UAS and 83.5% LAS).
In this case, our model still closes the performance
gap by 21% on UAS and 15% on LAS.

Time Efficiency of Hierarchical Tensors We
observe that our hierarchical structure retains the
time efficiency of tensor models. On the English
test set, the decoding speed of our hierarchical ten-
sor is close to the multiway counterpart (58.6 vs.
61.2 sentences per second), and is lower than the
three-way tensor by a factor of 3.1 (184.4 sen-
tences per second). The time complexity of ten-
sors is linear to the number of low-rank com-
ponents, and is independent of the factorization
structure.

8 Conclusions

In this paper, we introduce a hierarchical tensor
based-model which enables us to constrain learned
representation based on desired feature interac-
tions. We demonstrate that our model outperforms
state-of-the-art multilingual transfer parsers and

9On average, each language has more than 10,000 training
sentences.

traditional tensors. These observations, taken to-
gether with the fact that hierarchical tensors are
efficiently learnable, suggest that the approach can
be useful in a broader range of parsing applica-
tions; exploring the options is an appealing line of
future research.
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Abstract

We describe an approach to create a di-
verse set of predictions with spectral learn-
ing of latent-variable PCFGs (L-PCFGs).
Our approach works by creating multiple
spectral models where noise is added to
the underlying features in the training set
before the estimation of each model. We
describe three ways to decode with mul-
tiple models. In addition, we describe a
simple variant of the spectral algorithm for
L-PCFGs that is fast and leads to compact
models. Our experiments for natural lan-
guage parsing, for English and German,
show that we get a significant improve-
ment over baselines comparable to state of
the art. For English, we achieve the F1

score of 90.18, and for German we achieve
the F1 score of 83.38.

1 Introduction

It has been long identified in NLP that a diverse set
of solutions from a decoder can be reranked or re-
combined in order to improve the accuracy in var-
ious problems (Henderson and Brill, 1999). Such
problems include machine translation (Macherey
and Och, 2007), syntactic parsing (Charniak and
Johnson, 2005; Sagae and Lavie, 2006; Fossum
and Knight, 2009; Zhang et al., 2009; Petrov,
2010; Choe et al., 2015) and others (Van Halteren
et al., 2001).

The main argument behind the use of such a di-
verse set of solutions (such as k-best list of parses
for a natural language sentence) is the hope that
each solution in the set is mostly correct. There-
fore, recombination or reranking of solutions in
that set will further optimize the choice of a solu-
tion, combining together the information from all
solutions.

In this paper, we explore another angle for the
use of a set of parse tree predictions, where all pre-

dictions are made for the same sentence. More
specifically, we describe techniques to exploit di-
versity with spectral learning algorithms for natu-
ral language parsing. Spectral techniques and the
method of moments have been recently used for
various problems in natural language processing,
including parsing, topic modeling and the deriva-
tion of word embeddings (Luque et al., 2012; Co-
hen et al., 2013; Stratos et al., 2014; Dhillon et al.,
2015; Rastogi et al., 2015; Nguyen et al., 2015; Lu
et al., 2015).

Cohen et al. (2013) showed how to estimate an
L-PCFG using spectral techniques, and showed
that such estimation outperforms the expectation-
maximization algorithm (Matsuzaki et al., 2005).
Their result still lags behind state of the art in natu-
ral language parsing, with methods such as coarse-
to-fine (Petrov et al., 2006).

We further advance the accuracy of natural lan-
guage parsing with spectral techniques and L-
PCFGs, yielding a result that outperforms the orig-
inal Berkeley parser from Petrov and Klein (2007).
Instead of exploiting diversity from a k-best list
from a single model, we estimate multiple models,
where the underlying features are perturbed with
several perturbation schemes. Each such model,
during test time, yields a single parse, and all
parses are then used together in several ways to
select a single best parse.

The main contributions of this paper are two-
fold. First, we present an algorithm for estimating
L-PCFGs, akin to the spectral algorithm of Cohen
et al. (2012), but simpler to understand and imple-
ment. This algorithm has value for readers who
are interested in learning more about spectral al-
gorithms – it demonstrates some of the core ideas
in spectral learning in a rather intuitive way. In
addition, this algorithm leads to sparse grammar
estimates and compact models.

Second, we describe how a diverse set of predic-
tors can be used with spectral learning techniques.
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Our approach relies on adding noise to the feature
functions that help the spectral algorithm compute
the latent states. Our noise schemes are similar
to those described by Wang et al. (2013). We add
noise to the whole training data, then train a model
using our algorithm (or other spectral algorithms;
Cohen et al., 2013), and repeat this process mul-
tiple times. We then use the set of parses we get
from all models in a recombination step.

The rest of the paper is organized as follows.
In §2 we describe notation and background about
L-PCFG parsing. In §3 we describe our new spec-
tral algorithm for estimating L-PCFGs. It is based
on similar intuitions as older spectral algorithms
for L-PCFGs. In §4 we describe the various noise
schemes we use with our spectral algorithm and
the spectral algorithm of Cohen et al. (2013). In
§5 we describe how to decode with multiple mod-
els, each arising from a different noise setting. In
§6 we describe our experiments with natural lan-
guage parsing for English and German.

2 Background and Notation

We denote by [n] the set of integers {1, . . . , n}.
For a statement Γ, we denote by [[Γ]] its indicator
function, with values 0 when the assertion is false
and 1 when it is true.

An L-PCFG is a 5-tuple (N , I,P,m, n) where:

• N is the set of nonterminal symbols in the
grammar. I ⊂ N is a finite set of intermi-
nals. P ⊂ N is a finite set of preterminals.
We assume thatN = I ∪ P , and I ∩ P = ∅.
Hence we have partitioned the set of nonter-
minals into two subsets.

• [m] is the set of possible hidden states.

• [n] is the set of possible words.

• For all a ∈ I, b ∈ N , c ∈ N , h1, h2, h3 ∈
[m], we have a binary context-free rule
a(h1)→ b(h2) c(h3).

• For all a ∈ P , h ∈ [m], x ∈ [n], we have a
lexical context-free rule a(h)→ x.

Latent-variable PCFGs are essentially equiv-
alent to probabilistic regular tree grammars
(PRTGs; Knight and Graehl, 2005) where the
righthand side trees are of depth 1. With gen-
eral PRTGs, the righthand side can be of arbitrary
depth, where the leaf nodes of these trees corre-
spond to latent states in the L-PCFG formulation

VP

V

saw

NP

D

the

N

woman

S

NP

D

the

N

dog

VP

Figure 1: The inside tree (left) and outside
tree (right) for the nonterminal VP in the parse
tree (S (NP (D the) (N dog)) (VP (V
saw) (NP (D the) (N woman)))).

above and the internal nodes of these trees corre-
spond to interminal symbols in the L-PCFG for-
mulation.

Two important concepts that will be used
throughout of the paper are that of an “inside tree”
and an “outside tree.” Given a tree, the inside tree
for a node contains the entire subtree below that
node; the outside tree contains everything in the
tree excluding the inside tree. See Figure 1 for an
example. Given a grammar, we denote the space
of inside trees by T and the space of outside trees
by O.

3 Clustering Algorithm for Estimating
L-PCFGs

We assume two feature functions, φ : T → Rd

and ψ : O → Rd
′
, mapping inside and outside

trees, respectively, to a real vector. Our training
data consist of examples (a(i), t(i), o(i), b(i)) for
i ∈ {1 . . .M}, where a(i) ∈ N ; t(i) is an inside
tree; o(i) is an outside tree; and b(i) = 1 if a(i) is
the root of tree, 0 otherwise. These are obtained
by splitting all trees in the training set into inside
and outside trees at each node in each tree. We
then define Ωa ∈ Rd×d′ :

Ωa =
∑M

i=1[[a(i) = a]]φ(t(i))(ψ(o(i)))>∑M
i=1[[a(i) = a]]

(1)

This matrix is an empirical estimate for the
cross-covariance matrix between the inside trees
and the outside trees of a given nonterminal a. An
inside tree and an outside tree are conditionally in-
dependent according to the L-PCFG model, when
the latent state at their connecting point is known.
This means that the latent state can be identified
by finding patterns that co-occur together in in-
side and outside trees – it is the only random vari-
able that can explain such correlations. As such,
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Inputs: An input treebank with the following additional in-
formation: training examples (a(i), t(i), o(i), b(i)) for i ∈
{1 . . .M}, where a(i) ∈ N ; t(i) is an inside tree; o(i) is
an outside tree; and b(i) = 1 if the rule is at the root of tree,
0 otherwise. A function φ that maps inside trees t to feature-
vectors φ(t) ∈ Rd. A function ψ that maps outside trees o
to feature-vectors ψ(o) ∈ Rd′

. An integer k denoting the
thin-SVD rank. An integer m denoting the number of latent
states.

Algorithm:
(Step 1: Singular Value Decompositions)

• Calculate SVD on Ωa to get Ûa ∈ R(d×k) and V̂ a ∈
R(d′×k) for each a ∈ N .

(Step 1: Projection)

• For all i ∈ [M ], compute y(i) = (Ûai)>φ(t(i)) and
z(i) = (V̂ ai)>ψ(o(i)).

• For all i ∈ [M ], set x(i) to be the concatenation of y(i)

and z(i).

(Step 2: Cluster Projections)

• For all a ∈ N , cluster the set {x(i) | a(i) = a} to
get a clustering function γ : R2k → [m] that maps a
projected vector x(i) to a cluster in [m].

(Step 3: Compute Final Parameters)

• Annotate each node in the treebank with γ(x(i)).

• Compute the probability of a rule p(a[h1] →
b[h2] c[h3] | a[h1]) as the relative frequency of its ap-
pearance in the cluster-annotated treebank.

• Similarly, compute the root probabilities π(a[h]) and
preterminal rules p(a[h]→ x | a[h]).

Figure 2: The clustering estimation algorithm for
L-PCFGs.

if we reduce the dimensions of Ωa using singu-
lar value decomposition (SVD), we essentially get
representations for the inside trees and the outside
trees that correspond to the latent states.

This intuition leads to the algorithm that appears
in Figure 2. The algorithm we describe takes as in-
put training data, in the form of a treebank, decom-
posed into inside and outside trees at each node in
each tree in the training set.

The algorithm first performs SVD for each of
the set of inside and outside trees for all nontermi-
nals.1 This step is akin to CCA, which has been
used in various contexts in NLP, mostly to derive
representations for words (Dhillon et al., 2015;

1We normalize features by their variance.

Rastogi et al., 2015). The algorithm then takes
the representations induced by the SVD step, and
clusters them – we use k-means to do the clus-
tering. Finally, it maps each SVD representation
to a cluster, and as a result, gets a cluster identi-
fier for each node in each tree in the training data.
These clusters are now treated as latent states that
are “observed.” We subsequently follow up with
frequency count maximum likelihood estimate to
estimate the probabilities of each parameter in the
L-PCFG.

Consider for example the estimation of rules of
the form a→ x. Following the clustering step we
obtain for each nonterminal a and latent state h a
set of rules of the form a[h] → x. Each such in-
stance comes from a single training example of a
lexical rule. Next, we compute the probability of
the rule a[h] → x by counting how many times
that rule appears in the training instances, and nor-
malize by the total count of a[h] in the training
instances. Similarly, we compute probabilities for
binary rules of the form a→ b c.

The features that we use for φ and ψ are sim-
ilar to those used in Cohen et al. (2013). These
features look at the local neighborhood surround-
ing a given node. More specifically, we indicate
the following information with the inside features
(throughout these definitions assume that a → b c
is at the root of the inside tree t):

• The pair of nonterminals (a, b). E.g., for the
inside tree in Figure 1 this would be the pair
(VP, V).
• The pair (a, c). E.g., (VP, NP).
• The rule a→ b c. E.g., VP→ V NP.
• The rule a → b c paired with the rule at the

node b. E.g., for the inside tree in Figure 1
this would correspond to the tree fragment
(VP (V saw) NP).
• The rule a → b c paired with the rule at the

node c. E.g., the tree fragment (VP V (NP D
N)).
• The head part-of-speech of t paired with a.

E.g., the pair (VP, V).
• The number of words dominated by t paired

with a. E.g., the pair (VP, 3).

In the case of an inside tree consisting of a sin-
gle rule a→ x the feature vector simply indicates
the identity of that rule.

For the outside features, we use:
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• The rule above the foot node. E.g., for the
outside tree in Figure 1 this would be the rule
S→ NP VP∗ (the foot nonterminal is marked
with ∗).
• The two-level and three-level rule fragments

above the foot node. These features are ab-
sent in the outside tree in Figure 1.
• The label of the foot node, together with the

label of its parent. E.g., the pair (VP, S).
• The label of the foot node, together with the

label of its parent and grandparent.
• The part-of-speech of the first head word

along the path from the foot of the outside
tree to the root of the tree which is different
from the head node of the foot node.
• The width of the spans to the left and to the

right of the foot node, paired with the label of
the foot node.

Other Spectral Algorithms The SVD step on
the Ωa matrix is pivotal to many algorithms, and
has been used in the past for other L-PCFG esti-
mation algorithms. Cohen et al. (2012) used it for
developing a spectral algorithm that identifies the
parameters of the L-PCFG up to a linear transfor-
mation. Their algorithm generalizes the work of
Hsu et al. (2009) and Bailly et al. (2010).

Cohen and Collins (2014) also developed an al-
gorithm that makes use of an SVD step on the
inside-outside. It relies on the idea of “pivot
features” – features that uniquely identify latent
states.

Louis and Cohen (2015) used a clustering al-
gorithm that resembles ours but does not sepa-
rate inside trees from outside trees or follows up
with a singular value decomposition step. Their
algorithm was applied to both L-PCFGs and lin-
ear context-free rewriting systems. Their applica-
tion was the analysis of hierarchical structure of
conversations in online forums.

In our preliminary experiments, we found out
that the clustering algorithm by itself performs
worse than the spectral algorithm of Cohen et al.
(2013). We believe that the reason is two-fold: (a)
k-means finds a local maximum during clustering;
(b) we do hard clustering instead of soft cluster-
ing. However, we detected that the clustering algo-
rithm gives a more diverse set of solutions, when
the features are perturbed. As such, in the next
sections, we explain how to perturb the models we
get from the clustering algorithm (and the spectral

algorithm) in order to improve the accuracy of the
clustering and spectral algorithms.

4 Spectral Estimation with Noise

It has been shown that a diverse set of predictions
can be used to help improve decoder accuracy for
various problems in NLP (Henderson and Brill,
1999). Usually a k-best list from a single model
is used to exploit model diversity. Instead, we es-
timate multiple models, where the underlying fea-
tures are filtered with various noising schemes.

We try three different types of noise schemes for
the algorithm in Figure 2:

Dropout noise: Let σ ∈ [0, 1]. We set each el-
ement in the feature vectors φ(t) and ψ(o) to 0
with probability σ.

Gaussian (additive): Let σ > 0. For each x(i),
we draw a vector ε ∈ R2k of Gaussians with
mean 0 and variance σ2, and then set x(i) ←
x(i) + ε.

Gaussian (multiplicative): Let σ > 0. For each
x(i), we draw a vector ε ∈ R2k of Gaussians with
mean 0 and variance σ2, and then set x(i) ←
x(i) ⊗ (1 + ε), where ⊗ is coordinate-wise mul-
tiplication.

Note the distinction between the dropout noise
and the Gaussian noise schemes: the first is per-
formed on the feature vectors before the SVD step,
and the second is performed after the SVD step. It
is not feasible to add Gaussian noise prior to the
SVD step, since the matrix Ωa will no longer be
sparse, and its SVD computation will be computa-
tionally demanding.

Our use of dropout noise here is inspired by
“dropout” as is used in neural network training,
where various connections between units in the
neural network are dropped during training in or-
der to avoid overfitting of these units to the data
(Srivastava et al., 2014).

The three schemes we described were also used
by Wang et al. (2013) to train log-linear models.
Wang et al.’s goal was to prevent overfitting by
introducing this noise schemes as additional reg-
ularizer terms, but without explicitly changing the
training data. We do filter the data through these
noise schemes, and show in §6 that all of these
noise schemes do not improve the performance of
our estimation on their own. However, when mul-
tiple models are created with these noise schemes,
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and then combined together, we get an improved
performance. As such, our approach is related to
the one of Petrov (2010), who builds a commit-
tee of latent-variable PCFGs in order to improve a
natural language parser.

We also use these perturbation schemes to cre-
ate multiple models for the algorithm of Cohen et
al. (2012). The dropout scheme stays the same,
but for the Gaussian noising schemes, we follow a
slightly different procedure. After noising the pro-
jections of the inside and outside feature functions
we get from the SVD step, we use these projected
noised features as a new set of inside and outside
feature functions, and re-run the spectral algorithm
of Cohen et al. (2012) on them.

We are required to add this extra SVD step be-
cause the spectral algorithm of Cohen et al. as-
sumes the existence of linearly transformed pa-
rameter estimates, where the parameters of each
nonterminal a is linearly transformed by unknown
invertible matrices. These matrices cancel out
when the inside-outside algorithm is run with the
spectral estimate output. In order to ensure that
these matrices still exactly cancel out, we have to
follow with another SVD step as described above.
The latter SVD step is performed on a dense Ωa ∈
Rm×m but this is not an issue considering m (the
number of latent states) is much smaller than d or
d′.

5 Decoding with Multiple Models

Let G1, . . . , Gp be a set of L-PCFG grammars. In
§6, we create such models using the noising tech-
niques described above. The question that remains
is how to combine these models together to get a
single best output parse tree given an input sen-
tence.

With L-PCFGs, decoding a single sentence re-
quires marginalizing out the latent states to find
the best skeletal tree2 for a given string. Let s be a
sentence. We define t(Gi, s) to be the output tree
according to minimum Bayes risk decoding. This
means we follow Goodman (1996), who uses dy-
namic programming to compute the tree that maxi-
mizes the sum of all marginals of all nonterminals
in the output tree. Each marginal, for each span
〈a, i, j〉 (where a is a nonterminal and i and j are
endpoints in the sentence), is computed by using
the inside-outside algorithm.

2A skeletal tree is a derivation tree without latent states
decorating the nonterminals.

In addition, let µ(a, i, j|Gk, s) be the marginal,
as computed by the inside-outside algorithm, for
the span 〈a, i, j〉 with grammar Gk for string s.
We use the notation 〈a, i, j〉 ∈ t to denote that a
span 〈a, i, j〉 is in a tree t.

We suggest the following three ways for decod-
ing with multiple models G1, . . . , Gp:

Maximal tree coverage: Using dynamic pro-
gramming, we return the tree that is the solution
to:

t∗ = arg max
t

∑
〈a,i,j〉∈t

p∑
k=1

[[〈a, i, j〉 ∈ t(Gk, s)]].

This implies that we find the tree that maximizes
its coverage with respect to all other trees that are
decoded using G1, . . . , Gp.

Maximal marginal coverage: Using dynamic
programming, we return the tree that is the
solution to:

t∗ = arg max
t

∑
〈a,i,j〉∈t

p∑
k=1

µ(a, i, j|Gk, s).

This is similar to maximal tree coverage, only in-
stead of considering just the single decoded tree
for each model among G1, . . . , Gp, we make our
decoding “softer,” and rely on the marginals that
each model gives.

MaxEnt reranking: We train a MaxEnt reranker
on a training set that includes outputs from mul-
tiple models, and then, during testing time, de-
code with each of the models, and use the trained
reranker to select one of the parses. We use the
reranker of Charniak and Johnson (2005).3

As we see later in §6, it is sometimes possible to
extract more information from the training data by
using a network, or a hierarchy of the above tree
combination methods. For example, we get our
best result for parsing by first using MaxEnt with
several subsets of the models, and then combining
the output of these MaxEnt models using maximal
tree coverage.

3Implementation: https://github.com/BLLIP/
bllip-parser. More specifically, we used the
programs extract-spfeatures, cvlm-lbfgs and
best-indices. cvlm-lbfgs was used with the default
hyperparameters from the Makefile.
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Figure 3: F1 scores of noisy models. Each data
point gives the F1 accuracy of a single model on
the development set, based on the legend. The x-
axis enumerates the models (80 in total for each
noise scheme).

6 Experiments

In this section, we describe parsing experiments
with two languages: English and German.

6.1 Results for English

For our English parsing experiments, we use a
standard setup. More specifically, we use the Penn
WSJ treebank (Marcus et al., 1993) for our experi-
ments, with sections 2–21 as the training data, and
section 22 used as the development data. Section
23 is used as the final test set. We binarize the
trees in training data, but transform them back be-
fore evaluating them.

For efficiency, we use a base PCFG without
latent states to prune marginals which receive
a value less than 0.00005 in the dynamic pro-
gramming chart. The parser takes part-of-speech
tagged sentences as input. We tag all datasets us-
ing Turbo Tagger (Martins et al., 2010), trained on
sections 2–21. We use the F1 measure according
to the PARSEVAL metric (Black et al., 1991) for
the evaluation.

Preliminary experiments We first experiment
with the number of latent states for the clustering
algorithm without perturbations. We use k = 100

for the SVD step. Whenever we need to cluster
a set of points, we run the k-means algorithm 10
times with random restarts and choose the clus-
tering result with the lowest objective value. On
section 22, the clustering algorithm achieves the
following results (F1 measure): m = 8: 84.30%,
m = 16: 85.98%, m = 24: 86.48%, m = 32:
85.84%, m = 36: 86.05%, m = 40: 85.43%.
As we increase the number of states, performance
improves, but plateaus at m = 24. For the rest of
our experiments, both with the spectral algorithm
of Cohen et al. (2012) and the clustering algorithm
presented in this paper, we use m = 24.

Compact models One of the advantage of the
clustering algorithm is that it leads to much more
compact models. The number of nonzero param-
eters with m = 24 for the clustering algorithm is
approximately 97K, while the spectral algorithms
lead to a significantly larger number of nonzero
parameters with the same number of latent states:
approximately 54 million.

Oracle experiments To what extent do we get
a diverse set of solutions from the different mod-
els we estimate? This question can be answered by
testing the oracle accuracy in the different settings.
For each type of noising scheme, we generated 80
models, 20 for each σ ∈ {0.05, 0.1, 0.15, 0.2}.
Each noisy model by itself lags behind the best
model (see Figure 3). However, when choosing
the best tree among these models, the additively-
noised models get an oracle accuracy of 95.91%
on section 22; the multiplicatively-noised models
get an oracle accuracy of 95.81%; and the dropout-
noised models get an oracle accuracy of 96.03%.
Finally all models combined get an oracle accu-
racy of 96.67%. We found out that these oracle
scores are comparable to the one Charniak and
Johnson (2005) report.

We also tested our oracle results, comparing
the spectral algorithm of Cohen et al. (2013) to
the clustering algorithm. We generated 20 mod-
els for each type of noising scheme, 5 for each
σ ∈ {0.05, 0.1, 0.15, 0.2}) for the spectral al-
gorithm.4 Surprisingly, even though the spectral
models were smoothed, their oracle accuracy was
lower than the accuracy of the clustering algo-

4There are two reasons we use a smaller number of mod-
els with the spectral algorithm: (a) models are not compact
(see text) and (b) as such, parsing takes comparatively longer.
However, in the above comparison, we use 20 models for the
clustering algorithm as well.
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Clustering Spectral (smoothing) Spectral (no smoothing)
MaxTre MaxMrg MaxEnt MaxTre MaxMrg MaxEnt MaxTre MaxMrg MaxEnt

Add 88.68 88.64 89.50 88.20 88.28 88.59 86.72 86.85 87.94
Mul 88.74 88.66 89.89 88.48 88.70 89.46 86.97 86.53 89.04

Dropout 88.68 88.56 89.80 88.64 88.71 89.47 88.37 88.06 89.52
All 88.84 88.75 89.95 88.38 88.75 89.45 87.49 87.00 89.85

No noise 86.48 88.53 (Cohen et al., 2013) 86.47 (Cohen et al., 2013)

Table 1: Results on section 22 (WSJ). MaxTre denotes decoding using maximal tree coverage, MaxMrg
denotes decoding using maximal marginal coverage, and MaxEnt denotes the use of a discriminative
reranker. Add, Mul and Dropout denote the use of additive Gaussian noise, multiplicative Gaussian
noise and dropout noise, respectively. The number of models used in the first three rows for the clustering
algorithm is 80: 20 for each σ ∈ {0.05, 0.1, 0.15, 0.2}. For the spectral algorithm, it is 20, 5 for each σ
(see footnotes). The number of latent states is m = 24. For All, we use all models combined from the
first three rows. The “No noise” baseline for the spectral algorithm is taken from Cohen et al. (2013).
The best figure in each algorithm block is in boldface.

rithm: 92.81% vs. 95.73%.5 This reinforces two
ideas: (i) that noising acts as a regularizer, and has
a similar role to backoff smoothing, as we see be-
low; and (ii) the noisy estimation for the clustering
algorithm produces a more diverse set of parses
than that produced with the spectral algorithm.

Method F1

B
es

t Spectral (unsmoothed) 89.21
Spectral (smoothed) 88.87
Clustering 89.25

H
ie

r Spectral (unsmoothed) 89.09
Spectral (smoothed) 89.06
Clustering 90.18

Table 2: Results on section 23 (English). The first
three results (Best) are taken with the best model
in each corresponding block in Table 1. The last
three results (Hier) use a hierarchy of the above
tree combination methods in each block. It com-
bines all MaxEnt results using the maximal tree
coverage (see text).

It is also important to note that the high ora-
cle accuracy is not just the result of k-means not
finding the global maximum for the clustering ob-
jective. If we just run the clustering algorithms
with 80 models as before, without perturbing the
features, the oracle accuracy is 95.82%, which is
lower than the oracle accuracy with the additive
and dropout perturbed models. To add to this, we
see below that perturbing the training set with the
spectral algorithm of Cohen et al. improves the ac-

5Oracle scores for the clustering algorithm: 95.73% (20
models for each noising scheme) and 96.67% (80 models for
each noising scheme).

curacy of the spectral algorithm. Since the spectral
algorithm of Cohen et al. does not maximize any
objective locally, it shows that the role of the per-
turbations we use is important.

Results Results on the development set are
given in Table 1 with our three decoding methods.
We present the results from three algorithms: the
clustering algorithm and the spectral algorithms
(smoothed and unsmoothed).6

It seems that dropout noise for the spectral algo-
rithm acts as a regularizer, similarly to the back-
off smoothing techniques that are used in Cohen
et al. (2013). This is evident from the two spectral
algorithm blocks in Table 1, where dropout noise
does not substantially improve the smoothed spec-
tral model (Cohen et al. report accuracy of 88.53%
with smoothed spectral model form = 24 without
noise) – the accuracy is 88.64%–88.71%–89.47%,
but the accuracy substantially improves for the un-
smoothed spectral model, where dropout brings an
accuracy of 86.47% up to 89.52%.

All three blocks in Table 1 demonstrate that
decoding with the MaxEnt reranker performs the
best. Also it is interesting to note that our results
continue to improve when combining the output of
previous combination steps further. The best re-
sult on section 22 is achieved when we combine,
using maximal tree coverage, all MaxEnt outputs
of the clustering algorithm (the first block in Ta-

6Cohen et al. (2013) propose two variants of spectral
estimation for L-PCFGs: smoothed and unsmoothed. The
smoothed model uses a simple backedoff smoothing method
which leads to significant improvements over the unsmoothed
one. Here we compare our clustering algorithm against both
of these models. However unless specified otherwise, the
spectral algorithm of Cohen et al. (2013) refers to their best
model, i.e. the smoothed model.
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Clustering Spectral (smoothing) Spectral (no smoothing)
MaxTre MaxMrg MaxEnt MaxTre MaxMrg MaxEnt MaxTre MaxMrg MaxEnt

Add 77.34 76.87 80.01 77.76 77.85 78.09 77.44 77.56 77.91
Mul 77.80 77.80 80.34 77.80 77.76 78.89 77.62 77.85 78.94

Dropout 77.37 77.17 80.94 77.94 78.06 79.02 77.97 78.17 79.18
All 77.71 77.51 80.86 78.04 77.89 79.46 77.73 77.91 79.66

No noise 75.04 77.71 77.07

Table 3: Results on the development set for German. See Table 1 for interpretation of MaxTre, MaxMrg,
MaxEnt and Add, Mul and Dropout. The number of models used in the first three rows for the clustering
algorithm is 80: 20 for each σ ∈ {0.05, 0.1, 0.15, 0.2}. For the spectral algorithm, it is 20, 5 for each σ.
The number of latent states is m = 8. For All, we use all models combined from the first three rows. The
best figure in each algorithm block is in boldface.

ble 1). This yields a 90.68% F1 accuracy. This is
also the best result we get on the test set (section
23), 90.18%. See Table 2 for results on section 23.

Our results are comparable to state-of-the-art
results for parsing. For example, Sagae and Lavie
(2006), Fossum and Knight (2009) and Zhang et
al. (2009) report an accuracy of 93.2%-93.3% us-
ing parsing recombination; Shindo et al. (2012)
report an accuracy of 92.4 F1 using a Bayesian
tree substitution grammar; Petrov (2010) reports
an accuracy of 92.0% using product of L-PCFGs;
Charniak and Johnson (2005) report accuracy of
91.4 using a discriminative reranking model; Car-
reras et al. (2008) report 91.1 F1 accuracy for a
discriminative, perceptron-trained model; Petrov
and Klein (2007) report an accuracy of 90.1 F1.
Collins (2003) reports an accuracy of 88.2 F1.

6.2 Results for German

For the German experiments, we used the NEGRA
corpus (Skut et al., 1997). We use the same setup
as in Petrov (2010), and use the first 18,602 sen-
tences as a training set, the next 1,000 sentences as
a development set and the last 1,000 sentences as
a test set. This corresponds to an 80%-10%-10%
split of the treebank.

Our German experiments follow the same set-
ting as in our English experiments. For the clus-
tering algorithm we generated 80 models, 20 for
each σ ∈ {0.05, 0.1, 0.15, 0.2}. For the spectral
algorithm, we generate 20 models, 5 for each σ.

For the reranking experiment, we had to modify
the BLLIP parser (Charniak and Johnson, 2005)
to use the head features from the German tree-
bank. We based our modifications on the docu-
mentation for the NEGRA corpus (our modifica-
tions are based mostly on mapping of nontermi-
nals to coarse syntactic categories).

Preliminary experiments For German, we also
experiment with the number of latent states. On
the development set, we observe that the F1 mea-
sure is: 75.04% for m = 8, 73.44% for m = 16
and 70.84% form = 24. For the rest of our experi-
ments, we fix the number of latent states atm = 8.

Method F1
B

es
t Spectral (unsmoothed) 80.88

Spectral (smoothed) 80.31
Clustering 81.94

H
ie

r Spectral (unsmoothed) 80.64
Spectral (smoothed) 79.96
Clustering 83.38

Table 4: Results on the test set for the German
data. The first three results (Best) are taken with
the best model in each corresponding block in Ta-
ble 3. The last three results (Hier) use a hierarchy
of the above tree combination methods.

Oracle experiments The additively-noised
models get an oracle accuracy of 90.58% on
the development set; the multiplicatively-noised
models get an oracle accuracy of 90.47%; and
the dropout-noised models get an oracle accuracy
of 90.69%. Finally all models combined get an
oracle accuracy of 92.38%.

We compared our oracle results to those given
by the spectral algorithm of Cohen et al. (2013).
With 20 models for each type of noising scheme,
all spectral models combined achieve an oracle ac-
curacy of 83.45%. The clustering algorithm gets
the oracle score of 90.12% when using the same
number of models.

Results Results on the development set and on
the test set are given in Table 3 and Table 4 re-
spectively.
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Like English, in all three blocks in Table 3, de-
coding with the MaxEnt reranking performs the
best. Our results continue to improve when fur-
ther combining the output of previous combina-
tion steps. The best result of 82.04% on the devel-
opment set is achieved when we combine, using
maximal tree coverage, all MaxEnt outputs of the
clustering algorithm (the first block in Table 3).
This also leads to the best result of 83.38% on the
test set. See Table 4 for results on the test set.

Our results are comparable to state-of-the-art
results for German parsing. For example, Petrov
(2010) reports an accuracy of 84.5% using prod-
uct of L-PCFGs; Petrov and Klein (2007) report
an accuracy of 80.1 F1; and Dubey (2005) reports
an accuracy of 76.3 F1.

7 Discussion

From a theoretical point of view, one of the
great advantages of spectral learning techniques
for latent-variable models is that they yield consis-
tent parameter estimates. Our clustering algorithm
for L-PCFG estimation breaks this, but there is a
work-around to obtain an algorithm which would
be statistically consistent.

The main reason that our algorithm is not a con-
sistent estimator is that it relies on k-means clus-
tering, which maximizes a non-convex objective
using hard clustering steps. The k-means algo-
rithm can be viewed as “hard EM” for a Gaussian
mixture model (GMM), where each latent state is
associated with one of the mixture components in
the GMM. This means that instead of following up
with k-means, we could have identified the param-
eters and the posteriors for a GMM, where the ob-
servations correspond to the vectors that we clus-
ter. There are now algorithms, some of which are
spectral, that aim to solve this estimation problem
with theoretical guarantees (Vempala and Wang,
2004; Kannan et al., 2005; Moitra and Valiant,
2010).

With theoretical guarantees on the correctness
of the posteriors from this step, the subsequent
use of maximum likelihood estimation step could
yield consistent parameter estimates. The con-
sistency guarantees will largely depend on the
amount of information that exists in the base fea-
ture functions about the latent states according to
the L-PCFG model.

8 Conclusion

We presented a novel estimation algorithm for
latent-variable PCFGs. This algorithm is based
on clustering of continuous tree representations,
and it also leads to sparse grammar estimates and
compact models. We also showed how to get a
diverse set of parse tree predictions with this algo-
rithm and also older spectral algorithms. Each pre-
diction in the set is made by training an L-PCFG
model after perturbing the underlying features that
estimation algorithm uses from the training data.
We showed that such a diverse set of predictions
can be used to improve the parsing accuracy of En-
glish and German.
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Abstract

Recently, neural network based depen-
dency parsing has attracted much interest,
which can effectively alleviate the prob-
lems of data sparsity and feature engineer-
ing by using the dense features. How-
ever, it is still a challenge problem to
sufficiently model the complicated syn-
tactic and semantic compositions of the
dense features in neural network based
methods. In this paper, we propose
two heterogeneous gated recursive neu-
ral networks: tree structured gated re-
cursive neural network (Tree-GRNN) and
directed acyclic graph structured gated
recursive neural network (DAG-GRNN).
Then we integrate them to automati-
cally learn the compositions of the dense
features for transition-based dependency
parsing. Specifically, Tree-GRNN mod-
els the feature combinations for the trees
in stack, which already have partial depen-
dency structures. DAG-GRNN models the
feature combinations of the nodes whose
dependency relations have not been built
yet. Experiment results on two prevalent
benchmark datasets (PTB3 and CTB5)
show the effectiveness of our proposed
model.

1 Introduction

Transition-based dependency parsing is a core task
in natural language processing, which has been
studied with considerable efforts in the NLP com-
munity. The traditional discriminative dependency
parsing methods have achieved great success (Koo
et al., 2008; He et al., 2013; Bohnet, 2010; Huang
and Sagae, 2010; Zhang and Nivre, 2011; Mar-
tins et al., 2009; McDonald et al., 2005; Nivre et
al., 2006; Kübler et al., 2009; Goldberg and Nivre,

(a) Standard RNN (b) Tree-GRNN (c) DAG-GRNN

Figure 1: Sketch of three recursive neural net-
works (RNN). (a) is the standard RNN for con-
stituent tree; (b) is Tree-GRNN for dependency
tree, in which the dashed arcs indicate the depen-
dency relations between the nodes; (c) is DAG-
GRNN for the nodes without given topological
structure.

2013; Choi and McCallum, 2013; Ballesteros and
Bohnet, 2014). However, these methods are based
on discrete features and suffer from the problems
of data sparsity and feature engineering (Chen and
Manning, 2014).

Recently, distributed representations have been
widely used in a variety of natural language pro-
cessing (NLP) tasks (Collobert et al., 2011; De-
vlin et al., 2014; Socher et al., 2013; Turian et al.,
2010; Mikolov et al., 2013b; Bengio et al., 2003).
Specific to the transition-based parsing, the neu-
ral network based methods have also been increas-
ingly focused on due to their ability to minimize
the efforts in feature engineering and the boosted
performance (Le and Zuidema, 2014; Stenetorp,
2013; Bansal et al., 2014; Chen and Manning,
2014; Zhu et al., 2015).

However, most of the existing neural network
based methods still need some efforts in feature
engineering. For example, most methods often se-
lect the first and second leftmost/rightmost chil-
dren of the top nodes in stack, which could miss
some valuable information hidden in the unchosen
nodes. Besides, the features of the selected nodes
are just simply concatenated and then fed into neu-
ral network. Since the concatenation operation is
relatively simple, it is difficult to model the com-
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plicated feature combinations which can be man-
ually designed in the traditional discrete feature
based methods.

To tackle these problems, we use two het-
erogeneous gated recursive neural networks, tree
structured gated recursive neural network (Tree-
GRNN) and directed acyclic graph gated struc-
tured recursive neural network (DAG-GRNN), to
model each configuration during transition based
dependency parsing. The two proposed GRNNs
introduce the gate mechanism (Chung et al., 2014)
to improve the standard recursive neural network
(RNN) (Socher et al., 2013; Socher et al., 2014),
and can model the syntactic and semantic compo-
sitions of the nodes during parsing.

Figure 1 gives a rough sketch for the standard
RNN, Tree-GRNN and DAG-GRNN. Tree-GRNN
is applied to the partial-constructed trees in stack,
which have already been constructed according to
the previous transition actions. DAG-GRNN is ap-
plied to model the feature composition of nodes in
stack and buffer which have not been labeled their
dependency relations yet. Intuitively, Tree-GRNN
selects and merges features recursively from chil-
dren nodes into their parent according to their de-
pendency structures, while DAG-GRNN further
models the complicated combinations of extracted
features and explicitly exploits features in differ-
ent levels of granularity.

To evaluate our approach, we experiment on
two prevalent benchmark datasets: English Penn
Treebank 3 (PTB3) and Chinese Penn Treebank 5
(CTB5) datasets. Experiment results show the ef-
fectiveness of our proposed method. Compared to
the parser of Chen and Manning (2014), we re-
ceive 0.6% (UAS) and 0.9% (LAS) improvement
on PTB3 test set, while we receive 0.8% (UAS)
and 1.3% (LAS) improvement on CTB5 test set.

2 Neural Network Based Transition
Dependency Parsing

2.1 Transition Dependency Parsing

In this paper, we employ the arc-standard tran-
sition systems (Nivre, 2004) and examine only
greedy parsing for its efficiency. Figure 2 gives
an example of arc-standard transition dependency
parsing.

In transition-based dependency parsing, the
consecutive configurations of parsing process can
be defined as c(i) = (s(i), b(i), A(i)) which con-
sists of a stack s, a buffer b, and a set of

dependency arcs A. Then, the greedy pars-
ing process consecutively predicts the actions
based on the features extracted from the corre-
sponding configurations. For a given sentence
w1, . . . , wn, parsing process starts from a initial
configuration c(0) = ([ROOT ], [w1, . . . , wn], ∅),
and terminates at some configuration c(2n) =
([ROOT ], ∅, A(2n)], where n is the length of the
given sentence w1:n. As a result, we derive the
parse tree of the sentence w1:n according to the
arcs set A(2n).

In arc-standard system, there are three types of
actions: Left-Arc, Right-Arc and Shift. Denot-
ing sj(j = 1, 2, . . . ) as the jth top element of the
stack, and bj(j = 1, 2, . . . ) as the jth front ele-
ment of the buffer, we can formalize the three ac-
tions of arc-standard system as:

• Left-Arc(l) adds an arc s2 ← s1 with label
l and removes s2 from the stack, resulting a
new arc l(s1, s2). Precondition: |s| ≥ 3 (The
ROOT node cannot be child node).
• Right-Arc(l) adds an arc s2 → s1 with label
l and removes s1 from the stack, resulting a
new arc l(s2, s1). Precondition: |s| ≥ 2.
• Shift removes b1 from the buffer, and adds it

to the stack. Precondition: |b| ≥ 1.

The greedy parser aims to predict the correct
transition action for a given configuration. There
are two versions of parsing: unlabeled and labeled
versions. The set of possible action candidates
T = 2nl + 1 in the labeled version of parsing,
and T = 3 in the unlabeled version, where nl is
number of different types of arc labels.

2.2 Neural Network Based Parser
In neural network architecture, the words, POS
tags and arc labels are mapped into distributed
vectors (embeddings). Specifically, given the
word embedding matrix Ew ∈ Rde×nw , each word
wi is mapped into its corresponding column ewwi

∈
Rde of Ew according to its index in the dictionary,
where de is the dimensionality of embeddings and
nw is the dictionary size. Likewise, The POS and
arc labels are also mapped into embeddings by the
POS embedding matrix Et ∈ Rde×nt and arc la-
bel embedding matrix El ∈ Rde×nl respectively,
where nt and nl are the numbers of distinct POS
tags and arc labels respectively. Correspondingly,
embeddings of each POS tag ti and each arc label
li are etti ∈ Rde and elli ∈ Rde extracted from Et

and El respectively.
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Configurations Gold ActionsID Stack Buffer A
0 [ROOT] [He likes story books .] ∅
1 [ROOT He] [likes story books .] Shift
2 [ROOT He likes] [story books .] Shift
3 [ROOT likes] [story books .] A ∪ SUB(likes,He) Left Arc(SUB)
4 [ROOT likes story] [books .] Shift
5 [ROOT likes story books] [.] Shift
6 [ROOT likes books] [.] A∪NMOD(books,story) Left Arc(NMOD)
7 [ROOT likes] [.] A∪OBJ(likes,books) Right Arc(OBJ)
8 [ROOT likes .] ∅ Shift
9 [ROOT likes] ∅ A∪P(likes,.) Right Arc(P)

10 [ROOT] ∅ A∪ROOT(ROOT,likes) Right Arc(ROOT)

Figure 2: An example of arc-standard transition dependency parsing.

s3 s2 s1 b1 b2 b3

s2.lc1 s2.lc2 s2.rc2 s2.rc1… …

… …s2.rc2.lc2s2.rc2.lc1 s2.rc2.rc1s2.rc2.rc2

Stack Buffer

s2.lc1 s1 …… b2 s2.rc2.rc1s2.lc2.rc1

S L R

…

…

Concatenate

h=tanh(W1x+b1)

p=softmax(W2h+b2)

Input x

Hidden units h

Probability of each action p

Sub tree

Figure 3: Architecture of neural network based
transition dependency parsing.

Figure 3 gives the architecture of neu-
ral network based parser. Following
Chen and Manning (2014), a set of el-
ements S from stack and buffer (e.g.
S = {s2.lc2.rc1, s2.lc1, s1, b2, s2.rc2.rc1, . . . })
is chosen as input. Specifically, the information
(word, POS or label) of each element in the set S
(e.g. {s2.lc2.rc1.t, s2.lc1.l, s1.w, s1.t, b2.w, . . . })
are extracted and mapped into their corresponding
embeddings. Then these embeddings are concate-
nated as the input vector x ∈ Rd̂. A special token
NULL is used to represent a non-existent element.

We perform a standard neural network using
one hidden layer with dh hidden units followed by
a softmax layer as:

h = g(W1x + b1), (1)

p = softmax(W2h + b2), (2)

where W1 ∈ Rdh×d̂, b1 ∈ Rdh , W2 ∈ R|T |×dh ,
b2 ∈ R|T |.Here, g is a non-linear function which

can be hyperbolic tangent, sigmoid, cube (Chen
and Manning, 2014), etc.

3 Recursive Neural Network

Recursive neural network (RNN) is one of classi-
cal neural networks, which performs the same set
of parameters recursively on a given structure (e.g.
syntactic tree) in topological order (Pollack, 1990;
Socher et al., 2013).

In the simplest case, children nodes are com-
bined into their parent node using a weight matrix
W which is shared across the whole network, fol-
lowed by a non-linear function g(·). Specifically,
given the left child node vector hL ∈ Rd and right
child node vector hR ∈ Rd, their parent node vec-
tor hP ∈ Rd will be formalized as:

hP = g

(
W
[

hL
hR

])
, (3)

where W ∈ Rd×2d and g is a non-linear function
as mentioned above.

4 Architecture of Two Heterogeneous
Gated Recursive Neural Networks for
Transition-based Dependency Parsing

In this paper, we apply the idea of recursive neu-
ral network (RNN) to dependency parsing task.
RNN needs a pre-defined topological structure.
However, in each configuration during parsing,
just partial dependency relations have been con-
structed, while the remains are still unknown. Be-
sides, the standard RNN can just deal with the bi-
nary tree. Therefore we cannot apply the standard
RNN directly.

Here, we propose two heterogeneous recursive
neural networks: tree structured gated recursive
neural network (Tree-GRNN) and directed acyclic
graph structured gated recursive neural network
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s2.lc1 s2.lc2 s2.rc2 s2.rc1… …

s3 s2 s1 b1 b2 b3

…

S L RSoftmax

… …s2.rc2.lc2s2.rc2.lc1 s2.rc2.rc1s2.rc2.rc2

Stack Buffer

Sub tree

DAG-GRNN

Tree-GRNN

Figure 4: Architecture of our proposed depen-
dency parser using two heterogeneous gated recur-
sive neural networks.

(DAG-GRNN). Tree-GRNN is applied to the sub-
trees with partial dependency relations in stack
which have already been constructed according
to the previous transition actions. DAG-GRNN
is employed to model the feature composition of
nodes in stack and buffer which have not been la-
beled their dependency relations yet.

Figure 4 shows the whole architecture of our
model, which integrates two different GRNNs to
predict the action for each parsing configuration.
The detailed descriptions of two GRNNs will be
discussed in the following two subsections.

4.1 Tree Structured Gated Recursive Neural
Network

It is a natural way to merge the information from
children nodes into their parent node recursively
according to the given tree structures in stack. Al-
though the dependency relations have been built,
it is still hard to apply the recursive neural net-
work (as Eq. 3) directly for the uncertain num-
ber of children of each node in stack. By aver-
aging operation on children nodes (Socher et al.,
2014), the parent node cannot well capture the
crucial features from the mixed information of its
children nodes. Here, we propose tree structured
gated recursive neural network (Tree-GRNN) in-
corporating the gate mechanism (Cho et al., 2014;
Chung et al., 2014; Chen et al., 2015a; Chen
et al., 2015b), which can selectively choose the

AVG AVG

σ σσσ

Parent node: p

Child node: p.lc1

σ Reset gate Element-wise multiplication operator AVG Average operator

vp.lc
l

1 vp.lc
r

1vp.lc
n

1

Child node: p.lc2

vp.lc
l

2 vp.lc
r

2vp.lc
n

2

Child node: p.rc2 Child node: p.rc1

vp.rc
r

2vp.rc
l

2 vp.rc
n

2 vp.rc
l

1 vp.rc
r

1vp.rc
n

1

vpl vpn vpr

Figure 5: Minimal structure of tree structured
gated recursive neural network (Tree-GRNN). The
solid arrow denotes that there is a weight matrix on
the link, while the dashed one denotes none.

crucial features according to the gate state. Fig-
ure 5 shows the minimal structure of Tree-GRNN
model.

In Tree-GRNN, each node p of trees in stack is
composed of three components: state vector of left
children nodes vp

l ∈ Rdc , state vector of current
node vp

n ∈ Rdn and state vector of right children
nodes vp

r ∈ Rdc , where dn and dc indicate the cor-
responding vector dimensionalities. Particularly,
we represent information of node p as a vector

vp =

 vp
l

vp
n

vp
r

 , (4)

where vp ∈ Rq and q = 2dc+dn. Specifically, vp
n

contains the information of current node including
its word form p.w, pos tag p.t and label type p.l
as shown in Eq. 5, and vp

l and vp
r are initialized

by zero vectors 0 ∈ Rdc , then update as Eq. 6.

vp
n = tanh

 ewp.w
etp.t
elp.l

 , (5)

where word embedding ewp.w ∈ Rde , pos embed-
ding etp.t ∈ Rde and label embedding elp.l ∈ Rde

are extracted from embedding matrices Ew, Et

and El according to the indices of the correspond-
ing word p.w, pos p.t and label p.l respectively.
Specifically, in the case of unlabeled attachment
parsing, we ignore the last term elp.l in Eq. 5.
Thus, the dimensionality dn of vp

n varies. In la-
beled attachment parsing case, we set a special to-
ken NULL to represent label p.l if not available
(e.g. p is the node in stack or buffer).

By given node p and its left children nodes p.lci
and right children nodes p.rci, we update the left
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children information vp
l and right children infor-

mation vp
r as

vp
l = tanh(Wl

1

NL(p)

∑
i

op.lci � vp.lci + bl),

vp
r = tanh(Wr

1

NR(p)

∑
i

op.rci � vp.rci + br),
(6)

where op.lci and op.rci are the reset gates of the
nodes p.lci and p.rci respectively as shown in Eq.
7. In addition, functions NL(p) and NR(p) re-
sult the numbers of left and right children nodes
of node p respectively. The operator � indicates
element multiplication here. Wl ∈ Rdc×q and
Wr ∈ Rdc×q are weight matrices. bl ∈ Rdc and
br ∈ Rdc are bias terms.

The reset gates op.lci and op.rci can be formal-
ized as

op.lci = σ(Wo

[
vp.lci

vp
n

]
+ bo),

op.rci = σ(Wo

[
vp.rci

vp
n

]
+ bo),

(7)

where σ indicates the sigmoid function, Wo ∈
Rq×(q+dn) and bo ∈ Rq.

By the mechanism above, we can summarize
the whole information into the stack recursively
from children nodes to their parent using the
partial-built tree structure. Intuitively, the gate
mechanism can selectively choose the crucial fea-
tures of a child node according to the gate state
which is derived from the current child node and
its parent.

4.2 Directed Acyclic Graph Structured
Gated Recursive Neural Network

Previous neural based parsing works feed the ex-
tracted features into a standard neural network
with one hidden layer. Then, the hidden units are
fed into a softmax layer, outputting the probability
vector of available actions. Actually, it cannot well
model the complicated combinations of extracted
features. As for the nodes, whose dependency
relations are still unknown, we propose another
recursive neural network namely directed acyclic
graph structured gated recursive neural network
(DAG-GRNN) to better model the interactions of
features.

Intuitively, the DAG structure models the com-
binations of features by recursively mixing the in-
formation from the bottom layer to the top layer

σ σ

Parent node P

Child node L Child node R

New activation node P

Φ Φ Φ 

σ Reset gate

Element-wise multiplication operator

Φ Update  gate

Figure 6: Minimal structure of directed acyclic
graph structured gated recursive neural network
(DAG-GRNN). The solid arrow denotes that there
is a weight matrix on the link, while the dashed
one denotes none.

as shown in Figure 4. The concatenation opera-
tion can be regraded as a mix of features in differ-
ent levels of granularity. Each node in the directed
acyclic graph can be seen as a complicated feature
composition of its governed nodes.

Moreover, we also use the gate mechanism to
better model the feature combinations by introduc-
ing two kinds of gates, namely “reset gate” and
“update gate”. Intuitively, each node in the net-
work seems to preserve all the information of its
governed notes without gates, and the gate mech-
anism similarly plays a role of filter which de-
cides how to selectively exploit the information of
its children nodes, discovering and preserving the
crucial features.

DAG-GRNN structure consists of minimal
structures as shown in Figure 6. Vectors hP , hL,
hR and hP̂ ∈ Rq denote the value of the parent
node P , left child node L, right child node R and
new activation node P̂ respectively. The value of
parent node hP ∈ Rq is computed as:

hP = zP̂ � hP̂ + zL � hL + zR � hR, (8)

where zP̂ , zL and zR ∈ Rq are update gates for
new activation node P̂ , left child node L and right
child node R respectively. Operator � indicates
element-wise multiplication.
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The update gates z can be formalized as:

z =

 zP̂
zL
zR

 ∝ exp(Wz

 hP̂

hL

hR

), (9)

which are constrained by:
[zP̂ ]k + [zL]k + [zR]k = 1, 1 ≤ k ≤ q,
[zP̂ ]k ≥ 0, 1 ≤ k ≤ q,
[zL]k ≥ 0, 1 ≤ k ≤ q,
[zR]k ≥ 0, 1 ≤ k ≤ q,

(10)

where Wz ∈ R3q×3q is the coefficient of update
gates.

The value of new activation node hP̂ is com-
puted as:

hP̂ = tanh(WP̂

[
rL � hL
rR � hR

]
), (11)

where WP̂ ∈ Rq×2q, rL ∈ Rq, rR ∈ Rq. rL
and rR are the reset gates for left child node L
and right child node R respectively, which can be
formalized as:

r =
[

rL
rR

]
= σ(Wr

[
hL
hR

]
), (12)

where Wr ∈ R2q×2q is the coefficient of two reset
gates and σ indicates the sigmoid function.

Intuitively, the reset gates r partially read the
information from the left and right children, out-
putting a new activation node hP̂ , while the up-
date gates z selectively choosing the information
among the the new activation node P̂ , the left child
node L and the right child node R. This gate
mechanism is effective to model the combinations
of features.

Finally, we concatenate all the nodes in the
DAG-GRNN structure as input x of the architec-
ture described in Section 2.2, resulting the proba-
bility vector for all available actions.

4.3 Inference
We use greedy decoding in parsing. At each step,
we apply our two GRNNs on the current config-
uration to extract the features. After softmax op-
eration, we choose the feasible transition with the
highest possibility, and perform the chosen tran-
sition on the current configuration to get the next
configuration state.

In practice, we do not need calculate the Tree-
GRNN over the all trees in the stack on the current

configuration. Instead, we preserve the represen-
tations of trees in the stack. When we need apply a
new transition on the configuration, we update the
relative representations using Tree-GRNN.

5 Training

We use the maximum likelihood (ML) criterion to
train our model. By extracting training set (xi, yi)
from gold parse trees using a shortest stack oracle
which always prefers Left-Arc(l) or Right-Arc(l)
action over Shift, the goal of our model is to mini-
mize the loss function with the parameter set θ:

J(θ) = − 1
m

m∑
i=1

log p(yi|xi; θ)+ λ

2m
‖θ‖22, (13)

where m is number of extracted training examples
which is as same as the number of all configura-
tions.

Following Socher et al. (2013), we use the diag-
onal variant of AdaGrad (Duchi et al., 2011) with
minibatch strategy to minimize the objective. We
also employ dropout strategy to avoid overfitting.

In practice, we perform DAG-GRNN with
two hidden layers, which gets the best perfor-
mance. We use the approximated gradient for
Tree-GRNN, which only performs gradient back
propagation on the first two layers.

6 Experiments

6.1 Datasets

To evaluate our proposed model, we experiment
on two prevalent datasets: English Penn Treebank
3 (PTB3) and Chinese Penn Treebank 5 (CTB5)
datasets.

• English For English Penn Treebank 3
(PTB3) dataset, we use sections 2-21 for
training, section 22 and section 23 as de-
velopment set and test set respectively. We
adopt CoNLL Syntactic Dependencies (CD)
(Johansson and Nugues, 2007) using the
LTH Constituent-to-Dependency Conversion
Tool.
• Chinese For Chinese Penn Treebank 5

(CTB5) dataset, we follow the same split as
described in (Zhang and Clark, 2008). De-
pendencies are converted by the Penn2Malt
tool with the head-finding rules of (Zhang
and Clark, 2008).
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Embedding size de = 50
Dimensionality of child node vector dc = 50
Initial learning rate α = 0.05
Regularization λ = 10−8

Dropout rate p = 20%

Table 1: Hyper-parameter settings.

6.2 Experimental Settings

For parameter initialization, we use random ini-
tialization within (-0.01, 0.01) for all parameters
except the word embedding matrix Ew. Specifi-
cally, we adopt pre-trained English word embed-
dings from (Collobert et al., 2011). And we pre-
train the Chinese word embeddings on a huge un-
labeled data, the Chinese Wikipedia corpus, with
word2vec toolkit (Mikolov et al., 2013a).

Table 1 gives the details of hyper-parameter set-
tings of our approach. In addition, we set mini-
batch size to 20. In all experiments, we only take
s1, s2, s3 nodes in stack and b1, b2, b3 nodes in
buffer into account. We also apply dropout strat-
egy here, and only dropout at the nodes in stack
and buffer with probability p = 20%.

6.3 Results

The experiment results on PTB3 and CTB5
datasets are list in Table 2 and 3 respectively. On
all datasets, we report unlabeled attachment scores
(UAS) and labeled attachment scores (LAS). Con-
ventionally, punctuations are excluded in all eval-
uation metrics.

To evaluate the effectiveness of our approach,
we compare our parsers with feature-based parser
and neural-based parser. For feature-based parser,
we compare our models with two prevalent
parsers: MaltParser (Nivre et al., 2006) and
MSTParser (McDonald and Pereira, 2006). For
neural-based parser, we compare our results with
parser of Chen and Manning (2014). Compared
with parser of Chen and Manning (2014), our
parser with two heterogeneous gated recursive
neural networks (Tree-GRNN+DAG-GRNN) re-
ceives 0.6% (UAS) and 0.9% (LAS) improvement
on PTB3 test set, and receives 0.8% (UAS) and
1.3% (LAS) improvement on CTB5 test set.

Since that speed of algorithm is not the focus of
our paper, we do not optimize the speed a lot. On
CTB (UAS), it takes about 2 days to train Tree-
GRNN+DAG-GRNN model with CPU only. The
testing speed is about 2.7 sentences per second.
All implementation is based on Python.

6.4 Effects of Gate Mechanisms

We adopt five different models: plain
parser, Tree-RNN parser, Tree-GRNN parser,
Tree-RNN+DAG-GRNN parser, and Tree-
GRNN+DAG-GRNN parser. The experiment
results show the effectiveness of our proposed two
heterogeneous gated recursive neural networks.

Specifically, plain parser is as same as parser
of Chen and Manning (2014). The difference
between them is that plain parser only takes the
nodes in stack and buffer into account, which
uses a simpler feature template than parser of
Chen and Manning (2014). As plain parser
omits all children nodes of trees in stack, it
performs poorly compared with parser of Chen
and Manning (2014). In addition, we find
plain parser outperforms MaltParser (standard) on
PTB3 dataset making about 1% progress, while
it performs poorer than MaltParser (standard) on
CTB5 dataset. It shows that the children nodes
of trees in stack is of great importance, especially
for Chinese. Moreover, it also shows the effective-
ness of neural network based model which could
represent complicated features as compacted em-
beddings. Tree-RNN parser additionally exploits
all the children nodes of trees in stack, which is
a simplified version of Tree-GRNN without incor-
porating the gate mechanism described in Section
4.1. In anther word, Tree-RNN omits the gate
terms op.lci and op.rci in Eq. 6. As we can see,
the results are significantly boosted by utilizing
the all information in stack, which again shows
the importance of children nodes of trees in stack.
Although the results of Tree-RNN are compara-
ble to results of Chen and Manning (2014), it not
outperforms parser of Chen and Manning (2014)
in all cases (e.g. UAS on CTB5), which implies
that exploiting all information without selection
might lead to incorporate noise features. More-
over, Tree-GRNN parser further boosts the perfor-
mance by incorporating the gate mechanism. In-
tuitively, Tree-RNN who exploits all the informa-
tion of stack without selection cannot well capture
the crucial features, while Tree-GRNN with gate
mechanism could selectively choose and preserve
the effective features by adapting the current gate
state.

We also experiment on parsers using two
heterogeneous gated recursive neural networks:
Tree-RNN+DAG-GRNN parser and Tree-
GRNN+DAG-GRNN parser. The similarity of
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models Dev Test
UAS LAS UAS LAS

Malt:standard 90.0 88.8 89.9 88.5
Malt:eager 90.1 88.9 90.1 88.7
MSTParser 92.1 90.8 92.0 90.5

Chen’s Parser 92.2 91.0 92.0 90.7
Plain 91.1 90.0 91.2 89.7

Tree-RNN 92.4 91.0 92.1 90.8
Tree-GRNN 92.6 91.1 92.4 91.0

Tree-RNN+DAG-GRNN 92.8 91.9 92.4 91.5
Tree-GRNN+DAG-GRNN 92.6 91.9 92.6 91.6

Table 2: Performance of different models on PTB3
dataset. UAS: unlabeled attachment score. LAS:
labeled attachment score.

models Dev Test
UAS LAS UAS LAS

Malt:standard 82.4 80.5 82.4 80.6
Malt:eager 91.2 79.3 80.2 78.4
MSTParser 84.0 82.1 83.0 81.2

Chen’s Parser 84.0 82.4 83.9 82.4
Plain 81.6 79.3 81.1 78.8

Tree-RNN 83.5 82.5 83.8 82.7
Tree-GRNN 84.2 82.5 84.3 83.1

Tree-RNN+DAG-GRNN 84.5 83.3 84.5 83.1
Tree-GRNN+DAG-GRNN 84.6 83.6 84.7 83.7

Table 3: Performance of different models on
CTB5 dataset. UAS: unlabeled attachment score.
LAS: labeled attachment score.

two parsers is that they all employ the DAG
structured recursive neural network with gate
mechanism to model the combination of features
extracted from stack and buffer. The difference
between them is the former one employs the
Tree-RNN without gate mechanism to model the
features of stack, while the later one employs the
gated version (Tree-GRNN). Again, the perfor-
mance of these two parsers is further boosted,
which shows DAG-GRNN can well model the
combinations of features which is summarized by
Tree-(G)RNN structure. In addition, we find the
performance does not drop a lot in almost cases by
turning off the gate mechanism of Tree-GRNN,
which implies that the DAG-GRNN can help
selecting the information from trees in stack, even
it has not been selected by gate mechanism of
Tree-GRNN yet.

6.5 Convergency Speed

To further analyze the convergency speed of our
approach, we compare the UAS results on devel-
opment sets of two datasets for first ten epoches
as shown in Figure 7 and 8. As plain parser
only take the nodes in stack and buffer into ac-
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Figure 7: Performance of different models on
PTB3 development set. UAS: unlabeled attach-
ment score.
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Figure 8: Performance of different models on
CTB5 development set. UAS: unlabeled attach-
ment score.

count, the performance is much poorer than the
rest parsers. Moreover, Tree-GRNN converges
slower than Tree-RNN, which shows that it might
be more difficult to learn this gate mechanism. By
introducing the DAG-GRNN, both Tree-RNN and
Tree-GRNN parsers become faster to converge,
which shows that the DAG-GRNN is of great help
in boosting the convergency speed.

7 Related Work

Many neural network based methods have been
used for transition based dependency parsing.

Chen et al. (2014) and Bansal et al. (2014) used
the dense vectors (embeddings) to represent words
or features and found these representations are
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complementary to the traditional discrete feature
representation. However, these two methods only
focus on the dense representations (embeddings)
of words or features.

Stenetorp (2013) first used RNN for transition
based dependency parsing. He followed the stan-
dard RNN and used the binary combination to
model the representation of two linked words. But
his model does not achieve the performance of the
traditional method.

Le and Zuidema (2014) proposed a genera-
tive re-ranking model with Inside-Outside Recur-
sive Neural Network (IORNN), which can pro-
cess trees both bottom-up and top-down. How-
ever, IORNN works in generative way and just es-
timates the probability of a given tree, so IORNN
cannot fully utilize the incorrect trees in k-best
candidate results. Besides, IORNN treats depen-
dency tree as a sequence, which can be regarded
as a generalization of simple recurrent neural net-
work (SRNN) (Elman, 1990).

Although the two methods also used RNN, they
just deal with the binary combination, which is un-
natural for dependency tree.

Zhu et al. (2015) proposed a recursive convolu-
tional neural network (RCNN) architecture to cap-
ture syntactic and compositional-semantic repre-
sentations of phrases and words in a dependency
tree. Different with the original recursive neu-
ral network, they introduced the convolution and
pooling layers, which can model a variety of com-
positions by the feature maps and choose the most
informative compositions by the pooling layers.

Chen and Manning (2014) improved the
transition-based dependency parsing by represent-
ing all words, POS tags and arc labels as dense
vectors, and modeled their interactions with neu-
ral network to make predictions of actions. Their
method only relies on dense features, and is not
able to automatically learn the most useful feature
conjunctions to predict the transition action.

Compared with (Chen and Manning, 2014), our
method can fully exploit the information of all the
descendants of a node in stack with Tree-GRNN.
Then DAG-GRNN automatically learns the com-
plicated combination of all the features, while the
traditional discrete feature based methods need
manually design them.

Dyer et al. (2015) improved the transition-based
dependency parsing using stack long short term
memory neural network and received significant

improvement on performance. They focused on
exploiting the long distance dependencies and in-
formation, while we aims to automatically model
the complicated feature combination.

8 Conclusion

In this paper, we pay attention to the syntac-
tic and semantic composition of the dense fea-
tures for transition-based dependency parsing. We
propose two heterogeneous gated recursive neu-
ral networks, Tree-GRNN and DAG-GRNN. Each
hidden neuron in two proposed GRNNs can be re-
garded as a different combination of the input fea-
tures. Thus, the whole model has an ability to sim-
ulate the design of the sophisticated feature com-
binations in the traditional discrete feature based
methods.

Although the two proposed GRNNs are only
used for the greedy parsing based on arc-standard
transition system in this paper, it is easy to gen-
eralize them to other transition systems and graph
based parsing. In future work, we would also like
to extend our GRNNs for the other NLP tasks.
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Abstract

In this paper, a turn-taking phenomenon
taxonomy is introduced, organised accord-
ing to the level of information conveyed.
It is aimed to provide a better grasp of the
behaviours used by humans while talking
to each other, so that they can be method-
ically replicated in spoken dialogue sys-
tems. Five interesting phenomena have
been implemented in a simulated environ-
ment: the system barge-in with three vari-
ants (resulting from either an unclear, an
incoherent or a sufficient user message),
the feedback and the user barge-in. The
experiments reported in the paper illus-
trate that how such phenomena are imple-
mented is a delicate choice as their impact
on the system’s performance is variable.

1 Introduction

A spoken dialogue system is said to be incremen-
tal when it does not wait until the end of the user’s
utterance in order to process it (Dohsaka and Shi-
mazu, 1997; Allen et al., 2001; Schlangen and
Skantze, 2011). New audio information is cap-
tured by an incremental Automatic Speech Recog-
nition (ASR) at a certain frequency (Breslin et al.,
2013) and at each new step, the partial available
information is processed immediately. Therefore,
the system is able to replicate a rich set of turn-
taking phenomena (TTP) that are performed by
human beings when talking to each other (Sacks
et al., 1974; Clark, 1996). Replicating these TTP
in dialogue systems can help to make them more
efficient (e.g. (El Asri et al., 2014)) and enhance
their ability to recover from misunderstandings
(Skantze and Schlangen, 2009).

Several contributions already explored different
TTP like end-point detection (Raux and Eskenazi,
2008), backchannels (Meena et al., 2014; Visser

et al., 2014), feedback (Skantze and Schlangen,
2009) or barge-in (Selfridge et al., 2013; Ghigi
et al., 2014). However, these studies have been
performed separately with no unified view and no
comparison of respective merits, importance and
co-influence of the different TTP. In order to have
a better grasp on the concept of turn-taking in a di-
alogue and a guideline for the implementation, we
felt the need to introduce a taxonomy of these TTP.
Our motivation is to clarify which TTP are inter-
esting to implement given the task at hand. As an
illustration, five TTP (which we assume have the
best properties to improve the dialogue efficiency)
have been implemented and compared in a slot-
filling simulated environment.

Section 2 introduces the TTP taxonomy and
Section 3 describes the simulated environment, the
experimental setup and the results. We then con-
clude in Section 4.

2 Turn-taking phenomena taxonomy

In linguistics and philosophy of language, a dis-
tinction is made between two different levels of a
speech act analysis: locutionary acts and illocu-
tionary acts (Austin, 1962; Searle, 1969). Loosely
speaking, a locutionary act refers to the act of ut-
tering sounds without taking their meaning into
account. When the semantic information is the ob-
ject of interest, it is an illocutionary act. In (Raux
and Eskenazi, 2009), four basic turn-taking transi-
tions are presented: the turn transitions with gap,
the turn transitions with overlap, the failed inter-
ruptions and the time outs where only the mechan-
ics of turn-taking are studied at a locutionary level.
In (Gravano and Hirschberg, 2011), the authors
propose a turn-taking labeling scheme, which is
a modified version of the original classification
of interruptions and smooth speaker-switches in-
troduced in (Beattie, 1982). This classification
is richer than the one in (Raux and Eskenazi,
2009) as the meaning of the turn-taker utterance
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Table 1: Turn-taking phenomena taxonomy. The rows/columns correspond to the levels of information
added by the floor giver/taker. The phenomena in black have been implemented in the simulator.

T REF IMPL T REF RAW T REF INTERP T MOVE
G NONE FLOOR TAKING IMPL INIT DIALOGUE

G FAIL FAIL IMPL FAIL RAW FAIL INTERP
G INCOHERENCE INCOHERENCE IMPL INCOHERENCE RAW INCOHERENCE INTERP

G INCOMPLETE BACKCHANNEL FEEDBACK RAW FEEDBACK INTERP
G SUFFICIENT REF IMPL REF RAW REF INTERP BARGE IN RESP
G COMPLETE REKINDLE END POINT

is taken into account. From a computational point
of view, it is more interesting to add high-level in-
formation to classify these behaviours as seman-
tics clearly influence turn-taking decisions (Dun-
can, 1972; Gravano and Hirschberg, 2011). In this
paper, a more fine-grained taxonomy of TTP is in-
troduced where utterances are considered both at
locutionary and illocutionary levels.

During a floor transition, the person who starts
speaking will be called T (Taker) whereas the per-
son that was speaking just before will be called
G (Giver). At the beginning of the dialogue, the
person that initiates the dialogue will be called T
and the other G by convention. We classify TTP
given two criteria: the quantity of information that
has been injected by G before the floor transition
(rows in Table 1) and the quantity of information
that T tries to add by taking the floor (columns in
Table 1). Table 2 gives the meaning of the differ-
ent criteria’s labels.

Table 2: Taxonomy labels

G NONE No information given
G FAIL Failed trial

G INCOHERENT Incoherent information
G INCOMPLETE Incomplete information

G INSUFFICIENT Insufficient information
G SUFFICIENT Sufficient information
G COMPLETE Complete utterance

T REF IMPL Implicit ref. to G’s utterance
T REF RAW Raw ref. to G’s utterance

T REF INTERP Reference with interpretation
T MOVE Dialogue move (with improvement)

At the beginning of the dialogue (G NONE),
T can implicitly announce that she wants to take
the floor by using hand gestures or by clearing her
throat for instance (FLOOR TAKING IMPL),
or she can directly initiate the dialogue
(INIT DIALOGUE). If G is already speak-
ing, her message can be not understandable by T
(G FAIL). T can warn G implicitly by frowning
for example (FAIL IMPL) or explicitly, in a
raw manner by saying Sorry? (FAIL RAW)
or by pointing out what has not been under-

stood (FAIL INTERP). In addition, even if the
meaning of the message has been understood,
it can be incoherent with the interaction context
(G INCOHERENT, e.g. trying to book a flight
from a city with no airport). Again, T can
warn G implicitly (INCOHERENCE IMPL) or
explicitly, either by explaining the reason of
the problem (INCOHERENCE INTERP) or not
(INCOHERENCE RAW).

In the case G’s utterance is not problematic
but yet incomplete (G INCOMPLETE), T can
let her understand that she understands what has
been said so far by performing a BACKCHAN-
NEL (Yes, uhum etc.), by repeating his words
exactly (FEEDBACK RAW) or by commenting
them (FEEDBACK INTERP), for example: Yes-
terday I went to this new Chinese restaurant in
town... / Yeah Fing Shui / ...and it was a pretty
good deal). If G utters enough information to
move the dialogue forward (G SUFFICIENT), T
can refer to an element in G’s utterance im-
plicitly (Aha) by reacting at the proper timing
(REF IMPL), or explicitly in a raw (REF RAW,
for example Ok, Sunday) or interpreted manner
(REF INTERP, for example Yeah, Sunday is the
only day when I am free). T can also interrupt
G to add some information that is relevant to the
course of the dialogue (BARGE IN RESP). Fi-
nally, she can wait until G has finished his ut-
terance (G COMPLETE) and warn him that he
should add more information (REKINDLE, for
example: And?) or start a new dialogue turn
(END POINT).

In the rest of this paper, five incremen-
tal TTP that are the more used in general,
and therefore studied, have been tested in a
simulated environment: FAIL RAW (Ghigi et
al., 2014), INCOHERENCE INTERP (DeVault
et al., 2011), FEEDBACK RAW (Skantze and
Schlangen, 2009) and BARGE IN RESP from
both sides, user (Selfridge et al., 2013) and system
interruptions (DeVault et al., 2011), along with
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INIT DIALOGUE and END POINT that already
exist in traditional systems.

3 Simulation

3.1 Service task
A personal agenda assistant task has been imple-
mented in the simulated dialogue system (referred
to as the service hereafter). The user can add
events to her agenda as long as they do not over-
lap with existing events. She can also move events
in the agenda or delete them (ADD, MODIFY and
DELETE actions). An event corresponds to a title,
a date, a time slot, a priority, and the list of alterna-
tive dates and time slots where the event can fit, in
the case the main date and slot are not available.
For example: {title: house cleaning, date: Jan-
uary 6th, slot: from 18 to 20, priority: 3, alterna-
tive 1: January 7th, from 18 to 20, alternative 2:
January 9th, from 10 to 12}.
3.2 User simulator
3.2.1 Overview
The architecture of the User Simulator (US) is
built around five modules: the Natural Language
Understanding (NLU) module, the Intent Man-
ager, the Natural Language Generator (NLG), the
Verbosity Manager, the ASR Output Simulator,
and the Patience Manager. These modules are de-
scribed in the following.

NLU module: The NLU module is very simple
as the service’s utterances are totally known by the
US and no parsing is involved. Each one of them
is associated with a specific dialogue act.

Intent Manager: The Intent Manager is some-
how the brain of the US, as it determines its next
intent given the general goal and the last NLU re-
sult. The general goal depends on the scenario
at hand, which is in turn determined by two lists
of events: the initial list (InitList) and the list of
events to add to the agenda during the dialogue
(ToAddList). The Intent Manager tries to add each
event from the latter given the constraints imposed
by the former. If the events of both lists cannot be
kept, those with lower priorities are abandoned or
deleted until a solution is reached.

The service asks for the different slot values in
a mixed initiative way. At first, the user has the
initiative in the sense that she is asked to provide
all the slot values in the same utterance. If there
is still missing information (because the user did

not provide all the slot values or because of ASR
noise), the remaining slot values are asked for one
by one (system initiative).

NLG module: The NLG figures out the next
sentence to utter given the current Intent Man-
ager’s output. A straightforward sentence is com-
puted, for example, Add the event meeting Mary
on July 6th from 18:00 until 20:00.

Verbosity Manager: The Verbosity Manager
randomly expands the NLG output with some
usual prefixes (like I would like to...) and suffixes
(like please, if possible...). Also, a few sentences
are replaced with off-domain words or repeated
twice as it is the case in real dialogues (Ghigi et al.,
2014). For questions concerning a specific slot,
neither prefixes nor suffixes are added.

Patience Manager: When the dialogue lasts too
long, the US can get impatient and hang up. The
US patience corresponds to a threshold on each
task duration. It is randomly sampled around
a mean of 180 seconds for the experiments. A
speech rate of 200 words per minute is assumed
for the dialogue duration estimation (Yuan et al.,
2006). Moreover, a silence of one second is as-
sumed at each regular system/user transition and
a two second silence is assumed the other way
round. For interruptions and accurate end-point
detection, no silence is taken into account.

3.3 ASR Output Simulator

The US can run either in a traditional mode in
the sense that it provides a complete utterance to
the system then it waits for a response, or in an
incremental mode where a growing utterance is
outputted at each new word. For example: I, I
want, I want to, I want to add...etc. In incremental
dialogue systems, the turn increment (called the
micro-turn in this case) could be different than the
word (a small duration for example).

The ASR output simulator can be used in both
modes, but as the traditional mode is a special
case of the incremental one, we describe the lat-
ter only. This module computes a noisy version of
each word (substitution, deletion, or insertion). It
also associates a confidence score with each new
partial utterance. Moreover, a word in the ASR
output can change later as new words pop in (Self-
ridge et al., 2011; McGraw and Gruenstein, 2012).
In the following, this mechanism is referred to as
the ASR instability. At each micro-turn, the sys-
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tem can keep listening to the US or decide to take
the floor (see Section 3.4).

3.4 Scheduler

The same architecture as in (Khouzaimi et al.,
2014) is used. A Scheduler module is inserted be-
tween the service and the user simulator. As the
ASR output utterance grows, the partial utterances
are sent, at each micro-turn, to the Scheduler. In
turn, the latter transfers them to the service and
waits for its responses.

The aim of this module is to make turn-taking
decisions. Given the last system’s response and
some other features and rules determined by the
designer, or learned from data, the Scheduler de-
cides whether or not to convey that response to the
client immediately or not.

3.5 Dialogue example

In the following example, the user has to delete
an event, before adding another one (ASR noise is
not introduced here):

SYSTEM: Hi. Welcome to your agenda man-
agement service. How can I help you?

USER: I would like to add the event birthday
party on January 6th from 6 pm to 11 pm
if it is possible.

SYSTEM: The time slot from 6 pm to 11 pm
on January 6th overlaps with the event
house cleaning on January 6th from 7
pm to 9 pm. How can I help you?

USER: Delete the event house cleaning.
SYSTEM: Ok. So you want to delete the

event house cleaning that takes place on
January 6th from 7 pm to 9 pm. Right?

USER: Yes.
SYSTEM: Got it. Do you want to perform

some other action?
USER: Yes.
SYSTEM: Add the event birthday party on

January 6th from 6 pm to 11 pm.
USER: Ok. So you want to add the event

birthday party on January 6th from 6 pm
to 11 pm. Right?

USER: Yes.
SYSTEM: Got it. Do you want to perform

some other action?
SYSTEM: No.
USER: Thank you. Bye!

3.6 TTP implementation

Replicating some turn-taking phenomena like
backchannels makes the system seems more real-
istic (Meena et al., 2014). In this work, the fo-
cus is on dialogue efficiency, therefore, the fol-
lowing TTP have been chosen for the implemen-
tation: FAIL RAW, INCOHERENCE INTERP,
FEEDBACK RAW and BARGE IN RESP from
the user’s and the system’s point of view.

At each micro-turn, the system has to pick an
action among three options: to wait (WAIT), to
retrieve the last service’s response to the client
(SPEAK) or to repeat the word at position n − 2
(if n is the current number of words, because of
the ASR instability) in the current partial request
(REPEAT). To replicate each selected TTP, a set of
rules have been specified to make the proper de-
cision. We review the triggering features related
to each TTP accommodated to the task at hand
(agenda filling).

FAIL RAW: Depending on the last system’s di-
alogue act, a threshold relative to the number of
words without detecting a key concept in the ut-
terance has been set. In the case of an open ques-
tion (where the system waits for all the informa-
tion needed in one request), if no action type has
been detected after 6 words, a FAIL RAW event
is declared. The system waits for 3 words in the
case of a yes/no question, for 4 words in the case
of a date and for 6 words in the case of slots (some
concepts need more words to be detected and the
user may use additional off-domain words).

INCOHERENCE INTERP: This event is
useful to promptly react to partial requests that
would eventually lead to an error, not because they
were not correctly understood, but because they
are in conflict with the current dialogue state. If
such an inconsistency is detected, the system waits
for two words (ASR instability) and if it is main-
tained, it takes the floor to warn the user.

FEEDBACK RAW: If at time t, a new word
is added to the partial utterance and the ratio be-
tween the last partial utterance’s score and the one
before last (which corresponds to the score of the
last increment) is lower than 1/2, then the system
waits for two words (because of the ASR instabil-
ity), and if the word is still in the partial utterance,
a REPEAT action is performed.

BARGE IN RESP (System): This TTP de-
pends on the last system dialogue act as it deter-
mines which kind of NLU concept the system is
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Figure 1: Simulated dialogue duration for differ-
ent noise levels
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Figure 2: Simulated dialogue task completion for
different noise levels

waiting for. Once it is detected, the system waits
for two more words (ASR instability) and if the
concept is maintained, it performs a SPEAK.

USER BARGE RESP (User): This event is
triggered directly by the user (no system decision
is involved). For each system dialogue act, the mo-
ment when a familiar user would barge-in is man-
ually defined in the simulator.

Dialogue duration and task completion are used
as evaluation criteria. The task completion rate is
the ratio between the number of dialogues where
the user did not hang up (because of her patience
limit) and the total number of dialogues.

The five implemented TTP have been tested
single-handled and in an aggregated manner (re-
ferred to as All strategy). They have also been been
compared to a non-incremental baseline (see Fig-
ure 1 and 2). Three dialogue scenarios and differ-
ent WER levels were tested. For each strategy and
each WER, 1000 dialogues have been simulated
for each scenario. Figure 1 (resp. Figure 2) repre-
sents the mean duration (resp. the mean task com-

pletion), with the corresponding 95% confidence
intervals, for the different strategies and for WER
varying between 0 and 0.3.

The FEEDBACK RAW strategy performs best
whereas INCOHERENCE INTERP does not im-
prove over the baseline. This is due to the fact that
the system has to deal with an open slot (which set
of possible values is not closed and known a pri-
ori): the event’s description. The system mostly
performs ADD actions, so the description slot can
take any value and is never compared with exist-
ing data. This is the case of many application like
message dictation for example. However, in the
case of service at hand, an initial concept must be
detected (the action), therefore, FAIL RAW im-
proves the performance. BARGE IN RESP from
user’s side is also useful here as dialogues can be
long and may contain repetitive system dialogue
acts. The users get familiar with the systems and
may infer the end of the system’s question before
it ends. Obviously it is questionable that users
may be patient enough (up to several minutes) to
achieve such simple tasks in real life. But for the
sake of the simulation it was necessary to gener-
ate dialogues long enough to have the studied TTP
influence them. In a next step, increasing the ser-
vice capacities (and complexity) will remedy that
as a side effect. Finally, BARGE IN RESP from
the system’s side does not bring any improvement
either which is due to the fact that in this task and
because of input noise, in most cases, the response
to the initial open question is not enough to fill all
the slots. The responses to single-slot questions
do not contain suffixes which explains the ineffi-
ciency of the last strategy (the US stops speaking
as soon as the slot value is given).

4 Conclusion and future work

This paper introduces a new taxonomy of turn-
taking phenomena in human dialogue. Then an
experiment where five TTP are implemented has
been run in a simulated environment. It illustrates
the potentiality of the taxonomy and shows that
some TTP are worth replicating in some situations
but not all. In future work, we plan to perform
TTP analysis in the case of real users and to opti-
mise the hand-crafted rules introduced here to op-
erate the floor management in the system (when
to take/give the floor and according to which TTP
scheme) by using reinforcement learning (Sutton
and Barto, 1998; Lemon and Pietquin, 2012).
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Abstract

This paper focuses on language modeling
with adequate robustness to support differ-
ent domain tasks. To this end, we propose
a hierarchical latent word language model
(h-LWLM). The proposed model can be
regarded as a generalized form of the stan-
dard LWLMs. The key advance is in-
troducing a multiple latent variable space
with hierarchical structure. The structure
can flexibly take account of linguistic phe-
nomena not present in the training data.
This paper details the definition as well
as a training method based on layer-wise
inference and a practical usage in natural
language processing tasks with an approx-
imation technique. Experiments on speech
recognition show the effectiveness of h-
LWLM in out-of domain tasks.

1 Introduction

Language models (LMs) are essential for auto-
matic speech recognition or statistical machine
translation (Rosenfeld, 2000). The performance of
LMs strongly depends on quality and quantity of
their training data. Superior performance is usu-
ally obtained by using enormous domain-matched
training data sets to construct LMs (Brants et
al., 2007). Unfortunately, in many cases, large
amounts of domain-matched training data sets are
not available. Therefore, LM technology that can
robustly work for domains that differ from that of
the training data is needed (Goodman, 2001).

For robust language modeling, several tech-
nologies have been proposed. Fundamental tech-
niques are smoothing (Chen and Goodman, 1999)
and clustering (Brown et al., 1992). Other solu-
tions are Bayesian modeling (Teh, 2006) and en-
semble modeling (Xu and Jelinek, 2004; Emami
and Jelinek, 2005). Moreover, continuous rep-
resentation of words in neural network LMs can

also support robust modeling (Bengio et al., 2003;
Mikolov et al., 2010). However, previous works
are focused on maximizing performance in the
same domain as that of the training data. In other
words, it is uncertain that these technologies ro-
bustly support out-of domain tasks.

In contrast, latent words LMs (LWLMs) (De-
schacht et al., 2012) are clearly effective for out-
of domain tasks. We employed the LWLM to
speech recognition and the resulting performance
was significantly superior in out-of domain tasks
while the performance was comparable in domain-
matched task to conventional LMs (Masumura et
al., 2013a; Masumura et al., 2013b). LWLMs
are generative models that employ a latent word
space. The latent space can flexibly take into ac-
count relationships between words and the model-
ing helps to efficiently increase the robustness to
out-of domain tasks (Sec. 2).

In this paper, we focus on LWLMs and aim to
make them more flexible for greater robustness to
out-of domain tasks. To this end, this paper takes
note of a fact that standard LWLM simply repre-
sents the latent space as n-gram model of latent
words. However, function and meaning of words
are essentially hierarchical and upper layers ought
to be useful to increase the robustness to out-of
domain tasks. The conventional LWLMs do not
model the hierarchy, while the latent words are
used to represent function and meaning of words.
Thus, we tried to model the hierarchy in the latent
space by estimating a latent word of a latent word
recursively.

This paper proposes a novel LWLM with mul-
tiple latent word spaces that are hierarchically
structured; we call it the hierarchical LWLM (h-
LWLM). The proposed model can be regarded
as a generalized form of the standard LWLMs.
The hierarchical structure can take into account
the abstraction process of function and meaning
of words. Therefore, it can be expected that h-
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LWLMs flexibly calculate generative probability
for unseen words unlike non-hierarchical LWLMs.
To create the hierarchical latent word structure
from training data sets, we also propose a layer-
wise inference. The inference is inspired by a
deep Boltzmann machine (Salakhutdinov and Hin-
ton, 2009) that stacks up restricted Boltzmann ma-
chines (Hinton et al., 2006). In addition, we detail
an n-gram approximation technique to apply the
proposed model to practical natural language pro-
cessing tasks (see Sec. 3).

In experiments, we construct LMs from sponta-
neous lecture task data and apply them to a contact
center dialogue task and a voice mail task as out-
of domain tasks. The effectiveness of the proposed
method is shown by perplexity and speech recog-
nition evaluation (Sec. 4).

2 Latent Words Language Models

LWLMs are generative models with single latent
word space (Deschacht et al., 2012). The latent
word is represented as a specific word that is se-
lected from the entire vocabulary. Thus, the num-
ber of latent words equals the number of observed
words.

Bayesian modeling of LWLM produces the gen-
erative probability of observed word sequence
w = w1, · · · , wK as:

P (w) =
∫
θ

K∏
k=1

∑
hk

P (wk|hk, θ)

P (hk|lk, θ)P (θ)dθ, (1)

where θ indicates a model parameter of the
LWLM, h = h1, · · · , hK denotes a latent
word sequence and lk denotes context latent
words hk−n+1, · · · , hk−1. P (hk|lk, θ) repre-
sents the transition probability which can be ex-
pressed by an n-gram model for latent words, and
P (wk|hk,θ) represents the emission probability
that models the dependency between the observed
word and the latent word. More details are shown
in previous works (Deschacht et al., 2012; Ma-
sumura et al., 2013a; Masumura et al., 2013b).

3 Hierarchical LWLMs

3.1 Definition

This paper introduces h-LWLM. The proposed
model has multiple latent word spaces in a hier-
archical structure. Thus, it assumes that there is

Figure 1: Graphical representation of h-LWLM.

a latent word behind a latent word. The proposed
model can be regarded as a generalized form of
the standard LWLM. Thus, standard LWLMs cor-
respond to h-LWLMs with just one layer. The la-
tent words in all layers are represented as a specific
word that is selected from the entire vocabulary.

A graphic rendering of h-LWLM is shown in
Figure 1. In a generative process of the h-LWLM,
a latent word in the highest layer is first generated
depending on its context latent words. Next, a la-
tent word in a lower layer is recursively generated
depending on the latent word in the upper layer.
Finally, an observed word is generated depending
on the latent word in the lowest layer.

Bayesian modeling of h-LWLM produces the
following generative probability:

P (w) =
∫
Θ

K∏
k=1

∑
h
(1)
k

· · ·
∑
h
(M)
k

P (wk|h(1)
k ,Θ) · · ·

P (h(M−1)
k |h(M)

k ,Θ)P (h(M)
k |l(M)

k ,Θ)P (Θ)dΘ,
(2)

where M is the number of layers and Θ indi-
cates a model parameter of h-LWLM. h(m) =
h

(m)
1 , · · · , h

(m)
K denotes a latent word sequence

in the m-th layer. P (h(M)
k |l(M)

k ,Θ) represents
the transition probability which is expressed by n-
gram model for latent words in the highest layer.
P (h(m)

k |h(m+1)
k ,Θ) and P (wk|h(1)

k ,Θ) represent
the emission probabilities that respectively model
the dependency between latent words in two layers
and the dependency between the observed word
and the latent word in the lowest layer.

As the integral with respect to Θ is analytically
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Figure 2: Layer-wise inference procedure.

Algorithm 1 :
Inference procedure for h-LWLM.
Input: Training data w, number of instances T ,

number of layers M
Output: Model parameters Θ1, · · · ,ΘT

1: for t = 1 to T do
2: h(0) = w
3: for m = 1 to M do
4: θ(m),h(m) ∼ P (h(m)|h(m−1),θ(m))
5: end for
6: Θt = θ(1), · · · , θ(M)

7: end for
8: return Θ1, · · · ,ΘT

intractable, the equation can be approximated as:

P (w) =
1
T

K∏
k=1

T∑
t=1

∑
h
(1)
k

· · ·
∑
h
(M)
k

P (wk|h(1)
k ,Θt)

· · ·P (h(M−1)
k |h(M)

k ,Θt)P (h(M)
k |l(M)

k ,Θt). (3)

The probability distribution can be approximated
using T instances of point estimated parameter;
Θt indicates the t-th point estimated parameter.

3.2 Parameter Inference

This paper proposes a layer-wise inference pro-
cedure for constructing h-LWLMs from training
data. The detailed procedure is shown in Algo-
rithm 1, and Figure 2 shows an image representa-
tion of the procedure as increased with the number
of layers. In the procedure, LWLM structure is re-
cursively accumulated by estimating a latent word
sequence in an upper layer from a latent word se-
quence in the lower layer.

Line 4 in Algorithm 1 denotes the key proce-
dure of estimating a latent word sequence in an up-
per layer from a latent word sequence in the lower

layer. θ(m) denotes model parameter of LWLM
structure in m-th layer; it can be defined from both
h(m) and h(m−1). For the inference of h(m) from
h(m−1), Gibbs sampling is suitable (Casella and
George, 1992; Robert et al., 1993; Scott, 2002).
Gibbs sampling picks a new value for h

(m)
k ac-

cording to its probability distribution which is es-
timated from both h

(m)
−k and h(m−1). h

(m)
−k repre-

sents all latent words in the m-th layer except for
h

(m)
k . The probability distribution is given by:

P (h(m)
k |h(m)

−k , h(m−1),θ(m))

∝ P (h(m−1)
k |h(m)

k , θ(m))
k+n−1∏

j=k

P (h(m)
j |l(m)

j , θ(m)). (4)

For the inference, the prior distribution is neces-
sary for each probability distribution. Usually, a
hierarchical Pitman-Yor prior (Teh, 2006) is used
for each transition probability and a Dirichlet prior
(MacKay and Peto, 1994) is used for each emis-
sion probability.

As shown in line 6, t-th point estimated param-
eter Θt indicates parameters of each LWLM for
all layers in t-th iteration. The transition proba-
bilities except for M -th layer are only used in the
layer-wise inference procedure.

3.3 Usage

It is impractical to directly apply the h-LWLM to
natural language processing tasks since the pro-
posed model has multiple latent word spaces and
we have to consider all possible latent word as-
signment for calculating generative probabilities.
Therefore, this paper introduces an n-gram ap-
proximation technique as well as that for standard
LWLM (Masumura et al., 2013a).
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Algorithm 2 :
Random sampling for trained h-LWLM.
Input: Model parameters Θ1, · · · ,ΘT ,

number of sampled words K
Output: Sampled data w

1: for k = 1 to K do
2: Θt ∼ P (Θt) = 1

T

3: h
(M)
k ∼ P (h(M)

k |l(M)
k ,Θt)

4: for m = M − 1 to 1 do
5: h

(m)
k ∼ P (h(m)

k |h(m+1)
k ,Θt)

6: end for
7: wk ∼ P (wk|h(1)

k ,Θt)
8: end for
9: return w = w1, · · · , wK

The n-gram approximation is conducted as fol-
lowing steps. First, a lot of text data that permit h-
LWLMs to be approximated by n-gram structure
is generated by random sampling using trained
h-LWLM. Next, an n-gram model is constructed
from the generated data. The random sampling is
based on Algorithm 2. The sampled data w in
line 9 is only used for n-gram model estimation.

4 Experiments

4.1 Experimental Conditions

Our basic assumption is domain-matched train-
ing data is not available. Thus, for LM train-
ing, we used the Corpus of Spontaneous Japanese
(CSJ) whose domain is a spontaneous lecture task
(Maekawa et al., 2000). We divided CSJ into a
training set and a small validation set (Valid). The
validation set was used for optimizing several hy-
per parameters of LMs. For evaluation, a contact
center dialogue task (Test 1) and a voice mail task
(Test 2) were prepared. In contact center dialogue
task, two speakers, an operator and a customer,
talked to each other as in call center dialogues. 24
phone calls (24 operator channels and 24 customer
channels) were used in the evaluation. In the voice
mail task, a person spoke small voice messages us-
ing a smart phone. 237 messages are used in the
evaluation. The training data had about 7M words,
the vocabulary size was about 80K. The validation
data size and test data size (both tasks) were about
20K words.

For speech recognition evaluation, we prepared
an acoustic model based on hidden Markov mod-
els with deep neural networks (DNN-HMM) (Hin-
ton et al., 2012). The DNN-HMM had 8 hidden

layers with 2048 nodes. The speech recognizer
was a weighted finite state transducer (WFST) de-
coder (Mohri et al., 2001; Hori et al., 2007).

As a baseline, 3-gram LM with interpolated
Kneser-Ney smoothing (MKN) (Kneser and Ney,
1995) and 3-gram hierarchical Pitman-Yor LM
(HPY) (Huang and Yor, 2007) were constructed
from the training data. We also trained a class-
based recurrent neural network LM with 500 hid-
den nodes and 500 classes (RNN) for comparison
to state-of-the art language modeling (Mikolov et
al., 2011). In addition, we constructed 3-gram
standard LWLM and 3-gram h-LWLMs (LW). LW
with 1 layer represents standard LWLM, and LW
with 2-5 layers represent proposed h-LWLMs.
The number of instances was set to 10 for each LW.
For their n-gram approximation, we generated one
billion words and approximated each as a 3-gram
HPYLM. Moreover, we constructed interpolated
model with LW and HPY (LW+HPY).

4.2 Results

Figure 3 shows the relation between number of
layers in h-LWLM and perplexity (PPL) reduc-
tion for each condition. In addition, Table 1 shows
speech recognition results in terms of word error
rate (WER) for each condition. RNN was only
tested in PPL evaluation as RNN cannot be con-
verted into WFST format.

For the validation set (same domain as that of
training set), PPL was not improved by the hier-
archical structure in LW. LW is comparable to MKN
and HPY, and inferior to RNN in terms of PPL. On
the other hand, in test sets (out-of domain tasks),
PPL improved with the increase in the number of
layers in LW. LW with 5 layers was superior to
1 layer in terms of PPL and WER. The best re-
sults were obtained by LW+HPY with 5 layers. In
fact, when we generated one billion words using
a trained LWLM or trained h-LWLM, the num-
ber of observed trigrams in h-LWLM with 5 lay-
ers was 101M while the number of observed tri-
grams in non-hierarchical LWLM was 94M. Thus,
h-LWLM can generate unseen words unlike non-
hierarchical LWLM. Moreover, trigram coverage
in each test data slightly increased with number
of layers. These results show that h-LWLM with
multiple layers offers robust performance not pos-
sible with other models while its performance in
the same domain as that of training data was not
improved. As a result, LW+HPY with 5 layers
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Figure 3: Perplexity (PPL) results.

Setup Layer Valid Test 1 Test 2
MKN - 24.79 38.67 32.31
HPY - 24.67 38.29 32.00
LW 1 24.54 36.93 30.26
LW 5 24.60 36.49 29.57
LW+HPY 1 23.62 36.49 29.76
LW+HPY 5 23.68 36.03 29.21

Table 1: Word error rate (WER) results (%).

performed significantly better than MKN, HPY and
RNN in the out-of domain tasks.

5 Conclusions

This paper proposed h-LWLM for robust model-
ing and detailed its definition, inference proce-
dure, and approximation method. The proposed
model has a hierarchical latent word space and
it can flexibly handle linguistic phenomena not
present in the training data. Our experiments
showed that h-LWLM offers improved robustness
to out-of domain tasks; h-LWLM is also superior
to standard LWLM in terms of PPL and WER.
Furthermore, our approach is significantly supe-
rior to the conventional n-gram models or the re-
current neural network LM in out-of domain tasks.

References
Yoshua Bengio, Rejean Ducharme, Pascal Vincent, and

Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of Machine Learning Re-
search, 3:1137–1155.

Thorsten Brants, AShok C. Popat, Peng Xu, Ftanz J.
Och, and Jeffrey Dean. 2007. Large language mod-
els in machine translation. In Proc. Annual Meet-

ing of the Association for Computational Linguistics
(ACL), pages 858–867.

Peter F. Brown, Peter V. deSouza, Robert L. Mer-
cer, Vincent J. Della Pietra, and Jenifer C. Lai.
1992. Class-based n-gram models of natural lan-
guage. Computational Linguistics, 18:467–479.

George Casella and Edward I George. 1992. Explain-
ing the Gibbs sampler. The American Statistician,
46:167–174.

Stanley F. Chen and Joshua Goodman. 1999. An em-
pirical study of smoothing techniques for language
modeling. Computer Speech & Language, 13:359–
383.

Koen Deschacht, Jan De Belder, and Marie-Francine
Moens. 2012. The latent words language model.
Computer Speech & Language, 26:384–409.

Ahmad Emami and Frederick Jelinek. 2005. Random
clusterings for language modeling. In Proc. IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 1:581–584.

Joshua T. Goodman. 2001. A bit of progress in lan-
guage modeling. Computer Speech & Language,
15:403–434.

Geoffrey E. Hinton, Simon Osindero, and Yee-Whye
Teh. 2006. A fast learning algorithm for deep bilief
nets. Neural Computation, 18:1527–1554.

Geoffrey Hinton, Li Deng, Dong Yu, George Dahl,
Abdel rahman Mohamed, Navdeep Jaitly, Andrew
Senior, Vincent Vanhoucke, Patrick Nguyen, Tara
Sainath, and Brian Kingsbury. 2012. Deep neural
networks for acoustic modeling in speech recogni-
tion. Signal Processing Magazine, pages 1–27.

Takaaki Hori, Chiori Hori, Yasuhiro Minami, and At-
sushi Nakamura. 2007. Efficient WFST-based one-
pass decoding with on-the-fly hypothesis rescoring
in extremely large vocabulary continuous speech
recognition. IEEE Transactions on Audio, Speech
and Language Processing, 15(4):1352–1365.

1900



Songfang Huang and Marc Yor. 2007. Hierarchical
Pitman-Yor language models for ASR in meetings.
In Proc IEEE Automatic Speech Recognition and
Understanding Workshop (ASRU), pages 124–129.

Reinhard Kneser and Hermann Ney. 1995. Improved
backing-off for m-gram language modeling. In
Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 1:181–
184.

David J. C. MacKay and Linda C. Peto. 1994. A hi-
erarchical Dirichlet language model. Natural lan-
guage engineering, 1:289–308.

Kikuo Maekawa, Hanae Koiso, Sadaoki Furui, and Hi-
toshi Isahara. 2000. Spontaneous speech corpus
of Japanese. In Proc. International Conference on
Language Resources and Evaluation (LREC), pages
947–952.

Ryo Masumura, Hirokazu Masataki, Takanobu Oba,
Osamu Yoshioka, and Satoshi Takahashi. 2013a.
Use of latent words language models in ASR: a
sampling-based implementation. In Proc. IEEE In-
ternational Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 8445–8449.

Ryo Masumura, Takanobu Oba, Hirokazu Masataki,
Osamu Yoshioka, and Satoshi Takahashi. 2013b.
Viterbi decoding for latent words language models
using Gibbs sampling. In Proc. Annual Conference
of the International Speech Communication Associ-
ation (INTERSPEECH), pages 3429–3433.

Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan
Cernocky, and Sanjeev Khudanpur. 2010. Re-
current neural network based language model.
In Proc. Annual Conference of the Interna-
tional Speech Communication Association (INTER-
SPEECH), pages 1045–1048.

Tomas Mikolov, Stefan Kombrink Stefan, Lukas Bur-
get, Jan Cernocky, and Sanjeev Khudanpur. 2011.
Extensions of recurrent neural network language
model. In Proc. IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pages 5528–5531.

Mehryar Mohri, Fernando Pereira, and Michael Riley.
2001. Weighted finite-state transducers in speech
recognition. Computer Speech & Language, 16:69–
88.

Christian P. Robert, Gilles Celeux, and Jean Diebolt.
1993. Bayesian estimation of hidden Markov
chains: A stochastic implementation. Statistics &
Probability Letters, 16:77–83.

Ronald Rosenfeld. 2000. Two decades of statistical
language modeling: Where do we go from here? In
Proc. IEEE, 88:1270–1278.

Ruslan Salakhutdinov and Geoffrey Hinton. 2009.
Deep Boltzmann machines. In Proc. the Inter-
national Conference on Artificial Intelligence and
Statistics, 5:448–455.

Steven L. Scott. 2002. Bayesian methods for hidden
Markov models: Recursive computing in the 21st
century. Journal of the American Statistical Associ-
ation, 97:337–351.

Yee Whye Teh. 2006. A hierarchical bayesian lan-
guage model based on Pitman-Yor processes. In
Proc. Annual Meeting of the Association for Com-
putational Linguistics (ACL), pages 985–992.

Peng Xu and Frederick Jelinek. 2004. Random forests
in language modeling. In Proc. Empirical Methods
on Natural Language Processing (EMNLP), pages
325–332.

1901



Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 1902–1907,
Lisbon, Portugal, 17-21 September 2015. c©2015 Association for Computational Linguistics.

A Coarse-Grained Model for Optimal Coupling of ASR and SMT Systems
for Speech Translation

Gaurav Kumar 1, Graeme Blackwood 2, Jan Trmal 1, Daniel Povey 1, Sanjeev Khudanpur 1

1 CLSP & HLTCOE, Johns Hopkins University, Baltimore, MD, USA
2IBM T. J. Watson Research Center, Yorktown Heights, NY, USA

{gkumar6, dpovey1, khudanpur}@jhu.edu, blackwood@us.ibm.com

Abstract

Speech translation is conventionally car-
ried out by cascading an automatic speech
recognition (ASR) and a statistical ma-
chine translation (SMT) system. The hy-
potheses chosen for translation are based
on the ASR system’s acoustic and lan-
guage model scores, and typically opti-
mized for word error rate, ignoring the in-
tended downstream use: automatic trans-
lation. In this paper, we present a coarse-
to-fine model that uses features from the
ASR and SMT systems to optimize this
coupling. We demonstrate that several
standard features utilized by ASR and
SMT systems can be used in such a model
at the speech-translation interface, and we
provide empirical results on the Fisher
Spanish-English speech translation cor-
pus.

1 Introduction

Speech translation is the process of translating
speech in the source language to text or speech
in the target language. This process is typically
structured as a three step pipeline. Step one in-
volves training an Automatic Speech Recognition
(ASR) system to transcribe speech to text in the
source language. Step two involves extracting an
appropriate form of the ASR output to translate.
We will refer to this step as the Speech-Translation
interface. In the simplest scenario, the ASR 1-
best output can be used as the source text to trans-
late. It may be useful to consider alternative ASR
hypotheses and these take the form of an N -best
list or a word-lattice. An N -best list can be in-
cluded easily into the tuning and the decoding pro-
cess of a statistical machine translation (SMT) sys-
tem (Zhang et al., 2004). Several researchers have
proposed solutions to incorporating lattices and

confusion networks in this process (Saleem et al.,
2004; Matusov et al., 2005; Bangalore and Ric-
cardi, 2000; Dyer et al., 2008a; Bertoldi and Fed-
erico, 2005; Quan et al., 2005; Mathias and Byrne,
2006; Bertoldi et al., 2007). Word lattice input to
SMT for tuning and decoding increases the com-
plexity of the decoding process because of the ex-
ponential number of alternatives that are present.
Finally, step three involves training and tuning a
Statistical Machine Translation (SMT) system and
decoding the output extracted through the speech
translation interface.

This paper presents a featurized model which
performs the job of hypothesis selection from the
outputs of the ASR system for the input to the
SMT system. Our motivation is as follows:

1. Using downstream information : Hypoth-
esis selection for the input to the SMT sys-
tem should be done jointly by the ASR and
the SMT systems. That is, there may exist
hypotheses that a trained SMT system may
find easier to translate and produce better
translations for than the ones that are deemed
best based on the ASR acoustic and language
model scores. Incorporation of knowledge
from the downstream process (translation) is
vital to selecting translation options, and sub-
sequently producing better translations.

2. Coarse-to-fine grained decoding : An in-
termediate model which acts as an interface
and is a weak (coarse) version of the down-
stream process may be able to select better
hypotheses. In effect, a weak translation de-
coder can be used as the interface to estimate
the expected translation quality of an ASR
hypothesis. This method of hypothesis se-
lection should be able to incorporate features
from the ASR and the SMT system.

3. Phrase units vs. word units : When a phrase
based SMT system is used for translation,
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optimization for hypothesis selection at the
Speech-Translation interface should be con-
ducted using phrases as the basic unit instead
of words.

2 Coarse-to-Fine Speech Translation

In this section, we describe the featurized model
(coarse-grain MT decoder) for hypothesis selec-
tion that uses information from the ASR and SMT
systems (impedance matching). We assume the
presence of ASR and SMT systems that have been
trained separately. In addition to creating almost
no disruption in the traditional pipeline approach,
this allows us to incorporate local gains from each
system. To elaborate, our methods avoid joint op-
timization of the ASR and the SMT system with
respect to a translation metric (Vidal, 1997; Ney,
1999), which is not feasible for larger datasets.
Also, considering the dearth of speech translation
training datasets, this method allows independent
training of the ASR and SMT systems on data cre-
ated only for ASR training and parallel data for
SMT. We start by introducing the formal machin-
ery that will be used and by presenting a simple
example to motivate the model. The complete fea-
turized model follows this exposition.

Let Σ and Γ be alphabets of words and phrases
respectively in the source language. Using these,
we can define the following finite state machines:

1. Word Lattice (L) : A finite state accep-
tor that accepts word-sequences in the source
language ( L : Σ∗ → Σ∗). This represents
the unpruned ASR word lattice output in our
model (Figure 1a).

2. Phrase segmentation Transducer (S) : A
cyclic finite state transducer that transduces
a sequence of words to phrases in the source
language (S : Σ∗ → Γ∗). This is built from
the source side of the phrase table. Each
path represents one source side phrase in the
phrase table. Traversing a path is equivalent
to consuming the words in a phrase and pro-
ducing the phrase as a token (Figure 1b).

3. Weighted word lattice (L̃ASR) : A weighted
version of L (L̃ASR : Σ∗ → Σ∗/R+). We
use the subscript to denote the nature/source
of the weights.

4. Phrase acceptor (W̃MT ) : A finite state ac-
ceptor that accepts source phrases in the SMT

(a) (b)

(c)

Figure 1: A toy example for producing a phrase
length weighted phrase lattice. (a) An unweighted
word lattice. (b) A phrase segmentation trans-
ducer which transduces words to phrases and has
a weight of one per path. Each path is a source
phrase in the phrase table. (c) A phrase lat-
tice produced by composing the word lattice and
phrase segmentation transducer.

system’s phrase table (W̃MT : Γ → Γ/R).
It is weighted by features derived from the
SMT system.

5. Phrase lattice (P) : The result of the com-
position of a word lattice (acceptor) with the
phrase segmentation transducer (P : Σ∗ →
Γ∗). This represents all possible phrase seg-
mentations of all the ASR hypotheses in the
word lattice.

P = det(min(L ◦ S))

We will represent weighted versions of P as
P̃ASR/MT with subscripts to denote the ori-
gin of the weights (Figure 1c).

2.1 A simple model : Maximum Spanning
Phrases

We motivate our model with this fairly simple
scenario. Suppose that we believe that if our
SMT input could be covered by longer source side
phrases1, we would produce better translations.
This may be viewed as a tiling problem where the
tiles are the source phrases in the phrase table and
the goal is to select the ASR hypothesis that re-
quires the least number of phrases to cover2. To
achieve this using our existing machinery, we cre-
ate S̃, a weighted version of S (Figure 1 (b)), such

1In phrase based translation, target translations are pro-
duced for each possible span of the input sentence allowed by
the phrase table. Translation of a longer source side phrase
produces fewer translation options and may be more reliable
given sufficient occurrences in the training data.

2It may be useful to incorporate a brevity penalty here,
since this approach has a strong bias towards selecting shorter
hypotheses. We will use other features to counter this bias in
the following sections.
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that

w(δ(S̃)) =
{

0 : π1(δ(S)) ∈ Σ and π2(δ(S)) = ε

1 : π2(δ(S)) ∈ Γ and π1(δ(S)) = ε

where δ(S̃) is an edge in S̃ and π1 and π2 are the in-
put and output projections respectively. Using this
segmentation transducer and an unweighted word
lattice, L (Figure : 1 (a)), we produce a phrase
lattice P̃MT . Assuming the weights are in the log-
semiring, the weight of a path δ(P̃ )∗ in P̃MT is

w(δ(P̃ )∗) =
∑

δ(P̃ )∈δ(P̃ )∗

w(δ(P̃ ))

Figure 1(c) shows an example of this phrase lat-
tice. Weights in the phrase lattice follow the same
definition as the weights in the segmentation trans-
ducer. Hence, the weight of a path in the phrase
lattice is simply the number of phrases used to
cover this path. The shortest path 3 in the phrase
lattice P̃MT , corresponds to the hypothesis we
were looking for. This simple example, demon-
strates how we may be able to use SMT features
(source phrase length in this case) to select hy-
potheses from the phrase lattice.

2.2 A general featurized model for
hypothesis selection

We now present a general framework in which
hypothesis selection can be carried out using
knowledge (features) from the ASR and the
SMT system. As described earlier, this form of
‘impedance’ matching allows us to select hypothe-
ses from an unpruned ASR word lattice for which
the SMT system is more likely to find good trans-
lations. Incorporating ASR weights also ensures
that we take into account what the ASR system
considers to be good hypotheses. We start with
the previously discussed idea of a phrase lattice,
using weights from the ASR system only. That is,

P̃ASR = det(min(L̃ASR ◦ S))

Now, we use the weighted phrase acceptor W̃MT

to bring in the SMT features 4. Composing this
with the weighted phrase lattice, we get

P̃ASR,MT = det(min(P̃ASR ◦ (W̃MT )∗)
3To compute the shortest path, we switch from the log to

the tropical semiring (A semiring with ordinary addition as
the multiplication operator and max as the addition operator).

4Alternatively, we may have introduced the weights in the
segmentation transducer itself. This separate machine is in-
troduced for efficient training of this model.

where (W̃MT )∗ is the Kleene closure of (W̃MT ).
We assume that the edge weights are in the log-
semiring. Hence, after these two compositions, the
edge weights in P̃ASR,MT can be represented as

w(δ(P̃ASR,MT )) =
∑
j

βjfj,ASR +
∑
k

γkfk,MT

=
∑
i

λifi

where δ(P̃ASR,MT ) is an edge in P̃ASR,MT , β, γ are
feature weights, fASR and fMT are features from
the ASR and SMT system respectively. This form
represents a log-linear model (our features are al-
ready assumed to be in log-space). where fi is any
feature and λi is the corresponding feature weight.
We may now extract the one-best,N -best or lattice
input for the SMT system from P̃ASR,MT .

2.2.1 A discussion about related techniques
1. Decoding (Translation) : Our model closely

resembles a featurized finite-state transducer
based translation model. If we replace the
output alphabet of the acceptor (W̃MT )∗ with
the target side phrases, we will actually get
output in the target language. Even though
this model does not explicity include reorder-
ing, the coarse-grained decoder has access
to information that can enable better deci-
sions about which hypotheses are better for
the downstream process (translation).

2. Lattice Decoding : (Dyer et al., 2008b) sug-
gests passing the entire word lattice to the
SMT system. However, even if these lattices
are not pruned, a beam based decoder might
not consider hypotheses that our model may
produce through coarse-grained decoding.

3. Language model re-scoring : One may use a
bigger source language model to re-score the
ASR lattice (or an N -best list). This how-
ever, does not consider any SMT features in
re-scoring. With our model, we can simply
use this as an additional feature.

2.2.2 Training
Training the hypothesis selection model can be
carried out using standard methods for log linear
models on a held-out set. This also requires decod-
ing (translation) of a deepN -best list derived from
the held-out set. The objective of training then
simply becomes maximization of the translation
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quality given any metric that provides sentence
level scores. Each time our model produces a hy-
pothesis, its score can be looked up from the pre-
translated N -best list. Also, whenever the weights
are updated, the only structures that need to be re-
built are W̃ ∗MT and P̃ASR,MT

5.

2.2.3 Features
We use the following features in our implementa-
tion of this model. However, any relevant ASR
and SMT feature may be readily added to this
model.

1. ASR scores : We incorporate the ASR acous-
tic (AM) and language (LM) model scores as
one combined feature.

fASR = LM + α ∗AM
Here, LM,AM are negative log-
probabilities and α is the acoustic scaling
parameter chosen to minimize ASR word
error rate.

2. Source phrase count : As described in sec-
tion 2.1, this feature may be used to cap-
ture the intuition that using a fewer number
of phrases to cover the input sentence may
produce better translations.

3. Length normalized phrase unigram prob-
ability : We may use a phrase LM feature
by incorporating phrase n-gram probabilities
(normalized) by length.

funi(fj) =

 freq(fj)∑
k

freq(fk)

len(fj)

where fj is a source side phrase in the phrase
table.

4. Phrase translation entropy : For each
source side phrase pj , we may have multiple
translations (ei) in the phrase table with dif-
ferent translation probabilities (p(ei|fj)). A
simple entropy measure can be used as a fea-
ture to estimate the confidence that the SMT
system has in translating fj .

ftr(pj) = Htr(E|pj)
= −

∑
i

ptr(ei|fj) log ptr(ei|fj)

5This requires the use of one ASR feature, addressed in
the “Features” section

5. Lexical translation entropy : Similarly, we
can use an entropy measure based on the lex-
ical translation probability as a feature.

flex(pj) = Hlex(E|pj)
= −

∑
i

plex(ei|fj) log plex(ei|fj)

3 Results

We use the Fisher and Callhome Spanish-English
Speech Translation Corpus (Post et al., 2013) for
our experiments. This Fisher dataset consists of
819 transcribed and translated telephone conver-
sations. The corpus is split into a training, dev
and two test sets (dev-2 and test). We use the dev
set for training the feature weights of the proposed
model.
We use the Kaldi speech recognition tools (Povey
et al., 2011) to build our Spanish ASR systems.
Our state-of-the-art ASR system is the p-norm
DNN system of (Zhang et al., 2014). The word-
error-rates on the dev and test sets of the Fisher
dataset (dev, dev-2, test) are 29.80%, 29.79% and
25.30% respectively.
For the SMT system, we use the phrase based
translation system of Moses (Koehn et al., 2007)
with sparse features. The system is trained and
tuned on the train and dev partitions of the Fisher
dataset respectively. The BLEU scores of the MT
output for the the dev-2 and the test partitions are
65.38% and 62.91% respectively. While decoding
the ASR output, we tune on the 1-best ASR output
for the dev partition. With this modified system,
the BLEU scores for the ASR 1-best output of the
dev2 and the test partitions are 40.06% and 40.4%
respectively. We use this system as the baseline
for our experiments (Table 1).
We note that if we were to use the lattice oracle6

from our ASR system as input to the SMT system,
we get a BLEU score of 46.59% for the dev2 par-
tition of the Fisher dataset. This indicates that the
best gain (+BLEU) that an oracle lattice reranker
could get is only 6.53%.

To tune the weights of the coarse decoder, we
decode 500-best ASR outputs for the tuning set
with the SMT system. This maps each ASR hy-
pothesis to a target language translation. An OOV
feature was added to handle words that were not
seen by the SMT system. The tuning process was
then carried out so as to maximize the BLEU with

6Path in the lattice that has the least word error rate.
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Experiment BLEU (dev2) BLEU (test)
Transcripts 65.4% 62.9%
Lattice Oracle 46.59% 46.17%
ASR 1-best 40.06% 40.4%
Coarse decoder 40.26% 40.46%

Table 1: Performance when using the coarse de-
coder interface compared to the the decoding the
human transcripts, the ASR 1-best or the lattice
oracle (the path in the ASR lattice with the least
WER : not available during test time.)

respect to the reference translation of the ASR hy-
pothesis selected by the coarse grained decoder.
We used ZMERT (Zaidan, 2009) for tuning which
was configured to expect a 300-best list from the
decoder at every iteration using the Fisher dev set.
15 iterations of tuning were carried out for each
experiment. We then use the tuned weight vec-
tor to decode the Fisher-dev2 and the Fisher-test
set using our coarse grained decoder. We extract
the one-best output and use it as input to the pre-
trained SMT system (description in the preceding
section). Table 1 reports the results achieved the
featurized coarse grained decoder.

4 Conclusions

We present a coarse-to-fine featurized model
which acts as the interface between ASR and SMT
systems. By utilizing information from the up-
stream (ASR) and the downstream (SMT) sys-
tems, this model makes more informed decisions
about which hypotheses from the ASR word lat-
tice may result in better translation results. More-
over, the model takes the form of a coarse finite
state transducer based translation decoder which
imitates the downstream system. This enables it to
estimate translation quality even before the com-
plete SMT system is used for decoding. Finally,
the proposed model is featurized and may accept
any weight from the ASR and SMT system that are
deemed useful for optimizing translation quality.

The Spanish Fisher corpus is one of a few con-
versational speech translation datasets available,
and we start with a strong baseline system. We
therefore persevere with the experimental setup
described above, even though the maximum (ora-
cle) improvement by any rescoring method is only
6.5% BLEU, as noted above. This partially ex-
plains the small gains reported here, and suggests
that this method should be evaluated further on an-

other corpus, e.g. the Egyptian Arabic translation
dataset, with greater headroom for improvement.
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Abstract 

This paper proposes a novel approach to 
generate abstractive summary for multi-
ple documents by extracting semantic in-
formation from texts. The concept of 
Basic Semantic Unit (BSU) is defined to 
describe the semantics of an event or ac-
tion. A semantic link network on BSUs is 
constructed to capture the semantic in-
formation of texts. Summary structure is 
planned with sentences generated based 
on the semantic link network. Experi-
ments demonstrate that the approach is 
effective in generating informative, co-
herent and compact summary. 

1 Introduction 

Most automatic summarization approaches are 
extractive which leverage only literal or syntactic 
information in documents. Sentences are extract-
ed from the original documents directly by rank-
ing or scoring and only little post-editing is made 
(Yih et al., 2007; Wan et al., 2007; Wang et al., 
2008; Wan and Xiao, 2009). Pure extraction has 
intrinsic limits compared to abstraction (Carenini 
and Cheung, 2008).  

Abstractive summarization requires semantic 
analysis and abstract representation of texts, 
which need knowledge on and beyond the texts 
(Zhuge, 2015a). There are some abstractive ap-
proaches in recent years: sentence compression 
(Knight and Marcu, 2000; Knight and Marcu, 
2002; Cohn and Lapata, 2009), sentence fusion 
(Barzilay and McKeown, 2005; Filippova and 
Strube, 2008), and sentence revision (Tanaka et 
al., 2009). However, these approaches are sen-
tence rewriting techniques based on syntactical 

analysis without semantic analysis and abstract 
representation. 

Fully abstractive summarization approach re-
quires a separate process for the analysis of texts 
that serves as an intermediate step before the 
generation of sentences (Genest and Lapalme, 
2011). Statistics of words or phrases and syntac-
tical analysis that have been widely used in exist-
ing summarization approaches are all shallow 
processing of text. It is necessary to explore 
summarization methods based on deeper seman-
tic analysis.  

We define the concept of Basic Semantic Unit 
(BSU) to express the semantics of texts. A BSU 
is an action indicator with its obligatory argu-
ments which contain actor and receiver of the 
action. BSU is the most basic element of coher-
ent information in texts, which can describe the 
semantics of an event or action. The semantic 
information of texts is represented by extracting 
BSUs and constructing BSU semantic link net-
work (Zhuge, 2009). Semantic Link Network 
consists of semantic nodes, semantic links and 
reasoning rules (Zhuge, 2010; 2011; 2012; 
2015b). The semantic nodes can be any resources. 
In this work, the semantic nodes are BSUs ex-
tracted from texts. We use semantic relatedness 
between BSUs as semantic links. Then summary 
can be generated based on the semantic link net-
work through summary structure planning.  

The characteristics of our approaches are as 
follows: 
 Each BSU describes the semantics of an 

event or action. The semantic relatedness be-
tween BSUs can capture the context seman-
tic relations of texts.  
 The BSU semantic link network is an ab-

stract representation of texts. Reduction on 
the network can obtain important infor-
mation of texts with no redundancy. 
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 Summary is built from sentence to sentence 
to a coherent body of information based on 
the BSU semantic link network by summary 
structure planning. 

2 Related Work 

There are some abstractive summarization ap-
proaches in recent years. An approach TTG at-
tempts to generate abstractive summary by using 
text-to-text generation to generate sentence for 
each subject-verb-object triple (Genest and 
Lapalme, 2011). A system that attempts to gen-
erate abstractive summaries for spoken meetings 
was proposed (Wang and Cardie, 2013). It iden-
tifies relation instances that are represented by a 
lexical indicator with an argument constituent 
from texts. Then the relation instances are filled 
into templates which are extracted by applying 
multiple sequence alignment. Both of these sys-
tems need to select a subset of the large volumes 
of generated sentences. However, our system 
generates summary directly by summary struc-
ture planning. It can generate well-organized and 
coherent summary more effectively.  

A recent work aims to generate abstractive 
summary based on Abstract Meaning Represen-
tation (AMR) (Liu et al., 2015). It first parses the 
source text into AMR graphs, and then trans-
forms them into a summary graph and plans to 
generate text from it. This work only focuses on 
the graph-to-graph transformation. The module 
of text generation from AMR has not been de-
veloped. The nodes and edges of AMR graph are 
entities and relations between entities respective-
ly, which are sufficiently different from the BSUs 
semantic link network. Moreover, texts can be 
generated efficiently from the BSUs network. 
Another recent abstractive summarization meth-
od generates new sentences by selecting and 
merging phrases from the input documents (Bing 
et al., 2015). It first extracts noun phrases and 
verb-object phrases from the input documents, 
and then calculates saliency scores for them. An 
ILP optimization framework is used to simulta-
neously select and merge informative phrases to 
maximize the salience of phrases and meanwhile 
satisfy the sentence construction constraints. As 
the results show that the method is difficult to 
generate new informative sentences really differ-
ent from the original sentences and may generate 
some none factual sentences since phrases from 
different sentences are merged. 

Open information extraction has been pro-
posed by (Banko et al., 2007; Etzioni et al., 

2011). They extract binary relations from the 
web, which is different from our approach that 
extracts events or actions expressed in texts. 

3 The Summarization Framework 

Our system produces an abstractive summary for 
a set of topic related documents. It consists of 
two major components: Information extraction 
and summary generation. 

3.1 Information Extraction 

The semantic information of texts is obtained by 
extracting BSUs and constructing BSU semantic 
link network. A BSU is represented as an actor-
action-receiver triple, which can both detects 
the crucial content and incorporates enough syn-
tactic information to facilitate the downstream 
sentence generation. Some actions may not have 
the receiver argument. For example, “Flight 
MH370 – disappear” and “Flight MH370 - leave 
- Kuala Lumpur” are two BSUs.  

BSU Extraction. BSUs are extracted from the 
sentences of the documents. The texts are pre-
processed by name entity recognition (Finkel et 
al., 2005) and co-reference resolution (Lee et al., 
2011). Constituent and dependency parses are 
obtained by Stanford parser (Klein and Manning, 
2003). The eligible action indicator is restricted 
to be a predicate verb; the eligible actor and re-
ceiver arguments are noun phrase. Both the actor 
and receiver arguments take the form of constit-
uents in the parse tree. A valid BSU should have 
one action indicator and at least one actor argu-
ment, and satisfy the following constraints: 
 The actor argument is the nominal subject or 

external subject or the complement of a pas-
sive verb which is introduced by the preposi-
tion “by” and does the action. 
 The receiver argument is the direct object or 

the passive nominal subject or the object of 
a preposition following the action verb. 

We create some manual rules and syntactic 
constraints to identify all BSUs based on the syn-
tactic structure of sentences in the input texts.  

Constructing BSU Semantic Link Network. 
The semantic relatedness between BSUs contains 
three parts: Arguments Semantic Relatedness 
(ASR), Action-Verbs Semantic Relatedness 
(VSR) and Co-occurrence in the Same Sentence 
(CSS). Arguments of BSUs include actors and 
receivers, which both are noun phrases and indi-
cate concepts or entities in the text. When com-
puting ASR, the semantic relatedness between 
concepts must be measured. We use the explicit 
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semantic analysis based on Wikipedia to com-
pute semantic relatedness between concepts (Ga-
brilovich and Markovitch, 2007). When compu-
ting VSR, WordNet-based measure is used to 
calculate the semantic relatedness between action 
verbs (Mihalcea et al., 2006). CSS is measured 
whether two different BSUs co-occur in the same 
sentence. Semantic relations between BSUs are 
computed by linearly combining these three parts. 
Then BSUs that are extracted from the texts form 
a semantic link network. 

Semantic Link Network Reduction. A dis-
criminative ranker based on Support Vector Re-
gression (SVR) (Smola and Scholkopf, 2004) is 
utilized to assign each BSU a summary-worthy 
score. Training data was constructed from the 
DUC 2005 datasets which contain both the 
source documents and human generated refer-
ence summaries. BSUs are extracted from these 
datasets. For each BSU in the source documents, 
if it has occurred in the corresponding human 
generated summaries or the semantic relatedness 
between the BSU and one BSU in the corre-
sponding human generated summaries is above a 
threshold δ , then it is considered to be a positive 
sample and be assigned 1 to its summary-worthy 
score. Otherwise, the BSU is considered to be a 
negative sample and be assigned 0 to its sum-
mary-worthy score. Table 1 displays the features 
of BSU used in the SVR model.  Then the salien-
cy score of each BSU in the semantic link net-
work is calculated by the following equation: 

( ) *i i ijj
Sal BSU SW R= ∑                    (1) 

Where iSW  is the summary-worthy score of 
iBSU ; ijR is the semantic relatedness between 

iBSU and jBSU .  
BSUs in the semantic link network are clus-

tered by hierarchical complete-link clustering 
methods. BSUs in each cluster are semantically 
similar. For example, Malaysia Airlines plane - 
vanish and Flight MH370 – disappear. Only the 
most important one with the largest saliency 
score is reserved in the network. These less im-
portant BSUs are eliminated. The remaining BSU 
semantic link network represents the important 
information of the texts with no redundancy. 

3.2 Summary Generation 

The summary for the documents is generated 
directly based on the BSU semantic link network. 
The summary should be well-structured and 
well-organized. It should not just be a heap of 
related information, but should build from sen-

tence to sentence to a coherent body of infor-
mation about a topic.  

The summary structure is planned based on 
the BSU semantic link network. An optimal path 
which covers all the nodes in the network is 
found. The following two factors are considered 
when finding the optimal path: (1) Context Se-
mantic Coherent. To make the summary seman-
tic coherent, all adjacent sentences should be se-
mantically related. We need to find an optimal 
path, in which every two adjacent nodes are 
strong semantically related. The optimal path is 
denoted as 

1 2
[ , ,..., ]

nr r rP p p p = and maximize

1

1

1
1

i i

n
r ri

n R
+

−

=∑ . (2) Clear-cut Theme. To make 
the theme of generated summary clear-cut, the 
important content should be put in prior position. 
The order of the ith node in the path is denoted 
as iu and its weight is denoted as

( )1/i iw Sal BSU=  and maximize
1

n
i ii

u w
=∑ . 

To combine the above two factors, we need to 
find an optimal path which covers each node on-
ly once and has the longest distance. The biased-
sum weight of all nodes in the path should be 
maximized. The problem can be proved to be 
NP-hard by reduction to TSP problem. It can be 
formalized as an integer linear programming 
(ILP) as follow. ijx  is defined  to indicate wheth-
er the optimal path goes from node i to node j. 

1
0ij

if the path goes from node i to node j
x

otherwise
            

=    
  (2) 

Since each node can be traversed only once, 
the following constraints must be satisfied. 

1,

1,

1 1,...

1 1,...

n
iji j i

n
ijj j i

x j n

x i n

= ≠

= ≠

=                   =

=                   =  

∑
∑

              (3) 

The nodes in the path are sequentially ordered. 
If the edge between two nodes is in the path, then 

Basic Features 
Number of words in actor/receiver 
Number of nouns in actor/receiver 
Number of new nouns in actor/receiver 
Actor/receiver has capitalized word? 
Actor/receiver has stopword? 
Action is a phrasal verb? 
Content Features 
Actor/receiver has name entity? 
TF/IDF/TF-IDF of action 
TF/IDF/TF-IDF min max average of actor/receiver 
Syntax Features 
Constituent tag of actor/action/receiver 
Dependency relation of action with actor 
Dependency relation of action with receiver 

Table 1. Features for BSU summary-worthy 
scoring. We use SVM-light with RBF kernel 
by default parameters (Joachims, 1999).  
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the order of the two nodes is sequentially close to 
each other, which can be formulated as follow: 

 
1

1,...
1,...

i j ij

i

i

u u nx n i j n
u n i n

u i n

− + ≤ −      1 ≤ ≠ ≤

1 ≤ ≤                      =  
∈                          =  

             (4) 

At last, we can formulate the objective func-
tion as follow: 

1 1, 1
max 1 n n n

ij ij i ii j j i i
n R x w uλ

= = ≠ =
  +∑ ∑ ∑        (5) 

where parameter λ  tunes the effect of the two 
parts and n is the quantity of BSUs in the final 
BSU semantic link network (after reduction). 

Sentence Generation. After the summary 
structure has been planned, sentences are gener-
ated for each node in the BSU semantic link net-
work. As the BSU contains enough semantic and 
syntactic information, sentence can be generated 
efficiently according to the following rules: 
 Generate a Noun Phrase (NP) based on the 

actor argument to represent the subject, a NP 
based on the receiver argument to represent 
the object if present. 
 Generate a Verb Phrase (VP) based on the 

action verb to link the components above. 
The tense of the verb is set to the same as in 
the original sentence, and most modifiers like 
auxiliaries and negation are conserved. 
 Generate complements for the VP when the 

BSU has no receiver. The verb modifiers fol-
lowing the action verb such as prepositional 
phrases and infinitive phrases can be used as 
the complement, in case that the verb would 
have no interesting meaning without a com-
plement. 

The process of sentence generation for each 
node is based on the syntactic structure of the 
source sentence where the BSU is extracted from. 
The time and location preposition phrases which 

are important information of new events are kept. 
The generated sentences are organized according 
to the summary structure. If some adjacent sen-
tences in the summary have the same subject, the 
subject of the latter can be substituted by a pro-
noun (such as it or they) to avoid repetition of 
noun phrases. One sample summary generated 
by our system for “Malaysia MH370 Disappear” 
news is shown in Figure 1. 

4 Evaluation Results 

4.1 Dataset and Experimental Settings 

In order to evaluate the performance of our sys-
tem, we use two datasets that have been used in 
recent multi-document summarization shared 
tasks: DUC2005 and DUC2007. Each task has a 
gold standard dataset consisting of document 
clusters and reference summaries. In our experi-
ments, DUC2005 was used for training and pa-
rameter tuning, and DUC2007 was used for test-
ing. Based on the tuning set, the parameter λ  is 
set as 10 and δ  is set as 0.7 after tuning. 

Our system is compared with one state-of-the-
art graph-based extractive approach MultiMR 
(Wan and Xiao, 2009) and one abstractive ap-
proach TTG (Genest and Lapalme, 2011). In ad-
dition, we have implemented another baseline 
RankBSU which uses the graph-based ranking 
methods on the BSUs network to rank BSUs and 
select the top ranked BSUs to generate sentences.  

4.2 Results 

ROUGE-1.5.5 toolkit was used to evaluate the 
quality of summary on DUC 2007 dataset (Lin 
and Hovy, 2003). The ROUGE scores of the 
NIST Baseline system (i.e. NIST Baseline) and 
average ROUGE scores of all the participating 
systems (i.e. AveDUC) for DUC 2007 main task 
were also listed. According to the results in Ta-
ble 2, our system much outperforms the NIST 
Baseline and AveDUC, and achieves higher 
ROUGE scores than the abstractive approach 
TTG. So the abstract representation of texts and 
the information extraction process in our system 
are effective for multi-document summarization. 
Our system also achieves better performance 
than the baseline RankBSU, which demonstrates 
that the network reduction method is more effi-
cient than the popular graph-based ranking 
methods. As compared with the state-of-art 
graph-based extractive method MultiMR, our 
system also achieves better performance. Fur-
thermore, our system is abstractive with abstract 
representation and sentence generation. Incorrect 

System ROUGE-1 ROUGE-2 ROUGE-SU4 
OurSystem 0.42145 0.11016 0.15632 
MultiMR 0.41967 0.10302 0.15385 
RankBSU 0.39123 0.08742 0.14381 
TTG 0.39268 0.09645 0.14553 
AveDUC 0.39684 0.09495 0.14671 
NIST Baseline 0.33126 0.06425 0.11114 
Table 2. Comparison results (F-measure) on 
DUC 2007 under ROUGE evaluation. 

System OurSystem MultiMR RankBSU TTG 
Pyr (Th:0.6) 0.858 0.845 0.832 0.834 

Pyr (Th:0.65) 0.743 0.731 0.718 0.721 
Table 3. Comparison results on DUC 2007 un-
der the automated pyramid evaluation with two 
threshold value 0.6 and 0.65. 
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parser and co-reference resolution will lead to 
wrong extraction of BSU. If with more accurate 
parser and co-reference resolution, our system 
will be expected to achieve better performance.  

Since ROUGE metric evaluates summaries 
only from word overlapping perspective, we also 
use the pyramid evaluation metric (Nenkova and 
Passonneau, 2004) which can measure the sum-
mary quality beyond simply string matching. The 
pyramid evaluation metric involves semantic 
matching of summary content units (SCUs) so as 
to recognize alternate realizations of the same 
meaning, which is a better metric for the abstrac-
tive summary evaluation. Since the manual pyr-
amid evaluation is time-consuming and the eval-
uation results can’t be reproducible with different 
groups of assessors, we use the automated ver-
sion of pyramid proposed in (Passonneau et al., 
2013) and adopt the same setting as in (Bing et 
al., 2015). Table 3 shows the evaluation results 
of our system and the three baseline systems on 
DUC 2007. The results show that the perfor-
mance of our system is significantly better than 
the three baseline systems, which demonstrates 
that the summaries of our system contain more 
SCUs than summaries of other systems. So our 
system can generate more informative summary. 

In addition, large volumes of news texts for 
popular news events are crawled from the news 
websites. Figure 1 and 2 show the summaries for 
the “Malaysia MH370 Disappear” news event 
generated by our system and MultiMR respec-
tively. The summary by MultiMR contains some 
repetition of facts obviously. And it is just a heap 
of information about MH370. The summary by 
our system doesn’t contain much repetition of 
facts, so it can contain more useful information. 
And it is built from sentence to sentence to a co-
herent body. Obviously, the summary by our sys-
tem is more coherent and compact. 

5 Conclusions and Future Works 

The proposed summarization approach is effec-
tive in information extraction and achieves good 
performance on DUC datasets. Through the 
sample summary, we can find that the approach 
is very effective for summarizing texts that main-
ly describe facts and actions of news event. 
Summaries generated by our system are informa-
tive, coherent and compact. 

But for texts expressing opinions, the ap-
proach can’t settle it appropriately. For example, 
when the verbs of BSUs are not meaningful ac-
tions, like “be”, the semantic relations between 

them can’t be appropriately computed by the 
methods described in the paper. More efficient 
methods to computer semantic relations between 
BSUs should be developed in the following work.  

The sentence generation process described in 
the paper is just a preliminary scheme. It should 
be developed to generate sentence relying less on 
the original sentence structure and aggregating 
information from several different BSUs. 
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Figure 1. The summary of “Malaysia MH370 Dis-
appear” news event generated by our system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. The summary of “Malaysia MH370 Dis-

appear” news event generated by MultiMR. 

Malaysia Airlines said in a statement that flight MH370 had disappeared at 
02:40 local time on Saturday after leaving Kuala Lumpur. Southeast Asian states 
have joined forces to search waters between Malaysia and Vietnam after a 
Malaysia Airlines plane vanished on a flight to Beijing, with 239 people on 
board. Flight MH370 had been expected to land in Beijing at 06:30. If Malaysia 
Airlines flight MH370 had impacted the ocean hard, resulting underwater sounds 
could have been detected by hydrophones, given favorable circumstances. 
Scientists from the CTBTO analyzed their recordings soon after flight MH370 
disappeared, finding nothing of interest. The CMST researchers believe that the 
most likely explanation of the hydroacoustic data is that they come from the 
same event, but unrelated to Malaysia Airlines flight MH370. The lead research-
er of the CMST team, Dr.Alec Duncan, believes there's a slim chance that the 
acoustic event is related to Malaysia Airlines flight MH370. Several IMOS 
recorders deployed in the Indian Ocean off northwestern Australia by CMST 
may have recorded data related to Malaysia Airlines flight MH370. Malaysia 
Airlines released the names and nationalities of the 227 passengers and 12 crew 
members, based on the flight manifest, later modified to include two Iranian 
passengers travelling on stolen passports. If the data relates to the same event, 
related to flight MH370, but the arc derived from analysis of the aircraft's satel-
lite transmission is incorrect, then the most likely place to look for the aircraft 
would be along a line from HA01. 

Flight MH370 disappeared after leaving Kuala Lumpur. It had been expected to 
land in Beijing at 06:30. It took off at 00:41 MYT from runway 32R. It ended in 
the southern Indian Ocean. The aircraft, a Boeing 777-200ER made a sharp turn 
westwards. It passed into Vietnamese airspace. The captain of another aircraft 
attempted to reach the crew of Malaysia Airlines flight MH370. Malaysia 
Airlines flight 386 was requested to attempt to contact Malaysia Airlines flight 
MH370 on the Lumpur Radar frequency. Malaysia Airlines flight MH17, 
another Boeing 777-200ER, was surpassed Malaysia Airlines flight MH370. 
Malaysia Airlines assumes beyond reasonable doubt there are no survivors. 
They reported the Malaysia Airlines flight MH370 missing. They releases 
passenger manifest of flight MH370. They will give US$ 5000 to the relatives 
of each passenger. Malaysia released preliminary report. It set up a Joint Inves-
tigation Team. Southeast Asian states have joined forces to search waters 
between Malaysia and Vietnam. Chinese government criticizes Malaysia for 
inadequate answers regarding Malaysia Airlines flight MH370. Malaysia will 
be deploying more ships and equipment to assist in the search. It ends hunt in 
South China Sea. Continued refinement of analysis of flight MH370's satellite 
communications identified a wide area search. Australia and Malaysia are 
working on a Memorandum of Understanding to cover financial and co-
operation arrangements for search and recovery activities. 
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Abstract

In concept-based summarization, sentence
selection is modelled as a budgeted maxi-
mum coverage problem. As this problem
is NP-hard, pruning low-weight concepts
is required for the solver to find optimal
solutions efficiently. This work shows that
reducing the number of concepts in the
model leads to lower ROUGE scores, and
more importantly to the presence of mul-
tiple optimal solutions. We address these
issues by extending the model to provide a
single optimal solution, and eliminate the
need for concept pruning using an approx-
imation algorithm that achieves compara-
ble performance to exact inference.

1 Introduction

Recent years have witnessed increased interest in
global inference methods for extractive summa-
rization. These methods formulate summarization
as a combinatorial optimization problem, i.e. se-
lecting a subset of sentences that maximizes an
objective function under a length constraint, and
use Integer Linear Programming (ILP) to solve it
exactly (McDonald, 2007).

In this work, we focus on the concept-based ILP
model for summarization introduced by (Gillick
and Favre, 2009). In their model, a summary is
generated by assembling the subset of sentences
that maximizes a function of the unique concepts it
covers. Selecting the optimal subset of sentences
is then cast as an instance of the budgeted maxi-
mum coverage problem1.

As this problem is NP-hard, pruning low-weight
concepts is required for the ILP solver to find opti-
mal solutions efficiently (Gillick and Favre, 2009;

1Given a collection S of sets with associated costs and a
budget L, find a subset S′ ⊆ S such that the total cost of
sets in S′ does not exceed L, and the total weight of elements
covered by S′ is maximized (Khuller et al., 1999).

Qian and Liu, 2013; Li et al., 2013). However, re-
ducing the number of concepts in the model has
two undesirable consequences. First, it forces the
model to only use a limited number of concepts to
rank summaries, resulting in lower ROUGE scores.
Second, by reducing the number of items from
which sentence scores are derived, it allows dif-
ferent sentences to have the same score, and ulti-
mately leads to multiple optimal summaries.

To our knowledge, no previous work has men-
tioned these problems, and only results corre-
sponding to the first optimal solution found by the
solver are reported. However, as we will show
through experiments, these multiple optimal so-
lutions cause a substantial amount of variation in
ROUGE scores, which, if not accounted for, could
lead to incorrect conclusions. More specifically,
the contributions of this work are as follows:

• We evaluate (Gillick and Favre, 2009)’s sum-
marization model at various concept pruning
levels. In doing so, we quantify the impact of
pruning on running time, ROUGE scores and
the number of optimal solutions.

• We extend the model to address the prob-
lem of multiple optimal solutions, and we
sidestep the need for concept pruning by de-
veloping a fast approximation algorithm that
achieves near-optimal performance.

2 Concept-based ILP Summarization

2.1 Model definition
Gillick and Favre (2009) introduce a concept-
based ILP model for summarization that casts sen-
tence selection as a maximum coverage problem.
The key assumption of their model is that the value
of a summary is defined as the sum of the weights
of the unique concepts it contains. That way, re-
dundancy within the summary is addressed im-
plicitly at a sub-sentence level: a summary only
benefits from including each concept once.
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Formally, let wi be the weight of concept i, ci
and sj two binary variables indicating the pres-
ence of concept i and sentence j in the summary,
Occij an indicator of the occurrence of concept i
in sentence j, lj the length of sentence j and L the
length limit for the summary, the concept-based
ILP model is described as:

max
∑
i

wici (1)

s.t.
∑
j

ljsj ≤ L (2)

sjOccij ≤ ci, ∀i, j (3)∑
j

sjOccij ≥ ci, ∀i (4)

ci ∈ {0, 1} ∀i
sj ∈ {0, 1} ∀j

The constraints formalized in equations 3 and 4
ensure the consistency of the solution: selecting a
sentence leads to the selection of all the concepts it
contains, and selecting a concept is only possible
if it is present in at least one selected sentence.

Choosing a suitable definition for concepts and
a method to estimate their weights are the two
key factors that affect the performance of this
model. Bigrams of words are usually used as a
proxy for concepts (Gillick and Favre, 2009; Berg-
Kirkpatrick et al., 2011). Concept weights are
either estimated by heuristic counting, e.g. docu-
ment frequency in (Gillick and Favre, 2009), or
obtained by supervised learning (Li et al., 2013).

2.2 Pruning to reduce complexity
The concept-level formulation of (Gillick and
Favre, 2009) is an instance of the budgeted maxi-
mum coverage problem, and solving such a prob-
lem is NP-hard (Khuller et al., 1999). Keeping the
number of variables and constraints small is then
critical to reduce the model complexity.

In previous work, efficient summarization was
achieved by pruning concepts. One way to re-
duce the number of concepts in the model is to
remove those concepts that have a weight below
a given threshold (Gillick and Favre, 2009). An-
other way is to consider only the top-n highest
weighted concepts (Li et al., 2013). Once low-
weight concepts are pruned, sentences that do not
contain any remaining concepts are removed, fur-
ther reducing the number of variables and con-
straints in the model. As such, this can be regarded
as a way to approximate the problem.

Pruning concepts to reduce complexity also cuts
down the number of items from which summary
scores are derived. As we will see in Section 3.2,
this results in a lower ROUGE scores and leads to
the production of multiple optimal summaries.

The concept weighting function also plays an
important role in the presence of multiple opti-
mal solutions. Limited-range functions, such as
frequency-based ones, yield many ties and in-
crease the likelihood that different sentences have
the same score. Redundancy within the set of
input sentences exacerbate this problem, since
highly similar sentences are likely to contain the
same concepts.

2.3 Summarization parameters

For comparison purposes, we use the same system
pipeline as in (Gillick et al., 2009), which is de-
scribed below.

Step 1: clean input documents; a set of rules is
used to remove bylines and format markup.

Step 2: split the text into sentences; we use
splitta2 (Gillick, 2009) and re-attach multi-
sentence quotations.

Step 3: compute parameters needed by the
model; we extract and weight the concepts.

Step 4: prune sentences shorter than 10 words,
duplicate sentences and those that begin and end
with a quotation mark.

Step 5: map to ILP format and solve; we use an
off-the-shelf ILP solver3.

Step 6: order selected sentences for inclusion in
the summary, first by source and then by position.

Similar to previous work, we use bigrams of
words as concepts. Although bigrams are rough
approximations of concepts, they are simple to ex-
tract and match, and have been shown to perform
well at this task. Bigrams of words consisting of
two stop words4 or containing a punctuation mark
are discarded. Stemming5 is then applied to allow
more robust matching.

Concepts are weighted using document fre-
quency, i.e. the number of source documents

2We use splitta v1.03, https://code.google.
com/p/splitta/

3We use glpk v4.52, https://www.gnu.org/
software/glpk/

4We use the stoplist in nltk, http://www.nltk.org/
5We use the Porter stemmer in nltk.
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DUC’04 TAC’08
DF 1 2 3 4 1 2 3 4

# solutions 1.3 1.3 1.5 1.5 1.2 1.3 1.8 4.8
# concepts 2 955 676 247 107 2 909 393 127 56
# sentences 184 175 159 139 174 167 149 129
Avg. time (sec) 22.3 1.7 0.5 0.3 21.5 0.8 0.3 0.2

Table 1: Average number of optimal solutions, concepts and sentences for different minimum document
frequencies. The average time in seconds for finding the first optimal solution is also reported.

where the concept was seen. Document frequency
is a simple, yet effective approach to concept
weighting (Gillick and Favre, 2009; Woodsend
and Lapata, 2012; Qian and Liu, 2013). Reducing
the number of concepts in the ILP model is then
performed by pruning those concepts that occur in
fewer than a given number of documents.

ILP solvers usually provide only one solution.
To generate alternate optimal solutions, we iter-
atively add new constraints to the problem that
eliminate already found optimal solutions and re-
run the solver. We stop the iterations when the
value of the objective function returned by the
solver changes.

3 Experiments

3.1 Datasets and evaluation measures

Experiments are conducted on the DUC’04 and
TAC’08 datasets. For DUC’04, we use the 50 top-
ics from the generic multi-document summariza-
tion task (Task 2). For TAC’08, we focus only on
the 48 topics from the non-update summarization
task. Each topic contains 10 newswire articles for
which the task is to generate a summary no longer
than 100 words (whitespace-delimited tokens).

Summaries are evaluated against reference sum-
maries using the ROUGE automatic evaluation
measures (Lin, 2004). We set the ROUGE param-
eters to those6 that lead to highest agreement with
manual evaluation (Owczarzak et al., 2012), that
is, with stemming and stopwords not removed.

3.2 Results

Table 1 presents the average number of optimal
solutions at different levels of concept pruning.
Overall, the average number of optimal solutions
increases along with the minimum document fre-
quency, reaching 4.8 for TAC’08 at DF = 4. Prun-

6We use ROUGE-1.5.5 with the parameters: n 4 -m -a
-l 100 -x -c 95 -r 1000 -f A -p 0.5 -t 0

ing concepts also greatly reduces the number of
variables in the ILP formulation, and consequently
improves the run-time for solving the problem.

Interestingly, we note that, even without any
pruning, the model produces multiple optimal
solutions. The choice of document frequency
for weighting concepts is responsible for this as
it generates many ties. Finer-grained concept
weighting functions such as frequency estima-
tion (Li et al., 2013) should therefore be preferred
to limit the number of multiple optimal solutions.

The mean ROUGE recall scores of the multiple
optimal solutions for different minimal document
frequencies are presented in Table 2. Here, the
higher the concept pruning threshold, the higher
the variability of the generated summaries as in-
dicated by the standard deviation. Best ROUGE

scores are achieved without concept pruning while
the best compromise between effectiveness and
run-time is given when DF ≥ 3, confirming the
findings of (Gillick and Favre, 2009).

To show in a realistic scenario how multiple
optimal solutions could lead to different conclu-
sions, we compare in Table 3 the ROUGE-1 scores
of the summaries generated from the first op-
timal solution found by three off-the-shelf ILP
solvers against that of the systems7 that partici-
pated at TAC’08. We set the minimum document
frequency to 3, which is often used in previous
work (Gillick and Favre, 2009; Li et al., 2013),
and use a two-sided Wilcoxon signed-rank to com-
pute the number of systems that obtain signifi-
cantly lower and higher ROUGE-1 recall scores8.

Despite being comparable (p-value > 0.4), the
solutions found by the three solvers support differ-
ent conclusions. The solution found using GLPK

771 systems participated at TAC’08 but we removed
ICSI1 and ICSI2 systems which are based on the concept-
based ILP model.

8ROUGE-1 recall is most accurate metric to identify the
better summary in a pair (Owczarzak et al., 2012).
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DUC’04 TAC’08
DF ROUGE-1 ROUGE-2 ROUGE-4 ROUGE-1 ROUGE-2 ROUGE-4

1 37.74 ±0.07 9.48 ±0.05 1.45 ±0.02 37.65 ±0.10 10.63 ±0.08 2.23 ±0.04

2 37.25 ±0.08 9.14 ±0.02 1.37 ±0.01 37.16 ±0.11 9.96 ±0.07 2.05 ±0.03

3 37.37 ±0.11 9.16 ±0.06 1.41 ±0.02 37.39 ±0.15 10.62 ±0.07 2.13 ±0.03

4 37.96 ±0.10 9.38 ±0.05 1.57 ±0.02 36.73 ±0.12 10.10 ±0.08 1.78 ±0.07

Table 2: Mean ROUGE recall and standard deviation for different minimum document frequencies.

Solver ROUGE-1 ↓ / ↑
GLPK 37.33 54 / 0
Gurobi 37.20 52 / 1
CPLEX 37.17 51 / 1

Table 3: ROUGE-1 recall scores for the first opti-
mal solution found by different solvers along with
the number of systems that obtain significantly
lower (↓) or higher (↑) scores (p-value < 0.05).

indicates that the concept-based model achieves
state-of-the-art performance whereas the solutions
provided by Gurobi and CPLEX do not do so. The
reason for these differences is the use of differ-
ent solving strategies, involving heuristics for find-
ing feasible solutions more quickly. This exam-
ple demonstrates that multiple optimal solutions
should be considered during evaluation.

3.3 Solving the multiple solution problem
Multiple optimal solutions occur when concepts
alone are not sufficient to distinguish between two
competing summary candidates. Extending the
model so that it provides a single solution can
therefore not be done without introducing a sec-
ond term in the objective function. Following the
observation that the frequency of a non-stop word
in a document set is a good predictor of a word ap-
pearing in a human summary (Nenkova and Van-
derwende, 2005), we extend equation 1 as follows:

max
∑
i

wici + µ
∑
k

fktk (5)

where fk is the frequency of non-stop word k in
the document set, and tk is a binary variable indi-
cating the presence of k in the summary. Here, we
want to induce a single solution among the multi-
ple optimal solutions given by concept weighting,
and thus set µ to a small value (10−6). We add
further constraints, similar to equations 3 and 4, to
ensure the consistency of the solution.

This extended model succeeds in giving a sin-
gle solution that is at least comparable to the mean
score of the multiple optimal solutions. How-
ever, it requires about twice as much time to solve
which makes it impractical for large documents.

3.4 Fast approximation
Instead of pruning concepts to reduce complex-
ity, one may consider using an approximation
if results are found satisfactory. Here, simi-
larly to (Takamura and Okumura, 2009; Lin and
Bilmes, 2010) we implement the greedy heuristic
proposed in (Khuller et al., 1999) that solve the
budgeted maximum coverage problem with a per-
formance guarantee 1/2 · (1 − 1/e). Table 4 com-
pares the performance of the model that achieves
the best trade off between effectiveness and run-
time, that is whenDF ≥ 3, with that of the greedy
approximation without pruning.

Overall, the approximate solution is over 96%
as good as the average optimal solution. Although
the ILP solution marks an upper bound on perfor-
mance, its solving time is exponential in the num-
ber of input sentences. The approximate method
is then relevant as it marks an upper bound on
speed (less than 0.01 seconds to compute) while
having performance comparable to the ILP model
with concept pruning (p-value > 0.3).

Dataset ROUGE-1 ROUGE-2

DUC’04 37.14 (−0.7%) 9.37 (+2.3%)

TAC’08 36.90 (−1.3%) 10.27 (−3.3%)

Table 4: ROUGE recall scores of the approxima-
tion. The relative difference from the mean score
of the multiple optimal solutions is also reported.

4 Conclusion

Multiple optimal solutions are not an issue as long
as alternate solutions are equivalent. Unfortu-
nately, summaries generated from different sets of
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sentences are likely to differ. We showed through
experiments that concept pruning leads to the pres-
ence of multiple optimal solutions, and that the
latter cause a substantial amount of variation in
ROUGE scores. We proposed an extension of the
ILP that obtains unique solutions. If speed is a
concern, we showed that a near-optimal approx-
imation can be computed without pruning. The
implementation of the concept-based summariza-
tion model that we use in this study is available at
https://github.com/boudinfl/sume.

In future work, we intend to extend our study
to compressive summarization. We expect that the
number of optimal solutions will increase as mul-
tiple compression candidates, which are likely to
be similar in content, are added to the set of input
sentences.
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Abstract

This paper demonstrates the effectiveness
of a Long Short-Term Memory language
model in our initial efforts to generate un-
constrained rap lyrics. The goal of this
model is to generate lyrics that are simi-
lar in style to that of a given rapper, but
not identical to existing lyrics: this is
the task of ghostwriting. Unlike previ-
ous work, which defines explicit templates
for lyric generation, our model defines its
own rhyme scheme, line length, and verse
length. Our experiments show that a Long
Short-Term Memory language model pro-
duces better “ghostwritten” lyrics than a
baseline model.

1 Introduction

Ghostwriting defines a distinction between the
performer/presenter of text, lyrics, etc, and the cre-
ator of text/lyrics. The goal is to present some-
thing in a style that is believable enough to be
credited to the performer. In the domain of rap
specifically, rappers sometimes function as ghost-
writers early on before embarking on their own
public careers, and there are even businesses that
provide written lyrics as a service 1. The goal
of GhostWriter is to produce a system that can
take a given artist’s lyrics and generate similar yet
unique lyrics. To accomplish this, we must cre-
ate a language model to produce text, while also
understanding what ’style’ means in a quantitative
sense.

The contribution of this paper is three-fold: (1)
we present the ghostwriting problem of producing
similar yet different lyrics; (2) we present compu-
tational, quantitative evaluation methods for these

1http://www.rap-rebirth.com/,
http://www.precisionwrittens.com/
rap-ghostwriters-for-hire/

two aspects; (3) we evaluate the performance of
a Long Short-Term Memory (LSTM) vs n-gram
model for this problem.

2 Related Work

Recent work (Sutskever et al., 2011; Graves,
2013) has shown the effectiveness of Recurrent
Neural Networks (RNNs) for text generation. In
their works, the authors use an RNN to create a
language model at the character level. The results
are inspiring, as the models learn various gram-
matical and punctuation rules, such as opening
and closing parentheses, plus learning a large vo-
cabulary of English words at the character level.
Graves (2013) uses a variation of an RNN called
LSTM architecture which creates a better lan-
guage model than a regular RNN.

Text generation for artistic purposes, such as po-
etry and lyrics, has also been explored, often using
templates and constraints (Oliveira et al., 2014;
Barbieri et al., 2012). In regards to rap lyrics, Wu
et al. (2013) present a system for rap lyric gener-
ation that produces a single line of lyrics that are
meant to be a response to a single line of input.
However, the work that is most similar to ours is
that of Malmi et al. (2015). The authors create
fixed 16-line verses, generating the verse line-by-
line using full lines from existing rap songs. The
system predicts the best next line based on the pre-
vious lines, using a system that records an 81.9%
accuracy predicting next lines in already existing
verses. The feature that provides the greatest accu-
racy gain is a neural embedding of the lines, cre-
ated from the character level.

Hirjee and Brown (2010b) have developed a
rhyme detection tool based on a probabilistic
model (Hirjee and Brown, 2010a) that analyzes
phoneme patterns in words. The model is trained
on a set of lyrics that were manually annotated for
rhyming words. The statistics generated by the
rhyme detection tool will be an important part of

1919



our evaluation (see Section 5).

3 Generating Lyrics

In a departure from previous work on poetry/lyric
generation, our goal is to build a model that
does not require templates/constraints to generate
lyrics, while also being able to produce full verses,
as opposed to single lines. The system must be
able to model general human language in order to
produce fluent lyrics, but it must also be able to
model the style of a target artist, by understanding
the artist’s vocabulary and rhythmic style, in order
to fully execute the ghostwriting task of producing
similar yet new lyrics.

3.1 LSTM

Here we will give a very brief overview of RNNs
and LSTMs. For a more detailed explanation
please refer to (Graves, 2013). The foundation
of an RNN (of which an LSTM is specific ar-
chitecture) is a word embedding E that provides
a vector representation for each of the words in
our corpus. Given a history of words wk, ..., w0

we want to determine P (wk+1|wk, ..., w0;E,Φ),
where Φ is a set of parameters used by our
model. In the context of an RNN we define this
probability by:

P (wk+1|wk, ..., w0;E,Φ) = f(x, s) (1)

At each time-step the RNN computes f given an
observation x and a previous state s. The input
goes through a transformation where it passes
through one or several hidden layers.

The LSTM model uses a specific architecture
for the hidden transformation, defined by the
LSTM memory cell. The key feature to the LSTM
memory cell is the presence of an input gate, out-
put gate, forget gate, and cell/cell memory, which
manifest themselves in the model as activation
vectors. Each of these gates/cells has its own
bias vector, and the hidden layer at each time-step
is now a complex nonlinear combination of gate,
cell, and hidden vectors.

3.2 Using LSTM for Lyrics Generation

Since previous work has shown the power of
RNNs to model language, we hope that it can cap-
ture the rhythmic style of an artist by learning
rhyme and meter patterns. As noted in Section 2,
LSTMs have performed well at sequence forecast-

ing, for example at learning punctuation, such as
opening and closing parentheses. We see the task
of rhyme detection as something similar in na-
ture. Kaparthy et al. (2015) have also shown that
LSTMs could successfully learn where to place
the brackets and indentation in C++ code. In their
model, certain LSTM cells activated specifically
when encountering end of the line. We believe
learning rhymes at the end of the line is concep-
tually similar to such tasks.

3.3 Verse Structure and Rhyme Inference

The goal of our model is to not just generate
lyrics, but generate the structure for the lyrics as
well. To do this, we have added “<endLine>”
and “<endVerse>” tokens to the lyrics. From this,
the system will generate its own line breaks, while
also defining when a generated verse ends. This
allows us to analyze non-rhyming features from
(Hirjee and Brown, 2010a), such as number of
syllables per line and number of lines per verse.
We also desire that, by using the “<endLine>”
token, the system has a better chance of un-
derstanding rhyme schemes used by an artist.
For example, the LSTM can capture the pat-
tern of “came <endLine>” followed shortly by
“name <endLine>” to understand that “came”
and “name” are a rhyming pair. To do this effec-
tively, the system would need sufficient training
data where rhyming pairs occur frequently enough
to actually dictate a pattern, similar to (Reddy and
Knight, 2011; Addanki and Wu, 2013).

4 Experimental Design

4.1 Dataset

We collected songs from 14 artists from the site
The Original Hip-Hop (Rap) Lyrics Archive -
OHHLA.com - Hip-Hop Since 19922. In the
present lyrics generation experiments, we used the
lyrics from the rapper Fabolous. For training, we
used 219 verses with at least 175 words in each
verse. We selected Fabolous because his lyrics
produced the highest accuracy in the artist recog-
nition experiments in (Hirjee and Brown, 2010a).
We conjecture that because of this, he had the most
consistent style, making him a good choice for ini-
tial experiments.

2http://www.ohhla.com/
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4.2 Baseline

To compare with the results of the LSTM model,
we followed the work of (Barbieri et al., 2012)
and created a Markov model for lyric generation.
Since the goal of our work is to make an unsu-
pervised system, we do not use any constraints
or templates to produce the lyrics. Thus, our
baseline simplifies to a basic n-gram model.
Given a history of wk+n−1,...,wk, the system
generates a new token t as follows:

P (wk+n = t|wk+n−1, ..., wk) =
|wk,...,wk+n−1,t|
|wk,...,wk+n−1,•| (2)

where |wk...wk+n−1t| is the amount of times
the the context wk+n−1,...,w1 is followed by t
in the training data, and |wk...wk+n−1 • | is the
amount of times the context appears followed by
any token. There is the possibility that the context
has never been encountered in the training data.
When this occurs, we back off to a smaller n-gram
model:

P (wk+n = t|wk+n−2, ..., wk) =
|wk,...,wk+n−2,•,t|
|wk,...,wk+n−2,•,•| (3)

The model may have to back-off multiple
times before it encounters context it has seen
in the training data. Once we back-off to the
point where we compute P (wn+k = t|wk), we
are guaranteed to have at least one non-zero
probability, because wk must have appeared in
the vocabulary for it to have been generated
previously.

Note that rather than backing off to a lower-
order n-gram model, we use a skip-gram model
which drops the words immediately preceding the
predicted word. The main motivation for this is
that it allows us to capture long-range dependen-
cies, which makes it into a better baseline compar-
ison for an LSTM.

4.3 Model Initialization

When producing lyrics with either the LSTM
or baseline model, we initialize with the
“<startVerse>” token. Once the model produces
a token, it becomes part of the context for the next
step of token generation. Our models are closed in
the sense that they only produce tokens that appear
in the training vocabulary.

4.4 LSTM Implementation

We used a Python implementation of an LSTM
from Jonathan Raiman3. The LSTM is built on
top of Theano (Bastien et al., 2012; Bergstra et
al., 2010). Following (Graves, 2013), we set the
amount of LSTM inputs/outputs to be equal to the
vocabulary size. Also, to avoid the vanishing gra-
dient problem when training RNNs, we clip the
gradients in the range [-1,1]. We train our LSTM
model using a Tesla K40 GPU on a single work-
station.

5 Evaluation Methods

In this section, we present automated methods for
evaluating the quality of generated lyrics. Ide-
ally, judging system output in terms of, e.g. flu-
ency, should be conducted using manual evalua-
tion. However, conducting formal human evalua-
tion is somewhat problematic. For a full qualita-
tive evaluation of a given artist that would assess
both similarity of style and novelty, the evaluator
would need to know that particular artist’s body
of work very well. Even finding annotators who
are well-versed in the general art of rap lyrics can
be challenging (Addanki and Wu, 2014). While
this may be possible for the present experiments
that focus on a single artist, it is hardly feasible for
larger-scale studies that will use our full data set
that contains the lyrics of 14 different artists. We
therefore propose an automated evaluation method
which we believe is able to capture two critical as-
pects of ghostwriting, which are in fact quite tricky
to capture together: being similar, yet different.

5.1 Similarity to existing lyrics

In order to evaluate the novelty of generated
lyrics, we compare the similarity of the generated
lyrics to the lyrics in our training set. We used an
algorithm proposed by (Mahedero et al., 2005)
for calculating the similarity between produced
lyrics and all verses from the same artist. This
algorithm is based on the well-known Inverse
Document Frequency, using cosine on document
vectors to calculate distance. First, we build the
Term-Document Matrix with weights for each
term in each song:

wij = fijlog(Nnj
) (4)

3https://github.com/JonathanRaiman/
theano_lstm
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where N is the total number of documents
(verses, in our case), nj is the number of verses
that contains term j and fij is the frequency of
term j in the ith verse. Using this matrix, we can
calculate the cosine distance between verses and
use it as a measure of similarity. When discussing
similarity, we refer to the max similarity: of all
verses it is most similar to, exactly how similar is
it? The lower the max similarity score, the more
novel the lyrics.

5.2 Numerical features of the lyrics

We also produced the features from (Hirjee and
Brown, 2010a) for our generated verses. The
statistics of these features are meant to represent
how effective we are in modeling an artist’s style.
The point of the system is not to produce arbitrary
rhymes; it is to produce rhyme types and rhyme
frequency that are similar to the target artist. Fol-
lowing (Malmi et al., 2015), the rhyme feature we
examine in this work is rhyme density. Rhyme
density is defined as the total number of rhymed
syllables divided by the total number of syllables.

6 Results

For the lyrics generation experiments reported
here, we used the rapper Fabolous as the artist
whose style we tried to emulate.

6.1 Example of Generated Lyrics (Warning:
Explicit Content)

Below is a sample of lyrics generated by the
LSTM model:

Line 1: i m old enough to know better young
enough to not give a fuck
Line 2: rather hold my head high and die then
live and duck
Line 3: i got ta fuck be up and little niggaz go
in
Line 4: when i m in the feds and scoped by
uncle sam
Line 5: dope and hunn ed grams rope and
hunn ed grams
Line 6: at the same time she jerking and wig-
gling
Line 7: smirking and giggling

While the pairs of rhyming end-lines in the gen-
erated lyrics are taken from the training data (the
max similarity is 0.41), no more than two lines

appear from a single verse. Though the gener-
ated lyrics aren’t novel in a strict sense, the LSTM
model is more effective than the n-gram model
at using lines from multiple verses (see next Sec-
tion 6.3). The rhyme density of this verse is 0.35,
which is almost equal to Fabolous’s average rhyme
density (0.34).

6.2 Quantitative Analysis

As previously mentioned, the key to effective
ghostwriting is to mirror an artist’s style, but
also providing original content. While vocabu-
lary and lyrical content are key components for an
artist’s style, this is inherently satisfied by using
words only from the training data. Thus, rhyme
style – specifically rhyme density – will be the
key performance indicator for imitating an artist’s
style. In terms of rap lyrics in general, a higher
rhyme density is often better. Therefore for our
system we would like a high rhyme density, but
with a low max similarity score (a higher nov-
elty). Figures 2 and 1 show the graph for rhyme
density and max similarity for the LSTM and n-
grams models, respectively. For the LSTM model
the values are graphed compared to training iter-
ation number – as the model becomes more fit to
the data. For the n-gram model they are graphed
dependent on n-gram value. For each n-gram
value, we generate 10 verses and compute the av-
erage value of the two metrics. One expects that
a perfectly fit LSTM model without regularization
would exactly reproduce lyrics from the training
data, and a high n-gram value would would also
produce duplicate lyrics. This is evident in the
graphs.

Figure 1: Values of rhyme density and max simi-
larity versus n-gram value for the n-gram model.
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Figure 2: Values of rhyme density and max sim-
ilarity versus iteration number when training the
LSTM model.

6.3 Correlation of Rhyme Density and Max
Similarity

Since exact replication would assuredly give a
higher rhyme density than randomly produced
lyrics, we desire a low correlation between rhyme
density and max similarity. The correlation be-
tween rhyme density and max similarity for the
LSTM model is 0.32, and for the n-gram model it
is 0.47. When examining Figures 1 and 2 one may
notice the anomalous points of high rhyme density
(at n = 6 on the n-gram graph and 3,000 iterations
for the LSTM model). After further inspection of
the lyrics at these points, we see the lyrics con-
tain repetitions of the exact same phrase. Since
words are repeated frequently, the rhyme density
of the lyrics is high (repeated words create rhymed
phonemes, according to the rhyme detection tool).
These points cause the similarity-density correla-
tions to be artificially lower. After removing these
data points, the LSTM model still has a lower
correlation than the n-gram model, but the gap is
much smaller: 0.71 compared to 0.75. Ultimately
however, this shows that the LSTM model is better
at generating original, rhyming lyrics.

6.4 Style Matching
Unfortunately, the correlation numbers do not dic-
tate specifically the effectiveness of the LSTM
model in the ghostwriting task. Instead, we can
look at that max similarity values of both systems
when they generate lyrics that produce a rhyme
density similar to the average rhyme density of
the target rapper. Looking at 100 randomly se-
lected verses, Fabolous has an average rhyme den-
sity of 0.34. To do our analysis, first we create
four regression lines, one for each metric (max

similarity and rhyme density) in each model (we
do not include the points of high rhyme density).
Next we use the two rhyme density lines to deter-
mine at which iteration/n value the systems gen-
erate a rhyme density of 0.34. After that we plug
these numbers into the two similarity lines to de-
termine what similarity is needed to achieve the
target rhyme density. The n-gram model line has
a similarity of 1.28 at this point (above the max
value of 1 for the metric), while the LSTM model
has a value of 0.59. Based on these numbers,
the LSTM model clearly outperforms the n-gram
model when it comes to making original lyrics that
are similar in style to our target rapper.

7 Conclusion

In this work, we have shown the effectiveness of
an LSTM model for generating novel lyrics that
are similar in style to a target artist. We com-
pare the performance of the LSTM model to a
much simpler system: an n-gram model. The re-
sults of our experiments show that, as an unsu-
pervised, non-template model, the LSTM model
is better able to produce novel lyrics that also re-
flect the rhyming style of the target artist. In fu-
ture work, we plan to use more data to train our
model, making it easier for our system to actually
identify rhyming pairs and use them in new con-
texts. We also plan to encode phoneme features of
words to improve rhyme discovery. Furthermore,
we plan to generate lyrics from artists with a vary-
ing vocabulary size to see if it is easier to generate
lyrics for an artist with a smaller vocabulary. In
terms of evaluation, we hope to incorporate some
method to evaluate the fluency of generated lyrics
(Addanki and Wu, 2014). Lastly, to further avoid
over-fitting to the training data and reproducing
lyrics with a high similarity, we plan to use weight
noise (Jim et al., 1996) to regularize our model.
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Abstract

ROUGE is a widely adopted, automatic
evaluation measure for text summariza-
tion. While it has been shown to corre-
late well with human judgements, it is bi-
ased towards surface lexical similarities.
This makes it unsuitable for the evalua-
tion of abstractive summarization, or sum-
maries with substantial paraphrasing. We
study the effectiveness of word embed-
dings to overcome this disadvantage of
ROUGE. Specifically, instead of measur-
ing lexical overlaps, word embeddings are
used to compute the semantic similarity of
the words used in summaries instead. Our
experimental results show that our pro-
posal is able to achieve better correlations
with human judgements when measured
with the Spearman and Kendall rank co-
efficients.

1 Introduction

Automatic text summarization is a rich field of re-
search. For example, shared task evaluation work-
shops for summarization were held for more than
a decade in the Document Understanding Con-
ference (DUC), and subsequently the Text Anal-
ysis Conference (TAC). An important element of
these shared tasks is the evaluation of participating
systems. Initially, manual evaluation was carried
out, where human judges were tasked to assess
the quality of automatically generated summaries.
However in an effort to make evaluation more
scaleable, the automatic ROUGE1 measure (Lin,
2004b) was introduced in DUC-2004. ROUGE
determines the quality of an automatic summary
through comparing overlapping units such as n-
grams, word sequences, and word pairs with hu-
man written summaries.

1Recall-Oriented Understudy of Gisting Evaluation

ROUGE is not perfect however. Two problems
with ROUGE are that 1) it favors lexical simi-
larities between generated summaries and model
summaries, which makes it unsuitable to evaluate
abstractive summarization, or summaries with a
significant amount of paraphrasing, and 2) it does
not make any provision to cater for the readability
or fluency of the generated summaries.

There has been on-going efforts to improve
on automatic summarization evaluation measures,
such as the Automatically Evaluating Summaries
of Peers (AESOP) task in TAC (Dang and
Owczarzak, 2009; Owczarzak, 2010; Owczarzak
and Dang, 2011). However, ROUGE remains as
one of the most popular metric of choice, as it has
repeatedly been shown to correlate very well with
human judgements (Lin, 2004a; Over and Yen,
2004; Owczarzak and Dang, 2011).

In this work, we describe our efforts to tackle
the first problem of ROUGE that we have iden-
tified above — its bias towards lexical similari-
ties. We propose to do this by making use of word
embeddings (Bengio et al., 2003). Word embed-
dings refer to the mapping of words into a multi-
dimensional vector space. We can construct the
mapping, such that the distance between two word
projections in the vector space corresponds to the
semantic similarity between the two words. By in-
corporating these word embeddings into ROUGE,
we can overcome its bias towards lexical similar-
ities and instead make comparisons based on the
semantics of words sequences. We believe that
this will result in better correlations with human
assessments, and avoid situations where two word
sequences share similar meanings, but get unfairly
penalized by ROUGE due to differences in lexico-
graphic representations.

As an example, consider these two phrases: 1)
It is raining heavily, and 2) It is pouring. If we
are performing a lexical string match, as ROUGE
does, there is nothing in common between the
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terms “raining”, “heavily”, and “pouring”. How-
ever, these two phrases mean the same thing. If
one of the phrases was part of a human written
summary, while the other was output by an auto-
matic summarization system, we want to be able
to reward the automatic system accordingly.

In our experiments, we show that word embed-
dings indeed give us better correlations with hu-
man judgements when measured with the Spear-
man and Kendall rank coefficient. This is a signif-
icant and exciting result. Beyond just improving
the evaluation prowess of ROUGE, it has the po-
tential to expand the applicability of ROUGE to
abstractive summmarization as well.

2 Related Work

While ROUGE is widely-used, as we have noted
earlier, there is a significant body of work study-
ing the evaluation of automatic text summarization
systems. A good survey of many of these mea-
sures has been written by Steinberger and Ježek
(2012). We will thus not attempt to go through
every measure here, but rather highlight the more
significant efforts in this area.

Besides ROUGE, Basic Elements (BE) (Hovy
et al., 2005) has also been used in the DUC/TAC
shared task evaluations. It is an automatic method
which evaluates the content completeness of a
generated summary by breaking up sentences into
smaller, more granular units of information (re-
ferred to as “Basic Elements”).

The pyramid method originally proposed by
Passonneau et al. (2005) is another staple in
DUC/TAC. However it is a semi-automated
method, where significant human intervention is
required to identify units of information, called
Summary Content Units (SCUs), and then to
map content within generated summaries to these
SCUs. Recently however, an automated variant of
this method has been proposed (Passonneau et al.,
2013). In this variant, word embeddings are used,
as we are proposing in this paper, to map text con-
tent within generated summaries to SCUs. How-
ever the SCUs still need to be manually identified,
limiting this variant’s scalability and applicability.

Many systems have also been proposed in the
AESOP task in TAC from 2009 to 2011. For ex-
ample, the top system reported in Owczarzak and
Dang (2011), AutoSummENG (Giannakopoulos
and Karkaletsis, 2009), is a graph-based system
which scores summaries based on the similarity

between the graph structures of the generated sum-
maries and model summaries.

3 Methodology

Let us now describe our proposal to integrate word
embeddings into ROUGE in greater detail.

To start off, we will first describe the word em-
beddings that we intend to adopt. A word embed-
ding is really a function W , where W : w → Rn,
and w is a word or word sequence. For our pur-
pose, we want W to map two words w1 and w2

such that their respective projections are closer
to each other if the words are semantically sim-
ilar, and further apart if they are not. Mikolov
et al. (2013b) describe one such variant, called
word2vec, which gives us this desired property2.
We will thus be making use of word2vec.

We will now explain how word embeddings
can be incorporated into ROUGE. There are sev-
eral variants of ROUGE, of which ROUGE-1,
ROUGE-2, and ROUGE-SU4 have often been
used. This is because they have been found to cor-
relate well with human judgements (Lin, 2004a;
Over and Yen, 2004; Owczarzak and Dang, 2011).
ROUGE-1 measures the amount of unigram over-
lap between model summaries and automatic sum-
maries, and ROUGE-2 measures the amount of bi-
gram overlap. ROUGE-SU4 measures the amount
of overlap of skip-bigrams, which are pairs of
words in the same order as they appear in a sen-
tence. In each of these variants, overlap is com-
puted by matching the lexical form of the words
within the target pieces of text. Formally, we can
define this as a similarity function fR such that:

fR(w1, w2) =

{
1, if w1 = w2

0, otherwise
(1)

wherew1 andw2 are the words (could be unigrams
or n-grams) being compared.

In our proposal3, which we will refer to as
ROUGE-WE, we define a new similarity function
fWE such that:

fWE(w1, w2) =

{
0, if v1or v2 are OOV
v1 · v2, otherwise

(2)

where w1 and w2 are the words being compared,
and vx = W (wx). OOV here means a situation

2The effectiveness of the learnt mapping is such that we
can now compute analogies such as king − man + woman =
queen.

3https://github.com/ng-j-p/rouge-we
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where we encounter a word w that our word em-
bedding function W returns no vector for. For
the purpose of this work, we make use of a set
of 3 million pre-trained vector mappings4 trained
from part of Google’s news dataset (Mikolov et al.,
2013a) for W .
Reducing OOV terms for n-grams. With our
formulation for fWE , we are able to compute
variants of ROUGE-WE that correspond to those
of ROUGE, including ROUGE-WE-1, ROUGE-
WE-2, and ROUGE-WE-SU4. However, despite
the large number of vector mappings that we have,
there will still be a large number of OOV terms in
the case of ROUGE-WE-2 and ROUGE-WE-SU4,
where the basic units of comparison are bigrams.

To solve this problem, we can compose individ-
ual word embeddings together. We follow the sim-
ple multiplicative approach described by Mitchell
and Lapata (2008), where individual vectors of
constituent tokens are multiplied together to pro-
duce the vector for a n-gram, i.e.,

W (w) = W (w1)× . . .×W (wn) (3)

where w is a n-gram composed of individual word
tokens, i.e., w = w1w2 . . . wn. Multiplication be-
tween two vectors W (wi) = {vi1, . . . , vik} and
W (wj) = {vj1, . . . , vjk} in this case is defined
as:

{vi1 × vj1, . . . , vik × vjk} (4)

4 Experiments

4.1 Dataset and Metrics
For our experiments, we make use of the dataset
used in AESOP (Owczarzak and Dang, 2011), and
the corresponding correlation measures.

For clarity, let us first describe the dataset used
in the main TAC summarization task. The main
summarization dataset consists of 44 topics, each
of which is associated with a set of 10 docu-
ments. There are also four human-curated model
summaries for each of these topics. Each of the
51 participating systems generated a summary for
each of these topics. These automatically gener-
ated summaries, together with the human-curated
model summaries, then form the basis of the
dataset for AESOP.

To assess how effective an automatic evaluation
system is, the system is first tasked to assign a

4https://drive.google.com/file/d/
0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=
sharing

score for each of the summaries generated by all of
the 51 participating systems. Each of these sum-
maries would also have been assessed by human
judges using these three key metrics:
Pyramid. As reviewed in Section 2, this is a semi-
automated measure described in Passonneau et al.
(2005).
Responsiveness. Human judges are tasked to
evaluate how well a summary adheres to the infor-
mation requested, as well as the linguistic quality
of the generated summary.
Readability. Human judges give their judgement
on how fluent and readable a summary is.

The evaluation system’s scores are then tested to
see how well they correlate with the human assess-
ments. The correlation is evaluated with a set of
three metrics, including 1) Pearson correlation (P),
2) Spearman rank coefficient (S), and 3) Kendall
rank coefficient (K).

4.2 Results
We evaluate three different variants of our
proposal, ROUGE-WE-1, ROUGE-WE-2, and
ROUGE-WE-SU4, against their corresponding
variants of ROUGE (i.e., ROUGE-1, ROUGE-2,
ROUGE-SU4). It is worth noting here that in AE-
SOP in 2011, ROUGE-SU4 was shown to corre-
late very well with human judgements, especially
for pyramid and responsiveness, and out-performs
most of the participating systems.

Tables 1, 2, and 3 show the correlation of the
scores produced by each variant of ROUGE-WE
with human assessed scores for pyramid, respon-
siveness, and readability respectively. The tables
also show the correlations achieved by ROUGE-1,
ROUGE-2, and ROUGE-SU4. The best result for
each column has been bolded for readability.

Measure P S K
ROUGE-WE-1 0.9492 0.9138 0.7534
ROUGE-WE-2 0.9765 0.8984 0.7439

ROUGE-WE-SU4 0.9783 0.8808 0.7198
ROUGE-1 0.9661 0.9085 0.7466
ROUGE-2 0.9606 0.8943 0.7450

ROUGE-SU4 0.9806 0.8935 0.7371

Table 1: Correlation with pyramid scores, mea-
sured with Pearson r (P), Spearman ρ (S), and
Kendall τ (K) coefficients.

ROUGE-WE-1 is observed to correlate very
well with the pyramid, responsiveness, and read-
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Measure P S K
ROUGE-WE-1 0.9155 0.8192 0.6308
ROUGE-WE-2 0.9534 0.7974 0.6149

ROUGE-WE-SU4 0.9538 0.7872 0.5969
ROUGE-1 0.9349 0.8182 0.6334
ROUGE-2 0.9416 0.7897 0.6096

ROUGE-SU4 0.9545 0.7902 0.6017

Table 2: Correlation with responsiveness scores,
measured with Pearson r (P), Spearman ρ (S), and
Kendall τ (K) coefficients.

Measure P S K
ROUGE-WE-1 0.7846 0.4312 0.3216
ROUGE-WE-2 0.7819 0.4141 0.3042

ROUGE-WE-SU4 0.7931 0.4068 0.3020
ROUGE-1 0.7900 0.3914 0.2846
ROUGE-2 0.7524 0.3975 0.2925

ROUGE-SU4 0.7840 0.3953 0.2925

Table 3: Correlation with readability scores, mea-
sured with Pearson r (P), Spearman ρ (S), and
Kendall τ (K) coefficients.

ability scores when measured with the Spear-
man and Kendall rank correlation. However,
ROUGE-SU4 correlates better with human assess-
ments for the Pearson correlation. The key differ-
ence between the Pearson correlation and Spear-
man/Kendall rank correlation, is that the former
assumes that the variables being tested are nor-
mally distributed. It also further assumes that the
variables are linearly related to each other. The lat-
ter two measures are however non-parametric and
make no assumptions about the distribution of the
variables being tested. We argue that the assump-
tions made by the Pearson correlation may be too
constraining, given that any two independent eval-
uation systems may not exhibit linearity.

Looking at the two bigram based variants,
ROUGE-WE-2 and ROUGE-WE-SU4, we ob-
serve that ROUGE-WE-2 improves on ROUGE-2
most of the time, regardless of the correlation met-
ric used. This lends further support to our proposal
to use word embeddings with ROUGE.

However ROUGE-WE-SU4 is only better than
ROUGE-SU4 when evaluating readability. It does
consistently worse than ROUGE-SU4 for pyramid
and responsiveness. The reason for this is likely
due to how we have chosen to compose unigram
word vectors into bigram equivalents. The mul-

tiplicative approach that we have taken worked
better for ROUGE-WE-2 which looks at contigu-
ous bigrams. These are easier to interpret seman-
tically than skip-bigrams (the target of ROUGE-
WE-SU4). The latter, by nature of their construc-
tion, loses some of the semantic meaning attached
to each word, and thus may not be as amenable to
the linear composition of word vectors.

Owczarzak and Dang (2011) reports only the
results of the top systems in AESOP in terms of
Pearson’s correlation. To get a more complete
picture of the usefulness of our proposal, it will
be instructive to also compare it against the other
top systems in AESOP, when measured with the
Spearman/Kendall correlations. We show in Ta-
ble 4 the top three systems which correlate best
with the pyramid score when measured with the
Spearman rank coefficient. C S IIITH3 (Ku-
mar et al., 2011) is a graph-based system which
assess summaries based on differences in word
co-locations between generated summaries and
model summaries. BE-HM (baseline by the orga-
nizers of the AESOP task) is the BE system (Hovy
et al., 2005), where basic elements are identi-
fied using a head-modifier criterion on parse re-
sults from Minipar. Lastly, catolicasc1 (de
Oliveira, 2011) is also a graph-based system which
frames the summary evaluation problem as a max-
imum bipartite graph matching problem.

Measure S K
ROUGE-WE-1 0.9138 0.7534

C S IIITH3 0.9033 0.7582
BE-HM 0.9030 0.7456

catolicasc1 0.9017 0.7351

Table 4: Correlation with pyramid scores of
top systems in AESOP 2011, measured with the
Spearman ρ (S), and Kendall τ (K) coefficients.

We see that ROUGE-WE-1 displays better cor-
relations with pyramid scores than the top system
in AESOP 2011 (i.e., C S IIITH3) when mea-
sured with the Spearman coefficient. The latter
does slightly better however for the Kendall coef-
ficient. This observation further validates that our
proposal is an effective enhancement to ROUGE.

5 Conclusion

We proposed an enhancement to the popu-
lar ROUGE metric in this work, ROUGE-WE.
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ROUGE is biased towards identifying lexical sim-
ilarity when assessing the quality of a generated
summary. We improve on this by incorporat-
ing the use of word embeddings. This enhance-
ment allows us to go beyond surface lexicographic
matches, and capture instead the semantic similar-
ities between words used in a generated summary
and a human-written model summary. Experi-
menting on the TAC AESOP dataset, we show that
this proposal exhibits very good correlations with
human assessments, measured with the Spear-
man and Kendall rank coefficients. In particular,
ROUGE-WE-1 outperforms leading state-of-the-
art systems consistently.

Looking ahead, we want to continue building
on this work. One area to improve on is the use
of a more inclusive evaluation dataset. The AE-
SOP summaries that we have used in our experi-
ments are drawn from systems participating in the
TAC summarization task, where there is a strong
exhibited bias towards extractive summarizers. It
will be helpful to enlarge this set of summaries to
include output from summarizers which carry out
substantial paraphrasing (Li et al., 2013; Ng et al.,
2014; Liu et al., 2015).

Another immediate goal is to study the use of
better compositional embedding models. The gen-
eralization of unigram word embeddings into bi-
grams (or phrases), is still an open problem (Yin
and Schütze, 2014; Yu et al., 2014). A better com-
positional embedding model than the one that we
adopted in this work should help us improve the
results achieved by bigram variants of ROUGE-
WE, especially ROUGE-WE-SU4. This is im-
portant because earlier works have demonstrated
the value of using skip-bigrams for summarization
evaluation.

An effective and accurate automatic evaluation
measure will be a big boon to our quest for bet-
ter text summarization systems. Word embeddings
add a promising dimension to summarization eval-
uation, and we hope to expand on the work we
have shared to further realize its potential.
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Abstract

Automated text summarization is aimed at
extracting essential information from orig-
inal text and presenting it in a minimal,
often predefined, number of words. In
this paper, we introduce a new approach
for unsupervised extractive summariza-
tion, based on the Minimum Description
Length (MDL) principle, using the Krimp
dataset compression algorithm (Vreeken
et al., 2011). Our approach represents a
text as a transactional dataset, with sen-
tences as transactions, and then describes
it by itemsets that stand for frequent se-
quences of words. The summary is then
compiled from sentences that compress
(and as such, best describe) the document.
The problem of summarization is reduced
to the maximal coverage, following the
assumption that a summary that best de-
scribes the original text, should cover most
of the word sequences describing the doc-
ument. We solve it by a greedy algorithm
and present the evaluation results.

1 Introduction

Many unsupervised approaches for extractive text
summarization follow the maximal coverage prin-
ciple (Takamura and Okumura, 2009; Gillick and
Favre, 2009), where the extract that maximally
covers the information contained in the source
text, is selected. Since the exhaustive solution de-
mands an exponential number of tests, approxima-
tion techniques, such as a greedy approach or a
global optimization of a target function, are uti-
lized. It is quite common to measure text infor-
mativeness by the frequency of its components–
words, phrases, concepts, and so on.
A different approach that received much less atten-
tion is based on the Minimum Description Length
(MDL) principle, defining the best summary as the

one that leads to the best compression of the text
by providing its shortest and most concise descrip-
tion. The MDL principle is widely useful in com-
pression techniques of non-textual data, such as
summarization of query results for OLAP appli-
cations. (Lakshmanan et al., 2002; Bu et al., 2005)
However, only a few works on text summarization
using MDL can be found in the literature. Authors
of (Nomoto and Matsumoto, 2001) used K-means
clustering extended with MDL principle for find-
ing diverse topics in the summarized text. Nomoto
in (2004) also extended the C4.5 classifier with
MDL for learning rhetorical relations. In (Nguyen
et al., 2015) the problem of micro-review summa-
rization is formulated within the MDL framework,
where the authors view the tips as being encoded
by snippets, and seek to find a collection of snip-
pets that produce the encoding with the minimum
number of bits.
This paper introduces a new MDL-based approach
for extracting relevant sentences into a summary.
The approach represents documents as a sequen-
tial transactional dataset and then compresses it by
replacing frequent sequences of words by codes.
The summary is then compiled from sentences that
best compress (or describe) the document content.
The intuition behind this approach says that a sum-
mary that best describes the original text should
cover its most frequent word sequences. As such,
the problem of summarization is very naturally re-
duced to the maximal coverage problem. We solve
it by the greedy method which ranks sentences by
their coverage of best compressing frequent word
sequences and selects the top-ranked sentences to
a summary. There are a few works that applied
the common data mining techniques for calculat-
ing frequent itemsets from transactional data to
the text summarization task (Baralis et al., 2012;
Agarwal et al., 2011; Dalal and Zaveri, 2013),
but none of them followed the MDL principle.
The comparative results on three different corpora
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show that our approach outperforms other unsu-
pervised state-of-the-art summarizers.

2 Methodology

The proposed summarization methodology, de-
noted by Gamp1, is based on the MDL princi-
ple that is defined formally as follows (Mitchell,
1997). Given a set of modelsM, a modelM ∈M
is considered the best if it minimizes L(M) +
L(D|M) where L(M) is the bit length of the de-
scription of M and L(D|M) is the bit length of
the dataset D encoded with M .
In our approach, we first represent an input text
as a transactional dataset. Then, using the Krimp
dataset compression algorithm (Vreeken et al.,
2011), we build the MDL for this dataset using
its frequent sequential itemsets (word sequences).
The sentences that cover most frequent word se-
quences are chosen to a summary. The following
subsections describe our methodology in detail.

2.1 Problem statement
We are given a single text or a collection of texts
about the same topic, composed of a set of sen-
tences S1, . . . , Sn over terms t1, . . . , tm. The
word limit W is defined for the final summary.
We represent a text as a sequential transactional
dataset. Such a dataset consists of transactions
(sentences), denoted by T1, . . . , Tn, and unique
items (terms2) I1, . . . , Im. Items are unique across
the entire dataset. The number n of transactions
is called the size of a dataset. Transaction Ti is
a sequence of items from I1, . . . , Im, denoted by
Ti = (Ii1 , . . . , Iik); the same item may appear in
different places within the same transaction. Sup-
port of an item sequence s in the dataset is the ra-
tio of transactions containing it as a subsequence
to the dataset size n, i.e., supp(s) = |{T∈D|s⊆T}|

n .
Given a support bound Supp ∈ [0, 1], a sequence
s is called frequent if supp(s) ≥ Supp.
According to the MDL principle, we are inter-
ested in the minimal size of a compressed dataset
D|CT after frequent sequences in D are encoded
with the compressing set–codes from the Coding
Table CT , where shorter codes are assigned to
more frequent sequences. The description length
of non-encoded terms is assumed proportional to
their length (number of characters). We rank sen-
tences by their coverage of the best compressing

1abbreviation of two words: GAp and kriMP
2normalized words following tokenization, stemming,

and stop-word removal

set, which is the number of CT members in the
sentence. The sentences with the highest cover-
age score are added to the summary as long as its
length does not exceed W .

2.2 Krimping text
The purpose of the Krimp algorithm (Vreeken et
al., 2011) is to use frequent sets (or sequences)
to compress a transactional database in order to
achieve MDL for that database. Let FreqSeq be
the set of all frequent sequences in the database. A
collection CT of sequences from FreqSeq (called
the Coding Table) is called best when it minimizes
L(CT )+L(D|CT ). We are interested in both ex-
act and inexact sequences, allowing a sequence to
have gaps inside it as long as the ratio of sequence
length to sequence length with gaps does not ex-
ceed a pre-set parameter Gap ∈ (0, 1]. Sequences
with gaps make sense in text data, as phrasing of
the same fact or entity in different sentences may
differ. In order to encode the database, every mem-
ber s ∈ CT is associated with its binary prefix
code c (such as Huffman codes for 4 members: 0,
10, 110, 111), so that the most frequent code has
the shortest length. We use an upper bound C on
the number of encoded sequences in the coding ta-
ble CT , in order to limit document compression.
Krimp-based extractive summarization (see Algo-
rithm 1) is given a document D with n sentences
and m unique terms. The algorithm parameters
are described in Table 1:

# note description affects
1 W summary words limit summary length
2 Supp minimal support bound – number of frequent

minimal fraction of word sequences
sentences containing |FreqSeq|,
a frequent sequence compression rate

3 C maximal number of codes as in 2
4 Gap maximal allowed

sequence gap ratio as in 2

Table 1: Parameters of Algorithm 1.

The algorithm consists of the following steps.

1. We find all frequent term sequences in the
document using Apriori-TID algorithm (R
and R, 1994) for the given Supp and Gap
and store them in set FreqSeq , which is kept
in Standard Candidate Order3. The coding ta-
ble CT is initialized to contain all single nor-
malized terms and their frequencies. CT is
always kept in Standard Cover Order4 (Steps

3first, sorted by increasing support, then by decreasing se-
quence length, then lexicographically

4first, sorted by decreasing sequence length, then by de-
creasing support, and finally, in lexicographical order
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1 and 2 in Algorithm 1).

2. We repeatedly choose frequent sequences
from the set FreqSeq so that the size of the
encoded dataset is minimal, with every se-
lected sequence replaced by its code. Selec-
tion is done by computing the decrease in the
size of the encoding when each one of the se-
quences is considered to be a candidate to be
added to CT (Step 3 in Algorithm 1).

3. The summary is constructed by incremen-
tally adding sentences with the highest cov-
erage of encoded term sequences (Step 4 in
Algorithm 1) that are not covered by previ-
ously selected sentences. The sentences are
selected in the greedy manner as long as the
word limit W is not exceeded.

Algorithm 1: Gamp: Krimp-based extractive
summarization with gaps

Input: (1) A document, containing sentences
S1, . . . , Sn after tokenization,
stemming and stop-word removal;

(2) normalized terms T1, . . . , Tm;
(3) summary size W
(3) limit C on the number of codes to use;
(4) minimal support bound Supp;
(5) maximal gap ratio Gap.

Output: Extractive summary Summary
/* STEP 1: Frequent sequence mining */
FreqSeq ← inexact frequent sequences of terms
from {T1, . . . , Tm} appearing in at least Supp fraction
of sentences and having a gap ratio of at least Gap;
Sort FreqSeq according to Standard Candidate Order;
/* STEP 2: Initialize the coding table */
Add all terms T1, . . . , Tm and their support to CT ;
Keep CT always sorted according to Standard Cover
Order;
Initialize prefix codes according to the order of
sequences in CT ; /* STEP 3: Find the best encoding */
EncodedData ← PrefixEncoding({S1, . . . , Sn}, CT );
CodeCount ← 0;
while CodeCount < B and FreqSeq 6= ∅ do

BestCode ← c ∈ FreqSeq such that
L(CT ∪ {c}) +
L(PrefixEncoding({S1, . . . , Sn}, CT ∪ {c})) is
minimal;
CT ← CT ∪ {BestCode};
FreqSeq ← FreqSeq \ {BestCode};
Remove supersets of BestCode from FreqSeq ;
CodeCount++;

end
Summary ← ∅; /* STEP 4: Build the summary */
while #words(Summary) < W do

Find the sentence Si that covers the largest set T of
terms in CT and add it to Summary ;
Remove terms of T from CT ;

end
return Summary

Example 2.1 Let dataset D contain following
three sentences (taken from the ”House of cards”
TV show):

S1 = A hunter must stalk his prey until the hunter becomes the hunted.
S2 = Then the prey becomes the predator.
S3 = Then the predator and the hunter fight.

After stemming, tokenization and stop-word re-
moval we obtain unique (stemmed) terms:

t1 = hunter, t2 = must, t3 = stalk, t4 = prei,
t5 = becom, t6 = hunt, t7 = predat, t8 = fight.
supp(t1) = supp(t4) = supp(t5) = supp(t7) = 2

3 .
supp(t2) = supp(t3) = supp(t8) = 1

3 .

Now we can view sentences as the following se-
quences of normalized terms.

S1 = (t1, t2, t3, t4, t1, t5, t4)
S2 = (t4, t5, t7)
S3 = (t7, t1, t8)

Initial coding table CT will contain all fre-
quent single terms in Standard Cover Order:
t5, t1, t7, t4, t8, t2, t3. Let the minimal support
bound be 2

3 , i.e., to be frequent a sequence must
appear in at least 2 sentences, and let the gap ra-
tio be 1

2 . Also, let the limit C be 4, meaning that
only the first four entries of the coding table will
be used for encoding. There exists a frequent se-
quence (t4, t5) that appears twice in the text, once
in S1 with a gap and once in S2 without a gap. We
add it to the coding table according to the Stan-
dard Cover Order, generate prefix codes for the
first four entries, and get

CT =

seq supp code code len
(prei, becom) 2/3 0 1
becom 2/3 10 2
hunter 2/3 110 3
predat 2/3 111 3
prei 2/3 − −
... ... − −

Now S1 covers 3 out of 4 entries in CT , while S2

and S3 cover 2 terms each. If our summary is to
contain just one sentence, we select S1.

3 Experimental settings and results

We performed experiments on three corpora from
the Document Understanding Conference (DUC):
2002, 2004, and 2007 (duc, 2002 2007), summa-
rized in Table 2. DUC 2002 and 2007 each con-
tains a set of single documents, and DUC 2004
contains 50 sets of 10 related documents. We
generated summaries per single documents in the
DUC 2002 and 2007 corpora, and per each set
of related documents (by considering each set
of documents as one meta-document) in DUC
2004, following the corresponding length restric-
tions. The summarization quality was measured
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corpus # documents # summaries summ len doc size (KB) type
DUC’02 533 2-3 100 1-20 SD
DUC’04 50 4 100 20-89 MD (50x10)
DUC’07 23 4 250 28-131 SD

Table 2: Corpora statistics.

by the ROUGE-1 and ROUGE-2 (Lin, 2004) re-
call scores, with the word limit indicated in Ta-
ble 2, without stemming and stopword removal.
The results of the introduced algorithm (Gamp)
may be affected by several input parameters: min-
imum support (Supp), codes limit (C), and the
maximal gap allowed between frequent words
(Gap). In order to find the best algorithm set-
tings for a general case, we performed experi-
ments that explored the impact of these parame-
ters on the summarization results. First, we exper-
imented with different values of support count in
the range of [2, 10]. The results show that we get
the best summaries using the sequences that occur
in at least four document sentences.
A limit on the number of codes is an additional
parameter.We explored the impact of this param-
eter on the quality of generated summaries. As
we could conclude from our experiments, the best
summarization results are obtained if this param-
eter is set to the maximal number of words in the
summary, W . Consequently, we used 100 codes
for summarizing DUC 2002 and DUC 2004 docu-
ments and 250 codes for DUC 2007 documents.
The maximal gap ratio defines a pattern for gener-
ating the frequent sequences and has a direct effect
on their structure and number. Our experiments
showed that allowing a small gap between words
of a sequence helps to improve slightly the rank-
ing of sentences, but the improvement is not sig-
nificant. Thus we used Gap = 0.8 in comparative
experiments for all corpora. The resulting settings
for each corpus are shown in Table 3.

Corpus Supp Max. codes Gap
DUC 2002 and 2004 4 100 0.8
DUC 2007 4 250 0.8

Table 3: Best settings.

We compared the Gamp algorithm with the two
known unsupervised state-of-the-art summarizers
denoted by Gillick (Gillick and Favre, 2009) and
McDonald (McDonald, 2007). As a baseline, we
used a very simple approach that takes first sen-
tences to a summary (denoted by TopK). Table 4
contains the results of comparative evaluations.
The best scores are shown in bold. Gamp out-

performed the other methods on all datasets (us-
ing ROUGE-1 score). The difference between the
scores of Gamp and Gillick (second best system)
on DUC 2007 is highly significant according to
the Wilcoxon matched pairs test. Based on the
same test, the difference of scores obtained on the
DUC 2004 is not statistically significant. On the
DUC 2002, Gamp is ranked first, with insignifi-
cant difference from the second best (McDonald’s)
scores. Based on this result, we can conclude
that MDL-based summarization using frequent se-
quences works better on long documents or multi-
document domain. Intuitively, it is a very logical
conclusion, because single short documents do not
contain a sufficient number of frequent sequences.
It is noteworthy that, in addition to the greedy ap-
proach, we also evaluated the global optimization
with maximizing coverage and minimizing redun-
dancy using Linear Programming (LP). However,
experimental results did not provide any improve-
ment over the greedy approach. Therefore, we re-
port only the results of the greedy solution.

ROUGE-1 Recall ROUGE-2 Recall
Algorithm DUC’02 DUC’04 DUC’07 DUC’02 DUC’04 DUC’07

Gamp 0.4421 0.3440 0.3959 0.1941 0.0829 0.0942
Gillick 0.4207 0.3314 0.3518 0.1773 0.0753 0.0650
McDonald 0.4391 0.2955 0.3500 0.1981 0.0556 0.0672
TopK 0.4322 0.2973 0.3525 0.1867 0.0606 0.0706

Table 4: Comparative results.

4 Conclusions

In this paper, we introduce a new approach for
summarizing text documents based on their Min-
imal Description Length. We describe documents
using frequent sequences of their words. The sen-
tences with the highest coverage of the best com-
pressing set are selected to a summary. The ex-
perimental results show that this approach outper-
forms other unsupervised state-of-the-art methods
when summarizing long documents or sets of re-
lated documents. We would not recommend using
our approach for summarizing single short doc-
uments which do not contain enough content for
providing a high-quality description. In the future,
we intend to apply the MDL method to keyword
extraction, headline generation, and other related
tasks.
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Abstract

Predicting the success of referring expres-
sions (RE) is vital for real-world applica-
tions such as navigation systems. Tradi-
tionally, research has focused on studying
Referring Expression Generation (REG)
in virtual, controlled environments. In this
paper, we describe a novel study of spa-
tial references from real scenes rather than
virtual. First, we investigate how humans
describe objects in open, uncontrolled sce-
narios and compare our findings to those
reported in virtual environments. We show
that REs in real-world scenarios differ sig-
nificantly to those in virtual worlds. Sec-
ond, we propose a novel approach to quan-
tifying image complexity when complete
annotations are not present (e.g. due to
poor object recognition capabitlities), and
third, we present a model for success pre-
diction of REs for objects in real scenes.
Finally, we discuss implications for Nat-
ural Language Generation (NLG) systems
and future directions.

1 Introduction

REG has attracted considerable interest in the
NLG community over the past 20 years (Krahmer
and van Deemter, 2011; Gatt et al., 2014). While
initially, the standard evaluation metric for REG
was human-likeness, as compared to human cor-
pora similarity as in TUNA (Gatt et al., 2009),
the field has moved on to evaluating REG effec-
tiveness by measuring task success in virtual in-
teractive environments (Byron et al., 2009; Gar-
gett et al., 2010; Janarthanam et al., 2012). Vir-
tual environments however eliminate real-world
uncertainty, such object recognition errors or clut-
tered scenes. In this paper, we investigate whether
the lessons learnt in virtual environments can be

transferred to real-world scenes. We consider the
case where we are uncertain about the scene itself,
i.e. we assume that the complexity of the scene
is hidden and we are interested in identifying a
specific object, and thus our work differs from
approaches that generate descriptions for images
such as (Mitchell et al., 2012; Feng and Lapata,
2013; Yang et al., 2011; Yatskar et al., 2014).

Related work has focused on computer gener-
ated objects (van Deemter et al., 2006; Viethen
and Dale, 2008), crafts (Mitchell et al., 2010), or
small objects in a simple background (Mitchell et
al., 2013a; FitzGerald et al., 2013). One notable
exception is the recent work by Kazemzadeh et
al. (2014), who investigate referring expressions
of objects in “complex photographs of real-world
cluttered scenes”. They report that REs are heavily
influenced by the object type. Here, we are inter-
ested in studying REs for visual objects in urban
scenes. As the success of a RE is heavily depen-
dent on the complexity of the scene as well as its
linguistic features, we are interested in modelling
and thus predicting the success of a RE.

Initially, this paper presents and analyses a
novel, real-world corpus REAL (to be released) –
“Referring Expression Anchored Language” (Sec-
tion 2), and compares the findings to those re-
ported in virtual worlds (Gargett et al., 2010). We
then provide a detailed analysis of how syntactic
and semantic features contribute to the success of
REs (Sections 4.1, 4.2, 4.3), accounting for unob-
servable latent variables, such as the complexity
of the visual scene (as described in Section 3). Fi-
nally, we summarise our work and discuss the im-
plications of our work for NLG systems (Section
5). The dataset and models will be released.

2 The REAL Corpus

The REAL corpus contains a collection of images
of real-world urban scenes (Fig. 1) together with
verbal descriptions of target objects (see Fig. 2)
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Figure 1: Original picture. Figure 2: Target object in yellow
box.

Figure 3: The identified object by
the validators.

generated by humans, paired with data on how
successful other people were able to identify the
same object based on these descriptions (Fig. 3).
The data was collected through a web-based inter-
face. The images were taken in Edinburgh (Scot-
land, UK), very early one summer morning. This
was necessary to reduce the occlusion of city ob-
jects from buses and crowds, and to minimise
lighting and weather variations between images.

2.1 Experimental Setup

There were 190 participants recruited (age be-
tween 16 to 71). Each participant was presented
with an urban image (Fig. 1), where the target ob-
ject was outlined by a yellow box (Fig. 2), and was
asked to describe the target using free text. After
completing a (self-specified) number of tasks, par-
ticipants were then asked to validate descriptions
provided by other participants by clicking on the
object using previously unseen images (Fig. 3).

# participants 190
# images/ stimuli 32
# descriptions 868
# verifications 2618
− ambiguous 201
− not found 75
− correct 1994
− incorrect 251
− NA 7

Table 1: The REAL corpus

Overall, 868 descriptions across 32 images were
collected, averaging around 27 descriptions per
image. The balance of generation and validations
was adjusted to ensure that all descriptions were
identified by at least 3 other participants, generat-
ing 2618 image tag verifications. All cases were
manually checked to determine if the ‘correct’
(green) or ‘incorrect’ (red) target had been identi-

fied Fig. 3. Overall, 76.2% of human descriptions
provided were successfully identified. For the ex-
periments reported in following sections, we sum-
marised answers categorised as ‘incorrect’, ‘ambi-
tious’ and ‘not found’ as unsuccessful.

2.2 Comparison to GIVE-2 Corpus

We now compare this data with human data gen-
erated for the GIVE-2 challenge (Gargett et al.,
2010). In GIVE-2, the target objects have dis-
tinct attributes, such as colour and position. For
instance, an effective RE in GIVE-2 could be “the
third button from the second row”. In real-world
situations though, object properties are less well
defined, making a finite set of pre-defined quali-
ties unfeasible. Consider, for instance, the build-
ing highlighted in Figure 2, for which the follow-
ing descriptions were collected:

1. The Austrian looking white house with the dark
wooden beams at the water side.

2. The white building with the x-shape balconies. It
seems it’s new.

3. The white building with the balconies by the river.
4. Apartments with balconies.
5. The nearest house on right side. It’s black and white.
6. The white and black building on the far right, it has

lots of triangles in its design.
7. The rightmost house with white walls and wood fin-

ishings.

It is evident that the REAL users refer to a va-
riety of object qualities. We observe that all par-
ticipants refer to the colour of the building (white,
black and white, greyish-whitish) and some men-
tion location (by the river, at the water side).

Experimental Factors influencing Task Per-
formance: In REAL, task success is defined as
the ability to correctly identify an object, whereas
in GIVE-2, task success refers to the successful
completion of the navigation task. In contrast to
GIVE-2, not all REAL participants were able to
correctly identify the referred objects (76.2% task
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GIVE-2 REAL
German English

Overall task success 100% 100% 76.2%
Task success (female) 100% 100% 78.8%
Task success (male) 100% 100% 69.6%
Length of descriptions
(no. words)

5.2 4.7 16.01

Length of descriptions
(female)

NA NA 97.36

Length of descriptions
(male)

NA NA 91.38

Table 2: Descriptive statistics for GIVE-2 and
REAL

success). We assume that this is because GIVE-
2 was an interactive setup, where the participants
were able to engage in a clarification dialogue.
Gender: In REAL, gender was not a significant
factor with respect to task success (Mann-Whitney
U test, p = 0.2). Length of REs (no. words): In
REAL, females tend to provide lengthier REs than
males, however the difference is not statistically
significant (Mann-Whitney U test, p = 0.58). In
GIVE-2, only German females produced signifi-
cantly longer descriptions than their male counter-
parts. Relation between length (no. words) and
task success: The REAL data shows a positive
relationship between length and success rate, i.e.
for a one word increase in length, the odds of cor-
rect object identification is significantly increased
(p < 0.05, Logit), i.e. longer and more complex
sentences lead to more successful REs.

3 Quantifying the Image Complexity

We assume that the complexity of the urban scene
represented in the image is hidden due to the lack
of semantic annotations. Our dataset does not in-
clude any quantifiable image descriptions, such as
computer vision output as in (Mitchell et al., 2012)
or manual annotations as in (Yatskar et al., 2014).
In addition, the same RE might not always re-
sult in successful identification of an object due
to scene complexity. In order to marginalise the
effect of the scene complexity, we exploit the mul-
tiple available data points per image. This allows
us to estimate the average success rate of each re-
ferring expression SRRE (the proportion of suc-
cessful validations) and the average success rate
of each image SRi (the proportion of the correctly
identified objects in the image). We use SRi to
marginalise over the (hidden) image complexity,
where we assume that some pictures are inher-
ently more complex than others and thus achieve

lower success rates. Similar normalisation meth-
ods are used for user ratings to account for the fact
that some users are more “tolerant” and in general
give higher ratings (Jin and Si, 2004). We employ
Gaussian normalisation (Resnick et al., 1994) to
normalise image success rates by considering the
following factors:
1. Shift of average success rate per image: some
images are inherently easier than others and gain
higher success rates, independently of the REs
used. This factor can be accounted by subtract-
ing average success rates of all images from the
average rating of a specific image x.
2. Different ratings: there are 27 REs per image on
average, some of which are harder to understand
than others, thus they gain lower success rates. To
account for this, the success rates of each image
are divided by the overall SR variance.

The normalised image success rate (NSRi) per
image x is defined by the following equation:

NSRi(x) =
SRi(x)− SRi√∑
n (SRi(x)− SRi)2

(1)

Using the (NSRi), we now investigate the
REs in terms of their linguistic properties, includ-
ing automatically annotated syntactic features and
manually annotated semantic features.

4 Modelling REG Success

Unlike previous work, we use both successful and
unsuccessful REs in order to build a model that is
able to predict the success or the failure of a RE.

4.1 Syntactic Analysis of REG Success
We use the Stanford CoreNLP tool (Manning et
al., 2014) to syntactically annotate the REs and we
investigate which linguistic features contribute to
the RE success in relation to the image complexity.
Note that these analyses are based on normalised
values, as discussed in Section 3).

Predicting RE Success Rate (SRRE): Initially,
we compare successful and unsuccessful REs by
taking the upper and lower quartiles and extract-
ing their syntactic features., i.e. the top and bottom
25% of REs with respect to their average success
rate, and group them into two groups. We then
extract syntactic features of these two groups and
compare their frequencies (occurrence per RE),
means, and standard deviations (Table 3), and
compare them using a t-test (p < 0.05). The dif-
ference between successful and unsuccessful ex-
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Successful REs Successful REs
Mean SD Freq. Mean SD Freq.

NP* 7.35 3.958 100 6.7 3.8 100
VP 1.45 1.673 41.8 1.46 1.923 58
PRN .02 .181 2.1 .03 .193 2.4
NNP* .57 1.131 27 .38 .918 19.3
NN* 4.2 2.284 98.8 3.79 2.441 98.1
DT 2.59 1.791 86.7 2.63 1.813 85.4
JJ* 1.92 1.61 80.9 1.66 1.288 81.1
CC .4 .645 32.8 .31 .588 25
PP 2.52 1.754 92.3 2.54 1.778 85.8
ADJP .2 .536 16.2 .041 .597 19.3
ADVP .27 .538 22.8 .25 .539 19.8
RB .34 .639 26.6 .34 .859 21.2
VBN* .22 .465 20.3 .31 .445 10.8
NNS .61 .902 40.7 .72 .782 53.3
CD .27 .552 22 .25 .478 23.6

Table 3: Statistics regarding the linguistic fea-
tures in successful vs unsuccessful referring ex-
pressions. (* denotes significant difference at p <
0.05).

pressions lies in the use of NP (Noun phrases),
NNP (Proper noun, singular), NN (Noun, singu-
lar or mass), JJ (Adjective) and VBN (Verb, past
participle) (Table 3). Successful REs include more
NPs, including NNPs and NNs, which indicates
that more than one reference is used to describe
and distinguish a target object. This could mean
that distractors are explicitly mentioned and elim-
inated or that the object of interest has a complex
appearance, as opposed to simply structured ob-
jects, such as buttons, in GIVE-2. For example,
the following description refers to a complex ob-
ject:

The large American-style wooden building with bal-
cony painted cream and red/brown. Ground floor is a
cafe with tables and parasols outside.

In addition, successful REs contain significantly
more adjectives and verbs in past participle1,
which indicates that the object was further de-
scribed and distinguished using its attributes, as
for instance the following description:

Large modern glass fronted building, butted up
against traditional Victorian terrace, slightly set back
from road and with facing bowed frontage.

The main difference between successful and un-
successful REs is the amount of detail provided to
describe and distinguish the target object. This is
also in-line with our previous results that success
is positively correlated to the number of words

1A participle is a form of a verb that is used in a sentence
as modifier, and thus plays a role similar to that of an adjec-
tive or adverb, such as built or worn.

Models R2

Syntactic: NP+PP+ADVP+CD+length .15
Semantic model: taxonomic + absolute .338
Joint model: PP + taxonomic + absolute .407

Table 4: Models and their fit.

used (Section 2.2) and it might explain why hu-
mans overspecify.

To further verify this hypothesis, we build a pre-
dictive model of average success rate, using multi-
ple step-wise linear regression with syntactic fea-
tures as predictors. We find a significant (p <
0.05) positive relationship between success rate
and NP, PP (Prepositional phrase), ADVP (Adver-
bial phrase), CD (Cardinal number), and length
(Table 4). NPs are used to distinguish and de-
scribe the target object. ADVPs and PPs serve a
similar function to adjectives in this case, i.e. to
describe further attributes, especially spatial ones,
like “the one near the river”, “next to the yellow
building”. Cardinal numbers are used to refer to
complex structured features of the target object,
e.g. two-story building or two large double doors.

Predicting Image Success Rate (NSRimage):
We repeat a similar analysis for estimating how
syntactic features relate to image success rate, i.e.
how the image complexity, as estimated from the
success rate of an image, influences how humans
describe the target object, i.e. how human gener-
ated descriptions change with respect to the im-
age complexity as estimated from the (normalised)
success rate of an image. We find that humans
use significantly more PPs and number of words
(p < 0.05) when describing complex images.

In sum, syntactical features, which further de-
scribe and distinguish the target object (such as
NPs, ADJ, and ADVPs and PPs) indicate success-
ful REs. However, they cannot fully answer the
question of “what makes a RE successful”, there-
fore we enrich our feature set using manually an-
notated semantic features.

4.2 Semantic Analysis of REG
We extract semantic features by annotating spa-
tial frames of reference as described in (Gargett
et al., 2010). We annotate a sample of the corpus
(100 instances), which allows us to perform a di-
rect comparison between the two corpora.

Comparison to GIVE-2 Corpus: We observe
that in the REAL corpus, the taxonomic property,
the relative property and the macro-level landmark
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Spatial Frame REAL GIVE-2
Ger-
man

En-
glish

Taxonomic Property 92* 53.66 58.51
Absolute Property 57* 85.37 92.53
Relative Property 15* 6.83 4.56
Viewer-centred 15 15.61 12.45
Micro-level landmark
intrinsic

9* 13.17 17.84

Distractor Intrinsic 5* 10.73 14.11
Macro-level landmark
intrinsic

43* 6.83 4.15

Deduction by elimina-
tion

1 0.98 3.32

Table 5: Frequency of semantic frames in REAL
vs. GIVE-2 (* denotes significant differences at
p < 0.05, χ2 test).

intrinsic property of the object in question are used
significantly more often than in the GIVE-2 corpus
(Table 5)2.

In contrast, in GIVE-2 the absolute property of
the object, such as the colour, and references to
distractors are used significantly more often than
in REAL. These results reflect the fact that scenes
in REAL were more complex, and as such, rel-
ative properties to other objects and landmarks
were used more often. In GIVE-2, target objects
were mostly buttons, therefore, absolute descrip-
tions (“the blue button”) or referring to an intrin-
sic distractor (“the red button next to the green”)
are more frequent. In addition, real-world en-
vironments are dynamic. Humans choose to re-
fer to immovable objects (macro-level landmarks)
more often than in closed-world environments. In
GIVE-2, immovable objects are limited to walls,
ceilings or floors, whereas in REAL there is a wide
range of immovable objects /landmarks that a user
can refer to, e.g. another building, rivers, parks,
shops, etc. Landmark descriptions will play an im-
portant role in future navigation systems (Kandan-
gath and Tu, 2015).

Predicting RE Success Rate (SRRE): Next,
we analyse which spatial frames significantly con-
tribute to task success, using multiple step-wise
linear regression.We find that taxonomic and ab-
solute properties significantly (p < 0.05) con-
tribute to the success of a referring expression (Ta-
ble 4). Semantic features explain more of the vari-
ance observed in SRRE , than syntactic features.

2Note that for GIVE-2 we consider both, the German and
the English data.

4.3 Joint Model of REG Success

Both syntactic and semantic features contribute to
the success of a RE. Therefore, we construct a
joint model for predicting SRRE using step-wise
linear regression over the joint feature space. We
find that both syntactic and semantic features sig-
nificantly (p < 0.05) contribute to the success of a
RE, see Table 4. This model explains almost half
of the variation observed in SRRE (R2 = .407).
Clarke et al. (2013) reports an influence of visual
salience on REG, therefore, in future, we will in-
vestigate the influence of visual features.

5 Discussion and Conclusions

From the results presented, the following conclu-
sions can be drawn for real-world NLG systems.
Firstly, semantic features have a bigger impact on
the success rate of REs than syntactic features,
i.e. content selection is more important than sur-
face realisation for REG. Secondly, semantic fea-
tures such as taxonomic and absolute properties
can significantly contribute to RE success. Tax-
onomic properties refer to the type of target ob-
ject, and in general depend on the local knowledge
of the information giver. Similarly, the success of
the RE will depend on the expertise of the infor-
mation follower. As such, modelling the user’s
level of knowledge (Janarthenam et al., 2011) and
stylistic differences (Di Fabbrizio et al., 2008) is
crucial. Absolute properties refer to object at-
tributes, such as colour. Attribute selection for
REG has attracted a considerable amount of at-
tention, therefore it would be interesting to inves-
tigate how these automatic attribute selection al-
gorithms perform in real-world, interactive envi-
ronments. Finally, the more complex scenes seem
to justify longer and more complex descriptions.
As such, there is an underlying trade-off which
needs to be optimised, e.g. following the gener-
ation framework described in (Rieser et al., 2014).

In future, we will compare existing REG algo-
rithms on our dataset, in a similar experiment to
Mitchell et al. (2013b). Then, we will extend ex-
isting algorithms to take into account other prop-
erties such as material (e.g. “wooden”), compo-
nents of the referred object (e.g. “balconies”) etc.
Finally, we will incorparate such an algorithm in
interactive settings to investigate the influence of
user dialogue behaviour and the influence of visual
features, such as salience (Clarke et al., 2013), in
order to improve the fit of our predictive model.
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Abstract

Storyline detection from news articles
aims at summarizing events described un-
der a certain news topic and revealing how
those events evolve over time. It is a dif-
ficult task because it requires first the de-
tection of events from news articles pub-
lished in different time periods and then
the construction of storylines by linking
events into coherent news stories. More-
over, each storyline has different hierarchi-
cal structures which are dependent across
epochs. Existing approaches often ignore
the dependency of hierarchical structures
in storyline generation. In this paper, we
propose an unsupervised Bayesian model,
called dynamic storyline detection model,
to extract structured representations and
evolution patterns of storylines. The pro-
posed model is evaluated on a large scale
news corpus. Experimental results show
that our proposed model outperforms sev-
eral baseline approaches.

1 Introduction

The rapid development of online news media sites
is accompanied by the generation of tremendous
news reports. Facing such massive amount of
news articles, it is crucial to develop an automat-
ed tool which can provide a temporal summary of
events and their evolutions related to a topic from
news reports. Therefore, storyline detection, aim-
ing at summarising the development of certain re-
lated events, has been studied in order to help read-
ers quickly understand the major events reported
in news articles. It has attracted great attention re-
cently. Kawamae (2011) proposed a trend analy-
sis model which used the difference between tem-
poral words and other words in each documen-
t to detect topic evolution over time. Ahmed et

al. (2011) proposed a unified framework to group
temporally and topically related news articles in-
to same storylines in order to reveal the tempo-
ral evolution of events. Tang and Yang (2012) de-
veloped a topic-user-trend model, which incorpo-
rates user interests into the generative process of
web contents. Radinsky and Horvitz (2013) built
storylines based on text clustering and entity en-
tropy to predict future events. Huang and Huang
(2013) developed a mixture-event-aspect model to
model sub-events into local and global aspects and
utilize an optimization method to generate story-
lines. Wang et al. (2013) proposed an evolutionary
multi-branch tree clustering method for streaming
text data in which the tree construction is casted
as an online posterior estimation problem by con-
sidering both the current tree and the previous tree
simultaneously.

With the fast development of social media plat-
forms, newsworthy events are widely scattered not
only on traditional news media but also on social
media (Zhou et al., 2015). For example, Twit-
ter, one of the most widely adopted social medi-
a platforms, appears to cover nearly all newswire
events (Petrovic et al., 2013). Therefore, ap-
proaches have also been proposed for storyline
summarization on social media. Given a user in-
put query of an ongoing event, Lin et al. (2012) ex-
tracted the storyline of an event by first obtaining
relevant tweets and then generating storylines via
graph optimization. In (Li and Li, 2013), an evo-
lutionary hierarchical Dirichlet process was pro-
posed to capture the topic evolution pattern in sto-
ryline summarization.

However, most of the aforementioned ap-
proaches do not represent events in the form of
structured representation. More importantly, they
ignore the dependency of the hierarchical struc-
tures of events at different epochs in a storyline.
In this paper, we propose a dynamic storyline de-
tection model to overcome the above limitations.
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We assume that each document could belong to
one storyline s, which is modelled as a joint dis-
tribution over some named entities e and a set of
topics z. Furthermore, to link events at different
epochs and detect different types of storylines, the
weighted sum of storyline distribution of previous
epochs is employed as the prior of the current s-
toryline distribution. The proposed model is eval-
uated on a large scale news corpus. Experimental
results show that our proposed model outperforms
several baseline approaches.

2 Methodology

To model the generation of a storyline in con-
secutive time periods for a stream of documents,
we propose an unsupervised latent variable mod-
el, called dynamic storyline detection model (DS-
DM), The graphical model of DSDM is shown in
Figure 1.
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Figure 1: The Dynamic Storyline Detection mod-
el.

In this model, we assume that the storyline-
topic-word, storyline-topic and storyline-entity
probabilities at time t are dependent on the
previous storyline-topic-word, storyline-topic and
storyline-entity distributions in the last M epochs.
For a certain period of time, we assume that each
document could belong to one storyline s, which is
modelled as a joint distribution over some named
entities e and a set of topics z. This assumption es-
sentially encourages documents published around
similar time that involve the same named entities
and discuss similar topics to be grouped into the
same storyline. As the storyline distribution is
shared across documents with the same named en-
tities and similar topics, it essentially preserves the
ambiguity that for example, documents compris-
ing the same person and location may or may not
belong to the same storyline.

The generative process of DSDM is shown be-

low:
For each time period t from 1 to T :

• Draw a distribution over storylines πt
s ∼

Dirichlet(γt
s).

• For each storyline s ∈ {1...S}:

– Draw a distribution over topics
θt

s ∼ Dirichlet(αt
s).

– Draw a distribution over named entities ωt
s ∼

Dirichlet(ϵt
s).

– For each topic k ∈ {1...K}, draw a word distri-
bution φt

s,k ∼ Dirichlet(βt
s).

• For each document d ∈ {1...D}:

– Choose a storyline indicator st
d ∼

Multinomial(πt
s).

– For each named entity e ∈ {1...Ed}:
∗ Choose a named entity e ∼

Multinomial(ωt
s).

– For other word positions n ∈ {1...Nd}:
∗ Choose a topic zn ∼ Multinomial(θt

s).
∗ Choose a word wn ∼ Multinomial(φt

s,z).

We define an evolutionary matrix of storyline
indicator s and topic z, σt

s,z,m, where each colum-
n σt

s,z,m denotes storyline-topic-word distribution
of storyline indicator s and topic z at epoch m,
an evolutionary topic matrix of storyline indicator
s, τ t

s , where each column τ t
s,m denotes storyline-

topic distribution of storyline indicator at epoch
m, an evolutionary entity matrix of storyline in-
dicator s, υt

s, where each column υt
s,m denotes

storyline-entity distribution of storyline indicator
s.

We attach a vector of M + 1 weights µt
s,z =

{µt
s,z,m}M

m=0(µ
t
s,z,m > 0,

∑M
m=0 µ

t
s,z,m = 1),

with its components representing the weights that
each σt

s,z,m contributes to calculating the priors of
φt

s,z . We do it similarly for θt
s and ωt

s. The Dirich-
let prior for the storyline-topic-word distribution,
the storyline-topic distribution and the storyline-
entity distribution, respectively, at epoch t are:

βt
s,z =

M∑
m=0

µt
s,z,m × σt

s,z,m (1)

αt
s =

M∑
m=0

µt
s,m × τ t

s,m (2)

ϵts =
M∑

m=0

µt
s,m × υt

s,m (3)

In our experiments, the weight parameters are
set to be the same regardless of storylines or top-
ics. They are only dependent on the time win-
dow using an exponential decay function, µm =

1944



exp(−0.5×m) wherem stands for themth epoch
counting backwards in the past M epochs. That
is, more recent documents would have a relatively
stronger influence on the model parameters in the
current epoch compared to earlier documents. It is
also possible to estimate the weights directly from
data. We leave it as our future work.

The storyline-topic-word distribution φt
s,z , the

storyline-topic distribution θt
s and the storyline-

entity distribution ωt
s at the current epoch t are

generated from the Dirichlet distribution param-
eterized by βt

s,z, α
t
s, ϵ

t
s, φ

t
s,z ∼ Dir(βt

s,z), φ
t
s,k ∼

Dir(αt
s), ω

t
s ∼ Dir(ϵts). With this formulation,

we can ensure that the mean of the Dirichlet pa-
rameter for the current epoch becomes proportion-
al to the weighted sum of the word, topic distribu-
tion, and entity distribution at previous epochs.

3 Inference and Parameter Estimation

We use collapsed Gibbs sampling (Griffiths and
Steyvers, 2004) to infer the parameters of the mod-
el, given observed data D. Gibbs sampling is a
Markov chain Monte Carlo method which allows
us repeatedly sample from a Markov chain whose
stationary distribution is the posterior of interest,
st
d and zt

d,n here, from the distribution over that
variable given the current values of all other vari-
ables and the data. Such samples can be used to
empirically estimate the target distribution. Let-
ting the subscript −d denote the quantity that ex-
cludes counts in document d, the conditional pos-
terior for sd is:

P (st
d = j|st

−d, z,w,Λ) ∝ {Nj}−d + γ

D−d + Sγ

×
E∏

e=1

∏n
(d)
j,e

b=1 Nj,e − b+ ϵtj,e∏n
E(d)
j

b=1 nE
j − b+

∑E
e=1 ϵ

t
j,e

×
K∏

k=1

∏n
(d)
j,k

b=1 nj,k − b+ αt
j,k∏n

(d)
j

b=1 nj − b+
∑K

k=1 α
t
j,k

×
V∏

v=1

∏n
(d)
j,k,v

b=1 nj,k,v − b+ βt
j,k,v∏n

(d)
j,k

b=1 nj,k − b+
∑V

v=1 β
t
j,k,v

,

where Nj denotes the number of documents as-
signed to storyline indicator j in the whole corpus,
D is the total number of documents, nj,e is the
number of times named entity e is assigned with
storyline indicator j, nE

j denotes the total number

of named entities with storyline indicator j in the
document collection, nj,k is the number of times
words with topic label k with storyline indicator j,
nj is the total number of words (excluding named
entities) in the corpus with storyline indicator j,
nj,k,v is the number of words v with storyline in-
dicator j and topic label k in the document col-
lection, counts with (d) notation denote the counts
relating to document d only.

Letting the index x = (d, n) denote nth word in
document d and the subscript−x denote a quantity
that excludes data from the nth word position in
document d. We only sample a topic zx if the nth
word is not a named entity based on the following
conditional posterior:

P (zt
x = k|sd = j,z−x,w, Λ)

∝ {nt
j,k}−x + αt

j,k

{nj}−x +
∑K

k=1 αt
j,k

× {nt
j,k,wn

}−x + βt
j,k,v

{nt
j,k}−x +

∑V
v=1 βt

j,k,v

Once the latent variables s and z are known,
we can easily estimate the model parameters
π,Θ, φ, ψ, ω. We set the hyperparameters α =
γ = 0.1, β = ϵ = 0.01 for the current epoch
(i.e., m = 0), and gather statistics in the previous
7 epochs (i.e., M = 7) to set the Dirichlet priors
for the storyline-topic-word distribution φt

s,z , the
storyline-topic distribution θt

s and the storyline-
entity distribution ωt

s in the current epoch t, and
run Gibbs sampler for 1000 iterations and stop the
iteration once the log-likelihood of the training da-
ta converges under the learned model.

4 Experiments

4.1 Dataset

We crawled and parsed the GDELT Even-
t Database1 containing news articles published in
May 2014. We manually annotated one-week da-
ta containing 101,654 documents and identified 77
storylines for evaluation. We also report the result-
s of our model on the one-month data containing
526,587 documents. But we only report the preci-
sion and not recall of the storylines extracted since
it is time consuming to identify all the true story-
lines in such a large dataset. In our experiments,
we used the Stanford Named Entity Recognizer
for identifying the named entities. In addition, we
removed common stopwords and only kept tokens

1http://data.gdeltproject.org/events/
index.html
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which are verbs, nouns, or adjectives in these news
articles.

4.2 Baselines
We chose the following three methods as the base-
line approaches.

1. K-Means + Cosine Similarity (KMCS): the
method first applies K-Means to cluster news
documents for each day, then link storylines
detected in different days based on the cosine
similarity measurement.

2. LDA + Cosine Similarity (LDCS): the
method first splits news documents on a daily
basis, then applies the Latent Dirichlet Allo-
cation (LDA) model to detect the latent story-
lines for the documents in each day, in which
each storyline is modelled as a joint distribu-
tion over named entities and words, and final-
ly links storylines detected in different days
using the cosine similarity measurement.

3. Dynamic LDA (DLDA)2: this is the dynam-
ic LDA (Blei and Lafferty, 2006) where the
topic-word distributions are linked across e-
pochs based on the Markovian assumption.
That is, the topic-word distribution at the cur-
rent epoch is only influenced by the topic-
word distribution in the previous epoch.

4.3 Evaluation Metric
To evaluate the performance of the proposed ap-
proach, we use precision, recall and F-score which
are commonly used in evaluating information ex-
traction systems. The precision is calculated based
on the following criteria: 1) The entities and key-
words extracted refer to the same storyline. 2) The
duration of the storyline is correct. We assume that
the start date (or end date) of a storyline is the pub-
lication date of the first (or last) news article about
it.

4.4 Experimental Results
The proposed model is compared against the base-
line approaches on the annotated one-week da-
ta which consist of 77 storylines. The number
of storylines, S, and the number of topics, K,
are both set to 100. The number of historical e-
pochs, M , which is taken into account for set-
ting the Dirichlet priors for the storyline-topic-
word, the storyline-topic and the storyline-entity

2Topic number is set to 100 for both DLDA and LDCS.
Cluster number is also set to 100 for KMCS.

distributions, is set to 7. The evaluation results of
our proposed approach in comparison to the three
baselines are presented in Table 1.

Method Precision Recall F-score
KMCS 22.73 32.47 26.74
LDCS 34.29 31.17 32.66
DLDA 62.67 61.03 61.84
DSDM 70.67 68.80 69.27

Table 1: Performance comparison of the storyline
extraction results in terms of Precision (%), Recall
(%) and F-score (%).

It can be observed from Table 1 that simply
using K-means to cluster news articles in each
day and linking similar stories across differen-
t days in hoping of identifying storylines gives
the worst results. Using LDA to detect stories
in each day improves the precision dramatically.
The dynamic LDA model assumes topics (or sto-
ries) in the current epoch evolves from the previ-
ous epoch and further improves the storyline de-
tection results significantly. Our proposed mod-
el aims to capture the long distance dependen-
cies in which the statistics gathered in the past 7
days are taken into account to set the Dirichlet pri-
ors of the storyline-topic-word, storyline-topic and
storyline-entity distributions in the current epoch.
It gives the best performance and outperforms dy-
namic LDA by nearly 7% in F-measure.

To study the impact of the number of topics on
the performance of the proposed model, we con-
ducted experiments on the one-month data with d-
ifferent number of topics varying between 100 and
200. In all these experiments, the number of story-
lines, S, is set to 200, based on the speculation that
about 40 storylines in the annotated one-week data
last for one month and about 40 new storylines oc-
cur each week. Table 2 shows the precision of the
proposed method under different number of topic-
s. It can be observed that the performance of the
proposed approach is quite stable across different
number of topics.

K 100 150 200
Precision 69.6% 70.2% 69.9%

Table 2: The precision of our method with various
number (K) of topics.
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Figure 2: Storyline about the patent infringement case between Apple and Samsung was extracted by the
proposed Model.

4.5 Structured Browsing

We illustrate the evolution of storylines by using
structured browsing, from which the structured in-
formation (entity, topic, keywords) about story-
lines and the duration of storylines can be easily
observed. Figure 2 shows the storyline about “The
patent infringement case between Apple and
Samsung”. It can be observed that in the first two
days, the hierarchical structure consists of entities
(Apple, Samsung) and keywords (trial, patent, in-
fringe). The case has gained significant attention
in the next three days when US jury orders Sam-
sung to pay Apple $119.6 million. It can be ob-
served that the stories in the next three days also
consist of entities (Apple, Samsung), but with d-
ifferent keywords (award, patent, win). The last
day’s story gives an overall summary and consists
of entities (Apple, Samsung) and keywords (jury,
patent, company).

To further investigate the storylines detected by
the proposed model, we randomly selected three
detected storylines. The first one is about “the
patent infringement case between Apple and
Samsung”. It is a short-term storyline lasting for
6 day as shown in Figure 3. The second one is
about “India election”, which is a long-term sto-
ryline lasting for one month. The third one is about
“Pistorius shoot Steenkamp”, which is an inter-
mittent storyline, lasting for a total of 22 days but
with no relevant news reports in certain days as
shown in Figure 3. It can be observed that the pro-
posed model can detect not only continuous but
also intermittent storylines, which further demon-
strates the advantage of the proposed model.
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Figure 3: The number of documents on each day
relating to the three storylines.

5 Conclusions and Future Work

In this paper, we have proposed an unsupervised
Bayesian model to extract storylines from news
corpus. Experimental results show that our pro-
posed model is able to extract both continuous and
intermittent storylines and outperforms a number
of baselines. In future work, we will consider
modelling background topics explicitly and inves-
tigating more principled ways in setting the weight
parameters of the statistics gathered in the histor-
ical epochs. Moreover, we will also explore the
impact of different scale of the dependencies from
historical epochs on the distributions of the current
epoch.
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Abstract

We present an approach for extractive
single-document summarization. Our ap-
proach is based on a weighted graphical
representation of documents obtained by
topic modeling. We optimize importance,
coherence and non-redundancy simulta-
neously using ILP. We compare ROUGE
scores of our system with state-of-the-art
results on scientific articles from PLOS
Medicine and on DUC 2002 data. Hu-
man judges evaluate the coherence of sum-
maries generated by our system in com-
parision to two baselines. Our approach
obtains competitive performance.

1 Introduction

Summarization systems take a long document as
input and generate a concise document as out-
put. Several summarization variants exist such as
generic, query-based, multi-document and single
document, but the basic requirements for summa-
rization remain the same. Summaries should con-
tain salient information so that the reader will not
miss anything from the original document. Also,
the reader is not interested in repetitive informa-
tion, so summaries should not include redundant
information. Finally, summaries should be coher-
ent and of high readability.

We introduce a completely unsupervised graph-
based summarization using latent drichlet alloca-
tion (LDA, Blei and Lafferty (2009)). LDA is
a simple model for topic modeling where topic
probabilities are assigned words in documents.
The probabilities can be used to measure the se-
mantic relatedness between words and hence the
topical coherence of a document. We use topi-
cal coherence as a means to ensure the coherence
of extractive single-document summaries. Re-
mus and Biemann (2013) apply LDA to compute

lexical chains while Gorinski and Lapata (2015)
also develop a graph-based summarization system
which takes coherence into account.

Our work is based on the bipartite entity graph
introduced by Guinaudeau and Strube (2013).
However, in their graph one set of nodes corre-
sponds to entities whereas in our graph it corre-
sponds to topics. The entity graph has already
been used by Parveen and Strube (2015) for sum-
marization. Their graph is unweighted and sparse,
whereas our topical graph is weighted and dense.

We apply our topical graph on the dataset in-
troduced by Parveen and Strube (2015). This
dataset contains scientific articles from the jour-
nal PLOS Medicine1. Every PLOS Medicine ar-
ticle is accompanied by an editor’s summary and
an authors’ abstract. We use both as gold sum-
maries for evaluation. Results obtained on the
PLOS Medicine dataset using the topical graph are
as good as using the entity graph and significantly
better than several baselines and the graph-based
system TextRank (Mihalcea and Tarau, 2004). We
use the DUC 2002 dataset to compare our results
with state-of-the-art techniques. In contrast to the
PLOS Medicine data the DUC 2002 dataset con-
tains very small articles. Still, our technique gives
comparable results to the state-of-the-art. This
shows that our technique is flexible and scalable
despite being unsupervised.

2 Our Method

2.1 Document Representation

A graph-based representation has been used
by well known summarization systems such as
LexRank (Erkan and Radev, 2004) and TextRank
(Mihalcea and Tarau, 2004). The graph used by
both is of one mode type where sentences are
nodes which are connected by weighted edges.

1http://journals.plos.org/
plosmedicine/
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Weights express sentence similarity.
We use a bipartite graph representation of doc-

uments (Figure 1). The bipartite graph, G =
(Vs, Vt, Et,s), has two sets of nodes where Vs rep-
resents sentences and Vt topics. The two sets of
nodes are connected with edge Et,s, if a word in a
sentence s is present in a topic t. If multiple words
are present in topic t of sentence s, then the edge
weight is the logarithmic sum of probabilities of
words in topic t. We normalize the edge weight by
dividing them by the length of the sentence. Hence
long sentences will not benefit from their lengths.
We call the resulting graph topical graph.

2.2 Sentence Ranking
The final summary should contain only important
sentences. Therefore, we give a score to every
sentence in a document to obtain important sen-
tences. Following Parveen and Strube (2015) we
apply the HITS (Hyperlink Induced Topic Search)
(Kleinberg, 1999) algorithm for ranking sentences
by importance, since our graph is a bipartite graph.
It puts nodes of a graph in two sets: hub nodes and
authority nodes.

For the HITS algorithm the rank of nodes needs
to be initialized. We initialize the topic rank
Rankti = 1 and the sentence rank Ranksi =
1+sim(si, title). The title in the sentence rank is
the title of the article. sim(si, title) is the cosine
similarity between the sentence si and the title of
the article. After initialization of all nodes in the
weighted topical graph, the HITS algorithm is ap-
plied to obtain ranks of sentences.

2.3 Coherence Measure
Guinaudeau and Strube (2013) represent a docu-
ment by the entity graph, a bipartite graph consist-
ing of sentence and entity nodes. They perform
a one-mode projection on sentence nodes, com-
pute the coherence of a document on the basis of
the one-mode projections and use the coherence
measure for summary coherence rating. Building
upon this work, Parveen and Strube (2015) inte-
grate this coherence measure to directly generate
coherent summaries. Instead of the entity graph
we here use the topical graph to incorporate the co-
herence measure. Parveen and Strube (2015) use
an unweighted projection graph whereas we use
a weighted projection graph of a topical graph to
compute the coherence. The weighted one mode
projection of the topical graph is shown in Figure
1, bottom right.

weighted coh(si, P ) = weighted Outdegree(si, P )
(1)

norm weighted coh(si, P ) =
weighted coh(si, P )∑
weighted coh(si, P )

(2)

Equation 1 calculates the outdegree of every sen-
tence from the weighted projection graph. How-
ever weighted coh(si, P ) in Equation 1 is not
a normalized value. The normalized coherence
value is in Equation 2. Afterwards, we use this
coherence value in the optimization phase for the
selection of sentences.

2.4 Optimization
McDonald (2007) introduces summarization as an
optimization task which takes care of importance,
redundancy and coherence simultaneously. In this
paper, we also propose a model for single doc-
ument summarization which is based on integer
linear programming (ILP). We consider ranks ob-
tained by the HITS algorithm as sentence impor-
tance. The weighted coherence measure is cal-
culated using Equation 1 and Equation 2. PLOS
Medicine articles are very long and contain repeti-
tive information, so we have to deal with redun-
dancy even in single-document summarization.
Therefore we model non-redundancy as topic cov-
erage in the final summary: the more topics in a
summary, the less redundant the summary will be.
The ILP objective function is shown in Equation
3. fi(X) is the function which maximizes im-
portance, fc(X) maximizes coherence, and ft(Y )
maximizes topic coverage.

Objective function : max
X,Y

(fi(X) + fc(X) + ft(Y ))

(3)

X is a variable for sentences which contains
boolean variables xi, where 0 < i < n is the num-
ber of sentences. Y is a variable for topics which
contains boolean variables yj , where 0 < j < m
is the number of topics.

ft(Y ) =

m∑
j=1

yj (4)

Constraints ensure that the system satisfies addi-
tional requirements such as summary length:

n∑
i=1

xi ≤ Len(summary) (5)

∑
j∈Ti

yj ≥ |Topicsxi | · xi, for i = 1, . . . , n (6)
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S1 WHO recommends prompt diagnosis and quinine plus clindamycin for treatment of uncomplicated malaria in the first
trimester and artemisinin-based combination therapies in subsequent trimesters.

S2 We undertook a systematic review of women’s access to and healthcare provider adherence to WHO case management
policy for malaria in pregnant women.

S3 Data were appraised for quality and content.

S4 Determinants of women’s access and providers’ case management practices were extracted and compared across studies.
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Figure 1: Abstract from PLOS Medicine, topical grid, bipartite topical graph, one-mode projection

∑
i∈Sj

xi ≥ yj , for j = 1, . . . ,m (7)

The final summary should be shorter than the
original text and it should also have a length limit
(Equation 5). The results on PLOS medicine data
(Section 3) are limited to 5 sentences. We have
also experimented with multiple lengths. Increas-
ing the summary length increases ROUGE scores.
DUC 2002 summaries are limited to 100 words.

Equation 6 shows that topics present in sen-
tence xi are selected, when sentence xi is selected.
Therefore, xi = 1 and Ti = Topicsxi . The con-
straint holds, because

∑
j∈Ti

yj = |Topicsxi |. Fur-

thermore, if sentence xi = 0, i.e., it is not se-
lected, then there must be topics which are al-
ready present in selected sentences. Hence, the
constraint holds,

∑
j∈Ti

yj ≥ 0.

Equation 7 constrains the selection of topics. If
topic yj = 1, then at least one sentence containing
this topic has been selected. Therefore

∑
i∈Sj

xi ≥ 1,

and the constraint holds. If topic yj = 0, then
sentences containing this topic are not selected, so∑
i∈Sj

xi = 0, and the constraint holds.

3 Experiments

Following Parveen and Strube (2015), we evaluate
on the science genre, i.e. PLOS Medicine articles,
and on the news genre, i.e. DUC 2002 data.

3.1 Datasets

PLOS Medicine articles are considerably longer
than DUC 2002 documents. The average num-
ber of sentences per document is 154 in PLOS
Medicine and 25 in DUC 2002. Benefits of using
PLOS Medicine articles for experiments are:

• They are accompanied by an authors’ abstract.

• They have a summary written by an editor.

• They are formatted in XML.

• They contain explicit full forms of abbrevia-
tions.

Editor’s summaries have a different perspective,
writing style and length than authors’ abstracts.
We use both as gold summaries for evaluation.
Following Parveen and Strube (2015) we re-
port the results using editor’s summaries and au-
thor’s abstracts independently. To compare with
the state-of-the-art in single-document summa-
rization, we also evaluate on DUC 2002 data.
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3.2 Experimental Setup

We use the XML version of PLOS Medicine ar-
ticles. We extract the contents excluding figures,
tables and references. Editor’s summary and au-
thors’ abstract are separated from the content for
evaluation. The PLOS Medicine XML provides
explicit full forms when abbreviations are intro-
duced. We replace abbreviations with their full
form in the summary. We then remove non-
alphabetical characters. After this we parse ar-
ticles using the Stanford parser (Klein and Man-
ning, 2003). We perform pronoun resolution using
the coreference resolution system by Martschat
(2013)2. We use gensim to generate the topics.
For generating topics we use a dataset contain-
ing scientific articles from biology, which con-
tains 221,385 documents and about 50 million
sentences3. We also use Wikipedia to compare
with topics from a general domain.

The HITS algorithm is applied on the bipar-
tite graph for computing sentence importance. We
calculate the coherence values of sentences on
weighted one-mode projection graphs. The impor-
tance and coherence of a sentence is used in the
optimization phase4 which returns a binary value
for each sentence.

3.3 Results

Results on PLOS Medicine are shown in Tables
1 and 2. We evaluate using ROUGE-SU4 and
ROUGE-2 (Lin, 2004). We limit the length of
the summaries to five sentences and the number
of topics to 2000 in the topical graph. We also
experimented with varying numbers of topics, i.e.
500, 1000 and 2000, and varying summary length
limits. The results changed only marginally. The
general trends remained the same.

We compare our system with four different
baselines and two versions of the entity graph.
Lead selects the top five sentences, Random five
sentences randomly. MMR is an implementation
of maximal marginal relevance (Carbonell and
Goldstein, 1998). TextRank is the graph-based
system by Mihalcea and Tarau (2004)5. Egraph
is the entity graph based system by Parveen and
Strube (2015). Egraph + Coh. is their system

2http://www.smartschat.de/software/
3http://www.datawrangling.com/

some-datasets-available-on-the-web/
4We use Gurobi, http://www.gurobi.com
5https://kenai.com/projects/

textsummarizer

Systems R-SU4 R-2
Lead 0.067 0.055
Random 0.048 0.031
MMR 0.069 0.048
TextRank 0.068 0.048
Egraph 0.121 0.090
Egraph + Coh. 0.130 0.096
Egraph + Coh. + Pos. 0.131 0.098
Tgraph (n=2000) 0.123 0.091
Tgraph (n=2000) + Coh. 0.129 0.095
Tgraph (n=2000) + Coh. + Pos. 0.125 0.092

Table 1: PLOS Medicine, editor’s summaries

Systems R-SU4 R-2
Lead 0.105 0.077
Random 0.093 0.589
MMR 0.118 0.098
TextRank 0.134 0.101
Egraph 0.200 0.170
Egraph + Coh. 0.219 0.175
Egraph + Coh. + Pos. 0.224 0.189
Tgraph (n=2000) 0.217 0.173
Tgraph (n=2000) + Coh. 0.221 0.179
Tgraph (n=2000) + Coh. + Pos. 0.215 0.174

Table 2: PLOS Medicine, authors’ abstracts

which includes a coherence measure, which is cal-
culated by using the unweighted projection graph.
Egraph + Coh. + Pos. combines the coherence
measure and positional information.

Our system outperforms all baselines substan-
tially, as shown in Tables 1 (editor’s summaries)
and 2 (authors’ abstracts). We observe improve-
ments in the results when including coherence in
the topical graph. We obtain best results with
Tgraph + Coh., where the number of topics is
2000. In Tgraph, penalizing coherence mea-
sures with positional information lowers ROUGE
scores. While including positional information
into the entity graph obtains the best results on
the PLOS Medicine dataset, positional informa-
tion does not appear to be beneficial for the topical
graph. Absolute ROUGE scores are higher when
using abstracts as gold summaries, because the ab-
stracts are shorter than editor’s summaries.

We compare results using biology journals (Ta-
ble 3) and Wikipedia (Table 4) to generate top-
ics. The topical graph is denser when using bi-
ology journals compared to the graph generated
from Wikipedia. Results using the in-domain bi-
ology journals as data to generate topics are better
than using general domain Wikipedia data. The
scores are highest with 2000 topics. For Bio topic
the differences are negligible, however.

We also compare results on DUC 2002 to
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Topics R-1 R-2 R-SU4
Tgraph (n=500) + Coh. 0.279 0.090 0.125
Tgraph (n=1000) + Coh. 0.289 0.093 0.128
Tgraph (n=2000) + Coh. 0.291 0.095 0.129

Table 3: PLOS Medicine, editor’s summ., Bio
topic

Topics R-1 R-2 R-SU4
Tgraph (n=500) + Coh. 0.208 0.060 0.098
Tgraph (n=1000) + Coh. 0.258 0.073 0.106
Tgraph (n=2000) + Coh. 0.283 0.086 0.121

Table 4: PLOS Medicine, editor’s summ., Wiki
topic

check against the state-of-the-art on a well-known
dataset. Lead performs well on DUC 2002 as
shown in Table 5, because important information
appears in the initial lines of news articles. DUC
2002 Best is the result reported by the top perform-
ing system at DUC 2002. This system actually
obtains better results than TextRank (Mihalcea and
Tarau, 2004) and the more recent system Uniform-
Link (Wan and Xiao, 2010). Our system Tgraph
+ Coh. performs better than the well known best
systems on DUC 2002 and slightly better than
Egraph + Coh. However the difference between
the results of Tgraph and Egraph are not signifi-
cant. In contrast to the entity graph based system,
the coherence measure in our system is calculated
by using a topic-based weighted projection graph,
which is denser and hence more informative.

3.4 Human Coherence Judgements

In addition to ROUGE scores, we use human
judgements for evaluating the coherence of our
summaries. We asked four PhD students in natural
language processing to evaluate our summaries on
the basis of coherence. We randomly selected ten
summaries of scientific articles from three differ-
ent systems, TextRank, Lead and Tgraph + Coh.
We asked the human judges to rank the summaries
according to their coherence. So, the summary

Systems R-1 R-2 R-SU4
Lead 0.459 0.180 0.201
DUC 2002 Best 0.480 0.228
TextRank 0.470 0.195 0.217
UniformLink (k = 10) 0.471 0.201
Egraph + Coh. 0.479 0.238 0.230
Tgraph (n=2000) + Coh. 0.481 0.243 0.242

Table 5: DUC 2002, single-document summariza-
tion

which is best in coherence gets rank 1, second best
gets rank 2, and worst gets rank 3. We calculated
the Kendall concordance coefficient (W ) (Siegel
and Castellan, 1988) to measure the judges’ agree-
ment. We obtain W = 0.61, which indicates a
relatively high agreement.

To compare the three systems, we take the aver-
age over the ranks. The overall rank of TextRank
is 2.625, Lead is 1.675 and Tgraph + Coh. is 1.8.
Lead performs best, because it selects the top five
consecutive sentences, which are coherent as the
original authors intended them to be. However, the
overall ranks of Lead and Tgraph + Coh. are not
significantly different, whereas TextRank’s over-
all rank is significantly worse than both. Hence,
Tgraph + Coh. performs very well in our human
judgement coherence experiment.

4 Discussion

In this paper we introduced the topical graph
for single document summarization. We experi-
mented with multiple numbers of topics on the sci-
entific article dataset. Our system performs well
when including the weighted coherence measure
in the optimization phase. The results are compa-
rable with the entity graph. However, the entity
graph is less informative and very sparse as com-
pared to the topical graph. Our system does not
need annotated training data and, except for the
number of topics, no optimization of parameters.
Hence, we consider it unsupervised.
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Abstract

We propose to automatically summarize
student responses to reflection prompts
and introduce a novel summarization algo-
rithm that differs from traditional methods
in several ways. First, since the linguis-
tic units of student inputs range from sin-
gle words to multiple sentences, our sum-
maries are created from extracted phrases
rather than from sentences. Second, the
phrase summarization algorithm ranks the
phrases by the number of students who
semantically mention a phrase in a sum-
mary. Experimental results show that
the proposed phrase summarization ap-
proach achieves significantly better sum-
marization performance on an engineering
course corpus in terms of ROUGE scores
when compared to other summarization
methods, including MEAD, LexRank and
MMR.

1 Introduction

Educational research has demonstrated the effec-
tiveness of reflection prompts (Boud et al., 2013)
to enhance interaction between instructors and stu-
dents (Van den Boom et al., 2004; Menekse et al.,
2011). However, summarizing student responses
to these prompts for large courses (e.g., introduc-
tory STEM, MOOCs) is an onerous task for hu-
mans and poses challenges for existing summa-
rization methods. First, the linguistic units of stu-
dent inputs range from single words to multiple
sentences. Second, we assume that the concepts
(represented as phrases) mentioned by more stu-
dents should get more attention from the instruc-
tor. Based on this assumption, we introduce the
notion of student coverage, defined as the number
of students who semantically mention a particular
phrase. The more student coverage a phrase has,

Reflection prompt:
Describe what was confusing or needed more detail.

Student Responses:
S1: Graphs of attraction/repulsive & interatomic separation
S2: Property related to bond strength
S3: The activity was difficult to comprehend as the text

fuzzing and difficult to read.
S4: Equations with bond strength and Hooke’s law
S5: I didn’t fully understand the concept of thermal

expansion
S6: The activity ( Part III)
S7: Energy vs. distance between atoms graph and what

it tells us
S8: The graphs of attraction and repulsion were confusing

to me...(rest omitted, 53 student responses in total.)

Human Reference Summary:
1) Graphs of attraction/ repulsive & atomic separation [10]
2) Properties and equations with bond strength [7]
3) Coefficient of thermal expansion [6]
4) Activity part III [4]

Table 1: An example reflection prompt, 53 stu-
dent responses and a gold-standard summary. The
numbers in the square brackets indicate the num-
ber of students who semantically mention each
phrase (i.e., student coverage).

the more important it is. To illustrate the new task,
an example is shown in Table. 1.

In this work, we propose a phrase summariza-
tion method that addresses the above challenges.
First, our summaries are created from extracted
phrases rather than from sentences. Phrases are
easy to read and browse like keywords, and fit bet-
ter on small devices when compared to sentences.
For example, including phrases such as “I didn’t
fully understand” (S5) and “were confusing to me”
(S8) in the summary is a waste of space. Second,
we adopt a metric clustering paradigm with a se-
mantic distance to estimate the student coverage
of each phrase in the summary; a semantic metric
allows similar phrases to be grouped together even
if they are in different textual forms. Experimental
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results demonstrate the utility of our approach.
Although not the focus of this paper, we have

also built a mobile application called CourseMIR-
ROR1 that utilizes the proposed summarization al-
gorithm (Luo et al., 2015). Fan et al. (2015) report
a preliminary study about the usage of the applica-
tion.

2 Related Work

While summarization systems that extract sen-
tences are dominant, others have published in
“summarization” at other levels besides the sen-
tence. For example, Ueda et al. (2000) de-
veloped an “at-a-glance” summarization method
with handcrafted rules. Recently, keyphrase ex-
traction (Hasan and Ng, 2014; Liu et al., 2009;
Medelyan et al., 2009; Wu et al., 2005) has re-
ceived considerable attention, aiming to select im-
portant phrases from input documents, which is
similar to phrase summarization. In this paper,
we propose a general framework to adapt sentence
summarization to phrase summarization.

Clustering has been used to score sentences and
has shown good improvement in text summariza-
tion (Yang et al., 2012; Li and Li, 2014; Gung
and Kalita, 2012). In this work, we are using a
metric clustering with semantic similarity to esti-
mate the student coverage at a phrase level. Sim-
ilarly, both diversity-based summarization (Car-
bonell and Goldstein, 1998; Zhang et al., 2005;
Zhu et al., 2007) and our proposed method aim to
estimate and maximize student coverage by mini-
mizing redundancy in the output phrases. Differ-
ently, our method performs the redundancy reduc-
tion at a cluster level (a group of phrases) rather
than penalize redundancy with a greedy iterative
procedure sentence by sentence, and not only the
information content is considered, but also the in-
formation source.

3 Data

Our data consists of student responses collected
from 53 undergraduates enrolled in an introduc-
tion to materials science and engineering class.
The students were asked to complete a survey at
the end of each of 25 lectures during a semester,
consisting of three carefully designed reflection

1Homepage: http://www.coursemirror.com;
free download link in Google Play Store: https:
//play.google.com/store/apps/details?id=
edu.pitt.cs.mips.coursemirror

min max mean std
Student-WC 1 91 9.2 7.3

TA-PWC 1 26 7.1 4.9
TA-WC 6 103 29.4 23.2
TA-PC 2 12 4.2 2.2

Table 2: Word Count (WC) in student responses
(Student-WC), WC per phrase in TA’s summary
(TA-PWC), WC in TA’s summary (TA-WC) and
phrase count in TA’s summary (TA-PC)

prompts: 1) “Describe what you found most in-
teresting in today’s class.” 2) “Describe what was
confusing or needed more detail.” 3) “Describe
what you learned about how you learn.”

In total, more than 900 responses were collected
for each prompt. Currently, gold-standard sum-
maries of 12 out of 25 lectures are created by the
teaching assistant for that course for each reflec-
tion prompt. The summaries include not only the
important phrases, but also the number of students
who mentioned them (i.e., student coverage). 4
lectures are randomly selected as a development
set and the remaining data used as a test set, yield-
ing 12 sets of development data and 24 sets of
testing data, each with a prompt, the students’ re-
sponses and the gold-standard summary. 2

The statistics of the student responses and the
TA’s summary are shown in Table 2. The phrases
summarized by the TA are significantly shorter
than the student responses (7.1 vs. 9.2, p<0.001).

4 Proposed Method

We formulate our task as a standard extrac-
tive summarization problem. Unlike standard
sentence-level extraction where the input and out-
put are sentences, the input of our task ranges from
words or phrases to full sentences. The output is a
list of important phrases and the summary length
(either # of phrases or words) is no more than L.

The proposed algorithm involves three stages:
candidate phrase extraction, phrase clustering,
and phrase ranking.

4.1 Candidate phrase extraction
We extract noun phrases (NPs) from the input us-
ing a syntax parser from the Senna toolkit (Col-
lobert, 2011), preserving the most important con-

2This data is publicly available at the CourseMIR-
ROR website: http://www.coursemirror.com/
download/dataset.
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tent from the original responses without losing too
much context information compared to keywords.
For example, “the concept of thermal expansion”
(S5) is extracted as a candidate phrase. Only NPs
are considered because all reflection prompts used
in the task are asking about “what”, and knowl-
edge concepts are usually represented as NPs.3

Due to the noisy data, malformed phrases are
excluded, including single stop words (e.g. “it”,
“I”, “there”, “nothing”) and phrases starting with
a punctuation mark (e.g. “’t”, “+ indexing”).

4.2 Phrase clustering

Although phrases are more meaningful and less
ambiguous compared to keywords, they suffer
from the sparsity problem, especially in our data
set when 89.9% of the phrases appeared only once.
The challenge is the fact that students use different
words for the same meaning (e.g., “bicycle parts”
and “bike elements”).

We use a clustering paradigm with a seman-
tic distance metric to address this issue. Among
different clustering algorithms, K-Medoids (Kauf-
man and Rousseeuw, 1987) fits well for our prob-
lem. First, it works with an arbitrary distance
matrix between datapoints. It allows to use pair-
wise semantic similarity-based distance between
phrases, yielding metric clustering. Second, it is
robust to noise and outliers because it minimizes a
sum of pairwise dissimilarities instead of squared
Euclidean distances. It shows better performance
than an LDA-based approach to group students’
short answers for the purpose of semi-automated
grading (Basu et al., 2013). Since K-Medoids
picks a random set of seeds to initialize as the clus-
ter centers (called medoids), the clustering algo-
rithm runs 100 times and the cluster with the min-
imal within-cluster sum of the distances is retained
to reduce random effects.

Distance metric. The semantic similarity is
implemented using SEMILAR (Rus et al., 2013),
using the latent semantic analysis trained on the
Touchstone Applied Science Associates corpus
(Ştefănescu et al., 2014). The distance matrix D
is constructed from the similarity matrix S by ap-
plying the following transformation: D = e−S ,
which is similar to the common heat kernel but
without normalization4.

3In our data, no advantage is observed by including other
constituents like verb and prepositional phrases.

4This is not normalized to the range between 0 and 1 since
we only care about the relative distance.

Number of clusters. For setting the number of
clusters without tuning, we adopted a method from
Wan and Yang (2008), by lettingK =

√
V . where

K is the number of clusters and V is the number
of candidate phrases instead of the number of sen-
tences.

4.3 Phrase ranking

In order to estimate the student coverage, phrases
are clustered with the algorithm introduced above.
We assume the phrases in a cluster are semanti-
cally similar to each other and any phrase in a clus-
ter can represent it as a whole. Therefore the cov-
erage of a phrase is assumed to be the same as the
coverage of a cluster, which is a union of the stu-
dents covered by each phrase in the cluster.

To select the most representative phrase in a
cluster, LexRank (Erkan and Radev, 2004), a
graph-based algorithm for computing relative im-
portance of textual units (working for both sen-
tences and phrases), is used to score the extracted
candidate phrases. The top ranked phrase in the
cluster is added to the output summary. This pro-
cess starts from the cluster that has the most es-
timated student coverage and repeats for the next
cluster until the length limit is reached.

Note that when the student coverage is the same
between two clusters, the score of the top-ranked
phrases in the clusters according to LexRank is
used to break the tie: the higher, the better.

5 Experiments

We use the ROUGE evaluation metric (Lin, 2004)
and report R-1 (unigrams), R-2 (bigrams), and R-
SU4 (bigrams with skip distance up to 4 words),
including the recall (R), precision (P) and F-
Measure (F). These scores measure the over-
lap between human-generated summaries and a
machine-generated summary.

We design and compare a number of other
summarization methods to evaluate the proposed
phrase summarization approach.

Keyphrase extraction. Maui (Medelyan et al.,
2009) is selected as the baseline, which is one of
the state-of-the-art keyphrase extraction methods.

Sentence to phrase summarization. Existing
sentence summarization techniques can be used
for phrase summarization by extracting candidate
phrases and treating them as sentences. Within
this framework, we adapt MEAD (Radev et al.,
2004) and LexRank (Erkan and Radev, 2004) to
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R-1 R-2 R-SU4
R P F R P F R P F

Keyphrase .171 .364 .211 .057 .134 .071 .039 .168 .049
OriMEAD .397 .185 .219 .117 .069 .073 .157 .051 .045
MEAD .341 .269 .265 .122 .102 .099 .126 .094 .072
MEAD+MMR .360 .279 .277 .130 .106 .104 .142 .099 .078
LexRank .325 .355 .307 .107 .110 .102 .120 .145 .098
LexRank+MMR .328 .367 .312 .111 .126 .110 .117 .154 .098
Clustering+Medoid .279 .473 .327 .078 .129 .091 .068 .216 .087
Proposed .319 .448†∗ .340† .122 .176†∗ .134 .112 .205†∗ .109†

Table 3: Summarization performance. The last row is our proposed approach. The highest score for each
column is shown in bold. † indicates that the improvement over the MEAD+MMR baseline is statistically
significant. ∗ indicates that the improvement over LexRank+MMR is statistically significant.

our task. We also include the original MEAD5 for
comparison (named as OriMEAD).

Diversity-based summarization. We ap-
plied the MMR (Carbonell and Goldstein,
1998), a popular diversity-based summa-
rization method as a post-processing step to
the MEAD (MEAD+MMR) and LexRank
(LexRank+MMR) baselines.6

Clustering+Medoid. To show the performance
using the clustering alone, this baseline selects the
medoid phrase instead of using LexRank to rank
the phrases in a cluster to form the summary.

Results. The performance on the test set is
shown in Table 3 with the length limit L as 4
phrases (the average phrase number in the TA’s
summary). Similar results can be observed when
the length limit is based on the number of words,
but cannot be reported here due to page limit.

First, our proposed method (last row), which
clusters the extracted phrases and uses LexRank to
score them, can outperform all the baselines over
all three ROUGE scores in terms of F-measure.
In addition, the proposed model performs better
than the clustering and LexRank alone. Through
a paired t-test, our model outperforms LexRank
statistically in terms of precision for all three
ROUGE scores and significantly improves Clus-
tering+Medoid on all R-2 scores (except the pre-
cision with 0.06 p-value). We believe that the
semantic similarity based clustering complements
LexRank in two ways: 1) LexRank depends on

5The default Length parameter in MEAD is changed to 1
from its default value 9 and the position feature is removed,
yielding better performance.

6For each MMR based baseline, the parameter is opti-
mized with a grid search on the development data set.

the cosine similarity of TF-IDF vectors to build
the graph while the clustering takes semantic sim-
ilarity into account. 2) The clustering performed
a global selection to form a summary by group-
ing similar phrases and ranking them by the num-
ber of covered students (similar to what the hu-
man did). Compared to LexRank, our approach
captures the student coverage explicitly. While
modifying LexRank by using semantic similarity
is possible, estimating the student coverage is not
straightforward.

Second, OriMEAD tends to select long sen-
tences, resulting in a high recall but a low preci-
sion. The phrase version (MEAD) improves both
the P and F scores by removing unnecessary parts
in the original sentences.

Lastly, the proposed method outperforms the
MMR based baselines on the precision and F-
measure of all three ROUGE scores. We observed
that the MMR baselines suffer from the issue of di-
verse expressions used the students (e.g., “graphs”
and “charts”).

6 Conclusion

In this paper, we presented a novel application to
summarize student feedback to reflection prompts
by a combination of phrase extraction, phrase
clustering and phrase ranking. It makes use of
metric clustering to rank the phrases by their
student coverage, taking the information source
into account. Experimental results demonstrate
the good effectiveness of the model. While
the proposed method improved the performance
against MMR, other summarization methods with-
out an additional MMR component do exist, in-
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cluding SumBasic (Vanderwende et al., 2007),
KLSUM and TopicSUM (Haghighi and Vander-
wende, 2009). An initial experiment shows they
do not yield better performance with default pa-
rameters. However, we will revisit it since these
methods are meant for full sentences and are not
optimized within the phrase framework.

In the future, we plan to have additional an-
notation to evaluate the relative importance us-
ing the student coverage numbers. We also de-
ployed CourseMIRROR in a statistics class in
Spring 2015 and have created gold-standard sum-
maries, which will allow us to both replicate the
intrinsic evaluation of this paper with a new and
larger dataset as well conduct an extrinsic evalua-
tion beyond ROUGE scores. Finally, we are inter-
ested in applying our summarization approach to
other types of user-generated content from mobile-
applications (e.g., review comments).
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Abstract
The most successful approaches to extrac-
tive text summarization seek to maximize
bigram coverage subject to a budget con-
straint. In this work, we propose instead
to maximize semantic volume. We em-
bed each sentence in a semantic space and
construct a summary by choosing a sub-
set of sentences whose convex hull max-
imizes volume in that space. We provide
a greedy algorithm based on the Gram-
Schmidt process to efficiently perform
volume maximization. Our method out-
performs the state-of-the-art summariza-
tion approaches on benchmark datasets.

1 Introduction

In artificial intelligence, changes in representation
sometimes suggest new algorithms. For example,
increased attention to distributed meaning repre-
sentations suggests that existing combinatorial al-
gorithms for NLP might be supplanted by alterna-
tives designed specifically for embeddings. In this
work, we consider summarization.

Classical approaches to extractive summariza-
tion represent each sentence as a bag of terms
(typically bigrams) and seek a subset of sentences
from the input document(s) that either (a) trade off
between high relevance and low redundancy (Car-
bonell and Goldstein, 1998; McDonald, 2007), or
(b) maximize bigram coverage (Yih et al., 2007;
Gillick et al., 2008). The sentence representa-
tion is fundamentally discrete, and a range of
greedy (Carbonell and Goldstein, 1998), approx-
imate (Almeida and Martins, 2013), and exact op-
timization algorithms (McDonald, 2007; Martins
and Smith, 2009; Berg-Kirkpatrick et al., 2011)
have been proposed.

Recent studies have explored continuous sen-
tence representations, including the paragraph
vector (Le and Mikolov, 2014), a convolutional
neural network architecture (Kalchbrenner et al.,
2014), and a dictionary learning approach (Jenat-
ton et al., 2011). If sentences are represented as
low-dimensional embeddings in a distributed se-
mantic space, then we begin to imagine a geomet-
ric relationship between a summary and a doc-
ument. We propose that the volume of a sum-
mary (i.e., the semantic subspace spanned by the
selected sentences) should ideally be large. We
therefore formalize a new objective function for
summarization based on semantic volume (§2),
and we provide a fast greedy algorithm that can
be used to maximize it (§3). We show that our
method outperforms competing extractive base-
lines under similar experimental conditions on
benchmark summarization datasets (§4).

2 Extractive Summarization Models

Assume we are given a set of N sentences: D =
{s1, s2, . . . , sN} from one or many documents,
and the goal is to produce a summary by choos-
ing a subset S of M sentences, where S ⊆ D and
M ≤ N , and the length of the summary is less
than or equal to L words. In this work, we as-
sume no summaries are available as training data.
Denote a binary indicator vector y ∈ RN , where
sentence i is included if and only if yi = 1 and 0
otherwise. Extractive summarization can be writ-
ten as an optimization problem:

max score(S) = score(D,y)
with respect to S equivalently y

subject to length(S) ≤ L
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with a scoring function score(D,y). A good scor-
ing function should assign higher scores to bet-
ter summaries. In the following, we describe two
commonly used scoring functions and our pro-
posed scoring function.

2.1 Maximal Marginal Relevance
The Maximal Marginal Relevance (MMR) method
(Carbonell and Goldstein, 1998) considers the fol-
lowing scoring function:

score(D,y) =
N∑
i=1

yiRel(si)−
N∑

i,j=1

yiyjSim(si, sj)

where Rel(si) measures the relevancy of sentence
i and Sim(si, sj) measures the (e.g., cosine) simi-
larity between sentence i and sentence j. The in-
tuition is to choose sentences that are highly rel-
evant to the document(s) and avoid redundancy.
The above maximization problem has been shown
to be NP-hard, solvable exactly using ILP (Mc-
Donald, 2007). A greedy algorithm that approxi-
mates the global solution by adding one sentence
at a time to maximize the overall score (Lin and
Bilmes, 2010) is often used in practice.

2.2 Coverage-Based Summarization
Another popular scoring function aims to give
higher scores for covering more diverse concepts
in the summary. Gillick et al. (2008) use bigrams
as a surrogate for concepts. Following convention,
we extract bigrams from each sentence si ∈ D.
Denote the number of unique bigrams extracted
from all sentences by B. We introduce another
binary vector z ∈ RB to indicate the presence or
absence of a bigram in the summary, and a binary
indicator matrix M ∈ RN×B , where mi,j is 1 if
and only if bigram j is present in sentence i and 0
otherwise. The scoring function is:

score(D,y, z) =
B∑
j=1

bjzj

and the two additional constraints are:

∀j ∈ [B],∀i ∈ [N ] yimi,j ≤ zj

∀j ∈ [B]
N∑
i=1

yimi,j ≥ zj

where we use [B] as a shorthand for {1, 2, . . . , B}.
The first constraint makes sure that selecting a sen-
tence implies selecting all its bigrams, whereas the

Figure 1: A toy example of seven sentences
projected into a two-dimensional semantic space.
Consider the case when the maximum summary
length is four sentences. Our scoring function is
optimized by chooseing the four sentences in red
as the summary, since they maximize the volume
(area in two dimensions).

second constraint makes sure that selecting a bi-
gram implies selecting at least one of the sentences
that contains it. In this formulation, there is no ex-
plicit penalty on redundancy. However, insofar as
redundant sentences cover fewer bigrams, they are
implicitly discouraged. Although the above scor-
ing function also results in an NP-hard problem,
an off-the-shelf ILP solver (Gillick et al., 2008)
or a dual decomposition algorithm (Almeida and
Martins, 2013) can be used to solve it in practice.

2.3 Semantic Volume
We introduce a new scoring function for summa-
rization. The main idea is based on the notion of
coverage, but in a distributed semantic space: a
good summary should have broad semantic cover-
age with respect to document contents. For every
sentence si, i ∈ [N ], we denote its continuous se-
mantic representation in a K-dimensional seman-
tic space by Ω(si) = ui ∈ RK , where Ω is a func-
tion that takes a sentence and returns its semantic
vector representation. We denote embeddings of
all sentences in D with the function Ω by Ω(D).
We will return to the choice of Ω later. We propose
to use a scoring function that maximizes the vol-
ume of selected sentences in this semantic space:

score(D,y) = Volume(Ω(D),y) = Volume(Ω(S))

In the case when K = 2, this scoring function
maximizes the area of a polytope, as illustrated in
Figure 1. In the example, there exists a maximum
number of sentences that can be selected such that
adding more sentences does not increase the score,
i.e., the set of selected sentences forms a convex
hull of the set of all sentences. The sentences
forming a convex hull may together be longer than
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L words, so we seek to maximize the volume of
the summary under this constraint.

There are many choices of Ω that we can use to
produce sentence embeddings. As an exploratory
study, we construct a vector of bigrams for each
sentence, that is, si ∈ RB,∀i ∈ [N ]. If bigram b
is present in si, we let si,b be the number of doc-
uments in the corpus that contain bigram b, and
zero otherwise. We stack these vectors in columns
to produce a matrix S ∈ RN×B , where N is the
number of sentences in the corpus and B is the
number of bigrams. We then perform singular
value decomposition (SVD) on S = UΣV>. We
use UK ∈ RN×K as the sentence representations,
where K is a parameter that specifies the number
of latent dimensions. Instead of performing SVD,
we can also take si ∈ RB as our sentence repre-
sentation, which makes our method resemble the
bigram coverage-based summarization approach.
However, this makes si a very sparse vector. Pro-
jecting to a lower dimensional space makes sense
to allow the representation to incorporate informa-
tion from (bigram) cooccurrences and share infor-
mation across bigrams.

3 Volume Maximization

Given the semantic coverage scoring function in
§2.3, our optimization problem is:

max score(S) = Volume(Ω(S))
with respect to S

subject to length(S) ≤ L
For computational considerations, we propose to
use a greedy algorithm that approximates the so-
lution by iteratively adding a sentence that max-
imizes the current semantic coverage, given that
the length constraint is still satisfied. The main
steps in our algorithm are as follows. We first
find the sentence that is farthest from the cluster
centroid and add it to S. Next, we find the sen-
tence that is farthest from the first sentence and
add it to S. Given a set of already selected sen-
tences, we choose the next one by finding the sen-
tence farthest from the subspace spanned by sen-
tences already in the set. We repeat this process
until we have gone through all sentences, break-
ing ties arbitrarily and checking whether adding
a sentence to S will result in a violation of the
length constraint. This method is summarized in
Algorithm 1. We note that related variants of our
method for maximizing volume have appeared in

Algorithm 1 Greedy algorithm for approximately
maximizing the semantic volume given a budget
constraint.
Input: Budget constraint L, sentence representa-

tions R = {u1,u2, . . . ,uN}
S = {},B = {}
Compute the cluster centroid c: 1

N

∑N
i=1 ui.

p← index of sentence that is farthest from c.
S = S ∪ {sp}. I add first sentence
q ← index of sentence that is farthest from sp.
S = S ∪ {sq}. I add second sentence
b0 = uq

‖uq‖ ,B = B ∪ {u0}
total length = length(sp) + length(sq)
for i = 1, . . . , N − 2 do
r ← index of sentence that is farthest from
the subspace of Span(B). I see text
if total length + length(sr) ≤ L then

S = S ∪ {sr}.
br = ur

‖ur‖ ,B = B ∪ {br}.
total length = total length + length(sr)

end if
end for

other applications, such as remote sensing (Nasci-
mento and Dias, 2005; Gomez et al., 2007) and
topic modeling (Arora et al., 2012; Arora et al.,
2013).

Computing Distance to a Subspace Our algo-
rithm involves finding a point farthest from a sub-
space (except for the first and second sentences,
which can be selected by computing pointwise dis-
tances). In order for this algorithm to be efficient,
we need this operation to be fast, since it is ex-
ecuted frequently. There are several established
methods to compute the distance between a point
to a subspace spanned by sentences in S. For com-
pleteness, we describe one method based on the
Gram-Schmidt process (Laplace, 1812) here.

We maintain a set of basis vectors, denoted by
B. Our first basis vector consists of one element:
b0 = uq

‖uq‖ , where q is the second sentence chosen
above. Next, we project each candidate sentence i
to this basis vector:

Projb0
(ui) = (u>i b0)b0,

and find the distance by computing
Distance(ui,B) = ‖ui − Projb0

(ui)‖. Once we
find the farthest sentence r, we add a new basis
vector B = B ∪ {br}, where br = ur

‖ur‖ and
repeat this process. When there are more than one
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basis vectors, we find the distance by computing:

Distance(ui,B) =

∥∥∥∥∥∥ui −
∑
bj∈B

Projbj
(ui)

∥∥∥∥∥∥ .
4 Experiments

4.1 Setup
We evaluate our proposed method on the non-
update portion of TAC-2008 and TAC-2009. The
datasets contain 48 and 44 multi-document sum-
marization problems, respectively. Each problem
has 10 news articles as input; each is to be sum-
marized in a maximum of L = 100 words. There
are 4 human reference summaries for each prob-
lem, against which an automatically generated
summary is compared. We compare our method
with two baselines: Maximal Marginal Relevance
(MMR, §2.1) and the coverage-based summariza-
tion method (CBS, §2.2). ROUGE (Lin, 2004) is
used to evaluate the summarization results.

For preprocessing, we tokenize, stem with the
Porter (1980) stemmer, and split documents into
sentences. We remove bigrams consisting of only
stopwords and bigrams which appear in less than
3 sentences. As a result, we have 2,746 and 3,273
bigrams for the TAC-2008 and TAC-2009 datasets
respectively. Unlabeled data can help generate
better sentence representations. For each sum-
marization problem in each dataset, we use other
problems in the same dataset as unlabeled data.
We concatenate every problem in each dataset and
perform SVD on this matrix (§2.3). Note that this
also means we only need to do one SVD for each
dataset.

4.2 Results
Table 1 shows results on the TAC-2008 and TAC-
2009 datasets. We report results for our method
with K = 500 (Volume 500), and K = 600 (Vol-
ume 600). We also include results for an oracle
model that has access to the human reference sum-
maries and extracts sentences that maximize bi-
gram recall as an upper bound. Similar to previous
findings, CBS is generally better than MMR. Our
method outperforms other competing methods, al-
though the optimal value of K is different in each
dataset. The improvements with our proposed ap-
proach are small in terms of R-2. This is likely
because the R-2 score computes bigram overlaps,
and the CBS method that directly maximizes bi-
gram coverage is already a resonable approach to

optimizing this metric (although still worse than
the best of our methods).

Methods TAC-2008 TAC-2009
R-1 R-2 R-1 R-2

MMR 34.08 9.30 31.87 7.99
CBS 35.83 9.43 32.70 8.84
Volume 500 37.40 9.17 34.08 8.91
Volume 600 37.50 9.58 34.37 8.76
Oracle 46.06 19.33 46.77 16.99

Table 1: Results on the TAC-2008 and TAC-2009
datasets. “Volume” refers to our method, shown
with two embedding sizes.
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Figure 2: R-SU4 scores as we vary the number of
dimensions (K) on the TAC-2008 datasets.

5 Discussion

Runtime comparisons In terms of inference
running time, all methods perform reasonably fast.
MMR is the slowest, on average it takes 0.38 sec-
onds per problem, followed by our method at 0.17
seconds per problem, and CBS at 0.15 seconds
per problem. However, our implementations of
MMR and Algorithm 1 are in Python, whereas we
use an optimzed solver from Gurobi for our CBS
baseline. For preprocessing, our method is the
slowest, since we need to compute sentence em-
beddings using SVD. There are about 10,000 sen-
tences and 3,000 bigrams for each dataset. SVD
takes approximately 2.5 minutes (150 seconds) us-
ing Matlab on our 12-core machine with 24GB
RAM. Our method introduces another hyperpa-
rameter, the number of latent dimensions K for
sentence embeddings. We observe that the optimal
value depends on the dataset, although a value in
the range of 400 to 800 seems best. Figure 2 shows
R-SU4 scores on the TAC-2008 dataset as we vary
K.

Other sentence projection methods We use
SVD in this study for computing sentence embed-
dings. As mentioned previously, our summariza-
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tion approach can benefit from advances in neural-
network-based sentence representations (Jenatton
et al., 2011; Le and Mikolov, 2014; Kalchbrenner
et al., 2014). These models can also produce vec-
tor representations of sentences, so Algorithm 1
can be readily applied to the learned representa-
tions. Our work opens up a possibility to make
summarization a future benchmark task for evalu-
ating the quality of sentence representations.

Our method is related to determinantal point
processes (DPPs; Gillenwater et al., 2012; Kulesza
and Taskar, 2012) in that they both seek to maxi-
mize the volume spanned by sentence vectors to
produce a summary. In DPP-based approaches,
quality and selectional diversity correspond to
vector magnitude and angle respectively. In this
work, the length of a sentence vector is not tai-
lored to encode quality in terms of representative-
ness directly. In contrast, we rely on sentence em-
bedding methods to produce a semantic space and
assume that a good summary should have a large
volume in the semantic space. We show that a sim-
ple singular value decomposition embedding of
sentences—one that is not especially tuned for this
task—produces reasonably good results. We leave
exploration of other sentence embedding methods
to future work.

Future work Our method could be extended for
compressive summarization, by simply including
compressed sentences in the embedded space and
running Algorithm 1 without any change. This re-
sembles the summarization methods that jointly
extracts and compresses (Berg-Kirkpatrick et al.,
2011; Woodsend and Lapata, 2012; Almeida and
Martins, 2013). Another alternative is a pipeline
approach, where extractive summarization is fol-
lowed or preceded by a sentence compression
module, which can be built and tuned indepen-
dent of our proposed extractive method (Knight
and Marcu, 2000; Lin, 2003; Zajic et al., 2007;
Wang et al., 2013; Li et al., 2013).

We are also interested in exploring volume as
a relevance function within MMR. MMR avoids
redundancy by penalizing redundant sentences,
whereas in our method semantic redundancy is
inherently discouraged since the method chooses
sentences to maximize volume. Depending on
the method used to embed sentences, this might
not translate directly into avoiding n-gram redun-
dancy. Plugging our scoring function to an MMR
objective is a simple way to enforce diversity.

Finally, an interesting future direction is find-
ing an exact tractable solution to the volume max-
imization problem (or demonstrating that one does
not exist).

6 Conclusion

We introduced a summarization approach based
on maximizing volume in a semantic vector space.
We showed an algorithm to efficiently perform
volume maximization in this semantic space. We
demonstrated that our method outperforms exist-
ing state-of-the-art extractive methods on bench-
mark summarization datasets.
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Abstract
Automatic text summarization is widely
regarded as the highly difficult problem,
partially because of the lack of large
text summarization data set. Due to the
great challenge of constructing the large
scale summaries for full text, in this pa-
per, we introduce a large corpus of Chi-
nese short text summarization dataset con-
structed from the Chinese microblogging
website Sina Weibo, which is released to
the public1. This corpus consists of over
2 million real Chinese short texts with
short summaries given by the author of
each text. We also manually tagged the
relevance of 10,666 short summaries with
their corresponding short texts. Based on
the corpus, we introduce recurrent neural
network for the summary generation and
achieve promising results, which not only
shows the usefulness of the proposed cor-
pus for short text summarization research,
but also provides a baseline for further re-
search on this topic.

1 Introduction
Nowadays, individuals or organizations can eas-
ily share or post information to the public on the
social network. Take the popular Chinese mi-
croblogging website (Sina Weibo) as an example,
the People’s Daily, one of the media in China,
posts more than tens of weibos (analogous to
tweets) each day. Most of these weibos are well-
written and highly informative because of the text
length limitation (less than140 Chinese charac-
ters). Such data is regarded as naturally annotated
web resources (Sun, 2011). If we can mine these
high-quality data from these naturally annotated
web resources, it will be beneficial to the research
that has been hampered by the lack of data.

1http://icrc.hitsz.edu.cn/Article/show/139.html

Figure 1: A Weibo Posted by People’s Daily.

In the Natural Language Processing (NLP)
community, automatic text summarization is a hot
and difficult task. A good summarization system
should understand the whole text and re-organize
the information to generate coherent, informative,
and significantly short summaries which convey
important information of the original text (Hovy
and Lin, 1998), (Martins, 2007). Most of tradi-
tional abstractive summarization methods divide
the process into two phrases (Bing et al., 2015).
First, key textual elements are extracted from the
original text by using unsupervised methods or lin-
guistic knowledge. And then, unclear extracted
components are rewritten or paraphrased to pro-
duce a concise summary of the original text by
using linguistic rules or language generation tech-
niques. Although extensive researches have been
done, the linguistic quality of abstractive sum-
mary is still far from satisfactory. Recently, deep
learning methods have shown potential abilities
to learn representation (Hu et al., 2014; Zhou et
al., 2015) and generate language (Bahdanau et al.,
2014; Sutskever et al., 2014) from large scale data
by utilizing GPUs. Many researchers realize that
we are closer to generate abstractive summariza-
tions by using the deep learning methods. How-
ever, the publicly available and high-quality large
scale summarization data set is still very rare and
not easy to be constructed manually. For exam-
ple, the popular document summarization dataset
DUC2, TAC3 and TREC4 have only hundreds of
human written English text summarizations. The
problem is even worse for Chinese. In this pa-

2http://duc.nist.gov/data.html
3http://www.nist.gov/tac/2015/KBP/
4http://trec.nist.gov/
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Figure 2: Diagram of the process for creating the dataset.

per, we take one step back and focus on construct-
ing LCSTS, the Large-scale Chinese Short Text
Summarization dataset by utilizing the naturally
annotated web resources on Sina Weibo. Figure 1
shows one weibo posted by the People’s Daily. In
order to convey the import information to the pub-
lic quickly, it also writes a very informative and
short summary (in the blue circle) of the news.
Our goal is to mine a large scale, high-quality short
text summarization dataset from these texts.

This paper makes the following contributions:
(1) We introduce a large scale Chinese short text
summarization dataset. To our knowledge, it is
the largest one to date; (2) We provide standard
splits for the dataset into large scale training set
and human labeled test set which will be easier for
benchmarking the related methods; (3) We explore
the properties of the dataset and sample 10,666
instances for manually checking and scoring the
quality of the dataset; (4) We perform recurrent
neural network based encoder-decoder method on
the dataset to generate summary and get promis-
ing results, which can be used as one baseline of
the task.

2 Related Work

Our work is related to recent works on automatic
text summarization and natural language process-
ing based on naturally annotated web resources,
which are briefly introduced as follows.

Automatic Text Summarization in some form
has been studied since 1950. Since then, most re-
searches are related to extractive summarizations
by analyzing the organization of the words in the
document (Nenkova and McKeown, 2011) (Luhn,
1998); Since it needs labeled data sets for su-
pervised machine learning methods and labeling
dataset is very intensive, some researches focused
on the unsupervised methods (Mihalcea, 2004).
The scale of existing data sets are usually very

small (most of them are less than 1000). For
example, DUC2002 dataset contains 567 docu-
ments and each document is provided with two
100-words human summaries. Our work is also
related to the headline generation, which is a task
to generate one sentence of the text it entitles.
Colmenares et.al construct a 1.3 million financial
news headline dataset written in English for head-
line generation (Colmenares et al., 2015). How-
ever, the data set is not publicly available.

Naturally Annotated Web Resources based
Natural Language Processing is proposed by
Sun (Sun, 2011). Naturally Annotated Web Re-
sources is the data generated by users for commu-
nicative purposes such as web pages, blogs and
microblogs. We can mine knowledge or useful
data from these raw data by using marks generated
by users unintentionally. Jure et.al track 1.6 mil-
lion mainstream media sites and blogs and mine a
set of novel and persistent temporal patterns in the
news cycle (Leskovec et al., 2009). Sepandar et.al
use the users’ naturally annotated pattern ‘we feel’
and ‘i feel’ to extract the ‘Feeling’ sentence collec-
tion which is used to collect the world’s emotions.
In this work, we use the naturally annotated re-
sources to construct the large scale Chinese short
text summarization data to facilitate the research
on text summarization.

3 Data Collection

A lot of popular Chinese media and organizations
have created accounts on the Sina Weibo. They
use their accounts to post news and information.
These accounts are verified on the Weibo and la-
beled by a blue ‘V’. In order to guarantee the qual-
ity of the crawled text, we only crawl the verified
organizations’ weibos which are more likely to be
clean, formal and informative. There are a lot of
human intervention required in each step. The pro-
cess of the data collection is shown as Figure 2 and
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summarized as follows:
1) We first collect 50 very popular organiza-

tion users as seeds. They come from the domains
of politic, economic, military, movies, game and
etc, such as People’s Daily, the Economic Observe
press, the Ministry of National Defense and etc. 2)
We then crawl fusers followed by these seed users
and filter them by using human written rules such
as the user must be blue verified, the number of
followers is more than 1 million and etc. 3) We
use the chosen users and text crawler to crawl their
weibos. 4) we filter, clean and extract (short text,
summary) pairs. About 100 rules are used to ex-
tract high quality pairs. These rules are concluded
by 5 peoples via carefully investigating of the raw
text. We also remove those paris, whose short text
length is too short (less than 80 characters) and
length of summaries is out of [10,30].

4 Data Properties

The dataset consists of three parts shown as Ta-
ble 1 and the length distributions of texts are
shown as Figure 3.

Part I is the main content of LCSTS that con-
tains 2,400,591 (short text, summary) pairs. These
pairs can be used to train supervised learning
model for summary generation.

Part II contains the 10,666 human labeled
(short text, summary) pairs with the score ranges
from 1 to 5 that indicates the relevance between
the short text and the corresponding summary. ‘1’
denotes “ the least relevant ” and ‘5’ denotes “the
most relevant”. For annotating this part, we recruit
5 volunteers, each pair is only labeled by one an-
notator. These pairs are randomly sampled from
Part I and are used to analysize the distribution of
pairs in the Part I. Figure 4 illustrates examples of
different scores. From the examples we can see
that pairs scored by 3, 4 or 5 are very relevant to
the corresponding summaries. These summaries
are highly informative, concise and significantly
short compared to original text. We can also see
that many words in the summary do not appear
in the original text, which indicates the significant
difference of our dataset from sentence compres-
sion datasets. The summaries of pairs scored by
1 or 2 are highly abstractive and relatively hard to
conclude the summaries from the short text. They
are more likely to be headlines or comments in-
stead of summaries. The statistics show that the
percent of score 1 and 2 is less than 20% of the

Figure 3: Box plot of lengths for short text(ST),
segmented short text(Segmented ST), sum-
mary(SUM) and segmented summary(Segmented
SUM). The red line denotes the median, and the
edges of the box the quartiles.

data, which can be filtered by using trained classi-
fier.

Part III contains 1,106 pairs. For this part, 3
annotators label the same 2000 texts and we ex-
tract the text with common scores. This part is
independent from Part I and Part II. In this work,
we use pairs scored by 3, 4 and 5 of this part as the
test set for short text summary generation task.

Part I 2,400,591

Part II

Number of Pairs 10,666
Human Score 1 942
Human Score 2 1,039
Human Score 3 2,019
Human Score 4 3,128
Human Score 5 3,538

Part III

Number of Pairs 1,106
Human Score 1 165
Human Score 2 216
Human Score 3 227
Human Score 4 301
Human Score 5 197

Table 1: Data Statistics

5 Experiment
Recently, recurrent neural network (RNN) have
shown powerful abilities on speech recogni-
tion (Graves et al., 2013), machine transla-
tion (Sutskever et al., 2014) and automatic dialog
response (Shang et al., 2015). However, there is
rare research on the automatic text summarization
by using deep models. In this section, we use RNN
as encoder and decoder to generate the summary
of short text. We use the Part I as the training set
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Short Text: -
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Mingzhong Chen, the Chief Secretary of the Water Devision of the Ministry of
Water Resources, revealed today at a press conference, according to the just<
completed assessment of water resources management system, some
provinces are closed to the red line indicator, some provinces are over the red
line indicator. In some places over the red line� It will enforce regional
approval restrictions on some water projects , implement strictly water
resources assessment and the approval of water licensing.
Summarization:C�3>?��0-56!) �-I2�9G 
Some provinces exceeds the red line indicator of annual water using, some
water project will be. limitedapproved
Human Score: 5

Short Text: ��<:75�8@�E�.��30%
��0(?>PC8</
�%4*B�C
=��+-��FGO2O#��5�8!&	FGO2O3
'2$�")��
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Groupons’ sales on mobile terminals are below 30 percent. User’s preference of
shopping through PCs can not be changed in the short term. In the future
Chinese O2O catering market, mobile terminals will become the strategic
development direction. And also, it will become offDline driving from onDline
driving. The first and second tier cities are facing growth difficulties. However,
O2O market in the third and fourth tier cities contains opportunities.
Summarization:5�8&FGO2O3'2$�")�
The mobile terminals will become catering’s strategic development direction.
Human Score: 4

Short Text: 7,4���)%��"��.
10347�/"*5�3/�0
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In July, 1002cities’ average newly2built house prices is 10347 yuan per square,
which rose 0.87%. It rises for the 14th consecutive month. Among them,
Guangzhou, Beijing, Shenzhen, Nanjing rise more than 10%. Dawei Zhang, from
Centaline Property Agency, said that because the first and second2tier city
gathers too many resources, the price of house is likely to rise and hard to fall.
Summarization:4�'�3/�14?0���6� 0!(�
1002cities’ house prices gain “14th consecutive rising”, the first and second2tier
cities rise more.
Human Score: 3

Short Text:A:/3�1�2009�;�,8B6"!� D
��;� D
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Reporters combed the information and found, from 2009 to now, there are at
least 8 lottery delayed events and the delayed time are more than 2 hours. On
May 6, 2014, the No. 2014050 delay more than 4 hours. The center of welfare
lottery only respond to 3 of the 8 event. Their explanations are that a
communications breakdown and heavy rain led to a data upload extension.
There are no explanations for other 5 delay events.
Summarization:�G�=2!� D�!���>8'%0$�
Ask about the lottery delay third times:why lottery should wait data collection?
Human Score: 2

Short Text: ��M215C�� 76&P�@"K�=#)�Q16.95%H
78.1
D��"A7�9�L8%4("K�	B'R�!3J:7��
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According to China’s Ministry of Commerce, China’s actually utilized foreign
capital in July fell sharply about 16.95% to 7.81 billion dollars, comparing to last
year. Analysis of the outside world believe that it is related to the recent official
intensive antitrust investigation. Danyang Shen responded, “It can not be linked
to the antitrust investigation of foreign investment, or do other unfounded
association”
Summarization:��MI+�!3��
<$��."����
China‘s Ministry of Commerce respond to antitrust investigation: Several cases
will not scare foreign investors away.
Human Score: 1

Figure 4: Five examples of different scores.

and the subset of Part III, which is scored by 3, 4
and 5, as test set.

Two approaches are used to preprocess the data:
1) character-based method, we take the Chinese
character as input, which will reduce the vocab-
ulary size to 4,000. 2) word-based method, the

(y1,%y2,%...,%yn)

x1

RNN%Decoder

GRUGRU…GRUGRU

xt71x2 xt

htht71h2h1

h0

Figure 5: The graphical depiction of RNN encoder
and decoder framework without context.

x1

GRUGRU…GRUGRU

xt(1x2 xt

htht(1h2h1
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(y1,/y2,/...,/yn)

RNN/Decoder

Context/Generator

Figure 6: The graphical depiction of the RNN en-
coder and decoder framework with context.

text is segmented into Chinese words by using
jieba5. The vocabulary is limited to 50,000. We
adopt two deep architectures, 1) The local con-
text is not used during decoding. We use the
RNN as encoder and it’s last hidden state as the
input of decoder, as shown in Figure 5; 2) The
context is used during decoding, following (Bah-
danau et al., 2014), we use the combination of
all the hidden states of encoder as input of the
decoder, as shown in Figure 6. For the RNN,
we adopt the gated recurrent unit (GRU) which is
proposed by (Chung et al., 2015) and has been
proved comparable to LSTM (Chung et al., 2014).
All the parameters (including the embeddings) of
the two architectures are randomly initialized and
ADADELTA (Zeiler, 2012) is used to update the
learning rate. After the model is trained, the beam
search is used to generate the best summaries in
the process of decoding and the size of beam is set
to 10 in our experiment.

5https://pypi.python.org/pypi/jieba/
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model data R-1 R-2 R-L

RNN
Word 0.043 0.025 0.043
Char 0.061 0.028 0.057

RNN context
Word 0.087 0.054 0.085
Char 0.108 0.073 0.107

Table 2: The experiment result: “Word” and
“Char” denote the word-based and character-
based input respectively.

Short Text: 9230�+H��0�9;�:?5F!�'��2014'2015)
�7=��- ���8#GA�)�&3J�,	�71�=��;�%�
/�"�B���>
��>�����.�>28 �� I<�%�.�
1K�

On September 3, the Geneva'based World Economic Forum released “ The
Global Competitiveness Report 2014'2015 ”. Switzerland topped the list for six
consecutive years , becoming the world‘s most competitive country. Singapore
and the United States are in the second and third place respectively. China is in
the 28th place, ranking highest among the BRIC countries.

Human:�7=��.D3��&2 8�&I<�%J�

the Global competitiveness ranking list, China is in the 28th place, the highest
among BRIC countries.

RNN+Char: 8#+@92300 �:+@J4 ��*(8#+E2012)
>��>�$C��8#-��7>�$�%5000�B�

It is not a fluent sentence and can not be translated. There are only some
segments related to original text.
RNN+Word: 7=��.�:8#&�7>3���>1�>1�>1���>1
�8#>1�>1

Global competitiveness ranking: Switzerland ranks 3rd place, China 1st place, 1st

place, China 1st place, Switzerland1st place, first

RNN+Context+Char: �7=��.���.�>28�I<�1K

In the Global competitiveness ranking list, China is in the 28th place which is
highest among the BRIC countries.

RNN+Context+Word: �7=��-��6��.�>28�I<�%�.�
>� (>


“The Global Competitiveness Report” is released. China is in the 28th place,
rank highest among the BRIC countries (ninth

Figure 7: An example of the generated summaries.

For evaluation, we adopt the ROUGE met-
rics (Lin, 2004) proposed by (Lin and Hovy,
2003), which have been proved strongly correlated
with human evaluations. ROUGE-1, ROUGE-
2 and ROUGE-L are used. All the models are
trained on the GPUs tesla M2090 for about one
week.Table 2 lists the experiment results. As we
can see in Figure 7, the summaries generated by
RNN with context are very close to human written
summaries, which indicates that if we feed enough
data to the RNN encoder and decoder, it may gen-
erate summary almost from scratch.

The results also show that the RNN with con-
text outperforms RNN without context on both
character and word based input. This result indi-
cates that the internal hidden states of the RNN
encoder can be combined to represent the context
of words in summary. And also the performances
of the character-based input outperform the word-
based input. As shown in Figure 8, the summary
generated by RNN with context by inputing the
character-based short text is relatively good, while
the the summary generated by RNN with context

Short Text: $�� R<Q�=20�$
)��1D���&�#+,M
$
��LP;$H�����
GN�7.4*���F@(K4�U�
�56I�94�%-�8"/T���2!�E�B�%-�8"�S
�� A
O3�:'J�

On The factory’s door is locked. About 20 works are scattered to sit under the
shade. “We are ordinary workers, we are waiting for our salary here.” one of
them said. On the morning of July 4th, reporters arrived at Shenzhen
Yuanjing Photoelectron Corporation� located on Qinghu Road, Longhua
District, Shenzhen. Just as the rumor, Yuanjing Photoelectron Corporation is
closed down and the large shareholder Xing Yi is missing.
Human:4���>LED�	�S7*�$
C;?0
HundredRmillionRyuanRclass LED enterprise is closed down and workers wait for
the boss under the under the scorching sun.
RNN+Context+Char: 4�%-�8"�S�
Shenzhen Yuanjing PhotoElectron Corporation is closed down.
RNN+Context+Word: �� UNK UNK UNK UNK UNK UNK UNK UNK UNK UNK
UNK UNKShenzhen UNK UNKUNK UNKUNK UNKUNK UNKUNK UNKUNK

Figure 8: An example of the generated summaries
with UNKs.

on word-based input contains many UNKs. This
may attribute to that the segmentation may lead to
many UNKs in the vocabulary and text such as the
person name and organization name. For exam-
ple, “愿景光电子” is a company name which
is not in the vocabulary of word-based RNN, the
RNN summarizer has to use the UNKs to replace
the “愿景光电子” in the process of decoding.

6 Conclusion and Future Work

We constructed a large-scale Chinese short text
summarization dataset and performed RNN-based
methods on it, which achieved some promising re-
sults. This is just a start of deep models on this
task and there is much room for improvement. We
take the whole short text as one sequence, this may
not be very reasonable, because most of short texts
contain several sentences. A hierarchical RNN (Li
et al., 2015) is one possible direction. The rare
word problem is also very important for the gener-
ation of the summaries, especially when the input
is word-based instead of character-based. It is also
a hot topic in the neural generative models such
as neural translation machine(NTM) (Luong et al.,
2014), which can benefit to this task. We also plan
to construct a large document summarization data
set by using naturally annotated web resources.
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Abstract

While it has been established that transi-
tions between discourse relations are im-
portant for coherence, such information
has not so far been used to aid in lan-
guage generation. We introduce an ap-
proach to discourse planning for concept-
to-text generation systems which simul-
taneously determines the order of mes-
sages and the discourse relations between
them. This approach makes it straightfor-
ward to use statistical transition models,
such as n-gram models of discourse re-
lations learned from an annotated corpus.
We show that using such a model signif-
icantly improves the quality of the gener-
ated text as judged by humans.

1 Introduction

Discourse planning is a subtask of Natural Lan-
guage Generation (NLG), concerned with deter-
mining the ordering of messages in a document
and the discourse relations that hold among them
(Reiter and Dale, 2000). Early approaches to dis-
course planning used manually written rules, often
based on schemas (McKeown, 1985) or on Rhetor-
ical Structure Theory (RST) (Mann and Thomp-
son, 1987; Hovy, 1993; Power, 2000). In the
past decade, various statistical approaches have
emerged (Duboue and McKeown, 2001; Dimitro-
manolaki and Androutsopoulos, 2003; Soricut and
Marcu, 2006; Konstas and Lapata, 2013). Other
relevant statistical approaches to content ordering
can also be found in the summarization literature
(Barzilay et al., 2001; Lapata, 2003; Bollegala
et al., 2005). These approaches overwhelmingly
focus on determining the best order of messages
using semantic conent, while discourse relations
are in most cases either determined by manually-
written derivation rules or completely ignored.

Meanwhile, researchers working on discourse
relation disambiguation have observed that the se-
quence of discourse relations itself, independently
of content, helps in disambiguating adjacent re-
lations (Wellner et al., 2006; Pitler et al., 2008).
Sequential discourse information has been used
successfully in discourse parsing (Ghosh et al.,
2011; Feng and Hirst, 2014), and discourse struc-
ture was shown to be as important for text co-
herence as entity-based content structure (Lin et
al., 2011; Feng et al., 2014). Surprisingly, so
far, discourse sequential information from exist-
ing discourse-annotated corpora, such as the Penn
Discourse Treebank (PDTB) (Prasad et al., 2008)
has not been used in generation.

In this paper, we present an NLG framework
that generates texts from existing semantic web
ontologies. We use an n-gram model of discourse
relations to perform discourse planning for these
stories. Through a crowd-sourced human evalua-
tion, we show that the ordering of our documents
and the choice of discourse relations is signifi-
cantly better when using this model.

2 Generation Framework

In concept-to-text generation pipelines, discourse
planning typically occurs after the content selec-
tion stage. The input, therefore, is an unordered
set of messages that are not yet realized: instead
of being represented as text, the messages have a
structured semantic representation.

In this paper, we generate comparison stories,
describing and comparing two similar entities,
from an RDF ontology. The RDF semantic rep-
resentation is commonly used in semantic web re-
sources and free ontologies. An RDF message
(called a triple) has three parts: a subject, a pred-
icate and an object. For each story, we consider
any triple whose subject is one of the participating
entities as a potential message to be generated. We
do only minimal processing on these messages:
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where two triples have the same subject and pred-
icate but different objects, we merge them into a
single message with multiple objects; and where
two triples have the same subject and object but
different predicates, we merge them into a single
message with multiple predicates.

Next, we build the set of potential discourse re-
lations between all messages. We use the PDTB
class-level relations, of which there are four: ex-
pansion, comparison, contingency and temporal.
Each is an abstraction of a family of more specific
relations, such as cause, concession, etc. We do
not differentiate between explicit and implicit re-
lations, and treat entrel as a type of expansion.

Potential discourse relations are implied in the
semantics of the triples: messages that contain the
same predicate and object may have an expansion
relation among them (e.g. “John has a ball. Mary
also has a ball”). Messages that contain the same
predicate but different subjects and objects may
have a comparison relation (e.g. “John likes ap-
ples but Mary likes oranges”).

Specific predicate pairs will also have specific
potential relations among them - for example,
“birth place” and “residence” have a temporal re-
lation (when applied to the same subject). The
same is true for contingency relations (e.g., “city”
and “country” for the same subject - if the sub-
ject is in a city, it implies which country it is in).
We manually annotated the 59 predicate pairs that
had potential temporal and contingency relations,
as well as 8 pairs with special potential compari-
son relations (e.g., “birth place” and “residence” if
the subject is the same but the object is not).

Once the potential relations are identified, we
have a directed multigraph where each vertex is
a message and each edge is a potential relation.
There can be multiple edges between any two ver-
tices, since messages may have more than one po-
tential relation among them.

Once the graph is ready, we perform content se-
lection. Given a desired number of messages to
generate, we choose the set of messages that max-
imizes the number of edges in the resulting sub-
graph (thus ensuring that the selected messages
are discourse-coherent). If there are multiple such
sets, we choose one at random.

The task we are focused on in this paper is dis-
course planning, which in our formulation is the
task of finding a Hamiltonian path through the se-
lected subgraph, thus simultaneously selecting the

order of the messages (nodes) as well as the rela-
tions (edges) that connect them. Our approach for
choosing the best path is discussed in the next sec-
tion. For the remainder of this section, we describe
our simple implementations of the next stages of
generation: sentence planning and realization.

For each of the four discourse relations we use,
we selected a few explicit connectives from the
PDTB that are often used to convey them. We
specifically chose connectives that apply to the en-
tire range of class-level relations (e.g., for compar-
ison we chose “while” - since it applies to both
contrast and concession in the PDTB, but not “in
contrast” which applies only to the former). We
also chose only those connectives which have the
structure [ARG1 connective ARG2] or [ARG1.
connective, ARG2]. During realization, we arbi-
trarily choose a connective to realize the relation.

Since the ordering and relations between mes-
sages is determined by the discourse plan, sen-
tence planning falls naturally out of it: sentence
breaks occur where the connective pattern creates
them, or where there is no relation between adja-
cent messages.

To realize the messages themselves, we follow
a single pattern: “the [predicate(s)] of [subject]
(is/are) [object(s)]”. Simple rules are used to plu-
ralize the predicate when there are multiple objects
and to create lists of multiples objects or predi-
cates where needed.

These basic solutions for the various stages of
NLG produce texts that are rich enough to be ac-
ceptable for human readers, but which have rel-
atively little variation in grammatical and lexical
quality. This crucial combination allows us to per-
form a human study to specifically evaluate the
discourse planning component.

3 Discourse Planning

As explained in the previous section, we formu-
late the discourse planning task as finding a path
through a multigraph of potential relations be-
tween messages. One major component of what
makes a good path is the sequence of content:
some content is more central and should appear
earlier, for example; and some predicates and ob-
jects are semantically related and should appear
near one another. In this paper we focus on a com-
ponent that has so far been neglected in generation
- the sequence of discourse relations - while try-
ing to minimize the effect that content semantics
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have on the evaluation (other than the semantics
implicit in the relations). In order to quantify the
likelihood of a sequence of relations, we build an
n-gram model from a discourse-annotated corpus.

An n-gram model measures the transitional
probabilities for sequences of the units that the n-
grams are composed of. In this case, the units are
discourse relations. The probability of a particu-
lar sequence of relations of length n + 1 given an
existing subsequence of length n is computed as
a fraction of the number of times it appears in the
corpus and the number of times the subsequence
appears in the corpus, i.e.

P (ri|ri−n, ..., ri−1) =
C(ri−n, ..., ri−1, ri)
C(ri−n, ..., ri−1)

Where C(s) is the number of times sequence s ap-
pears in the corpus. Using this model to generate
a discourse plan given a potential relation multi-
graph is a stochastic process: at each stage, we
choose the next relation edge out of the last cho-
sen message vertex (the first vertex is chosen at
random) based on the selected sequence of rela-
tion edges and the probabilities for the next rela-
tion in the model. Once a vertex is added to the
path edges leading to it can no longer be selected.

4 Evaluation

One method for evaluating a discourse plan in-
dependently of content is to produce pairs of
generated short text documents, each containing
the same content, but with different ordering and
discourse relations (as dictated by the discourse
plan). The only obvious way to decide which text
is better is to have human judges make that de-
cision. It is important to minimize the effects of
other qualities of the texts (differences in content,
word choice, grammatical style, etc.) as much as
possible, so that the judgement is based only on
the differences in order and discourse.

We used DBPedia (Auer et al., 2007) - an RDF
ontology extracted from Wikipedia - to generate
content. Each document generated was a compar-
ison story of two entities in a single category (i.e.,
the messages in the stories were selected, as de-
scribed in Section 2, from the set of triples where
one of the entities was the subject). In order to
experiment with different domains, we used four
different categories: Office Holder (i.e., a per-
son holding office such as a President or a Judge);
River; Television Show; and Military Unit. The

The birth place of Allen J. Ellender is Montegut,
Louisiana, while the death place of Allen J. El-
lender is Maryland. The birth place of Robert E.
Quinn is Phoenix, Rhode Island. Subsequently, the
death place of Robert E. Quinn is Rhode Island.

The birth place of Allen J. Ellender is Montegut,
Louisiana. In comparison, the birth place of Robert
E. Quinn is Phoenix, Rhode Island. The death
place of Robert E. Quinn is Rhode Island, but the
death place of Allen J. Ellender is Maryland.

Figure 1: Sample pair of comparison stories

entity pairs from each category were chosen at ran-
dom but were required to have at least 8 predicates
and 3 objects in common, so that they were some-
what semantically related.

To ensure that human judges can easily tell
the differences between the stories on a sentential
level, we limited the size of each story to 4 mes-
sages. For each pair of stories, everything but the
discourse plan (i.e. the content selection, the real-
ization of messages and the lexical choice of con-
nectives) was identical. Figure 1 shows an exam-
ple pair of stories from the Office Holder category.

4.1 Experiments

We conducted two crowd sourced experiments on
the CrowdFlower platform. Each question con-
sisted of two short stories that are completely iden-
tical in content, but each generated with a different
discourse planner. The human judge was asked to
decide which of the stories has a better flow (or
whether they are equally good), and then to give
each of the stories a score from 1 to 5, paying spe-
cific attention to the ordering of the prepositions
and the relations between them. The stories were
presented in a random order and were not given
labels, to avoid bias. We generated 125 pairs of
stories from each category - a total of 500 - for
each experiment.

Each question was presented to three judges.
In each experiment, there was complete disagree-
ment among the three annotators in approximately
15% of the questions, and those were discarded.
In approximately 20% there was complete agree-
ment, and in the rest of the questions there were
two judges who agreed and one who disagreed.
We also computed inter-annotator agreement us-
ing Cohen’s Kappa for 217 pairs of judges who

1975



Quality comparison Avg. score
Base Equal Pdtb Base Pdtb

Of. Holder 27.4% 30.2% 42.5% 3.67 3.76
TV Show 34.3% 25.7% 40% 3.79 3.8
Mil. Unit 32.3% 23.2% 44.4% 3.69 3.84
River 39.2% 23.5% 37.3% 3.71 3.72
Total 34% 25% 41% 3.72 3.78

Table 1: Results for the comparison between the
PDTB n-gram model and the baseline

Quality comparison Avg. score
Pdtb Equal Wiki Pdtb Wiki

Of. Holder 33.6% 14.5% 51.8% 3.51 3.65
TV Show 43.2% 8.1% 48.6% 3.62 3.65
Mil. Unit 40.4% 14.4% 45.2% 3.65 3.67
River 41.1% 11.2% 47.7% 3.68 3.7
Total 39.6% 12% 48.4% 3.61 3.67

Table 2: Results for the comparison between the
Wikipedia model and the PDTB model

both answered at least 10 of the same questions.
The average kappa value was 0.5, suggesting rea-
sonable agreement.

In the first experiment, we compared stories
generated by a planner using an n-gram model ex-
tracted from the PDTB with stories generated by
a baseline planner, where all edges have identical
probabilities. The results are shown in Table 1.

In the second experiment, we used a PDTB
shallow discourse parser we developed (Biran and
McKeown, 2015) to create a discourse-annotated
version of the English Wikipedia. We then com-
pared stories generated by a planner using an n-
gram model extracted from the parsed Wikipedia
corpus with those generated by a planner using the
PDTB model. The results are shown in Table 2.

The total results in both tables are statistically
significant (p < 0.05).

4.2 Discussion

The results in Table 1 show that the judges signif-
icantly preferred the stories created by the n-gram
model-based planner to those created by the base-
line planner, both in terms of the three-way deci-
sion and in terms of the numeric score. This is true
for the total set as well as every specific topic, ex-
cept for River. This may be because the predicates
in the River category are much more cohesive than
in other categories: virtually all predicates related
to rivers describe an aspect of the location of the
river. That fact may make it easier for a random
planner to produce a story that seems coherent.
Note, however, that while the judges preferred the
baseline story more often in the River questions,

the average score is higher for the model, which
suggests that when the baseline was better it was
only mildly so, while when the model was better
is was significantly so.

The results in Table 2 show that the Wikipedia-
based model produces better results than the
PDTB-based model. We hypothesize that it is for
two reasons. First, Wikipedia contains definitional
texts and is closer in style and content to the stories
we produce than the PDTB, which contains WSJ
articles. Temporal relations constitute about 10%
of both corpora, but contingency and comparison
relations each make up almost 20% of the PDTB,
while in Wikipedia they span only 10% and 12%
of the corpus, respectively, making the share of ex-
pansion relations much larger. Second, since the
PDTB is small, higher-order n-grams are sparsely
found, which can add noise to the model. The
Wikipedia corpus is significantly larger and does
not suffer from this problem.

The differences in average scores seen in the ex-
periments are relatively small. That is expected,
since we have eliminated the content coherence
factor, which is known to be significant. In addi-
tion, while judges were specifically asked to fo-
cus on the order of messages and relations be-
tween them, there is inevitably some noise due to
accidental lexical or syntactic mismatches, order-
ing that is awkward content-wise, and other side-
effects of the generation framework we employed.

5 Conclusion and Future Work

We introduced an approach to discourse planning
that relies on a potential discourse multigraph, al-
lowing for an n-gram model of relations to drive
the discourse plan and efficiently determine both
the ordering and the relations between messages.

We conducted two experiments, comparing sto-
ries generated with different discourse planners.
The first shows that an n-gram model-based plan-
ner significantly outperforms the random baseline.
The second suggests that using an n-gram model
derived from a corpus that is larger and closer
in style and content, though less accurately anno-
tated, can further improve results.

In future work, we intend to combine this
discourse-based view of coherence with a content-
based view to create a unified statistical discourse
planner. In addition, we will explore additional
stochastic models of discourse that look at other,
non-sequential collocational information.
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Abstract

We present experiments with generative
models for linearization of unordered la-
beled syntactic dependency trees (Belz et
al., 2011; Rajkumar and White, 2014).
Our linearization models are derived from
generative models for dependency struc-
ture (Eisner, 1996). We present a series of
generative dependency models designed
to capture successively more information
about ordering constraints among sister
dependents. We give a dynamic program-
ming algorithm for computing the condi-
tional probability of word orders given tree
structures under these models. The models
are tested on corpora of 11 languages us-
ing test-set likelihood, and human ratings
for generated forms are collected for En-
glish. Our models benefit from represent-
ing local order constraints among sisters
and from backing off to less sparse distri-
butions, including distributions not condi-
tioned on the head.

1 Introduction

We explore generative models for producing lin-
earizations of unordered labeled syntactic depen-
dency trees. This specific task has attracted at-
tention in recent years (Filippova and Strube,
2009; He et al., 2009; Belz et al., 2011; Bohnet
et al., 2012; Zhang, 2013) because it forms
a useful part of a natural language generation
pipeline, especially in machine translation (Chang
and Toutanova, 2007) and summarization (Barzi-
lay and McKeown, 2005). Closely related tasks
are generation of sentences given CCG parses
(White and Rajkumar, 2012), bags of words (Liu
et al., 2015), and semantic graphs (Braune et al.,
2014).

Here we focus narrowly on testing probabilistic
generative models for dependency tree lineariza-

tion. In contrast, the approach in most previ-
ous work is to apply a variety of scoring func-
tions to trees and linearizations and search for an
optimally-scoring tree among some set. The prob-
abilistic linearization models we investigate are
derived from generative models for dependency
trees (Eisner, 1996), as most commonly used in
unsupervised grammar induction (Klein and Man-
ning, 2004; Gelling et al., 2012). Generative de-
pendency models have typically been evaluated
in a parsing task (Eisner, 1997). Here, we are
interested in the inverse task: inferring a distri-
bution over linear orders given unordered depen-
dency trees.

This is the first work to consider generative de-
pendency models from the perspective of word
ordering. The results can potentially shed light
on how ordering constraints are best represented
in such models. In addition, the use of proba-
bilistic models means that we can easily define
well-motivated normalized probability distribu-
tions over orders of dependency trees. These dis-
tributions are useful for answering scientific ques-
tions about crosslinguistic word order in quan-
titative linguistics, where obtaining robust esti-
mates has proven challenging due to data sparsity
(Futrell et al., 2015).

The remainder of the work is organized as fol-
lows. In Section 2 we present a set of generative
linearization models. In Section 3 we compare
the performance of the different models as mea-
sured by test-set probability and human accept-
ability ratings. We also compare our performance
with other systems from the literature. Section 4
concludes.

2 Generative Models for Projective
Dependency Tree Linearization

We investigate head-outward projective generative
dependency models. In these models, an ordered
dependency tree is generated by the following kind
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nmod

case det

nsubj

det

Figure 1: Example unordered dependency tree.
Possible linearizations include (1) This story
comes from the AP and (2) From the AP comes this
story. Order 2 is the original order in the corpus,
but order 1 is much more likely under our models.

of procedure. Given a head node, we use some
generative process G to generate a depth-1 sub-
tree rooted in that head node. Then we apply
the procedure recursively to each of the depen-
dent nodes. By applying the procedure starting at
a ROOT node, we generate a dependency tree. For
example, to generate the dependency tree in Fig-
ure 1 from the node comes down, we take the head

comes and generate the subtree

comes

story AP

nsubj
nmod

,

then we take the head story and generate

story

this

det

,
and so on. In this work, we experiment with differ-
ent specific generative processesGwhich generate
a local subtree conditioned on a head.

2.1 Model Types

Here we describe some possible generative pro-
cesses G which generate subtrees conditioned on
a head. These models contain progressively more
information about ordering relations among sister
dependents.

A common starting point for G is
Eisner Model C (Eisner, 1996). In this model,
dependents on one side of the head are generated
by repeatedly sampling from a categorical distri-
bution until a special stop-symbol is generated.
The model only captures the propensity of depen-
dents to appear on the left or right of the head, and
does not capture any order constraints between
sister dependents on one side of the head.

We consider a generalization of Eisner Model C
which we call Dependent N-gram models. In
a Dependent N-gram model, we generate depen-
dents on each side the head by sampling a se-
quence of dependents from an N-gram model.
Each dependent is generated conditional on the

N − 1 previously generated dependents from
the head outwards. We have two separate N-
gram sequence distributions for left and right
dependents. Eisner Model C can be seen as a
Dependent N-gram model with N = 1.

We also consider a model which can capture
many more ordering relations among sister depen-
dents: given a head h, sample a subtree whose
head is h from a Categorical distribution over sub-
trees. We call this the Observed Orders model
because in practice we are simply sampling one of
the observed orders from the training data. This
generative process has the capacity to capture the
most ordering relations between sister dependents.

2.1.1 Distributions over Permutations of
Dependents

We have discussed generative models for ordered
dependency trees. Here we discuss how to use
them to make generative models for word orders
conditional on unordered dependency trees.

Suppose we have a generative processG for de-
pendency trees which takes a head h and gener-
ates a sequence of dependents wl to the left of h
and a sequence of dependents wr to the right of h.
Let w denote the pair (wl,wr), which we call the
configuration of dependents. To get the probabil-
ity of some w given an unordered subtree u, we
want to calculate the probability of w given thatG
has generated the particular multiset W of depen-
dents corresponding to u. To do this, we calculate:

p(w|W) =
p(w,W)
p(W)

=
p(w)
Z

,

(1)

where
Z =

∑
w′∈W

p(w′) (2)

and W is the set of all possible configurations
(wl,wr) compatible with multiset W. That is,W
is the set of pairs of permutations of multisets Wl

and Wr for all possible partitions of W into Wl

and Wr. The generative dependency model gives
us the probability p(w).

It remains to calculate the normalizing constant
Z, the sum of probabilities of possible configura-
tions. For the Observed Orders model, Z is the
sum of probabilities of subtrees with the same de-
pendents as subtree u. For the Dependent N-gram
models of order N , we calculate Z using a dy-
namic programming algorithm, presented in Al-
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gorithm 1 as memoized recursive functions. When
N = 1 (Eisner Model C), Z is more simply:

Zemc = pL(stop)× pR(stop)

×
∑

(Wl,Wr)∈PARTS(W)

|Wl|!× |Wr|!

×
∏

w∈Wl

pL(w)
∏

w∈Wr

pR(w),

(3)

where PARTS(W) is the set of all partitions of
multiset W into two multisets Wl and Wr, pL
is the probability mass function for a dependent to
the left of the head, pR is the function for a depen-
dent to the right, and stop is a special symbol in
the support of pL and pR which indicates that gen-
eration of dependents should halt. The probability
mass functions may be conditional on the head h.
These methods for calculating Z make it possible
to transform a generative dependency model into a
model of dependency tree ordering conditional on
local subtree structure.

Algorithm 1 Compute the sum of probabilities
of all configurations of dependents W under a
Dependent N-gram model with two component N-
gram models of order N : pR for sequences to the
right of the head and pL for sequences to the left.
memoized function RIGHT NORM(r, c)

if |r| = 0 then
return pR(stop | c)

end if
Z ← 0
for i = 1 : |r| do

r′ ← elements of r except the ith
c′ ← append ri to c then truncate to length N − 1
Z ← Z + pR(ri|c)× RIGHT NORM(r′, c′)

end for
return Z

end memoized function
memoized function LEFT NORM(r, c)
Z ← pL(stop | c)× RIGHT NORM([start], r)
for i = 1 : |r| do

r′ ← elements of r except the ith
c′ ← append ri to c then truncate to length N − 1
Z ← Z + pL(ri|c)× LEFT NORM(r′, c′)

end for
return Z

end memoized function
Result is LEFT NORM(W, [start])

2.2 Labelling

The previous section discussed the question of
the structure of the generative process for depen-
dency trees. Here we discuss an orthogonal mod-
eling question, which we call labelling: what in-
formation about the labels on dependency tree
nodes and edges should be included in our mod-

els. Dependency tree nodes are labeled with word-
forms, lemmas, and parts-of-speech (POS) tags;
and dependency tree edges are labeled with rela-
tion types. A model might generate orders of de-
pendents conditioned on all of these labels, or a
subset of them. For example, a generative depend-
necy model might generate (relation type, depen-
dent POS tag) tuples conditioned on the POS tag
of the head of the phrase. When we use such a
model for dependency linearization, we would say
the model’s labelling is relation type, dependent
POS, and head POS. In this study, we avoid in-
cluding wordforms or lemmas in the labelling, to
avoid data sparsity issues.

2.3 Model Estimation and Smoothing

In order to alleviate data sparsity in fitting our
models, we adopt two smoothing methods from
the language modelling literature.

All categorical distributions are estimated us-
ing add-k smoothing where k = 0.01. For the
Dependent N-gram models, this means adding k
pseudocounts for each possible dependent in each
context. For the Observed Orders model, this
means adding k pseudocounts for each possible
permutation of the head and its dependents.

We also experiment with combining our mod-
els into mixture distributions. This can be viewed
as a kind of back-off smoothing (Katz, 1987),
where the Observed Orders model is the model
with the most context, and Dependent N-grams
and Eisner Model C are backoff distributions with
successively less context. Similarly, models with
less information in the labelling can serve as back-
off distributions for models with more information
in the labelling. For example, a model which is
conditioned on the POS of the head can be backed
off to a model which does not condition on the
head at all. We find optimal mixture weights us-
ing the Baum-Welch algorithm tuned on a held-out
development set.

3 Evaluation

Here we empirically evaluate some options for
model type and model labelling as described
above. We are interested in how many of the pos-
sible orders of a sentence our model can generate
(recall), and in how many of our generated orders
really are acceptable (precision). As a recall-like
measure, we quantify the probability of the word
orders of held-out test sentences. Low probabil-
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Labelling Model Basque Czech English Finnish French German Hebrew Indonesian Persian Spanish Swedish

H
D

R

oo -6.83 -7.58 -5.23 -7.35 -10.86 -8.36 -9.74 -8.99 -10.39 -11.31 -8.83
n1 -6.12 -8.97 -5.08 -7.15 -11.54 -9.81 -9.63 -8.68 -10.63 -13.19 -8.37
n2 -4.86 -6.35 -2.87 -5.30 -6.86 -6.60 -5.91 -5.98 -5.54 -7.47 -4.92
n3 -5.92 -6.59 -3.13 -5.68 -7.34 -7.02 -6.81 -6.69 -6.49 -8.06 -5.68

n123 -4.58 -6.18 -2.60 -5.11 -6.67 -6.19 -5.77 -5.73 -5.51 -7.36 -4.72
oo+n123 -4.52 -5.95 -2.57 -5.04 -6.58 -5.92 -5.68 -5.68 -5.47 -7.27 -4.68

H
D

R
+R

oo -5.56 -6.78 -3.94 -6.25 -9.63 -7.42 -7.95 -7.51 -9.19 -9.54 -7.28
n1 -6.08 -8.97 -5.07 -7.16 -11.54 -9.79 -9.58 -8.67 -10.62 -13.17 -8.35
n2 -4.49 -6.31 -2.62 -5.17 -6.79 -6.34 -5.62 -5.67 -5.42 -7.40 -4.67
n3 -4.86 -6.41 -2.61 -5.20 -7.08 -6.43 -6.07 -6.02 -6.04 -7.70 -5.02

n123 -4.41 -6.15 -2.48 -5.01 -6.59 -5.99 -5.54 -5.53 -5.42 -7.29 -4.53
oo+n123 -4.29 -5.84 -2.44 -4.88 -6.50 -5.74 -5.40 -5.47 -5.38 -7.09 -4.46

Table 1: Average log likelihood of word order per sentence in test set under various models. Under
“Labelling”, HDR means conditioning on Head POS, Dependent POS, and Relation Type, and R means
conditioning on Relation Type alone (see Section 2.2). Under “Model”, oo is the Observed Orders model,
n1 is the Dependent 1-gram model (Eisner Model C), n2 is the Dependent 2-gram model, and n3 is the
Dependent 3-gram model (see Section 2.1). In both columns, x+y means a mixture of model x and
model y; n123 means n1+n2+n3.

ities assigned to held-out sentences indicate that
there are possible orders which our model is miss-
ing. As a precision-like measure, we get human
acceptability ratings for sentence reorderings gen-
erated by our model.

We carry out our evaluations using the de-
pendency corpora of the Universal Dependen-
cies project (v1.1) (Agić et al., 2015), with the
train/dev/test splits provided in that dataset. We
remove nodes and edges dealing with punctuation.
Due to space constraints, we only present results
from 11 languages here.

3.1 Test-Set Probability

Here we calculate average probabilities of word
orders per sentence in the test set. This number can
be interpreted as the (negative) average amount of
information contained in the word order of a sen-
tence beyond information about dependency rela-
tions.

The results for selected languages are shown
in Table 1. The biggest gains come from us-
ing Dependent N-gram models with N > 1,
and from backing off the model labelling. The
Observed Orders model does poorly on its own,
likely due to data sparsity; its performance is
much improved when backing off from condition-
ing on the head. Eisner Model C (n1) also per-
forms poorly, likely because it cannot represent
any ordering constraints among sister dependents.
The fact it helps to back off to distributions not
conditioned on the head suggests that there are
commonalities among distributions of dependents

of different heads, which could be exploited in fur-
ther generative dependency models.

3.2 Human Evaluation

We collected human ratings for sentence reorder-
ings sampled from the English models from 54 na-
tive American English speakers on Amazon Me-
chanical Turk. We randomly selected a set of 90
sentences from the test set of the English Universal
Dependencies corpus. We generated a reordering
of each sentence according to each of 12 model
configurations in Table 1. Each participant saw
an original sentence and a reordering of it, and
was asked to rate how natural each version of the
sentence sounded, on a scale of 1 to 5. The or-
der of presentation of the original and reordered
forms was randomized, so that participants were
not aware of which form was the original and
which was a reordering. Each participant rated
56 sentence pairs. Participants were also asked
whether the two sentences in a pair meant the same
thing, with “can’t tell” as a possible answer.

Table 2 shows average human acceptability rat-
ings for reorderings, and the proportion of sen-
tence pairs judged to mean the same thing. The
original sentences have an average acceptability
rating of 4.48/5. The very best performing models
are those which do not back off to a distribution
not conditioned on the head. However, in the case
of the Observed Orders and other sparse models,
we see consistent improvement from this backoff.

Figure 2 shows the acceptability ratings (out of
5) plotted against test set probability. We see that
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Labelling Model Acceptability Same Meaning

H
D

R

oo 2.92 0.58
n1 2.06 0.44
n2 3.42 0.78
n3 3.48 0.85

n123 3.56 0.79
oo+n123 3.45 0.75

H
D

R
+R

oo 3.11 0.72
n1 2.11 0.49
n2 3.32 0.80
n3 3.52 0.77

n123 3.31 0.76
oo+n123 3.43 0.80

Table 2: Mean acceptability rating out of 5, and
proportion of reordered sentences with the same
meaning as the original, for English models. La-
bels as in Table 1.
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Figure 2: Comparison of test set probability (Ta-
ble 1) and acceptability ratings (Table 2) for En-
glish across models. A least-squares linear regres-
sion line is shown. Labels as in Table 1.

the models which yield poor test set probability
also have poor acceptability ratings.

3.3 Comparison with other systems

Previous work has focused on the ability to cor-
rectly reconstruct the word order of an observed
dependency tree. Our goal is to explicitly model a
distribution over possible orders, rather than to re-
cover a single correct order, because many orders
are often possible, and the particulator order that a
dependency tree originally appeared in might not
be the most natural. For example, our models typ-
ically reorder the sentence “From the AP comes
this story” (in Figure 1) as “This story comes from
the AP”; the second order is arguably more natu-
ral, though the first is idiomatic for this particular
phrase. So we do not believe that BLEU scores

and other metrics of similarity to a “correct” or-
dering are particularly relevant for our task.

Previous work uses BLEU scores (Papineni et
al., 2002) and human ratings to evaluate genera-
tion of word orders. To provide some comparabil-
ity with previous work, we report BLEU scores on
the 2011 Shared Task data here. The systems re-
ported in Belz et al. (2011) achieve BLEU scores
ranging from 23 to 89 for English; subsequent
work achieves BLEU scores of 91.6 on the same
data (Bohnet et al., 2012). Drawing the highest-
probability orderings from our models, we achieve
a top BLEU score of 57.7 using the model config-
uration hdr/oo. Curiously, hdr/oo is typically the
worst model configuration in the test set probabil-
ity evaluation (Section 3.1). The BLEU perfor-
mance is in the middle range of the Shared Task
systems. The human evaluation of our models is
more optimistic: the best score for Meaning Sim-
ilarity in the Shared Task was 84/100 (Bohnet et
al., 2011), while sentences ordered according to
our models were judged to have the same meaning
as the original in 85% of cases (Table 2), though
these figures are based on different data. These
comparisons suggest that these generative models
do not provide state-of-the-art performance, but do
capture some of the same information as previous
models.

3.4 Discussion

Overall, the most effective models are the
Dependent N-gram models. The naive approach
to modeling order relations among sister depen-
dents, as embodied in the Observed Orders model,
does not generalize well. The result suggests that
models like the Dependent N-gram model might
be effective as generative dependency models.

4 Conclusion

We have discussed generative models for depen-
dency tree linearization, exploring a path less trav-
eled by in the dependency linearization literature.
We believe this approach has value for answering
scientific questions in quantitative linguistics and
for better understanding the linguistic adequacy of
generative dependency models.
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ders Trærup Johannsen, Jenna Kanerva, Juha
Kuokkala, Veronika Laippala, Alessandro Lenci,
Krister Lindén, Nikola Ljubešić, Teresa Lynn,
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Abstract

In this study, we consider a summariza-
tion method using the document level sim-
ilarity based on embeddings, or distributed
representations of words, where we as-
sume that an embedding of each word can
represent its “meaning.” We formalize our
task as the problem of maximizing a sub-
modular function defined by the negative
summation of the nearest neighbors’ dis-
tances on embedding distributions, each
of which represents a set of word embed-
dings in a document. We proved the sub-
modularity of our objective function and
that our problem is asymptotically related
to the KL-divergence between the prob-
ability density functions that correspond
to a document and its summary in a con-
tinuous space. An experiment using a
real dataset demonstrated that our method
performed better than the existing method
based on sentence-level similarity.

1 Introduction

Document summarization aims to rephrase a doc-
ument in a short form called a summary while
keeping its “meaning.” In the present study, we
aim to characterize the meaning of a document us-
ing embeddings or distributed representations of
words in the document, where an embedding of
each word is represented as a real valued vector
in a Euclidean space that corresponds to the word
(Mikolov et al., 2013a; Mikolov et al., 2013b).

Many previous studies have investigated sum-
marization (Lin and Bilmes, 2010; Lin and
Bilmes, 2011; Lin and Bilmes, 2012; Sipos et al.,
2012; Morita et al., 2013), but to the best of our
knowledge, only one (Kågebäck et al., 2014) con-
sidered a direct summarization method using em-
beddings, where the summarization problem was

formalized as maximizing a submodular function
defined by the summation of cosine similarities
based on sentence embeddings. Essentially, this
method assumes linear meanings since the objec-
tive function is characterized by the summation of
sentence-level similarities. However, this assump-
tion is not always valid in real documents, and thus
there may be a better combination of two other
sentences than the best and second best sentences
in terms of similarity in a document.

In this study, we consider a summarization
method based on document-level similarity, where
we assume the non-linearity of meanings. First,
we examine an objective function defined by a co-
sine similarity based on document embeddings in-
stead of sentence embeddings. Unfortunately, in
contrast to our intuition, this similarity is not sub-
modular, which we disprove later. Thus, we pro-
pose a valid submodular function based on em-
bedding distributions, each of which represents
a set of word embeddings in a document, as the
document-level similarity. Our objective func-
tion is calculated based on the nearest neighbors’
distances on embedding distributions, which can
be proved to be asymptotically related to KL-
divergence in a continuous space. Several stud-
ies (Lerman and McDonald, 2009; Haghighi and
Vanderwende, 2009) have addressed summariza-
tion using KL-divergence, but they calculated KL-
divergence based on word distributions in a dis-
crete space. In other words, our study is the first
attempt to summarize by asymptotically estimat-
ing KL-divergence based on embedding distribu-
tions in a continuous space. In addition, they in-
volved the inference of complex models, whereas
our method is quite simple but still powerful.

2 Preliminaries

We treat a document as a bag-of-sentences and
a sentence as a bag-of-words. Formally, let
D be a document, and we refer to an element
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s ∈ D of a sentence and w ∈ s of a word.
We denote the size of a set S by |S|. Note
that D and s are defined as multisets. For
example, we can define a document such as
D := {s1, s2} with s1 := {just, do, it}
and s2 := {never, say, never}, which cor-
respond to two sentences “Just do it” and “Never
say never,” respectively. From the definition, we
have |s1| = 3 and |s2| = 3.

2.1 Submodularity

Submodularity is a property of set functions,
which is similar to the convexity or concavity of
continuous functions.

We formally define submodularity as follows.

Definition 1 (Submodularity). Given a setX , a set
function f : 2X → R is called submodular if for
any two sets S1 and S2 such that S1 ⊂ S2 ⊂ X
and element x ∈ X \ S2,

f(S1 ∪ {x})− f(S1) ≥ f(S2 ∪ {x})− f(S2).

For simplicity, we define fS(x) := f(S ∪
{x}) − f(S), which is called the marginal value
of x with respect to S. A set function f is called
monotone if fS(x) ≥ 0 for any set S ⊂ X and
element x ∈ X \ S.

If a set function f is monotone submodular, we
can approximate the optimal solution efficiently
by a simple greedy algorithm, which iteratively
selects x∗ = argmaxx∈X\Si

fSi(x) where ties
are broken arbitrarily, and we substitute Si+1 =
Si ∪ {x∗} in the i-th iteration beginning with
S0 = ∅. This algorithm is quite simple but it is
guaranteed to find a near optimal solution within
1− 1/e ≈ 0.63 (Calinescu et al., 2007).

2.2 Embedding

An embedding or distributed representation of a
word is a real valued vector in an m-dimensional
Euclidean space Rm, which expresses the “mean-
ing” of the word. We denote an embedding of a
word w by ~w ∈ Rm. If for any two words w1 and
w2, the meaning ofw1 is similar to that ofw2, then
~w1 is expected to be near to ~w2.

A recent study (Mikolov et al., 2013a) showed
that a simple log-bilinear model can learn high
quality embeddings to obtain a better result than
recurrent neural networks, where the concept of
embeddings was originally proposed in studies of
neural language models (Bengio et al., 2003). In

the present study, we use the CW Vector1 and
W2V Vector2 which are also used in the previous
study (Kågebäck et al., 2014).

3 Proposed Method

In this study, we focus on a summarization task
as sentence selection in a document. The opti-
mization framework in our task is the same as in
the previous study and formalized in Algorithm 1,
wherews represents the pre-defined weight or cost
of a sentence s, e.g., sentence length, and r is
its scaling factor. This algorithm, called modified
greedy, was proposed in (Lin and Bilmes, 2010)
and interestingly performed better than the state-
of-the-art abstractive approach as shown in (Lin
and Bilmes, 2011). Note that we have omitted the
notation of D from f for simplicity because D is
fixed in an optimization process.

Algorithm 1: Modified greedy algorithm.
Data: Document D, objective function f , and

summary size `.
Result: Summary C ⊂ D.

1 C ← ∅; U ← D;
2 while U 6= ∅ do
3 s∗ ← argmaxs∈U fC(s)/(ws)r;
4 if

∑
s∈C

ws + ws∗ ≤ ` then C ← C ∪ {s∗};
5 U ← U \ {s∗};
6 s∗ ← argmaxs∈D:ws≤` f({s});
7 return C ← argmaxC′∈{C,{s∗}} f(C ′);

Similarity Based on Document Embeddings
First, we examine an objective function fCos de-
fined by a cosine similarity based on document
embeddings. An embedding of a document D is
defined as vD :=

∑
s∈D

∑
w∈s ~w. We formalize

the objective function fCos as follows.

fCos(C) :=
vC · vD
‖vC‖ ‖vD‖ .

Note that the optimal solution does not change, if
we use an average embedding vD/

∑
s∈D |s| in-

stead of vD. The next theorem shows that a solu-
tion of fCos by Algorithm 1 is not guaranteed to be
near optimal.

Theorem 1. fCos is not submodular.
1http://metaoptimize.com/projects/

wordreprs
2https://code.google.com/p/word2vec
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Proof. A simple counterexample is sufficient to
prove the theorem. Let us consider D := {s1 :=
{w1}, s2 := {w2}, s3 := {w3}, s4 := {w4}}
with corresponding vectors ~w1 := (1, 1), ~w2 :=
(1, 2), ~w3 := (1,−1), and ~w4 := (1,−2), re-
spectively. In this case, the document embedding
vD is (4, 0). We set C1 := {s1} and C2 :=
{s1, s2}. Clearly, C1 ⊂ C2. However, we ob-
tain fCos

C1
(s4) = fCos({s1, s4}) − fCos({s1}) ≈

0.187 and fCos
C2

(s4) = fCos({s1, s2, s4}) −
fCos({s1, s2}) ≈ 0.394. Therefore, we have
fCos
C2

(s4) > fCos
C1

(s4).

Similarity Based on Embedding Distributions

We propose a valid submodular objective function
fNN based on embedding distributions. The key
observation is that for any two embedding distri-
butionsA andB, whenA is similar toB, each em-
bedding in A should be near to some embedding
in B. In order to formalize this idea, we define the
nearest neighbor of a word w in a summary C as
n(w,C) := argminv∈s:s∈C,~w 6=~v d(~w,~v), where d
is the Euclidian distance in the embedding space,
i.e., d(~w,~v) := ‖~w − ~v‖. We denote the dis-
tance of w to its nearest neighbor n := n(w,C)
by N(w,C) := d(~w,~n). Finally, we define fNN as
follows:

fNN(C) := −
∑
s∈D

∑
w∈s

g(N(w,C)),

where g is a non-decreasing scaling function. The
function fNN represents the negative value −δ of
dissimilarity δ between a document and summary
based on embedding distributions. Note that we
can use sentence embeddings instead of word em-
beddings as embedding distributions, although we
focus on word embeddings in this section.

The next theorem shows the monotone submod-
ularity of our objective function, which means that
a solution of fNN by Algorithm 1 is guaranteed to
be near optimal.

Theorem 2. fNN is monotone submodular.

Proof. (Monotonicity) First, we prove the mono-
tonicity. For simplicity, we use the follow-
ing two abbreviations: Cs := C ∪ {s} and∑D

w :=
∑

s∈D
∑

w∈s. For any set C ⊂
D of sentences and sentence s ∈ D \ C,
we have fNN

C (s) = fNN(Cs) − fNN(C) =∑D
w (g(N(w,C))− g(N(w,Cs))). Since C ⊂

Cs, obviously N(w,C) ≥ N(w,Cs) holds.

Therefore, we obtain fNN
C (s) ≥ 0 from the non-

decreasing property of g.
(Submodularity) Next, we prove the submodu-

larity. For any two sets C1 and C2 of sentences
such that C1 ⊂ C2 ⊂ D, and sentence s ∈ D\C2,
we have fNN

C1
(s)− fNN

C2
(s) = fNN(Cs1)− fNN(C1)−

(fNN(Cs2) − fNN(C2)) =
∑D

w (g(N(w,C1)) −
g(N(w,Cs1)) − g(N(w,C2)) + g(N(w,Cs2))).
Let α := g(N(w,C1)) − g(N(w,Cs1)) −
g(N(w,C2)) + g(N(w,Cs2)).

If n(w,Cs2) ∈ s, then n(w,Cs1) ∈ s holds,
since Cs1 ⊂ Cs2 . This means that N(w,Cs2) =
N(w,Cs1) = N(w, {s}). Clearly, N(w,C1) ≥
N(w,C2), since C1 ⊂ C2. Therefore, we obtain
α ≥ 0 from the non-decreasing property of g.

If n(w,Cs2) /∈ s and n(w,Cs1) /∈ s, we
have N(w,Cs1) = N(w,C1) and N(w,Cs2) =
N(w,C2). This indicates that α = 0.

If n(w,Cs2) /∈ s and n(w,Cs1) ∈ s, so sim-
ilarly N(w,Cs1) ≤ N(w,C1) and N(w,Cs2) =
N(w,C2) hold. Therefore, we obtain α ≥ 0.

The objective function fNN is simply heuristic
for small documents, but the next theorem shows
that fNN is asymptotically related to an approxima-
tion of KL-divergence in a continuous space, if g
is a logarithmic function. This result implies that
we can use mathematical techniques of a contin-
uous space for different NLP tasks, by mapping a
document into a continuous space based on word
embeddings.

Theorem 3. Suppose that we have a document D
and two summaries C1 and C2 such that |C1| =
|C2|, which are samples drawn from some proba-
bility density functions p, q, and r, i.e., D ∼ p,
C1 ∼ q, and C2 ∼ r, respectively. If the scal-
ing function g of fNN is a logarithmic function,
the order relation of the expectations of fNN(C1)
and fNN(C2) is asymptotically the same as that of
the KL-divergences DKL(p || r) and DKL(p || q),
i.e., E[fNN(C1)] − E[fNN(C2)] > 0 ⇔ DKL(p ||
r) − DKL(p || q) > 0, as |D| → ∞, |C1| → ∞,
and |C2| → ∞.

Proof. Let m be the dimension on embeddings.
Using a divergence estimator based on nearest
neighbor distances in (Pérez-Cruz, 2009; Wang
et al., 2009), we can approximate DKL(p || q)
by D̂KL(D,C1) := m

|D|
∑D

w ln N(w,C1)
N(w,D) + ln |C1|

|D|−1 .

Therefore, we obtain D̂KL(D,C2)−D̂KL(D,C1) ∝∑D
w lnN(w,C2) −

∑D
w lnN(w,C1). Since

g(x) = ln(x), we have fNN(C1)− fNN(C2) > 0 if
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and only if D̂KL(D,C2) − D̂KL(D,C1) > 0 holds.
The fact that E[D̂KL(D,C1)] → DKL(p || q) as
|C1| → ∞ and |D| → ∞ concludes the theo-
rem.

4 Experiments

We compared our two proposed methods DocEmb
and EmbDist with two state-of-the-art methods
SenEmb and TfIdf. The first two methods
DocEmb and EmbDist represent Algorithm 1
with our proposed objective functions fCos and
fNN, respectively. TfIdf represents Algorithm 1
with an objective function based on the sum of co-
sine similarities of tf-idf vectors that correspond
to sentences, which was proposed in (Lin and
Bilmes, 2011). SenEmb uses a cosine similar-
ity measure based on embeddings instead of tf-idf
vectors in the same framework as TfIdf, which
was proposed in (Kågebäck et al., 2014).

We conducted an experiment with almost the
same setting as in the previous study, where they
used the Opinosis dataset (Ganesan et al., 2010).
This dataset is a collection of user reviews in 51
different topics such as hotels, cars, and products;
thus, it is more appropriate for evaluating sum-
marization of user-generated content than well-
known DUC datasets, which consist of formal
news articles. Each topic in the collection com-
prises 50–575 sentences and includes four and five
gold standard summaries created by human au-
thors, each of which comprises 1–3 sentences.

We ran an optimization process to choose sen-
tences within 100 words3 by setting the summary
size and weights as ` = 100 and ws = |s|
for any sentence s, respectively. As for TfIdf
and SenEmb, we set a cluster size of k-means as
k = |D|/5 and chose the best value for a threshold
coefficient α, trade-off coefficient λ, and the scal-
ing factor r, as in (Lin and Bilmes, 2011). Note
that our functions DocEmb and EmbDist have
only one parameter r, and we similarly chose the
best value of r. Regarding DocEmb, EmbDist,
and SenEmb, we used the best embeddings from
the CW Vector and W2V Vector for each method,
and created document and sentence embeddings
by averaging word embeddings with tf-idf weights
since it performed better in this experiment. In the
case of EmbDist, we used a variant of fNN based

3The previous work used a sentence-based constraint as
` = 2 and ws = 1, but we changed the setting since the
variation in length has a noticeable impact on ROUGE scores
as suggested in (Hong et al., 2014).

R-1 R-2 R-3 R-4
ApxOpt 62.22 21.60 8.71 4.56
EmbDist (lnx) 56.00 16.70 4.93 1.89
EmbDist (x) 55.70 15.73 4.59 1.84
EmbDist (ex) 56.29 15.96 4.43 1.39
DocEmb 55.80 13.59 3.23 0.90
SenEmb 53.96 15.42 3.97 1.10
TfIdf 52.97 17.24 5.40 1.49

Table 1: ROUGE-N (R-N) metrics of DocEmb,
EmbDist, SenEmb, and TfIdf.

on distributions of sentence embeddings. In ad-
dition, we examined three scaling functions: log-
arithmic, linear, and exponential functions, i.e.,
lnx, x, ex, respectively.

We calculated the ROUGE-N metric (Lin,
2004)4, which is a widely-used evaluation met-
ric for summarization methods. ROUGE-N is
based on the co-occurrence statistics of N-grams,
and especially ROUGE-1 has been shown to have
the highest correlation with human summaries
(Lin and Hovy, 2003). ROUGE-N is similar
to the BLEU metric for machine translation, but
ROUGE-N is a recall-based metric while BLEU is
a precision-based metric.

Table 1 shows the results obtained for ROUGE-
N (N ≤ 4) using DocEmb, EmbDist, SenEmb,
and TfIdf. ApxOpt represents the approxima-
tion results of the optimal solution in our prob-
lem, where we optimized ROUGE-1 with the gold
standard summaries by Algorithm 1. The ob-
tained results indicate that our proposed method
EmbDist with exponential scaling performed the
best for ROUGE-1, which is the best metric in
terms of correlation with human summaries. The
W2V Vector was the best choice for EmbDist.
Furthermore, the other proposed method DocEmb
performed better than the state-of-the-art methods
SenEmb and TfIdf, although DocEmb is not
theoretically guaranteed to obtain a near optimal
solution. These results imply that our methods
based on the document-level similarity can capture
more complex meanings than the sentence-level
similarity. On the other hand, TfIdf with tf-idf
vectors performed the worst for ROUGE-1. A pos-
sible reason is that a wide variety of expressions
by users made it difficult to calculate similarities.
This also suggests that embedding-based methods

4We used their software ROUGE version 1.5.5 with the
parameters: -n 4 -m -a -l 100 -x -c 95 -r 1000 -f A -p 0.5 -t 0.
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naturally have robustness for user-generated con-
tent.

In the case of N ≥ 2, TfIdf performed the best
for ROUGE-2 and ROUGE-3, while EmbDist
with logarithmic scaling is better than TfIdf
for ROUGE-4. According to (Lin and Hovy,
2003), the higher order ROUGE-N is worse than
ROUGE-1 since it tends to score grammatical-
ity rather than content. Conversely, Rankel et al.
(2013) reports that there is a dataset where the
higher order ROUGE-N is correlated with human
summaries well. We may need to conduct human
judgments to decide which metric is the best in
this dataset for more accurate comparison. How-
ever, it is still important that our simple objective
functions can obtain good results competing with
the state-of-the-art methods.

5 Conclusion

In this study, we proposed simple but power-
ful summarization methods using the document-
level similarity based on embeddings, or dis-
tributed representations of words. Our experimen-
tal results demonstrated that the proposed meth-
ods performed better than the existing state-of-the-
art methods based on the sentence-level similar-
ity. This implies that the document-level similar-
ity can capture more complex meanings than the
sentence-level similarity.

Recently, Kusner et al. (2015) independently
discovered a similar definition to our objective
function fNN through a different approach. They
constructed a dissimilarity measure based on a
framework using Earth Mover’s Distance (EMD)
developed in the image processing field (Rubner
et al., 1998; Rubner et al., 2000). EMD is a con-
sistent measure of distance between two distribu-
tions of points. Interestingly, their heuristic lower
bound of EMD is exactly the same as −fNN with a
linear scaling function, i.e., g(x) = x. Moreover,
they showed that this bound appears to be tight
in real datasets. This suggests that our intuitive
framework can theoretically connect the two well-
known measures, KL-divergence and EMD, based
on the scaling of distance. Note that, to the best of
our knowledge, there is currently no known study
that considers such a theoretical relationship.

In future research, we will explore other scal-
ing functions suitable for our problem or different
problems. A promising direction is to consider a
relative scaling function to extract a biased sum-

mary of a document. This direction should be use-
ful for query-focused summarization tasks.
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Abstract

We restate the classical logical notion of
generation/parsing reversibility in terms of
feasible probabilistic sampling, and argue
for an implementation based on finite-state
factors. We propose a modular decompo-
sition that reconciles generation accuracy
with parsing robustness and allows the in-
troduction of dynamic contextual factors.
(Opinion Piece)

1 Introduction

The objective of Natural Language Understanding
(NLU) is to map linguistic utterances to semantic
representations, that of Natural Language Genera-
tion (NLG) to map semantic representations to lin-
guistic utterances. In most of NLP practice, these
two objectives are handled by different processes,
and computational linguists rarely operate at the
intersection of the two subdomains.

For a few years around the early nineties, based
both on cognitive, linguistic, and engineering con-
siderations, there was a surge of interest in so
called reversible grammar approaches to NLP,
where one and the same grammatical specification
could serve both for parsing utterance x into logi-
cal form z, but also for generating x from z (Strza-
lkowski, 1994).

We start by a brief review of this historical non-
probabilistic notion of reversibility and point out
certain of its weaknesses, in particular regarding
robustness; we then give in section 3 a new proba-
bilistic definition of reversibility; then, in section 4
we argue for a reversibility model based on modu-
lar weighted finite-state transducers. We end with
a discussion of recent related work.

∗Work done while at XRCE.

2 Classical reversibility

The most direct approaches to NLU attempt to de-
sign procedures for semantic parsing that, given
an input utterance x, produce a semantic repre-
sentation z, by following a number of interme-
diate steps where the surface form is gradually
transformed into semantic structure. Such “pro-
cedural” approaches to semantic parsing are typ-
ically very hard or impossible to invert: start-
ing from a semantic representation z, there is no
simple process that is able to find an x which,
when given to the parser, would produce z. For-
mally, a Boolean relation r(x, z) can be such that
the question ?∃z r(x, z) is decidable for all x’s,
while the reciprocal question ?∃x r(x, z) is unde-
cidable for some z’s (Dymetman, 1991).1 One of
the motivations for the emerging paradigm of uni-
fication grammars at the end of the eighties was
the clean separation they promised between spec-
ifying well-formed linguistic structures, both on
the syntactic and semantic levels, through a for-
mal description of the relation r(x, z), and pro-
ducing efficient implementations of the specifi-
cation; in particular, there was much hope that
such formalisms would be conductive to effec-
tive reversibility (by contrast to variable assign-
ment, variable unification is inherently symmetri-
cal), that is, to feasible (and if possible efficient)
implementations of the parsing problem r(x, ?)
and of the generation problem r(?, z).

To some extent, this hope was validated through
a number of works at the time, mostly involving
machine translation applications, and constrain-
ing in more or less explicit ways the specifica-
tion of r (van Noord, 1990). However, for the
non-statistical approaches to parsing then strongly
dominant, robustness was an issue: a parser had to

1Some intuition into the issue may be gained by consider-
ing typical techniques of public key cryptography, which rely
on the difficulty of inverting some simple arithmetic compu-
tations.
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either accept or reject a given input x, with no in-
termediary options, and in order to be able to parse
actual utterances, with all their empirical diversity,
parsers had to be rather tolerant. In the procedural
view of parsing, such robustness issues could of-
ten be mitigated through engineering tricks such as
ordering the rules from strict to lax, where gram-
matical constructions were given preference over
less conventional ones; however, when trying to
move to reversible grammars, these tricks could
not be reproduced: if the grammar was able to
parse an x into z, then, by design, it was also able
to generate x from z, and there was no obvious
way, in these non-probabilistic approaches, to dis-
tinguish between producing a linguistically correct
x or producing a deviant or incorrect one.

3 Probabilistic reversibility

In the classical non-probabilistic case, a (relative)
consensus existed around the fact that a reversible
grammar should be, as we indicated above, a for-
mal specification of the relation r(x, z) such that
the problems r(x, ?) and r(?, z) were effectively
solvable.

Transposing this to the probabilistic world, we
propose the following semi-formal Definition:

A probabilistic reversible grammar is a for-
mal specification of a joint probability distribu-
tion p(x, z) over logical forms z and utterance
strings x such that the conditional distributions
p(z|x) def= p(x,z)∑

z′ p(x,z′)
(parsing) and p(x|z) def=

p(x,z)∑
x′ p(x′,z)

(generation) can be efficiently sampled

from.2

Why such focus on sampling? We could have
chosen other definitions of parsing (and similarly
for generation), for instance the ability to re-
turn the most probable z given x, i.e. to return
argmaxz p(z|x); however sampling is the most di-
rect way of providing a concrete view of the un-
derlying probabilistic distribution, and has many
applications to learning, so we think the definition
above is reasonable (see also footnote4).

2We note the “semi-formal” aspect of this definition: con-
trarily to the classical case, which has a formal notion of ef-
fective computation, there is no universally accepted notion
of effective sampling from a probability distribution. For
many probability distributions, the only feasible sampling
approaches are the MCMC techniques (Robert and Casella,
2004), which typically do not come with convergence guar-
antees; in some situations, exact sampling techniques are ap-
plicable, which come with much better guarantees. We will
see that the approach proposed in section 4 allows such exact
sampling to take place.

4 Finite-state models for reversibility

Finite-state transducers have properties which
make them uniquely suited to implementing re-
versible linguistic specifications in the above
sense. Consider a simple weighted string-to-
string transducer τ(s, t), where s, t are strings, and
where the underlying semiring is the “probabilis-
tic semiring” over the nonnegative reals, addition
and multiplication having their usual interpreta-
tions. Such a transducer preserves regularity, both
in the forward (resp. reverse) directions, meaning
that the image through τ of any weighted regular
language over s (resp. over t) is again a weighted
regular language over t (resp. over s). In partic-
ular the forward (resp. reverse) image of a fixed
string s0 (resp t0) can be computed in a compact
form as a weighted finite-state automaton (FSA)
over t (resp. s), which we can denote by τ(s0, ·)
(resp. τ(·, t0)). A weighted FSA can be easily nor-
malized into a probabilistic FSA3 and, from this
probabilitic FSA exact samplers for the “parser”
τ(s0, ·) and for the “generator” τ(·, t0)) are di-
rectly obtained.4

In general, some of the properties that make
weighted FSAs and FSTs — over strings or trees
— specially relevant for probabilistic models of
language are the following: (i) they allow com-
pact representations of complex probability distri-
butions over linguistic objects (automata) or pairs
of linguistic objects (transducers), (ii) they permit
efficient exact sampling (and efficient optimiza-
tion over derivations (but not always over strings)),
(iii) they support modularity: intersection of au-
tomata, composition of transducers, projections of
an automaton through a transducer.5

Conceptual architecture Armed with these
general considerations, let us now propose a con-
ceptual architecture based on a small number of

3That is, into a weighted FSA such the weights of the tran-
sitions from each state sum to 1.

4 While sampling strings from a weighted finite-state au-
tomaton is simple, finding the most probable string (not path)
in a probabilistic FSA is an NP-hard problem (Casacuberta
and de la Higuera, 2000), and one has to resort to the so-
called Viterbi approximation (assuming that the most prob-
able path projects into the most probable string). Contrary
to popular belief, sampling can sometimes be simpler than
optimization.

5Outside of the realm of finite-state machines, this modu-
larity is typically impossible to obtain. Thus, in general, the
availability of a sampler for a distribution p(x) (resp. a dis-
tribution q(x)) does not imply that we can efficiently sample
from the product (i.e. intersection) p(x).q(x), but we can in
case p and q are both represented by weighted FSAs.

1991



finite-state modules, which attempts to satisfy the
definition given above for probabilistic reversibil-
ity, to address the problem of robustness that we
described earlier, and can also support contex-
tual preferences. We illustrate the approach with
some simple examples of human-machine dia-
logues (between a customer and a virtual agent), a
domain for which reversibility has high relevance,
due to effects such as self-monitoring (Neumann,
1998; Levelt, 1983), interleaving of understand-
ing and generation (Otsuka and Purver, 2003), and
lexical entrainment (Brennan, 1996).
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Figure 1: Reversible specification through finite-
state factors.

The conceptual architecture is shown in Figure 1.
Formally, the figure represents a probabilistic
graphical model in so-called factor form, where
the factors are ω, κ, σ, λ (we have also indicated
for future reference the “contextual” factors ζ, µ,
that we ignore for now). The factors take as argu-
ments three types of objects: z is a logical form,
that is, a structured object which can be naturally
represented as a tree, x is a surface string, and y
is a latent “underlying” string that corresponds to
one of a small collection of “canonical” texts for
realizing the logical form z (more about that later).

Each factor is realized through a weighted
finite-state machine (acceptor or transducer) over
strings or trees (Mohri, 2009; Fülöp and Vogler,
2009; Maletti, 2010; Graehl et al., 2008).

The λ factor is a string automaton that repre-
sents a standard ngram language model (typically
specific to domain), in other words a probability
distribution over utterances x. Symmetrically, the
regular tree automaton ω represents a distribution
over logical forms z, which can be seen as play-
ing a similar role to the language model, but at the
semantic level, namely telling us what are the pos-
sible/likely logical forms in a certain domain.6

The “canonical factor” κ is a weighted tree-
to-string transducer (Graehl et al., 2008), which
implements a relation between logical forms z

6In particular, the ω factor makes explicit the notion of a
well-formed semantic representation, a notion often left im-
plicit in semantic parsing.

and a small number of latent “canonical” texts
y realizing these logical forms. For example, κ
may associate the logical form (dialog act) z =
wad(batLife, iphone6) — with wad an abbrevi-
ation for “what is the value of this attribute on this
device?”, and batLife an abbreviation for “bat-
tery life” —, with such a canonical text (among
a few others) as: What is the battery life of the
Iphone 6?.

The “similarity factor” σ is a weighted string-
to-string finite state transducer which gives scores
to x, y according to a notion of similarity. It has
the role of “bridging” the gap between the actual
utterances x and the latent canonical utterances y.
The intention behind the similarity factor is to “de-
couple” the task of modeling some possible real-
izations of a given logical form from the task of
recognizing that a given more or less well-formed
input is a variant of such a realization. This fac-
tor relates the two strings y and x, where y is a
possible canonical utterance in the limited reper-
tory produced by κ, and x is an actual utterance,
in particular any utterance that could be produced
by a human speaker. So for instance suppose that
the user’s utterance is x = What about battery du-
ration on this Iphone 6?, we would like this x to
have a significant similarity with the canonical ut-
terance y = What is the battery life of the Iphone
6? but a negligible similarity with another canon-
ical utterance such as y′ = What is the screen size
of the Galaxy Trend?.

Overall, the canonical factor κ(z, y) concen-
trates more on a core “generation model”, namely
on producing some well-formed output y from a
logical form z, while the similarity factor σ(y, x)
allows relating an actual user input x to a possi-
ble output y of the κ model. The main import of σ
is then to allow to use the core generation model
defined by κ to be exploited for robust semantic
parsing.

Different instantiations of this scheme can be
employed. In some preliminary experiments that
we have performed,7 σ is a simple edit-distance
transducer (Mohri, 2003) which penalizes differ-
ently the discrepancies between x and y: strongly
for some salient content words or named entities of
the domain, weakly for less relevant content words
and for non-content words, with limited use of lo-
cal paraphrases (which can also be implemented

7In these experiments, we used string-based approxima-
tions of the logical forms, and only employed string-based
transducers from the OpenFST library.
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through σ). This strategy seems to work reason-
ably well when the semantical repertory of the do-
main is restricted, because a large number of pos-
sible variants for x are “attracted” to the same un-
derlying semantics. In domains where small nu-
ances of expression may result in distinct seman-
tics, the division of work between κ and σ may be
different.

Parsing and Generation To understand the re-
versibility properties of the model of Figure 1,
let us first simplify the description by assuming
that z, instead of being a tree, is actually a string.
Then both ω and λ are string automata, and both
κ and σ string-to-string transducers. Such a spec-
ification satisfies our definition of probabilistic re-
versibility, exploiting well-known compositional-
ity properties of weighted finite-state machines
over strings (Mohri, 2009). For parsing, we start
from a fixed x0, and can project it through σ into
a weighted FSA over y; in turn we can project
this automaton onto an FSA over z, and finally
intersect this automaton with ω, obtaining a fi-
nal weighted “x0-parser” automaton over z, rep-
resenting a probability distribution from which we
can draw exact samples as explained above.8 Gen-
eration works in exactly the reverse way, starting
from a z0 and eventually building a “z0-generator”
automaton over x.

In the actual proposal, z is a tree, meaning that
ω is a tree automaton, and κ a tree-to-string trans-
ducer. While finite-state tree automata correspond
to a single concept, and share all the nice proper-
ties of string automata (Comon et al., 2007), the
situation with tree-to-tree or tree-to-string trans-
ducers is more complicated (Maletti, 2010; Graehl
et al., 2008): several variants exist, only some of
which support the operations that our conceptual
model requires (composition with the string trans-
ducer σ and intersection with the tree automaton
ω). In particular, the “linear non-deleting top-
down tree transducers” defined in (Maletti, 2010)9

have the requisite properties.

Contextual factors We now briefly come back
to the factors ζ (tree automaton) and µ (string
automaton) of Figure 1, which highlight the use-

8We could also have precompiled a generic parser for all
x’s by first marginalizing the latent variable y through a com-
position of the transducers κ and σ, and then intersecting the
resulting transducer with the automaton ω.

9The paper only defines tree-to-tree transducers, but tree-
to-string variants can be derived easily.

fulness of our modular finite-state architecture.
These factors play similar roles to ω and λ, but
they evolve dynamically with the context. In dia-
logue applications, utterances can often only be in-
terpreted by reference to the current dialogue state
(e.g. “ten hours” in the context of a question about
battery life), and the ζ factor can be used as a com-
pact representation of the current expectations of
the dialogue manager about the next logical form,
to be combined with the actual customer’s utter-
ance. Symmetrically, the µ factor can be used
to represent such phenomena as lexical entrain-
ment (Brennan, 1996), where the agent’s utterance
is oriented towards using similar wordings to the
customer’s.

5 Related work

The unique formal properties of finite-state ma-
chines, which favor modular decompositions of
complex tasks, have long been exploited in Com-
putational Linguistics. Tree transducers in partic-
ular have gained popularity in Statistical Machine
Translation, starting with (Yamada and Knight,
2001), as described in the surveys (Maletti, 2010;
Razmara, 2011).

The reversibility properties of finite-state trans-
ducers have been exploited to a more limited ex-
tent, starting with applications of non-weighted
string-to-string transducers to morphological anal-
ysis and generation (Beesley, 1996).

Concerning the application of weighted finite-
state tree machines to NLU/NLG reversibility, our
proposal is strongly related on the one hand to
the approach of (Jones et al., 2012), who ex-
plicitely proposes tree-to-string transducers as a
tool for modelling semantic parsing and for train-
ing on semantically annotated data, and on the
other hand to (Wong, 2007; Wong and Mooney,
2007), who focus more directly on the problem of
inverting a semantic parser into a generator. Wong
et al. do not explicitely use tree-based transducers,
but rather a formalism inspired by SCFGs (syn-
chronous context-free grammars), which essen-
tially corresponds to a form of tree-to-string trans-
ducer. In relation to reversibility considerations,
presentations in terms of synchronous formalisms
have the interest that they are intrinsically sym-
metrical. Such formalisms have tight relations to
tree-transducers (Shieber, 2004); one recently pro-
posed generalization, “Interpreted Regular Tree
Grammars” (Koller and Kuhlmann, 2011), allows
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multiple (possibly more than two) synchronized
views of an underlying abstract derivation tree,
and has the advantage of permitting a uniform
treatment of strings and trees.

One important aspect in which our proposal dif-
fers from these previous approaches is in propos-
ing to decouple the “core” task of mapping logical
forms to well-formed latent canonical realizations
from the task of relating these realizations to ac-
tual utterances, through an additional “similarity”
transducer acting as a bridge.

This idea of a bridge is however close to another
line of work in semantic parsing, not transducer
based, namely (Berant and Liang, 2014; Wang
et al., 2015). There, a simple generic grammar
is used to generate canonical realizations from a
repertory of possible logical forms (expressed in
a variant of lambda calculus). Given an input to
parse, simple heuristics are used to select a fi-
nite list of potential logical forms which are then
ranked according to the (paraphrase-based) simi-
larity of their associated canonical realization with
the input. Thus in this approach, a form of gener-
ation plays an important role, not for its own sake,
but as a tool for semantic parsing.

6 Conclusion

Because of their unique compositional properties,
finite-state modules are a natural choice for imple-
menting our definition of reversibility as efficient
bidirectional sampling from a common specifica-
tion. In this piece we have argued in favor of an
architecture realizing this definition and display-
ing robustness and contextuality.
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Abstract

Direct content analysis reveals important
details about movies including those of
gender representations and potential bi-
ases. We investigate the differences be-
tween male and female character depic-
tions in movies, based on patterns of lan-
guage used. Specifically, we use an au-
tomatically generated lexicon of linguis-
tic norms characterizing gender ladenness.
We use multivariate analysis to investigate
gender depictions and correlate them with
elements of movie production. The pro-
posed metric differentiates between male
and female utterances and exhibits some
interesting interactions with movie genres
and the screenplay writer gender.

1 Introduction

Gender has been an important research topic in the
social sciences, with studies conducted on the ef-
fect of gender on various aspects of human percep-
tion and expression (Benshoff and Griffin, 2011)
as well as investigations of the societal (Behm-
Morawitz and Mastro, 2008) and career implica-
tions of gender and possible underlying biases.
Previous studies report significant implications of
gender on career progress in medicine (Sidhu et
al., 2009), information technology (Cohoon and
Aspray, 2006), politics (Niven, 2006) and show-
business (Smith, 2010).

In this paper we investigate the depictions of
the genders in feature films, through the analysis
of their respective dialogues. The differences in
depiction are a contentious subject, since aspects
of these can be viewed as the result of stereotyp-
ing or gender bias, with the relative presence of
women being a well investigated subject (Bielby
and Bielby, 1996; Lincoln and Allen, 2004). We
are interested in the existing gender depictions, re-

gardless of relative frequencies, as well as any fac-
tors that may affect them. While popular tools
such as the Bechdel test provide a test for detecting
female presence in the movies, we hope to iden-
tify more subtle forms of gender differences across
character gender from the dialogues. Our aim is
to devise a non-binary metric that can be used to
compare or rank movies, characters and perhaps
individual utterances.

To analyze the dialogues we propose using
a metric of language gender ladenness, a num-
ber representing a normative rating of the “per-
ceived feminine or masculine association” (Paivio
et al., 1968) of language. The metric, as origi-
nally defined, is meant to provide an indication
of gender-specificity of individual words, with ex-
treme values assigned to highly stereotypical con-
cepts. Generating this rating for male and fe-
male character dialogues and comparing the char-
acter gender with this rating of “language gender”
should allow us to observe stereotypical behavior.

Word based ratings such as the gender laden-
ness are referred to as linguistic norms (or psy-
cholinguistic norms when corresponding to psy-
chological constructs) and are popular in cognitive
psychology (Clark and Paivio, 2004) and some
computational disciplines, such as sentiment anal-
ysis (Nielsen, 2011) and opinion mining. To uti-
lize gender ladenness, we follow an approach sim-
ilar to simple sentiment analysis, with word-level
norms automatically generated based on a small
starting set of manually annotated norms and sen-
tence (and higher) level norms estimated through
word-level norm statistics. The resulting algo-
rithm allows us to estimate gender ladenness at
any arbitrary granularity.

We use these ratings of dialogue language to
quantify the depictions of male and female char-
acters and attempt to relate the observed gender
ladenness with objective factors.

In section 2 and 3 we describe the data corpus
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Word Norm
Infantry -0.97
Truck -0.73
Dictator -0.56
Strider -0.36
United -0.18
Volunteerism 0.04
Hygiene 0.22
Candle 0.45
Radiant 0.66
Bride 0.84
Gorgeous 0.96

Table 1: Sample word norms(∈ [−1, 1]); −1:
Most masculine and +1: Most feminine.

and the feature extraction process respectively. We
detail the experimental procedure in section 4 and
analysis in section 5 and conclude with future ex-
tensions in section 6.

2 Estimating Gender Ladenness

Gender Ladenness, as defined in (Clark and
Paivio, 2004) represents the degree of perceived
“feminine or masculine association” on a numeri-
cal scale ranging from very masculine to very fem-
inine. It is important to note that there was no re-
striction to what “association” may mean: while
it is reasonable to assume that associations of the
form “A is B” or “A has B” would dominate an-
notator perception, that does not preclude other
forms of association. Because of that, referring to
the norms as indicators of how masculine or femi-
nine the words are is not entirely accurate, though
it is a reasonable approximation. The original rat-
ings were re-scaled to [−1, 1] for our purposes,
with lower values indicating a masculine associ-
ation and high values indicating a feminine asso-
ciation. Some sample words, utterances and their
corresponding ratings are presented in Table 1 and
Table 3. Figure 1 shows the average gender laden-
ness across all utterances for the major characters
of a few movies. The annotations as a whole are
reflective of stereotypical views of gender roles,
e.g., words related to war and violence have a
strong masculine association, whereas words re-
lated to family or positive emotions carry strong
feminine associations.

The manual annotations from (Clark and Paivio,
2004) contain ratings for only 925 words, which
are not enough to provide sufficient coverage.

-0.05 -0.04 -0.03 -0.02 -0.01 0.0 0.01 0.02
Gender Ladenness

AH

BC

KB

PF

Alvy Annie

Andrew Brian

Bender

Claire

Bride Bill

Jules Vincent Butch

Avg Gender Ladenness for Major Characters

Figure 1: Average Gender Ladenness for a few
sample movies, marker size proportional to num-
ber of utterances. Filled markers: Female charac-
ters, Hollow markers: Male characters; PF: Pulp
Fiction, KB: Kill Bill, BC: Breakfast Club, AH:
Annie Hall.

Therefore we use a lexicon expansion method, in-
spired by the work of (Malandrakis et al., 2013)
to estimate the gender ladenness ĝ(wi) of word wi
using the semantic similarities s() between wi and
reference words or concepts cj , as

ĝ(wi) = θ0 +
N∑
j=1

θjs(wi, cj), (1)

where the terms θi are trained model parameters.
Given a manually annotated lexicon and a set of

reference words, this equation can be used to cre-
ate a linear system. Solving the system via Least
Squares Estimation (LSE) gives us the parameters
θ and an equation that can be used to generate gen-
der ladenness for any new set of words.

Gender ladenness for larger lexical units is gen-
erated via simple statistics, as the average of word
gender ladenness over all content words (adjec-
tives, nouns, verbs and adverbs).

3 Data

Our primary data source is the Movie DiC corpus
(Banchs, 2012) which includes 619 movie scripts
parsed from The Internet Movie Script Database
(IMSDb, 2015). The xml formatted scripts con-
tain transcripts with speaker information as well as
some structural information. Additional metadata
for each movie were collected from the Internet
Movie Database (IMDb, 2015).
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Since our goal was to analyze gender depic-
tions, we had to annotate each script utterance with
a gender label. The process was complicated by
inconsistencies between the information contained
in the IMDb and Movie DiC corpora, like mis-
matched names, particularly for minor characters.
Initially the script character names were cleaned
using simple heuristics, such as the removal of
all instances of the possessive “’s”. The IMDb
api (IMDbPY, 2015) was used to recover candi-
date movies matching the script movie name and,
in the case of multiple candidates, the best candi-
date was selected based on the number of character
names matching the script. Character names were
compared using the Jaro-Winkler distance (Win-
kler, 1990). Having achieved a one to one map-
ping between IMDb and Movie DiC, we assigned
a gender label to each matched character, using
the gender predictor (NamSor Applied Onomas-
tics, 2015). To make these predictions, we first
use the name of the corresponding actor portraying
that role; if there was no character match, we use
the name of the character. Finally, we calculate a
confidence score of our gender assignment per ut-
terance for each movie, equal to the percentage of
utterances with perfectly matched character name
and a high confidence by the gender predictor. For
the movies for which the confidence scores are not
satisfactory, we manually match the script charac-
ters with IMDb’s characters and annotate genders.
In our experiments, we did this manual annotation
with roughly 75 movies.

Having a mapping of scripts to IMDb en-
tries, we collected more information about the
movie such as the list of genres it belongs to and
the members of the production team (producers,
scriptwriters, directors), and followed a similar
process as described above to assign genders to all
persons. While movies may be created by multi-
ple scriptwriters and directors, we retain only the
first name, the primary credit, in each category.
We removed infrequent genres and movies which
belonged only to the removed genres. We also fil-
tered out utterances with missing or incorrect char-
acter information and the utterances correspond-
ing to characters for which the gender predictor
fails to make confident predictions.

Movies with missing fields were also removed,
leaving us with a total of 568 movies after the
aforementioned pre-processing steps. Table 2 lists
some descriptive statistics of the processed movie

Property Name Female Male Total
Movie Utterances 107372 256274 363646

Producers 746 2974 3720
Directors 33 572 605

Assistant Directors 846 2739 3585
Screenplay Writers 130 1217 1347
Casting Directors 548 195 743

Table 2: Movie Dataset statistics

Utterance Avg. GL
Flowers for the Diva. 0.77
Yeah, what a woman. 0.47

Got the house to yourselves? -0.01
What about the crew? -0.51

Yeah? You and what army? -0.85

Table 3: Average gender ladenness for sample ut-
terances from the dataset

corpus. At least in terms of raw frequencies, the
gender ratio is clearly skewed towards male, par-
ticularly in the case of directors and with the ex-
ception of casting directors.

The norm generating equation (1) requires a se-
mantic similarity estimate s(), which for the pur-
poses of this paper is the cosine of context vectors
generated over a large corpus of raw web text. The
corpus was created by posing a query to the Ya-
hoo! search engine for every word in the English
version of the aspell spell-checker and collecting
the top 500 result previews. Each preview is com-
posed of a title and a sample of the content, each
being a single sentence. Overall the collected cor-
pus contains approximately 117 million sentences.

4 Experimental Procedure

The descriptive feature in this method is gender
ladenness, so we extracted an estimate for each
utterance of every movie. Initially, all utterances
were part-of-speech tagged and non-content words
were removed. Then, word-level gender landen-
ness norms were generated for every remaining
word.

To generate word-level norms, we used equa-
tion (1) with the intermediate seed words wi be-
ing the top 10000 most frequent words in our cor-
pus of web text with length longer that 3 char-
acters. For each word in our corpus, we gener-
ated a binary weighted context vector (of window
size 1) of size ∼ 125000. Then, for each word
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of interest we calculated a 10000 place similar-
ity vector, containing the cosine similarity scores
between the context vector of said word and the
context vectors of the 10000 intermediate seeds.
Using the training set we generated a K × 10000
matrix of similarities to the seed words and ap-
plied dimensionality reduction via Principal Com-
ponent Analysis (PCA), keeping the firstN = 300
components. These transformed similarities be-
came the similarity terms s() of equation (1) and
were used to train the model. For any word in
the scripts, a 10000 place similarity vector is gen-
erated and transformed using the pre-calculated
PCA matrix, then equation (1) is used to create
the gender ladenness estimate.

Ratings were generated at the utterance level,
and collective ratings (per character, gender or
movie) were calculated as utterance rating aver-
ages.

5 Results

To evaluate the word norm generation algorithm,
we performed a 10-fold cross-validation experi-
ment on the 925 manually annotated norms in
(Paivio et al., 1968). The generated norms were
evaluated against the ground truth and the method
achieved a 0.801 Pearson correlation to the ground
truth. While there is no comparable result in lit-
erature, the resulting performance appears suffi-
ciently high.

We first investigated the overall gender laden-
ness of movies, represented as the average of all
utterance level scores, with respect to the genre(s)
the movie belongs to. The independent variables
for this analysis were nine binary indicator vari-
ables, one for each of the most frequent genre la-
bels in our movie corpus, with values of zero if
the movie does not belong to the specific genre
and one if it does. The particular representa-
tion of genres as separate variables was chosen
because each movie can belong to multiple gen-
res. Interaction terms were included. Running n-
way ANOVA with the aggregate gender ladenness
across both character genders as the dependent
variable revealed significant differences between
genres, with Action movies leaning towards the
masculine (p = 0.013) compared to Non-Action
movies, a not surprising result.

A few significant interactions between genres
are shown in figure 2. Fig. 2a indicates that among
non-drama movies, romantic movies tend to in-
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Figure 2: Interactions between genres

clude more feminine language compared to non-
romantic movies. However, if a movie belongs
to the genre drama, its mean gender ladenness
scores remain fairly constant, irrespective of its
other genres. Similar interpretations can be drawn
from the other plots in figure 2.

To analyze the effect of character gender on
the gender ladenness scores, we next ran ANOVA
with the character gender and the movie writer’s
gender as additional independent variables. The
dependent variable in this case was the aggregate
gender ladenness score across all utterances for
male and female characters, so two scores per
movie. The interaction of character gender and
movie genre is shown in figure 3. The scores of
male and female characters are correlated, which
can be attributed to the underlying concepts in
the utterances from these movies. The differ-
ence between genders is significant (p = 0.034),
with male characters consistently using signifi-
cantly more masculine language than their female
counterparts, a finding that lends some credence
to the metric used. Looking at the binary genre
variables revealed that

Action movies contained significantly more
masculine language than Non-Action movies (p
< 10−5) and the same holds for Crime movies (p
< 10−5). Conversely, Romantic movies leaned
towards the more feminine language than non-
Romantic movies (p < 10−5) and similarly for
Comedy movies compared to non-Comedy movies
(p = 0.02). The male - female character gender
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Figure 3: Interaction of movie genre with charac-
ter gender

ladenness distance however is not affected in any
significant way by the genre.

We include only the screenplay writer’s gen-
der in our analysis, though both the directors and
screenplay writers influence the dialog lines (utter-
ances), since the writers are more likely to directly
influence the actual language used. In addition, the
very small number of female directors in the data,
as seen in table 2, leads to a violation of ANOVA’s
homoscedasticity assumption. Though the writer
gender itself was not a significant factor, the inter-
action of writer’s gender with the Action genre was
significant (p = 0.005). The plot illustrating this
interaction is shown in figure 4. It appears that
female script writers write more masculine utter-
ances compared to their male colleagues, at least
for Action movies. We also investigated interac-
tions between the writer and character gender, but
none proved significant.

6 Conclusions and Future Work

We used regression to extrapolate manually an-
notated psycholinguistic normatives to movie ut-
terances and investigated the use of these met-
rics to describe gender depictions. The metric
proved successful, showing significant differences
between the genders and predictable patterns with
respect to movie genres.

Future work will include the use of further met-
rics, with those describing emotions being the first
candidates. We also intend to collect more movie
and character level metadata to be used in anal-
ysis. Finally, it is worth remembering that lan-
guage provides only a partial description of de-
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Figure 4: Interaction of screenplay writer’s gender
with genre

picted characters, so we should aim to augment
with aural/visual information.
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Abstract

The conferences ACL (Association for
Computational Linguistics) and EMNLP
(Empirical Methods in Natural Language
Processing) rank among the premier
venues that track the research develop-
ments in Natural Language Processing and
Computational Linguistics. In this paper,
we present a study on the research pa-
pers of approximately two decades from
these two NLP conferences. We apply
keyphrase extraction and corpus analysis
tools to the proceedings from these venues
and propose probabilistic and vector-based
representations to represent the topics
published in a venue for a given year.
Next, similarity metrics are studied over
pairs of venue representations to capture
the progress of the two venues with respect
to each other and over time.

1 Introduction

Scientific findings in a subject-area are typically
published in conferences, journals, patents, and
books in that domain. These research docu-
ments constitute valuable resources from the per-
spective of data mining applications. For in-
stance, the citation links among research docu-
ments are used in computing bibliometric quan-
tities for authors (Alonso et al., 2009) whereas
topic models on research corpora are used to
distinguish between influential and impactful re-
searchers (Kataria et al., 2011) and to capture tem-
poral topic trends (He et al., 2009).

Despite several potential benefits mentioned
above and the free availability of most research

proceedings in NLP through the ACL Anthology1,
the topical and temporal aspects of this corpus are
yet to be fully studied in current literature. In this
paper, we present our study on research proceed-
ings of approximately two decades from two lead-
ing NLP conferences, namely ACL and EMNLP,
to complement a previous study on this topic by
Hall et al (2008). To the best of our knowledge,
we are the first to characterize the developments
in the NLP domain using a comparative study of
two of its leading publication venues. Our contri-
butions are summarized below:

1. We represent the NLP research corpus from
approximately two decades as a keyphrase-
document matrix and apply Latent Dirichlet
Allocation (Blei et al., 2003) to extract co-
herent topics from it (Newman et al., 2010).

2. We propose two novel representations for
summarizing the venue proceedings in a
given year. (1) The probabilistic represen-
tation expresses each venue as a probability
distribution over topics, whereas (2) the TP-
ICP representation captures topics that are
the major focus in the venue for a particu-
lar year via Topic Proportion (TP) as well
as topic importance as measured with inverse
corpus proportion (ICP).

3. We apply Jensen-Shannon divergence and
cosine similarity on our proposed venue rep-
resentations to analyze the venues over time.
Specifically, we ask the following questions:
What are the popular topics in ACL and
EMNLP in a particular year? Is the topical
focus in EMNLP different from ACL? How

1https://aclweb.org/anthology/
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did the topical focus in each venue change
over time?

Organization: We describe our novel venue rep-
resentations and the measures used to compare
them in Section 2. The details of our datasets and
experiments are presented in Section 3 along with
results and observations. We summarize related
research in Section 4 before concluding the paper
in Section 5.

2 Methods

Let Y = {y1, y2 . . . yT } be the consecutive years
in which the research proceedings are available
from V , set of publication venues under consider-
ation (V = {“ACL”, “EMNLP”} in this paper). If
D is the set of all documents over the years, each
document d ∈ D is associated with {Kd, y, v}
where Kd refers to the content of d whereas v and
y refer to the venue and year in which d was pub-
lished.

2.1 Venues as Probability Distributions

Let t1, t2 . . . tk denote the topics capturing the
content of documents in D. Using probabilis-
tic topic modeling and dimension reduction tools
such as Latent Dirichlet Allocation or pLSA (Hof-
mann, 1999; Blei et al., 2003), we extract for each
d ∈ D, P (ti|d), i = 1 . . . k, the multinomial dis-
tribution over the topics associated with d.

The venue-topic probability distribution
P (ti|vy) for a given (venue, year) pair
(v = l, y = m) can be computed using
Dl,m, the set of documents published in venue l,
in the year m. That is,

Pl,m(ti) =
1

|Dl,m|
∑

d∈Dl,m

P (ti|d) (1)

Note that the above probabilistic representation
facilitates a quantitative measure to compare
two venues: the divergence between the prob-
ability distributions of the two venues. The
Kullback−Leibler divergence (KLD) between two
(discrete) probability distributions P and Q is
given by: DKL(P ||Q) =

∑
i
P (i)log P (i)

Q(i) . Due

to the unsymmetric nature of KLD, we use the
Jensen-Shannon divergence, a symmetric and fi-
nite measure (0 ≤ JSD(P ||Q) ≤ 1) based on
KLD. Let M = 1

2 (P + Q),

JSD(P ||Q) =
1
2
[DKL(P ||M) + DKL(Q||M)]

2.2 Venues as TP-ICP Vectors

Discrete probability distributions are often repre-
sented in computations as normalized vectors. For
instance, the P (ti|v) values comprise the compo-
nents of a k-dimensional vector. This topic pro-
portion (TP) vector is similar to the normalized
term frequency vector commonly used in Infor-
mation Retrieval (IR) (Manning et al., 2008). TP
values are fractions indicating the percentage of a
given topic among all topics covered in a partic-
ular year. Thus these values are higher for topics
that are the major focus in the venue for a particu-
lar year .

We also extend inverse document frequency, a
popular concept that is used to weigh terms in
IR (Manning et al., 2008) to describe Inverse Cor-
pus Proportion or ICP. Our objective in defin-
ing ICP is to capture the importance of a topic
by diminishing the effect of topics that are com-
mon across all years. Let TPv,y(i) represents the
proportion of topic ti in venue v for year y, then
ICP (ti) =

log
( |Y |∑

y=1

|V |∑
v=1

k∑
j=1

TPv,y(j)

|Y |∑
y=1

|V |∑
v=1

TPv,y(i)

)
=

( |D|
|Y |∑
y=1

|V |∑
v=1

TPv,y(i)

)

since
k∑

j=1
TP(j) = 1, TP being a probability dis-

tribution vector and |Y | × |V | = |D|. The TP-
ICP vector for a venue is defined as: [TP (1) ×
ICP (1), . . . TP (k) × ICP (k)] and captures in
each component the weighted proportion of a topic
in that venue for a year. This novel represen-
tation can be considered the topic-level counter-
part of the popular TF-IDF representation in IR.
Given two TP-ICP vectors P = [p1, p2, . . . pk] and
Q = [q1, q2, . . . qk], the similarity between them
using the cosine measure is given by:

cosine(P,Q) =

k∑
i=1

pi.qi

||P ||2.||Q||2

2.3 Keyphrases for representing documents

Corpus analysis tools often use bag-of-words
models and term frequencies for representing doc-
uments (Heinrich, 2005). However, research doc-
uments are often well-structured, and contain var-
ious sections with author information, citations,
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Topic ID Top Words
0 System, Dialogue, Dialogue System, Information, Speech Recognition, Speech, Dialogue Manager, Data Collection, User Utterances
1 Model, Training Data, Language Model, Model Parameters, Models, Generative Model, Probabilistic Model
2 Noun Phrases, Other Hand, Head Noun, Future Work, Corpus, Sentence, Language, Method, Japanese Language, Syntactic Structure
3 Evaluation, Evaluation Metrics, Automatic Evaluation, Machine Translation, Human Judgments, Translation Quality
4 Error, Error Correction, Error Types, Spelling Errors, Category, Errors, Lexical Category, Error Rate, Ccg Parser
5 Sentence, First Sentence, Summarization, Sentence Length, Summarization Task, Document Summarization Text Summarization
6 Algorithm, Search Space, Objective Function, Function, Search Algorithm, Model, Optimization Problem, Large Number
7 Language, Information, Sentence, System, Results, Corpus, Approach, Research, Learning, Language Processing, Systems, Machine
8 Rules, Parse Tree, Grammar, Tree Structure, Root Node, Parse Trees, Grammar Rules, Rule Extraction, Rule Set, Elementary Tree
9 Natural Language, System, Language Generation, Information, Generation System, Language, Sentence, System Architecture
10 Sentiment Analysis, Sentiment, Event, Discourse, Sentiment Classification, Discourse Structure, Discourse Relations
11 Dependency Parsing, Dependency, Parsing, Parser, Dependency Tree, Parse Tree, Dependency Parser, Parsing Model, Dependency Trees
12 Words, Other Hand, Natural Language, Other Words, Corpus, Language Processing, Model, Information, TestSet, Language
13 Pos Tagging, Pos Tags, Word Segmentation, Pos Tag, Words, Model, Word Boundaries, Unknown Words, Chinese Word, Pos Tagger
14 Training Data, Training Set, Test Data, Training, Test Set, Data Sets, Data Set, Labeled Data, Training Examples, Unlabeled Data
15 Language, Target Language, Source Language, Machine Translation, Translation, Different Languages, Language Pairs
16 Features, Feature Set, Training Data, Feature Vector, Training Set, Lexical Features, Model, Feature Space, Test Data
17 Clustering Algorithm, Annotation, Same Cluster, Clustering, Clustering Method, Clustering Methods, Annotation Scheme
18 Query, Information Retrieval, Search Engine, Web Search, Search, Search Results, Information, Query Terms, Search Engines
19 Relation, Relation Extraction, Relations, Information Extraction, Semantic Relations, Relation Types, Semantic Relation
20 Topic, Topic Model, Topic Models, Topic Distribution, Same Topic, Topics, Model, Distribution, Topic Modeling, Word Distribution
21 Coreference Resolution, Entity, Same Entity, Coreference, Resolution System, Pronoun Resolution, Anaphora Resolution, Entity Type
22 Machine Translation, Translation, Language Model, Word Alignment, Translation Model, Target Language, Model, Translation Quality
23 Word Sense, Sense Disambiguation, Sense, Word Senses, Words, Different Senses, Target Word, Semantic Relations, Lexical Resources
24 Question, Question Answering, Answer, Questions, Correct Answer, Question Types, System, Textual Entailment, Answer Type
25 Semantic Role, Semantic Roles, Semantic Information, Syntactic Structure, Syntactic Information, Semantic, Parse Tree
26 Machine Learning, Learning, Classification Task, Features, Supervised Learning, Text Classification, Learning Algorithms, Feature
27 Semantic Similarity, Vector Space, Similarity Measure, Word Vectors, Vector, Similarity Measures, Similarity, Semantic Space
28 Language Model, Speech Recognition, Language Models, Word Error, Language, Model, Automatic Speech, Speech
29 Grammar, Language, Natural Language, Lexical Entries, Feature Structure, Feature Structures, Finite Set, Other Hand, Lexical Items

Topics ranked by Inverse Corpus Proportions: 3 7 4 17 24 20 21 27 9 28 0 19 6 10 23 2 5 18 15 25 26 29 8 13 14 11 16 1 22 12
Maximum ICP: 4.3533, Minimum ICP: 2.1809, Average ICP: 3.5591

Table 1: The top words for each topic are shown here after modeling the ACL+EMNLP publications over the years with #topics=30. The topics ranked by their
ICP values are shown in the last row to illustrate that ICP values indeed capture the specificity of a topic across the years.

and content-related sections such as abstract, re-
lated work, and experiments. To best represent
the topical content of these documents, we har-
ness the latest work on keyphrase extraction for
research documents and represent documents us-
ing keyphrases (Hasan and Ng, 2014).

We use the ExpandRank algorithm (Wan and
Xiao, 2008) to extract top n-grams ∀d ∈ D. Ex-
pandRank effectively combines PageRank values
on word graphs with text similarity scores be-
tween documents to score n-grams for a document
and was shown to outperform other unsupervised
keyphrase extraction methods on research docu-
ments in absence of other information such as ci-
tations (Gollapalli and Caragea, 2014).

3 Experiments
Datasets and setup: We crawled the ACLWeb
for research papers from EMNLP and ACL from
the year 1996 through 20142 using the Java-based
crawler, Heritrix3. The text from the PDF docu-
ments was extracted using the PDFBox software4

after which simple rules similar to the ones used
in CiteSeer (Li et al., 2006) were employed to ex-
tract the “body” of the research document5. The
numbers of papers for each year at the end of this
process are listed in Table 2. From these numbers,

2
Since our goal is to compare the two venues, we start from 1996 when EMNLP

branched off into a full conference from a workshop on Very Large Corpora although ACL
proceedings are available from 1979.

3
https://webarchive.jira.com/wiki/display/Heritrix/Heritrix

4
https://pdfbox.apache.org/

5
Processed data available upon request.

it appears that the paper “intake” in each confer-
ence has gone up overall during the last decade
although occasionally the increase is due to co-
location with related conferences such as IJCNLP
and HLT6.

We construct the keyphrase-document matrix
using top-100 keyphrases of each document ex-
tracted with ExpandRank. The LDA implemen-
tation provided in Mallet (McCallum, 2002) was
used to extract topics from this matrix. The
LDA algorithm was run along with hyperparame-
ter optimization (Minka, 2003) for different num-
bers of topics between 10 . . . 100 in increments of
10. We use the average corpus likelihood over
ten randomly-initialized runs to choose the opti-
mal number of topics that best “explain” the cor-
pus (Heinrich, 2005). As indicated by the left plot
in Figure 1 this optimum is obtained when the
number of topics is 30.

3.1 Results and Observations
The top phrases that reflect the “theme” captured
by a topic are shown in Table 1. As indicated
in this table, we are able to extract coherent top-
ics from the corpus using LDA on a document-
keyphrase matrix (AlSumait et al., 2009; Newman
et al., 2010).

Top research topics in NLP: We select
five timepoints {1996, 2000, 2005, 2010, 2014}
by splitting the 1996-2014 period into roughly-

6
ACL was co-located with related conferences in the years 1997, 1998, 2006,

2008, and 2009 and EMNLP in the years 2005, 2007, and 2012.
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2010 0, 5, 6 20, 19, 18
2005 9, 0, 19 24, 18, 0
2000 7, 9, 5 18, 23, 20
1996 9, 2, 7 28, 2, 5

Figure 1: Left: #topics vs. Average Corpus Likelihood, Middle: EMNLP vs. ACL, Right: Top topics in EMNLP and ACL

Venue 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996
ACL 330 399 227 349 272 244 213 207 310 137 129 103 160 65 45 83 244 73 58
EMNLP 226 207 141 149 125 164 115 131 73 28 53 27 33 10 27 34 13 23 14

Table 2: Number of papers for each venue for different years
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Figure 2: Comparing EMNLP and ACL over the years. Each point in the Left plot shows the JSD between a given year y and the year y− 1. The Middle (ACL)
and Right (EMNLP) plots show the JSD between a timepoint with preceding timepoints in the set {1996, 2000, 2005, 2010, 2014}.

equal parts and examine the top topics for ACL
and EMNLP at these time points. We rank the
topics in each conference by their TP-ICP val-
ues and list the top 3 topics in the right table of
Figure 1. “Semantic relation extraction”, “sen-
timent analysis”, and “topic models” are the top
research topics in NLP last year (2014) whereas
in the year 1996, the topics “noun phrase extrac-
tion”, “summarization”, “corpus modeling”, and
“speech recognition” dominated the NLP research
arena. From the table, it can be seen that “infor-
mation retrieval” (topicID: 18) ranks among the
top topics in EMNLP for all three timepoints dur-
ing 2000-2010 whereas “natural language genera-
tion” (topicID: 9) was consistently addressed dur-
ing 1996-2005 in ACL.

EMNLP versus ACL: We compare the venues
using JSD and Cosine similarity measures in the
middle plot of Figure 1. The plot shows decreas-
ing divergence between the topical distributions
over the years and increasing cosine similarity be-
tween the TP-ICP vectors for the venues. These
trends indicate that over the two decades the two
venues ACL and EMNLP seem to have “become
like each other” although their topical focus was
different during the initial years. Increasingly,
both venues seem to publish papers on similar top-

ics. This behavior could be interpreted to mean
that the NLP research field is more stable now with
two of its leading conferences addressing prob-
lems on similar topics.

Changing topical focus over the years: In
the first plot of Figure 2, we show the Jensen-
Shannon divergence between the topic distribu-
tions of a particular venue for a given year y and
(y − 1), the year preceding it. The curve indi-
cates that in the years between 1997-2008, the rate
of change from year to year is higher than in the
years following 2008. We split the time period
1996-2014 into five roughly-equal parts to form
the set {1996, 2000, 2005, 2010, 2014}. The JSD
between the distribution in a particular year and
the years preceding it in the above set is shown for
ACL (middle plot) and EMNLP (right plot) in Fig-
ure 2. For example, the first cluster in the middle
plot, shows the JSD values between the distribu-
tions for the years 2000, 2005, 2010, 2014 with
the starting year 1996 for ACL. For both venues,
the divergences of a given year are higher with
the early starting years 1996 and 2000 than with
the later starting years 2005 and 2010, indicating
that the topics being addressed currently in NLP
research are significantly different from those ad-
dressed a decade back.
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4 Related Work
Temporal analysis of corpora is an upcoming re-
search topic in text mining groups. Topic models
were particularly investigated for detecting activ-
ity patterns in corpora annotated with time infor-
mation (Huynh et al., 2008; Shen et al., 2009).
Evolution of topics and their trends were studied
on research corpora from NIPS (Wang and McCal-
lum, 2006) as well as CiteSeer (He et al., 2009).

In contrast with existing approaches that seek to
model the detection of new topics and their evo-
lution, we focus on representing different venues
pertaining to a research field and examine their de-
velopment over time by comparing them against
each other. In a similar study, Hall et al. (2008)
examined the emergence of topics in NLP litera-
ture. They proposed “topic entropy” to measure
the diversity in three conferences from the ACL
Anthology during the years 1978-2006. They also
noted that all the venues seem to converge in the
topics they cover over the years based on the JSD
between their topic distributions.
5 Conclusions
We presented our study on research proceed-
ings of approximately two decades from the lead-
ing NLP conference venues: EMNLP and ACL.
We extracted coherent topics from this corpus
by applying topic modeling on the correspond-
ing keyphrase-document matrix. Next, the ex-
tracted topics were used to characterize each
venue through probabilistic and vector represen-
tations and compared against each other and over
the years using various similarity measures. To the
best of our knowledge, we are the first to present
insights related to the development of a research
field by studying two leading conferences in the
area using various techniques from NLP and IR.
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Abstract

Much of what we understand from text is
not explicitly stated. Rather, the reader
uses his/her knowledge to fill in gaps
and create a coherent, mental picture or
“scene” depicting what text appears to
convey. The scene constitutes an under-
standing of the text, and can be used to an-
swer questions that go beyond the text.

Our goal is to answer elementary science
questions, where this requirement is per-
vasive; A question will often give a partial
description of a scene and ask the student
about implicit information. We show that
by using a simple “knowledge graph” rep-
resentation of the question, we can lever-
age several large-scale linguistic resources
to provide missing background knowl-
edge, somewhat alleviating the knowledge
bottleneck in previous approaches. The
coherence of the best resulting scene, built
from a question/answer-candidate pair, re-
flects the confidence that the answer can-
didate is correct, and thus can be used to
answer multiple choice questions. Our ex-
periments show that this approach outper-
forms competitive algorithms on several
datasets tested. The significance of this
work is thus to show that a simple “knowl-
edge graph” representation allows a ver-
sion of “interpretation as scene construc-
tion” to be made viable.

1 Introduction

Elementary grade science tests are challenging as
they test a wide variety of commonsense knowl-
edge that human beings largely take for granted,
yet are very difficult for machines (Clark, 2015).
For example, consider a question from a NY Re-
gents 4th Grade science test:

∗Work was done while the author was an intern at Allen
Institute for Artificial Intelligence.

Question 1 “When a baby shakes a rattle, it
makes a noise. Which form of energy was changed
to sound energy?” [Answer: mechanical energy]

Science questions are typically quite different
from the entity-centric factoid questions exten-
sively studied in the question answering (QA)
community, e.g., “In which year was Bill Clinton
born?” (Ferrucci et al., 2010; Yao and Van Durme,
2014). While factoid questions are usually an-
swerable from text search or fact databases, sci-
ence questions typically require deeper analysis.
A full understanding of the above question in-
volves not just parsing and semantic interpreta-
tion; it involves adding implicit information to cre-
ate an overall picture of the “scene” that the text is
intended to convey, including facts such as: noise
is a kind of sound, the baby is holding the rattle,
shaking involves movement, the rattle is making
the noise, movement involves mechanical energy,
etc. This mental ability to create a scene from par-
tial information is at the heart of natural language
understanding (NLU), which is essential for an-
swering these kinds of question. It is also very dif-
ficult for a machine because it requires substantial
world knowledge, and there are often many ways
a scene can be elaborated.

We present a method for answering multiple-
choice questions that implements a simple ver-
sion of this. A scene is represented as a “knowl-
edge graph” of nodes (words) and relations, and
the scene is elaborated with (node,relation,node)
tuples drawn from three large-scale linguistic
knowledge resources: WordNet (Miller, 1995),
DART (Clark and Harrison, 2009), and the Free-
Association database (Nelson et al., 2004). These
elaborations reflect the mental process of “filling
in the gaps”, and multiple choice questions can
then be answered by finding which answer option
creates the most coherent scene.

The notion of NLU as constructing a most co-
herent scene is not new, and has has been stud-
ied in several contexts including work on scripts
(Schank and Abelson, 1977), interpretation as ab-
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duction (Hobbs et al., 1988; Hobbs, 1979; Ovchin-
nikova et al., 2014), bridging anaphora (Asher and
Lascarides, 1998; Fan et al., 2005), and para-
graph understanding (Zadrozny and Jensen, 1991;
Harabagiu and Moldovan, 1997). These meth-
ods are inspiring, but have previously been limited
by the lack of background knowledge to supply
implicit information, and with the complexity of
their representations. To make progress, we have
chosen to work with a simple “knowledge graph”
representation of nodes (words) and edges (rela-
tions). Although we lose some subtlety of expres-
sion, we gain the ability to leverage several vast
resources of world knowledge to supply implicit
information. The significance of this work is thus
to show that, by working with a simple “knowl-
edge graph” representation, we can make a viable
version of “interpretation as scene construction”.
Although the approach makes several simplifying
assumptions, our experiments show that it outper-
forms competitive algorithms on several datasets
of (real) elementary science questions.

2 Approach
The input to our question-answering system is
a multiple choice question Q, a set of an-
swer options ak, and one or more background
knowledge base(s) each containing a set of
(wordi, relation, wordj) tuples, each denoting
that word1 is plausibly related to wordj by
relation. The output is a ranked list of the K an-
swer options.

We define a scene S as a “knowledge graph”
of nodes (words) and edges (relations between
words), where all (wordi, relation, wordj) edges
are sanctioned by (contained in) at least one of
the background knowledge bases. Each scene
node has an associated measure of coherence (de-
scribed shortly), denoting how well-connected it
is. The question-answering objective is, for each
answer option ak, to find the most coherent scene
containing (at least) the question keywords kwi ∈
Q and answer option ak, and then return the an-
swer option with the overall highest coherence
score. Our implementation approximates this ob-
jective using a simple elaborate-and-prune algo-
rithm, illustrated in Figure 11 and now described.

1The system constructs 4 alternative graphs, each contains
only one answer option plus some additional related nodes.
Figure 1 shows just one of these 4 graphs, namely the graph
containing answer option ”food”.

Figure 1: (1) Question keywords are extracted to
form the initial scene. (2) The scene is elaborated
with background knowledge to add plausible rela-
tionships. (3) For each answer option, it is added
into the scene and connected with additional rela-
tionships. Then the scene is pruned. (4) A score is
derived from the final scene, reflecting confidence
that the answer option is correct.

2.1 Question Analyzer

The initial scene is simply the keywords (non-stop
words) KW = {kwi} in the question Q, along
with a measure of importance IS(kwi) for each
word kwi. For our purposes we compute impor-
tance by sending the question to Google, grouping
the top 20 result snippets into a document d, and
computing:

IS(kw) =
tfd(kw)
dfQ(kw)

, (1)

where tfd(kw) is the term frequency of kw in doc-
ument d, and dfQ(kw) is the document frequency
of kw in question setQ containing all the available
elementary science questions. The intuition here is
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Size
KB (# tuples) Examples
WordNet 235k (dog,isa,animal)

(sunlight,isa,energy)
DART 2.3M (nutrients,in,food)

(animal,eat,food)
FreeAssoc 64k (car,relate to,tire)

(ice,relate to,cold)

Table 1: Knowledge Bases Used

that the words frequently mentioned in variations
of the question should be important (reflected by
”tf”), while the descriptive words (e.g. ”follow-
ing”, ”example”) which are widely used in many
questions should be penalized (reflected by ”idf”).
Other methods could equally be used to compute
importance.

2.2 Builder
In this step our goal is to inject implicit knowl-
edge from the background KBs to form an elab-
orated knowledge graph. To do this, we first
fetch all the triples (kw, relation,w) that are
directly connected with any keyword kw ∈
KW from the background KBs, as well as all
(kwi, relation, kwj) triples between keywords.
In our experiments we use three background
knowledge bases to supply implicit knowledge, al-
though in principle any triple store could be used:
WordNet (Miller, 1995), DART (Clark and Har-
rison, 2009), and the FreeAssociation database
(Nelson et al., 2004). Table 1 shows examples of
each 2.

These triples introduce new nodes w into the
graph. As we may get a large number of such
nodes, we score them and retain only the top scor-
ing ones (and all edges connecting to it). Infor-
mally, a new word w is preferred if it is connected
to many important keywords kw with strong rela-
tionships. Formally, the scoring function is:

score(w) =
∑
kw∈K

IS(kw) ∗ rel(kw,w) (2)

where IS(kw) is the importance score of keyword
kw and rel(kw,w) is the relatedness score be-
tween kw and w. In this work we use the co-
sine similarity between word2vec (Mikolov et al.,
2013) word vectors to measure two words’ related-
ness, as a rough proxy for the strength of related-

2WordNet: all relationships types are used. DART: The
NVN and NPN databases with frequency counts > 10 are
used. FreeAssoc: The top 3 associations per word were used.

ness in the KBs (the KBs themselves do not pro-
vide meaningful strengths of relationship). After
the ranking, the top N ×|KW | neighbor words w
are retained3, along with their edges to keywords
kw and each other.

Note that at this point the elaboration process
is independent of any answer option; rather, the
graph depicts the question scenario.

2.3 Elaborate and Prune

To score the K different answer options, the sys-
tem now builds K alternative elaborations of the
scene so far, each one with answer option ak
added, and assesses the coherence of the addition.
The answer option ak that fits “most coherently”
with the scene is returned as the answer to the
question.

To do this for a given option ak, we add ak to
the graph along with all triples (wi, relation, ak)
in the KBs that relate any node wi in the graph
to ak. Now that the focus ak of the question is
known, some of the earlier added nodes w in the
graph may be only weakly relevant to the question
and answer, and so we add a pruning step to re-
move these nodes. The goal of this pruning is to
find a dense subgraph (i.e. the coherent scene) that
would ideally contain all the question keywords
kw, the answer option ak, and extra words wk that
are highly connected with them.

Inspired by Sozio et al’s work (Sozio and Gio-
nis, 2010) on finding strongly interconnected sub-
groups in social networks, we have developed an
iterative node removal algorithm for extracting
this subgraph. We define the coherence of a node
as the summed weight of its incident edges:

coherence(w) =
∑

w′∈{(w,r,w′)}
rel(w,w′) (3)

where rel(w,w′) is the weight of edge (w, r, w′)
in the graph, again computed using cosine similar-
ity between w and w′. We then iteratively remove
the non-keyword node (and attached edges) with
least coherence until the answer option ak is about
to removed. The resulting graph is thus maximally
pruned, subject to the constraint it must still de-
scribe the question plus answer option.

Finally, we use the coherence of the answer op-
tion ak in this final scene as the confidence that
ak is the correct answer. The system repeats this

3The optimal N (here 6) was selected using an indepen-
dent set of training questions
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for all K answer options and selects the ak with
highest confidence.

3 Evaluation

The system was developed using a dataset of natu-
ral (unedited) elementary science exam questions,
and then tested on three similar, unseen (hidden)
datasets. Its performance was compared with two
other state-of-the-art systems for this task. As our
system only fields questions where the answer op-
tions are all single words, we evaluate it, and the
other systems, only on these subsets. These sub-
sets are in general easier than other questions, but
this advantage is the same for all systems being
compared so it is still a fair test.

3.1 Evaluation Datasets

The datasets used are the non-diagram, multiple-
choice questions with single-word answer options
drawn from the following exams:
• Dev (System Development): New York Re-

gents 4th Grade Science 4 (47 questions in 6
years)
• Test1: New York Regents 4th Grade Science

(23 questions in 3 years)
• Test2: Additional 4th Grade Science (from

multiple States) (26 questions)
• Test3: 5th Grade Science (from multiple

States) (197 questions)
Although these datasets are small (real exam ques-
tions of this type are in limited supply), the num-
bers are large enough to draw conclusions.

3.2 Experiments

We compared our system (called SceneQA) with
two other state-of-the-art systems for this task:

• LSModel (Lexical semantics model): SVM
combination of several language models (likeli-
hood of answer given question) and information
retrieval scores (score of top retrieved sentence
matching question plus answer), trained on a set
of questions plus answers. (An expanded ver-
sion of Section 4.3 of (Jansen et al., 2014))

• A*Rules: “Prove” the answer option from the
question by applying lexical inference rules au-
tomatically extracted from science texts. Select
the option with the strongest “proof”. (Clark et
al., 2014)

4http://www.nysedregents.org/Grade4/Science/home.html

Dev Test1 Test2 Test3
LSModel 65.96 58.70 28.85 30.08
A*Rules 65.96 67.00 47.00 29.22
SceneQA 83.51 66.30 65.38 55.20

Table 2: SceneQA outperforms two competitive
systems on two of the three test sets. The high-
lighted improvements are statistically significant.

The results (% scores, Table 2) show SceneQA
significantly outperforms the two other systems on
two of the three test sets, including the largest
(Test3, 197 questions), suggesting the approach
has merit.

We also performed some case studies to identify
what kinds of questions SceneQA does well on,
relative to the baselines. In general, SceneQA per-
forms well when the question words and the (cor-
rect) answer can be tightly related by background
knowledge, including through intermediate nodes
(words). For example, in Question 2 below:

Question 2 Which type of energy does a person
use to pedal a bicycle? (A) light (B) sound (C)
mechanical (D) electrical

the KB relates the correct answer ”mechanical” to
the question words ”energy”, ”pedal”, ”bicycle”,
and the intermediate node ”power” forming a tight
graph. In contrast, the other algorithms select the
wrong answer ”light” due to frequent mentions of
”bicycle lights” in their supporting text corpora
that confuses their algorithms.

3.3 Ablations
We also performed ablations to assess which parts
of our method are contributing the most:
• -NewNodes: Only add edges but no new nodes
w during the Build step.
• -Prune: Do not prune nodes during the Elabo-

rate and Prune step.
• -Both: No new nodes, no pruning

Dev Test1 Test2 Test3
SceneQA 83.51 66.30 65.38 55.20
-NewNodes 65.96 69.57 42.31 51.78
-Prune 70.74 57.61 47.12 50.13
-Both 59.57 65.22 42.31 50.25

Table 3: SceneQA outperforms all the ablations
on two of the three test sets. The highlighted im-
provements are statistically significant.

The results (% scores, Table 3) suggest that the
two most important algorithmic features - adding
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concepts implied but not explicitly stated in the
text (NewNodes), and later removing implied in-
formation that is of low relevance to the answer
(Prune) - are important for answering the ques-
tions correctly. (The small gain without adding
NewNodes on Test1 is not statistically significant).

3.4 Error Analysis

We also examined cases where SceneQA gave the
wrong answer. Two problems were particularly
common:

(1) There were two answer options with oppo-
site meanings, and one of them was correct. For
example:

Question 3 An animal that has a backbone is
called a(n) (A) invertebrate (B) vertebrate (C) ex-
oskeleton (D) sponge

Since the relatedness measure we use (i.e.
word2vec) cannot distinguish words with similar
distributional semantics (a common property of
antonyms), our method cannot confidently iden-
tify which of the opposites (e.g., here, vertebrate
vs. invertebrate) is correct.

(2) The word ordering in the question is particu-
larly important, e.g., questions about processes or
sequences. For example:

Question 4 The process that changes a gas to liq-
uid is called (A) condensation (B) melting (C)
evaporation (D) vaporization

Because our method ignores word order (the
knowledge graph is initially populated with key-
words in the question), the representation is inher-
ently incapable of capturing sequential informa-
tion (e.g., here, gas to liquid vs. liquid to gas).
As a result, it struggles with such questions.

4 Discussion and Conclusion

Our goal is to answer simple science questions.
Unlike entity-centric factoid QA tasks, science
questions typically involve general concepts, and
answering them requires identifying implicit re-
lationships in the question. Our approach is to
view question-answering as constructing a coher-
ent scene. While the notion of scene construction
is not new, our insight is that this can be done
with a simple “knowledge graph” representation,
allowing several massive background KBs to be
applied, somewhat alleviating the knowledge bot-
tleneck. Our contribution is to show this works
well in the elementary science domain.

Despite this, there are clearly many limitations
with our approach: we are largely ignoring syn-
tactic structure in the questions; the KBs are
noisy, contributing errors to the scenes; the graph
representation has limited expressivity (e.g., no
quantification or negation); the word2vec measure
of relationship strength does not account for the
question context; and contradictions are not de-
tected within the scene. These all contributed to
QA failures in the tests. However, the approach is
appealing as it takes a step towards a richer picture
of language understanding, the empirical results
are encouraging, and there are many ways these
initial limitations can be addressed going forward.
We are confident that this is a rich and exciting
space, worthy of further exploration.
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Abstract

We describe the WIKIQA dataset, a new
publicly available set of question and sen-
tence pairs, collected and annotated for re-
search on open-domain question answer-
ing. Most previous work on answer sen-
tence selection focuses on a dataset cre-
ated using the TREC-QA data, which
includes editor-generated questions and
candidate answer sentences selected by
matching content words in the question.
WIKIQA is constructed using a more nat-
ural process and is more than an order of
magnitude larger than the previous dataset.
In addition, the WIKIQA dataset also in-
cludes questions for which there are no
correct sentences, enabling researchers to
work on answer triggering, a critical com-
ponent in any QA system. We compare
several systems on the task of answer sen-
tence selection on both datasets and also
describe the performance of a system on
the problem of answer triggering using the
WIKIQA dataset.

1 Introduction

Answer sentence selection is a crucial subtask of
the open-domain question answering (QA) prob-
lem, with the goal of extracting answers from a
set of pre-selected sentences (Heilman and Smith,
2010; Yao et al., 2013; Severyn and Moschitti,
2013). In order to conduct research on this im-
portant problem, Wang et al. (2007) created a
dataset, which we refer to by QASENT, based on
the TREC-QA data. The QASENT dataset chose
questions in TREC 8-13 QA tracks and selected
sentences that share one or more non-stopwords
from the questions. Although QASENT has since

∗Work conducted while interning at Microsoft Research.

become the benchmark dataset for the answer se-
lection problem, its creation process actually in-
troduces a strong bias in the types of answers that
are included. The following example illustrates an
answer that does not share any content words with
the question and would not be selected:

Q: How did Seminole war end?
A: Ultimately, the Spanish Crown ceded the
colony to United States rule.

One significant concern with this approach is that
the lexical overlap will make sentence selection
easier for the QASENT dataset and might inflate
the performance of existing systems in more natu-
ral settings. For instance, Yih et al. (2013) find that
simple word matching methods outperform many
sophisticated approaches on the dataset. We ex-
plore this possibility in Section 3.

A second, more subtle challenge for question
answering is that it normally assumes that there is
at least one correct answer for each question in the
candidate sentences. During the data construction
procedures, all the questions without correct an-
swers are manually discarded.1 We address a new
challenge of answer triggering, an important com-
ponent in QA systems, where the goal is to detect
whether there exist correct answers in the set of
candidate sentences for the question, and return a
correct answer if there exists such one.

We present WIKIQA, a dataset for open-
domain question answering.2 The dataset con-
tains 3,047 questions originally sampled from
Bing query logs. Based on the user clicks, each
question is associated with a Wikipedia page pre-
sumed to be the topic of the question. In order to
eliminate answer sentence biases caused by key-
word matching, we consider all the sentences in

1The policy is adopted both by the official
QASENT tracks (Voorhees and Tice, 1999) and by Wang et
al. (2007).

2The data and evaluation script can be downloaded at
http://aka.ms/WikiQA.
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the summary paragraph of the page as the candi-
date answer sentences, with labels on whether the
sentence is a correct answer to the question pro-
vided by crowdsourcing workers. Among these
questions, about one-third of them contain correct
answers in the answer sentence set.

We implement several strong baselines to study
model behaviors in the two datasets, including
two previous state-of-the-art systems (Yih et al.,
2013; Yu et al., 2014) on the QASENT dataset
as well as simple lexical matching methods. The
results show that lexical semantic methods yield
better performance than sentence semantic mod-
els on QASENT, while sentence semantic ap-
proaches (e.g., convolutional neural networks)
outperform lexical semantic models on WIKIQA.
We propose to evaluate answer triggering using
question-level precision, recall and F1 scores. The
best F1 scores are slightly above 30%, which sug-
gests a large room for improvement.

2 WIKIQA Dataset

In this section, we describe the process of creat-
ing our WIKIQA dataset in detail, as well as some
comparisons to the QASENT dataset.

2.1 Question & Sentence Selection

In order to reflect the true information need of gen-
eral users, we used Bing query logs as the ques-
tion source. Taking the logs from the period of
May 1st, 2010 to July 31st, 2011, we first se-
lected question-like queries using simple heuris-
tics, such as queries starting with a WH-word
(e.g., “what” or “how”) and queries ending with
a question mark. In addition, we filtered out some
entity queries that satisfy the rules, such as the TV
show “how I met your mother.” In the end, approx-
imately 2% of the queries were selected. To fo-
cus on factoid questions and to improve the ques-
tion quality, we then selected only the queries is-
sued by at least 5 unique users and have clicks to
Wikipedia. Among them, we sampled 3,050 ques-
tions based on query frequencies.

Because the summary section of a Wikipedia
page provides the basic and usually most impor-
tant information about the topic, we used sen-
tences in this section as the candidate answers.
Figure 1 shows an example question, as well as
the summary section of a linked Wikipedia page.

Question: Who wrote second Corinthians?

Second Epistle to the Corinthians The Second Epistle to the Corinthi-
ans, often referred to as Second Corinthians (and written as 2 Corinthi-
ans), is the eighth book of the New Testament of the Bible. Paul the
Apostle and “Timothy our brother” wrote this epistle to “the church of
God which is at Corinth, with all the saints which are in all Achaia”.

Figure 1: An example question and the summary
paragraph of a Wikipedia page.

2.2 Sentence Annotation

We employed crowdsourcing workers through a
platform, which is similar to Amazon MTurk, to
label whether the candidate answer sentences of
a question are correct. We designed a cascaded
Web UI that consists of two stages. The first
stage shows a testing question, along with the ti-
tle and the summary paragraph of the associated
Wikipedia page, asking the worker “Does the short
paragraph answer the question?” If the worker
chooses “No”, then equivalently all the sentences
in this paragraph are marked incorrect and the UI
moves to the next question. Otherwise, the sys-
tem enters the second stage and puts a checkbox
along each sentence. The worker is then asked to
check the sentences that can answer the question
in isolation, assuming coreference is resolved. To
ensure the label quality, each question was labeled
by three workers. Sentences with inconsistent la-
bels would be verified by a different set of crowd-
sourcing workers. The final decision was based on
the majority vote of all the workers. In the end, we
included 3,047 questions and 29,258 sentences in
the dataset, where 1,473 sentences were labeled as
answer sentences to their corresponding questions.

Although not used in the experiments, each of
these answer sentence is associated with the an-
swer phrase, which is defined as the shortest sub-
string of the sentence that answers the question.
For instance, the second sentence in the summary
paragraph shown in Figure 1 is an answer sen-
tence. Its substring “Paul the Apostle and Tim-
othy our brother” can be treated as the answer
phrase. The annotations of the answer phrases
were given by the authors of this paper. Because
the answer phrase boundary can be highly ambigu-
ous, each sentence is associated with at most two
answer phrases that are both acceptable, given by
two different labelers. We hope this addition to
the WIKIQA data can be beneficial to future re-
searchers for building or evaluating an end-to-end
question answering system.
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Train Dev Test Total

# of ques. 94 65 68 227
# of sent. 5,919 1,117 1,442 8,478
# of ans. 475 205 248 928
Avg. len. of ques. 11.39 8.00 8.63 9.59
Avg. len. of sent. 30.39 24.90 25.61 28.85

Table 1: Statistics of the QASENT dataset.

Train Dev Test Total

# of ques. 2,118 296 633 3,047
# of sent. 20,360 2,733 6,165 29,258
# of ans. 1,040 140 293 1,473
Avg. len. of ques. 7.16 7.23 7.26 7.18
Avg. len. of sent. 25.29 24.59 24.95 25.15

# of ques. w/o ans. 1,245 170 390 1,805

Table 2: Statistics of the WIKIQA dataset.

2.3 WIKIQA vs. QASENT

Our WIKIQA dataset differs from the existing
QASENT dataset in both question and candi-
date answer sentence distributions. Questions in
QASENT were originally used in TREC 8-13 QA
tracks and were a mixture of questions from query
logs (e.g., Excite and Encarta) and from human
editors. The questions might be outdated and do
not reflect the true information need of a QA sys-
tem user. By contrast, questions in WIKIQA were
sampled from real queries of Bing without edi-
torial revision. On the sentence side, the can-
didate sentences in QASENT were selected from
documents returned by past participating teams in
the TREC QA tracks, and sentences were only
included if they shared content words from the
questions. These procedures make the distribu-
tion of the candidate sentence skewed and unnat-
ural. In comparison, 20.3% of the answers in
the WIKIQA dataset share no content words with
questions. Candidate sentences in WIKIQA were
chosen from relevant Wikipedia pages directly,
which could be closer to the input of an answer
sentence selection module of a QA system.

To make it easy to compare results of dif-
ferent QA systems when evaluated on the
WIKIQA dataset, we randomly split the data
to training (70%), development (10%) and
testing (20%) sets. Some statistics of the
QASENT and WIKIQA datasets are presented in
Tables 1 and 2.3 WIKIQA contains an order of

3We follow experimental settings of Yih et al. (2013) on
the QASENT dataset. Although the training set in the original
data contains more questions, only 94 of them are paired with

Class QASENT WIKIQA

Location 37 (16%) 373 (12%)
Human 65 (29%) 494 (16%)
Numeric 70 (31%) 658 (22%)
Abbreviation 2 (1%) 16 (1%)
Entity 37 (16%) 419 (14%)
Description 16 (7%) 1087 (36%)

Table 3: Question classes of the QASENT and
WIKIQA datasets.

magnitude more questions and three times more
answer sentences compared to QASENT. Unlike
QASENT, we did not filter questions with only
incorrect answers, as they are still valuable for
model training and more importantly, useful for
evaluating the task of answer triggering, as de-
scribed in Section 3. Specifically, we find nearly
two-thirds of questions contain no correct answers
in the candidate sentences.

The distributions of question types in these two
datasets are also different, as shown in Table 3.4

WIKIQA contains more description or definition
questions, which could be harder to answer.

3 Experiments

Many systems have been proposed and tested on
the QASENT dataset, including lexical semantic
models (Yih et al., 2013) and sentence seman-
tic models (Yu et al., 2014). We investigate the
performance of several systems on WIKIQA and
QASENT. As discussed in Section 2, WIKIQA of-
fers us the opportunity to evaluate QA systems on
answer triggering. We propose simple metrics and
perform a feature study on the new task. Finally,
we include some error analysis and discussion at
the end of this section.

3.1 Baseline Systems

We consider two simple word matching methods:
Word Count and Weighted Word Count. The first
method counts the number of non-stopwords in the
question that also occur in the answer sentence.
The second method re-weights the counts by the
IDF values of the question words.

We reimplement LCLR (Yih et al., 2013), an
answer sentence selection approach that achieves
very competitive results on QASENT. LCLR

sentences that have human annotations.
4The classifier is trained using a logistic regression

model on the UIUC Question Classification Datasets (http:
//cogcomp.cs.illinois.edu/Data/QA/QC). The
performance is comparable to (Li and Roth, 2002).
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Model QASENT WIKIQA

MAP MRR MAP MRR

Word Cnt 0.5919 0.6662 0.4891 0.4924
Wgt Word Cnt 0.6095 0.6746 0.5099 0.5132
LCLR 0.6954 0.7617 0.5993 0.6086
PV 0.5213 0.6023 0.5110 0.5160
CNN 0.5590 0.6230 0.6190 0.6281
PV-Cnt 0.6762 0.7514 0.5976 0.6058
CNN-Cnt 0.6951 0.7633 0.6520 0.6652

Table 4: Baseline results on both QASENT and
WIKIQA datasets. Questions without correct an-
swers in the candidate sentences are removed in
the WIKIQA dataset. The best results are in bold.

makes use of rich lexical semantic features,
including word/lemma matching, WordNet and
vector-space lexical semantic models. We do not
include features for Named Entity matching.5

We include two sentence semantic methods,
Paragraph Vector6 (PV; Le and Mikolov, 2014)
and Convolutional Neural Networks (CNN; Yu et
al., 2014). The model score of PV is the cosine
similarity score between the question vector and
the sentence vector. We follow Yu et al. (2014) and
employ a bigram CNN model with average pool-
ing. We use the pre-trained word2vec embeddings
provided by Mikolov et al. (2013) as model input.7

For computational reasons, we truncate sentences
up to 40 tokens for our CNN models.

Finally, we combine each of the two sentence
semantic models with the two word matching fea-
tures by training a logistic regression classifier, re-
ferring as PV-Cnt and CNN-Cnt. CNN-Cnt has
been shown to achieve state-of-the-art results on
the QASENT dataset (Yu et al., 2014).

3.2 Evaluation of Answer Triggering

The task of answer sentence selection assumes that
there exists at least one correct answer in the can-
didate answer sentence set. Although the assump-
tion simplifies the problem of question answering,
it is unrealistic for practical QA systems. Modern
QA systems rely on an independent component to
pre-select candidate answer sentences, which uti-
lizes various signals such as lexical matching and
user behaviors. However, the candidate sentences

5The improvement gains from the features are marginal
on the QASENT dataset.

6We choose the Distributed Bag of Words version of Para-
graph Vector, as we found it significantly outperforms the
Distributed Memory version of Paragraph Vector.

7Available at https://code.google.com/p/word2vec/

Model Prec Rec F1

CNN-Cnt 26.09 37.04 30.61

+QLen 27.96 37.86 32.17
+SLen 26.14 37.86 30.92
+QClass 27.84 33.33 30.34
+All 28.34 35.80 31.64

Table 5: Evaluation of answer triggering on the
WIKIQA dataset. Question-level precision, recall
and F1 scores are reported.

are not guaranteed to contain the correct answers,
no matter what kinds of pre-selection components
are employed. We propose the answer triggering
task, a new challenge for the question answering
problem, which requires QA systems to: (1) de-
tect whether there is at least one correct answer in
the set of candidate sentences for the question; (2)
if yes, select one of the correct answer sentences
from the candidate sentence set.

Previous work adopts MAP and MRR to eval-
uate the performance of a QA system on answer
sentence selection. Both metrics evaluate the rela-
tive ranks of correct answers in the candidate sen-
tences of a question, and hence are not suitable for
evaluating the task of answer triggering. We need
metrics that consider both the presence of answers
with respect to a question and the correctness of
system predictions.

We employ precision, recall and F1 scores for
answer triggering, at the question level. In partic-
ular, we compute these metrics by aggregating all
the candidate sentences of a question. A question
is treated as a positive case only if it contains one
or more correct answer sentences in its candidate
sentence pool. For the prediction of a question, we
only consider the sentence in the candidate set that
has the highest model score. If the score is above
a predefined threshold and the sentence is labeled
as a correct answer to the question, then it means
that the prediction is correct and the question is
answered correctly.

3.3 Results

WIKIQA vs. QASENT The MAP and MRR
results are presented in Table 4. We only evalu-
ate questions with answers in the WIKIQA dataset
under these metrics. On the QASENT dataset, as
found by prior work, the two word matching meth-
ods are very strong baselines, in which they sig-
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nificantly outperform sentence semantic models.
By incorporating rich lexical semantic informa-
tion, LCLR further improves the results. CNN-
Cnt gives results that match LCLR, and PV-Cnt
performs worse than CNN-Cnt.8

The story on the WIKIQA dataset is differ-
ent. First, methods purely rely on word match-
ing are not sufficient to achieve good results. Sec-
ond, CNN significantly outperforms simple word
matching methods and performs slightly better
than LCLR, which suggests that semantic under-
standing beyond lexical semantics is important for
obtaining good performance on WIKIQA. Finally,
word matching features help to further boost CNN
results by approximately 3 to 4 points in both
MAP and MRR.

Evaluation of answer triggering on WIKIQA
We evaluate the best system CNN-Cnt on the task
of answer triggering, and the results are shown in
Table 5. We tune the model scores for making pre-
dictions with respect to F1 scores on the dev set,
due to the highly skewed class distribution in train-
ing data. The absolute F1 scores are relative low,
which suggests a large room for improvement.

We further study three additional features:
the length of question (QLen), the length of
sentence (SLen), and the class of the ques-
tion (QClass). The motivation for adding these
features is to capture the hardness of the question
and comprehensiveness of the sentence. Note that
the two question features have no effects on MAP
and MRR. As shown in Table 5, the question-level
F1 score is substantially improved by adding a
simple QLen feature. This suggests that designing
features to capture question information is very
important for this task, which has been ignored in
the past. SLen features also give a small improve-
ment in the performance, and QClass feature has
slightly negative influence on the results.

3.4 Error Analysis & Discussion

The experimental results show that for the same
model, the performance on the WIKIQA dataset
is inferior to that on the QASENT dataset, which
suggests that WIKIQA is a more challenging
dataset. Examining the output of CNN-Cnt, the
best performing model, on the WIKIQA dev set
seems to suggest that deeper semantic understand-
ing and answer inference are often required. Be-

8Our CNN reimplementation performs slightly worse
than (Yu et al., 2014).

low are two examples selected that CNN-Cnt does
not correctly rank as the top answers:

Q1: What was the GE building in Rockefeller
Plaza called before?
A1: [GE Building] Known as the RCA Building
until 1988, it is most famous for housing the head-
quarters of the television network NBC.

Q2: How long was I Love Lucy on the air?
A2: [I Love Lucy] The black-and-white series
originally ran from October 15, 1951, to May
6, 1957, on the Columbia Broadcasting System
(CBS).

Answering the first question may require a better
semantic representation that captures the relation-
ship between “called before” and “known ... un-
til”. As for the second question, knowing that on
a TV channel (e.g., CBS) implies “on the air” and
a time span between two dates is legitimate to a
“how long” question is clearly beneficial.

4 Conclusion

We present WIKIQA, a new dataset for open-
domain question answering. The dataset is con-
structed in a natural and realistic manner, on which
we observed different behaviors of various meth-
ods compared with prior work. We hope that
WIKIQA enables research in the important prob-
lem of answer triggering and enables further re-
search in answer sentence selection in more real-
istic settings. We also hope that our empirical re-
sults will provide useful baselines in these efforts.
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Abstract
Machine Translation (MT) has advanced in re-
cent years to produce better translations for
clients’ specific domains, and sophisticated
tools allow professional translators to obtain
translations according to their prior edits. We
suggest that MT should be further personal-
ized to the end-user level – the receiver or the
author of the text – as done in other applica-
tions. As a step in that direction, we propose a
method based on a recommender systems ap-
proach where the user’s preferred translation
is predicted based on preferences of similar
users. In our experiments, this method outper-
forms a set of non-personalized methods, sug-
gesting that user preference information can be
employed to provide better-suited translations
for each user.

1 Introduction
Technologies are increasingly personalized, accommo-
dating their behavior for each user. Such personaliza-
tion is done through user modeling where the goal is to
“get to know” the user. To that end, personalization is
based on users’ attributes, such as demographics (gen-
der, age etc.), personalities, and preferences. For ex-
ample, in Information Retrieval, results are customized
according to the user’s information and search his-
tory (Speretta and Gauch, 2005), performance of Auto-
matic Speech Recognition substantially improves when
adapted to a specific speaker (Neumeyer et al., 1995),
and Targeted Advertising makes use of the user’s loca-
tion and prior purchases (Kölmel and Alexakis, 2002).

Personalization in machine translation has a some-
what different nature. Providers of MT tools and ser-
vices offer means to “customize” or “personalize” the
translation engine for each client, mostly through do-
main adaptation techniques, and a great deal of effort
is made to make the human-involved translation pro-
cess more efficient (see Section 2.2). Most of the focus,
though, goes to customization for companies or profes-
sional translators. We argue that Personalized Machine
Translation (PMT below) should and can take the next
step and directly address individual end-users.

∗This work was done while the first author was at Xerox
Research Centre Europe.

The difficulty to objectively determine whether one
(automatic) translation is better than another has been
repeatedly revealed in the MT literature. Our con-
jecture is that one reason is individual preferences, to
which we refer as Translational Preferences (TP). TP
come into play both when the alternative translations
are all correct, and when each of them is wrong in a
different way. In the former case, a preference may be
a stylistic choice, and in the latter, a matter of com-
prehension or a selection of the least intolerable error
in one’s opinion. For instance, one user may prefer
shorter sentences than others; she may favor a more
formal style, while another would rather have it casual.
A user could be fine with some reordering errors but be
more picky concerning punctuations. One user will not
be bothered if some words are left untranslated (per-
haps because the source language belongs to the same
language family as the target language that he speaks),
while another will find it utterly displeasing. Such dif-
ferences may be the result of the type of translation sys-
tem being employed (e.g. syntax- vs. phrased-based),
the specific training data or many other factors. On the
user’s side, a preference may be attributed, for exam-
ple, to her mother tongue, her age or her personality.

Two aspects of end-user PMT may be considered:
(i) Personalized translation of texts written by a spe-
cific user, and (ii) PMT to provide better translations
for a specific reader. In this work we address the sec-
ond task, aiming to identify translations each user is
more likely to prefer.1 Specifically, we consider a set-
ting where at least two MT systems are available, and
the goal is to predict which of the translation systems
the user would choose, assuming we have no knowl-
edge about her preference between them. Benchmark-
ing the systems in advance with respect to a reference
set, or estimating the quality of the translations (Specia
et al., 2009) are viable alternatives for translation selec-
tion; these, however, are not personalized to the target
user. Instead, we employ a user-user Collaborative Fil-
tering approach, common in Recommender Systems,
which we map to the TP prediction task.

We assess this approach using a collection of user
rankings of MT systems from a shared translation task

1In (Mirkin et al., 2015) we investigate the first task, as-
sessing whether the author’s demographic and personality
traits are preserved over machine translation.
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(see Section 3). Our results show that the personalized
method modestly, but consistently, outperforms several
other approaches that rank the systems in general, dis-
regarding the specific user. We consider this as an in-
dication that user feedback can be employed towards a
more personalized approach to machine translation.

2 Background
2.1 Collaborative filtering
Collaborative filtering (CF) is a common approach
employed by recommender systems for suggesting to
users items, such as books or movies. A recommender
system may simply suggest to all users the most pop-
ular items; often, however, the recommendations are
personalized for each individual user to fit her taste or
preferences. User-user CF relies on community pref-
erences. The idea is to recommend to the user items
that are liked by users similar to her, as manifested, for
example, by high rating. Similar users are those that
agree with the current user on previously-rated items.
In k-nearest-neighbors CF, a user is typically repre-
sented by a vector of her preferences, where each entry
of the vector is, e.g., a rating of a movie. k similar users
are then identified by measuring the similarity between
the users’ vectors. Cosine similarity is a popular func-
tion for that purpose, and we also use it in our work
(Resnick et al., 1994; Sarwar et al., 2001; Ricci et al.,
2011). An alternative to cosine, Pearson’s correlation
coefficient (Pearson, 1895), allows addressing different
rating patterns across users. In comparison to cosine,
here vector entries are normalized with respect to the
user’s average rating. In our case, such normalization
is not very meaningful since the entries of the users
vectors represent comparisons rather than absolute rat-
ings, as will be made clear in Section 4. Nevertheless,
we have experimented with Pearson correlation as well,
and found no advantage in using it instead of cosine.

2.2 Customization, personalization and
adaptation in MT

Various means of customization and personalization
are available, in both academic and commercial MT.
Many of them target the company, rather than the in-
dividual user, and much of the effort is invested in de-
signing tools for professional translators, aiming to im-
prove their productivity, through intelligent Computer
Aided Translation (CAT).

Domain adaptation methods are commonly used to
adapt to the topic, the genre and even the style of the
translated material. Using the company’s own corpora
is one of the simplest techniques to do so, but many
more approaches have been proposed, including data-
selection (Axelrod et al., 2011; Gascó et al., 2012;
Mirkin and Besacier, 2014), mixture models (Foster
and Kuhn, 2007) and table fill-up (Bisazza et al., 2011).
Clients can utilize their own glossaries (Federico et
al., 2014), corpora (parallel or monolingual) and trans-
lation memories (TM), either shared or private ones

(Caskey and Maskey, 2014; Federico et al., 2014).
Through Adaptive and Interactive MT (Nepveu et al.,
2004), the system learns from the translator’s edits, in
order to avoid repeating errors that have already been
corrected. Post-editions can continuously be added to
the translator’s TM or be used as additional training
material, for tighter adaptation to the domain of inter-
est, through batch or incremental training.

2.3 User preferences in MT
Many tasks that require annotation by humans are af-
fected by the annotator and not only by the item be-
ing judged. Metrics for inter-rater reliability or inter-
annotator agreement, such as Cohen’s Kappa (Cohen,
1960), help measuring the extent to which annotators
disagree. Disagreement may be due to untrained or
inattentive annotators, a result of a task that is not well
defined, or when there is no obvious “truth”. Such is
the case with the evaluation of translation quality – it
is not always straightforward to tell whether one trans-
lation is better than another. A single sentence can be
translated in multiple correct ways. The decision be-
comes even harder when the translations are automat-
ically produced and are imperfect: Is one error worse
than another? The answer is in the eye of the beholder.
MT papers regularly report rather low Kappa levels,
even when measured on simpler tasks, such as short
segments (Macháček and Bojar, 2015).

Turchi et al. (2013) refer to the issue of “subjectiv-
ity” of human annotators. They address the task of
binary classification of “good” vs. “bad” translations,
and show that relying on human annotation for training
a binary quality estimator is less effective than using
automatically-generated labels. This subjectivity is ex-
actly what we are after. We treat it as a preference,
trying to identify the systems or specific translations
which the user subjectively prefers.

Kichhoff et al. (2012) analyze user preferences with
respect to MT errors. They show that some types, e.g.
word order errors, are the most dis-preferred by users,
and that this is a more important factor than the number
of errors. While very relevant for our research, their
analysis is aggregated over all users participating in the
study, and is not focusing on individuals’ preferences.

3 Data
In this work we used the data provided for the MT
Shared Task in the 2013 Workshop on Statistical Ma-
chine Translation (WMT) (Bojar et al., 2013).2 This
data was of a particularly large scale, with crowd-
sourced human judges, either volunteer researchers or
paid Amazon Turkers. For each source sentence, a
judge was presented with the source sentence itself,
a reference translation, and the outputs of five ma-
chine translation systems. The five systems were ran-
domly selected from the pool of participating systems,

2http://www.statmt.org/wmt13/
translation-task.html
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and were anonymized and randomly-ordered when pre-
sented to the judge. The judge had to rank the transla-
tions, with ties allowed (i.e. two system can receive the
same ranking). Hence, each annotation point provided
with 10 pairwise rankings between systems. Transla-
tions of 10 language pairs were assessed, with 11 to 19
systems for each pair. In total, over 900K non-tied pair-
wise rankings were collected. The Turkers’ annotation
included a control task for quality assurance, rejecting
Turkers failing more than 50% of the control points.
The inter-annotator score showed on average a fair to
moderate level of agreement.

4 Translational preferences with
collaborative filtering

Our method, denoted CTP (Collaborative Translational
Preferences), is based on a k-nearest-neighbors ap-
proach for user-user CF. That is, we predict the trans-
lational preferences of a user based on those of similar
users. In our setting, a user preference is the choice be-
tween two translation systems – which system’s trans-
lations does the user prefer. Given two systems (or
models of the same system) we wish to predict which
one the user would prefer, without assuming the user
has ever expressed her preference between these two
specific systems. It is important to emphasize that
the method presented here considers the users’ overall
preferences of systems, and does not regard the spe-
cific sentence that is being translated. In future work
we intend to make use of this information as well.

4.1 Representation
As mentioned in Section 3, each annotation consists
of a ranking of five systems. From that, we extract
pairwise rankings for every pair of systems that were
ranked for a given language pair. For each user u ∈ U
(where U are all users who annotated the language
pair), we create a user-preference vector, pu, that con-
tains an entry for each pair of translation systems. De-
noting the set of systems with S, we have |S|·(|S|−1)

2
system pairs. E.g., for Czech-English, with 11 partic-
ipating systems, the user vector size is 55. Each entry
(i, j) of the vector is assigned the following value:

pu
(i,j) =

w
(i,j)
u − l(i,j)u

w
(i,j)
u + l

(i,j)
u

(1)

where w(i,j)
u and l(i,j)u are the number of wins and loses

of system si vs. system sj as judged by user u.3

With this representation, a user vector contains val-
ues between −1 (if si always lost to sj) and 1 (if si al-
ways won). If the user always ranked the two systems
identically, the value is 0, and if she has never evalu-
ated the pair, the entry is regarded as a missing value
(NA). Altogether, we have a matrix of users by system
pairs, as depicted in Figure 1.

3We have also considered including ties in the denomina-
tor of the equation; discarding them was found superior.

𝑢

(𝑖, 𝑗)

𝑝𝑢
(𝑖,𝑗)

𝑆 × 𝑆

𝒰

𝑝𝑢

Figure 1: The user-preferences matrix.

4.2 Finding similar users
Given a user preference to predict for a pair of sys-
tems (si, sj), we compute the similarity between pu

and each one of pu′ for all other u′ ∈ U . In our exper-
iments we used cosine as the similarity measure. The
k most-similar-users (MSU ) are then selected. To be
included in MSU (u), we require that u and u′ have
judged at least 2 common system pairs.

4.3 Preference prediction
Given the similarity scores, to predict the user’s prefer-
ence for the target system pair, we compute a weighted
average of the predictions of the users in MSU (u).

We include in the average only users with similar-
ity scores above a certain positive threshold (0.05). We
then require that a minimum number of users meet the
above criteria of common annotations and minimum
similarity (we used 5). If not enough such similar
users are found, we turn to a fallback, where we use
the non-weighted average preference across all users
(AVPF presented in Section 5).4 The prediction is then
the sign of the weighted average. A positive value
means si is the preferred system; a negative one means
it is sj , and a zero is a draw. In our evaluation we com-
pare this prediction to the sign of the actual preference
of the user, pu

(i,j). Formally, CTP computes the fol-
lowing prediction function f for a given user u and a
system pair (si, sj):

fCTP(u)(i,j) = sign(
∑

u′ pu′ (i,j) · sim(u, u′)∑
u′ sim(u, u′)

) (2)

where u′ ∈ MSU (u) are the most similar users (the
nearest neighbors) of u; pu′ (i,j) are the preferences
of user u′ for (si, sj) and sim(u, u′) is the similarity
score between the two users.5

5 Experiments and results
5.1 Evaluation methodology
In our experiments we try to predict which one of two
translation systems would be preferred by a given user.

4The fallback was used 0.1% of the times.
5The denominator is not required as long as we predict

only the sign since all used similarity scores are positive. We
keep it in order to obtain a normalized score that can be used
for other decisions, e.g. ranking multiple systems.
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We evaluate our method, as well as several other pre-
diction functions, when compared with the user’s pair-
wise system preference according to the annotation –
pu

(i,j), shown in Equation 1. For each user this is an
aggregated figure over all her pairwise rankings for the
pair, determining the preferred system as the one cho-
sen by the user (i.e. ranked higher) more times.

We conduct a leave-one-out experiment. For each
language pair, we iterate over all non-NA entries in the
user-preferences matrix, remove the entry and try to
predict it. User similarity scores are re-computed for
each evaluation point, to ensure they do not consider
the target pair. The “gold” preference is positive when
the user prefers si, negative when she prefers sj and
0 when she has no preference between them. Hence,
each of the assessed methods is measured by the accu-
racy of predicting the sign of the preference.

5.2 Non-personalized methods
We compare CTP to the following prediction methods:

Always i (ALI) This is a naı̈ve baseline showing the
score when always predicting that system i wins. Note
that the baseline is not simply 50% due to ties.

Average rank (RANK) Here, two systems are com-
pared by the average of their rankings across all anno-
tations (r ∈ {1, 2, 3, 4, 5}):

fRANK(u)(i,j) = sign(rj − ri) (3)

rj and ri are the average ranks of sj and si respec-
tively. Since a smaller value of r corresponds to a
higher rank, we subtract the rank of si from sj and
not the other way around. This way, if for instance,
si is ranked on averaged higher than sj , the prediction
would be positive, as desired.

Expected (EXPT) This metric, proposed by
Koehn (2012) and used by Bojar et al. (2013) in
order to rank the participating systems in the WMT
benchmark, compares the expected wins of the two
systems. Its intuition is explained as follows: “If
the system is compared against a randomly picked
opposing system, on a randomly picked sentence, by a
randomly picked judge, what is the probability that its
translation is ranked higher?” The expected wins of si,
e(si), is the probability of si to win when compared
to another system, estimated as the total number of
wins of si relative to the total number of comparisons
involving it, excluding ties, and normalized by the total
number of systems excluding si, |{sk}|:

e(i) =
1

|{sk}|
∑
k 6=i

w(i,k)

w(i,k) + l(i,k)
(4)

where w(i,k) and l(i,k) are summed over all users.
The preference prediction is therefore:

fEXPT(u)(i,j) = sign(e(i)− e(j)) (5)

RANK and EXPT predict preferences based on a sys-
tem’s performance in general, when compared to all
other systems. We propose an additional prediction
function for comparison which uses only the informa-
tion concerning the system pair under consideration.

Average user preference (AVPF) This method takes
into account only the specific system pair and averages
the user preferences for the pair. Formally:

fAVPF(u)(i,j) = sign(
∑

u′ p
(i,j)
u′

|{u′}| ) (6)

where u′ 6= u, and {u′} are all users except u.
This method can be viewed as a non-personalized

version of CTP, with two differences:

(1) It considers all users, and not only similar ones.
(2) It does not weight the preferences of the other

users by their similarity to the target user.

5.3 Results

Table 1 shows the results of an experiment comparing
the performance of the various methods in terms of pre-
diction accuracy. Figure 2 shows the micro-average
scores, when giving each of the 97,412 test points an
equal weight in the average. CTP outperforms all others
for 9 out of 10 language pairs, and in the overall micro-
averaged results. The difference between CTP and each
of the other metrics was found statistically significance
with p < 5 · 10−6 at worse, as measured with a paired
Wilcoxon signed rank test (Wilcoxon, 1945) on the pre-
dictions of the two methods. The significance test cap-
tures in this case the fact that the methods disagreed in
many more cases than is visible by the score difference.

Our method was found superior to all others also
when computing macro-average, taking the average of
the scores of each language pair, as well as when the
ties are included in the computation of pu.

The parameters with which the above results were
obtained are found within the method’s description in
Section 4. Yet, in our experiments, CTP turned out to
be rather insensitive to their values. In this experiment
we used a global set of parameters and did not tune
them for each language pair separately. It is reasonable
to assume that such tuning would improve results. For
instance, choosing k, the number of users to include in
the average, depends on the total number of users. E.g.,
for en-es, where there are only 57 users in total, reduc-
ing k’s value from 50 to 25, improves results of CTP
from 62.6% to 63.2%, higher than all other methods
(whose scores are not affected).

Specifically in comparison to AVPF, weighting by
the similarity scores was found to be a more significant
factor than selecting a small subset of the users. This
may not come as a surprise, since less similar users that
are added to MSU (u) have a smaller impact on the fi-
nal decision since their weight in the average is smaller.
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Lang. f Acc.

cs-en

ALI 31.6
RANK 62.9
EXPT 63.5
AVPF 63.5
CTP 64.4

en-cs

ALI 36.2
RANK 67.8
EXPT 67.9
AVPF 67.4
CTP 68.2

Lang. f Acc.

de-en

ALI 41.7
RANK 62.6
EXPT 62.6
AVPF 62.6
CTP 63.5

en-de

ALI 42.0
RANK 67.2
EXPT 66.9
AVPF 66.5
CTP 67.6

Lang. f Acc.

es-en

ALI 35.5
RANK 61.0
EXPT 61.2
AVPF 61.4
CTP 63.0

en-es

ALI 35.9
RANK 62.3
EXPT 63.0
AVPF 61.5
CTP 62.6

Lang f Acc.

fr-en

ALI 35.0
RANK 61.3
EXPT 61.2
AVPF 61.2
CTP 61.8

en-fr

ALI 35.0
RANK 65.0
EXPT 65.1
AVPF 64.4
CTP 65.3

Lang. f Acc.

ru-en

ALI 43.5
RANK 57.6
EXPT 57.8
AVPF 56.6
CTP 58.2

en-ru

ALI 44.6
RANK 70.2
EXPT 72.1
AVPF 71.4
CTP 72.4

Table 1: Results in accuracy percentage for the 10 language pairs, including the languages: Czech (cs), English
(en), German (de), Spanish (es), French (fr) and Russian (ru). The best results is in bold. The difference between
CTP and each of the other methods is highly statistically significant. Figure 2 shows a micro-average of these
results.

One weakness of CTP, as well as of other methods,
is that it poorly predict ties. In the above experiment,
approximately 13.5% of the preferences were 0, none
of them was correctly identified. Our analysis showed
that numerical accuracy is not the main cause; setting
any prediction that is smaller than some values of |ε|
to 0 was not found helpful. Arguably, ties need not be
predicted, since if the user has no preference between
two systems, any choice is just as good. Still, we be-
lieve that better ties prediction could lead to general
improvement of our method and we wish to address it
in future work.
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Figure 2: Micro-average over all 97,412 test points.

6 Discussion

We addressed the task of predicting user preference
with respect to MT output via a collaborative filtering
approach whose prediction is based on preferences of
similar users. This method predicts TP better than a
set of non-personalized methods. The gain is modest
in absolute numbers, but the results are highly statisti-
cally significant and stable over parameter values.

We consider this work as a step towards more per-
sonalized MT. This line of research can be extended
in multiple ways. First and foremost, as mentioned,
we did not consider the actual content of the sentences,
but rather identified a general preference for one system
over another. It is plausible, however, that one system is
better – from the user’s perspective – at translating one
type of text, while another is preferred for other texts.
Taking the actual texts into account seems therefore es-

sential. Content-based methods for recommender sys-
tems may be useful for this purpose. Another factor
that may be affecting preferences is translation quality:
when compared translations are all poor, preferences
play a less significant role. Hence, it may be informa-
tive to assess TP prediction separately across different
levels of translation quality.

Large parallel corpora are typically required for
training reasonable statistical translation models. Yet,
parallel corpora, and even more so in-domain ones,
are hard to gather. It is virtually impossible to find a
user-specific parallel corpus, and methods for mono-
lingual domain adaptation are easier to envisage if one
wishes to address author-aware PMT (the first PMT
task mentioned in Section 1). Collecting user feed-
back is another challenge, especially since most end-
users do not speak the source language. For that and
other reasons, it currently seems more feasible to col-
lect preference information from professional transla-
tors, explicitly or implicitly.Yet, in this research we
aim at end-users rather than translators whose prefer-
ences are often driven by the ease of correction more
than anything else. We believe that one way to tackle
this issue is to exploit other kinds of feedback, from
which we can infer user preferences and similarity.
Online MT providers are recently collecting end-user
feedback for their proposed translations which may be
useful for TP prediction. For instance, in early 2015
Facebook introduced a feature letting users rate (Bing)
translations, and Google Translate asks for suggested
improvements. We are hopeful that such data becomes
publicly available. Nevertheless, it remains unlikely
to obtain feedback from each and every user. A po-
tential direction for both corpora and feedback col-
lection is personalizing models and identifying prefer-
ences for groups of users based on socio-demographic
traits, such as gender, age or mother tongue, or based
on (e.g. Big 5) personality traits. These can even be
inferred by automatically analyzing user texts.
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We wish to thank Hervé Déjean and the EMNLP re-
viewers for their valuable feedback on this work.

2023



References
Amittai Axelrod, Xiaodong He, and Jianfeng Gao.

2011. Domain adaptation via pseudo in-domain
data selection. In Proceedings of the Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP ’11, pages 355–362, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Arianna Bisazza, Nick Ruiz, and Marcello Federico.
2011. Fill-up versus interpolation methods for
phrase-based SMT adaptation. In Proceedings of the
International Workshop on Spoken Language Trans-
lation (IWSLT), San Francisco, California, USA.
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Sanchis-Trilles, Jesús Andrés-Ferrer, and Fran-
cisco Casacuberta. 2012. Does more data always
yield better translations? In Proceedings of the
13th Conference of the European Chapter of the
Association for Computational Linguistics, pages
152–161, Avignon, France, April. Association for
Computational Linguistics.

Katrin Kirchhoff, Daniel Capurro, and Anne Turner.
2012. Evaluating user preferences in machine
translation using conjoint analysis. Proceedings of
the European Association of Machine Translation,
16:119–126.

Philipp Koehn. 2012. Simulating human judgment
in machine translation evaluation campaigns. In

Proceedings of the International Workshop on Spo-
ken Language Translation (IWSLT), pages 179–184,
Hong Kong.

Bernhard Kölmel and Spiros Alexakis. 2002. Location
based advertising. In Proceedings of the First In-
ternational Conference on Mobile Business, Athens,
Greece.
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Abstract

This paper addresses the question of how
language use affects community reaction
to comments in online discussion forums,
and the relative importance of the mes-
sage vs. the messenger. A new comment
ranking task is proposed based on com-
munity annotated karma in Reddit discus-
sions, which controls for topic and tim-
ing of comments. Experimental work
with discussion threads from six subred-
dits shows that the importance of different
types of language features varies with the
community of interest.

1 Introduction

Online discussion forums are a popular platform
for people to share their views about current events
and learn about issues of concern to them. Discus-
sion forums tend to specialize on different topics,
and people participating in them form communi-
ties of interest. The reaction of people within a
community to comments posted provides an indi-
cation of community endorsement of opinions and
value of information. In most discussions, the vast
majority of comments spawn little reaction. In this
paper, we look at whether (and how) language use
affects the reaction, compared to the relative im-
portance of the author and timing of the post.

Early work on factors that appear to influence
crowd-based judgments of comments in the Slash-
dot forum (Lampe and Resnick, 2004) indicate
that timing, starting score, length of the comment,
and poster anonymity/reputation appear to play
a role (where anonymity has a negative effect).
Judging by differences in popularity of various
discussion forums, topic is clearly important. Ev-
idence that language use also matters is provided
by recent work (Danescu-Niculescu-Mizil et al.,
2012; Lakkaraju et al., 2013; Althoff et al., 2014;

Tan et al., 2014). Teasing these different factors
apart, however, is a challenge. The work presented
in this paper provides additional insight into this
question by controlling for these factors in a dif-
ferent way than previous work and by examining
multiple communities of interest. Specifically, us-
ing data from Reddit discussion forums, we look at
the role of author reputation as measured in terms
of a karma k-index, and control for topic and tim-
ing by ranking comments in a constrained window
within a discussion.

The primary contributions of this work include
findings about the role of author reputation and
variation across communities in terms of aspects
of language use that matter, as well as the problem
formulation, associated data collection, and devel-
opment of a variety of features for characterizing
informativeness, community response, relevance
and mood.

2 Data

Reddit1 is the largest public online discussion fo-
rum with a wide variety of subreddits, which
makes it a good data source for studying how tex-
tual content in a discussion impacts the response
of the crowd. On Reddit, people initiate a dis-
cussion thread with a post (a question, a link to
a news item, etc.), and others respond with com-
ments. Registered users vote on which posts and
comments are important. The total amount of up
votes minus the down votes (roughly) is called
karma; it provides an indication of community en-
dorsement and popularity of a comment, as used
in (Lakkaraju et al., 2013). Karma is valued as it
impacts the order in which the posts or comments
are displayed, with the high karma content rising
to the top. Karma points are also accumulated by
members of the discussion forum as a function of
the karma associated with their comments.

1http://www.reddit.com
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subreddit # Posts # Comments/Post
FITNESS 3K 16.3
ASKSCIENCE 4K 8.8
POLITICS 7K 23.7
ASKWOMEN 4K 50.5
ASKMEN 4K 58.3
WORLDNEWS 12K 26.1

Table 1: Data collection statistics.

The Reddit data is highly skewed. Although
there are thousands of active communities, only
a handful of them are large. Similarly, out of
the more than a million comments made per day2,
most of them receive little to no attention; the dis-
tributions of positive comment karma and author
karma are Zipfian. Slightly more than half of all
comments have exactly one karma point (no votes
beyond the author), and only 5% of comments
have less than one karma point.

For this study, we downloaded all the posts and
associated comments made to six subreddits over
a few weeks, as summarized in Table 1, as well as
karma of participants in the discussion3. All avail-
able comments on each post were downloaded at
least 48 hours after the post was made.4

3 Uptake Factors

Factors other than the language use that influence
whether a comment will have uptake from the
community include the topic, the timing of the
message, and the messenger. These factors are all
evident in the Reddit discussions. Some subred-
dits are more popular and thus have higher karma
comments than others, reflecting the influence of
topic. Comments that are posted early in the dis-
cussion are more likely to have high karma, since
they have more potential responses.

Previous studies on Twitter show that the rep-
utation of the author substantially increases the
chances of the retweet (Suh et al., 2010; Cha et
al., 2010), and reputation is also raised as a fac-
tor in Slashdot (Lampe and Resnick, 2004). On
Reddit most users are anonymous, but it is possi-
ble that members of a forum become familiar with
particular usernames associated with high karma
comments. In order to see how important per-

2http://www.redditblog.com/2014/12/reddit-in-2014.html
3Our data collection is available online at

https://ssli.ee.washington.edu/tial/data/reddit
4Based on our initial look at the data, we noticed that most

posts receive all of their comments within 48 hours. Some
comments are deleted before we are able to download them.

Top1 Top3
ASKSCIENCE 9.3 25.9
FITNESS 1.4 12.3
POLITICS 0.3 7.4
ASKWOMEN 2.2 13.5
ASKMEN 3.9 11.9
WORLDNEWS 3.1 6.4

Table 2: Percentage of discussions where the top
comment is made by the top k-index person (or top
3 people) in the discussion.

sonal reputation is, we looked at how often the
top karma comments are associated with the top
karma participants in the discussion. Since an in-
dividual’s karma can be skewed by a few very pop-
ular posts, we measure reputation instead using a
measure we call the k-index, defined to be equal
to the number of comments in each user’s history
that have karma ≥ k. The k-index is analgous to
the h-index (Hirsch, 2005) and arguably a better
indicator of extended impact than total karma.

The results in Table 2 address the question of
whether the top karma comments always come
from the top karma person. The Top1 column
shows the percentage of threads where the top
karma comment in a discussion happens to be
made by the highest k-index person participating
in the discussion; the next column shows the per-
centage of threads where the comment comes from
any one of the top 3 k-index people. We find
that, in fact, the highest karma comment in a dis-
cussion is rarely from the highest k-index people.
The highest percentage is in ASKSCIENCE, where
expertise is more highly valued. If we consider
whether any one of the multiple comments that the
top k-index person made is the top karma com-
ment in the discussion, then the frequency is even
lower.

4 Methods

4.1 Tasks

Having shown that the reputation of the author
of a post is not a dominating factor in predicting
high karma comments, we propose to control for
topic and timing by ranking a set of 10 comments
that were made consecutively in a short window
of time within one discussion thread according to
the karma they finally received. The ranking has
access to the comment history about these posts.
This simulates the view of an early reader of these
posts, i.e., without influence of the ratings of oth-
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ers, so that the language content of the post is more
likely to have an impact. Very long threads are
sampled, so that these do not dominate the set of
lists. Approximately 75% of the comment lists are
designated for training and the rest is for testing,
with splits at the discussion thread level. Here,
feature selection is based on mean precision of
the top-ranked comment (P@1), so as to empha-
size learning the rare high karma events. (Note
that P@1 is equivalent to accuracy but allows for
any top-ranking comment to count as correct in the
case of ties.) The system performance is evaluated
using both P@1 and normalized discounted cumu-
lative gain (NDCG) (Burges et al., 2005), which is
a standard criterion for ranking evaluation when
the samples to be ranked have meaningful differ-
ences in scores, as is the case for karma of the
comments.

In addition, for analysis purposes, we report re-
sults for three surrogate tasks that can be used in
the ranking problem: i) the binary ranker trained
on all comment pairs within each list, in which low
karma comments dominate, ii) a positive vs. neg-
ative karma classifier, and iii) a high vs. medium
karma classifier. All use class-balanced data; the
second two are trained and tested on a biased sam-
pling of the data, where the pairs need not be from
the same discussion thread.

4.2 Classifier

We use the support vector machine (SVM) rank
algorithm (Joachims, 2002) to predict a rank or-
der for each list of comments. The SVM is trained
to predict which of a pair of comments has higher
karma. The error term penalty parameter is tuned
to maximize P@1 on a held-out validation set
(20% of the training samples).

Since much of the data includes low-karma
comments, there will be a tendancy for the learn-
ing to emphasize features that discriminate com-
ments at the lower end of the scale. In order to
learn features that improve P@1, and to under-
stand the relative importance of different features,
we use a greedy automatic feature selection pro-
cess that incrementally adds one feature whose re-
sulting feature set achives the highest P@1 on the
validation set. Once all features have been used,
we select the model with the subset of features that
obtains the best P@1 on the validation set.

4.3 Features

The features are designed to capture several key at-
tributes that we hypothesize are predictive of com-
ment karma motivated by related work. The fea-
tures are categorized in groups as summarized be-
low, with details in supplementary material.
• Graph and Timing (G&T): A baseline that

captures discourse history (response structure)
and comment timing, but no text content.
• Authority and Reputation (A&R): K-index,

whether the commenter was the original poster,
and in some subreddits “flair” (display next to a
comment author’s username that is subject to a
cursory verification by moderators).
• Informativeness (Info.): Different indicators

suggestive of informative content and novelty,
including various word counts, named entity
counts, urls, and unseen n-grams.
• Lexical Unigrams (Lex.): Miscellaneous word

class indicators, puncutation, and part-of-
speech counts
• Predicted Community Response (Resp.):

Probability scores from surrogate classification
tasks (reply vs. no reply, positive vs. negative
sentiment) to measure the community response
of a comment using bag-of-words predictors.
• Relevance (Rel.): Comment similarity to the

parent, post and title in terms of topic, computed
with three methods: i) a distributed vector rep-
resentation of topic using a non-negative matrix
factorization (NMF) model (Xu et al., 2003),
ii) the average of skip-gram word embeddings
(Mikolov et al., 2013), and iii) word set Jaccard
similarity (Strehl et al., 2000).
• Mood: Mean and std. deviation of sentence sen-

timent in the comment; word list indicators for
politeness, argumentativeness and profanity.
• Community Style (Comm.): Posterior proba-

bility of each subreddit given the comment us-
ing a bag-of-words model.
The various word lists are motivated by fea-

ture exploration studies in surrogate tasks. For
example, projecting words to a two dimensional
space of positive vs. negative and likelihood of
reply showed that self-oriented pronouns were
more likely to have no response and second-
person pronouns were more likely to have a neg-
ative response. The politeness and argumentative-
ness/profanity lists are generated by starting with
hand-specified seed lists used to train an SVM to
classify word embeddings (Mikolov et al., 2013)
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Figure 1: Relative improvement in P@1 over
G&T for individual feature groups.

into these categories, and expanding the lists with
500 words farthest from the decision boundary.

Both the NMF and the skip-gram topic models
use a cosine distance to determine topic similarity,
with 300 as the word embedding dimension. Both
are trained on approximately 2 million comments
in high karma posts taken across a wide variety of
subreddits. We use topic models in various mea-
sures of comment relevance to the discussion, but
we do not use topic of the comment on its own
since topic is controlled for by ranking within a
thread.

5 Ranking Experiments

We present three sets of experiments on comment
karma ranking, all of which show very differ-
ent behavior for the different subreddits. Fig. 1
shows the relative gain in P@1 over the G&T
baseline associated with using different feature
groups. The importance of the different features
reflect the nature of the different communities.
The authority/reputation features help most for
ASKSCIENCE, consistent with our k-index study.
Informativeness and relevance help all subred-
dits except ASKMEN and WORLDNEWS. Lexical,
mood and community style features are useful in
some cases, but hurt others. The predicted proba-
bility of a reply was least useful, possibly because
of the low-karma training bias.

Tables 3 and 4 summarize the results for the
P@1 and NDCG criteria using the greedy selec-
tion procedure (which optimizes P@1) compared
to a random baseline and the G&T baseline. The
random baseline for P@1 is greater than 10% be-
cause of ties. The G&T baseline results show that
the graph and timing features alone obtain 21-32%

subreddit Random G&T All
ASKSCIENCE 15.9 21.8 25.3
FITNESS 19.4 22.1 27.3
POLITICS 18.5 24.7 26.4
ASKWOMEN 17.6 24.9 28.0
ASKMEN 18.2 31.4 29.1
WORLDNEWS 15.4 24.5 23.3
Improvement - 42.9% 52.1%

Table 3: Test set precision of top one prediction
(P@1) performance for specific subreddits.

subreddit Random G&T All
ASKSCIENCE 0.53 0.60 0.60
FITNESS 0.57 0.61 0.62
POLITICS 0.55 0.61 0.62
ASKWOMEN 0.56 0.62 0.65
ASKMEN 0.56 0.66 0.66
WORLDNEWS 0.54 0.61 0.60
Improvement - 12.5% 13.2%

Table 4: Test set ranking NDCG performance for
specific subreddits.

of top karma comments depending on subreddits.
Adding the textual features gives an improvement
in P@1 performance over the G&T baseline for
all subreddits except ASKMEN and WORLDNEWS.
The trends for performance measured with NDCG
are similar, but the benefit from textual features is
smaller. The results in both tables show different
ways of reporting performance of the same sys-
tem, but the system has been optimized for P@1
in terms of feature selection. In initial exploratory
experiments, this seems to have a small impact:
when optimizing for NDCG in feature selection
we obtain 0.61 vs. 0.60 with the P@1-optimized
features.

A major challenge with identifying high karma
comments (and negative karma comments) is that

subreddit Pos/Neg High/Mid Ranking
ASKSCIENCE 44.5 63.7 61.3
FITNESS 74.7 43.9 57.5
POLITICS 95.5 59.1 58.0
ASKWOMEN 82.5 67.6 59.7
ASKMEN 87.0 66.2 60.6
WORLDNEWS 93.3 69.9 57.3
Average 79.6 61.7 59.1

Table 5: Accuracy of binary classifiers trained on
balanced data to distinguish: positive vs. nega-
tive karma (Pos/Neg), high vs. mid-level karma
(High/Mid), and ranking between any pair (Rank-
ing).
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they are so rare. Although our feature selection
tunes for high rank precision, it is possible that
the low-karma data dominate the learning. Alter-
natively, it may be that language cues are mainly
useful for identifying distinguishing the negative
or mid-level karma comments, and that the very
high karma comments are a matter of timing. To
better understand the role of language for these
different types, we trained classifiers on balanced
data for positive vs. negative karma and high vs.
mid levels of karma. For these models, the training
pairs could come from different threads, but topic
is controlled for in that all topic features are rela-
tive (similarity to original post, parent, etc.). We
compared the results to the binary classifier used
in ranking, where all pairs are considered. In all
three cases, random chance accuracy is 50%.

Table 5 shows the pairwise accuracy of these
classifiers. We find that distinguishing positive
from negative classes is fairly easy, with the no-
table exception of the more information-oriented
subreddit ASKSCIENCE. Averaging across the dif-
ferent subreddits, the high vs. mid task is slightly
easier than the general ranking task, but the vari-
ation across subreddits is substantial. The high
vs. mid distinction for FITNESS falls below chance
(likely overtraining), whereas it seems to be an
easier task for the ASKWOMEN, ASKMEN, and
WORLDNEWS.

6 Related Work

Interest in social media is rapidly growing in re-
cent years, which includes work on predicting
the popularity of posts, comments and tweets.
Danescu-Niculescu-Mizil et al. (2012) investigate
phrase memorability in the movie quotes. Cheng
et al. (2014) explore prediction of information
cascades on Facebook. Weninger et al. (2013)
analyze the hierarchy of the Reddit discussions,
topic shifts, and popularity of the comment, us-
ing among the others very simple language anal-
ysis. Lampos et al. (2014) study the problem of
predicting a Twitter user impact score (determined
by combining the numbers of user’s followers, fol-
lowees, and listings) using text-based and non-
textual features, showing that performance im-
proves when user participation in particular topics
is included.

Most relevant to this paper are studies of the ef-
fect of language in popularity predictions. Tan et
al. (2014) study how word choice affects the pop-

ularity of Twitter messages. As in our work, they
control for topic, but they also control for the pop-
ularity of the message authors. On Reddit, we find
that celebrity status is less important than it is on
Twitter since on Reddit almost everyone is anony-
mous. Lakkaraju et al. (2013) study how timing
and language affect the popularity of posting im-
ages on Reddit. They control for content by only
making comparisons between reposts of the same
image. Our focus is on studying comments within
a discussion instead of standalone posts, and we
analyze a vast majority of language features. Al-
thoff et al. (2014) use deeper language analysis on
Reddit to predict the success of receiving a pizza
in the Random Acts of Pizza subreddit. To our
knowledge, this is the first work on ranking com-
ments in terms of community endorsement.

7 Conclusion

This paper addresses the problem of how language
affects the reaction of community in Reddit com-
ments. We collect a new dataset of six subredit dis-
cussion forums. We introduce a new task of rank-
ing comments based on karma in Reddit discus-
sions, which controls for topic and timing of com-
ments. Our results show that using language fea-
tures improve the comment ranking task in most
of the subreddits. Informativeness and relevance
are the most broadly useful feature categories; rep-
utation matters for ASKSCIENCE, and other cate-
gories could either help or hurt depending on the
community. Future work involves improving the
classification algorithm by using new approaches
to learning about rare events.
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Abstract

Usernames are ubiquitous on the Internet,
and they are often suggestive of user de-
mographics. This work looks at the de-
gree to which gender and language can
be inferred from a username alone by
making use of unsupervised morphology
induction to decompose usernames into
sub-units. Experimental results on the
two tasks demonstrate the effectiveness of
the proposed morphological features com-
pared to a character n-gram baseline.

1 Introduction

There is much interest in automatic recognition
of demographic information of Internet users to
improve the quality of online interactions. Re-
searchers have looked into identifying a variety
of factors about users, including age, gender, lan-
guage, religious beliefs and political views. Most
work leverages multiple sources of information,
such as search query history, Twitter feeds, Face-
book likes, social network links, and user profiles.
However, in many situations, little of this infor-
mation is available. Conversely, usernames are al-
most always available.

In this work, we look specifically at classify-
ing gender and language based only on the user-
name. Prior work by sociologists has established
a link between usernames and gender (Cornetto
and Nowak, 2006), and studies have linked user-
names to other attributes, such as individual be-
liefs (Crabill, 2007; Hassa, 2012) and shown how
usernames shape perceptions of gender and eth-
nicity in the absence of common nonverbal cues
(Pelletier, 2014). The connections to ethnicity mo-
tivate the exploration of language identification.

Gender identification based on given names is
very effective for English (Liu and Ruths, 2013),
since many names are strongly associated with a

particular gender, like “Emily” or “Mark”. Unfor-
tunately, the requirement that each username be
unique precludes use of given names alone. In-
stead, usernames are typically a combination of
component words, names and numbers. For ex-
ample, the Twitter name @taylorswift13 might
decompose into “taylor”, “swift” and “13”. The
sub-units carry meaning and, importantly, they are
shared with many other individuals. Thus, our ap-
proach is to leverage automatic decomposition of
usernames into sub-units for use in classification.

We use the Morfessor algorithm (Creutz and
Lagus, 2006; Virpioja et al., 2013) for unsuper-
vised morphology induction to learn the decom-
position of the usernames into sub-units. Morfes-
sor has been used successfully in a variety of lan-
guage modeling frameworks applied to a number
of languages, particularly for learning concatena-
tive morphological structure. The usernames that
we analyze are a good match to the Morfessor
framework, which allows us to push the boundary
of how much can be done with only a username.

The classifier design is described in the next
section, followed by a description of experiments
on gender and language recognition that demon-
strate the utility of morph-based features com-
pared to character n-gram features. The paper
closes with a discussion of related work and a
summary of key findings.

2 General Classification Approach

2.1 Unsupervised Morphology Learning

In linguistics, a morpheme is the “minimal lin-
guistic unit with lexical or grammatical meaning”
(Booij, 2012). Morphemes are combined in vari-
ous ways to create longer words. Similarly, user-
names are frequently made up of a concatenated
sequence of smaller units. These sub-units will be
referred to as u-morphs to highlight the fact that
they play an analogous role to morphemes but for
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purposes of encoding usernames rather than stan-
dard words in a language. The u-morphs are sub-
units that are small enough to be shared across dif-
ferent usernames but retain some meaning.

Unsupervised morphology induction using
Morfessor (Creutz and Lagus, 2006) is based on
a minimum description length (MDL) objective,
which balances two competing goals: maximizing
both the likelihood of the data and of the model.
The likelihood of the data is maximized by longer
tokens and a bigger lexicon whereas the likeli-
hood of the model is maximized by a smaller lexi-
con with shorter tokens. A parameter controls the
trade-off between the two parts of the objective
function, which alters the average u-morph length.
We tune this parameter on held-out data to opti-
mize the classification performance of the demo-
graphic tasks.

Maximizing the Morfessor objective exactly is
computationally intractable. The Morfessor algo-
rithm searches for the optimal lexicon using an
iterative approach. First, the highest probability
decomposition for each training token is found
given the current model. Then, the model is up-
dated with the counts of the u-morphs. A u-
morph is added to the lexicon when it increases
the weighted likelihood of the data by more than
the cost of increasing the size of the lexicon.

Usernames can be mixed-case, e.g. “JohnDoe”.
The case change gives information about a likely
u-morph boundary, but at the cost of doubling the
size of the character set. To more effectively lever-
age this cue, all characters are made lowercase but
each change from lower to uppercase is marked
with a special token, e.g. “john$doe”. Using this
encoding reduces the u-morph inventory size, and
we found it to give slightly better results in lan-
guage identification.

Character 3-grams and 4-grams are used as
baseline features. Before extracting the n-grams
a “#” token is placed at the start and end of each
username. The n-grams are overlapping to give
them the best chance of finding a semantically
meaningful sub-unit.

2.2 Classifier Design

Given a decomposition of the username into a se-
quence of u-morphs (or character n-grams), we
represent the relationship between the observed
features and each class with a unigram language
model. If a username u has decomposition

m1, . . . ,mn then it is assigned to the class ci for
which the unigram model gives it the highest pos-
terior probability, or equivalently:

argmaxi pC(ci)
n∏
k=1

p(mk|ci),

where pC(ci) is the class prior and p(mk|ci) is the
class-dependent unigram.1

For some demographics, the class prior can be
very skewed, as in the case of language detec-
tion where English is the dominant language. The
choice of smoothing algorithm can be important in
such cases, since minority classes have much less
training data for estimating the language model
and benefit from having more probability mass as-
signed to unseen words. Here, we follow the ap-
proach proposed in (Frank and Bouckaert, 2006)
that normalizes the token count vectors for each
class to have the same L1 norm, specifically:

p(mk|ci) =
1
Z

(
1 +

β · n(mk, ci)
n(ci)

)
,

where n(·) indicates counts and β controls the
strength of the smoothing. Setting β equal to
the number of training examples approximately
matches the strength of the smoothing to the add-
one-smoothing algorithm. Z = β + |M | is a con-
stant to make the probabilities sum to one.

Only a small portion of usernames on the In-
ternet come with gender labels. In these situa-
tions, semi-supervised learning algorithms can use
the unlabeled data to improve the performance of
the classifier. We use a self-training expectation-
maximization (EM) algorithm similar to that de-
scribed in (Nigam et al., 2000). The algorithm
first learns a classifier on the labeled data. In the
E-step, the classifier assigns probabilistic labels to
the unlabeled data. In the M-step, the labeled data
and the probabilistic labels are combined to learn
a new classifier. These steps are iterated until con-
vergence, which usually requires three iterations
for our tasks.

1Note that the unigram model used here, which consid-
ers only the observed u-morphs or n-grams, is not the same
as using a Naive Bayes (NB) classifier based on a vector
of u-morph counts. In the former, unobserved u-morphs do
not impact the class-dependent probability, whereas the zero
counts do impact the probability for the NB classifier. Since
the vast majority of possible u-morphs are unobserved in a
username, it is better to base the decision only on the ob-
served u-morphs. The n-gram model is actually a unigram
with an n-gram “vocabulary” rather than an n-gram language
model.

2033



Nigam et al. (2000) call their method EM-λ be-
cause it uses a parameter λ to reduce the weight
of the unlabeled examples relative to the labeled
data. This is important because the independence
assumptions of the unigram model lead to over-
confident predictions. We used another method
that directly corrects the estimated posterior prob-
abilities. Using a small validation set, we binned
the probability estimates and calculated the true
class probability for each bin. The EM algorithm
used the corrected probabilities for each bin for
the unlabeled data during the maximization step.
Samples with a prediction confidence of less than
60% are not used for training.

3 Experiments

3.1 Gender Identification

Data was collected from the OkCupid dating site
by downloading up to 1,000 profiles from 27 cities
in the United States, first for men seeking women
and again for women seeking men to obtain a bal-
anced set of 44,000 usernames. The data is parti-
tioned into three sets with 80% assigned to train-
ing and 10% each to validation and test. We also
use 3.5M usernames from the photo messaging
app Snapchat (McCormick, 2014): 1.5M are used
for u-morph learning and 2M are for self-training.
All names in this task used only lower case, due to
the nature of the available data.

Male Female

u-morph
guy, mike,
matt, josh

girl, marie,
lady, miss

trigram
guy, uy#,
kev, joe

irl, gir,
grl, emm

Table 1: Top Gender Identification Features

The top features ranked by likelihood ratios
are given in Table 1. The u-morphs clearly carry
semantic meaning, and the trigram features ap-
pear to be substrings of the top u-morph fea-
tures. The trigram features have an advantage
when the u-morphs are under-segmented such as
if the u-morph “niceguy” or “thatguy” is included
in the lexicon. Conversely, the n-grams can suf-
fer from over-segmentation. For example, the tri-
gram “guy” is inside the surname “Nguyen” even
though it is better to ignore that substring in this
context. Many other tokens suffer from this prob-
lem, e.g. “miss” is in “mission”.

The variable-length u-morphs are longer on av-
erage than the character n-grams (4.9 characters).
The u-morph inventory size is similar to that for
3-grams but 5-10 times smaller than the 4-gram
inventory, depending on the amount of data used
since the inventory is expanded in semi-supervised
training. By using the MDL criterion in unsuper-
vised morphology learning, the u-morphs provide
a more efficient representation of usernames than
n-grams and make it easier to control the trade-
off between vocabulary size and average segment
length. The smaller inventory is less sensitive to
sparse data in language model training.

Error Rate
Features Supervised Self-Training
3-gram 28.7% 32.0%
4-gram 28.7% 29.4%

u-morph 27.8% 25.8%

Table 2: Gender Classification Results

The experiment results are presented in Table 2.
For the supervised learning method, the character
3-gram and 4-gram features give equivalent per-
formance, and the u-morph features give the low-
est error rate by a small amount (3% relative).
More significantly, the character n-gram systems
do not benefit from semi-supervised learning, but
the u-morph features do. The semi-supervised
u-morph features obtain an error rate of 25.8%,
which represents a 10% relative reduction over the
baseline character n-gram results.

3.2 Language Identification on Twitter

This experiment takes usernames from the Twitter
streaming API. Each username is associated with
a tweet, for which the Twitter API identifies a lan-
guage. The language labels are noisy, so we re-
move approximately 35% of the tweets where the
Twitter API does not agree with the langid.py clas-
sifier (Lui and Baldwin, 2012). Both training and
test sets are restricted to the nine languages that
comprise at least 1% of the training set. These
languages cover 96% of the observed tweets (see
Table 4). About 110,000 usernames were reserved
for testing and 430,000 were used for training
both u-morphs and the classifier. Semi-supervised
methods are not used because of the abundant la-
beled data. For each language, we train a one-vs.-
all classifier. The mixed case encoding technique
(see sec. 2.1) gives a small increase (0.5%) in the
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Model Prec. Recall F1
4-gram .67 .75 .70

u-morph .77 .67 .71
Combination .73 .73 .73

Table 3: Precision, recall and F1 score for lan-
guage identification using the 4-gram, u-morph
representations and a combination system, averag-
ing over all users.

accuracy of the model and reduces the u-morph
model size by 5%.

The results in Tables 3 and 4 contrast sys-
tems using 4-grams, u-morphs, and a combina-
tion model, showing precision-recall trade-offs for
all users together and F1 scores broken down by
specific languages, respectively. The combina-
tion system simply uses the average of the pos-
terior log-probabilities for each class giving equal
weight to each model. While the overall F1 scores
are similar for the 4-gram and u-morph systems,
their precision and recall trade-offs are quite dif-
ferent, making them effective in combination. The
4-gram system has higher recall, and the u-morph
system has higher precision. With the combina-
tion, we obtain a substantial gain in precision over
the 4-gram system with a modest loss in recall, re-
sulting in a 3% absolute improvement in average
F1 score.

Looking at performance on the different lan-
guages, we find that the F1 score for the combi-
nation model is higher than the 4-gram for every
language, with precision always improving. For
the dominant languages, the difference in recall
is negligible. The infrequent languages have a 4-
8% drop in recall, but the gains in precision are
substantial for these languages, ranging from 50-
100% relative. The greatest contrast between the
4-gram and the combination system can be seen
for the least frequent languages, i.e. the languages
with the least amount of training data. In partic-
ular, for French, the precision of the combination
system (0.36) is double that of the 4-gram model
(0.18) with only a 34% loss in recall (0.24 to 0.16).

Looking at the most important features from
the classifier highlights the ability of the mor-
phemes to capture relevant meaning. The pres-
ence of the morpheme “juan”, “jose” or “flor” in-
crease the probability of a Spanish language tweet
by five times. The same is true for Portuguese
and the morpheme “bieber”. The morpheme “q8”

Language Freq 4-gr u-m Comb
English 43.5 .78 .78 .79

Japanese 21.6 .75 .76 .77
Spanish 15.1 .66 .65 .68
Arabic 7.9 .66 .65 .68

Portuguese 6.2 .50 .55 .58
Russian 1.8 .40 .58 .45
Turkish 1.8 .59 .36 .65
French 1.1 .18 .13 .22

Indonesian 1.1 .34 .30 .43

Table 4: Language identification performance (F1
Scores) and relative frequency in the corpus for
4-gram (4-gr) and u-morph (u-m) representations
and the combination system (Comb).

increases the odds of an Arabic language tweet
by thirteen times due to its phonetic similarity to
the name of the Arabic speaking country Kuwait.
Other features may simply reflect cultural norms.
For example, having an underscore in the user-
name makes it five percent less likely to observe an
English tweet. These highly discriminative mor-
phemes are both long and short. It is hard for the
fixed-length n-grams to capture this information as
well as the morphemes do.

4 Related Work

Of the many studies on automatic classification
of online user demographics, few have leveraged
names or usernames at all, and the few that do
mainly explore their use in combination with other
features. The work presented here differs in its use
of usernames alone, but more importantly in the
introduction of morphological analysis to handle a
large number of usernames.

Two studies on gender recognition are particu-
larly relevant. Burger et al. (2011) use the Twitter
username (or screen name) in combination with
other profile and text features to predict gender,
but they also look at the use of username features
alone. The results are not directly comparable to
ours, because of differences in the data set used
(150k Twitter users) and the classifier framework
(Winnow), but the character n-gram performance
is similar to ours (21-22% different from the ma-
jority baseline). The study uses over 400k char-
acter n-grams (n=1-5) for screen names alone; our
study indicatess that the u-morphs can reduce this
number by a factor of 10. Burger et al. (2011)
used the same strategy with the self-identified full
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name of the user as entered into their profile,
obtaining 89% gender recognition (vs. 77% for
screen names). Later, Liu and Ruths (2013) use
the full first name from a user’s profile for gender
detection, finding that for the names that are highly
predictive of gender, performance improves by re-
lying on this feature alone. However, more than
half of the users have a name that has an unknown
gender association. Manual inspection of these
cases indicated that the majority includes strings
formed like usernames, nicknames or other types
of word concatenations. These examples are pre-
cisely what the u-morph approach tries to address.

Language identification is an active area of re-
search (Bergsma et al., 2012; Zubiaga et al.,
2014), but the username has not been used as a
feature. Again, results are difficult to compare
due to the lack of a common test set, but it is no-
table that the average F1 score for the combination
model approaches the scores obtained on a similar
Twitter language identification task where the al-
gorithm has access to the full text of the tweet (Lui
and Baldwin, 2014): 73% vs. 77% .

A study that is potentially relevant to our work
is automatic classification of ethnicity of Twit-
ter users, specifically whether a user is African-
American (Pennacchiotti and Popescu, 2011).
Again, a variety of content, profile and behav-
ioral features are used. Orthographic features of
the username are used (e.g. length, number of nu-
meric/alpha characters), and names of users that
a person retweets or replies to. The profile name
features do not appear to be useful, but examples
of related usernames point to the utility of our ap-
proach for analysis of names in other fields.

5 Conclusions

In summary, this paper has introduced the use
of unsupervised morphological analysis of user-
names to extract features (u-morphs) for identi-
fying user demographics, particularly gender and
language. The experimental results demonstrate
that usernames contain useful personal informa-
tion, and that the u-morphs provide a more effi-
cient and complementary representation than char-
acter n-grams.2 The result for language identifi-
cation is particularly remarkable because it comes
close to matching the performance achieved by us-

2In order to allow the replicability of the experiments,
software and data for building and evaluating our classifiers
using pre-trained Morfessor models is available at http:
//github.com/ajaech/username_analytics.

ing the full text of a tweet. The work is com-
plementary to other demographic studies in that
the username prediction can be used together with
other features, both for the user and members of
his/her social network.

The methods proposed here could be extended
in different directions. The unsupervised morphol-
ogy learning algorithm could incorporate priors
related to capitalization and non-alphabetic char-
acters to better model these phenomena than our
simple text normalization approach. More so-
phisticated classifiers could also be used, such as
variable-length n-grams or neural-network-based
n-gram language models, as opposed to the uni-
gram model used here. Of course the sophistica-
tion of the classifier will be limited by the amount
of training data available.

A large amount of data is not necessary to build
a high precision username classifier. For example,
less than 7,000 training examples were available
for Turkish in the language identification exper-
iment and the classifier had a precision of 76%.
Since little data is required, there may be many
more applications of this type of model.

Prior work on unsupervised morphological in-
duction focused on applying the algorithm to natu-
ral language input. By using those techniques with
a new type of input, this paper shows that there are
other applications of morphology learning.
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Abstract

Large-scale Knowledge Bases (such as
NELL, Yago, Freebase, etc.) are often
sparse, i.e., a large number of valid rela-
tions between existing entities are missing.
Recent research have addressed this prob-
lem by augmenting the KB graph with ad-
ditional edges mined from a large text cor-
pus while keeping the set of nodes fixed,
and then using the Path Ranking Algo-
rithm (PRA) to perform KB inference over
this augmented graph. In this paper, we
extend this line of work by augmenting
the KB graph not only with edges, but
also with bridging entities, where both the
edges and bridging entities are mined from
a 500 million web text corpus. Through
experiments on real-world datasets, we
demonstrate the value of bridging entities
in improving the performance and running
time of PRA in the KB inference task.

1 Introduction

Large-scale knowledge bases (KB) like Freebase
(Bollacker et al., 2008), Yago (Suchanek et al.,
2007), NELL (Mitchell et al., 2015) can be use-
ful in a variety of applications like natural lan-
guage question answering, semantic search en-
gines, etc. These knowledge bases consist of mil-
lions of real world entities and relationships be-
tween them which are stored in the form of a di-
rected graph where links represent relations and
nodes represent the entities. Although such KBs
contain millions of entities, they are still very
sparse, i.e., they are missing a large number of
relations between existing entities (West et al.,
2014).

Performing inference over the knowledge graph
for predicting relations between two entities is one
way of densifying the KB graph. For example,

Figure 1: Example showing how addition of the
bridging entity, Brian McCain, and the two edges
incident on it can help the PRA algorithm (Lao and
Cohen, 2010) to infer the initially missing relation
instance teamPlaysSport(Yankees, BaseBall). The
original KB graph consisted only of two nodes,
Yankees and Baseball, and no edges.

from (Germany, playsinTournament, FIFA) and
(FIFA, tournamentofSport, Soccer), we can infer
(Germany, playsSport, Soccer). The Path Ranking
Algorithm (PRA) (Lao and Cohen, 2010), (Lao et
al., 2011) performs such an inference by learning
inference rules over the knowledge graph.

If the knowledge graph is sparse, i.e., if there
are a very few or no paths between source and
target entities, then PRA is unable to predict the
existence of a relation. To address this shortcom-
ing, (Lao et al., 2012) augmented the knowledge
graph with paths obtained from an external corpus.
The added paths consisted of unlexicalized depen-
dency labels obtained from a dependency parsed
external corpus. To improve the expressivity of
the added paths, instead of the unlexicalized la-
bels, (Gardner et al., 2013) augmented the KB
graph with verbs (surface relations) from a corpus
containing over 600 million Subject-Verb-Object
(SVO) triples. These verbs act as edges that con-
nect previously unconnected entities thereby in-
creasing the connectivity of the KB graph which
can potentially improve PRA performance.

However, naı̈vely adding these edges increases
the feature sparsity which degrades the discrim-
inative ability of the logistic regression classifier
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used in PRA. This can be addressed by adding la-
tent relations obtained by clustering the surface re-
lations, instead of directly adding the surface rela-
tions. This reduces feature sparsity and has been
shown to improve PRA inference (Gardner et al.,
2013) , (Gardner et al., 2014).

In this article we propose a scheme for aug-
menting the KB using paths obtained by mining
noun phrases that connect two SVO triples from
an external corpus. We term these noun phrases
as bridging entities since they bridge two KB re-
lations to form a path. This is different from the
scheme in (Gardner et al., 2013) and (Gardner et
al., 2014), which adds edges between KB nodes
by mining surface relations from an external cor-
pus. We search for such bridging entities in the
corpus by performing a limited depth DFS (depth
first search) on the corpus graph in an on-demand
fashion.

We term this procedure as On-Demand Aug-
mentation (ODA), because the search can be per-
formed during test time in an on-demand man-
ner. In contrast, the previous approaches of adding
edges or embeddings to the KB (Gardner et al.,
2013), and vector space random walk PRA (Gard-
ner et al., 2014) are batch procedures. As we shall
see in Section 4, due to a limited search space,
on-demand augmentation is much faster compared
to algorithms in (Gardner et al., 2013; Gardner
et al., 2014). Furthermore, since edges are not
added blindly, on-demand augmentation does not
increase feature sparsity which is responsible for
performance degradation. Our experiments sug-
gest that ODA provides better performance than
(Gardner et al., 2013) and nearly the same pre-
diction performance as provided by (Gardner et
al., 2014), but in both cases with the added ad-
vantage of faster running time and greater flex-
ibility due to its online and on-demand nature.
The code along with the results can be obtained
at https://github.com/malllabiisc/pra-oda.

2 Related Work

Using surface level relations and noun phrases
for extracting meaningful relational facts is not a
new idea (Hearst, 1992),(Brin, 1999), (Etzioni et
al., 2004). However, none of them make use of
Knowledge Bases for improving information ex-
traction.

The Path Ranking Algorithm (PRA) first pro-
posed in (Lao and Cohen, 2010) was used for per-

forming inference over a KB in (Lao et al., 2011).
It was extended by (Lao et al., 2012), to improve
the inference by augmenting the KB with syntactic
information obtained from a dependency parsed
corpus. Augmenting the KB for improving PRA
inference using surface relations mined from an
external corpus and using latent edge labels ob-
tained by performing PCA on the surface relations
was explored in (Gardner et al., 2013). Instead
of hard mapping of surface relations to latent em-
beddings, (Gardner et al., 2014) perform a ‘soft’
mapping using vector space random walks. This
allows the random walker to traverse an edge se-
mantically similar to the current edge type more
frequently than other edges.

Although, like others, we too use an external
corpus to augment the KB, the crucial difference
in our approach is that apart from adding surface
relations, we also add bridging entities that enable
us to create new paths in the KB. Furthermore, the
procedure is targeted so that only paths that play
a part in inferring the relations that are of interest
are added. Thus, the number of paths added in this
manner is much lower than the number of surface
relations added using the procedure in (Gardner et
al., 2013). As we shall see in Section 4, this results
in a more effective algorithm with faster runtime.

3 Method

3.1 Background: Path Ranking Algorithm
(PRA)

We first present a brief overview of the Path Rank-
ing Algorithm (PRA) (Lao and Cohen, 2010). The
PRA uses paths as features for a logistic regres-
sion classifier which predicts if the given relation
exists between a pair of entities. For a given pair
of entities s and t, the path type connecting s to t
form the feature vector. A path types π is an or-
dered set of relations. Paths with the same ordered
relations but different intermediate or terminal en-
tities belong to the same path type. For example,
s1

v0−→ x1
v1−→ t1 and s2

v0−→ x2
v1−→ t2 belong

to path type v0−→ v1−→. The value of a feature, is
taken to be P (s → t;π), where P (s → t;π) is
the probability of reaching t from s by traversing
paths of type π. PRA approximates these proba-
bilities by running a random walk (RW) on the KB
graph. Let F = {π1, π2, ..., πk} be the set of all
path types. For predicting the existence of relation
r between entities s and t, the logistic regression
classifier outputs a score which is a measure of the
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Query Candidate Answer Path added by PRA-ODA with bridging entity (in bold)

sportsteamPositionForSport(right handed
pitcher, ?)

baseball right handed pitcher
playsfor−→ Chicago Cubs play−→ baseball

riverFlowsThroughCity(Moselle, ?) Koblenz Moselle
flows into−→ Rhine meet at−→ Koblenz

teamPlaysInLeague(Cleveland Indians, ?) MLB Cleveland Indians
play−→ Detroit Tigers blew−→MLB

Table 1: Examples of paths involving bridging entities (marked in bold) added to the KB by PRA-ODA.

confidence that r exists between s and t. It does
so by first assigning weights to the features in the
training phase. The score is given by

S(s, t, r) =
∑
π∈F

P (s→ t;π)× θrπ (1)

where θrπ is the weight learned by the logistic re-
gression classifier during training specially for re-
lation r and path type π. During the test phase,
since targets are not available, the PRA gathers
candidate targets by performing a random walk
and then computes feature vectors and the score.

3.2 PRA-SVO and PRA-VS

PRA-SVO and PRA-VS are the systems proposed
in (Gardner et al., 2013) and (Gardner et al., 2014)
respectively, where the KB graph is augmented
with edges mined from a large subject-verb-object
(SVO) triple corpus. In these two systems, only
new edges are added over the fixed set of nodes,
and the augmentation happens in a batch, offline
setting. In contrast, PRA-ODA, the method pro-
posed in the paper, also expands the set of nodes
through bridging entities, and performs the aug-
mentation in an on-demand manner.

3.3 PRA On-Demand Augmentation
(PRA-ODA)

Training: Let s and t be any two KB entities
and let s(n) and t(n) be their corresponding noun
phrase representations or aliases. We search for
bridging entities x1, x2, ..xn by performing lim-
ited depth first search (DFS) starting with sn such
that we obtain a path s ALIAS−→ s(n) v0−→ x1

v1−→
...

vn−1−→ xn
vn−→ t(n) ALIAS−→ t, where vi are verbs

present in the corpus graph. This is done for all
n ≤ dmax− 1, where dmax is the maximum depth
of DFS. We add an ‘ALIAS’ edge between the KB
entity and its noun phase representation. The use-
fulness of bridging entities is illustrated in Fig. 1.

We mine bridging entities from a corpus con-
taining over 600 million SVO triples which were
obtained from the ClueWeb09 corpus (Callan et

al., 2009) parsed using the MALT parser (Nivre et
al., 2007). We use Mongo DB to store the triples
as an adjacency list. During training time, for any
relation that is being inferred, both the source and
its corresponding target entities are known. A lim-
ited depth DFS is performed for all depths less
then dmax on the SVO graph with the aliases of
subject entity acting as the starting points. Such
aliases are available for the NELL and Freebase
knowledge bases. The DFS is said to discover a
path if the terminating entity of the path matches
any alias of the target entity. We choose to use
aliases to perform string match, since it is easy to
change the softness of the match by simply adding
more aliases. This is done for all training source-
target pairs. A few examples of added paths are
shown in Table 1.

The SVO graph is noisy since it is obtained by
parsing the ClueWeb corpus which was obtained
by scraping the web. To reduce noise, we add the
top K most frequent discovered SVO path types,
whereK is a tunable parameter. By SVO path type
we refer to a set of ordered verbs mined from the
SVO corpus. There is a possibility that the bridg-
ing entities, extracted from the corpus, may be
present in the KB. If the bridging entity matches
any alias, then it is treated as an alias to an existing
KB entity. If not, then the bridging entity is added
to the KB as a new entity. To avoid overfitting
we add negative data to the training set. Further-
more, only high quality expressive bridging enti-
ties result in meaningful and discriminative paths.
Although the quality of bridging entities depend
on the corpus, low quality bridging entities can
be filtered out by adding negative training data.
Low quality bridging entities connect source tar-
get pairs from both positive and negative training
sets, and hence are eliminated by the sparse lo-
gistic regression classifier. The negative dataset is
generated using the closed world assumption by
performing a random walk.

After augmenting the KB, we run the training
phase of the PRA algorithm to obtain the feature
(path) weights computed by the logistic regression
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KB Relations PRA PRA-
SVO

PRA-
VS

PRA-
ODA

actorstarredinmovie 0.0 1.0 1.0 1.0
atheleteplaysforteam 1.0 1.0 1.0 1.0
citylocatedincountry 0.166 0.25 1.0 1.0
journalistwritesfor
publication

1.0 1.0 1.0 1.0

riverflowsthroughcity 0.333 0.25 1.0 1.0
sportsteamposition
forsport

1.0 1.0 1.0 1.0

stadiumlocatedincity 1.0 1.0 1.0 1.0
statehaslake 0.0 0.0 0.0 0.0
teamplaysinleague 1.0 1.0 1.0 1.0
writerwrotebook 1.0 1.0 1.0 1.0
Average (MRR) 0.649 0.75 0.9 0.9

Table 2: Comparison of Mean Reciprocal Rank
(MRR) metric for 10 relations from NELL (higher
is better). PRA-SVO, PRA-VS are the systems
proposed in (Gardner et al., 2013; Gardner et al.,
2014). PRA-ODA is the approach proposed in this
paper. Improvements in PRA-ODA over PRA-
SVO is statistically significant with p < 0.007,
with PRA-SVO as null hypothesis.

classifier.
Query Time: The set of target entities corre-

sponding to a source entity and the relation be-
ing predicted is not available during query (test)
time. We use all the entities included in the range
of the relation being predicted as candidate target
entities. For example, if the relation is riverFlow-
sThroughCity, the candidate target set would in-
clude entities in the KB that are cities. The DFS
is now performed starting from source entities as
during training, but this time only restricting to
paths with positive weights learned during train-
ing. Any path (along with bridging entities) found
during this search are added to the KB, and the
PRA algorithm is now run over this augmented
graph.

4 Experiments

We used the implementation of PRA provided by
the authors of (Gardner et al., 2014). For our ex-
periments, we used the same 10 NELL relation
data as used in (Gardner et al., 2014). The aug-
mentation resulted in the addition of 1086 paths
during training and 1430 paths during test time.

We split the NELL data into 60% training
data, 15 % development data and 25% test
data. Values for dmax, and K, the most fre-
quent paths, were obtained by tuning on a
development set for 4 relations (athleteplaysfor-
sport,actorstarredinmovie,citylocatedincountry

Timings (seconds) PRA PRA-
SVO

PRA-
VS

PRA-
ODA

Training 635.6 574.5 564.2 913.3
Test 354.3 322.0 301.2 436.7
Batch augmentation n/a 797 797 n/a
Embedding compu-
tation

n/a n/a 812 n/a

Total Time 989.9 1693.5 2474.4 1350

Table 3: Runtime comparison for the entire ex-
periment (lower is better). PRA-SVO, PRA-VS
are the systems proposed in (Gardner et al., 2013;
Gardner et al., 2014). PRA-ODA is the approach
proposed in this paper. Between the two top per-
forming systems, i.e., PRA-ODA and PRA-VS,
PRA-ODA is faster by a factor of 1.8.

and journalistwritesforpublication). The hyper-
parameter values dmax = 2, K = 10 reported
the highest MRR and were used for the rest of
the relations. For the L1 and L2 regularization
parameters in the logistic regression classifier, we
used the same values as used in (Gardner et al.,
2013; Gardner et al., 2014), viz., L1 = 0.005, and
L2 = 1.0. This is because the parameters were
reported to be robust, and seemed to work well
even when the knowledge base was augmented.

We compare the results (PRA-ODA) with the
PRA algorithm executed on the NELL KB, NELL
KB augmented with surface relations (PRA-SVO)
(Gardner et al., 2013) and vector space random
walk PRA (PRA-VS) (Gardner et al., 2014). The
run times, i.e, the time taken to perform an entire
experiment for PRA-SVO and PRA-VS includes
the time taken to augment NELL KB with SVO
edges. The PRA-VS runtime also includes the
time taken for generating embeddings to perform
the vector space random walk. As can be seen
from Table 2 and Table 3, our scheme, PRA-ODA,
provides performance equivalent to PRA-VS with
faster running time (speed up of 1.8). In addition
to the time taken for the full SVO augmentation,
PRA-VS takes additional time to generate embed-
dings (13 minutes) from the added verbs. We note
that the batch augmentation in case of PRA-SVO
and PRA-VS, and embedding computation in case
of PRA-VS are all specific to the relations in the
evaluation set, and hence can’t be ignored as a
one-time offline cost. In other words, these costs
are likely to increase as more relations (and their
instances) are included during training and test-
ing. Runtime gains with PRA-ODA are likely to
be even more pronounced in such settings.
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An additional advantage of the proposed algo-
rithm is that it can also be run on the top of any
PRA based algorithm such as the PRA-SVO and
PRA-VS.

5 Conclusion

In this paper, we investigated the usefulness of
adding paths to a Knowledge Base for improving
its connectivity by mining bridging entities from
an external corpus. While previous KB augmen-
tation methods focused only on augmentation us-
ing mined surface verbs while keeping the node
set fixed, we extended these approaches by also
adding bridging entities in an online fashion. We
used a large corpus of 500 million web text corpus
to mine these additional edges and bridging enti-
ties. Through experiments on real-world datasets,
we demonstrate that the proposed approach is not
only comparable or better than other state-of-the-
art baselines, but more importantly provides faster
overall runtime compared with the alternatives.
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Abstract

We demonstrate the advantage of special-
izing semantic word embeddings for either
similarity or relatedness. We compare two
variants of retrofitting and a joint-learning
approach, and find that all three yield spe-
cialized semantic spaces that capture hu-
man intuitions regarding similarity and re-
latedness better than unspecialized spaces.
We also show that using specialized spaces
in NLP tasks and applications leads to clear
improvements, for document classification
and synonym selection, which rely on ei-
ther similarity or relatedness but not both.

1 Introduction

Most current models of semantic word representa-
tion exploit the distributional hypothesis: the idea
that words occurring in similar contexts have sim-
ilar meanings (Harris, 1954; Turney and Pantel,
2010; Clark, 2015). Such representations (or em-
beddings) can reflect human intuitions about simi-
larity and relatedness (Turney, 2006; Agirre et al.,
2009), and have been applied to a wide variety
of NLP tasks, including bilingual lexicon induc-
tion (Mikolov et al., 2013b), sentiment analysis
(Socher et al., 2013) and named entity recognition
(Turian et al., 2010; Guo et al., 2014).

Arguably, one of the reasons behind the popu-
larity of word embeddings is that they are “gen-
eral purpose”: they can be used in a variety of
tasks without modification. Although this behav-
ior is sometimes desirable, it may in other cases be
detrimental to downstream performance. For ex-
ample, when classifying documents by topic, we
are particularly interested in related words rather
than similar ones: knowing that dog is associated
with cat is much more informative of the topic
than knowing that it is a synonym of canine. Con-
versely, if our embeddings indicate that table is
closely related to chair, that does not mean we
should translate table into French as chaise.

This distinction between “genuine” similarity
and associative similarity (i.e., relatedness) is
well-known in cognitive science (Tversky, 1977).
In NLP, however, semantic spaces are generally
evaluated on how well they capture both similar-
ity and relatedness, even though, for many word
combinations (such as car and petrol), these two
objectives are mutually incompatible (Hill et al.,
2014b). In part, this oversight stems from the dis-
tributional hypothesis itself: car and petrol do not
have the same, or even very similar, meanings,
but these two words may well occur in similar
contexts. Corpus-driven approaches based on the
distributional hypothesis therefore generally learn
embeddings that capture both similarity and relat-
edness reasonably well, but neither perfectly.

In this work we demonstrate the advantage of
specializing semantic spaces for either similar-
ity or relatedness. Specializing for similarity is
achieved by learning from both a corpus and a
thesaurus, and for relatedness by learning from
both a corpus and a collection of psychological as-
sociation norms. We also compare the recently-
introduced technique of graph-based retrofitting
(Faruqui et al., 2015) with a skip-gram retrofitting
and a skip-gram joint-learning approach. All three
methods yield specialized semantic spaces that
capture human intuitions regarding similarity and
relatedness significantly better than unspecialized
spaces, in one case yielding state-of-the-art results
for word similarity. More importantly, we show
clear improvements in downstream tasks and ap-
plications: specialized similarity spaces improve
synonym detection, while association spaces work
better than both general-purpose and similarity-
specialized spaces for document classification.

2 Approach

The underlying assumption of our approach is
that, during training, word embeddings can be
“nudged” in a particular direction by includ-
ing information from an additional semantic data
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source. For directing embeddings towards genuine
similarity, we use the MyThes thesaurus devel-
oped by the OpenOffice.org project1. It contains
synonyms for almost 80,000 words in English. For
directing embeddings towards relatedness, we use
the University of South Florida (USF) free asso-
ciation norms (Nelson et al., 2004). This dataset
contains scores for free association (an experi-
mental measure of cognitive association) of over
10,000 concept words. For raw text data we use a
dump of the English Wikipedia plus newswire text
(8 billion words in total)2.

2.1 Evaluations (Intrinsic and Extrinsic)
For instrinsic comparisons with human judge-
ments, we evaluate on SimLex (Hill et al.,
2014b) (999 pairwise comparisons), which explic-
itly measures similarity, and MEN (Bruni et al.,
2014) (3000 comparisons), which explicitly mea-
sures relatedness. We also consider two down-
stream tasks and applications. In the TOEFL
synonym selection task (Landauer and Dumais,
1997), the objective is to select the correct syn-
onym for a target word from a multiple-choice set
of possible answers. For a more extrinsic evalua-
tion, we use a document classification task based
on the Reuters Corpus Volume 1 (RCV1) (Lewis
et al., 2004). This dataset consists of over 800,000
manually categorized news articles.3

2.2 Joint Learning
The standard skip-gram training objective for a se-
quence of training wordsw1, w2, ..., wT and a con-
text size c is the log-likelihood criterion:

1
T

T∑
t=1

Jθ(wt) =
1
T

T∑
t=1

∑
−c≤j≤c

log p(wt+j |wt)

where p(wt+j |wt) is obtained via the softmax:

p(wt+j |wt) =
expu

>
wt+j

vwt∑
w′ expu

>
w′vwt

where uw and vw are the context and target vec-
tor representations for word w, respectively, and
w′ ranges over the full vocabulary (Mikolov et al.,

1https://www.openoffice.org/lingucomponent/thesaurus.html
2The script for obtaining this corpus is available from

http://word2vec.googlecode.com/svn/trunk/demo-train-big-model-v1.sh
3We exclude articles with multiple topic labels in order to

avoid multi-class document classification. The dataset con-
tains a total of 78 topic labels and 33,226 news articles.

2013a). For our joint learning approach, we sup-
plement the skip-gram objective with additional
contexts (synonyms or free-associates) from an
external data source. In the sampling condition,
for target word wt, we modify the objective to in-
clude an additional context wa sampled uniformly
from the set of additional contexts Awt :

1
T

T∑
t=1

(
Jθ(wt) + [wa ∼ UAwt

] log p(wa|wt)
)

In the all condition, all additional contexts for a
target word are added at each occurrence:

1
T

T∑
t=1

Jθ(wt) +
∑

wa∈Awt

log p(wa|wt)


The set of additional contexts Awt contains the
relevant contexts for a word wt; e.g., for the word
dog, Adog for the thesaurus is the set of all syn-
onyms of dog in the thesaurus.

2.3 Retrofitting

Faruqui et al. (2015) introduced retrofitting as a
post-hoc graph-based learning objective that im-
proves learned word embeddings. We experi-
ment with their method, calling it graph-based
retrofitting. In addition, we introduce a similar ap-
proach that instead uses the same objective func-
tion that was used to learn the original skip-gram
embeddings. In other words, we first train a stan-
dard skip-gram model, and then learn from the ad-
ditional contexts in a second training stage as if
they form a separate corpus:

1
T

T∑
t=1

∑
wa∈Awt

log p(wa|wt)

We call this approach skip-gram retrofitting. In
all cases, our embeddings have 300 dimensions,
which has been found to work well (Mikolov et
al., 2013a; Baroni et al., 2014)

3 Results for Intrinsic Evaluation

We compare standard skip-gram embeddings with
retrofitted and jointly learned specialized embed-
dings, as well as with “fitted” embeddings that
were randomly initialized and learned only from
the additional semantic resource. In each case, the
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Method SimLex-999 MEN

Skip-gram 0.31 0.68

Fit-Norms 0.08 0.14

Fit-Thesaurus 0.26 0.14

Joint-Norms-Sampled 0.43 0.72
Joint-Norms-All 0.42 0.67

Joint-Thesaurus-Sampled 0.38 0.69

Joint-Thesaurus-All 0.44 0.60

GB-Retrofit-Norms 0.32 0.71

GB-Retrofit-Thesaurus 0.38 0.68

SG-Retrofit-Norms 0.35 0.71

SG-Retrofit-Thesaurus 0.47 0.69

Table 1: Spearman ρ on a genuine similarity
(SimLex-999) and relatedness (MEN) dataset.

training algorithm was run for a single iteration
(results from more iterations are presented later).

As shown in Table 1, embeddings that were
specialized for similarity using a thesaurus per-
form better on SimLex-999, and those special-
ized for relatedness using association data per-
form better on MEN. Fitting, or learning only from
the additional semantic resource without access
to raw text, does not perform well. Skip-gram
retrofitting with the thesaurus performs best on
SimLex-999; joint learning with sampling from
the USF norms performs best on MEN, although
the two retrofitting approaches are close. There
is an interesting difference between the two joint
learning approaches: while sampling a single
free associate as additional context works best
for relatedness, presenting all additional contexts
(synonyms) works best for similarity. In both
cases, skip-gram retrofitting matches or outper-
forms graph-based retrofitting.

More training iterations All the results above
were obtained using a single training iteration.
When retrofitting, however, it is easy to learn from
multiple iterations of the thesaurus or the USF
norms. The results are shown in Figure 1, where
the dashed lines are the joint learning and standard
skip-gram results for comparison with retrofitting
scores. As would be expected, too many iterations
leads to overfitting on the semantic resource, with
performance eventually decreasing after the ini-
tial increase. The results show that retrofitting is
particularly useful for similarity, as indicated by
the large increase in performance on SimLex-999.
The highest performance obtained, at 5 iterations,
is a Spearman ρs correlation of 0.53, which, as far

as we know, matches the current state-of-the-art.4

For relatedness-specific embeddings, the effect
is less clear: joint learning performs compara-
tively much better. Retrofitting does outperform
it, at around 2-10 iterations on the USF norms,
but the improvement is marginal. The highest
retrofitting score is 0.74; the highest joint learn-
ing score is 0.72. Both are highly competitive re-
sults on MEN, and outperform e.g. GloVe at 0.71
(Pennington et al., 2014). Joint learning with a
thesaurus, however, leads to poor performance on
MEN, as expected: the embeddings get dragged
away from relatedness and towards similarity.

3.1 Curriculum learning?

The fact that joint learning works better when sup-
plementing raw text input with free associates, but
skip-gram retrofitting works better with additional
thesaurus information, could be due to curriculum
learning effects (Bengio et al., 2009). Unlike the
USF norms, many of the words from the thesaurus
are unusual and have low frequency. This suggests
that the thesaurus is more ‘advanced’ (from the
perspective of the learning model) than the USF
norms as an information source. Its information
may be detrimental to model optimization when
encountered early in training (in the joint learning
condition) because the model has not acquired the
basic concepts on which it builds. However, with
retrofitting the model first acquires good represen-
tations for frequent words from the raw text, after
which it can better understand, and learn from, the
information in the thesaurus.

4 Downstream Tasks and Applications

4.1 TOEFL Synonym Task

Unsupervised synonym selection has many appli-
cations including the generation of thesauri and
other lexical resources from raw text (Kageura et
al., 2000). In the well-known TOEFL evalua-
tion (Freitag et al., 2005) models are required to
identify true synonyms to question words from a
selection of possible answers. To test our models
on this task, for each question in the dataset, we
rank the multiple-choice answers according to the
cosine similarity between their word embeddings
and that of the target word, and choose the highest-
ranked option.

4Hill et al. (2014a) obtain a score of 0.52 using neural
translation embeddings.
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Figure 1: Varying the number of iterations when retrofitting

Method TOEFL Doc

Skip-gram 77.50 83.96

Joint-Norms-Sampled 78.75 84.46

Joint-Norms-All 66.25 84.82
Joint-Thesaurus-Sampled 81.25 83.90

Joint-Thesaurus-All 80.00 83.56

GB-Retrofit-Norms 80.00 80.58

GB-Retrofit-Thesaurus 83.75 80.24

SG-Retrofit-Norms 80.00 84.56

SG-Retrofit-Thesaurus 88.75 84.55

Table 2: TOEFL synonym selection and docu-
ment classification accuracy (percentage of cor-
rectly answered questions/correctly classified doc-
uments).

As Table 2 shows, similarity-specialized em-
beddings perform much better than standard em-
beddings and relatedness-specialized embeddings.
Retrofitting outperforms joint learning, and skip-
gram retrofitting matches or outperforms graph-
based retrofitting.

4.2 Document Classification

To investigate how well the various semantic
spaces perform on document classification, we
first construct document-level representations by
summing the vector representations for all words
in a given document. After setting aside a small
development set for tuning the hyperparameters of
the supervised algorithm, we train a support vec-
tor machine (SVM) classifier with a linear kernel
and evaluate document topic classification accu-
racy using ten-fold cross-validation.

The results are reported in the rightmost col-
umn of Table 2. Relatedness-specialized embed-

dings perform better on document topic classi-
fication than similarity embeddings, except with
graph-based retrofitting, which in fact performs
below the standard skip-gram model. The joint-
learning model with all relevant free association
norms presented as context for each target word is
the best performing model. The differences in the
table appear small, but the dataset contains more
than 10,000 documents, so every percentage point
is worth more than 100 documents. Joint learning
while presenting all relevant association norms for
each target word performs best on this task.

5 Conclusion

We have demonstrated the advantage of special-
izing embeddings for the tasks of genuine simi-
larity and relatedness. In doing so, we compared
two retrofitting methods and a joint learning ap-
proach. Specialized embeddings outperform stan-
dard embeddings by a large margin on instrinsic
similarity and relatedness evaluations. We showed
that the difference in how embeddings are spe-
cialized carries to downstream NLP tasks, demon-
strating that similarity embeddings are better at
the TOEFL synonym selection task and related-
ness embeddings at a document topic classifica-
tion task. Lastly, we varied the number of itera-
tions that we use for retrofitting, showing that per-
formance could be improved even further by going
over several iterations of the semantic resource.
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Abstract

Unsupervisedly learned word vectors have
proven to provide exceptionally effective
features in many NLP tasks. Most common
intrinsic evaluations of vector quality mea-
sure correlation with similarity judgments.
However, these often correlate poorly with
how well the learned representations per-
form as features in downstream evaluation
tasks. We present QVEC—a computation-
ally inexpensive intrinsic evaluation mea-
sure of the quality of word embeddings
based on alignment to a matrix of features
extracted from manually crafted lexical
resources—that obtains strong correlation
with performance of the vectors in a battery
of downstream semantic evaluation tasks.1

1 Introduction

A major attraction of vector space word represen-
tations is that they can be derived from large unan-
notated corpora, and they are useful as a source of
features for downstream NLP tasks that are learned
from small amounts of supervision. Unsupervised
word vectors have been shown to benefit parsing
(Lazaridou et al., 2013; Bansal et al., 2014), chunk-
ing (Turian et al., 2010), named entity recognition
(Guo et al., 2014) and sentiment analysis (Socher
et al., 2013), among others.

Despite their ubiquity, there is no standard
scheme for intrinsically evaluating the quality of
word vectors: a vector quality is traditionally
judged by its utility in downstream NLP tasks. This
lack of standardized evaluation is due, in part, to
word vectors’ major criticism: word vectors are
linguistically opaque in a sense that it is still not
clear how to interpret individual vector dimensions,

1The evaluation script and linguistic vectors described in
this paper are available at
https://github.com/ytsvetko/qvec

and, consequently, it is not clear how to score a
non-interpretable representation. Nevertheless, to
facilitate development of better word vector models
and for better error analysis of word vectors, it is
desirable (1) to compare word vector models easily,
without recourse to multiple extrinsic applications
whose implementation and runtime can be costly;
and (2) to understand how features in word vectors
contribute to downstream tasks.

We propose a simple intrinsic evaluation mea-
sure for word vectors. Our measure is based on
component-wise correlations with manually con-
structed “linguistic” word vectors whose compo-
nents have well-defined linguistic properties (§2).
Since vectors are typically used to provide features
to downstream learning problems, our measure
favors recall (rather than precision), which cap-
tures our intuition that meaningless dimensions
in induced vector representations are less harmful
than important dimensions that are missing. We
thus align dimensions in a distributional word vec-
tor model with the linguistic dimension vectors to
maximize the cumulative correlation of the aligned
dimensions (§3). The resulting sum of correla-
tions of the aligned dimensions is our evaluation
score. Since the dimensions in the linguistic vectors
are linguistically-informed, the alignment provides
an “annotation” of components of the word vector
space being evaluated.

To show that our proposed score is meaning-
ful, we compare our intrinsic evaluation model to
the standard (semantic) extrinsic evaluation bench-
marks (§4). For nine off-the-shelf word vector
representation models, our model obtains high cor-
relation (0.34 ≤ r ≤ 0.89) with the extrinsic
tasks (§5).

2 Linguistic Dimension Word Vectors

The crux of our evaluation method lies in quanti-
fying the similarity between a distributional word
vector model and a (gold-standard) linguistic re-
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source capturing human knowledge. To evaluate
the semantic content of word vectors, we exploit an
existing semantic resource—SemCor (Miller et al.,
1993). From the SemCor annotations we construct
a set of linguistic word vectors, details are given in
the rest of this section; table 1 shows an example
of the vectors.

WordNet (Fellbaum, 1998, WN) partitions
nouns and verbs into coarse semantic cate-
gories known as supersenses (Ciaramita and Al-
tun, 2006; Nastase, 2008).2 There are 41
supersense types: 26 for nouns and 15 for
verbs, for example, NOUN.BODY, NOUN.ANIMAL,
VERB.CONSUMPTION, or VERB.MOTION. Sem-
Cor is a WordNet-annotated corpus that captures,
among others, supersense annotations of Word-
Net’s 13,174 noun lemmas and 5,686 verb lemmas
at least once. We construct term frequency vec-
tors normalized to probabilities for all nouns and
verbs that occur in SemCor at least 5 times. The
resulting set of 4,199 linguistic word vectors has
41 interpretable columns.

WORD NN.ANIMAL NN.FOOD · · · VB.MOTION
fish 0.68 0.16 · · · 0.00
duck 0.31 0.00 · · · 0.69
chicken 0.33 0.67 · · · 0.00

Table 1: Oracle linguistic word vectors, constructed from a
linguistic resource containing semantic annotations.

3 Word Vector Evaluation Model

We align dimensions of distributional word vectors
to dimensions (linguistic properties) in the linguis-
tic vectors described in §2 to maximize the cu-
mulative correlation of the aligned dimensions. By
projecting linguistic annotations via the alignments,
we also obtain plausible annotations of dimensions
in the distributional word vectors. In this section,
we formally describe the model, which we call the
QVEC.

Let the number of common words in the vocabu-
lary of the distributional and linguistic word vectors
be N . We define, the distributional vector matrix
X ∈ RD×N with every row as a dimension vector
x ∈ R1×N . D denotes word vector dimensional-
ity. Similarly, S ∈ RP×N is the linguistic prop-
erty matrix with every row as a linguistic property
vector s ∈ R1×N . P denotes linguistic proper-
ties obtained from a manually-annotated linguistic

2Supersenses are known as “lexicographer classes”
in WordNet documentation, http://wordnet.
princeton.edu/man/lexnames.5WN.html

resource. We obtain an alignment between the
word vector dimensions and the linguistic dimen-
sions which maximizes the correlation between the
aligned dimensions of the two matrices. This is 1:n
alignment: one distributional dimension is aligned
to at most one linguistic property, whereas one lin-
guistic property can be aligned to n distributional
dimensions; see figure 1.

X


N
N

S
D
 P


Figure 1: The filled vertical vectors represent the word vector
in the word vector matrix X and the linguistic property matrix
S. The horizontal hollow vectors represent the “distributional
dimension vector” in X and “linguistic dimension vector” in
S. The arrows show mapping between distributional and
linguistic vector dimensions.

Let A ∈ {0, 1}D×P be a matrix of alignments
such that aij = 1 iff xi is aligned to sj , otherwise
aij = 0. If r(xi, sj) is the Pearson’s correlation
between vectors xi and sj , then our objective is
defined as:

QVEC = max
A|∑j aij≤1

L∑
i=1

P∑
j=1

r(xi, sj)× aij (1)

The constraint
∑

j aij ≤ 1, warrants that one dis-
tributional dimension is aligned to at most one lin-
guistic dimension. The total correlation between
two matrices QVEC is our intrinsic evaluation mea-
sure of a set of word vectors relative to a set of
linguistic properties.

The QVEC’s underlying hypothesis is that dimen-
sions in distributional vectors correspond to linguis-
tic properties of words. It is motivated, among oth-
ers, by the effectiveness of word vectors in linear
models implying that linear combinations of fea-
tures (vector dimensions) produce relevant, salient
content. Via the alignments aij we obtain labels on
dimensions in the distributional word vectors. The
magnitude of the correlation r(xi, sj) corresponds
to the annotation confidence: the higher the corre-
lation, the more salient the linguistic content of the
dimension. Clearly, dimensions in the linguistic
matrix S do not capture every possible linguistic
property, and low correlations often correspond to
the missing information in the linguistic matrix.
Thus, QVEC is a recall-oriented measure: highly-
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correlated alignments provide evaluation and anno-
tation of vector dimensions, and missing informa-
tion or noisy dimensions do not significantly affect
the score since the correlations are low.

4 Experimental Setup

4.1 Word Vector Models

To test the QVEC, we select a diverse suite of
popular/state-of-the-art word vector models. All
vectors are trained on 1 billion tokens (213,093
types) of English Wikipedia corpus with vector
dimensionality 50, 100, 200, 300, 500, 1000.

CBOW and Skip-Gram (SG). The WORD2VEC

tool (Mikolov et al., 2013) is fast and widely-used.
In the SG model, each word’s Huffman code is
used as an input to a log-linear classifier with a
continuous projection layer and words within a
given context window are predicted. In the CBOW
model a word is predicted given the context words.3

CWindow and Structured Skip-Gram (SSG).
Ling et al. (2015b) propose a syntactic modifica-
tion to the WORD2VEC models that accounts for
word order information, obtaining state-of-the-art
performance in syntactic downstream tasks.4

CBOW with Attention (Attention). Ling et al.
(2015a) further improve the WORD2VEC CBOW
model by employing an attention model which
finds, within the contextual words, the words that
are relevant for each prediction. These vectors have
been shown to benefit both semantically and syn-
tactically oriented tasks.

GloVe. Global vectors for word representations
(Pennington et al., 2014) are trained on aggregated
global word-word co-occurrence statistics from a
corpus, and the resulting representations show in-
teresting linear substructures of the vector space.5

Latent Semantic Analysis (LSA). We construct
word-word co-occurrence matrix X; every element
in the matrix is the pointwise mutual information
between the two words (Church and Hanks, 1990).
Then, truncated singular value decomposition is
applied to factorize X, where we keep the k largest
singular values. Low dimensional word vectors of
dimension k are obtained from Uk where X ≈
UkΣVk

T (Landauer and Dumais, 1997).

3https://code.google.com/p/word2vec
4https://github.com/wlin12/wang2vec
5http://www-nlp.stanford.edu/projects/

glove/

GloVe+WN, GloVe+PPDB, LSA+WN,
LSA+PPDB. We use retrofitting (Faruqui
et al., 2015) as a post-processing step to enrich
GloVe and LSA vectors with semantic information
from WordNet and Paraphrase database (PPDB)
(Ganitkevitch et al., 2013).6

4.2 Semantic Evaluation Benchmarks

We compare the QVEC to six standard extrinsic
semantic tasks for evaluating word vectors; we now
briefly describe the tasks.

Word Similarity. We use three different bench-
marks to measure word similarity. The first one
is the WS-353 dataset (Finkelstein et al., 2001),
which contains 353 pairs of English words that have
been assigned similarity ratings by humans. The
second is the MEN dataset (Bruni et al., 2012) of
3,000 words pairs sampled from words that occur
at least 700 times in a large web corpus. The third
dataset is SimLex-999 (Hill et al., 2014) which has
been constructed to overcome the shortcomings of
WS-353 and contains 999 pairs of adjectives, nouns
and verbs. Word similarity is computed using co-
sine similarity between two words and the perfor-
mance of word vectors is computed by Spearman’s
rank correlation between the rankings produced by
vector model against the human rankings.7

Text Classification. We consider four binary cat-
egorization tasks from the 20 Newsgroups (20NG)
dataset.8 Each task involves categorizing a docu-
ment according to two related categories with train-
ing/dev/test split in accordance with Yogatama and
Smith (2014). For example, a classification task
is between two categories of Sports: baseball vs
hockey. We report the average classification accu-
racy across the four tasks. Our next downstream
semantic task is the sentiment analysis task (Senti)
(Socher et al., 2013) which is a binary classification
task between positive and negative movie reviews
using the standard training/dev/test split and re-
port accuracy on the test set. In both cases, we
use the average of the word vectors of words in
a document (and sentence, respectively) and use
them as features in an `2-regularized logistic regres-
sion classifier. Finally, we evaluate vectors on the
metaphor detection (Metaphor) (Tsvetkov et al.,

6https://github.com/mfaruqui/
retrofitting

7We employ an implementation of a suite of word similar-
ity tasks at wordvectors.org (Faruqui and Dyer, 2014).

8http://qwone.com/~jason/20Newsgroups
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2014a).9 The system uses word vectors as features
in a random forest classifier to label adjective-noun
pairs as literal/metaphoric. We report the system
accuracy in 5-fold cross validation.

5 Results

To test the efficiency of QVEC in capturing the se-
mantic content of word vectors, we evaluate how
well QVEC’s scores correspond to the scores of
word vector models on semantic benchmarks. We
compute the Pearson’s correlation coefficient r to
quantify the linear relationship between the scor-
ings. We begin with comparison of QVEC with one
extrinsic task—Senti—evaluating 300-dimensional
vectors.

Model QVEC Senti
CBOW 40.3 90.0
SG 35.9 80.5
CWindow 28.1 76.2
SSG 40.5 81.2
Attention 40.8 80.1
GloVe 34.4 79.4
GloVe+WN 42.1 79.6
GloVe+PPDB 39.2 79.7
LSA 19.7 76.9
LSA+WN 29.4 77.5
LSA+PPDB 28.4 77.3
Correlation (r) 0.87

Table 2: Intrinsic (QVEC) and extrinsic scores of the 300-
dimensional vectors trained using different word vector mod-
els and evaluated on the Senti task. Pearson’s correlation
between the intrinsic and extrinsic scores is r = 0.87.

As we show in table 2, the Pearson’s correla-
tion between the intrinsic and extrinsic scores is
r = 0.87. To account for variance in WORD2VEC

representations (due to their random initialization
and negative sampling strategies, the representa-
tions are different for each run of the model), and
to compare QVEC to a larger set of vectors, we now
train three versions of vector sets per model. This
results in 21 word vector sets: three vector sets
per five WORD2VEC models plus GloVe, LSA, and
retrofitting vectors shown in table 2. The Pearson’s
correlation computed on the extended set of com-
parison points (in the same experimental setup as
in table 2) is r = 0.88. In the rest of this section we
report results on the extended suite of word vectors.

We now extend the table 2 results, and show
correlations between the QVEC and extrinsic scores

9https://github.com/ytsvetko/metaphor

across all benchmarks for 300-dimensional vectors.
Table 3 summarizes the results. The QVEC obtains
high positive correlation with all the semantic tasks.

Table 4 shows, for the same 300-dimensional
vectors, that QVEC’s correlation with the down-
stream text classification tasks is on par with or
higher than the correlation between the word sim-
ilarity and text classification tasks. Higher corre-
lating methods—in our experiments, QVEC and
MEN—are better predictors of quality in down-
stream tasks.

20NG Metaphor Senti
WS-353 0.55 0.25 0.46
MEN 0.76 0.49 0.55
SimLex 0.56 0.44 0.51
QVEC 0.74 0.75 0.88

Table 4: Pearson’s correlations between word similar-
ity/QVEC scores and the downstream text classification tasks.

Next, we measure correlations of QVEC with
the extrinsic tasks across word vector models with
different dimensionality. The results are shown in
figure 2.

Figure 2: Pearson’s correlation between QVEC scores and the
semantic benchmarks across word vector models on vectors
of different dimensionality. The scores at dimension 300
correspond to the results shown in table 3. The scores in the
legend show average correlation across dimensions.

To summarize, we observe high positive correla-
tion between QVEC and the downstream tasks, con-
sistent across the tasks and across different models
with vectors of different dimensionalities.

Since QVEC favors recall over precision, larger
numbers of dimensions will ceteris paribus result
in higher scores—but not necessarily higher corre-
lations with downstream tasks. We therefore im-
pose the restriction that QVEC only be used to com-
pare vectors of the same size, but we now show
that its correlation with downstream tasks is sta-
ble, conditional on the size of the vectors being
compared. We aggregate rankings by individual
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WS-353 MEN SimLex 20NG Metaphor Senti
r 0.34 0.63 0.68 0.74 0.75 0.88

Table 3: Pearson’s correlations between QVEC scores of the 300-dimensional vectors trained using different word vector models
and the scores of the downstream tasks on the same vectors.

50 100 200 300 500 1000
ρ(QVEC, Senti) 0.32 0.57 0.73 0.78 0.72 0.60
ρ(QVEC, All) 0.66 0.59 0.63 0.65 0.62 0.59

Table 5: Spearman’s rank-order correlation between the QVEC ranking of the word vector models and the ranking produced by
(1) the Senti task, or (2) the aggregated ranking of all tasks (All). We rank separately models of vectors of different dimensionality
(table columns).

downstream tasks into a global ranking using the
Kemeny–Young rank aggregation algorithm, for
each dimension separately (Kemeny, 1959). The al-
gorithm finds a ranking which minimizes pairwise
disagreement of individual rankers. Table 5 shows
Spearman’s rank correlation between the rankings
produced by the QVEC and the Senti task/the ag-
gregated ranking. For example, ranking of 300-
dimensional models produced by Senti is {SSG,
CBOW, SG, Attention, GloVe+PPDB, GloVe+WN,
GloVe, LSA+WN, LSA+PPDB, LSA, CWindow},
and the QVEC’s ranking is {GloVe+WN, Attention,
SSG, CBOW, GloVe+PPDB, SG, GloVe, LSA+WN,
LSA+PPDB, CWindow, LSA}. The Spearman’s
ρ between the two rankings is 0.78. We note,
however, that there is a considerable variation be-
tween rankings across all models and across all
dimensions, for example the SimLex ranking pro-
duced for the same 300-dimensional vectors is
{GloVe+PPDB, GloVe+WN, SG, LSA+PPDB, SSG,
CBOW, Attention, CWindow, LSA+WN, GloVe,
LSA}, and ρ(Senti, SimLex) = 0.46. In a recent
related study, Schnabel et al. (2015) also observe
that existing word similarity and text categoriza-
tion evaluations yield different orderings of word
vector models. This task-specifity of rankings em-
phasizes the deficiency of evaluating word vector
models solely on downstream tasks, and the need
of a standardized intrinsic evaluation approach that
quantifies linguistic content of word vectors.

6 Future Work

Aligning dimensions of linguistic and distributional
vectors enables projection of linguistic annotations
via the alignments, and thereby facilitates quali-
tative analysis of individual dimensions in distri-
butional vectors. Albeit noisy, we find correspon-
dence between the projected labels of distributional
columns and the column content. For example, in
the 50-dimensional SG model top-10 ranked words

in a dimension aligned to NOUN.BODY with r=0.26
are amputated, sprained, palsy, semenya, lacera-
tions, genital, cervical, concussion, congenital, ab-
dominal. This interesting by-product of our method
will be addressed in future work.

While we experiment with linguistic vectors
capturing semantic concepts, our methodology is
generally applicable to other linguistic resources
(Faruqui and Dyer, 2015). For example, part-
of-speech annotations extracted from a treebank
would yield linguistic vectors capturing syntactic
content of vectors. Thus, QVEC can be used as a
task-specific evaluator; we will investigate this in
future work.

A useful property of supersenses (features in
our linguistic vectors) is that they are stable across
languages (Schneider et al., 2013; Tsvetkov et al.,
2014b). Cross-lingual vector evaluation and eval-
uation of multilingual word vectors with QVEC is
thus an additional promising research avenue.

7 Conclusion

We propose a method for intrinsic evalua-
tion of word vectors which shows strong
relationship—both linear and monotonic—with the
scores/rankings produced by the downstream tasks.
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Abstract

We present a higher-order inference sys-
tem based on a formal compositional
semantics and the wide-coverage CCG
parser. We develop an improved method
to bridge between the parser and seman-
tic composition. The system is evaluated
on the FraCaS test suite. In contrast to the
widely held view that higher-order logic is
unsuitable for efficient logical inferences,
the results show that a system based on
a reasonably-sized semantic lexicon and a
manageable number of non-first-order ax-
ioms enables efficient logical inferences,
including those concerned with general-
ized quantifiers and intensional operators,
and outperforms the state-of-the-art first-
order inference system.

1 Introduction

Entailment relations are of central importance in
the enterprise of both formal and computational
semantics. Traditionally, formal semanticists have
concentrated on a relatively small set of linguis-
tic inferences. However, since the emergence of
statistical parsers based on sophisticated syntac-
tic theories (Clark and Curran, 2007), an open do-
main system has been developed that supports cer-
tain degree of robust semantic interpretation with
wide coverage (Bos et al., 2004). It is then rea-
sonable to expect that a state-of-the-art formal se-
mantics provides an accurate computational basis
of natural language inferences.

However, there are still obstacles in the way
of achieving this goal. One is that the statistical
parsers on which semantic interpretations rely do
not necessarily reflect the best syntactic analysis as
assumed in the formal semantics literature (Honni-
bal et al., 2010). Another persistent problem is the
gap between the logics employed in the two com-

munities; while it is generally assumed among for-
mal semanticists that adequate semantic represen-
tations for natural language demand higher-order
logic or type theory (Carpenter, 1997), the domi-
nant view in computational linguistics is that infer-
ences based on higher-order logic are hopelessly
inefficient for practical applications (Bos, 2009a).
Accordingly, it is claimed that some approxima-
tion of higher-order representations in terms of
first-order logic (Hobbs, 1985), or a more efficient
“natural logic” system based on surface structures
is needed. However, it is often not a trivial task
to give an approximation of rich higher-order in-
formation within a first-order language (Pulman,
2007). Moreover, the coverage of existing natu-
ral logic systems is limited to single-premise in-
ferences (MacCartney and Manning, 2008).

In this paper, we first present an improved com-
positional semantics that fills the gap between the
parser syntax and a composition derivation. We
then develop an inference system that is capable of
higher-order inferences in natural languages. We
combine a state-of-the-art higher-order proof sys-
tem (Coq) with a wide-coverage parser based on
a modern syntactic theory (Combinatory Catego-
rial Grammar, CCG). The system is designed to
handle multi-premise inferences as well as single-
premise ones.

We test our system on the FraCaS test suite
(Cooper et al., 1994), which is suitable for eval-
uating the linguistic coverage of an inference sys-
tem. The experiments show that our higher-order
system outperforms the state-of-the-art first-order
system with respect to the speed and accuracy of
making logical inferences.

2 CCG and Compositional Semantics

As an initial step of compositional semantics, we
use the C&C parser (Clark and Curran, 2007),
a statistical CCG parser trained on CCGbank
(Hockenmaier and Steedman, 2007). Parser out-
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category : S\NP
semantics : λQ .Q(λx .True)(λx .E(x ))

Figure 1: Schematic lexical entry (semantic tem-
plate) for intransitive verbs. E is a position in
which a particular lexical item appears.

category : NP/N
semantics : λFλGλH .∀x (Fx ∧Gx → Hx )
surf : every

Figure 2: The lexical entry for determiner every

puts are mapped onto semantic representations in
a standard way (Bos, 2008), using λ-calculus as an
interface between syntax and semantics.

The strategy we use to build a semantic lexicon
is similar to that of Bos et al. (2004). A lexical en-
try for each open word class consists of a syntac-
tic category in CCG (possibly with syntactic fea-
tures) and a semantic representation encoded as a
λ-term. Fig. 1 gives an example.1 For a limited
number of closed words such as logical or func-
tional expressions, a λ-term is directly assigned to
a surface form (see Fig. 2). The output formula is
obtained by combining each λ-term in accordance
with meaning composition rules and then by ap-
plying β-conversion.

There is a non-trivial gap between the parser
output and the standard CCG-syntax as presented
in Steedman (2000). Due to this gap, it is not
straightforward to obtain desirable semantic repre-
sentations for a wide range of constructions. One
major difference from the standard CCG-syntax is
the treatment of post-NP modifiers; for instance,
the relative clause who works is assigned not the
category N \N , but the category NP\NP , which
applies to the whole NP. To derive correct truth-
conditions for quantificational sentences, we as-
sign to determiners a semantic term having an ex-
tra predicate variable as shown in Fig. 2, namely,
λFλGλH .∀x (Fx ∧Gx→Hx ), in a similar way
to the continuation semantics for event predicates
(Bos, 2009b; Champollion, 2015). The extra pred-
icate variable G can be filled by the semantically
empty predicate λx.True in a verb phrase (see
Fig. 1). Fig. 3 gives an example derivation.

Note that the changes in the lexical entries as il-
lustrated in Fig. 1 and Fig. 2 are made for the cor-
rect semantic parsing, namely, the compositional

1Here we use a non-standard semantics for intransitive
verbs. We will explain it in the next paragraph.

Examples Semantic Types
most (E→Prop)→(E→Prop)→Prop
might Prop→Prop
true Prop→Prop
manage Prop→E→Prop
believe Prop→E→Prop

Table 1: A classification of key linguistic elements
having higher-order denotations.

derivation of semantic representations. Usually,
inferences are conducted on those output seman-
tic representations in which additional complexi-
ties, such as lambda operators and extra predicate
variables, disappear. Accordingly, the changes in
the lexical entries do not affect the efficiency of
inferences.

The present analysis of post NP-modifiers can
also handle non-restrictive relative clauses such as
“the president, who ...”. In this case, the modi-
fier “who ...” can be taken to apply to the whole
NP the president, thus its syntactic category can
be regarded as NP\NP , not as N \N . Thus, al-
though the NP\NP analysis of relative clauses is
a non-standard one, it has an advantage in that it
provides a unified treatment of restrictive and non-
restrictive relative clauses.

3 Representation and Inference in HOL

We present a higher-order representation language
and describe apparently higher-order phenomena
that have received attention in formal semantics.

3.1 Semantic representations in HOL

We use the language of higher-order logic (HOL)
with two basic types, E for entities and Prop for
propositions. Here we distinguish between propo-
sitions and truth-values, as is standard in modern
type theory (Ranta, 1994; Luo, 2012). Key higher-
order constructs are summarized in Table 1.2 A
first-order language can be taken as a fragment of
this language. Thus, adopting a higher-order lan-
guage does not lead to the loss of the expressive
power of the first-order language.

Apart from sub-sentential utterances such as
short answers to wh-questions (Ginzburg, 2005),
there are important constructions that are naturally

2We write a function from objects of type A to objects of
type B as A→B. Here → is right-associative: A→B→C
means A→(B→C). We use the symbol → both for logical
implication and function-type constructor, following the so-
called Curry-Howard isomorphism (Carpenter, 1997).
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Every

NP/N
λFGH.∀x(Fx ∧Gx → Hx)

student
N

λx.student(x)

NP
λGH.∀x(student(x) ∧Gx → Hx)

>

who
(NP\NP )/(S\NP )

λV QF.Q(λx.(V (λGH.Hx) ∧ Fx))

works
S\NP

λQ.Q(λx.True)(λx.work(x))

NP\NP
λQF.Q(λx.(work(x) ∧ Fx))

>

NP
λFH.∀x(student(x) ∧ work(x) ∧ Fx → Hx)

< comes
S\NP

λQ.Q(λx.True)(λx.come(x))

S
∀x(student(x) ∧ work(x) ∧ True → come(x))

<

Figure 3: A CCG derivation of the semantic representation for the sentence Every student who works
comes. λFGH .X is an abbreviation for λFλGλH .X . “True” denotes the tautology, hence the final
formula is equivalent to ∀x(student(x) ∧ work(x) → come(x)).

represented in higher-order languages.3

Generalized quantifiers A classical example of
non-first-orderizable expressions is a proportional
generalized quantifier like most and half of (Bar-
wise and Cooper, 1981). Model-theoretically, they
denote relations between sets. We represent them
as a two-place higher-order predicate taking first-
order predicates as arguments. For instance, Most
students work is represented as follows.

(1) most(λx.student(x), λx.work(x))

Here, most is a higher-order predicate in the sense
that it takes first-order predicates λx.student(x)
and λx.work(x) as arguments. We take the entail-
ment patterns governing most as axioms, along the
same lines of natural logic and monotonicity cal-
culus (Icard and Moss, 2014), where determiners
are taken as primitive two-place operators.

Standard quantifiers like every and some could
also be treated as binary operators in the same way
as the binary most in (1). But we choose to adopt
the first-order decomposition in such cases (see
Fig. 2 for the lexical entry of every).

Modals Modal auxiliary expressions like might,
must and can are represented as unary sentential
operators. For instance, the sentence Some student
might come is represented as:

(2) ∃x(student(x) ∧might(come(x))).

An important inference role of such a modal op-
erator is to distinguish modal contexts from actual
contexts and thus block an inference from one con-
text to another (might A does not entail A).

Alternatives to the higher-order approach in-
clude the first-order decomposition of modal op-
erators using world variables (Blackburn et al.,
2001) and the first-order modal semantic represen-
tations implemented in Boxer (Bos, 2005). We

3See also Blackburn and Bos (2005) for some discussion
on inferences that go beyond first-order logic.

prefer the higher-order approach, because the first-
order approaches introduce additional quantifiers
and variables at the level of the semantic represen-
tations on which one makes inferences.

Veridical and anti-veridical predicates A sen-
tential operator O is veridical if O(A) entails A,
and anti-veridical if O(A) entails ¬A. While
modal auxiliary verbs like might are neither veridi-
cal nor anti-veridical, there is a class of ex-
pressions licensing these patterns of inference.
Typical examples are adjectives taking an em-
bedded proposition, such as true/correct and
false/incorrect. Note that sentences like Every-
thing/what he said is false involve a quantifica-
tion over propositions, which is problematic for
the first-order approach.

The so-called implicative verbs like manage and
fail (Nairn et al., 2006) are also an instance of
this class. For example, Some student manages to
come is formalized as

(3) ∃x(student(x) ∧manage(x, come(x)))

where manage is a veridical predicate taking a
proposition as the second argument; it licenses an
inference to ∃x(student(x) ∧ come(x)).

Attitude verbs A wide range of propositional at-
titude verbs such as believe and hope are similar
to modals in that they do not license an inference
from attitude contexts to actual contexts. But fac-
tives like know and remember are an exception;
they are veridical.4

A first-order translation can be given along the
lines of Hintikka (1962). (4) is translated as (5).

(4) know(john,∃x(student(x) ∧ come(x)))

(5) ∀w1(Rjohnw0 w1 →
∃x(student(w1, x) ∧ come(w1, x)))

4Factive predicates show the important inference patterns
known as presupposition projection (van der Sandt, 1992),
which are beyond the scope of this paper.
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Inference pattern Axiom
Existential import ∀F ∀G (most(F, G)

→ ∃x(Fx ∧Gx))

Conservativity ∀F ∀G (most(F, G)

→ most(F, λx.(Fx ∧Gx)))

Monotonicity ∀F ∀G∀H (most(F, G)

(right-upward) → (∀x(Gx → Hx)

→ most(F, H)))

Veridicality ∀P (true(P ) → P )

∀x∀P (manage(x, P ) → P )

∀x∀P (know(x, P ) → P )

Anti-veridicality ∀P (false(P ) → ¬P )

∀x∀P (fail(x, P ) → ¬P )

Table 2: Axioms for non-first-order constructions.

However, one drawback is that the compositional
semantics becomes complicated, so we prefer the
non-decomposition approach for attitude verbs.

3.2 Inferences in HOL

Following Chatzikyriakidis and Luo (2014), we
use a proof-assistant Coq (Castéran and Bertot,
2004) to implement a specialized prover for
higher-order features in natural languages, and
combine it with efficient first-order inferences. We
use Coq’s built-in tactics for first-order inferences.
Coq also has a language called Ltac for user-
defined automated tactics (Delahaye, 2000). The
additional axioms and tactics specialized for natu-
ral language constructions are written in Ltac. We
ran Coq fully automated, by feeding to its inter-
active mode a set of predefined tactics combined
with user-defined proof-search tactics.

Table 2 shows the axioms we implemented.
Modals and non-veridical predicates (by which we
mean predicates that are neither veridical nor anti-
veridical) do not have particular axioms, with the
consequence that actual and hypothetical contexts
are correctly distinguished.

4 Experiments

We evaluated our system on the FraCaS test suite
(Cooper et al., 1994), a set of entailment prob-
lems that is designed to evaluate theories of for-
mal semantics.5 We used the version provided by
MacCartney and Manning (2007). The whole data
set is divided into nine sections, each devoted to
linguistically challenging problems. Of these, we
used six sections, excluding three sections (nomi-
nal anaphora, ellipsis and temporal reference) that

5Our system will be publicly available at
https://github.com/mynlp/ccg2lambda.

Section # Ours Nut L&S 13 Tian 14
Quantifiers 74 .77 .53 .62 .80
Plurals 33 .67 .52 − −
Adjectives 22 .68 .32 − −
Comparatives 31 .48 .45 − −
Verbs 8 .62 .62 − −
Attitudes 13 .77 .46 − −
Total 181 .69 .50 − −

Table 3: Accuracy on the FraCaS test suite. The
first column shows the number of problems. Of
the total 188 problems, we excluded seven prob-
lems that lack a well-defined answer.

involve a task of resolving context-dependency, a
task beyond the scope of this paper. Each prob-
lem consists of one or more premises, followed
by a hypothesis. There are three types of answer:
yes (the premise set entails the hypothesis), no (the
premise set entails the negation of the hypothesis),
and unknown (the premise set entails neither the
hypothesis nor its negation). Fig. 4 shows some
examples.

Currently, our system has 57 templates for gen-
eral syntactic categories and 80 lexical entries for
closed words. In a similar way to Bos et al. (2004),
closed words are confined to a limited range of
logical and functional expressions such as quanti-
fiers and connectives. These templates and lexical
entries are not specific with respect to the FraCaS
test suite. We use WordNet (Miller, 1995) as the
knowledge base for antonymy; logical axioms rel-
evant to given inferences are extracted from this
knowledge base.

We compared our system with the state-of-
the-art CCG-based first-order system Boxer (Bos,
2008), which is one of the most well-known logic-
based approaches to textual entailment. We used
the Nutcracker system based on Boxer that utilizes
a first-order prover (Bliksem) and a model builder
(Mace) with the option enabling access to Word-
Net. We did not use the option enabling modal
semantics, since it did not improve the results. All
experiments were run on a 4-core@1.8Ghz, 8GB
RAM and SSD machine with Ubuntu.

Experimental results are shown in Table 3. Our
system improved on Nutcracker. We set a time-
out of 30 seconds, after which we output the label
“unknown”. Nutcracker timed-out in one third of
the problems (57 out of 181), whereas there was
no time-out in our system.

Table 4 shows parse times and inference times
for the FraCaS test suite. The inference speed
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fracas-067
Premise 1 All residents of the North American continent can travel freely within Europe.
Premise 2 Every Canadian resident is a resident of the North American continent.
Hypothesis All Canadian residents can travel freely within Europe.
Answer Yes

fracas-074
Premise 1 Most Europeans can travel freely within Europe.
Hypothesis Most Europeans who are resident outside Europe can travel freely within Europe.
Answer Unknown

Figure 4: Examples of entailment problems from the FraCaS test suite

Parsing and inference sec
/problem

CCG Parsing (C&C parser) 3.76
Our system with higher-order inference 3.72
Our system with higher-order rules ablated 3.46
Nutcracker with first-order inference 11.23
(first-order prover + model builder)

Table 4: Comparison of inference time on the Fra-
CaS test suite. CCG parsing is common to both
our system and Nutcracker.

of our system is significantly higher than that
of Nutcracker. Our system’s total accuracy with
higher-order rules is 69%, and drops to 59% when
ablating the higher-order rules.

We are aware of two other systems tested on
FraCaS that are capable of multiple-premise infer-
ences: the CCG-based first-order system of Lewis
and Steedman (2013) and the dependency-based
compositional semantics of Tian et al. (2014).
These systems were only evaluated on the Quan-
tifier section of FraCaS. As shown in Table 3, our
results improve on the former and are comparable
with the latter.

Other important studies on FraCaS are those
based on natural logic (MacCartney and Manning,
2008; Angeli and Manning, 2014). These sys-
tems are designed solely for single-premise in-
ferences and hence are incapable of handling the
general case of multiple-premise problems (which
cover about 45% of the problems in FraCaS). Our
system improves on these natural-logic-based sys-
tems by making multiple-premise inferences as
well.

Main errors we found are due to various parse
errors caused by the CCG parser, including the
failure to handle multiwords like a lot of. The per-
formance of our system will be further improved

with correct syntactic analyses. Our experiments
on FraCaS problems do not constitute an evalua-
tion on real texts nor on unseen test data. Note,
however, that a benefit of using a linguistically
controlled set of entailment problems is that one
can check not only whether, but also how each se-
mantic phenomenon is handled by the system. In
contrast to the widely held view that higher-order
logic is less useful in computational linguistics,
our results demonstrate the logical capacity of a
higher-order inference system integrated with the
CCG-based compositional semantics.

5 Conclusion

We have presented a framework for a composi-
tional semantics based on the wide-coverage CCG
parser, combined with a higher-order inference
system. The experimental results on the FraCaS
test suite have shown that a reasonable number of
lexical entries and non-first-order axioms enable
various logical inferences in an efficient way and
outperform the state-of-the-art first-order system.
Future work will focus on incorporating a robust
model of lexical knowledge (Lewis and Steedman,
2013; Tian et al., 2014) to our framework.
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Abstract

We present a multilingual corpus of
Wikipedia and Twitter texts annotated
with FRAMENET 1.5 semantic frames in
nine different languages, as well as a
novel technique for weakly supervised
cross-lingual frame-semantic parsing. Our
approach only assumes the existence of
linked, comparable source and target lan-
guage corpora (e.g., Wikipedia) and a
bilingual dictionary (e.g., Wiktionary or
BABELNET). Our approach uses a truly
interlingual representation, enabling us to
use the same model across all nine lan-
guages. We present average error reduc-
tions over running a state-of-the-art parser
on word-to-word translations of 46% for
target identification, 37% for frame identi-
fication, and 14% for argument identifica-
tion.

1 Introduction

Frame-semantic parsing is the task of automati-
cally finding semantically salient targets in text,
disambiguating the targets by assigning a sense
(frame) to them, identifying their arguments, and
labeling these arguments with appropriate roles.
The FRAMENET 1.5 lexicon1 provides a fixed
repository of semantic frames and roles, which we
use in the experiments below.

Several learning and parsing algorithms have
been developed for frame-semantic analysis (Jo-
hansson and Nugues, 2007; Das et al., 2014; Täck-
ström et al., 2015), and frame semantics has been
successfully applied to question-answering (Shen
and Lapata, 2007), information extraction (Sur-
deanu et al., 2003) and knowledge extraction (Sø-
gaard et al., 2015b).

1https://framenet.icsi.berkeley.edu/

In contrast to Propbank-style semantic-role la-
beling (Titov and Klementiev, 2012), only very
limited frame-semantic resources exist for lan-
guages other than English. We therefore fo-
cus on multilingual or cross-language frame-
semantic parsing, leveraging resources for English
and other major languages to build any-language
parsers. We stress that we learn frame-semantic
parsing models that can be applied to any lan-
guage, rather than cross-lingual transfer models
for specific target languages. Our approach re-
lies on inter-lingual word embeddings (Søgaard
et al., 2015a), which are built from topic-aligned
documents. Word embeddings have previously
been used for monolingual frame-semantic pars-
ing by Hermann et al. (2014).

Contributions This paper makes the following
three contributions. We present a new multi-
lingual frame-annotated corpus covering five top-
ics, two domains (Wikipedia and Twitter), and
nine languages. We implement a simplified ver-
sion of the frame-semantic parser introduced in
Das et al. (2014). Finally, we show how to modify
this parser to learn any-language frame-semantic
parsing models using inter-lingual word embed-
dings (Søgaard et al., 2015a).

2 Data annotation

Figure 1 depicts a FRAMENET 1.5 frame-semantic
analysis of a German sentence from Wikipedia.
The annotator marked two words, Idee and kam,
as targets. In frame-semantic parsing, target iden-
tification is the task of deciding which words (i.e.
targets) trigger FRAMENET frames. Frame iden-
tification is the problem of disambiguating targets
by labeling them with frames, e.g., COGITATION

or COMING_UP_WITH. Argument identification
is the problem of identifying the arguments of
frames, e.g., Idee for COMING_UP_WITH.

We had linguistically trained students anno-
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Figure 1: Frame semantic annotation from the German Wikipedia data (Women’s Rights)

tate about 200 sentences from Wikipedia and 200
tweets each in their native language. The data
was pre-annotated by obtaining all English trans-
lation equivalents of the source language words
through BABELNET2, finding associated frames
in the FRAMENET 1.5 training data. We pre-
sented annotators with all frames that could be
triggered by any of the target word’s transla-
tions. Both data from Wikipedia and Twit-
ter cover the same five topics: Google, An-
gelina Jolie, Harry Potter, Women’s Rights, and
Christiano Ronaldo. The topics were chosen
to guarantee coverage for all nine languages,
both in Wikipedia and Twitter. Our corpus,
which covers nine languages, is publicly avail-
able at https://github.com/andersjo/
any-language-frames The languages we
cover are Bulgarian (BG), Danish (DA), German
(DE), Greek (EL), English (EN), Spanish (ES),
French (FR), Italian (IT) and Swedish (SV). En-
glish is included as a sanity check of our cross-
lingual annotation setup.

The English, Danish, and Spanish datasets
were doubly-annotated in order to compute inter-
annotator agreement (IAA). The overall target
identification IAA was 82.4% F1 for English,
81.6% for Danish, and 80.0% for Spanish. This
is lower than a similar monolingual annotation
experiment recently reporting target identification
IAA at 95.3% (Søgaard et al., 2015b). The frame
identification IAA scores were also higher in that
study, at 84.5% and 78.1% F1. The drop in
agreement seems mostly due to pre-tagging er-
rors caused by erroneous or irrelevant word-to-
word translations. The Spanish data has the lowest
agreement score.

We compute test-retest reliability of our anno-
tations as the correlation coefficient (Pearson’s ρ)
between the two annotations. In Cronbach’s α in-
ternal consistency table, the cut-off for acceptable
reliability is 0.7. While there is certainly noise in
our annotations, these are still consistently above

2http://babelnet.org/

Language
EN DA ES

Twitter and Wikipedia
TARGET 82.4 81.6 80.0
FRAME 73.5 72.3 60.8
ARGUMENT 70.7 55.0 83.5
Test-retest reliability 74.4 78.6 71.8

Twitter
TARGET 79.1 80.7 80.5
FRAME 68.8 72.3 58.6
ARGUMENT 70.0 86.2 57.5
Test-retest reliability 71.0 78.7 73.1

Table 1: Inter-annotator agreement (F1 in %)

the Cronbach cut-off. Also, we evaluate our mod-
els across 18 datasets, covering nine different lan-
guages with two domains each; although for read-
ability, we combine the Wiktionary and Twitter
datasets for each language below.

The relatively low reliability compared to pre-
vious annotation efforts is due to the cross-lingual
pre-annotation step, which was necessary to make
annotation feasible. All languages, including En-
glish, have been pre-annotated using BABELNET.
We expect annotators to only assign frames when
meaningful frames can be assigned, so the main
source of error is that the pre-annotation may ex-
clude valid frames. Hence, we will not only re-
port F1-scores in our evaluations, but also preci-
sion, since recall may be misleading, penalizing
for frames that could not be chosen by the annota-
tors.

3 Frame semantic parsing

3.1 Target identification

Following Das et al. (2014), we use part-of-speech
heuristics to identify the words that evoke frames
(target words). Frame-evoking words typically be-
long to a narrow range of part of speech. There-
fore, we only consider words as target candidates
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when tagged with one of the top k part-of-speech
tags most commonly seen as targets in the train-
ing set. The k parameter is optimized to maxi-
mize F1 on our development language, Spanish,
where we found k = 7.3 Surviving candidates are
then translated into English by mapping the words
into multi-lingual BABELNET synsets, which rep-
resent sets of words with similar meaning across
languages. All English words in the BABEL-
NET synsets are considered possible translations.
If any of the translations are potential targets in
FRAMENET 1.5, the current word is identified as
a frame-evoking word.

3.2 Frame identification

A target word is, on average, ambiguous be-
tween three frames. We use a multinomial log-
linear classifier4 (with default parameters) to de-
cide which of the possible frames evoked by the
target word that fits the context best. Our feature
representation replicates that of Das et al. (2014)
as far as possible, considering the multilingual set-
ting where lexical features cannot be directly used.
To compensate for the lack of lexical features,
we introduce two groups of language-independent
features that rely on multilingual word embed-
dings. One feature group uses the embedding of
the target word directly, while the other is based on
distance measures between the target word and the
set of English words used as targets for a possible
frame. We measure the minimum and mean dis-
tance (in embedding space) from the target word
to the set of English target words, as well as the
distances to each word individually.

Several of the features in the original repre-
sentation are built on top of automatic POS an-
notation and syntactic parses. We use the Uni-
versal Dependencies v1.1 treebanks for the lan-
guages in our data to train part-of-speech taggers
(TREETAGGER5) and a dependency parser (TUR-
BOPARSER6) to generate the syntactic features. In
contrast to Das et al. (2014), we use dependency
subtrees instead of spans.

3The white-listed POS are nouns, verbs, adjectives,
proper nouns, adverbs, and determiners.

4http://hunch.net/~vw/
5http://www.cis.uni-muenchen.de/

~schmid/tools/TreeTagger/
6http://www.cs.cmu.edu/~ark/

TurboParser/

3.3 Argument identification

A frame contains a number of named arguments
that may or may not be expressed in a given sen-
tence. Argument identification is concerned with
assigning frame arguments to spans of words in
the sentence. While this task can benefit from in-
formation on the joint assignment of arguments,
Das et al. (2014) report only an improvement of
less than 1% in F1 using beam search to approxi-
mate a global optimal configuration for argument
identification. To simplify our system, we take all
argument-identification decisions independently.
We use a single classifier for argument identifica-
tion, computing the most probable argument for
each frame element. Each word index is associ-
ated with a span by the transitive closure of its syn-
tactic dependencies (i.e. subtree). Our greedy ap-
proach to argument identification thus amounts to
scoring the n + 1 possible realisations of an argu-
ment for an n-length sentence (i.e. subtrees plus
the empty argument), selecting the highest scor-
ing subtree for each argument type allowed by the
frame.

As the training data contains very few examples
of each frame or role (e.g., Buyer in the frame
COMMERCE_SCENARIO), we enable sharing of
features for frame arguments that have the same
name. The assumption is that arguments with
identical names have similar semantic properties
across frames; that is the argument Perpetrator,
for example, is similar for the frames ARSON and
THEFT.

The scores are the confidences of a binary clas-
sifier trained on <frame, argument, subtree> tu-
ples. Positive examples are the observed argu-
ments. We use the remaining n incorrect subtrees
for a given <frame, argument> pair to generate
negative training examples . A single binary clas-
sification model is trained for the whole data set.

As with frame identification, our features are
similar to those of Das et al. (2014), with a few
exceptions and additions. We use dependency sub-
trees instead of spans and replace all lexical fea-
tures (which do not transfer cross-lingually) with
features based on the interlingual word embed-
dings from Søgaard et al. (2015a). We use the
embeddings to find the 20 most similar words in
the training data and use these words to generate
lexical features that matched the source-language
training data. Each feature is weighted by its co-
sine similarity with the target-language word.
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Target identification BG DA DE EL EN ES FR IT SV Avg.

F1
SYSTEM 85.5 73.6 58.4 52.9 80.2 89.1 66.1 69.0 72.8 72.0
BASELINE 44.0 56.8 27.2 46.1 78.8 45.9 42.8 47.7 41.4 47.9

Precision
SYSTEM 89.2 70.9 66.2 36.4 96.3 84.9 51.8 53.4 63.4 67.0
BASELINE 56.8 65.0 48.7 43.2 88.0 75.2 55.0 55.3 47.3 59.4

Frame identification BG DA DE EL EN ES FR IT SV Avg.

F1

SYSTEM 66.6 59.0 49.0 58.3 37.0 36.9 27.4 40.2 49.5 47.1
BASELINE 19.3 14.1 08.5 12.6 48.8 08.2 10.4 15.0 10.1 16.3
MFS 65.3 54.3 53.0 56.2 38.0 34.4 25.5 33.0 55.3 46.1

Precision
SYSTEM 72.8 64.7 57.9 67.1 49.3 45.6 36.9 47.1 65.5 56.3
BASELINE 37.0 26.4 19.0 27.9 62.4 15.7 22.0 25.5 28.3 29.7
MFS 67.7 59.4 57.4 60.1 46.1 42.3 33.4 41.5 61.5 52.2

Argument identification BG DA DE EL EN ES FR IT SV Avg.

F1
SYSTEM 40.8 36.0 28.5 39.3 25.3 19.8 18.0 26.3 28.7 29.2
BASELINE 26.5 10.5 06.2 09.7 69.6 04.6 08.6 14.6 08.6 17.7

Precision
SYSTEM 39.6 33.3 26.3 36.7 24.0 18.1 16.8 24.8 26.4 27.3
BASELINE 16.2 09.5 05.7 08.8 66.8 04.1 08.1 13.8 08.0 16.8

Table 2: Frame semantic parsing results (precision and F1 in %)

Baseline Our approach to multi-lingual frame
semantics parsing extends Das et al. (2014) to
cross-lingual learning using the interlingual em-
beddings from Søgaard et al. (2015a). Our base-
line is a more direct application of the SEMAFOR

system7 (Das et al., 2014), translating target lan-
guage text to English using word-to-word transla-
tions and projecting annotation back. For word-
to-word translation we use Wiktionary bilingual
dictionaries (Ács, 2014), and we use frequency
counts from UKWAC8 to disambiguate words with
multiple translations, preferring the most common
one. The baseline and our system both use the
training data supplied with FRAMENET for learn-
ing.

4 Results

Consider first the target identification results in
Table 2. We observe that using BABELNET and
our re-implementation of Das et al. (2014) per-
forms considerably better than running SEMAFOR

on Wiktionary word-by-word translations.
Our frame identification results are also pre-

7http://www.ark.cs.cmu.edu/SEMAFOR/
8http://wacky.sslmit.unibo.it/

sented in Table 2. Our system is better in six out of
nine cases, whereas the most frequent sense base-
line is best in two. It is unsurprising that English
fares best in this setup, because it does not undergo
the word-to-word translation of the other data sets.

Argument identification is a harder task, and
scores are generally lower; see the lower part of
Table 2. Also, note that errors percolate: If we do
not identify a target, or mislabel a frame, we can
no longer retrieve the correct arguments. Never-
theless, we observe that we are better than running
SEMAFOR on word-by-word translations in eight
out of nine languages—all, except English.

Generally, we obtain error reductions over our
baseline of 46% for target identification, 37% for
frame identification, and 14% for argument iden-
tification. For English, we are only 2% (absolute)
below IAA for target identification, but about 40%
below IAA for frame and argument identification.
For Danish, the gap is smaller.

If we compare performance on Wikipedia and
Twitter datasets, we see that target identifica-
tion and frame identification scores are gener-
ally higher for Wikipedia, while argument iden-
tification scores are higher for Twitter. While
Wikipedia is generally more similar to the
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newswire/balanced corpus in FRAMENET 1.5, the
sentence length is shorter in tweets, making it eas-
ier to identify the correct arguments.

5 Conclusions

We presented a multi-lingual frame-annotated cor-
pus covering nine languages in two domains.
With this corpus we performed experiments to
predict target, frame and argument identification,
outperforming a word-to-word translated baseline
running on SEMAFOR. Our approach is a de-
lexicalized version of Das et al. (2014) with a sim-
pler decoding strategy and, crucially, using multi-
lingual word embeddings to achieve any-language
frame-semantic parsing. Over a baseline of using
SEMAFOR with word-to-word translations, we ob-
tain error reductions of 46% for target identifica-
tion, 37% for frame identification, and 14% for ar-
gument identification.
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Abstract

In the last two years, there has been a
surge of word embedding algorithms and
research on them. However, evaluation has
mostly been carried out on a narrow set of
tasks, mainly word similarity/relatedness
and word relation similarity and on a single
language, namely English.

We propose an approach to evaluate embed-
dings on a variety of languages that also
yields insights into the structure of the em-
bedding space by investigating how well
word embeddings cluster along different
syntactic features.

We show that all embedding approaches
behave similarly in this task, with
dependency-based embeddings performing
best. This effect is even more pronounced
when generating low dimensional embed-
dings.

1 Introduction

Word embeddings map words into a vector space,
allowing to reason about words in this space. They
have been shown to be beneficial for several tasks
such as machine translation (Botha and Blunsom,
2014), parsing (Lei et al., 2014), and named en-
tity recognition (Passos et al., 2014). Recently,
word embedding techniques have been studied for
their mathematical properties (Levy and Goldberg,
2014b; Stratos et al., 2015), yielding a better un-
derstanding of the underlying optimization criteria.
However, word embeddings have mostly been stud-
ied and evaluated on a single language (English).
Therefore, validation on languages other than En-
glish is lacking and the question whether word
embeddings work the same way across languages
has not been empirically evaluated. Evaluations of
complex systems – such as parsers – employing
word embeddings generally give only little insight

into the type of contribution to the result and the
structure of word embeddings.

We aim to fill these gaps by evaluating several
word embedding algorithms on a set of different
languages using tasks that enable additional insight
into the learned structures using easily obtainable
data. At the same time, we provide baseline results
for using word embeddings in several syntax-based
classification tasks.

We focus on syntax-related measures because
data is available for several languages and we ex-
pect a correlation with usefulness of word embed-
dings for syntax-related tasks such as named entity
recognition, parsing, and morphological analysis.

2 Related Work

Previous approaches to word embedding evaluation
have either used relatively basic word finding and
classification tasks (as this paper also proposes)
or application-oriented end-to-end evaluations as
part of a larger system. Word finding tasks are of
the form “given a pair of words (x, y), find a y′

for a given x′”, e.g. given (Rome, Italy), find a
word for Oslo. These tasks have been introduced
by Mikolov et al. (2013a). The downside of this
kind of task is that the data is not readily available
and has to be constructed for each language. This
type of evaluation primarily describes the similar-
ity between vector differences and not similarity
between vectors. In addition, Levy et al. (2015)
showed for this task that word embedding-based
classifiers actually mostly learn whether a word is
a general hypernym and not, as would be expected,
the relation between two words.

Another approach to evaluate embeddings, used
by Pennington et al. (2014) amongst others, is to
rank a fixed set of words relative to a reference
word. The results are then compared to human
judgments, e.g. from the WS353 corpus (Finkel-
stein et al., 2002). This approach has a limited
coverage and additional data is expensive to obtain.
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Botha and Blunsom (2014) propose to factorize
word vectors into morpheme vectors to better cap-
ture similarities between morphologically related
words and evaluate their word representations us-
ing log-bilinear language models based on their
word vectors.1 They measure model perplexity re-
duction relative to n-gram language models and
include their model into a machine translation sys-
tem, gaining between 0 (English→ German) and
1.2 (English→ Russian) BLEU points.

Lei et al. (2014) introduce a syntactic depen-
dency parser using (amongst others) a low-rank
tensor component for scoring dependency edges.
This scoring can employ word embeddings. Doing
so yields an improvement of 0.2 to 0.5 percentage
points. If no Part-of-Speech (PoS) tags are avail-
able, this difference rises to up to four percentage
points. Köhn et al. (2014) show that this gain from
using word embeddings is even more pronounced
in complete absence of morphological information
(including PoS tags), reporting a difference of five
to seven percentage points,depending on the lan-
guage, using the same parser. With these findings,
it can be assumed that word embeddings encode
some kind of morphological information. Neither,
however, investigated what kind of information the
word embeddings actually contain.

3 The Embedding Algorithms

To assess the differences between embedding algo-
rithms, we will evaluate six different approaches.
The continuous bag-of-words (cbow) approach de-
scribed by Mikolov et al. (2013a) is learned by
predicting the word vector based on the context
vectors. The skip-gram approach (skip) from the
same authors is doing the reverse: it predicts the
context word vectors based on the embedding of
the current word. We use the version of cbow and
skip as described in (Mikolov et al., 2013b) which
use negative sampling, i.e. they train by distinguish-
ing the correct word in its context against words
not occurring in that context.

Levy and Goldberg (2014a) alter the skipgram
approach by not using the neighboring words wrt.
the sentence’s word sequence but wrt. the depen-
dency tree of the sentence. Therefore, the context
of w is defined as all words that are either the head
or dependents of w. We will call this approach
dep.

1Their approach has not been evaluated in this paper as the
corresponding code is not available as of now.

GloVe, introduced by Pennington et al. (2014),
optimizes the ratio of co-occurrence probabilities
instead of the co-occurrence probabilities them-
selves, getting rid of the negative sampling used
for the approaches previously mentioned.

Stratos et al. (2015) describe a method to de-
rive word embeddings using canonical correlation
analysis. We will call this approach cca.

brown clusters (Brown et al., 1992) are con-
structed by clustering words hierarchically into a
binary search tree in a way that maximizes mutual
information for a language model. To construct an
embedding for a cluster c, we use the following
procedure: For each edge on the path from the root
to c, add either 1 or −1, depending on the direc-
tion of descent. Because not every path has the
same depth, we pad missing dimensions with 0.
This way, we obtain an embedding interpretation
of the clusters. Note that, in contrast to clustering
embeddings, no information is lost.

4 Our Evaluation by Classification Tasks

We classify words separately according to several
tasks with an L2-regularized linear classifier. All
classification tasks are based on the word embed-
ding of a single word alone, without any other infor-
mation about the word or its context; in particular,
the word’s lexicalization is not used as a feature.
By using the continuous features directly instead
of clustering them (as e.g. done by Bansal et al.
(2014)), we ensure that no information is lost dur-
ing preprocessing.

All tasks can be carried out on dependency tree-
banks with morphological annotation. From each
word in the treebank, we extract a data point (word
embedding, class) for training/testing, where class
is of one of the following, depending on the task:

pos The Part-of-Speech of the word
headpos The PoS of the word’s head
label The label of the word’s dependency edge
gender* The gender of the word
case* The case of the word
number* The number of the word
tense* The tense of the word

Tasks marked with an asterisk are only carried out
on words with a corresponding feature. Some of
these features are absent in some languages, e.g.
Basque is mostly genderless and the corpus of En-
glish we used is not annotated with morphological
information. These combinations of language and
feature have been omitted.
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We use a one-versus-all linear classifier for two
reasons: First, the feature dimensionality is rela-
tively high. Second, and more importantly, training
a linear classifier yields insights into the structure
of the vector space because the classifier also serves
as a tool to obtain a supervised clustering of the
vector space.

Let C be set set of classes. A one-versus-all
linear classifier learns a linear function fc ∈ Rn →
R for each class c ∈ C. The classifier assigns to
a vector X the best matching class based on these
functions:

class(X) = arg max
c∈C

fc(X)

Due to the linearity of the functions fc, the vector
space is partitioned into convex polytopes, which
each represent exactly one class (see Appendix A).
Therefore, the classification accuracies can also
be interpreted as supervised clustering accuracies.
This means that if the classifier yields a high ac-
curacy, the members of each class are clustered
in a single convex region of the vector space. We
think that this is a fairly strong statement about the
structure of the vector space.

To better gauge how well the embeddings are ac-
tually clustered, we use a majority baseline which
classifies all elements as the one class that occurred
most often during training. This is the accuracy a
classifier would yield without any information and
therefore the information gain obtainable by us-
ing word embeddings as features is the difference
between the achieved accuracy and the baseline
accuracy.

In addition to the lower bound described above,
we also provide an approximate upper bound for
the accuracy. Because no context information is
used during classification, the word vector corre-
sponding to a word will always be classified the
same, even though the correct classification might
depend on the context, e. g. the word put can be-
long to different tense classes depending on the
context. Therefore, an upper bound for the classifi-
cation task is to assign each word the most probable
class for that word (computed on the training set).
Assuming that no sparsity issues exist, embedding-
based classification can yield at most accuracies as
high as this approach. Note that because in reality
data sparsity unfortunately does exist, this is only
an approximation of the upper bound. We call this
approximation up-approx and compute it omitting
words not seen during training.

5 Experimental Setup

Evaluation was carried out on Basque, English,
French, German, Hungarian, Polish, and Swedish
datasets. For English, automatically labeled data
was obtained by tagging and parsing a subset of
the English Wikipedia dump provided by Al-Rfou
et al. (2013) using TurboTagger and TurboParser
(Martins et al., 2013). The Penn Treebank (Marcus
et al., 1994), converted using the LTH converter
(Johansson and Nugues, 2007), was used as the
corresponding manually annotated resource.

For all other languages, datasets including both
automatically and manually annotated data pro-
vided as part of the Shared Task on parsing mor-
phologically rich languages (Seddah et al., 2014)
were used.2

For all languages, we trained embeddings on the
automatically labeled data using the approaches
described in Section 3, with different window sizes
(5 and 11, where applicable) and dimensions (10,
100, 200). The rare word limit was set to five words
occurrences. brown was only trained with 1024
clusters equaling about 10 dimensions, as the num-
ber of clusters can not be increased to generate
higher-dimensional embeddings. dep was not eval-
uated on French because the French automatically
labeled dataset lacks dependency information.

6 Results

Figure 1 a) shows the accuracies for the evaluated
word embeddings on all tasks for the different lan-
guages. The results were obtained using the best-
performing hyperparameters (200 dimensions for
all, window size = 5 for cca, cbow and skip, win-
dow size = 11 for GloVe, compare Table 1).

All embeddings capture the PoS well. To a lesser
degree, the dependency label and head PoS can also
be recovered. The better-performing embeddings
achieve results near the approximate upper bound
for all tasks.

The embeddings also mostly cluster well with re-
spect to tense, number, gender, and case, with tense
showing the best correlations. For some of these
tasks, the baseline is however fairly high because
the number of classes is lower.

2Basque: (Aduriz et al., 2003; Aldezabal et al., 2008),
French: (Abeillé et al., 2003; Candito et al., 2010), German:
(Brants et al., 2002; Seeker and Kuhn, 2012), Hungarian:
(Csendes et al., 2005; Vincze et al., 2010), Polish: (Woliński
et al., 2011; Świdziński and Woliński, 2010; Wróblewska,
2012), Swedish: (Nivre et al., 2006)
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Figure 1: Results with window = 5 (for cbow, cca & skip) / 11 (for GloVe) for Basque, English, French,
German, Hungarian, Polish, Swedish. Note: brown is only present in b).

w d cca skip cbow dep GloVe

5 200 80.41 80.69 80.42 82.35 70.05
100 −1.38 −1.16 −3.31 −0.39 −2.24

10 −18.06 −22.92 −16.18 −8.38 −16.12
11 200 −1.31 −0.04 −0.05 n/a +0.57

100 −3.56 −1.16 −1.17 n/a −1.73
10 −23.51 −22.94 −16.34 n/a −15.64

Table 1: Mean accuracy across tasks for
dimension=200 and window=5, and change in
mean accuracy when deviating, measured in per-
centage points. dep has no window parameter.

cbow, cca and skip perform nearly identical,
while dep performs slightly better. Interestingly,
GloVe performs consistently worse than all other
embeddings, contrary to the findings published in
Pennington et al. (2014), but in line with Stratos et
al. (2015). dep performs best on nearly all tasks,
which may indicate that dependency-based context
is not only beneficial for preserving dependency-
related information, but also for morphology.

This finding is even more pronounced in the
evaluation using only ten dimensions (Figure 1 b)):
While dep can capture the different aspects tested

for nearly as well as with 200 dimensions, the other
embeddings suffer larger degradations, especially
for PoS and label prediction. cbow seems to be
able to cope better with low dimensionality than
skip, although they perform nearly identical on the
high dimensionality tasks. brown behaves similar
to the other approaches despite being quite different
algorithmically and only producing low-granular
data (with values for each dimension being either
1, 0, or −1). Note that results near the baseline
signify that the embeddings yield only minimal
benefit since the baseline does not use any features
at all.

Table 1 gives an overview of the average change
in accuracy when changing hyperparameters. Us-
ing 200 dimensions instead of 100 is beneficial for
all word embeddings. The difference is however
not nearly as pronounced as between ten and 100
dimensions. skip and cbow yield slightly better
results with a window of five, whereas for GloVe
a larger window is advantageous. dep achieves
both the highest average score and has the lowest
degradation when lowering the dimensionality.

Bansal et al. (2014) evaluate word embeddings
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wrt. how they cluster along PoS tags. They first
divide the embeddings into 1000 clusters using k-
means and then associate each cluster with a PoS
tag. They report a clustering accuracy of 81.1%
for w = 11 and 85.8% for w = 5 using skip. Our
results, however, show an accuracy of 94.4% and
94.4%, respectively, i.e. no such difference. That
means that the PoS are still mostly linearly sepa-
rable with larger window sizes. The differences
observed by them could result from information
getting lost during clustering.

7 Conclusions

Word embeddings are able to capture a range of
syntactic and morphological information. They
align especially well with the word’s part of speech.
With a high dimensionality, most embeddings per-
form similarly, with GloVe performing on average
ten percentage points worse. With a low dimen-
sionality, the differences become more pronounced
and dep is the clear choice for applications where
using high-dimensional vectors is not feasible and
a correlation to the features tested in this paper is
wanted.

We have shown that the different word embed-
ding algorithms behave similar over a variety of
languages and perform well relative to the task’s
upper bounds.

The evaluation approach proposed yields in-
sights into the usefulness of embeddings for syntax-
related tasks, works on a wide variety of languages
and avoids inaccuracies introduced when employ-
ing unsupervised clustering for evaluation. We
hope that this evaluation approach will be useful
for evaluating future embedding techniques.

The software to replicate the experiments for this
paper is available on
http://arne.chark.eu/emnlp2015.

A Proof: Convexity of regions

To show that a one-versus-all classifier generates
exactly one convex polytope for each class, we
have to show that for any two points belonging to a
class, each point between them belongs to the same
class.

Let c ∈ C be a class and rc ⊆ Rn be the re-
gion(s) of c in the vector space3 , i. e. where the
following holds true:

fc > fo ∀o ∈ C \ c
3the vector space is assumed to have one dimension for the

bias.

Let x, y ∈ rc be two points classified into c. Then
the following statement needs to be true:

z ∈ rc, z := (1− λ)x+ λy ∀λ ∈ [0, 1]

Assume that z /∈ rc. Then, by definition, fo(z) >
fc(z) for some o ∈ C \ c. We can substitute z with
its definition:

fo((1− λ)x+ λy) > fc((1− λ)x+ λy)

And therefore due to the linearity of fo and fc:

(1− λ)fo(x) + λfo(y) > (1− λ)fc(x) + λfc(y)

But this cannot be, as by definition, fo(x) < fc(x)
and fo(y) < fc(y). Therefore, there is only one
region for c and that region is convex. �
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Abstract
Events and their coreference offer use-
ful semantic and discourse resources.
We show that the semantic and dis-
course aspects of events interact with each
other. However, traditional approaches ad-
dressed event extraction and event coref-
erence resolution either separately or se-
quentially, which limits their interactions.
This paper proposes a document-level
structured learning model that simultane-
ously identifies event triggers and resolves
event coreference. We demonstrate that
the joint model outperforms a pipelined
model by 6.9 BLANC F1 and 1.8 CoNLL
F1 points in event coreference resolution
using a corpus in the biology domain.

1 Introduction

Events convey semantic information such as who
did what to whom where and when. They also
corefer to each other, playing a role of discourse
connection points to form a coherent story. These
aspects of events have been already utilized in
a wide variety of natural language processing
(NLP) applications, such as automated population
of knowledge bases (Ji and Grishman, 2011), topic
detection and tracking (Allan, 2002), question an-
swering (Bikel and Castelli, 2008), text summa-
rization (Li et al., 2006), and contradiction detec-
tion (de Marneffe et al., 2008). This fact illustrates
the importance of event extraction and event coref-
erence resolution.

Those semantic and discourse aspects of events
are not independent from each other, and in fact
often work in interactive manners. We give two
examples of the interactions:
(1) British bank Barclays had agreed to buy(E1) Spanish

rival Banco Zaragozano for 1.14 billion euros. The
combination(E2) of the banking operations of
Barclays Spain and Zaragozano will bring together
two complementary businesses.

(2) The Palestinian Authority condemned the attack(E3),
saying it(E4) would divert international sympathy
away from the far higher Palestinian civilian death toll.

E1 corefers to E2, and E3 does to E4. E2 is more
abstract than E1, and has less evidence of being
an event. E4 is a pronoun, and thus may seem
to refer to an entity rather than an event. Thus,
E2 and E4 are relatively difficult to be recognized
as events by themselves. However, event coref-
erence E1-E2, which is supported primarily by
E2’s participants Barclays and Zaragozano shared
with E1, helps determine that E2 is an event. The
same logic applies to E3 and E4. On the other
hand, previous works typically rely on a pipelined
model that extracts events (e.g., E1 and E3) at
the first stage, and then resolves event corefer-
ence at the second stage. Although this modularity
is preferable from development perspectives, the
pipelined model limits the interactions. That is,
the first stage alone is unlikely to detect E2 and E4
as events due to the difficulties described above.
These missing events make it impossible for the
second stage to resolve event coreference E1-E2
and E3-E4.

In this work, we address the problem using the
ProcessBank corpus (Berant et al., 2014). Follow-
ing the terminology defined in the corpus, we in-
troduce several terms:

• Event: an abstract representation of a change of state,
independent from particular texts.

• Event trigger: main word(s) in text, typically a verb or
a noun that most clearly expresses an event.

• Event arguments: participants or attributes in text,
typically nouns, that are involved in an event.

• Event mention: a clause in text that describes an event,
and includes both a trigger and arguments.

• Event coreference: a linguistic phenomenon that two
event mentions refer to the same event.

We aim to explore the interactions between event
mentions and event coreference. As a first step to-
ward the goal, we focus on the task of identifying
event triggers and resolving event coreference, and
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propose a document-level joint learning model us-
ing structured perceptron (Collins, 2002) that si-
multaneously predicts them. Our assumption is
that the joint model is able to capture the interac-
tions between event triggers and event coreference
adequately, and such comprehensive decision im-
proves the system performance. For instance, the
joint model is likely to extract E2 as well as E1
successfully via their event coreference by simul-
taneously looking at coreference features.

Our contributions are as follows:
1. This is the first work that simultaneously pre-

dicts event triggers and event coreference us-
ing a single joint model. At the core of the
model is a document-level structured percep-
tron algorithm that learns event triggers and
event coreference jointly.

2. The incremental token-based prediction in
joint decoding poses a challenge of synchro-
nizing the assignments of event triggers and
coreference. To avoid this problem, we pro-
pose an incremental decoding algorithm that
combines the segment-based decoding and
best-first clustering algorithm.

3. Our experiments indicate that the joint model
achieves a substantial performance gain in
event coreference resolution with a corpus
in the biology domain, as compared to a
pipelined model.

2 Related Work

No previous work deals with event extraction and
event coreference resolution simultaneously. We
thus describe how these two tasks have been ad-
dressed separately, and how joint structured learn-
ing has been studied in other NLP tasks.

Event extraction has been studied mainly in
the newswire domain and the biomedical domain
as the task of detecting event triggers and deter-
mining their event types and arguments. In the for-
mer domain, most work took a pipelined approach
where local classifiers identify triggers first, and
then detect arguments (Ji and Grishman, 2008;
Liao and Grishman, 2010; Hong et al., 2011). Li et
al. (2013) presented a structured perceptron model
to detect triggers and arguments jointly. Simi-
larly, joint dependencies in events were also ad-
dressed in the latter domain (Poon and Vander-
wende, 2010; McClosky et al., 2011; Riedel and
McCallum, 2011; Venugopal et al., 2014). How-
ever, none of them incorporated event coreference

into their model.
Event coreference resolution is more chal-

lenging and less explored. To set up event triggers
as a starting point of the task, some works use hu-
man annotation in a corpus (Bejan and Harabagiu,
2014; Liu et al., 2014), and others use the output
of a separate event extraction system (Lee et al.,
2012). Berant et al. (2014) presented a model that
jointly predicts event arguments and event coref-
erence (as well as other relations between event
triggers). However, none of them tries to predict
event triggers and event coreference jointly.

Joint structured learning has been applied
to several NLP tasks, such as word segmenta-
tion and part-of-speech (POS) tagging (Zhang and
Clark, 2008a), POS tagging and dependency pars-
ing (Bohnet and Nivre, 2012), dependency pars-
ing and semantic role labeling (Johansson and
Nugues, 2008), the extraction of event triggers and
arguments (Li et al., 2013), and the extraction of
entity mentions and relations (Li and Ji, 2014).
Their underlying ideas are similar to ours. That
is, one can train a structured learning model to
globally capture the interactions between two rel-
evant tasks via a certain kind of structure, while
making predictions specifically for these respec-
tive tasks. However, no prior work has studied
the interactions between event trigger identifica-
tion and event coreference resolution.

3 Approach

We formalize the extraction of event triggers and
event coreference as a problem of structured pre-
diction. The output structure is a document-level
event graph where each node represents an event
trigger, and each edge represents an event corefer-
ence link between two event triggers.

3.1 Corpus
The ProcessBank corpus consists of 200 para-
graphs from the textbook Biology (Campbell and
Reece, 2005). Table 1 shows statistics of our data
splits. The original corpus provides 150 para-
graphs as training data, and we split them into 120
and 30 for our training and development, respec-
tively. We chose ProcessBank instead of a larger
corpus such as the Automatic Content Extraction
(ACE) 2005 corpus for the following two reasons.
First, the human annotation of event coreference
links in ProcessBank enables us to apply the best-
first clustering directly; on the other hand, this is
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not readily feasible in ACE 2005 since it anno-
tates event coreference as clusters, and gold stan-
dard event coreference links required for the best-
first clustering are not available. Second, event
coreference resolution using ProcessBank is novel
since almost no previous work on the task used
that corpus. The only exception could be (Berant
et al., 2014), where they extracted several types of
relations between event triggers, including event
coreference. However, they did not report any
performance scores of their system specifically on
event coreference, and thus their work is not com-
parable to ours.

Train Dev Test Total
# of paragraphs 120 30 50 200
# of event triggers 823 224 356 1403
# of event coreferences 73 28 30 131

Table 1: Statistics of our dataset.

Unlike previous work (Berant et al., 2014; Li
et al., 2013), we explicitly allow an event trigger
to have multiple tokens, such as verb phrase ‘look
into’ and compound proper noun ‘World War II’.
This is a more realistic setting for event trigger
identification since in general there are a consid-
erable number of multi-token event triggers1.

3.2 Event Graph Learning
Let x denote an input document with n to-
kens where xi is the i-th token in the docu-
ment. For event graph learning, we use structured
perceptron (Collins, 2002), and average weights
to reduce overfitting as suggested in (Collins,
2002). The algorithm involves decoding to gener-
ate the best event graph for each input document.
We elaborate on our decoding algorithm in Sec-
tion 3.3. Since an event graph has an exponen-
tially large search space, we use beam search to
approximate exact inference. We extract a range
of features by using Stanford CoreNLP (Manning
et al., 2014), MATE (Björkelund et al., 2009),
OpenNLP2, Nomlex (Macleod et al., 1998), and
Levin verb classes (Levin, 1993). For brevity, we
provide details of the structured perceptron algo-
rithm and features in the supplementary material.

We use the standard-update strategy in our
structured perceptron model. As variants of struc-
tured perceptron, one could employ the early up-

1For example, around 13.4% of the 1403 event triggers in
ProcessBank have multiple tokens.

2http://opennlp.apache.org/

date (Collins and Roark, 2004) and max-violation
update (Huang et al., 2012) to our model. Our
initial experiments indicated that early updates
happen too early to gain sufficient feedback on
weights from entire documents in training exam-
ples, ending up with a poorer performance than
the standard update. This contrasts with the fact
that the early-update strategy was successfully ap-
plied to other NLP tasks such as constituent pars-
ing (Collins and Roark, 2004) and dependency
parsing (Zhang and Clark, 2008b). The main rea-
son why the early update fell short of the stan-
dard update in our setting is that joint event trigger
identification and event coreference resolution is a
much more difficult task since they require more
complex knowledge and argument structures. Due
to the difficultly of the task, it is also very difficult
to develop such an effective feature set that beam
search can explore the search space of an entire
document thoroughly with early updates. This ob-
servation follows (Björkelund and Kuhn, 2014) on
entity coreference resolution. In contrast, the max-
violation update showed almost the same perfor-
mance as the standard update on the development
data. From these results, we chose the standard-
update strategy for simplicity.

3.3 Joint Decoding
Given that an event trigger has one or more to-
kens, event trigger identification could be solved
as a token-level sequential labeling problem with
BIO or BILOU scheme in the same way as named
entity recognition (Ratinov and Roth, 2009). If
one uses this approach, a beam state may repre-
sent a partial assignment of an event trigger. How-
ever, event coreference can be explored only from
complete assignments of an event trigger. Thus,
one would need to synchronize the search process
of event coreference by comparing event corefer-
ences from the complete assignment at a certain
position with those from complete assignments at
following positions. This makes it complicated
to implement the formalization of token-level se-
quential labeling for joint decoding in our task.
One possible way to avoid this problem is to ex-
tract event trigger candidates with a preference on
high recall first, and then search event coreference
from those candidates, regarding them as com-
plete assignments of an event trigger. This recall-
oriented pre-filtering is often used in entity coref-
erence resolution (Lee et al., 2013; Björkelund
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Algorithm 1 Joint decoding for event triggers and
coreference with beam search.
Input: input document x = (x1, x2, . . . , xn)
Input: beam width k, max length of event trigger lmax

Output: best event graph ŷ for x
1: initialize empty beam history B[1..n]
2: for i← 1..n do
3: for l← 1..lmax do
4: for y ∈ B[i− l] do
5: e← CREATEEVENTTRIGGER(l, i).
6: APPENDEVENTTRIGGER(y, e)
7: B[i]← k-BEST(B[i] ∪ y)
8: for j ← 1..i− 1 do
9: c← CREATEEVENTCOREF(j, e).

10: ADDEVENTCOREF(y, c)
11: B[i]← k-BEST(B[i] ∪ y)
12: return B[n][0]

and Farkas, 2012). In our initial experiments, we
observed that our rule-based filter gained around
97% recall, but extracted around 12,400 false posi-
tives against 823 true positives in the training data.
This made it difficult for our structured perceptron
to learn event triggers, which underperformed on
event coreference resolution.

We, therefore, employ segment-based decod-
ing with multiple-beam search (Zhang and Clark,
2008a; Li and Ji, 2014) for event trigger identi-
fication, and combine it with the best-first clus-
tering (Ng and Cardie, 2002) for event coref-
erence resolution in document-level joint decod-
ing. The key idea of segment-based decoding with
multiple-beam search is to keep previous beam
states available, and use them to form segments
from previous positions to the current position.
Let lmax denote the upper bound on the number
of tokens in one event trigger. The k-best partial
structures (event subgraphs) in beam B at the j-th
token is computed as follows:

B[j] = k-BEST
y∈{y[1:j−l]∈B[j−l], y[j−l+1,j]=s}

Φ(x, y) ·w

where 1 ≤ l ≤ lmax, y[1:j] is an event subgraph
ending at the j-th token, and y[j−l+1,j] = s means
that partial structure y[j−l+1,j] is a segment, i.e.,
an event trigger candidate with a subsequence of
tokens x[j−l+1,j]. This approximates Viterbi de-
coding with beam search.

The best-first clustering incrementally makes
coreference decisions by selecting the most likely
antecedent for each trigger. Our joint decoding
algorithm makes use of the incremental process
to combine the segment-based decoding and best-
first clustering. Algorithm 1 shows the summary
of the joint decoding algorithm. Line 3 - 7 imple-
ments the segment-based decoding, and line 8 - 11

implements the best-first clustering. Once a new
event trigger is appended to an event subgraph at
line 6, the decoder uses it as a referring mention
regardless of whether the event subgraph is in the
beam, and seeks the best antecedent for it. This
enables the joint model to make a more global
decision on event trigger identification and event
coreference decision, as described in Section 1.

4 Experimental Settings

When training our model, we observed that 20-
iteration training almost reached convergence, and
thus we set the number of iterations to 20. We
set lmax to 6 because we observed that the longest
event trigger in the entire ProcessBank corpus has
six tokens. When tuning beam width k on the de-
velopment set, large beam width did not give us a
significant performance difference. We attribute
this result to the small size of the development
data. In particular, the development data has only
28 event coreferences, which makes it difficult to
reveal the effect of beam width. We thus set k to 1
in our experiments.

4.1 Baseline Systems
Our baseline is a pipelined model that divides the
event trigger decoding and event coreference de-
coding in Algorithm 1 into two separate stages.
It uses the same structured perceptron with the
same hyperparameters and feature templates. We
choose this baseline because it clearly reveals the
effectiveness of the joint model by focusing only
on the architectural difference. One could develop
other baseline systems. One of them is a determin-
istic sieve-based approach by Lee et al. (2013). A
natural extension to the approach for performing
event trigger identification as well as event coref-
erence resolution would be to develop additional
sieves to classify singletons into real event triggers
or spurious ones. We leave it for future work.

4.2 Evaluation
We evaluate our system using a reference
implementation of coreference scoring algo-
rithms (Pradhan et al., 2014; Luo et al., 2014).
As for event trigger identification, this scorer
computes precision (P), recall (R), and the F1
score. With respect to event coreference reso-
lution, the scorer computes MUC (Vilain et al.,
1995), B3 (Bagga and Baldwin, 1998), two CEAF
metrics CEAFm and CEAFe (Luo, 2005), and
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MUC B3 CEAFm CEAFe BLANC CoNLL
System R P F1 R P F1 R P F1 R P F1 R P F1 F1
Baseline 26.66 19.51 22.53 55.47 58.64 57.01 53.08 60.38 56.50 52.68 63.14 57.44 30.13 25.10 25.05 45.66
Joint 20.00 37.50 26.08 53.37 63.36 57.93 53.93 62.95 58.09 55.06 62.11 58.38 27.51 38.43 31.91 47.45

Table 2: Results of event coreference resolution. ‘Baseline’ refers to the second stage of our baseline.

BLANC (Recasens and Hovy, 2011) extended by
Luo et al. (2014). We also report the CoNLL av-
erage (Denis and Baldridge, 2009), which is the
average of MUC F1, B3 F1, and CEAFe F1.

5 Results and Discussions

We first show the result of event coreference reso-
lution on the test data in Table 2. The joint model
outperforms the baseline by 6.9 BLANC F1 and
1.8 CoNLL F1 points. We observed that this over-
all performance gain comes largely from a preci-
sion gain, more specifically, substantially reduced
false positives. We explain the superiority of the
joint model as follows. In the baseline, the second
stage uses the output of the first stage. Since event
triggers are fixed at this point, the baseline ex-
plores coreference links only between these event
triggers. In contrast, the joint model seeks event
triggers and event coreference simultaneously, and
thus it explores a larger number of false positives
in the search process, thereby learning to penalize
false positives more adequately than the baseline.

System Recall Precision F1
Baseline 57.02 64.85 60.68
Joint 55.89 65.24 60.21

Table 3: Results of event trigger identification.
‘Baseline’ refers to the first stage of our baseline.

Table 3 shows the results of event trigger iden-
tification on the test data. We observed that the
joint model also reduced false positives, similarly
in event coreference resolution. However, its im-
provement on precision is small, ending up with
almost the same F1 point as the baseline. We spec-
ulate that this is due to the small size of the corpus,
and the joint model was unable to show its advan-
tages in event trigger identification.

Below are two error cases in event coreference
resolution, where our model fails to resolve E5-
E6 and E7-E8. The model was unable to ade-
quately extract features for both event triggers and
event coreference, particularly because their sur-
face strings are not present in training data, they
are lexically and syntactically different, and they

do not share key semantic roles (e.g., agents and
patients) in a clear argument structure.

(3) When the cell is stimulated, gated channels open that
facilitate Na+ diffusion(E5). Sodium ions then
”fall”(E6) down their electrochemical gradient, . . .

(4) The next seven steps decompose(E7) the citrate back
to oxaloacetate. It is this regeneration(E8) of
oxaloacetate that makes this process a cycle.

6 Conclusion and Future Work

We present a joint structured prediction model for
event trigger identification and event coreference
resolution. To our knowledge, this is the first work
that solves these two tasks simultaneously. Our
experiment shows that the proposed method ef-
fectively penalizes false positives in joint search,
thereby outperforming a pipelined model substan-
tially in event coreference resolution.

There are a number of avenues for future work.
One can further ensure the advantage of the joint
model using a larger corpus. Our preliminary ex-
periment on the ACE 2005 corpus shows that due
to its larger document size and event types, one
will need to reduce training time by a distributed
learning algorithm such as mini-batches (Zhao and
Huang, 2013). Another future work is to incorpo-
rate other components of events into the model.
These include event types, event arguments, and
other relations such as subevents. One could lever-
age them as other learning targets or constraints,
and investigate further benefits of joint modeling.
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Abstract

When translating between two languages
that differ in their degree of morpholog-
ical synthesis, syntactic structures in one
language may be realized as morphologi-
cal structures in the other, and SMT mod-
els need a mechanism to learn such trans-
lations. Prior work has used morpheme
splitting with flat representations that do
not encode the hierarchical structure be-
tween morphemes, but this structure is rel-
evant for learning morphosyntactic con-
straints and selectional preferences. We
propose to model syntactic and morpho-
logical structure jointly in a dependency
translation model, allowing the system
to generalize to the level of morphemes.
We present a dependency representation
of German compounds and particle verbs
that results in improvements in transla-
tion quality of 1.4–1.8 BLEU in the WMT
English–German translation task.

1 Introduction

When translating between two languages that dif-
fer in their degree of morphological synthesis,
syntactic structures in one language may be re-
alized as morphological structures in the other.
Machine Translation models that treat words as
atomic units have poor learning capabilities for
such translation units, and morphological segmen-
tations are commonly used (Koehn and Knight,
2003). Like words in a sentence, the morphemes
of a word have a hierarchical structure that is rel-
evant in translation. For instance, compounds in
Germanic languages are head-final, and the head is
the segment that determines agreement within the
noun phrase, and is relevant for selectional prefer-
ences of verbs.

1. sie erheben eine Hand|gepäck|gebühr.

function/postion English/German example

finite (main) he walks away quickly
er geht schnell weg

finite (sub.) [...] because he walks away quickly
[...] weil er schnell weggeht

bare infinitive he can walk away quickly
er kann schnell weggehen

to/zu-infinitive he promises to walk away quickly
er verspricht, schnell wegzugehen

Table 1: Surface realizations of particle verb
weggehen ’walk away’.

they charge a carry-on bag fee.

In example 1, agreement in case, number and
gender is enforced between eine ’a’ and Gebühr
’fee’, and selectional preference between erheben
’charge’ and Gebühr ’fee’. A flat representation,
as is common in phrase-based SMT, does not en-
code these relationships, but a dependency repre-
sentation does so through dependency links.

In this paper, we investigate a dependency rep-
resentation of morphologically segmented words
for SMT. Our representation encodes syntactic and
morphological structure jointly, allowing a single
model to learn the translation of both. Specifi-
cally, we work with a string-to-tree model with
GHKM-style rules (Galley et al., 2006), and a
relational dependency language model (Sennrich,
2015). We focus on the representation of German
syntax and morphology in an English-to-German
system, and two morphologically complex word
classes in German that are challenging for transla-
tion, compounds and particle verbs.

German makes heavy use of compounding, and
compounds such as Abwasserbehandlungsanlage
‘waste water treatment plant’ are translated into
complex noun phrases in other languages, such as
French station d’épuration des eaux résiduaires.

German particle verbs are difficult to model be-
cause their surface realization differs depending
on the finiteness of the verb and the type of clause.
Verb particles are separated from the finite verb in
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main clauses, but prefixed to the verb in subordi-
nated clauses, or when the verb is non-finite. The
infinitive marker zu ’to’, which is normally a pre-
modifying particle, appears as an infix in particle
verbs. Table 1 shows an illustrating example.

2 A Dependency Representation of
Compounds and Particle Verbs

The main focus of research on compound split-
ting has been on the splitting algorithm (Popovic
et al., 2006; Nießen and Ney, 2000; Weller et al.,
2014; Macherey et al., 2011). Our focus is not the
splitting algorithm, but the representation of com-
pounds. For splitting, we use an approach simi-
lar to (Fritzinger and Fraser, 2010), with segmen-
tation candidates identified by a finite-state mor-
phology (Schmid et al., 2004; Sennrich and Kunz,
2014), and statistical evidence from the training
corpus to select a split (Koehn and Knight, 2003).

German compounds are head-final, and pre-
modifiers can be added recursively. Compounds
are structurally ambiguous if there is more than
one modifier. Consider the distinction between
(Stadtteil)projekt (literally: ’(city part) project)’)
and Stadt(teilprojekt) ’city sub-project’. We opt
for a left-branching representation by default.1 We
also split linking elements, and represent them as
a postmodifier of each non-final segment, includ-
ing the empty string ("ε"). We use the same repre-
sentation for noun compounds and adjective com-
pounds.

An example of the original2 and the proposed
compound representation is shown in Figure 1.
Importantly, the head of the compound is also
the parent of the determiners and attributes in
the noun phrase, which makes a bigram depen-
dency language model sufficient to enforce agree-
ment. Since we model morphosyntactic agree-
ment within the main translation step, and not in
a separate step as in (Fraser et al., 2012), we deem
it useful that inflection is marked at the head of
the compound. Consequently, we do not split off
inflectional or derivational morphemes.

For German particle verbs, we define a common
representation that abstracts away from the vari-
ous surface realizations (see Table 1). Separated

1We follow prior work in leaving frequent words or sub-
words unsplit, which has a disambiguating effect. With more
aggressive splitting, frequency information could be used for
the structural disambiguation of internal structure.

2The original dependency trees follow the annotation
guidelines by Foth (2005).

sie erheben eine Handgepäckgebühr
PPER VVFIN ART NN
they charge a carry-on bag fee

root obja

subj
det

sie erheben eine Hand ε gepäck ε gebühr
PPER VVFIN ART SEG LN SEG LN SEG
they charge a carry-on bag fee

root

obja

subj

det

mod

link

mod

link

Figure 1: Original and proposed representation of
German compound.

er verspricht , schnell wegzugehen
PPER VVFIN $, ADJD VVIZU

he promises to go away quickly

root

subj

obji

comma

adv

er verspricht , schnell zu weg gehen
PPER VVFIN $, ADJD PTKZU PTKVZ VVINF

he promises to go away quickly

root

subj

obji

comma

adv

part

avz

Figure 2: Original and proposed representation of
German particle verb with infixed zu-marker.

verb particles are reordered to be the closest pre-
modifier of the verb. Prefixed particles and the zu-
infix are identified by the finite-state-morphology,
and split from the verb so that the particle is
the closest, the zu marker the next-closest pre-
modifier of the verb, as shown in Figure 2. Agree-
ment, selectional preferences, and other phenom-
ena involve the verb and its dependents, and the
proposed representation retains these dependency
links, but reduces data sparsity from affixation and
avoids discontinuity of the verb and its particle.

3 Tree Binarization

We follow Williams et al. (2014) and map de-
pendency trees into a constituency representation,
which allows for the extraction of GHKM-style
translation rules (Galley et al., 2006). This con-
version is lossless, and we can still apply a de-
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pendency language model (RDLM). Figure 3 (a)
shows the constituency representation of the ex-
ample in Figure 1.

Our model should not only be able to produce
new words productively, but also to memorize
words it has observed during training. Looking at
the compound Handgepäckgebühr in Figure 3 (a),
we can see that it does not form a constituent, and
cannot be extracted with GHKM extraction heuris-
tics. To address this, we binarize the trees in our
training data (Wang et al., 2007).

A complicating factor is that the binarization
should not impair the RDLM. During decoding,
we map the internal tree structure of each hypoth-
esis back to the unbinarized form, which is then
scored by the RDLM. Virtual nodes introduced by
the binarization must also be scorable by RDLM
if they form the root of a translation hypothesis. A
simple right or left binarization would produce vir-
tual nodes without head and without meaningful
dependency representation. We ensure that each
virtual node dominates the head of the full con-
stituent through a mixed binarization.3 Specifi-
cally, we perform right binarization of the head
and all pre-modifiers, then left binarization of all
post-modifiers. This head-binarized representa-
tion is illustrated in Figure 3 (b).4

Head binarization ensures that even hypotheses
whose root is a virtual node can be scored by the
RDLM. This score is only relevant for pruning,
and discarded when the full constituent is scored.
Still, these hypotheses require special treatment in
the RDLM to mitigate search errors. The virtual
node labels (such as OBJA) are unknown symbols
to the RDLM, and we simply replace them with
the original label (OBJA). The RDLM uses sibling
context, and this is normally padded with special
start and stop symbols, analogous to BOS/EOS
symbols in n-gram models. These start and stop
symbols let the RDLM compute the probability
that a node is the first or last child of its ances-
tor node. However, computing these probabilities
for virtual nodes would unfairly bias the search,
since the first/last child of a virtual node is not nec-
essarily the first/last child of the full constituent.
We adapt the representation of virtual nodes in

3In other words, every node is a fixed well-formed depen-
dency structure (Shen et al., 2010) with our binarization.

4Note that our definition of head binarization is different
from that of Wang et al. (2007), who left-binarize a node if
the head is the first child, and right-binarize otherwise. Our
algorithm also covers cases where the head has both pre- and
post-modifiers, as erheben and gepäck do in Figure 3.

ROOT

OBJA

SEG

gebühr

MOD

LINK

LN

ε

SEG

gepäck

MOD

LINK

LN

ε

SEG

Hand

DET

ART

eine

VVFIN

erheben

SUBJ

PPER

sie

(a)
ROOT

OBJA

OBJA

SEG

gebühr

MOD

LINK

LN

ε

MOD

SEG

gepäck

MOD

LINK

LN

ε

SEG

Hand

DET

ART

eine

ROOT

VVFIN

erheben

SUBJ

PPER

sie

(b)

Figure 3: Unbinarized (a) and head-binarized (b)
constituency representation of Figure 1.

RDLM to take this into account. We distinguish
between virtual nodes based on whether their span
is a string prefix, suffix, or infix of the full con-
stituent. For prefixes and infixes, we do not add
a stop symbol at the end, and use null symbols,
which denote unavailable context, for padding to
the right. For suffixes and infixes, we do the same
at the start.

4 Post-Processing

For SMT, all German training and development
data is converted into the representation described
in sections 2–3. To restore the original represen-
tation, we start from the tree output of the string-
to-tree decoder. Merging compounds is trivial: all
segments and linking elements can be identified by
the tree structure, and are concatenated.

For verbs that dominate a verb particle, the orig-
inal order is restored through three rules:

1. non-finite verbs are concatenated with the
particle, and zu-markers are infixed.

2. finite verbs that head a subordinated clause
(identified by its dependency label) are con-
catenated with the particle.

3. finite verbs that head a main clause have the
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particle moved to the right clause bracket.5

Previous work on particle verb translation into
German proposed to predict the position of parti-
cles with an n-gram language model (Nießen and
Ney, 2001). Our rules have the advantage that they
are informed by the syntax of the sentence and
consider the finiteness of the verb.

Our rules only produce projective trees. Verb
particles may also appear in positions that violate
projectivity, and we leave it to future research to
determine if our limitation to projective trees af-
fects translation quality, and how to produce non-
projective trees.

5 SMT experiments

5.1 Data and Models

We train English–German string-to-tree SMT sys-
tems on the training data of the shared transla-
tion task of the Workshop on Statistical Machine
Translation (WMT) 2015. The data set consists of
4.2 million sentence pairs of parallel data, and 160
million sentences of monolingual German data.

We base our systems on that of Williams et
al. (2014). It is a string-to-tree GHKM transla-
tion system implemented in Moses (Koehn et al.,
2007), and using the dependency annotation by
ParZu (Sennrich et al., 2013). Additionally, our
baseline system contains a dependency language
model (RDLM) (Sennrich, 2015), trained on the
target-side of the parallel training data.

We report case-sensitive BLEU scores on the
newstest2014/5 test sets from WMT, averaged
over 3 optimization runs of k-batch MIRA (Cherry
and Foster, 2012) on a subset of newstest2008-12.6

We split all particle verbs and hyphenated com-
pounds, but other compounds are only split if they
are rare (frequency in parallel text < 5).

For comparison with the state-of-the-art, we
train a full system on our restructured representa-
tion, which incorporates all models and settings of
our WMT 2015 submission system (Williams et
al., 2015).7 Note that our WMT 2015 submission

5We use the last position in the clause as default location,
but put the particle before any subordinated and coordinated
clauses, which occur in the Nachfeld (the ‘final field’ in topo-
logical field theory).

6We use mteval-v13a.pl for comparability to official
WMT results; all significance values reported are obtained
with MultEval (Clark et al., 2011).

7In contrast to our other systems in this paper, RDLM is
trained on all monolingual data for the full system, and two
models are added: a 5-gram Neural Network language model

system newstest2014 newstest2015
baseline 20.7 22.0
+split compounds 21.3 22.4
+particle verbs 21.4 22.8
head binarization 20.9 22.7
+split compounds 22.0 23.4
+particle verbs 22.1 23.8
full system 22.6 24.4

Table 2: English–German translation results
(BLEU). Average of three optimization runs.

system compound particle verb
sep. pref. zu-infix

reference 2841 553 1195 176
baseline 845 96 847 71
+head binarization 798 157 858 106
+split compounds 1850 160 877 94
+particle verbs 1992 333 953 169

Table 3: Number of compounds [that would be
split by compound splitter] and particle verbs
(separated, prefixed and with zu-infix) in new-
stest2014/5. Average of three optimization runs.

uses the dependency representation of compounds
and tree binarization introduced in this paper; we
achieve additional gains over the submission sys-
tem through particle verb restructuring.

5.2 SMT Results

Table 2 shows translation quality (BLEU) with dif-
ferent representations of German compounds and
particle verbs. Head binarization not only yields
improvements over the baseline, but also allows
for larger gains from morphological segmenta-
tion. We attribute this to the fact that full com-
pounds, and prefixed particle verbs, are not al-
ways a constituent in the segmented representa-
tion, and that binarization compensates this the-
oretical drawback.

With head binarization, we find substantial im-
provements from compound splitting of 0.7–1.1
BLEU. On newstest2014, the improvement is
almost twice of that reported in related work
(Williams et al., 2014), which also uses a hier-
archical representation of compounds, albeit one
that does not allow for dependency modelling.
Examples of correct, unseen compounds gener-
ated include Staubsauger|roboter ’vacuum cleaner
robot’, Gravitation|s|wellen ’gravitational waves’,
and NPD|-|verbot|s|verfahren ’NPD banning pro-
cess’.8

(Vaswani et al., 2013), and soft source-syntactic constraints
(Huck et al., 2014).

8Note that Staubsauger, despite being a compound, is not
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Particle verb restructuring yields additional
gains of 0.1–0.4 BLEU. One reason for the smaller
effect of particle verb restructuring is that the diffi-
cult cases – separated particle verbs and those with
infixation – are rarer than compounds, with 2841
rare compounds [that would be split by our com-
pound splitter] in the reference texts, in contrast
to 553 separated particle verbs, and 176 particle
verbs with infixation, as Table 3 illustrates. If we
only evaluate the sentences containing a particle
verb with zu-infix in the reference, 165 in total
for newstest2014/5, we observe an improvement
of 0.8 BLEU on this subset (22.1→22.9), signifi-
cant with p < 0.05.

The positive effect of restructuring is also ap-
parent in frequency statistics. Table 3 shows that
the baseline system severely undergenerates com-
pounds and separated/infixed particle verbs. Bi-
narization, compound splitting, and particle verb
restructuring all contribute to bringing the distri-
bution of compounds and particle verbs closer to
the reference.

In total, the restructured representation yields
improvements of 1.4–1.8 BLEU over our base-
line. The full system is competitive with official
submissions to the WMT 2015 shared translation
tasks. It outperforms our submission (Williams
et al., 2015) by 0.4 BLEU, and outperforms other
phrase-based and syntax-based submissions by 0.8
BLEU or more. The best reported result accord-
ing to BLEU is an ensemble of Neural MT systems
(Jean et al., 2015), which achieves 24.9 BLEU. In
the human evaluation, both our submission and the
Neural MT system were ranked 1–2 (out of 16),
with no significant difference between them.

5.3 Synthetic LM Experiment

We perform a synthetic experiment to test our
claim that a dependency representation allows for
the modelling of agreement between morphemes.
For 200 rare compounds [that would be split by
our compound splitter] in the newstest2014/5 ref-
erences, we artificially introduce agreement errors
by changing the gender of the determiner. For in-
stance, we create the erroneous sentence sie er-
heben ein Handgepäckgebühr as a complement to
Example 1. We measure the ability of language
models to prefer (give a higher probability to)
the original reference sentence over the erroneous
one. In the original representation, both a Kneser-

segmented due to its frequency.

Ney 5-gram LM and RDLM perform poorly due to
data sparseness, with 70% and 57.5% accuracy, re-
spectively. In the split representation, the RDLM
reliably prefers the correct agreement (96.5% ac-
curacy), whilst the performance of the 5-gram
model even deteriorates (to 60% accuracy). This
is because the gender of the first segment(s) is ir-
relevant, or even misleading, for agreement. For
instance, Handgepäck is neuter, which could lead
a morpheme-level n-gram model to prefer the de-
terminer ein, but Handgepäckgebühr is feminine
and requires eine.

6 Conclusion

Our main contribution is that we exploit the hi-
erarchical structure of morphemes to model them
jointly with syntax in a dependency-based string-
to-tree SMT model. We describe the dependency
annotation of two morphologically complex word
classes in German, compounds and particle verbs,
and show that our tree representation yields im-
provements in translation quality of 1.4–1.8 BLEU

in the WMT English–German translation task.9

The principle of jointly representing syntactic
and morphological structure in dependency trees
can be applied to other language pairs, and we ex-
pect this to be helpful for languages with a high
degree of morphological synthesis. However, the
annotation needs to be adapted to the respective
languages. For example, French compounds such
as arc-en-ciel ’rainbow’ are head-initial, in con-
trast to head-final Germanic compounds.
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Abstract

Recent work in neural machine translation
has shown promising performance, but the
most effective architectures do not scale
naturally to large vocabulary sizes. We
propose and compare three variable-length
encoding schemes that represent a large
vocabulary corpus using a much smaller
vocabulary with no loss in information.
Common words are unaffected by our en-
coding, but rare words are encoded us-
ing a sequence of two pseudo-words. Our
method is simple and effective: it requires
no complete dictionaries, learning proce-
dures, increased training time, changes to
the model, or new parameters. Com-
pared to a baseline that replaces all rare
words with an unknown word symbol, our
best variable-length encoding strategy im-
proves WMT English-French translation
performance by up to 1.7 BLEU.

1 Introduction
Bahdanau et al. (2014) propose a neural transla-
tionmodel that learns vector representations for in-
dividual words as well as word sequences. Their
approach jointly predicts a translation and a la-
tent word-level alignment for a sequence of source
words. However, the architecture of the network
does not scale naturally to large vocabularies (Jean
et al., 2014).
In this paper, we propose a novel approach to

circumvent the large-vocabulary challenge by pre-
processing the source and target word sequences,
encoding them as a longer token sequence drawn
from a small vocabulary that does not discard
any information. Common words are unaffected,
but rare words are encoded as a sequence of two
pseudo-words. The exact same learning and infer-

ence machinery applied to these transformed data
yields improved translations.
We evaluate a family of 3 different encoding

schemes based on Huffman codes. All of them
eliminate the need to replace rare words with the
unknown word symbol. Our approach is simpler
than other methods recently proposed to address
the same issue. It does not introduce new param-
eters into the model, change the model structure,
affect inference, require access to a complete dic-
tionary, or require any additional learning proce-
dures. Nonetheless, compared to a baseline system
that replaces all rare words with an unknown word
symbol, our encoding approach improves English-
French news translation by up to 1.7 BLEU.

2 Background
2.1 Neural Machine Translation
Neural machine translation describes approaches
to machine translation that learn from corpora in
a single integrated model that embeds words and
sentences into a vector space (Kalchbrenner and
Blunsom, 2013; Cho et al., 2014; Sutskever et al.,
2014). We focus on one recent approach to neu-
ral machine translation, proposed by Bahdanau et
al. (2014), that predicts both a translation and its
alignment to the source sentence, though our tech-
nique is relevant to related approaches as well.
The architecture consists of an encoder and a de-

coder. The encoder receives a source sentence x
and encodes each prefix using a recurrent neural
network that recursively combines embeddings xj
for each word position j:

−→
h j = f(xj ,

−→
h j−1) (1)

where f is a non-linear function. Reverse encod-
ings
←−
h j are computed similarly to represent suf-

fixes of the sentence. These vector representa-
tions are stacked to form hj , a representation of the
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whole sentence focused on position j.
The decoder predicts each target word yi se-

quentially according to the distribution

P (yi|yi−1, ..., y1,x) = g(yi−1, si, ci) (2)

where si is a hidden decoder state summarizing
the prefix of the translation generated so far, ci is
a summary of the entire input sequence, and g is
another non-linear function. Encoder and decoder
parameters are jointly optimized to maximize the
log-likelihood of a training corpus.
Depending on the approach to neural transla-

tion, c can take multiple forms. Bahdanau et al.
(2014) propose integrating an attentionmechanism
in the decoder, which is trained to determine on
which portions of the source sentence to focus.
The decoder computes ci, the summarizing con-
text vector, as a convex combination of the hj .
The coefficients of this combination are propor-
tional (softmax) to an alignment model prediction
exp a(hj , si), where a is a non-linear function.
The speed of prediction scales with the output

vocabulary size, due to the denominator of Equa-
tion 2 (Jean et al., 2014). The input vocabulary size
is also a challenge for storage and learning. As a re-
sult, neural machine translation systems only con-
sider the top 30K to 100K most frequent words in
a training corpus, replacing the other words with
an unknown word symbol.

2.2 Related Work
There has been much recent work in improving
translation quality by addressing these vocabulary
size challenges. Luong et al. (2014) describe an
approach that, similar to ours, treats the translation
system as a black box. They eliminate unknown
symbols by training the system to recognize from
where in the source text each unknown word in the
target text came, so that in a postprocessing phase,
the unknown word can be replaced by a dictionary
lookup of the corresponding source word. In con-
trast, our method does not rely on access to a com-
plete dictionary, and instead transforms the data to
allow the system itself to learn translations for even
the rare words.

Some approaches have altered the model to cir-
cumvent the expensive normalization computa-
tion, rather than applying preprocessing and post-
processing on the text. Jean et al. (2014) de-
velop an importance sampling strategy for ap-
proximating the softmax computation. Mnih and

Kavukcuoglu (2013) present a technique for ap-
proximation of the target word probability using
noise-contrastive estimation.
Sequential or hierarchical encodings of large vo-

cabularies have played an important role in recur-
rent neural network language models, primarily to
address the inference time issue of large vocabu-
laries. Mikolov et al. (2011b) describe an architec-
ture in which output word types are grouped into
classes by frequency: the network first predicts a
class, then a word in that class. Mikolov et al.
(2013) describe an encoding of the output vocabu-
lary as a binary tree. To our knowledge, hierarchi-
cal encodings have not been applied to the input
vocabulary of a machine translation system.
Othermethods have also been developed towork

around large-vocabulary issues in languagemodel-
ing. Morin and Bengio (2005), Mnih and Hinton
(2009), and Mikolov et al. (2011a) develop hierar-
chical versions of the softmax computation; Huang
et al. (2012) and Collobert and Weston (2008) re-
move the need for normalization, thus avoiding
computation of the summation term over the entire
vocabulary.

2.3 Huffman Codes

An encoding can be used to represent a sequence
of tokens from a large vocabulary V using a small
vocabularyW . In the case of translation, let V be
the original corpus vocabulary, which can number
in the millions of word types in a typical corpus.
Let W be the vocabulary size of a neural transla-
tion model, typically set to a much smaller number
such as 30,000.
A deterministically invertible, variable-length

encodingmaps each v ∈ V to a sequencew ∈ W+
such that no other v′ ∈ V is mapped to a prefix of
w. Encoding simply replaces each element of V
according to the map, and decoding is unambigu-
ous because of this prefix restriction. An encoding
can be represented as a tree in which each leaf cor-
responds to an element of V , each node contains a
symbol fromW , and the encoding of any leaf is its
path from the root.
A Huffman code is an optimal encoding that

uses as few symbols fromW as possible to encode
an original sequence of symbols from V . Although
binary codes are typical,W can have any size. An
optimal encoding can be found using a greedy al-
gorithm (Huffman, 1952).
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to be or not to be

take it or leave it

to be or not it

(take) (leave)

s0

be s0

to be or not to be

s0 be it or s0 s0 it

Original Corpus

Repeat-All Encoding

to be s0 s1

(not) (it)

or

s0 s1

Repeat-Symbol Encoding

to be or s0 s0 to be

s1 s0 s0 s1 or s1 s1 s0 s1

(take) (leave)
s0 s1

s0 s1 s2

(not)(it)(to)
t0 t1

No-Repeats Encoding

s0 t0 s0 t1 or s1 t0 s0 t0 s0 t1

s2 t0 s1 t1 or s2 t1 s1 t1

(take)(leave)
t0 t1

(be)

or

t0 t1

13 encoded tokens

16 encoded tokens

20 encoded tokens

Figure 1: Our three encoding schemes are applied
to a two-sentence toy corpus for which each word
type appears one or two times, and the total vocab-
ulary size V is 7. An optimal encoding tree under
each scheme is shown for an encoded vocabulary
sizeW of 6. As stricter constraints are imposed on
the encoding, the encoded corpus length increases
and the number of elements of V that can be rep-
resented using a single symbol decreases. Two-
symbol encodings of rare words are underlined.

3 Variable-Length Encoding Methods

We consider three different encoding schemes that
are based on Huffman codes. The encoding for a
toy corpus under each scheme is depicted in Fig-
ure 1. While a Huffman code achieves the shortest
possible encoded length using a fixed vocabulary
size W , symbols are often shared between both
common words and rare words. The variants we
consider are designed to prevent specific forms of
symbol sharing across encodings.

3.1 Encoding Schemes
Repeat-All. The first scheme is a standard Huff-
man code. In our experiments with V ≈ 2 · 106,
W = 3 · 104, and frequencies drawn from the

WMT corpus, all words in V are encoded as either
a single symbol or two symbols ofW . We denote
the single-symbol words (which have the high-
est frequency) as common, and we call the other
words rare. The Repeat-All encoding scheme has
the highest number of common words. In Fig-
ure 1, common words are represented as them-
selves. Rare words are represented by two words,
and the first is always a pseudo-word symbol intro-
duced intoW of the form sX for an integer X.
Repeat-Symbol. The Repeat-Symbol encoding
scheme does not allow common-word symbols to
appear in the encoding of rare words. Instead, each
rare word is encoded as a two-symbol sequence
of the form “sX sY,” where X and Y are integers
that may be the same or different. This scheme
decreases the number of common words in order
to encode all rare words using a restricted set of
symbols. In this scheme, a common word in the
encoded vocabulary always corresponds to a com-
mon word in the original vocabulary, reducing am-
biguity of commonword symbols at the expense of
increasing ambiguity of pseudo-word symbols.
No-Repeats. Our final encoding scheme, No-
Repeats, uses a different vocabulary for the first
and second symbols in each rare word. That is, rare
words are represented as “sX tY,” where X and Y
are integers that may be the same or different. In
this scheme, common words and rare words do not
share symbols, and each symbol can immediately
be identified as common, the first of a rare encod-
ing pair, or the second of a rare encoding pair.

3.2 Symbol Counts
To maximize performance, it is critical to set the
number of common words (which transform to
themselves) as high as possible while satisfying
the desired total vocabulary size, counting all the
newly introduced symbols. In this section, we al-
gebraically derive this optimal number of common
words for each encoding scheme. We define the
following:

V : Size of the original vocabulary.

W : Size of the encoded vocabulary.

C: Number of common words.

S: Number of pseudo-words of the form sX.

T : Number of pseudo-words of the form tX.
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We are interested in maximizing C so that total
encoding length is minimized.
Repeat-All. We would like to encode the V − C
rare words, using onlyW −C new symbols. To do
so, for each new symbol (non-terminal node in our
encoding tree), we have allW symbols under it in
that branch. Therefore, we maximize C satisfying
the constraint that

V − C ≤ (W − C) ·W

Repeat-Symbol. Out of the V −C rare words, we
would like to pack them into a complete tree so that
they may be encoded using our remainingW −C
symbols. Therefore, we maximizeC satisfying the
constraint that

V − C ≤ (W − C)2

No-Repeats. Again, we desire to pack V − C
rare words into a complete tree where we may use
W − C symbols. To maximize C, we let S = T .
Because S+T +C = W , we have that 2S+C =
W . Therefore, we maximize C satisfying the con-
straint that

V − C ≤
(
W − C

2

)2

4 Experimental Results

We trained a public implementation1 of the sys-
tem described in Bahdanau et al. (2014) on the
English-French parallel corpus from ACL WMT
2014, which contains 348M tokens. We evaluated
on news-test-2014, also from WMT 2014, which
contains 3003 sentences. All experiments used the
same learning parameters and vocabulary size of
30,000.
We constructed each encoding by the following

method. First, we used the formulas derived in the
previous section to calculate the optimal number
of common words C for each encoding scheme,
using V to be the true vocabulary size of the train-
ing corpus and W = 30, 000. We then found the
C most common words in the text and encoded
them as themselves. For the remaining rare words,
we encoded them using a distinct symbol whose
formmatched the one prescribed for each encoding
scheme. The encoding was then applied separately

1github.com/lisa-groundhog/GroundHog

Encoding BLEU # Common Words
None 25.77 30,000
Repeat-All 27.45 29,940
Repeat-Symbol 26.52 28,860
No-Repeats 25.79 27,320

Table 1: BLEU scores (%) on detokenized test set
for each encoding scheme after training for 5 days.

to both the source text and the target text. Our en-
coding schemes all increased the total number of
tokens in the training corpus by approximately 4%.
To construct the mapping from rare words to

their 2-word encodings, we binned rare words by
frequency into branches. Thus, rare words of sim-
ilar frequency in the training corpus tended to
have encodings with the same first symbol. Simi-
larly, the standard Huffman construction algorithm
groups together rare words with similar frequen-
cies within subtrees. More intelligent heuristics for
constructing trees, such as using translation statis-
tics instead of training corpus frequency, would be
an interesting area of future work.

4.1 Results
Weused the RNNsearch-50 architecture fromBah-
danau et al. (2014) as our machine translation sys-
tem. We report results for this system alone, as well
as for each of our three encoding schemes, using
the BLEU metric (Papineni et al., 2002). Table 1
summarizes our results after training each vari-
ant for 5 days, corresponding to roughly 2 passes
through the 180K-sentence training corpus.
Alternative techniques that leverage bilingual

resources have been shown to provide larger im-
provements. Jean et al. (2014) demonstrate an im-
provement of 3.1 BLEU by using bilingual word
co-occurrence statistics in an aligned corpus to re-
place unknown word tokens. Luong et al. (2014)
demonstrate an improvement of up to 2.8 BLEU
over a series of stronger baselines using an un-
known word model that also makes predictions us-
ing a bilingual dictionary.

4.2 Analysis
Our results indicate that the encoding scheme
that keeps the highest number of common words,
Repeat-All, performs best. Table 2 shows the un-
igram precision of each output. The common
word translation accuracy is higher for all encoding
schemes than for the baseline, although all preci-
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Encoding Common Rare 1st Symbol
None 62.0 0.0 -
Repeat-All 65.8 28.0 64.8
Repeat-Symbol 65.5 16.5 24.8
No-Repeats 63.6 15.8 25.7

Table 2: Test set precision (%) on common words
and rare words for each encoding strategy. 1st Sym-
bol denotes the precision of the first pseudo-word
symbol in an encoded rare word.

sions are similar. Larger differences appear in the
precision of rare words. The scheme that encodes
rare words using both pseudo-words and common
words gives substantially higher rare word accu-
racy than any other approach.
The final column of Table 2 shows the unigram

precision of the first pseudo-word in an encoded
rare word. The Repeat-All scheme uses only 60
different first symbols to encode all rare words.
The other schemes require over 1,000. The fact
that Repeat-All has a constrained set of rare word
first symbols may account for its higher rare word
precision.

It is possible for the model to predict an in-
valid encoded sequence that does not correspond
to any word in the original vocabulary. However,
in our experiments, we did not observe any such
sequences in the decoding of the test set. A rea-
sonable way to deal with invalid sequences would
be to drop them from the output during decoding.

5 Conclusion and Future Work
We described a novel approach for encoding the
source and target text based on Huffman cod-
ing schemes, eliminating the use of the unknown
word symbol. An important continuation of our
work would be to develop heuristics for effectively
grouping “similar” words in the source and target
text, so that they tend to have encodings that share
a symbol. Even with our naive grouping by corpus
frequency, our approach offers a simple way to pre-
dict both common and rare words in a neural trans-
lation model. As a result, performance improves
by up to 1.7 BLEU. We expect that the simplic-
ity of our technique will allow for straightforward
combination with other enhancements and neural
models.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR,
abs/1409.0473.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
Gülçehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. 2014. Learning phrase represen-
tations using RNN encoder-decoder for statistical
machine translation. CoRR, abs/1406.1078.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of the International Conference on Machine
Learning.

Eric H. Huang, Richard Socher, Christopher D. Man-
ning, and Andrew Y. Ng. 2012. Improving word
representations via global context and multiple word
prototypes. In Proceedings of the Association for
Computational Linguistics.

David A. Huffman. 1952. A method for the construc-
tion of minimum-redundancy codes. Proceedings of
the IRE.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic,
and Yoshua Bengio. 2014. On using very large
target vocabulary for neural machine translation.
CoRR, abs/1412.2007.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
continuous translation models.

Thang Luong, Ilya Sutskever, Quoc V. Le, Oriol
Vinyals, and Wojciech Zaremba. 2014. Addressing
the rare word problem in neural machine translation.
CoRR, abs/1410.8206.

Tomáš Mikolov, Anoop Deoras, Daniel Povey, Lukáš
Burget, and Jan Černocký. 2011a. Strategies for
training large scale neural network language models.
In Proceedings of ASRU.

Tomáš Mikolov, S. Kombrink, L. Burget, J.H. Cer-
nocky, and Sanjeev Khudanpur. 2011b. Exten-
sions of recurrent neural network language model.
In Acoustics, Speech and Signal Processing.

Tomáš Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Andriy Mnih and Geoffrey E. Hinton. 2009. A scal-
able hierarchical distributed language model. In Ad-
vances in Neural Information Processing Systems.

Andriy Mnih and Koray Kavukcuoglu. 2013. Learning
word embeddings efficiently with noise-contrastive
estimation. In Advances in Neural Information Pro-
cessing Systems.

2092



Frederic Morin and Yoshua Bengio. 2005. Hierarchi-
cal probabilistic neural network language model. In
AI Stats.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic eval-

uation of machine translation. In Proceedings of the
Association for Computational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.

CoRR, abs/1409.3215.

2093



Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 2094–2099,
Lisbon, Portugal, 17-21 September 2015. c©2015 Association for Computational Linguistics.

A Binarized Neural Network Joint Model for Machine Translation
Jingyi Zhang1,2, Masao Utiyama1, Eiichro Sumita1

Graham Neubig2, Satoshi Nakamura2

1National Institute of Information and Communications Technology,
3-5Hikaridai, Keihanna Science City, Kyoto 619-0289, Japan

2Graduate School of Information Science, Nara Institute of Science and Technology,
Takayama, Ikoma, Nara 630-0192, Japan

jingyizhang/mutiyama/eiichiro.sumita@nict.go.jp
neubig/s-nakamura@is.naist.jp

Abstract

The neural network joint model (NNJM),
which augments the neural network lan-
guage model (NNLM) with an m-word
source context window, has achieved large
gains in machine translation accuracy, but
also has problems with high normalization
cost when using large vocabularies. Train-
ing the NNJM with noise-contrastive es-
timation (NCE), instead of standard maxi-
mum likelihood estimation (MLE), can re-
duce computation cost. In this paper, we
propose an alternative to NCE, the bina-
rized NNJM (BNNJM), which learns a bi-
nary classifier that takes both the context
and target words as input, and can be ef-
ficiently trained using MLE. We compare
the BNNJM and NNJM trained by NCE
on various translation tasks.

1 Introduction

Neural network translation models, which learn
mappings over real-valued vector representations
in high-dimensional space, have recently achieved
large gains in translation accuracy (Hu et al., 2014;
Devlin et al., 2014; Sundermeyer et al., 2014;
Auli et al., 2013; Schwenk, 2012; Sutskever et al.,
2014; Bahdanau et al., 2015).

Notably, Devlin et al. (2014) proposed a neural
network joint model (NNJM), which augments the
n-gram neural network language model (NNLM)
with an m-word source context window, as shown
in Figure 1a. While this model is effective, the
computation cost of using it in a large-vocabulary
SMT task is quite expensive, as probabilities need
to be normalized over the entire vocabulary. To
solve this problem, Devlin et al. (2014) pre-
sented a technique to train the NNJM to be self-
normalized and avoided the expensive normaliza-
tion cost during decoding. However, they also

P(ti=1)
P(ti=2)

P(ti=N)

ti-n+1~ti-1

m-word
source context

(a)

P(ti is correct)
P(ti is wrong)ti-n+1~ti

source context
m-word

(b)

Figure 1: (a) the traditional NNJM and (b) the pro-
posed BNNJM

note that this self-normalization technique sacri-
fices neural network accuracy, and the training
process for the self-normalized neural network is
very slow, as with standard maximum likelihood
estimation (MLE).

To remedy the problem of long training times
in the context of NNLMs, Vaswani et al. (2013)
used a method called noise contrastive estimation
(NCE). Compared with MLE, NCE does not re-
quire repeated summations over the whole vocab-
ulary and performs nonlinear logistic regression to
discriminate between the observed data and artifi-
cially generated noise.

This paper proposes an alternative framework of
binarized NNJMs (BNNJM), which are similar to
the NNJM, but use the current target word not as
the output, but as the input of the neural network,
estimating whether the target word under exam-
ination is correct or not, as shown in Figure 1b.
Because the BNNJM uses the current target word
as input, the information about the current target
word can be combined with the context word in-
formation and processed in the hidden layers.

The BNNJM learns a simple binary classifier,
given the context and target words, therefore it
can be trained by MLE very efficiently. “Incor-
rect” target words for the BNNJM can be gen-
erated in the same way as NCE generates noise
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for the NNJM. We present a novel noise distribu-
tion based on translation probabilities to train the
NNJM and the BNNJM efficiently.

2 Neural Network Joint Model

Let T = t
|T |
1 be a translation of S = s

|S|
1 . The

NNJM (Devlin et al., 2014) defines the following
probability,

P (T |S) =
∏|T |

i=1
P
(
ti|sai+(m−1)/2

ai−(m−1)/2
, ti−1

i−n+1

)
(1)

where target word ti is affiliated with source word
sai . Affiliation ai is derived from the word align-
ments using heuristics1. To estimate these prob-
abilities, the NNJM uses m source context words
and n− 1 target history words as input to a neural
network and performs estimation of unnormalized
probabilities p (ti|C) before normalizing over all
words in the target vocabulary V ,

P (ti|C) = p(ti|C)
Z(C)

Z (C) =
∑
ti′∈V

p (ti′|C) (2)

where C stands for source and target context
words as in Equation 1.

The NNJM can be trained on a word-aligned
parallel corpus using standard MLE, but the cost
of normalizing over the entire vocabulary to calcu-
late the denominator in Equation 2 is quite large.
Devlin et al. (2014)’s self-normalization technique
can avoid normalization cost during decoding, but
not during training.

NCE can be used to train NNLM-style models
(Vaswani et al., 2013) to reduce training times.
NCE creates a noise distribution q (ti), selects k
noise samples ti1, ..., tik for each ti and introduces
a random variable v which is 1 for training exam-
ples and 0 for noise samples,

P (v = 1, ti|C) = 1
1+k · p(ti|C)

Z(C)

P (v = 0, ti|C) = k
1+k · q (ti) .

NCE trains the model to distinguish training
data from noise by maximize the conditional like-
lihood,

L = logP (v = 1|C, ti) +
k∑

j=1

logP (v = 0|C, tik).

The normalization cost can be avoided by using
p (ti|C) as an approximation of P (ti|C).2

1If ti aligns to exactly one source word, ai is the index of
this source word; If ti aligns to multiple source words, ai is
the index of the aligned word in the middle; If ti is unaligned,
they inherit its affiliation from the closest aligned word.

2The theoretical properties of self-normalization tech-
niques, including NCE and Devlin et al. (2014)’s method,
are investigated by Andreas and Klein (2015).

3 Binarized NNJM

In this paper, we propose a new framework of the
binarized NNJM (BNNJM), which is similar to
the NNJM but learns not to predict the next word
given the context, but solves a binary classifica-
tion problem by adding a variable v ∈ {0, 1} that
stands for whether the current target word ti is cor-
rectly/wrongly produced in terms of source con-
text words sai+(m−1)/2

ai−(m−1)/2 and target history words

ti−1
i−n+1 ,

P
(
v|sai+(m−1)/2

ai−(m−1)/2, t
i−1
i−n+1, ti

)
.

The BNNJM is learned by a feed-
forward neural network with m + n inputs{
s
ai+(m−1)/2
ai−(m−1)/2, t

i−1
i−n+1, ti

}
and two outputs for

v = 1/0.
Because the BNNJM uses the current target

word as input, the information about the current
target word can be combined with the context
word information and processed in the hidden lay-
ers. Thus, the hidden layers can be used to learn
the difference between correct target words and
noise in the BNNJM, while in the NNJM the hid-
den layers just contain information about context
words and only the output layer can be used to dis-
criminate between the training data and noise, giv-
ing the BNNJM more power to learn this classifi-
cation problem.

We can use the BNNJM probability in transla-
tion as an approximation for the NNJM as below,

P
(
ti|sai+(m−1)/2

ai−(m−1)/2, t
i−1
i−n+1

)
≈ P

(
v = 1|sai+(m−1)/2

ai−(m−1)/2, t
i−1
i−n+1, ti

)
.

As a binary classifier, the gradient for a sin-
gle example in the BNNJM can be calculated
efficiently by MLE without it being necessary
to calculate the softmax over the full vocabu-
lary. On the other hand, we need to create
“positive” and “negative” examples for the clas-
sifier. Positive examples can be extracted di-
rectly from the word-aligned parallel corpus as〈
s
ai+(m−1)/2
ai−(m−1)/2, t

i−1
i−n+1, ti

〉
; Negative examples can

be generated for each positive example in the
same way that NCE generates noise data as〈
s
ai+(m−1)/2
ai−(m−1)/2, t

i−1
i−n+1, ti

′
〉

, where ti′ ∈ V \ {ti}.

4 Noise Sampling

4.1 Unigram Noise
Vaswani et al. (2013) adopted the unigram proba-
bility distribution (UPD) to sample noise for train-
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I will for someonearrange take youto round

我 会 人 带安排 转转你

Figure 2: A parallel sentence pair.

ing NNLMs with NCE,

q (ti′) = occur(ti
′)∑

ti
′′∈V

occur(ti′′)

where occur (ti′) stands for how many times ti′

occurs in the training corpus.

4.2 Translation Model Noise

In this paper, we propose a noise distribution spe-
cialized for translation models, such as the NNJM
or BNNJM.

Figure 2 gives a Chinese-to-English parallel
sentence pair with word alignments to demon-
strate the intuition behind our method. Focusing
on sai=“安排”, this is translated into ti =“ar-
range”. For this positive example, UPD is allowed
to sample any arbitrary noise, such as ti′ = “ba-
nana”. However, in this case, noise ti′ = “banana”
is not useful for model training, as constraints on
possible translations given by the phrase table en-
sure that “安排” will never be translated into “ba-
nana”. On the other hand, noise ti′ = “arranges”
and “arrangement” are both possible translations
of “安排” and therefore useful training data, that
we would like our model to penalize.

Based on this intuition, we propose the use
of another noise distribution that only uses ti

′

that are possible translations of sai , i.e., ti′ ∈
U (sai) \ {ti}, where U (sai) contains all target
words aligned to sai in the parallel corpus.

Because U (sai) may be quite large and con-
tain many wrong translations caused by wrong
alignments, “banana” may actually be included
in U (“安排”). To mitigate the effect of un-
common examples, we use a translation proba-
bility distribution (TPD) to sample noise ti′ from
U (sai) \ {ti} as follows,

q (ti′|sai) =
align(sai ,ti

′)∑
ti
′′∈U(sai )

align(sai ,ti
′′)

where align (sai , ti
′) is how many times ti′ is

aligned to sai in the parallel corpus.
Note that ti could be unaligned, in which case

we assume that it is aligned to a special null word.
Noise for unaligned words is sampled according to
the TPD of the null word. If several target/source
words are aligned to one source/target word, we

choose to combine these target/source words as a
new target/source word.3

5 Experiments

5.1 Setting

We evaluated the effectiveness of the proposed ap-
proach for Chinese-to-English (CE), Japanese-to-
English (JE) and French-to-English (FE) transla-
tion tasks. The datasets officially provided for the
patent machine translation task at NTCIR-9 (Goto
et al., 2011) were used for the CE and JE tasks.
The development and test sets were both provided
for the CE task while only the test set was provided
for the JE task. Therefore, we used the sentences
from the NTCIR-8 JE test set as the development
set. Word segmentation was done by BaseSeg
(Zhao et al., 2006) for Chinese and Mecab4 for
Japanese. For the FE language pair, we used stan-
dard data for the WMT 2014 translation task. The
training sets for CE, JE and FE tasks contain 1M,
3M and 2M sentence pairs, respectively.

For each translation task, a recent version of
Moses HPB decoder (Koehn et al., 2007) with the
training scripts was used as the baseline (Base).
We used the default parameters for Moses, and
a 5-gram language model was trained on the tar-
get side of the training corpus using the IRSTLM
Toolkit5 with improved Kneser-Ney smoothing.
Feature weights were tuned by MERT (Och,
2003).

The word-aligned training set was used to learn
the NNJM and the BNNJM.6 For both NNJM and
BNNJM, we set m = 7 and n = 5. The NNJM
was trained by NCE using UPD and TPD as noise
distributions. The BNNJM was trained by stan-
dard MLE using UPD and TPD to generate nega-
tive examples.

The number of noise samples for NCE was set
to be 100. For the BNNJM, we used only one neg-
ative example for each positive example in each
training epoch, as the BNNJM needs to calculate

3The processing for multiple alignments helps sample
more useful negative examples for TPD, and had little ef-
fect on the translation performance when UPD was used as
the noise distribution for the NNJM and the BNNJM in our
preliminary experiments.

4http://sourceforge.net/projects/mecab/files/
5http://hlt.fbk.eu/en/irstlm
6Both the NNJM and the BNNJM had one hidden layer,

100 hidden nodes, input embedding dimension 50, output
embedding dimension 50. A small set of training data was
used as validation data. The training process was stopped
when validation likelihood stopped increasing.
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CE JE FE
E T E T E T

NNJM UPD 20 22 19 49 20 28TPD 4 6 4

BNNJM UPD 14 16 12 34 11 22TPD 11 9 9

Table 1: Epochs (E) and time (T) in minutes per
epoch for each task.

CE JE FE
Base 32.95 30.13 24.56

NNJM UPD 34.36+ 31.30+ 24.68
TPD 34.60+ 31.50+ 24.80

BNNJM UPD 32.89 30.04 24.50
TPD 35.05+* 31.42+ 25.84+*

Table 2: Translation results. The symbol + and *
represent significant differences at the p < 0.01
level against Base and NNJM+UPD, respectively.
Significance tests were conducted using bootstrap
resampling (Koehn, 2004).

the whole neural network (not just the output layer
like the NNJM) for each noise sample and thus
noise computation is more expensive. However,
for different epochs, we resampled the negative
example for each positive example, so the BNNJM
can make use of different negative examples.

5.2 Results and Discussion

Table 1 shows how many epochs these two models
needed and the training time for each epoch on a
10-core 3.47GHz Xeon X5690 machine.7 Trans-
lation results are shown in Table 2.

We can see that using TPD instead of UPD
as a noise distribution for the NNJM trained by
NCE can speed up the training process signifi-
cantly, with a small improvement in performance.
But for the BNNJM, using different noise distribu-
tions affects translation performance significantly.
The BNNJM with UPD does not improve over
the baseline system, likely due to the small num-
ber of noise samples used in training the BNNJM,
while the BNNJM with TPD achieves good per-
formance, even better than the NNJM with TPD
on the Chinese-to-English and French-to-English
translation tasks.

From Table 2, the NNJM does not improve
translation performance significantly on the FE
task. Note that the baseline BLEU for the FE

7The decoding time for the NNJM and the BNNJM were
similar, since the NNJM trained by NCE uses p (ti|C) as
an approximation of P (ti|C) without normalization and the
BNNJM only needs to be normalized over two output neu-
rons.

S: 该(this) 移动(movement) 持续(continued) 到(until)
寄生虫(parasite) 由(by) 两(two) 个 舌(tongues) 部 21
彼此(each other) 接触(contact) 时(where) 的 点(point)
接触(touched)。
R: this movement is continued until the parasite is
touched by the point where the two tongues 21 contact
each other .
T1: the mobile continues to the parasite from the two
tongue 21 contacts the points of contact with each other .
T2: this movement is continued until the parasite by two
tongue 21 contact points of contact with each other .

Table 3: Translation examples. Here, S: source;
R: reference; T1 uses NNJM; T2 uses BNNJM.

NNJM BNNJM
该− >the 1.681 -0.126
移动− >mobile -4.506 -3.758
持续− >continues -1.550 -0.130
到− >to 2.510 -0.220
SUM -1.865 -4.236
该− >this -2.414 -0.649
移动− >movement -1.527 -0.200
null− >is 0.006 -0.055
持续− >continued -0.292 -0.249
到− >until -6.846 -0.186
SUM -11.075 -1.341

Table 4: Scores for different translations.

task is lower than CE and JE tasks, indicating that
learning is harder for the FE task than CE and JE
tasks. The validation perplexities of the NNJM
with UPD for CE, JE and FE tasks are 4.03, 3.49
and 8.37. Despite these difficult learning circum-
stances and lack of large gains for the NNJM, the
BNNJM improves translations significantly for the
FE task, suggesting that the BNNJM is more ro-
bust to difficult translation tasks that are hard for
the NNJM.

Table 3 gives Chinese-to-English translation ex-
amples to demonstrate how the BNNJM (with
TPD) helps to improve translations over the
NNJM (with TPD). In this case, the BNNJM helps
to translate the phrase “该 移动 持续 到” bet-
ter. Table 4 gives translation scores for these two
translations calculated by the NNJM and the BN-
NJM. Context words are used for predictions but
not shown in the table.

As can be seen, the BNNJM prefers T2 while
the NNJM prefers T1. Among these predictions,
the NNJM and the BNNJM predict the translation
for “到” most differently. The NNJM clearly pre-
dicts that in this case “到” should be translated into
“to” more than “until”, likely because this exam-
ple rarely occurs in the training corpus. However,
the BNNJM prefers “until” more than “to”, which
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demonstrates the BNNJM’s robustness to less fre-
quent examples.

5.3 Analysis for JE Translation Results
Finally, we examine the translation results to ex-
plore why the BNNJM with TPD did not outper-
form the NNJM with TPD for the JE translation
task, as it did for the other translation tasks. We
found that using the BNNJM instead of the NNJM
on the JE task did improve translation quality sig-
nificantly for infrequent words, but not for fre-
quent words.

First, we describe how we estimate translation
quality for infrequent words. Suppose we have a
test set S, a reference set R and a translation set T
with I sentences,

Si (1 ≤ i ≤ I) , Ri (1 ≤ i ≤ I) , Ti (1 ≤ i ≤ I)
Ti contains J individual words,

Wij ∈Words (Ti)

To (Wij) is how many times Wij occurs in Ti and
Ro (Wij) is how many times Wij occurs in Ri.

The general 1-gram translation accuracy (Pap-
ineni et al., 2002) is calculated as,

Pg =

I∑
i=1

J∑
j=1

min(To(Wij),Ro(Wij))

I∑
i=1

J∑
j=1

To(Wij)

This general 1-gram translation accuracy does not
distinguish word frequency.

We use a modified 1-gram translation accuracy
that weights infrequent words more heavily,

Pc =

I∑
i=1

J∑
j=1

min(To(Wij),Ro(Wij))· 1

Occur(Wij)
I∑

i=1

J∑
j=1

To(Wij)

where Occur (Wij) is how many times Wij oc-
curs in the whole reference set. Note Pc will not
be 1 even in the case of completely accurate trans-
lations, but it can approximately reflect infrequent
word translation accuracy, since correct frequent
word translations contribute less to Pc.

Table 5 shows Pg and Pc for different transla-
tion tasks. It can be seen that the BNNJM im-
proves infrequent word translation quality simi-
larly for all translation tasks, but improves gen-
eral translation quality less for the JE task than the
other translation tasks. We conjecture that the rea-
son why the BNNJM is less useful for frequent
word translations on the JE task is the fact that
the JE parallel corpus has less accurate function
word alignments than other language pairs, as the

CE JE FE
Pg Pc Pg Pc Pg Pc

NNJM 70.3 5.79 68.2 4.15 61.2 6.70
BNNJM 70.9 5.97 68.4 4.30 61.7 6.86
Imp. (%) 0.85 3.1 0.29 3.6 0.81 2.4

Table 5: 1-gram precisions and improvements.

grammatical features of Japanese and English are
quite different.8 Wrong function word alignments
will make noise sampling less effective and there-
fore lower the BNNJM performance for function
word translations. Although wrong word align-
ments will also make noise sampling less effec-
tive for the NNJM, the BNNJM only uses one
noise sample for each positive example, so wrong
word alignments affect the BNNJM more than the
NNJM.

6 Related Work

Xu et al. (2011) proposed a method to use binary
classifiers to learn NNLMs. But they also used
the current target word in the output, similarly to
NCE. The BNNJM uses the current target word as
input, so the information about the current target
word can be combined with the context word in-
formation and processed in hidden layers.

Mauser et al. (2009) presented discriminative
lexicon models to predict target words. They
train a separate classifier for each target word, as
these lexicon models use discrete representations
of words and different classifiers do not share fea-
tures. In contrast, the BNNJM uses real-valued
vector representations of words and shares fea-
tures, so we train one classifier and can use the
similarity information between words.

7 Conclusion

This paper proposes an alternative to the NNJM,
the BNNJM, which learns a binary classifier that
takes both the context and target words as input
and combines all useful information in the hidden
layers. We also present a novel noise distribution
based on translation probabilities to train the BN-
NJM efficiently. With the improved noise sam-
pling method, the BNNJM can achieve compara-
ble performance with the NNJM and even improve
the translation results over the NNJM on Chinese-
to-English and French-to-English translations.

8Infrequent words are usually content words and frequent
words are usually function words.
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Abstract

When applying machine learning to prob-
lems in NLP, there are many choices to
make about how to represent input texts.
They can have a big effect on perfor-
mance, but they are often uninteresting
to researchers or practitioners who simply
need a module that performs well. We ap-
ply sequential model-based optimization
over this space of choices and show that it
makes standard linear models competitive
with more sophisticated, expensive state-of-
the-art methods based on latent variables or
neural networks on various topic classifica-
tion and sentiment analysis problems. Our
approach is a first step towards black-box
NLP systems that work with raw text and
do not require manual tuning.

1 Introduction

NLP researchers and practitioners spend a consid-
erable amount of time comparing machine-learned
models of text that differ in relatively uninteresting
ways. For example, in categorizing texts, should
the “bag of words” include bigrams, and is tf-idf
weighting a good idea? In learning word embed-
dings, distributional similarity approaches have
been shown to perform competitively with neural
network models when the hyperparameters (e.g.,
context window, subsampling rate, smoothing con-
stant) are carefully tuned (Levy et al., 2015). These
choices matter experimentally, often leading to big
differences in performance, with little consistency
across tasks and datasets in which combination of
choices works best. Unfortunately, these differ-
ences tell us little about language or the problems
that machine learners are supposed to solve.

We propose that these decisions can be auto-
mated in a similar way to hyperparameter selection
(e.g., choosing the strength of a ridge or lasso regu-
larizer). Given a particular text dataset and classi-
fication task, we show a technique for optimizing
over the space of representational choices, along

with other “nuisances” that interact with these de-
cisions, like hyperparameter selection. For exam-
ple, using higher-order n-grams means more fea-
tures and a need for stronger regularization and
more training iterations. Generally, these decisions
about instance representation are made by humans,
heuristically; our work seeks to automate them, not
unlike Daelemans et al. (2003), who proposed to
use genetic algorithms to optimize representational
choices.

Our technique instantiates sequential model-
based optimization (SMBO; Hutter et al., 2011).
SMBO and other Bayesian optimization ap-
proaches have been shown to work well for hyper-
parameter tuning (Bergstra et al., 2011; Hoffman
et al., 2011; Snoek et al., 2012). Though popular
in computer vision (Bergstra et al., 2013), these
techniques have received little attention in NLP.

We apply it to logistic regression on a range of
topic and sentiment classification tasks. Consis-
tently, our method finds representational choices
that perform better than linear baselines previously
reported in the literature, and that, in some cases,
are competitive with more sophisticated non-linear
models trained using neural networks.

2 Problem Formulation and Notation

Let the training data consist of a collection of pairs
dtrain = 〈〈d.i1, d.o1〉, . . . , 〈d.in, d.on〉〉, where
each input d.i ∈ I is a text document and each
output d.o ∈ O, the output space. The overall
training goal is to maximize a performance func-
tion f (e.g., classification accuracy, log-likelihood,
F1 score, etc.) of a machine-learned model, on a
held-out dataset, ddev ∈ (I× O)n

′
.

Classification proceeds in three steps: first,
x : I → RN maps each input to a vector rep-
resentation. Second, a predictive model (typi-
cally, its parameters) is learned from the inputs
(now transformed into vectors) and outputs: L :
(RN × O)n → (RN → O). Finally, the resulting
classifier c : I → O is fixed as L(dtrain) ◦ x (i.e.,
the composition of the representation function with
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the learned mapping).
Here we consider linear classifiers of the form

c(d.i) = arg maxo∈O w>o x(d.i), where the param-
eters wo ∈ RN , for each output o, are learned
using logistic regression on the training data. We
let w denote the concatenation of all wo. Hence
the parameters can be understood as a function of
the training data and the representation function
x. The performance function f , in turn, is a func-
tion of the held-out data ddev and x—also w and
dtrain , through x. For simplicity, we will write
“f(x)” when the rest are clear from context.

Typically, x is fixed by the model designer, per-
haps after some experimentation, and learning fo-
cuses on selecting the parameters w. For logistic
regression and many other linear models, this train-
ing step reduces to convex optimization in N |O|
dimensions—a solvable problem that is costly for
large datasets and/or large output spaces. In seek-
ing to maximize f with respect to x, we do not wish
to carry out training any more times than necessary.

Choosing x can be understood as a problem of
selecting hyperparameter values. We therefore turn
to Bayesian optimization, a family of techniques
that can be used to select hyperparameter values
intelligently when solving for parameters (w) is
costly.

3 Bayesian Optimization

Our approach is based on sequential model-based
optimization (SMBO; Hutter et al., 2011). It itera-
tively chooses representation functions x. On each
round, it makes this choice through a probabilistic
model of f , then evaluates f—we call this a “trial.”
As in any iterative search algorithm, the goal is to
balance exploration of options for x with exploita-
tion of previously-explored options, so that a good
choice is found in a small number of trials.

More concretely, in the tth trial, xt is selected
using an acquisition function A and a “surrogate”
probabilistic model pt. Second, f is evaluated
given xt—an expensive operation which involves
training to learn parameters w and assessing per-
formance on the held-out data. Third, the surrogate
model is updated. See Algorithm 1; details on A

and pt follow.

Acquisition Function. A good acquisition func-
tion returns high values for x when either the value
f(x) is predicted to be high, or the uncertainty
about f(x)’s value is high; balancing between
these is the classic tradeoff between exploitation

Algorithm 1 SMBO algorithm

Input: number of trials T , target function f
p1 = initial surrogate model
Initialize y∗

for t = 1 to T do
xt ← arg maxx A(x; pt, y∗)
yt ← evaluate f(xt)
Update y∗

Estimate pt given x1:t and y1:t

end for

and exploration. We use a criterion called Expected
Improvement (EI; Jones, 2001),1 which is the ex-
pectation (under the current surrogate model pt)
that f(x) = y will exceed f(x∗) = y∗:

A(x; pt, y∗) =
∫ ∞
−∞

max(y − y∗, 0)pt(y | x)dy

where x∗ is chosen depending on the surrogate
model, discussed below. (For now, think of it as
a strongly-performing “benchmark” discovered in
earlier iterations.) Other options for the acquisition
function include maximum probability of improve-
ment (Jones, 2001), minimum conditional entropy
(Villemonteix et al., 2009), Gaussian process up-
per confidence bound (Srinivas et al., 2010), or a
combination of them (Hoffman et al., 2011).

Surrogate Model. As a surrogate model, we use
a tree-structured Parzen estimator (TPE; Bergstra
et al., 2011).2 This is a nonparametric approach to
density estimation. We seek to estimate pt(y | x)
where y = f(x), the performance function that is
expensive to compute exactly. The TPE approach

seeks pt(y | x) ∝ pt(y) ·
{
p<

t (x), if y<y∗

p≥t (x), if y≥y∗
, where

p<t and p≥t are densities estimated using observa-
tions from previous trials that are less than and
greater than y∗, respectively. In TPE, y∗ is defined
as some quantile of the observed y from previous
trials; we use 15-quantiles.

As shown by Bergstra et al. (2011), the Ex-
pected Improvement in TPE can be written as:

1EI is the most widely used acquisition function that has
been shown to work well on a range of tasks.

2Another common approach to the surrogate is the Gaus-
sian process (Rasmussen and Williams, 2006; Hoffman et al.,
2011; Snoek et al., 2012). Like Bergstra et al. (2011), our
preliminary experiments found the TPE to perform favorably.
Further TPE’s tree-structured configuration space is advanta-
geous, because it allows nested definitions of hyperparameters,
which we exploit in our experiments (e.g., only allows bigrams
to be chosen if unigrams are also chosen).
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Hyperparameter Values
nmin {1, 2, 3}
nmax {nmin , . . . , 3}
weighting scheme {tf, tf-idf, binary}
remove stop words? {True, False}
regularization {`1, `2}
regularization strength [10−5, 105]
convergence tolerance [10−5, 10−3]

Table 1: The set of hyperparameters considered in our ex-
periments. The top half are hyperparameters related to text
representation, while the bottom half are logistic regression
hyperparameters, which also interact with the chosen repre-
sentation.

A(x; pt, y∗) ∝
(
γ + p<

t (x)

p≥t (x)
(1− γ)

)−1

, where

γ = pt(y < y∗), fixed at 0.15 by definition of
y∗ (above). Here, we prefer x with high probability
under p≥t (x) and low probability under p<t (x). To
maximize this quantity, we draw many candidates
according to p≥t (x) and evaluate them according
to p<t (x)/p≥t (x). Note that p(y) does not need to
be given an explicit form. To compute p<t (x) and
p≥t (x), we associate each hyperparameter with a
node in the graphical model and multiply individ-
ual probabilities at every node—see Bergstra et al.
(2011) for details.

4 Experiments

We fix L to logistic regression. We optimize text
representation based on the types of n-grams used,
the type of weighting scheme, and the removal of
stopwords; we also optimize the regularizer and
training convergence criterion, which interact with
the representation. See Table 1 for a complete list.

Note that even with this limited number of
options, the number of possible combinations is
huge,3 so exhaustive search is computationally ex-
pensive. In all our experiments for all datasets, we
limit ourselves to 30 trials per dataset. The only
preprocessing we applied was downcasing.

We always use a development set to evaluate
f(x) during learning and report the final result on
an unseen test set. We summarize the hyperparam-
eters selected by our method, and the accuracies
achieved (on test data) in Table 5. We discuss com-
parisons to baselines for each dataset in turn. For
each of our datasets, we select supervised, non-
ensemble classification methods from previous lit-
erature as baselines. In each case, we emphasize
comparisons with the best-published linear method

3It is actually infinite since the reg. strength and conv. tol-
erance are continuous values, but we could discretize them.

(often an SVM with a linear kernel with represen-
tation selected by experts) and the best-published
method overall. In the following, “SVM” always
means “linear SVM.” All methods were trained
and evaluated on the same training/testing splits
as baselines; in cases where standard development
sets were not available, we used a random 20% of
the training data as a development set.

Stanford sentiment treebank (Socher et al.,
2013)—Table 2. A sentence-level sentiment
analysis dataset of rottentomatoes.com movie re-
views: http://nlp.stanford.edu/sentiment. We use the
binary classification task where the goal is to pre-
dict whether a review is positive or negative (no
neutral). Our logistic regression model outperforms
the baseline SVM reported by Socher et al. (2013),
who used only unigrams but did not specify the
weighting scheme for their SVM baseline. While
our result is still below the state-of-the-art based
on the the recursive neural tensor networks (Socher
et al., 2013) and the paragraph vector (Le and
Mikolov, 2014), we show that logistic regression is
comparable with recursive and matrix-vector neu-
ral networks (Socher et al., 2011; Socher et al.,
2012).

Method Acc.
Naı̈ve Bayes 81.8
SVM 79.4
Vector average 80.1
Recursive neural networks 82.4
LR (this work) 82.4
Matrix-vector RNN 82.9
Recursive neural tensor networks 85.4
Paragraph vector 87.8

Table 2: Comparisons on the Stanford sentiment treebank
dataset. Scores are as reported by Socher et al. (2013) and Le
and Mikolov (2014). Test size = 6, 920.

Amazon electronics (McAuley and Leskovec,
2013)—Table 3. A binary sentiment analy-
sis dataset of Amazon electronics product re-
views: http://riejohnson.com/cnn data.html. The best-
performing methods on this dataset are based on
convolutional neural networks (Johnson and Zhang,
2015).4 Our method is on par with the second-
best of these, outperforming all of the reported
feed-forward neural networks and SVM variants
Johnson and Zhang used as baselines. They varied

4These are convolutional neural networks with a recti-
fier activation function, trained under `2 regularization with
stochastic gradient descent. The authors also consider an
extension based on parallel CNN that we do not include here.
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the representations, and used log term frequency
and normalization to unit vectors as the weighting
scheme, after finding that this outperformed term
frequency. Our method achieved the best perfor-
mance with binary weighting, which they did not
consider.

IMDB movie reviews (Maas et al., 2011)—
Table 3. A binary sentiment analysis
dataset of highly polar IMDB movie reviews:
http://ai.stanford.edu/~amaas/data/sentiment. The
results parallel those for Amazon electronics;
our method comes close to convolutional neural
networks (Johnson and Zhang, 2015), which
are state-of-the-art.5 It outperforms SVMs and
feed-forward neural networks, the restricted
Boltzmann machine approach presented by Dahl
et al. (2012), and compressive feature learning
(Paskov et al., 2013).6

Method Accuracy
Amazon IMDB

SVM-unigrams 88.29 88.64
RBM 89.23
SVM-{1, 2}-grams 90.95 90.26
Compressive feature learning 90.40
SVM-{1, 2, 3}-grams 91.29 90.58
LR-{1, 2, 3, 4, 5}-grams 90.60
NN-{1, 2, 3}-grams 91.52 90.83
LR (this work) 91.56 90.85
Bag of words CNN 91.61 91.34
Sequential CNN 92.52 91.61

Table 3: Comparisons on the Amazon electronics and IMDB
reviews datasets. SVM results are from Wang and Manning
(2012), the RBM (restricted Bolzmann machine) result is from
Dahl et al. (2012), NN and CNN results are from Johnson
and Zhang (2015), and LR-{1, 2, 3, 4, 5}-grams and compres-
sive feature learning results are from Paskov et al. (2013).
Test size = 20, 000 for both datasets.

Congressional vote (Thomas et al.,
2006)—Table 4. A dataset of transcripts
from the U.S. Congressional debates:
http://www.cs.cornell.edu/~ainur/sle-data.html. Similar
to previous work (Thomas et al., 2006; Bansal et
al., 2008; Yessenalina et al., 2010), we consider
the task to predict the vote (“yea” or “nay”) for the
speaker of each speech segment (speaker-based
speech-segment classification). Our method
outperforms the best results of Yessenalina et
al. (2010), which use a multi-level structured

5As noted, semi-supervised and ensemble methods are
excluded for a fair comparison.

6This approach is based on minimum description length,
using unlabeled data to select a set of higher-order n-grams to
use as features.

model based on a latent-variable SVM. We show
comparisons to two weaker baselines as well.

Method Acc.
SVM-link 71.28
Min-cut 75.00
SVM-SLE 77.67
LR (this work) 78.59

Table 4: Comparisons on the congress vote dataset. SVM-
link exploits link structures (Thomas et al., 2006); the min-cut
result is from Bansal et al. (2008); and SVM-SLE result is
reported by Yessenalina et al. (2010). Test size = 1, 175.

20 Newsgroups (Lang, 1995) all topics—Table 6.
20 Newsgroups is a benchmark topic classifica-
tion dataset: http://qwone.com/~jason/20Newsgroups.
There are 20 topics in this dataset. Our method
outperforms state-of-the-art methods including the
distributed structured output model (Srikumar and
Manning, 2014).7 The strong logistic regression
baseline from Paskov et al. (2013) uses all 5-grams,
heuristic normalization, and elastic net regulariza-
tion; our method found that unigrams and bigrams,
with binary weighting and `2 penalty, achieved far
better results.

Method Acc.
Discriminative RBM 76.20
LR-{1, 2, 3, 4, 5}-grams 82.80
Compressive feature learning 83.00
Distributed structured output 84.00
LR (this work) 87.84

Table 6: Comparisons on the 20 Newsgroups dataset for
classifying documents into all topics. The disriminative RBM
result is from Larochelle and Bengio (2008); compressive
feature learning and LR-5-grams results are from Paskov et
al. (2013), and the distributed structured output result is from
Srikumar and Manning (2014). Test size = 9, 052.

20 Newsgroups: talk.religion.misc vs. alt.atheism
and comp.graphics vs. comp.windows.x. We de-
rived three additional topic classification tasks from
the 20N dataset. The first and second tasks are
talk.religion.misc vs. alt.atheism (test size = 686) and
comp.graphics vs. comp.windows.x (test size = 942).
Wang and Manning (2012) report a bigram naı̈ve
Bayes model achieving 85.1% and 91.2% on these
tasks, respectively (best single model results).8 Our

7This method was designed for structured prediction, but
Srikumar and Manning (2014) also applied it to classification.
It attempts to learn a distributed representation for features
and for labels. The authors used unigrams and did not discuss
the weighting scheme.

8They also report a naı̈ve Bayes/SVM ensemble achieving
87.9% and 91.2%.
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Dataset Acc. nmin nmax Weighting Stopword removal? Reg. Strength Conv.
Stanford sentiment 82.43 1 2 tf-idf F `2 10 0.098
Amazon electronics 91.56 1 3 binary F `2 120 0.022
IMDB reviews 90.85 1 2 binary F `2 147 0.019
Congress vote 78.59 2 2 binary F `2 121 0.012
20N all topics 87.84 1 2 binary F `2 16 0.008
20N all science 95.82 1 2 binary F `2 142 0.007
20N atheist/religion 86.32 1 2 binary T `1 41 0.011
20N x/graphics 92.09 1 1 binary T `2 91 0.014

Table 5: Classification accuracies and the best hyperparameters for each of the datasets in our experiments. “Acc” shows
accuracies for our logistic regression model. “Min” and “Max” correspond to the min n-grams and max n-grams respectively.
“Reg.” is the regularization type, “Strength” is the regularization strength, and “Conv.” is the convergence tolerance. For
regularization strength, we round it to the nearest integer for readability.

method achieves 86.3% and 92.1% using slightly
different representations (see Table 5). The last task
is to classify related science documents into four
science topics (sci.crypt, sci.electronics, sci.space,
sci.med; test size = 1, 899). We were not able to
find previous results that are comparable to ours on
this task; we include our result (95.82%) to enable
further comparisons in the future.

5 Discussion

Optimized representations. For each task, the
chosen representation is different. Out of all possi-
ble choices in our experiments (Table 1), each of
them is used by at least one of the datsets (Table 5).
For example, on the Congress vote dataset, we only
need to use bigrams, whereas on the Amazon elec-
tronics dataset we need to use {1, 2, 3}-grams. The
binary weighting scheme works well for most of
the datasets, except the sentence-level sentiment
analysis task, where the tf-idf weighting scheme
was selected. `2 regularization was best in all cases
but one. We do not believe that an NLP expert
would be likely to make these particular choices,
except through the same kind of trial-and-error pro-
cess our method automates efficiently.

Number of trials. We ran 30 trials for each
dataset in our experiments. Figure 1 shows each
trial accuracy and the best accuracy on develop-
ment data as we increase the number of trials for
two datasets. We can see that 30 trials are gener-
ally enough for the model to obtain good results,
although the search space is large.

Transfer learning and multitask setting. We
treat each dataset independently and create a sep-
arate model for each of them. It is also possible
to learn from previous datasets (i.e., transfer learn-
ing) or to learn from all datasets simultaneously
(i.e., multitask learning) to improve performance.
This has the potential to reduce the number of trials
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Figure 1: Classification accuracies on development data
for Stanford sentiment treebank (left) and congressional vote
(right) datasets. In each plot, the green solid line indicates the
best accuracy found so far, while the dotted orange line shows
accuracy at each trial. We can see that in general the model is
able to obtain reasonably good representation in 30 trials.

required even further. See Bardenet et al. (2013),
Swersky et al. (2013), and Yogatama and Mann
(2014) for more about how to perform Bayesian
optimization in these settings.

Beyond supervised learning. Our framework
could also be extended to unsupervised and semi-
supervised models. For example, in document clus-
tering (e.g., k-means), we also need to construct
representations for documents. Log-likelihood
might serve as a performance function. A range of
random initializations might be considered. Inves-
tigation of this approach for nonconvex problems
is an exciting area for future work.

6 Conclusion

We used Bayesian optimization to optimize choices
about text representations for various categoriza-
tion problems. Our technique identifies settings for
a standard linear model (logistic regression) that
are competitive with far more sophisticated meth-
ods on topic classification and sentiment analysis.
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Abstract

This paper aims to compare different reg-
ularization strategies to address a com-
mon phenomenon, severe overfitting, in
embedding-based neural networks for
NLP. We chose two widely studied neu-
ral models and tasks as our testbed.
We tried several frequently applied or
newly proposed regularization strategies,
including penalizing weights (embeddings
excluded), penalizing embeddings, re-
embedding words, and dropout. We also
emphasized on incremental hyperparame-
ter tuning, and combining different regu-
larizations. The results provide a picture
on tuning hyperparameters for neural NLP
models.

1 Introduction

Neural networks have exhibited considerable po-
tential in various fields (Krizhevsky et al., 2012;
Graves et al., 2013). In early years on neural
NLP research, neural networks were used in lan-
guage modeling (Bengio et al., 2003; Morin and
Bengio, 2005; Mnih and Hinton, 2009); recently,
they have been applied to various supervised tasks,
such as named entity recognition (Collobert and
Weston, 2008), sentiment analysis (Socher et al.,
2011; Mou et al., 2015), relation classification
(Zeng et al., 2014; Xu et al., 2015), etc. In the field
of NLP, neural networks are typically combined
with word embeddings, which are usually first pre-
trained by unsupervised algorithms like Mikolov
et al. (2013); then they are fed forward to standard
neural models, fine-tuned during supervised learn-
ing. However, embedding-based neural networks
usually suffer from severe overfitting because of
the high dimensionality of parameters.

∗Equal contribution. †Corresponding author.

A curious question is whether we can regular-
ize embedding-based NLP neural models to im-
prove generalization. Although existing and newly
proposed regularization methods might alleviate
the problem, their inherent performance in neural
NLP models is not clear: the use of embeddings
is sparse; the behaviors may be different from
those in other scenarios like image recognition.
Further, selecting hyperparameters to pursue the
best performance by validation is extremely time-
consuming, as suggested in Collobert et al. (2011).
Therefore, new studies are needed to provide a
more complete picture regarding regularization for
neural natural language processing. Specifically,
we focus on the following research questions in
this paper.
RQ 1: How do different regularization strategies

typically behave in embedding-based neural
networks?

RQ 2: Can regularization coefficients be tuned in-
crementally during training so as to ease the
burden of hyperparameter tuning?

RQ 3: What is the effect of combining different
regularization strategies?

In this paper, we systematically and quan-
titatively compared four different regularization
strategies, namely penalizing weights, penalizing
embeddings, newly proposed word re-embedding
(Labutov and Lipson, 2013), and dropout (Srivas-
tava et al., 2014). We analyzed these regulariza-
tion methods by two widely studied models and
tasks. We also emphasized on incremental hyper-
parameter tuning and the combination of different
regularization methods.

Our experiments provide some interesting re-
sults: (1) Regularizations do help generalization,
but their effect depends largely on the datasets’
size. (2) Penalizing `2-norm of embeddings helps
optimization as well, improving training accu-
racy unexpectedly. (3) Incremental hyperparam-
eter tuning achieves similar performance, indicat-
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ing that regularizations mainly serve as a “local”
effect. (4) Dropout performs slightly worse than
`2 penalty in our experiments; however, provided
very small `2 penalty, dropping out hidden units
and penalizing `2-norm are generally complemen-
tary. (5) The newly proposed re-embedding words
method is not effective in our experiments.

2 Tasks, Models, and Setup
Experiment I: Relation extraction. The dataset
in this experiment comes from SemEval-2010
Task 8.1 The goal is to classify the relationship
between two marked entities in each sentence. We
refer interested readers to recent advances, e.g.,
Hashimoto et al. (2013), Zeng et al. (2014), and
Xu et al. (2015). To make our task and model
general, however, we do not consider entity tag-
ging information; we do not distinguish the order
of two entities either. In total, there are 10 labels,
i.e., 9 different relations plus a default other.

Regarding the neural model, we applied Col-
lobert’s convolutional neural network (CNN)
(Collobert and Weston, 2008) with minor modi-
fications. The model comprises a fixed-window
convolutional layer with size equal to 5, 0 padded
at the end of each sentence; a max pooling layer;
a tanh hidden layer; and a softmax output layer.

Experiment II: Sentiment analysis. This is
another testbed for neural NLP, aiming to pre-
dict the sentiment of a sentence. The dataset is
the Stanford sentiment treebank (Socher et al.,
2011)2; target labels are strongly/weakly
positive/negative, or neutral.

We used the recursive neural network (RNN),
which is proposed in Socher et al. (2011), and fur-
ther developed in Socher et al. (2012); Irsoy and
Cardie (2014). RNNs make use of binarized con-
stituency trees, and recursively encode children’s
information to their parent’s; the root vector is fi-
nally used for sentiment classification.

Experimental Setup. To setup a fair compari-
son, we set all layers to be 50-dimensional in ad-
vance (rather than by validation). Such setting has
been used in previous work like Zhao et al. (2015).
Our embeddings are pretrained on the Wikipedia
corpus using Collobert and Weston (2008). The
learning rate is 0.1 and fixed in Experiment I;
for RNN, however, we found learning rate decay
helps to prevent parameter blowup (probably due

1http://www.aclweb.org/anthology/S10-1006
2http://nlp.stanford.edu/sentiment/

to the recursive, and thus chaotic nature). There-
fore, we applied power decay (Senior et al., 2013)
with power equal to −1. For each strategy, we
tried a large range of regularization coefficients,
10−9, · · · , 10−2, extensively from underfitting to
no effect with granularity 10x. We ran the model
5 times with different initializations. We used
mini-batch stochastic gradient descent; gradients
are computed by standard backpropagation. For
source code, please refer to our project website.3

It needs to be noticed that, the goal of this paper
is not to outperform or reproduce state-of-the-art
results. Instead, we would like to have a fair com-
parison. The testbed of our work is two widely
studied models and tasks, which were not chosen
on purpose. During the experiments, we tried to
make the comparison as fair as possible. There-
fore, we think that the results of this work can be
generalized to similar scenarios.

3 Regularization Strategies
In this section, we describe four regularization
strategies used in our experiment.
• Penalizing `2-norm of weights. Let E be the

cross-entropy error for classification, and R
be a regularization term. The overall cost
function is J = E + λR, where λ is the co-
efficient. In this case, R = ‖W‖2, and the
coefficient is denoted as λW .
• Penalizing `2-norm of embeddings. Some

studies do not distinguish embeddings or
connectional weights for regularization (Tai
et al., 2015). However, we would like to an-
alyze their effect separately, for embeddings
are sparse in use. Let Φ denote embeddings;
then we have R = ‖Φ‖2.
• Re-embedding words (Labutov and Lipson,

2013). Suppose Φ0 denotes the original em-
beddings trained on a large corpus, and Φ de-
notes the embeddings fine-tuned during su-
pervised training. We would like to penalize
the norm of the difference between Φ0 and Φ,
i.e.,R = ‖Φ0−Φ‖2. In the limit of penalty to
infinity, the model is mathematically equiv-
alent to “frozen embeddings,” where word
vectors are used as surface features.
• Dropout (Srivastava et al., 2014). In this

strategy, each neural node is set to 0 with a
predefined dropout probability p during train-
ing; when testing, all nodes are used, with ac-
tivation multiplied by 1− p.

3https://sites.google.com/site/regembeddingnn/
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(a) Penalizing weights in Experiment I.
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(b) Penalizing weights in Experiment II.

0 5 10 15 20 25
Epochs

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

λb = 0
λb = 10−5

λb = 10−4

λb = 10−3

Training
Validation

(c) Penalizing embeddings in Experiment I.
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(d) Penalizing embeddings in Experiment II.
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(e) Re-embedding words in Experiment I.
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(f) Re-embedding words in Experiment II.
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(g) Applying dropout in Experiment I. p = 0.5, 0.6
are omitted because they are similar to small values.
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(h) Applying dropout in Experiment II.

Figure 1: Averaged learning curves. Left: Experiment I, relation extraction with CNN. Right: Experiment II, sentiment
analysis with RNN. From top to bottom, we penalize weights, penalize embeddings, re-embed words, and drop out. Dashed
lines refer to training accuracies; solid lines are validation accuracies.
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4 Individual Regularization Behaviors

This section compares the behavior of each strat-
egy. We first conducted both experiments with-
out regularization, achieving accuracies of 54.02±
0.84%, 41.47±2.85%, respectively. Then we plot
in Figure 1 learning curves when each regulariza-
tion strategy is applied individually. We report
training and validation accuracies through out this
paper. The main findings are as follows.
• Penalizing `2-norm of weights helps gener-

alization; the effect depends largely on the
size of training set. Experiment I contains
7,000 training samples and the improvement
is 6.98%; Experiment II contains more than
150k samples, and the improvement is only
2.07%. Such results are consistent with other
machine learning models.

• Penalizing `2-norm of embeddings unexpect-
edly helps optimization (improves training
accuracy). One plausible explanation is that
since embeddings are trained on a large cor-
pus by unsupervised methods, they tend to
settle down to large values and may not per-
fectly agree with the tasks of interest. `2
penalty pushes the embeddings towards small
values and thus helps optimization. Regard-
ing validation accuracy, Experiment I is im-
proved by 6.89%, whereas Experiment II has
no significant difference.

• Re-embedding words does not improve gen-
eralization. Particularly, in Experiment II,
the ultimate accuracy is improved by 0.44,
which is not large. Further, too much penalty
hurts the models in both experiments. In the
limit λreembed to infinity, re-embedding words
is mathematically equivalent to using embed-
dings as surface features, that is, freezing em-
beddings. Such strategy is sometimes applied
in the literature like Hu et al. (2014), but is
not favorable as suggested by the experiment.

• Dropout helps generalization. Under the best
settings, the eventual accuracy is improved
by 3.12% and 1.76%, respectively. In our ex-
periments, dropout alone is not as useful as
`2 penalty. However, other studies report that
dropout is very effective (Irsoy and Cardie,
2014). Our results are not consistent; differ-
ent dimensionality may contribute to this dis-
agreement, but more experiments are needed
to confirm the hypothesis.

5 Incremental Hyperparameter Tuning
The above experiments show that regularization
generally helps prevent overfitting. To pursue the
best performance, we need to try out different hy-
perparameters through validation. Unfortunately,
training deep neural networks is time-consuming,
preventing full grid search from being a practical
technique. Things will get easier if we can incre-
mentally tune hyperparameters, that is, to train the
model without regularization first, and then add
penalty.

In this section, we study whether `2 penalty of
weights and embeddings can be tuned incremen-
tally. We exclude the dropout strategy because its
does not make much sense to incrementally drop
out hidden units. Besides, from this section, we
only focus on Experiment I due to time and space
limit.

Before continuing, we may envision several
possibilities on how regularization works.
• (On initial effects) As `2-norm prevents pa-

rameters from growing large, adding it at
early stages may cause parameters settling
down to local optima. If this is the case, de-
layed penalty would help parameters get over
local optima, leading to better performance.
• (On eventual effects) `2 penalty lifts er-

ror surface of large weights. Adding such
penalty may cause parameters settling down
to (a) almost the same catchment basin, or (b)
different basins. In case (a), when the penalty
is added does not matter much. In case (b),
however, it makes difference, because param-
eters would have already gravitated to catch-
ment basins of larger values before regular-
ization is added, which means incremental
hyperparameter tuning would be ineffective.

To verify the above conjectures, we design four
settings: adding penalty (1) at the beginning, (2)
before overfitting at epoch 2, (3) at peak perfor-
mance (epoch 5), and (4) after overfitting (valida-
tion accuracy drops) at epoch 10.

Figure 2 plots the learning curves regarding pe-
nalizing weights and embeddings, respectively;
baseline (without regularization) is also included.

For both weights and embeddings, all settings
yield similar ultimate validation accuracies. This
shows `2 regularization mainly serves as a “local”
effect—it changes the error surface, but parame-
ters tend to settle down to a same catchment basin.
We notice a recent report also shows local optima
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(a) Incrementally penalizing `2-norm of weights.
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(b) Incrementally penalizing `2-norm of biases.

Figure 2: Tuning hyperparameters incrementally in Experiment I. Penalty is added at epochs 0, 2, 5, 10,
respectively. We chose the coefficients yielding the best performance in Figure 1. The controlled trial
(no regularization) is early stopped because the accuracy has already decreased.

λW
λembed 0 10−4 3·10−4 10−3

0 54.02 57.88 59.96 61.00
10−5 54.94 57.82 60.68 62.05

3·10−5 55.68 61.02 64.00 63.15
10−4 60.91 64.00 63.07 60.56

3·10−4 58.92 61.33 59.85 42.93
10−3 54.77 56.43 54.05 16.50

Table 1: Accuracy in percentage when we com-
bine `2-norm of weights and embeddings (Exper-
iment I). Bold numbers are among highest accu-
racies (greater than peak performance minus 1.5
times standard deviation, i.e., 1.26 in percentage).

λW λembed
p 10–4 3·10–4 10–3 10–5 3·10–5 10–4

0 57.88 59.96 61.00 54.94 55.68 60.91
1/6 58.36 59.36 43.42 58.49 59.59 60.00
2/6 58.22 60.00 16.60 59.34 60.08 59.61
3/6 58.63 59.73 16.60 59.59 59.98 58.82
4/6 56.43 54.63 16.60 56.76 59.19 56.64
5/6 38.07 16.60 16.60 49.79 53.63 49.75

Table 2: Combining `2 regularization and dropout.
Left: connectional weights. Right: embeddings.
(p refers to the dropout rate.)

may not play an important role in training neural
networks, if the effect of parameter symmetry is
ruled out (Breuel, 2015).

We also observe that regularization helps gener-
alization as soon as it is added (Figure 2a), and that
regularizing embeddings helps optimization also
right after the penalty is applied (Figure 2b).

6 Combination of Regularizations
We are further curious about the behaviors when
different regularization methods are combined.

Table 1 shows that combining `2-norm of
weights and embeddings results in a further accu-
racy improvement of 3–4 percents from applying

either single one of them. In a certain range of
coefficients, weights and embeddings are comple-
mentary: given one hyperparameter, we can tune
the other to achieve a result among highest ones.

Such compensation is also observed in penal-
izing `2-norm versus dropout (Table 2)—although
the peak performance is obtained by pure `2 regu-
larization, applying dropout with small `2 penalty
also achieves a similar accuracy. The dropout rate
is not very sensitive, provided it is small.

7 Discussion
In this paper, we systematically compared four
regularization strategies for embedding-based
neural networks in NLP. Based on the experimen-
tal results, we answer our research questions as
follows. (1) Regularization methods (except re-
embedding words) basically help generalization.
Penalizing `2-norm of embeddings unexpectedly
helps optimization as well. Regularization perfor-
mance depends largely on the dataset’s size. (2)
`2 penalty mainly acts as a local effect; hyperpa-
rameters can be tuned incrementally. (3) Combin-
ing `2-norm of weights and biases (dropout and `2
penalty) further improves generalization; their co-
efficients are mostly complementary within a cer-
tain range. These empirical results of regulariza-
tion strategies shed some light on tuning neural
models for NLP.
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Abstract

Hyper-parameter optimization is an im-
portant problem in natural language pro-
cessing (NLP) and machine learning. Re-
cently, a group of studies has focused on
using sequential Bayesian Optimization to
solve this problem, which aims to reduce
the number of iterations and trials required
during the optimization process. In this
paper, we explore this problem from a dif-
ferent angle, and propose a multi-stage
hyper-parameter optimization that breaks
the problem into multiple stages with in-
creasingly amounts of data. Early stage
provides fast estimates of good candidates
which are used to initialize later stages for
better performance and speed. We demon-
strate the utility of this new algorithm by
evaluating its speed and accuracy against
state-of-the-art Bayesian Optimization al-
gorithms on classification and prediction
tasks.

1 Introduction

Hyper-parameter optimization has been receiv-
ing an increasingly amount of attention in the
NLP and machine learning communities (Thorn-
ton et al., 2013; Komer et al., 2014; Bergstra et
al., 2011; Bardenet et al., 2013; Zheng et al.,
2013). The performance of learning algorithms
depend on the correct instantiations of their hyper-
parameters, ranging from algorithms such as lo-
gistic regression and support vector machines, to
more complex model families such as boosted
regression trees and neural networks. While
hyper-parameter settings often make the differ-
ence between mediocre and state-of-the-art per-
formance (Hutter et al., 2014), it is typically very
time-consuming to find an optimal setting due to
the complexity of model classes, and the amount

of training data available for tuning. The issue
is particularly important in large-scale problems
where the size of the data can be so large that even
a quadratic running time is prohibitively large.

Recently several sequential Bayesian Op-
timization methods have been proposed for
hyper-parameter search (Snoek et al., 2012;
Eggensperger et al., 2015; Brochu et al., 2010;
Hutter et al., 2011; Eggensperger et al., 2014).
The common theme is to perform a set of it-
erative hyper-parameter optimizations, where in
each round, these methods fit a hyper-parameter
response surface using a probabilistic regression
function such as Gaussian Process (Snoek et al.,
2012) or tree-based models (Hutter et al., 2011),
where the response surface maps each hyper-
parameter setting to an approximated accuracy.
The learned regression model is then used as a
cheap surrogate of the response surface to quickly
explore the search space and identify promising
hyper-parameter candidates to evaluate next in or-
der to enhance validation accuracy.

While these methods have enjoyed great
success compared to conventional random
search (Bergstra et al., 2012; Bengio et al., 2013)
and grid search algorithms by significantly reduc-
ing the number of iterations and trials required
during the process, the focus and starting point
of these work have largely been on dealing with
many dimensions of hyper-parameters, rather
than scaling to large amount of data as typical in
many NLP tasks, where the efficiency bottleneck
stems from the size of the training data in addition
to hyper-parameter dimensions. For example,
as dataset size grows, even simple models (with
few hyper-parameters) such as logistic regression
can require more training time per iteration in
these algorithms, leading to increased overall time
complexity.

In this work, we introduce a multi-stage
Bayesian Optimization framework for efficient
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hyper-parameter optimization, and empirically
study the impact of the multi-stage algorithm
on hyper-parameter tuning. Unlike the previous
approaches, the multi-stage approach considers
hyper-parameter optimization in successive stages
with increasingly amounts of training data. The
first stage uses a small subset of training data,
applies sequential optimization to quickly iden-
tify an initial set of promising hyper-parameter
settings, and these promising candidates are then
used to initialize Bayesian Optimization on later
stages with full training dataset to enable the ex-
pensive stages operate with better prior knowledge
and converge to optimal solution faster.

The key intuition behind the proposed approach
is that both dataset size and search space of hyper-
parameter can be large, and applying the Bayesian
Optimization algorithm on the data can be both
expensive and unnecessary, since many evaluated
candidates may not even be within range of best
final settings. We note our approach is orthogo-
nal and complementary to parallel Bayesian Opti-
mization (Snoek et al., 2012) and multi-task learn-
ing (Yogatama et al., 2014; Swersky et al., 2012),
because the improved efficiency per iteration, as
achieved by our algorithm, is a basic building
block of the other algorithms, thus can directly
help the efficiency of multiple parallel runs (Snoek
et al., 2012), as well as runs across different
datasets (Yogatama et al., 2014; Swersky et al.,
2012).

2 Methodology

The new multi-stage Bayesian Optimization is a
generalization of the standard Bayesian Optimiza-
tion for hyper-parameter learning (Snoek et al.,
2012; Feurer et al., 2015). It is designed to scale
standard Bayesian Optimization to large amounts
of training data. Before delving into the de-
tails, we first describe hyper-parameter optimiza-
tion and give a quick overview on the standard
Bayesian Optimization solution for it.

2.1 Hyper-parameter Optimization

Let λ = {λ1, . . . , λm} denote the hyper-
parameters of a machine learning algorithm, and
let {Λ1, . . . ,Λm} denote their respective domains.
When trained with λ on training data Ttrain,
the validation accuracy on Tvalid is denoted as
L(λ, Ttrain, Tvalid). The goal of hyper-parameter
optimization is to find a hyper-parameter setting

λ∗ such that the validation accuracy L is maxi-
mized. Current state-of-the-art methods have fo-
cused on using model-based Bayesian Optimiza-
tion (Snoek et al., 2012; Hutter et al., 2011) to
solve this problem due to its ability to identify
good solutions within a small number of iterations
as compared to conventional methods such as grid
search.

2.2 Bayesian Optimization for
Hyper-parameter Learning

Model-based Bayesian Optimization (Brochu et
al., 2010) starts with an initial set of hyper-
parameter settings λ1, . . .λn, where each set-
ting denotes a set of assignments to all hyper-
parameters. These initial settings are then eval-
uated on the validation data and their accuracies
are recorded. The algorithm then proceeds in
rounds to iteratively fit a probabilistic regression
model V to the recorded accuracies. A new hyper-
parameter configuration is then suggested by the
regression model V with the help of acquisition
function (Brochu et al., 2010). Then the accu-
racy of the new setting is evaluated on validation
data, which leads to the next iteration. A common
acquisition function is the expected improvement,
EI (Brochu et al., 2010), over best validation accu-
racy seen so far L∗:

a(λ, V ) =
∫ ∞
−∞

max(L− L∗, 0)pV (L|λ)dL

where pV (L|λ) denotes the probability of accu-
racy L given configuration λ, which is encoded by
the probabilistic regression model V . The acquisi-
tion function is used to identify the next candidate
(the one with the highest expected improvement
over current best L∗). More details of acquisition
functions can be found in (Brochu et al., 2010).

The most common probabilistic regression
model V is the Gaussian Process prior (Snoek et
al., 2012), which is a convenient and powerful
prior distribution on functions. For the purpose
of our experiments, we also use Gaussian Process
prior as the regression model. However, we would
like to note the fact that the proposed multi-stage
Bayesian Optimization is agnostic of the regres-
sion model used, and can easily handle other in-
stantiations of the regression model.
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Algorithm 1: Multi-stage Bayesian Optimiza-
tion for Hyper-parameter Tuning
Input: Loss function L, number of stages S,

iterations per stage
Y =

〈
Y1, . . . , YS

〉
, training data per

stage Ttrain =
〈
T 1
train, . . . , T

S
train

〉
,

validation data Tvalid, initialization
λ1:k

Output: hyper-parameter λ∗

for stage s=1 to S do
for i=1 to k do

Li = Evaluate L(λi, T strain, Tvalid)
end
for j=k+1 to Ys do

V : regression model on
〈
λi, Li

〉j−1

i=1
λj = arg maxλ∈Λ a(λ, V )
Lj = Evaluate L(λj , T strain, Tvalid)

end
reset λ1:k=best k configs ∈ 〈λ1, . . .λYs

〉
based on validation accuracy L

end
return λ∗ = arg maxλj∈{λY1 ,...,λYS } Lj

2.3 Multi-stage Bayesian Optimization for
Hyper-parameter Tuning

The multi-stage algorithm as shown in Algo-
rithm 1 is an extension of the standard Bayesian
Optimization (Section 2.2) to enable speed on
large-scale datasets. It proceeds in multiple
stages of Bayesian Optimization with increas-
ingly amounts of training data |T 1

train| ≤ . . . ,≤
|TStrain|. During each stage s, the k best configu-
rations (based on validation accuracy) passed from
the previous stage1 are first evaluated on the cur-
rent stage’s training data T strain, and then the stan-
dard Bayesian Optimization algorithm are initial-
ized with these k settings and applied for Ys − k
iterations on T strain (discounting the k evaluations
done earlier in the stage), where Ys is the total
number of iterations for stage s. Then the top
k configurations based on validation accuracy are
used to initialize the next stage’s run.

We note after the initial stage, rather than only
considering candidates passed from the previous
stage, the algorithm expands from these points on
larger data. Continued exploration using larger

1A special case is the initial stage. We adopt the con-
vention that a Sobol sequence is used to initialize the first
stage (Snoek et al., 2012). The value k for the first stage is
the number of points in the Sobol sequence.

Hyper-parameters
SVM bias, cost parameter, and

regularization parameter
Boosted
regression
trees

feature sampling rate,
data sampling rate, learn-
ing rate, # trees, # leaves,
and minimum # instance
per leaf

Table 1: Hyper-parameters used in SVM and
boosted regression trees.

data allows the algorithm to eliminate any po-
tential sensitivity the hyper-parameters may have
with respect to dataset size. After running all S
stages the algorithm terminates, and outputs the
configuration with the highest validation accuracy
from all hyper-parameters explored by all stages
(including the initialization points explored by the
first stage).

This multi-stage algorithm subsumes the stan-
dard Bayesian optimization algorithm as a special
case when the total number of stages S = 1. In
our case, for datasets used at stages 1, . . . , S − 1,
we use random sampling of full training data to
get subsets of data required at these initial stages,
while stage S has full data. For the number of top
configurations k used to initialize each following
stage, we know the larger k is, the better results in
the next stage since Bayesian Optimization relies
on good initial knowledge to fit good regression
models (Feurer et al., 2015). However, larger k
value also leads to high computation cost at the
next stage, since these initial settings will have to
be evaluated first. In practice, the number of stages
S and the value of k depend on the quantity of the
data and the quality of stage-wise model. In our
experiments, we empirically choose their values
to be S = 2 and k = 3 which result in a good
balance between accuracy and speed on the given
datasets.

3 Experiment

We empirically evaluate the algorithm on two
tasks: classification and question answering. For
classification we use the Yelp dataset (Yelp, 2014)
which is a customer review dataset. Each review
contains a star/rating (1-5) for a business, and the
task is to predict the rating based on the textual in-
formation in the review. The training data contains
half-million feature vectors, and unique unigrams
are used as features (after standard stop-word re-
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moval and stemming (Manning et al., 2008)). For
question answering (QA), the task is to identify
correct answers for a given question. We use
a commercial QA dataset containing about 3800
unique training questions and a total of 900, 000
feature vectors. Each feature vector corresponds to
an answer candidate for a given question, the vec-
tor consists of a binary label (1=correct, 0=incor-
rect) and values from standard unigram/bigram,
syntactic, and linguistic features used in typical
QA applications (Voorhees et al., 2011). Both QA
and Yelp datasets contain independent training,
validation, and test data, from which the machine
learning models are built, accuracies are evalu-
ated, and test results are reported, respectively.

We evaluate our multi-stage method against
two methods: 1) state-of-the-art Bayesian Opti-
mization for hyper-parameter learning (Snoek et
al., 2012)), and 2) the same Bayesian Optimiza-
tion but only applied on a small subset of data
for speed. For experiments, we consider learn-
ing hyper-parameters for two machine learning
algorithms: SVM implementation for classifica-
tion (Fan et al., 2008) and boosted regression trees
for question answering (Ganjisaffar et al., 2011) as
shown in Table 1.

3.1 Accuracy vs time

Figures 1 and 2 compare the test accuracy of our
proposed multi-stage Bayesian optimization as a
function of tuning time for QA and Yelp, respec-
tively. The state-of-the-art Bayesian optimiza-
tion (Snoek et al., 2012) is applied on full train-
ing data, and the fast variant of Bayesian Opti-
mization is applied with 30% of training data (ran-
domly sampled from full dataset). The top-1 and
classification accuracies on test data are reported
on the y-axis for QA and Yelp, respectively, and
the tuning time is reported on the x-axis. For fair-
ness of comparison, the multi-stage method uses
the same 30% training data at the initial stage, and
full training data at the subsequent stage.

From these figures, while in general both of
the comparison methods produce more effective
results when given more time, the multi-stage
method consistently achieves higher test accuracy
than the other two methods across all optimiza-
tion time values. For example, best test accu-
racy is achieved by the multi-stage algorithm at
time (45 min) for the QA task, while both the
full Bayesian Optimization and the subset variant
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Figure 1: QA task: test accuracy vs tuning time.
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Figure 2: Yelp classification: test accuracy vs tuning time.

can only achieve a fraction of the best value at
the same time value. We also note in general the
multi-stage algorithm approaches the upper bound
more rapidly as more time is given. This shows
that the new algorithm is superior across a wide
range of time values.

3.2 Expected accuracy and cost per iteration

To investigate the average accuracy and cost per
iteration achieved by different methods across dif-
ferent time points, we compare their mean ex-
pected accuracy (according to precision@1 for
QA and classification accuracy for Yelp) in Ta-
ble 2, and their average speed in Table 3. In
terms of average accuracy, we see that the state-
of-the-art Bayesian optimization on full training
data and the multi-stage algorithm achieve similar
test accuracy, and they both outperform the sub-

QA Yelp
Bayes opt on small subset 0.633 0.530

Bayes opt on full data 0.639 0.543
Multi-stage algorithm 0.641 0.542

Table 2: Average test accuracy for QA (preci-
sion@1) and Yelp dataset (classif. accuracy).
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QA Yelp
Bayes opt on small subset 3.2 min 0.4 min

Bayes opt on full data 7.8 min 1.2 min
Multi-stage algorithm 6 min 0.6 min

Table 3: Average time (min) per iteration.

set variant of Bayesian Optimization. However,
in terms of time per iteration, the full Bayesian
Optimization is the most expensive, taking more
than twice amount of time over subset variant al-
gorithm, while the multi-stage is 23% and 50%
faster than standard Bayesian Optimization on QA
and Yelp (Table 3), respectively, while maintain-
ing the same accuracy as full Bayesian Optimiza-
tion. This demonstrates the multi-stage approach
achieves a good balance between the two baselines
and can simultaneously delivers good speedup and
accuracy.

4 Conclusion

We introduced a multi-stage optimization algo-
rithm for hyper-parameter optimization. The pro-
posed algorithm breaks the problem into multiple
stages with increasingly amounts of data for effi-
cient optimization. We demonstrated its improved
performance as compared to the state-of-the-art
Bayesian optimization algorithm and fast variants
of Bayesian optimization on sentiment classifica-
tion and QA tasks.
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Abstract

Arabic dialect classification has been an
important and challenging problem for
Arabic language processing, especially for
social media text analysis and machine
translation. In this paper we propose
an approach to improving Arabic dialect
classification with semi-supervised learn-
ing: multiple classifiers are trained with
weakly supervised, strongly supervised,
and unsupervised data. Their combination
yields significant and consistent improve-
ment on two different test sets. The dialect
classification accuracy is improved by 5%
over the strongly supervised classifier and
20% over the weakly supervised classifier.
Furthermore, when applying the improved
dialect classifier to build a Modern Stan-
dard Arabic (MSA) language model (LM),
the new model size is reduced by 70%
while the English-Arabic translation qual-
ity is improved by 0.6 BLEU point.

1 Introduction

As more and more users share increasing amount
of information on various social media platforms
(Facebook, Twitter, etc.), text analysis for so-
cial media language is getting more important
and challenging. When people share their sto-
ries, opinions, post comments or tweets on so-
cial media platforms, they frequently use collo-
quial languages, which are more similar to spo-
ken languages. In addition to typical natural lan-
guage processing problems, the informal nature of
social media languages presents additional chal-
lenges, such as frequent spelling errors, improper
casing, internet slang, spontaneity, dis-fluency and

ungrammatical utterances (Eisenstein, 2014). Di-
alect classification and dialect-specific processing
are extra challenges for languages such as Arabic
and Chinese.

Considering Arabic as an example: there are
big differences between MSA and various dialec-
tal Arabic: MSA is the standardized and literary
variety of Arabic used in writing and in most for-
mal speech.1 It is widely used in government pro-
ceedings, newspapers and product manuals. Many
research and linguistic resources for Arabic nat-
ural language processing are based on MSA. For
example, most existing Arabic-English bilingual
data are MSA-English parallel sentences. The di-
alect Arabic has more varieties: 5 major dialects
are spoken in different regions of the Arab world:
Egyptian, Gulf, Iraqi, Levantine and Maghrebi
(Zaidan and Callison-Burch, 2011). These dialects
differ in morphologies, grammatical cases, vocab-
ularies and verb conjugations. These differences
call for dialect-specific processing and modeling
when building Arabic automatic speech recogni-
tion (ASR) systems or machine translation (MT)
systems. Therefore, identification and classifica-
tion of Arabic text is fundamental for building so-
cial media Arabic speech and language processing
systems.

In order to build better MT systems between
Arabic and English, we first analyze the distri-
bution of different Arabic dialects appearing on a
very large scale social media platform, as well as
their effect on Arabic-English machine translation.
We propose several methods to improve the dialect
classification accuracy by training models with
distant supervision: a weakly supervised model
is trained with data whose labels are automati-

1http://en.wikipedia.org/wiki/Modern_
Standard_Arabic
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cally assigned based on authors’ geographical in-
formation. A strongly supervised model is trained
with manually annotated data. More importantly,
semi-supervised learning on large amount of unla-
beled data effectively increases the classification
accuracy. We also combine different classifiers
to achieve even bigger improvement. When eval-
uated on two test sets, the widely adopted Ara-
bic Online Commentary (AOC) corpus and a test
set created from the social media domain (Face-
book), our methods demonstrate an absolute 20%
improvement over the weakly supervised classi-
fier, and 5% over the strongly supervised classi-
fier. Furthermore, the improved classifier is ap-
plied on large amount of Arabic social media text
to filter out non-MSA data. An LM trained with
the cleaned data is used for English-Arabic (MSA)
translation. Compared with the baseline model
trained with the unfiltered data, the MSA LM re-
duces the training data by 85%, model size by
70%, and it brings 0.6 BLEU point (Papineni et
al., 2002) gain in MT.

The rest of the paper is organized as follows:
in section 2 we review previous research on this
topic. In section 3 we analyze the dialect distri-
bution and its impact on social media data transla-
tion. We present the problem formulation in sec-
tion 4. In section 5 we introduce two supervised
classifiers trained with weakly and strongly la-
beled data. We describe different semi-supervised
learning methods in section 6, followed by the
combination of multiple classifiers in section 7. In
section 8 we show the experimental results on di-
alect classification as well as machine translation.
The paper finishes with discussions and conclu-
sion in section 9.

2 Related Work

Previous research on Arabic dialect identification
focused on two problems: spoken dialect classi-
fication for speech recognition ((Novotney et al.,
2011) and (Lei and Hansen, 2011)), and writ-
ten text dialect classification mostly for machine
translation. (Habash and Rambow, 2006), (Habash
et al., 2008), (Diab et al., 2010) and (Elfardy and
Diab, 2012) developed annotation guidelines and
morphology analyzer for Arabic dialect.

(Zaidan and Callison-Burch, 2011) created the
AOC data set by extracting reader commentary
from online Arabic newspaper forums. The se-
lected Arabic sentences are manually labeled with

one of 4 dialect labels with the help of crowd
sourcing: Egyptian, Gulf, Iraqi and Levantine. A
dialect classifier using unigram features is trained
from the labeled data. In the BOLT (Broad Oper-
ational Language Translation) project, translation
from dialectal Arabic (especially Egyptian Arabic)
to English is a main problem. (Elfardy and Diab,
2013) uses the same labeled AOC data to generate
token-based features and perplexity-based features
for sentence level dialect identification between
MSA and Egyptian Arabic. (Tillmann et al., 2014)
trained feature-rich linear classifier based on lin-
ear SVM then evaluated the classification between
MSA and Egyptian Arabic, reporting 1.4% im-
provement. All these experiments are based on the
AOC corpus. The characteristics and distribution
of the Arabic dialects could be different for online
social media data. (Darwish et al., 2014) selected
Twitter data and developed models taking consid-
eration of lexical, morphological, and phonologi-
cal information from different dialects, then classi-
fied Egyptian and MSA Arabic tweets. (Cotterell
and Callison-Burch, 2014) collected dialect data
covering Iraqi and Maghrebi Arabic from Twitter
as well.

When translating Arabic dialect into English,
(Sawaf, 2010) and (Salloum and Habash, 2011)
normalized dialect words into MSA equivalents
considering character- and morpheme-level fea-
tures, then translated the normalized input with
MSA Arabic-English MT system. (Zbib et al.,
2012) used crowd sourcing to build Levantine-
English and Egyptian-English parallel data. Even
with small amount of parallel corpora for each di-
alect, they obtained significant gains (6-7 BLEU
pts) over a baseline MSA-English MT system.

3 Social Media Arabic Dialect
Distribution and Translation

The population speaking a dialect does not nec-
essarily reflect its popularity on internet and so-
cial media. Many factors, such as a country’s
social-economic development status, internet ac-
cess and government policy, play important roles.
To understand the distribution of Arabic dialects
on social media, we select data from the largest so-
cial media platform, Facebook. There are around
one billion users sharing content in 60+ languages
every day. The Arabic content comes from dif-
ferent regions of the Arabic world, representative
enough for our analysis. We randomly select 2700

2119



Figure 1: Distribution of various Arabic dialect on
the social media platform

sentences from public posts, then ask human an-
notators to label their dialect types2. The result
is shown in Figure 1. Not surprisingly, MSA is
the most widely used, accounting for 58% of sen-
tences. Besides that, Egyptian Arabic is the most
frequent dialect (34%), followed by Levantine and
Gulf. Maghrebi is the least frequent. There are
other sentences which are not labeled as Arabic
dialect, such as classical Arabic, verses from the
Quran, foreign words and their transliterations,
etc.

We also investigate the effect of different di-
alects on Arabic-English translation. We ask hu-
mans to translate the Arabic sentences into En-
glish to create reference translations. We build a
phrase-based Arabic-English MT system with 1M
sentence pairs selected from MSA Arabic-English
parallel corpora (UN corpus, Arabic news corpus,
etc.).3 The training and decoding procedures are
similar to those described in (Koehn et al., 2007).
More details about the MT system are given in
section 8. We group the source Arabic sentences
into different subsets based on their dialect labels,
then translate them with the MT system. We mea-
sure the BLEU score for each subset, as shown in
Figure 2. As expected the MSA subset has the
highest BLEU scores (18), followed by the Gulf
dialect, which is somewhat similar to MSA. The
translation of the Egyptian and Levantine dialects
is more challenging, with BLEU scores around 10-
12, even though they are 40% of the total Arabic
data. To improve Arabic-English MT quality, in-
creasing the bilingual data coverage for these two
dialects should be most effective, as seen in (Zbib

2The data was annotated by a translation service provider
under confidentiality agreement.

3Because existing Arabic-English bilingual corpora do
not include parallel data from social media domain, increas-
ing training data size does not increase the translation quality.

Figure 2: BLEU scores of different Arabic dialects
in Arabic-English translation. The MT model is
trained with mostly MSA-English parallel data.

et al., 2012). Because the Maghrebi dialect sam-
ple size is too small, we do not report its BLEU
score. From these experiments, we further appre-
ciate the importance of accurately identifying Ara-
bic dialect and building dialect-specific translation
models.

4 Problem Formulation

In this section we present the general framework
of dialect classification. Given a sentence S =
{w1, w2, .., wl} generated by user u, its dialect
class label d∗ is determined based on the following
functions:

d∗ = arg max
i
P (di|S, u),

where the probability function is defined accord-
ing to the following exponential model:

P (di|S, u) =
exp

∑
k λkfk(di, ·)∑

j exp
∑

k λkfk(dj , ·)

d∗ = arg max
i

∑
k

λkfk(di, ·).

Here fk(di, ·) is the k-th feature function. For ex-
ample. f(di, u) models the likelihood of writing
dialect di by user u given the user’s profile infor-
mation. f(di, S) models the likelihood of generat-
ing sentence S with di’s n-gram language model:

f(di, S) = log p(S|di)

=
l∑

k=1

log pdi
(wk|wk−1, ..., wk−n+1).

This framework allows the incorporation of rich
feature functions such as geographical, lexical,
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Figure 3: Arabic dialect map, from (Zaidan and
Callison-Burch, 2011).

morphological and n-gram information, as seen in
previous work ((Zaidan and Callison-Burch, 2011)
, (Darwish et al., 2014), (Tillmann et al., 2014) and
(Elfardy and Diab, 2013)). However, in this paper
we focus on training classifiers with weakly and
strongly labeled data, as well as semi-supervised
learning methods. So we only choose the geo-
graphical and text-based features. Exploration of
other features will be reported in another paper.

Previous research (Zaidan and Callison-Burch,
2014) indicated that the unigram model obtains
the best accuracy in dialect classification. How-
ever, (Tillmann et al., 2014) and (Darwish et al.,
2014) exploited more sophisticated text features
that lead to better accuracy on selected test set. In
our experiments, we find that the unigram model
does outperform bigram and trigram models, so
we stick to the unigram features.

5 Supervised Learning

5.1 Learning with Weakly Labeled Data

In the chosen social media platform, each user is
associated with a unique profile, which includes
user-specific information such as the age and gen-
der of the user, the country where s/he is from, etc..
As different Arabic dialects are spoken in differ-
ent countries, one approach is to classify a post’s
dialect type based on the author’s country, assum-
ing that there is at least a major dialect spoken in
each country. This approach is not highly accu-
rate, because the user’s country information may
be missing or inaccurate; one dialect may be spo-
ken in multiple countries (for example, Egyptian
is very popular in different regions of the Arabic
world) and multiple dialects may be spoken in the
same country; the user can post in MSA instead

of dialect Arabic or a mixture of both. However,
using data from certain countries as the “approxi-
mate” dialect training data, we can train a baseline
classifier. As the training data labels are inferred
from user profiles instead of manually annotated,
such data is called weakly labeled data.

According to the dialect map shown in Fig.3,
we group the social media posts into the following
5 dialects according to the author’s country:

1. Egyptian: Egypt
2. Gulf : Saudi Arabia, United Arab Emirate,

Qatar, Bahrain, Oman, Yemen
3. Levantine: Syrian, Jordan, Palestinian,

Lebanese
4. Iraqi: Iraq
5. Maghrebi: Algeria, Libya, Tunisia, Morocco

Table 1 shows the number of words for each di-
alect group. Considering the dialect distribution
in the social media platform (shown in Figure 1),
we focus on the classification of MSA (msa) and
3 Arabic dialects: Egyptian (egy), Gulf (gul) and
Levantine (lev).

We train an n-gram model for each dialect from
the collected data. To train the MSA model, we
select sentences from Arabic UN corpus and news
collections. All the dialect and MSA models share
the same vocabulary, thus perplexity can be com-
pared properly. At classification time, given an in-
put sentence, the classifier computes the perplex-
ity for each dialect type and choose the one with
minimum perplexity as the label.

Dialect Weakly Labeled Strongly Labeled
egy 22M 0.45M
gul 6M 0.34M
lev 8M 0.45M
msa 27M 1.34M
iraqi 3M 0.01M

Table 1: Corpus size (word count) of weakly
and strongly labeled data for supervised learning.
The weakly labeled dialect data is from Facebook
based on users’ country information. The strongly
labeled data is manually annotated from the AOC
corpus.

5.2 Learning with Strongly Labeled Data

In the AOC corpus, every sentence’s dialect type
is labeled by human annotators. As these labels
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are gold labels, the AOC corpus is strongly labeled
data. Because of the high cost of manual annota-
tion, the strongly labeled data is much less than the
weakly labeled data, but the higher quality makes
it possible to train a better classifier. Table 1 shows
the corpus size. Although over 50% data is MSA.
Egyptian, Gulf and Levantine dialects still have
significant presence while the Iraqi dialect has the
least labeled data. Such distribution is consistent
with what we observed from the social media data.
Using these strongly labeled data, we can train a
classifier that significant outperforms the weakly
supervised classifier.

6 Semi-supervised Learning

6.1 Self-training

Given the small amount of gold labeled data from
the AOC corpus and large amount of unlabeled
data from the social media platform, a natural
combination is semi-supervised learning. In other
words, by applying the strongly supervised clas-
sifier on the unlabeled data, we can obtain “auto-
matically labeled” dialect data that could further
improve the classification accuracy. From the so-
cial media platform we select additional Arabic
posts with a total of 646M words. The sizes of
the newly created dialect corpora are shown in Ta-
ble 2. Notice that the MSA data accounts for more
than 75% of all the labeled data. We train a new
classifier with these additional data. As the new
labels are only from the original strong classifier,
this is self-training.

6.2 Co-Training

Another approach for automatic labeling is co-
training (Blum and Mitchell, 1998). With two
classifier C1 and C2 classifying the same input
sentence S with labels l1 and l2, S is labeled as
l only if l1 = l2 = l. In other words, a sentence
is labeled and used to train a model only when the
two classifiers agree. In our experiment we use
both the weakly and strongly supervised classifiers
to classify the same unlabeled data. Table 2 lists
the sizes of the dialect corpora from co-training.
Compared with the self-training approach, the co-
training method filters out 25% data.

6.3 Data Filtering

Because of domain mismatch, even the strongly
supervised classifier does not achieve very high
accuracy on the social media test set, thus there is

Dialect Self-training Co-training Filter
egy 73M 54M 21M
gul 46M 5.1M 2.7M
lev 34M 11.7M 2.5M
msa 493M 406M 139M
All 646M 476M 165M

Table 2: The size of dialect corpora from semi-
supervised learning.

lots of noise in the automatically labeled data. To
filter this noise, we only keep the sentences whose
minimum perplexity score (corresponding to the
winning dialect label) is smaller than any other
perplexity score by a margin. Lower perplexity
means higher probability of generating the sen-
tence from the dialect model. In other words, sen-
tence S is assigned with label l and used in model
re-training if and only if perpl(S) < perpk(S) ×
threshold, for k 6= l. The threshold is selected
to optimize the classification accuracy on a tuning
set. Table 2 also shows the corpora size after fil-
tering. We can see that the filtered dialect is only
a quarter of the self-training data. We will com-
pare the three semi-supervised learning methods
and evaluate the gains to dialect classification.

7 Classifier Combination

Now we have 3 types of classifiers:

1. The weakly supervised classifier trained with
data whose labels are automatically assigned
according to author’s country;

2. The strongly supervised classifier trained
with human labeled data;

3. The semi-supervised classifier trained with
automatically classified data, with different
data selection methods.

How should we combine them to further improve
the classification accuracy?

One approach is data combination: simply
adding all the training data together to train a uni-
fied n-gram model for each dialect. This exper-
iment is straightforward but the performance is
suboptimal because the classifier will be domi-
nated by the model with the most training data,
even though its accuracy may not be the best.

The second approach is model combination:
we compute the model scores of the weakly su-
pervised (w), strongly supervised (s) and semi-
supervised (e) classifiers, then combines them
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with linear interpolation:

p(S|di) =
∑

m={w,m,e}
wmpm(S|di)

As the dialect n-gram perplexity is computed sep-
arately, the model weights wm can be tuned. In
our experiments we optimize them with a tuning
set from all the dialects.

8 Experiment Results

8.1 Dialect Classification
We already described the training data for super-
vised and semi-supervised classifiers in previous
sections. In this section we will compare their di-
alect classification accuracies. We select two test
sets: 9.5K sentences from the AOC corpus as the
AOC test set and 2.3K sentences from the Face-
book data set as the FB test set4. Both test sets
have the dialect of each sentence labeled by hu-
man. The accuracy is computed as the percentage
of sentences whose classified label is the same as
the human label. 90% of the AOC labeled data
are used for training the strongly supervised clas-
sifier, and the remaining 10% data containing 9.5K
sentences is for evaluation. We also keep 200 sen-
tences from the AOC corpus as the development
set to tune the model combination parameters.

Model AOC FB
weakly supervised 68.4% 48.5%
strongly supervised 83.4% 63.1%

semi-supervised 86.2% 67.7%
combination 87.8% 68.2%

Table 3: Arabic dialect classification accuracies
with the weakly and strongly supervised classi-
fiers, as well as the semi-supervised model.

In Table 3 we show the overall classification ac-
curacies of different models on both test sets. No-
tice that the weakly supervised classifier trained
with 68M words obtains 68% accuracy on the
AOC test set and 48% on the FB test set (row 1),
which is not much higher. However, considering
this classifier is trained without any human labeled
dialect data, the performance is expected and can
be improved with better training data and models.
The strongly supervised classifier (row 2), which

4The FB test set is available for download at
https://www.facebook.com/groups/2419174607/
10153205046974608/.

is trained with much less human labeled data (only
2.6M words), outperforms the weak classifier by
15%. Such a difference is consistently observed in
both test tests. This confirms the significant bene-
fits from the gold labeled data.

We apply the strong classifier to large amount of
unlabeled data, and train several semi-supervised
classifiers with these automatically labeled data.
The best result is obtained with the co-training
strategy, which brings significant improvement
over the strongly supervised model: 2.8-4.6%
(row 3), as the label noise is effectively reduced
among the agreed labels from two supervised clas-
sifiers. Finally, combining all three classifiers (row
1, 2 and 3) with model combination achieves the
best result: about 5% improvement of the strong
baseline and 20% over the weak baseline. These
results demonstrate the effectiveness of combin-
ing labeled and unlabeled data obtained from so-
cial media platform.

Model AOC FB
strongly supervised baseline 83.4% 63.1%

self-training 84.4% 65.5%
co-training 86.2% 67.7%

data filtering 85.2% 64.8%
model interpolation 87.8% 68.2%
data concatenation 82.1% 67.4%

Table 4: Comparison of semi-supervised learning
and combination methods.

With semi-supervised learning, we evaluate
three data selection methods: self-training, co-
training and data filtering. The results are shown
in Table 4. Compared with the strong classifier
baseline, the self-training method improves by 1%
- 2.4%, the co-training method improves by 2.8-
4.6%, and the data filtering method improves by
1.7-1.8%. The co-training method is the most ef-
fective for both test sets because the information
are from two independent classifiers. Data filter-
ing is more effective for the AOC test set (which
has the same domain as the baseline model) but
less so for the FB test set because valuable in-
domain data are filtered out.

In the same table we also compare the results
from model and data combination: one from the
semi-supervised co-training and the other from the
strongly supervised learning. On the AOC test
set, the data concatenation method is significantly
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(a) Result on the AOC test set. (b) Result on the Facebook test set.

Figure 4: Classification precisions by dialect. The number in parenthesis is the number of sentences from
each dialect.

worse than the model interpolation method. Its ac-
curacy is even lower than that of the supervised
classifier (82.1% vs. 83.4%). However the gap is
much smaller on the FB test set. The automati-
cally labeled data is much more than the human
labeled data, thus it dominates the combined train-
ing data set, which is not a good match for the
AOC test data, but is more relevant to the FB test
data. In both cases, the model combination obtains
better classification accuracies, where the super-
vised model is assigned higher weights (0.9) and
the semi-supervised model is used for smoothing,
therefore the combined model is able to improve
over the strong classifier.

We further analyze the classification precision
for each type of dialect on both test sets in Figure
4. Figure 4a shows the result on the AOC test set.
The number after the dialect type (in the parenthe-
sis) is the number of sentences from that dialect.
Precisions increase from the weakly supervised
to the strongly supervised to the semi-supervised
classifier, and the combined classifier generally
outperforms all three classifiers, except for the
Gulf dialect. However, considering the smaller
percentage of the Gulf dialect, we still observe
significant improvement overall. Figure 4b shows
the result on the FB test set, where the MSA and
Egyptian dialects are much more frequent than the
Levantine and Gulf dialects. Improving classifica-
tion on the MSA and Egyptian dialect (especially
MSA) will be very helpful. We notice that the su-
pervised classifier improves over the unsupervised
classifier by a large margin on the MSA and Gulf
dialects, but performs worse on the Egyptian and
Levantine dialects. This is different from the result

in the AOC test set, where the supervised classifier
consistently improves over the unsupervised clas-
sifier. One reason is that in the AOC test set, the
training and test data are from the same corpus,
thus the supervised training from in-domain data
is very effective. For the FB test set, the strongly
labeled data and the test data mismatch in genre
and topics. The automatically labeled data is less
similar to the dialect test set, thus it is less effective
for the Egyptian and Levantine dialects. This fur-
ther confirms the necessity of combining informa-
tion from multiple sources. The combined classi-
fier performs significantly better for the MSA and
Gulf dialect, but slightly worse for the Egyptian
and Levantine dialects. The overall result is still
positive.

We also compare our approach with other di-
alect classification methods on the AOC corpus,
which is commonly used so the results are com-
parable. Most previous work focus on the clas-
sification of MSA vs. EGY dialect, and report
the accuracies from 85.3% (Elfardy and Diab,
2013), 87.9% (Zaidan and Callison-Burch, 2014)
to 89.1% (Tillmann et al., 2014), adding morpho-
logical features, using word-based unigram-model
and linear SVM models. Our MSA vs. EGY
dialect classification accuracy is 92.0%, the best
known result on this test set. We do not use
more sophisticated features; the improvement is
just from the mined unlabeled data and the com-
bination of different classifiers. On the FB test
set, our strongly supervised classifier is the same
as (Zaidan and Callison-Burch, 2014), both using
word-based unigram model. We see 5% gain with
the combined classifiers.
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8.2 Machine Translation

The motivation of this research is to handle chal-
lenges from Arabic dialects to improve machine
translation quality. For example, using the dialect
classifier output one can build dialect-specific
Arabic-English MT systems. Given an Arabic sen-
tence, the system first identifies its dialect type,
then translates with the corresponding MT system.
When building English-to-Arabic (MSA) transla-
tion systems for social media translation, the target
LM trained from in-domain data is very helpful to
improve the translation quality. Considering that
the Arabic in-domain data contains lots of dialects,
an effective dialect classifier helps filter out dialect
Arabic and only keep the MSA to train a cleaner
LM.

Because of the limited bilingual resources of di-
alect Arabic-English, we will focus on English-
Arabic MT system first. In this experiment, the
training data for the English-Arabic MT system
is 1M parallel sentences selected from publicly
available Arabic-English bilingual data (LDC,
OPUS). Because none of the parallel corpora is
for social media translation, we select a subset
closer to the social media domain by maximizing
the n-gram coverage on the test domain. The de-
velopment and test sets contain 700 and 892 En-
glish sentences, respectively. These sentences are
translated into MSA by human translators. We ap-
ply the standard SMT system building procedures:
pre-processing, automatic word alignment, phrase
extraction, parameter tuning with MERT, and de-
coding with a typical phrase-based decoder simi-
lar to (Koehn et al., 2007). The LM is trained with
the target side of the parallel data, plus 200M in-
domain Arabic sentences.

Using the above combined dialect classifier, we
label the dialect type of each sentence in the in-
domain data, filter out any non-MSA sentences
and re-train the target LM. Again to keep the in-
domain data clean, we also apply the threshold-
based data filtering. As shown in Table 5, the
dialect filtering reduces the LM training data by
85%, which corresponds to 70% less memory
footprint. Thanks to the cleaner LM, the transla-
tion quality is also improved by 0.6 BLEU point.5

5Due to the challenging nature of social media data, and
the lack of in-domain training data, the BLEU score is much
lower than the one in news translation.

All
Arabic Data

Filtered
MSA data

number of
sentences

200M 30M

memory
footprint

23G 6.6G

BLEU score
(1-reference)

12.52 13.14

Table 5: Cleaned MSA LM after dialect filtering
for English-Arabic(MSA) translation.

9 Discussion and Conclusion

Existing Arabic dialect classification methods
solely rely on textural features, be they n-gram
language model or morphology/POS-based fea-
tures. This paper utilizes authors’ geographical
information to train a weakly supervised dialect
classifier. Using the weakly and strongly super-
vised classifiers to classify and filter unlabeled
data leads to several improved semi-supervised
classifiers. The combination of all three signif-
icantly improves the Arabic dialect classification
accuracy on both in-domain and out-of-domain
test sets: 20% absolute improvement over the
weak baseline and 5% absolute over the strong
baseline. After applying the proposed classifier
to filter out Arabic dialect data, and building a
cleaned MSA LM, we observe 70% model size
reduction with 0.6 BLEU point gain in English-
Arabic translation quality.

In future work, we would like to explore more
user-specific information for dialect classification,
apply the classifier for Arabic-to-English MT sys-
tems, and extend the approach to a larger family
of languages and dialects.
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Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the ACL
on Interactive Poster and Demonstration Sessions,
ACL ’07, pages 177–180, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Yun Lei and John HL Hansen. 2011. Dialect classifica-
tion via text-independent training and testing for ara-
bic, spanish, and chinese. Audio, Speech, and Lan-
guage Processing, IEEE Transactions on, 19(1):85–
96.

Scott Novotney, Richard M Schwartz, and Sanjeev
Khudanpur. 2011. Unsupervised arabic dialect
adaptation with self-training. In INTERSPEECH,
pages 541–544. Citeseer.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Wael Salloum and Nizar Habash. 2011. Dialectal
to standard arabic paraphrasing to improve arabic-
english statistical machine translation. In Proceed-
ings of the First Workshop on Algorithms and Re-
sources for Modelling of Dialects and Language Va-
rieties, pages 10–21. Association for Computational
Linguistics.

Hassan Sawaf. 2010. Arabic dialect handling in hybrid
machine translation. In Proceedings of the 9th Con-
ference of the Association for Machine Translation
in the Americas.

Christoph Tillmann, Saab Mansour, and Yaser Al-
Onaizan, 2014. Proceedings of the First Workshop
on Applying NLP Tools to Similar Languages, Va-
rieties and Dialects, chapter Improved Sentence-
Level Arabic Dialect Classification, pages 110–
119. Association for Computational Linguistics and
Dublin City University.

Omar F. Zaidan and Chris Callison-Burch. 2011. The
arabic online commentary dataset: an annotated
dataset of informal arabic with high dialectal con-
tent. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 37–41, Portland,
Oregon, USA, June. Association for Computational
Linguistics.

Omar F Zaidan and Chris Callison-Burch. 2014. Ara-
bic dialect identification. Computational Linguis-
tics, 40(1):171–202.

Rabih Zbib, Erika Malchiodi, Jacob Devlin, David
Stallard, Spyros Matsoukas, Richard Schwartz, John
Makhoul, Omar F Zaidan, and Chris Callison-
Burch. 2012. Machine translation of arabic dialects.
In Proceedings of the 2012 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 49–59. Association for Computational Lin-
guistics.

2126



Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 2127–2137,
Lisbon, Portugal, 17-21 September 2015. c©2015 Association for Computational Linguistics.

Exploiting Debate Portals for Semi-Supervised Argumentation Mining
in User-Generated Web Discourse
Ivan Habernal† and Iryna Gurevych†‡

†Ubiquitous Knowledge Processing Lab (UKP-TUDA)
Department of Computer Science, Technische Universität Darmstadt

‡Ubiquitous Knowledge Processing Lab (UKP-DIPF)
German Institute for Educational Research

www.ukp.tu-darmstadt.de

Abstract

Analyzing arguments in user-generated
Web discourse has recently gained atten-
tion in argumentation mining, an evolving
field of NLP. Current approaches, which
employ fully-supervised machine learn-
ing, are usually domain dependent and
suffer from the lack of large and diverse
annotated corpora. However, annotating
arguments in discourse is costly, error-
prone, and highly context-dependent. We
asked whether leveraging unlabeled data
in a semi-supervised manner can boost
the performance of argument component
identification and to which extent is the
approach independent of domain and reg-
ister. We propose novel features that ex-
ploit clustering of unlabeled data from de-
bate portals based on a word embeddings
representation. Using these features, we
significantly outperform several baselines
in the cross-validation, cross-domain, and
cross-register evaluation scenarios.

1 Introduction

Argumentation mining, an evolving sub-field of
NLP, deals with analyzing argumentation1 in var-
ious genres, such as legal cases (Mochales and
Moens, 2011), student essays (Stab and Gurevych,
2014a), and medical and scientific articles (Green,
2014; Teufel and Moens, 2002). Recently, the fo-
cus of argumentation mining has also shifted to the
Web registers (such as comments to articles, forum
posts, or blogs) which is motivated by the need of

1Argumentation is a verbal activity for which the goal
consists of convincing the listener or reader of the acceptabil-
ity of a standpoint by means of a constellation of propositions
justifying or refuting the proposition expressed in the stand-
point (van Eemeren et al., 2002) or the art of persuading
others to think or act in a definite way, including all writing
and speaking which is persuasive in form (Ketcham, 1917).

retrieving and understanding ordinary people’s ar-
guments to various contentious topics on the large
scale. Applications include passenger rights and
protection (Park and Cardie, 2014), hotel reviews
(Wachsmuth et al., 2014), and controversies in ed-
ucation (Habernal et al., 2014).

Despite the plethora of existing argumentation
theories (van Eemeren et al., 2014), the preva-
lent view in argumentation mining treats argu-
ments as discourse structures consisting of sev-
eral argument components, such as claims and
premises (Peldszus and Stede, 2013). Current
approaches to automatic analysis of argumenta-
tion usually follow the fully supervised machine-
learning paradigm (Biran and Rambow, 2011;
Stab and Gurevych, 2014b; Park and Cardie,
2014) and rely on manually annotated datasets.
Only few publicly available argumentation cor-
pora exist, as annotations are costly, error-prone,
and require skilled human annotators (Stab and
Gurevych, 2014a; Habernal et al., 2014).

To overcome the limited scope and size of the
existing annotated corpora, semi-supervised meth-
ods can be adopted, as they gain performance by
exploiting large unlabeled datasets (Settles, 2012).
However, unlike in other NLP tasks where data
can be cheaply labeled using for example distant
supervision, employing such methods in argumen-
tation mining is questionable. First, argumenta-
tion is an act of persuasion (Nettel and Roque,
2011; Mercier and Sperber, 2011) but not all user-
generated texts can be treated as persuasive (Park
and Cardie, 2014; Habernal et al., 2014), thus the
selection of an appropriate unlabeled dataset rep-
resents a problem on its own. Second, argument
components (e.g., claims or premises) are highly
context-dependent and cannot be easily labeled
in distant data using predefined patterns. So far,
semi-supervised methods for argumentation min-
ing remain unexplored.

In this article, we tackle argumentation min-

2127



ing of user-generated Web data by exploiting de-
bate portals—semi-structured discussion websites
where members pose contentious questions to the
community and allow others to pick a side and
provide their opinions and arguments in order to
‘win’ the debate.2 Our first research question
is whether debate portals (which contain noisy
user-generated data) can be utilized in a semi-
supervised manner for fine-grained identification
of argument components. As a second research
question, we investigate to what extent our meth-
ods are domain independent and evaluate their
adaptation across several domains and registers.

Our contribution is three-fold. First, to the best
of our knowledge, we present the first successful
attempt to semi-supervised argumentation mining
in Web data based on exploiting unlabeled exter-
nal resources. We leverage these resources and
derive features in an unsupervised manner by pro-
jecting data from debate portals into a latent argu-
ment space using unsupervised word embeddings
and clustering. Second, our novel features sig-
nificantly outperform state-of-the-art features in
all scenarios, namely in cross-validation, cross-
domain evaluation, and cross-register evaluation.
Third, to ensure full reproducibility of our experi-
ments, we provide all data and source codes under
free licenses.3

2 Related work

Analysis of argumentation has been an active topic
in numerous research areas, such as philosophy
(van Eemeren et al., 2014), communication studies
(Mercier and Sperber, 2011), and informal logic
(Blair, 2004), among others. In this section, we
will focus on the most related works on argumen-
tation mining techniques in NLP in the first part,
with an emphasis on Web data in the second part.

Mochales and Moens (2011) based their work
on argumentation schemes (Walton et al., 2008)
and experimented with Araucaria and ECHR
datasets using supervised models to classify ar-
gumentative and non-argumentative sentences (≈
0.7F1) and their structure. Feng and Hirst (2011)
classified argument schemes on the Araucaria
dataset, reaching 0.6-0.9 accuracy. Experiments
on this dataset were also conducted by Rooney et
al. (2012), who classified sentences to four cate-
gories (conclusion, premise, conclusion-premise,

2For instance createdebate.com or debate.org
3https://github.com/habernal/emnlp2015

and none) and achieved 0.65 accuracy. These
approaches assume the text is already segmented
into argument components. Stab and Gurevych
(2014b) examined argumentation in persuasive
essays and classified argument components into
four categories (premise, claim, major claim, non-
argumentative) using SVM and achieved 0.73
macro F1 score. They further classified argu-
ment relations (support and attack) and reached
0.72 macro F1 score. The best-performing fea-
tures were structural features (such as the location
or length ratios), as persuasive essays usually com-
ply with a certain structure which can be seen as a
potential drawback of this approach.

Regarding user-generated Web data, Biran and
Rambow (2011) used naive Bayes for classifying
justification of subjective claims from blogs and
Wikipedia talk pages, relying on features from
RST Treebank and manually-processed n-grams.
In similar Web registers, Rosenthal and McK-
eown (2012) automatically determined whether
a sentence is a claim using logistic regression
and various lexical and sentiment-related features
and achieved accuracy about 0.66-0.71. Park
and Cardie (2014) classified propositions in user
comments into three classes (verifiable experi-
ential, verifiable non-experiential, and unverifi-
able) using SVM and reached 0.69 macro F1

score. Goudas et al. (2014) identified premises in
Greek social media texts using BIO encoding and
achieved 0.42 F1 score with Conditional Random
Fields. The research gaps in the above-mentioned
approaches are the following. First, the argumen-
tation models are simplified to either claims or a
few types of premises/propositions. Second, the
segmentation of discourse into argument compo-
nents is ignored (except the work of Goudas et al.
(2014)). Recently, Boltužić and Šnajder (2015)
employed hierarchical clustering to cluster argu-
ments in online debates using embeddings projec-
tion, but in contrast to our work they performed
only intrinsic evaluation of the clusters.

Debate portals have been used in a related body
of research, such as classifying support and attack
between posts by Cabrio and Villata (2012), or
stance detection by Hasan and Ng (2013) or Got-
tipati et al. (2013). These approaches consider
the complete documents (posts) but do not ana-
lyze the micro-level argumentation (e.g., claims or
premises).
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Doc #2823 (article comment, public-private-schools): [claim: I agree - Kids can do great in the public school system and
parents DO need to be involved.] The more people leave, the worse its going to become. [premise: The public school system
lets them deal with real life too, unfortunate that it may be but that is what’s out there in college and the work force too.]
[premise: There are still great teachers in the public schools - lets stand behind them.]

Doc #2224 (forumpost, single-sex-education): . . . . . . . . . .[backing: . .I . . . . .went. . .to . . .an . . .all. . . . . .boys . . . . . . .school . . .–] [claim: Can’t say I particularly liked
it, I would of much preferred gone to a co-ed.] [premise: It is closer to the ’real world’ that way. Kids should grow up in the
company of both sexes... They will be more at ease around the opposite sex when they are older and it just makes sense.] If it
is purely education you are concerned about (and not so much behaviour), our year (at a private school) went shockingly bad
in OP scores. We were the worst in 12 years and were beaten by LOTS of co-ed and public schools... So you can never tell. In
saying that my sister really enjoyed going to an all girls school. Her year went really well too. Ask your daughters what they
would prefer... . . . . . . . . .[backing:. . . . . .Btw,. .I . . . . .work. . .at . .a . . . . . .co-ed. . . . . . .school. . .at . . . .the . . . . . . . . .moment . . . .and. . . .the . . . . .kids . . . . .there. . . .get. . .on. . . . .just . . . . . .fine.]

Figure 1: Two examples of argument annotation of an article comment and a forum post.

3 Data

As data for training and evaluation of our methods,
we use a corpus consisting of 340 English docu-
ments (approx. 90k tokens) annotated4 with argu-
mentation by Habernal et al. (2014). Compared to
other corpora mentioned in the related work, this
corpus is the largest one to date that covers dif-
ferent domains and spans several registers of user-
generated Web content. In particular, the corpus
comprises four registers (comments to articles, fo-
rum posts, blogs, and argumentative newswire ar-
ticles) and covers six domains related to educatio-
nal controversies (homeschooling, private vs. pub-
lic schools, mainstreaming, single-sex education,
prayer in schools, and redshirting).

The argumentation model used in this corpus
is based on extended Toulmin’s model (Toulmin,
1958). Each document contains usually one ar-
gument, where each argument consists of several
argument components. There are five different
components in this model, namely, the claim (the
statement about to be established in the argument
which conveys author’s stance towards the topic),
the premise(s) (propositions that are intended to
give reasons of some kind for the claim), the back-
ing (additional information used to back-up the
argument), the rebuttal (attacks the claim), and
the refutation (which attacks the rebuttal). Rela-
tions between the argument components are en-
coded implicitly in the function of the particular
component type, for instance, premises are always
attached to the claim. We made two observations
in the data: the claim is often implicit (must be
inferred by the reader), and some sentences have
no argumentative function (thus are not labeled by
any argument component).5

4Available at www.ukp.tu-darmstadt.de/data/
argumentation-mining/

5A publication containing a thorough analysis of the
dataset is pending.

Figure 1 depicts two example annotations from
the corpus. Argument components were annotated
on the token level as non-overlapping annotation
spans. We therefore represent the argument anno-
tations using BIO encoding. Each token is labeled
with one of the 11 categories (5 argument com-
ponent types × B or I tag + one O category for
non-argumentative text).

4 Method

We cast the task of identifying argument compo-
nents as a sequence tagging problem and employ
SVMhmm (Joachims et al., 2009).6 For linguis-
tic annotations and feature engineering, we rely
on two UIMA-based frameworks – DKProCore
(Eckart de Castilho and Gurevych, 2014) and
DKProTC (Daxenberger et al., 2014).

Although the argument component annotations
in the corpus are aligned to the token boundaries
(token-level annotations), the minimal classifica-
tion unit in our sequence tagging approach is set
to the sentence level. First, this allows us to cap-
ture rich features that are available for entire sen-
tences as opposed to the token level. Second, by
modeling sequences on the token level we would
lose the advantage of SVMhmm to estimate depen-
dencies between labels, as the label context is lim-
ited due to computational feasibility. On the token
level, the label sequences are rather static (long se-
quences with the same label), as opposed to the
sentence level. Before the classification step, we
adjust all annotation boundaries (note that we use
11 BIO labels) so that they are aligned to the sen-
tence boundaries and each sentence is then treated
as a single classification unit with one label (for
example, the first sentence from Figure 1 with
token labels Claim-B, Claim-I, Claim-I, ... be-

6Keerthi and Sundararajan (2007) conclude that perfor-
mance of SVMhmm is comparable to another widely used
method, Conditional Random Fields (Lafferty et al., 2001)
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comes Claim-B). After classification, the labels
are mapped back to tokens (so that, for example,
Claim-B sentence label is transformed to Claim-
B, Claim-I, ... token labels). However, all eval-
uations are performed on the token level and the
performance is always measured against the orig-
inal token labels. Using this approximation, we
lose only about 10% of F1 performance.7

4.1 Baseline features

Lexical baseline (FS0) We encode the presence
of unigrams, bigrams, and trigrams in the sentence
as ‘one-hot’ (binary) features.

Structural and syntactic features (FS1) Since
the presence of discourse markers has been shown
to be helpful in argument component analysis (e.g,
“therefore” and “since” for premises or “think”
and “believe” for claims), we encode the first
and last three words as binary features. Further-
more, we capture the relative position of the sen-
tence in the paragraph and the document, the num-
ber of part of speech 1-3 grams, maximum de-
pendency tree depth, constituency tree produc-
tion rules, and number of sub-clauses (Stab and
Gurevych, 2014b). We used Stanford POS Tagger
(Toutanova et al., 2003), Berkeley parser (Petrov
et al., 2006), and Malt parser (Nivre, 2009).

Sentiment and topic features (FS2) We as-
sume that claims express sentiment, thus we com-
pute five sentiment categories (from very nega-
tive to very positive) using Stanford sentiment an-
alyzer (Socher et al., 2013) and use these values
directly as features. Furthermore, in order to help
detecting off-topic and non-argument sentences,
we employ topic model features. In particular, we
use features taken from a vector representation of
the sentence obtained by using Gibbs sampling on
LDA model (Blei et al., 2003; McCallum, 2002)
with topics trained on unlabeled data provided as
a part of the corpus.8

Semantic and discourse features (FS3) Fea-
tures based on semantic frames has been intro-
duced in relevant works on stance recognition
(Hasan and Ng, 2013). Our features, based on
PropBank semantic role labels and obtained from

7In only 1% of the sentences there are two or more argu-
ment components in it; we arbitrarily choose the largest one.

8The number of topics was empirically set to 30, therefore
for each sentence the topic distribution results into 30 real-
valued features.

NLP Semantic Role Labeler (Choi, 2012), ex-
tract various semantic information (agent, predi-
cate + agent, predicate + agent + patient + (op-
tional) negation, argument type + argument value)
and discourse markers. Discourse relations also
play an important role in argumentation analysis
(Cabrio et al., 2013). We thus employ binary fea-
tures (such as the presence of the sentence in a
chain, the transition type, the distance to previ-
ous/next sentences in the chain, or the number
of inter-sentence coreference links) obtained from
Stanford Coreference Chain Resolver (Lee et al.,
2013). Furthermore, we include features result-
ing from a PTDB-style discourse parser (Li et al.,
2012), such as the type of discourse relation (ex-
plicit, implicit), the presence of discourse connec-
tives, and attributions.

4.2 Unsupervised features

We enrich the above-mentioned features by uti-
lizing external large unlabeled resources – debate
portals. They fulfill several criteria, namely (a)
they are ‘argumentative’ (meant as opposed to,
for example, prose or encyclopedic genres), (b)
they are comprised of user-generated content and
(c) and there is at least some overlap with topics
from our experimental corpus. On the other hand,
they contain noisy texts of questionable quality
and they do not provide any specific argumentative
structure (in fact, these debates are simple discus-
sions to a topic, where each post is only labeled
with a pro or contra stance). Nevertheless, we as-
sume that the posts from (unlabeled) debate por-
tals contain valuable information that will help us
with classifying argument components in labeled
data. In order to do so, we employ clustering based
on latent semantics, which we now formalize as
argument space features.

We assume that phrases (sentences or docu-
ments) can be projected into a latent vector space,
using, typically, a sum or a weighted average of
all the word embeddings vectors in the phrase; see
for example (Le and Mikolov, 2014). Neighbor-
ing vectors in the latent vector space exhibit some
interesting properties, such as semantic similarity
(thoroughly studied within the distributional se-
mantics area). If the latent vector space is clus-
tered, each n-dimensional vector gets reduced to
a single cluster number; such clusters have been
used directly as features in many tasks, such as
NER (Turian et al., 2010), POS tagging (Owoputi
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et al., 2013), or sentiment analysis (Habernal and
Brychcı́n, 2013).

We build upon the above-mentioned approach
(described by Søgaard (2013) as ‘clusters-as-
features’ semi-supervised paradigm) and extend it
further. We take both sentences and posts from
the unlabeled debate portals, project them into a
latent space using word embeddings and cluster
them. The motivation is that these clusters will
contain similar phrases or (similar ‘arguments’).
Centroids of these clusters would then represent
a ‘prototypical argument’ (note that the centroids
exist only in the latent vector space and thus do
not correspond to any existing sentence or post).
Then we project each sentence (classification unit)
in the labeled data to the latent vector space, com-
pute its distance vector to all the cluster cen-
troids, and encode this distance vector directly as
real-valued features. By contrast to the above-
mentioned works using a single cluster label as
a feature, the distance vector to cluster centroids
resembles a soft labeling where each sentence be-
longs to several clusters with a certain ‘weight’.
We also use the latent vector space representation
of the sentence directly as a feature vector.

As unlabeled data, we use data from two largest
debate portals.9 As a pre-processing step we
removed all posts with less than one ‘point’
earned.10 The data were then indexed using the
Lucene framework and the top 100 debates for
each of the 6 domains were retrieved which re-
sulted into 5,759 posts (≈ 35k sentences) in the
unlabeled data in total. Our approach is formal-
ized in the following paragraph.

Argument space features (FS4) Let ~e(w) be
the embedding vector of word w and tfidf(w)
be the TD-IDF value of w. Sentence ~s =
(w1, . . . , wn) is then projected into the embed-
ding space E as ~se =

∑n
i=1 tfidf(wi)~e(wi)n−1

so dim(~se) = dim(E). Analogically to ~s, we
project the entire post ~a = (w1, . . . , wm) to
the same embedding space E such that ~ae =∑m

i=1 tfidf(wi)~e(wi)m−1.
Let K be the number of sentence clusters in

E and ~ck a centroid vector of cluster k ∈ K.
Then ~sc denotes the distance of sentence ~se to
the sentence cluster centroids such that ~sc =

9createdebate.com and convinceme.net, li-
censed under Creative Commons (CC-BY and CC0, resp.)

10‘Points’ is the sum of up-votes/down-votes by other users
to the particular post. Zero-point posts were usually noisy and
spam-like.

(cos(~se,~c1), . . . , cos(~se,~ck)) where dim(~sc) =
K and cos(•, •) denotes cosine similarity. Ana-
logically, let L be the number of post clusters
in E and ~al a centroid vector of cluster l ∈
L. Then ~sa denotes the distance of sentence
~se to the post cluster centroids such that ~sa =
(cos(~se,~a1), . . . , cos(~se,~al)). We construct the
feature vector by concatenating ~se, ~sc and ~sa.

For word embeddings, we use pre-trained skip-
gram word vectors11 produced by Mikolov et
al. (2013) (dim(E) = 300). To create clus-
ters for the argument space features, we used
CLUTO software package12 with Repeated Bi-
section clustering method (Zhao and Karypis,
2002). We clustered the data using different
hyper-parameters K and L (we experimented
with K = {50, 100, 500, 1000} and L =
{50, 100, 500, 1000}).

5 Results

We investigate three evaluation scenarios. First,
we report 10-fold cross validation over all 340
documents, where the data are randomly dis-
tributed across the folds regardless of the domain
or register. In this scenario, the model can bene-
fit from domain-dependent features for the testing
data, such as lexical knowledge (FS0) or domain-
relevant argument space features (FS4). Second,
we evaluate the cross-domain performance; the
model is always trained on five domains and tested
on the sixth one. In this settings, we also re-
move all features that exploit distant data relevant
to the test set. For instance, if the test domain
is mainstreaming, we exclude all debates relevant
to this domain before constructing the argument
space features (FS4). This evaluates the model’s
cross-domain performance without any target do-
main data available. Finally, we test cross-register
performance in two set-ups: we train the models
using comments and forum posts and test on blogs
and newswire articles, and then the other way
round. We divided the data into these two parts
based on similar properties of blogs/articles and
comments/forums, such as the length, or the dis-
tribution of argumentative and non-argumentative
text.

In the evaluation, we focus on F1 scores
achieved on claims, premises, backing, and non-
argumentative text (the ‘O’ class). Although the

11https://code.google.com/p/word2vec/
12http://www.cs.umn.edu/˜karypis/cluto
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FS B-B B-I C-B C-I O P-B P-I Avg
Human .664 .579 .739 .728 .833 .673 .736 .707
0 .154 .211 .118 .159 .718 .202 .272 .262
01? .237 .254 .167 .129 .671 .280 .356 .299
4? .194 .283 .225 .197 .715 .230 .292 .305
012? .258 .282 .189 .172 .685 .276 .359 .317
1234† .235 .315 .181 .145 .690 .290 .394 .321
0123? .313 .333 .152 .140 .691 .287 .372 .327
01234† .265 .332 .183 .167 .690 .314 .405 .337
34? .232 .344 .256 .235 .704 .269 .372 .345
234† .238 .339 .253 .227 .703 .291 .388 .348

Table 1: F1 results for the 10-fold cross-validation scenario.
Feature set combination (the FS column) naming is explained
in Section 4.1. Class labels: B-B/I = Backing-B/I, C-B/I =
Claim-B/I, O = non-argumentative, P-B/I = Premise-B/I. Star
(?) denotes that the row is significantly better than the previ-
ous row; dagger (†) means the row is not significantly better
than the previous row, but is significantly better than the pre-
vious row minus one; p < 0.001 using exact Liddell’s test
(Liddell, 1983).

classifier is trained and tested on all 11 classes in-
cluding rebuttal and refutation, we do not report
performance of these two argument components—
the results are very poor regardless of the param-
eters for two reasons. First, these classes are un-
derrepresented in the data (Rebuttal-B, Rebuttal-
I, Refutation-B and Refutation-I are present in
only about 4% of sentences). Second, the inter-
annotator agreement reached on these classes were
reported to be very low (Habernal et al., 2014).

Cross validation results Table 1 shows results
for the cross-validation scenario. The human base-
line in the first row is an average score between
three original annotators of the dataset. The base-
line features (FS0) perform poorly, yet they beat
the random assignment and majority vote (< 0.12
F1). The argument space features (FS4) increase
the performance in every combination. The best
results for claims are achieved when only dis-
course, sentiment, and argument space features
are involved (FS3 and FS4), whereas premises and
backing benefit from the presence of lexical, syn-
tactic, and semantic features (the richest feature
set). The overall average best results are obtained
from a feature combination with higher level of
abstraction, in particular without low-level lexical
features from FS0.

After the cross validation experiments, we also
fixed the hyperparameters (using grid search) to
K = 1000, L = 100 for the cluster sizes and t = 1
and e = 0 for the hyperparameters of SVMhmm .

Cross-domain results For each domain, the
cross-domain results are shown in Table 2. On
average, the best results are about 0.10 F1 points
worse than in the cross-validation settings (Table

1). In all domains, the best average performance
was achieved using only the argument space fea-
tures (FS4); in four cases this system significantly
outperforms all other systems (p < 0.001). More-
over, more high-level feature set combinations
that also contain argument space features (such
as FS2+FS3+F4 or FS3+FS4) yield usually bet-
ter results for particular argument components in
contrast to features based on lexical or syntactic
information (FS0 and FS1). For identifying non-
argumentative texts, there is no clear winner with
respect to feature set abstraction (in three domains
the best results are achieved using FS4 but in other
three domains the baseline FS0 performs best).

Cross-register results The argument space fea-
tures (FS4) performs best in average also in the
cross-register evaluation (see Table 3). In recog-
nizing premises, better results were achieved by a
system trained on blogs and articles and tested on
comments and forum posts. Recognizing claims
exhibits similar behavior. On the other hand,
recognizing non-argumentative text performs bet-
ter in the opposite direction. On average, the
cross-register results are much worse than cross-
validation and slightly worse than cross-domain
results.

5.1 Error analysis
First, we quantitatively investigate errors in the
cross-validation scenario. The confusion matrix in
Table 4 shows that about 50-60% of errors for each
argument component were caused by misclassify-
ing it as non-argumentative (the ‘O’ class). The
system tends to prefer the ‘O’ predictions because
of the high presence of non-argumentative sen-
tences in the corpus (about 57%). Backing is often
confused with premises; in particular, Backing-B
with Premise-B in 14%, Backing-I with Premise-I
in 17%. These two argument components have a
similar function–to support the claim–so the dif-
ferences in the discourse (which are sometimes
very subtle) confuse the system. Note that despite
the confusion between these classes, the -I and -B
tags mostly remain the same (the system correctly
predicts whether the argument component begins
or not).13

We also analyzed the errors of the best-
13To provide the complete picture, we also show the previ-

ously unreported classes (rebuttal and refutation). Rebuttal is
usually misclassified as non-argumentative or premise, refu-
tation as either non-argumentative, backing, or premise.
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FS B-B B-I C-B C-I O P-B P-I Avg
Target domain: Homeschooling

01234 .039 .249 .000 .000 .145 .000 .000 .062
34 .000 .000 .000 .027 .005 .184 .386 .086
1234 .063 .263 .000 .000 .289 .000 .000 .088
234 .026 .030 .000 .000 .000 .197 .387 .091
01 .000 .000 .000 .000 .689 .000 .000 .098
012 .000 .000 .000 .000 .690 .000 .017 .101
0123 .000 .020 .000 .000 .689 .000 .018 .104
0 .000 .000 .063 .032 .683 .079 .098 .136
4� .182 .258 .069 .069 .700 .143 .224 .235

Target domain: Mainstreaming
01234 .065 .262 .000 .000 .086 .000 .054 .067
34 .000 .000 .000 .000 .000 .184 .352 .077
234 .000 .287 .000 .000 .000 .222 .241 .107
0 .000 .000 .000 .000 .689 .054 .046 .113
1234 .126 .279 .000 .000 .060 .158 .221 .121
01 .000 .000 .000 .000 .666 .103 .079 .121
012 .000 .000 .000 .000 .663 .054 .141 .123
0123 .000 .000 .000 .000 .630 .261 .307 .171
4? .222 .448 .000 .000 .674 .145 .247 .248

Target domain: Prayer in schools
1234 .040 .150 .000 .000 .163 .000 .014 .052
0123 .000 .000 .000 .000 .080 .061 .292 .062
01234 .000 .115 .000 .000 .080 .149 .175 .074
234 .058 .042 .000 .000 .012 .215 .303 .090
34 .000 .000 .098 .105 .034 .203 .297 .105
0 .000 .111 .000 .000 .745 .000 .000 .122
01 .000 .115 .000 .000 .810 .000 .000 .132
012 .000 .000 .027 .045 .689 .120 .187 .153
4 .000 .146 .083 .048 .695 .168 .156 .185

FS B-B B-I C-B C-I O P-B P-I Avg
Target domain: Public vs. private schools

01 .000 .000 .026 .004 .645 .000 .000 .096
012 .000 .000 .026 .005 .647 .000 .000 .097
01234 .000 .000 .000 .000 .591 .069 .093 .108
0 .026 .038 .000 .000 .638 .019 .054 .111
0123 .058 .064 .019 .023 .622 .019 .025 .119
234 .000 .089 .026 .042 .013 .240 .424 .119
1234 .000 .022 .000 .000 .496 .133 .239 .127
34 .051 .166 .037 .045 .011 .203 .386 .128
4� .228 .251 .275 .270 .653 .232 .220 .304

Target domain: Redshirting
34 .073 .047 .000 .000 .144 .132 .265 .094
01234 .000 .000 .076 .070 .251 .024 .264 .098
234 .079 .162 .000 .000 .195 .101 .179 .102
0 .000 .000 .000 .000 .740 .000 .000 .106
01 .000 .000 .000 .000 .733 .000 .029 .109
012 .000 .000 .000 .000 .738 .049 .045 .119
1234 .102 .321 .000 .000 .118 .022 .277 .120
0123 .304 .356 .000 .000 .603 .082 .108 .208
4� .226 .390 .000 .000 .736 .161 .227 .249

Target domain: Single-sex education
0123 .137 .178 .000 .000 .107 .000 .000 .060
012 .000 .033 .000 .000 .712 .000 .000 .106
01234 .138 .194 .024 .036 .247 .056 .148 .120
34 .065 .124 .000 .000 .073 .208 .379 .121
01 .000 .000 .000 .000 .708 .092 .209 .144
0 .000 .000 .000 .000 .728 .154 .130 .145
234 .061 .125 .000 .000 .395 .180 .269 .147
1234 .067 .187 .078 .073 .522 .067 .117 .159
4� .104 .185 .000 .000 .689 .204 .397 .226

Table 2: F1 results for the cross-domain evaluation scenario ranked by performance. Feature set combination naming (the FS
column) is explained in Section 4.1. Class labels: B-B/I = Backing-B/I, C-B/I = Claim-B/I, O = non-argumentative, P-B/I =
Premise-B/I. Diamond (�) in the last (winning) row signals a significant difference between this row and all other rows while
star (?) denotes that the row is significantly better than the previous row; p < 0.001 using exact Liddell’s test (Liddell, 1983).

FS B-B B-I C-B C-I O P-B P-I Avg
Train: blogs, articles; Test: comments, forums

01234 .063 .259 .027 .051 .147 .000 .064 .087
012 .000 .000 .000 .000 .643 .000 .000 .092
0 .010 .237 .000 .000 .352 .014 .036 .093
01 .000 .000 .000 .000 .643 .010 .013 .095
0123 .021 .032 .000 .000 .645 .005 .002 .101
1234 .097 .215 .052 .068 .369 .000 .013 .116
234 .042 .068 .065 .068 .534 .093 .168 .148
34 .030 .061 .098 .099 .221 .211 .385 .158
4� .076 .206 .167 .158 .611 .151 .209 .225

FS B-B B-I C-B C-I O P-B P-I Avg
Train: comments, forums; Test: blogs, articles

34 .052 .130 .036 .037 .057 .000 .000 .045
01234 .000 .008 .000 .000 .003 .080 .301 .056
234 .055 .182 .033 .036 .121 .025 .015 .067
1234 .071 .176 .014 .021 .050 .061 .290 .098
0 .000 .000 .000 .000 .773 .012 .019 .115
01 .000 .000 .051 .058 .720 .025 .043 .128
012 .000 .000 .039 .037 .746 .063 .046 .133
0123 .000 .000 .000 .000 .679 .099 .227 .144
4� .142 .162 .061 .032 .693 .161 .353 .229

Table 3: F1 results for the cross-register evaluation scenario ranked by performance. Feature set combination naming (the
FS column) is explained in Section 4.1. Class labels: B-B/I = Backing-B/I, C-B/I = Claim-B/I, O = non-argumentative, P-B/I
= Premise-B/I. Diamond (�) in the last (winning) row signals a significant difference between this row and all other rows;
p < 0.001 using exact Liddell’s test (Liddell, 1983).

performing cross-domain system in detail.14 We
randomly sampled 40 documents and manually
compared the predicted arguments with the gold
data. We found that 11 predicted documents were
simply wrong or no argument components were
predicted at all (e.g., document #1640, #1658,
#1021, #5258). Most of these errors occur in
blogs, which seem to convey rather complex
argumentation structure (#1666, #1197, #4586,
#5258). In 8 documents, we identified that only
some premises were (correctly) spotted by the sys-
tem. This happened mostly in long comments
(#452) and blogs (#400, #697, #4583). In 7 inves-

14Available also as PDF at https://github.com/
habernal/emnlp2015; we use #ID to point to the par-
ticular documents.

tigated documents, we identified errors caused by
slightly different boundaries of recognized argu-
ment components (#4517, #2447, #2252, #4840)
or when multiple segments were merged/split
(#1604, #2180, #2310).

By analyzing the predicted output, we also
found that in 12 documents the recognized argu-
ment components seemed to be valid to some ex-
tent, although this was our subjective judge. For
instance, in #4285 (see Figure 2), the first premise
was misclassified as a claim. The gold-data ar-
gument was annotated as an enthymeme (with im-
plicit claim that advocates private schools), while
in the prediction, the same proposition was iden-
tified as the an explicit claim supporting private
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↓ gold \ pred. → Bac-B Bac-I Cla-B Cla-I O Pre-B Pre-I Reb-B Reb-I Ref-B Ref-I
Backing-B 54 12 12 1 106 31 8 0 0 0 0
Backing-I 12 3,238 1 353 5,089 17 1,777 1 18 0 45
Claim-B 7 3 41 5 107 19 9 1 1 0 2
Claim-I 0 160 0 713 2,095 1 456 0 25 0 25
O 97 3,170 53 1,135 36,061 156 5,459 4 178 1 38
Premise-B 35 17 17 2 290 142 28 6 0 0 1
Premise-I 18 1,680 2 544 10,779 51 7,015 2 234 2 41
Rebuttal-B 3 4 3 2 40 9 7 0 0 0 0
Rebuttal-I 1 199 0 47 1,063 10 859 0 0 0 0
Refutation-B 2 2 0 1 16 1 3 0 1 0 0
Refutation-I 0 86 0 7 592 2 148 0 6 0 0

Table 4: Confusion matrix for the best performing configuration in the cross-validation scenario.

schools with one premise why the education was
not satisfying, which might be also another valid
interpretation. The second example #2180 in Fig-
ure 2 shows that the boundaries of the predicted
premises are mixed up (two recognized instead of
three), but the longer backing is also meaningful.
These examples demonstrate that argument analy-
sis is in some cases ambiguous and allows for dif-
ferent valid interpretations.

6 Conclusion

In this article, we proposed a semi-supervised
model for argumentation mining of user-generated
Web content. We developed new unsupervised
features for argument component identification
that exploit clustering of unlabeled argumenta-
tive data from debate portals based on word em-
beddings representation. With the help of these
features we significantly improved performance
of the argumentation mining system and outper-
formed several baselines. While the improvement
was decent in cross-validation scenario, we gained
almost 100% improvement in cross-domain and
cross-register settings.

We evaluated the methods on a publicly avail-
able corpus annotated with argumentation that ori-
gins from user-generated Web data. By a de-
tailed analysis of the errors, we pointed out the
strengths (such as domain adaptability) and weak-
nesses (such as unsatisfying results for rebuttal
and refutation components), as well as the chal-
lenges for the argumentation mining task (such as
boundary identification issues or ambiguous argu-
ments). If we put our results into the context of
existing works, the most relevant one by (Goudas
et al., 2014) achieved 0.42 F1 score on identifying
only premises. We get comparable results in the
cross-validation settings (F1 0.31-0.40) yet with
more complex argumentation model (five different

components).
Although argumentation mining in user-

generated Web discourse has a long way to go
(our methods currently achieve only about 50% of
human performance), we see a huge potential for
various future tasks, such as information seeking
for better-informed personal decision making
or support for argument quality assessment. To
foster the research within the community, we
provide all source codes and data required for the
experiments under free licenses.
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Gold
[premise: I sent my kid to private school so that she could
get a better education.] . . . . . . . . . .[backing: . . . . .She. . . . .was . .at. .a. . . . . . .public. . . . . . .school
. . . .that . . . . .was . . . . . .90% . . . . . . . . . . .hispanic.] [premise: The problem was not
their race but the fact that they were way behind in reading
langauge and math. This situation was holding my kid and
preventing her from excelling in her studies.] Do you think I
should of just left my kid in this class? Give me a break!

Predicted
[claim: I sent my kid to private school so that she could
get a better education.] She was at a public school that was
90% hispanic. [premise: The problem was not their race but
the fact that they were way behind in reading langauge and
math.] This situation was holding my kid and preventing her
from excelling in her studies. Do you think I should of just
left my kid in this class? Give me a break!

(a) Doc #4285 (article comment, public vs. private schools)

Gold
[claim: Personally i’d go co-ed.]
. . . . . . . . . .[backing: . . . . . .As . . . . . . . . . .someone. . . . . .who . . . . . .went . . .to. .a. . . . . . .same . . . . .sex . . . . . . .school
. . .for . . .8 . . . . . . .years, . .I. . . . . . .found. . .it . . . . . . . .lacked . . . .the. . . . . . . . . .diversity. . . . .you. . . . .get . . .in. .a
. . . . . .co-ed . . . . . . . . . . . . . . .environment.] [premise: I found the attitude and
behaviour of students in the co ed school to be better, and
i attribute that to the influence of the opposite sex.] [premise:
There’s no doubt boys behave a little different when girls are
watching, and i also found boys were quite good at limiting
the bitchyness girls are renowned for. So both kept one
another in line, and made for a more positive and dynamic
environment.]
[premise: I also think there’s a few extra life lessons
and skills children can learn at co ed schools. Dating,
relationships, interacting with the opposite sex, i think
children at co ed schools tend to have a far better grasp of
these skills then students who’ve only attended same sex
schools.]

Predicted
. . . . . . . . . .[backing: . . . . . . . . . . . .Personally. . .i’d. . . .go . . . . . . .co-ed.
. . .As . . . . . . . . . .someone . . . . .who. . . . . .went. . .to. .a. . . . . .same. . . . .sex . . . . . . .school. . . .for. . .8 . . . . . . .years, .I
. . . . . .found. .it. . . . . . .lacked. . . .the. . . . . . . . . .diversity . . . .you. . . .get. . .in . .a . . . . . .co-ed. . . . . . . . . . . . . .environment.
.I . . . . . . .found . . . .the . . . . . . . .attitude. . . . .and. . . . . . . . . . .behaviour. . .of. . . . . . . . . .students . . .in . . . .the . . .co. . .ed
. . . . . . .school . .to. . . .be . . . . . . .better, . . . .and.i. . . . . . . . . .attribute . . . .that. . .to . . . .the . . . . . . . . . .influence . . .of . . .the
. . . . . . . . .opposite . . . . . .sex.] [premise: There’s no doubt boys behave a
little different when girls are watching, and i also found boys
were quite good at limiting the bitchyness girls are renowned
for.] [premise: So both kept one another in line, and made
for a more positive and dynamic environment.
I also think there’s a few extra life lessons and skills children
can learn at co ed schools. Dating, relationships, interacting
with the opposite sex, i think children at co ed schools tend
to have a far better grasp of these skills then students who’ve
only attended same sex schools.]

(b) Doc #2180 (forum post, single-sex education)

Figure 2: Examples of gold data annotations (on the left-hand side) and system predictions in the best-performing cross-domain
evaluation scenario (on the right-hand side).
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Abstract

Twitter is often used in quantitative stud-
ies that identify geographically-preferred
topics, writing styles, and entities. These
studies rely on either GPS coordinates at-
tached to individual messages, or on the
user-supplied location field in each profile.
In this paper, we compare these data ac-
quisition techniques and quantify the bi-
ases that they introduce; we also measure
their effects on linguistic analysis and text-
based geolocation. GPS-tagging and self-
reported locations yield measurably dif-
ferent corpora, and these linguistic differ-
ences are partially attributable to differ-
ences in dataset composition by age and
gender. Using a latent variable model
to induce age and gender, we show how
these demographic variables interact with
geography to affect language use. We
also show that the accuracy of text-based
geolocation varies with population demo-
graphics, giving the best results for men
above the age of 40.

1 Introduction

Social media data such as Twitter is frequently
used to identify the unique characteristics of
geographical regions, including topics of inter-
est (Hong et al., 2012), linguistic styles and di-
alects (Eisenstein et al., 2010; Gonçalves and
Sánchez, 2014), political opinions (Caldarelli et
al., 2014), and public health (Broniatowski et al.,
2013). Social media permits the aggregation of
datasets that are orders of magnitude larger than
could be assembled via traditional survey tech-
niques, enabling analysis that is simultaneously
fine-grained and global in scale. Yet social media
is not a representative sample of any “real world”
population, aside from social media itself. Using

social media as a sample therefore risks introduc-
ing both geographic and demographic biases (Mis-
love et al., 2011; Hecht and Stephens, 2014; Lon-
gley et al., 2015; Malik et al., 2015).

This paper examines the effects of these bi-
ases on the geo-linguistic inferences that can be
drawn from Twitter. We focus on the ten largest
metropolitan areas in the United States, and con-
sider three sampling techniques: drawing an equal
number of GPS-tagged tweets from each area;
drawing a county-balanced sample of GPS-tagged
messages to correct Twitter’s urban skew (Hecht
and Stephens, 2014); and drawing a sample of
location-annotated messages, using the location
field in the user profile. Leveraging self-reported
first names and census statistics, we show that the
age and gender composition of these datasets dif-
fer significantly.

Next, we apply standard methods from the lit-
erature to identify geo-linguistic differences, and
test how the outcomes of these methods depend
on the sampling technique and on the underlying
demographics. We also test the accuracy of text-
based geolocation (Cheng et al., 2010; Eisenstein
et al., 2010) in each dataset, to determine whether
the accuracies reported in recent work will gener-
alize to more balanced samples.

The paper reports several new findings about
geotagged Twitter data:

• In comparison with tweets with self-reported
locations, GPS-tagged tweets are written
more often by young people and by women.
• There are corresponding linguistic dif-

ferences between these datasets, with
GPS-tagged tweets including more
geographically-specific non-standard words.
• Young people use significantly more

geographically-specific non-standard words.
Men tend to mention more geographically-
specific entities than women, but these
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differences are significant only for individu-
als at the age of 30 or older.
• Users who GPS-tag their tweets tend to write

more, making them easier to geolocate. Eval-
uating text-based geolocation on GPS-tagged
tweets probably overestimates its accuracy.
• Text-based geolocation is significantly more

accurate for men and for older people.

These findings should inform future attempts to
generalize from geotagged Twitter data, and may
suggest investigations into the demographic prop-
erties of other social media sites.

We first describe the basic data collection prin-
ciples that hold throughout the paper (§ 2). The
following three sections tackle demographic bi-
ases (§ 3), their linguistic consequences (§ 4), and
the impact on text-based geolocation (§ 5); each
of these sections begins with a discussion of meth-
ods, and then presents results. We then summarize
related work and conclude.

2 Dataset

This study is performed on a dataset of tweets
gathered from Twitter’s streaming API from
February 2014 to January 2015. During an ini-
tial filtering step we removed retweets, repetitions
of previously posted messages which contain the
“retweeted status” metadata or “RT” token which
is widely used among Twitter users to indicate a
retweet. To eliminate spam and automated ac-
counts (Yardi et al., 2009), we removed tweets
containing URLs, user accounts with more than
1000 followers or followees, accounts which have
tweeted more than 5000 messages at the time of
data collection, and the top 10% of accounts based
on number of messages in our dataset. We also re-
moved users who have written more than 10% of
their tweets in any language other than English,
using Twitter’s lang metadata field. Exploration
of code-switching (Solorio and Liu, 2008) and the
role of second-language English speakers (Eleta
and Golbeck, 2014) is left for future work.

We consider the ten largest Metropolitan Sta-
tistical Areas (MSAs) in the United States, listed
in Table 1. MSAs are defined by the U.S. Cen-
sus Bureau as geographical regions of high popu-
lation with density organized around a single ur-
ban core; they are not legal administrative divi-
sions. MSAs include outlying areas that may be
substantially less urban than the core itself. For
example, the Atlanta MSA is centered on Fulton

County (1750 people per square mile), but extends
to Haralson County (100 people per square mile),
on the border of Alabama. A per-county analysis
of this data therefore enables us to assess the de-
gree to which Twitter’s skew towards urban areas
biases geo-linguistic analysis.

3 Representativeness of geotagged
Twitter data

We first assess potential biases in sampling tech-
niques for obtaining geotagged Twitter data. In
particular, we compare two possible techniques
for obtaining data: the location field in the user
profile (Poblete et al., 2011; Dredze et al., 2013),
and the GPS coordinates attached to each mes-
sage (Cheng et al., 2010; Eisenstein et al., 2010).

3.1 Methods

To build a dataset of GPS-tagged messages, we
extracted the GPS latitude and longitude coordi-
nates reported in the tweet, and used GIS-TOOLS1

reverse geocoding to identify the corresponding
counties. This set of geotagged messages will be
denoted DG. Only 1.24% of messages contain
geo-coordinates, and it is possible that the individ-
uals willing to share their GPS comprise a skewed
population. We therefore also considered the user-
reported location field in the Twitter profile, focus-
ing on the two most widely-used patterns: (1) city
name, (2) city name and two letter state name (e.g.
Chicago and Chicago, IL). Messages that matched
any of the ten largest MSAs were grouped into a
second set, DL.

While the inconsistencies of writing style in
the Twitter location field are well-known (Hecht
et al., 2011), analysis of the intersection between
DG andDL found that the two data sources agreed
the overwhelming majority of the time, suggest-
ing that most self-provided locations are accurate.
Of course, there may be many false negatives —
profiles that we fail to geolocate due to the use of
non-standard toponyms like Pixburgh and ATL. If
so, this would introduce a bias in the population
sample in DL. Such a bias might have linguistic
consequences, with datasets based on the location
field containing less non-standard language over-
all.

1https://github.com/DrSkippy/
Data-Science-45min-Intros/blob/master/
gis-tools-101/gis_tools.ipynb
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Figure 1: Proportion of census population, Twitter messages, and Twitter user accounts, by county. New
York is shown on the left, Atlanta on the right.

3.1.1 Subsampling
The initial samples DG and DL were then resam-
pled to create the following balanced datasets:

GPS-MSA-BALANCED FromDG, we randomly
sampled 25,000 tweets per MSA as the
message-balanced sample, and all the tweets
from 2,500 users per MSA as the user-
balanced sample. Balancing across MSAs
ensures that the largest MSAs do not domi-
nate the linguistic analysis.

GPS-COUNTY-BALANCED We resampled
DG based on county-level population (ob-
tained from the U.S. Census Bureau), and
again obtained message-balanced and user-
balanced samples. These samples are more
geographically representative of the overall
population distribution across each MSA.

LOC-MSA-BALANCED From DL, we randomly
sampled 25,000 tweets per MSA as the
message-balanced sample, and all the tweets
from 2,500 users per MSA as the user-
balanced sample. It is not possible to obtain
county-level geolocations in DL, as exact ge-
ographical coordinates are unavailable.

3.1.2 Age and gender identification
To estimate the distribution of ages and genders
in each sample, we queried statistics from the So-
cial Security Administration, which records the
number of individuals born each year with each
given name. Using this information, we obtained
the probability distribution of age values for each
given name. We then matched the names against
the first token in the name field of each user’s

profile, enabling us to induce approximate distri-
butions over ages and genders. Unlike Facebook
and Google+, Twitter does not have a “real name”
policy, so users are free to give names that are
fake, humorous, etc. We eliminate user accounts
whose names are not sufficiently common in the
social security database (i.e. first names which
are at least 100 times more frequent in Twitter
than in the social security database), thereby omit-
ting 33% of user accounts, and 34% of tweets.
While some individuals will choose names not
typically associated with their gender, we assume
that this will happen with roughly equal probabil-
ity in both directions. So, with these caveats in
mind, we induce the age distribution for the GPS-
MSA-BALANCED sample and the LOC-MSA-
BALANCED sample as,

p(a | name = n) =
count(name = n, age = a)∑
a′ count(name = n, age = a′)

(1)

pD(a) ∝
∑
i∈D

p(a | name = ni). (2)

We induce distributions over author gender in
much the same way (Mislove et al., 2011). This
method does not incorporate prior information
about the ages of Twitter users, and thus assigns
too much probability to the extremely young and
old, who are unlikely to use the service. While it
would be easy to design such a prior — for exam-
ple, assigning zero prior probability to users under
the age of five or above the age of 95 — we see
no principled basis for determining these cutoffs.
We therefore focus on the differences between the
estimated pD(a) for each sample D.
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Num. L1 Dist. L1 Dist.
MSA Counties Population Population

vs. Users vs. Tweets

New York 23 0.2891 0.2825
Los Angeles 2 0.0203 0.0223
Chicago 14 0.0482 0.0535
Dallas 12 0.1437 0.1176
Houston 10 0.0394 0.0472
Philadelphia 11 0.1426 0.1202
Washington DC 22 0.2089 0.2750
Miami 3 0.0428 0.0362
Atlanta 28 0.1448 0.1730
Boston 7 0.1878 0.2303

Table 1: L1 distance between county-level popu-
lation and Twitter users and messages

3.2 Results

Geographical biases in the GPS Sample We
first assess the differences between the true pop-
ulation distributions over counties, and the per-
tweet and per-user distributions. Because coun-
ties vary widely in their degree of urbanization
and other demographic characteristics, this mea-
sure is a proxy for the representativeness of GPS-
based Twitter samples (county information is not
available for the LOC-MSA-BALANCED sample).
Population distributions for New York and Atlanta
are shown in Figure 1. In Atlanta, Fulton County
is the most populous and most urban, and is over-
represented in both geotagged tweets and user ac-
counts; most of the remaining counties are corre-
spondingly underrepresented. This coheres with
the urban bias noted earlier by Hecht and Stephens
(2014). In New York, Kings County (Brooklyn)
is the most populous, but is underrepresented in
both the number of geotagged tweets and user ac-
counts, at the expense of New York County (Man-
hattan). Manhattan is the commercial and enter-
tainment center of the New York MSA, so resi-
dents of outlying counties may be tweeting from
their jobs or social activities.

To quantify the representativeness of each sam-
ple, we use the L1 distance ||x− y||1 =

∑
c |pc−

tc|, where pc is the proportion of the MSA pop-
ulation residing in county c and tc is the propor-
tion of tweets (Table 1). County boundaries are
determined by states, and their density varies: for
example, the Los Angeles MSA covers only two
counties, while the smaller Atlanta MSA is spread
over 28 counties. The table shows that while New
York is the most extreme example, most MSAs
feature an asymmetry between county population
and Twitter adoption.

0-2 2-5 5-10 10-15 >15
Number of messages by a user

0.0

0.5

1.0

1.5

N
u
m

b
e
r 

o
f 

u
se

rs

1e4

10054

7077

4939

1841

1089

10062

6914

4924

1956

1144

16046

4460

1889

616
362

Number of users in each category

GPS-MSA-Balanced

GPS-County-Balanced

LOC-MSA-Balanced

Figure 2: User counts by number of Twitter mes-
sages

Usage Next, we turn to differences between the
GPS-based and profile-based techniques for ob-
taining ground truth data. As shown in Fig-
ure 2, the LOC-MSA-BALANCED sample con-
tains more low-volume users than either the GPS-
MSA-BALANCED or GPS-COUNTY-BALANCED

samples. We can therefore conclude that the
county-level geographical bias in the GPS-based
data does not impact usage rate, but that the differ-
ence between GPS-based and profile-based sam-
pling does; the linguistic consequences of this dif-
ference will be explored in the following sections.

Demographics Table 2 shows the expected age
and gender for each dataset, with bootstrap con-
fidence intervals. Users in the LOC-MSA-
BALANCED dataset are on average two years older
than in the GPS-MSA-BALANCED and GPS-
COUNTY-BALANCED datasets, which are statis-
tically indistinguishable. Focusing on the differ-
ence between GPS-MSA-BALANCED and LOC-
MSA-BALANCED, we plot the difference in age
probabilities in Figure 3, showing that GPS-
MSA-BALANCED includes many more teens and
people in their early twenties, while LOC-MSA-
BALANCED includes more people at middle age
and older. Young people are especially likely to
use social media on cellphones (Lenhart, 2015),
where location tagging would be more relevant
than when Twitter is accessed via a personal com-
puter. Social media users in the age brackets 18-
29 and 30-49 are also more likely to tag their lo-
cations in social media posts than social media
users in the age brackets 50-64 and 65+ (Zickuhr,
2013), with women and men tagging at roughly
equal rates. Table 2 shows that the GPS-MSA-
BALANCED and GPS-COUNTY-BALANCED sam-
ples contain significantly more women than LOC-
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Sample Expected Age 95% CI % Female 95% CI

GPS-MSA-BALANCED 36.17 [36.07 – 36.27] 51.5 [51.3 – 51.8]
GPS-COUNTY-BALANCED 36.25 [36.16 – 36.30] 51.3 [51.1 – 51.6]
LOC-MSA-BALANCED 38.35 [38.25 – 38.44] 49.3 [49.1 – 49.6]

Table 2: Demographic statistics for each dataset
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Figure 3: Difference in age probability distribu-
tions between GPS-MSA-BALANCED and LOC-
MSA-BALANCED.

MSA-BALANCED, though all three samples are
close to 50%.

4 Impact on linguistic generalizations

Many papers use Twitter data to draw conclusions
about the relationship between language and ge-
ography. What role do the demographic differ-
ences identified in the previous section have on
the linguistic conclusions that emerge? We mea-
sure the differences between the linguistic corpora
obtained by each data acquisition approach. Since
the GPS-MSA-BALANCED and GPS-COUNTY-
BALANCED methods have nearly identical pat-
terns of usage and demographics, we focus on the
difference between GPS-MSA-BALANCED and
LOC-MSA-BALANCED. These datasets differ in
age and gender, so we also directly measure the
impact of these demographic factors on the use of
geographically-specific linguistic variables.

4.1 Methods
Discovering geographical linguistic variables
We focus on lexical variation, which is relatively
easy to identify in text corpora. Monroe et al.
(2008) survey a range of alternative statistics for
finding lexical variables, demonstrating that a reg-
ularized log-odds ratio strikes a good balance be-
tween distinctiveness and robustness. A similar
approach is implemented in SAGE (Eisenstein et
al., 2011a)2, which we use here. For each sam-

2https://github.com/jacobeisenstein/jos-gender-2014

ple — GPS-MSA-BALANCED and LOC-MSA-
BALANCED — we apply SAGE to identify the
twenty-five most salient lexical items for each
metropolitan area.

Keyword annotation Previous research has
identified two main types of geographical lexi-
cal variables. The first are non-standard words
and spellings, such as hella and yinz, which have
been found to be very frequent in social me-
dia (Eisenstein, 2015). Other researchers have fo-
cused on the “long tail” of entity names (Roller
et al., 2012). A key question is the relative im-
portance of these two variable types, since this
would decide whether geo-linguistic differences
are primarily topic-based or stylistic. It is there-
fore important to know whether the frequency
of these two variable types depends on proper-
ties of the sample. To test this, we take the
lexical items identified by SAGE (25 per MSA,
for both the GPS-MSA-BALANCED and LOC-
MSA-BALANCED samples), and annotate them
as NONSTANDARD-WORD, ENTITY-NAME, or
OTHER. Annotation for ambiguous cases is based
on the majority sense in randomly-selected exam-
ples. Overall, we identify 24 NONSTANDARD-
WORDs and 185 ENTITY-NAMEs.

Inferring author demographics As described
in § 3.1.2, we can obtain an approximate distri-
bution over author age and gender by linking self-
reported first names with aggregate statistics from
the United States Census. To sharpen these esti-
mates, we now consider the text as well, build-
ing a simple latent variable model in which both
the name and the word counts are drawn from dis-
tributions associated with the latent age and gen-
der (Chang et al., 2010). The model is shown in
Figure 4, and involves the following generative
process:

For each user i ∈ {1...N},
(a) draw the age, ai ∼ Categorical(π)
(b) draw the gender, gi ∼ Categorical(0.5)
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ai Age (bin) for author i
gi Gender of author i
wi Word counts for author i
ni First name of author i
π Prior distribution over

age bins
θa,g Word distribution for

age a and gender g
φa,g First name distribution

for age a and gender g

Figure 4: Plate diagram for latent variable model
of age and gender

(c) draw the author’s given name, ni ∼
Categorical(φai,gi)

(d) draw the word counts, wi ∼
Multinomial(θai,gi),

where we elide the second parameter of the multi-
nomial distribution, the total word count. We use
expectation-maximization to perform inference in
this model, binning the latent age variable into
four groups: 0-17, 18-29, 30-39, above 40.3 Be-
cause the distribution of names given demograph-
ics is available from the Social Security data, we
clamp the value of φ throughout the EM proce-
dure. Other work in the domain of demographic
prediction often involves more complex meth-
ods (Nguyen et al., 2014; Volkova and Durme,
2015), but since it is not the focus of our research,
we take a relatively simple approach here, assum-
ing no labeled data for demographic attributes.

4.2 Results
Linguistic differences by dataset We first con-
sider the impact of the data acquisition tech-
nique on the lexical features associated with each
city. The keywords identified in GPS-MSA-
BALANCED dataset feature more geographically-
specific non-standard words, which occur at a rate
of 3.9 × 10−4 in GPS-MSA-BALANCED, versus
2.6×10−4 in LOC-MSA-BALANCED; this differ-
ence is statistically significant (p < .05, t = 3.2).4

3Binning is often employed in work on text-based age pre-
diction (Garera and Yarowsky, 2009; Rao et al., 2010; Rosen-
thal and McKeown, 2011); it enables word and name counts
to be shared over multiple ages, and avoids the complexity
inherent in regressing a high-dimensional textual predictors
against a numerical variable.

4We employ a paired t-test, comparing the difference in
frequency for each word across the two datasets. Since we
cannot test the complete set of entity names or non-standard
words, this quantifies whether the observed difference is ro-
bust across the subset of the vocabulary that we have selected.
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Figure 5: Aggregate statistics for geographically-
specific non-standard words and entity names
across imputed demographic groups, from the
GPS-MSA-BALANCED sample.

For entity names, the difference between datasets
was not significant, with a rate of 4.0 × 10−3 for
GPS-MSA-BALANCED, and 3.7×10−3 for LOC-
MSA-BALANCED. Note that these rates include
only the non-standard words and entity names de-
tected by SAGE as among the top 25 most distinc-
tive for one of the ten largest cities in the US; of
course there are many other relevant terms that are
below this threshold.

In a pilot study of the GPS-COUNTY-
BALANCED data, we found few linguistic differ-
ences from GPS-MSA-BALANCED, in either the
aggregate word-group frequencies or the SAGE
word lists — despite the geographical imbalances
shown in Table 1 and Figure 1. Informal ex-
amination of specific counties shows some ex-
pected differences: for example, Clayton County,
which hosts Atlanta’s Hartsfield-Jackson airport,
includes terms related to air travel, and other coun-
ties include mentions of local cities and business
districts. But the aggregate statistics for under-
represented counties are not substantially different
from those of overrepresented counties, and are
largely unaffected by county-based resampling.

Demographics Aggregate linguistic statistics
for demographic groups are shown in Fig-
ure 5. Men use significantly more geographically-
specific entity names than women (p � .01, t =
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Age Sex New York Dallas

0-17 F niall, ilysm, hemmings, stalk, ily fanuary, idol, lmbo, lowkey, jonas
M ight, technique, kisses, lesbian, dicks homies, daniels, oomf, teenager, brah

18-29 F roses, castle, hmmmm, chem, sinking socially, coma, hubby, bra, swimming
M drunken, manhattan, spoiler, guardians, gonna harden, watt, astros, rockets, mavs

30-39 F suite, nyc, colleagues, york, portugal astros, sophia, recommendations, houston, prepping
M mets, effectively, cruz, founder, knicks texans, rockets, embarrassment, tcu, mississippi

40+ F cultural, affected, encouraged, proverb, un-
happy

determine, islam, rejoice, psalm, responsibility

M reuters, investors, shares, lawsuit, theaters mph, wazers, houston, tx, harris

Table 3: Most characteristic words for demographic subsets of each city, as compared with the overall
average word distribution

8.0), but gender differences for geographically-
specific non-standard words are not significant
(p ≈ .2).5 Younger people use significantly
more geographically-specific non-standard words
than older people (ages 0–29 versus 30+, p �
.01, t = 7.8), and older people mention signifi-
cantly more geographically-specific entity names
(p � .01, t = 5.1). Of particular interest
is the intersection of age and gender: the use
of geographically-specific non-standard words de-
creases with age much more profoundly for men
than for women; conversely, the frequency of
mentioning geographically-specific entity names
increases dramatically with age for men, but to a
much lesser extent for women. The observation
that high-level patterns of geographically-oriented
language are more age-dependent for men than
for women suggests an intriguing site for future
research on the intersectional construction of lin-
guistic identity.

For a more detailed view, we apply SAGE to
identify the most salient lexical items for each
MSA, subgrouped by age and gender. Table 3
shows word lists for New York (the largest MSA)
and Dallas (the 5th-largest MSA), using the GPS-
MSA-BALANCED sample. Non-standard words
tend to be used by the youngest authors: ilysm (’I
love you so much’), ight (’alright’), oomf (’one of
my followers’). Older authors write more about
local entities (manhattan, nyc, houston), with
men focusing on sports-related entities (harden,
watt, astros, mets, texans), and women above the
age of 40 emphasizing religiously-oriented terms
(proverb, islam, rejoice, psalm).

5But see Bamman et al. (2014) for a much more detailed
discussion of gender and standardness.

5 Impact on text-based geolocation

A major application of geotagged social media
is to predict the geolocation of individuals based
on their text (Eisenstein et al., 2010; Cheng et
al., 2010; Wing and Baldridge, 2011; Hong et
al., 2012; Han et al., 2014). Text-based geolo-
cation has obvious commercial implications for
location-based marketing and opinion analysis; it
is also potentially useful for researchers who want
to measure geographical phenomena in social me-
dia, and wish to access a larger set of individuals
than those who provide their locations explicitly.

Previous research has obtained impressive ac-
curacies for text-based geolocation: for exam-
ple, Hong et al. (2012) report a median error of
120 km, which is roughly the distance from Los
Angeles to San Diego, in a prediction space over
the entire continental United States. These accura-
cies are computed on test sets that were acquired
through the same procedures as the training data,
so if the acquisition procedures have geographic
and demographic biases, then the resulting accu-
racy estimates will be biased too. Consequently,
they may be overly optimistic (or pessimistic!) for
some types of authors. In this section, we explore
where these text-based geolocation methods are
most and least accurate.

5.1 Methods

Our data is drawn from the ten largest metropoli-
tan areas in the United States, and we formulate
text-based geolocation as a ten-way classification
problem, similar to Han et al. (2014).6 Using our

6Many previous papers have attempted to identify the pre-
cise latitude and longitude coordinates of individual authors,
but obtaining high accuracy on this task involves much more
complex methods, such as latent variable models (Eisenstein
et al., 2010; Hong et al., 2012), or multilevel grid struc-
tures (Cheng et al., 2010; Roller et al., 2012). Tuning such
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user-balanced samples, we apply ten-fold cross
validation, and tune the regularization parameter
on a development fold, using the vocabulary of the
sample as features.

5.2 Results

Many author-attribute prediction tasks become
substantially easier as more data is avail-
able (Burger et al., 2011), and text-based ge-
olocation is no exception. Since GPS-MSA-
BALANCED and LOC-MSA-BALANCED have
very different usage rates (Figure 2), perceived dif-
ferences in accuracy may be purely attributable to
the amount of data available per user, rather than
to users in one group being inherently harder to
classify than another. For this reason, we bin users
by the number of messages in our sample of their
timeline, and report results separately for each bin.
All errorbars represent 95% confidence intervals.

GPS versus location As seen in Figure 6a, there
is little difference in accuracy across sampling
techniques: the location-based sample is slightly
easier to geolocate at each usage bin, but the dif-
ference is not statistically significant. However,
due to the higher average usage rate in GPS-
MSA-BALANCED(see Figure 2), the overall accu-
racy for a sample of users will appear to be higher
on this data.

Demographics Next, we measure classification
accuracy by gender and age, using the posterior
distribution from the expectation-maximization al-
gorithm to predict the gender of each user (broadly
similar results are obtained by using the prior dis-
tribution). For this experiment, we focus on the
GPS-MSA-BALANCED sample. As shown in
Figure 6b, text-based geolocation is consistently
more accurate for male authors, across almost the
entire spectrum of usage rates. As shown in Fig-
ure 6c, older users also tend to be easier to ge-
olocate: at each usage level, the highest accuracy
goes to one of the two older groups, and the dif-
ference is significant in almost every case. As dis-
cussed in § 4, older male users tend to mention
many entities, particularly sports-related terms;
these terms are apparently more predictive than
the non-standard spellings and slang favored by
younger authors.

models can be challenging, and the resulting accuracies might
be affected by initial conditions or hyperparameters. We
therefore focus on classification, employing the familiar and
well-understood method of logistic regression.

6 Related Work

Several researchers have studied how adoption of
Internet technology varies with factors such as so-
cioeconomic status, age, gender, and living condi-
tions (Zillien and Hargittai, 2009). Hargittai and
Litt (2011) use a longitudinal survey methodology
to compare the effects of gender, race, and topics
of interest on Twitter usage among young adults.
Geographic variation in Twitter adoption has been
considered both internationally (Kulshrestha et al.,
2012) and within the United States, using both
the Twitter location field (Mislove et al., 2011)
and per-message GPS coordinates (Hecht and
Stephens, 2014). Aggregate demographic statis-
tics of Twitter users’ geographic census blocks
were computed by O’Connor et al. (2010) and
Eisenstein et al. (2011b); Malik et al. (2015) use
census demographics in spatial error model. These
papers draw similar conclusions, showing that the
the distribution of geotagged tweets over the US
population is not random, and that higher usage
is correlated with urban areas, high income, more
ethnic minorities, and more young people. How-
ever, this prior work did not consider the biases
introduced by relying on geotagged messages, nor
the consequences for geo-linguistic analysis.

Twitter has often been used to study the ge-
ographical distribution of linguistic information,
and of particular relevance are Twitter-based stud-
ies of regional dialect differences (Eisenstein et
al., 2010; Doyle, 2014; Gonçalves and Sánchez,
2014; Eisenstein, 2015) and text-based geoloca-
tion (Cheng et al., 2010; Hong et al., 2012; Han et
al., 2014). This prior work rarely considers the im-
pact of the demographic confounds, or of the geo-
graphical biases mentioned in § 3. Recent research
shows that accuracies of core language technol-
ogy tasks such as part-of-speech tagging are cor-
related with author demographics such as author
age (Hovy and Søgaard, 2015); our results on lo-
cation prediction are in accord with these findings.
Hovy (2015) show that including author demo-
graphics can improve text classification, a similar
approach might improve text-based geolocation as
well.

We address the question about the impact of
geographical biases and demographic confounds
by measuring differences between three sampling
techniques, in both language use and in the ac-
curacy of text-based geolocation. Recent unpub-
lished work proposes reweighting Twitter data to
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Figure 6: Classification accuracies

correct biases in political analysis (Choy et al.,
2012) and public health (Culotta, 2014). Our
results suggest that the linguistic differences be-
tween user-supplied profile locations and per-
message geotags are more significant, and that ac-
counting for the geographical biases among geo-
tagged messages is not sufficient to offer a repre-
sentative sample of Twitter users.

7 Discussion

Geotagged Twitter data offers an invaluable re-
source for studying the interaction of language and
geography, and is helping to usher in a new gener-
ation of location-aware language technology. This
makes critical investigation of the nature of this
data source particularly important. This paper un-
covers demographic confounds in the linguistic
analysis of geo-located Twitter data, but is lim-
ited to demographics that can be readily induced
from given names. A key task for future work is to
quantify the representativeness of geotagged Twit-
ter data with respect to factors such as race and so-
cioeconomic status, while holding geography con-
stant. However, these features may be more diffi-
cult to impute from names alone. Another cru-
cial task is to expand this investigation beyond the
United States, as the varying patterns of use for so-
cial media across countries (Pew Research Center,
2012) implies that the findings here cannot be ex-
pected to generalize to every international context.
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Abstract

We present novel experiments in model-
ing the rise and fall of story characteristics
within narrative, leading up to the Most
Reportable Event (MRE), the compelling
event that is the nucleus of the story. We
construct a corpus of personal narratives
from the bulletin board website Reddit,
using the organization of Reddit content
into topic-specific communities to auto-
matically identify narratives. Leveraging
the structure of Reddit comment threads,
we automatically label a large dataset of
narratives. We present a change-based
model of narrative that tracks changes in
formality, affect, and other characteristics
over the course of a story, and we use
this model in distant supervision and self-
training experiments that achieve signifi-
cant improvements over the baselines at
the task of identifying MREs.

1 Introduction

What is a narrative? In one of the early linguis-
tic analyses of storytelling, Prince (1973) defines
a story as describing an event that causes a change
of state. Prince’s minimal story has three parts: the
starting state, the ending state, and the event that
transforms the stating state into the ending state.
An example of a minimal story is as follows:

A man was unhappy, then he fell in love,
then as a result, he was happy.

Polanyi (1976) notes that minimal stories are
toy examples that would never hold an audience’s
interest. So what makes a story interesting?

Labov (1967; 1997) defines a well-formed nar-
rative as a series of actions leading to a Most Re-
portable Event (MRE). The MRE is the point of
the story – the most unusual event that has the

greatest emotional impact on the narrator and the
audience. For a story to be interesting, Prince’s
change-of-state event should be an MRE.

The following is an example of a narrative from
the corpus we create in this work, with the sen-
tence containing the MRE emphasized:

This isn’t exactly creepy, but it’s one of
the scariest things that’s ever happened
to me. I was driving down the motor-
way with my boyfriend in the passenger
seat, and my dad in the seat behind my
own. My dad is an epileptic and his fits
are extremely sporadic. Sometimes he
goes extremely stiff and other times he
will try to get out of places or grab and
punch people. Mid-conversation I felt
his hands wrap around my throat as I
was driving, pulling my head back and
making it increasingly difficult to drive.
My boyfriend managed to help steer the
car into the hard shoulder but it was one
of the scariest experiences in my life.

The MRE is the shortest possible summary of a
story; it is what we would say about the story if
we could only say one thing. If we could identify
the MRE of a narrative, we could automatically
generate summaries or headline-style titles for on-
line stories. Detecting MREs could also allow us
to explore how storytellers build emotional impact
as they lead up to the climaxes of their stories.

In this work, we present a novel approach to
modeling narrative in order to automatically iden-
tify the MRE. The MRE is a real world event un-
derlying the story and thus is difficult to infer; in-
stead, we identify sentences that describe or re-
fer to it. We incorporate Prince’s change-of-state
formalization as well as Labov’s definition of the
MRE by modeling changes in story characteristics
suggested by Prince, Polanyi, and Labov, such as
measures of syntactic complexity and emotional
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content. If Prince and Labov are both correct, we
should find the MRE at a point of change in the
story and in our story characteristics.

We create a corpus of thousands of personal
narratives collected from Reddit, a social bul-
letin board website organized into topic-specific
‘subreddit’ communities. We automatically label
most of this data using heuristics based on the
comment-thread structure of Reddit content. Us-
ing this corpus, we conduct two experiments in
classifying sentences of a story as containing the
MRE or not: the first using distant supervision,
and the second using self-training.

In Section 2, we discuss prior work on automati-
cally identifying personal narratives, as well as re-
lated experiments using Labov’s theory of narra-
tive analysis. Section 3 discusses data collection
and labeling. Sections 4-5 present our change-
based model of narrative and our experiments. Fi-
nally, Section 6 discusses our experimental results
and proposes directions for future work.

2 Related Work

Prior work using Labov’s theory of narrative has
focused on classifying clauses by their function.

Rahimtoroghi et al. (2013)worked on 20 of
Aesop’s fables. The 315 clauses were manu-
ally annotated with the three labels of Labov
and Waltezky (1967), Orientation (background in-
formation), Action (events), and Evaluation (au-
thor’s perspective), which we discuss in Section 4.
Rahimtoroghi et al. used two annotators with high
agreement and achieved accuracy and precision
around 0.9 on all three labels, as well as recall
above 0.9 on all but Orientation. They noted that
their data set was very clean: interannotator agree-
ment was nearly perfect, the language was simple,
and each clause served a clear narrative purpose.

Ouyang and McKeown (2014) explored iden-
tifying the Action chain of the oral narratives in
Labov (2013). They used a dataset of 49 narra-
tives (1,277 clauses), transcribed from recordings
of speech and annotated by Labov and achieved
0.72 f-score on classifying clauses as Action or
not. This task is easier than our proposed task
of identifying sentences containing MREs. Ac-
tions account for nearly half the clauses in the
Labov (2013) dataset, while there are only and
average of 2.5 MRE sentences per story. Addi-
tionally, identifying Labov’s Actions is a problem
of detecting causal and temporal relations among

events; identifying the MRE is a problem of mea-
suring how impactful and shocking an event is.

Swanson et al. (2014) used 50 stories, which
were annotated with an extended label set by three
annotators, and each of the 1,602 clauses was as-
signed the label given by the majority of annota-
tors. The extended label set was then mapped to
Labov and Waletzky’s three labels. Nearly half
of the clauses in this dataset are Evaluations, and
Orientations and Actions each make up nearly one
quarter of the dataset. Swanson et al. achieved
0.69 overall f-score on three-way classification of
clauses. Again, this task is less difficult than our
proposed task. The three labels, Orientation, Ac-
tion, and Evaluation have distinct functions that
are reflected in tense, mood, and a clause’s posi-
tion in the narrative. The MRE is not a sentence
or clause but an event that may be described or re-
ferred to by any sentence in a narrative; it is distin-
guished from the other events only by its surpris-
ingness and emotional impact, dimensions that are
difficult to model computationally without a deep
semantic understanding of the story.

The stories that Swanson et al. used were drawn
from a corpus drawn from weblog posts (Gordon
and Swanson, 2009). Gordon and Swanson used
unigram features to classify posts as either stories
or not, achieving 75% precision. They note that
only about 17% of weblog text consists of stories.

In contrast to the relatively small datasets used
by Rahimtoroghi et al., Ouyang and McKeown,
and Swanson et al., we use a larger dataset au-
tomatically collected from Reddit. Our collection
method achieved 94% precision in identifying nar-
ratives. A number of researchers have character-
ized the structure and use of Reddit, currently the
26th most popular website in the world1. Weninger
et al. (2013) described the structure of Reddit com-
ment threads. Gilbert (2013) measured user par-
ticipation in the voting process that ranks Reddit
content. Singer et al. (2014) conducted a longitu-
dinal study of the Reddit user community, finding
a trend favoring original, user-generated content.

3 Data

3.1 Collection
We collected data from the AskReddit subreddit,
where users post questions for other members of
the community, who reply with comments answer-
ing the questions. Table 1 shows some examples

1http://www.alexa.com/siteinfo/reddit.com
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of these posts, and we can see some of the wide
variety of story topics found on AskReddit.

Post Title

Whats your creepiest (REAL LIFE) story?
Your best “Accidentally Racist” story?
What are your stories of petty revenge?

Table 1: Examples of AskReddit posts.

Using PRAW2, we scraped the top 50 AskRed-
dit posts containing the keyword ‘story.’ Of these
posts, 10 were tagged as NSFW (‘not safe for
work’), indicating they contained adult content;
we did not use these posts in this work, as we
felt the language would be too different from that
used in posts without the tag. Another 3 posts did
not contain personal narratives, and instead were
about fictional stories in movies or music.

With the 37 remaining posts, we treated each
top-level comment (those that replied directly to
the posted question) as a story. The example given
in Section 1 is one such story. We collected 6,000
top-level comments and discarded those without
comment threads replying to them. As we discuss
in Section 3.2, we use comment threads to auto-
matically label our training data. We tokenized the
top-level comments by sentence (Bird et al., 2009)
and removed all sentences following any varia-
tion of the word ‘EDIT’, as these were usually re-
sponses to readers’ comments. We discarded texts
with fewer than three sentences, based on Prince’s
definition of a minimal story as consisting of a
starting state, an event, and an ending state. We
are left with 4,896 stories, with an average length
of 16 sentences and a maxiumum of 198.

3.2 Labeling

We partitioned our data into development, seed,
and tuning sets of 100 stories each; a testing set of
200 stories; and a training set of 4,178 stories. The
development, seed, tuning, and testing sets were
manually annotated by a native English speaker
(not one of the authors), who was instructed to
label all sentences that contained or referred to
the MRE. For convenience, from here on, we will
use the term ‘MRE’ to refer to both the Most Re-
portable Event itself (of which there can only be

2https://praw.readthedocs.org/en/v2.1.20/, Python Reddit
API Wrapper

one per narrative) and to sentences that contain or
refer to it (of which there can be more than one).

To measure interannotator agreement, we also
had a second annotator (also a native English
speaker and not one of the authors) label MREs
in the 100 narratives in our development set. We
found substantial agreement (Cohen’s κ = 0.729);
the two classes, MRE and not-MRE, are highly
unbalanced, so percent agreement between the two
annotators was extremely high (95%).

In addition to labeling the MREs, our first an-
notator identified and discarded 31 texts that were
not true stories, but rather Reddit-specific inside
jokes or comments on how cool the stories in the
thread were. From this, we can see that the pre-
cision of our story collection method is very high.
Gordon et al. (2007) found that stories were 17%
of the weblog text that they collected; of the 500
texts given to our annotators, 94% were stories.

Using the development set, we experimented
with seven heuristics, defined below, for automat-
ically labeling the training set. Each predicts a
sentence index sh to be the index of an MRE. We
measured the performance of each heuristic using
root-mean-square error (RMSE), which measures
the standard deviation of how far the heuristic’s
predictions fall from a true MRE.

Let N = number of narratives

sMRE = index of a true MRE

RMSE =

√√√√ 1
N

N∑
i=1

(sMREi − shi
)2

We used a linear combination of three heuristics
with the lowest RMSE to label our training set.

Similarity to comment. The bag-of-words co-
sine similarity between a sentence and comments
replying to the story. We expect comments to re-
fer to the MRE because of its shocking nature and
importance to the story. This heuristic achieved
RMSE of 5.5 sentences on the development set.

Similarity to tl;dr. The latent semantic simi-
larity between a sentence and the tl;dr. The tl;dr
(too long; didn’t read) is a very short paraphrase
of a post given by its author. They are relatively
rare – 663 stories, or 14% of our data, had tl;drs.
Since the MRE is the central event of the story, we
expect it to be included in the tl;dr. We calculated
the similarity using the weighted matrix factoriza-
tion algorithm described by Guo and Diab (2012).
This heuristic achieved RMSE of 5.8 sentences.
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In contrast, bag-of-words cosine similarity to
the tl;dr performed poorly (RMSE of 13.2). This
is due to the tl;dr being both short and a paraphrase
of its story. There are few words in the tl;dr, and
those words are often synonyms of, but not the
same as, words in the story. Guo and Diab’s la-
tent semantic similarity score addresses this word
sparsity problem by modeling words that are not
present in the input text. We also experimented
with latent semantic similarity for the similarity-
to-comment and similarity-to-prompt heuristics,
but in these two cases, it did not perform as well
as the bag-of-words cosine similarity.

Similarity to prompt. The bag-of-words
cosine similarity between a sentence and the
AskReddit post that prompted the story. The story
should be relevant to the prompt, so we expect the
MRE to be similar to the prompt text. This heuris-
tic achieved RMSE of 6.3 sentences.

We used the heuristic with the fourth lowest
RMSE as one of the baselines in our experiments:

Last sentence. The last sentence in the story.
Since the events of a story build up to the MRE,
the MRE should occur near the end of the story.
This heuristic achieved RMSE of 6.9 sentences.

Other heuristics. We also tried the following:
• Single-sentence paragraph (RMSE of 8.7).

This heuristic was meant to capture empha-
sis, as an MRE might be placed in its own,
separate paragraph to draw attention to it.
• First sentence (RMSE of 13.7). Narra-

tives occasionally open with a brief introduc-
tory paragraph that summarizes the events to
come. This heuristic was meant to capture a
reference to the MRE in this introduction.

The training set was automatically labeled using
a linear combination of the three best-performing
heuristics: similarity to comment, similarity to
tl;dr, and similarity to prompt.

hlabel = 0.2 ∗ hcomment + 0.5 ∗ htldr + 0.3 ∗ hprompt

This outperformed each of the three alone, achiev-
ing an RMSE of 5.1 sentences. The weights for
each heuristic were tuned on the development set.
For stories without a tl;dr, that heuristic was set
to 0. The sentence in the story with the highest
heuristic score was selected as the MRE.

In 52 of the 99 stories in the development
set, we found that multiple, consecutive sentences
were labeled by our annotator as MREs. The av-
erage number of consecutive MREs was 2.5 sen-
tences. To reflect this, we labeled our training set

Number of Sentences

Data Set Stories MRE Total

dev* 99 169 1528
seed* 82 184 958
tuning* 95 212 1301
testing* 193 444 2771
training 4178 11205 67954

Table 2: Distribution of labels (*manual).

in three-sentence blocks. The sentence selected
by our labeling heuristic, along with the imme-
diately preceding and following sentences, were
all labeled as MREs. The result was the weakly-
labeled training set in Table 2.

4 Modeling Narrative

Our approach to modeling narrative is based on
both Labov (2013) and Prince (1973). We claim
that Labov’s MRE is Prince’s change of state with
the added requirement of reportability or interest-
ingness – in fact, all three components of Prince’s
minimal story have equivalences in Labov.

Labov and Waletzky (1967) proposed three
components of narrative: the Orientation, which
we equate with Prince’s starting state; the Ac-
tion, the chain of events culminating in the MRE;
and the Evaluation, the author’s perspective on the
story. Labov (2013) adds three more components:
the Resolution, equivalent to Prince’s ending state,
and the Abstract and Coda, where the author intro-
duces and concludes the story.

We focus on Prince’s claim that stories are about
change. Polanyi (1985) observes that the turning
point of a story is marked by a change in style,
formality of language, or emphasis in the telling
of the story. Labov (2013) likewise observes that
a change in verb tense often accompanies MREs.
We hypothesize that the MRE should be found at
a point of change in the story.

We score each sentence according to three
views of narrative: syntax, semantics, and affect.

Syntax. We model Polanyi’s claim that a
change in formality marks the changing point by
including metrics of sentential syntax; we use
the syntactic complexity of a sentence as an ap-
proximation for formality. The complexity of a
sentence also reflects emphasis – short, staccato
sentences bear more emphasis than long, com-
plicated ones. We use the length of the sen-
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tence, the length of its verb phrase, and the ra-
tio of these two lengths; the depth of the sen-
tence’s parse tree (Klein and Manning, 2003), the
depth of its verb phrase’s subtree, and the ra-
tio of these two depths. We also use the aver-
age word length for the sentence and the syntactic
complexity formula proposed by Botel and Gra-
nowsky (1972), which scores sentences on spe-
cific structures, such as passives, appositives, and
clausal subjects. Finally, we use the formality and
complexity dictionaries described in Pavlick and
Nenkova (2015), which provide human formal-
ity judgments for 7,794 words and short phrases
and complexity judgments for 5,699 words and
phrases. We score each sentence by averaging
across all words and phrases in the sentence.

Semantics. As the MRE is surprising and
shocking, we expect it to be dissimilar from the
surrounding sentences; we use semantic similarity
to surrounding sentences as a measure of shock.
Our semantic scores are the bag-of-words cosine
and the latent semantic similarity scores for adja-
cent sentences (Guo and Diab, 2012).

Affect. A change in affect reflects a change
in style, and we expect the MRE to occur at an
emotional peak. We use the Dictionary of Af-
fect in Language (DAL) (Whissell, 1989), aug-
mented with WordNet for coverage (Miller, 1995).
The DAL represents lexical affect with three
scores: evaluation (ee, hereafter ‘pleasantness’ to
avoid confusion with Labov’s Evaluation), activa-
tion (aa, activeness), and imagery (ii, concrete-
ness). We also use a fourth score, the activation-
evaluation (AE) norm, a measure of subjectivity
defined by Agarwal et al. (2009):

norm =
√
ee2 + aa2

ii

For each of these four word-level scores, we cal-
culate a sentence-level score by averaging across
the words in the sentence using the finite state ma-
chine described by Agarwal et al. We expect the
sentences surrounding an MRE to be more sub-
jective and emotional as the impact of the MRE
becomes clear. We also expect a build-up in ac-
tiveness and intensity, peaking at the MRE.

To model change over the course of a narrative,
we look for changes in the syntactic, semantic, and
affectual scores. To illustrate this, Figure 1 shows
the activeness and pleasantness DAL scores for the
example narrative given in Section 1. We can see
how the MRE is the most exciting sentence in the
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Figure 1: Activeness and pleasantness scores.

story – global maximum in activation – as well as
the most horrifying – global minimum in pleasant-
ness. The overall shape of the activeness scores
reflects Prince’s three components of a minimal
story: low initial activation (starting state) and low
final activation (ending state) with a build up to a
peak at the MRE (change in state) between them.

5 Experiments

Using our Reddit dataset and change-based model
of narrative, we conducted two experiments on au-
tomatically identifying MREs. We compare our
results with three baselines: random, our labeling
heuristic, and the last sentence of the story ( best-
performing heuristic not used in labeling).

As described in Section 3.2, we labeled our
training set in blocks of three consecutive MREs,
centered on the sentence from each narrative that
was selected by our heuristics. To account for this,
in our experiments and baselines, we predicted the
presence of an MRE in a three-sentence block. In
testing, we considered a predicted block to be cor-
rect if it contained at least one gold-label MRE.

5.1 Features

Change-based Features. For each of the fif-
teen metrics in Section 4, shown in Table 3, we
first smooth the scores by applying a Gaussian fil-
ter. We also tried weighted and exponential mov-
ing averages, as well as a Hamming window, but
the Gaussian performed best in experiments on
our tuning set. We then generate 11 features for
each sentence: the metric score at the sentence;
whether or not the sentence is a local maximum or
minimum; the sentence’s distance from the global
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Type Metric Names

Syntactic

sentlength, vplength, lengthratio,
sentdepth, vpdepth, depthratio
wordlength, structcomplexity,
wordformality, wordcomplexity

Semantic cossimilarity, lssimilarity

Affectual
pleasantness, activation,
imagery, subjectivity

Table 3: The fifteen metrics for change.

maximum and minimum; the difference in score
between the sentence and the preceding sentence,
the difference between the sentence and the fol-
lowing sentence, and the average of these differ-
ences (approximating the incoming, outgoing, and
self- slopes for the metric); and the incoming,
outgoing, and self- differences of differences (ap-
proximating the second derivative).

Other Features.
• The tense of the main verb and whether or not

there is a shift from the previous sentence.
Labov (2013) suggests a shift between the
past and the historical present near the MRE.
• The position of the sentence in the narrative.
• The bag-of-words cosine similarity and latent

semantic similarity between the sentence and
the first and second sentences in the narra-
tive. The MRE usually appears near the end
of a story, but Labov (2013) notes that the
Abstract, a short introduction that occurs in
some narratives, often refers to the MRE.

5.2 Distant Supervision

Our first experiment used a distant supervision ap-
proach with our automatically-labeled training set.
Distant supervision has previously been applied
to NLP problems such as sentiment analysis (Go
et al., 2009; Purver and Battersby, 2012; Suttles
and Ide, 2013) and relation extraction (Mintz et
al., 2009; Yao et al., 2010; Hoffmann et al., 2011;
Nguyen and Moschitti, 2011; Krause et al., 2012;
Min et al., 2013; Xu et al., 2013).

We classify blocks of three sentences as con-
taining the MRE or not. The two classes, MRE
and not-MRE, were weighted inversely to their fre-
quencies in the weakly-labeled set, and all features
were normalized to the range [0, 1]. We trained an
SVM with margin C = 1 and an RBF kernel with

γ = 0.001, chosen using grid search on our tuning
set (Pedregosa et al., 2011).

Trial Precision Recall F-Score

Last sent. baseline 0.208 0.112 0.146
Heuristic baseline 0.107 0.333 0.162
No change* 0.146 0.378 0.211
Random baseline 0.185 0.586 0.281
Change only* 0.351 0.685 0.466
All features* 0.398 0.745 0.519

Table 4: Distant supervision results (*p < 0.01).

The results of the distant supervision experi-
ment are shown in Table 4. Our best results use
all features, but, notably, using the change-based
features alone achieves significant improvement
over the three baselines (p < 0.00005). The ‘no
change’ trial used the metric scores themselves
and the ‘other’ features but none of the change-
based features, such as slopes and proximity to
global extremes. This feature set was outper-
formed by the random baseline (p < 0.0024), sup-
porting our hypothesis that it is change in a metric,
rather than the score itself, that predicts MREs.

Because we used an non-linear kernel, we were
not able to examine feature weights directly. In-
stead, Table 5 shows the results of a logistic re-
gression model trained on our features. The 10
best features are shown, along with their weights
and 95% confidence intervals. From feature 8, we
see that the MRE is found in sentences near the
narrative’s global minimum in imagery (the Eval-
uation), but feature 1 indicates that sentences con-
taining the MRE show a sharp increase in imagery
compared to the previous sentences. The MRE is
described in a burst of vivid language, followed by
more abstract author opinions .

Features 2 and 9 indicate that the MRE tends to
be described using informal language – a textual
echo to Labov’s observation that the subjects of his
sociolinguistic interviews spoke less formally and
more colloquially as they relived the climaxes of
their stories (Labov, 2013). Feature 3 suggests that
sentences containing the MRE are similar to the
surrounding sentences. While we expected MRE
sentences to be different from their neighbors due
to the unusual and shocking nature of the MRE,
this feature seems instead to reinforce the idea that
MREs tend to described over the course of multi-
ple, consecutive sentences, rather than in a single
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Feature Name Weight Confidence Interval

1. incomingd2 imagery 4.174 (4.062, 4.287)
2. distancefrommin wordformality neg 4.109 (3.952, 4.265)
3. cossimilarity adjacent 3.618 (3.425, 3.812)
4. distancefrommin activeness 3.377 (2.855, 3.298)
5. sentdepth 3.364 (3.138, 3.590)
6. distancefrommin wordlength neg 3.321 (3.018, 3.624)
7. distancefrommin vpdepth 3.034 (2.823, 3.247)
8. distancefrommin imagery neg 2.790 (2.524, 3.056)
9. wordformality neg 2.329 (2.226, 2.432)
10. incomingd2 vplen 2.128 (1.938, 2.318)

Table 5: Top 10 features.

sentence. From feature 4, we see, as expected, that
the MRE is far from the narrative’s global mini-
mum in activeness, as it is the end of a chain of
events, far away from the stative Orientation.

Finally, features 5 and 10 suggest that MRE sen-
tences are not only long, but much longer than the
preceding sentences, and feature 6 indicates that
MRE sentences are close to the global minimum in
average word length. Shorter average word length
is expected, as an indicator of both informal word
choice and emphasis. Long sentences, however,
suggest a domain difference between our work
on text and Labov’s work on transcribed speech.
Looking over our development set, we find that
many authors combine the description of the MRE
with evaluative material in a single sentence, re-
sulting in a longer and more syntactically complex
MRE sentence than is found in Labov’s data.

5.3 Self-Training

Our second experiment used a self-training ap-
proach, where a classifier uses a small, labeled
seed set to label a larger training set. Self-training
has been applied to parsing (McClosky et al.,
2006; Reichart and Rappoport, 2007; McClosky
and Charniak, 2008; Huang and Harper, 2009;
Sagae, 2010) and word sense disambiguation (Mi-
halcea, 2004). With the same parameters as in
the distant supervision experiment, we trained an
SVM on our hand-labeled seed set of 958 sen-
tences. We used this initial model to relabel the
training set. All sentences where this labeling
agreed with our automatically-generated heuristic
labels were added to the seed set and used to train a
new model, which was in turn used to label the re-
maining sentences, and so on until none of the cur-

rent model’s labels agreed with any of the remain-
ing heuristic labels. Figure 2 shows the learning
curve for the self-training experiment, along with
the growth of the self-training set.
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Figure 2: Learning and training set size curves.

The results of the self-training experiment are
shown in Table 6. We achieve the best perfor-
mance, f1 = 0.635, after 9 rounds of self-training.
Self-training terminated after 10 rounds, but the
10th round had no effect on performance.

Trial Precision Recall F-Score

Random baseline 0.185 0.586 0.281
Seed only* 0.374 0.617 0.466
Dist. supervision* 0.398 0.745 0.519
Self-training* 0.478 0.946 0.635

Table 6: Best self-training results (*p < 0.01).

The initial model, trained only on the seed set,
performed nearly as well as our distant supervi-
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sion experiment. This illustrates that quantity of
data does not overcome the use of accurate man-
ual labels on a small dataset. As described in Sec-
tion 3.2, the distant supervision labels were based
on a linear combination of three heuristics that
achieved at best an RMSE of 5.1 sentences. How-
ever, with self-training, we can exploit the noisy
heuristic labels by using only those labels that
agree with the seed-trained model, thus reducing
the amount of noise. 52,147 of the 67,954 weakly-
labeled sentences were used in self-training.

6 Discussion and Future Work

Identifying MREs is a hard problem. A human
annotator can rely on world knowledge to find the
most shocking and impactful event in a story, but
we do not have access to that knowledge. Addi-
tionally, MREs are rare, comprising 15% of the
sentences in our hand-annotated datasets. MREs
comprise just over 16% of our weakly-labeled
training set, but as we discuss below, there is too
much noise in the automatically-generated labels.

Despite the difficulty of the task, our ex-
periments show that our change-based model
of narrative is effective for identifying MREs,
and this model provides evidence supporting the
change-in-state view of narrative suggested by
Prince (1973), Polanyi (1985), and Labov (1997).
We achieve high recall with self-training (95%),
but precision is low across the board. This sug-
gests that, while MREs do occur at extremes
in syntactic complexity, semantic similarity, and
emotional activation, there may be many non-
MRE local extremes throughout a narrative.

Examining our results, we find a few common
sources of error. False positive sentences tend to
have high imagery and activeness. In Table 5, we
saw that imagery and activeness alone do not indi-
cate the presence of the MRE. An MRE sentence
is not just active; it is separated from the stative in-
troduction by the other events of the story. Nor is
it enough for a sentence to have high imagery; the
MRE is more vividly described than the preceding
events – we see again the importance of change
in our model of narrative. False negatives tend to
have high scores in syntactic complexity and for-
mality. As low formality was one of our stronger
predictors of MRE sentences, we may need to ad-
just these features in future work.

We also hope to refine our automatically-
generated labels in future work. Our self-training

experiment showed that 27% of our automatically-
generated labels were too noisy to use. We also
hope to improve our filters for automatically dis-
carding non-story text. We currently reject texts
shorter than three sentences, based on Prince’s
three-part definition of a story. In spite of this fil-
tering, 7% of our 500 manually-labeled texts were
identified as non-stories by our annotator. Extrap-
olating to our training set, we suspect that over 300
of our training ‘narratives’ are not narratives at all.

Finally, we hope to explore other theories of
narrative analysis that could suggest new ways
to quantify change in narrative. Prince, Polanyi,
and Labov propose a high-level view of personal
narrative: stories are centered around reportable
events that cause a change in state for the author.
This work tested fifteen surface-level features that
reflect this change in state. Are there others? Or
is a deeper semantic understanding of the starting
and ending states of stories required?

7 Conclusion

We have described a new model of narrative
based on Prince (1973), Polanyi (1985), and
Labov (1997). Our model tracks story charac-
terstics over the course of a narrative, capturing
change in complexity, meaning, and emotion.

We have created a corpus of 4,896 personal nar-
ratives, taking advantage of AskReddit, a com-
munity where members often prompt each other
for stories. Our experiments on this corpus show
that our change-based model is able to identify
MREs. They also demonstrate that large quanti-
ties of hand-labeled data are not required for this
task. Our distant supervision and self-training
approaches successfully use data weakly labeled
using heuristic rules that leverage the comment
thread structure of Reddit content. We believe
these Reddit stories are representative of the short,
personal narratives found online in blogs or dis-
cussion forums, and so this work should be use-
ful for finding MREs in a variety of online per-
sonal narratives. The one difference between this
data and stories from other online sources is the
prompt. A personal narrative posted to someone’s
personal blog is unlikely to have a prompt. We
use the prompt for our heuristic labeling, so our
automatic labels on non-Reddit data may be nois-
ier, but many blog posts also have titles or tags that
may be just as useful.

Identifying MREs is a hard problem that has not
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previously been addressed in work on computa-
tional narrative. We have shown that the high-level
view proposed by linguistic theories of narrative –
that stories are about change – holds true. Mea-
suring change over the course of a narrative yields
better results than other features and baselines.

Why do we care about MREs? Polanyi (1976)
asserts that “one does not produce a narrative text
for no reason at all.” The Most Reportable Event is
that reason. It is the point of the story; the shortest
possible summary; the answer to the question, “So
what?”. It could be used to generate titles or sum-
maries to be used in organizing stories for readers
to browse, or it could be used in recommendation
systems to help readers find related stories. In fu-
ture work we hope to be able to generate a text
description the full MRE, which would be better
suited to summarization or generating headlines,
rather than identifying sentences that refer to it.
We hope this work will encourage others to fur-
ther investigate the Most Reportable Event.
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Abstract

State of the art in opinion mining mainly
focuses on positive and negative senti-
ment summarisation of online customer
reviews. We observe that reviewers tend
to provide advice, recommendations and
tips to the fellow customers on a variety
of points of interest. In this work, we
target the automatic detection of sugges-
tion expressing sentences in customer re-
views. This is a novel problem, and there-
fore to begin with, requires a well formed
problem definition and benchmark dataset.
This work provides a 3- fold contribu-
tion, namely, problem definition, bench-
mark dataset, and an approach for detec-
tion of suggestions for the customers. The
problem is framed as a sentence classifi-
cation problem, and a set of linguistically
motivated features are proposed. Analy-
sis of the nature of suggestions, and clas-
sification errors, highlight challenges and
research opportunities associated with this
problem.

1 Introduction

Opinion mining mainly deals with the summari-
sation of opinions on the basis of their sentiment
polarities (Liu, 2012). However, on a closer obser-
vation of such opinionated text, we can discover
other facets of opinions. For example, a hotel re-
view sentence like, Make sure you bring plenty
of sun tan lotion-very expensive in the gift shop,
would be labeled as a neutral sentiment in cur-
rent opinion mining methodologies, since it would
only be interested in collecting opinions about the
hotel. In the case of aspect based sentiment anal-
ysis, the sentence does not comprise of hotel re-
lated aspects, and thus will again be labeled as

neutral/objective. While such sentences are gen-
erally ignored in sentiment based opinion sum-
marisation, these can be very useful information
to extract from the reviews. In hotel reviews, such
suggestions range from tips and advice on the re-
viewed entity, to suggestions and recommenda-
tions about the neighbourhood, transportation, and
things to do. Similarly, in product reviews sugges-
tions can be about how to make a better use the
product, accessories which go with them, or avail-
ability of better deals. We refer to such sentences
as customer-to-customer suggestions (CTC).
Another type of suggestions, which can appear in
the reviews, are the ones aiming at manufactur-
ers or service providers, suggesting new features
and improvements in products or services. For ex-
ample, An electric kettle in the room would have
been a useful addition. Recently, there have been
some works on extracting the suggestions for im-
provements from reviews (section 3), but they did
not focus on CTC suggestions. Also, suggestions
for improvement discuss only about the reviewed
entity and its aspects, unlike suggestions to cus-
tomers, which might also include other topics of
interest.
Suggestion mining and retrieval can be a poten-
tial new research area emerging from this kind of
research. Industrial importance of suggestions to
customers can be validated from the sections like
‘Room Tips’ (Figure 1) on TripAdvisor1. Simi-
larly, Yelp also features ‘tips’ 2 (Figure 2) related
to a business, and defines it as ‘key information’.
Such tips are often suggestions, or some impor-
tant information, a user wants to convey to others.
These tips are manually entered by the users, in
addition to the reviews. We note that using sug-
gestion mining, such information can be automat-
ically extracted from a large number of already ex-

1http://www.tripadvisor.com/
2http://www.yelp-support.com/article/What-are-tips
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Figure 1: Room Tips on TripAdvisor

Figure 2: Tips on Yelp

isting reviews. The recommendation type of sug-
gestions are of great importance in the case, when
there is no dedicated reviews available for small
shops, cafe, restaurants etc. in the vicinity of a
hotel/business. Suggestions extracted from a large
number of reviews, can also be seen as a kind of
summarisation, an alternative or complementary
to sentiment summarisation over the reviews.
In order to perform suggestion mining, expres-
sions of suggestions should to be detected in a
given text. The presence of a variety of linguistic
strategies in the suggestion expressing sentences
makes this task interesting from a computational
linguistics perspective. Section 2 discusses this in
more detail. The detection of suggestions in text
goes beyond the scope of sentiment polarity detec-
tion, and opens up new problems and challenges
in the areas of subjectivity analysis, social media
analysis, and extra-propositional semantics.
Our main contributions through this work can be

listed as:

• Proposition of the task of detection of CTC
suggestions.

• A well formed problem definition and scope.

• Preparation of benchmark dataset for two do-
mains of reviews, hotel and electronics.

• An approach to automatically detect CTC
suggestions from review texts.

2 Task Definition

Since suggestion mining is a young problem, there
is a need for problem analysis and definition. As
indicated in the previous section, the tasks under
suggestion mining may vary. Below, we propose
three parameters whose value would help define
such tasks, and the values for these parameters in
the context of the current task of detection of CTC
suggestions.

• Who is the suggestion aimed at?
As we explained in section 1, suggestions can be
aimed at one of the two kinds of stakeholders,
customers and service providers. In this work,
we perform the detection of suggestions for cus-
tomers only.

• What should be the textual unit of sugges-
tion?
The previous works on extraction of suggestions
for product improvement considered sentences
as the unit of suggestions. In this work, we
also consider sentences as units of suggestion.
However, we observe that sentences might miss
the context, or refer to something mentioned in
the previous sentence. Furthermore, punctua-
tion marks are often erroneously used in social
media text, so automatic sentence split does not
work well with such text. The approach used in
this work aims at the detection of expressions
of suggestions, regardless of the presence or ab-
sence of context in the same sentence. There-
fore, we currently ignore the problems asso-
ciated with using sentences as a unit for sug-
gestions. The datasets used in this work are
sentiment analysis review datasets from other
works, in which reviews are already split into
sentences. For future works, we assume that
context can be determined by the neighbouring
text once the expression of suggestion is suc-
cessfully detected.

• What kind of text should be considered as a
suggestion?
Oxford dictionary defines suggestion as, An
idea or plan put forward for consideration.
Some of the listed synonyms of suggestions are
proposal, proposition, recommendation, advice,
hint, tip, clue. In a general scenario, this defini-
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Sentence Category % Annotators Suggestion
Expression

Concierge is not available 24 hours Inform 70 Implicit
We did not have breakfast at the hotel but opted to grab
breads/pastries/coffee from the many food-outlets in the main stations.

Tell 80 Implicit

Room was very quiet despite being close to the elevator. Remark 50 Implicit
The staff was nice and friendly Praise 60 Implicit
Double bed quite narrow and not as comfortable as expected. Disappoint 60 Implicit
The view from the 7th floor was amazing. Fascinate 50 Implicit
If you do end up here, be sure to specify a room at the back of the hotel. Suggest 100 Explicit
I recommend going for a Trabi Safari Recommend 90 Explicit

Table 1: Sentences Which Were Perceived as CTC Suggestions by Laymen

tion of suggestion easily distinguishes sugges-
tions from other kind of text. However, when
suggestions are required to be identified in the
space of customer reviews, there seems to be a
tendency to consider most of the sentences as
suggestions to other customers. This observa-
tion is based on a preliminary data annotation
task, which was meant for data analysis and de-
velopment of annotation guidelines. Asher et.
al (2009) define 20 types of opinion expres-
sions, including suggestions and recommenda-
tions, which appear in opinionated text. In order
to form a representative sample, we chose 20
sentences from reviews, corresponding to each
of these types, and asked 10 people (layman) to
decide if these sentences are CTC suggestions
or not. Table 1 shows sentences for which 5 or
more people agreed of CTC Suggestion label.
Asher et. al. (2009) observe that these types are
not uniformly distributed in the reviews. Ac-
cording to them, suggestions and recommenda-
tions constitute about 10% of the statements,
while judgements (blame, praise) and senti-
ments (love, fascinate, hate, disappoint, sad)
constitute about 80%. Later, when we annotate
the review datasets for CTC sugggestions, they
also shows a smaller percentage of suggestions
(see table 2).
Except the suggest and recommend categories,
suggestions in rest of the categories are in an
implicit form and need to be inferred. Since
human beings can inherently infer suggestions,
the layman annotators considered both implicit
and explicit form of suggestions as suggestions.
However, in a real case scenario, humans can-
not go through the large amount of reviews and
infer suggestions from all of them. In this work,
we aim to automatically detect and extract the
explicit expressions of suggestions, rather than
inferring them.

For the ease of defining the scope of our work,
we propose two form of suggestions:
Explicit: Directly suggests/recommends an en-
tity or action,
Implicit: Only provides the information from
which a suggestion can be inferred, but do not
authoritatively suggest anything.

Lastly, we frame the problem of CTC sugges-
tion detection problem as a sentence classification
problem:
Given a set S of statements {s1,s2,s3,...,sn}, pre-
dict a label li for each of statement in S, where li
∈ {CTC suggestion, non CTC suggestion}, where
CTC suggestion should be explicitly expressed.

3 Related Work

Only a few attempts have been made to study sug-
gestion mining, and there is an unavailability of
benchmark datasets. Therefore, suggestion min-
ing still remains a young area of study.

• Suggestion Mining from Customer Reviews
As mentioned in section 1, there have been
some attempts to extract suggestions for im-
provements in products from customer reviews.
Ramanand et. al. (2010) used manually for-
mulated patterns to extract wishes regarding
improvements in products. Brun and Hagege
(2013) also used manually formulated rules to
extract suggestions for improvements from the
product reviews. Negi and Buitelaar (2015)
studied linguistic nature of suggestions and
wishes for improvements and performed exper-
iments in order to assert that these contain sub-
junctive mood. These works do not acknowl-
edge the fact that reviews can also contain sug-
gestions for other customers. One major draw-
back of previous works on customer reviews is
the public unavailability of evaluation datasets.
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• Other Domains
Two other lines of work extracted suggestions
from domains other than reviews. Dong et. al.
(2013) performed detection of suggestions for
product improvement using tweets. They used a
statistical classifier, with features comprising of
bag of words, automatically extracted sugges-
tion templates using sequential pattern mining
and hashtags. (Wicaksono and Myaeng, 2012;
Wicaksono and Myaeng, 2013) extracted advice
from discussion threads. They also used a su-
pervised classification approach, where some of
the features were domain dependent, like the
similarity between original query post and a
given sentence. They do not make any distinc-
tion between implicit and explicit advice, since
there is less ambiguity in the domain of discus-
sion forum.

None of the previous works study the complex
and interesting nature of suggestions in opinion-
ated text, and the relationship between suggestions
and sentiments. Also, there is an unavailability
of benchmark datasets of suggestions customer re-
views.

4 Data

Since there is no available dataset of suggestions
for customers, we prepare new datasets for this
task. We consider two kinds of reviews for this
task, hotel reviews and electronic product reviews.
Hotel: Wachsmuth et al. (2014) provide a large
dataset of TripAdvisor hotel reviews, where re-
views are segmented into statement so that each
statement has only one sentiment label. State-
ments have been manually tagged with positive,
negative, conflict and neutral sentiments. We take
a smaller subset of these reviews, where each
statement is an instance of our dataset. Each state-
ment also bears a unique identity no., which is
constituted of hotel identity no., statement num-
ber and review identity no. Therefore, the reviews
belonging to same hotel, and the statements of the
same review can be identified.
Electronics: Hu et. al.(2004) provide a dataset
consisting of reviews of electronic products,
which is also already split into sentences, and the
corresponding sentiment for each sentence is man-
ually tagged.
In the next section, we further annotate the sen-
tences from these two datasets, for the current
task.

Agreement Hotel(8050 sentences) Electronics(3782 sen-
tences)

Phase 1
Confidence CTC Sugg. CTC Sugg.
>= 0.6 3220 1488
>= 0.7 1046 604
>= 0.8 1024 562
>= 0.9 1020 558
1 1019 553

Phase 2
kappa CTC Sugg.(Explicit) CTC Sugg.(Explicit)
0.86 407 273

Table 2: Statistics of Phase 1 and Phase 2 Annota-
tions

4.1 Dataset Preparation

We performed a two phase annotation using both
crowdsourced and expert annotations. This re-
duced the number of statements to be annotated
by experts.
Phase 1 - Crowdsourced Annotations: The
Crowdflower3 platform was used for crowd-
sourced annotations. The platform provides a
set of management and analytics tools for qual-
ity management, as well as for interaction with
the annotators. In order to qualify for the anno-
tation task, a Crowdflower worker was required to
obtain a score of 7/10 out of 10 test statements.
The annotators were asked to choose one label out
of ‘Suggestion to Customers’ or ‘Other Statement’
for each sentence. The definition of suggestion
was left entirely to the understanding of the an-
notators. For each sentence, Crowdflower selects
the answer with the highest confidence score4. We
set the system not to seek more than 3 annotations
for a statement if one of the labels attained a confi-
dence score of 0.6 or more. At least 3, and at most
5 annotators labeled each statement. Confidence
score for each label is the weighted sum of the
trust scores of annotators who chose that label5.
Trust score is determined by annotator’s score in
the test questions. Table 2 shows the variation in
the number of statements tagged as suggestions
with the corresponding confidence scores. These
suggestions are a mixture of both implicit and ex-
plicit types, since the definition of suggestions was
not restricted for the annotators. We observed that
with the increase of confidence score, the ratio of
explicit suggestions among the tagged suggestions
increases.

3http://www.crowdflower.com/
4https://success.crowdflower.com/hc/en-

us/articles/201855939-Get-Results-How-to-Calculate-a-
Confidence-Score

5https://success.crowdflower.com/hc/en-
us/articles/202703305-Getting-Started-Glossary-of-Terms
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Phase 2 - Expert Annotations: Since we target
the extraction of explicitly expressed suggestions,
two expert annotators further classified the sen-
tences which were finally labelled as ‘Suggestion
to Customers’ by the Crowdflower platform, as ex-
plicit CTC suggestions and implicit CTC sugges-
tions. Therefore, the number of sentences which
experts annotated was much smaller than the total
number of sentences in the two datasets. The key
points of annotation guidelines for identifying the
explicit suggestions are:

1. The intention of giving a suggestion and
the suggested action or recommended entity
should be explicitly stated in the sentence.
For example:
[[Try]intention[the cup cakes at the bakery
next door]entity]action.
Other explicit forms of this suggestion could
be: I recommend the cup cakes at the bakery
next door, or, You should definitely taste the
cup cakes from the bakery next door. Implicit
form could be, The cup cakes from the bakery
next door were delicious.

2. The suggestion should have the intention of
benefiting the customers, and should not be
mere sarcasm or joke. For example, If the
player doesn’t work now, you can run it over
with your car.

A kappa value of 0.86 was calculated between the
annotations performed by the expert annotators.
The datasets from both phase 1 and phase 2 anno-
tations are freely available for research. The final
dataset has 3 kinds of labels, Implicit CTC, Ex-
plicit CTC, and others. Therefore, this dataset is
also usable by the works which intend to extract
implicit suggestions as well.

5 Suggestion Detection

We frame the task of CTC suggestion detection as
a text classification problem. Our approach per-
forms binary classification in a supervised fash-
ion. Explicit CTC suggestions belong to the posi-
tive class, and rest of the sentences to the negative
class.
Heuristic Features: A general notion about the
task is that suggestions contain some distinc-
tive keywords like, suggest, recommend etc, and
should be easily detectable using them. Therefore,
we use a set of manually selected features in order
to test this notion.

• Suggestion keywords: These include the
verbs: suggestion, advise, request, ask, warn,
recommend, do, do not; their corresponding
nouns: suggestion, advice, request, warning,
tip, recommendation, and the synonyms of
these words obtained from WordNet. Sug-
gestion keywords constitute a single feature,
which is binary in nature, and its value is de-
termined by the presence of any of the sug-
gestion keywords in the sentence.

• POS tag VB: Base form of Verb (VB) ap-
pears to be frequently used in the predicates
of CTC suggestions.

Generic Features: Standard uni, bi, tri-grams,
and uni, bi, tri-grams of Part of Speech tags (Penn
Tree bank tagset). We consider the best perform-
ing set of Heuristics and generic feature types as
the baseline for this task (see Table 3).

5.1 Special Features
We suggest a set of complementary features,
which are motivated by the linguistic analysis of
explicit CTC suggestions.

1. Imperative Mood Sequential Patterns: Im-
perative mood expressions are often present in
explicit suggestions. Wicaksono et. al. (2013)
also observed the presence of imperative mood
in advice sentences. They used an imperative
mood detector, based on a set of handmade
rules to determine whether a sentence is imper-
ative.
In our case, the statements often contain more
than one clause, and more than one mood ex-
pression. This feature aims to detect if any part
of a given statement bears atleast one expres-
sion of imperative mood. We aim to identify
sequential patterns of linguistic elements (POS
tags in our case) which mark the imperative
mood, and check if these patterns are present
in a given statement. We automatically extract
these features (patterns) using sequential pat-
tern mining. We prepare a small dataset of 200
example sentences of imperative mood. These
sentences were short sentence of lengths be-
tween 3-8 words, and are manually collected
from websites related to English grammar, and
linguistic research papers on mood and modal-
ity.
Sequential Pattern Mining - Background:
State of the art sequential pattern mining algo-
rithms require the dataset to be converted into
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Features Hotel Electronics
Precision Recall F score Precision Recall F score

Heuristic 0.260 0.484 0.338 0.216 0.505 0.303
Unigrams 0.492 0.528 0.509 0.527 0.565 0.540
Uni,bi-grams 0.513 0.577 0.543 0.571 0.602 0.586
Uni, bi, tri-grams 0.519 0.545 0.532 0.562 0.605 0.570
uni, bi-grams + unigrams POS tags 0.539 0.555 0.547 0.634 0.565 0.595
uni, bi-grams + uni, bi-grams POS tags 0.568 0.491 0.527 0.662 0.515 0.575
uni, bi-grams + uni, bi, tri-grams POS
tags

0.593 0.469 0.524 0.625 0.518 0.556

Table 3: Performance of Heuristic and Generic Features in a 10-Fold Cross Validation

Support Sequence
0.69 < V B >< NN >
0.60 < V B >< PRP >
0.54 < V B >< V B >< NN >
0.51 < RB >< V B >
0.70 < MD >< V B >

Table 4: Sequential POS Patterns obtained from
Imperative Mood Dataset

an ordered list of events. An event is a non-
empty unordered collection of items, which in
turn is the smallest unit of sequences. The
output of these algorithms are sequential pat-
terns, which comprise of sequences of items,
and is defined to be frequent if its support (a
measure of frequency) is equal or more than
a user-defined threshold. (a1, a2, ..., aq) is a
sequence, where ai is an event. A sequence
(a1, a2, ..., an), is a subsequence of another
sequence (b1, b2, ...bm), if there exist integers
i1 < i2 < ... < in such that a1 ⊆ bi1,
a2 ⊆ bi2, ..., an ⊆ bin. For example, given
a sequence (AB,E,ACD), where B is an item
and AB, E and ACD are events. (B,AC) is a
subsequence, since B ⊆ AB and AC ⊆ ACD
and the order of events is preserved. (AB,E) is
not a subsequence of the sequence (ABE). In
our case, each POS tag is an event, and all the
events are of length 1 item.

We use Clospan (Yan et al., 2003) algorithm
to obtain the patterns of POS tags appearing
in imperative mood sentences. Closed pattern
mining algorithms produce a significantly less
number of sequences than the older methods,
while preserving the same expressive power.
We use 2-3 length sequences with a relative
support greater than 0.5, where maximum rela-
tive support is 1 (see Table 4).
Sequential patterns and n-grams: Sequen-
tial patterns are different from continuous n-
grams in the sense that these are similar to the
templates with place-holders, or skip n-grams,

where the items in a pattern are ordered but
should not necessarily be immediate to each
other.
The part of speech tags avoid sparse nature of
word based patterns, and at the same time cap-
tures the language usage model of imperative
sentences. However, the pos tags tend to repeat
in longer texts, therefore we limit the number of
placeholders which could appear between two
items of a pattern to 2. Each pattern is treated
as a separate feature, whose feature value is bi-
nary depending on its presence or absence in a
given sentence.

2. Sentiment Features: Given that suggestions
are being extracted from customer reviews,
which are otherwise mostly used for sentiment
analysis, a relation between sentiments and
suggestions can be suspected. It can be ob-
served From the Figure 3, 4 suggestions do not
seem to always carry one particular sentiment,
but different sentiments at different instances.
We compare three types of sentiment related
features:
a) Manually tagged sentiments: These anno-
tations were provided with the used sentiment
analysis datasets.
b) Sentiwordnet score summation: SentiWord-
Net (Esuli and Sebastiani, 2006) sentiment
score summation of all the words in a sentence.
No sense disambiguation is performed, and all
synset scores are summed up for each word.
c) Normalised sentiwordnet score summation:
These scores are the sum of all the sentiment
scores of the words in a given sentence, nor-
malised over the number of words carrying
non-neutral sentiment score.

3. Information about the subject/s of a state-
ment: This feature captures the presence of
nsubj dependency (Marneffe and Manning,

2164



Features Hotel Electronics
Precision Recall F score AUC Precision Recall F score AUC

Baseline (best generic features) 0.539 0.555 0.547 0.763 0.634 0.565 0.595 0.817
+ patterns 0.542 0.511 0.526 0.743 0.607 0.604 0.616 0.790
+ sentiments (manual) 0.529 0.536 0.532 0.754 0.581 0.630 0.605 0.797
+ sentiments (score) 0.537 0.541 0.539 0.757 0.563 0.593 0.578 0.779
+ sentiments (normalised score) 0.543 0.561 0.550 0.774 0.645 0.593 0.618 0.784
+ nsubj 0.559 0.538 0.548 0.757 0.597 0.586 0.591 0.778
Baseline + special (all) 0.580 0.512 0.567 0.781 0.645 0.621 0.640 0.790

Table 5: Performance of Special Features in a 10 Fold Cross Validation

Figure 3: Manually labelled Sentiment Distribu-
tion of Electronics Dataset

Figure 4: Manually labelled Sentiment Distribu-
tion of Hotel Dataset

2008), and if present, the pair of POS tags of
the arguments of this dependency. Often a re-
viewer addresses the reader when giving a sug-
gestion. For the sentence, If you do end up here,
be sure to specify a room at the back of the
hotel, the nsubj dependency is nsubj(do, you).
The feature value would be VBP-PRP in this
case. On the other hand, this suggestion could
also have been, Be sure to specify a room at the
back of the hotel.. In this case the feature value
would be null. If more than one nsubj depen-
dency is present, the POS pair of each of them
will be included in the feature value.

Experimental Setup: We use the Stanford Parser
(Toutanova et al., 2003) for obtaining part of
speech and dependency information. Stemming
did not effect the results. Stopwords were used
using a customised stopword list. We employ the
LibSVM library (Chang and Lin, 2011) for Sup-
port Vector Machine classifiers (SVM), as imple-

mented in Weka machine learning toolkit (Hall et
al., 2009). The parameter values of SVM classi-
fiers are: SVM type = C-SVC, Kernel Function
= Radial Basis Function. A 10 fold cross valida-
tion is performed in order to evaluate the classifier
model. Features are ranked using the feature se-
lection algorithm InfoGain (Mitchell, 1997). The
other attribute selection algorithms provided with
the Weka toolkit were also experimented with, but
InfoGain consistently performed best in all the
runs. Only the features which posses a positive
information gain value are retained. The best per-
forming run has a feature vector of size 300. The
problem of having a imbalanced dataset is handled
by using a higher class weight of 5:1 (Akbani et
al., 2004) for positive class.

6 Results and Discussion

We evaluate the proposed features using 10-fold
cross validation. As indicated in section 5, we
consider best performing set of generic features
as the baseline, which is: uni, bi grams and uni-
grams of pos tags. Table 5 summarises the classi-
fier performance with the addition of special fea-
tures, measured in Precision, Recall, F1 score, and
ROC Area Under Curve. The results indicate that
special features improve the F score in both the
domains. However, some of the generic features
produced better precision and recall values (Table
3). Imperative patterns improve the baseline re-
sults for electronics dataset, but not for the hotel
dataset. Also, the special features produce better
improvement over baseline for electronics dataset.
We attribute this to the smaller size of electronics
dataset.
Table 7 shows how the top ranked features change
on addition of special features. Heuristic fea-
tures tend to appear as some of the top ranked
generic features. On the addition of special fea-
tures, some of the special features replace the top
general features. This validates the importance of
proposed special features. Normalised sentiment
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# Sentence Classifier Human
1 Buy this for the storage and price , avoid it if you know nothing about computers. 1 1
2 whichever camera you buy, add upto about 200 dollars for an additional memory card i bought a 256 mb card, usb

card reader,camera bag and the warranty.
0 1

3 Looks sort of like picasa software (google it if you dont know ) in the interface and is as easy to install and operate as
g2

0 1

4 If you cant make an Italian meal don’t advertise you can. 1 0
5 It would have been better to have some sort of window on the carrying case , so you could see the display without

opening it
1 0

6 If you have a lot of money to waste, make sure you book this hotel 1 0

Table 6: Error Analysis of the Best Performing Feature Set (0 = Negative Class, 1 = Positive Class)

Type Domain Top Features

Baseline Hotel you, VB, if you, recommend,
if, want, you are, highly recom-
mend, I would

Elec. you, VB, recommend, if you,
if, buy, recommend this, we, I
highly recommend, don’t, get

Baseline
+Special

Hotel you, VB, < V B,NN >, VBD,
< V B, V B,NN >, recom-
mend, if you, root(Root,VB),
norm. sentiment score, suggest

Elec. you, VB, < V B,NN >, rec-
ommend, if you, nsubj, buy, sug-
gest, < V B,PRP >, norm.
sentiment score

Table 7: Some of the Top Ranked Features in Dif-
ferent Runs

score prove to be better features than the other two
types of sentiment features including the manu-
ally labelled sentiments. This indicates that this
method of sentiment calculation is capturing some
universally used phrasing for suggestions, where
real sentiment of the sentence fails to capture it.
Observed Challenges: Table 6 shows some in-
stances of Type 1 and Type 2 errors in the best
performing feature set. Our error analysis reveals
the challenges associated with this task.

1. Non-CTC Suggestions: Example #4 gives a
suggestion for the improvement of the hotel
restaurant. Similarly, #5 is a suggestion to the
product manufacturer instead of fellow cus-
tomers. These kind of suggestions at times
possess features similar to CTC suggestions.

2. Complex sentences: Often, suggestion is
only expressed in one part of a very long
sentence (#2,#3,). This might generate erro-
neous rank for features; also part of speech
taggers tend to perform poorly for such sen-
tences.

3. Sarcasm: The surface form of #6 is a sugges-
tion, but it is a sarcasm.

4. Biased Datasets: Explicit CTC suggestion
expressing sentences occur sparsely, which

is unfavourable for supervised learning ap-
proaches because of increased cost of data
annotation task, and imbalanced class repre-
sentation.

A general observation is that the text in the form of
suggestions may not always be a suggestion, and
vice versa. Therefore, syntactic and lexical fea-
tures seem to be ineffective in many cases.

7 Conclusion

This work serves as an introduction and analysis
of the problem of the extraction of customer-to-
customer suggestions from reviews. The task is
useful for a number of practical applications. We
observed that the layman perception of suggestion
is very wide, especially in the case of reviews.
Therefore, we defined and limited the scope of our
work to explicit suggestions. Following this, we
prepared a well-investigated benchmark dataset,
which is freely available for research purposes.
A pilot approach to the problem is presented,
which analyses the performance of standard text
classification features, and tests a set of comple-
mentary/special features. The special features im-
proved the baseline results for both service and
product reviews.
Analysis of classification errors highlighted the
challenges associated with the task. The classi-
fication results have scope for improvement, and
therefore the task calls for advanced semantic fea-
tures and dedicated models, which will be our fu-
ture direction. Furthermore, the relation between
sentiments and suggestions seem to be worth in-
vestigating.
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Abstract

A microblog repost tree provides strong
clues on how an event described therein
develops. To help social media users
capture the main clues of events on mi-
croblogging sites, we propose a novel re-
post tree summarization framework by ef-
fectively differentiating two kinds of mes-
sages on repost trees called leaders and
followers, which are derived from content-
level structure information, i.e., contents
of messages and the reposting relations.
To this end, Conditional Random Fields
(CRF) model is used to detect leaders
across repost tree paths. We then present a
variant of random-walk-based summariza-
tion model to rank and select salient mes-
sages based on the result of leader detec-
tion. To reduce the error propagation cas-
caded from leader detection, we improve
the framework by enhancing the random
walk with adjustment steps for sampling
from leader probabilities given all the re-
posting messages. For evaluation, we
construct two annotated corpora, one for
leader detection, and the other for repost
tree summarization. Experimental results
confirm the effectiveness of our method.

1 Introduction

Microblogging platforms have become the center
for reporting, discussing, and disseminating real-
life issues, on which users usually repost to share
microblog messages with their following users.
Also, users can repost with commentary for not
only further broadcasting but also extending the

∗This work is partially supported by General Research
Fund of Hong Kong (417112), RGC Direct Grant (417613),
and Huawei Noah’s Ark Lab, Hong Kong. We would like to
thank anonymous reviewers for the useful comments.

original microblog post content. Because an in-
dividual post is generally too short to cover the
main clues of an event, microblogging users can-
not easily capture the key information from re-
ceived posts due to the lack of context. And re-
posting messages, namely reposts, can provide
valuable context information to the previous posts
including their background, development, public
opinions and so on. However, a popular post usu-
ally attracts a large number of reposts. It is imprac-
tical for users to read them all and fully understand
their contents.

The task of microblog context summarization
aims to produce succinct summaries to help users
better understand the main clues by extracting
salient information among massive reposts of the
original posts. An intuitive approach is to directly
apply existing extractive summarizers based on
the unstructured, plain microblog contents. But
such short and informal reposts render the lack
of structures in each individual message, and it is
difficult for conventional extractive summarizersto
identify salient messages. Chang et al. (2013) pro-
posed to summarize Twitter context trees by fo-
cusing on modeling user influence. However, the
reposts of influential users might not be salient
summary candidates necessarily. For instance,
celebrities might simply repost with nothing im-
portant. Also, modeling user influence accurately
needs tremendous historical user interaction data
external to the tree being summarized while such
kind of information cannot be utilized directly for
summarizing the messages on the tree.

In this paper, we propose a novel mi-
croblog context summarization framework based
on content-level structures, i.e., message contents
and reposting relations, rather than user-level in-
fluence signals. The reposting relations connect
the reposting messages and form a cohesive body
as a tree structure named repost tree. The root rep-
resents the original post and the edges denote re-
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posting relations. Our idea is to exploit the struc-
ture of repost tree together with content of mes-
sages to help distinguish two different messages
on repost tree, i.e., leaders and followers. Specif-
ically, leader is referred to as a message on re-
post tree covering salient new information, which
can lead further comments or discussions in its de-
scendant reposts; follower is referred to as a mes-
sage that contains no comment, simply repeats or
naively responds to its ancestor leader message,
thus providing no important information. The ex-
ample below illustrates a repost tree path, where
we use [O] and [Ri] to indicate the original post
and the i-th repost, respectively:

[O] @MAS: Malaysia Airlines has lost contact of
MH17 from Amsterdam. The last known position
was over Ukrainian airspace.

[R1] @Hanna: OMG... Poor on MH17... Preying...

[R2] @Victoria: OMG that’s horrible!!! I’m sorry to
hear that. God will bless u poor guys. Wish world
can be peaceful. And no one will get hurt.

[R3] @Dr.Dr: Six top HIV scientists are on MH17. They
go for AIDS and would NEVER come back!!!

[R4] @TomyBlack: 6 experts died?! Terrible loss to HIV
research :(

[O] reports the news about MH17 missing, which
brings about further comments in [R1] and [R2].
[R3] does not continue commenting on that but of-
fers some new information and triggers shocking
reaction in [R4]. So [O] and [R3] act as leaders;
[R1], [R2] and [R4] are followers.

Intuitively, leaders would be more important
than followers from the summarization’s perspec-
tive since leaders are supposed to capture the main
clues or aspects of event evolvement. The first
step of our summarization system is to distinguish
leaders and followers effectively. Leaders are de-
tected across repost tree paths which provide rich
context information owing to the tree structure.
We utilize sequence tagging model Conditional
Random Fields (CRF) to infer how likely it is each
repost being a leader or follower. Then we incor-
porate leader detection result into an unsupervised
summarization model based on random walk. Our
model uses content similarities between messages
and consider their possibilities of being leaders
to rank and select salient reposting messages that
form summaries. Furthermore, we improve the
framework by enhancing the random walk to re-
duce the impact of errors cascaded from the leader
detection module. Compared to the state-of-the-
art baselines, the experimental results confirm the
effectiveness of our proposed framework.

Our contributions are given as follows:
• We propose a novel microblog context sum-

marization framework, in which given reposting
messages organized as a repost tree (obtaining
repost tree is trivial using public microblogging
toolkit (Ren et al., 2014)), we summarize the re-
post trees based on content information and re-
posting relations of messages.
• We identify a novel problem of leader de-

tection for summarization, which aims to reduce
noise on repost trees, and present a CRF-based
method for effectively detecting leaders by utiliz-
ing the tree structure and message contents.
• We incorporate the leader detection result

into an unsupervised summarization model based
on random walk and substantially enhance the
model to reduce the impact of leader detection er-
rors on summarization.

2 Related Work

The goal of text summarization is to automat-
ically produce a succinct summary for one or
more documents that preserves important infor-
mation (Radev et al., 2002). Generally, text sum-
marization techniques can be categorized into ex-
tractive and abstractive methods (Das and Mar-
tins, 2007). Extractive approaches focus on how
to identify and distill salient contents from orig-
inal texts whereas abstractive approaches aim at
producing grammatical summaries by text genera-
tion.

Recently, the development of social media has
made microblog summarization a hot topic. Most
prior works are on event-level or topic-level sum-
marization. Typically, the first step is to clus-
ter posts into sub-events (Chakrabarti and Punera,
2011; Duan et al., 2012; Shen et al., 2013) or sub-
topics (Long et al., 2011; Rosa et al., 2011; Meng
et al., 2012), and then the second step generates
summary for each cluster.

Some works tried to apply conventional
extractive summarization models directly,
e.g., LexRank (Erkan and Radev, 2004),
MEAD (Radev et al., 2004), TF-IDF (Inouye and
Kalita, 2011), Integer Linear Programming (Liu
et al., 2011; Takamura et al., 2011), etc. Sharif
et al. (2010) modeled the problem as optimal
path finding on a phrase reinforcement graph.
However, these general summarizers were found
not suitable for microblog posts, which are infor-
mal and noisy (Chang et al., 2013). Researchers
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then considered social signals like user following
relations and retweet count (Duan et al., 2012;
Liu et al., 2012), and reported such features useful
to help summarize microblog posts. Our work
studies repost tree summarization by leverag-
ing content-level structure to enrich context of
messages, which is a different kind of signal.

Chang et al. (2013) proposed a task to summa-
rize Twitter context trees consisting of an original
tweet and all its reposts (i.e., replies and retweets).
They combined user influence signals into a super-
vised summarization framework. Our work is dif-
ferent from theirs: 1) They simply treat a context
tree as a tweets stream while we consider repost
tree structures in summarization; 2) They rely on
user interactions to calculate user influence for ex-
tracting salient messages while we focus on how
to utilize contents and repost tree structures to dif-
ferentiate leader and follower messages for sum-
marization; 3) Our summarization module is unsu-
pervised, thus no need of ground-truth summaries.

3 Leader Detection Model

This section deals with how to differentiate leader
and follower messages on a repost tree. Intu-
itively, identifying leaders effectively makes one
step closer to obtaining a good summary.

Figure 1 illustrates an example of a repost tree1.
As shown in the figure, a leader message contains
contents that brings essential information increase,
such as a new clue about MH17 reported in [R6],
and potentially triggers a new round of informa-
tion propagation by attracting follower messages
to focus on the raised clue, like [R7], [R8] and
[R9]. As the repost tree grows, it also happens
that some new reposts join in, following the clue
raised by one of their ancestors, but further ex-
tend it by mentioning something new, thus some
of these messages may evolve into new leaders,
such as [R10].

A simple way to detect leaders on repost tree
is to directly apply a binary classifier like SVM
on each individual message. However, these mod-
els assume reposts are independent without effec-
tively leveraging abundant context along the re-
post tree paths, such as the reposting relations
among different reposts on a path. For instance,
[R2] covering rich content may be misclassified as
a leader if not leveraging context information. But

1The example in Section 1 actually denotes the left-most
path extracted from this tree

[O] MAS: Malaysia Airlines has lost contact of MH17 from Amsterdam. The 

last known position was over Ukrainian airspace. More details to follow. 

[R1] Hanna: OMG…Poor on 

#MH17…Preying… 

[R2]Victoria: OMG that’s horrible!!! I'm 

sorry to hear that. God will all bless u 

poor guys. Wish world can be peaceful. 

And no one will get hurt. 

[R3] Dr.Dr: Six top HIV scientists are 

on MH17. They go for AIDS and 

would NEVER come back!!! 

[R4] TomyBlack: 6 

experts died?! Terrible 

loss to HIV research :( 

[R5] JustinBieber: 

now i can’t listen to 

#prey without crying  

[R6] NajibRazak: I am shocked by reports that 

an MH plane crashed. We are launching an 

immediate investigation. 

[R7]MrsBig: RT 

[R8] MrBig: That can’t 

be true. CRASHED…I 

really feel pity for u 

poor guys… 

[R9] WindWolf: 

eh…MH17 lost and now 

a MH plane is found 

crashed. I feel terrible. 

[R10] X-man: #MH17 must have crashed. 

MH370 has not been found, and now MH17’ s 

lost, here’s something suspicious.  

Figure 1: An example of repost tree. [O]: the
original post; [Ri]: the i-th repost; Solid arrow
lines: reposting relationship; Dotted lines: hidden
leader-follower relationship; Dark boxes: leaders
to be detected.

if we look into its context, we can find that [R2]
talks about similar things as [R1], then [R1] clas-
sified as a follower indicates the higher chance of
[R2] being a follower rather than a leader. There-
fore, context information is important for indicat-
ing the messages being leaders or followers.

We extract all root-to-leaf paths within a repost
tree structure and detect leaders across each path.
We formulate leader detection on repost tree paths
as a sequence tagging problem by utilizing a state-
of-the-art sequence learning model CRF (Lafferty
et al., 2001), and taking advantage of its power
in maximizing the likelihood of global label se-
quences. We adopt CRF rather than other compet-
itive context sensitive model like SVMhmm (Al-
tun et al., 2003) due to its probabilistic nature.
The probability of prediction by CRF can pro-
vide critical chances for the following summariza-
tion procedure to reduce the impact of errors made
by leader detection model on summarization (see
Section 4.2).

We map a repost tree path with n microblogs
(m1,m2, · · · ,mn) to a training instance (X,Y ).
Let X = (x1, x2, · · · , xn) represents observed
sequence, where xi denotes the observed feature
vector extracted from the i-th microblog mi, and
Y = (y1, y2, · · · , yn) where yi is the label indicat-
ing whether mi is a leader or not. CRF defines the
discriminative function as a joint distribution over
Y given X as follows:

P (Y |X; θ) ∝ exp

∑
i,j

λjfj(yi, yi−1, X) +
∑
i,k

µkgk(yi, X)


where fj and gk are the fixed feature functions,
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Feature category Feature name Feature description

Lexical
# of terms The number of terms in mi

POS The part-of-speech of each term in mi

Type of sentence Whether mi contains a question mark or an exclamation

Microblog-specific

# of emoticons The number of emoticons in mi

# of hashtags The number of hashtags in mi

# of urls The number of URLs in mi

# of mentions The number of mentions, or @UserName, in mi

Path-specific Similarity to neighbors Cosine similarity between mi and mi+d where d ∈ {±1,±2,±3}
Similarity to root Cosine similarity to the root microblog in repost tree path

Table 1: Features used for leader detection

θ = (λ1, λ2, ...;µ1, µ2, ...) are the parameters in-
dicating the weights of features that can be esti-
mated by maximum likelihood procedure in train-
ing process. The prediction is done based on dy-
namic programming. More details can be found
in (Lafferty et al., 2001). Table 1 lists the features
we use for leader detection.

CRF can utilize both historical and future infor-
mation for prediction so as to maximize the likeli-
hood of the global label sequences. But we would
encounter the problem of label conflict, i.e., the
predictions for the same repost in context of dif-
ferent paths might be different. For this reason,
we determine a repost as a leader if its average
marginal probabilities being a leader in context of
different paths exceeds 50%.

4 LeadSum Summarization Model

Let T = (V,E) represent a repost tree to be
summarized, where V is a set of nodes cor-
responding to microblog messages, and E =
{(u, v)|v is the repost of u} is the edge set denot-
ing reposting relations. This section describes
how to rank nodes in V to produce repost tree
summaries. Enlightened by the general random-
walk-based ranking algorithm DivRank (Mei et
al., 2010), we propose an unsupervised summa-
rization model called LeadSum that aims to select
true and salient leaders into summaries utilizing a
variant of random walk based on content similari-
ties and reposting relations of messages. We first
present a basic LeadSum model, which assumes
leader detection is perfect. Then, we enhance it
to become a soft LeadSum model that reduces the
impact of leader detection errors on the summa-
rization.

4.1 Basic-LeadSum Model

Due to the nature of leaders, they generally cover
more important contents than follows do. Thus

our first summarizer selects contents only from de-
tected leaders. For the leaders detected in a re-
post tree T , we build a similarity graph among
leaders denoted as GL = (VL, EL), where VL =
{v ∈ V |v is a detected leader} is the vertex set
and EL = {(u, v)|u ∈ VL, v ∈ VL, and u 6= v} is
the edge set. The weight for any edge (u, v) rep-
resents the content similarity between u and v, for
which we use cosine similarity.

DivRank (Mei et al., 2010) is a generic graph
ranking model that aims to balance high informa-
tion coverage and low redundancy in top ranking
vertices, which are also two key requirements for
choosing salient summarization sentences (Li et
al., 2009; Liu et al., 2015). Based on that, we
present a model to rank and select salient mes-
sages from leader set VL to form a summary. Since
this model simply assumes perfect leader detec-
tion, it is therefore named Basic-LeadSum.

Similar as DivRank (Mei et al., 2010), the tran-
sition probability at the t-th iteration of random
walk is given as follows:

pt(u→ v) = (1−µ) ·p0(v)+µ · p0(u→ v)Nt−1(v)

Z(u)
(1)

and Z(u) is the normalizing factor:

Z(u) =
∑

w∈VL

p0(u→ w)Nt−1(w) (2)

where p0(u → v) is the organic transition prob-
ability which represents the content similarity be-
tween u and v; Nt−1(v) denotes the times vertex
v is visited up to the (t − 1)-th iteration; p0(v) =

1
|VL| denotes random jumping probability similar
to that in PageRank; and µ is the damping weight
set as 0.85 following most PageRank-based mod-
els. The probability of traveling to leader v can
accumulate as its weight increases during random
walk, and leaders already having high weight can
“absorb” weights from other leaders with high
similarity to it, thus avoids redundancy.
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For any v ∈ VL, the update function for its rank-
ing score at the t-th iteration Rt(v) is formulated
as:

Rt(v) =
∑

u∈VL

pt(u→ v)Rt−1(u) (3)

It has been proved that the Markov chain is er-
godic, thus can converge to a stationary distribu-
tion (Mei et al., 2010), which determines the final
rankings for leaders.

4.2 Soft-LeadSum Model
As a two-step summarization system, the perfor-
mance of LeadSum relies on the leader detection,
which might be error-prone. Followers misiden-
tified as leaders participating in leader ranking
brings risks to extract real followers into summary.
Also, leaders misclassified as followers may leave
out strong summary candidates. To reduce such
error propagation, we enhance Basic-LeadSum by
using an even-length random walk with adjust-
ment steps that sample from leader probabilities
given all the reposting messages, which is referred
to as Soft-LeadSum.

Different from Basic-LeadSum, every message
on repost tree T , no matter detected as a leader or
a follower, participates in ranking process of Soft-
LeadSum. In other words, in the random walk,
visitor wanders on a complete graph G = (V,E′)
whose vertex set V is identical to repost tree T ,
and E′ = {(u, v)|u ∈ V, v ∈ V, and u 6= v} rep-
resents the edge set. Therefore, this makes it pos-
sible to include true leaders misclassified as fol-
lowers by leader detection module into summary.

However, allowing all messages to participate
in ranking also increases the risk of selecting real
followers. To avoid this problem, Soft-LeadSum
is composed of two types of walks on G, namely
WALK-1 and WALK-2. In WALK-1, visitor
moves based on content similarities between mes-
sages, which follows transition probabilities simi-
lar to equation (1), but is specifically given as:

pt(u→ v) = (1− µ) · 1

|V | + µ · p0(u→ v)Nt−1(v)

Z(u)
(4)

where u, v ∈ V , p0(u→ v) is proportional to con-
tent similarity between u and v similar to Basic-
LeadSum, and Z(u) is the normalizing factor.

WALK-2 attempts to avoid selecting true fol-
lowers by adopting a sampling process, whose re-
sult determines the next vertex on G to be visited.
Suppose the current vertex being visited is u, then
we sample from pL(u), i.e., the probability of u

being a leader. Practically, pL(u) can be estimated
with the average of u’s marginal probabilities as
a leader over all root-to-leaf paths passing u on
T output by the leader detection module. If u is
sampled to be a leader, we claim that leader detec-
tion is correct and the visitor stays; otherwise, u is
sampled as a follower, indicating that leader detec-
tion module misclassifies u, so the visitor should
go to u’s leader. Here we assume that a follower
u’s leader is its nearest ancestor leader on T as
shown by the dotted lines in Figure 1. Based on
such simplification, we let the visitor trace back
one by one along the path on T from u to root and
sample from their leader probabilities until a node
v is sampled as a leader and then we determine v
as u’s leader.

So for any u’s ancestor v, the probability of v
being u’s leader is:

Pr{v is u’s leader}
= pL(v)(1− pL(u)−

∑
w∈P(v,u)

Pr{w is u’s leader})

= pL(v)
∏

w∈P(v,u)
⋃{u}(1− pL(w))

(5)

where P(v, u) is the set of nodes between v and u
on v-to-u path of repost tree, i.e., P(v, u) = {w ∈
V |w is v’s descendant and u’s ancestor on T}. In
particular, we assume that pL(r) = 1 so as to stop
the sampling process when the visitor arrives at
root r.

Therefore, WALK-2’s transition probabilities
can be calculated as follows:

q(u→ v) =

{
pL(v) if v = u;

Pr{v is u’s leader} if v is u’s ancestor;
0 otherwise

(6)

Algorithm 1 shows the ranking process of Soft-
LeadSum, during which the visitor walks on G
following WALK-1 and WALK-2 alternately. The
fact that WALK-1 is ergodic ensures the ergodicity
and convergency of the algorithm. In implemen-
tation, we set max iteration N=1000 empirically
which is large enough to ensure convergence, or
stop random walk process in advance when the
condition of convergence is met, i.e., the change
of Euclidean difference of ranking scores for three
consecutive iterations are all less than 1e-6.

Soft-LeadSum can reduce the impact of errors
made by leader detection on summarization due to
the following two reasons: 1) It allows all mes-
sages to participate in ranking process, thus per-
mits those leaders leaving out by leader detec-
tion module to be selected into summary; 2) With

2172



Algorithm 1 Algorithm of Soft-LeadSum
Input: T , G, µ=0.85, max iteration N , length cut-off n
Output: Summary with n microblog messages

1: For all v ∈ V , initialize R0(v) = p0(v) = 1
|V |

2: Initialize WALK-1’s transition probabilities p0(u→ v)
with normalized cosine similarity between u and v.

3: Calculate WALK-2’s transition probabilities q(u → v)
by equation (5) and (6).

4: Initialize current walk=“WALK-1”
5: for t = 1 to N and not converged do
6: for all v ∈ V do
7: if current walk==“WALK-1” then
8: Update pt(u→ v) by equation (4)
9: Update Rt(v) as follows:

Rt(v) =
∑

u∈V Rt−1(u) · pt(u→ v)
10: Set current walk=“WALK-2”
11: end if
12: if current walk==“WALK-2” then
13: Update Rv(v) as follows:

Rt(v) =
∑

u∈V Rt−1(u) · q(u→ v)
14: Set current walk=“WALK-1”
15: end if
16: end for
17: end for
18: Sort all v ∈ V by RN (v) in descending order
19: Pick the top-n messages as summary

WALK-2 sampling from leader probabilities, it
also reduces the risk of including real followers
into summary.

5 Experiments and Results

To evaluate the two modules in our repost tree
summarization system, i.e., CRF-based model for
leader detection and LeadSum model for summa-
rization, we conducted two sets of experiments
based on microblog posts data collected from Sina
Weibo, which has a similar market penetration
as Twitter (Rapoza, 2011)2. Microblog messages
on Sina Weibo are in Chinese and we use Fu-
danNLP (Qiu et al., 2013) for text preprocessing
including word segmentation and POS tagging.

5.1 Experiment for Leader Detection
In this experiment, we evaluated the performance
of CRF model for leader detection task.

5.1.1 Data Collection and Setup
We first crawled 1,300 different repost trees us-
ing the public PKUVIS toolkit (Ren et al., 2014).
Given an original microblog post, the toolkit can
automatically crawl its complete repost tree. For
each tree, we randomly selected one path and fur-
ther formed a set with 1,300 repost tree paths,

2The datasets are available at http://www1.se.
cuhk.edu.hk/˜lijing/data/repost_tree_
summ.zip

Cross-validation Held-out
Prec Rec F1 Prec Rec F1

Random 29.8 49.5 37.3 31.6 49.6 38.6
LR 70.5 66.3 68.4 70.4 66.2 68.2

SVM 70.9 66.9 68.8 68.9 66.2 67.5
SVMhmm 74.8 65.5 69.8 69.3 70.1 69.7

CRF 75.5 72.0 73.7 71.1 70.7 70.9

Table 2: The performance of leader detection (%)

which ensures that paths have different roots and
the dataset can cover a wide variety of context in-
formation.

Then three annotators were invited to label each
repost as a leader or a follower in the context of
its repost tree path independently. The average
Cohen’s Kappa of each two of the three annota-
tors was 0.52, which is considered good agree-
ment (Fleiss et al., 2013). Then, we used the labels
agreed by at least two annotators as the ground
truth. The training and test of the leader detection
models were conducted on this corpus.

We compared the performance of CRF-based
leader detection model with four baselines: Ran-
dom Classifier (RC) as a weak baseline; two state-
of-the-art point-wise supervised models Logis-
tic Regression (LR) and Support Vector Machine
(SVM); and an effective context sensitive model
SVMhmm. We applied LibLinear toolkit (Fan et
al., 2008) to implement LR and SVM with linear
kernel. SVMhmm was implemented by SVMstruct

toolkit (Joachims et al., 2009). And CRF’s im-
plementation was based on CRF++3. For all the
baselines, we used features listed in Table 1. The
hyper-parameters of all leader detection models
were tuned to the same extent based on 5-fold
cross validation (with 1 fold as development set).
The evaluation metrics were precision, recall and
F1 score for the detected leaders.

5.1.2 Results
Table 2 shows the comparison result of 5-fold
cross validation on 1,000 repost tree paths and
held-out experiment on 300 complete fresh paths.

Among all baselines, SVMhmm performed the
best, which indicates the effectiveness of incor-
porating structure information for leader detec-
tion. And among context-sensitive models, both
SVMhmm and CRF were competitive. CRF out-
performed SVMhmm slightly with 5.6% and 1.7%
improved F1 score in cross validation and held-out

3http://taku910.github.io/crfpp/
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experiments, respectively. In spite of their compa-
rable performance, our framework applies CRF in-
stead of SVMhmm for leader detection because of
its probabilistic nature, which can be exploited by
the sampling process in Soft-LeadSum to reduce
the propagation of classification error to the sum-
marization stage. Section 5.2.2 shows the relevant
experiment.

5.2 Experiment for Summarization

In this experiment, we evaluated end-to-end per-
formance of our basic and soft LeadSum summa-
rization models by comparing them with state-of-
the-art microblog summarizers.

5.2.1 Data Collection and Evaluation Metrics
There is no public editorial repost tree dataset.
Therefore, we manually selected 10 hot events tak-
ing place during January 2nd – July 28th 2014, and
then used the PKUVIS toolkit (Ren et al., 2014) to
crawl the complete repost trees for all the events
given the corresponding original posts. Table 3
shows the details about the repost tree corpus4.
Note that this repost tree corpus has no overlap
with the repost tree path dataset for learning leader
detection models in Section 5.1.1.

After that, we invited three experienced editors
to write summaries for each repost tree. To en-
sure the quality of reference summaries, we first
extracted a list of frequent nouns from each repost
tree and generalized 7 to 10 topics based on the
nouns list, which provided a high-level overview
of a repost tree to editors. Then, our guideline
required editors to read all repost microblogs or-
dered sequentially on a repost tree. For every mes-
sage, its entire repost tree path was also provided
as supplementary context information. When fin-
ished reading, editors wrote down one or two sen-
tences to summarize each topic in the list.

We utilized ROUGE-N metric (Lin, 2004) for
benchmark, which is a standard for evaluating
automatic summaries based on N-gram overlap-
ping between a generated summary and a ref-
erence. Specifically, ROUGE-1 and ROUGE-2
F1-measure were used as our evaluation metrics.
Lin et al. (2004) has demonstrated that ROUGE-2
correlates well with humans in summarizing for-
mal texts. And ROUGE-1 is a better alternative
in evaluating summaries for short and informal

4All descriptions are English translations of the root mi-
croblogs originally in Chinese.

microblog messages (Inouye and Kalita, 2011;
Chang et al., 2013).

In our human-generated summaries, the average
inter-annotator-agreement by ROUGE-1 is 0.431,
which means each pair of manual summaries have
no more than 50% words overlap on average even
written under topic constraints. This indicates that
microblog repost tree summarization is generally
a difficult task. The reason is that repost trees
have complex structure, and editors could hardly
reconstruct the repost trees even though they went
through all the microblogs. Therefore, in eval-
uation for each tree, we computed the average
ROUGE F1 score between the model-generated
summary and the three human-generated sum-
maries.

5.2.2 Results
In each automatic summarizer, we selected the
top-10 ranked reposts to form a summary. We
compared the end-to-end performance with the
following baseline systems:
• RandSum: RandSum is a weak baseline that

randomly selects reposts into summaries.
• RepSum: RepSum ranks and selects mes-

sages simply by their reposts count, i.e., the size
of their subtrees, based on reposting relations.
• UserRankSum: UserRankSum ranks and

selects reposts by their authors’ follower count
based on user following relations.
• LeadProSum: LeadProSum ranks and se-

lects reposting messages by their marginal prob-
abilities as leaders determined by our CRF-based
leader detection model.
• SVDSum: SVDSum adopts the Singular

Value Decomposition (SVD) to discover hidden
sub-topics for summarization (Gong and Liu,
2001). Reposting messages are ranked accord-
ing to latent semantic analysis with SVD on term-
message matrix.
• DivRankSum: DivRankSum directly ap-

plies DivRank (Mei et al., 2010) algorithm to rank
all messages unaware of leaders and followers. A
similar model is also reported in Yan et al. (2011).
Following their work, we set damping weight as
0.85.
• UserInfSum: Chang et al. (2013) ranks mes-

sages utilizing Gradient Boosted Decision Tree
(GBDT) algorithm with text, popularity, tempo-
ral and user influence signals to summarize Twit-
ter context tree. In particular, without the interac-
tion data with external users, we utilize users’ fol-
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Name # of nodes # of nodes with comments Height Description
Tree (I) 21,353 15,409 16 HKU dropping out student wins the college entrance exam again.
Tree (II) 9,616 6,073 11 German boy complains hard schoolwork in Chinese High School.
Tree (III) 13,087 9,583 8 Movie Tiny Times 1.0 wins high grossing in criticism.
Tree (IV) 12,865 7,083 8 “I am A Singer” states that singer G.E.M asking for resinging conforms to rules.
Tree (V) 10,666 7,129 8 Crystal Huang clarified the rumor of her derailment.
Tree (VI) 21,127 15,057 11 Germany routs Brazil 7:1 in World-Cup semi-final.
Tree (VII) 18,974 12,399 13 The pretty girl pregnant with a second baby graduated with her master degree.
Tree (VIII) 2,021 925 18 Girls appealed for equality between men and women in college admission
Tree (IX) 9,230 5,408 14 Violent terrorist attack in Kunming railway station.
Tree (X) 10,052 4,257 25 MH17 crash killed many top HIV researchers.

Table 3: Description of repost tree summarization corpus consisting of 10 hot events

ROUGE-1 ROUGE-2
F1 σ SIG F1 σ SIG

RandSum .159 .046 **‡ .037 .009 **‡
RepSum .162 .071 **‡ .030 .016 **‡

UserRankSum .292 .066 ‡ .087 .028 †
LeadProSum .270 .119 ‡ .064 .038 ‡

SVDSum .222 .070 **‡ .048 .032 **‡
DivRankSum .159 .079 **‡ .029 .018 **‡

UserInfSum .272 .091 ‡ .071 .028 ‡

B-LS+SVMhmm .301 .031 ‡ .085 .020 †
B-LS+CRF .300 .029 ‡ .082 .016 ‡
S-LS+CRF .351 .027 NA .105 .018 NA

Remarks:
B-LS: Basic-LeadSum model; S-LS: Soft-LeadSum model
F1: F1-measure of ROUGE-1 or ROUGE-2
σ: Standard deviation of F1-measure over 10 repost trees
SIG: Significance indicator of F1-measure based on one-tailed pairwise t-test:

– Significantly different with B-LS+CRF: * (p < 0.1); ** (p < 0.05)
– Significantly different with S-LS+CRF: † (p < 0.1); ‡ (p < 0.05)

Table 4: Comparison of different summarizers

lower count to approximate user influence. GBDT
implementation is based on RankLib5, and as a
supervised method, UserInfSum is evaluated with
10-fold cross validation.

In addition, we observed that SVMhmm is a
competitive baseline for leader detection (see Ta-
ble 2). So we also study its impact on the Basic-
LeadSum model. Note that SVMhmm cannot be
combined with Soft-LeadSum since it is not prob-
abilistic.

Table 4 shows the result of overall comparisons.
We have the following observations:
• RepSum utilized trivial structure informa-

tion, i.e., the size of sub-tree, and its performance
was poor, which was even worse than RandSum
on ROUGE-2. This implies that messages with a
lot of reposts may not be good candidates as other
reasons may lead to their popularity, e.g., a good
posting time or sense of humor.
• UserRankSum performed the best on

ROUGE-1&2 among all baseline summarizers,
which confirms that user following relations
can indeed be a strong signal in microblog
summarization. UserRankSum is even slightly

5http://sourceforge.net/p/lemur/wiki/
RankLib/

better than Basic-LeadSum on ROUGE-2. But, it
does not perform consistently well for all repost
trees, evidenced as the large standard deviation
on ROUGE-1&2. This suggests that the user
following relations cannot always effectively
indicate salient candidates. It may not work for
repost trees where authors have similar number
of following users, or reposts of influential users
contain nothing salient.
• LeadProSum achieved the second best per-

formance among all unsupervised baselines,
which indicates that the marginal probabilities as
leaders can signal good summary candidates. This
also confirms that leaders contain salient contents
and should be distinguished from followers in
summarization.
• Utilizing either SVMhmm or CRF as leader

detection model to filter out followers, Basic-
LeadSum almost doubled the ROUGE-1 and
tripled the ROUGE-2 scores compared to Di-
vRankSum’s performance. This indicates that dif-
ferentiating leaders and followers is very helpful
to summarization.
• Basic-LeadSum performed better than all

baselines on ROUGE-1&2 except for a marginal
drop compared to UserRankSum on ROUGE-2.
But the differences with UserRankSum, LeadPro-
Sum and UserInfSum are not statistically signif-
icant. This may be ascribed to the error propa-
gated from leader detection module to summariza-
tion process.
• Soft-LeadSum outperformed all the baselines

with a large margin on ROUGE-1&2, including
supervised summarizer UserInfSum. The one-
tailed pairwise t-test indicates that all the improve-
ments over baselines are significant at the 95%
confidence level except for UserRankSum with
90% confidence level on ROUGE-2. This con-
firms the effectiveness of our framework for pro-
ducing high-quality repost tree summaries.
• The supervised model UserInfSum did not
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Figure 2: The impact of α on the ROUGE-1 F1-
measure of combined models

perform quite well. The reason is that the model
needs large amount of user interaction data exter-
nal to the tree which are not readily available, and
also it might be overfitting to the limited number
of training instances.
• Basic-LeadSum with CRF and SVMhmm

had very close ROUGE-1&2 scores. Basic-
LeadSum+SVMhmm is even slightly better than
Basic-LeadSum+CRF. Though SVMhmm was
marginally worse in leader detection experiment
(Table 2), we can conclude that SVMhmm is
a comparable alternative as the leader detection
module for Basic-LeadSum.
• Among our models, Soft-LeadSum signif-

icantly outperformed both Basic-LeadSum with
CRF and that with SVMhmm. This implies that
sampling steps in the enhanced random walk of
Soft-LeadSum is effective in reducing the impact
of leader detection error on summarization.

5.3 Discussion
From Table 4, we observed that user following re-
lations used by UserRankSum is a strong signal
for microblog summarization. A natural question
is: “Can the user following relations commonly
used for modeling user influence be complemen-
tary to the content-level structure information used
in our summariztaion models?”

We thus linearly combine the normalized rank-
ing scores of LeadSum and UserRankSum using
the formula α∗u+(1−α)∗l, where u and l denote
the UserRankSum and LeadSum ranking scores,
respectively. Figure 2 demonstrates the impact of
α on our basic and soft LeadSum model with CRF.

Clearly, Basic-LeadSum can benefit from user
influence information by incorporating User-
RankSum scores into it. From the incremental
trend of summarization performance with the in-
crease of α for α ∈ [0, 0.9], we can conclude

that user influence is helpful to it. This is because
Basic-LeadSum is not sufficiently robust to the er-
rors cascaded from leader detection module, thus
user-level structures can have the chance to com-
pensate these errors for content-level structures.

Incorporating the same information into Soft-
LeadSum cannot improve its performance regard-
less of the value of α. This implies that content-
level structures, i.e., message content and repost-
ing relations together, are better indicative of good
summary candidates. When these features are ap-
propriately modeled by Soft-LeadSum, user in-
fluence, a traditionally well-known strong signal,
cannot provide extra benefit at all.

6 Conclusion and Future Work

This work presents a study for microblog repost
tree summarization, whose output can provide im-
portant clues for event analysis on microblog-
ging platforms. Conventional works considering
only plain text streams is insufficient to summa-
rize noisy repost trees. We propose a novel sum-
marization system by effectively differentiating
leader and follower messages on repost tree based
on content-level structure information. Firstly, a
leader detection model categorizes each repost on
repost tree path as a leader or a follower. Then, a
random-walk variant summarization model called
LeadSum is proposed to rank and select salient
microblog messages on the basis of leader de-
tection result. To reduce errors cascaded from
leader detection, we enhance LeadSum based on
an even-length random walk by sampling from
leader probabilities for improving summarization.
Based on real-world microblog post dataset, the
experimental results confirm that our proposed
framework is effective for repost tree summariza-
tion by the end-to-end comparison with the state-
of-the-art baselines.

Constrained by the amount of annotation, we
adopt this two-step framework and an unsuper-
vised summarization algorithm. With the develop-
ment of our corpora, we plan to explore the useful-
ness of supervised structure learning approaches,
such as tree-structured CRF (Tang et al., 2006;
Mensink et al., 2013), to integrate leader detec-
tion and summarization into a unified framework,
and make global inference for important leaders
by capturing various non-linear dependencies.
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Abstract

In this work, we improve the performance
of intra-sentential zero anaphora resolu-
tion in Japanese using a novel method
of recognizing subject sharing relations.
In Japanese, a large portion of intra-
sentential zero anaphora can be regarded
as subject sharing relations between pred-
icates, that is, the subject of some predi-
cate is also the unrealized subject of other
predicates. We develop an accurate rec-
ognizer of subject sharing relations for
pairs of predicates in a single sentence,
and then construct a subject shared pred-
icate network, which is a set of predi-
cates that are linked by the subject shar-
ing relations recognized by our recognizer.
We finally combine our zero anaphora
resolution method exploiting the subject
shared predicate network and a state-of-
the-art ILP-based zero anaphora resolution
method. Our combined method achieved a
significant improvement over the the ILP-
based method alone on intra-sentential
zero anaphora resolution in Japanese. To
the best of our knowledge, this is the first
work to explicitly use an independent sub-
ject sharing recognizer in zero anaphora
resolution.

1 Introduction

In ‘pro-dropped’ languages such as Japanese, Chi-
nese and Italian, pronouns are often unrealized in
text. For example, the subject of nomu (take) is
omitted in example (1).

(1) Tomi-wa infuruenza-ni natta-node ,
Tom-TOP flu-IOBJ had-since punc

(ϕi-ga) kusuri-o non-da .
hei-SUBJ medicine-OBJ took period
Since Tomi had the flu, (hei) took medicine.

Such unrealized pronouns are regarded as zero
anaphors, which are indicated using ϕ in liter-
ature, like ϕi-ga in example (1). Zero anaphor
refers to its antecedent somewhere. This phe-
nomenon of the reference is called zero anaphora.
In Japanese, about 60% of subjects appear as zero
anaphors in newspaper articles (Iida et al., 2007b),
and thus zero anaphora resolution is an essential
task for developing highly accurate machine trans-
lation and information extraction systems.

In this paper, we propose a novel method of re-
solving intra-sentential zero anaphora, in which a
subject zero anaphor refers to its antecedent in-
side a single sentence. This work does not ad-
dress inter-sentential zero anaphora, in which a
zero anaphor in a sentence refers to its antecedent
in another sentence. The novelty of our method
is in the use of subject sharing relations, which
are relations between two predicates that share a
subject by (zero) anaphora or coreference. For ex-
ample, in example (2), there are two subject shar-
ing relations for predicate pairs, advance-plan and
plan-dispatch, as illustrated in Figure 1.

(2) seifui-wa (ϕi-ga) hisaichi-ni
governmenti-TOP iti-SUBJ disaster site-IOBJ

50 nin-o hakensuru koto-o (ϕi-ga)
50 people-OBJ dispatch COMP-OBJ iti-SUBJ

keikakusi junbisagyo-o susumeru .
plan preparation-OBJ advance period
The governmenti plans that (iti) will dispatch
50 people to the disaster site and (iti) is
advancing its preparations.

The most straightforward method to recognize
subject sharing relations is to apply a (zero)
anaphora resolution system to a sentence and de-
tect such relations by recognizing (zero) anaphora,
like the relations represented by seifui and two
zero anaphors ϕi in Figure 1. However, to our
surprise, we found that a simple supervised clas-
sifier that exploits the local contexts surrounding
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Figure 1: Example of subject shared predicate net-
work

predicates achieved a higher accuracy than that
of the straightforward method. This suggests that
just propagating the realized subject of a predi-
cate to the subject zero anaphor of other predicates
through recognized subject sharing relations (e.g.,
propagating subject government of advance to the
subject positions of plan and dispatch in Figure 1)
might lead to a higher accuracy in zero anaphora
resolution than the existing zero anaphora reso-
lution methods. In addition, a large portion of
zero anaphora can be regarded as subject shar-
ing relations (e.g., 39% of the intra-sentential zero
anaphora in the NAIST Text Corpus (Iida et al.,
2007b) are such cases). Hence, just by combining
our subject zero anaphora method with an existing
general anaphora resolution method that covers
other types of anaphora, significant improvement
of accuracy over all types of anaphora might be
achieved. This paper empirically shows that this
is actually the case through a series of experiments
in which we combine our method with an existing
ILP-based zero anaphora resolution method (Iida
and Poesio, 2011).

Our subject zero anaphora resolution method
constructs a subject shared predicate network
(SSPN), which is a network of predicates in which
subject sharing predicates are linked, from the
results of our accurate pairwise subject sharing
recognizer, which detects the predicate pairs that
share a subject. Zero anaphora resolution is done
by propagating the realized subject of a predi-
cate to the subject zero anaphor of other pred-
icates in the SSPN. An important point here is
that SSPN was introduced to solve the issue re-
lated to our pairwise subject sharing recognizer.
Our recognizer is applied only to the restricted

pairs of predicates in a sentence, such as predi-
cates that have a direct dependency relation be-
tween them. This is because our current recog-
nizer cannot achieve high accuracy for any pair
of predicates. In Figure 1, for instance, our rec-
ognizer can detect a subject sharing relation be-
tween advance and plan and another between plan
and dispatch, but it cannot detect one between ad-
vance and dispatch. However, in the SSPN, the
undetected relations can be derived by connecting
the two detected ones, and in the zero anaphora
resolution subject government of advance can be
successfully propagated to the subject position of
dispatch.

The rest of our paper is organized as follows.
In Section 2, we briefly overview previous work
on zero anaphora resolution. In Section 3, we
overview the procedure of our zero anaphora reso-
lution method. We explain the three types of sub-
ject sharing relations on which we focus and pro-
pose a method of pairwise subject sharing recog-
nition for the three types in Section 4. We eval-
uate how effectively our method recognizes sub-
ject sharing relations for these types in Section 5.
After that, we investigate the impact of explic-
itly introducing SSPNs in Section 6 and com-
pare our zero anaphora resolution method with a
state-of-the-art ILP-based method on the task of
intra-sentential subject zero anaphora resolution in
Section 7. Finally, in Section 8 we summarize this
work and discuss future directions.

2 Related work

Traditional approaches to zero anaphora reso-
lution are based on manually created heuristic
rules (Kameyama, 1986; Walker et al., 1994; Oku-
mura and Tamura, 1996; Nakaiwa and Shirai,
1996), which are mainly motivated by the rules
and preferences introduced in Centering The-
ory (Grosz et al., 1995). However, the research
trend of zero anaphora resolution has shifted from
such rule-based approaches to machine learning-
based approaches because in machine learning we
can easily integrate many different types of infor-
mation, such as morpho-syntactic, semantic and
discourse-related information. Researchers have
developed methods of zero anaphora resolution
for Chinese (Zhao and Ng, 2007; Chen and Ng,
2013), Japanese (Seki et al., 2002; Isozaki and Hi-
rao, 2003; Iida et al., 2007a; Taira et al., 2008;
Sasano et al., 2008; Sasano et al., 2009; Imamura
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et al., 2009; Watanabe et al., 2010; Hayashibe et
al., 2011; Iida and Poesio, 2011; Yoshikawa et al.,
2011; Hangyo et al., 2013; Yoshino et al., 2013)
and Italian (Iida and Poesio, 2011). One critical
issue in zero anaphora resolution is optimizing the
outputs of sub-problems (e.g., zero anaphor detec-
tion and antecedent identification). Recent works
by Watanabe et al. (2010), Iida and Poesio (2011)
and Yoshikawa et al. (2011) revealed that joint in-
ference improves the overall performance of zero
anaphora resolution. We employed one of these
works as a baseline in Section 6.

Concerning subject sharing recognition, re-
lated methods have been explored for pronominal
anaphora (Yang et al., 2005) or coreference reso-
lution (Bean and Riloff, 2004; Bansal and Klein,
2012). In these methods, the semantic compatibil-
ity between the contexts surrounding an anaphor
and its antecedent (e.g., the compatibility of verbs
kidnap and release given some arguments) was
automatically extracted from raw texts in an un-
supervised manner and used as features in a ma-
chine learning-based approach. However, because
the automatically acquired semantic compatibility
is not always true or applicable in the context of
any pair of an anaphor and its antecedent, the ef-
fectiveness of the compatibility features might be
weakened. In contrast, we accurately recognize
the explicit subject sharing relations and directly
use them for propagating the subject of some pred-
icate to the empty subject position of other pred-
icates instead of indirectly using the relations as
features.

3 Zero anaphora resolution using subject
shared predicate network

In this section, we first give an overview of the
procedure of our zero anaphora resolution method.
Intra-sentential zero anaphora resolution in our
method is performed in the following five steps,
as depicted in Figure 2.

Step 1 The pairwise subject sharing relations be-
tween two predicates in a sentence are recog-
nized by our subject sharing recognizer.

Step 2 A subject shared predicate network
(SSPN) is constructed based on the results of
pairwise subject sharing recognition.

Step 3 For each predicate in the set of the subject
shared predicates in the SSPN, a subject is
detected by our subject detector, if one exists.
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Figure 2: Procedure of our zero anaphora resolu-
tion method

Step 4 If a subject is detected, it is propagated to
the empty subject position of each predicate
in the subject shared predicates in the SSPN.

Step 5 For resolving the potential zero anaphora
that were not resolved until Step 4, we apply
the existing ILP-based method (Iida and Poe-
sio, 2011).

We define subject sharing relations as follows.
Two predicates have a subject sharing relation if
and only if they share the same subject that is re-
ferred to by (zero) anaphora or coreference. Note
that the shared subject does not need to be realized
in the text; it can appear as inter-sentential zero
anaphora or exophora. In Step 1, the pairwise sub-
ject sharing relations between two predicates are
recognized, but recognizing the relations between
any two predicates in a sentence remains difficult.
We thus focus on some typical types of predicate
pairs. The details of the predicate pair types will
be explained in Section 4.1.

Given the results of pairwise subject sharing
recognition, we construct an SSPN in Step 2. In
an SSPN, every predicate in a sentence is a node
and only the predicate pairs that were judged to be
subject sharing are connected by a link. The ma-
jor advantage of explicitly constructing an SSPN
is that it enables us to resolve zero anaphora even
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if a predicate with a subject zero anaphor does
not have any direct subject sharing relation with a
predicate with a subject, like predicates susumeru
(advance) and hakensuru (dispatch) in Figure 1.
By traversing the paths of the subject sharing re-
lations in the SSPN, such predicates can be con-
nected to successfully propagate the subject. The
effect of introducing SSPNs is empirically evalu-
ated in Section 6.

For use in Step 3, we create a subject detector,
which judges whether an argument to a predicate
is its subject using SVMlight 1, an implementation
of Support Vector Machine (Vapnik, 1998), with a
polynomial kernel of 2nd degree. The training in-
stances of the subject detector are extracted from
the predicate-argument relations2 in the NAIST
Text Corpus. The numbers of positive and nega-
tive instances are 35,304 and 104,250 respectively.
As features, we used the morpho-syntactic infor-
mation about the lemmas of the predicate and its
argument and the functional words following the
predicate and its argument. The results of subject
detection with 5-fold cross-validation demonstrate
that our subject detector accurately detects sub-
jects with performances of 0.949 in recall, 0.855
in precision, and 0.899 in F-score.

Note that our subject detector checks whether
each predicate in an SSPN has a syntactic sub-
ject among its arguments. An SSPN can include
more than one predicate, and each predicate may
have its own subject3. In this step, if two or more
distinct subjects are detected for predicates in an
SSPN, we use the most likely subject (i.e., the
subject with the highest SVM score outputted by
our subject detector) for subject propagation. Note
that subject propagation is not performed if the
subject position of a predicate is already filled.

Up to this point, the zero anaphora of the fol-
lowing three cases cannot be resolved: (i) no sub-
ject was detected for any predicate in a group
linked by the subject sharing relations in the
SSPN, (ii) no subject sharing relation was recog-
nized for a predicate in the SSPN and (iii) non-

1http://svmlight.joachims.org/
2Note that if a predicate appears in a relative clause and

a noun modified by the clause is the semantic subject of the
predicate, the noun is not regarded as subject by our subject
detector.

3The subject sharing recognizer is likely to regard two
predicates, each of which has its own subject, as non-subject
sharing predicate pairs, but it is still logically possible that
they are judged as subject sharing predicate pairs hence as a
part of an SSPN.
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Figure 3: Example of DEP type

subject arguments were omitted as zero anaphors.
To resolve zero anaphora in these cases, we ap-
ply a state-of-the-art ILP-based zero anaphora res-
olution method (Iida and Poesio, 2011) in Step 5.
This method determines zero anaphor and its an-
tecedent by joint inference using the results of sub-
ject detection, zero anaphor detection and intra-
and inter-sentential antecedent identification. In
the original method by Iida and Poesio (2011),
the inter-sentential zero anaphora was resolved,
but in this work we focus on intra-sentential zero
anaphora. To adapt their method for our problem
setting, we simply removed the inter-sentential an-
tecedent identification model from their method.

4 Pairwise subject sharing recognition

A key component in our zero anaphora resolu-
tion method is pairwise subject sharing recogni-
tion. In this work, we focus on three types of sub-
ject sharing relations (DEP, ADJ and PNP types)
as a first step because the instances belonging to
the three types occupy 62% of intra-sentential zero
anaphora that can be regarded as subject sharing.
We developed a method that recognizes each sub-
ject sharing type and evaluate it.

4.1 Three types of subject sharing relations

We first describe the three types of subject sharing
relations we focus on.

DEP A typical type of subject sharing relation
is one between two predicates that have a syntac-
tical dependency relation. The relation between
two predicates, natta (have) and nonda (take), in
example (1) in Section 1 is classified as this type
because the two predicates have the same subject
Tomi (ϕi), as illustrated in Figure 3. We call this
type of subject sharing the DEP type.

ADJ This type is a subject sharing relation be-
tween two adjacent predicates, i.e., a predicate
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pairs that do not have any other predicate between
them in the surface order of a sentence. Although
two adjacent predicates in a sentence tend to share
the same subject, they sometimes cannot be cap-
tured as the DEP type due to a long-distance de-
pendency between predicates. For example, in ex-
ample (3), two adjacent predicates, land and move
onto, have the same subject but not a direct depen-
dency relation, as illustrated in Figure 4.

(3) hikouki-wa bujini chakurikusi-ta-ga
airplane-TOP safely land-PAST-but

(ϕi-ga) yudouro-ni hait-ta-atoni
iti-SUBJ taxiway-IOBJ move onto-PAST-after

soujukan-ga kikanakunat-ta .
control stick-SUBJ do not work-PAST period
The airplane safely landed, but its control
stick did not work after (iti) moved onto the
taxiway.

To cover such cases, we also take into account the
subject sharing relations of the ADJ type in which
two predicates appear adjacently in the surface or-
der.

PNP In addition to the above two types of re-
lations, in Japanese predicate pairs often have a

subject sharing relation when one of the predi-
cates syntactically depends on a noun (or noun
phrase) that in turn syntactically depends on the
other predicate. Example (4) is classified as such
a type because noun houshin (plan) is placed be-
tween two predicates, akirakanisita (unveil) and
tekkaisuru (abolish), in the dependency path and
predicates share subject chiji (governor), as illus-
trated in Figure 5.

(4) chijii-wa (ϕi-ga) joukou-o
governor-TOP hei-SUBJ stipulation-OBJ

tekkaisuru houshin-o akirakanisi-ta .
abolish plan-TOP unveil-PAST period
The governori unveiled his plan under which
(hei) will abolish the stipulation.

We call this type of subject sharing relation the
PNP type.

In this work, we solve the problem of subject
sharing recognition as a binary classification prob-
lem in which we classify whether two predicates
share the same subject. We solve this problem us-
ing a supervised approach. We independently ex-
tract the training instances for each type from a
corpus to which (zero) anaphora, coreference and
subjects were annotated. The binary labels of the
training instances are classified into the positive
class if the subject of the two predicates in an in-
stance is shared by coreference or (zero) anaphora,
and negative otherwise. To create a classifier, we
use SVMlight and experiment with both a linear
kernel and a polynomial kernel of 2nd degree.

As features, we use the feature set shown in
Table 1. Even though these features look simple,
we expect them to work well to capture the char-
acteristics of each subject sharing type. For ex-
ample, as shown in example (5), the (subject) case
marker of the argument (mother-SUBJ) between
two predicates natta (have) and katta (buy) is a
good indicator of non-subject sharing.

(5) Tomi-ga infuruenza-ni natta-node ,
Tom-SUBJ flu-IOBJ had-since punc

haha-ga kusuri-o katta .
mother-SUBJ medicine-OBJ buy-PAST period
Since Tom had the flu, his mother bought
medicine.

For recognizing the PNP type of subject sharing
relations, whether certain nouns appear between
two predicates is an important clue, e.g., koto
(complementizer) in example (6) and nouryoku
(ability) in example (7).
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Name Description
PoSi (PoSj) PoS of pi (pj)
lemmai (lemmaj) lemma of pi (pj)
func wi (func wj) function words following pi (pj)
casei (casej) case marker of arguments of pi (pj)
btw case case marker of arguments that appeared between pi and pj

NpPoS* PoS of np
Np lemma* lemma of np
func wnp* function words following np
casenp* case marker of dependents of np
n class* noun class of np based on Kazama and Torisawa (2008)

pi and pj stand for the left and right predicates in predicate pairs. np is the noun
phrase between pi and pj . bi (bj) stands for the bunsetsu-unit4 including pi (pj).
The features marked with * are only used for PNP type.

Table 1: Features of subject sharing recognition

(6) seifui-wa (ϕi-ga) sono isetsu-o
government-TOP iti-SUBJ the relocation-OBJ

mitomeru koto-o kime-ta .
admit COMP-OBJ decide-PAST period
The governmenti decided that (iti) admits the
relocation.

(7) sono fune-wa (ϕi-ga) hayaku
the ship-TOP iti-SUBJ fast

hashiru nouryoku-o motteiru .
run ability-OBJ have period
The shipi has an ability that (iti) runs fast.

To robustly capture this characteristic, we use as
features the discrete classes created by the noun
clustering algorithm proposed by Kazama and
Torisawa (2008). It follows the distributional hy-
pothesis, which states that semantically similar
words tend to appear in similar contexts (Harris,
1954). By treating the syntactic dependency re-
lations between words as ‘contexts,’ the clustering
method defines a probabilistic model of noun-verb
dependencies with hidden classes:

p(n, ⟨v, r⟩) =
∑

c

p(n|c)p(⟨v, r⟩|c)p(c)

where n is a noun, v is a verb or noun on which n
depends by grammatical relation r (post-positions
in Japanese), and c is a hidden class. The depen-
dency relation frequencies were obtained from a
600-million page web corpus, and model parame-
ters p(n|c), p(⟨v, r⟩|c) and p(c) were estimated us-
ing the EM algorithm (Hofmann, 1999). We clus-
tered one million nouns into 500 discrete classes

4A bunsetsu-unit is a Japanese base phrase consisting of
at least one content word optionally followed by functional
words.

by assigning noun n to class c when the model pa-
rameter p(c|n) > θ (θ = 0.2).

5 Experiment 1: pairwise subject
sharing recognition

We first empirically evaluate the performance of
our pairwise subject sharing recognition for the
DEP, ADJ and PNP types.

5.1 Experimental setting

The training data for the subject sharing recog-
nizer were generated from the NAIST Text Cor-
pus 1.4 (Iida et al., 2007b), in which (zero)
anaphora, coreference and subjects were manu-
ally annotated. We automatically extracted pairs
of predicates from the corpus. Since the original
NAIST Text Corpus has a wide variety of anno-
tation noise, we cleaned it up by the following
strategy. According to the annotation scheme in
the NAIST Text Corpus, predicate-argument rela-
tions were annotated for the ‘bare predicates’ even
if the predicates appear in passive or causative sen-
tences. In such cases, the annotation was difficult
and caused inconsistencies because the annotators
needed to imagine the predicate-argument rela-
tions for predicates that are not explicitly written,
considering case alternation caused by changes of
voice and so on. As such, to achieve a higher level
of consistency, we modified the annotation scheme
for predicate-argument relations by considering
‘surface predicates’ and re-annotated predicate-
argument relations in passive and causative cases,
thus reducing the risk of inconsistent annotations
caused by case alternation.
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type method Recall Precision F-score
DEP baseline 0.161 0.505 0.244

proposed (linear) 0.545 0.719 0.620
proposed (poly-2d) 0.578 0.732 0.646

ADJ baseline 0.143 0.414 0.212
proposed (linear) 0.011 0.604 0.021
proposed (poly-2d) 0.285 0.713 0.407

PNP baseline 0.154 0.329 0.210
proposed (linear) 0.028 0.844 0.053
proposed (poly-2d) 0.159 0.723 0.260

Table 2: Results of subject sharing recognition

Another important point is that in the NAIST
Text Corpus, if the antecedent of a zero anaphor is
not explicitly written in the corpus, it is simply an-
notated as ‘exophoric’, and the subject sharing re-
lations between two predicates whose subject was
annotated as exophoric cannot be captured. In
contrast, in our cleaning procedure, the annota-
tors additionally annotated such ‘exophoric’ sub-
ject sharing relations to take into account all sub-
ject sharing relations in the corpus.

The predicates in the corpus and their depen-
dency relations were detected based on the outputs
of a Japanese dependency parser, J.DepP5 (Yoshi-
naga and Kitsuregawa, 2009). We obtained 49,313
predicate pairs for the DEP type, 86,728 for the
ADJ type, and 27,117 for the PNP types. The num-
bers of positive instances of DEP, ADJ and PNP

types are 9,524, 13,104, and 2,363 respectively. To
evaluate the subject sharing recognition, we con-
ducted 5-fold cross-validation using these predi-
cate pairs and measured the performance using re-
call, precision and F-score.

Note that we also evaluated a baseline method
that recognizes subject sharing relations using the
results of the state-of-the-art zero anaphora resolu-
tion method (Iida and Poesio, 2011) and the sub-
ject detector at Step 3 in Section 3.

5.2 Results: subject sharing recognition

We measured the performances of the baseline and
our subject sharing recognition method using re-
call, precision and F-score for each of the three
types of subject sharing relations, which are shown
in Table 2. The results demonstrate that all of the
proposed classifiers solved the problems with high
precision. In particular, for each type, the classi-
fier using a polynomial kernel achieved more than

5http://www.tkl.iis.u-tokyo.ac.jp/˜ynaga/jdepp/

70% precision. We thus used the classifiers with
a polynomial kernel for evaluations in Section 6.
The results also show that the classifier using a
polynomial kernel for each type outperformed the
baseline method based on the state-of-the-art zero
anaphora resolution method. That is, the direct
subject sharing recognition using our classifiers
has the potential to lead to a significant improve-
ment in zero anaphora resolution, which we con-
firm through the experiments in Section 7.

Table 2 also shows that the classifier for the DEP

type outperformed those for all of the other types
in F-score. The difference reflects the wider vari-
ations of the problems in both ADJ and PNP com-
pared to the case of DEP. For example, to recog-
nize the PNP type of subject sharing relation, our
classifier needs to appropriately learn the compli-
cated relationship between two predicates and the
noun that intervenes between them, a problem we
do not need to consider for the DEP type.

6 Experiment 2: intra-sentential zero
anaphora resolution between subjects

We next investigate the effect of introducing
SSPNs. In this experiment, we evaluated the per-
formance of intra-sentential zero anaphora resolu-
tion only between subjects, i.e., the positive in-
stances used in this experiment were limited to
the cases where the antecedent of a zero anaphor
is the realized subject of a predicate. We evalu-
ated a method of zero anaphora resolution using
only SSPNs, where intra-sentential zero anaphora
is resolved by the first four steps (Steps 1 to 4)
in Section 3. We compared it to a baseline that
only used the results of pairwise subject sharing
recognition without SSPNs: if the subject shar-
ing relation between two predicates is recognized
by our pairwise subject sharing recognizer and a
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Recall Precision F-score
DEP w/o SSPN 0.259 0.744 0.385
DEP with SSPN 0.284 0.744 0.411
ADJ w/o SSPN 0.182 0.554 0.274
ADJ with SSPN 0.193 0.561 0.288
PNP w/o SSPN 0.034 0.757 0.064
PNP with SSPN 0.033 0.780 0.064
DEP+ADJ w/o SSPN 0.315 0.602 0.413
DEP+ADJ with SSPN 0.354 0.604 0.447
DEP+PNP w/o SSPN 0.293 0.746 0.421
DEP+PNP with SSPN 0.324 0.749 0.453
ADJ+PNP w/o SSPN 0.191 0.558 0.285
ADJ+PNP with SSPN 0.203 0.566 0.299
DEP+ADJ+PNP w/o SSPN 0.324 0.604 0.422
DEP+ADJ+PNP with SSPN 0.365 0.607 0.456

Table 3: Results of intra-sentential zero anaphora resolution between subjects

single subject is detected by our subject detector
for one of the two predicates, then the subject fills
the empty subject position of the other predicate.
Note that in this baseline method, transitive sub-
ject propagation through more than one subject
sharing relation is not performed. Also, if mul-
tiple subjects are detected for a predicate, we used
the most likely subject to fill the subject position
of the predicate, as in our method.

We conducted 5-fold cross-validation using the
modified version of the NAIST Text Corpus pre-
sented in Section 5.1. In this evaluation, we
used the 8,473 subject zero anaphors that refer
to the subject antecedents (46% of all the intra-
sentential subject zero anaphora, in which a sub-
ject zero anaphor refers to the antecedent that are
not limited to subject) in the corpus. We mea-
sured the performance using recall, precision and
F-score for each of the three types of subject shar-
ing relations and their combinations. When com-
bining more than one subject sharing recognizer in
our method, we construct the SSPN using the sub-
ject sharing relations recognized by at least one
of those recognizers for transitive subject propa-
gation. On the other hand, in the baseline method,
the SSPN was not constructed and zero anaphoric
relations were identified using only the outputs of
our subject detector and one of those recognizers.

The experimental results shown in Table 3
clearly demonstrate that the method with SSPNs
for each type or a combination of the three types
consistently outperformed that without SSPNs ex-
cept for the PNP type. This result suggests that

multi-step propagation of subjects through more
than one subject sharing relation, as done in
SSPNs, is an effective way to propagate a sub-
ject to a subject position that cannot be reached
by a single subject sharing relation. Our results
also show that the F-score is improved by com-
bining different types of subject sharing relations,
and the best F-score, 0.456, was achieved when
we used all types of relations, i.e., in the case of
DEP+ADJ+PNP with SSPNs.

7 Experiment 3: intra-sentential subject
zero anaphora resolution

Finally, we evaluate the performance of intra-
sentential subject zero anaphora resolution. In the
previous section, we evaluated just a part of our
method, i.e., from Step 1 to Step 4 presented in
Section 3. In this section, we evaluate the whole
method, i.e., from Step 1 to Step 5, against 18,324
subject zero anaphors, which are all subject zero
anaphors annotated in our modified version of the
NAIST Text Corpus. As a baseline, we employed
Iida and Poesio (2011)’s method that was tuned
for intra-sentential zero anaphora resolution. The
baseline method solves the problems by applying
only Step 5 in Section 3 to all the predicates.

Our results in Table 4 show that all the meth-
ods using either each type or a combination of the
three types significantly outperformed the base-
line6. The best performing method was DEP+PNP,
which achieved 0.380 in F-score, which is 3.6%

6The significance was tested using McNemar’s testing
(p < 0.01).
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Recall Precision F-score
Baseline (Step 5) 0.345 0.344 0.344
+DEP with SSPN 0.388 0.363 0.375
+ADJ with SSPN 0.374 0.347 0.360
+PNP with SSPN 0.351 0.347 0.349
+DEP+ADJ with SSPN 0.399 0.355 0.376
+DEP+PNP with SSPN 0.394 0.366 0.380
+ADJ+PNP with SSPN 0.376 0.347 0.361
+DEP+ADJ+PNP with SSPN 0.401 0.356 0.377

Table 4: Results of intra-sentential subject zero anaphora resolution (Steps 1 to 5 vs. Step 5)

Recall Precision F-score
Baseline (Step 5) 0.345 0.344 0.344
DEP with SSPN 0.131 0.744 0.223
ADJ with SSPN 0.089 0.561 0.154
PNP with SSPN 0.015 0.780 0.030
DEP+ADJ with SSPN 0.164 0.604 0.258
DEP+PNP with SSPN 0.150 0.749 0.250
ADJ+PNP with SSPN 0.094 0.566 0.161
DEP+ADJ+PNP with SSPN 0.169 0.607 0.264

Table 5: Results of intra-sentential subject zero anaphora resolution (Steps 1 to 4 vs. Step 5)

higher than the baseline. This suggests that
our method exploiting subject sharing relations
and SSPNs has a positive impact on accuracy of
general intra-sentential zero anaphora resolution
methods because about 84% of zero anaphors of
general intra-sentential zero anaphora appear as
subject zero anaphor in our corpus.

We also estimate how accurately the method us-
ing only the SSPNs evaluated in Section 6 resolves
intra-sentential subject zero anaphora in compari-
son to the baseline method. The results are shown
in Table 5 and demonstrate that the performance
of all the methods without Step 5 does not reach
that of the baseline method in F-score. However,
they retain high precision that ranges from 60% to
75%, preserving more than 10% of the recall on
the DEP, DEP+ADJ, DEP+PNP and DEP+ADJ+PNP

methods. Actually, in some of the potential ap-
plications of zero anaphora resolution, such as in-
formation extraction, methods with high precision
and low recall are preferable to ones with low pre-
cision and high recall. Our methods with SSPNs
alone might be usable in such applications because
of their high precision.

8 Conclusion

In this paper, we introduced a subject shared pred-
icate network (SSPN), which is a network of

predicates that are linked by subject sharing re-
lations for resolving typical intra-sentential zero
anaphora. In our zero anaphora resolution method,
zero anaphoric relations are identified by propa-
gating a subject through subject sharing paths in
the SSPN. To construct SSPNs, we developed a
novel method of pairwise subject sharing recog-
nition using the local contexts that surround two
predicates and demonstrated that it can accurately
recognize subject sharing relations. We combined
our method of intra-sentential zero anaphora res-
olution with Iida and Poesio (2011)’s method and
achieved significantly better F-score than Iida and
Poesio (2011)’s method alone.

As future work, we are planning to use
commonsense knowledge, such as causal-
ity (Hashimoto et al., 2014) and script-like
knowledge (Sano et al., 2014), that has been
automatically acquired from big data for accurate
subject sharing recognition to improve inter-
sentential zero anaphora resolution for cases not
focused on in this work.
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Abstract
For annotation tasks involving independent
judgments, probabilistic models have been
used to infer ground truth labels from data
where a crowd of many annotators labels the
same items. Such models have been shown to
produce results superior to taking the majority
vote, but have not been applied to sequential
data. We present two methods to infer ground
truth labels from sequential annotations where
we assume judgments are not independent,
based on the observation that an annotator’s
segments all tend to be several utterances long.
The data consists of crowd labels for anno-
tation of discourse segment boundaries. The
new methods extend Hidden Markov Models
to relax the independence assumption. The
two methods are distinct, so positive labels
proposed by both are taken to be ground truth.
In addition, results of the models are checked
using metrics that test whether an annotator’s
accuracy relative to a given model remains
consistent across different conversations.

1 Introduction
A single, spontaneous, spoken interaction can consist
of multiple activities, such as to plan a future event,
to complain about a past situation, or to carry out a
transaction that might consist of subtasks. Speakers
shift from one activity to the next with more or less
awareness and explicit demarcation. To treat such con-
versational activities as a sequence of discrete units is
a convenient oversimplification that is often resorted
to (Bokaei et al., 2015; Galley et al., 2003; Passon-
neau and Litman, 1997). Systems that provide auto-
mated access to spoken language data often rely on
segmentation of spoken discourse into sequential units
for summarization (Wang and Cardie, 2012; Dielmann
and Renals, 2005) or information retrieval (Ward et al.,
2015). Research on the organization of spoken dis-
course also relies directly or indirectly on identifica-
tion of such units to detect agreement among partici-
pants (Hillard et al., 2003; Somasundaran et al., 2007;
Germesin and Wilson, 2009), multiparty meeting ac-
tion items (Purver et al., 2007), decisions (Fernández
et al., 2008), or answers to questions (Sun and Chai,

2007; Bosma, 2005). To support such research, there
is a need for annotation methods to segment conversa-
tional interaction into sequential, multi-utterance units.
We present and compare two methods to derive such
data from crowdsourced annotations.

Crowdsourced annotation, where each item is la-
beled by a crowd of many independent annotators, is
becoming more common in natural language process-
ing. Examples include word sense (Bruce and Wiebe,
1999; Snow et al., 2008; Passonneau and Carpenter,
2014), named entities (Finin et al., 2010), and sev-
eral other tasks in (Snow et al., 2008), including tex-
tual entailment. Three advantages to corpus annotation
through application of a probabilistic model to crowd-
sourced labels, rather than reliance on interannotator
agreement computed for a small number of trained an-
notators, are higher quality, lower cost, and a poste-
rior probability for each ground truth label (Sheng et
al., 2008; Snow et al., 2008; Passonneau and Carpen-
ter, 2014). The latter serves as a confidence measure,
which contrasts with interannotator agreement mea-
sures and with majority-voted labels, neither of which
provides quality information for the ground truth la-
bels on individual items. Previous work has demon-
strated that model estimation of ground truth labels
from crowd labels produces results superior to the
crowd’s majority vote, due to differences among anno-
tators in the quality of their labels (Dawid and Skene,
1979; Snow et al., 2008; Passonneau and Carpenter,
2014). No previous work, however, provides model-
based estimation of labels for sequential annotation
from crowd labels.

For the discourse segmentation data presented here,
annotators were presented with audio files of conversa-
tions and corresponding transcriptions into utterances.
The annotation task was to identify each utterance that
completes a discourse segment spanning one or more
utterances, based on the speakers’ conversational ac-
tivities or intentions, as in (Passonneau and Litman,
1997). The annotations from y annotators for a conver-
sation with x utterances can be represented as a y × x
matrix, with cell values nij ∈ {0, 1} to represent the
binary segment boundary label assigned by annotator
yi at utterance xj . Figure 1 illustrates part of such a
matrix. The eight annotators for this conversation are
on the y-axis and utterances 80 through 180 are on the
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Figure 1: Annotation labels from eight annotators (A-G, I)
on utterances 80 through 180 of a sample conversation. Ver-
tical bars represent positive labels, with a different color for
each annotator. Annotator H did not do this conversation.

x-axis. Colored bars represent positive labels, and each
color represents a distinct annotator. The label distri-
bution shown here is typical of our dataset: an annota-
tor’s positive labels are typically separated by several
utterances, and annotators agree much more often on
non-boundaries than on boundaries. Full consensus on
a positive label is rare, but does occur. Here, all eight
annotators assigned a positive label at utterance 120,
six at utterance 178, and five at utterance 140.

Our work assumes that unobserved true labels con-
dition the annotators’ observed labels, and can be mod-
eled as hidden states in a Markov-type process. Be-
cause an annotator rarely assigns positive labels for ad-
jacent utterances, we assume that neither the true labels
nor the observations are conditionally independent, and
therefore are not generated by a simple Markov pro-
cess. Our first model adapts the Double Chain Markov
Model (Berchtold, 1999), designed to account for such
cases. We then propose a second model that assumes
that each annotator’s labels are drawn from a Bernoulli
distribution, that annotator performance is a parame-
ter of the model, and that the state transitions are con-
ditioned by an empirical distribution of discourse seg-
ment lengths. The two methods are quite distinct. Each
thus serves as an evaluation of the other. The seg-
ment boundaries proposed by both models include all
the majority vote cases, and in addition, cases voted
on by a minority of relatively accurate annotators. We
take segment boundaries proposed by both methods as
ground truth. To further assess the results of the mod-
els, we assume that an annotator’s accuracies should be
consistent across the conversations she annotates.

2 Related Work

Previous work on annotation of discourse into lin-
ear segments has used a variety of methods to de-
rive ground truth segment boundaries. In (Passonneau
and Litman, 1997), seven annotators annotated narra-
tive monologues for segments based on speaker inten-
tion. Agreement levels for ground truth boundaries
were based on statistical significance using Cochran’s
Q. In (Galley et al., 2003), three annotators segmented

the ICSI meeting corpus into topical units, and ma-
jority agreement was taken as ground truth. A func-
tional segmentation of meetings from the AMI mul-
tiparty meeting corpus based on involved participants
was segmented by one annotator and finalized by a sec-
ond annotator (Bokaei et al., 2015). Task-based seg-
mentation of patron-librarian interactions (Passonneau
et al., 2011) measured agreement among two annota-
tors using Krippendorff’s Alpha at an average of 0.77
(Krippendorff, 1980). The annotation task here mostly
closely resembles (Passonneau and Litman, 1997), and
uses a similar number of annotators. No prior work,
however, applies a probabilistic model to crowd labels
for discourse segmentation.

Estimation of ground truth from crowd labels has
been applied to many tasks, but is especially useful
where judgments are subjective, making ground truth
difficult to arrive at. Application areas include dis-
ease prevalence estimation (Albert and Dodd, 2008),
identification of craters in images of Venus (Smyth et
al., 1995), curation of biological data (Rzhetsky et al.,
2009), computer vision (Whitehill et al., 2009), pa-
tient history (Dawid and Skene, 1979), and clinical re-
ports (2010). Smyth et al. (1995), Rogers et al., and
(2010) and Raykar et al. (2010) discuss the advan-
tages of probabilistically annotated corpora over ma-
jority vote. Much of this work is motivated by the ob-
servation that annotators have different accuracies, and
the fact that when annotators have known accuracies
it can be shown that a majority of inaccurate annota-
tors can be wrong (Raykar et al., 2010; Passonneau and
Carpenter, 2014). Equally important, information from
inaccurate annotators informs the model inference. For
example, an inaccurate annotator might be biased to-
wards label m whenever the true label is z.

Dawid and Skene (1979) present a joint model of
true labels, observed labels, and annotator perfor-
mance. Perhaps its first application to NLP data was the
Bruce and Wiebe (1999) investigation of word sense.
It has also been applied to more fine-grained word
sense with a direct comparison to trained annotator la-
bels in (Passonneau and Carpenter, 2014). Snow et al.
(2008) showed that application of the same model to
noisy crowd annotations produced data of equal qual-
ity to five distinct published gold standards. Hovy et
al. (2013) apply a simple and effective model to iden-
tify untrustworthy annotators and test it on the same
datasets used in (Snow et al., 2008). As they point out,
when ties occur among an even number of annotators,
it’s necessary to resort to a tie-breaking procedure, e.g.,
for utterance 155 in Figure 1 where four annotators as-
sign a positive label and four do not.

In experiments on an existing dataset of word sense
annotation, Dligach et al. (2010) compare singly anno-
tated data with doubly annotated adjudicated data, us-
ing trained annotators. They find that with the same
amount of data, machine learning performance im-
proves with the doubly annotated adjudicated data by

2191



Figure 2: The annotation interface presented the audio control button on the upper left and the transcript below, with a scroll
bar (not shown). Utterances from the two speakers are on the right and left sides, respectively. Each utterance had a checkbox;
when selected, a textbox appeared to allow annotators to enter their segment descriptions.

a small amount, but that investing in more singly an-
notated labels leads to greater improvements. Their re-
sults on trained annotators, however, would not apply
to our use case involving untrained annotators. In pre-
vious work, we found the cost per ground truth label
of singly annotated data with trained annotators to be
more than twice that for multiply annotated data with
twenty untrained annotators (Passonneau and Carpen-
ter, 2014). Half that many would have been sufficient
for the Dawid & Skene model used there, which would
reduce the cost by half again as much.1

3 Data and Annotation Task
The data consists of digital recordings and transcripts
of fifty telephone calls between family members and
friends who were native speakers of Tagalog. These
were collected for the Babel program, sponsored by
the Intelligence Advanced Research Projects Activ-
ity (IARPA). The calls ranged in length from about
seven to ten minutes (µ = 9.67 minutes, σ=0.68 min-
utes). Transcripts provided by IARPA had an average
of 364.66 utterances (min=239; max=475; σ=60.80).

The annotations were collected using Amazon Me-
chanical Turk. The task name and instructions were
in English. The instructions were provided through a
short video and text. Proficiency in Tagalog was as-
sessed through a vocabulary test. Those who passed
the vocabulary test were paid to do an initial annotation
so we could ensure they understood the task. The ini-
tial task was based on a short Tagalog conversation that
had been translated, annotated by a bilingual speaker
of Tagalog and English, and verified by Passonneau.
Annotators who understood the task and whose labels
and descriptions seemed reasonable were admitted into
the pool of annotators. A pool of nine annotators com-
pleted the qualifications. Each conversation was anno-
tated by at least five annotators. Altogether, annotators
assigned 5,567 labels to 164,097 utterances. Annota-
tors’ segments had a mean length of 21.85 utterances
with a high standard deviation (σ = 19.32).

The interface designed for the annotation task is
shown in Figure 2. Through the interface, annotators

1Twenty labels per item were collected in order to provide
tight estimates for item difficulty. This, however, requires a
model with a parameter for item difficulty, which had not yet
been implemented for this data.

could read the transcript of a recorded conversation,
and could play, pause or stop the audio. Each utterance
had a checkbox for assigning a positive label if the an-
notator judged it to be the end of a segment. As shown,
selection of a checkbox opened a text box for the anno-
tator to enter a brief description of the segment. Table 1
in section 8 illustrates the descriptions assigned by six
annotators to several segments.

4 Assumptions

Given the many labels from annotators, our goal is to
estimate a ground truth label for each utterance posi-
tion, where the label values represent a binary classi-
fication of segment boundaries. Our two models each
assume there is a hidden true label that conditions an
annotator’s observed labels, and that can be estimated
from the observed labels. How well the estimated
ground truth fits the data thus depends on how well
the model assumptions accord with the phenomenon
of interest. The models do not account for annotator
differences in the level of granularity they apply; cf.
the contrast between lumpers and splitters in taxonomic
classification of the natural world (Branch, 2014). Fur-
ther, neither model takes linguistic features into ac-
count that annotators consider in deciding on segments,
such as speaker attitude towards utterance content or
speaker role in the conversational activity (Niekrasz
and Moore, 2009). We find, however, much agree-
ment between the two models on the proposed segment
boundaries, and leave for future work the question of
whether more complex models could accoount for dif-
ferences in granularity or utterance features.

As discussed in section 2, we assume that annotators
are not equally accurate, and that a probabilistic model
based on the distribution of observed labels can do bet-
ter than majority vote. Inspired by the type of prob-
abilistic model proposed in (Dawid and Skene, 1979)
and extended in (Bruce and Wiebe, 1999; Passonneau
and Carpenter, 2014), annotator accuracy is a parame-
ter of our second model. As described in detail in sub-
sequent sections, the two models proposed here rely on
distinct assumptions and inference methods. They nev-
ertheless propose many of the same labels. We take
each model to provide independent evidence for the
ground truth labels, thus the final labels are those voted
on by both models.
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x1 x2 x3 xn−1 xn

y11 y21 y31 yn−11 yn1

y12 y22 y32 yn−12 yn2

y1m y2m y3m yn−1m ynm

Figure 3: Graphical model of Double Chain Dynamic Hid-
den Markov Model for a conversation with m annotators and
n utterances. The xt are the hidden states, and the yjl are the
observed labels from annotator l at utterance j.

In addition, we assume that annotators’ accuracies
should be relatively consistent across conversations,
and we measure how well each model’s results support
this assumption. We base the assumption on the obser-
vation that the annotation task is the same for all con-
versations, and an annotator’s relative ability to do the
task should not change significantly. The annotators all
had the same initial training, and did about the same
number of conversations. The conversations all had
similar conditions of collection, similar participants,
and similarly mundane topics and conversational activ-
ities that most annotators would be familiar with. The
subjects that were discussed included parties, watch-
ing tv, siblings, money, jobs, spouses, medical issues,
birthdays, and so on.

5 Double Chain Dynamic Hidden
Markov Model

The first model we propose combines the Double
Chain Markov Model (Berchtold, 1999) and dynamic
Bayesian networks (Martinez and Sucar, 2008). The
double chaining involves the dependence of observa-
tions on immediately prior observations. Figure 3
shows that for all ytl, t ≥ 2, observation ytl depends
on observation y(t−1)l. The emission matrix at the first
utterance x1 is thus a 2×2 matrix, while all subsequent
emission matrices are 2 × 2 × 2. As in (Martinez and
Sucar, 2008), the observed states can be regarded as a
composition of m independent chains, where m is the
number of annotators for the conversation. Also, the
lth annotator’s observation at the tth utterance depends
not only on the same hidden state xt, but also on the
last observation y(t−1)l.

Assume in a conversation, there are m annotators
and n utterances. The model Θ = {π, γ,A,B} can
be described as follows:

• a set of hidden states, i.e the true labels: xt ∈
{0, 1}, t ∈ {1, 2, . . . , n}. xt = 1 represents the
tth utterance is a true boundary and 0 otherwise;

• a set of observed variables: ytl ∈ {0, 1}, l ∈
{1, 2, . . . ,m} annotators, t ∈ {1, 2, . . . , n} utter-

ances. ytl = 1 represents that the lth annotator
annotates tth utterance to a true boundary and 0
otherwise;

• Θ is a vector of parameters. To be more specific,
the elements are:

– the probability of the initial hidden state:
πx1 , x1 ∈ {0, 1}. Note π0 + π1 = 1.

– the probabilities of the initial emission ma-
trix. Note that the initial emission matrix is
a 2 × 2 matrix: γl ∈ {cx1,y1l

}, x1, y1l ∈
{0, 1}, l ∈ {1, 2, . . . ,m}. For annotator l,
cx1,y1l

is the probability of emitting from x1

to y1l.
– the transition matrix between hidden states,
A ∈ {axt−1,xt

}, xt−1, xt ∈ {0, 1}, t ∈
{2, 3, . . . , n}. axt−1,xt is the probability of
transitioning from xt−1 to xt.

– the emission matrices, Bl ∈ {bxt,y(t−1)l,ytl
},

xt, y(t−1)l, ytl ∈ {0, 1}, l ∈ {1, 2, . . . ,m},
t ∈ {2, 3, . . . , n}. Note that the emis-
sion matrix is a 2 × 2 × 2 matrix as each
observed state depends on current hidden
state as well as the previous observation, i.e.,
bxt,y(t−1)l,ytl

is the probability of emitting
from xt to ytl and transitioning from y(t−1)l

to ytl.

A graphical sketch of the DCD HMM model is shown
in Figure 3. The target function F = P (x, y|Θ) is:

F = πx1

m∏
l=1

cx1,y1l

n∏
t=2

axt−1,xt

m∏
l=1

n∏
t=2

bxt,y(t−1)l,ytl

We can derive a marginal distribution over y and have
the likelihood as:

L(Θ) = P (y|Θ) =
∑
x

P (x, y|Θ)

Our goal is to find the parameters (Θ) that maximize
the above function. Bayes Net Toolbox for Matlab
(Murphy, 2001) is used for the inference. Expectation-
Maximization (EM) with Junction Tree inference for
the E-step is used for learning the parameters. The
Junction Tree Algorithm is a method to calculate
marginals by propagation on the graph. It runs as fol-
lows: 1) Initialize: Pick a proper root and initialize all
variables; 2) Collect: Pass message from each child of a
node through separators to the parent node and update
the node with collected evidence; 3) Distribute: Send
back message to each child of the node through separa-
tors and update the child with distributed evidence; 4)
Normalize: Normalize cliques connected by a separa-
tor so they agree with each other: e.g., for {AB} and
{BC}, if we have

∑
A{AB} =

∑
C{AB}, propaga-

tion is complete.
After convergence from EM, junction tree propaga-

tion is again used for inference, and the model produces
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a probability for each ground truth label. We take the
label to be positive if the posterior probability is greater
than 0.5; as shown in section 8, probabilities tend to be
very high or very low.

6 Interval-dependent HMM
The second model, Interval-dependent HMM, imposes
a constraint on the state transitions between two posi-
tive labels based on the empirical distribution of inter-
vals between observed labels. Initially, we examined
known distributions. The Poisson, for example, repre-
sents the probability of events in an interval as an av-
erage rate. The model based on the Poisson did not
perform particularly well. Histograms of interval sizes
from different conversations have similar shapes, how-
ever, as illustrated in Figure 4. Although more of the
probability is towards 20 to 40 utterances in Figure 4a,
and between 15 and 35 utterances in Figure 4b, we as-
sume these small differences in the two distributions
are mainly due to sampling variation. As discussed in
preceding sections, the model we present here assumes
that the probability of a true label at time ti is a func-
tion of the interval length ti − tj , where tj is the most
recent time of a true label. The observed data for all
annotators on all conversations provides a set of time
intervals to construct the empirical distribution.

(a) First sample conversation

(b) Second sample conversation

Figure 4: Histograms of interval lengths between all ob-
served labels for two conversations.

To assess whether we have sufficient data to reliably
construct the empirical distribution, we performed fifty
iterations of random divisions of the data into two sam-
ples. For each pair of samples, we measured the max-
imum distance between pairs of cumulative distribu-
tion function (CDF) curves, and used the two-sample
Kolmogorov-Smirnov test to measure the goodness of
fit of the two curves. Figure 5 shows an example com-
parison of two CDF curves which have a maximum gap

Figure 5: A plot of two CDF curves for a random split of
the data. The curves are almost identical; the maximum gap
is 0.0175. A two sample K-S test has a p-value of 0.79.

of 0.0175 and a K-S p-value of 0.7866. The mean max-
imum distance between pairs of curves was 0.014, with
a standard deviation of 0.009, both of which are quite
small. The p-values for the K-S test ranged from 0.4 to
0.96, which fail to reject the hypothesis that the pairs of
samples are from the same distribution. While the two
measures are not conclusive evidence that we have suf-
ficient data to construct the empirical distribution, they
are supportive. Further, reliance on estimates of the
empirical distribution are preferable to a known distri-
bution that does not fit the data, such as the Poisson.

The model can be described as follows:

• the observations Yij ∈ 0, 1, i ∈ 1, 2, · · · , N, j ∈
1, 2, · · · , J ;

• the true labels Zi ∈ 0, 1, i ∈ 1, 2, · · · , N ;

• the 2× 2 annotator performance matrices Bj ;

• the initial state probability π

GivenN utterances, J annotators, the initial state prob-
ability π and four cells in each annotator’s performance
matrix Bj , where Bj11 represents the true positives
(the probability that given a ground truth positive la-
bel, annotator aj assigns a positive label), Bj10 rep-
resents false negatives, Bj01 represents false positives,
and Bj00 represents true negatives. π = 1 is the proba-
bility that the first hidden state is a boundary and π = 2
means it is not. Our objective is to find the param-
eter vector θ = (π,B) that maximize the likelihood
P (Y |θ), and to use this θ to estimate the true labels Z.

To solve:

Argmax
θ

log [P (Y |θ)] = Argmax
θ

log

[∑
Z

P (Y,Z|θ)
]

we use expectation-maximization (EM).

E step First, we should find the lower bound of our

optimization object: Argmax
θ

log
[∑
Z

P (Y,Z|θ)
]

; by

2194



Jensen’s inequality, we have:

log

[∑
Z

P (Y,Z|θ)
]

= log

[∑
Z

P (Y,Z|θ)
Qθ(Z)

Qθ(Z)

]

≥
∑
Z

Qθ(Z) log
[
P (Y,Z|θ)
Qθ(Z)

]

Qθ(Z) is a function of θ which satisfies that∑
Z

Qθ(Z) = 1. The equality holds if and only if

P (Y,Z|θ)
Qθ(Z)

= c for all Z

Note that c is a constant. In the E step we need to
calculate the Q function to maintain the equality. By
straightforward algebra, we get Qθ = P (Z|Y, θ).

M step In this part, we should maximize our lower
bound:

Argmax
θ

∑
Z

Qθ(n)(Z) log
[
P (Y,Z|θ)
Qθ(n)(Z)

]
Since log [Qθ(Z)] is a term not related to θ,
P (Z|Y, θ) ∝ P (Z, Y |θ). Our problem becomes:

Argmax
θ

∑
Z

P (Y, Z|θ(n)) log [P (Y,Z|θ)]

θ(n) is the parameter we get from the last iteration, and
the Q function is fixed in this M step. We cannot use the
forward-backward algorithm to optimize, because the
first order Markov property does not hold: P (Zi = 1)
is a function of the last positive label Zj = 1 at time
j such that j < i, and for all k such that j < k <
i, Zk = 0. To make use of the Markov property, we
rely on a hidden variable Ui to save the interval length
between i and j. The hidden parameter space is then
expanded to Xt = (Zt, Ut), where Ut denotes the size
of the interval between the current position ti and the
most recent tj with a positive label. If the true label
Zti = 0, then Uti = ti − tj , and if Zti = 1, then
Uti = 0. This gives t+ 1 possible states for each t: the
t states for Zt = 0, and one state for Zt = 1.

In this problem, given a length N conversation, there
areN+1 hidden states at each moment. Xt = 1 means
(Zt = 1, Ut = 0), Xt = 2 means (Zt = 0, Ut = 1),
Xt = 3 means (Zt = 0, Ut = 2), and so on.

The transition matrix at each t for the cases repre-
sented by P (Xt = k|Xt−1 = l), which is with size
(t + 1) × (t + 2), will necessarily be very sparse. For
example, given an empirical function f(n) = P (x =
n|x ≥ n), the transition matrix from t = 4 to t = 5 can
be written:


f(1) 1− f(1) 0 0 0 0
f(2) 0 1− f(2) 0 0 0
f(3) 0 0 1− f(3) 0 0
f(4) 0 0 0 1− f(4) 0
f(5) 0 0 0 0 1− f(5)



After this transformation, Xt+1 is independent to all
Xk for any k < t provided that Xt is given. With
X as the new hidden state, we can estimate the HMM
parameter by adding some constraints. Replacing the Z
in the object function with X, we can rewrite the object
function as:∑

X

P (Y,X|θ(n)) log [P (Y,X|θ)]

=
∑
X

P (Y,X|θ(n))

[
LogP (X1) +

N−1∑
t=1

logP (Xt+1|Xt)+

N∑
t=1

logP (Yt|Xt)

]

=
∑
X

P (Y,X|θ(n))

[
log [πX1 ] +

N−1∑
t=1

log
[
AXt,Xt+1

]
+

N∑
t=1

log [BXt,Yt ]

]

The object is split into three independent parts: the first
part is for the initial state distribution π, the second for
the transition probability matrix A, and the third is the
emission matrix B. For the first term, because in the
moment t = 1, Xt can just be 1 or 2, we have the
optimization problem:

Argmax
π

2∑
i=1

P (Y,X1 = i|θ(n)) log [πi]

s.t π1 + π2 = 1
π3 = π4 = ... = πN+1 = 0

We can easily solve this optimization problem by the
Lagrange multiplier: we have the update formula:

π
(n+1)
1 = P (X1 = 1|Y, θ(n))

π
(n+1)
2 = P (X1 = 2|Y, θ(n))

π
(n+1)
i = 0 for i > 2

Both can be solved by the traditional forward-backward
algorithm after this transformation. θ(n) is the parame-
ter set we get from the last iteration.

The second term can be ignored, since we use the
known empirical distribution as the transition matrix; it
is therefore a constant term.

The third term can be rewritten as:

N∑
t=1

P (Y,X|θ(n)) log [BXt,Yt
]

=
N∑
t=1

N+1∑
i=1

J∑
j=1

1∑
k=0

I(Yt,j = k)P (Xt = i, Y |θ(n))

log [Bj,i,k]
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So our problem is:

Argmax
B

N∑
t=1

J∑
j=1

N+1∑
i=1

1∑
k=0

I(Yt,j = k)

P (Xt = i, Y |θ(n)) logBj,i,k

s.t
1∑
k=0

Bj,i,k = 1 For all i, j

Bj,i1,k = Bj,i2,k For all j, k and i1, i2 ≥ 2

The second constraint here means that, if this is not a
true boundary, a given annotator j will have the same
emission matrix no matter whatU is. This optimization
can also be solved by Lagrange multiplier, where the
update formula is as follows. For i = 1:

B
(n+1)
j,i=1,k =

∑N
t=1 P (Y, Zt = 1|θ(n))I(Yt,j = k)∑N

t=1 P (Y,Zt = 1|θ(n))

For any i 6= 1, the matrix B is the same given j:

B
(n+1)
j,i 6=1,k =

∑N
t=1 P (Y, Zt 6= 1|θ(n))I(Yt,j = k)∑N

t=1 P (Y,Zt 6= 1|θ(n))

Now we have the update function for θ. After con-
vergence, we will have π and B. It is straightforward
to transfer these parameters for the new space to our
original HMM problem. This completes the M step.

7 Model Checking
No ground truth labels are available to evaluate our
models. We check the model results, however, in three
ways. One, we consider labels proposed by both mod-
els to be stronger evidence than labels proposed only
by one. Two, we measure the consistency of annotators
on the assumption that the same annotator should have
relatively consistent performance across conversations,
relative to the same model. The third way we can check
the models is to examine the descriptive labels that an-
notators assign to segments to determine whether de-
scriptions for the same segment from different annota-
tors are consistent. In this section, we describe the two
consistency metrics.

We measure how consistently the label quality from
annotator ai surpasses that for aj , i 6= j, for all pairs
of annotators using a metric to measure inconsistency
and strength of inconsistency (I&SI) (de Vries, 1998).
We also apply a variant we refer to as Directional Con-
sistency (DC), which takes into account how often an-
notator ai surpasses annotator aj . To measure anno-
tators’ performance relative to the inferred true labels,
we use F-score, the harmonic mean of recall and preci-
sion. Recall is the ratio of true positives to the sum of
true positives and false negatives; precision is the ratio
of true positives to the sum of true positives and false
positives. A square matrix of annotator dominance is
first constructed to give a count of how many conver-
sations there are where ai has a higher F measure than

aj , i 6= j. A linear dominance ordering > of all anno-
tators has an inconsistency score I that is incremented
by 1 for each pair of annotators where ai > aj in the
linear ordering and (ai, aj) 6= (aj , ai) in the matrix. I
is minimal if no other ordering has fewer inconsisten-
cies. The strength of the inconsistency IS for a linear
ordering is incremented by the difference in rank be-
tween ai and aj for every inconsistent pair in the linear
ordering. The I&SI method finds an ordering that mini-
mizes I and SI . To check the results of our models, we
compare the I&SI value of the dominance matrix asso-
ciated with the model results against a simulated ran-
dom matrix. If the model results are significantly more
consistent than the simulation, the model produces a
consistent ranking of annotators.

We propose a Directional Consistency index (DC ∈
[0, 1]) which considers the number of times ai has a
higher F measure than aj (Leiva et al., 2008). Where
X is the dominance matrix:

DC =

∑n
i=1

∑n
j=i+1 |xij − xji|
N

N =
n∑
i=1

n∑
j=1,j 6=i

xij

DC values closer to zero indicate less consistency in
differences among annotators, and the converse for val-
ues closer to 1. High DC values for the results of our
models thus indicates better performance of the model
in predicting consistent annotator behavior.

8 Results and Model Checking
The results consist of the true labels assigned by each
model to each conversation, and estimates of the anno-
tators’ performance relative to the model’s ground truth
labels. Note that as the conversation is not a parame-
ter of either model, after estimation of the empirical
distribution of segment lengths, the data for each con-
versation is treated separately.

To provide a concrete illustration, we first review the
data for a typical conversation. Table 1 presents the
segments derived from both models for an extract from
conversation 945, which had six annotators, and the an-
notator’s segment descriptions. We selected a conver-
sation with an even number of annotators to illustrate
that an arbitrary choice must be made, given a 50/50
vote split. We take ties as true positives to provide a
more conservative baseline. We first discuss this exam-
ple conversation in detail to explain the kinds of cases
where the models differ from majority voting. Then we
present summary results on the fifty conversations for
majority voting compared with the two models.

In Table 1 a description at n gives the annotator’s in-
terpretation of the kind of conversational activity that
ends with n. When annotators agree on a positive la-
bel that ends a segment, they might not agree on the
utterance that starts the segment, so their descriptions
will not necessarily be about the same segments. From
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Utt Description
191 C: S1 and S2 are talking about the status of their

children’s studies
I: S1 and S2 are talking about their children’s

education
216 A: S1 and S2 spoke about their children’s studies

E: S2 then shared that he’s going to Laguna-
Muntinlupa tomorrow. S1 said that S2 has
many orders. S2 shared that he’s striving
hard in order for her kids to graduate
college. . . . The two laughed at each other
about S1’s children not getting traits from S1

I: S1 and S2 are talking about who their children
took after

217 C: S1 and S2 are joking about the traits their
children got from them

D: They are talking about S1s daughter that she is
good at academics and that she got her being
smart from her mom and nothing from S1. S1
said even if she got nothing from him as long
as she will just study hard its okay

241 A: S1 and S2 spoke about their time of sleeeping
C: S1 and S2 tell each other what time they

usually go to sleep
D: They are talking about the time that they

go to sleep. S2 said sometimes by ten,
eleven or twelve midnight. S1 said sometimes
he goes out one in the morning. Sometimes
he goes to sleep at ten or eleven
in the evening too

Table 1: Annotator descriptions for conversation 945 for a
sequence of four segment boundaries hypothesized by both
models. A description from annotator ai at utterance n indi-
cates ai assigned a positive label, and gives the annotator’s
interpretation of the kind of interaction that ended at utter-
ance n. Underlined utterance numbers indicate cases where
at least six annotators assigned a positive label.

the table, however, we see a a pattern that is consistent
for most of the data: abstracting over the descriptions
gives a good indication of what’s going on in the seg-
ments that are defined by the positive labels assigned
by both models. The descriptions from C and I at 191,
for example, describe the first segment as the speak-
ers talking about their children’s education. A’s similar
description at 216 indicates that A ended the segment
later than C and I. E and I describe the second segment
as being about the children, including who they take
after. C’s description about who the children take after
occurs at a later utterance. The third segment goes into
detail about the children’s traits, and the fourth is about
what time the speakers go to sleep.

Across all fifty conversations, ID HMM assigns
more positive labels than the majority, and DCD HMM
assigns more than ID HMM. Totals for each labeling

Method Total
Majority 683

ID HMM 991
DCD HMM 1324

Table 2: Total positive labels assigned by each method.

Utt Annotators DCD HMM ID HMM
11 2 (A,I) 1.00 0.99
42 3 (B,E,I) 1.00 1.00
43 3 (A,C,D) 1.00 1.00
67 6 (A,B,C,D,E,I) 1.00 1.00

114 2 (A,C) 1.00 0.98
126 2 (D,E) 1.00 1.00
127 1 (C) 0.63 0.02
144 2 (A,D) 1.00 0.98
147 2 (C,I) 0.90 0.65
191 2 (C,I) 0.90 0.73
216 3 (A,E,I) 1.00 1.00
217 2 (C,D) 1.00 0.66
241 3 (A,C,D) 1.00 1.00
276 3 (B,C,D) 1.00 1.00
282 1 (A) 1.00 0.29
300 5 (A,B,D,E,I) 1.00 1.00
356 2 (C,I) 0.98 0.27
357 4 (A,B,D,E) 1.00 1.00

Table 3: Comparison of positive predictions from majority
voting (N=8, underlined; ties are taken as positive), DDC
HMM (N=18), and the ID HMM (N=15) for conversation
945. Probabilities in bold are for boundaries proposed by
only one model; italics are for probabilities below the 0.5
threshold to be considered true boundaries.

method are in Table 2. Wherever the majority vote
predicts a true label, both models always do. If ID
HMM posits a boundary at an utterance, DCD HMM
also does, but DCD HMM predicts additional ones.
Because all the ID HMM labels are also identified by
DCD HMM, these are the final labels we propose.

Table 3 shows the positive labels predicted for con-
versation 945 by majority vote, and by our two models.
Column one is the utterance number, and again, under-
lining indicates cases where the voted baseline would
assign a positive label. Column two lists the annota-
tors who assigned a positive label, and columns three
and four show the posteriors assigned by the two mod-
els; for all utterances not listed in the table, the posteri-
ors are below 0.5. Low posteriors for ID HMM where
DCD HMM proposed a boundary are in italics.

Ann Maj DCD HMM ID HMM
A 0.68 0.71 0.68
B 0.57 0.36 0.38
C 0.40 0.63 0.46
D 0.59 0.56 0.55
E 0.73 0.50 0.52
I 0.43 0.55 0.49

Table 4: F-measure for annotators in conversation 945 for
majority vote labels and both models; recall that the true la-
bels for each model are different, and that DCD HMM hy-
pothesizes more true labels than ID HMM.

For each model, the annotator can be ranked by the
F-scores relative to the model predictions. When one
of the models agrees with a minority of annotators,
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Model I&SI DC
Majority I=1, SI=3, p=0.008 p=0.0600

DCD HMM I=2, SI=5, p=0.02 p=0.0014
ID HMM I=0, SI=0, p=0 p=0.0001

Table 5: Consistency of annotators

the minority consists of the annotators considered by
the model to have higher performance, as given by F-
measure. The three sets of F-scores for the six anno-
tators in 945 are shown in Table 4. Annotator perfor-
mance given the two models is very similar; the Pear-
son correlation is 0.80. F-scores based on the major-
ity baseline, however, do not correlate well with DCD
(ρ = −0.5) or ID (ρ = 0.49). In eight cases where
DCD posits a true label for conversation 945, and only
2 annotators voted positive, the pair never includes B,
the least accurate annotator by DCD (see Table 4),
and always includes one of the top three annotators
(A,C,D). In the two cases where only one annotator
voted positive, it was A or C, one of the two top DCD
HMM annotators. Both models consider A to be the
best annotator. C is relatively good in the DCD HMM
model and relatively poor in the ID HMM model.

I&SI tests whether there exists a linear ordering
of the annotators such that their relative performance
across conversations is consistent. DC tests whether an
ordering ai > aj is based on relatively more frequent
dominance of ai over aj . Table 5 shows that major-
ity vote and the two models produce results that lead
to high I&SI consistency, based on the statistically sig-
nificant p-values. The majority vote p-value for DC,
however, is not statistically significant. By the more
stringent DC measure, the labels from the two HMM
variants are superior to the majority vote labels.

The list of descriptions from annotators at utterance
n represents the semantics of the hypothesized segment
ending at n. Semantic consistency for a given segment
serves as another check on the output of the model, be-
cause the human descriptions of the activity within the
segment do not conflict. In general, this is the case for
both models, but less so for DCD HMM. For conversa-
tion 945 illustrated in Table 3, there are three positive
labels proposed by DCD HMM that are missing from
the ID HMM predictions. These are at 127 where only
annotator C had a positive label, 282 where only anno-
tator A had a positive label, and 356 where annotators
C and I had a positive label. Annotators B, C and D, for
example, describe a segment ending at utterance 276 as
the speakers discussing Facebook, whereas annotator
A locates the end of the Facebook segment at utterance
282. The DCD HMM model posits a true label at 276
but not at 282, in contast to ID HMM.

9 Discussion

The two models for estimating ground truth labels from
crowd labels advance previous work on probabilistic

models for annotation by handling sequential data. We
have argued that for our data, the Markov assumption
must be relaxed. The two models handle this in distinct
ways. The first model assumes that each state can be
decomposed into multiple aspects, and that states and
observations are conditionally dependent on the previ-
ous point in time. The second model builds in a pa-
rameter for annotator performance, as in previous work
that adopts the Dawid and Skene (1979) model. Both
assign more ground truth labels than majority voting,
and avoid the problem with the majority vote method
of ties where there are an even number of annotators.
The results of the two models are very similar, but
DCD HMM hypothesizes more boundaries, and there-
fore ranks some annotators differently.

Here we check the models by comparing them to
each other, through analysis of each annotator’s con-
sistency across multiple conversations, and through in-
spection of the semantics of annotators’ descriptions.
Our future work will use the models generatively to
predict a subset of the data for a given annotator, based
on a model fit to all but the held out data. To do so, we
would extend the models with an additional parameter
for the conversation, to account for the observation that
while all conversations seem to fit the same empirical
distribution, there are differences across conversations.

10 Conclusion

Annotation and machine learning of discourse segmen-
tation covers several types of units, including topical
segments (Galley et al., 2003), meeting units in which
action items are identified or decisions made (Purver et
al., 2007; Fernández et al., 2008), transaction subtasks
for ordering library books (Passonneau et al., 2014), or
speaker involvement (Bokaei et al., 2015). This work
relies on manual transcription, and draws on many
sources of knowledge for machine learned models, in-
cluding turn-taking, prosody, and linguistic features.
The segmentation annotation can be linear (Galley et
al., 2003; Bokaei et al., 2015; Passonneau and Litman,
1997; Passonneau et al., 2014) or hierarchical (Purver
et al., 2007; Fernández et al., 2008; Passonneau et al.,
2011). The differences in methods and results across
this body of work, points to a need for more datasets
for research on the organization of discourse into ac-
tivity units. The results presented here support this re-
search agenda by providing a reliable and cost-effective
method to estimate ground truth discourse segment la-
bels from crowd labels.
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Abstract

This paper presents a detailed compar-
ative framework for assessing the use-
fulness of unsupervised word representa-
tions for identifying so-called implicit dis-
course relations. Specifically, we compare
standard one-hot word pair representations
against low-dimensional ones based on
Brown clusters and word embeddings. We
also consider various word vector combi-
nation schemes for deriving discourse seg-
ment representations from word vectors,
and compare representations based either
on all words or limited to head words.
Our main finding is that denser represen-
tations systematically outperform sparser
ones and give state-of-the-art performance
or above without the need for additional
hand-crafted features.

1 Introduction

Identifying discourse relations is an important
task, either to build a discourse parser or to help
other NLP systems such as text summarization
or question-answering. This task is relatively
straightforward when a discourse connective, such
as but or because, is used (Pitler and Nenkova,
2009). The identification becomes much more
challenging when such an overt marker is lacking,
and the relation needs to be inferred through other
means. In (1), the presence of the pair of verbs
(rose,tumbled) triggers a Contrast relation. Such
relations are extremely pervasive in real text cor-
pora: they account for about 50% of all relations in
the Penn Discourse Treebank (Prasad et al., 2008).

(1) [ Quarterly revenue rose 4.5%, to $2.3 billion
from $2.2 billion]arg1 [ For the year, net in-
come tumbled 61% to $86 million, or $1.55
a share]arg2

Automatically classifying implicit relations is dif-
ficult in large part because it relies on numerous
factors, ranging from syntax, and tense and as-
pect, to lexical semantics and even world knowl-
edge (Asher and Lascarides, 2003). Consequently,
a lot of previous work on this problem have at-
tempted to incorporate some of these information
into their systems. These assume the existence
of syntactic parsers and lexical databases of var-
ious kinds, which are available but for a few lan-
guages, and they often involve heavy feature en-
gineering (Pitler et al., 2009; Park and Cardie,
2012). While acknowledging this knowledge bot-
tleneck, this paper focuses on trying to predict im-
plicit relations based on easily accessible lexical
features, targeting in particular simple word-based
features, such as pairs like (rose,tumbled) in (1).

Most previous studies on implicit relations, go-
ing back to (Marcu and Echihabi, 2002), in-
corporate word-based information in the form
of word pair features defined across the pair
of text segments to be related. Such word
pairs are often encoded in a one-hot represen-
tation, in which each possible word pair corre-
sponds to a single component of a very high-
dimensional vector. From a machine learning
perspective, this type of sparse representation
makes parameter estimation extremely difficult
and prone to overfitting. It also makes it diffi-
cult to achieve any interesting semantic general-
ization. To see this, consider the distance (e.g.,
Euclidean or cosine) induced by such representa-
tion. Assuming for simplicity that one character-
izes each pair of discourse segments via their main
verbs, the corresponding one-hot encoding for the
pair (rose,tumbled) would be at equal distance
from the synonymic pair (went up,lost) and the
antonymic pair (went down,gained), as all three
vectors are orthogonal to each others.

Various attempts have been made at reducing
sparsity of lexical features. Recently, Ruther-
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ford and Xue (2014) proposed to use Brown clus-
ters (Brown et al., 1992) for this task, in effect
replacing each token by its cluster binary code.
These authors conclude that these denser, cluster-
derived representations significantly improve the
identification of implicit discourse relations and
report the best performance to date using also
additional features. Unfortunately, their claim
is somewhat weakened by the fact that they fail
to compare the use of their cluster word pairs
against other types of word representations, in-
cluding one-hot encodings of word pairs or other
low-dimensional word representations. This work
also leaves other important questions open. In par-
ticular, it is unclear whether all word pairs con-
structed over the two discourse segments are truly
informative and should be included in the model.
Given that word embeddings capture latent syn-
tactic and semantic information, yet another im-
portant question is to which extent the use of these
representations dispenses us from using additional
hand-crafted syntactic and semantic features.

This paper fills these gaps and significantly ex-
tends the work of (Rutherford and Xue, 2014)
by explicitly comparing various types of word
representations and vector composition meth-
ods. Specifically, we investigate three well-known
word embeddings, namely Collobert and We-
ston (Collobert and Weston, 2008), hierarchical
log-bilinear model (Mnih and Hinton, 2007) and
Hellinger Principal Component Analysis (Lebret
and Collobert, 2014), in addition to Brown cluster-
based and standard one-hot representations. All
these word representations are publicly available
for English and can be easily acquired for other
languages just using raw text data, thus alleviat-
ing the need for hand-crafted lexical databases.
This makes our approach easily extendable to
resource-poor languages. In addition, we also in-
vestigate the issue of which specific words need
to be fed to the model, by comparing using just
pairs of verbs against all pairs of words, and how
word representations should be combined over
discourse segments, comparing component-wise
product against simple vector concatenation.

2 Word Representations

A word representation associates a word to a math-
ematical object, typically a high-dimensional vec-
tor in {0, 1}|V| or R|V|, where V is a base vocabu-
lary. Each dimension of this vector corresponds to

a feature which might have a syntactic or semantic
interpretation. In the following, we review differ-
ent types of word representations used in NLP.

2.1 One-hot Word Representations
Given a particular NLP problem, the crudest and
yet most common type of word representation
consists in mapping each word into a one-hot vec-
tor, wherein each observed word corresponds to a
distinct vector component. More formally, let V
denote the set of all words found in the texts and
w a particular word in V . The one-hot represen-
tation of w is the d-dimensional indicator vector,
noted 1w, such that d = |V|: that is, all of this
vector’s components are 0’s but for one 1 compo-
nent corresponding to the word’s index in V . It
is easy to see that this representation is extremely
sparse, and makes learning difficult as it mechani-
cally blows up the parameter space of the model.

2.2 Clustering-based Word Representations
An alternative to these very sparse representations
consists in learning word representations in an un-
supervised fashion using clustering. An example
of this approach are the so-called Brown clusters
induced using the Brown hierarchical clustering
algorithm (Brown et al., 1992) with the goal of
maximizing the mutual information of bigrams.
As a result, each word is associated to a binary
code corresponding to the cluster it belongs to.
Given the hierarchical nature of the algorithm,
one can create word classes of different levels of
granularity, corresponding to bit codes of different
sizes. The less clusters, the less fine-grained the
distinctions between words but the less sparsity.
Note that this kind of representations also yields
one-hot encodings but on a much smaller vocab-
ulary size (i.e., the number of clusters). Brown
clusters have been used for several NLP tasks, in-
cluding NER, chunking (Turian et al., 2010), pars-
ing (Koo et al., 2008) and implicit discourse rela-
tion classification (Rutherford and Xue, 2014).

2.3 Dense Real-Valued Representations
Another approach to induce word representations
from raw text is to learn distributed word represen-
tations (aka word embeddings), which are dense,
low-dimensional, and real-valued vectors. These
are typically learned using neural language models
(Bengio et al., 2003). Each dimension correspond-
ing to a latent feature of the word that captures
paradigmatic information. An example of such
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embeddings are the so-called Collobert and We-
ston embeddings (Collobert and Weston, 2008).
The embeddings are learned discriminatively by
minimizing a loss between the current n-gram and
a corrupted n-gram whose last word comes from
the same vocabulary but is different from the last
word of the original n-gram. Another example are
the Hierarchical log-bilinear embeddings (Mnih
and Hinton, 2007) induced using a probabilistic
and linear neural model, with a hierarchical prin-
ciple used to speed up the model evaluation. The
embeddings are obtained by concatenating the em-
beddings of the n−1 words of a n-gram and learn-
ing the embedding of the last word.

A final approach is based on the assumption
that words occurring in similar contexts tend to
have similar meanings. Building word distribu-
tional representations is done by computing the
raw cooccurrence frequencies between each word
and the |D| words that serve as context, with D
generally smaller than the overall vocabulary, then
applying some transformation (e.g. TF-IDF). As
|D| is generally too large to form a tractable rep-
resentation, a dimensionality reduction algorithm
is used to end up with p � |D| dimensions.
Like for distributed representations, we end up
with a dense low-dimensional real-valued vector
for each word. A recent example of such approach
is the Hellinger PCA embeddings of (Lebret and
Collobert, 2014) which were built using Principal
Component Analysis based on Hellinger distance
as dimensionality reduction algorithm. An impor-
tant appeal of these representations is that they are
much less time-consuming to train than the ones
based on neural language models while allowing
similar performance (Lebret and Collobert, 2014).

3 Segment Pair Representations

We now turn to the issue of combining the word
representations as described in section 2 into com-
posite vectors corresponding to implicit discourse
classification instances. Schematically, the rep-
resentations employed for pairs of discourse seg-
ments differ along three main dimensions. First,
we compare the use of a single word per segment
(roughly, the two main verbs) against that of all the
words contained in the two segments. Second, we
compare the use of sparse (i.e., one-hot) vs. dense
representations for words. As discussed, Brown
cluster bit representations are a special (i.e., low-
dimensional) version of one-hot encoding. Third,

we use two different types of combinations of
word vectors to yield segment vector representa-
tions: concatenation and Kronecker product. The
proposed framework is therefore much more gen-
eral than the one given in previous work such
as (Rutherford and Xue, 2014).

3.1 Notation
Our classification inputs are pairs of text seg-
ments, the two arguments of the relation to be pre-
dicted. Let S1 = {w11 , . . . , w1n} denote the n
words that make up the first segment and S2 =
{w21 , . . . , w2m} the m words in the second seg-
ment. That is, we regard segments as bags of
words. Let V again denote the word vocabulary,
that is the set of all words found in the segments.
Sometimes, we will find it useful to refer to a par-
ticular subset of V . Let head(·) refer to the func-
tion that extracts the head word of segment S,1 and
Vh ⊆ V the set of head words. As our goal is to
compare different feature representations, we de-
fine Φ as a generic feature function mapping pairs
of segments to a d-dimensional real vector:

Φ : Vn × Vm → Rd

(S1, S2) 7→ Φ(S1, S2)

The goal of learning is to acquire for each relation
a linear classification function fw(·), parametrized
by w ∈ Rd, mapping Φ(S1, S2) into {−1,+1}.

Recall that 1w refers to the d-dimensional one-
hot encoding for word w ∈ V . Let us also denote
by ⊕ and ⊗ the vector concatenation operator and
the Kronecker product, respectively. Note that do-
ing a Kronecker product on two vectors u ∈ Rm

and v ∈ Rn is equivalent to doing the outer prod-
uct uv> ∈ Rm×n. Finally, the vec(·) operator
converts a m × n matrix into an mn × 1 column
vector by stacking its columns.

3.2 Representations based on head words
One of the simplest representation one can con-
struct for a pair of segments (S1, S2) is to con-
sider only their head words: h1 = head(S1) and
h2 = head(S2). In this simple scenario, two
main questions that remain are: (i) which vector
representations do we use for h1 and h2, and (ii)
how do we combine these representations. An im-
portant criterion for word vector combination is
that they retain text ordering information between
text segments which really matters for this task.

1Head extraction will be detailed in section 4.1.
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Thus, inverting the order between two main verbs
(e.g., push and fall) will often lead to distinct dis-
course relation being inferred, as some relations
are asymmetric (e.g., Result or Explanation).

One-hot representations Starting again with
the simplest case, one can use the one-hot encod-
ings corresponding to the two head words, 1h1 and
1h2 respectively, and combine them using either
concatenation or product, leading to our two first
feature mappings:

Φh,1,⊕(S1, S2) = 1h1 ⊕ 1h2

Φh,1,⊗(S1, S2) = vec(1h1 ⊗ 1h2)

Note that Φh,1,⊕(S1, S2) lives in {0, 1}2|Vh| and
Φh,1,⊗ in {0, 1}|Vh|2 . The latter representation
amounts to assigning one 1 component for each
pair of words in Vh × Vh, and is the sparsest
representation one can construct from head words
alone. In some sense, it is also the most expressive
in that we learn one parameter for each word pair,
hence capturing interaction between words across
segments. By contrast, Φh,1,⊕(S1, S2) doesn’t ex-
plicitly model word interaction across discourse
segments, treating each word in a given segment
(left or right) as a separate dimension.

Dense representations Alternatively, one can
represent head words through their real low-
dimensional embeddings. Let M denote a n × p
real matrix, wherein the ith row corresponds to
the p-dimensional embedding of the ith word of
Vh, with p � |Vh|.2 Using this notation, one
can derive the word embeddings of the head words
h1 and h2 from their one-hot representations us-
ing simple matrix multiplication: M>

1h1 and
M>

1h2 , respectively. Concatenation and product
yield two new feature mappings, respectively:

Φh,M ,⊕(S1, S2) = M>
1h1 ⊕M>

1h2

Φh,M ,⊗(S1, S2) = vec(M>
1h1 ⊗M>

1h2)

These new representations live in a much lower
dimensional real spaces: Φh,M ,⊕(S1, S2) lives in
R2p and Φh,M ,⊗(S1, S2) in Rp2 .

3.3 Representations based on all words
The various segment-pair representations that we
derived from pairs of head words can be general-
ized to the case in which we keep all the words in

2For now, we assume that n = Vh which is unrealistic.
See section 4.1 for a discussion of unknown words.

each segment. The additional issue in this context
is in the combination of the different word vec-
tor representations within and across the two seg-
ments, and that of normalizing the segment vec-
tors thus obtained. For simplicity, we assume that
the representation for each segment is computed
by summing over the pairs of words vectors com-
posing the segments.

One-hot representations Following this ap-
proach and recalling that S1 contains n words,
while S2 has m words, one can construct one-hot
encodings for segment pairs as follows:

Φall,1,⊕(S1, S2) =
n∑
i

m∑
j

1w1i
⊕ 1w2j

Φall,1,⊗(S1, S2) =
n∑
i

m∑
j

vec(1w1i
⊗ 1w2j

)

If used without any type of frequency thresh-
olding, these mappings result in very high-
dimensional feature representations living in Z2|V|

≥0

and Z|V|
2

≥0 , respectively. Interestingly, note that
the feature mapping Φall,1,⊗(S1, S2) corresponds
to the standard segment-pair representation used
in many previous work, as (Marcu and Echihabi,
2002; Park and Cardie, 2012).

Dense representations We can apply the same
composition operations to denser representations,
yielding two new mappings:

Φall,M ,⊕(S1, S2) =
n,m∑
i,j

M>
1w1i

⊕M>
1w2j

Φall,M ,⊗(S1, S2)=
n,m∑
i,j

vec(M>
1w1i
⊗M>

1w2j
)

Like their head word versions, these vectors live
in R2p and Rp2 , respectively.

Vector Normalization Normalization is impor-
tant as unnormalized composite vectors are sen-
sitive to the number of words present in the seg-
ments. The first type of normalization we consider
is to simply convert our vector representation into
vectors on the unit hypersphere: this is achieved
by dividing each vector by its L2 norm.

Another type of normalization is obtained by in-
verting the order of summation and concatenation
in the construction of composite vectors. Instead
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of summing over concatenated pairs of word vec-
tors across the two segments, one can first sum in-
dividual word vectors within each segment, then
concatenate the two segment vectors. One can
thus use mapping Φ′all,1,⊕ in lieu of Φall,1,⊕:

Φ′all,1,⊕(S1, S2) =
n∑
i

1w1i
⊕

m∑
j

1w2j

It should be clear that Φ′all,1,⊕ provides a nor-
malized version of Φall,1,⊕ as this latter mapping
amounts to weighted versions of the former:

Φall,1,⊕(S1, S2) = m
n∑
i

1w1i
⊕ n

m∑
j

1w2j

4 Experiment Settings

Through the comparative framework described in
section 3, our objective is to assess the useful-
ness of different vectorial representations for pairs
of discourse segments. Specifically, we want to
establish whether dense representations are better
than sparse ones, and whether certain word pairs
are more relevant than others, which resource and
which combination schemes are more adapted to
the task, and, finally, whether standard features de-
rived from external databases are still relevant in
the presence of dense representations.

4.1 Feature Set
Our main features are primarily lexical in nature
and based on surface word forms. These are de-
fined either on all words used in the relation argu-
ments or only on their heads.

Head Extraction Heads of discourse segments
are first extracted using Collins syntactic head
rules3. In order to retrieve the semantic predi-
cate, we define a heuristic which looks for the past
participle of auxiliaries, the adjectival or nominal
attribute of copula, the infinitive complementing
”have to” forms and the first head of coordination
conjunctions. In case of multiple subtrees, we look
for the head of the first independent clause, or, fail-
ing that, of the first phrase.

Word Representations We use either one-hot
encodings or use word embeddings to build denser
representations as described in section 3. The
Brown clusters (Brown), Collobert-Weston (CnW)
representations, and the hierarchical log-bilinear

3https://github.com/jkkummerfeld/nlp-util

(HLBL) embeddings correspond to the versions
implemented in (Turian et al., 2010)4. They have
been built on Reuters English newswire with case
left intact. We test versions with 100, 320, 1000
and 3, 200 clusters for Brown, with 25, 50, 100
and 200 dimensions for CnW and with 50 and
100 dimensions for HLBL. The Hellinger PCA (H-
PCA) embeddings come from (Lebret and Col-
lobert, 2014)5 and have been built over the en-
tire English Wikipedia, the Reuters corpus and the
Wall Street Journal with all words in lower case.
The vocabulary corresponds to the words that ap-
pear at least 100 times and normalized frequency
is computed with the 10, 000 most frequent words
as context words. We test versions with 50, 100
and 200 dimensions for H-PCA. The coverage of
each resource is presented in table 1.

# words # missing words
All words Head words

HLBL 246, 122 5, 439 171
CnW 268, 810 5, 638 171
Brown 247, 339 5, 413 171
H-PCA 178, 080 7, 042 190

Table 1: Word embeddings and Brown clusters
lexicon coverage.

When presenting our results, we distinguish be-
tween systems based on one-hot encoding built
from raw tokens (one-hot) or Brown clusters
(Brown). We group the systems that use embed-
dings under Embed. When relevant, we indicate
the number of dimensions (e.g. Brown 3,200 is the
system using Brown clusters with 3, 200 clusters).
We use the symbols defined in section 3 to repre-
sent the operation linking the arguments represen-
tations (e.g. one-hot⊕ corresponds to the transfor-
mation defined by Φh,1,⊕ when using heads and
by Φall,1,⊕ when using all words).

Vocabulary Sizes For one-hot encoding, the
case is left intact. We ignore the unknown words
when using the Brown clusters following (Ruther-
ford and Xue, 2014). For the word embeddings,
we use the mean of the vectors of all words.

In order to give an idea of the sparsity of
the one-hot encodings, note that we have |V| =
33, 649 different tokens considering all implicit
examples without filtering. The Brown clusters

4http://metaoptimize.com/projects/wordreprs/
5http://lebret.ch/words/
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merge these tokens into 3, 190 codes (for 3, 200
clusters), 393 (1, 000 clusters), 59 (320 clusters) or
16 (100 clusters). For heads, we count 5, 615 dif-
ferent tokens which correspond to 1, 988 codes for
3, 200 clusters and roughly the same number for
the others. For the dense representations, the vo-
cabulary size is twice the number of dimensions of
the embedding, thus from 50 to 400, or the square
of this number, thus from 625 to 40, 000.

Other Features We experiment with additional
features commonly used for this task: produc-
tions rules, average verb phrases length, Levin
verb classes, modality, polarity, General Inquirer
tags, number, first last and first three words. These
feature templates are well described in (Pitler et
al., 2009; Park and Cardie, 2012). They all corre-
spond to a one-hot encoding, except average verb
phrases length which is continuous. We thus con-
catenate these features to the lexical ones.

4.2 Model

We use the same classification algorithm for com-
paring all the described feature configurations.
Specifically, we train a Maximum Entropy (ME)
classifier (aka, logistic regression).6 As in previ-
ous studies, we build one binary classifier for each
relation. In order to deal with class imbalance, we
use a sample weighting scheme: each sample re-
ceives a weight inversely proportional to the fre-
quency of its class in the training set. We optimize
the hyper-parameters of the algorithm (i.e., the
regularization norm: L1 or L2, and its strength)
and a filter on the features on the development set,
based on the F1 score. Note that filtering is point-
less for purely dense representations. We test sta-
tistical significancy of the results using t-test and
Wilcoxon test on a split of the test set in 20 folds.

Previous studies have tested several algorithms
generally concluding that Naive Bayes (NB) gives
the best performance (Pitler et al., 2009; Ruther-
ford and Xue, 2014). We found that, when the
hyper-parameters of ME are well tuned, the per-
formance are comparable to NB if not better.
Note that NB cannot be used with word embed-
dings representations as it does not handle neg-
ative value. Concerning the class imbalance is-
sue, the downsampling scheme is the most spread
since (Pitler et al., 2009) but it has been shown

6We use the implementation provided in Scikit-Learn (Pe-
dregosa et al., 2011), available at: http://scikit-learn.

org/dev/index.html.

that oversampling and instance weighting lead to
better performance (Li and Nenkova, 2014a).

Relation Train Dev Test
Temporal 665 93 68
Contingency 3, 281 628 276
Comparison 1, 894 401 146
Expansion 6, 792 1, 253 556
Total 12, 632 2, 375 1, 046

Table 2: Number of examples in train, dev, test.

4.3 Penn Discourse Treebank

We use the Penn Discourse Treebank (Prasad et
al., 2008), a corpus annotated at the discourse
level upon the Penn Treebank, giving access to a
gold syntactic annotation, and composed of arti-
cles from the Wall Street Journal. Five types of
examples are distinguished: implicit, explicit, al-
ternative lexicalizations, entity relations, and no
relation. Each example could carry multiple rela-
tions, up to four for implicit ones, and the relations
are organized into a three-level hierarchy.

We keep only true implicit examples and only
the first annotation. We focus on the top level re-
lations which correspond to general categories in-
cluded in most discursive frameworks. Finally, in
order to make comparison easier, we choose the
most spread split of the data, used in (Pitler et al.,
2009; Park and Cardie, 2012; Rutherford and Xue,
2014) among others. The amount of data for train-
ing (sections 2−21), development (00, 01, 23, 24)
and evaluation (21, 22) is summarized in table 2.

5 Results

We first discuss the models that use only lexical
features, defined either over all the words that ap-
pear in the arguments or only the head words. We
then compare our best performing lexical configu-
rations with the ones that also integrate additional
standard features, and to state-of-the-art systems.

5.1 Word Pairs over the Arguments

Our first finding in this setting is that feature con-
figurations that employ unsupervised word repre-
sentations almost systematically outperform those
that use raw tokens. This is shown in the left
part of table 3. Although the optimal word rep-
resentation differs from one relation to another, it
is always a dense representation that achieves the
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All words Head words only
Representation Temp. Cont. Compa. Exp. Temp. Cont. Compa. Exp.
One-hot ⊗ 21.14 50.36 34.80 59.43 11.96 43.24 17.30 69.21
One-hot ⊕ 23.04 51.31 34.06 58.96 23.01 49.40 29.23 59.08
Brown 3, 200 ⊗ 20.38 50.95 34.85 61.23 11.98 43.77 16.75 68.76
Best Brown ⊗ 15.52 53.85∗∗ 30.90 61.87 22.91 45.74 25.83 68.76
Best Brown ⊕ 27.96∗∗ 49.48 31.19 67.42∗∗ 21.84 47.36 27.52 61.38
Best Embed. ⊗ 22.97 52.76∗∗ 34.99 61.87 23.88 51.29 30.59 58.59
Best Embed. ⊕ 25.98∗ 52.50 33.15 60.17 22.48 47.48 29.82 57.45

Table 3: F1 score for systems using all words and only heads for Temporal (Temp.), Contingency (Cont.),
Comparison (Compa.) and Expansion (Exp.). ∗ p ≤ 0.1, ∗∗ p ≤ 0.05 compared to One-hot ⊗ with t-test
and Wilcoxon ; for head words, all the improvements observed against One-hot ⊗ are significant.

best F1 score. Our baselines correspond to mul-
tiplicative and additive one-hot encodings, noted
One-hot ⊗ and One-hot ⊕, the former being the
most commonly used in previous work. These are
strong baselines in the sense they have been ob-
tained after optimizing a frequency cut-off. Our
best systems based on dense representations corre-
spond to significant improvements in terms of F1
of about 8 points for Expansion, 7 points for Tem-
poral and 3.5 for Contingency. The gains for Com-
parison are not statistically significant. All these
results are obtained using the normalization to unit
vectors possibly combined to the concatenation-
specific normalization described in §3.3.

Comparing Dense Representations The best
results are obtained using the Brown clusters
(Brown) showing that this resource merges words
in a way that is relevant to the task. Strikingly,
the Brown configuration used in (Rutherford and
Xue, 2014) (One-hot Brown 3, 200 ⊗) does not
do better than the raw word pair baselines, except
for Expansion. Recall that these authors did not
explicitly provide this comparison. While doing
a little worse, word embeddings (Embed.) also
yield significant improvements for Temporal and
Contingency, and smaller improvements for the
others. This suggests that, even if they were not
built based on discursive criteria, the latent dimen-
sions encode word properties that are relevant to
their rhetorical function. The superiority of Brown
clusters over word embeddings is in line with the
conclusions in (Turian et al., 2010) for two rather
different NLP tasks (i.e., NER and chunking).

Turian et al. (2010) showed that the optimal
word embedding is task dependent. Our exper-
iments suggest that it is relation dependent: the

best scores are obtained with HLBL for Tempo-
ral, CnW for Contingency, H-PCA for Expansion
and CnW (Best Embed. ⊗) and HPCA (Best Em-
bed. ⊕) for Comparison. This again demonstrates
that these four relations have to be considered as
four distinct tasks. Identifying temporal or causal
links is indeed sensitive to very different factors,
the former relying more on temporal expressions
and temporal ordering of events whereas the lat-
ter relies on lexical and encyclopaedic knowledge
on events. We think that this also explains that
the behavior of the F1 against the optimal number
of clusters for Expansion really differs from what
we observed for the other relations: only 100 clus-
ters for the best concatenated system and 320 for
the best multiplicative one. Expansion is the least
semantically marked relation and thus takes less
advantage of fine-grained semantic groupings.

Comparing Word Combinations Comparing
concatenated configurations (⊕ systems) against
multiplicative ones (⊗ systems), we first note that
for raw tokens the concatenated form (one-hot
⊕) yields results that are comparable, and some-
times better, than the standard multiplicative sys-
tem (one-hot ⊗), while failing to explicitly model
word pair interactions. With Brown clusters, the
concatenated form Best Brown ⊕ lead to better F1
scores than Best Brown⊗ except for Contingency.

When comparing performance on dev set, we
found that the differences between concatenated
and multiplicative forms for Brown (excluding Ex-
pansion for now) depend on the number of clusters
used. Turian et al. (2010) found that the more clus-
ters, the better the performance. This is also the
case here with concatenated forms, but not with
multiplicative forms. In that case, F1 increases un-
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til 1, 000 clusters and then decreases. There is in-
deed a trade-off between expressivity and sparsity:
having too few clusters means that we loose im-
portant distinctions, but having too many clusters
leads to a loss in generalization. A similar trend is
also found with word embeddings.

5.2 Head Words Only
Considering the right part of table 3, the first find-
ing is that performance of systems that use only
head words decrease compared to those using all
words, but much more so with the baseline One-
hot ⊗ than with other representations. One-hot
⊗ has very poor performance for most relations,
losing between 7 and 17 points in F1 score. The
performance loss is much less striking with One-
hot ⊕ and with denser representations, which are
again the best performing. The only exception is
Expansion whose precision however increases. As
said, this relation is the less semantically marked,
making it less likely to take advantage of the use
of word representations. The best performance in
this setting are obtained with word embeddings
(not Brown) with significant gain from 8 to 13
points in F1 for most relations. Moreover, the best
systems are all based on the multiplicative form
confirming that this is a better way of representing
pairs than simple concatenation when the number
of initial dimensions is not too large.

5.3 Adding Other Features
Finally, we would like to assess how much im-
provement can still be obtained by adding other
standard features, such as those in §4.1, to word-
based features. Conversely, we want to evaluate
how far we are from state-of-the-art performance
by just using word representations. We compare
our results with those presented in (Rutherford and
Xue, 2014) and in (Ji and Eisenstein, 2014), both
systems deal with sparsity either by using Brown
clusters or by learning task-dependent representa-
tions. To make comparison easier we reproduce
the experiments in (Rutherford and Xue, 2014)
with Naive Bayes (NB)7 and Maximum Entropy
(ME) but without their coreference features and
using gold syntactic parse. These correspond to
the “repr.” lines in table 4. We attribute the small
differences observed with NB by the lack of coref-
erence features and/or the use of different filter-
ing thresholds. Concerning the difference between

7Implemented in Scikit-Learn, we optimized the hyper-
parameter corresponding to the smoothing.

NB and ME, the only obvious issue is the low F1
score for Expansion: the system built using NB
predicts all examples as positive thus leading to
a high F1 score whereas the other one produces
more balanced predictions, meaning neither sys-
tems is truly satisfactory. Finally, we give results
using the traditional one-encoding based on word
pairs plus additional features (One-hot ⊗ + addi-
tional features). These results are summarized in
table 4, also including the best results of our ex-
periments without additional features (“only”).

Our first finding is that the addition of extra
features to our previous word-based only config-
uration appears to outperform state-of-the art re-
sults for Temporal and Contingency, thus giving
the best performance to date on these relations.
These improvements are significant compared to
our reproduced systems. Note that we also out-
perform the task-dependent embeddings of Ji and
Eisenstein (2014), except for Expansion. Our ten-
tative explanation for this is that these authors in-
cluded Entity relations and coreference features.
Note that our system corresponding to a reproduc-
tion of (Rutherford and Xue, 2014) gives results
similar to the baseline using raw word pairs (One-
hot⊗ + additional features) showing that their im-
provements were due to other factors, the opti-
mized filter threshold and the coreference features.

Overall, the addition of these hand-crafted fea-
tures to our best systems do not provide improve-
ments as high as one might have hoped. While
improvements are significant compared to our re-
produced systems, they are not with respect to the
best systems given in table 3. When using all
words, we only have a tendency toward significant
improvement for Contingency8. These very small
differences demonstrate that semantic and syntac-
tic properties encoded in these features are already
taken into account into the unsupervised word rep-
resentations.

6 Related Work

Automatically identifying implicit relations is
challenging due to the complex nature of the pre-
dictors. Previous studies have thus used many fea-
tures relying on several external resources (Pitler
et al., 2009; Park and Cardie, 2012; Biran and
McKeown, 2013) as the MPQA lexicon (Wilson
et al., 2005) or the General Inquirer lexicon (Stone
and Hunt, 1963), or on constituent or dependency

8p = 0.135 with ttest and p = 0.061 with Wilcoxon.
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Temporal Contingency Comparison Expansion
System F1 F1 F1 F1
(Ji and Eisenstein, 2014) 26.91 51.39 35.84 79.91
(Rutherford and Xue, 2014) 28.69 54.42 39.70 70.23
repr. (Rutherford and Xue, 2014) NB 28.05 52.95 37.38 70.23
repr. (Rutherford and Xue, 2014) ME 24.79 53.39 36.46 50.00
One-hot ⊗ all tokens + add. features 23.26 54.41 34.34 62.57
Best all tokens only 27.96 53.85 34.99 67.42
Best all tokens + add. features 29.30 55.76 36.36 61.76

Table 4: Systems using additional features (“+ add.features”), state-of-the art results either reported
or reproduced (“repr.”) using Naive Bayes (“NB”) or logistic regression (“ME”) and best system from
previous table (“only”).

parsers (Li and Nenkova, 2014b; Lin et al., 2009).
Feature selection methods have been proved nec-
essary to handle all of these features (Park and
Cardie, 2012; Lin et al., 2009). Interestingly, Park
and Cardie (2012) conclude on the worthlessness
of word pair features, given the existence of such
resources. We showed that provided unsupervised
word representations, the opposite was in fact true,
as dense word representations capture a lot of syn-
tactic and semantic information.

The major problem of standard word pair repre-
sentations is their sparsity. A line of work is to deal
with this issue by adding automatically annotated
data from explicit examples (Marcu and Echihabi,
2002), possibly using some kind of filtering or
adaptation methods (Pitler et al., 2009; Biran and
McKeown, 2013; Braud and Denis, 2014). An-
other line of work propose to make use of dense
representations as Brown clusters in (Rutherford
and Xue, 2014). These authors claim that this re-
source provides word representations that are rele-
vant to the task, a conclusion that we considerably
refined. Ji and Eisenstein (2014) propose to learn a
distributed representation from the syntactic trees
representing each argument in way that is more
directly related to the task. Although this is an
attractive idea, the score on top level PDTB rela-
tions are mostly below those reported by (Ruther-
ford and Xue, 2014), possibly because their repre-
sentations are learned on a rather small corpus, the
PDTB itself, whereas building this kind of repre-
sentation requires massive amount of data.

Our work also relates to studies comparing un-
supervised representations for other NLP tasks
such as name entity recognition, chunking (Turian
et al., 2010), sentiment analysis (Lebret and Col-

lobert, 2014) or POS tagging (Stratos and Collins,
2005). In particular, we found some similarities
between our conclusions and those in (Turian et
al., 2010). Our comparison is slightly richer in
that it includes different methods of vector com-
positions and add an extra distributional represen-
tation to our comparison (namely, H-PCA).

7 Conclusions and Future Work

In this paper, we show that one can reach state-of-
the-art results for implicit discourse relation iden-
tification using only shallow lexical features and
existing unsupervised word representations thus
contradicting previous conclusions on the worth-
lessness of these features. We carefully assess
the usefulness of word representations for dis-
course by comparing various formulations and
combination schemes, demonstrating the inade-
quacy of the previously proposed strategy based
on Brown clusters and the distinctive relevance of
head words, and by establishing that the created
dense representations already provide most of the
semantic and syntactic information relevant to the
task thus alleviating the need for traditional exter-
nal resources.

In future work, we first plan to extend our com-
parative framework to a larger set of relations and
to other languages. We also want to explore meth-
ods for learning embeddings that are directly re-
lated to the task of discourse relation classifica-
tion, potentially using existing embeddings as ini-
tialization (Labutov and Lipson, 2013). It is also
clear that seeing discourse segments as bag of
words is too simplistic, we would like to investi-
gate ways of learning adequate segment-wide em-
beddings.
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Abstract

Discourse structure is the hidden link be-
tween surface features and document-level
properties, such as sentiment polarity. We
show that the discourse analyses produced
by Rhetorical Structure Theory (RST)
parsers can improve document-level senti-
ment analysis, via composition of local in-
formation up the discourse tree. First, we
show that reweighting discourse units ac-
cording to their position in a dependency
representation of the rhetorical structure
can yield substantial improvements on
lexicon-based sentiment analysis. Next,
we present a recursive neural network
over the RST structure, which offers sig-
nificant improvements over classification-
based methods.

1 Introduction

Sentiment analysis and opinion mining are among
the most widely-used applications of language
technology, impacting both industry and a vari-
ety of other academic disciplines (Feldman, 2013;
Liu, 2012; Pang and Lee, 2008). Yet senti-
ment analysis is still dominated by bag-of-words
approaches, and attempts to include additional
linguistic context typically stop at the sentence
level (Socher et al., 2013). Since document-level
opinion mining inherently involves multi-sentence
texts, it seems that analysis of document-level
structure should have a role to play.

A classic example of the potential relevance of
discourse to sentiment analysis is shown in Fig-
ure 1. In this review of the film The Last Samu-
rai, the positive sentiment words far outnumber
the

::::::::
negative

:::::::::
sentiment words. But the discourse

structure — indicated here with Rhetorical Struc-
ture Theory (RST; Mann and Thompson, 1988) —

∗Code is available at https://github.com/
parry2403/R2N2

R

CONCESSION

	

JUSTIFY

1A
CONJUNCTION

	
ELABORATION

1B 1C

1D
	

JUSTIFY

1E CONJUNCTION

1F 1G

1H

[It could have been a great movie]1A [It does have
beautiful scenery,]1B [some of the best since Lord of
the Rings.]1C [The acting is well done,]1D [and I really
liked the son of the leader of the Samurai.]1E [He was
a likable chap,]1F [and I

::::
hated to see him die.]1G [But,

other than all that, this movie is
::::::
nothing more than hid-

den
:::::
rip-offs.]1H

Figure 1: Example adapted from Voll and Taboada
(2007).

clearly favors the final sentence, whose polarity
is negative. This example is illustrative in more
than one way: it was originally identified by Voll
and Taboada (2007), who found that manually-
annotated RST parse trees improved lexicon-
based sentiment analysis, but that automatically-
generated parses from the SPADE parser (Soricut
and Marcu, 2003), which was then state-of-the-art,
did not.

Since this time, RST discourse parsing has im-
proved considerably, with the best systems now
yielding 5-10% greater raw accuracy than SPADE,
depending on the metric. The time is therefore
right to reconsider the effectiveness of RST for
document-level sentiment analysis. In this pa-
per, we present two different ways of combin-
ing RST discourse parses with sentiment analy-
sis. The methods are both relatively simple, and
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can be used in combination with an “off the shelf”
discourse parser. We consider the following two
architectures:

• Reweighting the contribution of each dis-
course unit, based on its position in a
dependency-like representation of the dis-
course structure. Such weights can be de-
fined using a simple function, or learned from
a small of data.

• Recursively propagating sentiment up
through the RST parse, in an architecture in-
spired by recursive neural networks (Smolen-
sky, 1990; Socher et al., 2011).

Both architectures can be used in combination
with either a lexicon-based sentiment analyzer, or
a trained classifier. Indeed, for users whose start-
ing point is a lexicon-based approach, a simple
RST-based reweighting function can offer signif-
icant improvements. For those who are willing
to train a sentiment classifier, the recursive model
yields further gains.

2 Background

2.1 Rhetorical Structure Theory

RST is a compositional model of discourse struc-
ture, in which elementary discourse units (EDUs)
are combined intro progressively larger discourse
units, ultimately covering the entire document.
Discourse relations may involve a nucleus and a
satellite, or they may be multinuclear. In the ex-
ample in Figure 1, the unit 1C is the satellite of
a relationship with its nucleus 1B; together they
form a larger discourse unit, which is involved in
a multinuclear CONJUNCTION relation.

The nuclearity structure of RST trees suggests
a natural approach to evaluating the importance
of segments of text: satellites tend to be less
important, and nucleii tend to be more impor-
tant (Marcu, 1999). This idea has been leveraged
extensively in document summarization (Gerani
et al., 2014; Uzêda et al., 2010; Yoshida et
al., 2014), and was the inspiration for Voll and
Taboada (2007), who examined intra-sentential re-
lations, eliminating all words except those in the
top-most nucleus within each sentence. More re-
cent work focuses on reweighting each discourse
unit depending on the relations in which it partic-
ipates (Heerschop et al., 2011; Hogenboom et al.,

2015). We consider such an approach, and com-
pare it with a compositional method, in which sen-
timent polarity is propagated up the discourse tree.

Marcu (1997) provides the seminal work on
automatic RST parsing, but there has been a re-
cent spike of interest in this task, with contempo-
rary approaches employing discriminative learn-
ing (Hernault et al., 2010), rich features (Feng
and Hirst, 2012), structured prediction (Joty et al.,
2015), and representation learning (Ji and Eisen-
stein, 2014; Li et al., 2014). With many strong
systems to choose from, we employ the publicly-
available DPLP parser (Ji and Eisenstein, 2014),1.
To our knowledge, this system currently gives the
best F-measure on relation identification, the most
difficult subtask of RST parsing. DPLP is a shift-
reduce parser (Sagae, 2009), and its time complex-
ity is linear in the length of the document.

2.2 Sentiment analysis

There is a huge literature on sentiment analy-
sis (Pang and Lee, 2008; Liu, 2012), with partic-
ular interest in determining the overall sentiment
polarity (positive or negative) of a document. Bag-
of-words models are widely used for this task, as
they offer accuracy that is often very competitive
with more complex approaches. Given labeled
data, supervised learning can be applied to obtain
sentiment weights for each word. However, the
effectiveness of supervised sentiment analysis de-
pends on having training data in the same domain
as the target, and this is not always possible. More-
over, in social science applications, the desired
labels may not correspond directly to positive or
negative sentiment, but may focus on other cat-
egories, such as politeness (Danescu-Niculescu-
Mizil et al., 2013), narrative frames (Jurafsky et
al., 2014), or a multidimensional spectrum of emo-
tions (Kim et al., 2012). In these cases, labeled
documents may not be available, so users of-
ten employ a simpler method: counting matches
against lists of words associated with each cate-
gory. Such lists may be built manually from intro-
spection, as in LIWC (Tausczik and Pennebaker,
2010) and the General Inquirer (Stone, 1966). Al-
ternatively, they may be induced by bootstrapping
from a seed set of words (Hatzivassiloglou and
McKeown, 1997; Taboada et al., 2011). While
lexicon-based methods may be less accurate than
supervised classifiers, they are easier to apply to

1https://github.com/jiyfeng/DPLP
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Figure 2: Dependency-based discourse tree repre-
sentation of the discourse in Figure 1

new domains and problem settings. Our proposed
approach can be used in combination with either
method for sentiment analysis, and in principle,
could be directly applied to other document-level
categories, such as politeness.

2.3 Datasets

We evaluate on two review datasets. In both cases,
the goal is to correctly classify the opinion po-
larity as positive or negative. The first dataset
is comprised of 2000 movie reviews, gathered by
Pang and Lee (2004). We perform ten-fold cross-
validation on this data. The second dataset is
larger, consisting of 50,000 movie reviews, gath-
ered by Socher et al. (2013), with a predefined
50/50 split into training and test sets. Documents
are scored on a 1-10 scale, and we treat scores
≤ 4 as negative,≥ 7 as positive, and ignore scores
of 5-6 as neutral — although in principle nothing
prevents extension of our approaches to more than
two sentiment classes.

3 Discourse depth reweighting

Our first approach to incorporating discourse in-
formation into sentiment analysis is based on
quantifying the importance of each unit of text in
terms of its discourse depth. To do this, we em-
ploy the dependency-based discourse tree (DEP-
DT) formulation from prior work on summariza-
tion (Hirao et al., 2013). The DEP-DT formal-
ism converts the constituent-like RST tree into
a directed graph over elementary discourse units
(EDUs), in a process that is a close analogue of the
transformation of a headed syntactic constituent
parse to a syntactic dependency graph (Kübler et
al., 2009).

The DEP-DT representation of the discourse in
Figure 1 in shown in Figure 2. The graph is con-
structed by propagating “head” information up the
RST tree; if the elementary discourse unit ei is the
satellite in a discourse relation headed by ej , then

there is an edge from ej to ei. Thus, the “depth”
of each EDU is the number of times in which it is
embedded in the satellite of a discourse relation.
The exact algorithm for constructing DEP-DTs is
given by Hirao et al. (2013).

Given this representation, we construct a simple
linear function for weighting the contribution of
the EDU at depth di:

λi = max(0.5, 1− di/6). (1)

Thus, at di = 0, we have λi = 1, and at di ≥ 3, we
have λi = 0.5. Now assume each elementary dis-
course unit contributes a prediction ψi = θ>wi,
where wi is the bag-of-words vector, and θ is a
vector of weights, which may be either learned or
specified by a sentiment lexicon. Then the overall
prediction for a document is given by,

Ψ =
∑
i

λi(θ>wi) = θ>(
∑
i

λiwi). (2)

Evaluation We apply this approach in combi-
nation with both lexicon-based and classification-
based sentiment analysis. We use the lexicon of
Wilson et al. (2005), and set θj = 1 for words
marked “positive”, and θj = −1 for words marked
negative. For classification-based analysis, we set
θ equal to the weights obtained by training a logis-
tic regression classifier, tuning the regularization
coefficient on held-out data.

Results are shown in Table 1. As seen in
the comparison between lines B1 and D1, dis-
course depth weighting offers substantial improve-
ments over the bag-of-words approach for lexicon-
based sentiment analysis, with raw improvements
of 4−5%. Given the simplicity of this approach —
which requires only a sentiment lexicon and a dis-
course parser — we strongly recommend the ap-
plication of discourse depth weighting for lexicon-
based sentiment analysis at the document level.
However, the improvements for the classification-
based models are considerably smaller, less than
1% in both datasets.

4 Rhetorical Recursive Neural Networks

Discourse-depth reweighting offers significant im-
provements for lexicon-based sentiment analy-
sis, but the improvements over the more accurate
classification-based method are meager. We there-
fore turn to a data-driven approach for combining
sentiment analysis with rhetorical structure theory,
based on recursive neural networks (Socher et al.,
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Pang & Lee Socher et al.

Baselines
B1. Lexicon 68.3 74.9
B2. Classifier 82.4 81.5
Discourse depth weighting
D1. Lexicon 72.6 78.9
D2. Classifier 82.9 82.0
Rhetorical recursive neural network
R1. No relations 83.4 85.5
R2. With relations 84.1 85.6

Table 1: Sentiment classification accuracies on
two movie review datasets (Pang and Lee, 2004;
Socher et al., 2013), described in Section 2.3.

2011). The idea is simple: recursively propagate
sentiment scores up the RST tree, until the root of
the document is reached. For nucleus-satellite dis-
course relations, we have:

Ψi = tanh(K(ri)
n Ψn(i) +K(ri)

s Ψs(i)), (3)

where i indexes a discourse unit composed from
relation ri, n(i) indicates its nucleus, and s(i) in-
dicates its satellite. Returning to the example in
Figure 1, the sentiment score for the discourse unit
obtained by combining 1B and 1C is obtained
from tanh(K(elaboration)

n Ψ1B + K
(elaboration)
s Ψ1C).

Similarly, for multinuclear relations, we have,

Ψi = tanh(
∑
j∈n(i)

K(ri)
n Ψj). (4)

In the base case, each elementary discourse unit’s
sentiment is constructed from its bag-of-words,
Ψi = θ>wi. Because the structure of each doc-
ument is different, the network architecture varies
in each example; nonetheless, the parameters can
be reused across all instances.

This approach, which we call a Rhetorical Re-
cursive Neural Network (R2N2), is reminiscent of
the compositional model proposed by Socher et al.
(2013), where composition is over the constituents
of the syntactic parse of a sentence, rather than
the units of a discourse. However, a crucial differ-
ence is that in R2N2s, the elements Ψ and K are
scalars: we do not attempt to learn a latent dis-
tributed representation of the sub-document units.
This is because discourse units typically comprise
multiple words, so that accurate analysis of the
sentiment for elementary discourse units is not so
difficult as accurate analysis of individual words.

The scores for individual discourse units can be
computed from a bag-of-words classifier, or, in fu-
ture work, from a more complex model such as a
recursive or recurrent neural network.

While this neural network structure captures
the idea of compositionality over the RST tree,
the most deeply embedded discourse units can be
heavily down-weighted by the recursive compo-
sition (assuming Ks < Kn): in the most ex-
treme case of a right-branching or left-branching
structure, the recursive operator may be appliedN
times to the most deeply embedded EDU. In con-
trast, discourse depth reweighting applies a uni-
form weight of 0.5 to all discourse units with depth
≥ 3. In the spirit of this approach, we add an addi-
tional component to the network architecture, cap-
turing the bag-of-words for the entire document.
Thus, at the root node we have:

Ψdoc = γθ>(
∑
i

wi) + Ψrst-root, (5)

with Ψrst-root defined recursively from Equations 3
and 4, θ indicating the vector of per-word weights,
and the scalar γ controlling the tradeoff between
these two components.

Learning R2N2 is trained by backpropagating
from a hinge loss objective; assuming yt ∈
{−1, 1} for each document t, we have the loss
Lt = (1 − ytΨdoc,t)+. From this loss, we
use backpropagation through structure to obtain
gradients on the parameters (Goller and Kuch-
ler, 1996). Training is performed using stochas-
tic gradient descent. For simplicity, we fol-
low Zirn et al. (2011) and focus on the dis-
tinction between contrastive and non-contrastive
relations. The set of contrastive relations in-
cludes CONTRAST, COMPARISON, ANTITHE-
SIS, ANTITHESIS-E, CONSEQUENCE-S, CON-
CESSION, and PROBLEM-SOLUTION.

Evaluation Results for this approach are shown
in lines R1 and R2 of Table 1. Even without dis-
tinguishing between discourse relations, we get an
improvement of more than 3% accuracy on the
Stanford data, and 0.5% on the smaller Pang &
Lee dataset. Adding sensitivity to discourse rela-
tions (distinguishingK(r) for contrastive and non-
contrastive relations) offers further improvements
on the Pang & Lee data, outperforming the base-
line classifier (D2) by 1.3%.

The accuracy of discourse relation detection is
only 60% for even the best systems (Ji and Eisen-
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stein, 2014), which may help to explain why re-
lations do not offer a more substantial boost. An
anonymous reviewer recommended evaluating on
gold RST parse trees to determine the extent to
which improvements in RST parsing might trans-
fer to downstream document analysis. Such an
evaluation would seem to require a large corpus of
texts with both gold RST parse trees and sentiment
polarity labels; the SFU Review Corpus (Taboada,
2008) of 30 review texts offers a starting point, but
is probably too small to train a competitive senti-
ment analysis system.

5 Related Work

Section 2 mentions some especially relevant prior
work. Other efforts to incorporate RST into
sentiment analysis have often focused on intra-
sentential discourse relations (Heerschop et al.,
2011; Zhou et al., 2011; Chenlo et al., 2014),
rather than relations over the entire document.
Wang et al. (2012) address sentiment analysis in
Chinese. Lacking a discourse parser, they focus
on explicit connectives, using a strategy that is re-
lated to our discourse depth reweighting. Wang
and Wu (2013) use manually-annotated discourse
parses in combination with a sentiment lexicon,
which is automatically updated based on the dis-
course structure. Zirn et al. (2011) use an RST
parser in a Markov Logic Network, with the goal
of making polarity predictions at the sub-sentence
level, rather than improving document-level pre-
diction. None of the prior work considers the sort
of recurrent compositional model presented here.

An alternative to RST is to incorporate “shal-
low” discourse structure, such as the relations
from the Penn Discourse Treebank (PDTB).
PDTB relations were shown to improve sentence-
level sentiment analysis by Somasundaran et al.
(2009), and were incorporated in a model of sen-
timent flow by Wachsmuth et al. (2014). PDTB
relations are often signaled with explicit discourse
connectives, and these may be used as a fea-
ture (Trivedi and Eisenstein, 2013; Lazaridou et
al., 2013) or as posterior constraints (Yang and
Cardie, 2014). This prior work on discourse rela-
tions within sentences and between adjacent sen-
tences can be viewed as complementary to our fo-
cus on higher-level discourse relations across the
entire document.

There are unfortunately few possibilities for
direct comparison of our approach against prior

work. Heerschop et al. (2011) and Wachsmuth et
al. (2014) also employ the Pang and Lee (2004)
dataset, but neither of their results are directly
comparable: Heerschop et al. (2011) exclude doc-
uments that SPADE fails to parse, and Wachsmuth
et al. (2014) evaluates only on individual sentences
rather than entire documents. The only possi-
ble direct comparison is with very recent work
from Hogenboom et al. (2015), who employ a
weighting scheme that is similar to the approach
described in Section 3. They evaluate on the Pang
and Lee data, and consider only lexicon-based
sentiment analysis, obtaining document-level ac-
curacies between 65% (for the baseline) and 72%
(for their best discourse-augmented system). Ta-
ble 1 shows that fully supervised methods give
much stronger performance on this dataset, with
accuracies more than 10% higher.

6 Conclusion

Sentiment polarity analysis has typically relied
on a “preponderance of evidence” strategy, hop-
ing that the words or sentences representing the
overall polarity will outweigh those representing
counterpoints or rhetorical concessions. How-
ever, with the availability of off-the-shelf RST dis-
course parsers, it is now easy to include document-
level structure in sentiment analysis. We show
that a simple reweighting approach offers robust
advantages in lexicon-based sentiment analysis,
and that a recursive neural network can substan-
tially outperform a bag-of-words classifier. Future
work will focus on combining models of discourse
structure with richer models at the sentence level.
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Abstract
Many discourse relations are explicitly
marked with discourse connectives, and
these examples could potentially serve as a
plentiful source of training data for recog-
nizing implicit discourse relations. How-
ever, there are important linguistic differ-
ences between explicit and implicit dis-
course relations, which limit the accuracy
of such an approach. We account for
these differences by applying techniques
from domain adaptation, treating implic-
itly and explicitly-marked discourse rela-
tions as separate domains. The distribu-
tion of surface features varies across these
two domains, so we apply a marginalized
denoising autoencoder to induce a dense,
domain-general representation. The label
distribution is also domain-specific, so we
apply a resampling technique that is simi-
lar to instance weighting. In combination
with a set of automatically-labeled data,
these improvements eliminate more than
80% of the transfer loss incurred by train-
ing an implicit discourse relation classifier
on explicitly-marked discourse relations.

1 Introduction

Discourse relations reveal the structural orga-
nization of text, potentially supporting applica-
tions such as summarization (Louis et al., 2010;
Yoshida et al., 2014), sentiment analysis (Soma-
sundaran et al., 2009), and coherence evaluation
(Lin et al., 2011). While some relations are sig-
naled explicitly with connectives such as how-
ever (Pitler et al., 2008), many more are im-
plicit. Expert-annotated datasets of implicit dis-
course relations are expensive to produce, so it

would be preferable to use weak supervision, by
automatically labeling instances with explicit con-
nectives (Marcu and Echihabi, 2003).

However, Sporleder and Lascarides (2008)
show that models trained on explicitly marked ex-
amples generalize poorly to implicit relation iden-
tification. They argued that explicit and implicit
examples may be linguistically dissimilar, as writ-
ers tend to avoid discourse connectives if the dis-
course relation could be inferred from context
(Grice, 1975). Similar observations are made by
Rutherford and Xue (2015), who attempt to add
automatically-labeled instances to improve super-
vised classification of implicit discourse relations.

In this paper, we approach this problem from
the perspective of domain adaptation. Specifically,
we argue that the reason that automatically-labeled
examples generalize poorly is due to domain mis-
match from the explicit relations (source domain)
to the implicit relations (target domain). We pro-
pose to close the gap by using two simple meth-
ods from domain adaptation: (1) feature represen-
tation learning: mapping the source domain and
target domain to a shared latent feature space; (2)
resampling: modifying the relation distribution in
the explicit relations to match the distribution over
implicit relations. Our results on the Penn Dis-
course Treebank (Prasad et al., 2008) show that
these two methods improve the performance on
unsupervised discourse relation identification by
more than 8.4% on average F1 score across all
relation types, an 82% reduction on the transfer
loss incurred by training on explicitly-marked dis-
course relations.

2 Related Work

Marcu and Echihabi (2003) train a classifier for
implicit intra-sentence discourse relations from
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explicitly-marked examples in the rhetorical struc-
ture theory (RST) treebank, where the relations
are automatically labeled by their discourse con-
nectives: for example, labeling the relation as
CONTRAST if the connective is but. However,
Sporleder and Lascarides (2008) argue that explic-
itly marked relations are too different from im-
plicit relations to serve as an adequate supervision
signal, obtaining negative results in segmented
discourse representation theory (SDRT) relations.

More recent work has focused on the Penn Dis-
course Treebank (PDTB), using explicitly-marked
relations to supplement, rather than replace, a la-
beled corpus of implicit relations. For example,
Biran and McKeown (2013) collect word pairs
from arguments of explicit examples to help the
supervised learning on implicit relation identifica-
tion. Lan et al. (2013) present a multi-task learning
framework, using explicit relation identification as
auxiliary tasks to help main task on implicit re-
lation identification. Rutherford and Xue (2015)
explore several selection heuristics for adding
automatically-labeled examples from Gigaword to
their system for implicit relation detection, obtain-
ing a 2% improvement in Macro-F1. Our work
differs from these previous efforts in that we fo-
cus exclusively on training from automatically-
labeled explicit instances, rather than supplement-
ing a training set of manually-labeled implicit ex-
amples.

Learning good feature representations (Ben-
David et al., 2007) and reducing mismatched la-
bel distributions (Joshi et al., 2012) are two main
ways to make a domain adaptation task successful.
Structural correspondence learning is an early ex-
ample of representation learning for domain adap-
tation (Blitzer et al., 2006); we build on the more
computationally tractable approach of marginal-
ized denoising autoencoders (Chen et al., 2012).
Instance weighting is an approach for correct-
ing label distribution mismatch (Jiang and Zhai,
2007); we apply a simpler approach of resampling
the source domain according to an estimate of the
target domain label distribution.

3 Domain Adaptation for Implicit
Relation Identification

We employ two domain adaptation techniques:
learning feature representations, and resampling to
match the target label distribution.

3.1 Learning feature representation:
Marginalized denoising autoencoders

The goal of feature representation learning is to
obtain dense features that capture feature correla-
tions between the source and target domains. De-
noising autoencoders (Glorot et al., 2011) do this
by first “corrupting” the original data, x1, . . . ,xn
into x̃1, . . . , x̃n, either by adding Gaussian noise
(in the case of real-valued data) or by randomly ze-
roing out features (in the case of binary data). We
can then learn a function to reconstruct the origi-
nal data, thereby capturing feature correlations and
improving resilience to domain shift.

Chen et al. (2012) propose a particularly sim-
ple and elegant form of denoising autencoder, by
marginalizing over the noising process. Their
single-layer marginalized denoising autoencoder
(mDA) solves the following problem:

min
W

Ex̃i|xi
[‖xi −Wx̃i‖2] (1)

where the parameter W ∈ Rd×d is a projection
matrix. After learning the projection matrix, we
use tanh(Wx) as the representation for our rela-
tion identification task.

Usually, xi ∈ Rd is a sparse vector with more
than 105 dimensions. Solving the optimization
problem defined in equation 1 will produce a
d × d dense matrix W, and is prohibitively ex-
pensive. We employ the trick proposed by Blitzer
et al. (2006) to select κ pivot features to be re-
constructed. We then split all features into non-
overlapping subsets of size ≤ K. Then, a set of
projection matrices are learned, so as to transform
each feature subset to the pivot feature set. The
final projection matrix W is the stack of all pro-
jection matrices learned from the feature subsets.

3.2 Handling mismatched label distributions:
Resampling with minimal supervision

There is a notable mismatch between the relation
distributions for implicit and explicitly-marked
discourse relations in the Penn Discourse Tree-
bank: as shown in Figure 1, the EXPANSION and
CONTINGENCY relations comprise a greater share
of the implicit relations, while the TEMPORAL

and COMPARISON relations comprise a greater
share of the explicitly-marked discourse relations.
Such label distribution mismatches can be a ma-
jor source of transfer loss across domains, and
therefore, reducing this mismatch can be an easy
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Figure 1: The relation distributions of training ex-
amples from the source domain (explicitly-marked
relations) and target domain (implicit relations) in
the PDTB.

way to obtain performance gains in domain adap-
tation (Joshi et al., 2012). Specifically, our goal
is to modify the relation distribution in the source
domain (explicitly-marked relations) and make it
as similar as possible to the target domain (im-
plicit relations). Given the label distribution from
the target domain, we resample training examples
from the source domain with replacement, in or-
der to match the label distribution in the target do-
main. As this requires the label distribution from
the target domain, it is no longer purely unsuper-
vised domain adaptation; instead, we call it resam-
pling with minimal supervision.

It may also be desirable to ensure that the source
and target training instances are similar in terms
of their observed features; this is the idea behind
the instance weighting approach to domain adap-
tation (Jiang and Zhai, 2007). Motivated by this
idea, we require that sampled instances from the
source domain have a cosine similarity of at least
τ with at least one target domain instance (Ruther-
ford and Xue, 2015).

4 Experiments

Our experiments test the utility of the two do-
main adaptation methods, using the Penn Dis-
course Treebank (Prasad et al., 2008) and some
extra-training data collected from a external re-
source.

4.1 Experimental setup
Datasets The test examples are implicit rela-
tion instances from section 21-22 in the PDTB.
For the domain adaptation setting, the training
set consists of the explicitly-marked examples ex-
tracted from sections 02-20 and 23-24, and the
development set consists of the explicit relations
from sections 21-22. All relations in the explicit
examples are automatically labeled by using the

connective-to-relation mapping from Table 2 in
(Prasad et al., 2007), where we only keep the
majority relation type for every connective. For
each identified connective, we use its annotated
arguments in the PDTB. As an upper bound, we
also train a supervised discourse relation classi-
fier, using the implicit examples in sections 02-20
and 23-24 as the training set, and using sections
00-01 as the development set. Following prior
work (Pitler et al., 2009; Park and Cardie, 2012;
Biran and McKeown, 2013), we consider the first-
level discourse relations in the PDTB — Temporal
(TEMP.), Comparison (COMP.), Expansion (EXP.)
and Contingency (CONT.). We train binary classi-
fiers and report F1 score on each binary classifica-
tion task. Extension of this approach to multi-class
classification is important, but since this is not the
setting considered in most of the prior research,
we leave it for future work.

The true power of learning from automatically
labeled examples is that we could leverage much
larger datasets than hand-annotated corpora such
as the Penn Discourse Treebank. To test this idea,
we collected 1,000 news articles from CNN.com
as extra training data. Explicitly-marked dis-
course relations from this data are automatically
extracted by matching the PDTB discourse con-
nectives (Prasad et al., 2007). For this data, we
also need to extract the arguments of the iden-
tified connectives: for every identified connec-
tive, the sentence following this connective is la-
beled as Arg2 and the preceding sentence is la-
beled as Arg1, as suggested by Biran and McKe-
own (2013). In a pilot study we found that larger
amounts of additional training data yielded no fur-
ther improvements, which is consistent with the
recent results of Rutherford and Xue (2015).

Model selection We use a linear support vec-
tor machine (Fan et al., 2008) as the classifica-
tion model. Our model includes five tunable pa-
rameters: the number of pivot features κ, the
size of the feature subset K, the noise level for
the denoising autoencoder q, the cosine similar-
ity threshold for resampling τ , and the penalty pa-
rameter C for the SVM classifier. We consider
κ ∈ {1000, 2000, 3000} for pivot features and
C ∈ {0.001, 0.01, 0.1, 1.0, 10.0} for penalty pa-
rameters, q ∈ {0.90, 0.95, 0.99} for noise levels.
To reduce the free parameters, we set K = 5κ
and simply fix the cosine similarity threshold τ =
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Relations

Surface Features +Rep. Learning +Resampling TEMP. COMP. EXP. CONT. Average F1

Implicit→ Implicit
1. FULL 24.15 28.87 68.84 43.45 41.32
Explicit [PDTB]→ Implicit
2. FULL No No 17.13 20.54 50.55 36.14 31.04
3. FULL No Yes 15.38 23.88 62.04 35.29 34.14
4. FULL Yes No 17.53 22.77 50.85 36.43 31.90
5. FULL Yes Yes 17.05 22.00 63.51 38.23 35.20

6. PIVOT No No 17.33 23.89 53.53 36.22 32.74
7. PIVOT No Yes 17.73 25.39 62.65 36.02 35.44
8. PIVOT Yes No 18.66 25.86 63.37 38.87 36.69
9. PIVOT Yes Yes 19.26 25.74 68.08 41.39 38.62
Explicit [PDTB + CNN]→ Implicit
10. PIVOT Yes Yes 20.35 26.32 68.92 42.25 39.46

Table 1: Performance of cross-domain learning for implicit discourse relation identification.

0.85; pilot studies found that results are not sensi-
tive to the value of τ across a range of values.

Features All features are motivated by prior
work on implicit discourse relation classification:
from each training example with two arguments,
we extract (1) Lexical features, including word
pairs, the first and last words from both argu-
ments (Pitler et al., 2009); (2) Syntactic features,
including production rules from each argument,
and the shared production rules between two argu-
ments (Lin et al., 2009); (3) Other features, includ-
ing modality, Inquirer tags, Levin verb classes, and
argument polarity (Park and Cardie, 2012). We
re-implement these features as closely as possible
to the cited works, using the Stanford CoreNLP
Toolkit to obtain syntactic annotations (Manning
et al., 2014).

The FULL feature set for domain adaptation
is constructed by collecting all features from the
training set, and then removing features that oc-
cur fewer than ten times. The PIVOT feature
set includes κ high-frequency features from the
FULL feature set. To focus on testing the domain
adaptation techniques, we use the same FULL and
PIVOT set for all four relations, and leave fea-
ture set optimization for each relation as a future
work (Park and Cardie, 2012). To obtain the up-
per bound, we employ the same feature categories
and frequency threshold to extract features from
the in-domain data, hand-annotated implicit dis-
course relations. To include the representations

from the marginalized denoising autoencoder for
relation identification, we concatenate them with
the original surface feature representations of the
same examples.

4.2 Experimental results

In experiments, we start with surface feature rep-
resentations as baselines, then incorporate the two
domain adaptation techniques incrementally. As
shown in line 2 of Table 1, the performance is
poor if directly applying a model trained on the ex-
plicit examples with the FULL feature set, which
is consistent with the observations of Sporleder
and Lascarides (2008): there is a 10.28% abso-
lute reduction on average F1 score from the up-
per bound obtained with in-domain supervision
(line 1). With mDA, the overall performance in-
creases by 0.86% (line 4); resampling gives a fur-
ther 4.16% improvement mainly because of the
performance gain on the EXP. relation (line 5).
The resampling method itself (line 3) also gives
a better overall performance then mDA (line 4).
However, the F1 scores on the TEMP. and CONT.
are even worse than the baseline (line 2).

Surface representations with the FULL feature
set were found to cause serious overfitting in the
experiments. To deal with this problem, we pro-
pose to use only κ pivot features, which gives
a stronger baseline of the cross-domain relation
identification, as shown in line 6. Then, by in-
corporating resampling and feature representation
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learning individually, the average F1 increases
from 32.74% to 35.44% (line 7) and 36.69% (line
8) respectively. The combination of these two
domain adaptation techniques boosts the average
F1 further to 38.62% (line 9). The additional
CNN training data further improves performance
to 39.46% (line 10). This represents an 8.42% im-
provement of average F1 from the original result
(line 2), for more than 80% reduction on the trans-
fer loss incurred by training on explicit discourse
relations.

An additional experiment is to use automatic ar-
gument extraction in both the PDTB and the CNN
data, which would correspond to more truly un-
supervised domain adaptation. (Recall that in the
CNN data, we used adjacent sentences as argu-
ment spans, while in the PDTB data, we use ex-
pert annotations.) When using adjacent sentences
as argument spans in both datasets, the average
F1 is 38.52% for the combination of representa-
tion learning and resampling. Compared to line
10, this is a 0.94% performance drop, indicating
the importance of argument identification in the
PDTB data. In future work we may consider bet-
ter heuristics for argument extraction, such as ob-
taining automatically-labeled examples only from
those connectors for whom the arguments usu-
ally are the adjacent sentences; for example, the
connector nonetheless usually connects adjacent
spans (e.g., Bob was hungry. Nonetheless he gave
Tina the burger.), while the connector even though
may connect two spans that follow the connector
in the same sentence (e.g., Even though Bob was
hungry, he gave Tina the burger.).

5 Conclusion

We have presented two methods — feature rep-
resentation learning and resampling — from do-
main adaptation to close the gap of using explicit
examples for unsupervised implicit discourse re-
lation identification. Experiments on the PDTB
show the combination of these two methods elimi-
nates more than 80% of the transfer loss caused by
training on explicit examples, increasing average
F1 from 31% to 39.5%, against a supervised up-
per bound of 41.3%. Future work will explore the
combination of this approach with more sophis-
ticated techniques for instance selection (Ruther-
ford and Xue, 2015) and feature selection (Park
and Cardie, 2012; Biran and McKeown, 2013),
while also tackling the more difficult problems of

multi-class relation classification and fine-grained
level-2 discourse relations.
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Abstract

While most previous work on Wikification
has focused on written texts, this paper
presents a Wikification approach for spo-
ken dialogues. A set of analyzers are pro-
posed to learn dialogue-specific properties
along with domain knowledge of conver-
sations from Wikipedia. Then, the an-
alyzed properties are used as constraints
for generating candidates, and the candi-
dates are ranked to find the appropriate
links. The experimental results show that
our proposed approach can significantly
improve the performances of the task in
human-human dialogues.

1 Introduction

Linking mentions in natural language to the
relevant concepts in knowledge-bases plays a
key role in better understanding the meanings
of expressions as well as further populating
knowledge-bases with less human effort. Espe-
cially, Wikipedia has been widely used as a major
target resource for linking. Most previous work
on this Wikipedia-based linking task called Wiki-
fication (Mihalcea and Csomai, 2007) has focused
on resolving ambiguities and variabilities of the
expressions in written texts including newswire
collections (McNamee and Dang, 2009; Ji et al.,
2010; Ji et al., 2014) or microblog posts (Genc et
al., 2011; Cassidy et al., 2012; Guo et al., 2013;
Huang et al., 2014).

But writing and reading are not the only ways
for exchange of information, since many commu-
nications between people in real life are performed
through spoken dialogues also. Thus, we could
expect to improve the understanding capabilities
of applications based on Wikification and broaden
the coverage of the contents in knowledge-bases,
if Wikification is successfully performed also for
human-human spoken conversations.

In this work, we focus on the following differ-
ences between spoken dialogues and written texts
as sources for Wikification. Firstly, at least two
speakers are engaged in a dialogue session, while
the texts in newswire or microblogs are mostly
written by a single author. Thus, the viewpoint of
each speaker should be considered separately or
jointly depending on the situation. Secondly, the
correspondence between mentions and concepts in
spoken dialogues tends to be dependent not only
on the contexts explicitly mentioned in a given di-
alogue, but also on other information inferred by
speakers based on their background knowledge.
The other difference is that spoken utterances are
more likely to be informal and noisy than writ-
ten sentences, which makes expressions more am-
biguous and variable.

To solve these issues, we propose a three step
approach for Wikification on spoken dialogues. At
the first step, a set of classifiers are used for an-
alyzing the dialogue-specific aspects of a given
mention. According to the analyzed results, the
criteria in selecting concept candidates is deter-
mined, and then a ranking is performed on the fil-
tered candidates to identify the concept that is the
most relevant to the mention.

While many researchers have worked on link-
ing named-entities (Bunescu and Pasca, 2006;
Cucerzan, 2007; McNamee and Dang, 2009; Han
and Sun, 2011; Han et al., 2011; Ji et al., 2014)
or other types of concept mentions (Mihalcea and
Csomai, 2007; Milne and Witten, 2008; Ferragina
and Scaiella, 2010; Ratinov et al., 2011; Mendes
et al., 2011; Cheng and Roth, 2013) to the relevant
articles in Wikipedia, all the noun phrases includ-
ing not only named entities or base noun phrases,
but also complex or recursive noun phrases in a di-
alogue are considered as instances to be linked in
this work. For the concept candidates, we divide
every article into sub-sections and consider each
section as a unit along with article-level concepts.
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Figure 1: Overall architecture of three-step ap-
proach for Wikification on spoken dialogues

2 Method

2.1 Mention Analysis
The first step in our proposed approach (Figure 1)
is analyzing the following four types of binary
properties of a given mention: linking validity
(LV ), in-dialogue reference (ID), domain rele-
vance (DR), and speaker relatedness (SR).

Linking validity of the mention is determined
by the decision whether it is matched with any
Wikipedia concept or not. Since only the men-
tions assigned with positive validity values are
proceeded to the further processes, this classifi-
cation can be considered as a joint task for target
mention identification and NIL detection.

Another type of analysis focuses on the refer-
ences between the mention and the linking his-
tory. If the mention is matched with one in the set
of concepts for the previous mentions in the same
session, it has a positive value for the in-dialogue
reference property.

The other two types of properties are defined
for indicating the relevances of the mention to the
contents that are specific to the target domain or
the profiles of each speaker in the conversation.
For these analyses, the whole Wikipedia collection
is partitioned into subsets according to the domain
or speaker-relevances. In this work, the concepts
in these subsets are automatically collected with
no manual effort by utilizing the domain knowl-
edge also from Wikipedia. First, we retrieve the
‘List’ or ‘Index’ pages in Wikipedia that are re-

Guide: In the morning I suggest to you to go to Botanical Garden.
LV ID DR SRG SRT

+ - - - -
LV ID DR SRG SRT

+ - + + -

Tourist: Oh, we also have Botanical Garden.
LV ID DR SRG SRT

+ - - - +

Tourist: That is actually one of my favourite places here.
LV ID DR SRG SRT

+ + - - +
LV ID DR SRG SRT

+ - - - +

Guide: If so, you might like this place also.
LV ID DR SRG SRT

+ + + + -

Figure 2: Examples of annotations for mention
analysis: SRG and SRT denote guide and tourist
relatedness, respectively.

lated to the topic or the profile of a speaker. Then,
all the articles listed on these seed pages are col-
lected and considered as the related concepts in the
corresponding sets.

Since every property has a positive or a negative
value as a result, each analysis can be considered
as a binary classification problem. In this work,
we train support vector machines (SVM) (Cortes
and Vapnik, 1995) from the dialogues annotated
with the corresponding labels as shown in Figure 2
based on the features listed in Table 1.

2.2 Candidate Generation

After analyzing the above property values of a
given mention, a set of concepts to be disam-
biguated are selected from Wikipedia. These can-
didates are retrieved from a Lucene 1 index on the
whole Wikipedia collection with the fields of ar-
ticle title, section title, redirection, category, and
body texts. Each query to the search engine is pre-
pared with the combination of the mention phrase
and its analyzed properties as constraints for fil-
tering. If the value for in-dialogue reference is
positive, the searching is restricted to the set of
concepts linked with the previous mentions in the
same session. Similarly, the domain relevance
and speaker relatedness values provide the filter-
ing condition within the corresponding subsets in-
troduced in Section 2.1.

One practical issue on this candidate generation
step is how to combine the multiple constraints
when we have more than one positive proper-
ties for a given mention. The simplest way is
taking the intersection of the corresponding con-
straints. However, we should consider the fact
that the properties assigned automatically can be
erroneous, since none of the analyzer is perfect.

1http://lucene.apache.org/
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Level Name Description
Mention SP the speaker who spoke that mention

WM word n-grams within the mention
LM lemma n-grams within the mention
PM POS n-grams within the mention
NE named entities within the mention
NP base noun phrases within the men-

tion
Utterance BW the words before the mention

AW the words after the mention
BL the lemmas before the mention
AL the lemmas after the mention
BP the POS tags before the mention
AP the POS tags after the mention
IU whether the mention previously oc-

curs in the same utterance
Dialogue EO whether the phrase is previously

mentioned in the dialogue history
EOS whether the phrase is previously

mentioned by the same speaker in
the history

Wikipedia IW whether the phrase is a title of an
entry in Wikipedia

IWD whether the phrase is a title of an
entry in the set of domain-relevant
concepts

IWSk whether the phrase is a title of an
entry in the set of k-th speaker-
relevant concepts

Table 1: List of features for training the models for
mention analysis

For the noisy cases, the intersection-based filtering
could be risky, because the errors are also jointly
accumulated. To circumvent the impact of errors
from the previous step, we also try to use the union
of the constraints and compare it with the intersec-
tion case later in Section 3.

2.3 Candidate Ranking

In this work, linking a given mention to its
most relevant concept is determined by ranking
SVM (Joachims, 2002) which is a pairwise rank-
ing algorithm learned from the ranked lists. For
each pair of a mention m in the training data and
its candidate concept c, the ranking score s(m, c)
is assigned as follows:

s(m, c) =


4 if c is the exactly same as f(m),
3 if c is the parent article of f(m),
2 if c belongs to the same article

but different section of f(m),
1 otherwise.

where f(m) is the annotation of m in the train-
ing dataset. The list of candidates assigned with
their scores provides the relative orders for a given
mention, and it can be converted into a set of

Name Description
SP the speaker who spoke that mention
WM word n-grams within the surface of m
WT word n-grams within the title of c
EMT whether the surface of m is same as the title of c
EMR whether the surface of m is same as one of re-

directions to c
MIT whether the surface of m is a sub-string of the

title of c
TIM whether the title of c is a sub-string of the m’s

surface form
MIR whether the surface of m is a sub-string of a re-

directed title to c
RIM whether a re-directed title to c is a sub-string of

the m’s surface form
PMT similarity score based on edit distance between

the surface of m and the title of c
PMR maximum similarity score between the surface of

m and the redirected titles to c
OC whether c previously occurred in the full dialogue

history
OCw whether c occurred within w previous turns with

w ∈ {1, 3, 5, 10}

Table 2: List of features for training the ranking
SVM model

pairwise constraints which are trained by ranking
SVM with the features in Table 2.

3 Evaluation

3.1 Data
To demonstrate the effectiveness of our approach
to Wikification on spoken dialogues, we per-
formed experiments on a dialogue corpus which
consists of 35 sessions collected from human-
human conversations in English about tourism
in Singapore between actual tour guides in Sin-
gapore and tourists from the Philippines. All
the recorded dialogues with the total length of
21 hours were manually transcribed, then the
31,034 utterance were pre-processed by Stanford
CoreNLP toolkit 2. Each noun phrase in the con-
stituent trees provided by the parser is consid-
ered as an instance for Wikification and manu-
ally annotated with the corresponding concept in
Wikipedia. 34,949 mentions have been linked to
the concepts in Wikipedia.

As a pool for candidate generation, we built a
Lucene index based on Wikipedia database dump
as of January 2015 which has 4,797,927 articles
and 25,577,464 sections in total. From this collec-
tion, 11,128 and 27,186 articles have been consid-
ered as Singapore-related and Philippines-related
concepts, respectively, for the filtering based on
domain and speaker relevances.

2http://nlp.stanford.edu/software/corenlp.shtml
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Features LV ID SRG SRT

M 86.29 69.15 71.10 72.94
M+U 86.90 70.43 70.43 68.85
M+D 86.17 71.09 70.56 71.52
M+W 86.21 68.96 70.66 71.86
M+U+D 86.82 72.37 70.12 68.30
M+U+W 86.84 70.13 70.19 68.78
M+U+D+W 86.77 72.20 69.94 68.10

Table 3: Comparisons of the performances in
F-measure of mention analyzers with different
combinations of features: M,U,D,W denotes
mention-level, utterance-level, dialogue-level, and
Wikipedia features, respectively

3.2 Mention Analysis

Based on the annotated dialogues, we built four
mention analyzers for LV , ID, SRG, and SRT ,
where SRG is for the guides and SRT is for the
tourists in the conversations. In this work, only the
information where each speaker is from was con-
sidered as a profile to analyze the speaker-related
properties. Since all the guides participated in the
data collection are from Singapore and the main
topic of the conversations is also about Singapore,
we omitted DR which should have the same re-
sults as SRG in the experiments.

For each analyzer, we trained the SVM models
using SVMlight 3 with the features in Table 1. All
the evaluations were performed in five-fold cross
validation to the manual annotations with preci-
sion, recall, and F-measure.

Table 3 compares the performances of the seven
combinations of feature sets for each analyzer.
Based on these results, we selected the model that
achieved the best performance for each analyzer to
process the mentions for the further steps.

3.3 Candidate Generation

For each mention in the corpus, we prepared four
sets of candidates with different filtering con-
straints. While the first baseline set was retrieved
with no filtering, the others were generated ac-
cording to the procedure described in Section 2.2.
When more than one positive values were pro-
vided from mention analyzers, intersection and
union operators were applied for combining mul-
tiple constraints. In the last set, the property val-
ues manually annotated in the training data were

3http://svmlight.joachims.org/

Method P R F
No filtering 26.85 22.52 21.24
Intersection 44.37 27.35 33.84
Union 38.04 31.97 34.74
Manual (Oracle) 39.90 34.72 37.13

Table 4: Comparisons of the performances of
Wikification on spoken dialogues

considered as the correct constraints, which is in-
tended for comparing with the others to investigate
the influence of errors in mention analysis. For ev-
ery set, we retrieved top 100 candidates satisfying
the given constraints from the Lucene index with
Wikipedia collection and added one more special
candidate for NIL detection.

3.4 Candidate Ranking

For each set of candidates, we trained a ranking
function using SVMrank4 with the features in Ta-
ble 2. Both training and testing the ranking models
were performed also based on five-fold cross vali-
dation with the same divisions as the former eval-
uation. After getting the ranking results, we took
the top-ranked candidate for each list and consid-
ered it as a result of Wikification for the corre-
sponding mention.

Table 4 compares the final performances of
Wikification obtained by ranking on the candi-
dates generated with different sets of constraints.
Both approaches, intersection and union, outper-
formed the baseline by 12.60 and 13.50 in F-
measure, respectively. While the intersection strat-
egy contributed to produce more precise outputs
than the others even including the case with man-
ual filtering, the other proposed approach with
union achieved more gain in recall with slightly
better F-measure than the former one.

4 Conclusions

This paper presented a Wikification approach
for spoken dialogues. In this approach, a set
of dialogue-specific properties were analyzed for
generating concept candidates. Then, supervised
ranking was performed on these candidates to
identify the relevant concepts. Experimental re-
sults show that the proposed constraints help to
improve the performances of the task on spoken
dialogues.

4http://www.cs.cornell.edu/people/tj/svm light/svm rank.html
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Abstract

Implicit discourse relation recognition re-
mains a serious challenge due to the ab-
sence of discourse connectives. In this pa-
per, we propose a Shallow Convolutional
Neural Network (SCNN) for implicit dis-
course relation recognition, which con-
tains only one hidden layer but is effec-
tive in relation recognition. The shallow
structure alleviates the overfitting prob-
lem, while the convolution and nonlinear
operations help preserve the recognition
and generalization ability of our model.
Experiments on the benchmark data set
show that our model achieves comparable
and even better performance when com-
paring against current state-of-the-art sys-
tems.

1 Introduction

As a crucial task for discourse analysis, discourse
relation recognition (DRR) aims to automatically
identify the internal structure and logical relation-
ship of coherent text (e.g., TEMPORAL, CONTIN-
GENCY, EXPANSION, etc). It provides important
information to many other natural language pro-
cessing systems, such as question answering (Ver-
berne et al., 2007), information extraction (Cimi-
ano et al., 2005), machine translation (Guzmán et
al., 2014) and so on. Despite great progress in ex-
plicit DRR where the discourse connectives (e.g.,
“because”, “but” et al.) explicitly exist in the text
(Miltsakaki et al., 2005; Pitler et al., 2008), im-
plicit DRR remains a serious challenge because of
the absence of discourse connectives (Prasad et al.,
2008).

Conventional methods for implicit DRR di-
rectly rely on feature engineering, wherein re-
searchers generally exploit various hand-crafted
features, such as words, part-of-speech tags and

∗Corresponding author

production rules (Pitler et al., 2009; Lin et al.,
2009; Louis et al., 2010; Wang et al., 2012; Park
and Cardie, 2012; McKeown and Biran, 2013;
Lan et al., 2013; Versley, 2013; Braud and De-
nis, 2014; Rutherford and Xue, 2014). Although
these methods have proven successful, these man-
ual features are labor-intensive and weak to cap-
ture intentional, semantic and syntactic aspects
that govern discourse coherence (Li et al., 2014),
thus limiting the effectiveness of these methods.

Recently, deep learning models have achieved
remarkable results in natural language processing
(Bengio et al., 2003; Bengio et al., 2006; Socher
et al., 2011b; Socher et al., 2011a; Socher et al.,
2013; Li et al., 2013; Kim, 2014). However, to the
best of our knowledge, there is little deep learning
work specifically for implicit DRR. The neglect of
this important domain may be due to the follow-
ing two reasons: (1) discourse relation distribution
is rather unbalanced, where the generalization of
deep models is relatively insufficient despite their
powerful studying ability; (2) training dataset in
implicit DRR is relatively small, where overfitting
problems become more prominent.

In this paper, we propose a Shallow Convolu-
tional Neural Network (SCNN) for implicit DRR,
with only one simple convolution layer on the
top of word vectors. On one hand, the network
structure is simple, thereby overfitting issue can
be alleviated; on the other hand, the convolution
operation and nonlinear transformation help pre-
serve the recognition ability of SCNN. This makes
our model able to generalize better on the test
dataset. We performed evaluation for English im-
plicit DRR on the PDTB-style corpus. Experi-
mental results show that the proposed method can
obtain comparable even better performance when
compares against several baselines.

2 Model

In Penn Discourse Treebank (PDTB) (Prasad et
al., 2008), implicit discourse relations are anno-
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Arg1: our competitors say we overbid them Arg2: who cares

average max min average max min

SoftMax Layer

Concatenate,Tanh,Norm

Figure 1: SCNN model architecture visualized with an instance.

tated with connective expressions that best convey
implicit relations between two neighboring argu-
ments, e.g.

Arg1: (But) our competitions say we overbid
them
Arg2: who cares

the connective “But”, which is annotated manu-
ally, is used to express the inferred COMPARISON

relation.
We learn a classifier for implicit DRR based on

convonlutional neural network. The overall model
architecture is illustrated in Figure 1.1 In our
model, each word in vocabulary V corresponds to
a d-dimensional dense, real-valued vector, and all
words are stacked into a word embedding matrix
L ∈ Rd×|V |, where |V | is the vocabulary size.

Given an ordered list of nwords in an argument,
we retrieve the i-th word representation xvi ∈ Rd

from L with its corresponding vocabulary index
vi. All word vectors in the argument produce the
following output matrix:

X = (xv1 , xv2 , . . . , xvn) (1)

Following previous work (Collobert et al., 2011;
Socher et al., 2011a), for each row r in X, we
explore three convolutional operations to obtain
three convolution features average, min and max
as follows:

cavgr =
1
n

n∑
i

Xr,i (2)

cminr = min (Xr,1, Xr,2, . . . , Xr,n) (3)
1For better illustration, we assume that the dimension of

word vectors is 4 throughout this paper.

cmaxr = max (Xr,1, Xr,2, . . . , Xr,n) (4)

In this way, SCNN is able to capture almost all im-
portant information inside X (one with the highest,
lowest and average values). Besides, each convo-
lution operation naturally deals with variable argu-
ment lengths (Note that c ∈ Rd). Back to Figure
1, we present cavg, cmin and cmax with red, purple
and green color respectively.

After obtaining the features of both arguments,
we concatenate all of them into one vector, and
then apply tanh transformation and length nor-
malization successively to generate the hidden lay-
ers:

a =
[
cavgArg1; c

min
Arg1; c

max
Arg1; c

avg
Arg2; c

min
Arg2; c

max
Arg2

]
(5)

h =
tanh (a)
‖tanh (a)‖ (6)

where h ∈ R6d is the hidden layer representa-
tion. The normalization operation scales the com-
ponents of a feature vector to unit length. This, to
some extent, eliminates the manifold differences
among different features.

Upon the hidden layer, we stack a Softmax layer
for relation recognition,

y = f(Wh+ b) (7)

where f is the softmax function,W ∈ Rl×6d is the
parameter matrix, b ∈ Rl is the bias term, and l is
the relation number.

To assess how well the predicted relation y rep-
resents the real relation, we supervise it with the
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gold relation g in the annotated training corpus us-
ing the traditional cross-entropy error,

E(y, g) = −
l∑
j

gj × log (yj) (8)

Combined with the regularization error, the joint
training objective function is

J(θ) =
1
m

m∑
t=1

E(yt, gt) +
λ

2
‖θ‖2 (9)

where m is the number of training instances, yt is
the t-th predicted distribution, λ is the regulariza-
tion coefficient and θ is parameters, including L,
W and b.2

To train SCNN, we first employ the toolkit
Word2Vec3 (Mikolov et al., 2013) to initialize the
word embedding matrix L using a large-scale un-
labeled data. Then, L-BFGS algorithm is applied
to fine-tune the parameters θ.

3 Experiments

We conducted a series of experiments on English
implicit DRR task. After a brief description of
the experimental setup and the baseline systems,
we further investigated the effectiveness of our
method with deep analysis.

3.1 Setup
For comparison with other systems, we formu-
lated the task as four separate one-against-all bi-
nary classification problems: one for each top
level sense of implicit discourse relations (Pitler
et al., 2009).

We used the PDTB 2.0 corpus4 (Prasad et al.,
2008) for evaluation. The PDTB corpus contains
discourse annotations over 2,312 Wall Street Jour-
nal articles, and is organized in different sections.
Following Pitler et al. (2009), we used sections 2-
20 as training set, sections 21-22 as test set, and
sections 0-1 as development set for parameter op-
timization. For each relation, we randomly ex-
tracted the same number of positive and negative
instances as training data, while all instances in
sections 21 and 22 are used as our test set. The
statistics of various data sets is listed in Table 1.

We tokenized PDTB corpus using Stanford NLP
Tool5. For all experiments, we empirically set

2The bias terms b is not regularized. We preserve it in the
equation just for clarity.

3https://code.google.com/p/word2vec/
4http://www.seas.upenn.edu/ pdtb/
5http://nlp.stanford.edu/software/corenlp.shtml

Relation Positive/Negative Sentences
Train Dev Test

COMP. 1942/1942 197/986 152/894
CONT. 3342/3342 295/888 279/767
EXP. 7004/7004 671/512 574/472

TEMP. 760/760 64/1119 85/96l

Table 1: Statistics of positive and negative in-
stances in training (Train), development (Dev)
and test (Test) sets. COMP.=COMPARISON,
CONT.=CONTINGENCY, EXP.=EXPANSION and
TEMP.=TEMPORAL

d=128 and λ=1e−4. Besides, the unlabeled data
for word embedding initialization contains 1.02M
sentences with 33.5M words.

3.2 Baselines

We compared our model against the following
baseline methods:

• SVM: This method learns a support vector
machine (SVM) classifier with the labeled
data.
• TSVM: This method learns a transductive

SVM (TSVM) classifiers given the labeled
data and unlabeled data. We extracted unla-
beled data from above-mentioned 1.02M sen-
tences. After filtering the noise ones, we
finally obtained 0.11M unlabeled instances,
each of which contains only two clauses.
• RAE: This method learns a recursive autoen-

coder (RAE) classifier with the labeled data.
We first utilized standard RAEs to represent
arguments, and then stacked a Softmax layer
upon them. The hyperparameters were set as
follows: word dimension 64, balance factor
for reconstruction error 0.10282 and regular-
ization factor 1e−5. Word embeddings are
initialized via Word2Vec.

Rutherford and Xue (2014) show that Brown
cluster pair feature is very impactful in implicit
DRR (Rutherford and Xue, 2014). This feature
is superior to one-hot representation for the in-
teractions between two arguments, such as cross-
argument word pair features in our baseline meth-
ods. We therefore conducted two additional exper-
iments for comparison:

• Add-Bro: This method learns an SVM clas-
sifier using baseline system features along
with the Brown cluster pair feature.
• No-Cro: This method learns an SVM clas-

sifier on Add-Bro’s features without cross-
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Relation Model Precision Recall Accuracy MacroF1

COMP. vs Other
SVM 22.22 60.53 63.48 32.51

TSVM 20.53 66.45 57.74 31.37
Add-Bro 22.79 64.47 63.10 33.68
No-Cro 22.89 67.76 62.14 34.22

RAE 18.38 62.50 54.21 28.40
SCNN-No-Norm 21.07 54.61 63.67 30.40

SCNN 22.00 67.76 60.42 33.22

CONT. vs Other
SVM 39.70 67.03 64.05 49.87

TSVM 38.72 67.03 62.91 49.08
Add-Bro 39.14 72.40 62.62 50.82
No-Cro 39.50 74.19 62.81 51.56

RAE 37.55 68.10 61.28 48.41
SCNN-No-Norm 39.02 71.33 62.62 50.44

SCNN 39.80 75.29 63.00 52.04

EXP. vs Other
SVM 66.35 60.10 61.38 63.07

TSVM 66.48 61.15 61.76 63.70
Add-Bro 65.89 58.89 60.71 62.19
No-Cro 66.73 61.15 61.95 63.82

RAE 58.24 70.29 56.02 63.67
SCNN-No-Norm 59.39 74.39 58.03 66.05

SCNN 56.29 91.11 56.30 69.59

TEMP. vs Other
SVM 15.76 68.24 67.78 25.61

TSVM 16.26 77.65 65.68 26.88
Add-Bro 15.10 68.24 66.25 24.73
No-Cro 13.89 64.71 64.53 22.87

RAE 10.02 60.00 52.96 17.17
SCNN-No-Norm 18.26 67.06 72.94 28.71

SCNN 20.22 62.35 76.95 30.54

Table 2: Performance comparison of different systems on the test set.

argument word pair features.

In addition, to further verify the effectiveness of
normalization, we also compared against SCNN
model without normalization (SCNN-No-Norm).

Throughout our experiments, we used the
toolkit SVM-light6 (Joachims, 1999) in all the
SVM-related experiments. Following previous
work (Pitler et al., 2009; Lin et al., 2009), we
adopted the following features for baseline meth-
ods:
Bag of Words: Three binary features that check
whether a word occurs in Arg1, Arg2 and both ar-
guments.
Cross-Argument Word Pairs: We group all
words from Arg1 and Arg2 into two sets W1,W2

respectively, then extract any possible word pair
(wi, wj)(wi ∈W1, wj ∈W2) as features.
Polarity: The count of positive, negated positive,
negative and neutral words in Arg1 and Arg2 ac-
cording to the MPQA corpus (English). Their
cross products are used as features.
First-Last, First3: The first and last words of
each argument, the pair of the first words in two
arguments, the pair of the last words in two argu-
ments, and the first three words of each argument

6http://svmlight.joachims.org/

are used as features.
Production Rules: We extract all production
rules from syntactic trees of arguments. We de-
fined three binary features for each rule to check
whether this rule appear in Arg1, Arg2 and both
arguments.
Dependency Rules: We also extracted all de-
pendency rules from dependency trees of argu-
ments. Similarly, we defined three binary features
for each rule to check whether this rule appear in
Arg1, Arg2 and both arguments.

In order to collect bag of words, production
rules, dependency rules, and cross-argument word
pairs, we used a frequency cutoff of 5 to remove
rare features, following Lin et al. (2009).

3.3 Results and Analysis
All models are evaluated by assessing the accuracy
and F1 scores on account of the imbalance in test
set. Besides, for better analysis, we also provided
the precision and recall results.

Table 2 summarizes the performance of dif-
ferent models. On the whole, the F1 scores
for implicit DRR are relatively low on average:
COMP., CONT., EXP. and TEMP. about 32%,
50%, 65% and 28% respectively. This illustrates
the difficulty in implicit DRR. Although we ex-
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pected unlabeled data could obtain improvement,
we observed negative results appeared in TSVM:
COMP. and CONT. dropped 1.14% and 0.79% re-
spectively7. The F1 scores of TEMP. and EXP. are
improved (1.27% and 0.63% respectively). The
main reason may be that our unlabeled data is not
strictly from the discourse corpus.

Incorporating Brown cluster pair features en-
hances the recognition of COMP. and CONT.. Par-
ticllarly, No-Cro achieves the best result in COMP.
34.22%. But we found no consistent improve-
ment in EXP. and TEMP.: No-Cro loses 2.74% in
TEMP.; Add-Bro loses 0.88% and 2.12% in EXP.
and TEMP. respectively. This result is inconsistent
with the finding of Rutherford and Xue (2014).
The reason may lie in the training strategy, where
we used sampling to solve the problem of unbal-
anced dataset while they reweighted training sam-
ples.

Compared with SVM-based models, RAE per-
forms poorly in three relations, except EXP. which
has the largest training dataset. Maybe RAE
needs more labeled training data for better re-
sults. However, SCNN models perform remark-
ably well, producing comparable and even bet-
ter results. Without normalization, SCNN-No-
Norm gains 0.57%, 2.98% and 3.1% F1 scores for
CONT., EXP. and TEMP. respectively, but loses
2.11% for COMP.. We obtain further improvement
using SCNN with normalization: 0.71%, 2.17%,
6.52% and 4.93% for COMP., CONT., EXP. and
TEMP. respectively. This suggests that normaliza-
tion is useful for generalization of shallow models.

From Table 2, we found that our models do not
achieve consistent improvements in precision, but
benefit greatly from the gains of recall. Besides,
our model works quite well for small dataset (Both
accuracy and F1 score are improved in TEMP.).
All of these demonstrate that our model is suitable
for implicit DRR.

4 Conclusion and Future Work

In this paper, we have presented a convolutional
neural network based approach to learn better
DRR classifiers. The method is simple but effec-
tive for relation recognition. Experiment results
show that our approach achieves satisfactory per-
formance against the baseline models.

In the future, we will verify our model on other

7Without special illustration, all improvements and de-
clines are against SVM.

languages, for example, Chinese and Arabic. Be-
sides, since our model is general to classification
problems, we would like to investigate its effec-
tiveness on other similar tasks, such as sentiment
classification and movie review classification, etc.
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Senécal, Fréderic Morin, and Jean-Luc Gauvain.
2006. Neural probabilistic language models. In
Innovations in Machine Learning, pages 137–186.
Springer Berlin Heidelberg.
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Abstract

This paper presents a study on the role
of discourse markers in argumentative dis-
course. We annotated a German cor-
pus with arguments according to the com-
mon claim-premise model of argumen-
tation and performed various statistical
analyses regarding the discriminative na-
ture of discourse markers for claims and
premises. Our experiments show that
particular semantic groups of discourse
markers are indicative of either claims or
premises and constitute highly predictive
features for discriminating between them.

1 Introduction

The growing field of argumentation mining in
NLP develops methods to automatically analyze
argumentative discourse for enhanced Information
Extraction.
Terminology: We understand argumentation as a
rhetorical arrangement of arguments with the in-
tent to convince or persuade the reader of a par-
ticular state of affairs. Following previous work
in argumentation mining (e.g., (Palau and Moens,
2009; Florou et al., 2013; Peldszus and Stede,
2013a; Stab and Gurevych, 2014)), we define an
argument as the pairing of a single claim (an ar-
guable text unit) and a (possibly empty) set of
premises, which each either support or attack the
claim (Besnard and Hunter, 2008). We subsume
claims and premises under the term argument unit
(AU).
Discourse markers in argumentative discourse:
Since an argumentation line can only be captured
in the context of a coherent text, argumentation
mining is closely related to automated discourse
analysis (Cabrio et al., 2013), which aims at iden-
tifying discourse functions of text segments, and
discourse relations (DRs) between adjacent text

segments (Webber et al., 2012). Often, so-called
discourse markers (DMs) are used to signal DRs.
The following example shows that DMs act as lex-
ical markers in argumentative discourse as well:
the DM however (marking the DR contrast) po-
sitions the claim in (1) in the overall argumenta-
tion line, while in (2), the DMs as (marking rea-
son) and also (marking elaboration) connect the
premises with each other and with the claim.

(1) However, staying down is pointless
from a pedagogic point of view.

(2) As the students get frustrated, their
performance generally does not im-
prove. Also, the point of repeating all
courses because of only one or two bad
grades is arguable.

DMs belong to the word classes of conjunctions
and adverbs (also called discourse particles) and
are semantically characterized in traditional gram-
mar books. The correspondence between DM se-
mantics and DR semantics has received consid-
erable attention in previous research in linguis-
tics, most of which is based on corpora annotated
with DRs (Carlson et al., 2003; Wolf and Gibson,
2005; Prasad et al., 2008). In contrast, the role
of DMs as potential lexical signals in argumenta-
tive discourse is not well-understood, yet. While
Stab and Gurevych (2014) used DMs as features
for classifying AUs into different types, they did
not analyze the semantics of DMs with respect to
AU classification or considered different DM re-
sources.

As far as we are aware, there is no prior work
performing a detailed investigation on the role of
DMs as lexical signals for discriminating between
the two fundamental argumentative roles of AUs,
i.e., between claims and premises.
Our contribution: In this paper, we address this
gap by analyzing the role of DMs for the auto-
matic discrimination of claims and premises in a
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new dataset of argumentative texts annotated with
arguments. More specifically, we (i) present the
results of an annotation study that we performed
to annotate a German dataset of news documents
with arguments, and (ii) performed a detailed in-
vestigation of the role of DMs in our annotated
dataset which highlights correspondences between
DM semantics and semantic properties of claims
and premises, and shows that DMs are highly pre-
dictive features for automatically discriminating
premises and claims.

2 Related Work

Related to our work are prior investigations (i) on
the relationship of DMs and DRs, and (ii) on the
role of DMs in classification tasks.

2.1 Relation of DMs and DRs

Previous work on the relation between DMs and
DRs is mostly based on corpora annotated with
DRs (Wolf et al., 2004; Taboada, 2006; Prasad et
al., 2008), most notably the Penn Discourse Tree-
bank (PDTB) for English (Prasad et al., 2008).
The PDTB is annotated with DRs, such as con-
trast or result, and the corresponding DMs, even
if they were not realized in the text. For instance,
the contrast relation can be expressed by the DMs
however and but. DRs that are lexically signaled
by DMs in the text are called explicit DRs. Some
DMs are highly polysemous, e.g., while appears in
12 DRs in the PDTB.

Asr and Demberg (2013) analyzed the DMs and
their corresponding DRs annotated in the PDTB
and addressed the question, which information is
conveyed by discourse connectives in the context
of human sentence processing, i.e., how they con-
tribute in the process of inferring a particular DR.

Taboada (2006) performed a corpus-based anal-
ysis of DRs annotated in the Rhetorical Structure
Theory (RST) Discourse Treebank (Carlson et al.,
2003). The most frequent relation in the RST Dis-
course Treebank is concession, and this relation
also received particular attention in the corpus lin-
guistics literature: Taboada and Gómez-González
(2012) present a corpus-based comparative study
of DMs that express concession across English
and Spanish in different genres. A classification
of DMs signaling concession across English and
German is presented by Grote et al. (1997). They
also point out the importance of concession in ar-
gumentative discourse: DMs expressing conces-

sion are often used to introduce counter-arguments
in an argumentation line.

2.2 DMs in Classification

There is previous work in sentiment classification
and argumentation mining using DMs as features,
as well as work in predicting DMs for natural lan-
guage generation tasks, such as abstractive sum-
marization. Taboada et al. (2011) successfully em-
ployed discourse particles as features for the cal-
culation of polarity scores in automated sentiment
analysis. They focused on particles acting as in-
tensifiers, which modify the semantic intensity of
the lexical item they refer to.1 Mukherjee and
Bhattacharyya (2012) demonstrated that using dis-
course connectives as features in a system for sen-
timent classification of Twitter posts significantly
improves classification accuracy over state-of-the
art systems not considering DMs as features.

In argumentation mining, Stab and Gurevych
(2014) experimented with different types of fea-
tures, including DMs from the PDTB annota-
tion guidelines, to classify text units into the
classes non-argumentative, major claim, claim,
and premise. While the PDTB DMs appeared to
be not helpful for discriminating between argu-
mentative and non-argumentative text units, they
were useful to distinguish between the classes
premise and claim.

Patterson and Kehler (2013) describe a classi-
fication model, trained and evaluated on PDTB
data, for predicting whether or not a DR is sig-
naled by an explicit DM. The most predictive
features in their model are discourse level fea-
tures that encode dependencies between neighbor-
ing DRs given by the overall discourse structure.
Other highly predictive features turned out to be
the DMs themselves, because DMs vary as to their
rates of being realized explicitly.2

3 Annotation Study

For our study, we used a dataset of 88 documents
in German – mainly news (ca. 83% of the docu-
ments) – from seven current topics related to the
German educational system (e.g., mainstreaming,
staying down at school). The documents were
manually selected from a focused crawl and the
top 100 search engine hits per topic (Vovk, 2013).

1Amplifiers such as very increase the semantic intensity,
while downtoners such as slightly decrease it.

2In the PDTB, DMs are also given for implicit DRs.
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Figure 1: Claim-Premise scheme.

3.1 Annotation Scheme

Since argumentation theory offers a wide range of
models, we performed a pre-study on a held-out
development set to develop the annotation scheme.
We found that most arguments consisted of adja-
cent claims and premises, related by a support or
attack relation; premises and claims were rarely
nested. Therefore, we decided to use a simplified
claim-premises scheme (see Figure 1), using the
terminology set up in Section 1.

Our scheme models an argument as a linked
set of AUs and encodes the argumentative support
and attack relations by assigning an argumentative
role to non-nested (e.g., adjacent) AUs. The non-
nested structure in combination with the pre- and
post- prefixes of premises (indicating if a premise
precedes or follows the claim) makes sure that all
premises are correctly attached to their respective
claims.

For claims, we also annotated whether the
claim is a restatement. In total, we distinguish
six argumentative roles as shown in Figure 1:
claim, restatement, pre-claim support, post-claim
support, pre-claim attack and post-claim attack.
Annotators could freely select annotation bound-
aries, but we encouraged them to annotate clauses
or sentences.

In the main study, three annotators annotated
the remaining 80 documents (3 863 sentences) be-
longing to six topics. On average, each annotator
marked 1 708 AUs (53 % premises, 47 % claims)
and 783 arguments (2.2 AUs per argument). An
average claim spans 1.1 sentences, whereas an av-
erage premise spans 2.2 sentences. On average,
74 % of the tokens are covered by an AU, indicat-
ing that the documents are highly argumentative.

Ao,t κt Ao,s κs αu

all 61.0 44.2 60.9 45.2 40.2

prem. /
claims 62.7 45.1 62.6 46.3 41.7

AU /
non-AU 79.0 50.0 77.0 50.0 56.6

Table 1: Inter-annotator agreement scores (per-
centages): Ao – observed agreement, κt– token-
based kappa; κs– sentence-based kappa; αu– uni-
tized alpha.

3.2 Inter-annotator Agreement

Like in other discourse annotation tasks, there is
no straightforward way to compute inter-annotator
agreement (IAA) due to free annotation bound-
aries, see for instance (Miltsakaki et al., 2004;
Wilson and Wiebe, 2003). We selected sentence-
based kappa κs, token-based kappa κt and Krip-
pendorff’s unitized alpha αu as IAA metrics.3 The
token-based kappa κt metric treats each token as
annotation item and, thereon, calculates Fleiss’
kappa (Fleiss, 1971). The tokens are labeled with
the IOB scheme, i.e., every token is annotated as
inside an AU (I), beginning of an AU (B) or out-
side an AU (O). In contrast, Krippendorff’s uni-
tized alpha αu operates on whole annotation spans
instead of isolated tokens. For comparison, we
also calculated the observed agreementAo (token-
based and sentence-based).

Table 1 summarizes the IAA scores for three
scenarios: (i) considering all six labels and non-
AUs, (ii) only premise, claim and non-AUs, and
(iii) AUs versus non-AUs. The IAA scores are
in line with previous results: Peldszus and Stede
(2013b) report κ=38.4 % and α=42.5 % for their
sentence-level annotation study, which used artifi-
cially created documents.

4 Experiments

This section describes the experiments we per-
formed to understand the role of DMs for the
automatic discrimination of claims and premises.
Since the IAA was not substantial, we performed
all experiments on three separate datasets, one per
annotator.

3We calculated the metrics using DKPro Statistics (Meyer
et al., 2014).
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4.1 Semantically Categorized DMs
Our first set of experiments aimed at understand-
ing the correspondence of DM semantics and se-
mantic aspects of claims and premises. For this,
we used semantically characterized lists of DMs
compiled from three different sources: (i) 28 se-
mantically categorized particles from a German
grammar (Helbig and Buscha, 1996, pp. 481–
484), (ii) 51 discourse connectives based on a
manual translation of the DMs in Appendix B of
the PDTB annotation guidelines, and (iii) a large
German lexicon of about 170 DMs called DiM-
Lex4 (Stede, 2002).

First, we applied a two-sample statistical test to
find out if the two classes claim and premise are
significantly different regarding the number of oc-
currences of individual DMs and semantic groups
of DMs (based on the semantic information given
in our lists). We chose Fisher’s exact test (Fisher,
1932), a non-parametric randomization test that
makes no assumptions about the underlying prob-
ability distribution of the DMs.5 Lacking DR an-
notations, we counted surface word forms of sin-
gle word and continuous multi-word DMs in the
AUs annotated in our dataset.6 For each semanti-
cally categorized DM, we computed a contingency
table containing the number of observed occur-
rences in the two samples of claims and premises.
For each semantic group of DMs given in DiM-
Lex and PDTB, we calculated the per-group con-
tingency table by adding up the contingency tables
for each DM in that particular group.

The results of the significance tests revealed
both single DMs and semantic groups of DMs
that occur with significantly different frequency
in claims or premises. The following individual
DMs and semantic groups of DMs appeared to be
indicative for claims and premises (note that the
sentence-initial variants are counted separately):

Claims: four DMs expressing result, compari-
son, contrast:

• also (therefore), Doch (However), je-
doch (though), sondern (but), as well as the
amplifier ganz (quite);

• semantic groups of DMs from PDTB: com-
parison (expressing concession and contrast)

4
https://github.com/discourse-lab/dimlex

5We used the implementation given in http:
//stat.ethz.ch/R-manual/R-patched/library/stats/
html/fisher.test.html and a p-value of 0.05.

6Sentence initial DMs were counted separately to capture
DRs being signaled by a sentence initial position.

and result.

Premises: three DMs expressing cause, reason,
elaboration, alternative:

• Denn (As), oder (or), und (and), as well as
the downtoner etwa (roughly);

• semantic groups of DMs from PDTB: al-
ternative (e.g., or), reason (e.g., because),
and from DiMLex, the group sequence (e.g.,
then).

In the group of high-frequent but non-
indicative DMs are DMs expressing elabora-
tion (Auch (Also), Und (And), So (There-
fore)), sequence (dann (then)), and contrast
(aber/Aber (but/But)), as well as some highly am-
biguous particles (e.g., immer (always), schon (al-
ready)).

Second, we ranked the DMs according to their
Information Gain (IG) using Weka (Hall et al.,
2009). For this, we mapped each DM to a boolean
feature indicating if it is present in an AU or not.
We considered all the DMs from the three re-
sources as features and ranked them by IG sepa-
rately for each annotator. The resulting ranking
revealed additional DMs indicative for premises,
e.g. further DMs expressing elaboration and the
downtoner nur (only).

Our findings are in accordance to the ability of
a claim to act as conclusion or result of an ar-
gument, and to the role of premises as providing
support for a claim by giving reasons and elabo-
rating on them. Moreover, we found that particu-
lar intensifying discourse particles play an impor-
tant role in discriminating claims and premises:
Downtoners seem to be significant for premises,
amplifiers for claims. Finally, semantic groups of
DMs expressing concession appeared to be sig-
nificant for claims, since claims often introduce
a counter-argument in the overall argumentation
structure (Grote et al., 1997).

4.2 Classification
The significance test and the IG ranking evalu-
ated the DMs in isolation. In order to exam-
ine the predictiveness of all DMs in combination
for claims vs. premises, we used a classification
model. Given an AU, the model predicts its ar-
gumentative role, i.e., claim vs. premise. In this
experiment, we used a list of single word DMs,
extracted from the three DM resources described
above, as boolean features (DMres).
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For comparison, we used two sets of data-driven
DMs extracted from the Tiger corpus (Brants et
al., 2004), a German newspaper corpus: one set
containing the 350 most frequent conjunctions
and adverbs (DMtiger), and another set contain-
ing the 300 most frequent non-open-class words
(NOCtiger, excluding the word classes of nouns,
main verbs and adjectives).7 In addition, we con-
sidered the top 1 800 unigrams (with minimum
frequency 5) as baseline features.

We trained three Machine Learning algorithms
(Naive Bayes (NB), Random Forests (RF) and
Support Vector Machine (SVM)) on the three
datasets annotated by the annotators A1, A2 and
A3, using 10-fold cross-validation and the DKPro
TC framework (Daxenberger et al., 2014). For the
classification experiments, we used all 88 docu-
ments in the annotated corpus (including the doc-
uments from the pre-study).

Table 2 summarizes the results. All classifiers
show significant improvement compared to the
majority class baseline (MC), indicating that DMs
might be useful as predictive features for discrim-
inating claims and premises. The DMs extracted
from Tiger did not improve the performance con-
sistently for all three datasets, showing that the
coverage of the manually compiled DMs is good.
Using the NOCtiger set, however, improved the
performance by up to 4 pp., compared to DMres;
the improvement of NOCtiger over DMres is sta-
tistically significant for NB across all datasets A1
- A3 (using Fisher’s exact test and a p-value of
0.05). These results suggest that not only DMs,
but also other function words, as well as auxil-
iaries and modals, play an important role in dis-
criminating claims and premises.

While the unigram baseline also outperforms
DMres, it is on par with NOCtiger (no significant
improvement for any of NB, RF, SVM across the
three datasets), but at the cost of a much larger
feature space and a model less able to generalize
to other datasets from the news domain.

5 Summary

Our goal was to understand some of the lexical-
semantic characteristics of claims and premises
with a focus on DMs acting as lexical signals for
the argumentative role of AUs. Such insights into
the way claims and premises are signaled by lexi-

7We used DKPro Core (Eckart de Castilho and Gurevych,
2014) to pre-process Tiger.

A1 A2 A3

MC 53.04 52.05 51.71

DMres-NB 64.74 65.21 64.53
DMres-RF 64.89 63.61 63.50
DMres-SVM 68.50 66.31 67.06

DMtiger-NB 67.81 65.65 66.65
DMtiger-RF 64.65 61.12 63.44
DMtiger-SVM 70.37 65.59 67.57

NOCtiger-NB 70.86 68.80 68.87
NOCtiger-RF 67.06 64.71 65.51
NOCtiger-SVM 71.80 68.25 68.41

unigram-NB 72.79 69.69 69.60
unigram-RF 70.32 68.75 68.15
unigram-SVM 71.21 69.97 71.14

Table 2: Accuracy (percent) using different feature
sets.

cal markers can be exploited not only for the auto-
matic analysis of argumentative discourse, but also
for language generation tasks such as creating ab-
stractive summaries of argumentative documents.

We investigated the role of a large set of DMs
in argumentative discourse based on a German
dataset annotated with arguments and identified
semantic groups of DMs that are indicative of ei-
ther claims or premises. These semantic groups
also shed light on semantic aspects of claims and
premises. Our classification model shows that
DMs are important features for the discrimination
of claims and premises. In order to foster fur-
ther research on DMs in argumentative discourse,
we publicly released the annotation guidelines, as
well as the semantically categorized DM lists used
in our experiments.8
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Abstract

This paper aims to find errors that lead to
dialogue breakdowns in chat-oriented dia-
logue systems. We collected chat dialogue
data, annotated them with dialogue break-
down labels, and collected comments de-
scribing the error that led to the break-
down. By mining the comments, we first
identified error types. Then, we calculated
the correlation between an error type and
the degree of dialogue breakdown it in-
curred, quantifying its impact on dialogue
breakdown. This is the first study to quan-
titatively analyze error types and their ef-
fect in chat-oriented dialogue systems.

1 Introduction

Chat-oriented or open-domain dialogue systems
have recently been attracting attention from so-
cial and entertainment aspects (Bickmore and Cas-
sell, 2001; Banchs and Li, 2012; Wilcock and
Jokinen, 2013). However, since they need to
deal with open-domain utterances, which current
natural language processing techniques are not
mature enough to handle appropriately, the sys-
tem inevitably makes errors. This discourages
users from talking to the system, leading to di-
alogue breakdowns in conversation (Martinovsky
and Traum, 2003). Here, dialogue breakdowns de-
note points in dialogue where users are unable to
continue the conversation.

This paper aims to find errors that lead to dia-
logue breakdowns in chat-oriented dialogue sys-
tems. Our approach is two-fold: (1) identify error
types in chat-oriented dialogue systems, and (2)
calculate their impact on dialogue breakdown. For
(1), we first collect chat dialogues between an au-
tomated system and users, annotate the dialogues
with dialogue breakdown labels, and collect com-
ments that describe the error that led to the break-

downs. After that, we apply automatic cluster-
ing methods to the comments to obtain clusters of
comments, each of which corresponds to a partic-
ular error type. For (2), we calculate the correla-
tion between an error type and the degree of dia-
logue breakdown it incurs. This way, we can quan-
tify the impact of an error type on dialogue break-
down. By our approach, we hope to distinguish
fatal errors from non-fatal ones, providing useful
guidelines for dialogue system developers to avoid
breakdowns in chat-oriented dialogue systems.

2 Data Collection

For data collection, we asked dialogue researchers
and their collaborators in Japan to use our chat-
oriented dialogue system. The system is text-
based and enables chatting in Japanese. It was
built by wrapping a chat API provided by NTT
DOCOMO (Onishi and Yoshimura, 2014). Since
the API works on the basis of (Higashinaka et al.,
2014), which uses a number of natural language
processing techniques to understand and generate
utterances, we expected to obtain a wide variety of
dialogues, and hence, a variety of errors.

A total of 116 users chatted with the system, re-
sulting in 1,146 dialogues. Here, each dialogue
was controlled to be 21 utterances long: one sys-
tem prompt with ten utterances each from the
user and system. Then, we randomly sampled
100 dialogues (called the init100 data set) for di-
alogue breakdown annotation. Twenty-four anno-
tators subjectively labeled each system utterance
in init100 with one of the following three dialogue
breakdown labels:

(NB) Not a breakdown: The conversation is
easy to continue after the system utterance in
question.

(PB) Possible breakdown: The conversation is
difficult to continue smoothly after the sys-
tem utterance in question.
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Utterance NB PB B C Comments
S0 Hello! Talk to me anytime. 24 0 0 0
U1 It’s hot today, isn’t it?
S1 Please tell me your favorite movie

genre.
20 2 2 2 User utterance is not considered. / The system ig-

nored user’s intended topic.
U2 I like action movies.
S2 Action movies, I like them. 21 3 0 0
U3 What kind of movies do you like?
S3 I like Japanese ones. 23 1 0 0
U4 That’s great.
S4 Thank you. 24 0 0 0
U5 Do you know what movie will be

aired on Friday night?
S5 Yes, yes. 4 11 9 4 The system did not mention a movie name. / It

answered only “yes” but without saying a movie
name. / This is not an answer to the question. /
The conversation is not valid.

U6 I haven’t heard of that movie.
S6 That’s good. 3 10 11 4 This is not a response to a question. / Strange an-

swer. / It is not clear what is good. / The conversa-
tion is not valid.

U7 Oh, is it good? I will watch it then.
S7 That’s good! 18 3 3 1 It is not clear what is good.
U8 Recently, I have had lots of free

time.
S8 That’s great. 15 7 2 0
U9 Are you busy?
S9 Indeed so. 24 0 0 0

U10 Take care. Have some rest.
S10 I see. 10 9 5 2 The system should thank the user. / Strange answer.

Figure 1: Example dialogue with the number of breakdown labels for each system utterance. S and U
stand for system and user utterances, respectively. C stands for the number of comments provided. The
dialogue was originally in Japanese and was translated by the authors.

(B) Breakdown: The conversation is difficult to
continue at all after the system utterance in
question.

The annotators were instructed to provide volun-
tary comments to describe the errors that led to the
breakdowns. Table 1 shows the statistics of the di-
alogue breakdown labels and comments. Figure
1 shows an example dialogue with the number of
breakdown labels and comments for each system
utterance. In this example, S5 and S6 were anno-
tated with nine and eleven breakdown labels, re-
spectively, both having four comments.

The inter-annotator agreement of dialogue
breakdown annotation in Fleiss’ kappa was 0.276,
which seems relatively low. One reason for this
is obviously the subjective nature of the task. An-
other possible reason is that we intentionally did
not set rigid guidelines for dialogue breakdown
annotation so as to explore possible error types in
chat-oriented dialogue systems. When we merge
PB and B and make it a two-class annotation, the
agreement becomes 0.396 (moderate agreement),
showing that the subjects share some common
conception about dialogue breakdown.

Breakdown label # of labels # of comments
NB 14,212 57
PB 5,322 1,818
B 4,466 1,511

Table 1: Statistics related to breakdown labels and
comments in init100 data set. Note that NB also
had some opinions as comments.

3 Analysis

3.1 Automatic clustering of comments

We first need to identify the error types in chat-
oriented dialogue systems. For this, we applied
an automatic clustering method to the comments
to obtain clusters of comments. Our idea is that,
since each comment describes a particular error
that led to a breakdown, a cluster of comments is
likely to represent an error type. Since the num-
ber of clusters is difficult to know in advance, we
turn to a non-parametric Bayesian method called
the Chinese restaurant process (CRP) as a cluster-
ing method. CRP can infer the number of clusters
automatically from data (Pitman, 1995).

We applied CRP to the 1,511 comments given
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ID Size Interpretation Representative words in the cluster
2 259 General quality dialogue, well-formed, consideration, conversation
0 194 Not understandable understand, meaning, what
6 148 Ignore user utterance ignore, user, utterance
7 134 Ignore user question answer, question, partner, respond
1 113 Unclear intention unclear, intention, meaning, utterance
8 107 Contradiction doubtful, change, negative (as opposed to positive), previous

16 100 Analysis failure analysis, recognition, related, understand
4 95 Inappropriate answer response, inappropriate, invalid, answer
5 77 Repetition say, add, mind, strange, tired
3 54 Grammatical error (words specific to particular grammar usage)

14 53 Expression error (words specific to particular expressions)
11 39 Topic-change error change, topic, sudden, mismatch, response
12 38 Violation of common sense match, flow, common sense, against, connection
13 36 Word usage error (words specific to particular word usage)
10 35 Diversion story, different
15 25 Mismatch in conversation match, story

9 4 Social error (no words)

Table 2: Clusters by CRP of 1,511 comments given to breakdowns. The clusters are ordered by size.

to breakdown labels (B labels). For the clustering,
we used the same procedure as (Higashinaka et al.,
2011); each datum (comment) was represented by
a word frequency vector, and the probability that
it belonged to a particular cluster was calculated
by using the likelihood that the words are gener-
ated from the word distribution of that cluster. The
hyper-parameters α and β were both set to 0.1 and
the number of iterations for Gibbs sampling was
10,000. See (Higashinaka et al., 2011) for the de-
tails of the procedure.

Table 2 shows the clustering results. We ob-
tained 17 clusters. For each cluster, we mined
representative words by a log-likelihood ratio test,
which uses a two-by-two matrix to test the inde-
pendence of a word to a particular cluster. By
looking at the representative words and also the
raw comments, we came up with the interpreta-
tions of the clusters as indicated in the table. Al-
though we do not go into the details of the clus-
ters one by one, each cluster seems to success-
fully represent a certain error type in chat-oriented
dialogue systems. We also applied CRP to the
3,329 comments given to PB and B to obtain sim-
ilar clusters except that we additionally had clus-
ters whose interpretations are as follows: inability
to handle invalid user input, missing topic, miss-
ing information, mismatch in response, no reac-
tion, and no information. They account for about
13.3% of the comments and mostly concern miss-
ing elements (such as missing arguments) in dia-

logue. Since such missing elements can be com-
plemented by follow-on utterances in dialogue,
they only appear in the comments for PB; they do
not lead to an immediate dialogue breakdown.

To further categorize the clusters, we applied a
hierarchical clustering (an agglomerative cluster-
ing) to the clusters. Here, a cluster was represented
by the word frequency vector of all comments con-
tained in the cluster, and the similarity of the clus-
ters was calculated by cosine similarity of word
frequency vectors. For the linkage criterion, we
used Ward’s method. Figure 2 shows the cluster-
ing results. The figure indicates that there are the
following eight main error categories (E1–E8):

(E1) Clusters 2 and 16 concern the general ability
of a system.

(E2) Clusters 7, 5, and 8 relate to context aware-
ness: the ability to recognize when it is asked
a question and to recognize what has been
said before.

(E3) Clusters 13, 3, and 14 concern the language
generation (surface realization) ability.

(E4) Clusters 4 and 6 concern the response abil-
ity: the ability to answer questions and to cre-
ate utterances relevant to the previous user ut-
terance.

(E5) Cluster 1 relates to the exhibition of an in-
tention or a plan: the ability to make clear the
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2:General quality (259)

16:Analysis failure (100)

7:Ignore user question (134)

5:Repetition (77)

8:Contradiction (107)

13:Word usage error (36)

3:Grammatical error (54)

14:Expression error (53)

4:Inappropriate answer (95)

6:Ignore user utterance (148)

1:Unclear intention (113)

9:Social error (4)

12:Violation of common sense (38)

0:Not understandable (194)

15:Mismatch in conversation (25)

10:Diversion (35)

11:Topic−change error (39)

0.0 0.4 0.8 1.2

Figure 2: Hierarchical clustering applied to the ob-
tained clusters. The numbers in parentheses de-
note cluster size.

purpose of an utterance.

(E6) Clusters 9 and 12 relate to the social ability:
the ability not to offend users or say things
that are not socially acceptable.

(E7) Clusters 0 and 15 concern the understand-
ability of an utterance: the ability to gener-
ate utterances that have clear meanings in the
context of the conversation.

(E8) Clusters 10 and 11 relate to the awareness of
current topics.

3.2 Analyzing the impact of error types
Having identified the error types and error cate-
gories, we investigated their impact on dialogue
breakdown. For this purpose, we examined the
correlation between an error type and its degree
of breakdown: the higher the correlation, the more
it is related to dialogue breakdown. Specifically,
we calculated the correlation ratio (η) between the
existence of a comment belonging to a particular
cluster (error type) and the number of breakdown
labels (B labels). Note that the correlation ratio

ID Interpretation Cat η

0 Not understandable E7 0.38
7 Ignore user question E2 0.37
2 General quality E1 0.36
1 Unclear intention E5 0.36
6 Ignore user utterance E4 0.24

13 Word usage error E3 0.18
16 Analysis failure E1 0.17

4 Inappropriate answer E4 0.17
3 Grammatical error E3 0.15

12 Violation of common sense E6 0.15
8 Contradiction E2 0.14
5 Repetition E2 0.11
9 Social error E6 0.10

10 Diversion E8 0.09
11 Topic-change error E8 0.06
15 Mismatch in conversation E7 0.06
14 Expression error E3 0.02

Table 3: Correlation ratio (η) between the exis-
tence of a comment of a cluster (error type) and
the number of breakdown labels. “Cat” denotes
the error category of an error type.

is equivalent to Pearson’s correlation coefficient
except that it can be applied to categorical data.
The η ranges from 0 to 1. For calculation, we first
extracted data that had one or more B labels and
one or more corresponding comments (we had 556
such samples in our data). Then, we calculated the
correlation ratios.

Table 3 shows the correlation ratios for the er-
ror types. Clearly, not all error types have the
same level of correlation. At the top of the ta-
ble, there are four salient error types with similar η
values: “Not understandable”, “Ignore user ques-
tion”, “General quality”, and “Unclear intention”.
Putting aside “General quality”, which seems to
concern the overall dialogue ability, the error types
that we need to consider as fatal would seem to be
the other three. Other errors seem to be less im-
portant with lower η values. “Expression error”,
which concerns the use of unnatural expressions,
was found the least important.

When we look at the error categories, we can
see an interesting result that it is NOT the error cat-
egory that determines the fatality of errors but the
specificity of error types. For example, “Not un-
derstandable” and “Mismatch in conversation” are
both under error category E7 but have totally dif-
ferent effects on perceived breakdown. The same
can be said for error types in E2.
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Note that, although the values of correlation ra-
tio seem rather low, the correlation often becomes
low when it comes to subjective judgments (Hi-
gashinaka et al., 2004). Considering that we deal
with chat-oriented dialogues, which are less re-
stricted than task-oriented ones, we consider the
current values of correlation ratio to be accept-
able. Here, the important finding is that several
error types are comparatively more important than
the others.

4 Related work

Few studies have analyzed breakdowns in conver-
sation. One exception is the study by Martinovsky
and Traum (2003), who discussed possible causes
of breakdowns they observed. Our work is differ-
ent in that we systematically identify error types
and quantitatively evaluate their effect. Our work
can be seen as listing up errors in dialogue sys-
tems. A number of studies have aimed to create a
taxonomy of errors (Bernsen et al., 1996; Möller,
2002; Paek, 2003), but their taxonomies are cre-
ated manually and focus on task-oriented dialogue
systems.

5 Summary and future work

By processing dialogue data with dialogue break-
down annotations and comments, this paper iden-
tified 17 error types that can be further categorized
into eight error categories. By calculating corre-
lation ratios, we discovered three error types that
can be fatal: “Not understandable”, “Ignore user
question”, and “Unclear intention”. To avoid dia-
logue breakdowns, it is suggested that we need to
make clear the meanings of system utterances, not
ignore user questions, and show some intention
behind system utterances. The findings will be
useful for dialogue system developers who want
to realize smooth human-machine interaction in
chat-oriented dialogue systems and possibly in di-
alogue design as a whole.

For future work, we plan to consider ways to
improve systems on the basis of our findings and
also verify the generality of the results on data
using other systems. To accurately detect dia-
logue breakdowns, dialogue systems researchers
will need to collaborate. To this end, we are plan-
ning to organize an evaluation workshop on dia-
logue breakdown detection. For use in the eval-
uation workshop as well as in dialogue research
in general, we have released our data with all the

annotations and comments to the public.1
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Abstract

If intelligent systems are to interact with
humans in a natural manner, the ability
to describe daily life activities is impor-
tant. To achieve this, sensing human ac-
tivities by capturing multimodal informa-
tion is necessary. In this study, we con-
sider a smart environment for sensing ac-
tivities with respect to realistic scenarios.
We next propose a sentence generation
system from observed multimodal infor-
mation in a bottom up manner using mul-
tilayered multimodal latent Dirichlet allo-
cation and Bayesian hidden Markov mod-
els. We evaluate the grammar learning and
sentence generation as a complete process
within a realistic setting. The experimen-
tal result reveals the effectiveness of the
proposed method.

1 Introduction

Describing daily life activities is an important abil-
ity of intelligent systems. In fact, we can use
this ability to achieve a monitoring system that
is able to report on an observed situation, or cre-
ate an automatic diary of a user. Recently, sev-
eral studies have been performed to generate sen-
tences that describe images using Deep Learning
(Vinyals et al., 2014; Fang et al., 2014; Donahue
et al., 2014; Kiros et al., 2015). Although these
results were good, we are interested in unsuper-
vised frameworks. This is necessary to achieve
a system that can adapt to the user, that is, one
that can learn a user-unique language and gener-
ate it automatically. Moreover, the use of crowd-
sourcing should be avoided to respect the privacy

of the user. Regarding this, studies on sentence
generation from RGB videos have been discussed
in (Yu and Siskind, 2013; Regneri et al., 2013).
A promising result for language learning has been
shown in (Yu and Siskind, 2013) and a quite chal-
lenging effort to describe cooking activities was
made in (Regneri et al., 2013). However, these
studies rely only on visual information, while we
aim to build a system that is able to describe every-
day activities using multimodal information. To
realize such systems, we need to consider two
problems. The first problem is the sensing of daily
life activities. In this paper, we utilize a smart
house (Motooka et al., 2010) for sensing human
activities. Thanks to the smart house, multimodal
information such as visual, motion, and audio data
can be captured. The second problem to be tack-
led is verbalization of the observed scenes. To
solve this problem, a multilayered multimodal la-
tent Dirichlet allocation (mMLDA) was proposed
in (Attamimi et al., 2014).

In this paper, we propose a sentence generation
system from observed scenes in a bottom up man-
ner using mMLDA and a Bayesian hidden Markov
model (BHMM) (Goldwater and Griffiths, 2007).
To generate sentences from scenes, we need to
consider the words that represent the scenes and
their order. Here, mMLDA is used to infer words
for given scenes. To determine the order of words,
inspired by (Kawai et al., 2014), a probabilis-
tic grammar that considers syntactic information
is learned using BHMM. In this study, the order
of concepts is generated by sampling the learned
grammar. The word selection for each generated
concept is then performed using the observed data.
Moreover, a language model that represents the re-
lationship between words is also used to calculate
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Figure 2: Multimodal information acquisition.

the transition probability between them. Consid-
ering the transition probability at word level, a lat-
tice of word candidates corresponding to the con-
cept sequence can be generated. Therefore, sen-
tence generation can be thought of as a problem
of finding the word sequence that has the high-
est probability from the lattice of word candidates,
which can be solved by the Viterbi algorithm. Fi-
nally, sampling from grammar is performed mul-
tiple times to generate sentence candidates and se-
lect the most probable one.

2 Proposed method

2.1 Overview

Figure 1 illustrates the overall system of proposed
language learning and sentence generation. In
this study, we use a smart environment for sens-
ing multimodal information. The system shown in
Figure 2 is part of a smart house (Motooka et al.,
2010) that is used to capture multimodal informa-
tion. Here, an RFID tag is attached to an object

Integrated Concept

Motion Concept

Angle

Object Concept

Position WordWordWord

Place Concept

Object

Figure 3: Graphical model of mMLDA.

to enable the object information to be read using a
wearable tag reader. To capture motion, five sen-
sors that consist of 3-axis acceleration with 3-axis
gyroscope sensors are attached to the upper body,
as shown in Figure 2. Moreover, a particle filter-
based human tracker (Glas et al., 2007) applied
to four laser range finders is used to estimate the
location of a person while performing an action.
This is a setup designed to demonstrate that lan-
guage can be learned and generated from real hu-
man actions. Ultimately, our goal is sensing based
on image recognition.

The acquired multimodal data is then processed,
which results in a bag-of-words model (BoW) and
bag-of-features model (BoF) (Csurka et al., 2004).
Using mMLDA (see section 2.2), various concepts
can be formed from the multimodal data. Given
teaching sentences, the connection between words
and concepts can be learned based on mMLDA
and BHMM which is learned with mutual infor-
mation (MI) as the initial value. On the other hand,
the bigram model of words is calculated and used
as the score when reordering words inferred from
multimodal information using grammar. A mor-
phological analyzer for parsing words in a sen-
tence is also necessary in the proposed system. We
use publicly available parser MeCab (Kudo et al.,
2004). In the future, we plan to use the unsuper-
vised morphological analysis technique proposed
in (Mochihashi et al., 2009).

2.2 mMLDA

Figure 3 shows the graphical model of
mMLDA used in this paper. Here, z repre-
sents the integrated category (concept), whereas
zO, zM , and zP represent the object, mo-
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tion, and place concepts, respectively. In
the bottom layer (lower panel of Figure 3),
wm ∈ {wo, wwO, wa, wwM , wl, wwP } represents
the multimodal information obtained from each
object, motion, and place. Here, wo, wa, and wl

denote multimodal information obtained respec-
tively from the object used in an action, motion of
a person while using the object, and location of
the action. Further, wwC ∈ {wwO, wwM , wwP }
denotes word information obtained from teaching
sentences. Observation information is acquired
by using the system shown in Figure 2. A brief
explanation of each observation is as follows.

For object information, an No-dimensional vec-
tor wo = (o1, o2, · · · , oNo) is used, where No de-
notes the number of objects. In this vector, o∗
takes a value of 0 or 1, where oi is set to 1 if an
object with index i is observed. Moreover, all of
the teaching sentences are segmented into words
and represented by a BoW as word information.
Here, motion is segmented according to the ob-
ject used. A sequence of 15-dimensional feature
vectors for each motion is acquired. Using BoF,
the acquired feature vectors are vector quantized,
resulting in a 70-dimensional vector. The acquired
two dimensional of human positions are processed
using BoF to construct a 10-dimensional vector as
place information.

In mMLDA, latent variables that represent up-
per and lower concepts z and zC ∈ {zO, zM , zP }
are learned simultaneously. Gibbs sampling is ap-
plied to the marginalized posterior probability of
latent variables to learn the model from observed
data wm (Attamimi et al., 2014).

2.3 Language learning and generation

2.3.1 Word inference
In this study, word information is obtained from
teaching sentences and employed for all concepts,
as shown in Figure 3. Considering that appropriate

words to express each concept exist, a criterion to
measure the correlation between words and con-
cepts is needed. At the start of grammar learn-
ing, MI, which can measure the mutual depen-
dence of two stochastic variables, is used. There-
fore, a word is considered to express a category
when the MI between the word and category is
large. On the other hand, a word with small MI
is identified as a functional word. This determi-
nation is used as an initial value in the syntac-
tic learning and needs not be strictly determined.
Once the grammar is learned, we can utilize
BHMM’s parameters P (ww|c) to infer a word ww

from observed data wm
obs as P̂ (wwC |wm

obs, c) ∝
maxk P (wwC |c)P (wwC |k)P (k|wm

obs, c), where
P (wwC |k) and P (k|wm

obs, c) can be estimated
from mMLDA (Attamimi et al., 2014) and k is
category of concept c′ ∈ {object,motion, place}
and c ∈ {c′, functional}. It should be note
that P (wwC |k) and P (k|wm

obs, c) are considered
as uniform distribution for “functional” since
they cannot be inferred from observed data using
mMLDA. In this case, we can rely on syntactic in-
formation which is learned by BHMM.

2.3.2 Grammar learning using BHMM

Thanks to mMLDA and BHMM, appropriate
words to represent the observed information can
be inferred. Given an input consisting of a teach-
ing sentence of a sequence of words, a BHMM
can infer a sequence of concepts. In the learning
phase, the MI results of concept selection for each
word are used as the initial values of the BHMM.
Here, grammar is defined as the concept transi-
tion probability P (Ct|Ct−1), which is estimated
using Gibbs sampling, where Ct ∈ c represents
the corresponding concepts of the t-th word in the
sentence. In addition, a language model that rep-
resent the bigram model of words in the teaching
sentences is also used for generating sentences.

Motion Object Place Motion Object Place Motion Object Place
Drink (1) Juice (1) Sofa (1) Wipe (7) Dustcloth (9) Kitchen (4) Write on (12) Notebook (16) Bedroom (5)

Tea (4) Dining room (2) Tissue (10) Dining room (2) Textbook (17) Sofa (1)
Eat (2) Cookies (2) Dining room (2) Turn on (8) Remote control Living room (3) Refrigerator (18) Kitchen (4)

Chocolate (3) Living room (3) (air conditioner) (11) Bedroom (5) Open (13) Microwave (19) Kitchen (4)
Shake (3) Tea (4) Sofa (1) Open (turn) (9) Tea (4) Living room (3) Closet (20) Bedroom (5)

Dressing (5) Kitchen (4) Honey (6) Dining room (2) Read (14) Textbook (17) Bedroom (5)
Pour (4) Tea (4) Kitchen (4) Wrap (10) Plastic wrap (12) Dining room (2) Magazine (21) Sofa (1)

Juice (1) Living room (3) Aluminum foil (13) Kitchen (4) Spray (15) Deodorizer (22) Living room (3)
Put on (5) Dressing (5) Dining room (2) Shirt (14) Bedroom (5) Bedroom (5)

Honey (6) Kitchen (4) Hang (11) Scourer (23) Kitchen (4)
Throw (6) Ball (7) Sofa (1) Parka (15) Living room (3) Scrub (16) Sponge (24) Kitchen (4)

Plushie (8) Bedroom (5)

Table 1: Object, motion, and place correspondences (numbers in parentheses represent the category
index).
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Eating the cookies in the dining room.

B: {dining room, with, cookies, the, eat, eat}

G: {sofa, on, ball, the, throw}

P: {sofa, on, ball, the, throw}

Throwing the ball on the sofa.
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Hanging the parka in the living room.
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Figure 4: Examples of: (a) actual images, (b) captured multimodal information, and (c) generated sen-
tences. In each image, B, P, and G indicate the sentence structure in Japanese grammar generated by the
baseline method, proposed method, and correct sentence, respectively; whereas the bottom line gives the
meaning of the generated sentence. Words marked in red have been incorrectly generated.

2.3.3 Sentence generation of observed scenes
First, concepts are sampled from the begin of sen-
tence “BOS” until the end of sentence “EOS” ac-
cording to the learned grammar N times. Let
the n-th (n ∈ {1, 2, · · · , N}) sequence of con-
cepts that excludes “BOS” and “EOS” be Cn =
{Cn

1 , · · · , Cn
t , · · · , Cn

Tn
}, where, Tn denotes the

number of sampled concepts, which corresponds
to the length of a sampled sentence.

Next, the word that corresponds to concept Cn
t

is estimated. Here, for a given observed infor-
mation wm

obs, the top-K words that correspond to
concept Cn

t and have high probabilities wn
t =

{wn
t1, w

n
t2, · · · , wn

tK} are used. Hence, the set of
all words for a sequence of concepts Cn can be
written as W n = {wn

1 , wn
2 , · · · , wn

Tn
}. There-

fore, KTn number of patterns for a candidate of
the sentence can be considered for Cn and the cor-
responding words W n. Each candidate for sen-
tence Sn is selected from these patterns and has
the following probability:

P (Sn|Cn,W n, wm
obs) ∝∏

t

P (Cn
t |Cn

t−1)P (wn
t |wm

obs, C
n
t )P (wn

t |wn
t−1). (1)

For observed information, the most probable sen-
tence is selected from N sequences of concepts
with sets of words. Here, the sentence Ŝn that
maximizes Eq. (1) is determined for each se-
quence of concepts. Because many patterns of
Sn exist, the Viterbi algorithm is applied to cut
the computational cost and determine the most
probable sentence. Thus, a set of sentences that
consists of sentences with the highest probability

for each sequence of concepts can be written as
Ŝ = {Ŝ1, · · · , Ŝn, · · · , ŜN}.

We can select the final sentence from Ŝ by con-
sidering the most probable candidate. In fact,
long sentences tend to have low probability and
are less likely to be selected. To cope with
this problem, adjustment coefficient ℓ(Ŝn) =
(Lmax−LŜn )∑N

n L
Ŝn

∑N
n log P (Ŝn|Cn,W n,wm

obs) is in-

troduced, where, LŜn denotes the length of sen-
tence Ŝn and Lmax represents the maximum
value of the sentence length in Ŝ. Using ℓ(Ŝn),
the logarithmic probability of the sentence can
be calculated as log P̄ (Ŝn|Cn, W n, wm

obs) =
log P (Ŝn|Cn, W n, wm

obs) + ωℓ(Ŝn), where ω
is a weight that controls the length of sen-
tences. A large weight leads to longer sen-
tences. The final sentence S is determined as
S = argmax

Ŝn∈ ˆS
log P̄ (Ŝn|Cn, W n, wm

obs).

3 Experiments

The acquisition system shown in Figure 2 was
used to capture multimodal information from hu-
man actions. Table 1 shows the actions that were
performed by three subjects twice, resulting in a
total of 195 multimodal data with 1170 sentences.
We then divided the data into training data (99
multimodal data with 594 sentences) and test data
(96 multimodal data with 576 sentences). Some
examples of acquired multimodal data are shown
in Figure 4(b). Using training data, various con-
cepts were formed by mMLDA, and the catego-
rization accuracies for object, motion, and place
were respectively 100.00%, 52.53%, and 95.96%.
Motion similarity was responsible for the false cat-
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♯ of words Baseline Proposed
w/o functional words 78 65.38% 73.08%
w functional words 98 – 68.37%

Table 2: Concepts selection results.

egorization of motion concepts. Since our goal is
to generate sentences from observed scenes, these
results are used as reference instead of comparing
with the baseline.

To evaluate the concept selection of words, 98
words in teaching sentences were used. We com-
pared the results of concept selection with hand-
labeled ones. Table 2 shows the accuracy rate of
concept selection. Here, we excluded the func-
tional words (resulting in 78 words) for fair com-
parison with the baseline method (Attamimi et
al., 2014). One can see that, better results can
be achieved by the proposed method. It is clear
that concept selection is improved by using the
BHMM, indicating that a better grammar can be
learned using this model.

Next, the learned grammar was used and sen-
tences were generated. To reduce randomness of
the results, sentence generation was conducted 10
times for each data. To verify sentence gener-
ation quantitatively, we evaluated the sentences
automatically using BLEU score (Papineni et al.,
2002). Figure 5 depicts the results of 2- to 4-gram
of BLEU scores. Since functional words are not
considered in (Attamimi et al., 2014), we used our
grammar and performed sentence generation pro-
posed in (Attamimi et al., 2014) as the baseline
method. One can see from the figure that in all
cases the BLEU scores of proposed method out
performs the baseline method. It can be said that
the sentences generated by the proposed method
are of better quality than those generated by the
baseline method.

Moreover, we also manually evaluated gener-
ated sentences by asking four subjects (i.e., col-
lege students who understand Japanese) whether
the sentences were: correct both in grammar and
meaning (E1), grammatically correct but incorrect
in meaning (E2), grammatically incorrect but cor-
rect in meaning (E3), or incorrect both in grammar
and meaning (E4). The average rates of E1, E2,
E3, and E4 were shown in Table 3. We can see
that the proposed method out performs the base-
line method by providing high rates of E1 and E2;
and low rates of E4. Because we want to generate
sentences that explain actions, incorrect motion in-

Grammar Meaning Baseline Proposed
E1 correct correct (23.21 ± 5.28)% (45.39 ± 3.02)%
E2 correct incorrect (35.07 ± 9.32)% (49.79 ± 3.77)%
E3 incorrect correct (11.34 ± 5.59)% (2.79 ± 2.39)%
E4 incorrect incorrect (30.38 ± 10.54)% (2.03 ± 2.10)%

Table 3: Evaluation results of generated sentences.

0
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Figure 5: BLEU scores of generated sentences.

ference would lead to incorrect sentence genera-
tion. Examples of E2 are “Eating the plastic wrap
in the dining room” and “Opening the dressing in
the kitchen.” One can see that these sentences
are grammatically correct but do not express the
scenes correctly because the words that represent
the motion are incorrect. Hence, the misclassi-
fication that occurred in the motion concept for-
mation was responsible for the incorrect meaning
of the generated sentences. Figure 4(c) shows the
sentences generated from the given scenes (Fig-
ure 4(a)). We can see that meaningful yet natural
sentences that explain the observed scenes can be
generated using the proposed method.

4 Conclusion

In this paper, we proposed an unsupervised
method to generate natural sentences from ob-
served scenes in a smart environment using
mMLDA and BHMM. In the smart environment,
multimodal information can be acquired for real-
istic scenarios. Thanks to mMLDA, various con-
cepts can be formed and an initial determination of
functional words can be made by assuming a weak
connection of concepts and words calculated by
MI. The possibility that grammar can be learned
from BHMM by considering the syntactic infor-
mation has also been shown. We conducted exper-
iments to verify the proposed sentence generation,
and promising preliminary results were obtained.
In future work, we aim to implement a nonpara-
metric Bayes model that will be able to estimate
the number of concepts automatically.
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Abstract

We present a method of using cohesion to
improve discourse element identification
for sentences in student essays. New fea-
tures for each sentence are derived by con-
sidering its relations to global and local
cohesion, which are created by means of
cohesive resources and subtopic coverage.
In our experiments, we obtain significant
improvements on identifying all discourse
elements, especially of +5% F1 score on
thesis and main idea. The analysis shows
that global cohesion can better capture the-
sis statements.

1 Introduction

Automatic discourse analysis of student essays
can benefit many downstream applications such
as essay rating, text organization assessment and
writing instruction. In this paper we focus on iden-
tifying discourse elements for sentences in persua-
sive essays written by Chinese high school stu-
dents. Discourse elements represent the contribu-
tions that sentences can make to text organization.
Typical discourse elements and their functions in
persuasive writing are summarized in Table 1.

Previous work mainly exploits the properties of
a sentence itself or adjacent sentences for this task.
In this work, we explore cohesion to express re-
lations among sentences through the whole text.
Cohesion can be defined as a set of resources link-
ing within a text that organize the text together
(Halliday and Hasan, 1976). It can be achieved
through the use of reference, ellipsis, substitution,
conjunction and lexical cohesion. Among them,
lexical cohesion has been widely used for mod-
eling local coherence and applied to related ap-
plications (Barzilay and Elhadad, 1999; Barzilay
and Lapata, 2008; Galley et al., 2003; Hsueh et al.,
2006; Filippova and Strube, 2006). Since cohesion

Element Definition

Introduction (I) introduces the background and/or
grabs readers’ attention

Prompt (P) restates or summarize the prompt

Thesis (T) states the author’s main claim on the
issue for which he/she is arguing

Main idea (M) asserts foundational ideas or aspects
that are related to the thesis

Supporting
idea (S)

provides evidence to explain or
support the thesis and main ideas

Conclusion (C) concludes the whole essay or one of
the main ideas

Other (O) doesn’t fit into the above elements or
makes no meaningful contribution

Table 1: Definitions of discourse elements.

is closely related to the structure of text (Morris
and Hirst, 1991), it motivates us to explore similar
techniques for discourse element identification. In
addition, its ease of implementation is also attrac-
tive. Other options for representing text structure
such as full-text discourse parsers (Marcu, 2000)
may be not available or don’t have satisfied per-
formance, especially for non-English languages.

However, modeling local coherence alone is not
adequate to distinguish discourse elements in per-
suasive essays. For example, a main idea may be
followed by a supporting idea sentence. The two
sentences can be coherent but their discourse ele-
ments are different. To deal with this, global cohe-
sion should be exploited. Considering that in per-
suasive writing, thesis, main ideas and conclusion,
which are termed thesis statements by Burstein
et al. (2001), are expected to relate to each other
(Higgins et al., 2004). It is likely that cohesive re-
lations exist among them through the whole text.

We make a focused contribution by investigat-
ing global and local cohesive relations. We create
sentence chains based on cohesive resources and
examine whether the chains represent global co-
hesion or local cohesion. Our hypothesis is that
global cohesion can better capture thesis state-
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Corpus #Essays Avg.#paras Avg.#sents Element distributions Kappa
I P T M S C O

C1 367 7.4 22.7 0.077 0.080 0.087 0.135 0.514 0.095 0.008 0.94
C2 346 7.8 22.5 0.070 0.027 0.069 0.181 0.530 0.114 0.006 0.93
C3 197 9.1 27.7 0.082 − 0.045 0.187 0.571 0.106 0.007 0.91

Avg. 303 7.9 23.7 0.077 0.053 0.067 0.169 0.538 0.105 0.007 0.93

Table 2: Basic statistics of the annotated corpora. Para and sent are short for paragraph and sentence.

ments and help distinguishing them from over-
whelming supporting idea sentences. Experi-
ments were conducted on essays written by Chi-
nese high school students in the mother tongue.
The results confirm our hypothesis. Our method
achieves significant improvements of +%5 F1
score on thesis and main idea sentences by adding
cohesion features. The features related to global
cohesion are most discriminative.

2 Data Annotation

We mainly use the discourse elements defined by
Burstein et al. (2003b) except for adding a prompt
element. The discourse element definitions are
listed in Table 1. We asked two labelers from the
college of liberal art of a university to conduct data
annotation. Provided a detail manual with element
definitions, explanations and examples, the label-
ers assigned a discourse element to each sentence.

We collected three corpora, two of which (C1
and C2) are prompt-directed and one (C3) is
prompt-free. All essays were written by Chinese
high school students in Chinese. The prompt-
directed essays are samples of essays written by
senior high school students when they were tak-
ing a mock examination. The students were re-
quired to write a pervasive essay related to a given
prompt. The prompts of corpora C1 and C2 are
different. The prompt-free essays in C3 were
crawled from an online writing assistance website,
where the essays were used as writing examples
of persuasive essays written by high school stu-
dents. The average essay lengths on three corpora
are 795, 772 and 864 Chinese characters respec-
tively. The other basic statistics of the annotated
corpora are listed in Table 2.

During annotation, the labelers found cases of
difficulties about ambiguous elements. For exam-
ple, content about the prompt and the main thesis
can be mentioned in the same sentence. In such
cases, thesis statements have priority over other el-
ements to be labeled, since identifying thesis state-

ments is more important for some potential appli-
cations (Burstein et al., 2001).

From each corpus, 100 essays were labeled by
both annotators for computing agreements, and
the others were labeled independently. The label
agreements measured with Kappa (Cohen et al.,
1960) are high as shown in Table 2. The disagree-
ments were resolved by discussion. The distri-
butions of discourse elements are also shown in
Table 2. We can see that they are imbalanced.
The supporting idea sentences account for more
than 53%, while the thesis statements account
for only 34% in total. As a result, the distinc-
tion between minority thesis statements from over-
whelming supporting idea sentences is a major
challenge.

3 Discourse Element Identification

Identifying discourse elements in student essays
can be seen as a functional segmentation of dis-
course (Webber et al., 2011). In this work, we fo-
cus on utilizing supervised feature-based machine
learning models for this task.

3.1 Learning Models

Discourse element identification can be casted
as a classification problem that sentences are
classified independently using a classifier, e.g.
naive Bayes (Burstein et al., 2001), decision tree
(Burstein et al., 2003b) and Support Vector Ma-
chines (SVMs) (Stab and Gurevych, 2014). It can
also be solved in a sequence labeling framework,
which models the whole sentence sequence and
captures the correlations among predictions. For
example, Conditional Random Fields (CRFs) have
be studied for similar task on argumentative zon-
ing of scientific documents (Guo et al., 2011).

We will evaluate different types of features us-
ing two representative models respectively: the
SVM model and the linear-chain CRF model.
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3.2 Basic Features
Before feature extraction, sentence splitting, word
segmentation,POS and NE tagging are done us-
ing a Chinese language processing toolkit (Che
et al., 2010). Most basic features are adapted from
previous work (Burstein et al., 2003a; Stab and
Gurevych, 2014; Persing et al., 2010). For each
sentence, the following feature sets are extracted.
Position features The relative position of its para-
graph (first, last or body) in the essay and its rel-
ative position (first, last or body) in the paragraph
are modeled as a set of binary features. The index
of the sentence is also used as a feature.
Indicator features Cue words/phrases like “我认
为(in my opinion)” and “总之(in conclusion)” are
used as indicators. Partial indicators are adapted
from the ones used by Persing et al. (2010). More
Chinese specific indicators are then augmented
manually. We use a binary feature denoting a ref-
erence to the first person (“我(I)”,“我们(We)”) in
the sentence. We also use a binary feature to in-
dicate whether the sentence contains a modal verb
like “应该(should)” and “希望(hope)”.
Lexical features Binary features are modeled for
all connectives and adverbs, which are identified
based on POS tags.
Structural features The number of words, the
number of clauses in the sentence and the num-
ber of sentences in the same paragraph are used as
features. We also define binary features based on
punctuation which indicate whether the sentence
ends with a full stop, question mark, exclamation
mark or no sentence-final punctuation.
Topic and prompt features For each sentence,
the cosine similarities to the essay title and to the
prompt are used as features.

4 Identification based on Cohesion

4.1 Cohesive Chains
We mainly exploit reference and lexical cohesion.
Creating identity chains Reference refers to re-
sources for referring to a participant whose iden-
tity is recoverable (Schiffrin et al., 2008). We fo-
cus on person identities, because person names
might be mentioned when describing facts. Firstly,
we extract all nouns/entities with a POS/NE tag
person as identities. Secondly, we conduct a sim-
ple third-person pronoun resolution by selecting
the nearest proper antecedent identity within the
same paragraph. Finally, an identity and all its
anaphora together form an identity chain.

Creating lexical chains Lexical cohesion is re-
ferred to relations between text using lexical
repetition, synonymy or near synonymy. We
don’t distinguish between systematic semantic
relations and non-systematic semantic relations
(Berzlánovich et al., 2008) nor use a thesaurus
(Hirst and St-Onge, 1998). Instead, we compute
the relatedness of two words based on their dis-
tributed representations, which are learned using
the Word2Vec toolkit (Mikolov et al., 2013). The
data for learning word representations consists of
student essays and textbooks crawled from the
Web. The vocabulary size is about 490k.

We extract nouns, adjectives and verbs (exclud-
ing auxiliary verbs) instead of using nouns only
(Hirst and St-Onge, 1998) for constructing lexical
chains . We firstly cluster words into clusters in a
graph based manner. Each word corresponds to a
node in a graph. If the relatedness of two words
is larger than a threshold T , they are considered as
related and linked by an edge. After constructing
all edges in this way, every connected subgraph
forms a word cluster. Through the essay, all oc-
currences of the words from the same cluster form
a lexical chain.

We discard identity and lexical chains that exist
within single sentences, since they can’t capture
cohesive relations among sentences.

4.2 Global and Local Sentence Chains

We organize sentences based on cohesive chains.
Sentences that contain members from the same
identity chain or lexical chain form a sentence
chain. The sentence chains represent cohesive re-
lations among sentences.

In persuasive writing, discourse elements are
commonly linked globally. For example, main
ideas are usually related to each other because
they are about different aspects of the main the-
sis, and thesis and conclusion should echo each
other as well. Therefore, we attempt to explic-
itly categorize sentence chains into local chains
and global chains based on subtopic coverage.
A local chain represents sentences that share co-
hesive relations and gather locally within single
subtopics. In contrast, a global chain represents
sentences with cohesive relations distribute across
multiple subtopics. Heuristically, we expect that
thesis statements can be better captured by global
chains, while sentences that state facts or provide
evidences are associated to local chains.
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Figure 1: An illustration of global/local sentence
chains. Each solid node in the grid indicates that a
sentence contains a word from a cohesive chain.

Although subtopics can be identified by existing
text segmentation algorithms (Hearst, 1997; Filip-
pova and Strube, 2006), we observe that in stu-
dent essays a subtopic boundary usually coincides
with a paragraph boundary and almost all subtopic
segments are within one paragraph and only a few
of subtopics are within two or more paragraphs.
Therefore, we simply assume that each paragraph
corresponds to a subtopic. Based on the assump-
tion, chain classification is approximated based on
chain span over paragraphs. A sentence chain is
classified as a global chain, if its members appear
in at least N paragraphs, otherwise it is classified
as a local chain. We set N = 3, which means
a global chain would cover at least two subtopics
considering most subtopics finish within two para-
graphs. One sentence can be involved in multiple
sentence chains. An illustration of global and local
sentence chains is shown in Figure 1.

4.3 Cohesion Features from Sentence Chains

We develop cohesion features for a sentence from
the sentence chains that involve it. Such features
are beyond the intrinsic properties of the sentence
itself but describe relations to other sentences.
Chain-type features We consider four combined
types of sentence chains: global-identity, local-
identity, global-lexical and local-lexical chains.
The number of each type of chains that involve the
sentence is used as a feature.
Global-title feature If the sentence is in a global
sentence chain and the corresponding cohesive
chain contains a word in the title, a binary fea-
ture global-title is set as true, otherwise set as
false. Containing globally distributed title words
is thought of as an indicator of thesis statements.
Interaction features Hasan (1984, 1985) defined

that an interaction between two chains takes place
when multiple members of a chain relate in the
same way to more than one members of another
chain, which can be used to distinguish central
tokens from peripheral tokens. Hoey (1991) ex-
plored similar interactions to assess the centrality
of sentences. This indicates that chain interactions
might be signals of important content.

Similarly, we say two sentence chains interact
with each other, if they have more than one sen-
tence in common. An example is shown in Figure
1. Moreover, if two chains are both global chain,
we term it a global interaction, otherwise a local
interaction. The shared sentences by two chains
are named as global or local interaction sentences
accordingly. Two binary features are derived: the
sentence is or not a global-interaction sentence
and it is or not a local-interaction sentence.
Strength features We attempt to measure the
overall strength of the sentence chains that involve
the sentence. The features include the number of
chains, the maximum and average number of cov-
ered sentences and paragraphs over chains, among
which the ones related to paragraphs can be seen
as measuring the global cohesion strength.

5 Evaluation

5.1 Settings

We evaluated the effectiveness of Cohesion fea-
tures by comparing with the baseline that uses the
Basic features introduced in Section 3.2.

We adopted precision(P ), recall(R) and F1-
measure(F1) as evaluation metrics. The thresh-
old T used to determine whether two words are
related was set to 0.8 empirically. Because sen-
tences with the discourse element Other are few,
we didn’t evaluate the performance on it.

We conducted experiments on three corpora re-
spectively using 5-fold cross-validation. We com-
pared various SVM classifiers with different ker-
nels implemented in the LibSVM toolkit (Chang
and Lin, 2011) and the linear-chain CRF model
(Lafferty et al., 2001). When using CRF, the pre-
diction of previous sentence is considered for cur-
rent sentence. In our experiments, CRF achieves
significant superior performance than SVM both
when using basic features alone and after adding
cohesion features. This indicates that incorporat-
ing correlations among sequential predictions are
important for this task. Next, we only report the
experimental results of using the CRF Model.
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Element Features C1 C2 C3
P R F1 P R F1 P R F1 avg.△ (F1)

Introduction Basic 84.5 89.6 86.8 82.2 80.7 81.5 80.6 90.1 85.0
+3.7+ Cohesion 87.2 90.8 88.8 85.6 84.8 85.2 87.3 94.4 90.6

Prompt Basic 89.7 86.9 88.2 77.2 69.0 72.5 − − −
+1.9+ Cohesion 91.1 89.2 90.1 82.0 69.1 74.4 − − −

Thesis Basic 76.5 69.0 72.4 69.9 61.1 64.9 73.3 57.5 64.0
+5.1+ Cohesion 78.3 73.1 75.5 75.4 63.8 68.6 77.3 68.9 72.7

Main idea Basic 71.4 59.1 64.5 69.0 60.9 64.6 69.4 54.0 60.7
+5.4+ Cohesion 75.7 65.3 70.0 73.6 61.3 66.8 75.7 64.3 69.4

Supporting
idea

Basic 86.1 91.4 88.6 83.8 89.6 86.6 83.8 90.5 87.0
+1.8+ Cohesion 88.0 92.3 90.1 84.2 91.6 87.7 87.7 92.2 89.9

Conclusion Basic 87.2 89.9 88.4 85.6 88.5 87.0 88.1 91.0 89.5
+2.2+ Cohesion 89.1 91.9 90.4 86.0 90.7 88.2 92.1 94.0 93.1

Table 3: Experimental results on six discourse elements over three corpora using the CRF model.

5.2 Experimental Results

The experimental results on three corpora are
shown in Table 3. We tested statistical signifi-
cance for F1 scores and found that all improve-
ments were significant with p < 0.01 based on
the pairwise t-test. We can see that adding cohe-
sion features obtain improvements on all discourse
elements over three corpora. Especially, the cohe-
sion features contribute to large improvements of
+5.1% and +5.4% average F1 score on identifying
thesis and main idea sentences. By analyzing the
confusion matrix, we found that the improvements
mainly come from more accurately distinguishing
thesis and main idea sentences from introduction
and supporting idea sentences.

We are interested in that which between the lo-
cal and global cohesion contributes more to dis-
tinguish thesis statements. To this end, we used
Area under the ROC Curve (AUC)(Swets, 1988)
to measure the discriminative power of individual
features. Larger AUC of a feature indicates bet-
ter discriminative performance. The experiment
was done on the dataset mixing all sentences from
three corpora. We divided sentences into thesis
statements and non-thesis statements according to
their true element labels. As the results in Ta-
ble 4 show, global cohesion related features are
of higher rank with regard to the discriminative
power. Local cohesion relates more to non-thesis
statements, though it is not so discriminative as
global cohesion. The results indicate that sepa-
rating global cohesion from local cohesion help
the distinction between thesis statements and oth-
ers. Features related to identity chains alone don’t
show much discriminative ability. But they in-
crease the macro F1 score by 0.9% in combina-

Cohesion Feature AUC

Global-lexical 0.712
Avg.#paras 0.670
Global-title 0.664
Max.#para 0.659
Global-interaction 0.654
Max.#sents 0.636
Avg.#sents 0.613
#Chains 0.601
Local-title 0.522
Global-identity 0.510
Local-identity 0.481
Local-interaction 0.476
Local-lexical 0.431

Table 4: Discriminative powers of individual fea-
tures by Areas under ROC curve (AUC).

tion with other features.

6 Conclusion

We have investigated the impact of cohesion for
identifying discourse elements in student essays.
Our method creates sentence chains by means
of cohesive resources and separates global chains
from local ones based on the subtopic coverage.
New features for each sentence are derived from
the properties of the sentence chains involving it.
Experimental results show the effectiveness of co-
hesion features and the discriminative ability of
global cohesion for identifying thesis statements.
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Abstract

Domain adaptation is a challenge for super-
vised NLP systems because of expensive
and time-consuming manual annotated re-
sources. We present a novel method to
adapt a supervised coreference resolution
system trained on newswire to short narra-
tive stories without retraining the system.
The idea is to perform inference via an In-
teger Linear Programming (ILP) formula-
tion with the features of narratives adopted
as soft constraints. When testing on the
UMIREC1 and N22 corpora with the-state-
of-the-art Berkeley coreference resolution
system trained on OntoNotes3, our infer-
ence substantially outperforms the original
inference on the CoNLL 2011 metric.

1 Introduction

Coreference resolution is the task of partitioning
the set of mentions of discourse referents in a text
into classes (or ‘chains’) corresponding to those
referents (Stede, 2011). To solve the problem, con-
textual and grammatical clues, as well as semantic
information and world knowledge are necessary for
either learning-based (Bengtson and Roth, 2008;
Stoyanov et al., 2010; Haghighi and Klein, 2010)
or rule-based (Haghighi and Klein, 2009; Lee et al.,
2011) coreference systems. These systems draw on
diverse information sources and complex heuristics
to resolve pronouns, model discourse, determine
anaphoricity, and identify semantically compati-
ble mentions. However, this leads to systems with
many hetorogenous parts that can be difficult to
interpret or modify.

Durrett and Klein (2013) propose a learning-
based, mention-synchronous coreference system to

1http://dspace.mit.edu/handle/1721.1/57507
2http://dspace.mit.edu/handle/1721.1/85893
3https://catalog.ldc.upenn.edu/LDC2011T03

tackle the various aspects of coreference by using
the simplest possible set of features. Its advantage
is that the system can both implicitly model impor-
tant linguistic effects and capture other patterns in
the data that are not easily teased out by hand. With
a simple set of features including head/first/last
words, preceding/following words, length, exact
string match, head match, sentence/mention dis-
tance, gender, number etc. and an efficient training
using conditional log-likelihood augmented with
a parameterized loss function optimization they
report state-of-the-art results on CoNLL 2011 data.

But while CoNLL 2011 training data
(OntoNotes) includes a few different source
domains (newswire, weblogs, etc.), we witness
significant drops in performance when systems
trained on CoNLL 2011 are applied to new target
domains such as narratives. Some linguistic effects
and patterns that are very important for the target
domain were never seen in the source domain on
which the model was trained. In such cases, when
adapting a coreference system to a new domain,
it is necessary to incorporate these more complex
linguistic features and patterns into the model.

We propose a novel method to adopt the tar-
get domain’s features to a supervised coreference
system without retraining the model. We present
a case of transferring the system of (Durrett and
Klein, 2013), which is trained on OntoNotes, to
short narrative stories. The idea is to perform infer-
ence via a linear programming formulation with the
features of narratives adopted as soft constraints.
Since the new features are incorporated only into
the linear program, there is no need to retrain the
original model. Our formulation models three phe-
nomena that are important for short narrative sto-
ries: local discourse coherence, which we model
via centering theory constraints, speaker-listener
relations, which we model via direct speech act con-
straints, and character-naming, which we model via
definite noun phrase and exact match constraints.
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We also suggest a method to compute back pointers
(as defined in Durrett and Klein (2013)) globally.

2 Berkeley coreference system

Given N mentions m1, ...,mN from a document
x, each mi has an associated random variable ai
taking values in the set of {1, ..., i − 1, NEW}.
This variable specifies mi’s selected antecedent or
indicates that it begins a new coreference chain.
We call ai the back pointer of mi. A setting of
all the back pointers, denoted by a = (a1, ..., an),
implies an unique set of coreference chains that
serve as the system output.

A log-linear model of the conditional distribu-
tion P (a|x) ∝ exp

∑n
i=1 f(i, ai, x) is used, where

f(i, ai, x) is a feature function that examines the
coreference decision ai for mi with document con-
text x. If ai = NEW , the features indicate the
suitability of the given mention to be anaphoric or
not; when ai = j for some j, the features express
aspects of the pairwise linkage, and examine rele-
vant attributes of the anaphor i or the antecedent
j. During training, the model is optimized with a
parameterized loss function. The inference is sim-
ple and efficient: because logP (a|x) decomposes
linearly over mentions, ai = arg maxai

P (ai|x)
(Durrett and Klein, 2013).

3 Computing back pointers globally

A drawback of computing each ai locally is that the
system does not take into account constraints from
mentions outside of the (mention, antecedent) pairs.
For example, given three mentions m1,m2,m3, if
the system predicts that a2 = 1 and a3 = 2 (i.e.,
that m2’s antecedent is m1 and m3’s antecedent
is m2), then m3 will be automatically inferred as
coreferent with m1. But if there is a clear clue that
m1 and m3 are not coreferent, leveraging this clue
could help avoid the error of linking m3 to m2.

In this work, we perform inference via an ILP
formulation which allows new linguistic features
and patterns over mentions – not only (mention,
antecedent) pairs – that were not part of training
the original model to be adopted as constraints of
the ILP problem.

Let U be the set of binary indicator variables
corresponding to the values assigned to the back
pointers. Specifically, uij = 1 iff ai = j and
uii = 1 iff ai = NEW .

C is the set of K binary constraint indicator vari-
ables indicating if linguistic constraints are violated.

Specifically, ck,i,j = 1 iff the linguistic constraint
Ck is violated for the back pointer uij . Each Ck is
associated with a penalty score ρk.

We aim to maximize the objective function:

N∑
i=1

i∑
j=1

uijP (ai = j|x)−
K∑
k=1

ρkck,i,j (1)

Subject to:

∀i :
i∑

j=1

uij = 1

To incorporate coreference constraints, we intro-
duce V, a set of binary variables indicating if two
mentions are in the same coreference chain. For
each pair of j < i, a variable vij is added to the
ILP model, where vij = 1 iff mi and mj are in the
same chain. The definition of vij in terms of uij is
encoded as the following ILP constraints:

∀j < i : uii + vij ≤ 1
∀j < i : uij − vij ≤ 0

∀k < j < i : uij + vjk − vik ≤ 1
∀k < j < i : uij − vjk + vik ≤ 1
∀j < k < i : uij + vkj − vik ≤ 1
∀j < k < i : uij − vkj + vik ≤ 1

For long texts, to reduce the complexity of the ILP
problem, we set a threshold, windowsv, so that vij
is only available if i− windowsv ≤ j.

The framework of V variables allows corefer-
ence constraints to be adopted easily by any coref-
erence resolution system that provides scores for
each possible back pointer value. For example, con-
sider the Stanford exact string match sieve, which
“requires an exact string match between a mention
and its antecedent” (Lee et al., 2011). If we want to
encourage such matches, for each pair j < i where
the two nominal mentions mi and mj have an ex-
act string match, we would introduce a constraint
indicator variable cexact,i,j and add the constraint
vij + cexact,i,j = 1 to the ILP model. The result
would be that when the exact match constraint is
violated and some vij = 0, ILP would force the cor-
responding cexact,i,j = 1 and the objective function
would be reduced by ρexact.

ILP has been used previously to enforce global
consistency in coreference resolution (Finkel and
Manning, 2008; Denis and Baldridge, 2007; Barzi-
lay and Lapata, 2006). These models were de-
signed for an all-pairs classification approach to
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coreference resolution, and are not directly appli-
cable to the back pointer approach of (Durrett and
Klein, 2013). But the back pointer approach allows
features to be expressed more naturally using local
context, rather than requiring, for example, judg-
ments of whether two pronouns separated by many
paragraphs are coreferent. Moreover, our ILP for-
mulation is the only one to consider the problem of
adapting to another domain and incorporating new
features without retraining the original model.

4 Centering theory constraints

Pronouns, in particular, have a huge effect on in-
formation flow across sentences. Since they are
almost void of meaning (only signal gender and
number of the antecedent), the discourse referent
to be picked up must be particularly salient, so that
it can be readily identified by the reader (Stede,
2011). The discourse center hypothesis (Hudson-
D’Zmura, 1988) states that at any point in discourse
understanding, there is one single entity that is the
most salient discourse referent at that point. This
referent is called the center. Centering theory is
a key element of the discourse center hypothesis
used in anaphora resolution (Grosz et al., 1995).
Beaver (2004) reformulates the centering theory in
terms of Optimality Theory (Prince and Smolensky,
2004). Six ranked constraints – Agree, Disjoint,
ProTop, FamDef, Cohere and Align – are used to
make anaphora decisions. We adopt four of these
constraints in our ILP model as follows:

Disjoint “Co-arguments of a predicate4 are dis-
joint.” For each j < i such that mi and mj are
subject and object arguments of a non-reflexive
predicate, we introduce a constraint indicator vari-
able cdisjoint,i,j , and add the ILP constraint vij −
cdisjoint,i,j = 0.

ProTop “The topic of a sentence which is the en-
tity referred to in both the current and the previous
sentence, is pronominalized.” If a sentence con-
tains pronouns then at least one of its pronouns is
coreferent with a mention in the previous sentence.
For each sentence t containing pronouns, we in-
troduce a constraint indicator variable cprotop,t,t−1,
and add the ILP constraints:

∀i ∈ Pt, ∀j ∈Mt−1 : vij + cprotop,t,t−1 ≤ 1

cprotop,t,t−1 +
∑
i∈Pt

∑
j∈Mt−1

vij ≥ 1

4A word that evokes a semantic frame (event) in a sentence.

Pt is the set of all pronouns in sentence t. Mt−1 is
the set of all mentions in sentence t− 1 5.

FamDef “No new information about the refer-
ent is provided by the definite.” We consider only
pronouns here, though the original FamDef also
includes definite descriptions and proper names
(Beaver, 2004). For each pronoun mi, we intro-
duce a constraint indicator variable cfamdef,i,i and
add the ILP constraint uii − cfamdef,i,i = 0.

Align “The topic is in subject position.” More
specifically, the topic of a sentence is pronominal-
ized and prefers the subject position over other
positions. For each sentence containing only one
pronoun mi, if the previous sentence has only one
verbal semantic frame and mj is its subject, we
introduce a constraint indicator variable calign,i,j ,
and add the ILP constraint vij + calign,i,j = 1.

Note: The ProTop, FamDef and Align constraints
are not applied to sentences containing quotations.

5 Direct speech constraints

Direct speech acts (with quotation marks) are de-
tected and attached to the closest verbal commu-
nication semantic frames. For each direct speech
act qt, we call the mentions mst,mot the speaker
and listener of qt if they play the subject and ob-
ject roles respectively in the semantic frame of
qt. We detect the set of subject pronouns6 inside
the quote marks of qt and name it St. The set
of all mentions that refer to the speaker of qt is
SPEAKERt = {mst} ∪ St. For each (mi,mj) ∈
SPEAKERt × SPEAKERt with i > j, we introduce
a constraint indicator variable csubject,i,j , and add
the ILP constraint vij + csubject,i,j = 1.

Similarly, Ot is the set of object pronouns7 in-
side the quote marks of qt. The set of all men-
tions that refer to the listener of qt is LISTENERt =
{mot}∪Ot. For each pair of mentions (mi,mj) ∈
LISTENERt×LISTENERt with i > j, we introduce
a constraint indicator variable cobject,i,j , and add
the constraint vij + cobject,i,j = 1.

If a conversation is detected (a sequence of
“question” and “answer” semantic frames), the sub-
ject of the “question” is coreferent with the object

5We can relax the constraint by replacing Mt−1 with
Mt−1 ∪Mt−2 ∪Mt−3

6(“I”, “me”, “my”, “mine”, “myself”) if mst is singular or
(“we”, “us”, “our”, ”ourself”) if mst is plural

7(“you”, “your”, “yours”, “yourself”)
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Method UMIREC (Tales) N2 (Hadith)
MUC BCUB CEAFE AVG MUC BCUB CEAFE AVG

ILPI with gold mentions 84.16 65.65 50.47 66.76 80.47 65.53 54.06 66.69
BER with gold mentions 80.58 60.96 42.48 61.34 76.28 62.66 45.48 61.47
ILPI with predicted mentions 73.32 59.18 37.54 56.68 66.13 62.55 40.51 56.40
BER with predicted mentions 72.71 58.12 35.76 55.53 64.87 59.60 37.96 54.14

Table 1: ILPI and BER inference results on UMIREC (Tales) and N2 (Hadith) data.

of the “answer” and vice versa. For each pair of di-
rect speech acts (qt, qt+1) that is a (“question”, “an-
swer”) pair, for each pair of mentions (mi,mj) ∈
{LISTENERt+1 × SPEAKERt} ∪ {SPEAKERt+1 ×
LISTENERt}, we introduce a constraint indicator
variable cconversation,i,j and add the ILP constraint
vij + cconversation,i,j = 1.

6 Definite noun phrase and exact match
constraints

In short narrative stories, characters are frequently
named via proper names, pronouns or definite noun
phrases (Toolan, 2009). Character names are re-
peated regularly over the whole stories. A character
is often first presented as an indefinite noun phrase
(such as “a woman”), then later as a definite noun
phrase (such as “the woman”). In this work we
introduce the definite noun phrase constraint: For
each pair j < i, if mj is the indefinite form and mi

is the definite form of the same noun phrase, to en-
force that mi and mj are coreferent, we introduce
a constraint indicator variable cname,i,j , and add
the ILP constraint vij +cname,i,j = 1. To boost the
identification of characters in the stories, the def-
inite noun phrase constraint is used together with
the exact match constraint (See Section 3) applied
to noun phrases and proper nouns.

7 Experiment

We test our model on 30 English folktales from the
UCM/MIT Indications, Referring Expressions, and
Coreference (UMIREC) Corpus v1.1 (Finlayson
and Hervs, 2010), and 64 text stories from the Ha-
dith section of the Narrative Networks (N2) Cor-
pus (Finlayson et al., 2014). The texts are prepro-
cessed using the Stanford sentence splitter (Man-
ning et al., 2014)8 and the Berkeley coreference
system’s preprocessor. The Berkeley coreference
system is trained on OntoNotes (newswire, broad-

8If two direct speech acts enclosed in quotation marks are
adjacent and one is placed at the end of a sentence, we separate
them into two different sentences.

cast news/conversation, and web texts). We use
Gurobi9 to solve our ILP problem, and the Lund
semantic role labeler (Björkelund et al., 2009) to
detect semantic frames. Note that in our imple-
mentation, “subject” and “object” used in Sec-
tion 4 and Section 5 refer to “subject role” and
“object role” of the semantic frames respectively.
We use a separate section of the N2 corpus, the
Inspire story texts, as the held-out validation set
used for parameter tuning, resulting in windowv=
40, ρsubject=ρobject=ρconversation=ρdefinite=
ρexact=ρdisjoint=1, ρprotop=0.2, ρfamdef =0.2,
ρalign=0.1.

We compare our ILP inference (ILPI) to the
standard Berkeley coreference system (BER) with
both gold and predicted mentions. Table 1 shows
that our inference improves the MUC, BCUB and
CEAFE scores on both datasets, especially when
using gold mentions10. The average ILP running
times are 42.37s per UMIREC document and 22.7s
per N2 document on a Core I7 2.3 GHz quad-core
computer. Table 2 shows the effects of each con-
straint type when used alone. Surprisingly, the sim-
plest constraint type (definite & exact match con-
straints) gives us the best improvement especially
in terms of CEAFE score. This may be because
definite & exact match constraint links mentions
in the whole document, while the centering theory
and direct speech act constraints are more local.
And since short narrative stories often have a small
set of characters (usually represented by definite
noun phrases or proper nouns), when these charac-
ters are linked correctly, the coreference resolution
result is improved considerably.

8 Discussion

Our method provides a promising solution when
retraining a system is impossible or difficult. How-
ever, it may raise a question of the computing cost

9http://www.gurobi.com/
10Using gold mentions, our method also improves the score

on the CoNLL 2011 test set by +1.11% (AVG: 72.46).
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Constraint MUC BCUB CEAFE AVG
Centering theory 81.15 61.80 43.01 61.99
Direct speech 81.26 62.74 42.93 62.31
Definite & Exact 83.09 62.85 49.60 65.18

Table 2: Effects of different constraints on ILP
inference on UMIREC (Tales) with gold mentions.

for tuning penalty scores especially with the large
number of constraints. In such these cases, dividing
the constraints into different groups where all con-
straints in the same group have the same penalty
score may help to limit the number of scores that
need to be tuned. In our case study, the system
is not very sensitive to the values of the penalty
parameters. If we set all the penalty scores to 1,
the final AVG results on UMIREC and N2 corpus
are 66.05 and 66.68 respectively11. Those scores
are a bit less than the scores obtained after tuning
parameters but still higher than the results obtained
without ILP. Regardless, it’s true that the proposed
ILP approach is not necessarily less costly in some
settings, but it can be applied to any coreference
system that provides back pointers, not just the
Berkeley one.

Instead of adopting features of the target domain
as soft constraints as in our method, one may con-
sider to use them as linguistic features and retrain
the model. A simple domain adaptation approach
by augmenting the feature space (Daumé et al.,
2010) based on a limited set of annotated data in
the target domain might be an alternative solution.
But note that our approach does not use any anno-
tated data of the target domain. Also, an unsuper-
vised system as (Lee et al., 2011) might encode the
target domain features (exact match noun phrases,
direct speech act) as sieves (hard), but with the
soft constraints, our system is more flexible when
making global decisions.

Our approach can be applied to another target do-
main, such as bio-medical domain where we have
entities and a list of acronyms in texts. Constrain-
ing the entities with their acronyms might help to
improve the coreference resolution for bio-medical
texts.

9 Conclusion

We have proposed a novel approach to adapt a su-
pervised coreference resolution system trained on
newswire domain to short narrative stories without

11with gold mentions

retraining the system by modeling the inference
as an ILP problem with the features of narratives
adopted as soft constraints. Three phenomena that
are important for short narrative stories: local dis-
course coherence, speaker-listener relations, and
character-naming are modeled via centering theory,
direct speech act and definite noun phrase & ex-
act match constraints. We obtain promising results
when transferring the Berkeley coreference resolu-
tion trained on OntoNotes to UMIREC (Tales) and
N2 (Hadith). We find that the simplest constraints,
definite noun phrase & exact match constraints, are
the most effective in our case study assuming the
gold mentions. We also suggest an approach to
compute back pointers in coreference resolution
globally.
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Abstract

We present LEMMING, a modular log-
linear model that jointly models lemmati-
zation and tagging and supports the inte-
gration of arbitrary global features. It is
trainable on corpora annotated with gold
standard tags and lemmata and does not
rely on morphological dictionaries or an-
alyzers. LEMMING sets the new state of
the art in token-based statistical lemmati-
zation on six languages; e.g., for Czech
lemmatization, we reduce the error by
60%, from 4.05 to 1.58. We also give em-
pirical evidence that jointly modeling mor-
phological tags and lemmata is mutually
beneficial.

1 Introduction

Lemmatization is important for many NLP tasks,
including parsing (Björkelund et al., 2010; Seddah
et al., 2010) and machine translation (Fraser et al.,
2012). Lemmata are required whenever we want
to map words to lexical resources and establish the
relation between inflected forms, particularly crit-
ical for morphologically rich languages to address
the sparsity of unlemmatized forms. This strongly
motivates work on language-independent token-
based lemmatization, but until now there has been
little work (Chrupała et al., 2008).

Many regular transformations can be described
by simple replacement rules, but lemmatization
of unknown words requires more than this. For
instance the Spanish paradigms for verbs end-
ing in ir and er share the same 3rd person plu-
ral ending en; this makes it hard to decide which
paradigm a form belongs to.1 Solving these kinds
of problems requires global features on the lemma.
Global features of this kind were not supported

1Compare admiten “they admit” → admitir “to admit”,
but deben “they must”→ deber “to must”.

by previous work (Dreyer et al., 2008; Chrupała,
2006; Toutanova and Cherry, 2009; Cotterell et al.,
2014).

There is a strong mutual dependency between
(i) lemmatization of a form in context and (ii)
disambiguating its part-of-speech (POS) and mor-
phological attributes. Attributes often disam-
biguate the lemma of a form, which explains
why many NLP systems (Manning et al., 2014;
Padró and Stanilovsky, 2012) apply a pipeline
approach of tagging followed by lemmatization.
Conversely, knowing the lemma of a form is of-
ten beneficial for tagging, for instance in the pres-
ence of syncretism; e.g., since German plural noun
phrases do not mark gender, it is important to
know the lemma (singular form) to correctly tag
gender on the noun.

We make the following contributions. (i) We
present the first joint log-linear model of mor-
phological analysis and lemmatization that oper-
ates at the token level and is also able to lem-
matize unknown forms; and release it as open-
source (http://cistern.cis.lmu.de/lemming).
It is trainable on corpora annotated with gold stan-
dard tags and lemmata. Unlike other work (e.g.,
(Smith et al., 2005)) it does not rely on morpho-
logical dictionaries or analyzers. (ii) We describe
a log-linear model for lemmatization that can eas-
ily be incorporated into other models and supports
arbitrary global features on the lemma. (iii) We
set the new state of the art in token-based sta-
tistical lemmatization on six languages (English,
German, Czech, Hungarian, Latin and Spanish).
(iv) We experimentally show that jointly model-
ing morphological tags and lemmata is mutually
beneficial and yields significant improvements in
joint (tag+lemma) accuracy for four out of six lan-
guages; e.g., Czech lemma errors are reduced by
>37% and tag+lemma errors by >6%.
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schau

um

ge/ɛ⊥
t/en

(4,1)

(0,2)

ge/ɛ⊥
t/en

umschauen umgeschaut

Figure 1: Edit tree for the inflected form umgeschaut “looked
around” and its lemma umschauen “to look around”. The
right tree is the actual edit tree we use in our model, the left
tree visualizes what each node corresponds to. The root node
stores the length of the prefix umge (4) and the suffix t (1).

2 Log-Linear Lemmatization

Chrupała (2006) formalizes lemmatization as a
classification task through the deterministic pre-
extraction of edit operations transforming forms
into lemmata. Our lemmatization model is in this
vein, but allows the addition of external lexical in-
formation, e.g., whether the candidate lemma is in
a dictionary. Formally, lemmatization is a string-
to-string transduction task. Given an alphabet Σ,
it maps an inflected form w ∈ Σ∗ to its lemma
l ∈ Σ∗ given its morphological attributes m. We
model this process by a log-linear model:

p(l | w,m) ∝ hw(l) · exp
(
f(l, w,m)Tθ

)
,

where f represents hand-crafted feature functions,
θ is a weight vector, and hw : Σ∗ → {0, 1} deter-
mines the support of the distribution, i.e., the set
of candidates with non-zero probability.

Candidate selection. A proper choice of the
support function h(·) is crucial to the success of
the model – too permissive a function and the
computational cost will build up, too restrictive
and the correct lemma may receive no probability
mass. Following Chrupała (2008), we define h(·)
through a deterministic pre-extraction of edit trees.
To extract an edit tree e for a pair form-lemma
〈w, l〉, we first find the longest common substring
(LCS) (Gusfield, 1997) between them and then re-
cursively model the prefix and suffix pairs of the
LCS. When no LCS can be found the string pair is
represented as a substitution operation transform-
ing the first string to the second. The resulting edit
tree does not encode the LCSs but only the length
of their prefixes and suffixes and the substitution
nodes (cf. Figure 1); e.g., the same tree transforms
worked into work and touched into touch.

As a preprocessing step, we extract all edit trees
that can be used for more than one pair 〈w, l〉. To
generate the candidates of a word-form, we apply
all edit trees and also add all lemmata this form

Morph
Tag

Lemma

Word

Morph
Tag

Lemma

Word

Morph
Tag

Lemma

Word

Morph
Tag

Figure 2: Our model is a 2nd-order linear-chain CRF aug-
mented to predict lemmata. We heavily prune our model and
can easily exploit higher-order (>2) tag dependencies.

was seen with in the training set (note that only
a small subset of the edit trees is applicable for
any given form because most require incompatible
substitution operations).2

Features. Our novel formalization lets us com-
bine a wide variety of features that have been
used in different previous models. All features are
extracted given a form-lemma pair 〈w, l〉 created
with an edit tree e.

We use the following three edit tree features of
Chrupała (2008). (i) The edit tree e. (ii) The pair
〈e, w〉. This feature is crucial for the model to
memorize irregular forms, e.g., the lemma of was
is be. (iii) For each form affix (of maximum length
10): its conjunction with e. These features are use-
ful in learning orthographic and phonological reg-
ularities, e.g., the lemma of signalling is signal,
not signall.

We define the following alignment features.
Similar to Toutanova and Cherry (2009) (TC), we
define an alignment between w and l. Our align-
ments can be read from an edit tree by aligning
the characters in LCS nodes character by character
and characters in substitution nodes block-wise.
Thus the alignment of umgeschaut - umschauen
is: u-u, m-m, ge-ε, s-s, c-c, h-h, a-a, u-u, t-en.
Each alignment pair constitutes a feature in our
model. These features allow the model to learn
that the substitution t/en is likely in German. We
also concatenate each alignment pair with its form
and lemma character context (of up to length 6) to
learn, e.g., that ge is often deleted after um.

We define two simple lemma features. (i) We
use the lemma itself as a feature, allowing us to
learn which lemmata are common in the language.
(ii) Prefixes and suffixes of the lemma (of maxi-

2Pseudo-code for edit tree creation and candidate
lemma generation with examples can be found in the ap-
pendix (http://cistern.cis.lmu.de/lemming/
appendix.pdf).
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mum length 10). This feature allows us to learn
that the typical endings of Spanish verbs are ir, er,
ar.

We also use two dictionary features (on lem-
mata): Whether l occurs > 5 times in Wikipedia
and whether it occurs in the dictionary ASPELL.3

We use a similar feature for different capitaliza-
tion variants of the lemma (lowercase, first letter
uppercase, all uppercase, mixed). This differenti-
ation is important for German, where nouns are
capitalized and en is both a noun plural marker
and a frequent verb ending. Ignoring capitaliza-
tion would thus lead to confusion.

POS & morphological attributes. For each fea-
ture listed previously, we create a conjunction with
the POS and each morphological attribute.4

3 Joint Tagging and Lemmatization

We model the sequence of morphological tags us-
ing MARMOT (Müller et al., 2013), a pruned
higher-order CRF. This model avoids the exponen-
tial runtime of higher-order models by employing
a pruning strategy. Its feature set consists of stan-
dard tagging features: the current word, its affixes
and shape (capitalization, digits, hyphens) and the
immediate lexical context. We combine lemmati-
zation and higher-order CRF components in a tree-
structured CRF. Given a sequence of formsw with
lemmata l and morphological+POS tags m, we
define a globally normalized model:

p(l,m | w) ∝ ∏
i hwi(li) exp(f(li, wi,mi)Tθ

+g(mi,mi−1,mi−2,w, i)Tλ),

where f and g are the features associated with
lemma and tag cliques respectively and θ and λ
are weight vectors. The graphical model is shown
in Figure 2. We perform inference with belief
propagation (Pearl, 1988) and estimate the pa-
rameters with SGD (Tsuruoka et al., 2009). We
greatly improved the results of the joint model by
initializing it with the parameters of a pretrained
tagging model.

4 Related Work

In functionality, our system resembles MORFETTE

(Chrupała et al., 2008), which generates lemma
3ftp://ftp.gnu.org/gnu/aspell/dict
4Example: for the Spanish noun medidas “measures” with

attributes NOUN, COMMON, PLURAL and FEMININE, we
conjoin each feature above with NOUN, NOUN+COMMON,
NOUN+PLURAL and NOUN+FEMININE.

candidates by extracting edit operation sequences
between lemmata and surface forms (Chrupała,
2006), and then trains two maximum entropy
Markov models (Ratnaparkhi, 1996) for mor-
phological tagging and lemmatization, which are
queried using a beam search decoder.

In our experiments we use the latest version5 of
MORFETTE. This version is based on structured
perceptron learning (Collins, 2002) and edit trees
(Chrupała, 2008). Models similar to MORFETTE

include those of Björkelund et al. (2010) and Ges-
mundo and Samardzic (2012) and have also been
used for generation (Dušek and Jurčı́ček, 2013).
Wicentowski (2002) similarly treats lemmatiza-
tion as classification over a deterministically cho-
sen candidate set, but uses distributional informa-
tion extracted from large corpora as a key source
of information.

Toutanova and Cherry (2009)’s joint morpho-
logical analyzer predicts the set of possible lem-
mata and coarse-grained POS for a word type.
This is different from our problem of lemmatiza-
tion and fine-grained morphological tagging of to-
kens in context. Despite the superficial similarity
of the two problems, direct comparison is not pos-
sible. TC’s model is best thought of as inducing a
tagging dictionary for OOV types, mapping them
to a set of tag and lemma pairs, whereas LEM-
MING is a token-level, context-based morphologi-
cal tagger.

We do, however, use TC’s model of lemmati-
zation, a string-to-string transduction model based
on Jiampojamarn et al. (2008) (JCK), as a stand-
alone baseline. Our tagging-in-context model is
faced with higher complexity of learning and in-
ference since it addresses a more difficult task;
thus, while we could in principle use JCK as a re-
placement for our candidate selection, the edit tree
approach – which has high coverage at a low aver-
age number of lemma candidates (cf. Section 5) –
allows us to train and apply LEMMING efficiently.

Smith et al. (2005) proposed a log-linear model
for the context-based disambiguation of a morpho-
logical dictionary. This has the effect of joint tag-
ging, morphological segmentation and lemmatiza-
tion, but, critically, is limited to the entries in the
morphological dictionary (without which the ap-
proach cannot be used), causing problems of re-
call. In contrast, LEMMING can analyze any word,

5https://github.com/
gchrupala/morfette/commit/
ca886556916b6cc1e808db4d32daf720664d17d6
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cs de en es hu la
all unk all unk all unk all unk all unk all unk

1 MARMOT tag 89.75 76.83 82.81 61.60 96.45 90.68 97.05 90.07 93.64 84.65 82.37 53.73
2

JC
K lemma 95.95 81.28 96.63 85.84 99.08 94.28 97.69 87.19 96.69 88.66 90.79 58.23

3 tag+lemma 87.85 67.00 81.60 55.97 96.17 87.32 95.44 80.62 92.15 78.89 79.51 39.07
4

L
E

M
M

IN
G

-P

+d
ic

t

lemma 97.46 89.14 97.70 91.27 99.21 95.59 98.48 92.98 97.53 92.10 93.07 69.83
5 tag+lemma 88.86 72.51 82.27 59.42 96.27 88.49 96.12 85.80 92.59 80.77 80.49 44.26
6

+m
rp

h lemma 97.29 88.98 97.51 90.85 NA NA 98.68 94.32 97.53 92.15 92.54 67.81
7 tag+lemma 89.23 74.24 82.49 60.42 NA NA 96.35 87.25 93.11 82.56 80.67 45.21
8

L
E

M
M

IN
G

-J

+d
ic

t tag 90.34+ 78.47 83.10+ 62.36 96.32 89.70 97.11 90.13 93.64 84.78 82.89 54.69
9 lemma 98.27 92.67 98.10+ 92.79 99.21 95.23 98.67 94.07 98.02 94.15 95.58+ 81.74+

10 tag+lemma 89.69 75.44 82.64 60.49 96.17 87.87 96.23 86.19 92.84 81.89 81.92 49.97
11

+m
rp

h tag 90.20 79.72+× 83.10+ 63.10+× NA NA 97.16 90.66 93.67 85.12 83.49+× 58.76+×

12 lemma 98.42+× 93.46+× 98.10+ 93.02+ NA NA 98.78+× 94.86+× 98.08+ 94.26+ 95.36 80.94
13 tag+lemma 89.90+× 78.34+× 82.84+× 62.10+× NA NA 96.41× 87.47× 93.40+× 84.15+× 82.57+ 54.63+

Table 2: Test results for LEMMING-J, the joint model, and pipelines (lines 2–7) of MARMOT and (i) JCK and (ii) LEMMING-P.
In each cell, overall token accuracy is left (all), accuracy on unknown forms is right (unk). Standalone MARMOT tagging
accuracy (line 1) is not repeated for pipelines (lines 2–7). The best numbers are bold. LEMMING-J models significantly better
than LEMMING-P (+), or LEMMING models not using morphology (+dict) (×) or both (+×) are marked. More baseline numbers
in the appendix (Table A2).

including OOVs, and only requires the same train-
ing corpus as a generic tagger (containing tags and
lemmata), a resource that is available for many
languages.

5 Experiments

Datasets. We present experiments on the joint
task of lemmatization and tagging in six diverse
languages: English, German, Czech, Hungarian,
Latin and Spanish. We use the same data sets as
in Müller and Schütze (2015), but do not use the
out-of-domain test sets. The English data is from
the Penn Treebank (Marcus et al., 1993), Latin
from PROIEL (Haug and Jøhndal, 2008), Ger-
man and Hungarian from SPMRL 2013 (Seddah
et al., 2013), and Spanish and Czech from CoNLL
2009 (Hajič et al., 2009). For German, Hungar-
ian, Spanish and Czech we use the splits from the
shared tasks; for English the split from SANCL
(Petrov and McDonald, 2012); and for Latin a
8/1/1 split into train/dev/test. For all languages we
limit our training data to the first 100,000 tokens.
Dataset statistics can be found in Table A4 of the
appendix. The lemma of Spanish se is set to be
consistent.

Baselines. We compare our model to three
baselines. (i) MORFETTE (see Section 4). (ii)
SIMPLE, a system that for each form-POS pair, re-
turns the most frequent lemma in the training data
or the form if the pair is unknown. (iii) JCK, our
reimplementation of Jiampojamarn et al. (2008).
Recall that JCK is TC’s lemmatization model and
that the full TC model is a type-based model that

cannot be applied to our task.
As JCK struggles to memorize irregulars, we

only use it for unknown form-POS pairs and use
SIMPLE otherwise. For aligning the training data
we use the edit-tree-based alignment described in
the feature section. We only use output alpha-
bet symbols that are used for ≥ 5 form-lemma
pairs and also add a special output symbol that
indicates that the aligned input should simply be
copied. We train the model using a structured av-
eraged perceptron and stop after 10 training itera-
tions. In preliminary experiments we found type-
based training to outperform token-based training.
This is understandable as we only apply our model
to unseen form-POS pairs. The feature set is an
exact reimplementation of (Jiampojamarn et al.,
2008), it consists of input-output pairs and their
character context in a window of 6.

Results. Our candidate selection strategy re-
sults in an average number of lemma candidates
between 7 (Hungarian) and 91 (Czech) and a cov-
erage of the correct lemma on dev of >99.4 (ex-
cept 98.4 for Latin).6 We first compare the base-
lines to LEMMING-P, a pipeline based on Sec-
tion 2, that lemmatizes a word given a predicted
tag and is trained using L-BFGS (Liu and No-
cedal, 1989). We use the implementation of MAL-
LET (McCallum, 2002). For these experiments we
train all models on gold attributes and test on at-
tributes predicted by MORFETTE. MORFETTE’s
lemmatizer can only be used with its own tags. We
thus use MORFETTE tags to have a uniform setup,

6Note that our definition of lemmatization accuracy and
unknown forms ignores capitalization.
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cs de en es hu la
ba

se
lin

es SIMPLE 87.22 93.27 97.60 92.92 86.09 85.19
JCK 96.24 97.67 98.71 97.61 97.48 93.26
MORFETTE 96.25 97.12 98.43 97.97 97.22 91.89

L
E

M
M

IN
G

-P edittree 96.29 97.84+ 98.71 97.91 97.31 93.00
+align,+lemma 96.74+ 98.17+ 98.76+ 98.05 97.70+ 93.76+

+dict 97.50+ 98.36+ 98.84+ 98.39+ 97.98+ 94.64+

+mrph 96.59+ 97.43+ NA 98.46+ 97.77+ 93.60

Table 1: Lemma accuracy on dev for the baselines and the
different versions of LEMMING-P. POS and morphological
attributes are predicted using MORFETTE. The best baseline
numbers are underlined, the best numbers are bold. Models
significantly better than the best baseline are marked (+).

which isolates the effects of the different taggers.
Numbers for MARMOT tags are in the appendix
(Table A1). For the initial experiments, we only
use POS and ignore additional morphological at-
tributes. We use different feature sets to illustrate
the utility of our templates.

The first model uses the edit tree features (edit-
tree). Table 1 shows that this version of LEM-
MING outperforms the baselines on half of the lan-
guages.7 In a second experiment we add the align-
ment (+align) and lemma features (+lemma) and
show that this consistently outperforms all base-
lines and edittree. We then add the dictionary fea-
ture (+dict). The resulting model outperforms all
previous models and is significantly better than the
best baselines for all languages.8 These experi-
ments show that LEMMING-P yields state-of-the-
art results and that all our features are needed to
obtain optimal performance. The improvements
over the baselines are >1 for Czech and Latin and
≥.5 for German and Hungarian.

The last experiment also uses the additional
morphological attributes predicted by MORFETTE

(+mrph). This leads to a drop in lemmatization
performance in all languages except Spanish (En-
glish has no additional attributes). However, pre-
liminary experiments showed that correct mor-
phological attributes would substantially improve
lemmatization as they help in cases of ambigu-
ity. As an example, number helps to lemmatize
the singular German noun Raps “canola”, which
looks like the plural of Rap “rap”. Numbers can be
found in Table A3 of the appendix. This motivates
the necessity of joint tagging and lemmatization.

For the final experiments, we run pipeline mod-
els on tags predicted by MARMOT (Müller et
al., 2013) and compare them to LEMMING-J, the

7Unknown word accuracies in the appendix (Table A1).
8We use the randomization test (Yeh, 2000) and p = .05.

joint model described in Section 3. All LEMMING

versions use exactly the same features. Table 2
shows that LEMMING-J outperforms LEMMING-
P in three measures (see bold tag, lemma &
joint (tag+lemma) accuracies) except for English,
where we observe a tie in lemma accuracy and
a small drop in tag and tag+lemma accuracy.
Coupling morphological attributes and lemmatiza-
tion (lines 8–10 vs 11–13) improves tag+lemma
prediction for five languages. Improvements in
lemma accuracy of the joint over the best pipeline
systems range from .1 (Spanish), over >.3 (Ger-
man, Hungarian) to ≥.96 (Czech, Latin).

Lemma accuracy improvements for our best
models (lines 4–13) over the best baseline (lines
2–3) are >1 (German, Spanish, Hungarian), >2
(Czech, Latin) and even more pronounced on un-
known forms: >1 (English), >5 (German, Span-
ish, Hungarian) and >12 (Czech, Latin).

6 Conclusion

LEMMING is a modular lemmatization model that
supports arbitrary global lemma features and joint
modeling of lemmata and morphological tags. It is
trainable on corpora annotated with gold standard
tags and lemmata, and does not rely on morpho-
logical dictionaries or analyzers. We have shown
that modeling lemmatization and tagging jointly
benefits both tasks, and we set the new state of the
art in token-based lemmatization on six languages.
LEMMING is available under an open-source li-
cence (http://cistern.cis.lmu.de/lemming).
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Djamé Seddah, Grzegorz Chrupała, Özlem Çetinoğlu,
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Abstract

We describe a simple and efficient al-
gorithm to disambiguate non-functional
weighted finite state transducers (WFSTs),
i.e. to generate a new WFST that con-
tains a unique, best-scoring path for each
hypothesis in the input labels along with
the best output labels. The algorithm uses
topological features combined with a trop-
ical sparse tuple vector semiring. We em-
pirically show that our algorithm is more
efficient than previous work in a PoS-
tagging disambiguation task. We use our
method to rescore very large translation
lattices with a bilingual neural network
language model, obtaining gains in line
with the literature.

1 Introduction

Weighted finite-state transducers (WFSTs), or lat-
tices, are used in speech and language process-
ing to compactly represent and manipulate a large
number of strings. Applying a finite-state opera-
tion (eg. PoS tagging) to a lattice via composition
produces a WFST that maps input (eg. words)
onto output strings (eg. PoS tags) and preserves
the arc-level alignment between each input and
output symbol (eg. each arc is labeled with a
word-tag pair and has a weight). Typically, the
result of such operation is a WFST that is am-
biguous because it contains multiple paths with the
same input string, and non-functional because it
contains multiple output strings for a given input
string (Mohri, 2009).

Disambiguating such WFSTs is the task of cre-
ating a WFST that encodes only the best-scoring
path of each input string, while still maintaining
the arc-level mapping between input and output
symbols. This is a non-trivial task1, and so far only

1Unless one enumerates all the possible input strings in

one algorithm has been described (Shafran et al.,
2011); the main steps are:

(a) Map the WFST into an equivalent weighted
finite-state automata (WFSA) using weights
that contain both the WFST weight and out-
put symbols (using a special semiring)

(b) Apply WFSA determinization under this
semiring to ensure that only one unique path
per input string survives

(c) Expand the result back to an WFST that pre-
serves arc-level alignments

We present a new disambiguation algorithm
that can efficiently accomplish this. In Section 2
we describe how the tropical sparse tuple vec-
tor semiring can keep track of individual arcs in
the original WFST as topological features during
the mapping step (a). This allows us to describe
in Section 3 an efficient expansion algorithm for
step (c). We show in Section 4 empirical evidence
that our algorithm is more efficient than Shafran et
al. (2011) in their same PoS-tagging task. We also
show how our method can be applied in rescor-
ing translation lattices under a bilingual neural-
network model (Devlin et al., 2014), obtaining
BLEU score gains consistent with the literature.
Section 5 reviews related work and concludes.

2 Semiring Definitions

A WFST T = (Σ,∆, Q, I, F,E, ρ) over a semir-
ing (K,⊕,⊗, 0, 1) has input and output alphabets
Σ and ∆, a set of states Q, the initial state I ∈ Q,
a set of final states F ⊂ Q, a set of transitions
(edges) E ⊂ (Q × Σ ×∆ × K × Q), and a final
state function ρ : F → K. We focus on extensions
to the tropical semiring (R±∞,min,+,∞, 0).

the lattice, searches for the best output string for each in-
put string, and converts the resulting sequences back into a
WFST, which is clearly inefficient.
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Let e = (p[e], i[e], o[e], w[e], n[e]) be an edge
in E. A path π = e1...en is a sequence of edges
such that n[ej ] = p[ej+1], 1 ≤ j < n. w[π] =⊗

ej∈π w[ej ] ; p[π] = p[e1], n[π] = n[en]. A path
is accepting if p[π] = I and n[π] ∈ F . The weight
associated by T to a set of paths Π is T (Π) =⊕

π∈Πw[π]⊗ ρ(n[π]).

2.1 Tropical Sparse Vector Semiring
Let f̄ [ei] = fi ∈ RN be the unweighted feature
vector associated with edge ei, and let ᾱ ∈ RN be
a global feature weight vector. The tropical weight
is then found as wi = w[ei] = ᾱ · f̄i =

∑
k αkfi,k.

Given a fixed ᾱ, we define the operators for the
tropical vector semiring as: f̄i ⊕α f̄j = min(ᾱ ·
f̄i, ᾱ · f̄j) and f̄i⊗α f̄j =

∑
k αk(fi,k + fj,k). The

tropical weights are maintained correctly by the
vector semiring as f̄i ⊕α f̄j = wi ⊕ wj and f̄i ⊗α
f̄j = wi⊗wj . Finally, we define the element-wise
times operator as: f̄i ∗ f̄j = f̄m, where fm,k =
fi,k+fj,k, ∀k. It follows thatwi⊗wj = α·(f̄i∗f̄j).

When dealing with high-dimensional feature
vectors which have few non-zero elements, it
is convenient in practice (for computational effi-
ciency) to use a sparse representation for vectors:
f̄ = [(i, fi), i : fi 6= 0]. That is, f̄ is comprised
of a sparse set of tuples (i, fi), where i is a feature
index and fi is its value; e.g. [(2, f2)] is short for
[0, f2, 0, 0] if N = 4.

The semiring that operates on sparse feature
vectors, which we call tropical sparse tuple vec-
tor semiring2, uses conceptually identical opera-
tors as the non-sparse version defined above, so it
also maintains the tropical weights w correctly.

3 A Disambiguation Algorithm

We now describe how we use the semiring de-
scribed in Section 2 for steps (a) and (b), and de-
scribe an expansion algorithm for step (c) that effi-
ciently converts the output of determinization into
an unambiguous WFST with arc-level alignments.

WFSA with Sparse Topological Features
Let T be a tropical-weight WFST with K edges.
T is topologically sorted so that if an edge ek pre-
ceeds an edge ek′ on a path, then k < k′. We now
use tropical sparse tuple vector weights to create
a WFSA A that maintains (in its weights) pointers
to specific edges in T . These ’pointers’ are sparse
topological features.

2We implement this semiring as an extension to the sparse
tuple weights of the OpenFst library (Allauzen et al., 2007).

For each edge ek = (pk, ik, ok, wk, nk) of T ,
we create an edge e′k = (pk, ik, ik, f̄k, nk) in A,
where f̄k = [wk, 0, . . . , 0, 1, 0, . . . , 0]; the 1 is in
the kth position. In other words, fk,0 is the tropical
weight of the kth edge in T and fk,k = 1 indicates
that this tropical weight belongs to edge k in T . In
sparse notation, f̄k = [(0, wk), (k, 1)].
For example, this non-deterministic transducer T :

a : A/2

1

b : B/1
3

b : V/5
4

a : Z/3

2
5

c : D/4

is mapped to acceptorA with topological features:

a/[(0, 2), (1, 1)]
b/[(0, 1), (3, 1)]

b/[(0, 5), (4, 1)]

a/[(0, 3), (2, 1)] c/[(0, 4), (5, 1)]

Given α = [1, 0, . . . , 0], operations on A yield the
same path weights as in the usual tropical semir-
ing.

WFSA determinization
We now apply the standard determinization algo-
rithm to A, which yields AD:

a/[(0, 2), (1, 1)]
b/[(0, 1), (3, 1)]

c/[(0, 5), (1,−1), (2, 1), (5, 1)]

This now accepts only one best-scoring path
for each input string, and the weights ’point’ to
the sequence of arcs traversed by the relevant
path in T . In turn, this reveals the best output
string for the given input string. For example,
the path-level features associated with ‘a b’ are
[(0, 3), (1, 1), (3, 1)], indicating a path π = e1e3

with tropical weight 3 through T (and hence out-
put string ‘AB’).

The topology of AD is compact because multi-
ple input strings may share arcs while still encod-
ing different output strings in their weights. This
is achieved by ‘cancelling’ topological features in
subsequent arcs and ‘replacing’ them by new ones
as one traverses the path. For example, the string
‘a c’ initially has feature (1, 1), but this gets can-
celled later in the path by (1,−1), and replaced by
[(2, 1), (5, 1)], indicating a path π = e2e5 through
T with output string ‘ZD’.
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EXPANDTFEA(Ar = (Σ,∆, Q, I, F,E))

1 I ′ ← (I,0)
2 ENQUEUE(S, I ′)
3 while |S| do
4 (q, f̄)← HEAD(S)
5 DEQUEUE(S)
6 if q ∈ F then
7 F ′ ← F ′ ∪ {(q, f̄))}
8 for each e ∈ E(q) do
9 (w′, t′, f̄ ′)← POPTFEA(f̄ , e)

10 q′ ← (n[e], f̄ ′)
11 e′ ← ((q, f̄), i[e], i[e], [(0, w′), (t′, 1)], q′)
12 Q′ ← Q′ ∪ {q′}
13 E′ ← E′ ∪ {e′}
14 ENQUEUE(S, (n[e], f̄ ′))
15 return Br = (Σ,∆, Q′, I ′, F ′, E′)

Figure 1: Expansion and topological feature repo-
sitioning algorithm for step (c).

Expansion Algorithm

We now describe an expansion algorithm to con-
vertAD into an unambiguous WFST T ′ that main-
tains the arc-level input-output alignments of the
original transducer T . In our example, T ′ should
be identical to T except for edge 4, which is re-
moved.

Due to the WFSA determinization algorithm,
we observe empirically that the cancelling features
in AD tend to appear in a path after the feature it-
self. This allows us to define an algorithm that tra-
versesAD in reverse (from its final states to its ini-
tial state) and creates an equivalent acceptor with
the topology of T ′.

The algorithm is described in Figure 1. It per-
forms a forward pass through Ar (the reverse of
AD). The intuition is that, for each arc, we cre-
ate a new arc where we ‘pop’ the highest topo-
logical feature (as it will not be cancelled later)
and its tropical weight. The new states encode the
original state q and the residual features that have
not been ‘popped’ yet. For each edge E(q), the
auxiliary POPTFEA(f̄ , e) returns a (w′, t′, f̄ ′) tu-
ple, where w′ is the tropical weight obtained as
f̄ ⊗α f̄ [e] (which is equivalent to f0 + f [e]0 given
our ᾱ); t′ is the index of the highest topological
feature of f̄ ∗ f̄ [e]; and f̄ ′ is the vector of resid-
ual topological features after excluding f0 and ft′ ,
that is, f̄ ∗ f̄ [e] ∗ [(0,−w′), (t′,−1)]. For exam-
ple, POPTFEA([(0, 5), (1,−1), (2, 1), (6, 1)]) re-
turns (5, 6, [(1,−1), (2, 1)]); if w has only one
topological feature, the residual is 0. The residual
in all final states of Br will be 0 (no topological
features still to be popped).

Graphically, in our running example Ar is:

1 2 3
a/[(0, 2), (1, 1)]

b/[(0, 1), (3, 1)]

c/[(0, 5), (1,−1), (2, 1), (5, 1)]

and the output is Br:

(1,0)

(2,0)

(3,0)

(2, [(1,−1), (2, 1)])

b/[(0, 1), (3, 1)] a/[(0, 2), (1, 1)]

c/[(0, 5), (5, 1)] a/[(0, 2), (2, 1)]

Reversing Br yields an acceptor B (still in
the sparse tuple vector semiring) which has the
same topology as our goal T ′ and can be trivially
mapped to T ′ in linear time: each arc takes the
tropical weight via ᾱ and has only one topological
feature which points to the arc in T containing the
required output symbol.

Two-pass Expansion
As mentioned earlier, our algorithm relies on ‘can-
celling’ topological features appearing after the
feature they cancel in a given path. In general,
consider T a weighted transducer andA it’s equiv-
alent automaton with sparse topological features,
as described here. Ap is the result of applying
standard WFST operations, such as determiniza-
tion, minimization or shortest path. Assume as a
final step that the weights have been pushed to-
wards the final states. It is worth noting the prop-
erty that: two topological features in a path ac-
cepted by A will never get reordered in Ap, al-
though they can appear together on the same edge,
as shown in our running example. Indeed, if Ap

contains only one single path, all the topological
features would appear on the final state.

Let us define a function dA(e) as the minimum
number of edges on any path in A from the start
state to n[e] through edge e.

Consider all edges ei in A and ep in Ap, with
f [ei]i = 1 and f [ep]i 6= 0, i.e. we are interested
in the topological feature contribution on ep due
to the edge ei in A. If dA(ei) ≤ dAp(ep) is al-
ways satisfied, then EXPANDTFEA will yield the
correct answer because the residual at each state,
together with the the weight of the current edge,
contains all the necessary information to pop the
next correct topological feature.

However, many deterministic WFSAs will not
exhibit this behaviour (eg. minimised WFSAs),
even after pushing the weights towards the final
states. For example see this acceptor A:
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Figure 2: Number of succesfully disambiguated transducers over time for PoS tagged lattices (left) and
HiFST lattices (right).

0

1

3

2

e1 = y/[(0, 1), (1, 1)] e3 = x/[(0, 2), (3, 1)]

e2 = z/[(0, 3), (2, 1)] e4 = x/[(0, 4), (4, 1)]

And Ap is a minimised version of A:

0 1 2

ep
3 = x/[(0, 3), (1, 1)(3, 1)]ep

1 = y

ep
2 = z/[(0, 4), (1,−1), (3,−1), (2, 1), (4, 1)]

As dA(e3) = dA(e4) = 2 and dAp(ep2) = 1,
the distance test fails for both topo-
logical features (3,−1)(4, 1). Running
Br=EXPANDTFEA((Ap)r) will not cancel
feature (3, 1) along the path ‘z x’ and will pop
(4, 1) instead, storing the remaining none-0
residual in a final state of Br.

As mentioned before, two topological features
along the same path in A will not reorder in Ap.
In this example, as (4, 1) appears in edge ep2, fea-
ture (2, 1) must also appear in this edge (or on an
earlier edge, in a more complicated machine). In
general, any remaining topological features along
the path back to the start state of Ap will all be
popped after their correct edges in Br. All edges
inBr pass the distance test compared toAr, the re-
versed form of A: for all edges ei with f [ei]i = 1
inAr and eq inBr such that f [eq]i 6= 0, dAr(ei) ≤
dBr(eq). Edges in these machines are now reverse
sorted, i.e. if an edge ek precedes an edge ek′ on a
path, then k′ < k.

We can perform a second pass with the same al-
gorithm over B, with the only minor modification

that t′ is now the index of the lowest topological
feature of f̄ ∗ f̄ [e]. This expands the acceptor cor-
rectly. Because correct expansions yield 0 residu-
als on the final states, the algorithm can be trivially
modified to trigger the second pass automatically
if the residual on any final state is not 0.

4 Experiments

We evaluate our algorithm, henceforth called topo-
logical, in two ways: we empirically contrast
disambiguation times against previous work, and
then apply it to rescore translation lattices with
bilingual neural network models.

4.1 PoS Transducer Disambiguation

We apply our algorithm to the 4,664 NIST English
CTS RT Dev04 set PoS tagged lattices used by
Sproat el al. (2014); these were generated with a
speech recognizer similar to (Soltau et al., 2005)
and tagged with a WFST-based HMM tagger. The
average number of states is 493. We contrast with
the lexicographic tropical categorial semiring im-
plementation of Shafran et al. (2011), henceforth
referred to as the categorial method.

Figure 2 (left) shows the number of disam-
biguated WFSTs as processing time increases.
The topological algorithm proves much faster (and
we observe no memory footprint differences). In
50ms it disambiguates 3540 transducers, as op-
posed to the 2771 completed by the categorial pro-
cedure; the slowest WFST to disambiguate takes
230 seconds in the categorial procedure and 60
seconds in our method. Using sparse topological
features with our semiring disambiguates all WF-
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STs faster in 99.8% of cases.

4.2 Neural Network Bilingual Rescoring
We use the disambiguation algorithm to apply the
bilingual neural network language model (BiLM)
of Devlin et al. (2014) to the output lattices of the
CUED OpenMT12 Arabic-English hierarchical
phrase-based translation system3 using HiFST (de
Gispert et al., 2010). We use a development set
mt0205tune (2075 sentences) and a validation set
mt0205test (2040 sentences) from the NIST MT02
through MT05 evaluation sets.

The edges in these WFSTs are of the form
t:i/w, where t is the target word, i is the source
sentence position t aligns to, and w contains the
translation and language model score. HiFST
outputs these WFSTs by using a standard hi-
ero grammar (Chiang, 2007) augmented with tar-
get side heuristic alignments or affiliations to the
source (Devlin et al., 2014).

In a rule over source and target words

X →< s1X s2 s3, t1X t2 > / 2, 1

the feature ‘2, 1’ indicates that the target word t1
is aligned to source word s2 and that t2 aligns to
s1. As rules are applied in translation, this infor-
mation can be used to link target words to absolute
positions within the source sentence.

Allowing for admissible pruning, all possible
affiliation sequences under the grammar for ev-
ery translation are available in the WFSTs; dis-
ambiguation keeps the best affiliation sequence
for each translation hypothesis, which allows the
rescoring of very large lattices with the BiLM
model.

This disambiguation task involves much bigger
lattices than the POS-tagging task: the average
number of states of the HiFST lattices is 38,200.
Figure 2 (right) shows the number of mt0205tune
disambiguated WFSTs over time compared to the
categorial method. As with the PoS disambigua-
tion task, the topological method is always much
faster than the categorial one. After 10 seconds,
our method has disambiguated 1953 lattices out of
2075, whereas the categorial method has only fin-
ished 1405. The slowest WFST to disambiguate
takes 6700 seconds with the categorial procedure,
which compares to 1000 seconds in our case.

The BiLM model is trained with
NPLM (Vaswani et al., 2013) with a context

3See http://www.nist.gov/itl/iad/mig/openmt12results.cfm.

system mt0205tune mt0205test
baseline 52.2 51.9
+BiLM 53.0 52.9

Table 1: Translation scores in lower-case BLEU.

of 3 source and 4 target words. Lattice rescoring
with this model requires a special variation of the
standard WFST composition which looks at both
input and output labels on a transducer arc; we use
KenLM (Heafield, 2011) to retrieve neural net-
work scores for on-the-fly composition. We retune
the parameters with Lattice MERT (Macherey
et al., 2008) . Results are shown in Table 1.
Acknowledging the task differences with respect
to (Devlin et al., 2014), we find BLEU gains
consistent with rescoring results reported in their
Table 5.

5 Conclusions and Related Work

We have described a tagging disambiguation algo-
rithm that supports non-functional WFSTs, which
cannot be handled directly by neither WFST deter-
minization (Mohri, 1997) nor WFST disambigua-
tion (Mohri, 2012). We show it is faster than
the implementation with a lexicographic-tropical-
categorial semiring described by Shafran et al.
(2011) and describe a use case in a practical
rescoring task of an MT system with bilingual
neural networks that yield 1.0 BLEU gain.

Povey et al. (2012) also use a special semir-
ing that allows to map non-functional WFSTs into
WFSAs by inserting the tag into a string weight.
However, in contrast to our implementation and
that of Shafran et al (2011), no expansion into an
WFST with aligned input/output is described.

Lexicographic semirings, used for PoS tagging
disambiguation (Shafran et al., 2011), have been
also shown to be useful in other tasks (Sproat et
al., 2014), such as optimized epsilon encoding for
backoff language models (Roark et al., 2011), and
hierarchical phrase-based decoding with Push-
down Automata (Allauzen et al., 2014).

The tools for disambiguation and WFST com-
position with bilingual models, along with a tu-
torial to replicate Section 4.2, are all available at
http://ucam-smt.github.io.
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Abstract

Arabic, Hebrew, and similar languages are typi-
cally written without diacritics, leading to ambigu-
ity and posing a major challenge for core language
processing tasks like speech recognition. Previous
approaches to automatic diacritization employed a
variety of machine learning techniques. However,
they typically rely on existing tools like morpho-
logical analyzers and therefore cannot be easily
extended to new genres and languages. We de-
velop a recurrent neural network with long short-
term memory layers for predicting diacritics in
Arabic text. Our language-independent approach
is trained solely from diacritized text without re-
lying on external tools. We show experimentally
that our model can rival state-of-the-art methods
that have access to additional resources.

1 Introduction

Hebrew, Arabic, and other languages based on the
Arabic script usually represent only consonants in
writing and do not mark vowels. In such writ-
ing systems, diacritics are used for marking short
vowels, gemination, and other phonetic units. In
practice, diacritics are usually restricted to specific
settings such as language teaching or to religious
texts. Faced with a non-diacritized word, readers
infer missing diacritics based on their prior knowl-
edge and the context of the word in order to re-
solve ambiguities. For example, Maamouri et al.
(2006) mention several types of ambiguity for the
Arabic string ÕÎ « Elm, both within and
across part-of-speech tags, and at a grammatical

Word Gloss
Ealima he knew
Eulima it was known
Eal~ama he taught
Eilomu knowledge (def.nom)
... ...
EilomK knowledge (indef.gen)
Ealamu flag (def.nom)
... ...
EalamK flag (indef.gen)

Table 1: Possible diacritized forms for ÕÎ« Elm.

level. In practice, a morphological analyzer like
MADA (Habash et al., 2009) produces at least 13
different diacritized forms for this word, a subset
of which is shown in Table 1.1

The ambiguity in Arabic orthography presents
a problem for many language processing tasks, in-
cluding acoustic modeling for speech recognition,
language modeling, text-to-speech, and morpho-
logical analysis. Automatic methods for diacriti-
zation aim to restore diacritics in a non-diacritized
text. While earlier work used rule-based meth-
ods, more recent studies attempted to learn a di-
acritization model from diacritized text. A vari-
ety of methods have been used, including hidden
Markov models, finite-state transducers, and max-
imum entropy – see the review in (Zitouni and
Sarikaya, 2009) – and more recently, deep neu-
ral networks (Al Sallab et al., 2014). In addi-
tion to learning from diacritized text, these meth-
ods typically rely on external resources such as
part-of-speech taggers and morphological analyz-
ers like the MADA tool (Habash and Rambow,
2007). However, building such resources is a
labor-intensive task and cannot be easily extended
to new languages, dialects, and domains.

1Arabic transliteration follows the Buckwalter scheme:
http://www.qamus.org/transliteration.htm.
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Diacritic Transliteration Transcription�X a /a/
�X u /u/

X� i /i/
�X F /an/
�X N /un

X� K /in/
�X ~ Gemination
�X o No vowel

Table 2: Arabic diacritics.

In this work, we propose a diacritization method
based solely on diacritized text. We treat the prob-
lem as a sequence classification task, where each
character has a corresponding diacritic label. The
sequence is modeled with a recurrent neural net-
work whose input is a sequence of characters and
whose output is a probability distribution over the
diacritics. Any RNN architecture can be used in
this framework; here we focus on long short-term
memory (LSTM) networks, which have shown re-
cent success in a number of NLP tasks. We exper-
iment with several architectures and show that we
can achieve state-of-the-art results, without rely-
ing on external resources. Error analysis demon-
strates the benefit of using LSTM over simpler
neural networks.

2 Linguistic Background

Languages based on the Arabic script typically
employ an abjad writing system, where each sym-
bol represents a consonant while vowels and other
phonetic units, commonly known as diacritics, are
usually omitted in writing. In modern standard
and classical Arabic, these include the short vow-
els a, u, and i, the case endings F, N, and K, the
gemination marker ~, and the silence marker o.2

Table 2, modified from (Habash et al., 2007), lists
the diacritics. Importantly, the gemination marker
~ can combine with short vowels and case endings
(e.g. Table 1, row 3).

3 Approach

We define the following sequence classification
task, similarly to (Zitouni and Sarikaya, 2009).

2We also include the low-frequency superscript Alif ‘ that
is usually ignored due to its limitation to fixed lexical items.

Softmax

EmbeddingInput layer

Hidden layers

Output layer

w1,...,wT

xw1,...,xwT

h1,...,hT

l1,...,lT

Figure 1: An illustration of our network topology.

Let w = (w1, ..., wT ) denote a sequence of char-
acters, where each character wt is associated with
a label lt. A label may represent 0, 1, or more di-
acritics, depending on the language. Assume fur-
ther that each character w in the alphabet is rep-
resented as a real-valued vector xw. This charac-
ter embedding may be learned during training or
fixed.

Our neural network has the following structure,
illustrated in Figure 1:

• Input layer: mapping the letter sequence w to
a vector sequence x.

• Hidden layer(s): mapping the vector se-
quence x to a hidden sequence h.

• Output layer: mapping each hidden vector ht
to a probability distribution over labels l.

During training, each sequence is fed into this
network to create a prediction for each character.
As errors are back-propagated down the network,
the weights at each layer are updated. During test-
ing, the learned weights are used in a forward step
to compute a prediction over the labels. We always
take the best predicted label for evaluation.

Hidden layer Our main system relies on long
short-term memory networks (LSTM) (Hochre-
iter and Schmidhuber, 1997; Graves et al., 2013).
Here we describe a single LSTM layer and refer
to Graves et al. (2013) for the extension to bidi-
rectional LSTM (B-LSTM) and to multiple layers.
The LSTM computes the hidden representation for
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Train Dev Test
Words 470K 81K 80K
Letters 2.6M 438K 434K

Table 3: Arabic diacritization corpus statistics.

input xt with the following iterative process:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi)
ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf )
ct = ft � ct−1+

it � tanh(Wxcxt +Whcht−1 + bc)
ot = σ(Wxoxt +Whoht−1 +Wcoct + bo)
ht = ot � tanh(ct)

where σ is the sigmoid function, � is element-
wise multiplication, and i, f , o, and c are input,
forget, output, and memory cell activation vectors.
The crucial element is the memory cell c that is
able to store and reuse long term dependencies
over the sequence. TheW matrices and b bias vec-
tors are learned during training.

Implementation details The input layer maps
the character sequence to a sequence of letter vec-
tors, initialized randomly. We also tried initializ-
ing with letter vectors trained from raw text with
word2vec (Mikolov et al., 2013a; Mikolov et al.,
2013b), but did not notice any improvement, prob-
ably due to the small letter vocabulary size. The
input layer also stacks previous and future letter
vectors, enabling the model to learn contextual in-
formation. We use a letter embedding size of 10
and a window size of 5 characters, so the input
size is 110.

We experiment with several types of hidden lay-
ers, ranging from one feed-forward layer to mul-
tiple B-LSTM layers. We also add a linear pro-
jection after the input layer. This has the effect of
learning a new representation for the letter embed-
dings. The output layer is a Softmax over labels:

P (l|wt) =
exp(yt[l])∑
l′ exp(yt[l′])

where yt = Whyht+ by and yt[l] is the lth element
of yt.

Training is done with stochastic gradient de-
scent with momentum, optimizing the cross-
entropy objective function. Layer sizes and other
hyper-parameters are tuned on the Dev set. Our
implementation is based on Currennt (Weninger et
al., 2015).

DER
Model All End # params
Feed-forward 11.76 22.90 63K
Feed-forward (large) 11.55 23.40 908K
LSTM 6.98 10.36 838K
B-LSTM 6.16 9.85 518K
2-layer B-LSTM 5.77 9.18 916K
3-layer B-LSTM 5.08 8.14 1,498K

Table 4: Diacrtic error rates (DERs) on the Dev
set, over all diacritics and only at word ending.

MaxEnt (only lexical) 8.1
MaxEnt (full) 5.1
3-layer B-LSTM 4.85

Table 5: Results (DER) on the Test set. MaxEnt
results from (Zitouni and Sarikaya, 2009)

4 Experiments

Data We extract diacritizied and non-diacritized
texts from the Arabic treebank, following the
Train/Dev/Test split in (Zitouni and Sarikaya,
2009). Table 3 provides statistics for the corpus.

Every character in our corpus has a label cor-
responding to 0, 1, or 2 diacritics, in the case of
the gemination marker combining with another di-
acritic. Thus the label set almost doubles. We
opted for this formulation due to its simplicity and
generalizability to other languages, even though
previous work reported improved results by first
predicting gemination and then all other diacrit-
ics (Zitouni and Sarikaya, 2009).

Results Table 4 shows the results of our models
on the Dev set in terms of the diacritic error rate
(DER). Clearly, LSTM models perform much bet-
ter than simple feed-forward networks. To make
the comparison fair, we increased the number of
parameters in the feed-forward model to match
that of the LSTM. In this setting, the LSTM is still
much better, indicating that it is far more success-
ful at exploiting the larger parameter set. Interest-
ingly, the bidirectional LSTM works better than a
unidirectional one, despite having less parameters.
Finally, deeper models achieve the best results.

On the Test set (Table 5), our 3-layer B-LSTM
model beats the lexical variant of Zitouni and
Sarikaya (2009) by 3.25% DER, a 40% error
reduction. Moreover, we outperform their best
model, which also used a segmenter and part-of-
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Figure 2: A confusion matrix of errors made by
our system. ”#” marks word boundary. Best
viewed in color.

speech tagger. This shows that our model can ef-
fectively learn to diacritize without relying on any
resources other than diacritized text.

Finally, some studies report work on a
Train/Test data split, without a dedicated Dev
set (Zitouni et al., 2006; Habash and Rambow,
2007; Rashwan et al., 2011; Al Sallab et al., 2014).
We were reluctant to follow this setting so we per-
formed all development on the Dev set of (Zi-
touni and Sarikaya, 2009). Still, we ran our best
model on the Train/Test split and achieved a DER
of 5.39% on all diacritics and 8.74% on case end-
ings. The first result is behind the state-of-the-
art (Al Sallab et al., 2014) by 2% but the second
one is better by 3%. Given that we did not tune the
system for this data set, this result is encouraging.

Error Analysis A quantitative analysis of the er-
rors produced by one of our models on the Dev set
is shown in Figure 2. The heat map denotes the
number of errors produced. The major source of
errors comes from confusing the short vowels a,
i, and u, among themselves and with no diacritic.
This is expected due to the high rate of short vow-
els in Arabic compared to other diacritics. It also
explains why methods that take the confusion ma-
trix into account in their classification algorithm
do quite well (Al Sallab et al., 2014).

We also analyzed some errors qualitatively. Fig-
ure 3 shows the errors produced by several of our
diacritization models on a sample sentence. In-

Model Diacritization
Gold AiEotabara Almudiyru AlEAm~u l ”

Aln~ahAri ” juborAn tuwayoniy~ Aan
Alt~a$okiylAti AlqaDA}iy~apa jA’at lita-
moyiyEi milaf~i maHaT~api Al ” Aim . tiy
. fiy . ”

Feed-
forward

AiEotabara Almudiyru AlEAm~u l ”
Aln~ahAr ” jaborAn tuwayoniy Aan
Alt~a$okiylAti AlqaDA}iy~api jA’at
litamayiyEi malaf~i maHaT~api Al ” A m
. tiy . fiy . ”

LSTM AiEotabara Almudiyru AlEAm~u l ”
Aln~ahAri ” juborAn t w yoniy Ain
Alt~a$okiylAti AlqaDA}iy~apa jA’at
litamoyiyEa milaf~i maHaT~api Al ” Aim
. tiy . fiy . ”

B-LSTM AiEotabara Almudiyru AlEAm~u l ”
Aln~ahAri ” juborAn t wayoniy Aan
Alt~a$okiylAti AlqaDA}iy~apa jA’at lita-
moyiyEi milaf~i maHaT~api Al ” Aim . tiy
. fiy . ”

Figure 3: Sample errors by selected diacritization
models. Wrong predicted diacritics are underlined
and in red; missing diacritics are noted by under-
score. Translation: ”The editor of An Nahar, Ge-
bran Tueni, thought that the judicial formations
came to dilute the issue of MTV station”.

terestingly, the simple feed-forward model fails
to predict the correct case ending on the word
AlqaDA}iy~ap (“judicial”), while both LSTM
models succeed. This may indicate that LSTM in-
deed captures the kind of long-distance dependen-
cies that are responsible for case marking. Other
errors are more difficult to explain, but note that all
models struggle with the proper name tuwayoniy~
(“Tueini”), which is difficult to solve without ex-
ternal resources.

5 Conclusion

In this work, we develop a recurrent neural net-
work that predicts diacritics in non-diacritized
texts. Our model is language agnostic: it is
trained solely from diacritized text without relying
on additional resources. Using LSTM units, we
demonstrate that our model can effectively learn
to diacritize Arabic texts and rivals state-of-the-art
methods that rely on language-specific tools.

In future work, we intend to incorporate our di-
acritization system in a speech recognizer. Recent
work has shown improvements in Arabic speech
recognition by diacritizing with MADA (Al Hanai
and Glass, 2014). Since creating such tools is a
labor-intensive task, we expect our diacritization
approach to promote the development of speech
recognizers for other languages and dialects.
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1MTA-PPKE Hungarian Language Technology Research Group,
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Abstract
In this paper, we describe a method based
on statistical machine translation (SMT)
that is able to restore accents in Hungarian
texts with high accuracy. Due to the ag-
glutination in Hungarian, there are always
plenty of word forms unknown to a sys-
tem trained on a fixed vocabulary. In or-
der to be able to handle such words, we
integrated a morphological analyzer into
the system that can suggest accented word
candidates for unknown words. We evalu-
ated the system in different setups, achiev-
ing an accuracy above 99% at the highest.

1 Introduction

Due to clumsy mobile device interfaces and re-
luctance of users to spend too much time entering
their message, a great amount of text is generated
in a format that lacks the diacritic marks normally
used in the orthography of the language the text
is written in. Whatever the causes for the missing
accents are, NLP applications should be able to re-
store or generate the accented version of such texts
prior to any further syntactic or semantic process-
ing to avoid upstream errors.

In this paper, we aim at solving the problem of
restoring accents in Hungarian texts with the com-
bined application of a statistical machine transla-
tion system and a morphological analyzer. Our
method can be applied to any other languages that
have an accurate morphological analyzer.

2 Related work

For Hungarian, there have been some attempts
at creating accent restoration systems. Zainkó et
al. (2000) and Mihalcea and Nastase (2002) are
examples for ML approaches, where the correct
places of diacritics are predicted from the immedi-
ate grapheme-level context of the unaccented let-
ter with an accuracy of 95%. Thus, unseen words

can also be accented, but incorrect forms may also
be introduced into the text. Dictionary-based ap-
proaches rely on large text corpora and the distri-
bution of the different accented forms. Zainkó et
al. (2000) report to have achieved a performance
of 98% of accuracy with their dictionary-based
method. Nevertheless, their system cannot rec-
ognize unseen wordforms quite common in Hun-
garian. Németh et al. (2000) have implemented a
complex text processing system for TTS applica-
tions, applying morphological and syntactic anal-
ysis. The authors report that the performance of
accent restoration depends very much on the per-
formance of the analyzers (achieving 95% accu-
racy at best). Neither the implementations nor the
resources used in these systems have been made
publicly available.

A language-independent tool, Charlifter (Scan-
nell, 2011), is based on statistical methods relying
on a lexicon, a bigram contextual model and char-
acter distributions built from a training corpus. Its
performance on Hungarian with its pre-built mod-
els is compared to our results in Section 5.

For other languages, similar methods are used.
Yarowsky (1994) presents a comprehensive report
on corpus-based techniques used for French and
Spanish texts. The role of the context is empha-
sized in this report, however, both word form and
accent variations are relatively moderate in the
investigated languages compared to Hungarian.
The study of Zweigenbaum and Grabar (2002) is
also aiming at French, but in the medical domain,
which contains a higher ratio of unknown words
than general language. In their work, a tagging
method is applied in combination with transduc-
ers, resulting in a tag sequence corresponding to
each letter. The method is successfully (92% pre-
cision) applied to single headwords of a medical
thesaurus (without exploiting any context). The
most similar method to ours is that of Pham et
al. (2013), who also applied SMT in order to au-
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tomatically restore accents in Vietnamese texts.
In their case, the best results produced an accu-
racy of 93%. However, their system is augmented
with a dictionary, and the distribution of accents
and grammatical behaviour are also quite different
from Hungarian.

3 Hungarian

Hungarian is an agglutinating language with an
orthography that represents compounds as single
word forms. These may result in rather complex
word forms and words are often composed of long
sequences of morphemes. Thus, agglutination and
compounding yield a huge number of different
word forms.

In Hungarian, umlauts and acute accents are
used as diacritics for vowels. Acute accents mark
long vowels, while umlauts are used to indicate the
frontness of rounded vowels o→ö [o→ø] and u→ü
[u→y], like in German. A combination of acutes
and umlauts is the double acute diacritic to mark
long front rounded vowels ő [ø:] and ű [y:]. Long
vowels generally have essentially the same quality
as their short counterpart (i-ı́, ü-ű, u-ú, ö-ő, o-ó).
The long pairs of the low vowels a [O] and e [E], on
the other hand, also differ in quality: á [a:] and é
[e:]. There are a few lexicalized cases where there
is a free variation of vowel length without distin-
guishing meaning, e.g. hova∼hová ‘where to’. In
most cases, however, the meaning of differently
accented variants of a word is quite different. Ta-
ble 1 shows all the possible unaccented-accented
pairs of vowels in Hungarian together with their
distribution in a corpus of 1 804 252 tokens.

a a: 70.33%; á: 29.66%
e e: 73.40% é: 26.59%
i i: 86.04% ı́: 13.95%
o o: 55.41% ó: 14.65% ö: 15.82% ő: 14.10%
u u: 46.96% ú: 12.72% ü: 29.98% ű: 10.32%

Table 1: Possible accent variations in Hungarian

4 Method

In this research, we considered the problem of ac-
cent restoration as a translation task, where the
source language is the unaccented version, and the
target language is accented Hungarian. Since it is
easy to come up with a parallel training corpus for
this task, methods of SMT can be applied.

In our experiments, we used Moses (Koehn et
al., 2007), a widely used SMT toolkit for build-
ing the translation models and performing decod-
ing, and SRILM (Stolcke et al., 2011) to build the
necessary language models. Moses was used with
its default configuration settings and monotone de-
coding (i.e. reordering was not allowed), and with-
out the alignment step, which was not needed in
our case.

4.1 The baseline setup
In the baseline setup, only the translation and lan-
guage models built from the training corpus were
used. The input for the decoder was Hungar-
ian raw texts with all the accents removed. The
translation model contained only unigram phrases
(larger n-grams were also tried, but did not change
the results) and the language model contained
phrases up to 5 grams. Thus, the translation model
was responsible for predicting the distribution of
accented forms and the language model exploited
contextual information.

Another baseline was also created in order to
monitor the effect of the SMT system. In this sec-
ond baseline, each unaccented word form was re-
placed by its most frequent accented form in the
training set.

4.2 Incorporating a morphological analyzer
In order to be able to restore accents in unseen
words as well, a Hungarian morphological an-
alyzer (Prószéky and Kis, 1999; Novák, 2003)
was integrated. A special version of the analyzer
was created that directly maps unaccented word
forms to their possible accented variants while
also marking morpheme boundaries and adding
morphosyntactic category tags. The segmenta-
tion marks (e.g. compound and derivational suf-
fix boundaries) and the tags are used when we as-
sign a score to the accented candidates. We also
reanalyze accented forms to retrieve lemmas not
directly returned by the accenting analyzer. In our
test set of 1 804 252 tokens, about 1% of the words
were not found in the translation model even in the
case of the largest, 440 million words, training set.
Table 2 shows the ratio of unknown words (OOV)
as a function of the size of the training set used for
building the phrase table.

For these unknown words, all possible correct
accented candidates were generated by the mor-
phological analyzer. These candidates were then
fed to the Moses decoder using its -xml-input
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train sentences M words OOV in test
100K 100 000 1.738 9.63%
1000K 1 000 000 18.078 3.44%
5000K 5 000 000 89.907 1.23%
10M 10 000 000 180.644 1.68%
ALL 24 048 302 437.559 0.81%

Table 2: Ratio of OOV after building a translation
model from a training set of a certain size

parameter. In order to be able to use this feature
of the decoder, a probability for each candidate
form had to be estimated. First, we assumed uni-
form distribution among the candidates. However,
this approach assigned the same probability to the
most common and the most nonsensical (although
grammatical) candidates as well. Thus, in some
cases these forms showed up in the results. In
order to avoid the system to make such errors, a
more sophisticated distribution was estimated for
the candidate set. For this, we applied a linear
regression model based on corpus frequency data
determined for the lemma and other features of the
candidate word (since the actual wordform was
not present in the corpus). Thus, for each candi-
date, its lemma frequency (LEM ), the number of
productively applied compounding (CMP ), the
number of productively applied derivational af-
fixes (DER), and the frequency of the inflectional
suffix sequence returned by the analysis were de-
termined. Compounding and derivation were pe-
nalized (i.e. they were given a negative sign), be-
cause the morphological analyzer could suggest
some nonsensical, though grammatical compound
or derived forms. Sometimes such forms could
be the correct ones, but the more productive com-
pounding and derivation there is in a word, the
lower score it should get. On the other hand, the
frequencies of the lemma and the inflectional pat-
tern should increase the score of a candidate, thus
these components were given positive weights.
Based on these components, a score was assigned
to each candidate based on Formula (1).

score = −λc#CMP − λd#DER
+ log10LEM + λilog10INF +MS

(1)

, where

MS =
{|minscore|+ 1 if minscore ≤ 0

0 otherwise
(2)

The MS component was used to scale up the

scores by adding |minscore| + 1, i.e. the low-
est score received for any candidate in the actual
candidate set in order to evade negative scores.
The λ weights were set by the mert tuning of
the Moses system. We used a separate develop-
ment set for this, on which we observed the distri-
bution of compounds, derivational and inflectional
suffixes in OOV words analyzed by the morphol-
ogy and from which we sampled 1000 words ap-
proximating the observed distributions. The target
of the optimization in the mert tuning was the ac-
curacy of the system on these words, resulting in
the optimal values for each λ. Even though, in lin-
ear regression, it is standard to use an additional
bias weight, we did not find it necessary, because
we did not need to bring our estimates in sync
with estimates from other sources. And assuming
one factor to have a fixed unit value was just an-
other simplification that would not affect the over-
all ranking, just its scaling.

Even though, following an appropriate scaling
of the scores, the ranked candidates could be used
the same way as the entries in the translation table,
the system would never select any accented form
other than the most probable one, since the lan-
guage model does not include any of these forms.
Thus, only the candidate with the highest relative
score was made available to the system.

5 Experiments and results

In our experiments, the Hungarian webcorpus
(Halácsy et al., 2004) was used for training and
testing purposes. A set of 100 000 sentences were
separated from the corpus as the test set, and an-
other 100 000 sentences were used as a develop-
ment set. The rest were used for training in differ-
ent settings. The size of each training set is shown
in Table 2.

We evaluated the performance on all the
1 804 252 tokens of the test set (56.84% correct
without accent) and on a subset of 1 472 200 words
that included any vowels (47.09% correct without
accent). The experiments were then performed for
the baseline system using the most frequent form
(BL-FREQ), for the baseline SMT system (BL-
SMT) and for the one augmented by the morphol-
ogy with the first-ranked candidate (RANK). Ta-
ble 3 shows the detailed results for the smallest
and largest training sets for all words (ALL) and
for words that include vowels (VOWEL). It can
be seen that the precision of the system is only
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100K ALL

system prec rec acc prec rec acc

BL-FREQ-ALL 98.25 82.82 92.34 98.37 96.26 98.13

BL-FREQ-VOW 98.25 82.82 90.62 98.37 96.26 97.71

BL-SMT-ALL 99.03 83.88 92.91 99.09 97.36 98.72

BL-SMT-VOW 99.03 83.88 91.31 99.09 97.36 98.44

RANK-ALL 98.81 98.08 98.99 99.01 98.56 99.23

RANK-VOW 98.82 98.08 98.77 99.02 98.56 99.06

Table 3: Performance results for each experimen-
tal settings and training size

slightly improved when increasing the size of the
training corpus, but the values of recall and accu-
racy do dramatically improve in the case of the
baseline system. However, the integration of the
suggestions of the morphology can make up for
the lack of information due to the small training set
improving recall a great deal while only slightly
affecting precision. Even for the biggest 437.6M-
word training corpus, incorporating the morpho-
logical analyzer with ranking yielded a relative er-
ror rate reduction of 39.74%, reducing the word
error rate from 1.56% to 0.94%. For the small-
est 1.74M-word training corpus tested, the relative
error rate reduction was 85.85%. The system in-
cluding the morphological analyzer performs bet-
ter even with the smallest training corpus in terms
of word accuracy than the baseline Moses sys-
tem with the biggest corpus. Figure 1 shows the
learning curves for each system with accuracy as
a function of training set size.

Comparing our results to those we obtained
using Charlifter (89.75% with most frequent ac-
cented form baseline, 90.00% with the lexicon-
lookup+bigram contextual model and 93.31%
with lookup+bigram context+character-n-gram-
based model), the results reveal that both the con-
textual model in the SMT system improves accu-
racy better than the bigram context model of Char-
lifter, and the performance boost we get by incor-
porating morphology vastly exceeds the accuracy
improvement yielded by the incorporation of the
character-n-gram-based model used in Charlifter.

6 Error analysis

We performed a detailed error analysis on a 5000-
sentence (87786-token) fragment of the test set.
The results of the error analysis are presented in
Table 4.

training set 10x words

ac
cu
ra
cy

5 6 7 8 9
90

92

94

96

98

100

RANK-VOWEL
BL-SMT-VOWEL

BL-FREQ-VOWEL

Figure 1: Accuracy as a function of the size of the
training set for each system, measured on words
containing vowels.

The detailed analysis showed that 14.7% of mis-
matches between the original and the system out-
put is in fact not due to the latter being erroneous.
3.55% are equivalent forms , while the rest is cor-
rect in the output and erroneous in the reference,
i.e. the system corrected errors in the original.

Another part of the reference (17.91%) is like-
wise erroneous, however, since the error in these
cases was not in the accents, the system was not
able to correct it. Missing or substituted letters are
the most common mistakes (10.81%), and further
6.42% of the errors is due to punctuation errors in
the original.

About 2/3 of the mismatches are real errors.
5.57% of these could be attributed to the stem of
the word missing from the database of the morpho-
logical analyzer. In 3.55% of the cases, the sys-
tem transforms a name to a more frequent word:
sometimes to another name, but more often to
some common frequent word. A similar case
is when some common noun is transformed to a
more frequent name (another 1.35%). The num-
ber of these errors could be reduced to some ex-
tent by making the system rely on case informa-
tion (in the case of some proper name-common
noun ambiguities), however this could make the
system perform worse elsewhere due to increased
data sparseness. 2.20% of the errors is due to er-
rors in the training corpus. Since rare word forms
are quite frequent in Hungarian, the chances are
high that a specific form is more often mistyped
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Mismatch type Ratio Examples

Output correct 14.70%

Equivalent forms 3.55% lévő→levő fele→felé áhá→aha periférikus→periferikus

Corrected erroneous name 1.01% USÁ-ban→USA-ban Szóladon→Szóládon

Other corrected erroneous 10.14% un.→ún. kollegánk→kollégánk lejto→lejtő lathato→látható

Real errors 67.40%

Missing from MA 5.57% hemokromatózis-gén→hemokromatozis-gen

Correct name to erroneous output 3.55% MIG→mı́g Bösz→Bősz Ladd→Ládd Márton→Marton

Other correct original to some erroneous form 2.20% megőrzést→megorzést routeréhez→routerehez

Other correct original to contextually inade-
quate name

1.35% logó→logo eperjeskein→eperjeskéin

Other correct original to some contextually in-
adequate form

51.01% még→meg termek→termék gépét→gépet cı́mét→cı́met
vágyók→vagyok érméket→érmeket képé→képe

Original is a filename or a url containing accents 3.72% latok→látok viz→vı́z szantok→szántók telepok→telepók
felhasználó@profinter.hu→felhasznalo@profinter.hu
www.valamicég.hu→www.valamiceg.hu

Uncorrected error in original 17.91%

Punctuation error in original 6.42% közalk.tan→kozalk.tan 1922.évi→1922.evi

Hyphenation error in original 0.68% bemuta-tásra→bemuta-tasra

Other error in original 10.81% véri→veri ra→rá gonolkozásában→gonolkozasaban
imátkoztok→imatkoztok hirújsásghoz→hirujsasghoz
változaban→váltózabán környezetkı́méli→kornyezetkimeli

Table 4: Analysis of mismatches between the system output and the input on a 5000-sentence test sample

than not (this is especially true for word forms that
occur only once in the training data). 3.72% of the
errors in the analyzed test data was due to either
transforming arbitrary unaccented letter sequences
used as file names in the text being transformed to
some meaningful words or to accented words be-
ing used in an url in the original text.

The most common error (51.01% of all mis-
matches) is the case where the system is sim-
ply unable to correctly disambiguate the word
in context, and this is not due to some other
error or information loss. Interestingly, more
than half (51%) of these errors belong to a sin-
gle type where the system is unable to distin-
guish a possessive and a non-possessive form of
the same nominal lemma: gyereket∼gyerekét ‘the
child (accusative)’ vs.‘his/her child (accusative)’,
gyereken∼gyerekén ‘on/about the child’ vs.
‘on/about his/her child’, and gyereke∼gyereké
‘his/her child’ vs.‘(belongs to a) child’ (anaphoric
possessive).

Another 26% of the mismatches is due to a sim-
ilar problem concerning verbs. In Hungarian, tran-
sitive verbs agree with their object in definiteness.
Certain past, present and conditional verb forms
differing in definiteness are only distinguished by

an accent: hajtottak∼hajtották ‘they drove’ vs.
‘they drove it’; hajtanak∼hajtanák ‘they drive’
vs. ‘they would drive it’; hajtana∼hajtaná ‘he/she
would drive’ vs. ‘he/she would drive it’.

A factored model could in theory improve the
recognition of these structures. It is questionable
however, whether the improvement would justify
the costs.

7 Conclusion

We have described a method to restore accents in
Hungarian texts. The baseline method using only
a fixed training corpus to build translation and lan-
guage models for a statistical machine translation
system, which is limited to handling word forms
present in the training corpus achieved an accu-
racy of 98.44% at best. In order to process un-
known words, a morphological analyzer was in-
tegrated to produce accented candidates for these
unknown words as well, resulting in an improved
accuracy of 99.06%. This performance could only
be achieved by a system that is able to produce
correct word forms and takes context into account.
Our method can be applied to any other languages
for which a training corpus and a morphological
analyzer are available.
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Abstract

We present a new morphological analy-
sis model that considers semantic plausi-
bility of word sequences by using a re-
current neural network language model
(RNNLM). In unsegmented languages,
since language models are learned from
automatically segmented texts and in-
evitably contain errors, it is not apparent
that conventional language models con-
tribute to morphological analysis. To solve
this problem, we do not use language mod-
els based on raw word sequences but use a
semantically generalized language model,
RNNLM, in morphological analysis. In
our experiments on two Japanese corpora,
our proposed model significantly outper-
formed baseline models. This result indi-
cates the effectiveness of RNNLM in mor-
phological analysis.

1 Introduction

In contrast to space-delimited languages like En-
glish, word segmentation is the first and most cru-
cial step for natural language processing (NLP)
in unsegmented languages like Japanese, Chinese,
and Thai (Kudo et al., 2004; Kaji and Kitsure-
gawa, 2014; Shen et al., 2014; Kruengkrai et al.,
2006). Word segmentation is usually performed
jointly with related analysis: POS tagging for Chi-
nese, and POS tagging and lemmatization (anal-
ysis of inflected words) for Japanese. Morpho-
logical analysis including word segmentation has
been widely and actively studied, and for exam-
ple, Japanese word segmentation accuracy is in the
high 90s. However, we often observe that strange
outputs of downstream NLP applications such as
machine translation and question answering come
from incorrect word segmentations.

For example, the state-of-the-art and popu-
lar Japanese morphological analyzers, JUMAN

(Kurohashi and Kawahara, 2009) and MeCab
(Kudo et al., 2004) both analyze “外国人参政権
(foreigner’s right to vote)” not into the correct seg-
mentation of (1a), but into the incorrect and awk-
ward segmentation of (1b).

(1) a. 外国 /人
foreigner

/ 参政 /権
right to vote

b. 外国
foreign

/ 人参
carrot

/ 政権
regime

JUMAN is a rule-based morphological analyzer,
defining word-to-word (including inflection) con-
nectivities and their scores. MeCab is a supervised
morphological analyzer, learning the probabilities
of word/POS/inflection sequence from an anno-
tated corpus of tens of thousands of sentences.
Both systems, however, cannot realize semanti-
cally appropriate analysis, and often produce to-
tally strange outputs like the above.

This paper proposes a semantically appropriate
morphological analysis method for unsegmented
languages using a language model. For unseg-
mented languages, morphological analysis and
language modeling form a chicken-and-egg prob-
lem. That is, if high-quality morphological analy-
sis is available, we can learn a high-quality lan-
guage model from a morphologically analyzed
large corpus. On the other hand, if a high-quality
language model is available, we can achieve high-
quality morphological analysis by looking for a
segmented word sequence with a large language
model score. However, even if we learn a language
model from a corpus analyzed by a certain level
of morphological analyzer, the language model is
affected by the analysis errors of the morphologi-
cal analyzer and it is no practical use for the im-
provement of the morphological analyzer. A lan-
guage model trained by incorrectly segmented “外
国 (foreign)/人参 (carrot)/政権 (regime)” just sup-
ports that incorrect segmentation.

The point of the paper is that we have tackled
the chicken-and-egg problem, not by using a lan-
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(foreign)	
 (carrot)	
 (regime)	


EOS	


国人 
 (a person name)	


参政 
(voting)	


を 
(particle)	


論

(discuss)	


noun	
noun	


verb 
past form	


noun	
 noun	
 noun	

外国 人参 政権 

論じる 

じ たを外 国 人 参 政 権 

国 外 政 参 人 権 
(right)	
(three)	
(person)	
(country)	
(out)	
 (politics)	


noun	
 noun	
 noun	
 noun	
 noun	
 noun	
BOS	


Input:	


Figure 1: An example of a word lattice.

guage model of raw word sequences, but by using
a semantically generalized language model based
on word embeddings, RNNLM (Recurrent Neural
Network Language Model) (Mikolov et al., 2010;
Mikolov et al., 2011). The RNNLM is trained on
an automatically analyzed corpus of ten million
sentences, which possibly includes incorrect seg-
mentations such as “外国 (foreign)/人参 (carrot)/
政権 (regime).” However, on semantically gener-
alized level, it is an unnatural semantic sequence
like nation vegetable politics. Since the state-of-
the-art morphological analyzer achieves the high
accuracy, it does not often produce incorrect anal-
yses which support such a semantically strange se-
quence. This would prefer analysis toward seman-
tically appropriate word sequences. When a mor-
phological analyzer utilizes such a generalized and
reasonable language model, it can penalize strange
segmentations like “外国 (foreign)/人参 (carrot)/
政権 (regime),” leading to better accuracy.

We furthermore retrain RNNLM using an an-
notated corpus of manually segmented 45k sen-
tences, which further improves morphological
analysis.

2 Related Work

There have been several studies that have inte-
grated language models into morphological anal-
ysis. Wang et al. (2011) improved Chinese word
segmentation and POS tagging by using N-gram
features learned from an automatically segmented
corpus. However, since the auto-segmented cor-
pus inevitably contains segmentation errors, fre-
quent N-grams are not always correct and thus
this problem might affect the performance of
morphological analysis. They also divided N-
gram frequencies into three binned features: high-
frequency, middle-frequency and low-frequency.
Such coarse features cannot express slight differ-
ences in the likelihood of language models.

Kaji and Kitsuregawa (2014) used a bigram lan-
guage model feature for Japanese word segmenta-
tion and POS tagging. Their objective of using a
language model is to normalize informally spelled
words in microblogs. Therefore, their objective is
different from ours.

Some studies have used character-based lan-
guage models for Chinese word segmentation and
POS tagging (Zheng et al., 2013; Liu et al., 2014).
Although their approaches have no drawbacks of
learning incorrect segmentations, they only cap-
ture more local information than word-based lan-
guage models.

Word embeddings have been also used for mor-
phological analysis. Neural network based models
have been proposed for Chinese word segmenta-
tion and POS tagging (Pei et al., 2014) or word
segmentation (Mansur et al., 2013). These meth-
ods acquire word embeddings from a corpus, and
then use them as the input of the neural networks.
Our proposed model learns word embeddings via
RNNLM, and these embeddings are used for scor-
ing word transitions in morphological analysis.
Our usage of word embeddings is different from
the previous studies.

3 Proposed Method

We propose a new morphological analysis model
that considers semantic plausibility of word se-
quences by using RNNLM. We integrate RNNLM
into morphological analysis (Figure 2). We train
the RNNLM using both an automatically analyzed
corpus and a manually labeled corpus.

3.1 Recurrent Neural Network Language
Model

RNNLM is a recurrent neural network language
model (Mikolov et al., 2010), which outputs a
probability distribution of the next word, given the
embedding of the last word and its context. We
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RNNLM	
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Figure 2: Workflow for training RNNLM and base
model.

employ the RNNME language model1 proposed
by (Mikolov et al., 2011; Mikolov, 2012) as the
implementation of RNNLM. The RNNME lan-
guage model has direct connections from the input
layer of the recurrent neural network to the output
layer, which act as a maximum entropy model and
avoid to waste a lot of parameters to describe sim-
ple patterns. Hereafter, we refer to the RNNME
language model simply as RNNLM.

To train RNNLM, we use a raw corpus of 10
million sentences from the web corpus (Kawa-
hara and Kurohashi, 2006). These sentences are
automatically segmented by JUMAN (Kurohashi
and Kawahara, 2009). The training of RNNLM
is based on lemmatized word sequences without
POS tags.

The trained model contains errors caused by
an automatically analyzed corpus. We retrain
RNNLM using a manually labeled corpus after
training RNNLM using the automatically ana-
lyzed corpus as shown in Figure 2. The retraining
aims to cope with errors related to function word
sequences.

3.2 Base Model

For our base model, we adopt a model for su-
pervised morphological analysis, which performs
segmentation, lemmatization and POS tagging
jointly. We train this model using a tagged cor-
pus of tens of thousands of sentences that contain
gold segmentations, lemmas, inflection forms and
POS tags. To predict the most probable sequence
of words with lemmas and POS tags given an input
sentence, we execute the following procedure:

1. Look up the string of the input sentence using
a dictionary.

2. Make a word lattice.

3. Search for the path with the highest score
from the lattice.

1RNNME is the abbreviation of Recurrent Neural Net-
work trained jointly with Maximum Entropy model.

Figure 1 illustrates the constructed lattice during
the procedure. At the dictionary lookup step, we
use the basic dictionary of JUMAN and an ad-
ditional dictionary comprising 0.8 million words,
both of which have lemma, POS and inflection in-
formation. The additional dictionary mainly con-
sists of itemizations in articles and article titles in
Japanese Wikipedia.

We define the scoring function as follows:

scoreB(y) = Φ(y) · w⃗, (1)

where y is a tagged word sequence, Φ(y) is a
feature vector for y, and w⃗ is a weight vector.
Each element in w⃗ gives a weight to its corre-
sponding feature in Φ(y). We use the unigram
and the bigram features composed from word base
form, POS and inflection described in Kudo et al.
(2004). We also use additional lexical features
such as character type, and trigram features used
in Zhang and Clark (2008). To learn the weight
vector, we adopt exact soft confidence-weighted
learning (Wang et al., 2012).

To consider out-of-vocabulary (OOV) words
that are not found in the dictionary, we automat-
ically generate words at the lookup step by seg-
menting the input string by character types2. For
training, we regard words that are not found in the
dictionary but found in the training corpus as OOV
words to learn their weights.

3.3 RNNLM Integrated Model
Based on retrained RNNLM, we calculate an
RNNLM score (scoreR(y)) to be integrated into
the base model. The RNNLM score is defined as
the log probability of the next word given its con-
text (path). Here, the score for an OOV word is
given by the following formula:

−Cp − Lp · length(n), (2)

where Cp is a constant penalty for OOV words,
Lp is a factor for the character length penalty, and
length(n) returns the character length of the next
word n. This formula is defined to penalize longer
words, which are likely to produce segmentation
errors.

We then integrate the RNNLM score into the
base model using the following equation:

scoreI(y) = (1 − α)scoreB(y) + α scoreR(y),
(3)

2Japanese has three types of characters: Kanji, Hiragana
and Katakana.
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where α is an interpolation parameter that is tuned
on development data.

For decoding, we employ beam search as used
in Zhang and Clark (2008). Since the possi-
ble context (paths in the word lattice) consid-
ered in RNNLM falls into combinatorial explosion
in morphological analysis, we keep only prob-
able context candidates inside the beam. That
is, each node keeps candidates inside the beam
width. Each candidate has a vector represent-
ing context, and two words of history. The re-
current model makes decoding harder than non-
recurrent neural network language models. How-
ever, we use RNNLM because the model outper-
forms other NNLMs (Mikolov, 2012) and the re-
sult suggests that the model is more likely to cap-
ture semantic plausibility. Since a sentence rarely
contains ambiguous and semantically appropriate
word sequences, we think that beam search with
enough beam size is able to keep the ambiguous
candidates of word sequences. In the case of non-
recurrent NNLMs and the base model, which uses
trigram features, we can conduct exact decoding
using the second-order Viterbi algorithm (Thede
and Harper, 1999).

4 Experiments

4.1 Experimental Settings

In our experiments, we used the Kyoto University
Text Corpus (Kawahara et al., 2002) and Kyoto
University Web Document Leads Corpus (Hangyo
et al., 2012) as manually tagged corpora. We ran-
domly chose 2,000 sentences from each corpus
for test data, and 500 sentences for development
data. We used the remaining part of the corpora
as training data to train our base model and retrain
RNNLM. In total, we used 45,000 sentences for
training.

For comparative purposes, we used the follow-
ing four baselines: the Japanese morphological an-
alyzer JUMAN, the supervised morphological an-
alyzer MeCab, the base model, and a model using
a conventional language model. For this language
model, we built a trigram language model with
Kneser-Ney smoothing using SRILM (Stolcke,
2002) from the same automatically segmented cor-
pus. The language model is modified to have an
interpolation parameter α and length penalty for
OOV, Lp.

We set the beam width to 5 by preliminary ex-
periments. We also set a constant penalty for OOV

words (Cp) as 5, which is the default value in
the implementation of Mikolov et al. (2011). We
tuned the parameters of our proposed model and
the baseline model (α and Lp) and the parameters
of language models using grid search on the de-
velopment data. We set α = 0.3, Lp =1.5 for the
proposed model (“ Base + RNNLMretrain”).3

We measured the performance of the baseline
models and the proposed model by F-value of
word segmentation and F-value of joint evaluation
of word segmentation and POS tagging. We calcu-
lated F-value for the two corpora (news and web)
and the merged corpus (all).

We used the bootstrapping method (Zhang et
al., 2004) to test statistical significance between
proposed models and other models. Suppose we
have a test set T that includes N sentences. The
method repeatedly creates M new test sets by re-
sampling N sentences with replacement from T .
We calculate the F-value of each model on M + 1
test sets including T , and then we have M + 1
score differences. From the scores, we calculate
the 95% confidence interval. If the interval does
not overlap with zero, the two models are consid-
ered as statistically significantly different. In our
evaluation, M is set to 2,000.

4.2 Results and Discussions

Table 1 lists the results of our proposed model and
the baseline models. Our proposed model (“Base
+ RNNLMretrain”) significantly outperforms all the
baseline models and “Base + RNNLM,” which
does not use retraining. In particular, we achieved
a large improvement for segmentation. This can be
attributed to the use of RNNLM that was learned
based on lemmatized word sequence without POS
tags.

“Base + SRILM” segmented the example de-
scribed in Section 1 (“外国人参政権”) into the
incorrect segmentation “外国/人参/政権” in the
same way as JUMAN. This segmentation error
was caused by errors in the automatically seg-
mented corpus that was used to train the language
model. Our proposed model can correctly seg-
ment this example if a proper context is available
by semantically capturing word transitions using
RNNLM.

The base model, JUMAN and “Base + SRILM”
incorrectly segmented “健康 (healthy)/など (etc.)/

3We set α = 0.1, Lp = 2.0 for “Base + RNNLM”, and α =
0.3, Lp = 0.5 for “Base + SRILM.”
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Segmentation Seg + POS Segmentation Seg + POS Segmentation Seg + POS
(news) (news) (web) (web) (all) (all)

JUMAN 98.92 98.47 98.20 97.64 98.64 98.14
MeCab 99.07 98.58 98.22 97.51 98.74 98.16

Base model 98.94 98.46 97.71 96.90 98.46 97.85
Base + SRILM 98.94 98.40 98.13 97.33 98.62 97.98

Base + RNNLM 99.06 98.59 98.17 97.45 98.71 98.14
Base + RNNLMretrain 99.15∗ 98.70∗ 98.37∗ 97.68∗ 98.84∗ 98.30∗

Table 1: Results for test datasets. ∗ means the score of “Base + RNNLMretrain” is significantly improved
from that of all other models.

の (of)/点 (point)/で (in)/……” (in terms of health
and so on) into “健康 な(healthy)/どの(any)/点
(point)/で (in)/…….” Although this segmentation
can be grammatically accepted, it is difficult to
semantically interpret this word sequence. Our
proposed model can correctly segment this exam-
ple because RNNLM learns semantically plausible
word sequences.

5 Conclusion

In this paper, we proposed a new model for
morphological analysis that is integrated with
RNNLM. We trained RNNLM on an automati-
cally segmented corpus and tuned on a manually
tagged corpus. The proposed model was able to
significantly reduce errors in the base model by
capturing semantic plausibility of word sequences
using RNNLM. In the future, we will design fea-
tures derived from RNNLM models, and integrate
them into a unified learning framework. We also
intend to apply our method to unsegmented lan-
guages other than Japanese, such as Chinese and
Thai.
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Abstract

We propose a novel framework for im-
proving a word segmenter using informa-
tion acquired from symbol grounding. We
generate a term dictionary in three steps:
generating a pseudo-stochastically seg-
mented corpus, building a symbol ground-
ing model to enumerate word candidates,
and filtering them according to the ground-
ing scores. We applied our method to
game records of Japanese chess with com-
mentaries. The experimental results show
that the accuracy of a word segmenter can
be improved by incorporating the gener-
ated dictionary.

1 Introduction
Today we can easily obtain a large amount of
text associated with multi-modal information, and
there is a growing interest in the use of non-
textual information in the natural language pro-
cessing (NLP) community. Many of these studies
aim to output natural language sentences from a
nonlinguistic modality, such as image (Farhadi et
al., 2010; Yang et al., 2011; Rohrbach et al., 2013).
Kiros et al. (2014) showed that multi-modal infor-
mation improves the performance of a language
model.

Inspired by these studies, we explore a method
for improving the performance of a low-level NLP
task using multi-modal information. In this work,
we focus on the task of word segmentation (WS)
in Japanese. WS is often performed as the first
processing step for languages without clear word
boundaries, and it is as important as part-of-speech
(POS) tagging in English. We assume that a
large set of pairs of non-textual data and sentences
describing them is available as the information
source. In our experiments, the pairs consist of
game states in Shogi (Japanese chess) and textual

comments on them, which were made by Shogi
experts. We enumerate substrings (character se-
quences) in the sentences and match them with
Shogi states by a neural network model. The ra-
tionale here is that substrings which match with
non-language data well tend to be real words.

Our method consists of three steps (see Figure
1). First, we segment commentary sentences for a
game state in various ways to produce word can-
didates. Then, we match them with game states of
a Shogi playing program. Finally, we compile the
symbol grounding results at all states and incorpo-
rate them to an automatic WS. To the best of our
knowledge, this is the first result reporting a per-
formance improvement in an NLP task by symbol
grounding.

2 Stochastically Segmented Corpus

Before symbol grounding, we need to segment
the text into words that include probable candi-
date words. For this purpose, we use a stochasti-
cally segmented corpus (SSC) (Mori and Takuma,
2004). Then we propose to simulate it by a normal
(deterministically) segmented corpus to avoid the
problem of computational cost.

2.1 Stochastically Segmented Corpora

An SSC is defined as a combination of a raw
corpus Cr (hereafter referred to as the character
sequence xnr

1 ) and word boundary probabilities
of the form Pi, which is the probability that a
word boundary exists between two characters xi

and xi+1. These probabilities are estimated by a
model based on logistic regression (LR) (Fan et
al., 2008) trained on a manually segmented cor-
pus by referring to the surrounding characters1.
Since there are word boundaries before the first
character and after the last character of the corpus,
P0 = Pnr = 1. The expected frequency of a word

1In the experiment we used the same features as those
used in Neubig et al., (2011). .
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Figure 1: Overview of our method.

w in an SSC is calculated as follows: fr(w) =∑
i∈O Pi

{∏k−1
j=1(1− Pi+j)

}
Pi+k, where O =

{i | xi+k
i+1 = w} is the set of all the occurrences

of the string matching with w2.

2.2 Pseudo-Stochastically Segmented
Corpora

The computational cost (in terms of both time
and space) for calculating the expected frequen-
cies in an SSC is very high3, so it is not a prac-
tical approach for symbol grounding. In this
work, we approximate an SSC using a determinis-
tically segmented corpus, which we call a pseudo-
stochastically segmented corpus (pSSC). The fol-
lowing is the process we use to produce a pSSC
from an SSC.

• For i = 1 to nr − 1

1. output a character xi,
2. generate a random number 0 ≤ p < 1,
3. output a word boundary if p < Pi or

output nothing otherwise.

Now we have a corpus in the same format as
a standard segmented corpus with variable (non-
constant) segmentation, where xi and xi+1 are
segmented with the probability of Pi. We exe-
cute the above procedure m times and divide the
counts by m. The law of large numbers guarantees
that the approximation errors decrease to 0 when
m →∞.

3 Symbol Grounding

As the target of symbol grounding, we use states
(piece positions) of a Shogi game and commen-

2For a detailed explanation and a mathematical proof of
this method, please refer to Mori and Takuma (2004) .

3This is because an SSC has many words and word frag-
ments. Additionally, word 1-gram frequencies must be cal-
culated using floating point numbers instead of integers.

taries associated with them. We should note, how-
ever, that our framework is general and applica-
ble to different types of combinations such as im-
age/description pairs (Regneri et al., 2013).

3.1 Game Commentary
The Japanese language is one of the languages
without clear word boundaries and we need an au-
tomatic WS as the first step of NLP. In Shogi, there
are many professional players and many commen-
taries about game states are available.

3.2 Grounding Words
We build a symbol grounding model using a Shogi
commentary dataset. We use a set of pairs of a
Shogi state Si and a commentary sentence Ci as
the training set. A Shogi state Si is converted into
a feature vector f(Si). We generate m (in our ex-
periment, m = 4) pSSC C ′

i from Ci. C ′
i contains

m corpora of the same text body but with differ-
ent word segmentation, C ′

ij (j = 1, . . . ,m). We
treat these as m pairs of a feature vector of Shogi
state f(Si) and a sequence of words C ′

ij . We train
a model which predicts words in C ′

ij using f(Si)
as input.

We use a multi-layer perceptron as the predic-
tion model. The input is a vector of the features
of a state. The hidden layer is a 100-dimensional
vector and is activated by a bipolar sigmoid func-
tion. Its output is a d-dimensional real-valued vec-
tor, each of whose elements indicates whether a
word in the vocabulary of d words appears in the
commentary or not. The output layer is activated
by a binary sigmoid function.

We use features of Shogi states which a com-
puter Shogi program called Gekisashi (Tsuruoka
et al., 2002) uses to evaluate the states in game
tree search as input. The features of Shogi states
used in this experiment are below:

a) Positions of pieces (e.g. my rook is at 2h).
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b) Pieces captured (e.g. the opponent has a
bishop).

c) Combinations of a) and b) (e.g. my king is at
7h and the opponent’s rook is at 7b).

d) Other heuristic features.

Among them, a), b) and c) occupy the majority.
Unlike normal symbol grounding, the vocabu-

lary contains many word candidates appearing in
the pSSC generated from the commentaries. Some
are real words and some are wrong fragments.
These wrong fragments will appear more or less
randomly in the commentaries than real words.
The perceptron therefore cannot acquire strong re-
lation between states and fragments and the output
values of the perceptron will be smaller than those
of real words.

4 Word Segmentation Using Symbol
Grounding Result

This section describes a baseline automatic word
segmenter and a method for incorporating the
symbol grounding result to it.

4.1 Baseline Word Segmenter
Among many Japanese WS and morphological an-
alyzers (word segmentation and POS tagging), we
adopt pointwise WS (Neubig et al., 2011), because
it is the only word segmenter which is capable of
adding new words without POS information.

The input of the pointwise WS is an unseg-
mented character sequence x = x1x2 · · ·xk. The
word segmenter decides if there is a word bound-
ary ti = 1 or not ti = 0 by using support vector
machines (SVMs) (Fan et al., 2008). The features
are character n-grams and character type n-grams
(n = 1, 2, 3) around the decision points in a win-
dow with a width of 6 characters. Additional fea-
tures are triggered if character n-grams in the win-
dow match with character sequences in the dictio-
nary.

4.2 Training a Word Segmenter with
Grounded Words

As a first trial for incorporating symbol ground-
ing results to an NLP task, we propose to gener-
ate a dictionary based on the symbol grounding
result. We can expect that the word candidates
that are given high scores by the perceptron in the
symbol grounding result have strong relationship
to the positions. In other words, we can make a
good dictionary by selecting word candidates in
descending order of the scores. As a method for

Table 1: Corpus specifications.
#sent. #words #char.

Training

BCCWJ 56,753 1,324,951 1,911,660
Newspaper 8,164 240,097 361,843
Conversation 11,700 147,809 197,941

Develepment

Shogi-dev. 170 2,501 3,340
Test

BCCWJ-test 6,025 148,929 212,261
Shogi-test 3,299 24,966 32,481

taking all the occurrences into account, we test the
following three functions:

sum: the summation of the scores of all the out-
put vectors,

ave: the average of them,
max: the maximum in them.

First, we acquire a V -dimensional real-valued vec-
tor for each Shogi state Si as the result of symbol
grounding. Then, for each candidate in C ′

ij , we
get the element of the vector which corresponds to
the candidate as the score of the candidate. After
that, we get the summation of, the average of, or
the maximum in the scores of the same candidate
over the whole dataset.

Finally we select the top R percent of word can-
didates in descending order of the value of sum,
ave, or max and add them to the WS dictionary
and retrain the model.

5 Evaluation
We conducted word segmentation experiments in
the following settings.

5.1 Corpora
The annotated corpus we used to build the base-
line word segmenter is the manually annotated
part (core data) of the Balanced Corpus of Con-
temporary Written Japanese (BCCWJ) (Maekawa,
2008), plus newspaper articles and daily conver-
sation sentences. We also used a 234,652-word
dictionary (UniDic) provided with the BCCWJ.
A small portion of the BCCWJ core data is re-
served for testing. In addition, we manually seg-
mented sentences randomly obtained from Shogi
commentaries. We divided these sentences into
two parts: a development set and a test set. Ta-
ble 1 shows the details of these corpora.

To make a pSSC, we prepared 33,151 pairs of
a Shogi position and a commentary sentence. The
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Table 2: WS accuracy on BCCWJ.
Recall Prec. F-meas.

Baseline 98.99 99.06 99.03
+ Sym.Gro. 99.03 99.01 99.02

Table 3: WS accuracy on Shogi commentaries.
Recall Prec. F-meas.

Baseline 90.12 91.43 90.77
+ Sym.Gro. 90.60 91.66 91.13

sentences are converted into pSSC m = 4 times
by an LR word segmentation model trained from
the training data in Table 1 and sent to the symbol
grounding module.

5.2 Word Segmentation Systems
We built the following two word segmentation
models (Neubig et al., 2011) to evaluate our
framework.

Baseline: The model is trained from training
data shown in Table 1 and UniDic.

+Sym.Gro.: The model is trained from the lan-
guage resources for the Baseline and the
symbol grounding result.

To decide the function and the value of R for
+Sym.Gro. (see Section 4.2), we measured the
accuracies on the development set of all the com-
binations. The best combination was sum and
R = 0.0114. In this case, 127 words were added
to the dictionary.

5.3 Results and Discussion
Following the standard in word segmentation ex-
periments, the evaluation criteria are recall, preci-
sion, and F-measure (their harmonic mean).

Table 2 and 3 show WS accuracies on BCCWJ-
test and Shogi-test, respectively. The difference in
accuracy of the baseline method on BCCWJ-test
and Shogi-test shows that WS of Shogi commen-
taries is very difficult. Like many other domains,
Shogi commentaries contain many special words
and expressions, which decrease the accuracy.

When we compare the F-measures on Shogi-
test (Table 3), +Sym.Gro. outperforms Baseline.
The improvement is statistically significant (at 5%
level). The error reduction ratio is comparable to a
natural annotation case (Liu et al., 2014), despite
the fact that our method is unsupervised except for

4In addition we measured the accuracies on the test set of
all the combinations and found that the same function and the
value of the parameter are the best. This indicates the stability
of the function and the parameter.

a hyperparameter. Thus we can say that WS im-
provement by symbol grounding is as valuable as
the annotation additions.

From a close look at the comparison of the re-
call and the precision, we see that the improve-
ment in the recall is higher than that of the preci-
sion. This result shows that the symbol grounding
successfully acquired new words with a few erro-
neous words. As the final remark, the result on the
general domain (Table 2) shows that our frame-
work does not cause a severe performance degra-
dation in the general domain.

6 Related Work
The NLP task we focus on in this paper is word
segmentation. One of the first empirical methods
was based on a hidden Markov model (Nagata,
1994). In parallel, there were attempts at solv-
ing Chinese word segmentation in a similar way
(Sproat and Chang, 1996). These methods take
words as the modeling unit.

Recently, Neubig et al. (2011) have presented
a method for directly deciding whether there is a
word boundary or not at each point between char-
acters. For Chinese word segmentation, there are
some attempts at tagging characters with BIES
tags (Xue, 2003) by a sequence labeller such as
CRFs (Lafferty et al., 2001), where B, I, E, and
S means the beginning of a word, intermediate of
a word, the end of a word, and a single charac-
ter word, respectively. The pointwise WS can be
seen as character tagging with the BI tag system,
in which there is no constraint between neighbor-
ing tags. For Japanese WS, our preliminary exper-
iments showed that the combination of the BI tag
system with SVMs is slightly better than the BIES
tag system with CRFs. This is another reason why
we used the former in this paper. Our extension of
word segmentation is, however, applicable to the
BIES/CRFs combination as well.

The method we describe in this paper is un-
supervised and requires a small amount of anno-
tated data to tune the hyperparameter. From this
viewpoint, the approach based on natural annota-
tion (Yang and Vozila, 2014; Jiang et al., 2013;
Liu et al., 2014) may come to readers’ mind. In
these studies, tags in hyper-texts were regarded
as partial annotations and used to improve WS
performance using CRFs trainable from such data
(Tsuboi et al., 2008). Mori and Nagao (1996) pro-
posed a method for extracting new words from a
large amount of raw text. Murawaki and Kuro-
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hashi (2008) proposed an online method in a sim-
ilar setting. In contrast to these studies, this paper
proposes to use other modalities, game states as
the first trial, than languages.

7 Conclusion
We have described an unsupervised method for
improving word segmentation based on symbol
grounding results. To extract word candidates
from raw sentences, we first segment sentences
stochastically, and then match the word candidate
sequences with game states that are described by
the sentences. Finally, we selected word candi-
dates referring to the grounding scores. The exper-
imental results showed that we can improve word
segmentation by using symbol grounding results.
Our framework is general and it is worth testing
on other NLP tasks. As future work, we will apply
other deep neural network models to our approach.
It is interesting to apply the symbol grounding re-
sults to an embedding model-based word segmen-
tation approach (Ma and Hinrichs, 2015). It is also
interesting to extend our method to deal with other
types of non-textual information such as images
and economic indices.
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Abstract

Recursive neural models, which use syn-
tactic parse trees to recursively generate
representations bottom-up, are a popular
architecture. However there have not been
rigorous evaluations showing for exactly
which tasks this syntax-based method is
appropriate. In this paper, we benchmark
recursive neural models against sequential
recurrent neural models, enforcing apples-
to-apples comparison as much as possible.
We investigate 4 tasks: (1) sentiment clas-
sification at the sentence level and phrase
level; (2) matching questions to answer-
phrases; (3) discourse parsing; (4) seman-
tic relation extraction.

Our goal is to understand better when,
and why, recursive models can outperform
simpler models. We find that recursive
models help mainly on tasks (like seman-
tic relation extraction) that require long-
distance connection modeling, particularly
on very long sequences. We then intro-
duce a method for allowing recurrent mod-
els to achieve similar performance: break-
ing long sentences into clause-like units
at punctuation and processing them sepa-
rately before combining. Our results thus
help understand the limitations of both
classes of models, and suggest directions
for improving recurrent models.

1 Introduction

Deep learning based methods learn low-
dimensional, real-valued vectors for word
tokens, mostly from large-scale data corpus (e.g.,
(Mikolov et al., 2013; Le and Mikolov, 2014;
Collobert et al., 2011)), successfully capturing
syntactic and semantic aspects of text.

For tasks where the inputs are larger text units
(e.g., phrases, sentences or documents), a compo-
sitional model is first needed to aggregate tokens
into a vector with fixed dimensionality that can be
used as a feature for other NLP tasks. Models for
achieving this usually fall into two categories: re-
current models and recursive models:

Recurrent models (also referred to as sequence
models) deal successfully with time-series data
(Pearlmutter, 1989; Dorffner, 1996) like speech
(Robinson et al., 1996; Lippmann, 1989; Graves et
al., 2013) or handwriting recognition (Graves and
Schmidhuber, 2009; Graves, 2012). They were ap-
plied early on to NLP (Elman, 1990), by modeling
a sentence as tokens processed sequentially and at
each step combining the current token with pre-
viously built embeddings. Recurrent models can
be extended to bidirectional ones from both left-
to-right and right-to-left. These models generally
consider no linguistic structure aside from word
order.

Recursive neural models (also referred to as tree
models), by contrast, are structured by syntactic
parse trees. Instead of considering tokens sequen-
tially, recursive models combine neighbors based
on the recursive structure of parse trees, starting
from the leaves and proceeding recursively in a
bottom-up fashion until the root of the parse tree
is reached. For example, for the phrase the food
is delicious, following the operation sequence (
(the food) (is delicious) ) rather than the sequen-
tial order (((the food) is) delicious). Many recur-
sive models have been proposed (e.g., (Paulus et
al., 2014; Irsoy and Cardie, 2014)), and applied to
various NLP tasks, among them entailment (Bow-
man, 2013; Bowman et al., 2014), sentiment anal-
ysis (Socher et al., 2013; Irsoy and Cardie, 2013;
Dong et al., 2014), question-answering (Iyyer et
al., 2014), relation classification (Socher et al.,
2012; Hashimoto et al., 2013), and discourse (Li
and Hovy, 2014).
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One possible advantage of recursive models is
their potential for capturing long-distance depen-
dencies: two tokens may be structurally close to
each other, even though they are far away in word
sequence. For example, a verb and its correspond-
ing direct object can be far away in terms of to-
kens if many adjectives lies in between, but they
are adjacent in the parse tree (Irsoy and Cardie,
2013). However we do not know if this advan-
tage is truly important, and if so for which tasks,
or whether other issues are at play. Indeed, the
reliance of recursive models on parsing is also a
potential disadvantage, given that parsing is rela-
tively slow, domain-dependent, and can be error-
ful.

On the other hand, recent progress in multi-
ple subfields of neural NLP has suggested that re-
current nets may be sufficient to deal with many
of the tasks for which recursive models have
been proposed. Recurrent models without parse
structures have shown good results in sequence-
to-sequence generation (Sutskever et al., 2014)
for machine translation (e.g., (Kalchbrenner and
Blunsom, 2013; 3; Luong et al., 2014)), pars-
ing (Vinyals et al., 2014), and sentiment, where
for example recurrent-based paragraph vectors (Le
and Mikolov, 2014) outperform recursive models
(Socher et al., 2013) on the Stanford sentiment-
bank dataset.

Our goal in this paper is thus to investigate a
number of tasks with the goal of understanding
for which kinds of problems recurrent models may
be sufficient, and for which kinds recursive mod-
els offer specific advantages. We investigate four
tasks with different properties.

• Binary sentiment classification at the sen-
tence level (Pang et al., 2002) and phrase
level (Socher et al., 2013) that focus on
understanding the role of recursive models
in dealing with semantic compositionally in
various scenarios such as different lengths of
inputs and whether or not supervision is com-
prehensive.

• Phrase Matching on the UMD-QA dataset
(Iyyer et al., 2014) can help see the difference
between outputs from intermediate compo-
nents from different models, i.e., representa-
tions for intermediate parse tree nodes and
outputs from recurrent models at different
time steps. It also helps see whether pars-

ing is useful for finding similarities between
question sentences and target phrases.

• Semantic Relation Classification on the
SemEval-2010 (Hendrickx et al., 2009) data
can help understand whether parsing is help-
ful in dealing with long-term dependencies,
such as relations between two words that are
far apart in the sequence.

• Discourse parsing (RST dataset) is useful
for measuring the extent to which parsing im-
proves discourse tasks that need to combine
meanings of larger text units. Discourse pars-
ing treats elementary discourse units (EDUs)
as basic units to operate on, which are usually
short clauses. The task also sheds light on
the extent to which syntactic structures help
acquire shot text representations.

The principal motivation for this paper is to un-
derstand better when, and why, recursive models
are needed to outperform simpler models by en-
forcing apples-to-apples comparison as much as
possible. This paper applies existing models to
existing tasks, barely offering novel algorithms or
tasks. Our goal is rather an analytic one, to inves-
tigate different versions of recursive and recurrent
models. This work helps understand the limita-
tions of both classes of models, and suggest direc-
tions for improving recurrent models.

The rest of this paper organized as follows: We
detail versions of recursive/recurrent models in
Section 2, present the tasks and results in Section
3, and conclude with discussions in Section 4.

2 Recursive and Recurrent Models

2.1 Notations
We assume that the text unit S, which could
be a phrase, a sentence or a document, is com-
prised of a sequence of tokens/words: S =
{w1, w2, ..., wNS

}, where Ns denotes the num-
ber of tokens in S. Each word w is associated
with a K-dimensional vector embedding ew =
{e1w, e2w, ..., eKw }. The goal of recursive and re-
current models is to map the sequence to a K-
dimensional eS , based on its tokens and their cor-
respondent embeddings.

Standard Recurrent/Sequence Models suc-
cessively take word wt at step t, combines its vec-
tor representation et with the previously built hid-
den vector ht−1 from time t− 1, calculates the re-
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sulting current embedding ht, and passes it to the
next step. The embedding ht for the current time t
is thus:

ht = f(W · ht−1 + V · et) (1)

whereW and V denote compositional matrices. If
Ns denotes the length of the sequence, hNs repre-
sents the whole sequence S.

Standard recursive/Tree models work in a
similar way, but processing neighboring words by
parse tree order rather than sequence order. It
computes a representation for each parent node
based on its immediate children recursively in a
bottom-up fashion until reaching the root of the
tree. For a given node η in the tree and its left child
ηleft (with representation eleft) and right child ηright
(with representation eright), the standard recursive
network calculates eη as follows:

eη = f(W · eηleft + V · eηright) (2)

Bidirectional Models (Schuster and Paliwal,
1997) add bidirectionality to the recurrent frame-
work where embeddings for each time are calcu-
lated both forwardly and backwardly:

h→t = f(W→ · h→t−1 + V→ · et)
h←t = f(W← · h←t+1 + V← · et)

(3)

Normally, final representations for sentences can
be achieved either by concatenating vectors calcu-
lated from both directions [e←1 , e→NS

] or using fur-
ther compositional operation to preserve vector di-
mensionality

ht = f(WL · [h←t , h→t ]) (4)

where WL denotes a K×2K dimensional matrix.

Long Short Term Memory (LSTM) LSTM
models (Hochreiter and Schmidhuber, 1997) are
defined as follows: given a sequence of inputs
X = {x1, x2, ..., xnX}, an LSTM associates each
timestep with an input, memory and output gate,
respectively denoted as it, ft and ot. We notation-
ally disambiguate e and h: et denotes the vector
for individual text units (e.g., word or sentence) at
time step t, while ht denotes the vector computed
by the LSTM model at time t by combining et and
ht−1. σ denotes the sigmoid function. The vector
representation ht for each time-step t is given by:


it
ft
ot
lt

 =


σ
σ
σ

tanh

W · [ ht−1

et

]
(5)

ct = ft · ct−1 + it · lt (6)

hst = ot · ct (7)

where W ∈ R4K×2K . Labels at the
phrase/sentence level are predicted representations
outputted from the last time step.

Tree LSTMs Recent research has extended the
LSTM idea to tree-based structures (Zhu et al.,
2015; Tai et al., 2015) that associate memory and
forget gates to nodes of the parse trees.

Bi-directional LSTMs These combine bi-
directional models and LSTMs.

3 Experiments

In this section, we detail our experimental settings
and results. We consider the following tasks, each
representative of a different class of NLP tasks.

• Binary sentiment classification on the Pang
et al. (2002) dataset. This addresses the is-
sues where supervision only appears globally
after a long sequence of operations.

• Sentiment Classification on the Stanford
Sentiment Treebank (Socher et al., 2013):
comprehensive labels are found for words
and phrases where local compositionally
(such as from negation, mood, or others cued
by phrase-structure) is to be learned.

• Sentence-Target Matching on the UMD-
QA dataset (Iyyer et al., 2014): Learns
matches between target and components in
the source sentences, which are parse tree
nodes for recursive models and different
time-steps for recurrent models.

• Semantic Relation Classification on the
SemEval-2010 task (Hendrickx et al., 2009).
Learns long-distance relationships between
two words that may be far apart sequentially.

• Discourse Parsing (Li et al., 2014; Hernault
et al., 2010): Learns sentence-to-sentence re-
lations based on calculated representations.
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In each case we followed the protocols de-
scribed in the original papers. We first group the
algorithm variants into two groups as follows:

• Standard tree models vs standard sequence
models vs standard bi-directional sequence
models

• LSTM tree models, LSTM sequence models
vs LSTM bi-directional sequence models.

We employed standard training frameworks for
neural models: for each task, we used stochas-
tic gradient decent using AdaGrad (Duchi et al.,
2011) with minibatches (Cotter et al., 2011). Pa-
rameters are tuned using the development dataset
if available in the original datasets or from cross-
validation if not. Derivatives are calculated from
standard back-propagation (Goller and Kuchler,
1996). Parameters to tune include size of mini
batches, learning rate, and parameters for L2 pe-
nalizations. The number of running iterations
is treated as a parameter to tune and the model
achieving best performance on the development
set is used as the final model to be evaluated.

For settings where no repeated experiments are
performed, the bootstrap test is adopted for sta-
tistical significance testing (Efron and Tibshirani,
1994). Test scores that achieve significance level
of 0.05 are marked by an asterisk (*).

3.1 Stanford Sentiment TreeBank
Task Description We start with the Stanford
Sentiment TreeBank (Socher et al., 2013). This
dataset contains gold-standard labels for every
parse tree constituent, from the sentence to phrases
to individual words.

Of course, any conclusions drawn from imple-
menting sequence models on a dataset that was
based on parse trees may have to be weakened,
since sequence models may still benefit from the
way that the dataset was collected. Nevertheless
we add an evaluation on this dataset because it has
been a widely used benchmark dataset for neural
model evaluations.

For recursive models, we followed the proto-
cols in Socher et al. (2013) where node embed-
dings in the parse trees are obtained from recur-
sive models and then fed to a softmax classifier.
We transformed the dataset for recurrent model
use as illustrated in Figure 1. Each phrase is recon-
structed from parse tree nodes and treated as a sep-
arate data point. As the treebank contains 11,855

sentences with 215,154 phrases, the reconstructed
dataset for recurrent models comprises 215,154
examples. Models are evaluated at both the phrase
level (82,600 instances) and the sentence root level
(2,210 instances).

Fine-Grained Binary
Tree 0.433 0.815
Sequence 0.420 (-0.013) 0.807 (-0.007)
P-value 0.042* 0.098
Bi-Sequence 0.435 (+0.08) 0.816 (+0.002)
P-value 0.078 0.210

Table 1: Test set accuracies on the Stanford Senti-
ment Treebank at root level.

Fine-Grained Binary
Tree 0.820 0.860
Sequence 0.818 (-0.002) 0.864 (+0.004)
P-value 0.486 0.305
Bi-Sequence 0.826 (+0.06) 0.862 (+0.002)
P-value 0.148 0.450

Table 2: Test set accuracies on the Stanford Senti-
ment Treebank at phrase level.

Results are shown in Table 1 and 21. When
comparing the standard version of tree models
to sequence models, we find it helps a bit at
root level identification (for sequences but not bi-
sequences), but yields no significant improvement
at the phrase level.

LSTM Tai et al. (2015) discovered that LSTM
tree models generate better performances in terms
of sentence root level evaluation than sequence
models. We explore this task a bit more by training
deeper and more sophisticated models. We exam-
ine the following three models:

1. Tree-structured LSTM models (Tai et al.,
2015)2.

2. Deep Bi-LSTM sequence models (denoted as
Sequence) that treat the whole sentence as
just one sequence.

3. Deep Bi-LSTM hierarchical sequence mod-
els (denoted as Hierarchical Sequence) that
first slice the sentence into a sequence of sub-
sentences by using a look-up table of punc-
tuations (i.e., comma, period, question mark

1The performance of our implementations of recursive
models is not exactly identical to that reported in Socher et
al. (2013), but the relative difference is around 1% to 2%.

2Tai et al.. achieved 0.510 accuracy in terms of fine-
grained evaluation at the root level as reported in (Tai et al.,
2015), similar to results from our implementations (0.504).
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Figure 1: Transforming Stanford Sentiment Treebank to Sequences for Sequence Models.

Figure 2: Illustration of two sequence models. A,
B, C, D denote clauses or sub sentences separated
by punctuation.

and exclamation mark). The representation
for each sub-sentence is first computed sep-
arately, and another level of sequence LSTM
(one-directional) is then used to join the sub-
sentences. Illustrations are shown in Figure2.

We consider the third model because the dataset
used in Tai et al. (2015) contains long sentences
and the evaluation is performed only at the sen-
tence root level. Since a parsing algorithm will
naturally break long sentences into sub-sentences,
we would like to know whether any performance
boost is introduced by the intra-clause parse tree
structure or just by this broader segmentation of a
sentence into clause-like units; this latter advan-
tage could be approximated by using punctuation-
based approximations to clause boundaries.

We run 15 iterations for each algorithm. Pa-
rameters are harvested at the end of each itera-
tion; those performing best on the development
set are used on the test set. The whole process
takes roughly 15-20 minutes on a single GPU ma-
chine3. For a more convincing comparison, we
did not use the bootstrap test where parallel ex-
amples are generated from one same dataset. In-
stead, we repeated the aforementioned procedure
for each algorithm 20 times and report accuracies

3Tesla K40m, 2880 Cuda cores.

with standard deviation in Table 3.

Model all-fine root-fine root-coarse
Tree LSTM 83.4 (0.3) 50.4 (0.9) 86.7 (0.5)
Bi-Sequence 83.3 (0.4) 49.8 (0.9) 86.7 (0.5)

Hier-Sequence 82.9 (0.3) 50.7 (0.8) 86.9 (0.6)

Table 3: Test set accuracies on the Stanford Sen-
timent Treebank with deviations. For our exper-
iments, we report accuracies over 20 runs with
standard deviation.

Tree LSTMs are equivalent or marginally bet-
ter than standard bi-directional sequence model
(two-tailed p-value equals 0.041*, and only at the
root level, with p-value for the phrase level at
0.376). The hierarchical sequence model achieves
the same performance with a p-value of 0.198.

Discussion The results above suggest that
clausal segmentation of long sentences offers a
slight performance boost, a result also supported
by the fact that very little difference exists between
the three models for phrase-level sentiment eval-
uation. Clausal segmentation of long sentences
thus provides a simple approximation to parse-tree
based models.

We suggest a few reasons for this slightly better
performances introduced by clausal segmentation:

1. Treating clauses as basic units (to the extent
that punctuation approximates clauses) pre-
serves the semantic structure of text.

2. Semantic compositions such as negations or
conjunctions usually appear at the clause
level. Working on clauses individually
and then combining them model inter-clause
compositions.

3. Errors are back-propagated to individual to-
kens using fewer steps in hierarchical models
than in standard models. Consider a movie
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Figure 3: Sentiment prediction using a one-
directional (left to right) LSTM. Decisions at each
time step are made by feeding embeddings calcu-
lated from the LSTM into a softmax classifier.

review “simple as the plot was , i still like it a
lot”. With standard recurrent models it takes
12 steps before the prediction error gets back
to the first token “simple”:

error→lot→a→it→like→still→i→,→was
→plot→ the→as→simple

In a hierarchical model, the second clause is
compacted into one component, and the error
propagation is thus given by:

error→ second-clause → first-clause →
was→plot→the→as→simple.

Propagation with clause segmentation con-
sists of only 8 operations. Such a procedure
thus tends to attenuate the gradient vanish-
ing problem, potentially yielding better per-
formance.

3.2 Binary Sentiment Classification (Pang)
Task Description: The sentiment dataset
of Pang et al. (2002) consists of sentences
with a sentiment label for each sentence.
We divide the original dataset into train-
ing(8101)/dev(500)/testing(2000). No pre-
training procedure as described in Socher et al.
(2011b) is employed. Word embeddings are
initialized using skip-grams and kept fixed in
the learning procedure. We trained skip-gram
embeddings on the Wikipedia+Gigaword dataset
using the word2vec package4. Sentence level
embeddings are fed into a sigmoid classifier.
Performances for 50 dimensional vectors are
given in the table below:

Discussion Why don’t parse trees help on this
task? One possible explanation is the distance

4https://code.google.com/p/word2vec/

Standard LSTM
Tree 0.745 0.774
Sequence 0.733 (-0.012) 0.783 (+0.008)
P-value 0.060 0.136
Bi-Sequence 0.754 (+0.09) 0.790 (+0.016)
P-value 0.058 0.024*

Table 4: Test set accuracies on the Pang’s senti-
ment dataset using Standard model settings.

of the supervision signal from the local composi-
tional structure. The Pang et al. dataset has an av-
erage sentence length of 22.5 words, which means
it takes multiple steps before sentiment related ev-
idence comes up to the surface. It is therefore un-
clear whether local compositional operators (such
as negation) can be learned; there is only a small
amount of training data (around 8,000 examples)
and the sentiment supervision only at the level of
the sentence may not be easy to propagate down to
deeply buried local phrases.

3.3 Question-Answer Matching
Task Description: In the question-answering
dataset QANTA5, each answer is a token or short
phrase. The task is different from standard gener-
ation focused QA task but formalized as a multi-
class classification task that matches a source
question with a candidates phrase from a prede-
fined pool of candidate phrases We give an illus-
trative example here:

Question: He left unfinished a novel whose title
character forges his father’s signature to get out
of school and avoids the draft by feigning desire
to join. Name this German author of The Magic
Mountain and Death in Venice.

Answer: Thomas Mann from the pool of
phrases. Other candidates might include George
Washington, Charlie Chaplin, etc.

The model of Iyyer et al. (2014) minimizes the
distances between answer embeddings and node
embeddings along the parse tree of the question.
Concretely, let c denote the correct answer to ques-
tion S, with embedding ~c, and z denoting any ran-
dom wrong answer. The objective function sums
over the dot product between representation for
every node η along the question parse trees and
the answer representations:

L =
∑

η∈[parse tree]

∑
z

max(0, 1−~c ·eη+~z ·eη) (8)

5http://cs.umd.edu/˜miyyer/qblearn/. Be-
cause the publicly released dataset is smaller than the version
used in (Iyyer et al., 2014) due to privacy issues, our numbers
are not comparable to those in (Iyyer et al., 2014).
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where eη denotes the embedding for parse tree
node calculated from the recursive neural model.
Here the parse trees are dependency parses follow-
ing (Iyyer et al., 2014).

By adjusting the framework to recurrent mod-
els, we minimize the distance between the answer
embedding and the embeddings calculated from
each timestep t of the sequence:

L =
∑

t∈[1,Ns]

∑
z

max(0, 1− ~c · et + ~z · et) (9)

At test time, the model chooses the answer (from
the set of candidates) that gives the lowest loss
score. As can be seen from results presented in
Table 5, the difference is only significant for the
LSTM setting between the tree model and the
sequence model; no significant difference is ob-
served for other settings.

Standard LSTM
Tree 0.523 0.558
Sequence 0.525 (+0.002) 0.546 (-0.012)
P-value 0.490 0.046*
Bi-Sequence 0.530 (+0.007) 0.564 (+0.006)
P-value 0.075 0.120

Table 5: Test set accuracies for UMD-QA dataset.

Discussion The UMD-QA task represents a
group of situations where because we have in-
sufficient supervision about matching (it’s hard
to know which node in the parse tree or which
timestep provides the most direct evidence for the
answer), decisions have to be made by looking at
and iterating over all subunits (all nodes in parse
trees or timesteps). Similar ideas can be found in
pooling structures (e.g. Socher et al. (2011a)).

The results above illustrate that for tasks where
we try to align the target with different source
components (i.e., parse tree nodes for tree mod-
els and different time steps for sequence models),
components from sequence models are able to em-
bed important information, despite the fact that se-
quence model components are just sentence frag-
ments and hence usually not linguistically mean-
ingful components in the way that parse tree con-
stituents are.

3.4 Semantic Relationship Classification
Task Description: SemEval-2010 Task 8 (Hen-
drickx et al., 2009) is to find semantic rela-
tionships between pairs of nominals, e.g., in
“My [apartment]e1 has a pretty large [kitchen]e2”

classifying the relation between [apartment] and
[kitchen] as component-whole. The dataset con-
tains 9 ordered relationships, so the task is formal-
ized as a 19-class classification problem, with di-
rected relations treated as separate labels; see Hen-
drickx et al. (2009; Socher et al. (2012) for details.

For the recursive implementations, we follow
the neural framework defined in Socher et al.
(2012). The path in the parse tree between the two
nominals is retrieved, and the embedding is calcu-
lated based on recursive models and fed to a soft-
max classifier6. Retrieved paths are transformed
for the recurrent models as shown in Figure 5.

Figure 4: Illustration of Models for Semantic Re-
lationship Classification.

Discussion Unlike for earlier tasks, here recur-
sive models yield much better performance than
the corresponding recurrent versions for all ver-
sions (e.g., standard tree vs. standard sequence,
p = 0.004). These results suggest that it is the
need to integrate structures far apart in the sen-
tence that characterizes the tasks where recursive
models surpass recurrent models. In parse-based
models, the two target words are drawn together
much earlier in the decision process than in recur-
rent models, which must remember one target un-
til the other one appears.

3.5 Discourse Parsing

Task Description: Our final task, discourse
parsing based on the RST-DT corpus (Carlson et

6(Socher et al., 2012) achieve state-of-art performance
by combining a sophisticated model, MV-RNN, in which
each word is presented with both a matrix and a vector with
human-feature engineering. Again, because MV-RNN is dif-
ficult to adapt to a recurrent version, we do not employ this
state-of-the-art model, adhering only to the general versions
of recursive models described in Section 2, since our main
goal is to compare equivalent recursive and recurrent models
rather than implement the state of the art.
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Standard LSTM
Tree 0.748 0.767
Sequence 0.712 (-0.036) 0.740 (-0.027)
P-value 0.004* 0.020*
Bi-Sequence 0.730 (-0.018) 0.752 (-0.014)
P-value 0.017* 0.041*

Table 6: Test set accuracies on the SemEval-2010
Semantic Relationship Classification task.

Figure 5: An illustration of discourse parsing.
[e1, e2, ...] denote EDUs (elementary discourse
units), each consisting of a sequence of tokens.
[r12, r34, r56] denote relationships to be classified.
A binary classification model is first used to decide
whether two EDUs should be merged and a multi-
class classifier is then used to decide the relation
type.

al., 2003), is to build a discourse tree for a doc-
ument, based on assigning Rhetorical Structure
Theory (RST) relations between elementary dis-
course units (EDUs). Because discourse relations
express the coherence structure of discourse, they
presumably express different aspects of compo-
sitional meaning than sentiment or nominal rela-
tions. See Hernault et al. (2010) for more details
on discourse parsing and the RST-DT corpus.

Representations for adjacent EDUs are fed into
binary classification (whether two EDUs are re-
lated) and multi-class relation classification mod-
els, as defined in Li et al. (2014). Related EDUs
are then merged into a new EDU, the representa-
tion of which is obtained through an operation of
neural composition based on the previous two re-
lated EDUs. This step is repeated until all units
are merged.

Discourse parsing takes EDUs as the basic units
to operate on; EDUs are short clauses, not full sen-
tences, with an average length of 7.2 words. Re-
cursive and recurrent models are applied on EDUs
to create embeddings to be used as inputs for dis-
course parsing. We use this task for two rea-
sons: (1) to illustrate whether syntactic parse trees
are useful for acquiring representations for short
clauses. (2) to measure the extent to which pars-

ing improves discourse tasks that need to combine
the meanings of larger text units.

Models are traditionally evaluated in terms of
three metrics, i.e., spans7, nuclearity8, and identi-
fying the rhetorical relation between two clauses.
Due to space limits, we only focus the last one,
rhetorical relation identification, because (1) rela-
tion labels are treated as correct only if spans and
nuclearity are correctly labeled (2) relation identi-
fication between clauses offer more insights about
model’s abilities to represent sentence semantics.
In order to perform a plain comparison, no addi-
tional human-developed features are added.

Standard LSTM
Tree 0.568 0.564
Sequence 0.572 (+0.004) 0.563 (-0.002)
P-value 0.160 0.422
Bi-Sequence 0.578 (+0.01) 0.575 (+0.012)
P-value 0.054 0.040*

Table 7: Test set accuracies for relation identifica-
tion on RST discourse parsing data set.

Discussion We see no large differences between
equivalent recurrent and recursive models. We
suggest two possible explanations. (1) EDUs tend
to be short; thus for some clauses, parsing might
not change the order of operations on words. Even
for those whose orders are changed by parse trees,
the influence of short phrases on the final represen-
tation may not be great enough. (2) Unlike earlier
tasks, where text representations are immediately
used as inputs into classifiers, the algorithm pre-
sented here adopts additional levels of neural com-
position during the process of EDU merging. We
suspect that neural layers may act as information
filters, separating the informational chaff from the
wheat, which in turn makes the model a bit more
immune to the initial inputs.

4 Discussions and Conclusions

We compared recursive and recurrent neural mod-
els for representation learning on 5 distinct NLP
tasks in 4 areas for which recursive neural models
are known to achieve good performance (Socher
et al., 2012; Socher et al., 2013; Li et al., 2014;
Iyyer et al., 2014).

As with any comparison between models, our
results come with some caveats: First, we ex-
plore the most general or basic forms of recur-

7on blank tree structures.
8on tree structures with nuclearity indication.
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sive/recurrent models rather than various sophis-
ticated algorithm variants. This is because fair
comparison becomes more and more difficult as
models get complex (e.g., the number of lay-
ers, number of hidden units within each layer,
etc.). Thus most neural models employed in this
work are comprised of only one layer of neural
compositions—despite the fact that deep neural
models with multiple layers give better results.
Our conclusions might thus be limited to the al-
gorithms employed in this paper, and it is unclear
whether they can be extended to other variants or
to the latest state-of-the-art. Second, in order to
compare models “fairly”, we force every model to
be trained exactly in the same way: AdaGrad with
minibatches, same set of initializations, etc. How-
ever, this may not necessarily be the optimal way
to train every model; different training strategies
tailored for specific models may improve their per-
formances. In that sense, our attempts to be “fair”
in this paper may nevertheless be unfair.

Pace these caveats, our conclusions can be sum-
marized as follows:

• In tasks like semantic relation extraction, in
which single headwords need to be associ-
ated across a long distance, recursive models
shine. This suggests that for the many other
kinds of tasks in which long-distance seman-
tic dependencies play a role (e.g., translation
between languages with significant reorder-
ing like Chinese-English translation), syntac-
tic structures from recursive models may of-
fer useful power.

• Tree models tend to help more on long se-
quences than shorter ones with sufficient su-
pervision: tree models slightly help root
level identification on the Stanford Sentiment
Treebank, but do not help much at the phrase
level. Adopting bi-directional versions of re-
current models seem to largely bridge this
gap, producing equivalent or sometimes bet-
ter results.

• On long sequences where supervision is not
sufficient, e.g., in Pang at al.,’s dataset (super-
vision only exists on top of long sequences),
no significant difference is observed between
tree based and sequence based models.

• In cases where tree-based models do well, a
simple approximation to tree-based models

seems to improve recurrent models to equiv-
alent or almost equivalent performance: (1)
break long sentences (on punctuation) into a
series of clause-like units, (2) work on these
clauses separately, and (3) join them together.
This model sometimes works as well as tree
models for the sentiment task, suggesting
that one of the reasons tree models help is
by breaking down long sentences into more
manageable units.

• Despite that the fact that components (out-
puts from different time steps) in recur-
rent models are not linguistically meaningful,
they may do as well as linguistically mean-
ingful phrases (represented by parse tree
nodes) in embedding informative evidence,
as demonstrated in UMD-QA task. Indeed,
recent work in parallel with ours (Bowman
et al., 2015) has shown that recurrent models
like LSTMs can discover implicit recursive
compositional structure.
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Abstract
This paper proposes a tree-based con-
volutional neural network (TBCNN) for
discriminative sentence modeling. Our
model leverages either constituency trees
or dependency trees of sentences. The
tree-based convolution process extracts
sentences structural features, which are
then aggregated by max pooling. Such ar-
chitecture allows short propagation paths
between the output layer and underlying
feature detectors, enabling effective struc-
tural feature learning and extraction. We
evaluate our models on two tasks: senti-
ment analysis and question classification.
In both experiments, TBCNN outperforms
previous state-of-the-art results, including
existing neural networks and dedicated
feature/rule engineering. We also make
efforts to visualize the tree-based convo-
lution process, shedding light on how our
models work.

1 Introduction

Discriminative sentence modeling aims to capture
sentence meanings, and classify sentences accord-
ing to certain criteria (e.g., sentiment). It is related
to various tasks of interest, and has attracted much
attention in the NLP community (Allan et al.,
2003; Su and Markert, 2008; Zhao et al., 2015).
Feature engineering—for example, n-gram fea-
tures (Cui et al., 2006), dependency subtree fea-
tures (Nakagawa et al., 2010), or more dedicated
ones (Silva et al., 2011)—can play an important
role in modeling sentences. Kernel machines, e.g.,
SVM, are exploited in Moschitti (2006) and Re-
ichartz et al. (2010) by specifying a certain mea-
sure of similarity between sentences, without ex-
plicit feature representation.

∗These authors contribute equally to this paper.
†To whom correspondence should be addressed.

Recent advances of neural networks bring new
techniques in understanding natural languages,
and have exhibited considerable potential. Bengio
et al. (2003) and Mikolov et al. (2013) propose un-
supervised approaches to learn word embeddings,
mapping discrete words to real-valued vectors in
a meaning space. Le and Mikolov (2014) ex-
tend such approaches to learn sentences’ and para-
graphs’ representations. Compared with human
engineering, neural networks serve as a way of au-
tomatic feature learning (Bengio et al., 2013).

Two widely used neural sentence models are
convolutional neural networks (CNNs) and recur-
sive neural networks (RNNs). CNNs can extract
words’ neighboring features effectively with short
propagation paths, but they do not capture inher-
ent sentence structures (e.g., parse trees). RNNs
encode, to some extent, structural information by
recursive semantic composition along a parse tree.
However, they may have difficulties in learning
deep dependencies because of long propagation
paths (Erhan et al., 2009). (CNNs/RNNs and a
variant, recurrent networks, will be reviewed in
Section 2.)

A curious question is whether we can com-
bine the advantages of CNNs and RNNs, i.e.,
whether we can exploit sentence structures (like
RNNs) effectively with short propagation paths
(like CNNs).

In this paper, we propose a novel neural ar-
chitecture for discriminative sentence modeling,
called the Tree-Based Convolutional Neural Net-
work (TBCNN).1 Our models can leverage differ-
ent sentence parse trees, e.g., constituency trees
and dependency trees. The model variants are de-
noted as c-TBCNN and d-TBCNN, respectively.
The idea of tree-based convolution is to apply a set
of subtree feature detectors, sliding over the entire

1The model of tree-based convolution was firstly pro-
posed to process program source code in our (unpublished)
previous work (Mou et al., 2014).
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Figure 1: A comparison of information flow in the convolutional neural network (CNN), the recursive
neural network (RNN), and the tree-based convolutional neural network (TBCNN).

parse tree of a sentence; then pooling aggregates
these extracted feature vectors by taking the max-
imum value in each dimension. One merit of such
architecture is that all features, along the tree, have
short propagation paths to the output layer, and
hence structural information can be learned effec-
tively.

TBCNNs are evaluated on two tasks, sentiment
analysis and question classification; our models
have outperformed previous state-of-the-art re-
sults in both experiments. To understand how
TBCNNs work, we also visualize the network by
plotting the convolution process. We make our
code and results available on our project website.2

2 Background and Related Work

In this section, we present the background and re-
lated work regarding two prevailing neural archi-
tectures for discriminative sentence modeling.

2.1 Convolutional Neural Networks

Convolutional neural networks (CNNs), early
used for image processing (LeCun, 1995), turn
out to be effective with natural languages as well.
Figure 1a depicts a classic convolution process on
a sentence (Collobert and Weston, 2008). A set
of fixed-width-window feature detectors slide over
the sentence, and output the extracted features. Let
t be the window size, and x1, · · · ,xt ∈ Rne be
ne-dimensional word embeddings. The output of
convolution, evaluated at the current position, is

y = f (W · [x1; · · · ; xt] + b)

where y ∈ Rnc (nc is the number of feature detec-
tors). W ∈ Rnc×(t·ne) and b ∈ Rnc are parame-

2https://sites.google.com/site/tbcnnsentence/

ters; f is the activation function. Semicolons rep-
resent column vector concatenation. After convo-
lution, the extracted features are pooled to a fixed-
size vector for classification.

Convolution can extract neighboring informa-
tion effectively. However, the features are
“local”—words that are not in a same convolu-
tion window do not interact with each other, even
though they may be semantically related. Blun-
som et al. (2014) build deep convolutional net-
works so that local features can mix at high-level
layers. Similar CNNs include Kim (2014) and Hu
et al. (2014). All these models are “flat,” by which
we mean no structural information is used explic-
itly.

2.2 Recursive Neural Networks

Recursive neural networks (RNNs), proposed in
Socher et al. (2011b), utilize sentence parse trees.
In the original version, RNN is built upon a
binarized constituency tree. Leaf nodes corre-
spond to words in a sentence, represented by ne-
dimensional embeddings. Non-leaf nodes are sen-
tence constituents, coded by child nodes recur-
sively. Let node p be the parent of c1 and c2, vec-
tor representations denoted as p, c1, and c2. The
parent’s representation is composited by

p = f(W · [c1; c2] + b) (1)

where W and b are parameters. This process is
done recursively along the tree; the root vector is
then used for supervised classification (Figure 1b).

Dependency parse and the combinatory cate-
gorical grammar can also be exploited as RNNs’
skeletons (Hermann and Blunsom, 2013; Iyyer et
al., 2014). Irsoy and Cardie (2014) build deep
RNNs to enhance information interaction. Im-
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provements for semantic compositionality include
matrix-vector interaction (Socher et al., 2012),
tensor interaction (Socher et al., 2013). They are
more suitable for capturing logical information in
sentences, such as negation and exclamation.

One potential problem of RNNs is that the long
propagation paths—through which leaf nodes are
connected to the output layer—may lead to infor-
mation loss. Thus, RNNs bury illuminating in-
formation under a complicated neural architecture.
Further, during back-propagation over a long path,
gradients tend to vanish (or blow up), which makes
training difficult (Erhan et al., 2009). Long short
term memory (LSTM), first proposed for model-
ing time-series data (Hochreiter and Schmidhuber,
1997), is integrated to RNNs to alleviate this prob-
lem (Tai et al., 2015; Le and Zuidema, 2015; Zhu
et al., 2015).

Recurrent networks. A variant class of RNNs
is the recurrent neural network (Bengio et al.,
1994; Shang et al., 2015), whose architecture is
a rightmost tree. In such models, meaningful tree
structures are also lost, similar to CNNs.

3 Tree-based Convolution

This section introduces the proposed tree-based
convolutional neural networks (TBCNNs). Figure
1c depicts the convolution process on a tree.

First, a sentence is converted to a parse tree, ei-
ther a constituency or dependency tree. The corre-
sponding model variants are denoted as c-TBCNN
and d-TBCNN. Each node in the tree is repre-
sented as a distributed, real-valued vector.

Then, we design a set of fixed-depth subtree fea-
ture detectors, called the tree-based convolution
window. The window slides over the entire tree
to extract structural information of the sentence,
illustrated by a dashed triangle in Figure 1c. For-
mally, let us assume we have t nodes in the con-
volution window, x1, · · · ,xt, each represented as
an ne-dimensional vector. Let nc be the number
of feature detectors. The output of the tree-based
convolution window, evaluated at the current sub-
tree, is given by the following generic equation.

y = f

(
t∑
i=1

Wi ·xi + b

)
(2)

where Wi ∈ Rnc×ne is the weight parameter asso-
ciated with node xi; b ∈ Rnc is the bias term.

Extracted features are thereafter packed into
one or more fixed-size vectors by max pooling,

that is, the maximum value in each dimension is
taken. Finally, we add a fully connected hidden
layer, and a softmax output layer.

From the designed architecture (Figure 1c), we
see that our TBCNN models allow short propaga-
tion paths between the output layer and any posi-
tion in the tree. Therefore structural feature learn-
ing becomes effective.

Several main technical points in tree-based con-
volution include: (1) How can we represent hid-
den nodes as vectors in constituency trees? (2)
How can we determine weights, Wi, for depen-
dency trees, where nodes may have different num-
bers of children? (3) How can we pool varying
sized and shaped features to fixed-size vectors?

In the rest of this section, we explain model
variants in detail. Particularly, Subsections 3.1 and
3.2 address the first and second problems; Sub-
section 3.3 deals with the third problem by intro-
ducing several pooling heuristics. Subsection 3.4
presents our training objective.

3.1 c-TBCNN

Figure 2a illustrates an example of the con-
stituency tree, where leaf nodes are words in the
sentence, and non-leaf nodes represent a grammat-
ical constituent, e.g., a noun phrase. Sentences
are parsed by the Stanford parser;3 further, con-
stituency trees are binarized for simplicity.

One problem of constituency trees is that non-
leaf nodes do not have such vector representations
as word embeddings. Our strategy is to pretrain
the constituency tree with an RNN by Equation 1
(Socher et al., 2011b). After pretraining, vector
representations of nodes are fixed.

We now consider the tree-based convolution
process in c-TBCNN with a two-layer-subtree
convolution window, which operates on a parent
node p and its direct children cl and cr, their vec-
tor representations denoted as p, cl, and cr. The
convolution equation, specific for c-TBCNN, is

y = f
(
W (c)
p ·p +W

(c)
l ·cl +W (c)

r ·cr + b(c)
)

where W (c)
p , W (c)

l , and W
(c)
r are weights asso-

ciated with the parent and its child nodes. Su-
perscript (c) indicates that the weights are for c-
TBCNN. For leaf nodes, which do not have chil-
dren, we set cl and cr to be 0.

3http://nlp.stanford.edu/software/lex-parser.shtml
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Figure 2: Tree-based convolution in (a) c-TBCNN, and (b) d-TBCNN. The parse trees correspond to the
sentence “I loved it.” The dashed triangles illustrate a shared-weight convolution window sliding over
the tree. For clarity, only two positions are drawn in c-TBCNN. Notice that dotted arrows are not part of
neural connections; they merely indicate the topologies of tree structures. Specially, an edge a r→ b in
the dependency tree refers to a being governed by b with dependency type r.

Tree-based convolution windows can be ex-
tended to arbitrary depths straightforwardly. The
complexity is exponential to the depth of the
window, but linear to the number of nodes.
Hence, tree-based convolution, compared with
“flat” CNNs, does not add to computational cost,
provided the same amount of information to pro-
cess at a time. In our experiments, we use convo-
lution windows of depth 2.

3.2 d-TBCNN

Dependency trees are another representation of
sentence structures. The nature of dependency
representation leads to d-TBCNN’s major dif-
ference from traditional convolution: there ex-
ist nodes with different numbers of child nodes.
This causes trouble if we associate weight param-
eters according to positions in the window, which
is standard for traditional convolution, e.g., Col-
lobert and Weston (2008) or c-TBCNN.

To overcome the problem, we extend the no-
tion of convolution by assigning weights accord-
ing to dependency types (e.g, nsubj) rather than
positions. We believe this strategy makes much
sense because dependency types (de Marneffe et
al., 2006) reflect the relationship between a gov-
erning word and its child words. To be concrete,
the generic convolution formula (Equation 2) for
d-TBCNN becomes

y = f

(
W (d)
p ·p +

n∑
i=1

W
(d)
r[ci]
·ci + b(d)

)

where W (d)
p is the weight parameter for the par-

ent p (governing word); W (d)
r[ci]

is the weight for
child ci, who has grammatical relationship r[ci]

… …

Each slot chooses the
maximum value
in a dimension

k pooling slots (k = 2)

(a) Global pooling (b) 3-slot pooling for c-TBCNN

GLOBAL

LEFT RIGHT

TOP

Extracted features by tree-based convolution in the order of words

LOWER LOWER

(c) k-slot pooling for d-TBCNN

Figure 3: Pooling heuristics. (a) Global pooling.
(b) 3-slot pooling for c-TBCNN. (c) k-slot pooling
for d-TBCNN.

to its parent, p. Superscript (d) indicates the pa-
rameters are for d-TBCNN. Note that we keep 15
most frequently occurred dependency types; oth-
ers appearing rarely in the corpus are mapped to
one shared weight matrix.

Both c-TBCNN and d-TBCNN have their own
advantages: d-TBCNN exploits structural features
more efficiently because of the compact expres-
siveness of dependency trees; c-TBCNN may be
more effective in integrating global features due
to the underneath pretrained RNN.

3.3 Pooling Heuristics

As different sentences may have different lengths
and tree structures, the extracted features by tree-
based convolution also have topologies varying in
size and shape. Dynamic pooling (Socher et al.,
2011a) is a common technique for dealing with
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Task Data samples Label

Sentiment
Analysis

Offers that rare combination of entertainment and education. ++
An idealistic love story that brings out the latent 15-year-old romantic in everyone. +
Its mysteries are transparently obvious, and it’s too slowly paced to be a thriller. −

Question
Classification

What is the temperature at the center of the earth? number
What state did the Battle of Bighorn take place in? location

Table 1: Data samples in sentiment analysis and question classification. In the first task, “++” refers to
strongly positive; “+” and “−” refer to positive and negative, respectively.

this problem. We propose several heuristics for
pooling along a tree structure. Our generic de-
sign criteria for pooling include: (1) Nodes that
are pooled to one slot should be “neighboring”
from some viewpoint. (2) Each slot should have
similar numbers of nodes, in expectation, that are
pooled to it. Thus, (approximately) equal amount
of information is aggregated along different parts
of the tree. Following the above intuition, we pro-
pose pooling heuristics as follows.

• Global pooling. All features are pooled to
one vector, shown in Figure 3a. We take
the maximum value in each dimension. This
simple heuristic is applicable to any structure,
including c-TBCNN and d-TBCNN.
• 3-slot pooling for c-TBCNN. To preserve

more information over different parts of con-
stituency trees, we propose 3-slot pooling
(Figure 3b). If a tree has maximum depth
d, we pool nodes of less than α · d lay-
ers to a TOP slot (α is set to 0.6); lower
nodes are pooled to slots LOWER LEFT or
LOWER RIGHT according to their relative
position with respect to the root node.
For a constituency tree, it is not completely
obvious how to pool features to more than
3 slots and comply with the aforementioned
criteria at the same time. Therefore, we re-
gard 3-slot pooling for c-TBCNN is a “hard
mechanism” temporarily. Further improve-
ment can be addressed in future work.
• k-slot pooling for d-TBCNN. Different from

constituency trees, nodes in dependency trees
are one-one corresponding to words in a sen-
tence. Thus, a total order on features (af-
ter convolution) can be defined according
to their corresponding word orders. For k-
slot pooling, we can adopt an “equal allo-
cation” strategy, shown in Figure 3c. Let
i be the position of a word in a sentence
(i = 1, 2, · · · , n). Its extracted feature vec-
tor is pooled to the j-th slot, if

(j − 1)
n

k
≤ i ≤ j n

k

We assess the efficacy of pooling quantitatively
in Section 4.3.1. As we shall see by the exper-
imental results, complicated pooling methods do
preserve more information along tree structures to
some extent, but the effect is not large. TBCNNs
are not very sensitive to pooling methods.

3.4 Training Objective

After pooling, information is packed into one or
more fixed-size vectors (slots). We add a hidden
layer, and then a softmax layer to predict the prob-
ability of each target label in a classification task.
The error function of a sample is the standard cross
entropy loss, i.e., J = −∑c

i=1 ti log yi, where t is
the ground truth (one-hot represented), y the out-
put by softmax, and c the number of classes. To
regularize our model, we apply both `2 penalty and
dropout (Srivastava et al., 2014). Training details
are further presented in Section 4.1 and 4.2.

4 Experimental Results

In this section, we evaluate our models with two
tasks, sentiment analysis and question classifica-
tion. We also conduct quantitative and qualitative
model analysis in Subsection 4.3.

4.1 Sentiment Analysis

4.1.1 The Task and Dataset
Sentiment analysis is a widely studied task for
discriminative sentence modeling. The Stanford
sentiment treebank4 consists of more than 10,000
movie reviews. Two settings are considered for
sentiment prediction: (1) fine-grained classifi-
cation with 5 labels (strongly positive,
positive, neutral, negative, and
strongly negative), and (2) coarse-gained
polarity classification with 2 labels (positive
versus negative). Some examples are shown in

4http://nlp.stanford.edu/sentiment/
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Table 1. We use the standard split for training, val-
idating, and testing, containing 8544/1101/2210
sentences for 5-class prediction. Binary classifi-
cation does not contain the neutral class.

In the dataset, phrases (sub-sentences) are also
tagged with sentiment labels. RNNs deal with
them naturally during the recursive process. We
regard sub-sentences as individual samples during
training, like Blunsom et al. (2014) and Le and
Mikolov (2014). The training set therefore has
more than 150,000 entries in total. For validating
and testing, only whole sentences (root labels) are
considered in our experiments.

Both c-TBCNN and d-TBCNN use the Stanford
parser for data preprocessing.

4.1.2 Training Details

This subsection describes training details for d-
TBCNN, where hyperparameters are chosen by
validation. c-TBCNN is mostly tuned syn-
chronously (e.g., optimization algorithm, activa-
tion function) with some changes in hyperparam-
eters. c-TBCNN’s settings can be found on our
website.

In our d-TBCNN model, the number of units
is 300 for convolution and 200 for the last hid-
den layer. Word embeddings are 300 dimensional,
pretrained ourselves using word2vec (Mikolov
et al., 2013) on the English Wikipedia corpus. 2-
slot pooling is applied for d-TBCNN. (c-TBCNN
uses 3-slot pooling.)

To train our model, we compute gradient by
back-propagation and apply stochastic gradient
descent with mini-batch 200. We use ReLU (Nair
and Hinton, 2010) as the activation function .

For regularization, we add `2 penalty for
weights with a coefficient of 10−5. Dropout (Sri-
vastava et al., 2014) is further applied to both
weights and embeddings. All hidden layers are
dropped out by 50%, and embeddings 40%.

4.1.3 Performance

Table 2 compares our models to state-of-the-art
results in the task of sentiment analysis. For 5-
class prediction, d-TBCNN yields 51.4% accu-
racy, outperforming the previous state-of-the-art
result, achieved by the RNN based on long-short
term memory (Tai et al., 2015). c-TBCNN is
slightly worse. It achieves 50.4% accuracy, rank-
ing third in the state-of-the-art list (including our
d-TBCNN model).

Regarding 2-class prediction, we adopted a sim-
ple strategy in Irsoy and Cardie (2014),5 where the
5-class network is “transferred” directly for binary
classification, with estimated target probabilities
(by 5-way softmax) reinterpreted for 2 classes.
(The neutral class is discarded as in other stud-
ies.) This strategy enables us to take a glance at the
stability of our TBCNN models, but places itself
in a difficult position. Nonetheless, our d-TBCNN
model achieves 87.9% accuracy, ranking forth in
the list.

In a more controlled comparison—with shal-
low architectures and the basic interaction (lin-
early transformed and non-linearly squashed)—
TBCNNs, of both variants, consistently outper-
form RNNs (Socher et al., 2011b) to a large ex-
tent (50.4–51.4% versus 43.2%); they also con-
sistently outperform “flat” CNNs by more than
10%. Such results show that structures are im-
portant when modeling sentences; tree-based con-
volution can capture these structural information
more effectively than RNNs.

We also observe d-TBCNN achieves higher per-
formance than c-TBCNN. This suggests that com-
pact tree expressiveness is more important than in-
tegrating global information in this task.

4.2 Question Classification

We further evaluate TBCNN models on a ques-
tion classification task.6 The dataset contains
5452 annotated sentences plus 500 test sam-
ples in TREC 10. We also use the stan-
dard split, like Silva et al. (2011). Target la-
bels contain 6 classes, namely abbreviation,
entity, description, human, location,
and numeric. Some examples are also shown in
Table 1.

We chose this task to evaluate our models be-
cause the number of training samples is rather
small, so that we can know TBCNNs’ perfor-
mance when applied to datasets of different sizes.
To alleviate the problem of data sparseness, we set
the dimensions of convolutional layer and the last
hidden layer to 30 and 25, respectively. We do
not back-propagate gradient to embeddings in this

5Richard Socher, who first applies neural networks to this
task, thinks direct transfer is fine for binary classification. We
followed this strategy for simplicity as it is non-trivial to deal
with the neutral sub-sentences in the training set if we train a
separate model. Our website reviews some related work and
provides more discussions.

6http://cogcomp.cs.illinois.edu/Data/QA/QC/
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Group Method 5-class accuracy 2-class accuracy Reported in

Baseline SVM 40.7 79.4 Socher et al. (2013)
Naı̈ve Bayes 41.0 81.8 Socher et al. (2013)

CNNs

1-layer convolution 37.4 77.1 Blunsom et al. (2014)
Deep CNN 48.5 86.8 Blunsom et al. (2014)
Non-static 48.0 87.2 Kim (2014)

Multichannel 47.4 88.1 Kim (2014)

RNNs

Basic 43.2 82.4 Socher et al. (2013)
Matrix-vector 44.4 82.9 Socher et al. (2013)

Tensor 45.7 85.4 Socher et al. (2013)
Tree LSTM (variant 1) 48.0 – Zhu et al. (2015)
Tree LSTM (variant 2) 51.0 88.0 Tai et al. (2015)
Tree LSTM (variant 3) 49.9 88.0 Le and Zuidema (2015)

Deep RNN 49.8 86.6† Irsoy and Cardie (2014)

Recurrent LSTM 45.8 86.7 Tai et al. (2015)
bi-LSTM 49.1 86.8 Tai et al. (2015)

Vector Word vector avg. 32.7 80.1 Socher et al. (2013)
Paragraph vector 48.7 87.8 Le and Mikolov (2014)

TBCNNs c-TBCNN 50.4 86.8† Our implementation
d-TBCNN 51.4 87.9† Our implementation

Table 2: Accuracy of sentiment prediction (in percentage). For 2-class prediction, “†” remarks indicate
that the network is transferred directly from that of 5-class.

Method Acc. (%) Reported in
SVM 95.0 Silva et al. (2011)10k features + 60 rules

CNN-non-static 93.6 Kim (2014)
CNN-mutlichannel 92.2 Kim (2014)

RNN 90.2 Zhao et al. (2015)
Deep-CNN 93.0 Blunsom et al. (2014)
Ada-CNN 92.4 Zhao et al. (2015)
c-TBCNN 94.8 Our implementation
d-TBCNN 96.0 Our implementation

Table 3: Accuracy of 6-way question classification.

task. Dropout rate for embeddings is 30%; hidden
layers are dropped out by 5%.

Table 3 compares our models to various other
methods. The first entry presents the previous
state-of-the-art result, achieved by traditional fea-
ture/rule engineering (Silva et al., 2011). Their
method utilizes more than 10k features and 60
hand-coded rules. On the contrary, our TBCNN
models do not use a single human-engineered fea-
ture or rule. Despite this, c-TBCNN achieves
similar accuracy compared with feature engineer-
ing; d-TBCNN pushes the state-of-the-art result to
96%. To the best of our knowledge, this is the first
time that neural networks beat dedicated human
engineering in this question classification task.

The result also shows that both c-TBCNN and
d-TBCNN reduce the error rate to a large extent,
compared with other neural architectures in this
task.

4.3 Model Analysis

In this part, we analyze our models quantitatively
and qualitatively in several aspects, shedding some
light on the mechanism of TBCNNs.

4.3.1 The Effect of Pooling
The extracted features by tree-based convolution
have topologies varying in size and shape. We pro-
pose in Section 3.3 several heuristics for pooling.
This subsection aims to provide a fair comparison
among these pooling methods.

One reasonable protocol for comparison is to
tune all hyperparameters for each setting and com-
pare the highest accuracy. This methodology,
however, is too time-consuming, and depends
largely on the quality of hyperparameter tuning.
An alternative is to predefine a set of sensible hy-
perparameters and report the accuracy under the
same setting. In this experiment, we chose the
latter protocol, where hidden layers are all 300-
dimensional; no `2 penalty is added. Each config-
uration was run five times with different random
initializations. We summarize the mean and stan-
dard deviation in Table 4.

As the results imply, complicated pooling is bet-
ter than global pooling to some degree for both
model variants. But the effect is not strong; our
models are not that sensitive to pooling methods,
which mainly serve as a necessity for dealing with
varying-structure data. In our experiments, we ap-
ply 3-slot pooling for c-TBCNN and 2-slot pool-
ing for d-TBCNN.
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Model Pooling method 5-class accuracy (%)

c-TBCNN Global 48.48 ± 0.54
3-slot 48.69 ± 0.40

d-TBCNN Global 49.39 ± 0.24
2-slot 49.94 ± 0.63

Table 4: Accuracies of different pooling methods,
averaged over 5 random initializations. We chose
sensible hyperparameters manually in advance to
make a fair comparison. This leads to performance
degradation (1–2%) vis-a-vis Table 2.
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Figure 4: Accuracies versus sentence lengths.

Comparing with other studies in the literature,
we also notice that pooling is very effective and ef-
ficient in information gathering. Irsoy and Cardie
(2014) report 200 epochs for training a deep RNN,
which achieves 49.8% accuracy in the 5-class sen-
timent classification. Our TBCNNs are typically
trained within 25 epochs.

4.3.2 The Effect of Sentence Lengths
We analyze how sentence lengths affect our mod-
els. Sentences are split into 7 groups by length,
with granularity 5. A few too long or too short
sentences are grouped together for smoothing; the
numbers of sentences in each group vary from 126
to 457. Figure 4 presents accuracies versus lengths
in TBCNNs. For comparison, we also reimple-
mented RNN, achieving 42.7% overall accuracy,
slightly worse than 43.2% reported in Socher et
al. (2011b). Thus, we think our reimplementation
is fair and that the comparison is sensible.

We observe that c-TBCNN and d-TBCNN yield
very similar behaviors. They consistently outper-
form the RNN in all scenarios. We also notice the
gap, between TBCNNs and RNN, increases when
sentences contain more than 20 words. This re-
sult confirms our theoretical analysis in Section
2—for long sentences, the propagation paths in
RNNs are deep, causing RNNs’ difficulty in in-
formation processing. By contrast, our models ex-
plore structural information more effectively with

tree-based convolution. As information from any
part of the tree can propagate to the output layer
with short paths, TBCNNs are more capable for
sentence modeling, especially for long sentences.

4.3.3 Visualization
Visualization is important to understanding the
mechanism of neural networks. For TBCNNs, we
would like to see how the extracted features (af-
ter convolution) are further processed by the max
pooling layer, and ultimately related to the super-
vised task.

To show this, we trace back where the max
pooling layer’s features come from. For each di-
mension, the pooling layer chooses the maximum
value from the nodes that are pooled to it. Thus,
we can count the fraction in which a node’s fea-
tures are gathered by pooling. Intuitively, if a
node’s features are more related to the task, the
fraction tends to be larger, and vice versa.

Figure 5 illustrates an example processed by d-
TBCNN in the task of sentiment analysis.7 Here,
we applied global pooling because information
tracing is more sensible with one pooling slot.
As shown in the figure, tree-based convolution
can effectively extract information relevant to the
task of interest. The 2-layer windows correspond-
ing to “visual will impress viewers,” “the stunning
dreamlike visual,” say, are discriminative to the
sentence’s sentiment. Hence, large fractions (0.24
and 0.19) of their features, after convolution, are
gathered by pooling. On the other hand, words
like the, will, even are known as stop words (Fox,
1989). They are mostly noninformative for sen-
timent; hence, no (or minimal) features are gath-
ered. Such results are consistent with human intu-
ition.

We further observe that tree-based convolution
does integrate information of different words in
the window. For example, the word stunning ap-
pears in two windows: (a) the window “stunning”
itself, and (b) the window of “the stunning dream-
like visual,” with root node visual, stunning acting
as a child. We see that Window b is more rel-
evant to the ultimate sentiment than Window a,
with fractions 0.19 versus 0.07, even though the
root visual itself is neutral in sentiment. In fact,

7We only have space to present one example in the paper.
This example was not chosen deliberately. Similar traits can
be found through out the entire gallery, available on our web-
site. Also, we only present d-TBCNN, noticing that depen-
dency trees are intrinsically more suitable for visualization
since we know the “meaning” of every node.
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The
c(0)

stunning
ccc(.07)

dreamlike
ccc(.02)

visualc(.19) viewersc(.05)willc(.01)

impressc(.26)

even
cc(0)
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(.03)

havec(.06)

who
(.10)

patiencec(.01)

little
(.06)

forc(.01)

pretensionc(.09)

Euro-film
ccc(.04)

Figure 5: Visualizing how features (after convolution) are related to the sentiment of a sentence. The
sample corresponds a sentence in the dataset, “The stunning dreamlike visual will impress even those
viewers who have little patience for Euro-film pretension.” The numbers in brackets denote the fraction
of a node’s features that are gathered by the max pooling layer (also indicated by colors).

Window a has a larger fraction than the sum of its
children’s (the windows of “the,” “stunning,” and
“dreamlike”).

5 Conclusion

In this paper, we proposed a novel neural discrim-
inative sentence model based on sentence parsing
structures. Our model can be built upon either
constituency trees (denoted as c-TBCNN) or de-
pendency trees (d-TBCNN).

Both variants have achieved high performance
in sentiment analysis and question classification.
d-TBCNN is slightly better than c-TBCNN in our
experiments, and has outperformed previous state-
of-the-art results in both tasks. The results show
that tree-based convolution can capture sentences’
structural information effectively, which is useful
for sentence modeling.
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Abstract

Neural network based methods have ob-
tained great progress on a variety of nat-
ural language processing tasks. However,
it is still a challenge task to model long
texts, such as sentences and documents. In
this paper, we propose a multi-timescale
long short-term memory (MT-LSTM) neu-
ral network to model long texts. MT-
LSTM partitions the hidden states of the
standard LSTM into several groups. Each
group is activated at different time peri-
ods. Thus, MT-LSTM can model very
long documents as well as short sentences.
Experiments on four benchmark datasets
show that our model outperforms the other
neural models in text classification task.

1 Introduction

Distributed representations of words have been
widely used in many natural language process-
ing (NLP) tasks (Collobert et al., 2011; Turian et
al., 2010; Mikolov et al., 2013b; Bengio et al.,
2003). Following this success, it is rising a sub-
stantial interest to learn the distributed represen-
tations of the continuous words, such as phrases,
sentences, paragraphs and documents (Mitchell
and Lapata, 2010; Socher et al., 2013; Mikolov
et al., 2013b; Le and Mikolov, 2014; Kalchbren-
ner et al., 2014). The primary role of these mod-
els is to represent the variable-length sentence or
document as a fixed-length vector. A good rep-
resentation of the variable-length text should fully
capture the semantics of natural language.

Recently, the long short-term memory neural
network (LSTM) (Hochreiter and Schmidhuber,
1997) has been applied successfully in many NLP
tasks, such as spoken language understanding
(Yao et al., 2014), sequence labeling (Chen et al.,

∗Corresponding author

2015) and machine translation (Sutskever et al.,
2014). LSTM is an extension of the recurrent neu-
ral network (RNN) (Elman, 1990), which can cap-
ture the long-term and short-term dependencies
and is very suitable to model the variable-length
texts. Besides, LSTM is also sensitive to word
order and does not rely on the external syntactic
structure as recursive neural network (Socher et
al., 2013). However, when modeling long texts,
such as documents, LSTM need to keep the useful
features for a quite long period of time. The long-
term dependencies need to be transmitted one-by-
one along the sequence. Some important features
could be lost in transmission process. Besides,
the error signal is also back-propagated one-by-
one through multiple time steps in the training
phase with back-propagation through time (BPTT)
(Werbos, 1990) algorithm. The learning efficiency
could also be decreased for the long texts. For ex-
ample, if a valuable feature occurs at the begin of
a long document, we need to back-propagate the
error through the whole document.

In this paper, we propose a multi-timescale long
short-term memory (MT-LSTM) to capture the
valuable information with different timescales. In-
spired by the works of (El Hihi and Bengio, 1995)
and (Koutnik et al., 2014), we partition the hidden
states of the standard LSTM into several groups.
Each group is activated and updated at different
time periods. The fast-speed groups keep the
short-term memories, while the slow-speed groups
keep the long-term memories. We evaluate our
model on four benchmark datasets of text classifi-
cation. Experimental results show that our model
can not only handle short texts, but can model long
texts.

Our contributions can be summarized as fol-
lows.

• With the multiple different timescale memo-
ries, MT-LSTM easily carries the crucial in-
formation over a long distance. MT-LSTM
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can well model both short and long texts.

• MT-LSTM has faster convergence speed than
the standard LSTM since the error signal
can be back-propagated through multiple
timescales in the training phase.

2 Neural Models for Sentences and
Documents

The primary role of the neural models is to repre-
sent the variable-length sentence or document as a
fixed-length vector. These models generally con-
sist of a projection layer that maps words, sub-
word units or n-grams to vector representations
(often trained beforehand with unsupervised meth-
ods), and then combine them with the different
architectures of neural networks. Most of these
models for distributed representations of sentences
or documents can be classified into four cate-
gories.

Bag-of-words models A simple and intuitive
method is the Neural Bag-of-Words (NBOW)
model, in which the representation of sentences
or documents can be generated by averaging con-
stituent word representations. However, the main
drawback of NBOW is that the word order is lost.
Although NBOW is effective for general docu-
ment classification, it is not suitable for short sen-
tences.

Sequence models Sequence models construct
the representation of sentences or documents
based on the recurrent neural network (RNN)
(Mikolov et al., 2010) or the gated versions of
RNN (Sutskever et al., 2014; Chung et al., 2014).
Sequence models are sensitive to word order, but
they have a bias towards the latest input words.
This gives the RNN excellent performance at lan-
guage modelling, but it is suboptimal for modeling
the whole sentence, especially for the long texts.
Le and Mikolov (2014) proposed a Paragraph Vec-
tor (PV) to learn continuous distributed vector rep-
resentations for pieces of texts, which can be re-
garded as a long-term memory of sentences as op-
posed to the short-memory in RNN.

Topological models Topological models com-
pose the sentence representation following a given
topological structure over the words (Socher et
al., 2011a; Socher et al., 2012; Socher et al.,
2013). Recursive neural network (RecNN) adopts

a more general structure to encode sentence (Pol-
lack, 1990; Socher et al., 2013). At every node in
the tree the contexts at the left and right children
of the node are combined by a classical layer. The
weights of the layer are shared across all nodes
in the tree. The layer computed at the top node
gives a representation for the sentence. However,
RecNN depends on external constituency parse
trees provided by an external topological structure,
such as parse tree.

Convolutional models Convolutional neural
network (CNN) is also used to model sentences
(Collobert et al., 2011; Kalchbrenner et al.,
2014; Hu et al., 2014). It takes as input the
embeddings of words in the sentence aligned
sequentially, and summarizes the meaning of
a sentence through layers of convolution and
pooling, until reaching a fixed length vectorial
representation in the final layer. CNN can main-
tain the word order information and learn more
abstract characteristics.

3 Long Short-Term Memory Networks

A recurrent neural network (RNN) (Elman, 1990)
is able to process a sequence of arbitrary length by
recursively applying a transition function to its in-
ternal hidden state vector ht of the input sequence.
The activation of the hidden state ht at time-step t
is computed as a function f of the current input
symbol xt and the previous hidden state ht−1

ht =

{
0 t = 0
f(ht−1,xt) otherwise

(1)

It is common to use the state-to-state transition
function f as the composition of an element-wise
nonlinearity with an affine transformation of both
xt and ht−1.

Traditionally, a simple strategy for modeling se-
quence is to map the input sequence to a fixed-
sized vector using one RNN, and then to feed the
vector to a softmax layer for classification or other
tasks (Sutskever et al., 2014; Cho et al., 2014).

Unfortunately, a problem with RNNs with tran-
sition functions of this form is that during training,
components of the gradient vector can grow or de-
cay exponentially over long sequences (Bengio et
al., 1994; Hochreiter et al., 2001; Hochreiter and
Schmidhuber, 1997). This problem with explod-
ing or vanishing gradients makes it difficult for the
RNN model to learn long-distance correlations in
a sequence.
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Figure 1: A LSTM unit. The dashed line is the
recurrent connection, and the solid link is the con-
nection at the current time.

Long short-term memory network (LSTM) was
proposed by (Hochreiter and Schmidhuber, 1997)
to specifically address this issue of learning long-
term dependencies. The LSTM maintains a sepa-
rate memory cell inside it that updates and exposes
its content only when deemed necessary. A num-
ber of minor modifications to the standard LSTM
unit have been made. While there are numerous
LSTM variants, here we describe the implementa-
tion used by Graves (2013).

We define the LSTM units at each time step t
to be a collection of vectors in Rd: an input gate
it, a forget gate ft, an output gate ot, a memory
cell ct and a hidden state ht. d is the number of
the LSTM units. The entries of the gating vectors
it, ft and ot are in [0, 1]. The LSTM transition
equations are the following:

it = σ(Wixt + Uiht−1 + Vict−1) (2)

ft = σ(Wfxt + Ufht−1 + Vfct−1), (3)

ot = σ(Woxt + Uoht−1 + Voct), (4)

c̃t = tanh(Wcxt + Ucht−1), (5)

ct = f i
t ⊙ ct−1 + it ⊙ c̃t, (6)

ht = ot ⊙ tanh(ct), (7)

where xt is the input at the current time step, σ de-
notes the logistic sigmoid function and ⊙ denotes
elementwise multiplication. Intuitively, the forget
gate controls the amount of which each unit of the
memory cell is erased, the input gate controls how
much each unit is updated, and the output gate
controls the exposure of the internal memory state.

Figure 1 shows the structure of a LSTM unit. In

particular, these gates and the memory cell allow a
LSTM unit to adaptively forget, memorize and ex-
pose the memory content. If the detected feature,
i.e., the memory content, is deemed important, the
forget gate will be closed and carry the memory
content across many time-steps, which is equiva-
lent to capturing a long-term dependency. On the
other hand, the unit may decide to reset the mem-
ory content by opening the forget gate.

4 Multi-Timescale Long Short-Term
Memory Neural Network

h1 h2 h3 h4 · · · hT softmax

x1 x2 x3 x4 xT y

(a) Unfolded LSTM

g3
1 g3

2 g3
3 g3

4 · · · g3
T

g2
1 g2

2 g2
3 g2

4 · · · g2
T softmax

g1
1 g1

2 g1
3 g1

4 · · · g1
T y

x1 x2 x3 x4 xT

(b) Unfolded MT-LSTM with Fast-to-Slow Feedback
Strategy

Figure 2: Illustration of the unfolded LSTM and
unfolded MT-LSTM. The dotted node indicates
the unit which is inactivated at current time, while
the solid node indicates the unit which is activated.
The dotted lines indicate the units which kept un-
changed, while the solid lines indicate the units
which will be updated at the next time step.

LSTM can capture the long-term and short-term
dependencies in a sequence. But the long-term
dependencies need to be transmitted one-by-one
along the sequence. Some important informa-
tion could be lost in transmission process for long
texts, such as documents. Besides, the error sig-
nal is back-propagated through multiple time steps
when we use the back-propagation through time
(BPTT) (Werbos, 1990) algorithm. The training
efficiency could also be low for the long texts. For
example, if a valuable feature occurs at the begin
of a long document, we need to back-propagate
the error through the whole document.

Inspired by the works of (El Hihi and Bengio,
1995) and (Koutnik et al., 2014), which use de-
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layed connections and units operating at different
timescales to improve the simple RNN, we sepa-
rate the LSTM units into several groups. Different
groups capture different timescales dependencies.

More formally, the LSTM units are parti-
tioned into g groups {G1, · · · , Gg}. Each group
Gk, (1 ≤ k ≤ g) is activated at different time pe-
riods Tk. Accordingly, the gates and weight ma-
trices are also partitioned to maintain the corre-
sponding LSTM groups. The MT-LSTM with just
one group is the same to the standard LSTM.

At each time step t, only the groups Gk that sat-
isfy (tMOD Tk) = 0 are executed. The choice
of the set of periods Tk ∈ {T1, · · · , Tg} is arbi-
trary. Here, we use the exponential series of peri-
ods: group Gk has the period of Tk = 2k−1. The
group G1 is the fastest one and can be executed
at every time step, which works like the standard
LSTM. The group Gk is the slowest one.

At time step t, the memory cell vector and hid-
den state vector of group Gk are calculate in two
cases:

(1) When group Gk is activated at time step t,
the LSMT units of this group are calculated by the
following equations:

ikt = σ(Wk
i xt +

g∑
j=1

Uj→k
i hj

t−1 +

g∑
j=1

Vj→k
i cj

t−1), (8)

fk
t = σ(Wk

fxt +

g∑
j=1

Uj→k
f hj

t−1 +

g∑
j=1

Vj→k
f cj

t−1), (9)

ok
t = σ(Wk

oxt +

g∑
j=1

Uj→k
o hj

t−1 +

g∑
j=1

Vj→k
o cj

t), (10)

c̃k
t = tanh(Wk

cxt +

g∑
j=1

Uj→k
c hj

t−1), (11)

ck
t = fk

t ⊙ ck
t−1 + ikt ⊙ c̃k

t , (12)

hk
t = ok

t ⊙ tanh(ck
t ), (13)

where ikt , fk
t and ok

t are the vectors of input gates,
forget gates, and output gates of group Gk at time
step t respectively; ck

t and hk
t are the memory cell

vector and hidden state vector of group Gk at time
step t respectively.

(2) When group Gk is non-activated at time step
t, its LSMT units keep unchanged.

ck
t = ck

t−1, (14)

hk
t = hk

t−1. (15)

Figure 3 shows the different between the stan-
dard LSTM and MT-LSTM.

(a) Fast-to-Slow Strategy (b) Slow-to-Fast Strategy

Figure 3: Two feedback strategies of our model.
The dashed line shows the feedback connection,
and the solid link shows the connection at current
time.

4.1 Two Feedback Strategies

The feedback mechanism of LSTM is imple-
mented by the recurrent connections from time
step t − 1 to t. Since the MT-LSTM groups are
updated with the different frequencies, we can re-
gard the different group as the human memory.
The fast-speed groups are short-term memories,
while the slow-speed groups are long-term mem-
ories. Therefore, an important consideration is
what feedback mechanism is between the short-
term and long-term memories.

For the proposed MT-LSTM, we consider two
feedback strategies to define the connectivity pat-
terns among the different groups.

Fast-to-Slow (F2S) Strategy Intuitively, when
we accumulate the short-term memory to a certain
degree, we store some valuable information from
the short-term memory into the long-term mem-
ory. Therefore, we firstly define a fast to slow
strategy, which updates the slower group using the
faster group. The connections from group j to
group k exist if and only if Tj ≤ Tk. The weight
matrices Uj→k

i , Uj→k
f , Uj→k

o , Uj→k
c , Vj→k

i ,

Vj→k
f , Vj→k

o are set to zero when Tj > Tk.
The F2S updating strategy is shown in Figure

3a.

Slow-to-Fast (S2F) Strategy Following the
work of (Koutnik et al., 2014), we also investigate
another update scheme from slow-speed group to
fast-speed group. The motivation is that a long
term memory can be “distilled” into a short-term
memory. The connections from group j to group i
exist only if Tj ≥ Ti. The weight matrices Uj→k

i ,
Uj→k

f , Uj→k
o , Uj→k

c , Vj→k
i , Vj→k

f , Vj→k
o are set

to zero when Tj < Tk.
The S2F update strategy is shown in Figure 3b.
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Dataset Type Train Size Dev. Size Test Size Class Averaged Length Vocabulary Size
SST-1 Sentence 8544 1101 2210 5 19 18K
SST-2 Sentence 6920 872 1821 2 18 15K

QC Sentence 5452 - 500 6 10 9.4K
IMDB Document 25,000 - 25,000 2 294 392K

Table 1: Statistics of the four datasets used in this paper.

4.2 Dynamic Selection of the Number of the
MT-LSTM Unit Groups

Another consideration is how many groups need
to be used. An intuitive way is that we need more
groups for long texts than short texts. The number
of the group depends the length of the texts.

Here, we use a simple dynamic strategy to
choose the maximum number of groups, and then
the best g is chosen as a hyperparameter according
to different tasks. The upper bound of the number
of groups is calculated by

g = log2 L− 1, (16)

where L is the average length of the corpus. Thus,
the slowest group is activated at least twice.

5 Training

In each of the experiments, the hidden layer at
the last moment has a fully connected layer fol-
lowed by a softmax non-linear layer that predicts
the probability distribution over classes given the
input sentence. The network is trained to min-
imise the cross-entropy of the predicted and true
distributions; the objective includes an L2 regu-
larization term over the parameters. The network
is trained with backpropagation and the gradient-
based optimization is performed using the Ada-
grad update rule (Duchi et al., 2011).

The back propagation of the error propagation
is similar to LSTM as well. The only difference
is that the error propagates only from groups that
were executed at time step t. The error of non-
activated groups gets copied back in time (simi-
larly to copying the activations of nodes not ac-
tivated at the time step t during the correspond-
ing forward pass), where it is added to the back-
propagated error.

6 Experiments

In this section, we investigate the empirical per-
formances of our proposed MT-LSTM model on
four benchmark datasets for sentence and docu-
ment classification and then compare it to other
competitor models.

6.1 Datasets

We evaluate our model on four different datasets.
The first three datasets are sentence-level, and the
last dataset is document-level. The detailed statis-
tics about the four datasets are listed in Table 1.
Each dataset is briefly described as follows.

• SST-1 The movie reviews with five classes
(negative, somewhat negative, neutral, some-
what positive, positive) in the Stanford Senti-
ment Treebank1 (Socher et al., 2013).

• SST-2 The movie reviews with binary
classes. It is also from the Stanford Senti-
ment Treebank.

• QC The TREC questions dataset2 involves
six different question types, e.g. whether the
question is about a location, about a person
or about some numeric information (Li and
Roth, 2002).

• IMDB The IMDB dataset3 consists of
100,000 movie reviews with binary classes
(Maas et al., 2011). One key aspect of this
dataset is that each movie review has several
sentences.

6.2 Competitor Models

We compare our model with the following models:

• NB-SVM and MNB. Naive Bayes SVM and
Multinomial Naive Bayes with uni and bi-
gram features (Wang and Manning, 2012).

• NBOW The NBOW sums the word vectors
and applies a non-linearity followed by a
softmax classification layer.

• RAE Recursive Autoencoders with pre-
trained word vectors from Wikipedia (Socher
et al., 2011b).

• MV-RNN Matrix-Vector Recursive Neural
Network with parse trees (Socher et al.,
2012).

1http://nlp.stanford.edu/sentiment.
2http://cogcomp.cs.illinois.edu/Data/

QA/QC/.
3http://ai.stanford.edu/˜amaas/data/

sentiment/
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SST-1 SST-2 QC IMDB
Embedding size 100 100 100 100
hidden layer size 60 60 55 100
Initial learning rate 0.1 0.1 0.1 0.1
Regularization 10−5 10−5 10−5 10−5

Number of Groups 3 3 3 5

Table 2: Hyper-parameter settings for the LSTM
and MT-LSTM.

• RNTN Recursive Neural Tensor Network
with tensor-based feature function and parse
trees (Socher et al., 2013).

• AdaSent Self-adaptive hierarchical sentence
model with gated mechanism (Zhao et al.,
2015).

• DCNN Dynamic Convolutional Neural Net-
work with dynamic k-max pooling (Kalch-
brenner et al., 2014).

• CNN-non-static and CNN-multichannel
Convolutional Neural Network (Kim, 2014).

• PV Logistic regression on top of paragraph
vectors (Le and Mikolov, 2014). Here, we
use the popular open source implementation
of PV in Gensim4.

• LSTM The standard LSTM for text classifi-
cation. We use the implementation of Graves
(2013). The unfolded illustration is shown in
Figure 2a.

6.3 Hyperparameters and Training
In all of our experiments, the word embeddings are
trained using word2vec (Mikolov et al., 2013a) on
the Wikipedia corpus (1B words). The vocabu-
lary size is about 500,000. The the word embed-
dings are fine-tuned during training to improve the
performance (Collobert et al., 2011). The other
parameters are initialized by randomly sampling
from uniform distribution in [-0.1, 0.1]. The hy-
perparameters which achieve the best performance
on the development set will be chosen for the fi-
nal evaluation. For datasets without development
set, we use 10-fold cross-validation (CV) instead.
The final hyper-parameters for the LSTM and MT-
LSTM are set as Figure 2.

6.4 Results
Table 3 shows the classification accuracies of the
standard LSTM, MT-LSTM compared with the
competitor models.

Firstly, we compare two feedback strategies
of MT-LSTM. The fast-to-slow feedback strat-

4https://github.com/piskvorky/gensim/
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Figure 4: Convergence Speeds on IMDB dataset.

egy (MT-LSTM (F2S)) is better than the slow-to-
fast strategy (MT-LSTM (S2F)), which indicates
that MT-LSTM benefits from periodically stor-
ing some valuable information “purified” from the
short-term memory into the long-term memory. In
the following discussion, we use fast-to-slow feed-
back strategy as the default setting of MT-LSTM.

Compared with the standard LSTM, MT-LSTM
results in significantly improvements with the
same size of hidden layers.

MT-LSTM outperforms the competitor models
on the SST-1, QC and IMDB datasets, and is close
to the two best CNN based models on the SST-2
dataset. But MT-LSTM uses much fewer param-
eters than the CNN based models. The number
of parameters of LSTM range from 10K to 40K
while the number of parameters is about 400K in
CNN.

Moreover, MT-LSTM can not only handle short
texts, but can model long texts in classification
task.

Documents Modeling Most of the competitor
models cannot deal with the texts of with sev-
eral sentences (paragraphs, documents). For in-
stance, MV-RNN and RNTN (Socher et al., 2013)
are based on the parsing over each sentence and
it is unclear how to combine the representations
over many sentences. The convolutional models,
such as CNN (Kim, 2014) and AdaSent (Zhao et
al., 2015), need more hidden layers or nodes for
long texts and result in a very complicated model.
These models therefore are restricted to work-
ing on sentences instead of paragraphs or docu-
ments. Denil et al. (2014) used two-level version
of DCNN (Kalchbrenner et al., 2014) to model
documents. The first level uses a DCNN to trans-
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Model SST-1 SST-2 QC IMDB
NBOW (Kalchbrenner et al., 2014) 42.4 80.5 88.2 -
RAE (Socher et al., 2011b) 43.2 82.4 - -
MV-RNN (Socher et al., 2012) 44.4 82.9 - -
RNTN (Socher et al., 2013) 45.7 85.4 - -
DCNN (Kalchbrenner et al., 2014) 48.5 86.8 93.0 -
CNN-non-static (Kim, 2014) 48.0 87.2 93.6 -
CNN-multichannel (Kim, 2014) 47.4 88.1 92.2 -
AdaSent (Zhao et al., 2015) - - 92.4 -
NBSVM (Wang and Manning, 2012) - - - 91.2
MNB (Wang and Manning, 2012) - - - 86.6
Two-level DCNN (Denil et al., 2014) - - - 89.4
PV (Le and Mikolov, 2014) 44.6* 82.7* 91.8* 91.7*
LSTM 47.9 85.8 91.3 88.5
MT-LSTM (S2F) 48.9 86.7 93.3 90.2
MT-LSTM (F2S) 49.1 87.2 94.4 92.1

Table 3: Results of our MT-LSTM model against state-of-the-art neural models. All the results without
marks are reported in the corresponding paper.
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Figure 5: Performances of our model with the dif-
ferent numbers of memory groups g on four devel-
opment datasets: SST-1,SST-2, QC, and IMDB.
Y-axis represents the accuracy(%), and X-axis rep-
resents different numbers of memory groups. All
memory groups share a fixed-size memory layer
h, and here we set h=120.

form embeddings for the words in each sentence
into an embedding for the entire sentence. The
second level uses another DCNN to transform sen-
tence embeddings from the first level into a single
embedding vector that represents the entire docu-
ment. However, their result is unsatisfactory and
they reported that the IMDB dataset is too small
to train a CNN model.

The standard LSTM has an advantage to model
documents due to its simplification. However, it is
also difficult to train LSTM since the error signals
need to be back-propagated over a long distance

with the BPTT algorithm.
Our MT-LSTM can alleviate this problem with

multiple timescale memories. The experiment on
IMDB dataset demonstrates this advantage. MT-
LSTM achieves the accuracy of 92.1% , which are
better than the other models.

Moreover, MT-LSTM converges at a faster rate
than the standard LSTM. Figure 4 plots the con-
vergence on the IMDB dataset. In practice, MT-
LSTM is approximately three times faster than the
standard LSTM since the hidden states of low-
speed group often keep unchanged and need not
to be re-calculated at each time step.

Impact of the Different Number of Memory
Groups In our model, the number of memory
groups is a hyperparameter. Here we plotted the
accuracy curves of our model with the different
numbers of memory groups in Figure 5 to show
its impacts on the four datasets.

When the length of text (SST-1, SST-2 and
QC) is small, not all memory groups can be acti-
vated if we set too many groups, which may harm
the performance. When dealing with the long
texts (IMBD), more groups lead to a better per-
formance. The performance can be improved with
the increase of the number of memory groups.

According to our dynamic strategy, the maxi-
mum numbers of groups is 3, 3, 2, 7 for the four
datasets. The best numbers of groups from exper-
iments are 3, 3, 3, 5 respectively. Therefor, our
dynamic strategy is reasonable. All the datasets
except QC, the best number of groups is equal to
or smaller than our calculated upper bound. MT-
LSMT suffers underfitting when the number of
groups is larger than the upper bound.
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Figure 6: The dynamical changes of the predicted sentiment score over time. Y-axis represents the
sentiment score, while X-axis represents the input words in chronological order. The red horizontal line
gives a border between the positive and negative sentiments.

6.5 Case Study

To get an intuitive understanding of what is hap-
pening when we use LSTM or MT-LSTM to pre-
dict the class of text, we design an experiment
to analyze the output of LSTM and MT-LSTM at
each time step.

We sample three sentences from the SST-2 test
dataset, and the dynamical changes of the pre-
dicted sentiment score over time are shown in Fig-
ure 6. It is intriguing to notice that our model can
handle the rhetorical question well.

The first sentence “Is this progress ?”
has a negative sentiment. Although the word
“progress” is positive, our model can adjust the
sentiment correctly after seeing the question mark
“?”, and finally gets a correct prediction.

The second sentence “He ’d create a
movie better than this .” also has a
negative sentiment. The word “better” is posi-
tive. Our model finally gets a correct negative pre-
diction after seeing “than this”, while LSTM gets
a wrong prediction.

The third sentence “ It ’s not exactly
a gourmet meal but fare is fair
, even coming from the drive .”
is positive and has more complicated semantic
composition. Our model can still capture the
useful long-term features and gets the correct
prediction, while LSTM does not work well.

7 Related Work

There are many previous works to model the
variable-length text as a fixed-length vector. Spe-
cific to text classification task, most of the mod-
els cannot deal with the texts of several sen-
tences (paragraphs, documents), such as MV-RNN
(Socher et al., 2012), RNTN (Socher et al., 2013),
CNN (Kim, 2014), AdaSent (Zhao et al., 2015),
and so on. The simple neural bag-of-words model
can deal with long texts, but it loses the word order
information. PV (Le and Mikolov, 2014) works in
unsupervised way, and the learned vector cannot
be fine-tuned on the specific task.

Our proposed MT-LSTM can handle short texts
as well as long texts in classification task.

8 Conclusion

In this paper, we introduce the MT-LSTM, a gen-
eralization of LSTMs to capture the information
with different timescales. MT-LSTM can well
model both short and long texts. With the multi-
ple different timescale memories. Intuitively, MT-
LSTM easily carries the crucial information over
a long distance. Another advantage of MT-LSTM
is that the training speed is faster than the standard
LSTM (approximately three times faster in prac-
tice).

In future work, we would like to investigate the
other feedback mechanism between the short-term
and long-term memories.
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Abstract

Deception detection has been receiving
an increasing amount of attention from
the computational linguistics, speech, and
multimodal processing communities. One
of the major challenges encountered in this
task is the availability of data, and most of
the research work to date has been con-
ducted on acted or artificially collected
data. The generated deception models
are thus lacking real-world evidence. In
this paper, we explore the use of multi-
modal real-life data for the task of decep-
tion detection. We develop a new decep-
tion dataset consisting of videos from real-
life scenarios, and build deception tools
relying on verbal and nonverbal features.
We achieve classification accuracies in the
range of 77-82% when using a model that
extracts and fuses features from the lin-
guistic and visual modalities. We show
that these results outperform the human
capability of identifying deceit.

1 Introduction

As deceptive behavior occurs on a daily basis in
different areas of life (Meyer, 2010; Smith et al.,
2014), the need arises for automated methodolo-
gies to detect deception in an efficient, yet reliable
manner. There are many applications that can ben-
efit from automatic deception identification, such
as airport security screening, crime investigation
and interrogation, interviews, advertisement, and
others. In many of these settings, the polygraph
test has been used as the main method to identify
deceptive behavior. However, this method requires
the use of skin-contact devices and human exper-
tise, making it infeasible for large-scale applica-
tions. Moreover, polygraph tests were shown to be
misleading in multiple cases (Vrij, 2001; Gannon
et al., 2009), as human judgment is often biased.

Given the difficulties associated with the use
of polygraph-like methods, learning-based ap-
proaches have been proposed to address the de-
ception detection task using a number of modali-
ties, including text (Feng et al., 2012) and speech
(Hirschberg et al., 2005; Newman et al., 2003).
Unlike the polygraph methods, learning-based
methods for deception detection rely mainly on
data collected from deceivers and truth-tellers.
The data is usually elicited from human contrib-
utors, in a lab setting or via crowdsourcing. An
important problem identified in this data-driven re-
search is the lack of real data. Because of the arti-
ficial setting, the subjects may not be emotionally
aroused, as they may not take the experiments seri-
ously given the lack of motivation and/or penalty.

In this paper, we describe what we believe is a
first attempt at building a multimodal system that
detects deception in real-life settings. We collect
a dataset consisting of 118 deceptive and truthful
video clips, from real trials and live street inter-
views aired in television shows. We use the tran-
scription of these videos to extract several linguis-
tic features, and we manually annotate the videos
for the presence of several gestures that are used to
extract nonverbal features. We then build a system
that jointly uses the verbal and nonverbal modali-
ties to automatically detect the presence of decep-
tion. Our experiments show that the multimodal
system can identify deception with an accuracy in
the range of 77-82%, significantly improving over
the baseline. In addition, we present a study on
the human ability to detect deception in single or
multimodal data streams, and show that our sys-
tem outperforms humans on this task.

2 Dataset

Our goal is to build a multimodal collection of oc-
currences of real deception, which will allow us
to analyze both verbal and nonverbal behaviors in
relation to deception.
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Figure 1: Sample screenshots showing facial displays and hand gestures from real-life deception and
truthful clips. Starting at the top left-hand corner: deceptive interview with up gaze (Up), deceptive
interview with side gaze (Side), deceptive trial with both hands (Both-H), truthful trial with forward
head (Forward), truthful interview with side turn (Side-Turn), and truthful interview with single hand
(Single-H).

Truthful Deceptive
I was sentenced to forty to sixty years in prison
for this crime that I didn’t commit. At the trial
the judge had exceeded the sentence guidelines
because he said I failed to show remorse. And I
told him, you know, I felt terrible for what happen
to this woman, shouldn’t happen to anyone, but I
can’t show remorse for something I didn’t do.

We had some drinks at the bar, maybe one ... two.
um I got onto the dance floor myself as I ex-
plained, um I have been a trained dancer for some
time, going to be able to dance freely is like a ...
release. I’m very much in my own space when I
do that and so I got up, and I was dancing alone
on the dance floor.

It’s difficult to pick just one but um I think Ten-
der Mercies uh is ... really captured my imagi-
nation um when I was in junior high. Had a lot
to do with Robert Duval’s performance certainly
and that got me excited about the possibility of
um .... pulling off an acting career for myself.

Yeah, yeah he was convincing as a wolf. Ahhh
actually you know ahhh this is like crazy I’m ter-
rified from wolves, it’s my worst fear even though
they don’t exist but thats my worst fear, sharks
and stuff like that. Yeah its my worst fear, I am
being honest with you.

Table 1: Sample transcripts for deceptive and truthful clips. The first row presents transcripts from the
Trials domain while the second shows transcripts corresponding to the Interviews domain.

2.1 Data Collection

To collect real deception data, we start by identi-
fying online multimedia sources where deceptive
behavior can be observed and verified. We specif-
ically target videos of people, on which we en-
force some of the constraints imposed by current
data processing technologies: the person in the
video should be in front of the camera; her face
should be clearly visible; visual quality should
be clear enough to identify the facial expressions;
and finally, audio quality should be clear enough
to hear the voices and understand what the per-
son is saying. We collect video clips from pub-
lic real trials and interviews aired during television
shows, where the truth or falsehood of the partic-

ipant’s statements ends up being known. Video
clips from trials consist of statements from wit-
nesses and defendants in the same trial. In or-
der to have a clear distinction between deceptive
and truthful trial videos portraying defendants, the
process of labeling the trial relies on the verdict.
Thus, clips with a guilty verdict are considered
deceptive whereas clips with a non-guilty verdict
or exoneration are labeled as truthful. Clips con-
taining witness testimonies are labeled as truth-
ful if their statements are verified by police in-
vestigations. Examples of trials included in our
dataset are Jodi Arias, Andrea Sneiderman, and
Amanda Hayes. Exoneree’s statements were taken
from “The Innocence Project” (http://www.
innocenceproject.org).
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Deceptive and truthful responses are also col-
lected from TV shows and interviews. Examples
of such shows are “Lie Witness,” “Golden Balls,”
and the “American Film Institute” and “RevYOU”
You-Tube channels. Deceptive videos portray sce-
narios where interviewees’ responses were known
to be a lie. For example, the interviewer asks a ran-
dom individual on his opinion on a non-existing
film where the interviewee fabricates a story. On
the other hand, truthful videos are collected from
individuals asked on their opinions on real movies.

Given our goals and constraints, data collec-
tion ended up being a lengthy and laborious pro-
cess consisting of several iterations of Web min-
ing, data processing and analysis, and content val-
idation.

The final dataset includes 118 videos, includ-
ing 59 that are labeled as deceptive and 59 la-
beled as truthful. Among them, 62 belong to the
TV street interviews and shows category (Inter-
views) with 28 deceptive and 34 truthful video
clips, and 56 belong to the trials category (Trials)
with 31 deceptive and 25 truthful clips. The aver-
age length of the videos in the dataset is 27.28 sec-
onds, with an average length of 33.02 seconds for
the truthful clips and 21.54 seconds for the decep-
tive clips. Collected trial samples cover famous
murder cases, while street interviews cover sev-
eral topics such as movies, music, politics, and re-
ligion. The dataset contains 23 unique female and
39 unique male speakers, with their ages ranging
approximately between 16 and 60 years.

2.2 Transcriptions and Nonverbal Behavior
Annotations

Our goal is to analyze both verbal and nonverbal
behavior to understand their relation to deception.

First, all the video clips were manually tran-
scribed. The transcription was performed by two
transcribers using the Elan software (Wittenburg
et al., 2006). We asked transcribers to include
word repetitions and fillers such as um, ah, and
uh, as well as long pauses that were marked using
three consecutive dots. The final set of transcrip-
tions contain 7835 words, with an average of 66
words per transcript. Table 1 shows transcriptions
of sample deceptive and truthful statements from
both trials and reality shows.

Second, we annotate the gestures1 observed
during the interactions in the video clips. We

1As done in the Human-Computer Interaction commu-
nity, we use the term “gesture” to broadly refer to body move-
ments, including facial expressions and hand gestures.

Gesture Category Agreement Kappa
Facial Expressions 72.88% 0.576
Eyebrows 80.51% 0.656
Eyes 68.64% 0.517
Gaze 61.40% 0.432
Mouth Openness 77.97% 0.361
Mouth Lips 82.20% 0.684
Head Movements 55.08% 0.420
Hand Movements 91.53% 0.858
Hand Trajectory 84.75% 0.753
Average 75.00% 0.584

Table 2: Gesture annotation agreement

specifically focus on the annotation of facial dis-
plays and hand movements, as they have been pre-
viously found to correlate with deceptive behav-
ior (Depaulo et al., 2003). The gesture annotation
is performed using the MUMIN coding scheme
(Allwood et al., 2007).

In the MUMIN scheme, facial displays consist
of several different facial expressions associated
with eyebrows, eyes, gaze, and mouth. Smile,
laughter, and scowl are also included, as well as
general head and hand movements.

The multimodal annotation was performed by
two annotators using the Elan software (Witten-
burg et al., 2006). We decided to perform the ges-
ture annotations at video level, rather than at utter-
ance level, because the overall judgment of truth-
fulness and deceitfulness is based on the whole
video content. During the annotation process, an-
notators were allowed to watch each video clip as
many times as they needed. They were asked to
identify the facial displays and hand gestures that
were most frequently observed or dominating dur-
ing the entire clip duration. For each video clip,
the annotators had to choose one label for each of
the nine gestures listed in Table 3.

Table 3 shows the frequency counts associated
with the nine gestures considered during the an-
notation. Note that the counts under each gesture
add up to 118, reflecting the fact that for every ges-
ture, the annotators had to choose one label for ev-
ery video clip. When none of the labels applied,
the “Other” category was selected. In the case
of gestures associated with hand movements, the
“Other” label also accounted for those cases where
the speaker’s hands were not moving or were not
visible.

After all the video clips were annotated for
gestures, the inter-annotator agreement was mea-
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Label Count
Eyebrows

Frown (Frowning) 17
Raise (Raising) 71
Other 30

Eyes
X-open (Exaggerated opening) 17
Close-BE (Closing both) 7
Closing-E (Closing one) 1
Close-R (Closing repeated) 20
Other 73

Gaze
Interlocutor 69
Up 7
Down 14
Side 24
Other 4

Label Count
General Facial Expressions

Smile 41
Scowl 13
Laugh (Laughter) 1
Other 63

Mouth Openness
Close-M (Closed mouth) 26
Open-M (Open mouth) 92

Mouth Lips
Up-C (Corners up) 61
Down-C (Corners down) 51
Protruded 1
Retracted 5

Hand Movements
Both hands (Both-H) 31
Single hands (Single-H) 26
Other 61

Label Count
Hand Trajectory

Up (Upwards) 13
Down (Downwards) 5
Sideways 5
Complex 33
Other 62

Head Movements
Down (Single nod) 3
Down-R (Repeated nods) 48
Forward (Move forward) 3
Back (Move backward) 3
Side-tilt (Single tilt) 8
Side-Tilt-R (Repeated tilts) 9
Side-Turn 9
Side-Turn-R (Shake repeated) 26
Waggle 3
Other 6

Table 3: Frequency counts for nine facial displays and hand gestures

sured. Table 2 shows the observed annotation
agreement between the two annotators, along with
the Kappa statistic. The agreement measure rep-
resents the percentage of times the two annotators
agreed on the same label for each gesture category.
For instance, 72.88% of the time the annotators
agreed on the label assigned to the General Face
category. On average, the observed agreement was
measured at 75%, with a Kappa of 0.58 (macro-
averaged over the nine categories), which reflects
substantial agreement. Observed agreement for
Head Movements and Gaze is noticeably lower
than other categories, which can be attributed to
a higher number of available gesture choices, as
seen in Table 3.

3 Features of Verbal and Nonverbal
Behaviors

Given the multimodal nature of our dataset, we de-
cided to focus on the linguistic and gesture compo-
nents. In this section, we describe the sets of fea-
tures extracted for each modality, which will then
be used to build classifiers of deception.

3.1 Verbal Features
We implement three types of features, consisting
of unigrams, psycholinguistic features, and syn-
tactic complexity features.

Unigrams. We extract unigrams derived from
the bag-of-words representation of the video
transcripts. The unigram features are en-
coded as word frequencies and include all the
words present in the transcripts.

Psycholinguistic Features. The Linguistic Word
Count (LIWC) is a psycholinguistics lexicon
that has been frequently used to incorporate
semantic and psychological information into
linguistic analysis (Pennebaker and Francis,
1999). It has been successfully used in pre-
vious work on deception detection (Newman
et al., 2003; Mihalcea and Strapparava, 2009;
Ott et al., 2011). We obtain features for each
of the 80 psycholinguistic classes present in
the lexicon by calculating the percentage of
words in the transcription belonging to each
class.

Syntactic Complexity. We also extract features
to measure the syntactic complexity of the
speech produced by the speakers in truth-
ful and deceptive clips. This set of features
is motivated by previous research that has
suggested that deceivers’ speech has lower
complexity (Depaulo et al., 2003). We use
the tool described in (Lu, 2010), which gen-
erates indexes of syntactic complexity, in-
cluding general complexity metrics, length of
production, and amount of coordination. The
set of features consists of fourteen indexes
including statistics related to T-units, which
are linguistic units that include a main clause
in addition to attached subordinate clauses.
T-unit analysis is extensively used to ana-
lyze syntactic complexity in speech and writ-
ten content. The set of features includes the
mean length of sentence, mean length of T-
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Figure 2: Distribution of nonverbal features for deceptive and truthful groups

unit, mean length of clause, clauses per sen-
tence, verb phrases per T-unit, clauses per T-
unit, dependent clauses per clause, dependent
clauses per T-unit, T-units per sentence, com-
plex T-unit ratio, coordinate phrases per T-
unit, coordinate phrases per clause, complex
nominals per T-unit, and complex nominals
per clause.

3.2 Nonverbal Features
The nonverbal features are derived from the an-
notations performed using the MUMIN coding
scheme as described in section 2.2. We create a
binary feature for each of the 40 available gesture
labels. Each feature indicates the presence of a
gesture only if it is observed during the majority
of the interaction duration. The generated features
represent nine different gesture categories cover-
ing facial displays and hand movements.

Facial Displays. These are facial expressions or
head movements displayed by the speaker
during the deceptive or truthful interaction.
They include all the behaviors listed in Table
3 under the General Facial Expressions, Eye-
brows, Eyes, Mouth Openness, Mouth Lips,
and Head Movements.

Hand Gestures. The second broad category cov-
ers gestures made with the hands, and it in-
cludes the Hand Movements and Hand Tra-
jectories listed in Table 3.

4 Experiments

We start our experiments with an analysis of the
nonverbal behaviors occurring in deceptive and
truthful videos. We compare the percentage of
each behavior as observed in each class. For in-
stance, there is a total of 41 videos in the dataset

Feature Set SVM DT RF
Unigrams 69.49% 76.27% 67.79%
Psycholinguistic 53.38% 50.00% 66.10%
Syntactic Complexity 52.54% 62.71% 53.38%
Facial Displays 78.81% 74.57% 67.79%
Hand Gestures 59.32% 57.62% 57.62%
Unigr.+Facial Disp. 71.18% 70.33% 68.64%
All Verbal 65.25% 63.55 % 57.62 %
All Nonverbal 75.42% 68.64% 72.03%
All Features 77.11% 69.49% 73.72%

Table 4: Deception classifiers using individual and
combined sets of verbal and nonverbal features.

that include the Smile feature (as shown in Ta-
ble 3), out of which 12 are part of the deceptive
set of 59 videos, and 29 are part of the truthful
set (again, of 59 videos). Hence, the percentages
for this feature are 20.33% in the deceptive class,
and 49.13% in the truthful class. Figure 2 shows
the percentages of all the nonverbal features for
which we observe noticeable differences for the
deceptive and truthful groups. As the figure sug-
gests, facial displays seem to help differentiate be-
tween the deceptive and truthful conditions. For
instance, we can observe that truth-tellers smile
(Smile) and blink more (Close-R). Interestingly
deceivers seem to make more eye contact (Inter-
locutor gaze) and nod (Side-Turn-R) more fre-
quently than truth-tellers. This agrees with the
findings in (Depaulo et al., 2003) that liars who are
more motivated to get away with their lies (i.e., tri-
als) are likely to increase their eye-contact behav-
ior.

Motivated by these results, we proceed to con-
duct further experiments to evaluate the perfor-
mance of the extracted features using a machine
learning approach.
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Feature Set SVM
All 77.11%
– Hand gestures 74.57%
– Facial displays 64.40%
– Syntactic 76.27%
– Semantic 72.03%
– Unigrams 73.72%

Table 5: Feature ablation study.

We run our learning experiments on the real-
deception dataset introduced earlier. Given the
even distribution between deceptive and truthful
clips, the baseline on this dataset is 50%. For
each video clip, we create feature vectors formed
by combinations of the verbal and nonverbal fea-
tures described in the previous section. We build
deception classifiers using three classification al-
gorithms: Support Vector Machines (SVM), De-
cision Trees (DT), and Random Forest (RF).2 We
run several comparative experiments using leave-
one-out cross-validation. Table 4 shows the accu-
racy figures obtained by the three classifiers on the
major feature groups described in Section 3. As
shown in this table, the facial displays classifier
achieves the highest accuracy among the individ-
ual classifiers, followed by the unigrams classifier.

We also evaluate classifiers that rely on com-
bined sets of features. The nonverbal features
clearly outperform the verbal features, and the
classifier that includes all the features improves
over the classifiers that rely on all the verbal fea-
tures or all the nonverbal features. Importantly,
several of the classifiers improve significantly over
the baseline.

4.1 Analysis of Feature Contribution

To better understand the contribution of the dif-
ferent feature sets to the overall classifier perfor-
mance, we conduct an ablation study where we re-
move one group of features at a time. Given that
SVM had the best performance in our initial set of
experiments, we run all our analysis experiments
only using this classifier. Table 5 shows the accu-
racies obtained when one feature group is removed
and the deception classifier is built using the re-
maining features. From this table, we can again
observe that Facial Displays contribute the most
to the classifier performance, while Syntactic Fea-
tures show the lowest contribution.

2We use the implementation available in the Weka toolkit
with the default parameters.
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Figure 3: Weights of top nonverbal features

For a closer look at the contribution of indi-
vidual features included in the group of Facial
Displays, we analyzed the absolute values of the
weights assigned by the learning algorithm to the
features in this group. Figure 3 shows the fea-
tures normalized with respect to the largest fea-
ture weight. The five most predictive features are
the presence of side turns, up gazes, blinking, and
smiling, which we previously identified as possi-
ble indicators of deception. This further confirms
our initial hypothesis that gestures associated with
human interaction are an important component of
human deception.

We also analyze the contribution of the lin-
guistic features. Using the linguistic ethnogra-
phy method (Mihalcea and Pulman, 2009), we ob-
tain the most dominant LIWC word classes asso-
ciated with deceptive and truthful transcripts ex-
tracted from trials and interviews clips. Results
are shown in Table 6. Interestingly, the most dom-
inant classes in truthful clips, regardless of being
from interviews or trials, correspond to words re-
lated to Family, Home, and Humans. This sug-
gests that truth-tellers show similar word usage
when interviewed on a real scenario. On the other
hand, dominant classes associated to deceivers are
less consistent as they discuss aspects related to
the topic being discussed. For instance, while be-
ing interviewed about a non-existing movie, de-
ceivers talk about their Past, Assent, and use Mo-
tion words in order to support their lies. In con-
trast, while being on trial stating their (false) inno-
cence, they use Anxiety, Anger, and negative emo-
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Truthful
Interviews Trials

Class Score Class Score
Metaphor 2.98 You 3.99
Money 2.74 Family 3.07
Inhibition 2.74 Home 2.45
Home 2.13 Humans 1.87
Humans 2.02 Posemo 1.81
Family 1.96 Insight 1.64

Deceptive
Interviews Trials

Class Score Class Score
Assent 4.81 Anger 2.61
Past 2.59 Anxiety 2.61
Sexual 2.00 Certain 2.28
Other 1.87 Death 1.96
Motion 1.68 Physical 1.77
Negemo 1.44 Negemo 1.52

Table 6: LIWC word classes most strongly associ-
ated with deception and truth.

tion words (class Negemo). In line with earlier ob-
servations (Mihalcea and Strapparava, 2009), de-
ceptive texts include more words that reflect cer-
tainty (class Certain, with words such as com-
pletely, truly, always) and more references to oth-
ers (class Other, with words such as she, day, him).

4.2 Domain Experiments

We perform three sets of experiments to determine
the role played by the domain. The first set of ex-
periments uses only the Interviews video clips (62
in total), and the results are shown in the left col-
umn of Table 7. The second set uses only the Tri-
als instances (56 in total), with results shown in the
right column of Table 7. Finally, we also perform
cross-domain experiments, with the training data
drawn from one domain and the test data from the
other. The results of these experiments are shown
in Table 8. Given the uneven distribution of the
truthful and deceptive video clips in two domains,
the baselines are 54.83% for the Interviews do-
main (34 truthful, 28 deceptive), and 55.35% for
the Trials domain (25 truthful, 31 deceptive).

What we learn from these experiments is that
the domain does matter. Despite the smaller
dataset, the experiments run on one domain at a
time lead to results that are higher than the ones
obtained with more data but with a mix of do-
mains. The cross-domain experiments also sup-
port this argument, as the performance drops sig-

Feature Set Interviews Trials
Baseline 54.83% 55.35%
Unigrams 75.80 % 82.14%
Psycholinguistics 59.67% 50.00%
Syntactic Complexity 54.83% 60.71%
Facial Displays 70.96% 80.35%
Hand Gestures 56.45% 48.21%
Unigr.+Facial Disp. 70.96% 76.78%
All Verbal 70.96% 64.28%
All Nonverbal 67.14% 83.92%
All features 79.03% 82.14%

Table 7: Deception classifiers for the Interviews
and Trials domains, using a SVM classifier trained
on individual and combined sets of verbal and
nonverbal features.

Training Test SVM
Trials Interviews 58.06%
Interviews Trials 58.92%

Table 8: Cross-domain classification results using
a SVM classifier trained on all the features

nificantly when there is no overlap in domain be-
tween the training and the test instances. Over-
all, in all our machine learning experiments, the
combined classifier that makes use of all the verbal
and nonverbal features achieves the best trade-off
between performance and robustness, as it always
leads to the best or second best performance across
all the experiments using individual or combined
feature sets. While a classifier based on an individ-
ual feature set can sometime lead to a better per-
formance (e.g., the Facial Displays classifier has
better performance when all the video clips are
used), that same classifier may not perform well in
another setting (e.g., the Facial Displays classifier
is significantly below the All Features classifier in
the domain experiments).

5 Human Performance

An important remaining question is concerned
with the human performance on the task of de-
ception detection. An answer to this question can
shed light on the difficulty of the task, and can also
place our results in perspective.

We conduct a study where we evaluate the hu-
man ability to identify deceit when exposed to four
different modalities: Text, consisting of the lan-
guage transcript; Audio, consisting of the audio
track of the clip; Silent video, consisting of only
the video with muted audio; and Full video, where
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Modality Agreement Kappa
Text 58.80% 0.047
Audio 66.70% 0.288
Silent video 52.00% 0.065
Full Video 61.60% 0.191

Table 9: Agreement among three human annota-
tors on text, audio, silent video, and full video
modalities.

Text Audio Silent video Full video
A1 54.24% 58.47% 50.85% 63.00%
A2 55.93% 67.80% 45.76% 68.00%
A3 65.25% 70.34% 55.93% 71.00%
Sys. 65.75% NA 75.42% 77.11%

Table 10: Performance of three annotators and
the developed automatic system (Sys) on the real-
deception dataset over four modalities.

audio and video are played simultaneously. We
create an annotation interface that shows an anno-
tator instances for each modality in random order,
and ask him or her to select a label of either “De-
ception” or “Truth” according to his or her percep-
tion of truthfulness or falsehood.

To avoid annotation bias, we show the modal-
ities in the following order: first we show either
Text or Silent video, then we show Audio, followed
by Full video. Note that apart from this constraint
which is enforced over the four modalities belong-
ing to each video clip, the order in which instances
are presented to an annotator is random. Further-
more, the annotators did not have access to any
information that would reveal the true label of an
instance. The only exception to this could have
been the annotators’ previous knowledge of some
of the public trials in our dataset. A discussion
with the annotators after the annotation took place
indicated however that this was not the case.

Three annotators labeled all the 118 video clips
in the dataset. Since four modalities were ex-
tracted from each video, each annotator annotated
a total of 412 instances. Annotators were not of-
fered a monetary reward and we considered their
judgments to be honest as they participated volun-
tarily in this experiment. Table 9 shows the ob-
served agreement and Kappa statistics among the
three annotators for each modality.3 The agree-
ment for most modalities is rather low and the
Kappa scores range between slight to fair agree-
ment. As noted before (Ott et al., 2011), this low

3Inter-rater agreement with multiple raters and variables.
https://mlnl.net/jg/software/ira/

agreement can be interpreted as an indication that
people are poor judges of deception.

We also determine each annotator’s perfor-
mance for each modality. The results, shown in
Table 10, additionally support the argument that
human judges have difficulty performing the de-
ception detection task. An interesting, yet perhaps
unsurprising observation is that the human perfor-
mance increases with the availability of modali-
ties. The poorest accuracy is obtained in Silent
video, followed by Text, Audio, and Full Video
where the judges have the highest performance.

Overall, our study indicates that detecting de-
ception is indeed a difficult task for humans and
further verifies previous findings where human
ability to spot liars was found to be slightly better
than chance (Aamodt and Custer, 2006). More-
over, the performance of the human annotators ap-
pears to be significantly below that of our system.

6 Related Work

Verbal Deception Detection. To date, several re-
search publications on verbal-based deception de-
tection have explored the identification of decep-
tive content in a variety of domains, including on-
line dating websites (Toma and Hancock, 2010;
Guadagno et al., 2012), forums (Warkentin et al.,
2010; Joinson and Dietz-Uhler, 2002), social net-
works (Ho and Hollister, 2013), and consumer re-
port websites (Ott et al., 2011; Li et al., 2014).
Research findings have shown the effectiveness
of features derived from text analysis, which fre-
quently includes basic linguistic representations
such as n-grams and sentence count statistics (Mi-
halcea and Strapparava, 2009), and also more
complex linguistic features derived from syntac-
tic CFG trees and part of speech tags (Feng et al.,
2012; Xu and Zhao, 2012). Research work has
also relied on the LIWC lexicon to build deception
models using machine learning approaches (Mi-
halcea and Strapparava, 2009; Ángela Almela et
al., 2012) and showed that the use of psycholin-
guistic information is helpful for the automatic
identification of deceit. Following the hypothe-
sis that deceivers might create less complex sen-
tences in an effort to conceal the truth and being
able to recall their lies more easily, several re-
searchers have also studied the relation between
text syntactic complexity and deception (Yancheva
and Rudzicz, 2013).

Nonverbal Deception Detection. Earlier ap-
proaches to nonverbal deception detection relied
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on polygraph tests to detect deceptive behavior.
These tests are mainly based on such physiolog-
ical features such as heart rate, respiration rate,
skin temperature. Several studies (Vrij, 2001;
Gannon et al., 2009; Derksen, 2012) indicated
that relying solely on physiological measurements
can be biased and misleading. Chittaranjan et
al. (Chittaranjan and Hung, 2010) created an au-
dio visual recording of the “Are you a Werewolf?”
game in order to detect deceptive behaviour us-
ing non-verbal audio cues and to predict the sub-
jects’ decisions in the game. For hand gestures,
blob analysis was used to detect deceit by track-
ing the hand movements of the subjects (Lu et al.,
2005; Tsechpenakis et al., 2005), or using geo-
metric features related to the hand and head mo-
tion (Meservy et al., 2005). Caso et al. (Caso
et al., 2006) identified particular hand gestures
that can be related to the act of deception using
data from simulated interviews. Cohen et al.
(2010) found that fewer iconic hand gestures were
a sign of a deceptive narration, and Hillman et al.
(2012) determined that increased speech prompt-
ing gestures were associated with deception while
increased rhythmic pulsing gestures were associ-
ated with truthful behavior. Also related is the
taxonomy of hand gestures developed by (Mar-
icchiolo et al., ) for deception and social behav-
ior. Facial expressions also played a critical role
in the identification of deception. (Ekman, 2001)
defined micro-expressions as relatively short in-
voluntary expressions, which can be indicative of
deceptive behavior. Moreover, these expressions
were analyzed using smoothness and asymmetry
measurements to further relate them to an act of
deceit (Ekman, 2003). Tian et al. (Tian et al.,
2005) considered features such as face orienta-
tion and facial expression intensity. Owayjan et
al. (Owayjan et al., 2012) extracted geometric-
based features from facial expressions, and Pfis-
ter and Pietikainen (Pfister and Pietikäinen, 2012)
developed a micro-expression dataset to identify
expressions that are clues for deception. Recently,
features from different modalities were integrated
in order to find a combination of multimodal fea-
tures with superior performance (Burgoon et al.,
2009; Jensen et al., 2010). A multimodal decep-
tion dataset consisting of linguistic, thermal, and
physiological features was introduced in (Pérez-
Rosas et al., 2014), which was then used to de-
velop a multimodal deception detection system
(Abouelenien et al., 2014). An extensive review

of approaches for evaluating human credibility us-
ing physiological, visual, acoustic, and linguistic
features is available in (Nunamaker et al., 2012).

7 Conclusions

In this paper we presented a study of multimodal
deception detection using real-life occurrences of
deceit. We introduced a novel dataset covering
recordings from public real trials and street inter-
views, and used this dataset to perform both qual-
itative and quantitative experiments. Our analy-
sis of nonverbal behaviors occurring in deceptive
and truthful videos brought insight into the ges-
tures that play a role in deception. We also built
classifiers relying on individual or combined sets
of verbal and nonverbal features, and showed that
we can achieve accuracies in the range of 77-82%.

Additional analyses showed the role played by
the various feature sets used in the experiments,
and the importance of the domain. To place our re-
sults in perspective and better understand the dif-
ficulty of the task, we performed a study of hu-
man ability to detect deception, which revealed
high disagreement among the annotators. Our au-
tomatic system outperforms the human detection
of deceit by 6-15%.

To our knowledge this is the first work to auto-
matically detect instances of deceit using both ver-
bal and nonverbal features extracted from real de-
ception data. In order to develop a fully automated
deception deception system, our future work will
address the use of automatic gesture and facial ex-
pression identification and automated speech tran-
scription. Our goal is to move forward towards a
real-time deception detection system.

The dataset introduced in this paper is publicly
available from http://lit.eecs.umich.edu.
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Verónica Pérez-Rosas, Rada Mihalcea, Alexis Narvaez,
and Mihai Burzo. 2014. A multimodal dataset for
deception detection. In Proceedings of the Ninth In-
ternational Conference on Language Resources and
Evaluation (LREC-2014), Reykjavik, Iceland, May
26-31, 2014., pages 3118–3122.

Tomas Pfister and Matti Pietikäinen. 2012. Electronic
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Abstract 

In a typical social media content analysis 
task, the user is interested in analyzing 
posts of a particular topic. Identifying 
such posts is often formulated as a classi-
fication problem. However, this problem 
is challenging. One key issue is covariate 
shift. That is, the training data is not fully 
representative of the test data. We ob-
served that the covariate shift mainly oc-
curs in the negative data because topics 
discussed in social media are highly di-
verse and numerous, but the user-labeled 
negative training data may cover only a 
small number of topics. This paper pro-
poses a novel technique to solve the 
problem. The key novelty of the tech-
nique is the transformation of document 
representation from the traditional n-
gram feature space to a center-based 
similarity (CBS) space. In the CBS 
space, the covariate shift problem is sig-
nificantly mitigated, which enables us to 
build much better classifiers. Experiment 
results show that the proposed approach 
markedly improves classification. 

1 Introduction 

Applications using social media data, such as 
reviews, discussion posts, and (micro) blogs are 
becoming increasingly popular. We observed 
from our collaborations with social science and 
health science researchers that in a typical appli-
cation, the researcher first need to obtain a set of 
posts of a particular topic that he/she wants to 
study, e.g., a political issue. Keyword search is 
often used as the first step. However, that is not 
sufficient due to low precision and low recall. A 
post containing the keyword “politics” may not 
be a political post while a post that does not con-
tain the keyword may be a political post. Thus, 

text classification is needed to make more so-
phisticated decisions to improve accuracy.  

For classification, the user first manually la-
bels a set of relevant posts (positive data) about 
the political issue and irrelevant posts (negative 
data) not about the political issue and then builds 
a classifier by running a learning algorithm, e.g. 
SVM or naïve Bayes. However, the resulting 
classifier may not be satisfactory. There may be 
many reasons. One key reason we observed is 
that the labeled negative training data is not fully 
representative of the negative test data.  

Let the user-interested topic be P (positive), 
and the set of all other irrelevant topics discussed 
in a social media source be T = {T1, T2, …, Tn}, 
which forms the negative data. n is usually large. 
However, due to the labor-intensive effort of 
manual labeling, the user can label only a certain 
number of training posts. Then the labeled nega-
tive training posts may cover only a small num-
ber of irrelevant topics S of T (S ⊆ T) as nega-
tive. Further, due to the highly dynamic nature of 
social media, it is probably impossible to label 
all possible negative topics. In testing, when 
posts of other negative topics in T−S show up, 
their classification can be unpredictable. For ex-
ample, in an application, the training data has no 
negative examples about sports. However, in 
testing, some sports posts show up. These unex-
pected sports posts may be classified arbitrarily, 
which results in low classification accuracy. In 
this paper, we aim to solve this problem. 

In machine learning, this problem is called 
covariate shift, a type of sample selection bias. 
In classic machine learning, it is assumed that the 
training and testing data are drawn from the same 
distribution. However, this assumption may not 
hold in practice such as in our case above, i.e., 
the training and the test distributions are different 
(Heckman 1979; Shimodaira 2000; Zadrozny 
2004; Huang et al. 2007; Sugiyama et al. 2008; 
Bickel et al. 2009). In general, the sample selec-
tion bias problem is not solvable because the two 
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distributions can be arbitrarily far apart from 
each other. Various assumptions were made to 
solve special cases of the problem. One main 
assumption was that the conditional distribution 
of the class given a data instance is the same in 
the training and test data sets (Shimodaira 2000; 
Huang et al. 2007; Bickel et al. 2009). This gives 
the covariate shift problem.  

In this paper, we focus on a special case of the 
covariate shift problem. We assume that the co-
variate shift problem occurs mainly in the nega-
tive training and test data, and no or minimum 
covariate shift exists in the positive training and 
test data. This assumption is reasonable because 
the user knows the type of posts/documents that 
s/he is looking for and can label many of them.  

Following the notations in (Bickel et al. 
2009), our special case of the covariate shift 
problem can be stated formally as follows: let the 
set of training examples be {(x1, y1), (x2, y2), …, 
(xk, yk)}, where xi is the data/feature vector and yi 
is the class label of xi. Let the set of test cases be 
{xk+1, xk+2, …, xn}, which have no class labels. 
Since we are interested in binary classification, yi 
is either 1 (positive class) or -1 (negative class). 
The labeled training data and the unseen test data 
have the same target conditional distribution 
p(y|x) and the marginal distributions of the posi-
tive data in both the training and testing are also 
the same. But the marginal distributions of the 
negative data in the training and testing are dif-
ferent, i.e., 𝑝!(𝐱!) ≠ 𝑝!(𝐱!), where L, T, and – 
represent the labeled training data, test data, and 
the negative class respectively.  

Existing methods for addressing the covariate 
shift problem basically work as follows (see the 
Related Work section). First, they estimate the 
bias of the training data based on the given test 
data using some statistical techniques. Then, a 
classifier is trained on a weighted version of the 
original training set based on the estimated bias. 
Requiring the test data to be available in training 
is, however, a major weakness. In the social me-
dia post classification setting, the system needs 
to constantly classify the incoming data. It is in-
feasible to perform training constantly.  

In this paper, we propose a novel learning 
technique that does not need the test data to be 
available during training due to the specific na-
ture of our problem, i.e., the positive training 
data does not have the covariate shift issue.  

One obvious solution to this problem is one-
class classification (Schölkopf et al. 1999; Tax 
and Duin, 1999a), i.e., one-class SVM. We simp-
ly discard the negative training posts/documents 

completely because they have the covariate shift 
problem. Although this is a valid solution, as we 
will see in the evaluation section, the models 
built based on one-class SVM perform poorly. 
Although it is conceivable to use an unsuper-
vised method such clustering, SVD (Alter et al., 
2000) or LDA (Blei et al., 2003), supervised 
learning usually give much higher accuracy.  

In our proposed method, instead of perform-
ing supervised learning in the original document 
space based on n-grams, we perform learning in 
a similarity space. Thus, the key novelty of the 
method is the transformation from the original 
document space (DS) to a center-based similarity 
space (CBS). In the new space, the covariate 
shift problem is significantly mitigated, which 
enables us to build more accurate classifiers. The 
reason for this is that in CBS based learning the 
vectors in the similarity space enable SVM 
(which is the learning algorithm that we use) to 
find a good boundary of the positive class data 
based on similarity and to separate it from all 
possible negative class data, including those neg-
ative data that is not represented in training. We 
will explain this in greater detail in Section 3.5 
after we present the proposed algorithm, which 
we call CBS-L (for CBS Learning).   

This paper makes three contributions: First, it 
formulates a special case of the covariate shift 
problem. This case occurs frequently in social 
media data classification as we discussed above. 
Second, it proposes a novel CBS space based 
learning method, CBS-L, which avoids the co-
variate shift problem to a large extent because it 
is able to find a good similarity boundary of the 
positive data. Third, it experimentally demon-
strates the effectiveness of the proposed method.  

2 Related Work 

Traditional supervised learning assumes that the 
training and test examples are drawn from the 
same distribution. However, this assumption can 
be violated in many applications. This is espe-
cially the case for social media data because of 
the high topic diversity and constant changes of 
topics. This problem is known as covariate shift, 
which is a form of sample selection bias.  

Sample selection bias was first introduced in 
econometrics by Heckman (1979). It came into 
the field of machine learning through the work of 
Zadrozny (2004). The main approach in machine 
learning is to first estimate the distribution bias 
of the training data based on the test data, and 
then learn using weighted training examples to 
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compensate for the bias (Bickel et al. 2009).  
For example, Shimodaira (2000) and Sugiya-

ma and Muller (2005) proposed to estimate the 
training and test data distributions using kernel 
density estimation. The estimated density ratio is 
then used to generate weighted training exam-
ples. Dudik et al. (2005) and Bickel and Scheffer 
(2007) used maximum entropy density estima-
tion, while Huang et al. (2007) proposed kernel 
mean matching. Sugiyama et al. (2008) and Tsu-
boi et al. (2008) estimated the weights for the 
training instances by minimizing the Kullback-
Leibler divergence between the test and the 
weighted training distributions. Bickel et al. 
(2009) proposed an integrated model. As we dis-
cussed in the introduction, the need for the test 
data at the training time is a major weakness for 
social media data classification. The proposed 
technique CBS-L doesn’t have this restriction.  

As mentioned in the introduction, one-class 
classification is a suitable approach to solve the 
problem. Tax and Duin (1999a and 1999b) pro-
posed a model for one-class classification called 
Support Vector Data Description (SVDD) to 
seek a hyper-sphere around the positive data that 
encompasses points in the data with the mini-
mum radius. In order to balance between model 
over-fitting and under-fitting, Tax and Duin 
(2001) proposed a method that tries to use artifi-
cially generated outliers to optimize the model 
parameters. However, their experiments suggest 
that the procedure to generate artificial outliers in 
a hyper-sphere is only feasible for up to 30 di-
mensions. Also, as pointed out by (Khan and 
Madden, 2010; 2014), one drawback of their 
methods is that they often require a large dataset 
and the methods become very inefficient in high 
dimensional feature spaces. Since text documents 
are usually represented in a much higher dimen-
sional space, these methods are less suitable for 
text applications. Manevitz and Yousef (2001) 
performed one-class text classification using 
one-class SVM as proposed by Schölkopf et al. 
(1999). The method is based on identifying outli-
er data that are representative of the second class. 
Instead of assuming the origin is the only mem-
ber of the outlier class, it assumes those data 
points with few non-zero entries are also outliers. 
However, as reported in the paper, their methods 
produce quite weak results (Schölkopf et al., 
1999; 2000). Li et al. (2003) presented an im-
proved version of one-class SVM for detecting 
anomalies. Their idea is to consider all data 
points that are close to the origin as outliers. 
Both (Yang and Madden, 2007) and (Tian and 

Gu, 2010) tried to refine Schölkopf’s models by 
searching optimal parameters. Luo et al., (2007) 
proposed a cost-sensitive one-class SVM algo-
rithm for intrusion detection. We will see in the 
experiment section that one-class classification is 
far inferior to our proposed CBS-L method.  

In this work, we propose to represent docu-
ments in the similarity space and thus it is related 
to works on document representation. Alternative 
document representations have been proposed in 
the past and have been shown to perform well in 
many applications (Radev et al., 2000; He et al., 
2004; Lebanon 2006; Ranzato and Szummer, 
2008, Wang and Domeniconi, 2008). In (Radev 
et al., 2000), although the centroid sen-
tence/document vector was computed, it was not 
transformed to a similarity space vector represen-
tation. Wang and Domeniconi (2008) proposed 
to use external knowledge to build semantic ker-
nels for documents in order to improve text clas-
sification. In our problem, the main difficulty is 
that testing negative documents cannot be well 
covered in training. It is not clear how the en-
riched document representations could help solve 
our problem. 

Our work is also related to learning from posi-
tive and unlabeled examples, also known as PU 
learning (Denis, 1998; Yu et al. 2002; Liu et al. 
2003; Lee and Liu, 2003; Elkan and Noto, 2008; 
Li et al. 2010). In this learning model, there is a 
set of labeled positive training data and a set of 
unlabeled data, but there is no labeled negative 
training data. Clearly, their setting is different 
from ours too. There is also no guarantee that the 
unlabeled data has the same distribution as the 
future test data. 

Our problem is also very different from do-
main adaption as we work in the same domain. 
Due to the use of document similarity, our meth-
od has some resemblance to learning to rank (Li, 
2011; Liu, 2011). However, CBS-L is very dif-
ferent because we perform supervised classifica-
tion. Our similarity is also center-based rather 
than pair-wise document similarity, which is also 
used in (Qian and Liu 2013) for spam detection.  

3 The Proposed CBS Learning 

We now formulate the proposed supervised 
learning in the CBS space, called CSB-L. The 
key difference between CBS learning and the 
classic document space (DS) learning is in the 
document representation, which applies to both 
training and testing documents or posts. In the 
next subsection, we first give the intuitive idea 
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and a simple example. The detailed algorithm 
follows. In Section 3.5, we explain why CBS-L 
is better than DS-based learning when unex-
pected negative data appear in the test set.  

3.1 Basic Idea  

In the proposed CBS-L formulation, each docu-
ment d is still represented as a feature vector, but 
the vector no longer represents the document d 
itself based on n-grams. Instead, it represents a 
set of similarity values between document d and 
the center of the positive documents. Specifically, 
the learning consists of the following steps:  

1. Each document d (in the positive or negative 
class) is first represented with a set of docu-
ment representations, i.e., document space 
vectors (ds-vectors) based on the document it-
self as in traditional text classification. Each 
vector denotes one representation of the doc-
ument. For example, one representation may 
be based on only unigrams, and another rep-
resentation may be based on only bigrams. 
For simplicity, we use only one representa-
tion/vector x (e.g., unigrams) here to represent 
d. Note that we use bold lower case letters to 
represent vectors. Each feature in a ds-vector 
is called a ds-feature. 

2. A center vector c is then computed for each 
document representation for the positive class 
documents using the ds-vectors of all positive 
and negative documents of that representation. 
c is thus also a ds-vector.  

3. Each document d in the positive and negative 
class is then transformed to a center-based 
similarity space vector sd (called a cbs-vector). 
sd consists of a set of similarity values be-
tween document d’s set of ds-vectors, i.e., {x} 
in our case here (since we use only one repre-
sentation), and the set of corresponding posi-
tive class center vectors, i.e., {c} in our case: 

sd =Sim({x}, {c}), 

where Sim is a similarity function consisting 
of a set of similarity measures. Each feature in 
sd is called an cbs-feature. sd still has the same 
original class label as d. Let us see an actual 
example. We assume that our single center 
vector for the positive class has been comput-
ed (see Section 3.2) based on the unigram rep-
resentation of documents:  
 c: 1:1 2:1 6:2 
where y:z represents a ds-feature y (e.g., a 
word) and its feature value (e.g., term fre-
quency, tf). We want to transform the follow-

ing positive document d1 and negative docu-
ment d2 (ds-vectors) to their cbs-vectors (the 
first number is the class):  

 d1:  1 1:2 2:1 3:1  d2:  -1 2:2 3:1 5:2   
If we use cosine as the first similarity measure 
in Sim, we can generate a cbs-feature 1:0.50 
for d1 (as cosine(c, d1) = 0.50) and a cbs-
feature 1:0.27 for d2 (as cosine(c, d2) = 0.27). 
If we have more similarity measures, more 
cbs-features will be produced. The resulting 
cbs-vectors for d1 and d2 with their class la-
bels, 1 and -1, are:  

 d1: 1 1:0.50 … d2:  -1  1:0.27 … 
4. We now have a binary classification problem 

in the CBS space. This step simply runs a 
classification algorithm, e.g., SVM, to build a 
classifier. We use SVM in our work.  

3.2 CBS Based Learning  

We are given a binary text classification problem. 
Let D = {(d1, y1), (d2, y2), …, (dn, yn)} be the set 
of training examples, where di is a document and 
yi  ∈ {1, -1} is its class label. Traditional classi-
fication directly uses D to build a binary classifi-
er. However, in the CBS space, we learn a classi-
fier that returns 1 for documents that are “close 
enough” to the center of the training positive 
documents and -1 for documents elsewhere.  

We now detail the proposed technique. As we 
mentioned above, instead of using one single ds-
vector to represent a document di ∈D, we use a 
set Rd of p ds-vectors Rd = {𝐱!! , 𝐱!! , …, 𝐱!!}. 
Each vector 𝐱!! denotes one document space rep-
resentation of the document, e.g., unigram repre-
sentation. We then compute the center of positive 
training documents, which is represented as a set 
of 𝑝 centroids C = {c1, c2, …, cp}, each of which 
corresponds to one document space representa-
tion in Rd. The way to compute each center ci is 
similar to that in the Rocchio relevance feedback 
method in information retrieval (Rocchio, 1971; 
Manning et al. 2008), which uses the correspond-
ing ds-vectors of all training positive and nega-
tive documents. The detail will be given below. 
Based on Rd for document d and the center C, we 
can transform a document d from its document 
space representations Rd to one center-based sim-
ilarity vector cbs-v by applying a similarity func-
tion 𝑆𝑖𝑚 on each element 𝐱!! of Rd and its corre-
sponding center ci. We now detail document 
transformation. 

Training document transformation: The train-
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ing data transformation from ds-vectors to cbs-
vectors performs the following two steps: 

Step 1: Compute the set C of centroids for the 
positive class. Each centroid vector ci∈C is 
for one document representation 𝐱!!. And it is 
computed by applying the Rocchio method to 
the corresponding ds-vectors of all documents 
in both positive and negative training data.  

𝐜! =
𝛼
𝐷!

𝐱!!

𝐱!!𝐝𝐬!
!∈!!

                         

          −
𝛽

|𝐷 − 𝐷!|
𝐱!!

𝐱!!𝐱!
!∈!!!!

 

where 𝐷! is the set of documents in the posi-
tive class and |.| is the size function. 𝛼 and 𝛽 
are parameters, which are usually set empiri-
cally. It is reported that using tf-idf representa-
tion, 𝛼 = 16  and 𝛽 = 4  usually work quite 
well (Buckley et al. 1994). The subtraction is 
used to reduce the influence of those terms 
that are not discriminative (i.e., terms appear-
ing in both positive and negative documents). 

Step 2: Compute the similarity vector cbs-vd 
(center-based similarity space vector) for each 
document d ∈D based on its set of document 
space vectors Rd and the corresponding cen-
troids C of the positive documents.  

cbs-vd = Sim(Rd, C) 

Sim has a set of similarity measures, and each 
measure mj is applied to p document represen-
tations 𝐱!! in Rd and their corresponding cen-
ters 𝐜! in C to generate p similarity features 
(cbs-features) in cbs-vd. We discuss the ds-
features and similarity measures for compu-
ting cbs-features in the next two subsections.    

Complexity: The data transformation step is 
clearly linear in the number of examples, i.e., n. 
Test document transformation: For each test 
document d, we can use step 2 above to produce 
a cbs-vector for d.  

3.3 DS-Features  

In order to compute cbs-features (center-based 
similarity space features) for each document, we 
need to have the ds-features of a document and 
the center of the positive class. We discuss ds-
features first, which are extracted from each doc-
ument itself.  

Since our task is document classification, we 
use the popular unigram, bigram and trigram 

with tf-idf weighting as the ds-features for a doc-
ument. These three types of ds-features also give 
us three different document representations.  

3.4 CBS-Features  

Ds-vectors are transformed into cbs-vectors by 
applying a set of similarity measures on each 
document space vector and the corresponding 
center vector. In this work, we employed five 
similarity measures from (Cha, 2007) to gauge 
the similarity of two vectors. Based on these 
measures, we produce 15 CBS features using the 
unigram, bigram, and trigrams representations of 
each document. The similarity measures we used 
are listed in Table 1, where P and Q are two vec-
tors and d represents the dimension of P and Q.  
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𝑃!!!
!!! 𝑄!!!

!!!
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𝑠!"# =
𝑃!𝑄!!

!!!

𝑃!!!
!!! + 𝑄!!!

!!! − 𝑃!𝑄!!
!!!

 

Table 1: similarity measures for CBS-Features 

3.5 Why Does CBS Space Learning Work? 

We now try to explain why CBS learning (CBS-
L) can deal with the covariate shift problem, and 
thus can perform better than document space 
learning. The reason is that due to the use of sim-
ilarity features, CBS-L is essentially trying to 
generate a boundary for the positive training data 
because similarity is not directional and thus co-
vers all directions in a spherical shape in the 
space. In classification, the negative data from 
anywhere or direction outside the spherical shape 
can be detected. The covariate shift problem will 
not affect the classification much. Many types of 
documents that are not represented in the nega-
tive training data will still be detected due to 
their low similarity. For example, in Figure 1, we 
want to build a SVM classifier to separate posi-
tive data represented as black squares and nega-
tive data represented as empty circles. The con-
structed CBS-L classifier would look like a circle 
(in dashed line) in the original document space 
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covering the positive data. The size of this 
(boundary) circle depends on the separation mar-
gin between the two classes. Although data 
points represented by empty triangles are not 
represented in the negative training data (which 
has only empty circles) in building the classifier, 
our classifier is able to identify them as not posi-
tive at the test time because they are outside the 
boundary circle.  

 
Figure 1: CBS learning vs. DS learning. 

If we had used the document space (DS) features 
to build a SVM classifier, the classifier would be 
a line (see Figure 1) between the positive data 
(black squares) and the negative data (empty cir-
cles). This line unfortunately will not be able to 
identify data points represented as empty trian-
gles as not positive because the triangles actually 
lie on the positive side and would be classified as 
positive, which is clearly wrong. 

4 Experiments 

In this section, we evaluate the proposed learning 
in the center-based similarity space (CBS-L) and 
compare it with baselines.  

4.1 Experimental Dataset 

As stated at the beginning of the paper, this work 
was motivated by the real-life problem of identi-
fying the right social media posts or documents 
for specific applications. For an effective evalua-
tion, we need a large number of classes in the 
data to reflect the topic richness and diversity of 
the social media. The whole data also has to be 
labeled for evaluation. Using online reviews of a 
large number of products is a natural choice be-
cause there are many types of products and ser-
vices and there is no need to do manual labeling, 
which is very labor intensive, time consuming, 
and error prone. We obtained the Amazon review 
database from the authors of (Jindal and Liu 
2008), and constructed a dataset with reviews of 
50 types of products, which we also call 50 top-
ics. Each topic (a type of products) have 1000 
reviews. For each topic, we randomly sampled 
700 reviews/documents for training and the re-
maining 300 reviews for testing. Note that alt-
hough we use this product review collection, we 

do not perform sentiment classification. Instead, 
we still perform the traditional topic based classi-
fication. That is, given a review, the system de-
cides what type of product the review is about. In 
our experiments, we use every topic as the posi-
tive class. This gives us 50 classification results.  

4.2 Baselines 

We use three baselines in our evaluation.  
Document space one-class SVM (ds-osvm): As 
we discussed earlier, due to the covariate shift 
problem in the negative training data, one solu-
tion is to drop the negative training data com-
pletely to build a one-class classifier. One-class 
SVM is the state-of-the-art one-class classifica-
tion algorithm. We apply one-class SVM to the 
documents in the document space as one of the 
baselines. One-class SVM was first introduced 
by Schölkopf et al. (1999; 2000), which is based 
on the assumption that the origin is the only 
member of the second class. The data is first 
mapped into a transformed feature space via a 
kernel and then standard two-class SVM is em-
ployed to construct a hyper-plane that separates 
the data and the original with maximum margin. 
As mentioned earlier, there is also the support 
vector data description (SVDD) formulation for 
one-class classification proposed by Tax and 
Duin (1999a; 1999b). SVDD seeks to distinguish 
the positive class from all other possible data in 
space. It basically finds a hyper-sphere around 
the positive class data that contains almost all 
points in the data set with the minimum radius. It 
has been shown that the use of Gaussian kernel 
makes SVDD and One-class SVM equivalent, 
and the results reported in (Khan and Madden, 
2014) demonstrate that SVDD and One-class 
SVM are comparable when the Gaussian kernel 
is applied. Thus in this paper, we just use one-
class SVM, which is one of the SVM-based clas-
sification tools in the LIBSVM1 library (version 
3.20) (Chang and Lin, 2011). 

Center-based similarity space one-class SVM 
(cbs-osvm): Instead of applying one-class SVM 
to documents in the original document space, this 
baseline applies it to the CBS space after the 
documents are transformed to CBS vectors.  

SVM: This baseline is the SVM applied in the 
original document space. Although in this case, 
there is covariate shift problem, we want to see 
how serious the problem might be, and how the 
proposed CBS-L technique can deal with the 
                                                
1 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/ 
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problem. We use the SVM tool in LIBSVM.  

4.3 Kernels and Parameters 

As Khan and Madden (2014) pointed out that 
one-class SVM performs the best when Gaussian 
kernel is used, we use Gaussian kernel as well. 
Manevitz and Yousef (2001) applied one-class 
SVM to text classification, and the authors re-
ported that one-class SVM works the best with 
binary feature weighting scheme compared to tf 
or tf-idf weighting schemes. Also, they reported 
that a small number of features (10) with highest 
document frequency performed the best with 
Gaussian kernel. We also use binary representa-
tion, but found that 10 features are already too 
many in our case. In fact, 5 features give the best 
results. Using a small number of features is intui-
tive because to find the boundary of a very high 
dimensional space is very difficult. We also tried 
more features but they were poorer.  

For SVM classification in the document space, 
we use the linear kernel as it has been shown by 
many researchers that the linear kernel performs 
the best (e.g., Joachims, 1998; Colas and Brazdil, 
2006). We experimented with RBF kernels ex-
tensively, but they did not perform well with the 
traditional document representation. The term 
weighting scheme is tf-idf (Colas and Brazdil, 
2006) with no feature selection.  

For our proposed method CBS-L, we use tf-idf 

values of unigram, bigram and trigram to repre-
sent a document in three ways in the document 
space. As mentioned earlier, five document simi-
larity functions are used to transform document 
space vectors to CBS space vectors. And in order 
to filter out less useful features for the center 
vector of the positive class, we performed feature 
selection in the document space using the classic 
information gain method (Yang and Pedersen, 
1997) to empirically choose the most effective 
100 features for the positive class.  

For all the kernels, we use the default parame-
ter settings in the LIBSVM systems. We tried to 
tune the parameters, but did not get better results.  

4.4 Results 

We now present the experiment results. As men-
tioned above, we treat each topic as the positive 
class. This gives 50 tests. To test the effect of 
covariate shift, we also vary the number of topics 
in the negative class. We used 10, 20, 30, and 40 
topics in the training negative class. The test set 
always has 49 topics of negative data.  

For each setting, we give three sets of results 
for the positive class, which is the target topic 
data that we are interested in obtaining through 
classification. Each set of results includes the 
standard measures of precision, recall, and F1-
score for the positive class. The three sets are: 
1. In-training: In this case, the test negative data 

 In-training Out-of-training Combined 
 precision recall F1-score precision recall F1-score precision recall F1-score 
 10 topics are used in the training negative class 

ds-osvm   0.154 0.498 0.205 
cbs-osvm 0.664 0.453 0.514 0.357 0.442 0.339 0.343 0.452 0.330 

SVM 0.678 0.811 0.736 0.176 0.803 0.282 0.160 0.819 0.262 
CBS-L 0.796 0.766 0.776 0.384 0.768 0.491 0.368 0.754 0.481 

 20 topics are used in the training negative class 
ds-osvm   0.154 0.498 0.205 
cbs-osvm 0.561 0.477 0.466 0.430 0.445 0.390 0.364 0.457 0.344 

SVM 0.566 0.753 0.643 0.304 0.753 0.422 0.254 0.758 0.371 
CBS-L 0.761 0.700 0.723 0.557 0.702 0.608 0.485 0.693 0.558 

 30 topics are used in the training negative class 
ds-osvm   0.154 0.498 0.205 
cbs-osvm 0.451 0.491 0.393 0.488 0.524 0.407 0.378 0.487 0.355 

SVM 0.508 0.721 0.591 0.450 0.722 0.547 0.323 0.726 0.439 
CBS-L 0.723 0.650 0.678 0.721 0.644 0.667 0.569 0.649 0.598 

 40 topics are used in the training negative class 
ds-osvm   0.154 0.498 0.205 
cbs-osvm 0.423 0.482 0.379 0.590 0.511 0.444 0.372 0.486 0.347 

SVM 0.456 0.689 0.544 0.641 0.685 0.658 0.374 0.695 0.481 
CBS-L 0.697 0.613 0.644 0.848 0.616 0.699 0.639 0.613 0.619 

Table 2: Summary results of the 50 topics 
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contains only data from those topics used in 
training. This is the classical supervised learn-
ing setting where the training and test data are 
randomly drawn from the same distribution.   

2. Not-in-training: In this case, the test negative 
set contains only data from the other topics 
not used in training. The classical setting of 
supervised learning does not deal with this 
problem. This represents covariate shift.  

3. Combined: In this case, the test data contains 
both in-training and not-in-training negative 
topics. Due to the use of not-in-training test 
data, this is also not the classical setting.  

Due to a large number of experiment results, we 
cannot report all the details. Table 2 summarizes 
the results. Notice that for ds-osvm, it does not 
make sense to have in-training and not-in-
training results because it does not use any train-
ing negative data. Thus, there is only one set of 
results for “Combined,” which is duplicated in 
the table for easy comparison. However, note 
that cbs-osvm uses negative data for training in 
order to compute the center for the positive class.  

From the table, we can make the following 
observations (since there are many numbers, we 
only focus on F1-scores).  
1. The proposed CBS-L method performs mark-

edly better than all baselines. For the results 
of in-training, not-in-training, and combined, 
CBS-L is consistently better in all cases than 
all baselines. Even for in-training, CBS-L per-
form better than SVM. This clearly shows the 
superiority of the proposed CBS-L method. 

2. ds-osvm performs poorly. cbs-osvm is much 
better because it uses the negative data in fea-
ture selection and center computation.  

3. SVM in the document space performed poorly 
(Combined) when only a small number of 
negative topics are used in training. It gets 
better than both one-class SVM baselines 
when more negative topics are used in train-
ing (see the reason in the next point).  

4. Finally, we can also see that with the number 
of training negative topics increases, the re-
sults of the combined case of both SVM and 
CBS-L improve. This is expected because 
with the increased number of negative topics 
for training, the number of not-in-training 
negative topics for testing decreases and the 
covariate shift problem gets smaller. We can 
also see that cbs-osvm, SVM and CBS-L’s 
F1-scores for not-in-training improve with the 
increased training negative topics due to the 
same reason. However, their F1-scores drop 
for in-training because with more negative 

topic ds-osvm cbs-osvm SVM CBS-L 

Amplifier 0.125 0.360 0.406 0.597 
Automotive 0.041 0.031 0.240 0.383 

Battery 0.266 0.425 0.433 0.656 
Beauty 0.079 0.401 0.470 0.618 
Cable 0.131 0.028 0.231 0.500 

Camera 0.376 0.361 0.433 0.523 
CD Player 0.154 0.274 0.344 0.585 
Clothing 0.046 0.234 0.292 0.486 

Computer 0.117 0.225 0.328 0.455 
Conditioner 0.075 0.195 0.381 0.519 

Fan 0.408 0.581 0.581 0.724 
Flashlight 0.273 0.487 0.528 0.744 

Graphics Card 0.419 0.473 0.552 0.631 
Headphone 0.298 0.338 0.432 0.533 

Home  
Improvement 0.039 0.032 0.178 0.233 

Jewelry 0.362 0.579 0.632 0.800 
Kindle 0.107 0.387 0.416 0.685 
Kitchen 0.042 0.118 0.197 0.261 
Lamp 0.091 0.249 0.374 0.487 

Luggage 0.105 0.482 0.506 0.482 
Magazine  

Subscriptions 0.406 0.597 0.796 0.858 

Mattress 0.435 0.562 0.603 0.702 
Memory Card 0.134 0.256 0.367 0.508 
Microphone 0.103 0.223 0.25 0.417 
Microwave 0.378 0.577 0.637 0.735 

Monitor 0.136 0.345 0.312 0.513 
Mouse 0.493 0.580 0.552 0.779 

Movies TV 0.146 0.507 0.641 0.682 
Musical  

Instruments 0.073 0.241 0.446 0.575 

Network  
Adapter 0.164 0.483 0.481 0.596 

Office Products 0.040 0.193 0.327 0.346 
Patio Lawn  

Garden 0.043 0.226 0.295 0.483 

Pet Supplies 0.098 0.447 0.524 0.584 
Pillow 0.491 0.640 0.781 0.888 
Printer 0.549 0.557 0.624 0.859 

Projector 0.230 0.459 0.482 0.805 
Rice Cooker 0.571 0.616 0.692 0.942 

Shoes 0.224 0.524 0.585 0.793 
Speaker 0.241 0.251 0.253 0.410 

Subwoofer 0.147 0.268 0.346 0.401 
Table Chair 0.141 0.496 0.571 0.703 

Tablet 0.069 0.234 0.142 0.424 
Telephone 0.099 0.034 0.144 0.167 

Tent 0.289 0.465 0.428 0.764 
Toys 0.088 0.029 0.331 0.449 

Video Games 0.424 0.387 0.508 0.705 
Vitamin  

Supplement 0.052 0.026 0.341 0.527 

Wall Clock 0.401 0.582 0.607 0.777 
Watch 0.362 0.553 0.543 0.775 

Webcam 0.155 0.304 0.372 0.645 

Average 0.205 0.355 0.439 0.598 

Table 3: F1-score for each positive topic or class 
in the combined case 
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topics, the data becomes more skewed, which 
hurts in-training classification.   

To give a flavor of the detailed results for each 
topic (product), we give the full results for one 
setting with 30 randomly selected topics as the 
training negative data (Table 3). The results in 
the table are F1-scores of the combined case.   

5 Conclusion 

The ability to get relevant posts accurately about 
a topic from social media is a challenging prob-
lem. This paper attempted to solve this problem 
by identifying and dealing with the technical is-
sue of covariate shift. The key idea of our tech-
nique is to transform document representation 
from the traditional n-gram feature space to a 
similarity based space. Our experimental results 
show that the proposed method CBS-L outper-
formed strong baselines by large margins. 
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Abstract

With the exponential growth of scholarly
data during the past few years, effective
methods for topic classification are greatly
needed. Current approaches usually re-
quire large amounts of expensive labeled
data in order to make accurate predictions.
In this paper, we posit that, in addition to
a research article’s textual content, its ci-
tation network also contains valuable in-
formation. We describe a co-training ap-
proach that uses the text and citation infor-
mation of a research article as two differ-
ent views to predict the topic of an article.
We show that this method improves sig-
nificantly over the individual classifiers,
while also bringing a substantial reduction
in the amount of labeled data required for
training accurate classifiers.

1 Introduction

As science advances, scientists around the world
continue to produce a large number of research ar-
ticles, which provide the technological basis for
worldwide dissemination of scientific discoveries.
Online digital libraries such as Google Scholar,
CiteSeerx, and PubMed store and index millions
of such research articles and their metadata, and
make it easier for researchers to search for scien-
tific information. These libraries require effective
and efficient methods for topic classification of re-
search articles in order to facilitate the retrieval of
content that is tailored to the interests of specific
individuals or groups. Supervised approaches for
topic classification of research articles have been
developed, which generally use either the content
of the articles (Caragea et al., 2011), or take into
account the citation relation between research ar-
ticles (Lu and Getoor, 2003).

To be successful, these supervised approaches
assume the availability of large amounts of labeled

data, which require intensive human labeling ef-
fort. In this paper, we explore a semi-supervised
approach that can exploit large amounts of un-
labeled data together with small amounts of la-
beled data for accurate topic classification of re-
search articles, while minimizing the human ef-
fort required for data labeling. In the scholarly do-
main, research articles (or papers) are highly inter-
connected in giant citation networks, in which pa-
pers cite or are cited by other papers. We posit
that, in addition to a document’s textual content
and its local neighborhood in the citation network,
other information exists that has the potential to
improve topic classification. For example, in a
citation network, information flows from one pa-
per to another via the citation relation (Shi et al.,
2010). This information flow and the topical influ-
ence of one paper on another are specifically cap-
tured by means of citation contexts, i.e., short text
segments surrounding a citation’s mention.

These contexts are not arbitrary, but they of-
ten serve as brief summaries of a cited paper. We
therefore hypothesize that these micro-summaries
can be successfully used as an independent view
of a research article in a co-training framework to
reduce the amount of labeled data needed for the
task of topic classification.

The idea of using terms from citation contexts
stems from the analysis of hyperlinks and the
graph structure of the Web, which are instrumen-
tal in Web search (Manning et al., 2008). Many
search engines follow the intuition that the an-
chor text pointing to a page is a good descrip-
tor of its content, and thus anchor text terms are
used as additional index terms for a target web-
page. The use of links and anchor text was
thoroughly researched for information retrieval
(Koolen and Kamps, 2010), broadening a user’s
search (Chakrabarti et al., 1998), query refinement
(Kraft and Zien, 2004), and enriching document
representations (Metzler et al., 2009). Blum and
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Mitchell (1998) introduced the co-training algo-
rithm using hyperlinks and anchor text as a sec-
ond, independent view of the data for classifying
webpages, in addition to a webpage content.

Contributions and Organization. We present
a co-training approach to topic classification of re-
search papers that effectively incorporates infor-
mation from a citation network, in addition to the
information contained in each paper. The result of
this classification task will aid indexing of docu-
ments in digital libraries, and hence, will lead to
improved organization, search, retrieval, and rec-
ommendation of scientific documents. Our contri-
butions are as follows:

• We propose the use of citation contexts as
an additional view in a co-training approach,
which results in high accuracy classifiers. To
our knowledge, this has not been addressed
in the literature.
• We show experimentally that our co-training

classifiers significantly outperform: (1) su-
pervised classifiers trained using either con-
tent or citation contexts independently, for
the same fraction of labeled data; and (2) sev-
eral other semi-supervised classifiers, trained
on the same fractions of labeled and unla-
beled data as co-training.
• We also show that using the citation context

information available in citation networks,
the human effort involved in data labeling for
training accurate classifiers can be largely re-
duced. Our co-training classifiers trained on a
very small sample of labeled data and a large
sample of unlabeled data yield accurate topic
classification of research articles.

The rest of the paper is organized as follows.
In Section 2, we discuss related work. Section 3
describes our data and its characteristics, followed
by the presentation of our proposed co-training ap-
proach in Section 4. We present experiments and
results in Section 5, and conclude the paper and
present future directions of our work in Section 6.

2 Related Work

We discuss here the most relevant works to our
study. A large variety of methods have been pro-
posed in the literature with regard to automatic
text classification and topic prediction. Differ-
ent classifiers have been applied on the Vector
Space Model (VSM), in which a document is rep-
resented as a vector of words or phrases asso-

ciated with their TF-IDF score, i.e. term fre-
quency - inverse document frequency (Zhang et al.,
2011; Kansheng et al., 2011). VSM is the most
used method due to its simple, efficient and easy
to understand implementation. Another widely
used model is the Latent Semantic Indexing (LSI)
where co-occurrences are analyzed to find seman-
tic relationships between words or phrases (Zhang
et al., 2011; Ganiz et al., 2011). Moreover, a great
range of classifiers were used for this task, includ-
ing: Naı̈ve Bayes (Lewis and Ringuette, 1994), K-
nearest neighbors (Yang, 1999) and Support Vec-
tor Machines (Joachims, 1998). These techniques,
however, all require a large number of labeled doc-
uments in order to build accurate classifiers. In
contrast, we propose a co-training algorithm that
only requires a small amount of labeled data in or-
der to make accurate topic classification.

Semi-supervised methods essentially involve
different means of transferring labels from labeled
to unlabeled samples in the process of learning
a classifier that can generalize well on new un-
seen data. Co-training was originally introduced
in (Blum and Mitchell, 1998) where it was used
to classify web pages into academic course home
page or not. This approach has two views of the
data as follows: the content of a web page, and
the words found in the anchor text of the hyper-
links that point to the web page. Wan (2009)
used co-training for cross-lingual sentiment clas-
sification of product reviews, where English and
Chinese features were considered as two indepen-
dent views of the data. Furthermore, Gollapalli
et al. (2013) used co-training to identify authors’
homepages from the current-day university web-
sites. The paper presents novel features, extracted
from the URL of a page, that were used in con-
junction with content features, forming two com-
plementary views of the data.

Citation networks have been used before in
other problems. Caragea et al. (2014) used ci-
tation contexts to extract informative features for
keyphrase extraction. Lu and Getoor (2003) pro-
posed an approach for document classification that
used only citation links, without any textual data
from the citation contexts. Ritchie et al. (2006)
used a combination of terms from citation contexts
and existing index terms of a paper to improve in-
dexing of cited papers. Citation contexts were also
used to improve the performance of citation rec-
ommendation systems (Kataria et al., 2010) and
to study author influence in document networks
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(Kataria et al., 2011). Moreover, citation con-
texts were used for scientific paper summariza-
tion (Abu-Jbara and Radev, 2011; Qazvinian et
al., 2010; Qazvinian and Radev, 2008; Mei and
Zhai, 2008; Lehnert et al., 1990) For example,
in Qazvinian et al. (2010), a set of important
keyphrases is extracted first from the citation con-
texts in which the paper to be summarized is cited
by other papers and then the “best” subset of sen-
tences that contain such keyphrases is returned as
the summary. Mei and Zhai (2008) used informa-
tion from citation contexts to determine what sen-
tences of a paper are of high impact (as measured
by the influence of a target paper on further stud-
ies of similar or related topics). These sentences
constitute the impact-based summary of the paper.

Despite the use of citation contexts and anchor
text in many information retrieval and natural lan-
guage processing tasks, to our knowledge, we are
the first to propose the incorporation of citation
context information available in citation networks
in a co-training framework for topic classification
of research papers.

3 Data

The dataset used in our experiments is a subset
sampled from the CiteSeerx digital library1 and la-
beled by Dr. Lise Getoor’s research group at the
University of Maryland. This subset was previ-
ously used in several studies including (Lu and
Getoor, 2003) and (Kataria et al., 2010). The
dataset consists of 3186 labeled papers, with each
paper being categorized into one of six classes:
Agents, Artificial Intelligence (AI), Information
Retrieval (IR), Machine Learning (ML), Human-
Computer Interaction (HCI) and Databases (DB).
For each paper, we acquire the citation contexts
directly from CiteSeerx. A citation context is de-
fined as a window of n words surrounding a cita-
tion mention. We differentiate between cited and
citing contexts for a paper as follows: let d be a
target paper and C be a citation network such that
d ∈ C. A cited context for d is a context in which
d is cited by some paper di in C. A citing context
for d is a context in which d is citing some paper
dj in C. If a paper is cited in multiple contexts
within another paper, the contexts are aggregated
into a single context. For each paper in the dataset,
we have at least one cited or one citing context. A
summary of the dataset is provided in Table 1.

1http://citeseerx.ist.psu.edu/

Number of papers in each class
Agents AI IR ML HCI DB Total

562 239 641 569 490 685 3186
cccAvg. Cited Contexts Avg. Citing Contexts

45.59 20.77

Table 1: Dataset summary.

As expected, we have a higher number of cited
contexts than citing contexts. This is due to the
page restrictions often imposed to research articles
that can limit the number of papers each article can
cite. On the other hand, a good research paper can
accumulate hundreds of citations, and hence, cited
contexts over the years.

Context lengths. In CiteSeerx, citation con-
texts have about 50 words on each side of a ci-
tation mention. A previous study by Ritchie et al.
(2008) shows that a fixed window length of about
100 words around a citation mention is generally
effective for information retrieval tasks. For this
reason, we use the contexts provided by CiteSeerx

directly. In future, it would be interesting to study
more sophisticated approaches to identifying the
text that is relevant to a target citation (Abu-Jbara
and Radev, 2012; Teufel, 1999) and study the in-
fluence of context lengths on our task.

For all experiments, our labeled dataset is split
in train, validation and test sets. The validation
and test sets have about 200 papers each. We sam-
pled another set of papers from the labeled dataset
in order to simulate the existence of unlabeled
data, with a fixed size of around 2000 papers. The
remaining 786 papers are used as labeled training
data. Each experiment was repeated 10 times with
10 different random seeds and the results were av-
eraged.

4 Co-Training for Topic Classification

Blum and Mitchell (1998) proposed the co-
training algorithm in the context of webpage clas-
sification. In co-training, the idea is that two clas-
sifiers trained on two different views of the data
teach one another by re-training each classifier on
the data enriched with predicted examples that the
other classifier is most confident about. In Blum
and Mitchell (1998), webpages are represented us-
ing two different views: (1) using terms from web-
pages’ content and (2) using terms from the anchor
text of hyperlinks pointing to these pages.
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Algorithm 1 Co-Training
Input: L, U , ‘s’
L1 ← L, L2 ← L
while U 6= ∅ do

Train classifier C1 on L1
Train classifier C2 on L2
S ← ∅
Move ‘s’ examples from U to S
U ← U\S
S1, S2 ← GetMostConfidentExamples(S,

C1, C2)
L1 ← L1 ∪ S1, L2 ← L2 ∪ S2
U ← U ∪ [S\(S1 ∪ S2)]

end while
Ouput: The combined classifier C of C1 and C2

In this paper, we study the applicability and ex-
tension of the co-training algorithm to the task of
topic classification of research papers, which are
embedded in large citation networks. Here, in ad-
dition to the information contained in a paper it-
self, citing and cited papers capture different as-
pects (e.g., topicality, domain of study, algorithms
used) about the target paper (Teufel et al., 2006),
with citation contexts playing an instrumental role.
We conjecture that citation contexts, which act as
brief summaries about a cited paper, provide im-
portant clues in predicting the topicality of a target
paper. These clues give rise to the design of our
co-training based model for topic classification of
research papers. In our model, we use the content
of a paper as one view and the citation contexts as
another view of our data. In particular, for the con-
tent of a paper, we use its title and abstract as it is
commonly used in the literature (Lu and Getoor,
2003); for the citation contexts, we use both the
cited and citing contexts, as described in the pre-
vious section.

Our co-training procedure is described in Algo-
rithm 1. L and U represent the labeled and un-
labeled datasets and contain instances from both
views. The fractions of the training set are ob-
tained from the 786 papers by selecting k% ran-
dom examples from each class. For a round of
co-training, we train classifiers C1 and C2 on the
two views. Next, s examples are sampled from
the unlabeled data into S, and C1, C2 are used
to obtain predictions for these s examples. The
GetMostConfidentExamples method is a generic
placeholder that stands for a function that deter-

mines what examples from S are chosen to be
added into training. Finally, at the end of an it-
eration, the examples left into S are moved back
to U , and the algorithm iterates until there are no
more unlabeled examples in U . The final classi-
fier C is obtained by combining C1 and C2 using
the product of their class probability distributions.
The class with the highest posterior probability (of
the product of the two distributions) is chosen as
the predicted class.

Unlike the original co-training algorithm de-
scribed by Blum and Mitchell (1998), which tack-
led a binary classification task (course vs. non-
course page classification), we address a multi-
class classification problem, where each example
(i.e., research paper) is classified into one of six
different classes. Moreover, in Blum and Mitchell
(1998), the co-training algorithm moves p highest
confidence positive examples and n highest confi-
dence negative examples from S to L, where p : n
represents the class distribution in the original la-
beled training set (i.e., if there are 10 positive ex-
amples and 90 negative examples in the labeled
set L, then p = 1 positive and n = 9 negative
examples are moved to the labeled set at each it-
eration of co-training). Unlike, this approach that
preserves the class distribution of the original la-
beled training set, we move into L all examples
that are classified with a confidence above a cer-
tain threshold.

5 Results and Discussion

First, the proposed method is evaluated on the val-
idation set. We first compare it against various
supervised and semi-supervised baselines. Next,
we report the performance of our co-training algo-
rithm under different scenarios, where either cited
or citing contexts are used. We also show the most
informative words for each classifier. Finally, with
the best parameters obtained on the validation set,
we report the precision, recall and F1-score, ob-
tained by each method, on the test set.

In experiments, the sample size ‘s’ from Algo-
rithm 1 is set to 300, i.e. the number of documents
sampled from the unlabeled pool at each iteration;
the confidence threshold is set to 0.95, i.e. if both
classifiers agree on the class label and have a con-
fidence ≥ 0.95, the instance is labeled and moved
into the labeled training set. These parameters are
estimated on the validation set, but the results are
not shown due to space limitation.
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Figure 1: Co-Training vs. Supervised Learning.

Evaluation Measures. We report results aver-
aged over ten different runs with random splits.
For each random split, we return the weighted
average precision, recall and F1-score. In all
the experiments, we use the Naı̈ve Bayes Multi-
nomial classifier and its Weka implementation2,
with term-frequencies as feature values. We ex-
perimented with both TF and TF-IDF scores, us-
ing different classifiers (Support Vector Machine,
Naı̈ve Bayes Multinomial, and simple Naı̈ve
Bayes classifiers), but Naive Bayes Multinomial
with TF performed best.

5.1 Baseline Comparisons
How does co-training compare with supervised
learning techniques? In this experiment, we com-
pare our co-training method with two supervised
baselines: (1) when only document content is used
and (2) when only citation contexts are used.

Figure 1 shows the F1-scores achieved using
different initial training sizes. We can see that
overall, the citation contexts are better at predict-
ing the topic of a document compared with the
content, outperforming them in 9 out of 10 exper-
imental settings. The only exception to this trend
is when a small number (5%) of training instances
is available, in which case the supervised con-
tent view performs better, reaching an F1-score of
0.534. Regardless, the co-training method shows
significant improvement over both baselines, in all
experiments. Starting with an F1-score of 0.572, it
continues to improve its performance as the train-
ing percentage is increasing. The maximum F1-
score, i.e. 0.742, is reached when 30% of the la-
beled training set is used. Note that the difference
in performance between co-training and the two
supervised baselines is statistically significant for

2http://www.cs.waikato.ac.nz/ml/weka/

a p value of 0.05.

A fully supervised baseline that uses 100% of
the training set achieves an F1-score of 0.720 (us-
ing content) and 0.738 (using citation contexts).
In contrast, co-training requires only 15% of the
labeled training set to outperform the fully super-
vised content baseline and 30% of the training set
to outperform the fully supervised citation con-
texts baseline. Consequently, using a co-training
approach that includes citation contexts as well as
the document content can not only increase the
performance, but will also significantly reduce the
need of expensive labeled instances.

Figure 2 illustrates the confusion matrices of
three experiments: (a) supervised content view,
i.e. the title and abstract, (b) supervised citation
contexts view, and (c) co-training that uses both
views. These experiments use 10% of the training
set. Each of the matrices are represented by a heat
map, i.e. the redder the color, the higher the value
assigned to that position. An accuracy of 1 will
be represented by a matrix with red blocks on the
main diagonal and white blocks everywhere else.
This experiment was performed 10 times with 10
different seeds and the results have been averaged.

As can be seen, the matrix that uses only titles
and abstracts, i.e. left side, is showing the high-
est percentage of misclassified documents, classi-
fying correctly about 58.8% instances, on average.
Using only citation contexts in a supervised frame-
work, i.e. center matrix, we reach a higher ac-
curacy of 60.7%. The co-training method, which
uses the content of the paper and citations as two
independent views, significantly increases the av-
erage accuracy to 67.3%. This experiment shows
that citation contexts are better than titles and ab-
stracts at predicting the topic of a document. Fur-
thermore, our proposed approach, which uses the
content of the paper as well as citation contexts,
achieves higher results than each view used sepa-
rately. The difference in accuracy is statistically
significant across all three experiments for a p
value of 0.05.

Overall, the Agents class seem to be the easiest
to classify, reaching an accuracy value of 91.6%
when using co-training. On the other hand, the
AI class is the hardest to classify. One reason for
this is that the AI class contains the lowest num-
ber of instances in the dataset. Another can be that
the AI class is the most general among all classes
and therefore, classifying documents with this la-

2361



Figure 2: The accuracy of our method, against two supervised baselines.
Left: using titles and abstracts; Center: using citation contexts; Right: using co-training.

Figure 3: Co-Training vs. Early and Late Fusion.

bel can be a difficult task even for a human. Other
common misclassifications occur between classes
like HCI and Agents, ML and IR or AI and ML, due
to their similarity.

How does our co-training method compare
with other supervised approaches? In this exper-
iment, we compare the performance of co-training
against two other methods: early and late fusion.
In early fusion, the feature vectors of the two
views are concatenated, creating a single represen-
tation of the data. In contrast, late fusion trains
two separate classifiers and then combines them
by taking the label with the highest confidence.

Figure 3 shows this comparison over differ-
ent training sizes. The results show that the co-
training method is more accurate than all others,
performing best in all 10 experimental settings.
Late fusion has an overall lower performance com-
pared with co-training, but is in a tight correlation
with it. On the other hand, early fusion achieves
the lowest F1-score across the experiments. The
reported results are statistically significant at p
value of 0.05, when the training percentage is be-
tween 5 and 35. Therefore, we can say that train-

Figure 4: Co-Training vs. Self-Training.

ing two separate classifiers, one of each view,
yields higher performance compared with train-
ing a single classifier that incorporates both views.
Moreover, using a co-training approach that incor-
porates information from unlabeled data into the
model, will help the two classifiers increase their
confidences and minimize the error rate.

How does co-training compare with semi-
supervised methods? Here, we present re-
sults comparing co-training with two other well-
known semi-supervised techniques: self-training
and Naı̈ve Bayes with Expectation Maximization.

Self-Training. First, we show results of the com-
parison of co-training with two variations of self-
training: (1) self-training using only document
content, and (2) self-training using only citation
contexts. Figure 4 shows the results of this exper-
iment. Self-training is similar to co-training, ex-
cept that it uses only one view of the data (Zhu,
2005). Self-training parameters, e.g., sample size
‘s’ or number of iterations, are estimated as in co-
training.

Although the document content version of self-
training outperforms co-training when using 5%
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Figure 5: Co-Training vs. EM.

of the training instances, we can see that overall,
there is a significant difference in terms of F1-
score values in the favor of co-training. In 9 out
of 10 experiments, our co-training approach is su-
perior to both self-training methods. The results
are statistically significant across all experimental
setups for a p value of 0.05.

Expectation Maximization. Figure 5 shows the
F1-score values obtained after running NBM with
EM with the same training, unlabeled and test sets.
The EM algorithm uses the same classifier, i.e.
NBM, and the weight for each unlabeled instance
is set to 1, as this setting achieved the highest re-
sults. Two different experiments were performed
using EM: (1) using only document content, and
(2) using only citation contexts. As can be seen in
the figure, overall, the co-training approach signif-
icantly outperforms both variations of EM. How-
ever, the co-training method falls short when using
5% of the training instances, where EM Content
and EM Citations methods are achieving higher
F1-score values. Nonetheless, both EM variations
tend to achieve an F1-score value below or equal
to 0.710, whereas co-training reaches performance
values of 0.74 or higher. Again, the comparison
results between co-training and both variations of
EM are statistically significant for training sizes
between 10% and 50%, for a p value of 0.05.

5.2 Using Different Citation Context Types

Which of the two types of citation contexts (cited
or citing) help the task of topic classification
more and how does co-training perform in the
absence of either one? The answer to this ques-
tion is important as there are cases in which cita-
tion contexts are not readily available. One fre-
quently encountered example includes newly pub-
lished research papers that have no cited contexts.

Figure 6: Performance when using only cited /
only citing / or both citation contexts.

In this case, it is important to know how our
method performs when we only have one type of
citation contexts. Figure 6 shows the difference in
performance when using: (1) only cited contexts,
(2) only citing contexts, and (3) both context types.
Note that the content view remains the same across
all three experiments.

The plot is showing that citing contexts are
bringing in a significantly higher margin of knowl-
edge compared with cited contexts. This is consis-
tent over different training set sizes, as shown in
the figure, with a more prominent impact when a
small training size is used, i.e. 5-30%. The fact
that the citing contexts achieve higher F1-score
than cited contexts is consistent with the intuition
that when citing a paper y, an author generally
summarizes the main ideas from y using impor-
tant words from a target paper x, making the citing
contexts to have higher overlap with words from x.
In turn, a paper z that cites x may use paraphras-
ing to summarize ideas from x with words more
similar to those from the content of z.

When the two types of contexts are used, co-
training achieves higher results compared with
cases when only one context type is used. This
experiment shows that our method can be applied
for both old and new research articles. Citing con-
texts will be available in the text of the target paper
and are independent of the existence of the cited
contexts.

5.3 Informative Features

What are the most informative words from each
view: document content and citation contexts?
Figure 7 shows the words from each view that are
most useful for our topic classification task. The
larger the word, the more informative is for our
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Figure 7: Most informative words from document content (left) and citation contexts (right).

Method Labeled docs. (%) Precision Recall F1-Score
Co-Training 30 0.749 0.743 0.742
Co-Training - only citing 40 0.747 0.740 0.740
Co-Training - only cited 50 0.724 0.717 0.714
Self-Training - Content 50 0.723 0.711 0.711
Self-Training - Citations 35 0.730 0.710 0.713
EM - Content 50 0.738 0.714 0.721
EM - Citations 35 0.729 0.707 0.711
Early Fusion 50 0.718 0.710 0.714
Late Fusion 50 0.748 0.734 0.738
Content - Fully Supervised 100 0.730 0.728 0.720
Citations - Fully Supervised 100 0.745 0.740 0.738

Table 2: A comparison of all methods on the test set.

task. To determine the informativeness of a word,
we used its Information Gain score. For these ex-
periments, we used training sets consisting of 30%
of the instances, setting in which we achieved the
best results on the validation and test sets using
our proposed co-training approach.

As can be seen, the two word clouds have a
high word overlap. Words such as agent, database
or query are almost equally important in the two
views, dominating both clouds. However, differ-
ences can be observed. For example, words like
learning, multi-agent or interface are more impor-
tant in the content view. On the other hand, words
such as document or text achieve a higher informa-
tion gain score for the citation contexts view.

5.4 Co-Training vs. All Other Approaches
Table 2 summarizes the results obtained by all the
baselines used so far, in comparison with our pro-
posed co-training method. For this experiment, we
show the training percentage used, the precision,
recall and F1-score for each method, in the set-
ting in which it returned the best results. All mea-

sures were averaged after 10 runs with 10 different
seeds.

The results in Table 2 show that the pro-
posed co-training method outperforms all com-
pared models, reaching the highest F1-score of
0.742, while using the smallest amount of la-
beled documents, i.e. 30%. Using only the cit-
ing contexts, the performance is similar to that
of co-training when both context types are used.
However, using only the cited contexts, the per-
formance decreases compared to that of the full
model that uses both context types. We see that
the citing contexts perform better, reaching an
F1-score value of 0.740 compared against 0.714
when only cited contexts are used. Moreover, the
method that uses only the citing contexts is using
10% less labeled data.

Self-training and EM show decreased perfor-
mance compared with co-training. Late Fusion
outperforms Early Fusion, i.e., 0.738 vs. 0.714,
both obtaining lower results than co-training,
while using significantly more labeled data.
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The last two lines of the table show the results
when all documents (except those in the valida-
tion and test), are used for training, in a supervised
framework. As can be seen, a supervised method
that uses only citations will achieve a higher per-
formance, compared against a method that uses
titles and abstracts. Nonetheless, co-training ob-
tains higher results than both fully supervised ap-
proaches, while using only 30% of the labeled
data.

6 Conclusion and Future Work

In this paper, we studied the problem of using ci-
tation contexts in order to predict more accurately
the topic of a research article. We showed that a
co-training technique, which uses the paper con-
tent and its citation contexts as two conditionally
independent and sufficient views of the data, can
effectively incorporate cheap, unlabeled data to
improve the classification performance and to re-
duce the need of labeled examples to only a frac-
tion. The results of the experiments showed that
the proposed approach performs better than other
semi-supervised and supervised methods.

This study also shows that citation contexts are
rich sources of information that can be success-
fully used in various IR and NLP tasks. We
showed that document content and citation con-
texts unified under the same algorithm can dra-
matically decrease the annotation costs as well.
In the future, we plan to extend co-training to in-
clude active learning for more robust classifica-
tion. Moreover, it would be interesting to extend
the co-training approach to multi-views that could
potentially handle more than two feature spaces,
e.g., it could include topics by Latent Dirichlet Al-
location (Blei et al., 2003) as an additional view.
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Özgür. 2010. Citation summarization through
keyphrase extraction. In Proceedings of the 23rd In-
ternational Conference on Computational Linguis-
tics, COLING ’10, pages 895–903.

Anna Ritchie, Simone Teufel, and Stephen Robertson.
2006. How to find better index terms through cita-
tions. In Proc. of the Workshop on How Can Compu-
tational Linguistics Improve Information Retrieval?,
CLIIR ’06, pages 25–32, Sydney, Australia.

Anna Ritchie, Stephen Robertson, and Simone Teufel.
2008. Comparing citation contexts for information
retrieval. In Proceedings of the 17th ACM Confer-
ence on Information and Knowledge Management,
CIKM ’08, pages 213–222, New York, NY, USA.
ACM.

Xiaolin Shi, Jure Leskovec, and Daniel A. McFarland.
2010. Citing for high impact. In Proceedings of the
10th Annual Joint Conference on Digital Libraries,
JCDL ’10, pages 49–58.

Simone Teufel, Advaith Siddharthan, and Dan Tidhar.
2006. Automatic classification of citation function.
In Proceedings of the 2006 Conference on Empirical
Methods in Natural Language Processing, EMNLP
’06, pages 103–110.

S. Teufel. 1999. Argumentative Zoning: Information
Extraction from Scientific Text. Ph.D. thesis, Uni-
versity of Edinburgh,.

Xiaojun Wan. 2009. Co-training for cross-lingual sen-
timent classification. In Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL
and the 4th International Joint Conference on Nat-
ural Language Processing of the AFNLP: Volume 1
- Volume 1, ACL ’09, pages 235–243, Stroudsburg,
PA, USA. Association for Computational Linguis-
tics.

Yiming Yang. 1999. An evaluation of statistical ap-
proaches to text categorization. Journal of Informa-
tion Retrieval, 1:67–88.

Wen Zhang, Taketoshi Yoshida, and Xijin Tang. 2011.
A comparative study of tf* idf, lsi and multi-words
for text classification. Expert Systems with Applica-
tions, 38(3):2758–2765.

Xiaojin Zhu. 2005. Semi-Supervised learning litera-
ture survey. Technical report, Computer Sciences,
University of Wisconsin-Madison.

2366



Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 2367–2376,
Lisbon, Portugal, 17-21 September 2015. c©2015 Association for Computational Linguistics.

Humor Recognition and Humor Anchor Extraction

Diyi Yang, Alon Lavie, Chris Dyer, Eduard Hovy
Language Technologies Institute, School of Computer Science

Carnegie Mellon University. Pittsburgh, PA, 15213, USA
{diyiy, alavie, cdyer}@cs.cmu.edu, hovy@cmu.edu

Abstract

Humor is an essential component in
personal communication. How to create
computational models to discover the
structures behind humor, recognize humor
and even extract humor anchors remains
a challenge. In this work, we first
identify several semantic structures behind
humor and design sets of features for
each structure, and next employ a com-
putational approach to recognize humor.
Furthermore, we develop a simple and
effective method to extract anchors that
enable humor in a sentence. Experiments
conducted on two datasets demonstrate
that our humor recognizer is effective
in automatically distinguishing between
humorous and non-humorous texts and our
extracted humor anchors correlate quite
well with human annotations.

1 Introduction

Humor is one of the most interesting and puzzling
research areas in the field of natural language
understanding. Recently, computers have changed
their roles from automatons that can only perform
assigned tasks to intelligent agents that dynami-
cally interact with people and learn to understand
their users. When a computer converses with a
human being, if it can figure out the humor in
human’s language, it can better understand the true
meaning of human language, and thereby make
better decisions that improve the user experience.
Developing techniques that enable computers to
understand humor in human conversations and
adapt behavior accordingly deserves particular
attention.

The task of Humor Recognition refers to
determining whether a sentence in a given context
expresses a certain degree of humor. Humor

recognition is a challenging natural language
problem (Attardo, 1994). First, a universal
definition of humor is hard to achieve, because
different people hold different understandings of
even the same sentence. Second, humor is always
situated in a broader context that sometimes
requires a lot of external knowledge to fully
understand it. For example, consider the sentence,
“The one who invented the door knocker got a
No Bell prize” and “Veni, Vidi, Visa: I came, I
saw, I did a little shopping”. One needs a larger
cultural context to figure out the subtle humorous
meaning expressed in these two sentences. Last
but not least, there are different types of humor
(Raz, 2012), such as wordplay, irony and sarcasm,
but there exist few formal taxonomies of humor
characteristics. Thus it is almost impossible to
design a general algorithm that can classify all the
different types of humor, since even human cannot
perfectly classify all of them.

Although it is impossible to understand univer-
sal humor characteristics, one can still capture the
possible latent structures behind humor (Bucaria,
2004; Binsted and Ritchie, 1997). In this work, we
uncover several latent semantic structures behind
humor, in terms of meaning incongruity, ambigu-
ity, phonetic style and personal affect. In addition
to humor recognition, identifying anchors, or
which words prompt humor in a sentence, is
essential in understanding the phenomenon of
humor in language. Here, Anchor Extraction
refers to extracting the semantic units (keywords
or phrases) that enable the humor in a given
sentence. The presence of such anchors plays
an important role in generating humor within a
sentence or phrase.

In this work, we formulate humor recognition
as a classification task in which we distinguish
between humorous and non-humorous instances.
Then we explore the semantic structure behind
humor from four perspectives: incongruity, am-
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biguity, interpersonal effect and phonetic style.
For each latent structure, we design a set of
features to capture the potential indicators of
humor. With high classification accuracy, we
then extract humor anchors in sentences via a
simple and effective method. Both quantitative
and qualitative experimental results are provided
to validate the classification and anchor extraction
performance.

2 Related Work
Most existing studies on humor recognition are
formulated as a binary classification problem and
try to recognize jokes via a set of linguistic
features (Purandare and Litman, 2006; Kiddon
and Brun, 2011). For example, Mihalcea and
Strapparava (2005) defined three types of humor-
specific stylistic features: Alliteration, Antonym
and Adult Slang, and trained a classifier based
on these feature representations. Similarly, Zhang
and Liu (2014) designed several categories of
humor-related features, derived from influential
humor theories, linguistic norms, and affective
dimensions, and input around fifty features into
the Gradient Boosting Regression Tree model for
humor recognition. Taylor and Mazlack (2004)
recognized wordplay jokes based on statistical lan-
guage recognition techniques, where they learned
statistical patterns of text in N-grams and provided
a heuristic focus for a location of where wordplay
may or may not occur. Similar work can also be
found in (Taylor, 2009), which described humor
detection process through Ontological Semantics
by automatically transposing the text into the
formatted text-meaning representation to detect
humor. In addition to language features, some
other studies also utilize spoken or multimodal
signals. For example, Purandare and Litman
(2006) analyzed acoustic-prosodic and linguistic
features to automatically recognize humor during
spoken conversations. However, the humor
related features in most of those works are not
systematically derived or explained.

One essential component in humor recognition
is the construction of negative data instances.
Classifiers based on negative samples that lie in
a different domain than humor positive instances
will have high classification performance, but
are not necessarily good classifiers. There
are few existing benchmark datasets for humor
recognition and most studies select negative
instances specifically. For example, Mihalcea and

Strapparava (2005) constructed the set of negative
examples by using news title from Reuters news,
proverbs and British National Corpus. (Zhang, el.
al 2014) randomly sampled 1500 tweets and then
asked annotators to filter out humorous tweets.

Compared to humor recognition, humor gener-
ation has received quite a lot attention in the past
decades(Stock and Strapparava, 2005; Ritchie,
2005; Hong and Ong, 2009). Most generation
work draws on humor theories to account for
humor factors, such as the Script-based Semantic
Theory of Humor (Raskin, 1985; Labutov and
Lipson, 2012) and employs templates to generate
jokes. For example, Ozbal and Strapparava (2012)
created humorous neologism using WordNet and
ConceptNet. In detail, their system combined
several linguistic resources to generate creative
names, more specifically neologisms based on
homophonic puns and metaphors. Stock and
Strapparava (2005) introduced HAHACRONYM,
a system (an acronym ironic re-analyzer and gen-
erator) devoted to produce humorous acronyms
mainly by exploiting incongruity theories (Stock
and Strapparava, 2003).

In contrast to research on humor recognition
and generation, there are few studies that identify
the humor anchors that trigger humorous effects in
general sentences. A certain type of jokes might
have specific structures or characteristics that
provide pointers to humor anchors. For example,
in the problem of “That’s what she said” (Kiddon
and Brun, 2011), characteristics that involves the
using of nouns that are euphemisms for sexually
explicit nouns or structures common in the erotic
domain might probably give clues to potential
humor anchors. Similarly, in the Knock Knock
jokes (Taylor and Mazlack, 2004), wordplay is
what leads to the humor. However, the wordplay
by itself is not enough to trigger the comic effect,
thus not equivalent to the humor anchors for a
joke. To address these issues, we introduce a
formal definition of humor anchors and design an
effective method to extract such anchors in this
work. To the best of our knowledge, this is the
first study on extracting humor anchors that trigger
humor in general sentences.

3 Data Preparation
To perform automatic recognition of humor and
humor anchor extraction, a data set consisting
of both humorous (positive) and non-humorous
(negative) examples is needed. The dataset we
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use to conduct our humor recognition experiments
includes two parts: Pun of the Day 1 and the 16000
One-Liner dataset (Mihalcea and Strapparava,
2005). The two data sets only contain humorous
text. In order to acquire negative samples
for the humor classification task, we sample
negative samples from four resources, including
AP News2, New York Times, Yahoo! Answer3

and Proverb4. Such datasets not only enable us
to automatically learn computational models for
humor recognition, but also provide us with the
chances to evaluate the performance of our model.

However, directly applying sentences extracted
from those four resources and simply treating
them as negative instances of humor recognition
could result in deceptively high performance
of classification, due to the domain differences
between positive and negative datasets. For
example, the humor sentences in our positive
datasets often relate to daily lives, such as “My
wife tells me I’m a skeptic, but I don’t believe
a word she says.”. Meanwhile, sentences in
news websites sometimes describe scenes related
to wars or politics, such as “Judge Thomas P.
Griesa of Federal District Court in Manhattan
stopped short of issuing sanctions”. Such domain
differences between descriptive words might make
a naive bag of words model perform quite well,
without taking into account the deeper semantic
structures behind humor. To deal with this issue,
we extract our negative instances in a way that
tries to minimize such domain differences by (1)
selecting negative instances whose words are all
contained in our positive instance word dictionary
and (2) forcing the text length of non-humorous
instances to follow the similar length restriction
as humorous examples, i.e. one sentence with
an average length of 10-30 words. Here, we
assume sentences come from the aforementioned
four resources are all non-humorous in nature.
Table 1 provides a detailed statistical description
to our datasets.

4 Latent Structures behind Humor
In this section, we explore the latent semantic
structures behind humor in four aspects: (a)
Incongruity; (b) Ambiguity; (c) Interpersonal

1Pun of the Day: http://www.punoftheday.
com/ This constructed dataset will be made public.

2http://hosted.ap.org/dynamic/fronts/HOME?SITE=AP
3https://answers.yahoo.com/
4Manually extracted 654 proverbs from Proverb websites

Dataset #Positive #Negative
Pun of the Day 2423 2403
16000 One Liners 16000 16002

Table 1: Statistics on Two Datasets

Effect and (d) Phonetic Style. For each latent
structure, a set of features is designed to capture
the corresponding indicators of humor.

4.1 Incongruity Structure
“Laughter arises from the view of two or more
inconsistent, unsuitable, or incongruous parts or
circumstances, considered as united in complex
object or assemblage, or as acquiring a sort
of mutual relation from the peculiar manner in
which the mind takes notice of them” (Lefcourt,
2001). The essence of the laughable is the
incongruous, the disconnecting of one idea from
another (Paulos, 2008). Humor sometimes relies
on a certain type of incongruity, such as opposition
or contradiction. For example, the following
‘clean desk’ and ‘cluttered desk drawer’ example
(Mihalcea and Strapparava, 2005) presents an
incongruous/contrast structure, resulting in a
comic effect.

A clean desk is a sign of a cluttered desk drawer.

Direct identification of incongruity is hard
to achieve, however, it is relatively easier to
measure the semantic disconnection in a sentence.
Taking advantage of Word2Vec5, we extract
two types of features to evaluate the meaning
distance6 between content word pairs in a sentence
(Mikolov et al., 2013):

• Disconnection: the maximum meaning dis-
tance of word pairs in a sentence.

• Repetition: the minimum meaning distance
of word pairs in a sentence.

4.2 Ambiguity Theory
Ambiguity (Bucaria, 2004), the disambiguation of
words with multiple meanings (Bekinschtein et
al., 2011), is a crucial component of many humor
jokes (Miller and Gurevych, 2015). Humor and
ambiguity often come together when a listener
expects one meaning, but is forced to use another

5https://code.google.com/p/word2vec/
6We take the generic Word2Vec vectors without training

new vectors for our specific domain. In addition, vectors
associated with senses (Kumar Jauhar et al., 2015) might be
alternative advantageous in this task.
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meaning. Ambiguity occurs when the words of
the surface sentence structure can be grouped
in more than one way, thus yielding more than
one associated deep structures, as shown in the
example below.

Did you hear about the guy whose whole left
side was cut off? He’s all right now.

The multiple possible meanings of words
provide readers with different understandings. To
capture the ambiguity contained in a sentence, we
utilize the lexical resource WordNet (Fellbaum,
1998) and capture the ambiguity as follows:

• Sense Combination: the sense combination
in a sentence computed as follows: we first
use a POS tagger (Toutanova et al., 2003)
to identify Noun, Verb, Adj, Adv. Then we
consider the possible meanings of such words
{w1, w2 · · ·wk} via WordNet and calculate
the sense combinations as log(

∏k
i=1 nwi).

nwi is the total number of senses of word wi.

• Sense Farmost: the largest Path Similarity7

of any word senses in a sentence.

• Sense Closest: the smallest Path Similarity of
any word senses in a sentence.

4.3 Interpersonal Effect

Besides humor theories and linguistic style mod-
eling, one important theory behind humor is
its social/hostility focus, especially regarding its
interpersonal effect on receivers. That is, humor is
essentially associated with sentiment (Zhang and
Liu, 2014) and subjectivity (Wiebe and Mihalcea,
2006). For example, a sentence is likely to
be humorous if it contains some words carrying
strong sentiment, such as ‘idiot’ as follows.

Your village called. They want their Idiot back.

Each word is associated with positive or neg-
ative sentiments and such measurements reflect
the emotion expressed by the writer. To identify
the word-associated sentiment, we use the word
association resource in the work by (Wilson et al.,
2005), which provides annotations and clues to
measure the subjectivity and sentiment associated
with words. This enables us to design the
following features.

• Negative (Positive) Polarity: the number of
occurrences of all Negative (Positive) words.

7Path Similarity: http://www.nltk.org/howto/
wordnet.html

• Weak (Strong) Subjectivity: the number of
occurrences of all Weak (Strong) Subjectivity
oriented words in a sentence. It is the
linguistic expression of people’s opinions,
evaluations, beliefs or speculations.

4.4 Phonetic Style

Many humorous texts play with sounds, creating
incongruous sounds or words. Some studies
(Mihalcea and Strapparava, 2005) have shown that
the phonetic properties of humorous sentences
are at least as important as their content. Many
one-liner jokes contain linguistic phenomena such
as alliteration, word repetition and rhyme that
produce a comic effect even if the jokes are not
necessarily meant to be humorous in content.

What is the difference between a nicely dressed
man on a tricycle and a poorly dressed man on a
bicycle? A tire.

An alliteration chain refers to two or more
words beginning with the same phones. A rhyme
chain is defined as the relationship that words
end with the same syllable. To extract this
phonetic feature, we take advantage of the CMU
Pronouncing Dictionary 8 and design four features
as follows:

• Alliteration: the number of alliteration chains
in a sentence, and the maximum length of
alliteration chains.

• Rhyme: the number of rhyme chains and the
maximum length of rhyme chains.

5 Humor Anchor Extraction

In addition to humor recognition, identifying
anchors, or which words prompt humor in a
sentence, is also essential in understanding humor
language phenomena. In this section, we first
define what humor anchors are and then describe
how to extract such semantic units that enable
humor in a given sentence.

5.1 Humor Anchor Definition

The semantic units or humor anchors enable
humor in a given sentence, and are reflected
in the form of sentence words. However, not
every single word can be a humor anchor. For
example, I am glad that I know sign language;
it is pretty handy. In this one-liner, words such
as ‘am’ and ‘is’ are not able to enable humor

8http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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Anchor Candidates

i

am

i

know

sign language

it

is 

pretty handy

Humor sentence:

i am glad that i know 

sign language; it is 

pretty handy

Maximal Decrement Results

0.8, i am glad that I know [sign language]; it is [pretty handy]  ßBest

0.3, i am glad that I know [sign language]; it is pretty handy

0.2, i am glad that I know sign language; it is [pretty handy]

0.1, i am glad that I [know] sign language; it is [pretty handy]

…… 

Maximal Decrement Algorithm

· f(X): the predicted score for 

sentence X

· f(X \ K): the predicted score by 

removing set K from X

· For Anchor Subset K (|K|<=t), 

calculate f(X) - f(X \ K). 

· Find the K with max decrement.

Figure 1: Humor Anchor Extraction Overview. Based on the parsing output of each sentence, we
generate its humor anchor candidates. We then apply the Maximal Decrement algorithm to these
candidates. The humor anchor subset that gives the maximal decrement is the extracted humor anchors
for that sentence.

via themselves. Similarly, ‘sign’ or ‘language’
itself are not capable to prompt comic effect.
The possible anchors in this example should
contain both ‘sign language’ and ‘handy’; it is
the combination of these two spans that triggers
humor. Therefore, formally defined, a humor
anchor is a meaningful, complete, minimal set
of word spans in a sentence that potentially
enable one of the latent structures of Section 4
to occur. (1) Meaningful means humor anchors
are meaningful word spans, not meaningless stop
words in a sentence; (2) Completeness shows that
all possible humor anchors should be covered by
this anchor set and no individual span in this
anchor set is capable enough to enable humor; (3)
Minimal emphasizes that it is the combination of
these anchors together that prompts comic effect;
discarding any anchors from this candidate set
destroys the humorous effect.

5.2 Anchor Extraction Method

Based on the humor anchor requirements listed
above, we scoped humor anchor candidates to
words or phrases that belong to the syntactic
categories of Noun, Verb, Noun Phrase, Verb
Phrase, ADVP or ADJP. Those properties are
acquired via a sentence parse tree. To generate
anchor candidates, we parsed each sentence and
selected words or phrases that satisfy one or more
of the latent structure criteria by first extracting
the minimal parse subtrees of NP, VP, ADVP and

ADJP and then adding remaining Nouns and Verbs
into candidate sets.

The above anchor generation process provides
us with all possible anchors that might enable
humor. It satisfies the Meaningful and Com-
pleteness requirements. To extract a Minimal set
of anchors, we proposed a simple and effective
method of Maximal Decrement. Its basic idea is
summarized as follows: Each complete sentence
has a predicted humor score, which is computed
via a humor recognition classifier trained on all
data points. This humor recognizer is not limited
to any specific classifiers or features as long as
it provides good classification accuracy, which
guarantees the generalization ability of our anchor
extraction method. We next enumerate a subset
of anchors from all potential anchors for this
sentence. Then, we recompute the predicted
humor score by providing the classifier with
features associated with the current sentence, after
removing that subset of anchors. Note that our
designed humor structural features are all word
order free, thereby not distinguishing between
complete and incomplete sentences. The subset
of humor anchor candidates that provides the
maximum decrement of humor predicted scores is
then returned as the extracted humor anchor set.

Mathematically, Xi is the word set of sentence
i. Let f denote the trained classifier on all data
instances. f(Xi) is the predicted humor score
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for sentence i before performing any operations.
Denote Ki(Ki ⊂ Xi) as the subset of words
that we need to remove from sentence i. The
size of Ki should be smaller than a threshold t,
|Ki| ≤ t. f(Xi/Ki) is the recomputed humor
score for sentence i after removing Ki. Our
Maximal Decrement method tries to maximize the
following objective by enumerating all possible
Kis. The subset Ki that gives the maximal
decrement is returned as our extracted humor
anchors for sentence i. The system overview is
shown in Figure 1.

arg min
|Ki≤t|

f(Xi)− f(Xi/Ki) (1)

6 Experiment

In this section, we validate the performance
of different semantic structures we extracted on
humor recognition and how the combination of
the structures contributes to classification. In
addition, both qualitative and quantitative results
regarding humor anchor extraction performance
are explored.

6.1 Humor Recognition
We formulate humor recognition as a traditional
text classification problem, and apply Random
Forest to perform 10 fold cross validation on
two datasets. Random Forest is an ensemble of
decision trees 9 for classification (regression) that
constructs a multitude of decision trees at training
time and outputs the class that is the mode of the
classes output by individual trees. Unlike single
decision trees, which are likely to suffer from
high variance or high bias, random forests use
averaging to find a natural balance between the
two extremes.

In addition to the four latent structures behind
humor, we also design a set of K Nearest Neighbor
(KNN) features that uses the humor classes of
the K sentences (K = 5) that are the closest
to this sentence in terms of meaning distance
in the training data. We use several methods
to act as baselines for comparison with our
classier. Bag of Words baseline is used to
capture a multiset of words in a sentence that
might differentiate humor and non-humor. Lan-
guage Model baseline assigns a humor/nonhumor
probability to words in a sentence via probability
distributions. Word2Vec baseline represents the

9https://www.kaggle.com/wiki/RandomForests

meaning of sentences via Word2Vec (Mikolov
et al., 2013) distributional semantic meaning
representation. We implemented an earlier work
(Mihalcea and Strapparava, 2005) that exploits
stylistic features including alliteration, autonomy
and adult slang and ensembles with bag of words
representations, denoted as SaC Ensemble. It is
worth mentioning that our datasets are balanced in
terms of positive and negative instances, giving a
random classification accuracy of 50%.

Figure 2: Different Latent Structures’ Contribu-
tion to Humor Recognition

We first explored how different latent semantic
structures affect humor recognition performance
and summarize the results in Figure 2. It
is evident that Incongruity performs the best
among all latent semantic structures in the context
of Pun of the Day and both Ambiguity and
Phonetic substantially contribute to recognition
performance on the 16000 One Liners dataset.
The reason behind the differences in performance
with Incongruity and with Phonetic lies in the
different nature of the corpus. Most puns are
well structured and play with contrasting or
incongruous meaning. However, humor sentences
in the 16000 One Liners often rely on the reader’s
awareness of attention-catching sounds (Mihalcea
and Strapparava, 2005). This demonstrates that
humor characteristics are expressed differently in
different contexts and datasets.

We also investigated how the combination of
such semantic structures performs compared with
our proposed baselines, as shown in Table 2.
Here, we denote the combination of four latent
structures and KNN features as Human Centric
Features (HCF). From Table 2, we found that
(1) HCF (21 features in total) has a bigger
contribution to humor recognition, compared with
Bag of Words and Language Model (LM). The
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Pun of the Day 16000 One Liners
Accuracy Precision Recall F1 Accuracy Precision Recall F1

HCF 0.705 0.696 0.736 0.715 0.701 0.685 0.746 0.714
Bag of Words 0.632 0.623 0.686 0.650 0.673 0.708 0.662 0.684
Language Model 0.627 0.602 0.762 0.673 0.635 0.645 0.596 0.620
Word2Vec 0.833 0.804 0.880 0.841 0.781 0.767 0.809 0.787
SaC Ensemble 0.763 0.838 0.655 0.735 0.662 0.628 0.796 0.701
Word2Vec+HCF 0.854 0.834 0.888 0.859 0.797 0.776 0.836 0.805

Table 2: Comparison of Different Methods of Humor Recognition

inadequacy of LM also indicates that we can
alleviate the domain differences and capture the
real humor. (2) SaC Ensemble is inferior to the
combination of Word2Vec and HCF because it
does not involve enough latent structures such as
Interpersonal Effect and distributional semantics.
(3) The combination of Word2Vec and HCF
(Word2Vec+HCF) gives the best classification
performance because it takes into account both
latent structures and semantic word meanings.
Such a conclusion is consistent across two
datasets. This indicates that our extracted latent
semantic structures are effective in capturing
humorous meaning.

6.2 Anchor Extraction

Qualitative Evaluation
The above humor recognition classifier provides
us with decent accuracy in identifying humor in
the text. To better understand which words or
semantic units enable humor in sentences, we
performed humor anchor extraction as described
in Section 5.2. We set the size of the humor anchor
set as 3, i.e. t = 3. The classifier that is used
to predict the humor score is trained on all data
instances. Then all predicted humorous instances
are collected and input into the humor anchor
extraction component. Based on the Maximal
Decrement method, a set of humor anchors is
extracted for each instance.

Table 3 presents selected extracted humor
anchor results, including both successful and
unsatisfying extractions. As we can see, extracted
humor anchors are quite reasonable in explaining
the humor causes or focuses. For example, in
the sentence “I used to be a watchmaker; it is a
great job and I made my own hours”, our method
selected ‘watchmaker’, ‘made’ and ‘hours’ as
humor anchors. It makes sense because each
word is necessary and essential to enable humor.

Deleting ‘watchmaker’ will make the combination
of ‘made’ and ‘hours’ helpless to the comic effect.
To sum up, our extracted anchor extraction works
fairly well in identifying the focus and meaning of
humor language.

Quantitative Evaluation
In addition to the above qualitative exploration,
we also conducted quantitative evaluations. For
each dataset, we randomly sampled 200 sentences.
Then for each sentence, 3 annotators are asked
to annotate and label the possible humor anchors.
To assess the consistency of the labeling in this
context, we introduced an Annotation Agreement
Ratio (AAR) measurement as follows:

AAR(A,B) =
1
Ns

Ns∑
i=1

|Ai ∩Bi|
|Ai ∪Bi|

Here, Ns is the total number of sentences. Ai
and Bi are the humor anchor sets of sentence
i provided by annotator A and B respectively.
The AARs on Pun of the Day and 16000 One
Liners datasets are 0.618 and 0.433 respectively,
computed by averaging the AAR scores between
any two different annotators, which indicate
relatively reasonable agreement.

As a further step to validate the effectiveness of
our anchor extraction method, we also introduced
two baselines. The Random Extraction baseline
selects humor anchors by sampling words in a
sentence randomly. Similarly, POS Extraction
baseline generates anchors by narrowing down all
the words in a sentence to a set of certain POS, e.g.
Noun, Verb, Noun Phrase, Verb Phrase, ADVP
and ADJP and then sampling words from this set.

To evaluate whether our extracted anchors are
consistent with human annotation, we used each
annotator’s extracted anchor list as the ground
truth, and compared with anchor list provided by
our method. To identify whether two anchors
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Result Category Representative Sentences

Good

Did you hear about the guy who got hit in the head with a can of soda? He was
lucky it was a soft drink.
I was struggling to figure out how lightning works then it struck me.
The one who invented the door knocker got a No-bell prize.
I used to be a watchmaker; it is a great job and I made my own hours.

Bad
I wanted to lose weight, so I went to the paint store. I heard I could get
thinner there.
I used to be a banker but I lost interest

Table 3: Representative Extracted Humor Anchors. Highlighted parts are the extracted humor anchors in a sentence.

are the same, we introduce two measurements:
Exact (EX) Matching and At-Least-One (ALO)
Matching. Exact Matching requires the two
anchors to be exactly the same. For ALO, two
anchors are considered the same if they have at
least one word in common. Recall, Precision and
F1 Score are act as evaluation metrics. We then
average the three annotators’ individual scores to
get the final extraction performance.

Metrics Recall Precision F1
Pun of the Day Dataset

MDE EX 0.444 0.446 0.438
POS EX 0.166 0.170 0.165
Random EX 0.121 0.116 0.116
MDE ALO 0.782 0.784 0.756
POS ALO 0.364 0.371 0.360
Random ALO 0.297 0.287 0.285

16000 One Liners Dataset
MDE EX 0.314 0.281 0.288
POS EX 0.104 0.110 0.104
Random EX 0.087 0.075 0.079
MDE ALO 0.675 0.638 0.616
POS ALO 0.386 0.363 0.356
Random ALO 0.341 0.334 0.319

Table 4: Quantitative Result Comparison of
Humor Anchor Extraction

The quantitative evaluation results are summa-
rized in Table 4. Maximal Decrement Extraction
is denoted as MDE; POS Extraction is denoted
as POS, and Random Extraction is denoted as
Random. We report both ALO and EX results
for MED, POS and Random. From Table 4, we
found that MDE performs quite well under the
measurement of human annotation in terms of
both ALO and EX settings. This again validates
our assumption towards humor anchors and the
effectiveness of our anchor extraction method.

6.3 Discussion

The above two subsections described the per-
formance of both humor recognition and humor
anchor extraction tasks. In terms of humor recog-
nition, incongruity, ambiguity, personal affect and
phonetic style are taken into consideration to
assist the identification of humorous language.
We focus on discovering generalized structures
behind humor, and did not take into account sexual
oriented words such as adult slang in modeling
humorous language. Based on our results, these
four latent structures are effective in capturing
humor characteristics and such characteristics are
expressed to different extents in different contexts.
Note that we can apply any classification methods
with our humor latent structures. Once such
structures help us acquire high recognition accu-
racy, we can perform the generalized Maximal
Decrement extraction method to identify anchors
in humorous text.

Both humor recognition and humor anchor
extraction suffer from several common issues.
(1) Phrase Meaning: For example, a humorous
sentence “How does the earth get clean? It takes
a meteor shower” is predicted as non-humorous,
because the recognizer does not fully understand
the meaning of ‘meteor shower’, let alone the
comic effect caused by ‘earth’, ‘clean’ and
‘meteor shower’. For the unsatisfying example
in Table 3 “I used to be a banker but I lost
interest”, anchor extraction would work better if
it recognizes ‘lost interest’ correctly as a basic
semantic unit. (2) External Knowledge: For
jokes that involve idioms or social phenomena,
or need some external knowledge such as “Veni,
Vidi, Visa: I came, I saw, I did a little shopping”,
both humor recognition and anchor extraction fail
because a broader and implicit comparison of this
sentence and its origin (“Veni, Vidi, Vici: I came, I
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saw, I conquered... ”) is hard to be captured from a
sentence. (3) Humor Categorization: Moreover,
a fine granularity categorization of humor might
aid in understanding humorous language, because
humor has different types of manifestations, such
as irony, sarcasm, creativity, insult and wordplay.
Therefore, more sophisticated techniques in mod-
eling phrase meaning, external knowledge, humor
types, etc., are needed to better expose and define
humor for automatic recognition and extraction.

7 Conclusion

In this work, we focus on understanding hu-
morous language through two subtasks: humor
recognition and humor anchor extraction. For
this purpose, we first designed four semantic
structures behind humor. Based on the designed
sets of features associated with each structure, we
constructed different computational classifiers to
recognize humor. Then we proposed a simple
and effective Maximal Decrement method to
automatically extract anchors that enable humor
in a sentence. Experimental results conducted
on two datasets demonstrate the effectiveness of
our proposed latent structures. The performances
of humor recognition and anchor extraction are
superior compared to several baselines. In the
future, we would like to step further into the
discovery of humor characteristics and apply our
findings to the process of humor generation.
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Abstract

We compare the multinomial i-vector
framework from the speech community
with LDA, SAGE, and LSA as fea-
ture learners for topic ID on multinomial
speech and text data. We also compare
the learned representations in their abil-
ity to discover topics, quantified by dis-
tributional similarity to gold-standard top-
ics and by human interpretability. We
find that topic ID and topic discovery are
competing objectives. We argue that LSA
and i-vectors should be more widely con-
sidered by the text processing community
as pre-processing steps for downstream
tasks, and also speculate about speech pro-
cessing tasks that could benefit from more
interpretable representations like SAGE.

1 Introduction

The text processing and speech processing re-
search communities have similar problems and
goals, but the technical approaches in these two
communities develop largely independently. In
this paper we compare dimensionality reduction
techniques on multinomial language data from
the text and speech communities. We consider
a multinomial formulation of the i-vector model
(hereafter “mi-vector” model) from the speech
community (Soufifar et al., 2011), the sparse ad-
ditive generative (SAGE) (Eisenstein et al., 2011)
and latent Dirichlet allocation (LDA) (Blei et al.,
2003b) topic models from the text community,
and latent semantic analysis (LSA) (Deerwester
et al., 1990). Both the mi-vector model and the
SAGE topic model represent a multinomial pa-
rameter vector as the softmax of a sum of vectors,
one of which is a background vector representing
overall word usage in the corpus, and so we might
expect mi-vectors and SAGE to produce similar

results on real-world data. We evaluate these two
recent models and two more conventional mod-
els, LDA and LSA (a term describing a class of
methods based on the singular value decomposi-
tion, or SVD, which is used broadly in both re-
search communities). We assess the similarity of
mi-vectors and SAGE and expose the strengths
and weaknesses of all four learned representations
by evaluating them on the supervised task of topic
identification (topic ID), depicted in Figure 1. We
also evaluate the representations on the unsuper-
vised, less easily-measurable task of topic discov-
ery. As a proxy for controlled human annotations,
we quantify topic discovery performance by dis-
tributional similarity to gold-standard topics.

We use the bag-of-words multinomial represen-
tation of text data, i.e., each document is repre-
sented by a vector of counts over the word vo-
cabulary. For speech data, we use a modern au-
tomatic speech recognition (ASR) system to pro-
duce frame-wise triphone state cluster posteriors
and we take the sum of these posteriors across
all frames in a document to obtain a document-
level vector of triphone state cluster soft counts.
Modern topic ID systems for speech use ASR out-
put instead of a lower-resource representation like
these soft counts to improve performance (Hazen
et al., 2007). ASR word counts are high-resource
and can be viewed as a noisy version of word
counts from text. We wish to assess the relative
performance of our learned representations, not
the quality of the data pre-processing scheme, and
we desire to strengthen our results by evaluating
performance on two distinct views of a corpus.
Hence we break from convention and use triphone
state cluster soft counts as speech data.

While previous work has juxtaposed the mi-
vector model against LDA (Chen et al., 2014;
Morchid et al., 2014), the current study is the
first to provide cross-community evaluations of
mi-vectors and a contemporaneous model from

2377



text

speech
high-
dimensional
features

low-
dimensional
features

topic
prediction

BOW pre-processing

ASR

LDA

SAGE

LSA

mi-vector

logistic regression

Figure 1: Depiction of the topic ID pipeline. Raw text or speech data is processed into multinomial counts, which are then
transformed into a learned representation, and a classifier then predicts the topic of each document based on its representation.

the text community on both text and speech data.
This study is also novel in its direct application
of the mi-vector model to topic ID and topic dis-
covery, two separate tasks with different motiva-
tions and preferring different types of models, and
in its use of low-resource triphone state cluster
soft counts as speech data for topic ID. The low-
resource setting reflects constraints often faced in
real-world applications, and we report topic ID
performance under limited supervision to better il-
luminate the practical strengths and weaknesses of
the learned representations. Finally, we believe
that the centralized comparison herein of several
prominent learned representations on two comple-
mentary tasks on both text and speech will provide
a useful point of reference for future research.

2 Background

Previous work has compared and composed the
mi-vector model with older dimensionality reduc-
tion techniques, including LDA. Chen et al. (2014)
compared a mi-vector language model against
LDA and other models on the task of spoken doc-
ument retrieval, and found the mi-vector model
to significantly outperform the other models on
words, but not on subwords (syllable pairs), de-
rived from ASR. The syllable pairs are similar in
granularity to the triphone state clusters used as
multinomial speech data in the current work.

Morchid et al. (2014) improved conversation
theme identification by employing LDA and a
Gaussian i-vector model in a pipeline. They learn
LDA models of varying dimensions (numbers of
topics) on ASR output and use them to gener-
ate a suite of feature vectors. The feature vector
for each document-dimension pair is created by
marginalizing over topics according to the docu-
ment’s inferred topic proportions. A Gaussian i-
vector model is then learned on those feature vec-
tors; the i-vectors are normalized and used to iden-

tify document themes via the Bayes decision rule.
Note that we have fundamentally different ap-

proaches, goals and methodology from that of
Morchid et al. (2014). First, in an effort to provide
a scientific comparison of independently created
models, we use multinomial i-vectors, whereas
Morchid et al., focusing on a particular task set-
ting, used traditional Gaussian i-vectors. Simi-
larly, while we treat multiple types of topic mod-
els as goals in their own rights, directly compar-
ing SAGE and LDA, Morchid et al. use LDA as
a pre-processing step to Gaussian i-vectors. Sec-
ond, we use triphone state cluster soft counts in-
stead of ASR word counts, hence our representa-
tion of speech data is significantly lower-resource.
Third, we also evaluate performance on text data,
and where Morchid et al. limit their vocabulary
(from ASR) to 166 task-specific words, we use all
26,606 words present in our training data.

3 Input Representations

Our data is drawn from Part 1 of the Fisher English
speech corpus (Cieri et al., 2004c), which contains
audio recordings (Cieri et al., 2004a) and man-
ual transcriptions (Cieri et al., 2004b) of telephone
conversations. Specifically, we use the topic ID
training and evaluation test subsets defined in prior
work (Hazen et al., 2007). In each conversation in
these subsets of the data, two study participants
are prompted to speak on one of a predefined set
of forty topics. There are 1374 training conver-
sations and 686 test conversations. We represent
each conversation by two documents, one for each
side (speaker), resulting in a training set of 2748
documents and a test set of 1372 documents. The
deep neural network (DNN) used to infer the tri-
phone state cluster posteriors forming the basis of
our speech data was trained on Parts 1 and 2 of the
Fisher English speech corpus (Cieri et al., 2004a;
Cieri et al., 2005); see the supplement for further
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Figure 2: Distributions of the empirical entropy (in bits) of
documents under the two multinomial views of our corpus.
The vertical lines are the respective upper bounds (entropy
of the uniform distributions). The distribution of the entropy
of the text documents has median 7.2, over seven bits away
from the upper bound of 14.7, thus the text representation
is approximately sparse. The speech distribution has median
11.6, within two bits of the upper bound of 12.9, thus the
speech representation is nearly uniform.

details about our dataset and ASR system.
To quantify the sparsity of the raw text (word

count) and speech (triphone state cluster soft
count) representations, we consider the represen-
tation density (number of non-zero entries) on our
training set. The text representation is sparse, with
median density 292 and maximum 500 (out of
26,606 dimensions); the speech representation is
dense, with median density 7586 and maximum
7591 (out of 7591 dimensions).

To assess approximate sparsity, we plot his-
tograms of the entropy of the normalized multino-
mial views of our training set in Figure 2. The me-
dian entropy for speech is less than two bits away
from the uniform entropy, so the speech data is
neither sparse nor approximately sparse.

Finally, we note that topic occurrence in the
Fisher English training set is unbalanced, with
quartiles (including minimum and maximum) of
6, 18.75, 29.5, 50.25, and 87.

4 Learned Representations

We consider four main dimensionality reduction
models: the mi-vector model from the speech
community, the SAGE and LDA topic models
from the text community, and LSA. The learned
representations we consider explain which words
appear in a document d via a latent, lower-
dimensional representation θ(d). All representa-
tions operate under a bag-of-words assumption.
To compare mi-vectors, topic models and LSA, we
find it useful to formulate each learned representa-
tion as operating on different “areas” or “contexts”
a of a document; such a formulation does not
negate the fundamental bag-of-words assumption.
The four models represent the words that appear

in an area a—either the entire document or each
token—via multinomial-style parameters φ(a).1,2

Each model consists of K components (e.g., a K-
dimensional affine subspace), and shared param-
eters Hk,v prescribe the amount of weight each
component k places on each vocabulary word v.
The models construct φ(a) by combining H and
θ(d); often empirical word statistics m are also
used to stabilize the representations.

4.1 LSA

LSA (Deerwester et al., 1990) factorizes a term-
document matrix by truncated SVD, learning the
projection of the data onto a linear subspace of
fixed rank such that the approximation error of the
reconstructed term-document matrix (as measured
by the Frobenius norm) is minimized. In the basic
version of LSA, SVD is applied to the raw term
counts, giving the low-dimensional representation

φ(d) = Hθ(d), (1)

where φ(d) is the vector of observed multinomial
counts in document d, H is the matrix of left sin-
gular vectors of the term-document count matrix,
and θ(d) is the inferred representation of φ(d). In
practice, LSA is often applied instead to the term-
document matrix weighted by term frequency–
inverse document frequency (tf-idf) in order to
normalize terms by importance. We can also ap-
ply further pre-processing steps, such as term-wise
centering by subtracting the column-wise mean m
of the data, in which case LSA finds an affine sub-
space that approximates the data.

4.2 Mi-vector Model

The original acoustic i-vector model represents
continuous, high-dimensional ASR system state
(namely, Gaussian mixture model supervectors) in
an affine subspace (Dehak et al., 2011). Prior work
has found this dense, low-dimensional representa-
tion to be effective for a number of tasks, including
language recognition (Martı́nez et al., 2011) and
speaker recognition (Dehak et al., 2011; Garcia-
Romero and Espy-Wilson, 2011).

Recently the i-vector model was augmented for
multinomial observations (Soufifar et al., 2011)

1 Other efforts have modeled documents with interme-
diate granularity, e.g., sentence-level (Titov and McDonald,
2008) or entity-level (Newman et al., 2006) granularity.

2 For brevity, we use the multinomial distribution and its
parameter interchangeably throughout.
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and applied accordingly to language recogni-
tion (Soufifar et al., 2011; McCree and Garcia-
Romero, 2015), speaker recognition (Kockmann
et al., 2010), and spoken document retrieval (Chen
et al., 2014). In this version of the i-vector model
the observations are draws from a multinomial and
the (unnormalized) natural parameters of that dis-
tribution are represented in an affine subspace:

φ(d) = softmax
(
m +Hθ(d)

)
(2)

θ(d) ∼ N (0, I).

We call this multinomial version of the i-vector
model the mi-vector model. The latent variable
θ(d) is the multinomial i-vector, or mi-vector. H
is an unconstrained linear transformation. The
bias term m is computed as the log of the l1-
normalized background word count vector. The
Gaussian prior on the mi-vector θ(d) is effec-
tively an l2 regularizer; mi-vectors are neither non-
negative nor sparse in general.

Unlike many Bayesian topic models, word oc-
currences in the mi-vector model are i.i.d. draws
from a document-level multinomial φ(d); as in
LSA, each latent component contributes equally to
each word within a given document. Specifically,
in the mi-vector model, the natural parameter vec-
tor of the multinomial for all words in a given doc-
ument is determined by an additive offset from a
background parameter vector.

4.3 Bayesian Discrete Topic Models

Bayesian topic models explain word occurrences
via K latent components Hk (topics) each drawn
from some prior distributionG. Unlike mi-vectors
and LSA, multinomial topic models are admixture
models: each token n is drawn from a particular
distribution Hk. Latent token assignment vari-
ables z(d)

n , taking integral values between 1 and
K, dictate the token’s topic choice. A document
d controls how often each topic is chosen via the
K-dimension multinomial distribution θ(d). In the
parametric settings we consider, Dirichlet priors
are often placed on θ(d), allowing experimenta-
tion with the topic representation H .3 A mapping
Q(Hk), possibly the identity, ensures φ(d,n) are

3 There have been many efforts to provide or induce latent
structure among the topics (Blei et al., 2003a; Li and Mc-
Callum, 2006; Wallach et al., 2009; Paul and Girju, 2010),
but most models ground out to Dirichlet and discrete random
variables.

probability vectors. A general formulation is then

φ(d,n) = Q
(
H

z
(d)
n

)
(3)

Hk ∼ G (η)

z(d)
n ∼ Discrete

(
θ(d)

)
θ(d) ∼ Dirichlet (α) .

The hyperparameters α and η dictate the infor-
mativeness of the priors over Hk and θ(d): often
(empirically optimized) symmetric hyperparame-
ters are employed, resulting in a form of Laplace
smoothing during topic estimation. In the current
work, we follow this strategy, noting that there
have been concerted efforts to encode domain or
expert knowledge via the hyperparameters (Gorm-
ley et al., 2012; Paul and Dredze, 2015).

SAGE Topic Model The Sparse Additive Gen-
erative (SAGE) model (Eisenstein et al., 2011)
is a generative Bayesian modeling framework in
which φ(d,n) are formed by summing a back-
ground vector and one or more sparse vectors
generated from appropriate priors. The additive
components can reflect the contributions of doc-
uments, aspects, topics, or other factors chosen
by the modeler. A basic SAGE topic model sets
φ(d,n) = softmax

(
m +H

z
(d)
n

)
, and draws Hk

from some sparsity-inducing distribution G, e.g.,
the Laplace distribution. As m is a shared back-
ground frequency vector, Hk is the learned resid-
ual frequency vector of topic k.

Replacing the topic assignment in SAGE by its
conditional expectation gives

φ̃
(d,n)

= softmax
(
m + E

z
(d)
n

[
H

z
(d)
n

∣∣∣θ(d),H
])

= softmax
(
m +Hθ(d)

)
. (4)

This modification of the SAGE topic model is
the same as the mi-vector model but with differ-
ent regularization on the representation vector θ(d)

and l1 regularization on the basis vectorsHk. This
“marginal SAGE” model could be useful in fu-
ture work: the marginalization may mitigate the
problem of topic-switching, yielding a more iden-
tifiable (but perhaps less interpretable) model and
lending to downstream tasks such as topic ID.

LDA Latent Dirichlet Allocation (LDA) (Blei et
al., 2003b) is a generative Bayesian topic model
similar to SAGE, but in which each topic is drawn
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from a Dirichlet prior G rather than a sparsity-
inducing distribution. LDA does not explicitly ac-
count for the background distribution; to account
for this, it is common practice to threshold the vo-
cabulary a priori to remove very common and very
rare words (though in our experiments, we do not
do this). Therefore, φ(d,n) is exactly H

z
(d)
n

, and
Hk ∼ Dirichlet (η).

5 Experiments

We compare these four models of learned repre-
sentations empirically on two distinct tasks, topic
ID and topic discovery. The essential imple-
mentation details of the models are as follows;
further details are provided in the supplement.
We learn the mi-vector model in a maximum a
posteriori framework as in McCree and Garcia-
Romero (2015). Our own C++ implementation of
SAGE, available online,4 uses approximate mean-
field variational inference, as in Eisenstein et al.
(2011). We learn the LDA model using Gibbs
sampling, implemented in MALLET (McCallum,
2002).5 We perform LSA using centered tf-idf–
weighted word counts and centered l2-normalized
triphone state cluster soft counts. We implement
tf-idf by scaling the raw term count by the log in-
verse document frequency. We apply l2 normal-
ization rather than tf-idf weighting to the speech
data because it is dense and tf-idf is thus inappro-
priate. On both text and speech, mean-centering
is performed after the respective normalization, as
this pre-processing recipe performed best of all the
variants we tried.6

For each of the four models, the low-
dimensional real vector θ(d) represents a given
document d in our experiments. We also con-
sider two high-dimensional baseline representa-
tions: raw (soft) counts on both the text and
speech data, and, only on the text data, tf-idf–
weighted word counts. These tf-idf weights con-
stitute a high-dimensional learned representation.

5.1 Topic ID

In our first topic ID experiment we evaluate topic
ID error on raw multinomial views of the data. To
our knowledge, we are the first to adopt a multi-

4https://github.com/fmof/sagepp
5For Gibbs sampling, fractional counts are truncated.
6Results for other versions of LSA are provided in the

supplement. We did not present the conventional, uncentered
tf-idf weighting scheme here because although it performs
best in topic ID, it yields extremely variable V-measure.

nomial view of triphone state clusters and apply it
to topic ID. In subsequent experiments we explore
the interaction of representation dimension with
each model and dataset, and evaluate relative per-
formance when the classifier is only given a frac-
tion of the available data for training. This latter
configuration is the most interesting, as it reflects
the cost of obtaining supervised data in practice.

Given feature vectors for some representation of
the documents in a corpus, topic ID is performed
in a one-versus-all framework. We use logistic re-
gression as the per-class binary classifier, imple-
mented using LIBLINEAR (Fan et al., 2008). Re-
sults were similar when logistic regression was re-
placed by support vector machines. All document
representations are length-normalized (divided by
their l2 norm) before they are input to the classi-
fier. Performance is measured by topic ID error,
the error of multi-class prediction where the class
predicted for each document is that of the per-class
classifier that gave it the highest weight. Baseline
performance on the test set (where the baseline
classifier chooses the most prevalent topic in the
training set for all test examples) is 96.2% error.
Note that this error rate differs from the uniform-
at-random classification error rate of 97.5% be-
cause of the uneven distribution of topics.

Document Construction Prior work (Hazen et
al., 2007; Wintrode and Khudanpur, 2014) treated
whole conversations as documents in addition to
separating each conversation into its two sides.
We perform a small topic ID experiment in this
configuration to probe the impact of this design
choice. Ten-fold cross-validation (CV) is used
to tune the logistic regression regularizers. On
the test set, the classifier achieves topic ID error
of 12.4% and 15.6% for whole-conversation and
individual-side text data, respectively, and 20.1%
and 29.5% for whole-conversation and individual-
side speech data, respectively. These results cor-
respond roughly to results listed in Table 3 of
Hazen et al. (2007), specifically, the topic ID er-
ror of 8.2% and 12.4% for whole-conversation
and individual-side transcriptions, respectively,
and 22.9% and 35.3% for whole-conversation and
individual-side triphones derived from ASR lat-
tices, respectively (Hazen et al., 2007). However,
we use logistic regression without feature selec-
tion instead of Naı̈ve Bayes with feature selection,
and we apply our classifier to triphone state cluster
soft counts inferred by a DNN instead of triphone
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Figure 3: Topic ID error (%) on the test set for raw and tf-
idf representations and lower-dimensional learned represen-
tations at dimensions K ∈ {10, 50, 100, 200, 300, 600}. We
see many of the learned representations approach the error
rate of the raw representation, but at much lower dimension-
ality.

counts from ASR lattices. We believe that the dis-
crepancies in performance with respect to prior
work are due to these differences in experimen-
tal configuration. Our results and those of prior
work show that using whole-conversation docu-
ments instead of individual-side documents make
the topic ID task easier. As a result, we expect that
differences in performance between the different
learned representations will be more clearly pro-
nounced on individual conversation sides and we
restrict the rest of our study to that setting.

Dimensionality Study We perform topic ID
on learned representations at dimensions K ∈
{10, 50, 100, 200, 300, 600} on individual conver-
sation sides, using ten-fold cross-validation to
tune the logistic regression regularizers. Figure 3
gives topic ID error results on the test set, vary-
ing K. (Selected values are listed in Table 1.)
In both datasets, as the dimension K increases,
topic ID error decreases, approaching (approxi-
mately) the raw baseline. On text, tf-idf performs
slightly better than the raw representation. LSA is
marginally the best-performing lower-dimensional
learned representation; LDA and mi-vectors per-
form well at some representation sizes, depending
on the data source, but their performance is less
consistent. SAGE performs poorly overall.

view model dimension error
text LDA 600 16.5
text SAGE 600 31.3
text mi-vector 600 17.6
text LSA 600 16.7
text tf-idf 26,606 13.6
text raw 26,606 15.6
speech LDA 600 35.3
speech SAGE 600 63.0
speech mi-vector 600 27.9
speech LSA 600 26.2
speech raw 7591 29.5

Table 1: Selected topic ID error (%) values from Figure 3.

Limited Data Study The raw text and speech
representations (multinomial observations) are
very high-dimensional, and the classifier is likely
to overfit to specific components (words or tri-
phone state clusters) in these representations. To
measure this effect and attempt to separate the
predictive power of logistic regression from the
quality of the learned representations in our anal-
ysis, we experiment with reducing the number of
labeled training examples the classifier can use;
we still learn representations on the full (unla-
beled) training set. This experiment represents the
limited-supervision setting in which supervised
data is costly to obtain but unlabeled data abounds.

We run this experiment twice, using ` = 2 and
` = 6 labeled examples per topic, for a total of
80 and 240 classifier training examples, respec-
tively. Ten-fold cross-validation is used to fit the
regularizer; per-class loss coefficients are set ac-
cording to the class prior in the original training
set in order to counteract the artificial balancing
of the classes in the limited-supervision dataset.
We report cross-validation estimates of the topic
ID error on the training set for K = 10 (Figure 4),
K = 100 (Figure 5), andK = 600 (Figure 6). For
K = 100 and K = 600, LSA dominates in the
limited-supervision setting. Mi-vectors perform
as well as or better than other low-dimensional
learned representations at K = 10, and exhibit
mixed performance for larger K. SAGE performs
poorly overall.7 LDA performs significantly bet-

7 We believe that approximately sparse posterior θ(d) val-
ues result in a kind of topic switching, contributing to the poor
performance of SAGE. To examine this we “tested on train”
and analyzed the top topics inferred for each document: while
the highest-weighted topic tended to be consistent, SAGE
infers approximately sparse θ(d) with large variation in the
next four highest-weighted topics (the remaining topics are
assigned trace mass). Second, a phenomenon known as con-
versation drift, explained in Section 3 of the supplement, is so
pronounced in Fisher that the first 25% percent of words of
each conversation side are nearly as predictive as the entire
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Figure 4: CV topic ID error (%) for raw and tf-idf represen-
tations and lower-dimensional learned representations of size
K = 10. Error bars denote plus and minus one standard
deviation according to the CV empirical distribution. We
see underparametrized mi-vectors excel at compressing the
topic label information for text, particularly in the limited-
supervision settings.

ter than SAGE, but not as well as mi-vectors. Fi-
nally, tf-idf–weighted word counts perform very
well on text, often achieving the best performance
of all representations, even under limited supervi-
sion (but at the same dimension as the raw data).

5.2 Topic Discovery
To quantitatively assess representations’ potential
for topic discovery we compute their V-measure
against the gold-standard labels. V-measure is an
unsupervised measure of similarity between two
partitions (Rosenberg and Hirschberg, 2007) and
is equivalent to the mutual information normalized
by the sum of the entropy (Becker, 2011).

For all representations, we compute V-measure
between a partition induced by that representation
and the gold-standard topic labels on the test set. A
partition is induced on a representation by assign-
ing each document d to the cluster indexed by the
coordinate of θ(d) with highest value (the argmax).
Results of this analysis are displayed in Figure 7.
(Selected values are listed in Table 2.) On the text
data, SAGE dominates the lower-dimensional rep-
resentations, LSA is next best overall, and LDA
and mi-vectors exhibit relatively low performance;

document (Wintrode, 2013). All representations must con-
tend with this drift, but θ(d) sparsity may make SAGE partic-
ularly susceptible. These two issues may make the classifica-
tion we use much less robust.
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Figure 5: CV topic ID error (%) for raw and tf-idf represen-
tations and lower-dimensional learned representations of size
K = 100. Error bars denote plus and minus one standard
deviation according to the CV empirical distribution.

view model dimension V-measure
text LDA 600 0.517
text SAGE 600 0.663
text mi-vector 600 0.507
text LSA 600 0.525
text tf-idf 26,606 0.626
text raw 26,606 0.134
speech LDA 600 0.358
speech SAGE 600 0.511
speech mi-vector 600 0.468
speech LSA 600 0.190
speech raw 7591 0.132

Table 2: Selected V-measure values from Figure 7.

the high-dimensional tf-idf weights are surpassed
by SAGE for K > 10 but beat other representa-
tions by a significant margin. On speech, SAGE is
best overall, mi-vectors exhibit similar but gener-
ally lower performance, LDA performs worse, and
LSA is worst.

We also measure the topic discovery potential
of the mi-vector and SAGE representations more
directly. First, we provide a manual inspection of
the learned topics: in Table 3 we show the top-
five word lists for five random topics from the 600-
dimensional mi-vector and SAGE models (respec-
tively) learned on the text data. In both models,
the top five words in a topic are selected accord-
ing to the five largest positive values in the cor-
responding vector Hk. Qualitatively, the SAGE
topics are considerably more interpretable than the
mi-vector topics: the SAGE topics represent is-
sues of censorship, foreign relations, coffee fran-
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Figure 6: CV topic ID error (%) for raw and tf-idf represen-
tations and lower-dimensional learned representations of size
K = 600. Error bars denote plus and minus one standard
deviation according to the CV empirical distribution.

chises, welfare, and professional basketball, while
the mi-vector topics are less succinctly characteri-
zable and more polluted by uninformative words.

We complement this qualitative analysis with
Mimno et al. (2011)’s intrinsic coherence mea-
sure, a standard quantitative method. This scor-
ing function, which correlates well with human
quality judgments, averages estimates of the con-
ditional log-likelihoods of each topic’sM highest-
weighted words across all topics. Using K = 600
models on text as before and picking M = 20,
we compute mi-vector coherence as −453.34 and
SAGE coherence (averaged over three runs) as
−407.52, indicating that SAGE is more amenable
to topic discovery and human interaction.

mi-vector
you’ve, florida, each, a-, bit
hours, never, couldn’t, check, communicate
pregnant, water, lifestyle, awful, called
forgot, ran, social, topics, unique
tough, way, let’s, fifties, hand

SAGE
censor, books, censorship, neat, agree
sanctions, siblings, democratic, rely, u. n.
starbucks, franchise, coffee, franchising, studio
welfare, wage, minimum, cents, tips
team, role, professional, blazers, basketball

Table 3: Top five words in five random mi-vector and SAGE
topics learned on text data at K = 600.
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Figure 7: V-measure on the Fisher English text and speech
data, respectively, for raw and tf-idf representations and
lower-dimensional learned representations at selected dimen-
sions. As in topic ID, we see underparametrized mi-vectors
perform well on the text data.

6 Discussion

We have theoretically and empirically compared
several content-bearing representations of text and
speech from prior work. We have measured the
relative performance of these representations on
topic ID, an easy-to-evaluate task familiar to both
text and speech research communities. We have
also assessed the representations in their ability to
discover the topics inherent in a corpus, a task that
is more prominent in the text community and more
difficult to evaluate. On our subset of the Fisher
English data, these tasks appear to have compet-
ing objectives: the best representations in one task
are not necessarily the best in the other. In partic-
ular, while SAGE yields the worst performance as
a feature learner for topic ID, it is demonstrably
superior to other low-dimensional learned repre-
sentations in topic discovery. We have evaluated
performance in topic discovery by distributional
similarity to gold-standard topics as a proxy for
human-annotated judgments of topic quality, and
briefly compared the interpretability of mi-vectors
and SAGE; future work could pursue expert or
crowd-sourced human evaluations.

In the full-supervision setting of topic ID, the
lower-dimensional learned representations con-
verge in performance to the raw representation as
the dimension K increases. However, if only a
couple of labeled examples per class are available,
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reflecting the expense of obtaining labels in prac-
tice, then learned representations generally outper-
form the raw representation, which is more prone
to overfitting. It is surprising that tf-idf performs
so well in the limited supervision setting; it is
learned from the data, but it should be prone to
overfitting due to its high dimensionality. It is
also surprising that SAGE performance on text de-
grades significantly at high dimensions; we sus-
pect this is due to topic switching, but further in-
vestigation is warranted. Overall, though, for topic
ID on word counts or triphone state cluster soft
counts, if labeled data is scarce, we benefit from
training on unsupervised learned representations.

In the V-measure experiment, the documents
were partitioned according to the heaviest coordi-
nate in their representations. This choice of exper-
imental protocol is a nuisance variable in our re-
sults; other partition constructions may yield dif-
ferent conclusions. In particular, the heaviest-
coordinate partition may favor topic models,
whose representations are probability vectors, and
disfavor mi-vectors and LSA, whose representa-
tions may have positive and negative coordinates
encoding general linear combinations.

Within each task, the ranking of the represen-
tations (by performance) is generally consistent
between the text and speech data; however, mi-
vectors often outperform LDA on the speech data,
while LDA often outperforms mi-vectors on the
text data. This may be evidence that the two com-
munities have already independently identified ap-
propriate dimensionality reduction techniques for
their respective data sources. However, our re-
sults support that the speech community can bene-
fit from broader use of sparsity-inducing graphical
models such as SAGE in tasks like spoken topic
discovery and recommendation, in which human-
interpretable representations are desired. The text
community may similarly benefit from parsimo-
nious models such as LSA or mi-vectors in down-
stream tasks; underparametrized mi-vectors per-
form particularly well on text, and future work
may benefit from investigating this setting.

Word counts and triphone state cluster soft
counts provide only one view of text and speech
(respectively), and other input representations may
yield different conclusions. The particular LSA
approach we used for text, based on tf-idf weight-
ing, is not as appropriate for our speech data,
which is dense. Future work could evaluate other

implementations of LSA or use a higher-level
view of speech, such as triphone state cluster n-
grams, that more naturally exhibits sparsity and
lends to tf-idf weighting. In particular, weight-
ing by a likelihood ratio test statistic and apply-
ing a log transform has generated better perfor-
mance in several other tasks (Lapesa and Evert,
2014). Future work could also test our conclusions
on higher-resource views of speech, such as ASR
word counts, or lower-resource views such as mel-
frequency cepstral coefficients (MFCCs).

We have provided a brief cross-community
evaluation of learned representations on multi-
nomial text and speech data. Some prior work
has evaluated related learned representations on
text data alone, surveying parameters and tasks
at greater breadth (Lapesa and Evert, 2014; Levy
et al., 2015). A similarly comprehensive evalua-
tion spanning the text and speech research com-
munities would demand great effort but provide a
large and versatile resource. In complement, a de-
tailed, case-by-case analysis of errors made by the
models in our study could illuminate future model-
ing efforts by exposing exactly how and why each
model errs or excels in each task.

7 Conclusion

Topic ID and topic discovery are competing ob-
jectives in our setting: we found that the best-
performing representations per task were the same
whether considering text- or speech-based com-
munications. By evaluating learned representa-
tions from both the text and speech communities
on a common set of data and tasks, we have pro-
vided a framework for better understanding the
topic ID and topic discovery objectives, among
others. More generally, we hope to encourage
cross-community collaboration to accelerate con-
vergence toward comprehensive models of lan-
guage.
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Abstract

Efficient computation of n-gram posterior
probabilities from lattices has applications
in lattice-based minimum Bayes-risk de-
coding in statistical machine translation
and the estimation of expected document
frequencies from spoken corpora. In this
paper, we present an algorithm for com-
puting the posterior probabilities of all n-
grams in a lattice and constructing a mini-
mal deterministic weighted finite-state au-
tomaton associating each n-gram with its
posterior for efficient storage and retrieval.
Our algorithm builds upon the best known
algorithm in literature for computing n-
gram posteriors from lattices and lever-
ages the following observations to signifi-
cantly improve the time and space require-
ments: i) the n-grams for which the poste-
riors will be computed typically comprises
all n-grams in the lattice up to a certain
length, ii) posterior is equivalent to ex-
pected count for an n-gram that do not re-
peat on any path, iii) there are efficient al-
gorithms for computing n-gram expected
counts from lattices. We present exper-
imental results comparing our algorithm
with the best known algorithm in literature
as well as a baseline algorithm based on
weighted finite-state automata operations.

1 Introduction

Many complex speech and natural language
processing (NLP) pipelines such as Automatic
Speech Recognition (ASR) and Statistical Ma-
chine Translation (SMT) systems store alternative
hypotheses produced at various stages of process-
ing as weighted acyclic automata, also known as
lattices. Each lattice stores a large number of
hypotheses along with the raw system scores as-
signed to them. While single-best hypothesis is

typically what is desired at the end of the pro-
cessing, it is often beneficial to consider a large
number of weighted hypotheses at earlier stages of
the pipeline to hedge against errors introduced by
various subcomponents. Standard ASR and SMT
techniques like discriminative training, rescoring
with complex models and Minimum Bayes-Risk
(MBR) decoding rely on lattices to represent in-
termediate system hypotheses that will be fur-
ther processed to improve models or system out-
put. For instance, lattice based MBR decoding has
been shown to give moderate yet consistent gains
in performance over conventional MAP decoding
in a number of speech and NLP applications in-
cluding ASR (Goel and Byrne, 2000) and SMT
(Tromble et al., 2008; Blackwood et al., 2010; de
Gispert et al., 2013).

Most lattice-based techniques employed by
speech and NLP systems make use of posterior
quantities computed from probabilistic lattices. In
this paper, we are interested in two such posterior
quantities: i) n-gram expected count, the expected
number of occurrences of a particular n-gram in
a lattice, and ii) n-gram posterior probability, the
total probability of accepting paths that include a
particular n-gram. Expected counts have applica-
tions in the estimation of language model statis-
tics from probabilistic input such as ASR lattices
(Allauzen et al., 2003) and the estimation term
frequencies from spoken corpora while posterior
probabilities come up in MBR decoding of SMT
lattices (Tromble et al., 2008), relevance ranking
of spoken utterances and the estimation of docu-
ment frequencies from spoken corpora (Karakos
et al., 2011; Can and Narayanan, 2013).

The expected count c(x|A) of n-gram x given
lattice A is defined as

c(x|A) =
∑
y∈Σ∗

#y(x)p(y|A) (1)

where #y(x) is the number of occurrences of n-
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gram x in hypothesis y and p(y|A) is the posterior
probability of hypothesis y given lattice A. Simi-
larly, the posterior probability p(x|A) of n-gram x
given lattice A is defined as

p(x|A) =
∑
y∈Σ∗

1y(x)p(y|A) (2)

where 1y(x) is an indicator function taking the
value 1 when hypothesis y includes n-gram x and
0 otherwise. While it is straightforward to com-
pute these posterior quantities from weighted n-
best lists by examining each hypothesis separately
and keeping a separate accumulator for each ob-
served n-gram type, it is infeasible to do the same
with lattices due to the sheer number of hypothe-
ses stored. There are efficient algorithms in lit-
erature (Allauzen et al., 2003; Allauzen et al.,
2004) for computing n-gram expected counts from
weighted automata that rely on weighted finite
state transducer operations to reduce the compu-
tation to a sum over n-gram occurrences elimi-
nating the need for an explicit sum over accept-
ing paths. The rather innocent looking difference
between Equations 1 and 2, #y(x) vs. 1y(x),
makes it hard to develop similar algorithms for
computing n-gram posteriors from weighted au-
tomata since the summation of probabilities has to
be carried out over paths rather than n-gram oc-
currences (Blackwood et al., 2010; de Gispert et
al., 2013).

The problem of computing n-gram posteriors
from lattices has been addressed by a number of
recent works (Tromble et al., 2008; Allauzen et
al., 2010; Blackwood et al., 2010; de Gispert et
al., 2013) in the context of lattice-based MBR for
SMT. In these works, it has been reported that the
time required for lattice MBR decoding is domi-
nated by the time required for computing n-gram
posteriors. Our interest in computing n-gram pos-
teriors from lattices stems from its potential appli-
cations in spoken content retrieval (Chelba et al.,
2008; Karakos et al., 2011; Can and Narayanan,
2013). Computation of document frequency statis-
tics from spoken corpora relies on estimating n-
gram posteriors from ASR lattices. In this con-
text, a spoken document is simply a collection of
ASR lattices. The n-grams of interest can be word,
syllable, morph or phoneme sequences. Unlike in
the case of lattice-based MBR for SMT where the
n-grams of interest are relatively short – typically
up to 4-grams –, the n-grams we are interested in

are in many instances relatively long sequences of
subword units.

In this paper, we present an efficient algorithm
for computing the posterior probabilities of all n-
grams in a lattice and constructing a minimal de-
terministic weighted finite-state automaton asso-
ciating each n-gram with its posterior for efficient
storage and retrieval. Our n-gram posterior com-
putation algorithm builds upon the custom forward
procedure described in (de Gispert et al., 2013)
and introduces a number of refinements to signifi-
cantly improve the time and space requirements:

• The custom forward procedure described in
(de Gispert et al., 2013) computes unigram
posteriors from an input lattice. Higher or-
der n-gram posteriors are computed by first
transducing the input lattice to an n-gram lat-
tice using an order mapping transducer and
then running the custom forward procedure
on this higher order lattice. We reformulate
the custom forward procedure as a dynamic
programming algorithm that computes pos-
teriors for successively longer n-grams and
reuses the forward scores computed for the
previous order. This reformulation subsumes
the transduction of input lattices to n-gram
lattices and obviates the need for construct-
ing and applying order mapping transducers.

• Comparing Eq. 1 with Eq. 2, we can observe
that posterior probability and expected count
are equivalent for an n-gram that do not re-
peat on any path of the input lattice. The
key idea behind our algorithm is to limit the
costly posterior computation to only those n-
grams that can potentially repeat on some
path of the input lattice. We keep track of
repeating n-grams of order n and use a sim-
ple impossibility argument to significantly re-
duce the number of n-grams of order n + 1
for which posterior computation will be per-
formed. The posteriors for the remaining
n-grams are replaced with expected counts.
This filtering of n-grams introduces a slight
bookkeeping overhead but in return dramat-
ically reduces the runtime and memory re-
quirements for long n-grams.

• We store the posteriors for n-grams that can
potentially repeat on some path of the input
lattice in a weighted prefix tree that we con-
struct on the fly. Once that is done, we com-
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Table 1: Common semirings.

SEMIRING SET ⊕ ⊗ 0 1

Boolean {0, 1} ∨ ∧ 0 1
Probability R+ ∪ {+∞} + × 0 1
Log R ∪ {−∞,+∞} ⊕log + +∞ 0
Tropical R ∪ {−∞,+∞} min + +∞ 0

a⊕log b = − log(e−a + e−b)

pute the expected counts for all n-grams in
the input lattice and represent them as a min-
imal deterministic weighted finite-state au-
tomaton, known as a factor automaton (Al-
lauzen et al., 2004; Mohri et al., 2007), us-
ing the approach described in (Allauzen et al.,
2004). Finally we use general weighted au-
tomata algorithms to merge the weighted fac-
tor automaton representing expected counts
with the weighted prefix tree representing
posteriors to obtain a weighted factor au-
tomaton representing posteriors that can be
used for efficient storage and retrieval.

2 Preliminaries

This section introduces the definitions and nota-
tion related to weighted finite state automata and
transducers (Mohri, 2009).

2.1 Semirings

Definition 1 A semiring is a 5-tuple
(K,⊕,⊗, 0, 1) where (K,⊕, 0) is a commutative
monoid, (K,⊗, 1) is a monoid, ⊗ distributes over
⊕ and 0 is an annihilator for ⊗.

Table 1 lists common semirings. In speech and
language processing, two semirings are of particu-
lar importance. The log semiring is isomorphic to
the probability semiring via the negative-log mor-
phism and can be used to combine probabilities in
the log domain. The tropical semiring, provides
the algebraic structure necessary for shortest-path
algorithms and can be derived from the log semir-
ing using the Viterbi approximation.

2.2 Weighted Finite-State Automata

Definition 2 A weighted finite-state automaton
(WFSA) A over a semiring (K,⊕,⊗, 0, 1) is a 7-
tuple A = (Σ, Q, I, F,E, λ, ρ) where: Σ is the
finite input alphabet; Q is a finite set of states;
I, F ⊆ Q are respectively the set of initial and

final states; E ⊆ Q × (Σ ∪ {ε}) × K × Q is a
finite set of arcs; λ : I → K, ρ : F → K are
respectively the initial and final weight functions.

Given an arc e ∈ E, we denote by i[e] its in-
put label, w[e] its weight, s[e] its source or origin
state and t[e] its target or destination state. A path
π = e1 · · · ek is an element ofE∗ with consecutive
arcs satisfying t[ei−1] = s[ei], i = 2, . . . , k. We
extend t and s to paths by setting t[π] = s[ek] and
s[π] = t[e1]. The labeling and the weight func-
tions can also be extended to paths by defining
i[π] = i[e1] . . . i[ek] and w[π] = w[e1] ⊗ . . . ⊗
w[ek]. We denote by Π(q, q′) the set of paths from
q to q′ and by Π(q, x, q′) the set of paths from q to
q′ with input string x ∈ Σ∗. These definitions can
also be extended to subsets S, S′ ⊆ Q, e.g.

Π(S, x, S′) =
⋃

q∈S,q′∈S′
Π(q, x, q′).

An accepting path in an automaton A is a path in
Π(I, F ). A string x is accepted byA if there exists
an accepting path π labeled with x. A is determin-
istic if it has at most one initial state and at any
state no two outgoing transitions share the same
input label. The weight associated by an automa-
ton A to a string x ∈ Σ∗ is given by

JAK(x) =
⊕

π∈Π(I,x,F )

λ(s[π])⊗ w[π]⊗ ρ(t[π])

and JAK(x) , 0 when Π(I, x, F ) = ∅.
A weighted automatonA defined over the prob-

ability semiring (R+,+,×, 0, 1) is said to be
probabilistic if for any state q ∈ Q, the sum of
the weights of all cycles at q, ⊕π∈Π(q,q)w[π], is
well-defined and in R+ and

∑
x∈Σ∗JAK(x) = 1.

2.3 N-gram Mapping Transducer

We denote by Φn the n-gram mapping transducer
(Blackwood et al., 2010; de Gispert et al., 2013)
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of order n. This transducer maps label sequences
to n-gram sequences of order n. Φn is similar in
form to the weighted finite-state transducer rep-
resentation of a backoff n-gram language model
(Allauzen et al., 2003). We denote by An the n-
gram lattice of order n obtained by composing lat-
tice A with Φn, projecting the resulting transducer
onto its output labels, i.e. n-grams, to obtain an
automaton, removing ε-transitions, determinizing
and minimizing (Mohri, 2009). An is a compact
lattice of n-gram sequences of order n consistent
with the labels and scores of lattice A. An typi-
cally has more states than A due to the association
of distinct n-gram histories with states.

2.4 Factor Automata

Definition 3 Given two strings x, y ∈ Σ∗, x is
a factor (substring) of y if y = uxv for some
u, v ∈ Σ∗. More generally, x is a factor of a
language L ⊆ Σ∗ if x is a factor of some string
y ∈ L. The factor automaton S(y) of a string
y is the minimal deterministic finite-state automa-
ton recognizing exactly the set of factors of y. The
factor automaton S(A) of an automaton A is the
minimal deterministic finite-state automaton rec-
ognizing exactly the set of factors of A, that is the
set of factors of the strings accepted by A.

Factor automaton (Mohri et al., 2007) is an ef-
ficient and compact data structure for representing
a full index of a set of strings, i.e. an automaton. It
can be used to determine if a string x is a factor in
time linear in its length O(|x|). By associating a
weight with each factor, we can generalize the fac-
tor automaton structure to weighted automata and
use it for efficient storage and retrieval of n-gram
posteriors and expected counts.

3 Computation of N-gram Posteriors

In this section we present an efficient algorithm
based on the n-gram posterior computation algo-
rithm described in (de Gispert et al., 2013) for
computing the posterior probabilities of all n-
grams in a lattice and constructing a weighted fac-
tor automaton for efficient storage and retrieval of
these posteriors. We assume that the input lattice
is an ε-free acyclic probabilistic automaton. If that
is not the case, we can use general weighted au-
tomata ε-removal and weight-pushing algorithms
(Mohri, 2009) to preprocess the input automaton.

Algorithm 1 reproduces the original algo-
rithm of (de Gispert et al., 2013) in our no-

tation. Each iteration of the outermost loop
starting at line 1 computes posterior probabili-
ties of all unigrams in the n-gram lattice An =
(Σn, Qn, In, Fn, En, λn, ρn), or equivalently all
n-grams of order n in the lattice A. The inner
loop starting at line 6 is essentially a custom for-
ward procedure computing not only the standard
forward probabilities α[q], the marginal probabil-
ity of paths that lead to state q,

α[q] =
⊕

π ∈Π(I,q)

λ(s[π])⊗ w[π] (3)

=
⊕
e∈E
t[e] = q

α[s[e]]⊗ w[e] (4)

but also the label specific forward probabilities
α̃[q][x], the marginal probability of paths that lead
to state q and include label x.

α̃[q][x] =
⊕

π ∈Π(I,q)

∃u,v ∈Σ∗: i[π] =uxv

λ(s[π])⊗ w[π] (5)

=
⊕
e∈E
t[e] = q

i[e] =x

α[s[e]]⊗ w[e]

⊕
⊕
e∈E
t[e] = q

i[e] 6=x

α̃[s[e]][x]⊗ w[e] (6)

Just like in the case of the standard forward al-
gorithm, visiting states in topological order en-
sures that forward probabilities associated with a
state has already been computed when that state is
visited. At each state s, the algorithm examines
each arc e = (s, x, w, q) and updates the forward
probabilities for state q in accordance with the re-
cursions in Equations 4 and 6 by propagating the
forward probabilities computed for s (lines 8-12).
The conditional on line 11 ensures that the label
specific forward probability α̃[s][y] is propagated
to state q only if label y is different from label x,
the label on the current arc. In other words, if a
label y repeats on some path π leading to state
q, then π contributes to α̃[q][y] only once. This
is exactly what is required by the indicator func-
tion in Equation 2 when computing unigram pos-
teriors. Whenever a final state is processed, the
posterior probability accumulator for each label
observed on paths reaching that state is updated
by multiplying the label specific forward probabil-
ity and the final weight associated with that state
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Algorithm 1 Compute N-gram Posteriors

1 for n← 1, . . . , N do
2 An←Min(Det(RmEps(ProjOut(A ◦ Φn))))
3 α[q]← λn(q), ∀ state q ∈ Qn
4 α̃[q][x]← 0, ∀ state q ∈ Qn, ∀ label x ∈ Σn

5 p(x|A)← 0, ∀ label x ∈ Σn

6 for each state s ∈ Qn do . In topological order
7 for each arc (s, x, w, q) ∈ En do
8 α[q]← α[q]⊕ α[s]⊗ w
9 α̃[q][x]← α̃[q][x]⊕ α[s]⊗ w

10 for each label y ∈ α̃[s] do
11 if y 66= x then
12 α̃[q][y]← α̃[q][y]⊕ α̃[s][y]⊗ w
13 if s ∈ Fn then
14 for each label x ∈ α̃[s] do
15 p(x|A)← p(x|A)⊕ α̃[s][x]⊗ ρn(s)
16 P ←Min(ConstructPrefixTree(p))

and adding the resulting value to the accumulator
(lines 13-15). It should be noted that this algo-
rithm is a form of marginalization (de Gispert et
al., 2013), rather than a counting procedure, due
to the conditional on line 11. If that conditional
were to be removed, this algorithm would com-
pute n-gram expected counts instead of posterior
probabilities.

The key idea behind our algorithm is to re-
strict the computation of posteriors to only those
n-grams that may potentially repeat on some path
of the input lattice and exploit the equivalence of
expected counts and posterior probabilities for the
remaining n-grams. It is possible to extend Algo-
rithm 1 to implement this restriction by keeping
track of repeating n-grams of order n and replac-
ing the output labels of appropriate arcs in Φn+1

with ε labels. Alternatively we can reformulate
Algorithm 1 as in Algorithm 2. In this formulation
we compute n-gram posteriors directly on the in-
put lattice A without constructing the n-gram lat-
tice An. We explicitly associate states in the orig-
inal lattice with distinct n-gram histories which is
implicitly done in Algorithm 1 by constructing the
n-gram lattice An. This explicit association lets
us reuse forward probabilities computed at order
n while computing the forward probabilities at or-
der n + 1. Further, we can directly restrict the
n-grams for which posterior computation will be
performed.

In Algorithm 2, ά[n][q][h] represents the his-

tory specific forward probability of state q, the
marginal probability of paths that lead to state q
and include length n string h as a suffix.

ά[n][q][h] =
⊕

π ∈Π(I,q)

∃ z ∈Σ∗: i[π] = zh

λ(s[π])⊗ w[π] (7)

=
⊕
e∈E
t[e] = q

g ∈ ά[n−1][s[e]]

gi[e] =h

ά[n− 1][s[e]][g]⊗ w[e]

(8)

ά[n][q][h] is the analogue of α[q] in Algorithm 1.
It splits the forward probability of state q (Equa-
tion 3), among length n suffixes (or histories)
of paths that lead to state q. We can interpret
ά[n][q][h] as the forward probability of state (q, h)
in the n-gram lattice An+1. Here (q, h) ∈ Qn+1

denotes the unique state corresponding to state q
in the original lattice A and state h in the mapping
transducer Φn+1. α̂[q][h][x] represents the history
and n-gram specific forward probability of state q,
the marginal probability of paths that lead to state
q, include length n − 1 string h as a suffix and
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Algorithm 2 Compute N-gram Posteriors (Reformulation)

1 R[0]← {ε}
2 ά[0][q][ε]← α[q], ∀ state q ∈ Q
3 for n← 1, . . . , N do
4 R[n]← ∅
5 ά[n][q][x]← 0, ∀ state q ∈ Q, ∀ ngram x ∈ Σn

6 α̂[q][h][x]← 0, ∀ state q ∈ Q, ∀ history h ∈ Σn−1, ∀ ngram x ∈ Σn

7 p(x|A)← 0, ∀ ngram x ∈ Σn

8 for each state s ∈ Q do . In topological order
9 for each history g ∈ ά[n− 1][s] where g ∈ R[n− 1] do

10 for each arc (s, i, w, q) ∈ E do
11 x← gi . Concatenate history and label
12 h← x[1 : n] . Drop first label
13 if h ∈ R[n− 1] then
14 ά[n][q][x]← ά[n][q][x]⊕ ά[n− 1][s][g]⊗ w
15 α̂[q][h][x]← α̂[q][h][x]⊕ ά[n− 1][s][g]⊗ w
16 for each ngram y ∈ α̂[s][g] do
17 if y 66= x then
18 α̂[q][h][y]← α̂[q][h][y]⊕ α̂[s][g][y]⊗ w
19 else
20 R[n]← R[n] ∪ {y}
21 if s ∈ F then
22 for each history g ∈ α̂[s] do
23 for each ngram x ∈ α̂[s][g] do
24 p(x|A)← p(x|A)⊕ α̂[s][g][x]⊗ ρ(s)
25 P ′← ConstructPrefixTree(p)
26 C ← ComputeExpectedCounts(A,N)
27 P ←Min(Det(RmEps((C − RmWeight(P ′))⊕ P ′)))

include n-gram x as a substring.

α̂[q][h][x] =
⊕

π ∈Π(I,q)

∃ z ∈Σ∗: i[π] = zh

∃u,v ∈Σ∗: i[π] =uxv

λ(s[π])⊗ w[π]

(9)

=
⊕
e∈E
t[e] = q

g ∈ ά[|h|][s[e]]
gi[e] =x

ά[|h|][s[e]][g]⊗ w[e]

⊕
⊕
e∈E
t[e] = q

g ∈ α̂[s[e]]

gi[e] 6=x

α̂[s[e]][g][x]⊗ w[e]

(10)

α̂[q][h][x] is the analogue of α̃[q][x] in Algorithm
1. R[n] represents the set of n-grams of order n

that repeat on some path of A. We start by defin-
ing R[0] , {ε}, i.e. the only repeating n-gram
of order 0 is the empty string ε, and computing
ά[0][q][ε] ≡ α[q] using the standard forward algo-
rithm. Each iteration of the outermost loop start-
ing at line 3 computes posterior probabilities of all
n-grams of order n directly on the lattice A. At
iteration n, we visit the states in topological order
and examine each length n−1 history g associated
with s, the state we are in. For each history g, we
go over the set of arcs leaving state s, construct the
current n-gram x by concatenating g with the cur-
rent arc label i (line 11), construct the length n−1
history h of the target state q (line 12), and update
the forward probabilities for the target state his-
tory pair (q, h) in accordance with the recursions
in Equations 8 and 10 by propagating the forward
probabilities computed for the state history pair
(s, g) (lines 14-18). Whenever a final state is pro-
cessed, the posterior probability accumulator for
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each n-gram of order n observed on paths reach-
ing that state is updated by multiplying the n-gram
specific forward probability and the final weight
associated with that state and adding the resulting
value to the accumulator (lines 21-24).

We track repeating n-grams of order n to re-
strict the costly posterior computation operation to
only those n-grams of order n+ 1 that can poten-
tially repeat on some path of the input lattice. The
conditional on line 17 checks if any of the n-grams
observed on paths reaching state history pair (s, g)
is the same as the current n-gram x, and if so adds
it to the set of repeating n-grams. At each iteration
n, we check if the current length n − 1 history g
of the state we are in is in R[n − 1], the set of re-
peating n-grams of order n−1 (line 9). If it is not,
then no n-gram x = gi can repeat on some path of
A since that would require g to repeat as well. If g
is inR[n−1], then for each arc e = (s, i, w, q) we
check if the length n− 1 history h = g[1 : n− 1]i
of the next state q is in R[n − 1] (line 13). If it
is not, then the n-gram x = g[0]h can not repeat
either.

We keep the posteriors p(x|A) for n-grams that
can potentially repeat on some path of the input
lattice in a deterministic WFSA P ′ that we con-
struct on the fly. P ′ is a prefix tree where each
path π corresponds to an n-gram posterior, i.e.
i[π] = x =⇒ w[π] = ρ(t[π]) = p(x|A).
Once the computation of posteriors for possibly
repeating n-grams is finished, we use the algo-
rithm described in (Allauzen et al., 2004) to con-
struct a weighted factor automaton C mapping all
n-grams observed in A to their expected counts,
i.e. ∀π in C, i[π] = x =⇒ w[π] = c(x|A).
We use P ′ and C to construct another weighted
factor automaton P mapping all n-grams observed
in A to their posterior probabilities, i.e. ∀π in P ,
i[π] = x =⇒ w[π] = p(x|A). First we remove
the n-grams accepted by P ′ from C using the dif-
ference operation (Mohri, 2009),

C ′ = C − RmWeight(P ′)

then take the union of the remaining automaton C ′

and P ′, and finally optimize the result by remov-
ing ε-transitions, determinizing and minimizing

P = Min(Det(RmEps(C ′ ⊕ P ′))).
4 Experiments and Discussion

In this section we provide experiments comparing
the performance of Algorithm 2 with Algorithm 1

Figure 1: Runtime comparison

Figure 2: Memory use comparison

as well as a baseline algorithm based on the ap-
proach of (Tromble et al., 2008). All algorithms
were implemented in C++ using the OpenFst Li-
brary (Allauzen et al., 2007). Algorithm 1 imple-
mentation is a thin wrapper around the reference
implementation. All experiments were conducted
on the 88K ASR lattices (total size: #states + #arcs
= 33M, disk size: 481MB) generated from the
training subset of the IARPA Babel Turkish lan-
guage pack, which includes 80 hours of conversa-
tional telephone speech. Lattices were generated
with a speaker dependent DNN ASR system that
was trained on the same data set using IBM’s At-
tila toolkit (Soltau et al., 2010). All lattices were
pruned to a logarithmic beam width of 5.

Figure 1 gives a scatter plot of the posterior
probability computation time vs. the number of
lattice n-grams (up to 5-grams) where each point
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Table 2: Runtime Comparison

Max n-gram length 1 2 3 4 5 6 10 all

log10(#n-grams) 3.0 3.8 4.2 4.5 4.8 5.1 6.3 11.2

Baseline (sec) 5 15 32 69 147 311 5413 -
Algorithm 1 (sec) 0.5 0.6 0.9 1.6 3.9 16 997 -
Algorithm 2 (sec) 0.7 0.8 0.9 1.1 1.2 1.3 1.7 1.0
Expected Count (sec) 0.3 0.4 0.5 0.6 0.7 0.8 1.0 0.5

represents one of the 88K lattices in our data set.
Similarly, Figure 2 gives a scatter plot of the max-
imum memory used by the program (maximum
resident set size) during the computation of pos-
teriors vs. the number of lattice n-grams (up to
5-grams). Algorithm 2 requires significantly less
resources, particularly in the case of larger lattices
with a large number of unique n-grams.

To better understand the runtime characteris-
tics of Algorithms 1 and 2, we conducted a small
experiment where we randomly selected 100 lat-
tices (total size: #states + #arcs = 81K, disk size:
1.2MB) from our data set and analyzed the re-
lation between the runtime and the maximum n-
gram length N . Table 2 gives a runtime compari-
son between the baseline posterior computation al-
gorithm described in (Tromble et al., 2008), Algo-
rithm 1, Algorithm 2 and the expected count com-
putation algorithm of (Allauzen et al., 2004). The
baseline method computes posteriors separately
for each n-gram by intersecting the lattice with an
automaton accepting only the paths including that
n-gram and computing the total weight of the re-
sulting automaton in log semiring. Runtime com-
plexities of the baseline method and Algorithm
1 are exponential in N due to the explicit enu-
meration of n-grams and we can clearly see this
trend in the 3rd and 4th rows of Table 2. Algo-
rithm 2 (5th row) takes advantage of the WFSA
based expected count computation algorithm (6th
row) to do most of the work for long n-grams,
hence does not suffer from the same exponential
growth. Notice the drops in the runtimes of Algo-
rithm 2 and the WFSA based expected count com-
putation algorithm when all n-grams are included
into the computation regardless of their length.
These drops are due to the expected count compu-
tation algorithm that processes all n-grams simul-
taneously using WFSA operations. Limiting the
maximum n-gram length requires pruning long n-
grams, which in general can increase the sizes of

intermediate WFSAs used in computation and re-
sult in longer runtimes as well as larger outputs.

When there is no limit on the maximum n-gram
length, the output of Algorithm 2 is a weighted
factor automaton mapping each factor to its pos-
terior. Table 3 compares the construction and
storage requirements for posterior factor automata
with similar factor automata structures. We use
the approach described in (Allauzen et al., 2004)
for constructing both the unweighted and the ex-
pected count factor automata. We construct the
unweighted factor automata by first removing the
weights on the input lattices and then applying the
determinization operation on the tropical semir-
ing so that path weights are not added together.
The storage requirements of the posterior factor
automata produced by Algorithm 2 is similar to
those of the expected count factor automata. Un-
weighted factor automata, on the other hand, are
significantly more compact than their weighted
counterparts even though they accept the same set
of strings. This difference in size is due to ac-
commodating path weights which in general can
significantly impact the effectiveness of automata
determinization and minimization.

5 Related Work

Efficient computation of n-gram expected counts
from weighted automata was first addressed in
(Allauzen et al., 2003) in the context of estimating
n-gram language model statistics from ASR lat-
tices. Expected counts for all n-grams of interest
observed in the input automaton are computed by
composing the input with a simple counting trans-
ducer, projecting on the output side, and remov-
ing ε-transitions. The weight associated by the re-
sulting WFSA to each n-gram it accepts is simply
the expected count of that n-gram in the input au-
tomaton. Construction of such an automaton for
all substrings (factors) of the input automaton was
later explored in (Allauzen et al., 2004) in the con-
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Table 3: Factor Automata Comparison

FA Type Unweighted Expected Count Posterior

#states + #arcs (M) 16 20 21
On disk size (MB) 219 545 546

Runtime (min) 5.5 11 22

text of building an index for spoken utterance re-
trieval (SUR) (Saraclar and Sproat, 2004). This is
the approach used for constructing the weighted
factor automaton C in Algorithm 2. While ex-
pected count works well in practice for ranking
spoken utterances containing a query term, poste-
rior probability is in theory a better metric for this
task. The weighted factor automaton P produced
by Algorithm 2 can be used to construct an SUR
index weighted with posterior probabilities.

The problem of computing n-gram posteriors
from lattices was first addressed in (Tromble et
al., 2008) in the context of lattice-based MBR for
SMT. This is the baseline approach used in our
experiments and it consists of building a separate
FSA for each n-gram of interest and intersecting
this automaton with the input lattice to discard
those paths that do not include that n-gram and
summing up the weights of remaining paths. The
fundamental shortcoming of this approach is that it
requires separate intersection and shortest distance
computations for each n-gram. This shortcoming
was first tackled in (Allauzen et al., 2010) by in-
troducing a counting transducer for simultaneous
computation of posteriors for all n-grams of order
n in a lattice. This transducer works well for un-
igrams since there is a relatively small number of
unique unigrams in a lattice. However, it is less
efficient for n-grams of higher orders. This inef-
ficiency was later addressed in (Blackwood et al.,
2010) by employing n-gram mapping transducers
to transduce the input lattices to n-gram lattices of
order n and computing unigram posteriors on the
higher order lattices. Algorithm 1 was described
in (de Gispert et al., 2013) as a fast alternative to
counting transducers. It is a lattice specialization
of a more general algorithm for computing n-gram
posteriors from a hypergraph in a single inside
pass (DeNero et al., 2010). While this algorithm
works really well for relatively short n-grams, its
time and space requirements scale exponentially
with the maximum n-gram length. Algorithm 2
builds upon this algorithm by exploiting the equiv-

alence of expected counts and posteriors for non-
repeating n-grams and eliminating the costly pos-
terior computation operation for most n-grams in
the input lattice.

6 Conclusion

We have described an efficient algorithm for com-
puting n-gram posteriors from an input lattice and
constructing an efficient and compact data struc-
ture for storing and retrieving them. The runtime
and memory requirements of the proposed algo-
rithm grow linearly with the length of the n-grams
as opposed to the exponential growth observed
with the original algorithm we are building upon.
This is achieved by limiting the posterior compu-
tation to only those n-grams that may repeat on
some path of the input lattice and using the rela-
tively cheaper expected count computation algo-
rithm for the rest. This filtering of n-grams in-
troduces a slight bookkeeping overhead over the
baseline algorithm but in return dramatically re-
duces the runtime and memory requirements for
long n-grams.
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Abstract

This paper describes a novel target-side
syntactic language model for phrase-based
statistical machine translation, bilingual
structured language model. Our approach
represents a new way to adapt structured
language models (Chelba and Jelinek,
2000) to statistical machine translation,
and a first attempt to adapt them to phrase-
based statistical machine translation. We
propose a number of variations of the
bilingual structured language model and
evaluate them in a series of rescoring ex-
periments. Rescoring of 1000-best transla-
tion lists produces statistically significant
improvements of up to 0.7 BLEU over a
strong baseline for Chinese-English, but
does not yield improvements for Arabic-
English.

1 Introduction

Many model components of competitive statisti-
cal machine translation (SMT) systems are based
on rather simplistic definitions with little linguis-
tic grounding, which includes the definitions of
phrase pairs, lexicalized reordering, and n-gram
language models. However, earlier work has also
shown that statistical MT can benefit from ad-
ditional linguistically motivated models. Most
prominent among the linguistically motivated ap-
proaches are syntax-based MT systems which
take into account the syntactic structure of sen-
tences through CKY decoding and categorial la-
bels (Zollmann and Venugopal, 2006; Shen et al.,
2008). On the other hand, the commonly used
phrase-based SMT approaches can also reap some
of the benefits of using syntactic information by

integrating linguistic components addressing spe-
cific phenomena, such as Cherry (2008), Carpuat
et al. (2010), Crego and Yvon (2010), Ge (2010),
Xiang et al. (2011), Lerner and Petrov (2013),
Garmash and Monz (2014).

This paper is a contribution to the existing body
of work on how syntactically motivated models
help translation performance. We work with the
phrase-based SMT (PBSMT) (Koehn et al., 2003)
framework as the baseline system. Our choice is
motivated by the fact that PBSMT is a conceptu-
ally simple and therefore flexible framework. It is
typically quite straightforward to integrate an ad-
ditional model into the system. Also, PBSMT is
the most widely used framework in the SMT re-
search community, which ensures comparability
of our results to other people’s work on the topic.

There is a variety of ways syntax can be used in
a PBSMT model. Typically a syntactic represen-
tation of a source sentence is used to define con-
straints on the order in which the decoder trans-
lates it. For example, Cherry (2008) defines soft
constraints based on the notion of syntactic cohe-
sion (Section 2). Ge (2010) captures reordering
patterns by defining soft constraints based on the
currently translated word’s POS tag and the words
structurally related to it. On the other hand, tar-
get syntax is more challenging to use in PBSMT,
since a target-side syntactic model does not have
access to the whole target sentence at decoding.
Post and Gildea (2008) is one of the few target-
side syntactic approaches applicable to PBSMT,
but it has been shown not to improve translation.
Their approach uses a target side parser as a lan-
guage model: one of the reasons why it fails is
that a parser assumes its input to be grammatical
and chooses the most likely parse for it. What we
are interested in during translation is how gram-
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matical the target sentence actually is.
In addition to reordering constraints, source

syntax can be used for target-side language mod-
eling. A target side string can be encoded with
source-syntactic building blocks and then scored
as to how well-formed it is. Crego and Yvon
(2010), Niehues et al. (2011), Garmash and Monz
(2014) model target sequences as strings of tokens
built from the target POS tag and the POS tags of
the source words related to it through alignment
and the source parse. In this paper, we define
a target-side syntactic language model that takes
structural constraints from the source sentence, but
uses the words from the target side (as ‘building
blocks’). We do it by adapting an existing mono-
lingual model of Chelba and Jelinek (2000), struc-
tured language models, to the bilingual setting.
Our contributions can be summarized as follows:

• we propose a novel method to adapt monolin-
gual structured language models (Chelba and
Jelinek, 2000) (Section 3) to a PBSMT sys-
tem (Section 4), which does not require an
external on-the-fly parser, but only uses the
given source-side syntactic analysis to infer
structural relations between target words;

• building on the existing literature, we pro-
pose a set of deterministic rules that incre-
mentally build up a parse of a target trans-
lation hypothesis based on the source parse
(Section 4);

• we evaluate our models in a series of rescor-
ing experiments and achieve statistically sig-
nificant improvements of up to 0.7 BLEU for
Chinese-English (Section 5).

Before describing the models, we motivate our
method with a common assumption about cross-
lingual correspondence (Section 2).

2 Direct correspondence assumption and
syntactic cohesion in SMT

Before we apply the syntactic model introduced in
Section 3 to the bilingual setting (Section 4), we
first explain two widely used assumptions about
syntactic correspondence across languages.

We take a dependency tree to be a syntactic rep-
resentation of a sentence and reason about other
syntactic assumptions and models in its terms.
In this work, we choose a dependency structure
over a constituency structure because the former

0 1 2

(a)

0 1 2

(b)

0 1 2 3

(c)

0 1 2 3

(d)

Figure 1: Examples of projective and non-
projective parses. (a-b): projective (a) and non-
projective (b) parses of the same dependency tree.
(b) is non-projective because node 1 is not a de-
scendant of either 0 or 2 (it is the parent of 2). (c-
d): projective (c) and non-projective (d) parses of
the same dependency tree. Node 2 in (d) is placed
between its sibling (node 1) and the child of its
sibling (node 3), neither of which is its ancestor.

is more primitive.1 A dependency parse D is a
dependency tree analysis of a sentence W , and
we will think of it as a relation between words
of W , such that D(w, v) if w is a parent (head)
of v (v being a child/modifier). D can be gener-
alized to D∗ which is an relation between words
that are connected by a continuous path in a de-
pendency tree (i.e. D∗(w, v) if D(w, v) or if ∃u
s.t. D(w, u) ∧ D∗(u, v)). We assume unlabeled
dependency trees. Finally, we make a projectivity
assumption, which is supported by empirical data
in many languages (Kuhlmann and Nivre, 2006;
Havelka, 2007), and makes a model computation-
ally less expensive. A dependency parse D of a
sentence W = w1, . . . , wn is projective, if for ev-
ery word pair wi, wj ∈ W s.t. D(wi, wj) it holds
that every wk ∈ W s.t. i < k < j or j < k < i is
a descendant of wi, i.e., D∗(wi, wk); see Figure 1.

Most NLP models that address the interaction
of two or more languages are based (explicitly or
implicitly) on the direct correspondence assump-
tion (DCA) (Hwa et al., 2002). It states that close
translation equivalents in different languages have
the same dependency structure. This is grounded
linguistically, as translation equivalence implies
semantic equivalence and therefore thematic rela-
tions are preserved (Hwa et al., 2002). Thus de-
pendency relations are preserved, as they are de-
fined based on thematic relations between words.
On the other hand, there is plenty empirical evi-
dence supporting the violation of DCA under cer-
tain conditions (Hwa et al., 2002). For instance,
even semantically very close sentences in differ-
ent languages may have a different number of

1A dependency parse (a dependency tree analysis of a sen-
tence) is more primitive because every constituency parse can
be formalized as a projective dependency parse with labeled
relations, but not vice versa (Osborne, 2008).
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0 1 2

a b c

(a)

0 1 2

a b c

(b)

0 1 2 3

a b c d

(c)

0 1 2 3

a b c d

(d)

Figure 2: Examples of cohesive and uncohesive
translations. (a-b): cohesive (a) and uncohesive
(b) translations of the same dependency parse. (b)
is uncohesive because words a and c translate the
source subtree {(1, 2)}, but the target word b does
not translate this subtree. (c-d): cohesive (c) and
uncohesive (d) translations. (d) is uncohesive be-
cause a and c translate the source subtree {(0, 1)},
but b does not translate it.

words. Syntactic divergence increases if the two
languages are typologically different.

Even though DCA only holds up to a certain
level of precision, it is widely used in NLP. There
are models of cross-lingual transfer that define
syntactic structure of one language by condition-
ing it on the structure of semantically equiva-
lent sentences in another language (Naseem et al.,
2012). DCA has also been used in SMT. In partic-
ular, syntax-based SMT is built implicitly around
this assumption (Wu, 1997; Yamada and Knight,
2001). In Quirk and Menezes (2006) DCA is
explicitly implemented by defining a translation
model in terms of treelet pairs where target-side
treelets are produced by projecting source depen-
dencies via word alignments.

Closely related to DCA is the notion of syn-
tactic cohesion of translation (Fox, 2002; Cherry,
2008). This is a constraint that does not allow for
non-projective reordering: Given a source parse
DS , a translation W is cohesive if all translated
target words wi, wj do not have any word wk be-
tween them such that there is a source subtree sub
in DS such that some parts of it are translated by
wi andwj but not bywk (Figure 2). Cherry (2008)
and Bach et al. (2009) define a set of soft con-
straints based on the syntactic cohesion assump-
tion which are applicable to PBSMT decoding.
They only require phrase applications, and not
necessarily individual target words, to conform to
the cohesion principle. For example, if we imag-
ine a situation where a subtree as in Figure 2(b)
is translated as a whole with one phrase applica-
tion (and not word by word), then it does not vio-
late the cohesion principle, although it is internally

uncohesive. Both our approach and Cherry (2008)
implement the idea of conforming the target trans-
lation to the source syntactic structure, but in dif-
ferent ways. Approaches like Cherry (2008) de-
fine principles that constrain the decoder in order
to produce better translations. Our goal is to have
a model that allows for a more direct way of evalu-
ation of how well-formed the target translation is.
In Section 5 we compare translation performance
of the two approaches.

3 Structured language models

As discussed in Sections 1 and 2, we would like to
test how much a PBSMT can benefit from an ad-
ditional syntax-based LM. In this section, we de-
scribe a syntactic language model, structured LM
(SLM) (Chelba and Jelinek, 2000), that we extend
to a bilingual setting and apply to SMT in Sec-
tion 4. SLMs have been applied in SMT before
(Yamada and Knight, 2001; Yu et al., 2014), but
as we show in Section 4, we provide a much sim-
pler method to integrate it into the system. While
a SLM is not the only syntactically defined LM,
it is one of the few that models sentence genera-
tion sequentially. And due to the way the decoding
procedure of PBSMT is defined, it is natural and
straightforward to use models whose score can be
computed sequentially. Other syntactic language
models define sentence generation hierarchically
(Shen et al., 2008; Sennrich, 2015), which com-
plicates their integration into a PBSMT system.

The linguistic intuition behind SLMs is that the
structural children of a word do not essentially
change its distributional properties but just provide
additional specification. In Figure 3(a) the word
president has two modifiers: the and former and
it follows yesterday (an adjunct) and precedes met
(a predicate). This ordering is correct in English.
If instead its modifier was a or an entire relative
clause, it would not make it incorrect.

To capture this observation, (Chelba and Je-
linek, 2000) propose a language model where each
word wi of a sentence W is predicted by an or-
dered subset of the words preceding wi. This con-
ditioning subset is selected based on the syntactic
properties of the preceding sequence Wi−1: the
strong predictors are kept and the weak ones are
left out. The strong predictors are the set of ex-
posed heads. Given a subsequence Wi−1 and its
associated parseDi−1, exposed heads are the roots
of all the disconnected subtrees inDi−1. Note that
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the former

president

the

pressyesterday

met

(a)

the former

president metyesterday

(b)

the
arrived

president metyesterday

who … in London two days before

(c)

Figure 3: A fully parsed sentence (a) and its partial
parse (b) during sequential generation. The par-
tial parse in (b) has two disconnected subtrees with
roots yesterday and president. These roots are the
exposed heads for met. (c) is an alternative sen-
tence with a similar structure: president is still a
root of a subtree, and thus and an exposed head.

a parseDi−1 is not necessarily fully connected and
thus a word can have multiple conditioning words.

For an example, consider again Figure 3(a). In
a left-to-right scenario, when met is generated, a
regular n-gram LM conditions it on yesterday the
former president, while a SLM conditions it on
yesterday president, since these two words are the
exposed heads with respect to met (Figure 3(b)).
The words the and former are modifiers of pres-
ident and they get filtered out. Thus we obtain a
less specific conditioning history, which may lead
to the resulting model being less sparse. Another
potential benefit is that SLMs can capture long-
distance reordering: If president had as its mod-
ifier a relative clause (Figure 3(c)) then a simple
n-gram LM would be conditioned on days before
(assuming n = 3), while an SLM would condition
met on yesterday president.

Summarizing the ideas of words being con-
ditioned on a structurally defined subset of the
preceding sentence, Chelba and Jelinek (2000)
formalize the generation process of W as fol-
lows:2 Each new word wi is conditioned on a

2The original model by (Chelba and Jelinek, 2000) is de-
fined in terms of a lexicalized constituency grammar, but as

sequence of exposed heads Expos(W,D). Then a
tag ti is predicted, and the parse Di−i of Wi−1

is extended to Di incorporating wi and ti (where
Wi−1 is the prefix of W preceding wi):

p(W,D) =
|W |∏
i=1

p(wi|Expos(Wi−1, Di−1))

· p(ti|wi, Expos(Wi−1, Di−1))
· p(Di|wi, ti, Expos(Wi−1, Di−1)).

(1)

They use a shift-reduce parser with reduce-left,
reduce-right, and shift operations.

4 Bilingual structured language models

In this section, we combine the direct correspon-
dence assumption (Section 2) and SLMs (Sec-
tion 3), and define bilingual structured language
models (BiSLMs) for PBSMT. Structured LMs
have been successfully applied in SMT before.
Yamada and Knight (2001) use SLMs in a string-
to-tree SMT system where a derivation of a target-
side parse tree is part of the decoding algorithm,
and target syntactic representations are obtained
‘for free’. Yu et al. (2014) use an on-the-fly shift-
reduce parser to build an incremental target parse.

The approaches sketched above rely on re-
sources that a standard PBSMT system does not
have access to by default. Phrase-based decoders
do not provide us with a parse of the target
sentence, and inferring the parse of a target string
with an external parser is computationally expen-
sive and potentially unreliable (see Section 1).
Our main insight is that in a bilingual setting one
does not need an additional probabilistic target
parsing model. We assume that the source parse is
given (precomputed) and that the DCA (Section 2)
holds, and project the parse deterministically onto
the target side via word alignments3. We obtain
the following equation:

p(T |S,DS) =
|T |∏
i=1

p(ti| Expos(Ti−1,

ProjP(DS , S, Ti−1))),

(2)

where T is a target sentence, Ti−1 is the sequence
in T preceding the i-th target word ti, S is a

we discussed in Section 2, constituency parses can be trans-
formed into dependency parses.

3Phrase-internal word alignments are stored in the phrase
table and are available at decoding time, see Section 4.4.
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pujing shuo ta xihuan suoyou de eluosi funv

putin said he likes all russian women

(a)

pujing shuo ta xihuan

putin said he likes

(b)

pujing shuo ta xihuan suoyou de eluosi funv

putin said he likes all russian women

(c)

Figure 4: Chinese-English sentence pair (a) and
sets of exposed heads (underlined) at different
generation (b and c) steps of a bilingual SLM.

source sentence,DS is a source dependency parse,
and ProjP is a function that returns a partial tar-
get parse DT i−1 by projecting DS onto Ti−1. In
words, at each time step iwe predict the next word
ti conditioned on the exposed heads of the partial
parse of Ti−1 projected from the source side. We
limit Expos to returning the four preceding exposed
heads.4 Because the function ProjP is determinis-
tic and because we do not have to predict tags for
words, Equation 2 is simpler than Equation 1.

We first illustrate Equation 2 with an example
in Figure 4. Since word alignment is monotonic
in Figure 4(a), it is straightforward to project the
source dependencies onto the target side. We aim
to imitate a monolingual parser in the way we
build up our projected parse: Reduce operations
should be invoked whenever both of the subtrees
involved in the operation are complete, i.e., are
not expected to have any more modifiers (Sec-
tion 4.2). For example, when the target word likes
is produced its exposed heads are said and he (Fig-
ure 4(b)), since Putin is a modifier of said. Like-
wise, the exposed heads for women are said likes
all Russian (Figure 4(c)).

In what follows we discuss how to define ProjP.
Compared to projection approaches like (Quirk

4As written above, we choose the dependency structures
over the lexicalized constituency ones because the latter can
be mapped to the former. It is thus more likely that a pro-
jected dependency tree is still be a well-formed parse, than a
projected constituency tree. We decided to work with struc-
tural models that are more flexible, but one may also define
BiSLM in terms of the more constraining constituency trees
and see if the such model has better generalization power.

and Menezes, 2006), we would like our model
to project a source parse incrementally, allowing
it to be used in a PBSMT decoder. We think of
ProjP as a function that computes the output in
two stages: first, it infers from the source parse the
dependency relations between target words (Sec-
tion 4.1), second, it decides how to parse the tar-
get sequence, i.e. in which order to assign these
dependencies (Section 4.2). Additionally, in Sec-
tion 4.3 we propose to use additional labelings of
target words, and in Section 4.4 we describe some
important implementation details.

4.1 Dependency graph projection

Adoption of DCA (Section 2) allows to build up a
target dependency tree from a source tree by pro-
jecting the latter through word alignments. The
definition of DCA can be rephrased as requiring
a one-to-one correspondence map between words
of a sentence pair, allowing one to unambigu-
ously map dependencies: Given a source parse,
if t1 is the head of t2, then map(t1) is the head
of map(t2). The correspondence relation that
we have in PBSMT is the word alignment align:
in the most general case, it is a many-to-many
correspondence, and the straightforward projec-
tion described above can lead to incorrect depen-
dency structures. To overcome these problems,
we describe a simple ordered set of projection
rules, based on the ones specified by (Quirk and
Menezes, 2006) (and we point out if otherwise).

The general idea behind this set of rules is to ex-
tract a one-to-one function align1−1 from source
words to target words from align and use it to
project source dependencies as described in the
paragraph above (R1 below). We then use addi-
tional rules (R2-R4 below) for the target words
that are not in align1−1. Given a source sen-
tence S with a parse DS , a target sentence T and
word alignment align, align1−1 is extracted as fol-
lows: For all ti ∈ T with multiple aligned source
words {si1 , si2 , ...} only align1−1(si1) = ti (only
leftmost source word is kept, the links from the
rest of the source words are removed5). For all
si ∈ S with aligned target words {ti1 , ti2 , ...} keep
the link only for the leftmost aligned target word:
align1−1(si) = ti1 . For example, in Figure 5(b)
the link between f0 and e1 is not in align1−1, and
in Figure 5(c) the link between f1 and e0 is re-
moved (and the arc from f2 to f1 is not projected).

5This is an ad-hoc solution, other heuristics could be used.
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e0 e1 e2
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f0 f1
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(b)
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e0 e1

(c)

f0 f1

e0 e1 e2 e3

(d)

f0

e0

f1 f2

e1

(e)

f0 f1 f2

e0 e1

(f)

f0 f1

e0 e1e1

(g)

Figure 5: Examples for dependency projection
rules. (a): no alignment links get removed (R1).
(b): f0 − e1 link is removed from align1−1 (R1).
(c): f1 − e0 link gets removed (R1). (d): e1 and
e2 get adjoined to e0 (R2). (e): R3a. (f): R3b.
(g) demonstrates two versions of R4: the dashed
arrow gets ‘realized’ only if we adjoin unaligned
words to the preceding head.

The following rules should be applied in order
(as else-if conditions). Given a source sentence
S with a parse DS , a target sentence T and word
alignment align between them, ti ∈ T is a head of
tj ∈ T (i.e. DT (ti, tj)):
(R1) if there are sk, sl ∈ S s.t. DS(sk, sl) and
align1−1(sk) = ti and align1−1(sl) = tj ; see Fig-
ures 5(a)-5(c);
(R2) if ∃s ∈ S s.t. align1−1(s) = ti and (s, tj) ∈
align. This rule deals with one-to-many align-
ments; see Figure 5(d);
(R3a) if ∃sk s.t. align1−1(sk) = ti and ∃sl s.t.
(sl, tj) ∈ align and and DS(sl, sk), and ti linearly
precedes tj . In words: if two target words are in
align1−1 but do not get connected via R1, find a
source word aligned to the second target word that
may get them connected; see Figure 5(e);
(R3b) same as R3a, but in case tj precedes ti (i.e.,
find an additional source word aligned to the first
target word; see Figure 5(f)).6

(R4) In case ¬∃s (s, tj) ∈ align (tj is unaligned),
we consider two strategies: We simplify the rule of
Quirk and Menezes (2006) (dealing with the same
situation) by adjoining it to the immediately pre-
ceding head. We also consider a strategy whereby
the word remains unconnected to any word in the
sentence; see Figure 5(g).

6R3a and R3b differ from the rules proposed in Quirk and
Menezes (2006) dealing with the same situation, since we had
to adapt it to the left-to-right parsing scenario.

f0 f1 f2

e0 e1 e2

(a)

f0 f1 f2

e0 e2e1

f2

e3

(b)

Figure 6: (a): The dashed lines are the dependency
arcs that would project through word alignment,
resulting in a non-projective projective (impossi-
ble under strong source-completeness). (b): The
dashed lines are the parse produced under weak
source-completeness. Under strong completeness
none of the words will get connected.

4.2 BiSLM parsing procedure

Given an inference procedure for dependency re-
lations between target words (Section 4.1), one
can specify in which order the corresponding de-
pendency arcs are assigned to the target sentence.
We define an incremental parsing procedure in
terms of three operations: shift, left-reduce, and
right-reduce. The operations are applied as soon
as the sufficient conditions hold: We specify the
conditions using the following structural proper-
ties. A target subtree is source-complete if all the
descendants of align−1

1−1(root(sub)) (source corre-
spondent of the root of the current subtree) (Sec-
tion 4.1) have been translated and reduced. A tar-
get subtree is complete if it is source-complete and
all the target words that are its children through
non-projected arcs (through R2 or R4 in Sec-
tion 4.1) have been translated and reduced. The
bilingual parsing operations and the sufficient con-
ditions for them are defined as follows:
Shift: after the word is produced it is shifted onto
the stack as an elementary subtree.
Left-reduce: if a disconnected subtree subi
and a disconnected subtree subi−1 imme-
diately preceding it are both complete and
DT (root(subi), root(subi−1)), adjoin subi−1

to subi so that root(subi−1) is a modifier of
root(subi).
Right-reduce: analogous to left-reduce, but
DT (root(subi−1), root(subi)).

In the case of non-cohesive translation the re-
sulting target dependencies are non-projective.
Our definition of left- and right-reduce only pro-
duces projective parses. For a non-cohesive
translation, certain subtrees will never be source-
complete and will never be reduced; see Fig-
ure 6(a). Note that this is not a disadvantage
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of our model. Cherry (2008) simply assumes
that non-cohesive reordering should be penalized,
and our model is able to learn this pattern. We
also consider an alternative to incorporating non-
cohesive alignments by relaxing the definition of
completeness for subtrees: A projected subtree
sub is weakly source-complete if all descendants
of all source word(s) which are aligned to the root
of sub have been translated and, only if the defini-
tion of reduce applies, reduced; see Figure 6(b).

4.3 Syntactic labeling of tokens

One of the problems with SLMs in general is that
at time steps i and j the sets of exposed heads for
ti and tj can differ in size, which may imply dif-
ferent predictive power. To this end, we add an ad-
ditional detail to our model: Each time a reduction
occurs, we label the root of the subtree to which
another subtree has been adjoined, thus making
the conditioning history more specific. We use the
following labelings:
Reduction labeling: if a subtree is adjoint to sub
from the left, then label root(sub) with LR. If it is
adjoint from the right, then label it with RR.
Reduction POS-labeling: same as in simple re-
duction labeling, but add the POS tag of the root
of the reduced subtree to the label.

4.4 Implementation and training

To use BiSLM during decoding, one needs access
to phrase-internal alignments and target POS tags.
We store phrase-internal alignments and target-
side POS annotations of each phrase in the phrase
table, based on the most frequent internal align-
ment during training and the most likely target-
side POS labeling t̂ given the phrase pair: t̂ =
arg maxt̄ p(t̄|ē, f̄). We train BiSLMs on the par-
allel training data (Section 5.1) and use the Stan-
ford dependency parser (Chang et al., 2009) for
Chinese and and the Stanford constituency parser
(Green and Manning, 2010) for Arabic7. POS-
tagging of the training data is produced with the
Stanford POS-tagger (Toutanova et al., 2003). We
learn a 5-gram model using SRILM (Stolcke et al.,
2011) with modified Kneser-Ney smoothing.

5 Experiments

To evaluate the effectiveness of BiSLMs for PB-
SMT, we performed rescoring experiments for

7We extract dependency parses from its output based on
Collins (1999)

Arabic-English and Chinese-English. We com-
pare the resulting 1-best translation lists with an
output of the baseline system and the baseline aug-
mented with soft cohesion constraints from Bach
et al. (2009).

System MT06 MT08 MT06+MT08
baseline 32.60 25.94 29.56
cohesion 32.52 25.98 29.54

Table 1: Chinese-English baseline and compari-
son model (Cherry, 2008; Bach et al., 2009) re-
sults.

System MT08 MT09 MT08+MT09
baseline 45.84 48.61 47.18

cohesion constr. 45.61 48.49 47.02

Table 2: Arabic-English baseline and comparison
model (Cherry, 2008; Bach et al., 2009) results.

5.1 Experimental setup

This section provides information about our base-
line system. Word-alignment is produced with
GIZA++ (Och and Ney, 2003). We use an in-
house implementation of a PBSMT system similar
to Moses (Koehn et al., 2007). Our baseline has
all standard PBSMT features including language
model, lexical weighting, and lexicalized reorder-
ing. The distortion limit is set to 5. A 5-gram LM
is trained on the English Gigaword corpus (1.6B
tokens) using SRILM with modified Kneser-Ney
smoothing and linear interpolation. Information
about the training data for the Arabic-English and
Chinese-English systems is in Table 3.8 Feature
weights are tuned using pairwise ranking opti-
mization (Hopkins and May, 2011) on the MT04
benchmark (for both language pairs). For testing,
we use MT08 and MT09 for Arabic, and MT06
and MT08 for Chinese. We use case-insensitive
BLEU (Papineni et al., 2002) as evaluation met-
ric. Approximate randomization (Noreen, 1989;
Riezler and Maxwell, 2005) is used to detect sta-
tistically significant differences.

5.2 Baseline and comparison systems

As a comparison model, we implemented six fea-
tures from Cherry (2008) and Bach et al. (2009)9

and added them to the log-linear interpolation used
8The standard LDC corpora were used for training.
9Exhaustive and non-exhaustive interruption check, ex-

haustive and non-exhaustive interruption count, verb- and
noun-dominated subtree interruption count.
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Training set N. of lines N. of tokens
Source side of Ar-En set 4,376,320 148M
Target side of Ar-En set 4,376,320 146M
Source side of Ch-En set 2,104,652 20M
Target side of Ch-En set 2,104,652 28M

Table 3: Training data for Arabic-English and
Chinese-English experiments.

by the baseline system. Since these features are bi-
nary or count-based, we cannot use them directly
in rescoring. For that reason we integrated the fea-
tures into the decoder and tuned the correspond-
ing weights. The results for Chinese-English and
Arabic-English translation experiments are pre-
sented in Table 1 and 2, respectively. We see that
adding the cohesion constraints does not improve
performance. This finding is different from, for
example, Feng et al. (2010), where they get im-
provement for Chinese-English: however, we note
that their training set is smaller than ours, and their
baseline is weaker as it does not contain lexical-
ized distortion models.

5.3 Rescoring experiments
Rescoring with BiSLMs is performed as follows:
For the test runs of the baseline system we com-
pute the n = 1000 best translation hypotheses
for each source sentence and extract their deriva-
tions (sequence of phrase pair applications). Each
phrase pair in our implementation is associated
with a unique phrase-internal alignment and tar-
get POS-sequence. We fully reconstruct word-
alignment for each pair of a source sentence and
its translation hypothesis. We project a precom-
puted source parse onto the target side and com-
pute representations of the target sentence to be
computed by a BiSLM. For each hypothesis, we
take its BiSLM score and its score assigned by
the baseline system and compute the final score
as a weighted sum of the original baseline score
and a length-normalized BiSLM score10, where
the weight λ is empirically set to 0.3:

λ · scoreBiSLM

lengthHypothesis
+ (1− λ) · scoreBaseline (3)

5.3.1 Chinese-English
Our main focus here is Chinese-English, since it
has more instances of longer-distance reordering,
at which syntax-based models are typically good.

10Normalization is needed to ensure comparability of
scores for translation hypotheses of different lengths, since
longer translation hypotheses will have lower scores.

labeling complete unalign BLEU diff.
-adjoin

plain strong + 30.09N +0.53
- 30.20N +0.64

weak + 30.11N +0.55
- 30.22N +0.66

reduce strong + 29.94M +0.40
- 30.19N +0.63

weak + 30.09N +0.53
- 30.24N +0.68

reduce-POS strong + 30.09N +0.53
- 30.25N +0.69

weak + 30.05N +0.49
- 30.25N +0.69

Table 4: Rescoring experiments for Chinese
MT06+08 1000-best translation sets. Unrescored
BLEU is 29.56. The column labeling contains in-
formation about the kind of labeling used on the
target side of a BiSLM: just target words, target
words with a reduction label, or target words with
a reduction label and a POS of the root of the re-
duced subtree (Section 4.3). The column com-
plete indicates whether we use a strong or weak
definition of a complete subtree (Section 4.2). The
column unalign-adjoin indicates whether we ad-
join an unaligned target word to the preceding
subtree (Section 4.1). Statistically significant im-
provements over the baseline are marked N at the
p < .01 level and M at the p < .05 level. H marks
significant decrease at the p < .01 level.

SLMs by design are good at capturing longer-
distance dependencies. We try out several varia-
tions of BiSLM. First, we test whether to use a
strong or weak definition of a complete subtree
(Section 4.2). Second, we investigate whether to
adjoin unaligned target words to a preceding head
(Section 4.1; unalign-adjoin+/-). Third, we com-
pare several target-side labeling methods (Sec-
tion 4.3): plain (just target words), reduce (LR or
RR) or reduce-POS (LR POS or RR POS, where
POS is the tag of the root of the reduced subtree).
The rescoring results are presented in Table 4.

The results show statistically significant im-
provement over the baseline of up to 0.7 BLEU
(for all of the employed BiSLM variants except
one). The rescoring experiments also demonstrate
the tendency of the unalign-adjoin- feature value
to produce higher scores than unalign-adjoin+.
But the other two distinguishing features do not
have an effect on BLEU scores. As future work,
we are interested in examining if these features
produce the same distribution of scores when a
BiSLM is fully integrated into the decoder.
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labeling complete unalign BLEU diff.
-adjoin

plain strong + 47.20 -0.02
- 47.00H -0.18

weak + 47.22 +0.04
- 46.98H -0.20

reduce strong + 47.15 -0.03
- 46.99H -0.19

weak + 47.09 -0.09
- 46.98H -0.20

reduce-POS strong + 47.15 -0.03
- 46.98H -0.20

weak + 47.17 +0.01
- 47.00H -0.18

Table 5: Rescoring experiments for Arabic
MT08+09 n-best translation sets. Unrescored
BLEU for is 47.18. For notation see Table 4.

5.3.2 Arabic-English

We also rescore the n-best lists for the output of
the Arabic-English baseline system and results are
shown in Table 5. Arabic and English are typolog-
ically very different, but the range of reordering is
much smaller than for Chinese-English. We ex-
pect reordering-related models to have lesser ef-
fect on Arabic as compared to Chinese (Carpuat
et al., 2010). Experimental results on Arabic-
English could indicate what kind of translation
aspect benefits from BiSLMs. We see that for
Arabic-English, just as for the cohesion constraint,
BiSLM have little effect on BLEU scores, or
even decrease them. This is a weak indication
that BiSLMs are better at capturing reordering as-
pects. As for the varying features defining dif-
ferent BiSLM versions, we again see little effect
of the labeling type or subtree completeness def-
inition. On the other hand, we see the oppo-
site pattern for the unalign-adjoin feature, where
unalign-adjoin+ is preferred.

To gain further insight into the different effect
of BiSLM on the two language pairs, we evalu-
ated our experimental output against a reordering-
sensitive metric LRscore (Birch et al., 2010). We
use the version of LRscore which is an average of
the inverse Kendall’s Tau distance and the Ham-
ming distance. In order to compute alignments for
test sets which are needed to compute the score we
concatenated the parallel text with an additional
250K lines of parallel text from the training data to
ensure better generalization of the alignment algo-
rithm (GIZA++). The LRscores of the baseline are
compared to the best performing BiSLM system
with respect to BLEU, for each of the language
pair. The results are provided in Tables 6 and 7.

system LRscore MT06+08
baseline 0.4736
BiSLM 0.4907

Table 6: LRscores (average inverse Kendall’s
Tau distance and Hamming distance) for Chinese-
English baseline and BiSLM with reduce-labeling,
weak completeness, unalign-adjoin-.

system LRscore MT08+09
baseline 0.6671
BiSLM 0.6719

Table 7: LRscores for Arabic-English baseline and
BiSLM with plain-labeling, weak completeness,
unalign-adjoin+.

As expected, the scores for Chinese-English are
much lower than for Arabic-English, which is con-
sistent with the observation reordering is more dif-
ficult for Chinese-English. BiSLM yields larger
improvements for Chinese-English suggesting that
the proposed model helps addressing difficult re-
ordering problems. While there are also small im-
provements for Arabic-English the they may be
too small to be detectable by BLEU.

6 Conclusions

In this paper we proposed a novel way to adapt
structured language models to phrase-based SMT.
Our method requires minimal changes to the PB-
SMT pipeline. We tried a number of variations
of our model and evaluated them in rescoring ex-
periments, resulting in statistically significant im-
provement for Chinese-English. The model is
based on the idea of syntactic transfer (DCA; Sec-
tion 2) and the positive result indicates its ability
to capture syntactic patterns across languages. For
Arabic-English, we did not observe any improve-
ments, suggesting that our models indeed mainly
improve reordering aspects. Improvements in
rescoring are a positive indication that our model
may be a strong feature during decoding. As fu-
ture work, we will fully integrate our model into a
PBSMT decoder and evaluate it on other language
pairs with different reordering distributions.
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Abstract

Efficient methods for storing and querying
language models are critical for scaling to
large corpora and high Markov orders. In
this paper we propose methods for mod-
eling extremely large corpora without im-
posing a Markov condition. At its core,
our approach uses a succinct index – a
compressed suffix tree – which provides
near optimal compression while support-
ing efficient search. We present algorithms
for on-the-fly computation of probabilities
under a Kneser-Ney language model. Our
technique is exact and although slower
than leading LM toolkits, it shows promis-
ing scaling properties, which we demon-
strate through∞-order modeling over the
full Wikipedia collection.

1 Introduction

Language models (LMs) are critical components
in many modern NLP systems, including machine
translation (Koehn, 2010) and automatic speech
recognition (Rabiner and Juang, 1993). The most
widely used LMs are mgram models (Chen and
Goodman, 1996), based on explicit storage of
mgrams and their counts, which have proved
highly accurate when trained on large datasets. To
be useful, LMs need to be not only accurate but
also fast and compact.

Depending on the order and the training corpus
size, a typical mgram LM may contain as many
as several hundred billions of mgrams (Brants
et al., 2007), raising challenges of efficient stor-
age and retrieval. As always, there is a trade-off
between accuracy, space, and time, with recent
papers considering small but approximate lossy
LMs (Chazelle et al., 2004; Talbot and Osborne,
2007; Guthrie and Hepple, 2010), or loss-less
LMs backed by tries (Stolcke et al., 2011), or re-
lated compressed structures (Germann et al., 2009;

Heafield, 2011; Pauls and Klein, 2011; Sorensen
and Allauzen, 2011; Watanabe et al., 2009). How-
ever, none of these approaches scale well to very
high-order m or very large corpora, due to their
high memory and time requirements. An impor-
tant exception is Kennington et al. (2012), who
also propose a language model based on a suffix
tree which scales well with m but poorly with the
corpus size (requiring memory of about 20× the
training corpus).

In contrast, we1 make use of recent advances in
compressed suffix trees (CSTs) (Sadakane, 2007)
to build compact indices with much more mod-
est memory requirements (≈ the size of the cor-
pus). We present methods for extracting frequency
and unique context count statistics for mgram
queries from CSTs, and two algorithms for com-
puting Kneser-Ney LM probabilities on the fly us-
ing these statistics. The first method uses two
CSTs (over the corpus and the reversed corpus),
which allow for efficient computation of the num-
ber of unique contexts to the left and right of an
mgram, but is inefficient in several ways, most
notably when computing the number of unique
contexts to both sides. Our second method ad-
dresses this problem using a single CST backed by
a wavelet tree based FM-index (Ferragina et al.,
2007), which results in better time complexity and
considerably faster runtime performance.

Our experiments show that our method is prac-
tical for large-scale language modelling, although
querying is substantially slower than a SRILM

benchmark. However our technique scales much
more gracefully with Markov order m, allowing
unbounded ‘non-Markov’ application, and enables
training on large corpora as we demonstrate on the
complete Wikipedia dump. Overall this paper il-
lustrates the vast potential succinct indexes have

1For the implementation see: https://github.com/eehsan/
lm-sdsl.
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for language modelling and other ‘big data’ prob-
lems in language processing.

2 Background

Suffix Arrays and Suffix Trees Let T be a
string of size n drawn from an alphabet Σ of size
σ. Let T [i..n − 1] be a suffix of T . The suffix
tree (Weiner, 1973) of T is the compact labeled
tree of n + 1 leaves where the root to leaf paths
correspond to all suffixes of T $, where $ is a ter-
minating symbol not in Σ. The path-label of each
node v corresponds to the concatenation of edge
labels from the root node to v. The node depth
of v corresponds to the number of ancestors in the
tree, whereas the string depth corresponds to the
length of the path-label. Searching for a pattern α
of size m in T translates to finding the locus node
v closest to the root such that α is a prefix of the
path-label of v in O(m) time. We refer to this ap-
proach as forward search. Figure 1a shows a suffix
tree over a sample text. A suffix tree requiresO(n)
space and can be constructed inO(n) time (Ukko-
nen, 1995). The children of each node in the suffix
tree are lexicographically ordered by their edge la-
bels. The i-th smallest suffix in T corresponds to
the path-label of the i-th leaf. The starting position
of the suffix can be associated its corresponding
leaf in the tree as shown in Figure 1a. All occur-
rences of α in T can be retrieved by visiting all
leaves in the subtree of the locus of α. For exam-
ple, pattern “the night” occurs at positions 12 and
19 in the sample text. We further refer the number
of children of a node v as its degree and the num-
ber of leaves in the subtree rooted at v as the size
of v.

The suffix array (Manber and Myers, 1993) of
T is an array SA[0 . . . n− 1] such that SA[i] corre-
sponds to the starting position of the i-th smallest
suffix in T or the i-th leaf in the suffix tree of T .
The suffix array requires n log n bits of space and
can also be constructed in O(n) time (Kärkkäinen
et al., 2006). Using only the suffix array and the
text, pattern search can be performed using bi-
nary search in O(m log n) time. For example, the
pattern “the night” is found by performing binary
search using SA and T to determine SA[18, 19], the
interval in SA corresponding the the suffixes in T
prefixed by the pattern. In practice, suffix arrays
use 4 − 8n bytes of space whereas the most ef-
ficient suffix tree implementations require at least
20n bytes of space (Kurtz, 1999) which are both

much larger than T and prohibit the use of these
structures for all but small data sets.

Compressed Suffix Structures Reducing the
space usage of suffix based index structure has
recently become an active area of research. The
space usage of a suffix array can be reduced sig-
nificantly by utilizing the compressibility of text
combined with succinct data structures. A suc-
cinct data structure provides the same function-
ality as an equivalent uncompressed data struc-
ture, but requires only space equivalent to the
information-theoretic lower bound of the underly-
ing data. For simplicity, we focus on the FM-Index
which emulates the functionality of a suffix array
over T using nHk(T ) + o(n log σ) bits of space
where Hk refers to the k-th order entropy of the
text (Ferragina et al., 2007). In practice, the FM-
Index of T uses roughly space equivalent to the
compressed representation of T using a standard
compressor such as bzip2. For a more compre-
hensive overview on succinct text indexes, see the
excellent survey of Ferragina et al. (2008).

The FM-Index relies on the duality between
the suffix array and the BWT (Burrows and
Wheeler, 1994), a permutation of the text such that
T bwt[i] = T [SA[i] − 1] (see Figure 1). Search-
ing for a pattern using the FM-Index is performed
in reverse order by performing RANK(T bwt, i, c)
operations O(m) times. Here, RANK(T bwt, i, c)
counts the number of times symbol c occurs in
T bwt[0 . . . i − 1]. This process is usually referred
to as backward search. Let SA[li, ri] be the in-
terval corresponding to the suffixes in T match-
ing α[i . . .m − 1]. By definition of the BWT,
T bwt[li, ri] corresponds to the symbols in T pre-
ceding α[i . . .m − 1] in T . Due to the lexico-
graphical ordering of all suffixes in SA, the interval
SA[li−1, ri−1] corresponding to all occurrences of
α[i − 1 . . .m − 1] can be determined by comput-
ing the rank of all occurrences of c = α[i − 1] in
T bwt[li, ri]. Thus, we compute RANK(T bwt, li, c),
the number of times symbol c occurs before li and
RANK(T bwt, ri + 1, c), the number of occurrences
of c in T bwt[0, ri]. To determine SA[li−1, ri−1],
we additionally store the starting positions Cs of
all suffixes for each symbol s in Σ at a negligi-
ble cost of σ log n bits. Thus, the new interval
is computed as li−1 = Cc+RANK(T bwt, li, c) and
ri−1 = Cc+RANK(T bwt, ri + 1, c).

The time and space complexity of the FM-
index thus depends on the cost of storing and pre-
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(a) Word-based Suffix Tree.
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(b) Wavelet tree and RANK(T bwt, 17, ‘t’) = 5.
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$ # # # i i p p r r s s n n n o t t t t t t T

22 21 11 0 18 8 17 7 14 4 15 5 20 13 3 2 16 6 19 12 1 9 10

# n T $ p p t t n n r r t t o t s s i # # i t

T [SA[i]]

SA

T bwt

Figure 1: Data structures for the sample text T =“#the old night keeper keeps the keep in the town#
the night keeper keeps the keep in the night#$” with alphabet Σ={the, old, night, keeper, keeps, keep,
in, town, #} and code words $=0000, #=0001, i=in=001, p=keep=010, r=keeper=011, s=keeps=1000,
o=old=101, t=the=110, n=night=1001 and T=town=111.

processing T bwt to answer RANK efficiently. A
wavelet tree can be used to answer RANK over
T bwt in O(log σ) time. The wavelet tree re-
duces RANK over an alphabet Σ into multiple
RANK operations over a binary alphabet which
can be answered in O(1) time and o(n) bits
extra space by periodically storing absolute and
relative RANK counts (Munro, 1996). The al-
phabet is reduced by recursively splitting sym-
bols based on their code words into subgroups
to form a binary tree as shown in Figure 1b
for T bwt. To answer RANK(T bwt, i, c), the tree
is traversed based on the code word of c, per-
forming binary RANK at each level. For exam-
ple, RANK(T bwt, 17, ‘t’) translates to performing
RANK(WTroot, 17, 1) = 12 on the top level of
the wavelet tree, as t=the=110. We recurse
to the right subtree of the root node and com-
pute RANK(WT1, 12, 1) as there were 12 ones
in the root node and the next bit in the code-
word of ‘the’ is also one. This process contin-
ues until the correct leaf node is reached to answer
RANK(T bwt, 17, ‘t’) = 5 in O(log σ) time. The
space usage of a regular wavelet tree is n log σ +
o(n log σ) bits which roughly matches the size of
the text.2 If locations of matches are required, ad-

2However, if code-words for each symbol are chosen
based on their Huffman-codes the size of the wavelet tree

ditional space is needed to access SA[i] or the in-
verse suffix array SA−1[SA[i]] = i. In the sim-
plest scheme, both values are periodically sam-
pled using a given sample rate SAS (e.g. 32) such
that SA[i] mod SAS = 0. Then, for any SA[i]
or SA−1[i], at most O(SAS) RANK operations on
T bwt are required to access the value. Differ-
ent sample rates, bitvector implementations and
wavelet tree types result in a wide variety of time-
space tradeoffs which can be explored in prac-
tice (Gog et al., 2014).

In the same way the FM-index emulates the
functionality of the suffix array in little space,
compressed suffix trees (CST) provide the func-
tionality of suffix trees while requiring signifi-
cantly less space than their uncompressed coun-
terparts (Sadakane, 2007). A CST uses a com-
pressed suffix array (CSA) such as the FM-Index
but stores additional information to represent the
shape of the suffix tree as well as information
about path-labels. Again a variety of different stor-
age schemes exist, however for simplicity we fo-
cus on the CST of Ohlebusch et al. (2010) which
we use in our experiments. Here, the shape of the
tree is stored using a balanced-parenthesis (BP) se-
quence which for a tree of p nodes requires ≈ 2p

reduces to nH0(T )(1 + o(1)) bits which can be further be
reduced to to nHk(T ) + o(n log σ) bits by using entropy
compressed bitvectors.
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bits. Using little extra space and advanced bit-
operations, the BP-sequence can be used to per-
form operations such as string-depth(v), parent(v)
or accessing the i-th leaf can be answered in con-
stant time. To support more advanced operations
such as accessing path-labels, the underlying CSA

or a compressed version of the LCP array are re-
quired which can be more expensive.3 In practice,
a CST requires roughly 4 − 6n bits in addition to
the cost of storing the CSA. For a more extensive
overview of CSTs see Russo et al. (2011).

Kneser Ney Language Modelling Recall our
problem of efficient mgram language modeling
backed by a corpus encoded in a succinct index.
Although our method is generally applicable to
many LM variants, we focus on the Kneser-Ney
LM (Kneser and Ney, 1995), specifically the inter-
polated variant described in Chen and Goodman
(1996), which has been shown to outperform other
ngram LMs and has become the de-facto standard.

Interpolated Kneser-Ney describes the condi-
tional probability of a word wi conditioned on the
context of m− 1 preceding words, wi−1

i−m+1, as

P (wi|wi−1
i−m+1) =

max
[
c(wii−m+1)−Dm, 0

]
c(wi−1

i−m+1)

+
DmN

1+(wi−1
i−m−1 ·)

c(wi−1
i−m+1)

P̄ (wi|wi−1
i−m+2), (1)

where lower-order smoothed probabilities are de-
fined recursively (for 1 < k < m) as

P̄ (wi|wi−1
i−k+1) =

max
[
N1+(·wii−k+1)−Dk, 0

]
N1+(·wi−1

i−k+1 ·)
+
DkN

1+(wi−1
i−k+1 ·)

N1+(·wi−1
i−k+1 ·) P̄ (wi|wi−1

i−k+2) . (2)

In the above formula, Dk is the kgram-specific
discount parameter, and the occurrence count
N1+(α·) = |{w : c(αw) > 0}| is the number of
observed word types following the pattern α; the
occurrence counts N1+(·α) and N1+(·α·) are
defined accordingly. The recursion stops at uni-
gram level where the unigram probabilities are de-
fined as P̄ (wi) = N1+(·wi)/N1+(··).4

3See Supplementary Materials Table 1 for an overview of
the complexities of the functionality of the CST that is used
in our experiments.

4Modified Kneser-Ney, proposed by Chen and Good-
man (1996), typically outperforms interpolated Kneser-Ney
through its use of context-specific discount parameters. The

3 Using CSTs for KN Computation

The key requirements for computing probability
under a Kneser-Ney language model are two types
of counts: raw frequencies of mgrams and occur-
rence counts, quantifying how many different con-
texts the mgram has occurred in. Figure 2 (right)
illustrates the requisite counts for calculating the
probability of an example 4-gram. In electing to
store the corpus directly in a suffix tree, we need to
provide mechanisms for computing these counts
based on queries into the suffix tree.

The raw frequency counts are the simplest to
compute. First we identify the locus node v in
the suffix tree for the query mgram; the frequency
corresponds to the node’s size, an O(1) operation
which returns the number of leaves below v. To il-
lustrate, consider searching for c(the night) in Fig-
ure 1a, which matches a node with two leaves (la-
belled 19 and 12), and thus c = 2.

More problematic are the occurrence counts,
which come in several flavours: right contexts,
N1+(α·), left contexts, N1+(·α), and contexts
to both sides of the pattern, N1+(·α·). The first
of these can be handled easily, as

N1+(α·) =
{

degree(v), if α = label(v)
1, otherwise

where v is the node matching α, and label(v) de-
notes the path-label of v.5 For example, keep
in has two child nodes in Figure 1a, and thus
there are two unique contexts in which it can oc-
cur, N1+(keep in ·) = 2, while the keep par-
tially matches an edge in the forward suffix tree
in Figure 1a as it can only be followed by in,
N1+(the keep ·) = 1. A similar line of reason-
ing applies to computing N1+(·α). Assuming
we also have a second suffix tree representing the
reversed corpus, we first identify the reversed pat-
tern (e.g., in keepR) and then use above method to
compute the occurrence count (denoted hereafter
N1P(t, v, α)6, where t is the CST.).

implementation of this with our data structures is straight-
forward in principle, but brings a few added complexities
in terms of dynamic computing other types of occurrence
counts, which we leave for future work.

5See the Supplementary Materials for the explicit algo-
rithm, but note there are some corner cases involving sen-
tinels # and $, which must be excluded when computing oc-
currence counts. Such tests have been omitted from the pre-
sentation for clarity.

6In the presented algorithms, we overload the pattern ar-
gument in function calls for readability, and use · to denote
the query context.
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c(keep%in%the%town) c(keep%in%the) N¹⁺(keep%in%the%•)
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Figure 2: Counts required for computing P (town|keep in the) (right) and the suffix tree nodes required
for computing each value (left). The two left-most columns correspond to vall

R and vR and are updated
using forward-search in the reverse CST, while the righter-most column correspond to vF and is updated
using backward-search in the forward CST. See Algorithm 2 for details.

The final component of the Kneser-Ney LM
computation isN1+(·α·), the number of unique
contexts considering symbols on both sides of the
pattern. Unfortunately this does not map to a sim-
ple suffix tree operation, but instead requires enu-
meration, N1+(·α·) =

∑
s∈F (α)N

1+(·αs),
where F (α) is the set of symbols that can follow
α. Algorithm 1 shows how this is computed, with
lines 7 and 8 enumerating s ∈ F (α) using the
edge labels of the children of v. For each symbol,
line 9 searches for an extended pattern incorporat-
ing the new symbol s in the reverse CSA (part of
the reverse CST), by refining the existing match
vR using a single backward search operation af-
ter which we can compute N1+(·αs).7 Line 5
deals with the special case where the pattern does
not match a complete edge, in which case there
is only only unique right context and therefore
N1+(·α·) = N1+(·α).

N1P and N1PFRONTBACK can compute the
requisite occurence counts for mgram language
modelling, however at considerable cost in terms
of space and time. The need for twin reverse and
forward CSTs incurs a significant storage over-
head, as well as the search time to match the pat-
tern in both CSTs. We show in Section 5 how
we can avoid the need for the reversed suffix tree,
giving rise to lower memory requirements and
faster runtime. Beyond the need for twin suf-
fix trees, the highest time complexity calls are
string-depth, edge and backward-search. Calling
string-depth is constant time for internal nodes,
but O(SAS log σ) for leaf nodes; fortunately we

7Backward search in the reverse tree corresponds to
searching for the reversed pattern appended with one symbol.

Algorithm 1 Two-sided occ., N1+(·α·)
Precondition: vF in forward CST tF matches α
Precondition: vR in reverse CST tR matches α

1: function N1PFRONTBACK(tF, vF, tR, vR, α)
2: o← 0
3: d← string-depth(vF)
4: if d > |α| then
5: o← N1P(tR, vR,·α)
6: else
7: for uF ← children(vF) do
8: s← edge(uF, d+ 1)
9: uR← back-search(vR, s)

10: o← o+ N1P(tR, uR,·αs)
11: return o

can avoid this call for leaves, which by definition
extend to the end of the corpus and consequently
extend further than our pattern.8 The costly calls
to edge and backward-search however cannot be
avoided. This leads to an overall time complex-
ity of O(1) for N1P and O(F (α) × SAS × log σ)
for N1PFRONTBACK, where F (α) is the number
of following symbols and SAS is the suffix array
value sample rate described in Section 2.

4 Dual CST Algorithm

The methods above for computing the frequency
and occurrence counts provide the ingredients
necessary for computing mgram language model
probabilities. This leaves the algorithmic problem

8We assume search patterns do not extend beyond a single
sentence, and thus will always be shorter than the edge labels.
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Algorithm 2 KN probability P
(
wk|wk−1

k−(m−1)

)
1: function PROBKNESERNEY(tF, tR,w,m)
2: vF ← root(tF) . match for suffix of wk−1

k−(m−1)

3: vR ← root(tR) . match for suffix of wk−1
k−(m−1)

4: vall
R ← root(tR) . match for suffix of wk

k−(m−1)

5: p← 1
6: for i← 1 to m do
7: vall

R ← forw-search(vall
R , wk−i+1)

8: if i > 1 then
9: vF ← back-search(vF, wk−i+1)

10: if i < m then
11: vR ← forw-search(vR, wk−i+1)

12: Di← lookup discount for igram
13: if i = m then
14: c← size(vall

R )
15: d← size(vF)
16: else
17: c← N1P(tR, v

all
R ,·wk

k−i+1)
18: d←

N1PFRONTBACK(tF, vF, tR, vR,·wk−1
k−i+1 ·)

19: if i > 1 then
20: if vF is valid then
21: q← N1P(tF, vF, w

k−1
k−i+1 ·)

22: p← 1
d

(max(c−Di, 0) +Diqp)

23: else if i = 1 then
24: p← c/N1+(··)
25: return p

of efficiently ordering the search operations in for-
ward and reverse CST structures.

This paper considers an interpolated LM for-
mulation, in which probabilities from higher or-
der contexts are interpolated with lower order es-
timates. This iterative process is apparent in Fig-
ure 2 (right) which shows the quantities required
for probability scoring for an example mgram.
Equivalently, the iteration can be considered in re-
verse, starting from unigram estimates and suc-
cessively growing to large mgrams, in each stage
adding a single new symbol to left of the pattern.
This suits incremental search in a CST in which
search bounds are iteratively refined, which has a
substantially lower time complexity compared to
searching over the full index in each step.

Algorithm 2 presents an outline of the approach.
This uses a forward CST, tF, and a reverse CST,
tR, with three CST nodes (lines 2–4) tracking the
match progress for the full igram (vall

R ) and the
(i − 1)gram context (vF, vR), i = 1 . . .m. The
need to maintain three concurrent searches arises
from the calls to size, N1+(·α), N1+(α·) and
N1+(·α·) (lines 14, 15; 17; 21; and 18, respec-
tively). These calls impose conditions on the di-
rection of the suffix tree, e.g., such that the edge
labels and node degree can be used to compute

Algorithm 3 Precompute KN discounts
1: function PRECOMPUTEDISCOUNTS(tR,m)
2: ck,f ← 0 ∀k ∈ [1,m], f ∈ [1, 2]
3: N1

k,g ← 0 ∀k ∈ [1,m], g ∈ [1, 2]

4: N1+(··)← 0
5: for vR ← descendents(root(tR)) do . depth-first
6: dP ← string-depth(parent(vR))
7: d← string-depth(vR)
8: for k ← dP + 1 to min (d, dP +m) do
9: s← edge(vR, k)

10: if s is the end of sentence sentinel then
11: skip all children of vR
12: else
13: if k = 2 then
14: N1+(··)← N1+(··) + 1

15: f ← size(vR)
16: if 1 ≤ f ≤ 2 then
17: ck,f ← ck,f + 1

18: if k < d then
19: g← 1
20: else
21: g← degree(vR)
22: if 1 ≤ g ≤ 2 then
23: N1

k,g ← N1
k,g + 1

24: return c,N1, N1+(··)
the number of left or right contexts in which a
pattern appears. The matching process is illus-
trated in Figure 2 where the three search nodes are
shown on the left, considered bottom to top, and
their corresponding count operations are shown to
the right. The N1+(·α) calls require a match
in the reverse CST (left-most column, vall

R ), while
the N1+(α·) require a match in the forward CST

(right-most column, vF, matching the (i− 1)gram
context). The N1+(·α·) computation reuses the
forward match while also requiring a match for the
(i−1)gram context in the reversed CST, as tracked
by the middle column (vR). Because of the mix
of forward and reverse CSTs, coupled with search
patterns that are revealed right-to-left, incremen-
tal search in each of the CSTs needs to be han-
dled differently (lines 7–11). In the forward CST,
we perform backward search to extend the search
pattern to the left, which can be computed very ef-
ficiently from the BWT in the CSA.9 Conversely
in the reverse CST, we must use forward search as
we are effectively extending the reversed pattern
to the right; this operation is considerably more
costly.

The discounts D on line 12 of Algorithm 2 and
N1+(··) (a special case of line 18) are precom-
puted directly from the CSTs thus avoiding several
costly computations at runtime. The precomputa-

9See Supplementary Materials Table 1 for the time com-
plexities of this and other CSA and CST methods.
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tion algorithm is provided in Algorithm 3 which
operates by traversing the nodes of the reverse
CST and at each stage computing the number of
mgrams that occur 1–2 times (used for computing
Dm in eq. 1), or with N1+(·α) ∈ [1 − 2] (used
for computing Dk in eq. 2), for various lengths
of mgrams. These quantities are used to compute
the discount parameters, which are then stored for
later use in inference.10 Note that the PRECOM-
PUTEDISCOUNTS algorithm can be slow, although
it is significantly faster if we remove the edge calls
and simply include in our counts all mgrams fin-
ishing a sentence or spanning more than one sen-
tence. This has a negligible (often beneficial) ef-
fect on perplexity.

5 Improved Single CST Approach

The above dual CST algorithm provides an el-
egant means of computing LM probabilities of
arbitrary order and with a limited space com-
plexity (O(n), or roughly n in practice). How-
ever the time complexity is problematic, stem-
ming from the expensive method for computing
N1PFRONTBACK and repeated searches over the
CST, particularly forward-search. Now we out-
line a method for speeding up the algorithm by
doing away with the reverse CST. Instead the crit-
ical counts, N1+(·α) and N1+(·α·) are com-
puted directly from a single forward CST. This
confers the benefit of using only backward search
and avoiding redundant searches for the same pat-
tern (cf. lines 9 and 11 in Algorithm 2).

The full algorithm for computing LM prob-
abilities is given in Algorithm 4, however for
space reasons we will not describe this in de-
tail. Instead we will focus on the method’s most
critical component, the algorithm for computing
N1+(·α·) from the forward CST, presented in
Algorithm 5. The key difference from Algorithm 1
is the loop from lines 6–9, which uses the interval-
symbols (Schnattinger et al., 2010) method. This
method assumes a wavelet tree representation of
the SA component of the CST, an efficient encod-
ing of the BWT as describes in section 2. The
interval-symbols method uses RANK operations
to efficiently identify for a given pattern the set of
preceding symbols P (α) and the ranges SA[ls, rs]
corresponding to the patterns sα for all s ∈ P (α)

10Discounts are computed up to a limit on mgram size,
here set to 10. The highest order values are used for comput-
ing the discount of mgrams above the limit at runtime.

Algorithm 4 KN probability P
(
wk|wk−1

k−(m−1)

)
using a single CST

1: function PROBKNESERNEY1(tF,w,m)
2: vF ← root(tF) . match for context wk−1

k−i

3: vall
F ← root(tF) . match for wk

k−i

4: p← 1
5: for i← 1 to m do
6: vall

F ← back-search([lb(vall
F ), rb(vall

F )], wk−i+1)
7: if i > 1 then
8: vF ← back-search([lb(vF), rb(vF)], wk−i+1)

9: Di← discount parameter for igram
10: if i = m then
11: c← size(vall

F )
12: d← size(vF)
13: else
14: c← N1PBACK1(tF, v

all
F ,·wk−1

k−i+1)

15: d← N1PFRONTBACK1(tF, vF,·wk−1
k−i+1 ·)

16: if i > 1 then
17: if vF is valid then
18: q← N1P(tF, vF, w

k−1
k−i+1 ·)

19: p← 1
d

(max(c−Di, 0) +Diqp)

20: else
21: p← c/N1+(··)
22: return p

Algorithm 5 N1+(·α·), using forward CST

Precondition: vF in forward CST tF matches α
1: function N1PFRONTBACK1(tF, vF, α)
2: o← 0
3: if string-depth(vF) > |α| then
4: o← N1PBACK1(tF, vF,·α)
5: else
6: for 〈l, r, s〉 ← int-syms(tF, [lb(vF), rb(vF)]) do
7: l′← Cs + l
8: r′← Cs + r
9: o← o+ N1P(tF, node(l′, r′), sα·)

10: return o

by visiting all leaves of the wavelet tree of sym-
bols occurring in T bwt[l, r] (corresponding to α)
in O(|P (α)| log σ) time (lines 6-8). These ranges
SA[l′, r′] can be used to find the corresponding suf-
fix tree node for each sα in O(1) time. To illus-
trate, consider the pattern α = “night” in Fig-
ure 1a. From T bwt we can see that this is pre-
ceeded by s =“old” (1st occurrence in T bwt) and
s =“the” (3rd and 4th); from which we can com-
pute the suffix tree nodes, namely [15, 15] and
[16 + (3 − 1), 16 + (4 − 1)] = [18, 19] for “old”
and “the” respectively.11

N1PBACK1 is computed in a similar way, us-
ing the interval-symbols method to compute the
number of unique preceeding symbols (see Sup-
plementary Materials, Algorithm 7). Overall the
time complexity of inference for both N1PBACK1

11Using the offsets into the SA for each symbol, Cold = 15
and Cthe = 16, while −1 adjusts for counting from 1.
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Language Size(MiB) Tokens(M) Word Types Sentences(K)

BG 36.11 8.53 114930 329
CS 53.48 12.25 174592 535
DE 171.80 44.07 399354 1785
EN 179.15 49.32 124233 1815
FI 145.32 32.85 721389 1737
FR 197.68 53.82 147058 1792
HU 52.53 12.02 318882 527
IT 186.67 48.08 178259 1703
PT 187.20 49.03 183633 1737

Wikipedia 8637 9057 196 87835

Table 1: Dataset statistics, showing total un-
compressed size; and tokens, types and sentence
counts for the training partition. For Wikipedia
the Word Types, and Tokens are computed based
on characters.

and N1PFRONTBACK1 is O(P (α) log σ) where
P (α) is the number of preceeding symbols of α, a
considerable improvement over N1PFRONTBACK

using the forward and reverse CSTs. Overall
this leads to considerably faster computation of
mgram probabilities compared to the two CST ap-
proach, and although still slower than highly opti-
mised LM toolkits like SRILM, it is fast enough to
support large scale experiments, and has consider-
ably better scaling performance with the Markov
order m (even allowing unlimited order), as we
will now demonstrate.

6 Experiments

We used Europarl dataset and the data was num-
berized after tokenizing, splitting, and excluding
XML markup. The first 10k sentences were used
as the test data, and the last 80% as the train-
ing data, giving rise to training corpora of be-
tween 8M and 50M tokens and uncompressed size
of up to 200 MiB (see Table 1 for detailed cor-
pus statistics). We also processed the full 52 GiB
uncompressed “20150205” English Wikipedia ar-
ticles dump to create a character level language
model consisting of 72M sentences. We excluded
10k random sentences from the collection as test
data. We use the SDSL library (Gog et al., 2014) to
implement all our structures and compare our in-
dexes to SRILM (Stolcke, 2002). We refer to our
dual-CST approach as D-CST, and the single-CST

as S-CST.
We evaluated the perplexity across different lan-

guages and using mgrams of varying order from
m = 2 to∞ (unbounded), as shown on Figure 3.
Our results matched the perplexity results from
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Figure 3: Perplexity results on several Europarl
languages for different mgram sizes, m =
2 . . . 10, 15, 20,∞.

SRILM (for smaller values of m in which SRILM

training was feasible, m ≤ 10). Note that perplex-
ity drops dramatically from m = 2 . . . 5 however
the gains thereafter are modest for most languages.
Despite this, several large mgram matches were
found ranging in size up to a 34-gram match. We
speculate that the perplexity plateau is due to the
simplistic Kneser-Ney discounting formula which
is not designed for higher order mgram LMs and
appear to discount large mgrams too aggressively.
We leave further exploration of richer discounting
techniques such as Modified Kneser-Ney (Chen
and Goodman, 1996) or the Sequence Memoizer
(Wood et al., 2011) to our future work.

Figure 4 compares space and time of our in-
dexes with SRILM on the German part of Eu-
roparl. The construction cost of our indexes in
terms of both space and time is comparable to
that of a 3/4-gram SRILM index. The space us-
age of D-CST index is comparable to a compact
3-gram SRILM index. Our S-CST index uses only
177 MiB RAM at query time, which is compara-
ble to the size of the collection (172 MiB). How-
ever, query processing is significantly slower for
both our structures. For 2-grams, D-CST is 3 times
slower than a 2-gram SRILM index as the expen-
sive N1+(·α·) is not computed. However, for
large mgrams, our indexes are much slower than
SRILM. For m > 2, the D-CST index is roughly
six times slower than S-CST. Our fastest index, is
10 times slower than the slowest SRILM 10-gram
index. However, our run-time is independent of
m. Thus, as m increases, our index will become
more competitive to SRILM while using a constant
amount of space.
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0

500

1000

1500

0

100

200

300

D
-C

S
T

S-C
S

T

2 3 4 5 6 8 10 ∞
mgram size

Ti
m

e
pe

rS
en

te
nc

e
[m

se
c]

N1PFRONTBACK
fw-search
back-search
N1PBACK
N1PFRONT

Figure 5: Runtime breakdown of a single pattern
averaged over all patterns for both methods over
the Wikipedia collection.

Next we analyze the performance of our in-
dex on the large Wikipedia dataset. The S-CST,
character level index for the data set requires
22 GiB RAM at query time whereas the D-CST re-
quires 43 GiB. Figure 5 shows the run-time per-
formance of both indexes for different mgrams,
broken down by the different components of the
computation. As discussed above, 2-gram per-
formance is much faster. For both indexes, most
time is spent computing N1PFRONTBACK (i.e.,
N1+(·α·)) for all m > 2. However, the wavelet
tree traversal used in S-CST roughly reduces the
running time by a factor of three. The complex-
ity of N1PFRONTBACK depends on the number of
contexts, which is likely small for larger mgrams,
but can be large for small mgrams, which sug-
gest partial precomputation could significantly in-
crease the query performance of our indexes. Ex-
ploring the myraid of different CST and CSA con-
figurations available could also lead to significant

improvements in runtime and space usage also re-
mains future work.

7 Conclusions

This paper has demonstrated the massive poten-
tial that succinct indexes have for language mod-
elling, by developing efficient algorithms for on-
the-fly computing of mgram counts and language
model probabilities. Although we only consid-
ered a Kneser-Ney LM, our approach is portable to
the many other LM smoothing method formulated
around similar count statistics. Our complexity
analysis and experimental results show favourable
scaling properties with corpus size and Markov or-
der, albeit running between 1-2 orders of magni-
tude slower than a leading count-based LM. Our
ongoing work seeks to close this gap: preliminary
experiments suggest that with careful tuning of the
succinct index parameters and caching expensive
computations, query time can be competitive with
state-of-the-art toolkits, while using less memory
and allowing the use of unlimited context.

Acknowledgments

Ehsan Shareghi and Gholamreza Haffari are grate-
ful to National ICT Australia (NICTA) for gen-
erous funding, as part of collaborative machine
learning research projects. Matthias Petri is the
recipient of an Australian Research Councils Dis-
covery Project scheme (project DP140103256).
Trevor Cohn is the recipient of an Australian Re-
search Council Future Fellowship (project number
FT130101105).

References

Thorsten Brants, Ashok C Popat, Peng Xu, Franz J
Och, and Jeffrey Dean. 2007. Large language
models in machine translation. In Proc. EMNLP-
CoNLL.

M. Burrows and D. Wheeler. 1994. A block sorting
lossless data compression algorithm. Technical Re-
port 124, DEC.

Bernard Chazelle, Joe Kilian, Ronitt Rubinfeld, and
Ayellet Tal. 2004. The bloomier filter: An efficient
data structure for static support lookup tables. In
Proc. SODA, pages 30–39.

Stanley F Chen and Joshua Goodman. 1996. An em-
pirical study of smoothing techniques for language
modeling. In Proc. ACL, pages 310–318.

2417



P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro.
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Abstract

As a key representation model of knowl-
edge, ontology has been widely used in
a lot of NLP related tasks, such as se-
mantic parsing, information extraction and
text mining etc. In this paper, we study
the task of ontology matching, which con-
centrates on finding semantically related
entities between different ontologies that
describe the same domain, to solve the
semantic heterogeneity problem. Previ-
ous works exploit different kinds of de-
scriptions of an entity in ontology di-
rectly and separately to find the corre-
spondences without considering the high-
er level correlations between the descrip-
tions. Besides, the structural informa-
tion of ontology haven’t been utilized ad-
equately for ontology matching. We pro-
pose in this paper an ontology matching
approach, named ERSOM, which main-
ly includes an unsupervised representation
learning method based on the deep neural
networks to learn the general representa-
tion of the entities and an iterative sim-
ilarity propagation method that takes ad-
vantage of more abundant structure infor-
mation of the ontology to discover more
mappings. The experimental results on the
datasets from Ontology Alignment Eval-
uation Initiative (OAEI1) show that ER-
SOM achieves a competitive performance
compared to the state-of-the-art ontology
matching systems.

1The OAEI is an international initiative organizing annual
campaigns for evaluating ontology matching systems. All of
the ontologies provided by OAEI are described in OWL-DL
language, and like most of the other participates our ERSOM
also manages the OWL ontology in its current version. OAEI:
http://oaei.ontologymatching.org/

1 Introductions

In the recent years, it becomes evident that one
of the most important directions of improvement
in natural language processing (NLP) tasks, like
word sense disambiguation, coreference resolu-
tion, relation extraction, and other tasks related
to knowledge extraction, is by exploiting seman-
tics resources (Bryl et al., 2010). Nowadays, the
Semantic Web made available a large amount of
logically encoded information (e.g. ontologies,
RDF(S)-data, linked data, etc.), which constitutes
a valuable source of semantics. However, extend-
ing the state-of-the-art natural language applica-
tions to use these resources is not a trivial task
mainly due to the heterogeneity and the ambiguity
of the schemes adopted by the different resources
of the Semantic Web. How to utilize these re-
sources in NLP tasks comprehensively rather than
choose just one of them has attracted much atten-
tion in recent years.

An effective solution to the ontology hetero-
geneity problem is ontology matching (Euzenat
et al., 2007; Shvaiko and Euzenat, 2013), whose
main task is to establish semantic correspondences
between entities (i.e., classes, properties or in-
stances) from different ontologies.

Ontology matching is usually done by measur-
ing the similarity between two entities from two
different ontologies. To effectively calculate the
similarities, almost all types of descriptions of an
entity should be used. In previous works, given the
different nature of different kinds of descriptions,
similarities are normally measured separately with
different methods and then aggregated with some
kind of combination strategy to compute the final
similarity score. For example, Mao et al. (2010)
defined three single similarities (i.e., Name simi-
larity, Profile similarity and Structural similarity)
based on the descriptions of an entity, then they
employed a harmony-based method to aggregate
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the single similarities to get a final similarity for
extracting the final mappings. However, treating
different kinds of descriptions of an entity sepa-
rately suffers from two limitations. First, it lim-
its the capacity of modeling the interactions be-
tween different descriptions. For example, entity’s
label is always a specific substitution of its ID; en-
tity’s comment is a semantic definition for its ID;
a class can be characterized with its related prop-
erties, and a property is usually restricted by its
domain and range. These potential correlations of
the descriptions are very important to measure the
similarity between entities since they can be treat-
ed as some potential features describing an entity.
Second, it is difficult to estimate how many and
which kind of single similarities are needed for an
aggregation method to get a satisfactory result.

On the other hand, in order to find more map-
pings, many structural ontology matching meth-
ods are proposed. To the best of our knowledge,
previous structural methods are either local meth-
ods (Le et al., 2004; Sunna and Cruz, 2007) or
global (i.e. iterative) methods but only use part
of the structure information of the ontology (Li
et al., 2009; Ngo and Bellahsene, 2012). For ex-
ample, the ontology matching system YAM++ (N-
go and Bellahsene, 2012) utilizes a global struc-
tural method but it only uses the structure informa-
tion of classes and properties to create the propa-
gation graph to find mappings between classes and
properties. A large amount of instances and their
relations to classes and properties in the ontology
haven’t been exploited in this system.

To overcome the existing limitations, we pro-
pose in this paper a representation learning method
to capture the interactions among entity’s descrip-
tions; then we present our global structural method
which exploits more abundant structure informa-
tion of the ontology. We summarize our contribu-
tions as follows.

• We propose to use the deep neural network
model to learn the high-level abstract repre-
sentations of classes and properties from their
descriptions to acquire the potential corre-
lations for the computing of the similarities
between classes and properties. Moreover,
there is no need to select and aggregate differ-
ent single similarities in the similarity com-
putation.

• We propose a global similarity propagation
method that utilizes more abundant structure

information including all kinds of entities and
their relations in the ontology, to find more
mappings.

To evaluate the effectiveness of our approach,
we conduct experiments on the public datasets
from OAEI campaign (We select the OAEI data
sets mainly because evaluation metrics have been
well defined on these data sets and comparision
can be easily made). The experimental result-
s show that our matching approach can achieve
a competitive matching performance compared to
the state-of-the-art systems.

2 Problem Statement

Ontology is a formal, explicit specification of a
shared conceptualization in terms of classes, prop-
erties and relations (Euzenat et al., 2004). The pro-
cess of ontology matching is to find mappings (or
correspondences) between entities (classes, prop-
erties or individuals) from two ontologies. A map-
ping is defined as a four-tuple as written in Eq.(1),
where e1 and e2 represent the entity in ontology
O1 and O2 respectively, r is a kind of matching
relation (e.g., equivalent, subsume) and k → [0, 1]
is the degree of confidence of matching relation
between e1 and e2 (Mao et al., 2010).

m =< e1, e2, r, k > (1)

Similar with most of the OAEI systems (Li et al.,
2009; Ngo and Bellahsene, 2012; Cheatham and
Hitzler, 2013b), we focus on discovering only e-
quivalent mappings between classes and proper-
ties with cardinality 1:1. That is, one class (prop-
erty) in ontologyO1 can be matched to at most one
class (property) in ontology O2 and vise versa.

3 ERSOM: Entity Representation and
Structure based Ontology Matching

In this paper, we propose a structural ontology
matching approach using automatically learned
entity representation, which we call ERSOM.
Fig.1 shows the architecture of our approach. The
details of its major modules are given in the fol-
lowing sections.

3.1 Learning the representation of entity
In this section, we present how to learn the high-
level abstract representations for ontology entities.
The motivations are: 1) we regard different kinds
of the descriptions of an entity as a whole to avoid

2420



Figure 1: The architecture of ERSOM. Given the
two to-be-matched ontologies, we first extract the
descriptive information for each entity, then learn
the entity’s abstract representation based on its de-
scriptions, and finally utilize the representations to
compute the similarities between entities to initial-
ize the similarity propagation method to find final
mappings.

separatively calculating the similarities and aggre-
gating them later with a combination method; 2)
the learned representation can not only express the
meaning of the original descriptions of an entity
but also captures the interactions among different
descriptions.

3.1.1 Creating term vector for entity

We first generate a combination of the entity’s de-
scriptions (CDs for short) and then create a term
vector for each entity. In particular, the CDs of
a class = the class’s ID + label + comments + it-
s properties’ descriptions + its instances’ descrip-
tions. The CDs of a property = the property’s ID
+ label + its domain + its range (or its textual val-
ue when the property is a datatype property). And
the CDs of an instance = the instance’s ID + la-
bel + its properties’ values. A binary term vector
is created for each entity with the pre-processing
that consists of tokenizing, removing stop words,
stemming and deleting superfluous words. In the
binary term vectors, element 1 and 0 refer to the
existence and inexistence of a specific word, re-
spectively.

3.1.2 Learning entity representations
In the ontology matching area, training data usual-
ly refers to a pair of ontologies with correct map-
pings created by domain experts between their en-
tities. The acquisition of such dataset is time-
consuming and laborious. We state in this sec-
tion how to learn the abstract representations for
entities from their binary term vectors with an un-
supervised way. The deep neural network (DNN)
(Hinton et al., 2006; Bengio et al., 2007) is a multi-
layer learning model. It is mainly used for learning
the high-level abstract representations of original
input data. Given the generalization and the ab-
straction introduced in the representation learning
procedure, DNN allows us to better model the in-
teractions among different kinds of input features,
and measure the similarity at a more general lev-
el. Inspired by the work in (Hinton, 2007; Bengio
et al., 2012; He et al., 2013; Cui et al., 2014), we
use auto-encoder (Bourlard and Kamp, 1988; Hin-
ton and Zemel, 1994) to learn the representations
for classes and properties. The auto-encoder is one
of the neural network variants that can automati-
cally discover interesting abstractions to represent
an unlabeled dataset.

Figure 2: Unsupervised representation learning.

As shown in Fig.2, the input to the auto-encoder
is denoted as x, which indicates a binary term vec-
tor of a class or a property. Auto-encoder tries
to learn an approximation to the identity function
h(x), so as to output x̂ that is similar to x. More
specifically, the auto-encoder consists of an encod-
ing process h(x) = f(Wx + b1) and a decod-
ing process g(h(x)) = f(W Th(x) + b2), where
f is a activation function like the sigmoid func-
tion f(x) = 1/(1 + exp(−x)), W is the weight
matrix and b is the bias term. The goal of the
auto-encoder is to minimize the reconstruction er-
ror L(x, g(h(x))) = |x−g(h(x))|2, thus retaining
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maximum information. Through the combination
and transformation, auto-encoder learns the ab-
stract representation h(x) of the input binary term
vector. The representation is a real vector with val-
ues between 0 and 1.

In consideration of the large number of units in
the hidden layer (as marked in Fig.2), a sparsity
constraint is imposed on the hidden units to hold
the capacity to discover interesting structure in the
data. We use sparse auto-encoder (Coates et al.,
2011) to learn the correlations between descrip-
tions from their binary term vectors. The sparse
auto-encoder attempts to minimize the following
loss function:

J(W, b) =
m∑
i=1

∥∥∥x(i) − x̂(i)
∥∥∥2

+

λ (‖W1‖F + ‖W2‖F ) + β
∑
h∈H

KL (ρ‖ρ̂h)

(2)

where x(i) is the binary term vector of the ith en-
tity (a class or a property), x̂(i) is the reconstruc-
tion of x(i), λ is a regularization parameter, orig-
inal ‖ · ‖F is the Frobenius norm, β controls the
weight of the sparsity penalty term, H is the set of
hidden units, and ρ is the sparsity parameter. For-
mally, KL (ρ‖ρ̂h) = ρ log ρ

ŷh
+ (1− ρ) log 1−ρ

1−ŷh

is the Kullback-Leibler (KL) divergence between
a Bernoulli random variable with mean ρ and a
Bernoulli random variable with mean ŷh.

Figure 3: Learning higher level representations.

3.1.3 Learning higher level representations
The auto-encoder which only has one hidden layer
may not be enough to learn the complex interac-
tions between input features. Inspired by the work
of Vincent et al. (2010) and He et al. (2013), we
build multi-layer model to learn more abstract en-
tity representations. To achieve this, we repeatedly

stack new sparse auto-encoder on top of the previ-
ously learned h(x) (i.e., the higher level represen-
tations are formed by combination of lower lev-
el representations). This model is called Stacked
Auto-Encoder (SAE) by Bengio et al. (2007). In
this way, when we input the binary term vector
to the network, we can get its abstract represen-
tations in different levels. In other words, with the
layer-by-layer learning, we obtain different level-
s of representations. The top-level representation,
which models the final interactions of the original
descriptions, can be used to measure the similarity
between classes and properties.

The prototype of Stacked Auto-Encoder (SAE)
is shown in Fig.3, where f(h(x))(m) denotes the
final representation learned by the top-level hidden
layer and superscriptmmeans the SAE consists of
m sparse auto-encoders.

3.2 Optimizing with the ontology structure

The above method can only consider the local de-
scriptions (such as ID, label and comments etc.)
of entities in ontology. According to the study
in (Melnik et al., 2002), we present our struc-
tural method or called Similarity Propagation (SP)
method, which exploits more abundant structure
information of the ontology to discover more map-
pings globally. The intuition behind the propaga-
tion idea is that the similarity between two entities
is not only about their neighbor entities, but it is
about all other entities (neighbor entities’ neigh-
bor entities) in the ontologies. This idea has also
been used in the ontology matching systems Ri-
MOM(Li et al., 2009) and YAM++(Ngo and Bel-
lahsene, 2012) in order to find mappings between
classes and properties. But the nodes in their
propagation graph are just limited to class pairs
and property pairs, and the propagation edges are
transformed from relations between two classes,
two properties or a class and a property. The dif-
ference of our SP method is that we consider the
instances and its relations with classes and prop-
erties when creating the propagation graph even if
we also only find mappings between classes and
properties. This is because (1) the similar degree
of two classes will be increased if they have some
of similar instances; (2) the similar degree of two
properties will be increased if the instances that
own these properties are similar. The propagation
graph in our SP method will be much more com-
plete compared with the previous ones.
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Algorithm 1 presents the procedures of our SP
method. In the first two steps of it, we repre-
sent each to-be-matched ontology to a Directed
Labeled Graph (DLG). Each edge in the DLG
has format (s, p, o), where s and o are the source
and target nodes (each node represents a class, a
property or an instance), and the edge’s label p
comes from one of the seven ontology relation-
s including HasSubClass, HasSubProperty, Ha-
sObjectProperty, HasDataProperty, HasInstance,
HasDomain, HasRange. Then we create a Pair-
wise Connectivity Graph (PCG) from two DLGs
by merging edges having the same labels.

Algorithm 1: Our SP Algorithm
Input: The to-be-matched ontologies, OR

and OT ; The initial similarity matrix,
M0; The edges’ weight matrix, W ;

Output: The updated similarity matrix, M1;
1 DLG1 ← Transform(OR);
2 DLG2 ← Transform(OT );
3 PCG←Merge(DLG1, DLG2);
4 IPG← Initiate(PCG,M0,W );
5 M1 ← Propagation(IPG,Normalized);

In the fourth step of Algorithm 1, for a PCG,
we assign weight values to edges as the inverse
of the number of out-linking relationships of it-
s source node (Melnik et al., 2002). For the n-
odes that consist of two classes or two properties,
we assign them values calculated with the cosine
similarity between their representations learned in
section 2.1.3. For the node consisting of two in-
stances, the similarity value assigned to it is mea-
sured with the ScaledLevenstein2 between the IDs
of instances. In this way, we construct an Induced
Propagation Graph (IPG) on which the propaga-
tion algorithm will run iteratively. Let σ(x, y) de-
notes the similarity score between entities x and y
for node (x, y) in the IPG. At the (i + 1)th itera-
tion, the similarity score is updated as follows:

σi+1 =
1
z

(
σ0 + σi + ϕ(σ0 + σi)

)
, (3)

ϕ
(
σ0 + σi

)
=

m∑
j=1

(
σ0 + σij

)
wj (4)

2http://sourceforge.net/projects/
secondstring/. ScaledLevenstein is a good method for
computing string similarity (Cheatham and Hitzler, 2013a),
of course, it can be replaced by other methods.

where z is the normalization factor defined as
z = max

x′∈IPG
(
σi+1

)
. σ0 and σi are similarities at

the initial time and ith iterations, respectively. ϕ()
is the function to compute the similarities propa-
gated from the adjacent node σij connected to n-
ode (x, y) in the (i+ 1)th iteration. And wj is the
weight of edge between the node (x, y) and its jth
neighboring node.

During each iteration in the final step of Algo-
rithm 1, only the similarity value between two en-
tities in the node will be updated. At the end of
each iteration, all similarity values are normalized
by a Normalized function to all in range [0, 1]. The
iteration stops after a predefined number of steps.

3.3 Mapping selection

Similar with the work in (Wang and Xu, 2007;
Huang et al., 2007; Ngo and Bellahsene, 2012), we
use the Stable Marriage (SM) algorithm (Melnik
et al., 2002) to choose the 1:1 mappings from the
M rows and N columns similarity matrix, where
M and N is the number of classes and properties
in ontologiesO1 andO2, respectively. In addition,
before we run the SM algorithm we set the value
of cell [i, j] of the similarity matrix to zero if i and
j correspond to different types of entities. Thus,
we remove lots of redundant data and only find
the mappings between classes or properties.

4 Experiments

4.1 Data sets and evaluation criteria

The annual OAEI campaign is an authoritative
contest in the area of ontology matching, we
choose the data from OAEI in our experiments,
because the evaluation metrics have been well de-
fined and the comparision can be easily made.
We observe strong structure similarities lies be-
tween OAEI ontologies and ontologies used in
NLP tasks, such as WordNet and HowNet for WS-
D (Li et al., 1995; Agirre et al., 2009), and Free-
base, YAGO, and knowledge graph for IE, text
mining and QA (Yao and Van Durme, 2014; Yao
et al., 2014), both describe entities and their rela-
tions with class, properties and instances.

Development dataset: the Standard Bench-
mark 2012 dataset that OAEI provides for devel-
opers to test their system before participating in
the competition is used as the development dataset
in our experiments. This dataset contains one ref-
erence ontology and 109 target ontologies. We use
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this dataset to test various values for the parame-
ters in our ERSOM and apply the best ones to the
experiments on the testing datasets.

Testing dataset: (1) the Benchmark-Biblio
2012 dataset which contains one reference ontol-
ogy and 94 target ontologies; (2) the Benchmark-
Biblioc 2013 dataset which has five sub-datasets
and there are one reference ontology and 93 target
ontologies in each sub-dataset. We use these two
datasets to evaluate the performance of our ER-
SOM approach.

In the matching scenario, each target ontolo-
gy should be mapped to the reference ontology.
We followed the standard evaluation criteria from
the OAEI, calculating the precision, recall and f-
measure over each test. The version computed
here is the harmonic mean of precision and recall.

4.2 Experimental design and results

4.2.1 Evaluation for representation learning
We first use Jena3 parsing the ontologies and ex-
tract descriptions for entities according to the de-
scription in section 2.1.1, then we create a vocabu-
lary based on the dataset and denote each class and
property as a binary term vector. We apply the L-
BFGS algorithm (Ngiam et al., 2011) to train the
stacked auto-encoder described in section 2.1.3.
The size of the input layer is equals to the length
of the vocabulary created from the dataset. We fix
the parameters λ = 1e− 4, β = 3 and ρ = 0.25 in
Eq.2, and set the size of the first and second hidden
layer of the stacked auto-encoder to 200 and 100,
respectively, by experience. The number of itera-
tions of the L-BFGS algorithm is set to 500. We
use the learned representations to measure the sim-
ilarities between classes and properties and apply
the strategy presented in section 2.3 to extract final
mappings. The matching results of our Unsuper-
vised Representation Learning (URL) method on
the development dataset and testing datasets are
shown in Table 1 and Table 2, respectively.

Method Prec. Rec. F-m.
TV 0.841 0.715 0.748

URL(1) 0.819 0.822 0.820
URL(2) 0.843 0.846 0.844

Table 1: Representation learning on dev. dataset.

In Table 1, TV denotes the matcher in which

3https://jena.apache.org/

the similarities are calculated between binary ter-
m vectors of classes and properties by using co-
sine measure. URL(i), where i ∈ {1, 2}, repre-
sents that we use the representations learned by
the ith hidden layer of the stacked auto-encoder to
measure the similarities between classes and prop-
erties to find mappings. Table 1 shows that on
the development dataset, the F-measure of TV is
0.748 and it is improved 9.6% and 12.8% when
we use the representations learned by the single-
layer and double-layer auto-encoder to find the
mappings, respectively. It illustrates that we have
learned some useful information from the term
vectors, which can be explained as the interactions
between descriptions of entities. From the last two
rows in Table 1, we can find that the F-measure im-
proved by 2.9% when we use the representations
learned by the second hidden layer (i.e., URL(2))
to measure the similarities.

Benchmark-Biblio 2012 Benchmark-Biblioc 2013
Prec. Rec. F-m. Prec. Rec. F-m.

TV 0.870 0.719 0.761 0.865 0.715 0.757
URL(1) 0.805 0.808 0.806 0.780 0.783 0.786
URL(2) 0.814 0.817 0.815 0.787 0.790 0.793

Table 2: Representation learning on test datasets.

From Table 2 we can see that the F-measures are
increased on both of the testing datasets when we
use the learned representations to measure simi-
larities between classes and properties compared
with using term vectors, but the amount of im-
provements are less than that on the development
dataset. This is because we estimate the parame-
ters of the representation learning model on the de-
velopment dataset and then apply them on the test
tasks directly. The precision is reduced when we
use URL method, this may be due to the learned
representations of entities are too general. In ad-
dition, in the parameter adjustment process, we
try to make the F value maximization, but not to
care about mapping precision. This is because we
usually compare the performance of the systems
based on their matching F values.

4.2.2 Comparison with aggregation methods
Aggregating different similarities is pervasive in
ontology matching systems that contain mul-
tiple single matchers, for example, Falcon-
AO(Qu et al., 2006), RiMOM(Li et al., 2009),
YAM++(Ngo and Bellahsene, 2012), etc. Since
our representation learning method also combines
all descriptions of an entity together in an unsu-
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pervised way, we compare it with previous unsu-
pervised aggregation strategies, that is, Max, Av-
erage, Sigmoid, Weighted(Cruz et al., 2010) and
Harmony(Mao et al., 2008, 2010). As the work
in (Mao et al., 2010; Ngo and Bellahsene, 2012),
we first define three context profiles including in-
dividual profile, semantic profile and external pro-
file for each class and property (this equivalent to
divide the collection of descriptions of a class or
a property into three different parts). Then we ap-
ply a vector space model with TFIDF weighting
scheme and cosine similarity measure to compute
similarity scores between profiles. And finally, we
aggregate these three single similarities using dif-
ferent aggregation methods.

Dev. Tes.1 Tes.2
Individual Profile 0.668 0.612 0.611
Semantic Profile 0.434 0.472 0.477
External Profile 0.222 0.224 0.224

MAX 0.739 0.705 0.712
Average 0.792 0.786 0.786
Sigmoid 0.763 0.753 0.757
Weighted 0.755 0.716 0.728
Harmony 0.794 0.789 0.785

URL 0.844 0.815 0.793

Table 3: Comparison with aggregation methods.

Table 3 shows the F-measure of the single
matchers and aggregation methods on the devel-
opment dataset (Dev. for short) and two test-
ing datasets (i.e., Tes.1 and Tes.2, which refer
to the Benchmark-Biblio 2012 dataset and the
Benchmark-Biblioc 2013 dataset, respectively).
First, the performance of single matcher is poor,
the highest F-measures are 0.668, 0.612 and 0.611
on the datasets Dev., Tes.1 and Tes.2, respective-
ly. And when we use external profile to calcu-
late the similarities, the F-measures are reduced
to 22%. Second, the performance is dramatical-
ly boosted by aggregation methods and they al-
l achieve F-measures higher than 0.7, so the ag-
gregation methods are very effective in improving
the performance of mapping approaches that re-
ly on measuring multiple similarities. And finally,
our Unsupervised Representation Learning (URL)
method holds the highest F-measure both on the
development dataset and on the testing datasets.

4.2.3 Evaluation for our structural method
In this experiment, we compare our Similarity
Propagation (SP) method to other structure based
methods, that is, ADJACENTS and ASCOPATH
in (Le et al., 2004); DSI and SSC in (Sunna and
Cruz, 2007); Li’s SP (Li et al., 2009) and Ngo’s
SP (Ngo and Bellahsene, 2012). We first use enti-
ty’s ID to compute the similarity between classes
and properties to provide an unified initial simi-
larity matrix as input (or initialization) for our SP
and other structural methods. Then, a new similar-
ity matrix will be created and updated by consid-
ering the initial similarities and different structure
information. And finally, we extract the mappings
from the newly created similarity matrix with the
strategy described in section 2.3.

Dev. Tes.1 Tes.2
Initial Matcher 0.616 0.524 0.523
ADJACENTS 0.622 0.569 0.570
ASCOPATH 0.604 0.540 0.552

DSI 0.641 0.576 0.575
SSC 0.642 0.569 0.568

Li’s SP 0.747 0.769 0.772
Ngo’s SP 0.751 0.768 0.764
Our SP 0.810 0.834 0.839

Our SP with URL 0.903 0.865 0.866

Table 4: Comparison with structural methods.

In ADJACENTS method, the parameter Wk,
where k ∈ {1, 2, 3}, is set to 1/3. The parameter
MCP in the methods DSI and SSC is set to 0.75 as
reported in their work. The iterative times to SP al-
gorithm are fixed to 50. Table 4 reports the match-
ing F-measures of these structure based methods
on the development dataset (Dev. for short) and
testing datasets (Tes.1, Tes.2 for short).

From table 4 we can see that the local-structure
based methods (i.e., ADJACENTS, ASCOPATH,
DSI and SSC) provide low matching quality. It
means that these methods did not discover enough
additional correct mappings or even find some in-
correct mappings. For example, the F-measure
even reduced on the development dataset when use
ASCOPATH method. This is because if two enti-
ties don’t have any common entity in their ances-
tors, their similarity is equal to 0. Whereas, Li’s
SP and Ngo’s SP are global-structure based meth-
ods, and they seem to work well. The F-measure
has even improved by 21.9% when using the N-
go’s SP compared with the initial matcher. This
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is because in the SP method, the similarity score
of a pair of entities depends on not only their cur-
rent status but also on the status of the other pairs.
That explains why SP outperforms all other local
based structural methods. In our SP, all instances
and their relations to other entities in ontology are
exploited to help find the mappings between class-
es and properties, therefore the matching quality is
distinctly improved.

The last two rows of Table 4 shows that
when we use the learned representations to cre-
ate the initial similarity matrix to initialize our SP
method, the matching quality is significantly im-
proved. For example, the F-measure is improved
from 0.810 to 0.903 on the development dataset.
This illustrates that the initialization step is very
important to the SP method.

4.2.4 Comparison with other ontology
matching systems

We compare our ontology matching approach,
called ERSOM, with other multi-strategy match-
ing systems on the testing datasets. Fig.4 lists the
results of top five matching systems according to
their F-measures on the Benchmark-Biblio 2012
dataset and Benchmark-Biblioc 2013 dataset.

As shown in Fig.4, ERSOM outperforms most
of the participates except the systems YAM++ and
CroMatcher whose F-measures are 0.89 and 0.88
in 2013, respectively. CroMatcher achieves the
same level of recall as YAM++ but with consis-
tently lower precision (Grau et al., 2014). Un-
like MapSSS, our approach does not use any exter-
nal resources such as Google queries in its current
version. In YAM++ approach, the gold standard
datasets that taken from Benchmark dataset pub-
lished in OAEI 2009 are used to generate training
data to train a decision tree classifier. And in the
classifying phase, each pair of elements from two
to-be-matched ontologies is predicted as matched
or not according to its attributes. However, ER-
SOM is an unsupervised approach, but it does not
exclude using external resources and training da-
ta to help learning the representations of entities
and provide the initial similarity matrix for the SP
method to further improve the performance.

5 Related work

There are many studies on Ontology Matching
(Euzenat et al., 2007; Shvaiko and Euzenat, 2013).
Currently, almost all ontology matching system-
s exploit various kinds of information provided in

Figure 4: Comparison with other OAEI systems.

ontologies to get better performance. To aggre-
gate the different similarity matrixes, various ap-
proaches have been proposed.

Pirró and Talia (2010) is a generic schema
matching system. It exploits Max, Min, Average
and Weighted strategies for the combination. The
weighted method assigns a relative weight to each
similarity matrix, and calculates a weighted sum
of similarity for all similarity matrixes. The Aver-
age method is a special case of Weighted, which
considers each similarity matrix equally important
in the combination. Max and Min are two extreme
cases that return the highest and lowest similari-
ties in all similarity matrixes respectively. Ji et al.
(2011) use the Ordered Weighted Average (OWA)
to combine different matchers. It is a kind of
ontology-independent combination method which
can assign weights to the entity level, i.e., it use a
specific ordered position rather than a weight as-
sociated with a specific similarity matrix to aggre-
gate multiple matchers. Jean-Mary et al. (2009)
combines different matchers by using a weighted
sum strategy that adjusts weights empirically, or
based on some static rules. This approach cannot
automatically combine different matchers in vari-
ous matching tasks.

There are several works which exploit the su-
pervised machine learning techniques for ontolo-
gy matching. Eckert et al. (2009), string-based,
linguistic and structural measures (in total 23 fea-
tures) were used as input to train a SVM clas-
sifier to align ontologies. CSR (Classification-
based learning of Subsumption Relations) is a
generic method for automatic ontology matching
between concepts based on supervised machine
learning (Spiliopoulos et al., 2010). It specifically
focusses on discovering subsumption correspon-
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dences. SMB (Schema Matcher Boosting) is an
approach to combining matchers into ensembles
(Gal, 2011). It is based on a machine learning
technique called boosting, that is able to selec-
t (presumably the most appropriate) matchers that
participate in an ensemble.

The difference of our work is that the textual
descriptions are not been directly used to measure
the similarities between entities. We learn a rep-
resentation for each ontology entity in an unsuper-
vised way to capture the interactions among the
descriptions, which avoid the problem of selecting
and aggregating different individual similarities.

6 Conclusions

The successful ontology matching is very impor-
tant to link heterogeneous ontologies for NLP. In
this paper, we have proposed an ontology match-
ing approach, ERSOM, which describes the class-
es and properties in ontology with abstract repre-
sentations learned from their descriptions and im-
proves the overall matching quality using an it-
erative Similarity Propagation (SP) method based
on more abundant structure information. Experi-
mental results on the datasets from OAEI demon-
strate that our approach performs better than most
of the participants and achieves a competitive per-
formance. In our future work, we will consid-
er to use the ontology matching approach to the
matching between different NLP-oriented ontolo-
gies such as wordnet, Freebase, YAGO, etc.
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Abstract

We present a new unsupervised mecha-
nism, which ranks word n-grams accord-
ing to their multiwordness. It heavily re-
lies on a new uniqueness measure that
computes, based on a distributional the-
saurus, how often an n-gram could be re-
placed in context by a single-worded term.
In addition with a downweighting mech-
anism for incomplete terms this forms a
new measure called DRUID. Results show
large improvements on two small test sets
over competitive baselines. We demon-
strate the scalability of the method to large
corpora, and the independence of the mea-
sure of shallow syntactic filtering.

1 Introduction

While it seems intuitive to treat certain sequences
of tokens as single terms, there is still consider-
able controversy about the definition of what ex-
actly such a multiword expression (MWE) con-
stitutes. Sag et al. (2001) pinpoint the need of
treating MWEs correctly and classify a range of
syntactic formations that could form MWEs and
define MWEs as being non-compositional with re-
spect to the meaning of their parts. While the exact
requirements on MWEs is bound to specific tasks
(such as parsing, keyword extraction, etc.), we op-
erationalize the notion of non-compositionality by
using distributional semantics and introduce a new
measure that works well for a range of task-based
MWE definitions.

Most previous MWE ranking approaches
use the following mechanisms to determine
multiwordness: part-of-speech (POS) tags,
word/multiword frequency and significance of
co-occurrence of the parts. In this paper we
do not want to introduce ”yet another ranking
function” but rather an additional mechanism,

which performs ranking based on distributional
semantics.

Distributional semantics has already been
used for MWE identification, but mainly to
discriminate between compositional and non-
compositional MWEs (Schone and Jurafsky,
2001; Salehi et al., 2014; Hermann and Blunsom,
2014). Here we introduce a new concept to de-
scribe the multiwordness of a term by its unique-
ness. Using the uniqueness score we measure
how likely a term in context can be replaced by
a single word. This measure is motivated by the
semiotic consideration that due to parsimony con-
cepts are often expressed as single words. Further-
more, we implement a context-aware punishment,
called incompleteness, which degrades the score
of terms that seem incomplete regarding their con-
texts. Both concepts are combined into a single
score we call DRUID, which is calculated based
on a distributional thesaurus. In the following, we
show the impact of that new method for French
and English and also examine the effect of cor-
pus size on MWE extraction. Additionally, we
report on results without using any linguistic pre-
processing except tokenization.

2 Related Work

The generation of MWE dictionaries has drawn
much attention in the field of Natural Lan-
guage Processing (NLP). Early computational
approaches (e.g. Justeson and Katz (1995)) use
POS sequences as MWE extractors. Other ap-
proaches, relying on word frequency, statistically
verify the hypothesis whether the parts of the
MWE occur more often together than would be
expected by chance (Manning and Schütze, 1999;
Evert, 2005; Ramisch, 2012). One of the first
measures that consider context information (co-
occurrences) are the C-value and the NC-value in-
troduced by Frantzi et al. (1998). These meth-
ods first extract candidates using POS information
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and then compute scores based on the frequency
of the MWE and the frequency of nested MWE
candidates. The method described by Wermter
and Hahn (2005) computes a score by multiplying
the frequency of a candidate when placing wild-
cards for each word. A newer method is intro-
duced in Lossio-Ventura et al. (2014), which re-
ranks scores based on an extension of the C-value,
which uses a POS-based probability and an inverse
document frequency. Using different measures
and learning a classifier that predicts the multi-
wordness was first proposed by Pecina (2010),
who, however, restricts his experiments to two-
word MWEs for the Czech language only. Ko-
rkontzelos (2010) comparatively evaluates several
MWE ranking measures. The best MWE extrac-
tor reported in his work is the scorer by (Naka-
gawa and Mori, 2002; Nakagawa and Mori, 2003),
who use the un-nested frequency (called marginal
frequency) of each candidate and multiply these
by the geometric mean of the distinct neighbor of
each word within the candidate.

Distributional semantics is mostly used to de-
tect compositionality of MWEs (Salehi et al.,
2014; Katz and Giesbrecht, 2006). Most ap-
proaches therefore compare the context vector of
a MWE with the combined vectors based on the
constituent words of the MWE. The similarity be-
tween the vectors is then used as degree for com-
positionality. In machine translation, words are
sometimes considered as multiwords if they can
be translated as single term (cf. (Bouamor et al.,
2012; Anastasiou, 2010)). Whereas this follows
the same intuition as our uniqueness measure, we
do not require any bilingual corpora.

Regarding the evaluation, mostly precision at k
(P@k) and recall at k (R@k) are applied (e.g. (Ev-
ert, 2005; Frantzi et al., 1998; Lossio-Ventura et
al., 2014)). Another general approach is using the
average precision (AP), which is also used in In-
formation Retrieval (IR) (Thater et al., 2009) and
has also been applied by Ramisch et al. (2012).

3 Baselines and Previous Approaches

We will evaluate our method by comparing our
MWE ranking to multiword lists that have been
annotated in corpora. Here, we introduce an up-
per bound and two baseline methods and give a
brief description of the competitive methods used
in this paper. Most of these methods require a list
of candidate terms T , usually extracted with POS

sequences (see Section 5).

3.1 Upper Bound

We use a perfect ranking as upper bound, where
we rank all positive candidates before all negative
ones.

3.2 Lower Baseline and Frequency Baseline

The ratio between true candidates and all candi-
dates serves as lower baseline, which is also called
baseline precision (Evert, 2008). The second base-
line is the frequency baseline, which ranks can-
didate terms t ∈ T according to their frequency
freq(t).

3.3 C-value/NC-value

The commonly used C-value (see Eq. 1) was de-
veloped by Frantzi et al. (1998). The first fac-
tor, logarithm of the term length in words, favors
longer MWEs. The second factor is the frequency
of the term reduced by the average frequency of
all candidate terms T , which nest the term t, i.e. t
is a substring of the terms we denote as Tt.

c(t) = log2(|t|)(freq(t)− 1
|Tt|

∑
b∈Tt

freq(b)) (1)

An extension of the C-value was proposed by
Frantzi et al. (1998) as well and is named NC-
value. It takes advantage of context words Ct by
assigning weights to them. As context words only
nouns, adjectives and verbs are considered1. Con-
text words are weighted with Equation 2, where
k denotes the number of times the context word
c ∈ Ct occurs with any of the candidate terms.
This number is normalized by the number of can-
didate terms.

w(c) =
k

|T | (2)

The NC-value is a weighted sum of the C-value
and the product of the term t occurring with each
context c which form the term tc:

nc(t) = 0.8 ∗ c(t) + 0.2
∑
c∈Ct

freq(tc)w(c). (3)

3.4 t-test

The t-test (see e.g. (Manning and Schütze, 1999,
p.163)) is a statistical test for the significance of

1the context window size is not specified in Frantzi et al.
(1998)

2431



co-occurrence of two words. It relies on the proba-
bilities of the term and its single words. The prob-
ability of a word p(w) is defined as the frequency
of the term divided by the total number of terms
of the same length. The t-test statistic is computed
using Equation 4 with freq(.) being the total fre-
quency of unigrams.

t(w1 . . . wn) ≈ p(w1 . . . wn)−
∏n
i=1 p(wi)√

p(w1 . . . wn)/freq(.)
(4)

We then use this score to rank the candidate terms.

3.5 FGM Score
Another method inspired by the C/NC-value is
proposed in (Nakagawa and Mori, 2002; Naka-
gawa and Mori, 2003). The method was developed
on a Japanese dataset and outperformed a modi-
fied C-value2 measure. The method is composed
of two scoring mechanisms for the candidate term
t as shown in Equation 5.

FGM(t) = GM(t)×MF (t) (5)

The first term in the equation is a geometric mean
GM(.) of the number of distinct direct left l(.) and
right r(.) neighboring words for each single word
ti within t.

GM(t) = 2|t|

√∑
ti∈t

(|l(ti)|+ 1)(|r(ti)|+ 1) (6)

The neighboring words are extracted directly from
the corpus; the method does neither rely on can-
didate lists nor POS tags. To the contrary, the
marginal frequency MF (t) relies on the candi-
date list and the underlying corpus. This frequency
counts how often the candidate term occurs within
the corpus and is not a subset of a candidate. In
Korkontzelos (2010) it was shown that while scor-
ing according to Equation 5 leads to comparatively
good results, it is consistently outperformed by
MF only.

4 Semantic Uniqueness and
Incompleteness

We present two new mechanisms relying on a Dis-
tributional Thesaurus (DT), which we use to rank
terms regarding their multiwordness: A score for
the uniqueness of a term and a punishing score that
conveys the incompleteness.

2They adjust the logarithmic length in order to be able to
use the C-value to detect single worded terms.

4.1 Similarity Computation
The DT is computed based on Biemann and Riedl
(2013). First we extract n-grams from text and
consider the left and the right neighbor of each n-
gram as context feature. Then, we calculate the
Lexicographer’s Mutual Information (LMI) sig-
nificance score (Bordag, 2008) between n-grams
and features and remove all context features,
which co-occur with more than 1000 terms, as
these features tend to be to general. In the next
step we keep for each n-gram only the 1000 con-
text features, with the highest LMI score. The
similarity score is then computed based on the
overlap of features between two terms. Due to
pruning this overlap-based significance measure is
proportional to the Jaccard similarity measure, al-
beit we do not consider any normalization. After
computing the feature overlap between two terms,
we keep for each n-gram the 200 most similar n-
grams. An example for the most similar n-grams
to the terms red blood cell and red blood including
their feature overlap are shown in Table 1.

4.2 Uniqness Computation
The first mechanism of our MWE ranking method
is based on the following hypothesis: n-grams,
which are MWE, could be substituted by sin-
gle words, thus they have many single words
amongst their most similar terms. This is moti-
vated by semiotic considerations: Because of par-
simony, concepts are usually expressed in single
words. When a semantically non-compositional
word combination is added to the vocabulary, it
expresses a concept that is necessarily similar to
other concepts. Hence, if a candidate multiword is
similar to many single word terms, this indicates
multiwordness.

To compute the uniqueness score (uq) of an n-
gram t, we first extract the n-grams it is simi-
lar to using the DT as described in Section 4.1.
The function similarities(t) returns the 200 most
similar n-grams to the given n-gram t. We then
compute the ratio between unigrams and all simi-
lar n-grams considered using the formula:

uq(t) =

∑similarities(t)
s:|s|=1 1

|similarities(t)| . (7)

We illustrate the computation of our measure
based on the MWE red blood cell and the non-
MWE red blood. When considering only the ten
most similar entries for both n-grams as illustrated
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in Figure 1, we observe an uniqueness score of
7/10 = 0.7 for both n-grams. If considering the

red blood cell red blood
Sim. term Sc. Sim. term Sc.
erythrocyte 133 red 148
red cell 129 white blood 111
RBC 95 Sertoli 93
platelet 70 Leydig 92
red-cell 37 NK 86
reticulocyte 34 mast 85
white blood 33 granulosa 81
leukocyte 29 endothelial 81
granulocyte 28 hematopoietic stem 79
the erythrocyte 28 peripheral blood monon 78

Table 1: We show the ten most similar entries for
the term red blood cell (left) and red blood (right).
Here, seven out of ten terms are single words.

top 200 similar n-grams, which are also used in
our experiments we will obtain 135 unigrams for
the candidate red blood cell and 100 unigrams for
the n-gram red blood. We will use these counts
for showing the workings of the method in the re-
mainder.

4.3 Incompleteness Computation
Similar to the C/NC-value method, we also as-
sign a context weighting function that punishes
incomplete terms, which we call incompleteness
(ic). For this function we extract the 1000 most
significant context features using the function
context(t), which yields tuples of left and right
contexts. These context features are the same that
are used for the similarity computation in Section
4.1 and have been ranked according to the LMI
measure. For the example term red blood, some of
the contexts are 〈extravasated, cells〉, 〈uninfected,
cells〉, 〈nucleated, corpuscles〉. In the next step
we split each tuple to its left and right word in-
cluding its relative position (left/right) to the can-
didate term. Using the first context feature results
in: 〈extravasated, left〉, 〈cells, right〉. Then, we
sum up the occurrences of for each single context,
as shown in Table 2 for the two terms.

We subsequently select the maximal count and
normalize it by the counts of features |context(t)|
considered, which is 1000. This results into the
incompleteness measure ic(t). For our example
terms we achieve the values ic(red blood) =
557/1000 and ic(red blood cell) = 48/1000.
Whereas the uniqueness scores for the most simi-
lar entries were equal, we now have a measure that
indicates the incompleteness of an n-gram, with
higher scores indicating more incomplete terms.

Context term Position Count
red blood cell

transfusions right 48
( right 42
transfusion right 33

red blood
cells right 557
cell right 344
corpuscles right 13

Table 2: Top three most frequent context words
for the term red blood cell and red blood in the
Medline corpus.

4.4 Combining Both Measures
As shown in the previous two sections, a high
uniqueness score indicates the multiwordness and
a high incompleteness score should decrease the
overall score. In experiments, we found the best
combination if we subtract3 the incompleteness
score from the uniqueness score. This mechanism
is inspired by the C-value and motivated as terms
that are often preceded/followed by the same word
do not cover the full multiword expression and
need to be downranked. This leads to Equation
8, which we call DistRibutional Uniqueness and
Incompleteness Degree:

DRUID(t) =uq(t)− ic(t). (8)

Applying the DRUID score to our example terms
(considering the 200 most similar terms) we will
achieve the scores DRUID(red blood cell) =
135/200 − 48/1000 = 0.627 and
DRUID(red blood) = 100/200 − 557/1000 =
−0.057. As a higher DRUID score indicates the
multiwordness of an n-gram, we can summarize
that the n-gram red blood cell is a better MWE
than the n-gram red blood.

5 Experimental Setting

We examine two experimental settings: First, we
compute all measures on a small corpus that has
been annotated for MWEs, which serves as the
gold standard. In the second setting we compute
the measures on a larger in-domain corpus. The
evaluation is again performed for the same candi-
date terms as given by the gold standard. Results
for the top k ranked entries are reported using the
precision at k (P@k = 1

k

∑k
i=1 xi with xi equals

1 if the i-th ranked candidate is annotated as MWE
and 0 otherwise). For an overall performance we

3multiplicative combinations consistently performed
worse
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use the average precision (AP) as defined in Thater
et al. (2009): AP = 1

|Tmwe|
∑|T |

k=1 xkP@k, with
Tmwe beeing the set of positive MWE. When fac-
ing tied scores we mix false and true candidates
randomly cf. Cabanac et al. (2010).

5.1 Corpora

For the experiments we consider two annotated
(small) corpora and two unannotated (large) cor-
pora.

5.1.1 GENIA corpus and SPMRL 2013:
French Treebank

In the first experiments we use two small anno-
tated corpora that serve the gold standard MWEs.
We use the medical GENIA corpus (Kim et al.,
2003)4 which consists of 1999 abstracts from
Medline5 and encompasses 0.4 million words.
This corpus has annotations regarding important
and biomedical terms. Also single terms are anno-
tated in this data set, which we ignore.

The second small corpus is based on the French
Treebank (Abeillé and Barrier, 2004), which was
extended for the SPMRL task (Seddah et al.,
2013). This version of the corpus also contains
compounds annotated as MWEs. In our experi-
ments we use the training data, which covers 0.4
million words.

Whereas the GENIA MWEs target term match-
ing and medical information retrieval, the SPMRL
MWEs mainly focus on improving parsing
through compound recognition.

5.1.2 Medline Corpus and Est Républican
Corpus (ERC)

In a second experiment the scalability to larger
corpora is tested. For this, we make use of the en-
tire Medline5 abstracts, which consist of about 1.1
billion words. The Est Républican Corpus (ERC)
(Seddah et al., 2012)6 is our large French corpus.
It consists of local French news from the east-
ern part of France and comprises of 150 million
words.

5.2 Candidate Selection

In the first two experiments, we use POS filters
to select candidates. We concentrate on filters

4freely available at http://www.nactem.ac.uk/
genia/genia-corpus/pos-annotation.

5http://www.nlm.nih.gov/bsd/licensee/
access/medline_pubmed.html

6http://www.cnrtl.fr/corpus/
estrepublicain

that extract noun MWEs and avoid further pre-
processing like lemmatization. We use the filter
introduced by Justeson and Katz (1995)7 for the
English medical datasets. Considering only terms
that appear more than ten times leads to 1,340 can-
didates for the GENIA dataset and 29,790 can-
didates for the Medline dataset. According to
Table 3 we observe that most candidates are bi-
grams. Whereas for both corpora still around 20%
of trigrams are contained, the number of 4-grams
is only marginally represented. For the French
datasets we apply the filter proposed by Daille
et al. (1994)8, which is suited to match nomi-
nal MWEs. Applying the same filtering as for
the medical corpora leads to 330 candidate terms
for the SPMRL and 7,365 candidate terms for the
ERC. Here the ratio between bi- and trigrams is
more balanced but again the number of 4-grams
constitutes the smallest class.

Corpus Candidates 2-gram 3-gram 4-gram
GENIA 1,340 1,056 243 41
Medline 29,790 22,236 6,400 1,154
SPMRL 330 197 116 17
ERC 7,365 3,639 2,889 837

Table 3: Number of candidates after filtering for
the expected POS-tag and their distribution over
n-grams with n ∈ {1, 2, 3, 4}.

In comparison to the Medline dataset, the ratio
of multiwords extracted by the POS filter on the
French corpus is much lower. The reason for that
property is that in the French data, many adverbial,
prepositional MWEs are annotated, which are not
covered by the POS filter.

The third experiment shows the performance of
the method in absence of language-specific pre-
processing. Thus, we only filter the candidates by
frequency and do not make use of POS filtering.
As most previous methods rely on POS-filtered
data we cannot make use of them in this setting.

For the evaluation, we compute the scores of
the competitive methods in two settings: First, we
compute the scores based on the full candidate
list without any frequency filter and prune low-
frequent candidates only for the evaluation (post-
prune). In the second setting we filter candidates

7A regular expression for matching POS tag se-
quences is summarized by Korkontzelos (2010):
(([JN]+[JN]?[NP]?[JN]?)N). Each letter is a
truncated POS tag of length one where J is an adjective N a
noun and P a preposition.

8Following the same convention as for English the regular
expression can be expressed as N[J]?|NN|NPDN
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according to their frequency before the computa-
tion of scores (pre-prune). This leads to differ-
ences for context-aware measures, since in the pre-
pruned case, a lower number of less noisier con-
texts is used.

6 Results

6.1 Small Corpora Results

First we show the results based on the GENIA cor-
pus (see Table 4). Almost all competitive methods

Method P@100 P@500 AP
upper baseline 1.000 1.000 1.0000
lower baseline 0.713 0.713 0.7134
frequency 0.790 0.750 0.7468
t-test 0.790 0.750 0.7573
C-value (pre-pruned) 0.880 0.846 0.8447
NC-value (pre-pruned) 0.880 0.840 0.8405
GM 0.590 0.662 0.6740
MF (pre-pruned) 0.920 0.872 0.8761
FGM (pre-pruned) 0.910 0.840 0.8545
MF (post-pruned) 0.900 0.876 0.8866
FGM (post-pruned) 0.900 0.900 0.8948
DRUID 0.930 0.852 0.8663
log(freq)(DRUID) 0.970 0.860 0.8661
MF(post-pruned)DRUID 0.950 0.926 0.9241
FGM(post-pruned)DRUID 0.960 0.940 0.9262

Table 4: Results for the GENIA dataset.

beat the lower baseline. The C/NC-value perform
best when the pruning is done after a frequency
filter. In line with the findings of Korkontzelos
(2010) and in contrast to Frantzi et al. (1998) the
AP of the C-value is slightly higher than for the
NC-value. All the FGM based methods except the
GM measure alone outperform the C-value. The
results in Table 4 indicate that the best compet-
itive system is the post-pruned FGM system as
it has much higher average precision scores and
misses only 50 MWEs in the first 500 entries. A
slightly different picture is presented in Figure 1
where the P@k scores against the number of can-
didates are plotted. Here DRUID performs well
for the top-k list for small k, i.e. finds many good
MWEs with high confidence thus combines well
with MF, which extends to larger k, but places too
much importance of frequency when used alone.
Common errors are frequent chunks such as ”in
patience”, see Table 9 in Section 7. Whereas for
the post-pruned case FGM scores higher than MF,
the inverse is observed when pre-pruning. Us-
ing our DRUID methods can surmount the FGM
method only for the first 300 ranked terms (see
Figure 1 and Table 4). Multiplying the logarith-
mic frequency to the DRUID, the results improve
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Figure 1: Results for the GENIA corpus.

slightly and the best P@100 with 0.97 is achieved.
All FGM results are outperformed when combin-
ing the post-pruned FGM scores with our measure.
According to Figure 1 this combination achieves
high precision for the first ranked candidates and
still exploits the good performance of the post-
pruned FGM based method for the middle-ranked
candidates.

Different results are achieved for the SPMRL
dataset as can be seen in Table 5. Whereas the
pre-pruned C-value again receives better results
than frequency, it scores below the lower base-
line. Also the post-pruned FGM and MF method

Scoring P@100 P@200 AP
upper baseline 1.000 0.860 1.0000
lower baseline 0.521 0.521 0.5212
frequency 0.500 0.480 0.4876
t-test 0.500 0.485 0.4934
C-value (pre-pruned) 0.490 0.540 0.5107
MF (post-pruned) 0.510 0.495 0.5017
FGM (post-pruned) 0.460 0.480 0.4703
DRUID 0.790 0.690 0.7794
log(freq)DRUID 0.770 0.675 0.7631
MF(post-pruned)DRUID 0.700 0.630 0.6850
FGM(post-pruned)DRUID 0.600 0.570 0.5948

Table 5: Results for the French SPMRL dataset

do not exceed the lower baseline. Data analysis
revealed that for the French dataset only ten out of
the 330 candidate terms are nested within any of
the candidates. This is much lower than the 637
terms nested in the 1340 candidate terms for the
GENIA dataset. As both the FGM-based methods
and the C/NC-value heavily rely on nested can-
didates, they cannot profit from the candidates of
this dataset and achieve similar scores as ordering
candidates according to frequency. Comparing the
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baselines to our scoring method, this time we ob-
tain the best result for DRUID without additional
factors. However, multiplying DRUID with MF or
log(frequency) still outperforms the other methods
and the baselines.

6.2 Large Corpora Results
Most MWE evaluations have been performed on
rather small corpora. Here we want to inspect the
performance of the measures for large corpora, so
as to realistically simulate a situation where the
MWEs should be found automatically for an entire
domain.

Using the Medline corpus, all methods except
the GM score outperform the lower baseline and
the frequency baseline (see Table 6). Regarding

Scoring P@100 P@500 AP
upper baseline 1.000 1.000 1.0000
lower baseline 0.416 0.416 0.4161
frequency 0.720 0.534 0.4331
C-value (pre-pruned) 0.750 0.564 0.4519
t-test 0.720 0.542 0.4483
GM 0.210 0.272 0.3502
MF (pre-pruned) 0.550 0.542 0.4578
FGM (pre-pruned) 0.580 0.478 0.4200
MF (post-pruned) 0.530 0.500 0.4676
FGM (post-pruned) 0.490 0.446 0.4336
DRUID 0.770 0.686 0.4608
log(freq)*DRUID 0.860 0.720 0.4693
GM*DRUID 0.770 0.634 0.4497
MF(pre-pruned)*DRUID 0.730 0.634 0.4824
MF(post-pruned)*DRUID 0.730 0.626 0.4889

Table 6: Results computed on the Medline corpus.

the AP the best results are obtained when combin-
ing our DRUID method with the MF, whereas for
P@100 and P@500 the log-frequency weighted
DRUID scores best. Using solely the DRUID
method or the combined variation with the log-
frequency lead to the best ranking for the first
1000 ranked candidates and is then outperformed
by the MF based DRUID variations. In this exper-
iment the C-value achieves the best performance
from the competitive methods for the P@100 and
P@500, followed by the t-test. But the highest
AP is reached with the post-pruned MF method,
which also outperforms the sole DRUID slightly.
Contrary to the GENIA results, the MF scores are
consistently higher than the FGM scores.

When using the French ERC we figured out that
no nested terms are found within the candidates.
Thus, the post- and pre-pruned settings are equiv-
alent and thus MF equals frequency. The best re-
sults are again obtained with our method with and
without the logarithmic frequency weighting (see

Table 7). Again the AP of the C-value and most

Method P@100 P@500 AP
upper baseline 1.000 1.000 1.0000
lower baseline 0.220 0.220 0.2201
frequency 0.370 0.354 0.3105
C-value 0.420 0.366 0.3059
t-test 0.390 0.360 0.3134
GM 0.010 0.052 0.1694
MF 0.370 0.356 0.3148
FGM 0.280 0.260 0.2405
DRUID 0.700 0.568 0.3962
log(freq)DRUID 0.760 0.582 0.4075
MF*DRUID 0.570 0.516 0.3776
FGM*DRUID 0.510 0.418 0.3234

Table 7: Results computed based on the ERC.

of the FGM-based methods are inferior to the fre-
quency scoring. Only the t-test and the MF are
slightly higher than the frequency9. But in con-
trast to the results based on the smaller SPMRL
dataset, the MF, FGM and C-value can outperform
the lower baseline. In comparison to the smaller
corpora, the performance for the larger corpora
is much lower. Especially low-frequent terms in
the small corpora that have high frequencies in the
larger corpora have not been annotated as MWEs.

6.3 Results without POS Filtering
In the last experiment, we apply our method to
candidates without any POS filtering and report
results using a frequency threshold of ten. As
the competitive methods from the previous section
rely on POS tags, we use the t-test for compari-
son. Analysis revealed that the top-scored candi-

Medical French
Method P@100 AP P@100 AP

sm
al

lc
or

po
ra

upper baseline 1.000 1.0000 1.000 1.0000
lower baseline 0.107 0.1071 0.083 0.0832
frequency 0.150 0.1135 0.060 0.0906
t-test 0.160 0.1261 0.080 0.1097
t-test + sw 0.530 0.3643 0.180 0.1481
DRUID 0.700 0.4048 0.670 0.2986
log(freq)DRUID 0.690 0.3644 0.460 0.2527

la
rg

e
co

rp
or

a

upper baseline 1.000 1.0000 1.000 1.0000
lower baseline 0.036 0.0361 0.019 0.0191
frequency 0.010 0.0361 0.060 0.0366
t-test 0.020 0.0412 0.080 0.0440
t-test + sw 0.000 0.0989 0.200 0.0485
DRUID 0.610 0.1378 0.660 0.1009
log(freq)DRUID 0.760 0.1649 0.600 0.0988

Table 8: Results without linguistic pre-processing.

dates according to the t-test begin with stop words.
9This is achieved by chance for the MF, as it is equal to

the frequency. The different scores are due to the randomly
sorted tied scores used during our evaluation and reflect the
variance of the randomness.

2436



As an additional heuristic for the t-test, we shift
MWEs, which start or end with one of the ten most
frequent words, to the last ranks. For the smaller
dataset the best results are achieved with the sole
DRUID (see Table 8) and the frequency weight-
ing does not seem to be beneficial, as highly fre-
quent n-grams ending with stopwords are ranked
higher in absence of POS filtering. This, how-
ever, is not observed for larger corpora. Here
the best results for Medline are achieved with the
frequency weighted DRUID. Whereas for French,
the sole DRUID method performs best, the differ-
ence between the DRUID and the log-frequency-
weighted DRUID is rather small. The low APs
throughout can be explained by the large number
of considered candidates. The second best scores
are achieved with stop word based t-test (t-test +
sw). C-value performs en par with frequency.

6.4 Components of DRUID

Here, we show different parameters for DRUID,
relying on the English GENIA dataset without
POS filtering of MWE candidates and by consid-
ering only terms with a frequency of 10 or more.
Inspecting the two different components of the
DRUID measure (see upper graph in Figure 2), we
observe that the uniqueness measure contributes
most to the DRUID score. The main effect of the
incompleteness component is the downranking of
a rather small number of terms with high unique-
ness scores, which improves the overall ranking.
We can also see that for the top ranked terms the
negative incompleteness score does not improve
over the frequency baseline but outperforms the
frequency in the middle ranked candidates. Used
in DRUID we observe a slight improvement for
the complete ranking. We achieve a P@500 of
0.474 for the uniqueness scoring and 0.498 for the
DRUID score.

When filtering similar entries, used for the
uq scoring, by their similarity score (see bottom
graph in Figure 2), we observe that the amount of
similar n-grams considered seems to be more im-
portant then the quality of the similar entries: With
the increasing filtering also the quality of extracted
candidate MWEs diminishes.

7 Discussion and Data Analysis

The experiments confirm that our DRUID mea-
sure, either weighted with the MF or alone, works
best across two languages and across different cor-
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Figure 2: Results for the components of the
DRUID measure (top) and for different filtering
thresholds of the similar entries considered for the
uniqueness scoring (bottom).

pus sizes. It also achieves the best results in ab-
sence of POS filtering for candidate term extrac-
tion. The optimal weighting of DRUID depends
on the nestedness of the MWEs: Using DRUID
with the MF should be used when there are more
than 20% of nested candidates and using the log-
frequency or no frequency weighting when there
are almost no nested candidate terms.

We show the best-ranked candidates obtained
with our method and with the best competitive
method in terms of P@100 for the two smaller
corpora. Using the GENIA dataset, our log-
frequency based DRUID (see left column in Table
9) ranks only true MWE within the 15 top-scored
candidates.

The right-hand side shows results extracted with
the pre-pruned MF method that yields three non-
MWE terms. Whereas that could be a POS error,
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log(freq)DRUID MF (pre-pruned)
NF-kappa B 1 T cells 1
transcription factors 1 NF-kappa B 1
transcription factor 1 transcription factors 1
I kappa B alpha 1 activated T cells 1
activated T cells 1 T lymphocytes 1
nuclear factor 1 human monocytes 1
human monocytes 1 I kappa B alpha 1
gene expression 1 nuclear factor 1
T lymphocytes 1 gene expression 1
NF-kappa B activation 1 NF-kappa B activation 1
binding sites 1 in patients 0
MHC class II 1 important role 0
tyrosine phosphorylation 1 binding sites 1
transcriptional activation 1 in B cells 0
nuclear extracts 1 transcriptional activation 1

Table 9: Top ranked candidates from the GENIA
dataset using our method (left) and the competitive
method (right). Each term is marked, whether the
term is an MWE (1) or not (0).

the MF and also the C-value are not capable to re-
move terms starting with stop words. The DRUID
score alleviates this problem with the uniqueness
factor. For the French dataset our method ranks
only one false candidate whereas the MF (post-
pruned) ranks eight non-annotated candidates in
the top 15 list (see Table 10).

DRUID MF (post-pruned)
hausse des prix 1 milliards de francs 0
mise en oeuvre 1 millions de francs 0
prise de participation 1 Etats - Unis 1
chiffre d’ affaires 1 chiffre d’ affaires 1
formation professionnelle 1 taux d’ intérêt 1
population active 1 milliards de dollars 0
taux d’ intérêt 1 millions de dollars 0
politique monétaire 1 Air France 1
Etats - Unis 1 % du capital 0
Réserve fédérale 1 milliard de francse 0
comit d’ tablissement 1 directeur général 1
projet de loi 1 M. Jean 0
système européen 0 an dernier 1
conseil des ministres 1 années 1
Europe centrale 1 % par rapport 0

Table 10: Top ranked candidates from the SPMRL
dataset for the best DRUID method (left) and the
best competitive method (right). Each term is
marked, if it is an MWE (1) or not (0).

Whereas the unweighted DRUID method scores
better than its competitors on the large corpora,
the best results are achieved when using DRUID
with frequency-based weights on the smaller cor-
pora. For a direct comparison we evaluated the
small and large corpora using an equal candidate
set. We observed that all methods computed on
the large corpora achieve slightly inferior results
than when computing them using the small cor-

pora. Data analysis revealed that we would con-
sider many of the high ranked ”false” candidates
as MWE.

Therefore we extracted the top ten ranked terms,
which are not annotated as MWE from the meth-
ods with the best P@100 performance, resulting to
the log(freq) DRUID and the pre-pruned C-value
methods.

First, we observed that the first ’false’ candidate
for our method appears at rank 26 and at rank 1 for
the C-value. Additionally, only ten out of the top
74 candidates are not annotated as MWEs for our
method and 48 for the competitor. When search-
ing the terms within the MeSH dictionary10, we
find seven terms ranked from our method and two
for the competitive method.

8 Conclusion

Uniqueness is a new mechanism in MWE model-
ing. Whereas frequency and co-occurrence have
been captured in many previous approaches (see
Manning and Schütze (1999), Ramisch et al.
(2012) and Korkontzelos (2010) for a survey), we
boost multiword candidates t by their grade of dis-
tributional similarity with single word terms. We
implement such contextual substitutability with a
model where the term t can consist of multiword
tokens and similarity is measured based on the
right and neighboring word between all (single
and multiword) terms. Since it is the default to ex-
press concepts with single words, a high unique-
ness score is given to multiwords that belong to
a category just as single words would. E.g. for
an English open-domain corpus hot dog is most
similar to the terms: food, burger, hamburger,
sausage and roadside. Candidates with a low
number of single word similarities also serve the
same function, but more frequently we observe
single n-grams with function words or modifying
adjectives concatenated with content words, i.e.
small dog is most similar to ”various cat”, ”large
amount of ”, ”large dog”, ”certain dog”, ”dog”. To
be able to kick in, the measure requires a certain
minimum frequency for candidates in order to find
enough contextual overlap with other terms. Ad-
ditionally, we also demonstrate effective perfor-
mance on larger corpora and show its applicability
when used in a complete unsupervised evaluation
setting.

10http://www.nlm.nih.gov/mesh/
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Woliński, Alina Wróblewska, and Eric Villemonte
de la Clergerie. 2013. Overview of the SPMRL
2013 shared task: A cross-framework evaluation of
parsing morphologically rich languages. In Pro-
ceedings of the Fourth Workshop on Statistical Pars-
ing of Morphologically-Rich Languages, pages 146–
182, Seattle, WA, USA.

Stefan Thater, Georgiana Dinu, and Manfred Pinkal.
2009. Ranking Paraphrases in Context. In Proceed-
ings of the 2009 Workshop on Applied Textual Infer-
ence (TextInfer ’09) in conjunction with the ACL ’09,
pages 44–47, Suntec, Singapore.

Joachim Wermter and Udo Hahn. 2005. Effective
grading of termhood in biomedical literature. In

Annual AMIA Symposium Proceedings, pages 809–
813, Washington D.C., USA.

2440



Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 2441–2450,
Lisbon, Portugal, 17-21 September 2015. c©2015 Association for Computational Linguistics.

Syntactic Dependencies and Distributed Word Representations for
Chinese Analogy Detection and Mining

Likun Qiu1,2, Yue Zhang2, Yanan Lu3

1School of Chinese Language and Literature, Ludong University, China
2Singapore University of Technology and Design, Singapore

3Computer School, Wuhan University, China
qiulikun@pku.edu.cn, yue zhang@sutd.edu.sg, luyanan@whu.edu.cn

Abstract

Distributed word representations capture
relational similarities by means of vec-
tor arithmetics, giving high accuracies on
analogy detection. We empirically inves-
tigate the use of syntactic dependencies
on improving Chinese analogy detection
based on distributed word representation-
s, showing that a dependency-based em-
beddings does not perform better than an
ngram-based embeddings, but dependen-
cy structures can be used to improve anal-
ogy detection by filtering candidates. In
addition, we show that distributed repre-
sentations of dependency structure can be
used for measuring relational similarities,
thereby help analogy mining.

1 Introduction

Relational similarity measures the correspondence
between word-word relations (Medin et al., 1990).
It is relevant to many tasks in NLP (Turney, 2006),
such as word sense disambiguation, information
extraction, question answering, information re-
trieval, semantic role identification and metaphor
detection. Typical tasks on relational similarity in-
clude analogy detection, which measures the de-
gree of relational similarities, and analogy mining,
which extracts analogous word pairs from unstruc-
tured text.

Recently, distributed word representations (i.e.
embeddings) (Mikolov et al., 2013a; Mikolov et
al., 2013b; Levy and Goldberg, 2014b) have been
used for unsupervised analogy detection. Mikolov
et al. use attributional similarities between words
in a relation to compute relational similarities, and
show that the method outperforms the best sys-

tem in the SemEval 2012 shared task on analo-
gy detection. Levy and Goldberg (2014b) fur-
ther improve Mikolov’s relational similarity mea-
sure method using novel arithmetic combination-
s of attributional similarities. For simplicity, we
call the method of Mikolov et al. embedding-
based analogy detection, without stressing the dif-
ference between distributed and distributional (i.e.
counting-based) word representations.

Most work on embedding-based analogy detec-
tion uses relational similarities as a measure of the
quality of embeddings. However, relatively little
has been done in the opposite direction, exploring
how to leverage embeddings for improving rela-
tional similarity algorithms. We empirically study
the use of word embeddings for Chinese analogy
detection and mining, leveraging syntactic depen-
dencies, which has been shown to be closely asso-
ciated with semantic relations (Levin, 1993; Chi-
u et al., 2007). Compared with many other lan-
guages, this association is particularly strong for
Chinese, which is fully configurational and lack-
s morphology. To our knowledge, relatively little
work has been reported on Chinese relational sim-
ilarities, compared to other tasks in Chinese NLP,
including syntactic parsing, information extraction
and machine translation.

We work on three specific problems. First, we
study the effect of dependency-based word em-
beddings for analogy detection. There are two
variations of Mikolov et al’s skip-gram embed-
ding model, one training the distributed word rep-
resentation of a word using its context words in
local ngram window (Mikolov et al., 2013a), and
the other training the distributed representation of
a word using words in a syntactic dependency
context (Levy and Goldberg, 2014b; Bansal et al.,
2014). The latter has attracted much recent atten-
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tion due to its potential in capturing more syntac-
tic regularities. It has been shown to outperfor-
m the former in a variety of NLP tasks, and can
potentially also improve relation similarity. Our
experiments on both English and Chinese show
that the dependency-context embeddings consis-
tently under-perform ngram-context embeddings.
We give some theoretical justifications to the find-
ings.

Second, we propose to use syntactic depen-
dencies as a context for improving embedding-
based analogy detection, pruning the search space
and filtering noise using syntactic dependencies.
While highly useful for measuring relational sim-
ilarities, attributional similarities between words
are not the only source of information for analo-
gy detection. Traditional methods, such as Tur-
ney and Littman (2005), Turney (2006), Chiu et
al. (2007) and Ó Séaghdha and Copestake (2009),
also leverage context between word pairs in a
corpus for better accuracies, which the current
embedding-based methods ignore. Results show
that our proposed method achieves significant im-
provements for this task.

Third, we show that a novel distributed repre-
sentation of syntactic dependencies between word
pairs can be used to mine analogous dependencies
from a large Chinese corpus. Inspired by the fact
that distributed word representations can be used
to measure word similarities, we use our distribut-
ed dependency representations to measure relation
similarities. We propose a bootstrapping algorith-
m for analogy mining using dependency embed-
dings, and experiments on a large Chinese corpus
show that the method can achieve a precision of
95.2% at a recall of 56.8%.

Our automatically-parsed corpus, trained em-
beddings and evaluation datasets are released
publicly at http://people.sutd.edu.sg/
˜yue_zhang/publication.html. To our
knowledge, we are the first to present results on
Chinese analogy detection and to release large-
scale Chinese word embeddings.

2 Background

2.1 Relational Similarity Tasks

There are three main tasks for relational similarity.
This first is relation classification, which has been
used in Task 2 of SemEval 2012 (Jurgens et al.,
2012). In this task, all four words in two word
pairs are given, and one needs to judge whether

Figure 1: Dependency tree of the sentence
“1991c (in 1991) § (,) cnê (Obama) oÚ
(President).� (graduate)u (from)MÃ (Har-
vard){Æ� (Law School)”.

they belong to a same relation type. In order to
address this task, various supervised methods have
been used (Bollegala et al., 2008; Herdaǧdelen and
Baroni, 2009; Turney, 2013).

The second task is analogy detection (Mikolov
et al., 2013b), which takes three words in two
word pairs, and searches for a most suitable word
from the vocabulary to recover the hidden word.
This task has been addressed using word embed-
dings (Mikolov et al., 2013b; Levy and Goldberg,
2014b).

The third task is analogy mining (Chiu et al.,
2007), which takes one word pair belonging to a
certain semantic relation as a seed, and searches
for all the word pairs that share the same relation
with the seed. Compared with relation classifi-
cation and analogy detection, analogy mining can
be practically more useful because it requires less
given information, and provides a large quantity of
analogous word pairs automatically.

2.2 Skip-gram Word Embeddings

As a by-product of neural language models (Ben-
gio et al., 2003; Mnih and Hinton, 2007), word
embeddings are distributed vector representations
of words, trained using local contexts. They cap-
ture linguistic regularities in languages (Mikolov
et al., 2013b) and have been used in various tasks
(Collobert and Weston, 2008; Turian et al., 2010;
Socher et al., 2011).

In this paper, we apply the Skip-gram method
of Mikolov et al. (2013a) for training embed-
dings, which works by maximizing the probabil-
ity of a word given a context of multiple words.
Mikolov et al. (2013b) use an ngram window as
the context, and observe that the resulting embed-
dings are highly useful for unsupervised analogy
detection.
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2.3 Embedding-based Analogy Detection
Formally, the task of analogy detection is to find
a word b* given a pair of words a:b and a word
a* such that a*:b* is analogous to a:b. Mikolov
et al. (2013b) show that the task can be solved by
finding a word that maximizes:

score = sim(b∗, b− a+ a∗) (1)

where sim is a similarity measure, typically the
cosine function. Levy and Goldberg (2014b)
show that the Equation 1 is equivalent to:

score = cos(b∗, b)−cos(b∗, a)+cos(b∗, a∗) (2)

As a result, the goal of analogy detection is to find
a word b* which is similar to b and a* but differ-
ent from a. Levy and Goldberg (2014b) further
propose to substitute the addictive functions in E-
quation 2 with multiplicative functions:

score = cos(b∗, b)cos(b∗, a∗)/(cos(b∗, a) + ε)
(3)

Here ε = 0.001 is used to prevent division by zero.
Their experiments show that the use of Equation 3
can improve the state-of-the-art. Following Levy
and Goldberg (2014b), we refer to Equation 1 and
2 as 3COSADD and Equation 3 as 3COSMUL,
respectively.

2.4 Chinese Relational Similarity
There are various types of relational similarities.
Syntactically, inflections can be treated as a type
of word-word relation (Mikolov et al., 2013b).
For example, the comparative pairs “good:better”
and “rough:rougher” are analogous, and the past
tense inflections “see:saw” and “return:returned”
are analogous. However, such inflectional rela-
tions do not apply to Chinese, which is fully con-
figurational and lacks morphology. Consequent-
ly, our main focus is semantic similarities, which
include antonymy (e.g. (9 (hot):e (cold)) VS
(¯ (fast):ú (slow))), meronymy (e.g. (� (car):Ó
f (wheel)) VS (= (bear):Ý (paw))), gender (e.g.
(I< (man):å< (woman)) VS (I� (king):å
� (queen))) and function relations (e.g. (�Ñ
(clothing):B (wear)) VS (lf (hat):� (wear))),
etc.

Chiu et al. (2007) show that English semantic
relations are also reflected by syntactic dependen-
cies. Their finding coincides with Levin (1993),
who study English verbs. We find that this obser-
vation is even more prevalent for Chinese. In our

automatically-parsed Chinese corpus of 3.4 bil-
lion words (Section 5.1), 86.4% word pairs from
the analogy test dataset (Section 5.2) have corre-
sponding dependencies, each of which appearing
at least ten times.

The frequent correlation between semantic re-
lations and syntactic dependencies can be due
to the lack of morphology and function words
in Chinese. In fact, Chinese syntactic ambigui-
ties often need to be resolved by leveraging se-
mantic information (Xiong et al., 2005; Zhang
et al., 2014). Although not all occurrences of
semantically-related word pairs must also form a
syntactic dependency in a corpus, we show that
syntactic dependencies can effectively improve
analogy detection.

3 Dependency-context Word
Embeddings for Analogy Detection

A first use of syntactic dependencies for
embedding-based analogy detection is to use
them directly for embeddings. Recently, a depen-
dency context has been used for the skip-gram
method, for capturing more syntactic regularities.
Taking the sentence in Figure 1 for example, a
bi-gram context for the word “.� (graduate)”
can be “cnê (Obama), oÚ (President), u
(from), MÃ (Harvard)”, while a dependency
context of the same word can be “1991c/ADV,
oÚ/SBV, u/CMP, {Æ�/POB u”1, where
“ADV, SBV, CMP, POB” indicate adverbial
modifier, subject, complement and prepositional
object, respectively.

It has been shown that a dependency context
leads to embeddings that better help parsing
(Bansal et al., 2014) and measuring word sim-
ilarity (Levy and Goldberg, 2014a), compared
with ngram contexts. However, little previous
work has systematically compared dependency
contexts with ngram contexts in analogy detec-
tion. We empirically study this problem (c.f Sec-
tion 6.3), finding that dependency context lead-
s to significantly worse analogy detection results
for both Chinese and English using state-of-the-art
embedding-based methods (Levy and Goldberg,
2014b). We give analysis in Section 6.4.

1The last token is a grand-child of “.� (graduate)”, via
the preposition “u (at)” (Levy and Goldberg, 2014a).
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4 Search Space Pruning Using Syntactic
Dependencies

We study an alternative way of making use of syn-
tactic dependencies, by using them to prune the
vocabulary-sized search space of analogy detec-
tion. Given two word pairs a:b and a*:b*, where
b* is hidden and a is the head word, we search
for dependencies, taking a* as the head word. The
dependent words in the search candidates need to
share the POS tag of b. If there are several type-
s of dependencies between a and b, only the one
with highest frequency is used. We rank all result-
ing dependencies using the 3COSMUL objective,
and take the word b* in the highest-scored depen-
dencies as the answer.

For example, given the word pair (i.9
¶ (Sarajevo):Åç (Bosnia and Herzegovina)),
whose most frequency dependency is <i.9
¶ (Sarajevo), Åç (Bosnia and Herzegovina),
ATT>, and the unknown pair (Ôí (London):b*),
we acquire a list of dependencies, including <Ô
í (London), {I (USA), ATT>, <Ôí (Lon-
don), ni (Paris), COO>, <Ôí (London), \
<� (Canada), ATT> and<Ôí (London),=I
(England), ATT>. Some of these dependencies,
such as <Ôí (London), ni (Paris), COO>,
are parsed as the coordinate relation (COO), and
thus pruned because the target syntactic relation is
ATT. From the resulting list, the 3COSMUL ob-
jective successfully ranks the triple <Ôí (Lon-
don),=I (England), ATT> as the top candidate.
In contrast, Levy and Goldberg’s method takes “H
� (South Africa)” as the answer, which does not
form an attributive-head phrase with “Ôí (Lon-
don)”.

5 Analogy Mining Using Dependency
Embeddings

Formally, analogy mining is the task of mining
analogous dependencies<x1, y1, r>,<x2, y2, r>
...<xn, yn, r> that share the same relation r with
a given dependency <a, b, r>. We mine analo-
gous dependencies by considering relational sim-
ilarity and attributional similarity simultaneously
using the skip-gram model for embeddings.

5.1 Dependency Embedding

Inspired by the fact that word similarities can be
measured by using distributed word representa-
tions, we hypothesize that relation similarities can

Input : dependency embedding DT, word
embedding DW, seed dependency s,
threshold α and β.

Output: set of ranked dependencies WP.

1 Function Mine (DT,DW,s,WP,α,β):
2 begin
3 DTSet =∅;
4 MScore =0;
5 SimDT =GetSimDT (DT,s);
6 for each Triple ∈ SimDT do
7 MWS =GetMWord (s);
8 HWS =GetHWord (s);
9 MWD =GetMWord (Triple);

10 HWD =GetHWord (Triple);
11 ScoreX =Sim (MWS,MWD,DW);
12 ScoreY =Sim (HWS,HWD,DW);
13 ScoreXY =ScoreX × ScoreY;
14 MScore =Max (ScoreXY,MScore);
15 TopK (ScoreXY,Triple,DTSet,α)
16 end
17 MScore =MScore × β ;
18 for each Triple, ScoreXY ∈ DTSet do
19 if ScoreXY > MScore and Triple /∈

WP then
20 AddToSet (Triple,WP);
21 s =Triple;
22 Mine (DT,DW,s,WP,α,β);
23 end
24 end
25 end
26 WP =∅;
27 Mine (DT,DW,s,WP,α,β);

Algorithm 1: Bootstrapping for analogy
mining.

be measured by distributed relation representa-
tions. Based on the observation in Section 2.4,
semantically analogous word pairs typically have
syntactic dependencies. We use the skip-gram al-
gorithm to train distributed representations of syn-
tactic dependencies, and use them for mining anal-
ogous word pairs.

With respect to the skip-gram model, words are
the most common target for embeddings (Levy
and Goldberg, 2014b; Levy and Goldberg, 2014a;
Mikolov et al., 2013a), although continuous vec-
tor representations can be trained for other struc-
tures. For example, Mikolov et al. (2013a) take
idiomatic phrases as embedding targets. Depen-
dencies, which consist of a modifier word, a head
word and a syntactic relation between them, can
also be represented by continuous embeddings us-
ing the same algorithm.

To induce dependency embeddings, we take
the union of the dependency context of both the
dependent and the head of a dependency as the
context. For instance, in the example sentence,
the context of the dependency <oÚ (Presiden-
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t), .� (graduate), SBV> consists of four to-
kens: “1991c/ADV”, “cnê/ATT”, “u/CMP”
and “{Æ�/POB u”. The same skip-gram algo-
rithm is used to train embeddings for dependency
structures.

5.2 Analogy Mining by Bootstrapping

A bootstrapping algorithm is used to mine anal-
ogous word pairs based on dependency-context
word embeddings and dependency embeddings.
Algorithm 1 shows pseudocode of the recursive
bootstrapping algorithm.

The recursive function Mine (Algorithm 1)
contains three steps with six parameters, includ-
ing the dependency embeddings DT, word embed-
dings DW, a seed dependency s, and two thresh-
olds α and β. Step 1 (lines 3 to 5) is an initial-
ization process, where the dependency embedding
is used to return up to 100 most similar dependen-
cies for the given seed s. These dependencies are
stored in SimDT, and the candidate analogous de-
pendency set DTSet is initialized to an empty set.

In Step 2 (lines 6 to 16), an analogous score S-
coreXY is computed for each dependency Triple
in SimDT by multiplying the similarity scores be-
tween the two dependents and the two heads in
Triple and s, respectively. Triple is stored into the
set DTSet if ScoreXY is ranked top α. The top 1
score in DTSet is referred to as MScore. In Step 3
(lines 17 to 24), if the score of a dependency Triple
in DTSet is larger than β×MScore, it is used as a
new seed for mining more analogous dependen-
cies, by calling the function Mine recursively.

We take the seed dependency <� (play), g
� (piano), VOB> as an example to illustrate the
work-flow of the Mine function. In Step 1, a set of
similar dependencies (e.g., <� (play),3¦ (gui-
tar), VOB>, <� (play),� (lyra), VOB>), is cal-
culated using the dependency embeddings DT and
stored in SimDT. Each dependency in SimDT is s-
cored in Step 2, and the top α scores are put into
the set DTSet. Finally, a dependency is used as
seed to mine new analogous dependencies if its s-
core is larger than a threshold (β×MScore). For
instance, the dependency <� (play), � (lyra),
VOB> is used to mine the new dependency <�
(play), �8 (zheng), VOB>, which is then used
to mine other dependencies such as <N (blow),
�¨j (cucurbit flute), VOB> and <N (blow),
i�d (sax), VOB>.

6 Experiments

6.1 Word Embeddings

We train three sets of word embeddings: NG5 (n-
gram context with 5 words to the left of the target
word and 5 words to the right), NG2 (2 words to
the left and right) and DEP (dependency context),
and one set of dependency embeddings DT (de-
pendency context), using the Skip-Gram model.
WORD2VEC2 is used to train NG5 and NG2, and
WORD2VECF3 is used to train DEP and DT. The
negative-sampling parameter is set to 15 in all the
training processes.

All embeddings are trained on a free Chinese
news archive4 that contains about 170 million-
s sentences and 3.4 billions words. We segment
and parse these sentences using the MVT imple-
mentation of ZPar 0.75 (Zhang and Clark, 2011),
which is trained on a large-scale annotated cor-
pus and achieves state-of-the-art analyzing accu-
racy on contemporary Chinese (Qiu et al., 2014)6.
Targets and contexts for word and dependency em-
beddings were filtered with a minimum frequency
of 100 and 10, respectively, and all the four types
of embeddings are trained with 200 dimensions.

6.2 Datasets and Evaluation Metrics

Three datasets are used for evaluating Chinese
embeddings. First, we construct a set of se-
mantic analogy questions. This set contains five
types of semantic analogy questions, including
capital-country (136 word pairs, and 18354 anal-
ogy questions), provincial capital-province (28,
756), city-province (637, 386262), family mem-
ber (male-female) (18, 306) and currency-country
(62, 3782). We collect the five types of word pairs
and then produce analogy questions automatical-
ly by concatenating two word pairs. The resulting
analogy dataset contains 400K analogy question-
s. We refer to this dataset as the Chinese Analogy
Question Set (CAQS).

2http://code.google.com/p/word2vec/
3https://bitbucket.org/yoavgo/

word2vecf
4This dataset contains news articles in 2014 from various

news websites, and can be downloaded from http://pan.
baidu.com/s/1o6wRjp4

5http://people.sutd.edu.sg/\%7Eyue_
zhang/doc/doc/multiview.html

6The system achieves 96.1% , 92.6% and 83.28% F1-
score for words segmentation, joint POS-tagging and depen-
dency parsing, respectively, on 1493 manually annotated sen-
tences.
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Data Metrics NG5 NG2 DEP
Cilin P@1 43.3% 45.9% 43.6%

P@5 31.1% 33.3% 32.6%
P@10 25.5% 27.5% 27.5%
P@20 20.5% 22.2% 22.7%
P@50 15.0% 16.2% 17.0%
P@100 11.5% 12.2% 12.8%

CWS Kendall’s τ 38.6% 44.1% 42.4%
Spearman’s ρ 54.5% 62.2% 60.7%

Table 1: Results on Cilin and CWS.

Because embeddings are central for analogy de-
tection, yet there is little large-scale evaluation
results on Chinese embeddings in the literature,
we perform embedding evaluation on two dataset-
s. The first one is the Chinese WordSim (CWS),
translated from the English WordSim-353 Set and
re-scored by native Chinese speakers (Jin and Wu,
2012). This dataset consists of 297 word pairs.

The second one is the Chinese thesaurus
Tongyicicilin (Cilin) (Che et al., 2010), which
groups 74,000 Chinese words into five-layer hi-
erarchies and has been used for evaluating the
accuracy of word similarity by traditional sparse
vector space models (Qiu et al., 2011; Jin et al.,
2012). The third level of Cilin, which contain-
s 1428 classes, is used to evaluate whether two
words are semantically similar.

For comparison between Chinese and English,
we also use an English analogy question dataset,
the Google dataset7 (Mikolov et al., 2013a), to e-
valuate the English word embeddings of Levy and
Goldberg (2014a)8 on analogy detection.

On both the CAQS and the Google dataset-
s, the 3COSMUL method (Levy and Goldberg,
2014b) is used to to answer analogy questions
based on given embeddings. The results on the
CWS dataset are evaluated using the two standard
metrics for the task, namely Spearman’s ρ and K-
endall’s τ rank correlation coefficients. The re-
sults on Cilin are evaluated using Precision@K:
the percentage of words from the top-K candidates
that belong to the Cilin category of the target word.
If one of the top-K candidates belongs to the same
third-level category in Cilin as the target word, the
candidate word is taken as correct.

6.3 Dependency-based and Word-based
Word Similarity and Analogy Detection

Word Similarity
7http://code.google.com/p/word2vec/

source/browse/trunk/questions-words.txt
8http://levyomer.wordpress.com/2014/

04/25/dependency-based-word-embeddings/

Relation NG5 NG2 DEP
MUL capital-country 68.8% 52.7% 9.9%

capital-province 84.0% 87.7% 50.0%
city-province 80.9% 80.3% 22.6%
family 39.7% 45.1% 41.5%
currency 10.4% 9.9% 2.5%
All 80.0% 78.8% 22.0%

IMP capital-country 87.9% 88.0% 87.6%
capital-province 84.9% 86.8% 84.9%
city-province 91.8% 92.0% 90.5%
family 45.3% 48.0% 47.1%
currency 7.9% 7.0% 25.9%
All 90.9% 91.1% 89.8%

Table 2: Results on CAQS. MUL and IMP indi-
cate 3COSMUL and our improved method, re-
spectively.

Relation NG5 NG2 DEP
capital-country 94.6% 84.5% 38.5%
capital-world 71.5% 64.7% 14.2%
city-in-state 53.2% 42.5% 13.1%
family 82.0% 81.2% 81.0%
currency 10.5% 10.7% 6.0%
All 63.7% 60.7% 38.8%

Table 3: English results on the Google set.

Table 1 shows the results of the three Chinese
embedding on Cilin and CWS, where NG2 per-
forms much better than NG5 on both datasets.
This demonstrates that one does not need to use
large window sizes in training word-based embed-
dings for capturing word similarities. The result is
similar to the finding of Shi et al. (2010), which
indicates that a window size of 2 is better than a
window size of 4 for capturing word similarity by
using distributional word representations.

DEP performs slightly worse than NG2 on
CWS and Cilin in P@1 and P@5. However, it
achieves better results on Cilin in P@10 to P@100
when more candidate similar words are evaluated.
In contrast, NG5 and NG2 mix more semantically
related words. This finding is consistent with that
of Levy and Goldberg (2014a).

Analogy Detection

Table 2 shows the results of the three Chinese
embeddings on CAQS. Unlike on Cilin and CWS,
NG5 outperforms DEP, and is also slightly better
than NG2. Similar tendency is shown in Table 3
for the three English embeddings evaluated on the
Google dataset. These results show that dependen-
cy embeddings are relatively weak for answering
analogy questions. On the other hand, the perfor-
mance also varies across different relation types.
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Target NG5 NG2 DEP
B (wear) á¦ (shorts), ;� (slim-fit), �

B (wear), 	@ (coat), *f
(skirt)

�B (wear), �X (wear), á¦
(shorts),� (wear),;� (slim-fit)

�B (wear), �X (wear), �
(wear), UB (change cloths), 	
B (wear outside)

' �
(Guan
Yu; P)

ë�(Zhao Yun; P), 4� (Liu
Bei; P),Ã�� (Zhuge Liang; P),
Ü� (Zhang Fei; P), ùö (Cao
Cao; P)

ë� (Zhao Yun; P), 4� (Liu
Bei; P), Ü� (Zhang Fei; P), ù
ö (Cao Cao; P),gû� (Xiahou
Yuan; P)

ë� (Zhao Yun; P), ¸& (Han
Xin; P),ùö (Cao Cao; P),4�
(Liu Bei; P),C?Û (Asura; P)

x ²
(Zhengzhou;
C)

�[B (Shijiazhuang; C), â�
(Luoyang; C),ÜS (Xian; C),N
� (Xuchang; C),�� (Taiyuan)

�[B (Shijiazhuang; C), ��
(Taiyuan; C),LH (Ji-nan; C),Ü
� (Hefei; C),ÜS (Xi-an; C)

Ü� (Hefei; C),LH (Jinan; C),
ÉÇ (Wuhan; C), �[B (Shiji-
azhuang; C),Hw (Nanning; C)

Table 4: Comparison between NG2, NG5 and DEP Embeddings. (P: personal name, C: city name)

6.4 Analysis

To analyze the difference between the three Chi-
nese embeddings methods qualitatively, we man-
ually inspect the words “B (wear)”, “'� (Guan
Yu, a person name in the novel ‘nIüÂ
(Romance of the three kingdoms)’)”, and “x²
(Zhengzhou, a city)”. Their most similar words
are shown in Table 4.
Word Similarity

For the word “B (wear)”, both NG5 and NG2
yield similar words such as “�B (wear)”, “�
X (wear)”, “� (wear)” and related words such as
“á¦ (shorts)”, “;� (slim-fit)”, “	@ (coat)”,
“*f (skirt)”, although NG5 gives more related
words. In contrast, DEP gives only words that are
similar both syntactically and semantically. This
observation holds for other verbs and nouns, and
can be explained by the context extraction method-
s. For instance, the word “B (wear)” usually takes
one of the words “á¦ (shorts)”, “	@ (coat)”,
“*f (skirt)” as its object, and thus shares sim-
ilar contexts with them in NG5 and NG2. The
context extraction method in DEP, on the oth-
er hand, yields different context across syntactic
roles, such as verbs (e.g. “B (wear)”) and their
objects (e.g. “á¦ (shorts)” and “	@ (coat)”).

Observations on the person name “'� (Guan
Yu)” and location “x² (Zhengzhou)” are simi-
lar. For “'� (Guan Yu)”, NG5 and NG2 can
yield more person names in the same novel, while
DEP yields person names from other novels (i.e.
“¸& (Hanxin)” and “C?Û (Asura)”). For “x
² (Zhengzhou)”, the provincial capital of “àH
(Henan)”, NG5 and NG2 give more cities in the
same province “àH (Henan)”, while DEP yields
capitals of other provinces.
Analogy Detection

As mentioned in Section 2.3, both 3COSADD
and 3COSMUL seek a word b∗ that is similar to
b and a∗ but dissimilar to a. Ideally, the two word

pairs b:b∗ and a:a∗ should be semantically similar
while the two word pairs a:b and a∗:b∗ should be
semantically related. Therefore, 3COSADD and
3COSMUL require the embeddings to give high-
er cosine scores for both semantically similar and
related words.

Our analysis above shows that word-context
embeddings tend to mix semantically related and
similar words, but dependency-context embed-
dings only capture semantic similarity. This partly
explains the reason that dependency-context word
embeddings are weak for analogy detection.

It has also been shown in Section 6.3 that the
performances of analogy detection vary across dif-
ferent types of relations, which indicates that there
are more sophisticated underlying factors. One in-
tuitive explanation is that different semantic rela-
tions correspond to different syntactic dependency
structures. For example, the male-female family
member relation is expected to stand less frequent-
ly in a syntactic dependency relation, compared
with geographic relations such as city-country,
which stand frequently in attributional syntactic
relations (e.g. “London, England”). As a result,
where the coupling between syntactic and seman-
tic relations is weak, our analysis in Section 6.3
and other work based on syntactic relations can
find limitations.

6.5 Syntactic Dependencies for Improved
Analogy Detection

The results on CAQS using the method in Section
4 are shown in the IMP rows of Table 2. The
method achieves significant improvements (from
80.0% to 90.9% using NG5) compared with Levy
and Goldberg’s method. In addition, DEP al-
so performs significantly better than with MUL,
with an increase from 22.0% to 89.8%. The main
reason for this improvement is that the filtering
process using syntactic dependencies successfully
prunes noisy words.
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Seed Count Prec
¯ (eat),°J (apple), VOB 572 84.70%
� (play),g� (piano), VOB 142 40.49%
B (wear),�Ñ (clothing), VOB 452 67.37%
� (write),�` (novel), VOB 441 53.40%
¥I (China),�® (Beijing), ATT 2224 95.23%
�� (Hubei),ÉÇ (Wuhan), ATT 3201 96.34%

Table 5: Main results of Analogy Mining.

Error analysis shows that the main errors by the
improved method are quite different from those
by the baseline. For instance, the main errors of
Levy and Goldberg’s method for the city-province
relation are caused by giving another province as
the answer, while the improved method gives the
name of the country as answer. This is because ir-
relevant provinces do not co-occur frequently with
the city in syntactic dependencies, and hence can
be filtered by our method. On the other hand, both
the country name and province name co-occur fre-
quently with the city name in syntactic dependen-
cies, and our method cannot make a choice be-
tween them.

6.6 Dependency Structure Embeddings for
Analogy Mining

Shown in Table 5, we use six seeds to mine anal-
ogous dependencies. The first seed is used for de-
velopment and the others for test. The first three
seeds, the fourth seed and the last two seeds be-
long to the Use:Thing, Produce:Thing and Sub-
Location:Location relations, respectively. α and
β are set to 20, and 0.6, respectively. Each set of
mined dependencies together with the seed depen-
dency and relation type is shown to two human
evaluators, who are required to give a Yes/No an-
swer to each dependency in the set. We take the
average scores of the two evaluators (the average
inter-annotator agreement is 0.95) as the final pre-
cision scores.

As shown in the table, the precisions using dif-
ferent seeds are quite different, ranging from 40%
to 96%. One possible reason is that different rela-
tions have different numbers of analogous depen-
dencies, ranging from dozens to thousands, and
thus the fixed thresholds tuned on a development
seed does not apply as effectively to all test cas-
es. For instance, “� (play)” and its analogous ac-
tions, “N (blow)” and “. (play)”, are all human
actions on musical instruments, while the action-
s “¯ (eat)” and “� (write)” can apply to many
patients. For the seed <� (play), g� (piano),
VOB>, irrelevant results such as << (use), }

f (scissors), VOB> and << (use), >Ù (flash-
light), VOB>, have the verb “< (use)”, which
is also a human action, yet cannot be considered
as usage of the patients “}f (scissors)” and “>
Ù (flashlight)”. Because of the stricter selectional
preference of “� (play)”, its precision of analogy
mining is lower.

We tentatively measure the recall of the algo-
rithm by taking the first three types of word pairs
in CAQS as the gold set, which contains 801 word
pairs. All the three types of word pairs belong to
the relation Sub-Location:Location. The recall is
computed as the percentage of the gold word pairs
covered by the mined dependencies. When us-
ing the two seeds <ÉÇ (Wuhan),�� (Hubei),
ATT> and <�® (Beijing),¥I (China), ATT>
for analogy mining, the recalls are 50.2% and
11.3%, respectively. Their union recall is 56.8%.
When the precision of each seed is similar, we can
achieve better recall without precision loss by us-
ing more seeds.

7 Related Work

Turney (2006) introduces a latent relational anal-
ysis (LRA) model to measure relational similari-
ty, and apply a novel co-occurrence-based method
for analogy filtering. The model can be used
for both analogy detection and relation classifi-
cation, yet cannot scale up well to large dataset-
s due to the complexity of Singular Value De-
composition. Recently, distributed word repre-
sentations using the skip-gram model (Mikolov
et al., 2013a) has been shown to give competi-
tive results on analogy detection. Levy and Gold-
berg (2014a) extends the skip-gram method with
dependency-context embeddings. We study the ef-
fect of Levy and Goldberg’s embeddings on analo-
gy detection, and further extend their embeddings
to dependency-context dependency structure em-
beddings for analogy mining.

Chiu et al. (2007) presents a similarity graph
tranversal (SGT) method to mine analogous re-
lations from raw English text automatically, us-
ing syntactic dependencies to find candidate rela-
tions. The method is unsupervised, and can scale
up well to large data sets. However, Chiu et al.
(2007) mainly focuses on relations between sub-
jects and objects because of its word-pair extrac-
tion method. Ó Séaghdha and Copestake (2009)
is a supervised method, which combines lexical
similarity and relational similarity to classify se-
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mantic relations. These methods are based on dis-
tributional word representation models and fit for
classifying noun-noun word pairs. In contrast, our
methods are based on distributed word representa-
tion models, and can mine noun-noun word pairs
as well as verb-noun word pairs. In addition, our
analogy mining method is unsupervised, while the
methods of both Turney (2006) and Ó Séaghdha
and Copestake (2009) are supervised.

8 Conclusion

We studied several Chinese relational similarity
tasks to train embeddings under the context of dis-
tributed word representations using the skip-gram
model and syntactic dependencies. For Chinese
analogy detection, we compared word-context and
dependency-context embeddings, finding that the
former results in much better accuracies. Observ-
ing that common relations in Chinese are frequent-
ly represented by syntactic dependencies, we im-
proved Chinese analogy detection using a depen-
dency context. Further, we empirically studied
Chinese analogy mining by proposing a bootstrap-
ping algorithm using a novel distributed represen-
tation of syntactic dependencies.
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Abstract

This paper introduces a novel way to nav-
igate neighborhoods in distributional se-
mantic models. The approach is based
on relative neighborhood graphs, which
uncover the topological structure of local
neighborhoods in semantic space. This
has the potential to overcome both the
problem with selecting a proper k in k-NN
search, and the problem that a ranked list
of neighbors may conflate several different
senses. We provide both qualitative and
quantitative results that support the viabil-
ity of the proposed method.

1 Introduction

Nearest neighbor search is a fundamental opera-
tion in data mining, in which we are interested in
finding the closest points to some given reference
point. Formally, if we have a reference point r
and a set of other points P in a metric space M
with some distance function d, the nearest neigh-
bor search task is to find the point p ∈ P that min-
imizes d(p, r). In k-Nearest Neighbor search (k-
NN), we want to find the k closest points to some
given reference point. Nearest neighbor search
is a well-studied task, and in particular the com-
plexity of the task (a linear search has a running
time of O(Ni) where N is the cardinality of P
and i the complexity of the distance function d)
has generated a lot of research; suggestions for re-
ducing the complexity of linear nearest neighbor
searches include using various types of space par-
titioning techniques like k-d trees (Bentley, 1975),
or various techniques for doing approximate near-
est neighbor search (Arya et al., 1998), of which
one of the most well-known is locality-sensitive
hashing (Indyk and Motwani, 1998).

The problem we are concerned with in this
paper is not the complexity of nearest neighbor

search, but the question of how to identify the in-
ternal structure of neighborhoods defined by the
nearest neighbors. The problem with a normal k-
NN is that the result — a sorted list of the k nearest
neighbors — does not say anything about the inter-
nal structure of the neighborhood. It is quite pos-
sible for two neighborhoods with widely different
internal structures to produce identical k-NN re-
sults. In the context of Distributional Semantic
Models (DSMs), which collect and represent co-
occurrence statistics in high-dimensional vector
spaces, such structural differences may carry sig-
nificant semantic information, e.g. about the dif-
ferent senses of terms. We argue that the inability
of standard k-NN to account for structural prop-
erties has been misinterpreted as a shortcoming
of the distributional representation (Erk and Padó,
2010).

We will demonstrate in this paper that this is
not a shortcoming of the distributional represen-
tation, but of the mode of querying the DSM. We
argue that information about the different usages
(i.e. senses) of a term is encoded in the structural
properties of the nearest neighborhoods, and we
propose the use of relative neighborhood graphs
for identifying these structural properties. Relative
neighborhood graphs may also be used for finding
a relevant k for a given reference point, which we
refer to as the horizon with respect to the reference
point.

2 Distributional Semantics and Nearest
Neighbor Search

Collecting and comparing co-occurrence statis-
tics for terms in language has become a stan-
dard approach for computational semantics, and
is now commonly referred to as distributional se-
mantics. There are many different types of mod-
els that can be used for this purpose, but their
common objective is to represent terms as vec-
tors that record (some function of) their distri-
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butional properties. The standard approach for
generating such vectors is to collect distributional
statistics in a co-occurrence matrix that records
co-occurrence counts between terms and contexts.
The co-occurrence matrix is then subject to var-
ious types of transformations, ranging from the
application of simple frequency filters or associ-
ation measures to matrix factorization or regres-
sion models. The resulting representations are re-
ferred to as distributional vectors (or word embed-
dings), which are used to compute similarity be-
tween terms.

Given a similarity — or distance — measure on
such distributional vectors, we can perform a near-
est neighbor search. This is a particularly impor-
tant operation in distributional semantics, since it
answers the question “which other terms are sim-
ilar to this one?” and this is a central question in
semantics; lexica and thesauri are built with the
main purpose of answering this question. Conse-
quently, nearest neighbor search in a DSM could
be seen as a compilation step in a distributional
lexicon.

The result of a nearest neighbor search in a
DSM is often presented as a list of (the top k)
neighbors, sorted by descending similarity with
the target term. Table 1 illustrates typical sorted
nearest neighbor lists produced with three dif-
ferent DSMs: a standard model based on Point-
wise Mutual Information (PMI)1 that has been re-
duced to 2,000 dimensions by applying a Gaus-
sian random projection; GloVe, which uses regres-
sion to find distributional vectors such that their
dot product approximates their log probability of
co-occurring (Pennington et al., 2014); and the
Skipgram model, which uses stochastic gradient
descent and hierarchical softmax combined with
negative sampling and subsampling to find dis-
tributional vectors that maximize the probability
of observed co-occurrence events (Mikolov et al.,
2013). We refer to the respective papers for de-
tails regarding the various models. The similarity
measure used is the cosine similarity: s(a, b) =
a·b
‖a‖‖b‖ .

Table 1 lists the 10 nearest neighbors to suit
in these three different DSMs using the entire
Wikipedia as data. As can be expected, there
are both similarities and dissimilarities between

1For observations a and b, PMI(a, b)= log p(a,b)
p(a)p(b)

. The
probabilities are often replaced in DSMs by co-occurrence
counts of a and b and their respective frequency counts.

Table 1: Sorted list of the nearest neighbors to
“suit” in three different distributional models.

PMI GloVe Skipgram
suits suits suits
dress lawsuit lawsuit
jacket filed countersuit
wearing case classaction
hat wearing doublebreasted
trousers laiming skintight
costume lawsuits necktie
shirt alleging wetsuit
pants alleges crossbone
lawsuit classaction lawsuits

these neighborhoods; “suits” and “lawsuit” oc-
cur among the 10 nearest neighbors to “suit” in
all three models, whereas other terms are spe-
cific for one particular model. What is com-
mon between the three models is that they all
feature neighbors that represent two different us-
ages of “suit”: the law-sense (“lawsuit”) and
the clothes-sense (“dress”, “wearing”, “double-
breasted”).2 However, these distinction are not
discernible by merely looking at the list of near-
est neighbors; the only information it provides is
the ranking of the nearest neighbors in descending
order of similarity.

It has been argued that DSMs that represent
terms by a single vector cannot adequately handle
polysemy, since they conflate several different us-
age patterns in one and the same vector (Véronis,
2004; Erk and Padó, 2010). Examples like the one
above is often cited as evidence. We argue that
this critique is unfounded and misinformed, and
that it is the mode of querying the DSM that can
be susceptible to problems with polysemy. As the
above example demonstrates, querying DSMs by
k-NN conflates different usages of terms. The rea-
son for this seems quite obvious: simply ranking
the nearest neighbors by similarity (or distance)
ignores any local structures of the neighborhood.
If “suit” has as neighbors both “dress” and “law-
suit”, which represent two distinct types of usages
of “suit”, there will be a structural distinction in
the neighborhood of “suit” between these differ-
ent neighbors, since they will be mutually unre-
lated (i.e. there is a similarity between “suit” and

2The Skipgram model also features a manga-related sense
of “suit” in the neighbor “crossbone,” which refers to the
mange series “Mobile Suit Crossbone Gundam.”
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“dress” and between “suit” and “lawsuit”, but not
between “dress” and “lawsuit”).
k-NN also gives rise to another problem re-

lated to polysemy in DSMs. The problem is that
the most frequent senses will populate the top
of the nearest neighbor list, while the less fre-
quent senses will not appear until further down
the list, and if we set a too restrictive k, we will
only see neighbors relating to the most frequent
sense. As an example, consider the two differ-
ent senses of “suit” above. The distributional vec-
tor for “suit” can be thought of as a sum vsuit =
fsuit|lawvsuit|law + fsuit|clothesvsuit|clothes, where
vsuit|law is an idealized notion of the true dis-
tributional vector of “suit” in the law-sense, and
fsuit|law is the relative frequency of this sense.3

From there one can easily argue that a similar-
ity such as s(vsuit, vclothes) is actually a weighted
composite of the similarities s(vsuit|law, vclothes)
and s(vsuit|clothes, vclothes).4 If “suit” occurs pre-
dominantly in the law-sense in our corpus, the k-
NN neighborhood of “suit” will be dominated by
words pertaining to its law-sense, while the less
frequent senses might not be present at all. A
misguided k may thus obscure any other, less fre-
quent, senses of a term.

3 Word-Sense Induction

Selecting a relevant k for a given term and group-
ing the neighbors according to which senses they
represent is an example of Word-Sense Induction
(WSI). DSMs are well suited for this task, and
there have been a number of different approaches
suggested in the literature. One of the earliest ap-
proaches is distributional clustering (Pereira et al.,
1993), which is based on a probabilistic decompo-
sition model that uses maximum likelihood esti-
mation to fit the model to observed data. Another
example is Clustering By Committee (CBC) (Pan-
tel and Lin, 2002), which first uses average-link
clustering to recursively cluster the nearest neigh-
bors of a term into committees, which are then
used to define clusters by iteratively adding com-
mittees whose similarity to the term exceeds a cer-
tain threshold, and that is not too similar to any
other added committee. For each added commit-
tee, its features are also removed from the distri-

3Weighting schemes muddles this notion quite a bit, but
we think the general intuition still holds.

4In the case of cosine similarity this follows nicely from
the distributive property of dot products: v = av1 + bv2,
s(v, w) = v·w

‖v‖‖w‖ = a(v1·w)+b(v2·w)
‖v‖‖w‖

butional representation of the term. This last step
ensures that the clusters do not become too similar,
and that clusters representing less frequent senses
can be discovered.

The idea of iteratively removing features from
the distributional vector when a sense cluster as
been formed is also present in Dorow and Wid-
dows (2003), who use a graph-based clustering
method. Another graph-based approach is the
HyperLex algorithm (Véronis, 2004), which con-
structs a graph connecting all pairs of terms that
co-occur in the context of an ambiguous term. The
resulting graph contains highly connected compo-
nents, which represent the different senses of the
term. Agirre et al. (2006) compare HyperLex to
PageRank (Brin and Page, 1998) and demonstrates
that the two methods perform similarly.

There have also been several attempts to use
various types of matrix factorization for WSI. The
idea is that the factorization uncovers a set of
global senses in the form of the latent factors,
and that the sense distribution for a given term
can be described as a distribution over these la-
tent factors. Examples of factorization methods
that have been used include different versions of
Latent Dirichlet Allocation ((Brody and Lapata,
2009; Séaghdha and Korhonen, 2011; Yao and
Van Durme, 2011; Lau et al., 2012) and non-
negative matrix factorization (Dinu and Lapata,
2010; Van de Cruys and Apidianaki, 2011).

Tomuro et al. (2007) argue that clustering ap-
proaches like distributional clustering or CBC may
produce clusters that are themselves polysemous,
which may not be a desirable property of a WSI
algorithm, and suggests using feature domain sim-
ilarity to solve this problem. The idea is to incor-
porate similarities between the features of items
rather than the similarity between the items them-
selves in a modified version of CBC that enables
the algorithm to utilize feature similarities, which
inhibit the formation of polysemous clusters.

Koptjevskaja Tamm and Sahlgren (2014) also
leverage on the idea of using feature similarity
as the basis of sense clustering. The approach,
called syntagmatically labeled partitioning, relies
on a DSM that encodes sequential as well as sub-
stitutable relations. The method essentially sorts
the k nearest (substitutable) neighbors according
to which sequential connections they share. The
resulting partitioning of the nearest distributional
neighbors does not only constitute a WSI, but it
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also provides labels for the induced senses in the
form of the sequential connections the neighbors
share.

4 Neighborhood Graphs

Many of the previous WSI approaches operate at
a global level, utilizing global structural proper-
ties of the semantic spaces, e.g. by matrix fac-
torization techniques. We believe this is as ill-
advised as setting a global k or radius for the near-
est neighbor search, since it is the local structures
that are important when analyzing nearest neigh-
bors. Other WSI approaches use various forms
of clustering techniques. However, previous stud-
ies of the intrinsic dimensionality of distributional
semantic spaces using fractal dimensions indicate
that neighborhoods in semantic space have a fila-
mentary rather than clustered structure (Karlgren
et al., 2008).

We therefore propose the use of topological
models that take the local structure of neighbor-
hoods in semantic space into account. The ap-
proach discovers different word senses from the
local structure of neighborhoods, given nothing
but similarities between points. As such it is easy
to test on widely different vector models, as long
as there exists a well behaved similarity function.
The proposed approach not only answers the ques-
tion which other terms are similar to a given term,
but also how are they similar.

Relative neighborhoods, first proposed in (Tou-
ssaint, 1980), are examples of empty region graphs
(Cardinal et al., 2009), where points are neighbors
if some region between them is empty. For Rela-
tive Neighborhood Graphs (RNG) this region be-
tween two points a and c is defined as the inter-
section of the two spheres with centers in a and c
with radius d(a, c). In other words, a point b lies
between points a and c if it is closer to both a and
c than a and c are to each other. If no such point b
exists, a and c are neighbors. Illustrations of this
can be seen in Figure 1.

Figure 1: Example of when point b is between
point a and c (left), and when it is not (right).

Such neighborhoods have been argued to better
preserve local topology (Bremer et al., 2014), and
be more robust to deformations of the data than k-
NN neighborhoods (Correa and Lindstrom, 2012)
as they in some sense contain information about
direction whereas k-NN neighborhoods only con-
tain information about distance. Going back to the
“suit” example, we can see that if “suit” in the law-
sense is more similar to the composite “suit” than
to its clothes-sense, and vice versa, then the com-
posite vsuit lies between vsuit|law and vsuit|clothes.
This in turn means that out of those two points,
both are relative neighbors to “suit”, and neither
of them lies between the other and “suit”.

Formally, the set of points between two points
a, c ∈ V can be characterized and computed in the
following way:

btw(V, a, c) = {b|b ∈ V, b is between a and c}

rng-nbh(V, a) = {c|c ∈ V, btw(V, a, c) = ∅}
Erng(V ) = {(a, b)|a ∈ V, b ∈ rng-nbh(V, a)}

where Erng is the undirected edge set of the RNG.
The function btw(V, a, c) can be straightforwardly
translated to an algorithm taking O(|V |) time,
making the rng-nbh(V, a) function take O(|V |2)
time, which in turn makes the computation of the
complete graph take O(|V |3) time.5 Clearly un-
feasible, but we have not found any alternatives
that perform better in the high-dimensional case.6

Correa and Lindstrom (2012) note that the inter-
section of the RNG and the k-NN graph is a more
feasible alternative:

k-rng-nbh(V, a) = rng-nbh(V ′, a)

where V ′ = k nearest neighbors of a.

Given a precompiled k-NN lookup, the above
takes O(k2) time, so using a heap-based
O(|V | lg k) k-NN algorithm results in an algo-
rithm taking O(k2 + |V | lg k) time.

The same idea can be used to build a tree struc-
ture rooted in a reference word a in the following
way:

rnbh-tree(V, a) = {(c, arg min
b∈Bc

d(b, c))|c ∈ V }

where Bc = {a} ∪ btw(V, a, c)
5Assuming a constant time distance function.
6It should be noted that there are more efficient algorithms

for lower-dimensional situations.
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which can easily be restricted to the k-nearest
neighbors of a in much the same way as above,
with the same monotonic behavior.

Computing this for a point a produces a tree
where the direct children of a are its relative neigh-
bors, and the parent of a point c further down the
tree is the point between a and c that is closest
to c. This structure, while similar to a minimum
spanning tree, differs in some crucial regards: the
rnbh-tree(V, a) is rooted in a word a. The differ-
ence between rnbh-tree(V, a) and rnbh-tree(V, b)
is often quite significant. Furthermore, the re-
stricted k-rnbh-tree is monotonic in k. That prop-
erty does not hold for a minimum spanning tree of
a local neighborhood.

5 Examples of RNGs

To get an intuition of what these neighborhoods
look like we present a few examples. The words
have been chosen either because they are com-
mon examples in similar work — e.g. “heart” and
“suit” from Pantel and Lin (2002) — or because
they represent different parts-of-speech (“above”
is a preposition, “bad” is an adjective, and “ser-
vice” is a noun) and disparate kinds of ambiguity
(“orange” can be both a fruit and a color).

Figure 2 (next page) illustrates what an RNG
looks like for the term “heart” and its 100 near-
est neighbors in the PMI model. Note that the
root “heart” (at the mid-left in the graph) only
has two relative neighbors: “cardiac” and “soul,”
arguably representing a body-sense and a soul-
sense of the term. One advantage of using this
type of structure for the neighborhood is that
it enables us to examine various depths of the
tree. Depth one includes only the direct neigh-
bors (“cardiac” and “soul”), while depth two in-
cludes all neighbors two steps away in the graph:
“disease,” “coronary,” “pulmonary,” “cardiovascu-
lar,” “ventricular,” and “failure,” which are all chil-
dren to “cardiac.” This tree structure can be used
to identify neighbors that are themselves polyse-
mous (c.f. the critique mentioned in Section 3 of
clustering-based approaches to word-sense induc-
tion that they may produce polysemous clusters ).
One example is the neighbor “disease” at depth
two, which has six children that refer to different
aspects of disease.

We argue that the RNG can be quite useful
for WSI, since the branching structure indicates
different usages, and the depth factor enables us

to calibrate the granularity of the induced word
senses. If we only consider direct neighbors
(i.e. depth one), and set k = V (i.e. we do an
exhaustive nearest neighbor search), we will ex-
tract all terms that have a direct connection to the
reference term. We refer to this neighborhood as
the semantic horizon. At the most coarse level of
analysis, this is the neighborhood that represents
the main induced senses of a term. Tables 2 and
3 provide examples of 1,000-RNG neighborhoods
of depth one.

Table 2: RNG for k = 1, 000 of the words “suit,”
“orange,” and “heart” in three different semantic
models. The numbers in parenthesis indicate the
k-NN ranks of the neighbors.

PMI GloVe Skipgram
suit

suits (1) suits (1) suits (1)
dress (2) lawsuit (2) lawsuit (2)
lawsuit (10) mobile (33)
dinosaur (53) gundam (34)
costly (60) trump (55)
option (76) zoot (133)
counterparts (99) rebid (423)
predator (107) serenaders

(458)
trump (109) hev (987)
...

orange
yellow (1) yellow (1) redorange (1)
lemon (16) ktype (12)

lemon (14)
citrus (17)
jersey (21)
cherry (24)
county (26)
peel (42)
jumpsuits (57)
...

heart
cardiac (1) my (1) congestive (1)
soul (22) blood (2) hearts (2)
hearts (183) throbs (3)
ashtray(641) suffering (4)
rags(771) brain (6)

cardiac (8)
hearts (11)
throb (17)
lungs (22)
...

These examples demonstrate some interesting
similarities and differences between the three
models. First of all, there are some direct neigh-
bors that are present in all three models: “suit”
has “suits” and “lawsuit” as direct neighbors in
all three models, “heart” has “hearts,” “service”
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Figure 2: RNG for “heart” in the PMI model, restricted to the 100 nearest neighbors.

has “services,” and “above” has “below”. Plu-
ral forms are of course reasonable neighbors of
their singular counterparts in a semantic model,
but their usefulness for WSI can perhaps be ques-
tioned. Taking “suits” to indicate the clothes-sense
of “suit,” all three models produce both a clothes-
sense and a law-sense. For “orange,” the Skipgram
model only represents the color-sense, while the
PMI and GloVe models also feature a fruit-sense.
For “heart,” all three models have a disease-sense
(represented by the neighbors “cardiac” in the PMI
and GloVe models, and the neighbor “congestive”
in the Skipgram model), and an organ-sense (rep-
resented by the plural form “hearts”). “Service”
is a comparably vague term that has a number of
different senses in the PMI and GloVe models,
but only one in the Skipgram model. “Bad” pro-
duces both a negativity-sense and a German spa
town-sense in all three models, but only the GloVe
and Skipgram models have a separate antonym-
sense (“good” is not a direct neighbor in the PMI
model). “Above” has both the antonym and direct
neighbors relating to measurements in all three
models.

It is interesting to note that GloVe produces a

significant amount of sequential relations; “mo-
bile suit gundam”, “cheap suit serenaders”, “or-
ange peel”, and “orange jumpsuit” are just some
of many examples of sequential relations found in
the relative neighborhood of terms in the GloVe
model.

The PMI and GloVe models produce the struc-
turally most similar RNGs in these examples, with
on average a handful of direct neighbors, of which
some can be very distant. The Skipgram model
on the other hand produces very few direct neigh-
bors. This led us to look further into the struc-
tural properties of neighborhoods in the Skipgram
model. An interesting observation — and possi-
ble complication — is that the neighborhoods in
the Skipgram model are highly asymmetric: the
first neighbor of “information” is “informations”,
whereas “information” is the 1,829th neighbor of
“informations.” While such asymmetry occurs in
all models, it seems much more prevalent in the
Skipgram model. Figure 3 confirms this suspi-
cion: each point corresponds to a random word
pair (a, b) with x corresponding to where b is in
the ordered list of a’s neighbor, and y to where a
is in the ordered list of b’s neighbors. The figure
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Figure 3: Neighborhood reciprocity in the different models; PMI to the left, GloVe in the middle, and
Skipgram to the right.

Table 3: k-RNG for k = 1, 000 of the words “ser-
vice,” “bad,” and “above” in three different seman-
tic models. The numbers in parenthesis indicate
the k-NN ranks of the neighbors.

PMI GloVe Skipgram
service

services (1) services (1) services (1)
network (2) operated (3)
operates (8) serving (6)
launched (18) military (17)
served (22) duty (20)
intercity(34) passenger (21)

dialaride (644)
aftersales (759)
limitedstop
(802)

bad
terrible (1) good (1) nauheim (1)
that (2) kissingen (2) good (2)
luck (39) ugly (45) dreadful (5)
unfortunate (70) nasty (48)
stalling (276) dirty (106)
donnersbergkreis omen (328)
(860)
rancid (980) conkers (360)

karma (952)
above

below (1) below (1) below (1)
around (2) level (2) 500ft (2)
feet (5) height (3)
measuring (29) just (4)
beneath (36) stands (10)
columns (62) lower (11)
atop (102) beneath (12)

rise (21)
sea (30)
...

shows that the local densities vary much more in
the Skipgram model than in the others. This is not
in itself undesirable, but wild differences in neigh-
borhood reciprocity complicates the choice of k in
the k-RNG algorithm, as observed by the particu-
larly sparse neighborhoods of the Skipgram model
above.

6 WSI Evaluation

The standard way to evaluate WSI algorithms is to
use one the SemEval WSI test collections (Agirre
and Soroa, 2007; Manandhar et al., 2010; Nav-
igli and Vannella, 2013; Jurgens and Klapaftis,
2013), which are all designed similarly: systems
are expected to first perform WSI and then to as-
sign texts to the induced senses (i.e. in effect do-
ing a word-sense disambiguation step). We con-
sider this type of evaluation to be a less useful
for our purposes, since the required disambigua-
tion step is a highly non-trivial task in itself. The
RNG method proposed in this paper is a pure
WSI algorithm, and as such does not offer a solu-
tion to the disambiguation problem. We therefore
opted to focus solely on the hypothesis that rel-
ative neighborhoods cover senses that k-NNs do
not. In essence, we investigate whether k-RNG
retrieval does a better job at covering different
senses than k-NN retrieval. This was done using
pseudowords.

Pseudowords are artificially ambiguous words,
created by regarding different words as identi-
cal. We can, for example, say that the pseu-
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Figure 4: Comparison of minmax pseudosense score for k-RNGs and k-NNs for k = 1, 000 and k = 10
respectively; PMI to the left, GloVe in the middle, and Skipgram to the right.

doword <deadeye> is a composite of the two
words marksman and loudspeaker. A corpus with
the artificially ambiguous word <deadeye> in it
can then be created by replacing all occurrences
of the words marksman and loudspeaker with
<deadeye>.

Using the pseudowords provided by Pilehvar
and Navigli (2013) a corpus with 689 non-
overlapping pseudowords was created, based on
the BNC corpus.7 Two models were then trained,
one on the altered corpus, and one on the unal-
tered one. To check whether the neighborhood of a
pseudoword contains information about its under-
lying senses we compared each underlying sense
to the words in the neighborhood, taking the mini-
mum of all senses’ maximum similarity as a score,
as demonstrated in Table 4. The similarities were
calculated using the model trained on the unaltered
corpus, as the one based on the altered corpus will
not contain the underlying senses of pseudowords.

Working through the example in Table 4, the
neighborhood of the pseudoword <deadeye >
consists of the three words shooter, stereo, and
sport. The pseudoword in itself is made up of
the two underlying senses marksman and loud-
speaker. The similarities between the words in
the neighborhood of the model trained on the unal-

7www.natcorp.ox.ac.uk

tered data and the words of the underlying senses
are as presented in Table 4. The closest word to
marksman is shooter, with a similarity score of
0.7. The closest word to loudspeaker is stereo,
with a score of 0.3. So the scoring would, in total,
be 0.3. It should be noted that the upper bound for
this score is oftentimes significantly lower than 1:
The neighborhood could not possibly contain the
words marksman or loudspeaker, as those words
are not present in the corpus. This means that the
scores are bounded by the similarity of the least
similar closest neighbor to the underlying senses.

Table 4: Example scoring of a neighborhood of
the word <deadeye>.

<deadeye> shooter stereo sport max
marksman 0.7 0.04 0.4 0.7
loudspeaker 0.01 0.3 0.05 0.3

min: 0.3

This score was chosen because of its simplic-
ity and intuitive interpretation: a low score im-
plies that at least one word sense was not repre-
sented in the neighborhood whereas a high score
means that all senses are represented in the neigh-
borhood. One can then plot these scores for both
relative neighborhoods and k-NN neighborhoods
for each pseudoword as is done in Figure 4. Each
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point (x, y) represents a pseudoword, with x and
y being the score of the k-NN neighborhood and
the k-RNG neighborhood respectively.

Figure 5 shows an aggregate of Figure 4, plot-
ting the distribution of y−x, i.e. the difference be-
tween the scores achieved by the k-RNG and the
k-NN. As seen in Figure 4, a lot of points lie on
the line y = x, meaning both methods achieved
the same score. However, when this is not the
case, there is a clear bias for the k-RNG to out-
perform the k-NN, as demonstrated in Figure 5.
Here, using the BNC instead of Wikipedia as train-
ing data, the GloVe and Skipgram models yielded
sparse relative neighborhoods — both with an av-
erage of about 8 neighbors — but the PMI model
produced quite dense neighborhoods averaging 63
neighbors. Since the scoring function does not pe-
nalize neighborhood size there is good reason to
be skeptical of its viability, and specifically the
performance of the PMI-model based on these fig-
ures.
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Figure 5: Distribution of difference between
scores for k-RNGs and k-NNs. Positive scores
means that the k-RNG scored higher than the k-
NN

7 Conclusions

This paper has discussed the question how to
query semantic models, which is a question that
has been long neglected in research on computa-
tional semantics. Nearest neighbor search (or k-
NN) is often treated as the only available option,
which leads to misunderstandings regarding how

semantic models represent and handle vagueness
and polysemy. We have argued that the structure
— or topology — of the local neighborhoods in se-
mantic models carry useful semantic information
regarding the different usages — or senses — of
a term, and that such topological properties there-
fore can be used to analyze polysemy and do WSI.

We have introduced relative neighborhood
graphs (RNG) as an alternative to standard k-NN,
and we have exemplified k-RNG in three differ-
ent well-known semantic models. The examples
demonstrate that k-RNG manages to retrieve dis-
parate and relevant neighbors in all three models,
yet the kind of neighbors returned and the nature
of the neighborhoods differ. Quantitatively, The k-
RNG method consistently outperformed k-NN on
underlying sense retrieval.

We have also illustrated how k-RNG can be
used as a tool to gain insight into the topological
properties of different models. The GloVe model,
for example, makes no difference between sequen-
tial and substitutable relations, leading to neigh-
borhoods that contain n-grams instead of senses.
This can clearly be seen in for example Table 2.
Skipgram uses more sophisticated tokenization,
which alleviates this issue.

Another interesting result of the paper is that the
RNG uncovers otherwise unseen differences be-
tween the models, which manifest not as scoring
differences but as properties of the word represen-
tations themselves. One example is the differences
in neighborhood reciprocity observed between the
different models.

References
Eneko Agirre and Aitor Soroa. 2007. Semeval-2007

task 02: Evaluating word sense induction and dis-
crimination systems. In Proceedings of SemEval,
pages 7–12.

Eneko Agirre, David Martı́nez, Oier López de Lacalle,
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Abstract

Multi-modal semantics has relied on fea-
ture norms or raw image data for per-
ceptual input. In this paper we examine
grounding semantic representations in raw
auditory data, using standard evaluations
for multi-modal semantics, including mea-
suring conceptual similarity and related-
ness. We also evaluate cross-modal map-
pings, through a zero-shot learning task
mapping between linguistic and auditory
modalities. In addition, we evaluate multi-
modal representations on an unsupervised
musical instrument clustering task. To our
knowledge, this is the first work to com-
bine linguistic and auditory information
into multi-modal representations.

1 Introduction

Although distributional models (Turney and Pan-
tel, 2010; Clark, 2015) have proved useful for a
variety of NLP tasks, the fact that the meaning of
a word is represented as a distribution over other
words implies that they suffer from the ground-
ing problem (Harnad, 1990); i.e. they do not ac-
count for the fact that human semantic knowledge
is grounded in the perceptual system (Louwerse,
2008). Motivated by human concept acquisition,
multi-modal semantics enhances linguistic repre-
sentations with extra-linguistic perceptual input.
These models outperform language-only models
on a range of tasks, including modelling semantic
similarity and relatedness, and predicting compo-
sitionality (Silberer and Lapata, 2012; Roller and
Schulte im Walde, 2013; Bruni et al., 2014). Al-
though feature norms have also been used, raw
image data has become the de-facto perceptual
modality in multi-modal models.

However, if the objective is to ground seman-
tic representations in perceptual information, why

stop at image data? The meaning of violin is
surely not only grounded in its visual properties,
such as shape, color and texture, but also in its
sound, pitch and timbre. To understand how per-
ceptual input leads to conceptual representation,
we should use as many perceptual modalities as
possible. A recent preliminary study by Lopopolo
and van Miltenburg (2015) found that it is possible
to derive uni-modal semantic representations from
sound data. Here, we explore taking multi-modal
semantics beyond its current reliance on image
data and experiment with grounding semantic rep-
resentations in the auditory perceptual modality.

Multi-modal models that rely on raw image
data have typically used “bag of visual words”
(BoVW) representations (Sivic and Zisserman,
2003). We follow a similar approach for the
auditory modality and construct bag of audio
words (BoAW) representations. Following pre-
vious work in multi-modal semantics, we evalu-
ate these models on measuring conceptual simi-
larity and relatedness, and inducing cross-modal
mappings between modalities to perform zero-
shot learning. In addition, we evaluate on an
unsupervised musical instrument clustering task.
Our findings indicate that multi-modal representa-
tions enriched with auditory information perform
well on relatedness and similarity tasks, particu-
larly on words that have auditory assocations. To
our knowledge, this is the first work to combine
linguistic and auditory representations in multi-
modal semantics.

2 Related Work

Information processing in the brain can be roughly
described to occur on three levels: perceptual in-
put, conceptual representation and symbolic rea-
soning (Gazzaniga, 1995). While research in AI
has made great progress in understanding the first
and last of these, understanding the middle level is
still more of an open problem: how is it that per-
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ceptual input leads to conceptual representations
that can be processed and reasoned with?

A key observation is that concepts are, through
perception, grounded in physical reality and sen-
sorimotor experience (Harnad, 1990; Louwerse,
2008), and there has been a surge of recent work
on perceptually grounded semantic models that try
to account for this fact. These models learn se-
mantic representations from both textual and per-
ceptual input, using either feature norms (Silberer
and Lapata, 2012; Roller and Schulte im Walde,
2013; Hill and Korhonen, 2014) or raw image
data (Feng and Lapata, 2010; Leong and Mihal-
cea, 2011; Bruni et al., 2014) as the source of per-
ceptual information. A popular approach in the
latter case is to collect images associated with a
concept, and then lay out each image as a set of
keypoints on a dense grid, where each keypoint
is represented by a robust local feature descriptor
such as SIFT (Lowe, 2004). These local descrip-
tors are subsequently clustered into a set of “vi-
sual words” using a standard clustering algorithm
such as k-means and then quantized into vector
representations by comparing the descriptors with
the centroids. An alternative to this bag of vi-
sual words (BoVW) approach is transferring fea-
tures from convolutional neural networks (Kiela
and Bottou, 2014).

Various ways of aggregating images into visual
representations have been proposed, such as tak-
ing the mean or the elementwise maximum. Ide-
ally, one would jointly learn multi-modal repre-
sentations from parallel multi-modal data, such as
text containing images (Silberer and Lapata, 2014)
or images described with speech (Synnaeve et al.,
2014), but such data is hard to obtain, has limited
coverage and can be noisy. Hence, image repre-
sentations are often learned independently. Ag-
gregated visual representations are subsequently
combined with a traditional linguistic space to
form a multi-modal model. This mixing can be
done in a variety of ways, ranging from simple
concatenation to more sophisticated fusion meth-
ods (Bruni et al., 2014).

Cross-modal semantics, instead of being con-
cerned with improving semantic representations
through grounding, focuses on the problem of ref-
erence. Using, for instance, mappings between
visual and textual space, the objective is to learn
which words refer to which objects (Lazaridou
et al., 2014). This problem is very much re-

MEN score SimLex-999 score

automobile-car 1.00 taxi-cab 0.92

rain-storm 0.98 plane-jet 0.81

cat-feline 0.96 horse-mare 0.83

jazz-musician 0.88 sheep-lamb 0.84

bird-eagle 0.88 bird-hawk 0.79

highway-traffic 0.88 band-orchestra 0.71

guitar-piano 0.86 music-melody 0.70

Table 1: Examples of pairs in the datasets where
auditory is relevant, with the similarity score.

lated to the object recognition task in computer
vision, but instead of using just visual data and
labels, these cross-modal models also utilize tex-
tual information (Socher et al., 2014; Frome et al.,
2013). This allows for zero-shot learning, where
the model can predict how an object relates to
other concepts just from seeing an image of the
object, but without ever having previously encoun-
tered an image of that particular object (Lazaridou
et al., 2014). Multi-modal and cross-modal ap-
proaches have outperformed state-of-the-art text-
based methods on a variety of tasks (Bruni et al.,
2014; Silberer and Lapata, 2014).

3 Evaluations

Following previous work in multi-modal seman-
tics, we evaluate on two standard similarity and re-
latedness datasets: SimLex-999 (Hill et al., 2014)
and the MEN test collection (Bruni et al., 2014).
These datasets consist of concept pairs together
with a human-annotated similarity or relatedness
score, where the former dataset focuses on gen-
uine similarity (e.g., teacher-instructor) and the
latter focuses more on relatedness (e.g., river-
water). In addition, following previous work in
cross-modal semantics, we evaluate on the zero-
shot learning task of inducing a cross-modal map-
ping to the correct label in the auditory modality
from the linguistic one and vice-versa.

3.1 Multi-modal Semantics
Evidence suggests that the inclusion of visual rep-
resentations only improves performance for cer-
tain concepts, and that in some cases the introduc-
tion of visual information is detrimental to perfor-
mance on similarity and relatedness tasks (Kiela
et al., 2014). The same is likely to be true for
other perceptual modalities: in the case of com-
parisons such as guitar-piano, the auditory modal-
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Dataset MEN AMEN SLex ASLex

Linguistic 3000 258 999 296

Auditory 2590 233 534 216

Table 2: Number of concept pairs for which repre-
sentations are available in each modality.

ity is certainly meaningful, whereas in the case
of democracy-anarchism it is probably less so.
Therefore, we had two graduate students annotate
the datasets according to whether auditory percep-
tion is relevant to the pairwise comparison. The
annotation criterion was as follows: if both con-
cepts in a pairwise comparison have a distinctive
associated sound, the modality is deemed rele-
vant. Inter-annotator agreement was high: κ =
0.93 for MEN and κ = 0.92 for SimLex-999.
Some examples of relevant pairs can be found in
Table 1. Hence, we now have four evaluation
datasets: the MEN test collection MEN and its
auditory-relevant subset AMEN; and the SimLex-
999 dataset SLex and its auditory-relevant sub-
set ASLex. Due to the nature of the auditory
data sources, it is not possible to build auditory
representations for all concepts in the test sets.
Hence, unless stated otherwise, we report results
for the covered subsets (using the same subsets
when comparing across modalities, to ensure a fair
comparison). Table 2 shows how much of the test
sets are covered for each modality.1

3.2 Cross-modal Semantics

In addition to evaluating our models on the MEN
and SimLex tasks, we evaluate on the cross-
modal task of zero-shot learning. In the case
of vision, Lazaridou et al. (2014) studied the
possibility of predicting from “we found a cute,
hairy wampimuk sleeping behind the tree” that a
“wampimuk” will probably look like a small furry
animal, even though a wampimuk has never been
seen before. We evaluate zero-shot learning, using
partial least squares regression (PLSR) to obtain
cross-modal mappings from the linguistic to audi-
tory space and vice versa.2 Thus, given a linguistic
representation for e.g. guitar, the task is to map it
to the appropriate place in auditory space without

1To facilitate further work in multi-modal semantics be-
yond vision, our code and data have been made publicly
available at http://www.cl.cam.ac.uk/˜dk427/audio.html.

2To avoid introducing another parameter, we set the num-
ber of latent variables in the cross-modal PLSR map to a third
of the number of dimensions of the perceptual representation.

ever having heard a guitar; or map it to the appro-
priate place in linguistic space without ever having
read about a guitar (having only heard it).

4 Approach

One reason for using raw image data in multi-
modal models is that there is a wide variety of re-
sources that contain tagged images, such as Im-
ageNet (Deng et al., 2009) and the ESP Game
dataset (Von Ahn and Dabbish, 2004). However,
such resources do not exist for audio files, and
so we follow a similar approach to Fergus et al.
(2005) and Bergsma and Goebel (2011), who use
Google Images to obtain images. We use the
online search engine Freesound3 to obtain audio
files. Freesound is a collaborative database re-
leased under Creative Commons licenses, in the
form of snippets, samples and recordings, that is
aimed at sound artists. The Freesound API allows
users to easily search for audio files that have been
tagged using certain keywords.

For each of the concepts in the evaluation
datasets, we used the Freesound API to obtain
samples encoded in the standard open source OGG
format4. Because the database contains variable
numbers of files, with varying duration per indi-
vidual file, we restrict the search to a maximum of
50 files and a maximum of 1 minute duration per
file. The Freesound API allows for various degrees
of keyword matching: we opted for the strictest
keyword matching, in that the audio file needs to
have been purposely tagged with the given word
(the alternative includes searching the text descrip-
tion for matching keywords). For example, if we
are searching for audio files of cars, we retrieve up
to 50 files with a maximum duration of 1 minute
per file that have been tagged with the label “car”.

4.1 Linguistic Representations
For the linguistic representations we use the con-
tinuous vector representations from the log-linear
skip-gram model of Mikolov et al. (2013). Specifi-
cally, we trained 300-dimensional vector represen-
tations trained on a dump of the English Wikipedia
plus newswire (8 billion words in total).5 These
types of representations have been found to yield
the highest performance on a variety of semantic
similarity tasks (Baroni et al., 2014).

3http://www.freesound.org.
4http://www.vorbis.com.
5We used the demo-train-big-model-v1.sh script from

http://word2vec.googlecode.com to obtain this corpus.
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4.2 Auditory Representations

A common approach to obtaining acoustic fea-
tures of audio files is the Mel-scale Frequency
Cepstral Coefficient (MFCC) (O’Shaughnessy,
1987). MFCC features are abundant in a wide
variety of applications in audio signal process-
ing, ranging from audio information retrieval, to
speech and speaker recognition, and music analy-
sis (Eronen, 2003). Such features are derived from
the mel-frequency cepstrum representation of an
audio fragment (Stevens et al., 1937). In MFCC,
frequency bands are spaced along the mel scale,
which has the advantage that it approximates hu-
man auditory perception more closely than e.g.
linearly-spaced frequency bands. Hence, MFCC
takes human perceptual sensitivity to audio fre-
quencies into consideration, which makes it suit-
able for e.g. compression and recognition tasks,
but also for our current objective of modelling au-
ditory perception. We obtain MFCC descriptors
for frames of audio files using librosa, a popu-
lar library for audio and music analysis written
in Python.6 After having obtained the descrip-
tors, we cluster them using mini-batch k-means
(Sculley, 2010) and quantize the descriptors into a
“bag of audio words” (BoAW) (Foote, 1997) rep-
resentation by comparing the MFCC descriptors
to the cluster centroids. This gives us BoAW rep-
resentations for each of the audio files. Auditory
representations are obtained by taking the mean
of the BoAW representations of the relevant au-
dio files, and finally weighting them using positive
point-wise mutual information (PPMI), a standard
weighting scheme for improving vector represen-
tation quality (Bullinaria and Levy, 2007). We set
k = 300, which equals the number of dimensions
for the linguistic representations.

4.3 Multi-modal Fusion Strategies

Since multi-modal semantics relies on two or more
modalities, there are several ways of combining
or fusing linguistic and perceptual cues (Bruni et
al., 2014). When computing similarity scores, for
instance, we can either jointly learn the represen-
tations; learn them independently, combine (e.g.
concatenate) them and compute similarity scores;
or learn them independently, compute similarity
scores independently and combine the scores. We
call these possibilities early, middle and late fu-
sion, respectively, and evaluate multi-modal mod-

6http://bmcfee.github.io/librosa.

els in each category.

4.3.1 Early Fusion
A good example of early fusion is the recently
introduced multi-modal skip-gram model (Lazari-
dou et al., 2015). This model behaves like a nor-
mal skip-gram, but instead of only having a train-
ing objective for the linguistic representation, it in-
cludes an additional training objective for the vi-
sual context, which consists of an aggregated rep-
resentation of images associated with the given
target word. The skip-gram training objective for
a sequence of training words w1, w2, ..., wT and a
context size c is:

1
T

T∑
t=1

Jθ(wt)

where Jθ is the log-likelihood∑
−c≤j≤c log p(wt+j |wt) and p(wt+j |wt) is

obtained via the softmax:

p(wt+j |wt) =
expu

>
wt+j

vwt∑W
w′=1 expu

>
w′vwt

where uw and vw are the context and target vec-
tor representations for the word w respectively,
and W is the vocabulary size. The objective for
the multi-modal skip-gram has an additional vi-
sual objective Jvis (in this case a margin criterion):

1
T

T∑
t=1

Jθ(wt) + Jvis(wt)

Here, we take a similar but more straightfor-
ward approach by making the auditory context a
part of the initial training objective, which is pos-
sible because linguistic and auditory representa-
tions have the same dimensionality. That is, we
modified word2vec to predict additional auditory
contexts that have been set to the corresponding
BoAW representation. We jointly learn linguistic
and audio representations by taking the aggregated
mean µaw of the auditory vectors for a given word
w, and adding this mean vector to the context:

1
T

T∑
t=1

Jθ(wt) + log p(µawt
|wt)

The intuition is that the induced vector for the
target word now has to predict an auditory vec-
tor as part of its context, as well as the linguis-
tic ones. As an alternative, we also investigate re-
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placing the mean µawt
with an auditory vector ob-

tained by uniformly sampling from the set of au-
ditory representations for the target word. We re-
fer to these two alternatives as MMSG-MEAN and
MMSG-SAMPLED, respectively. For this model,
auditory BoAW representations are built for the
ten thousand most frequent words in our corpus,
based on 10 audio files retrieved from FreeSound
for each word (or fewer when 10 are not available).

4.3.2 Middle and Late Fusion
Whereas early fusion requires a joint training ob-
jective that takes into account both modalities,
middle fusion allows for individual training ob-
jectives and independent training data. Similarity
between two multi-modal representations is calcu-
lated as follows:

sim(u, v) = g(f(ul, ua), f(vl, va))

where g is some similarity function, ul and vl are
linguistic representations, and ua and va are the
auditory representations. A typical formulation in
multi-modal semantics for f(x, y) is αx‖(1−α)y,
where ‖ is concatenation (see e.g. Bruni et al.
(2014) and Kiela and Bottou (2014)).

Late fusion can be seen as the converse of mid-
dle fusion, in that the similarity function is com-
puted first before the similarity scores are com-
bined:

sim(u, v) = h(g(ul, vl), g(ua, va))

where g is some similarity function and h is a way
of combining similarities, in our case a weighted
average: h(x, y) = 1

2(αx+(1−α)y); and we use
g = x·y

|x||y| (cosine similarity). Since cosine simi-
larity is the normalized dot-product, and the uni-
modal representations are themselves normalized,
middle and late fusion are equivalent if α = 0.5,
which we call MM. However, when α 6= 0.5, we
distinguish between the two models, calling them
MM-MIDDLE and MM-LATE respectively.

5 Results

5.1 Conceptual Similarity and Relatedness

We evaluate performance by calculating the Spear-
man ρs correlation between the ranking of the
concept pairs produced by the automatic similar-
ity metric (cosine between the derived vectors)
and that produced by the gold-standard similarity
scores. To ensure a fair comparison, we evaluate

Modality MEN AMEN SLex ASLex

Linguistic 0.687 0.603 0.320 0.314

Auditory 0.325 0.510 0.161 0.201

MMSG-MEAN 0.612 0.537 0.274 0.266

MMSG-SAMPLED 0.690 0.602 0.321 0.314

MM 0.680 0.662 0.314 0.345

Table 3: Spearman ρs correlation comparison of
uni-modal and multi-modal representations. The
MMSG models perform early fusion, MM repre-
sents middle and late fusion with α = 0.5 (see
Section 4.3.2).

on the common subsets for which there are repre-
sentations in both modalities (see Table 2).

The results are reported in Table 3. We find
that, while performance decreases for linguistic
representations on the auditory-relevant subsets of
the two datasets, performance increases for the
uni-modal auditory representations on those sub-
sets. This indicates that our auditory representa-
tions are better at judging auditory-relevant com-
parisons than they are at non-auditory ones, as we
might expect.

For all datasets, the accuracy scores for multi-
modal models are at least as high as those for the
purely linguistic representations. In the case of
the full datasets this difference is only marginal,
which is to be expected given how few of the
words in the datasets are auditory-relevant. How-
ever, the results indicate that adding auditory in-
put even for words that are not directly auditory-
relevant is not detrimental to overall performance.

In the case of the auditory-relevant subsets, we
see a large increase in performance when using
multi-modal representations. It is also interesting
that this performance increase is found in the sim-
ple MM model, compared to the more complicated
MMSG models, which seems to indicate that the
latter models are still too reliant on linguistic in-
formation, which harms their performance when
performing auditory-specific comparisons. The
model which performs consistently well across the
four datasets is MM, the middle-late fusion model
with α = 0.5.

5.2 Cross-modal Zero-shot Learning

We learn a cross-modal mapping between the
linguistic and auditory spaces using partial least
squares regression, taking out each concept, train-
ing on the others, and then projecting from one
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Mapping P@1 P@5 P@20 P@50

Chance 0.00 0.93 4.01 8.49

Auditory⇒ Ling. 0.77 6.48 17.54 31.33

Ling. ⇒ Auditory 0.73 6.71 22.16 37.32

Table 4: Cross-modal zero-shot learning accuracy.

space into the other. Zero-shot performance is
evaluated using the average percentage correct at
N (P@N ), which measures how many of the test
instances were ranked within the top N highest
ranked nearest neighbors. Results are shown in
Table 4, with the chance baseline obtained by ran-
domly ranking a concept’s nearest neighbors. In-
sofar as it is possible to make a direct comparison
with linguistic-visual zero-shot learning (which
uses entirely different data), it appears that the cur-
rent task may be more difficult: Lazaridou et al.
(2014) report a P@1 of 2.4 and P@20 of 33.0 for
their linguistic-visual model.

5.3 Qualitative Analysis

We also performed a small qualitative analysis of
the BoAW representations for the words in MEN
and SLex. As Table 5 shows, the nearest neighbors
are remarkably semantically coherent. For exam-
ple, the model groups together sounds produced
by machines, or by water. It even finds that dinner,
meal, lunch and breakfast are closely related. In
contrast, nearest neighbors for the linguistic model
tend to be of a more abstract nature: where we find
mouth and throat as auditory neighbors for lan-
guage, the linguistic model gives us concepts like
word and dictionary; while auditory gossip sounds
like maids and is something you might do in the
corridor, it is linguistically associated with more
abstract concepts like news and newspaper.

6 Parameter Tuning

There are many parameters that were left fixed in
the main results that could have been adjusted to
improve performance, particularly in the middle
and late fusion models. It is useful to investigate
some of the parameters that are likely to have an
impact on performance: what the effect of the α
mixing parameter is, whether a different k would
have yielded better auditory representations, and
whether the number and duration of the audio files
from FreeSound has any effect.

Figure 1: Performance of middle and late multi-
modal fusion models compared to linguistic rep-
resentations on the four datasets when varying the
α mixing parameter on the x-axis.

6.1 Mixing with α

The mixing parameter α plays an important role
in the middle and late fusion models. We kept
it fixed at 0.5 for the MM model above, but here
we experiment with varying the parameter, yield-
ing results for two different models, MM-MIDDLE

and MM-LATE. The results are shown in Figure 1,
where moving to the right on the x-axis uses more
linguistic input and moving to the left uses more
auditory input. The late model consistently out-
performs the middle fusion model, which is prob-
ably because it is less susceptible to any noise in
the auditory representation. Optimal performance
seems to be around α = 0.6 for both fusion strate-
gies on all four datasets, indicating that it is bet-
ter to include a little more linguistic than auditory
input. It appears that any 0.5 ≤ α < 1 (i.e.,
where we have more linguistic input but still some
auditory signal), outperforms the purely linguis-
tic representation, substantially in the case of the
auditory-relevant subsets.

6.2 Number of Auditory Dimensions

We experimented with different values for the
number of audio words k (i.e. the number of clus-
ters in the k-means clustering that determines the
number of “audio words”). As Figure 2 shows, the
quality of the uni-modal auditory representations
is highly robust to the number of dimensions. In
fact, any choice of k in the range shown provides
similar results across the datasets.
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Auditory Linguistic

navy language gossip dinner navy language gossip dinner

army mouth maid meal army word news lunch

aviation man guest lunch military words newspaper wedding

plane father elevator writer vessel literature cute meal

jet adult danger breakfast sunk dictionary sexy breakfast

cannon throat corridor couch ship tongue mirror cocktail

monster motor water dawn monster motor water dawn

orchestra engine stream summer zombie vehicle droplets dusk

demon rain bath child demon automobile salt sunrise

guitar beach river victor dragon car cold moon

beast boat bathroom morning beast motorcycle sunlight night

pilot car rain garden creatures truck milk misty

Table 5: Example nearest neighbors for auditory (BoAW) representations and linguistic representations.

Figure 2: Performance of uni-modal auditory rep-
resentations on the four datasets when varying the
k parameter.

6.3 Number and Duration of Audio Files

We experimented with the number of audio files
by querying FreeSound for up to 100 audio files
per search word, while keeping k = 300. The
results are shown in Figure 3. It appears that “the
more the better”, although performance does not
increase significantly after around 40 audio files.

In order to examine the effect of audio file du-
ration, we experimented with specifying the du-
ration of audio files when querying the database,
either taking very short (up to 5 seconds), medium
length (up to 1 minute) or files of any duration.
The results can be found in Figure 4, showing that
performance generally increases as the files get
longer (except on AMEN where a duration of 1
minute provides optimal performance).

7 Case Study: Musical Instruments

To strengthen the finding that multi-modal repre-
sentations perform well on the auditory-relevant
subsets of the datasets, we evaluate on an alto-
gether different task, namely that of musical in-

Figure 3: Performance of uni-modal auditory rep-
resentations on the four datasets when varying the
number of audio files per target word.

strument classification. We used Wikipedia to col-
lect a total of 52 instruments and divided them into
5 classes: brass, percussion, piano-based, string
and woodwind instruments. For each of the in-
struments, we collected as many audio files from
FreeSound as possible, and used the MM-MIDDLE

model with parameter settings that yielded good
results in the previous experiments (k = 300 and
α = 0.6). We then performed k-means cluster-
ing with five cluster centroids and compared re-
sults between auditory, linguistic and multi-modal,
evaluating the clustering quality using the standard
V-measure clustering evaluation metric (Rosen-
berg and Hirschberg, 2007).

This is an interesting problem because instru-
ment classes are determined somewhat by conven-
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Figure 4: Performance of uni-modal auditory rep-
resentations on the four datasets when varying the
maximum duration.

tion (is a saxophone a brass or a woodwind in-
strument?). What is more, how instruments ac-
tually sound is rarely described in detail in text,
so corpus-based linguistic representations cannot
take this information into account. The results are
in Table 6, clearly showing that the multi-modal
representation which utilizes both linguistic infor-
mation and auditory input performs much better
on this task than the uni-modal representations. It
is interesting to observe that the linguistic repre-
sentations perform better than the auditory ones: a
possible explanation for this is that audio files in
FreeSound are rarely samples of a single individ-
ual instrument, so if a bass is often accompanied
by a drum this will affect the overall representa-
tion. The table also shows, for the 5 clusters under
both models, the nearest instruments to the cluster
centroids, qualitatively demonstrating the greater
cluster coherence for the multi-modal model.

8 Conclusions

We have studied grounding semantic representa-
tions in raw auditory perceptual information, us-
ing a bag of audio words model to obtain au-
ditory representations, and combining them into
multi-modal representations using a variety of fu-
sion strategies. Following previous work in multi-
modal semantics, we evaluated on conceptual sim-
ilarity and relatedness datasets, and on the cross-
modal task of zero-shot learning. We presented
a short case study showing that multi-modal rep-
resentations perform much better than auditory or
linguistic representations on a musical instrument
clustering task. It may well be the case that the

Model Auditory Linguistic MM-MIDDLE

V-measure 0.39 0.47 0.54

Linguistic

1 baritone

2 lute, zither, xylophone, lyre, cymbals

3 piano, trombone, clarinet, cello, violin

4 castanets, tambourine, claves, maracas

5 trumpet, horn, bugle, cowbell, carillon

Multi-modal

1 drum, claves, bongo, bass, conga

2 xylophone, glockenspiel, tambourine, cymbals

3 cello, piano, clarinet, trombone, violin,

4 chimes, bell

5 mandolin, banjo, harmonica, guitar, sitar

Table 6: V-measure performance for clustering
musical instruments, together with instruments
closest to cluster centroid for linguistic and multi-
modal.

auditory modality is better suited for other evalua-
tions, but we have chosen to follow standard eval-
uations in multi-modal semantics to allow for a di-
rect comparison.

In future work, it would be interesting to inves-
tigate different sampling strategies for the early
fusion joint-learning approach and to investigate
more sophisticated mixing strategies for the mid-
dle and late fusion models, e.g. using the “audio
dispersion” of a word to determine how much au-
ditory input should be included in the multi-modal
representation (Kiela et al., 2014). Another in-
teresting possibility is to improve auditory repre-
sentations by training a neural network classifier
on the audio files and subsequently transferring
the hidden representations to tasks in semantics.
Lastly, now that the perceptual modalities of vi-
sion, audio and even olfaction (Kiela et al., 2015)
have been investigated in the context of distribu-
tional semantics, the logical next step for future
work is to explore different fusion strategies for
multi-modal models that combine various sources
of perceptual input into a single grounded model.
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Abstract

This paper provides the first fully au-
tomatic approach for classifying clauses
with respect to their aspectual properties
as habitual, episodic or static. We bring
together two strands of previous work,
which address only the related tasks of
the episodic-habitual and stative-dynamic
distinctions, respectively. Our method
combines different sources of information
found to be useful for these tasks. We are
the first to exhaustively classify all clauses
of a text, achieving up to 80% accuracy
(baseline 58%) for the three-way classifi-
cation task, and up to 85% accuracy for
related subtasks (baselines 50% and 60%),
outperforming previous work. In addi-
tion, we provide a new large corpus of
Wikipedia texts labeled according to our
linguistically motivated guidelines.

1 Introduction

In order to understand the function of a clause
within a discourse, we need to know the clause’s
aspectual properties. The distinction between dy-
namic and stative lexical aspect, as in exam-
ples (1a) and (1b) respectively, is fundamental
(Vendler, 1957). Its automatic prediction has
been addressed previously (Siegel and McKeown,
2000; Zarcone and Lenci, 2008; Friedrich and
Palmer, 2014).

(1) (a) Bill drank a coffee after lunch. (dynamic)
(b) Bill likes coffee. (stative)

In this work, we focus on habituality as another
fundamental aspectual property. While example
(1a) is an episodic sentence, i.e., a sentence ex-
pressing information about a particular event, the
same dynamic verb can be used to characterize the
default behavior of an individual or of a kind in a
certain type of situation (2).

(2) (a) Bill usually drinks coffee after lunch.
(habitual)

(b) Italians drink coffee after lunch.
(habitual)

The entailment properties of episodic and ha-
bitual (or characterizing) sentences differ substan-
tially. Also, they have different functions in dis-
course. The episodic event expressed by (1a) is
typically embedded in the temporal structure of a
narration. The habitual sentence (2a) can be used,
e.g., as an explanation (why Bill is still sitting at
the table), or in a contrastive context (today, he or-
dered a grappa instead). Generic sentences with
kind-referring subjects (2b) can also be habitual,
generalizing at the same time over typical mem-
bers of this kind and over situations in which they
typically carry out some action.

Habitual sentences do not move narrative time,
similar to stative clauses such as (1b). Carlson
(2005) considers habituals to be aspectually sta-
tive. Since there are clear differences between or-
dinary statives such as (1b) and habituals, we ap-
ply a three-way distinction for clausal aspect in
this work. We classify clauses as one of the three
categories habitual, episodic and static.1

Through its impact on entailment properties and
temporal discourse structure, the determination of
clausal aspect is relevant to various natural lan-
guage processing applications requiring text un-
derstanding, such as novelty detection (Soboroff
and Harman, 2005), knowledge extraction from
text (Van Durme, 2010) or question answering
(Llorens et al., 2015). Using aspectual informa-
tion has been shown to improve temporal relation
identification (Costa and Branco, 2012).

Some languages (e.g., Czech or Swahili) have
systematic morphological markers of habituality

1For clarity, we use the label static for the clausal aspect
of non-episodic and non-habitual sentences. We reserve sta-
tive, which is more common in the literature, for the lexical
aspectual class.

2471



(Dahl, 1985). In other languages, there are cues
for habituality, such as the simple present in En-
glish, and the use of certain adverbials (Dahl,
1995). The automatic recognition of habitual sen-
tences for the latter languages is non-trivial. The
work in this paper targets the English language;
we leave recognition of habituality in other lan-
guages to future work.

The only previous work on categorizing sen-
tences as episodic or habitual we know of is by
Mathew and Katz (2009). They do not attempt to
categorize arbitrary sentences in ‘free text’, how-
ever, but work with a corpus of selected sentences
and use gold standard parse information for their
experiments. In particular, they consider clauses
containing lexically dynamic verbs only.

In this work, we address the task of an exhaus-
tive classification of all clauses of a text into the
three aspectual classes habitual, episodic, and
static. Static sentences include lexically stative
clauses as well as negated or modalized clauses
containing a dynamic main verb. A computa-
tional model for identifying episodic and habitual
clauses clearly needs to address this third class
as well if it is to be applied in a realistic set-
ting. Linguistically, the determination of clausal
aspect depends on the recognition of the verb’s
lexical aspectual class (stative or dynamic), and
on the recognition of any aspectual markers or
transformations, such as use of the perfect tense,
negations or modals. Our work builds on re-
sults for the related subtasks (Mathew and Katz,
2009; Siegel and McKeown, 2000; Friedrich and
Palmer, 2014), using both context-based and verb-
type based information.

Our major contributions are: (i) We create a cor-
pus of 102 Wikipedia texts whose about 10,000
clauses are annotated as episodic, static or habitual
with substantial agreement. This corpus allows for
studying the range of linguistic phenomena related
to the clause types as defined above (compared to
previous work which uses only a small set of verbs
and sentences), and provides a basis for future re-
search. (ii) We provide the first fully automatic ap-
proach for this classification task, combining two
classification tasks (lexical aspectual class and ha-
bituality) that have been treated separately in pre-
vious work. For an exhaustive classification of
clauses of free text, these two classification tasks
need to be addressed jointly. We show two dif-
ferent feature sets (verb-type based features and

context-based features) to have different impact on
the two subtasks, and to be complementary for our
full three-way task.

We reach accuracies of nearly 85% for the two
subtasks of identifying static clauses and distin-
guishing episodic and habitual clauses (majority
class baselines are 60% and 50% respectively). A
joint model for the three-way classification task
reaches an accuracy of 80% (baseline 60%). In ad-
dition, we show that the verb-type based linguis-
tic indicator features generalize well across verb
types on our tasks: for verbs unseen in the training
data, accuracies drop only by 2-5%.

2 Theoretical background and
annotation guidelines

In this section, we give an overview of the seman-
tic theory related to habituals, at the same time
introducing our annotation guidelines for marking
clauses as habitual, episodic or static.

2.1 Habituality
Habitual sentences express regularities in terms of
generalizations over events and activities. In se-
mantic theory, habituals are formally represented
using a quantifier-like operator GEN (Krifka et al.,
1995):

(3) GEN[s](s is an after-dinner situation & Bill
is involved in s; Bill drinks a coffee in s)

In the semi-formal representation (3) of sen-
tence (2a) above, GEN binds a variable s ranging
over situations, the first argument restricts the sit-
uation type, and the second argument provides the
activity that is typically carried out by the protago-
nist in the respective situations. The GEN operator
is similar to the universal quantifier of predicate
logic. However, habitual sentences tolerate excep-
tions: (2a) is true even if Bill does not drink a cof-
fee after every lunch. Also note that habituals are
not restricted to what one would consider a matter
of habit; they can also have inanimate subjects, as
illustrated by (4).

(4) Glass breaks easily. (habitual)

2.2 Clausal and lexical aspectual class
Clausal aspect is dependent on the lexical aspec-
tual class (stative or dynamic), but the two lev-
els are essentially different. Dynamic verbs ex-
press events or activities (e.g., kill, fix, walk, for-
get), while stative verbs express states (e.g., be,
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like, know, own). The fundamental aspectual class
(Siegel and McKeown, 2000) of a verb in context
describes whether it is used in a stative or dynamic
sense before any aspectual markers or transforma-
tions (such as use of the past/present perfect or
modals) have been applied. It is a function of the
main verb and a select group of complements (it
may differ per verb which ones are important). For
example, the fundamental lexical aspectual class
of the verb make with the subject Mary and the
object cake in (5) is dynamic. English clauses in
past or present perfect such as (5) are static, as they
focus on the post-state of an event rather than the
event itself (Katz, 2003).

(5) Mary has made a cake. (static)

Habituals with verbs of dynamic aspectual class
are by far more frequent in our corpus,2 but there
are also instances of stative verbs used in a habit-
ual way, as for example (6).

(6) Sloths sometimes sit on top of branches.
(habitual, stative lexical aspectual class)

2.3 Modality and negation

Modalized (7) and negated sentences (8) tend to
be static: they do not express information about
a particular event, but refer to actual or possible
states of the world.

(7) Mary can swim. (static)

(8) Mary didn’t go swimming yesterday. (static)

The above definitions of habituality and stativ-
ity are generally agreed upon in literature. How-
ever, the interaction of these phenomena is by no
means trivial (Hacquard, 2009), and required mak-
ing some decisions during the design of our an-
notation guidelines. Here, we explain these deci-
sions, which are all motivated by a clause’s entail-
ment properties.

One difficult issue is how to interpret and mark
negated sentences such as (9a) whose positive ver-
sion (9b) is habitual.

(9) (a) John does not smoke. (habitual)
(b) John smokes. (habitual)

2The distribution of lexical aspectual class of verbs is
generally skewed towards dynamic (Friedrich and Palmer,
2014).

Sentence (9a) can be considered either static
because of the negation (It is not the case that
John smokes), or as habitual because it charac-
terizes John’s behavior (In any relevant situation,
John does not smoke). Both decisions are possible
(Garrett, 1998), we decide for the latter possibility.
This decision is supported by the observation that
(9a) is similar in its entailment properties to (10),
which due to the frequency adverbial never clearly
generalizes over relevant situations (though note
that this is not a linguistic test).

(10) John never smokes. (habitual)

Likewise, we mark modalized sentences as ha-
bitual if they have a strong implicature that an
event has actually happened regularly (Hacquard,
2009), as in (11). In contrast, (7) is static as it does
not imply that Mary actually swims regularly.

(11) I had to eat an apple every day. (habitual)

The above example shows that modality and ha-
bituality are interweaved and sometimes hard to
identify. Nevertheless, we reach substantial agree-
ment in the annotation of our corpus (see Sec-
tion 4.2).

Finally, some habituals have a dispositional
reading, indicating ability/capability (Menéndez-
Benito, 2012). Example (12) can be paraphrased
by (13), as it does not indicate that the car is ac-
tually driven this fast regularly, it only states its
maximum speed.

(12) This car goes 200 kph.

(13) This car can go 200 kph.

3 Related work

The task of predicting fundamental aspectual
class aims to determine whether the verb is used
in a stative or dynamic sense. This task predicts
the aspectual class of a verb in context before any
aspectual markers or transformations (such as use
of the perfect or modals) have been applied. Siegel
and McKeown (2000) propose the use of linguis-
tic indicators (explained in Section 5.2); Friedrich
and Palmer (2014) show the importance of us-
ing context-based features in addition. Zarcone
and Lenci (2008) classify occurrences of 28 Italian
verbs according to Vendlers classes state, process,
accomplishment and achievement.

Mathew and Katz (2009) address the problem
of ‘supervised categorization for habitual versus
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episodic sentences’ . The authors randomly select
1052 sentences for 57 verbs from the Penn Tree-
Bank (Marcus et al., 1993) and manually mark
them with regard to whether they are habitual or
episodic. They focus on verbs that are lexically
dynamic and discuss a variety of syntactic fea-
tures, which they extract from gold standard parse
trees. Their aim is to study the ability of syntactic
features alone to identify habitual sentences.

Xue and Zhang (2014) annotate verbs with the
four event types habitual event, state, on-going
event and episodic event with the aim of improv-
ing tense prediction for Chinese. Recent related
work (Williams, 2012; Williams and Katz, 2012)
extracts typical durations (in term of actual time
measures) for verb lemmas from Twitter. They
distinguish episodic and habitual uses of the verbs,
using the method of Mathew and Katz (2009).

4 Data

In this section, we describe the data sets used in
our experiments.3

4.1 Penn TreeBank (M&K) data set
Mathew and Katz (2009) randomly select sen-
tences for several verbs from the WSJ and Brown
corpus sections of the Penn Treebank. They re-
quire the verb to be lexically dynamic. Sentences
are marked as habitual or episodic, further de-
tails on the annotation guidelines are not specified.
Their data set contains 2743 annotated sentences
for 239 distinct verb types. Mathew and Katz re-
move verb types with highly skewed distributions
of labels, but their filtered data set is not available.
We follow their filtering approach, but we could
not replicate their filtering step. Our final data set
contains 1230 sentences for 54 distinct verb types.
Mathew and Katz (2009) state that their data set
comprises 1052 examples for 57 verb stems. We
aimed at producing a similar distribution of la-
bels: our data set contains 73.3% episodic cases,
M&K’s version has 73.1%.

4.2 Wikipedia corpus
We select 102 texts from a variety of domains from
Wikipedia, as we expect an encyclopedia to con-
tain many habitual sentences. We use the dis-
course parser SPADE (Soricut and Marcu, 2003)

3All data sets are freely available from
www.coli.uni-saarland.de/projects/sitent.
We thank Thomas A. Mathew and Graham Katz for allowing
us to publish their data set.

Label # %

static 6184 59.7
episodic 2114 20.4
habitual 2057 19.9
total 10355 -

Table 1: Wikipedia data, distribution of labels for
clausal aspect.

to automatically segment the first 70 sentences of
each article into clauses. A clause is approxi-
mately defined as a finite verb phrase. Each clause
is then labeled as static, episodic or habitual. De-
tails on our annotation scheme have been given in
Section 2. Annotators are allowed to skip non-
finite clauses (e.g., headlines only containing a
noun phrase). This happened in about 14% of all
pre-segmented clauses. The final Wikipedia data
consists of 10355 labeled clauses. Table 1 gives
statistics for the distribution of labels.

The data set was labeled by three paid annota-
tors, all students of computational linguistics. An-
notators were given a written manual and a short
training on documents not included in the corpus.
Agreement on the Wikipedia data is 0.61 in terms
of Fleiss’ κ, which indicates substantial agreement
(Landis and Koch, 1977). The gold standard that
we use in our experiments is constructed via ma-
jority voting. The gold standard contains the cases
where at least two annotators agreed on the label.
We found only 86 cases where all annotators dis-
agree, and manual inspection shows that most of
these cases are related to disagreements on the lex-
ical aspectual class that coincide with an attention
slip by one of the annotators.

5 Method

In this section, we describe our computational
models for determining clausal aspect.

5.1 CONTEXT-BASED features

Table 2 shows the syntactic-semantic features,
which we call CONTEXT-BASED as they are ex-
tracted from the context of each verb occurrence
that we classify. This feature set comprises the
features proposed by Mathew and Katz (2009)
and the ones proposed by Friedrich and Palmer
(2014). In addition, we use the features modal
and negated. We extract these features from syn-
tactic dependency parses created using the Stan-
ford parser (Klein and Manning, 2002). Tense
and voice are extracted following the rules pro-
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Feature Values
verb tense*† past, present, infinitive

pos† VB, VBG, VBN, ...
voice† active, passive

aspect progressive*† true, false
perfect*† true, false

subject bare plural* true, false
definite* true, false
indefinite* true, false

object absent* true, false
bare plural* true, false
definite* true, false
indefinite* true, false

grammatical dependents† WordNet lexname/POS
sentence modal would, can,...

negated true, false
conditionals* presence of clause

starting with if/when/
whenever

temporal specific, quantificational,
modifiers* including used to and would

(where no if)
prepositions* at / in / on (3 features,

true/false)

Table 2: CONTEXT-BASED features. Used by:
*Mathew and Katz (2009), †Friedrich and Palmer
(2014).

vided by Loaiciga et al. (2014). The values of the
grammatical dependents’ features are the Word-
Net (Miller, 1995) lexical filename of the depen-
dent’s lemma, or, if not available, the dependent’s
part-of-speech tag. Quantificational adverbs are
temporal modifiers such as always, occasionally
or weekly.4 Specific temporal adverbs are, ac-
cording to a heuristic proposed by Mathew (2009),
phrase children marked with the part-of-speech
tag TMP and whose child is a prepositional phrase.
Noun phrases with one of the determiners the, this,
that, these, those, each, every, all, as well as pos-
sessives, pronouns, proper names and quantified
phrases are definite. NPs with determiners a, an,
many, most, some, and cases of modifying adjec-
tives without determiners (e.g., few) or cardinal
numbers (part-of-speech tag CD) are indefinite.
Mathew (2009) describes their features in detail.

5.2 TYPE-BASED features
This feature set consists of the verb-type based
linguistic indicator features of Siegel and McKe-
own (2000). The computation of these features
is based on a large parsed, but otherwise un-
annotated background corpus. For each verb type
(i.e., lemma), these features count how often the

4The complete list of quantificational adverbs used is
given by Mathew (2009), page 36.

Feature Example Feature Example
frequency - continuous continually
present says adverb endlessly
past said evaluation better
future will say adverb horribly
perfect had won manner furiously
progressive is winning adverb patiently
negated not/never temporal again
particle up/in/... adverb finally
no subject - in-PP in an hour

for-PP for an hour

Table 3: TYPE-BASED feature set (linguistic indi-
cators) and examples for lexical items associated
with each indicator, following Siegel and McKe-
own (2000).

verb occurs with each of the linguistic indicators
as listed in Table 3. Except for the frequency fea-
ture, these values are normalized by the number
of occurrences of the verb type. For example, if
the verb type win occurs 1000 times in the parsed
background corpus, of which 100 times with per-
fect aspect, the value of the linguistic indicator
feature perfect is 0.1 for the verb type win.
For any instance whose verb’s lemma is win, 0.1
will be the value of the feature perfect, in other
words, all instances of the same verb type receive
the same TYPE-BASED feature values. Linguis-
tic indicator features have recently been applied
successfully on the related task of classifying the
lexical aspectual class of verbs by Friedrich and
Palmer (2014), who extract the linguistic indica-
tors from an automatically parsed version of the
AFE and XIE parts of Gigaword. We use their
database of linguistic indicator values.5

5.3 Algorithm
In order to investigate in which circumstances
the task of predicting a clause’s label (habitual,
episodic or static) can be addressed jointly, or
whether a pipelined approach is better, we ap-
ply the following methods. Our JOINT model
learns the decision boundaries for the three classes
jointly, i.e., as a three-way classification task. In
addition, we present a CASCADED model, which
uses two models learned for the two different sub-
tasks: (a) identifying static clauses and (b) distin-
guishing episodic and habitual clauses.

First, we train a model to distinguish the static
class from the other two. In this learning step, we
simply map all the clauses labeled as episodic and

5www.coli.uni-saarland.de/projects/
sitent
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habitual to the class non-static and learn the deci-
sion boundary between the two classes static and
non-static. Second, we train a model to distin-
guish the episodic from the habitual class. This
model is trained on the subset of examples labeled
with either of these two classes.

In the CASCADED model, first, the static vs.
non-static model is applied. The CASCADED

model labels all instances automatically labeled as
static in this first step, and then applies the second
model (episodic vs. habitual) on all remaining
instances.

We train Random Forest classifiers (Breiman,
2001) using Weka (Hall et al., 2009) for each step
and also for the JOINT model. Besides provid-
ing a robust performance, Random Forest classi-
fiers can easily deal with both categorical and nu-
meric features. This is relevant as our CONTEXT-
BASED features are categorical while the TYPE-
BASED features are numeric. In our experiments,
we will compare the impact of the different feature
sets on each subtask and on the JOINT model.

5.4 Baseline: Mathew and Katz (2009)

As a baseline, we also report results for the subset
of our CONTEXT-BASED features used by Mathew
and Katz (2009) and call this subset MK. Mathew
and Katz (2009) find a J48 decision tree and a
Naive Bayes classifier to work best. We replicate
their results for the decision tree in Section 6.2.

6 Experiments and discussion

This section describes our experiments. First,
we reproduce the experiments of Mathew and
Katz (2009), who use manually created syntactic
parses, in a purely automatic setting.

The data set and experiments of Mathew and
Katz (2009) focus on the episodic-habitual distinc-
tion using a set of sentences selected for a small set
of verbs, and their feature design focuses on syn-
tactic properties of the clauses found in this an-
notated data set. In the further experiments, we
turn to the Wikipedia data, which contains annota-
tions for full texts. We expect the Wikipedia data
to cover the range of habitual and episodic expres-
sions more fully, and in addition, allows for study-
ing the task of separating static sentences from the
other two classes. As we will show, this latter
task profits from including features relevant to the
stative-dynamic distinction on the lexical level.

We first present experimental results for the two

subtasks (described in Section 5.3). Our CAS-
CADED model first identifies static clauses, and
then classifies the remaining clauses as episodic or
habitual. For reasons of readability, we first report
on our experiments for the episodic-habitual dis-
tinction using both the M&K and Wikipedia data
sets. Using the Wikipedia data, we then report on
the results for the static vs. non-static distinction.
Finally, we turn to the full task of the three-ways
distinction.

6.1 Experimental setting
We report results for 10-fold cross validation (CV)
with two different settings: In the RANDOM CV
setting, we randomly distribute the instances over
the folds, putting all instances of one document
into the same fold. In the UNSEEN VERBS CV
setting, we simulate the case of not having labeled
training data for a particular verb type by putting
all instances of one verb type into the same fold.

We compute the information retrieval statistics
of precision (P), recall (R) and F1-measure per
class, where F1 is the harmonic mean of P and
R, F1 = 2∗P∗R

P+R . Macro-average P is computed
as the (unweighted) average of the P scores of the
classes, and macro-average R is computed like-
wise. Macro-average F1 is the harmonic mean
of macro-average P and macro-average R. We use
McNemar’s test with p < 0.01 to compute statis-
tical signficance of differences in accuracies. In
our tables, we indicate that two results differ sig-
nificantly by marking them with the same symbols
(we only show this when scores are close).

6.2 M&K data: episodic vs. habitual
We use Weka’s 10-fold stratified cross validation
and a J48 decision tree in the experiments reported
in this section in order to replicate their experi-
mental setting. Results are shown in Table 4. For
the sake of completeness, we also show the results
as presented in the original paper. F1-scores are
computed from P and R as reported in the orig-
inal paper. Note that their experiments are per-
formed on a different subset of the data and so
these numbers are not directly comparable to ours,
but our subset has a very similar class distribution
(see Section 4.1). Our accuracies based on auto-
matic parses rather than gold standard parses are
about 3% lower when using the original feature
set (MK). We conclude that our results are in the
expected range. Also, we do not find any signifi-
cant improvements on this data set when using any
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other feature sets or combinations thereof (the ta-
ble shows the results for our CONTEXT-based fea-
ture set); the M&K feature set designed for this
corpus captures its variation well.

We have used a J48 decision tree in this section
for comparability with previous work. In all fol-
lowing sections, we present results using Random
Forest classifiers as described in Section 5.3.

F1-score Acc.System epis. habit. macro

majority class* 84.5 0.0 42.2 73.1
MK* 91.1 70.5 80.8 86.1
MK 89.6 63.5 76.5 83.8
CONTEXT 90.0 64.7 77.3 84.4

Table 4: Results for episodic vs. habitual, J48
decision tree, data from Mathew and Katz (2009).
*Numbers from original paper.

6.3 Wikipedia: episodic vs. habitual
We study the classification task of distinguishing
episodic and habitual sentences using the subset
of the Wikipedia data having one of these two la-
bels (4171 instances). This task parallels the ex-
periment of Mathew and Katz (2009) described
above. We conduct two experiments, once using
the RANDOM CV setting and once using the UN-
SEEN VERBS setting. Table 5 shows the results.
The distribution of instances is nearly 50:50 in the
gold standard (see Section 4, Table 1), and the ma-
jority classes in the respective training folds differ
(this is the reason for the different baseline scores).
For reasons of space we do not show the other
scores here; macro-average F1-scores have (al-
most) the same values as accuracy, the F1-scores
for episodic and habitual are similar to each other
in each case.

Our findings are as follows: TYPE-BASED

features outperform the majority class baseline,

Features RANDOM CV UNSEEN VERBS

majority class 42.1 46.3
lemma 65.4 46.3
TYPE 68.1 53.9
MK 82.3 ‡81.4
CONTEXT *†82.8 ‡83.8
+ lemma *84.3
CONTEXT + TYPE †85.1 83.1
+ lemma 84.0

Table 5: Wikipedia: Accuracy of episodic vs ha-
bitual, 4171 instances, 10-fold cross validation,
*†‡differences statistically significant.

RANDOM CV UNSEEN VERBS

Features F1 Acc. F1 Acc.
majority class 37.4 59.7 37.4 59.7‡
MK 67.5 *69.5 59.2 62.7‡
CONTEXT 70.3 *71.7 62.8 64.9‡
+ lemma 81.9 †82.8
TYPE 78.8 79.3 72.2 73.2‡
CONTEXT + TYPE 83.6 †84.1 78.4 79.2‡
+ lemma 83.8 84.4

Table 6: Wikipedia: static vs non-static. All
10355 instances, 10-fold cross validation.*†‡ dif-
ferences statistically significant.

which means that some verbs have a preference
for being used as either episodic or habitual. The
CONTEXT-BASED features work remarkably well.
If training data of the same verb type is available,
adding the TYPE-BASED features or the lemma to
the CONTEXT-BASED features results in improve-
ments; this is not the case in the UNSEEN VERBS

setting. The latter setting shows that the additional
contextual features (compared to the MK subset)
are important: our corpus indeed covers a broader
range of phenomena than the M&K data set.

6.4 Wikipedia: static vs. non-static

We evaluate the task of classifying static ver-
sus non-static clauses using all 10355 instances
of the Wikipedia data set. Any instance la-
beled episodic or habitual receives the label non-
static both in training and testing. Results of
this task are shown in Table 6. For this subtask,
the CONTEXT-BASED features are less informa-
tive than the TYPE-BASED features. Again, us-
ing lemma information approximates the use of
type-based information, but this is not an option
in the UNSEEN VERBS setting. A combination of
the CONTEXT-BASED and TYPE-BASED features
achieves the best results. Friedrich and Palmer
(2014) find that TYPE-BASED features generalize
well across verb types when predicting the aspec-
tual class of verbs in context, the same is true
here. They achieve small improvements by adding
context-based features. Predicting the lexical as-
pectual class of the clause’s main verb is only part
of our classification task, the static class includes
not only lexically stative clauses but also clauses
with lexically dynamic verbs that are stativized,
e.g., modals, negation or perfect tense. Hence,
as expected, in our task, adding the CONTEXT-
BASED features results in a considerable perfor-
mance improvement (5-7% absolute in accuracy).
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RANDOM CROSS VALIDATION UNSEEN VERB TYPES EXPERIMENT

F1-score Acc. F1-score Acc.Features stat. epis. habit. macro stat. epis. habit. macro
majority class baseline 74.8 0 0 24.9 59.7 74.8 0.0 0.0 24.9 ‡59.7
JOINT: MK 76.6 65.4 26.1 57.5 *67.0 76.3 41.7 0.8 49.0 ‡63.8
JOINT: CONTEXT 77.5 65.8 36.4 60.5 *68.4 74.7 57.1 12.0 51.7 ?63.9
+ lemma 85.5 75.0 51.6 71.8 †78.0
JOINT: TYPE 81.9 52.7 49.7 61.5 69.9 74.9 4.2 2.8 40.7 ?60.0
JOINT: CONTEXT + TYPE 86.1 75.8 58.8 73.8 †79.0 81.2 69.5 31.3 63.6 **72.1
+ lemma 86.8 75.0 59.9 74.2 79.6

CASCADED 86.9 76.1 62.2 75.1 79.9 82.6 72.0 50.2 68.4 **74.3

Table 7: Wikipedia: static vs. episodic vs. habitual. 10355 instances, 10-fold cross validation. The
CASCADED model uses the best models from Table 6 and Table 5. *† ‡ ?** differences statistically
significant.

It is worth noting that even for verbs not seen in
the training data, high accuracies and F1-scores of
almost 80% can be reached.

6.5 Wikipedia: combined task

In this section, we describe our experiments for
the three-way classification task of static, episodic
and habitual clauses, as in a realistic classification
setting, a clause may belong to either of these three
classes. We investigate whether a pipelined CAS-
CADED approach is better, or whether the JOINT

model profits from learning the decision bound-
aries between all three classes jointly. The results
for this task are presented in Table 7. Both the
CONTEXT-BASED and the TYPE-BASED features
when used alone improve over the majority class
baseline by about 10% in accuracy in the RAN-
DOM CV setting, and only by about 4% in the UN-
SEEN VERBS setting. In the latter setting, all fea-
ture sets when used alone are ineffective for identi-
fying habituals. This indicates that the CONTEXT-
BASED features only ‘pick up’ on some type-based
information in the RANDOM CV case. The best
models for this JOINT classification task use both
the CONTEXT-BASED and the TYPE-BASED fea-
ture sets: F1-scores and accuracy increase remark-
ably. Again, in the RANDOM CV setting, using
the lemma results in a large performance gain,
though using the TYPE-BASED features is benefi-
cial, and, in the UNSEEN VERBS setting, essential.

We apply the CASCADED model as described in
Section 5.3, training and testing the models for the
subtasks in each fold. In the RANDOM CV set-
ting, the accuracy of the CASCADED approach is
not significantly better than the one of the JOINT

approach, though F1-scores for the less frequent
episodic and habitual classes both increase. In

the UNSEEN VERBS setting, however, the differ-
ence is remarkable: macro-average F1-score in-
creases by almost 5% (absolute) and accuracy in-
creases by 2.2%. Most notably, the F1-score for
the habitual class increases from 0.31 to 0.50 (due
to an increase in recall). To conclude, the CAS-
CADED approach is favorable as it works more ro-
bustly both for verb types seen or unseen in the
training data.

6.6 Feature ablation

In the above sections, we have compared the two
major feature groups of CONTEXT-BASED and
TYPE-BASED features. In addition, we ablate each
single feature from the best results for each exper-
iment. For all classification tasks, we found fea-
tures reflecting tense and grammatical aspect to
be most important, both for the CONTEXT-BASED

and TYPE-BASED features. In general, we observe
that no single feature has a big impact on the re-
sults, accuracy drops only by at most 1-2%. This
shows that our feature set is quite robust and some
of the features (e.g., part-of-speech tag of the verb
and tense) reflect partially redundant information.
However, using only the best features results in a
significant performance drop by several percent-
age points in the various settings, which means
that though single features may not have a large
impact, overall, the models for this classification
task profit from including many diverse features.

For the episodic-habitual distinction in the
UNSEEN VERBS setting, the definiteness of the
object was an important CONTEXT-BASED fea-
ture. In the static vs. non-static task, the subject
also plays an important role, as well as the TYPE-
BASED feature for continuous adverbs. In the UN-
SEEN VERBS setting, many TYPE-BASED features
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are important, including those indicating how of-
ten the verb type occurs with adverbs of manner,
negation and in-PPs in the background corpus.
For the combined three-way task, we found the
main verb’s lemma and the direct object to have
most impact. Of the TYPE-BASED features, the
for-PP, present and temporal adverbial were most
important. In the UNSEEN VERBS setting, many
linguistic indicator features (among others past,
progressive, negation) play a greater role, as well
as information about the object, subject and tense.

7 Conclusion

In this paper, we have presented an approach for
classifying the aspect of a clause as habitual,
episodic or static. Clearly, when exhaustively
classifying all clauses of a text, the static class
cannot be ignored; we have shown that we can sep-
arate these instances from episodic and habitual
instances, most of which are lexically dynamic,
with high accuracy. Our model for distinguishing
episodic and habitual sentences integrates a wide
range of contextual information and outperforms
previous work. Previous work has only addressed
the classification of lexical aspectual class and the
automatic distinction of episodic and habitual sen-
tences. Our work is the first bringing together two
strands of work relevant to classifying clausal as-
pect, and we have shown that sources of informa-
tion relevant to these two underlying aspectual dis-
tinctions are relevant for our three-way classifica-
tion task.

We have shown that for distinguishing static
sentences from the other two, TYPE-BASED

and CONTEXT-BASED information is needed;
for distinguishing episodic and habitual clauses,
CONTEXT-BASED features are most important.
Our experimental results show that the three-way
classification task is most effectively approached
by combining both contextual and verb-type based
information. Especially for verbs unseen in the
training data, we found the CASCADED approach
to work better. It is hard for the JOINT approach to
identify habitual clauses; while in the CASCADED

approach, performance for both steps is high and
adds up.

We found the overall performance of this task to
be about 80% accuracy, and 75% macro-average
F1-score. These scores suggest that this method
may be usable as a preprocessing step for further
temporal processing.

8 Future work

Our models do not yet take discourse information
into account. Consider example (14) by Mathew
and Katz (2009): The second sentence is habitual,
but the only indicator for this is sentence-external.

(14) John rarely ate fruit. He just ate oranges.
(habitual)

In some preliminary experiments, we tried to
leverage the discourse context of a clause for its
classification by means of incorporating the gold
standard label of the previous clause as a feature.
This did not result in significant performance im-
provements. However, further experiments trying
to incorporate discourse information are due, and,
due to our new corpus of fully annotated texts,
now possible.

Another related research direction is the clas-
sification of the different types of static clauses,
e.g., the different senses of modality (Ruppenhofer
and Rehbein, 2012). As mentioned before, a finer
classification of the temporal structure of clauses
is needed, among others identifying the lexical as-
pectual class as well as viewpoint aspect as perfec-
tive vs. imperfective (Smith, 1997).

Finally, the next steps in this line of research are
to integrate the aspectual information attributed to
clauses by our model into models of temporal dis-
course structure, which in turn are useful for infor-
mation extraction and text understanding tasks in
general. Costa and Branco (2012) are the first to
show that aspectual information is relevant here;
we hope to show in the future that temporal pro-
cessing profits from integrating more fine-grained
aspectual information.
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Abstract

We present a new approach for unsuper-
vised semantic role labeling that lever-
ages distributed representations. We in-
duce embeddings to represent a predi-
cate, its arguments and their complex in-
terdependence. Argument embeddings are
learned from surrounding contexts involv-
ing the predicate and neighboring argu-
ments, while predicate embeddings are
learned from argument contexts. The in-
duced representations are clustered into
roles using a linear programming formu-
lation of hierarchical clustering, where
we can model task-specific knowledge.
Experiments show improved performance
over previous unsupervised semantic role
labeling approaches and other distributed
word representation models.

1 Introduction

In recent years, an increasing body of work has
been devoted to learning distributed word repre-
sentations and their successful usage in numerous
tasks and real-world applications. Examples in-
clude language modeling (Collobert et al., 2011;
Mikolov et al., 2013c; Mnih and Kavukcuoglu,
2013), paraphrase detection (Socher et al., 2011a),
sentiment analysis (Socher et al., 2011b; Kalch-
brenner et al., 2014), and most notably machine
translation (Kalchbrenner and Blunsom, 2013;
Cho et al., 2014; Auli et al., 2013). Distributed
word representations (also known as word embed-
dings) are trained by predicting the contexts in
which the words or phrases occur.

In this paper, we present a new approach for
unsupervised semantic role labeling that leverages
distributed representations. The goal of semantic
role labeling is to discover the relations that hold
between a predicate and its arguments in a given

input sentence (e.g., “who” did “what” to “whom”,
“when”, “where”, and “how”).

1. [The burglar]A0 [broke]V [the window]A1.

2. [The window]A1 [broke]V.

In sentence (1), A0 represents the Agent of the
breaking event, A1 represents the Patient (i.e., the
physical object affected by the breaking event)
and V determines the boundaries of the predicate.
The semantic roles in the example are labeled
in the style of PropBank (Palmer et al., 2005),
a broad-coverage human-annotated corpus of se-
mantic roles and their syntactic realizations. In the
unsupervised case, the model must induce such la-
bels from data without access to a predefined set of
semantic roles.

Role induction is commonly treated as a cluster-
ing problem (Titov and Klementiev, 2012; Lang
and Lapata, 2014). The input to the model are
instances of arguments (e.g., window, the burglar
in sentence (1)) and the output is a grouping of
these instances into clusters such that each cluster
contains arguments corresponding to a specific se-
mantic role and each role corresponds to exactly
one cluster. In other words, the syntactic repre-
sentations of verbal predicates, and argument po-
sitions are observable, whereas the associated se-
mantic roles are latent and need to be inferred.

The task is challenging due to its unsupervised
nature — it is difficult to define a learning objec-
tive function whose optimization will yield an ac-
curate model — but also because each predicate
can allow several alternate mappings or linkings
between its semantic roles and their syntactic real-
ization. Despite occupying different syntactic po-
sitions (subject in sentence (1) and object in sen-
tence (2)), the noun phrase the window expresses
the same role in both sentences. To learn such
linkings, previous work has made use of syntac-
tic and semantic features (e.g., whether two argu-
ments are in the same position in the parse tree,
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whether they have the same POS-tags, whether
they are lexically similar). These features are typ-
ically defined on argument instances, without tak-
ing the predicate into account, and do not interact
but instead are sequentially applied.

In this work we propose to learn these features
and their complex interactions (e.g., selectional
restrictions) automatically from data. Specifi-
cally, we induce embeddings to represent a pred-
icate and its arguments. Argument embeddings
are learned from surrounding contexts involving
the predicate and neighboring arguments. Anal-
ogously, predicate embeddings are learned from
contexts representing their arguments. Our model
learns a rich feature space which can serve as input
to any clustering algorithm. We use a linear pro-
gramming formulation of hierarchical clustering
which is advantageous for two reasons. Firstly, ex-
pressing clustering as a global optimization prob-
lem with an explicit objective function can po-
tentially yield higher quality output compared to
greedy algorithms (such as agglomerative cluster-
ing). Secondly, through the use of constraints, we
can model task-specific knowledge (e.g., seman-
tic roles are unique within a frame). Experimen-
tal results show improved performance over both
previous unsupervised semantic role labeling ap-
proaches and other distributed word representation
models.

2 Related Work

Our model is inspired by recent work in learning
distributed representations of words (Bengio et al.,
2006; Mnih and Hinton, 2008; Collobert et al.,
2011; Turian et al., 2010; Mikolov et al., 2013a).
In this framework, a neural network is used to pre-
dict a word taking into account its context. Words
are represented by vectors which are concatenated
or averaged in order to form a representation of the
context. We induce vector representations to rep-
resent each predicate and its argument. As a learn-
ing objective, vectors are required to contribute
to a prediction task about the target argument in
the sentence, given the predicate and a small win-
dow of surrounding arguments. Similarly, predi-
cate vectors are learned from the contexts of pre-
ceding arguments, and are required to contribute
to the prediction of upcoming arguments. Our
vectors encode the semantics of arguments, predi-
cates, and their interdependence.

Approaches to unsupervised semantic role la-

beling follow two main modeling paradigms. Un-
der the the first variant, semantic roles are mod-
eled as latent variables in a (directed) graphical
model that relates a verb, its semantic roles, and
their possible syntactic realizations (Grenager and
Manning, 2006; Lang and Lapata, 2010; Garg
and Henderson, 2012). Role induction here corre-
sponds to inferring the state of the latent variables
representing the semantic roles of arguments. The
second approach is similarity-driven and based
on clustering. For instance, Lang and Lapata
(2014) induce semantic roles via graph partition-
ing: each vertex in a graph corresponds to an ar-
gument instance of a predicate and edges repre-
sent features expressing syntactic or semantic sim-
ilarity. The graph partitioning problem is solved
using task-specific adaptations of label propaga-
tion and agglomerative clustering. Titov and Kle-
mentiev (2012) propose a Bayesian clustering al-
gorithm based on the Chinese Restaurant Pro-
cess. Their model encourages similar verbs to
have similar linking preferences using a distance-
dependent Chinese Restaurant Process prior.

More recently, Titov and Khoddam (2015) pro-
pose a reconstruction-error minimization framer-
work for unsupervised semantic role induction.
Their model consists of two componenets: the
encoder (implemented as a log-linear model)
predicts roles given syntactic and lexical fea-
tures, whereas the reconstruction component (im-
plemented as a probabilistic tensor factorization
model) recovers argument fillers based on the role
predictions, the predicate and other arguments.
The two components are estimated jointly to min-
imize errors in argument reconstruction.

Our work follows the similarity-driven model-
ing paradigm. Rather than engineering relevant
features, we learn them using a neural network and
a task-appropriate training objective. We are thus
able to model complex interactions between argu-
ments and their predicates without making simpli-
fying assumptions (e.g., that arguments are condi-
tionally independent of each other given the pred-
icate). Our embeddings are largely independent of
the clustering algorithm used to induce the seman-
tic roles. We advocate the use of linear program-
ming, which supports the incorporation of linguis-
tic and structural constraints during cluster forma-
tion. ILP techniques have been previously applied
to several supervised NLP tasks, including seman-
tic role labeling (Punyakanok et al., 2008), how-
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START Yesterday Kristina hit Scott with a baseball END

a1 a2 a3 a4 a5 a6predicate Identification
argt−1 argt argt+1 Window 1

argt−1 argt argt+1 Window 2
argt−1 argt argt+1 Window 3

argt−1 argt argt+1 Window 4

Figure 1: Symmetric context window from the list of arguments

ever their application to unsupervised role induc-
tion is novel to our knowledge.

3 Model

Unsupervised role induction is commonly mod-
eled after supervised semantic role labeling
(Màrquez et al., 2008) and follows a two-stage ap-
proach. Given a sentence and a designated verb,
the goal is to identify the arguments of the verbal
predicate (argument identification) and label them
with semantic roles (role induction). The model
is first given a syntactically analyzed sentence
(e.g., in the form of a dependency parse) with the
aim of determining all constitutents that fill a se-
mantic role. Argument identification is performed
heuristically using a small number of rules which
take into account syntactic relations encountered
when traversing the dependency tree from predi-
cate to argument (Lang and Lapata, 2014; Titov
and Klementiev, 2012). An alternative which we
follow here is to use a supervised classifier trained
on a small amount of data using non-lexicalized
features.

As mentioned earlier, we treat role induction
as a type-level clustering problem: argument in-
stances are assigned to clusters such that these rep-
resent semantic roles. We induce a separate set of
clusters for each verb, and each cluster thus repre-
sents a verb-specific role. Clustering algorithms
commonly take a matrix of pairwise similarity
scores between instances as input and produce a
set of output clusters, often satisfying some op-
timality criterion. In our case, instances are type-
level arguments represented by embeddings whose
similarity is quantified using a distance measure
such as cosine (see Section 3.1) and clusters are
formed using a linear programming formulation of
hierarchical clustering (see Section 3.2).

3.1 Predicate and Argument Embeddings

Our approach for learning predicate and argu-
ment vectors is inspired by recent methods aimed
at learning high-quality vector representations of
words from large amounts of unstructured text
data (Mikolov et al., 2013a). In this framework,
vectors of the surrounding words within a fixed-
sized window (the context) are summed into a sin-
gle vector vc, which is useful in predicting the
output vector v0 representing the current or target
word. Longer-range context information can also
be captured (Le and Mikolov, 2014), specifically
words within the current paragraph but outside of
the target word context window.

In contrast to previous word-based approaches,
our model induces vector representations for each
predicate and its semantic arguments. As a learn-
ing objective, vectors are required to contribute
to a prediction task about the target argument in
the sentence, given the predicate and a small win-
dow of surrounding arguments. So despite the fact
that the argument vectors and weightings are ini-
tialized randomly, they can eventually capture se-
mantics as an indirect result of the prediction task.
Similarly, predicate vectors are learned from the
many contexts sampled from sentences involving
that predicate, and are required to contribute to the
prediction task of the next argument. One way to
consider the role of the predicate token is as an-
other argument. It acts as a memory (similar to
the paragraph memory of Le and Mikolov, 2014)
that remembers what is missing from the current
context, and so captures something of the core na-
ture of the predicate.

Figure 1 illustrates our approach for building
the context, for the example sentence Yesterday,
Kristina hit Scott with a baseball. As a prepro-
cessing step, (verbal) predicates and arguments are
identified based on a dependency parse, to give a
full list of arguments for the sentence. Boxes show
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the span of each argument. In our model, contexts
are symmetric and of fixed length (c = 1 in the
Figure), sampled from a sliding window over the
argument list. To enable the first and last argu-
ments within the sentence to be predicted from the
context, we augment the argument list with START
and END arguments. Meanwhile, the predicate
is associated with all contexts generated from the
sliding window approach.

More formally, given a training set compris-
ing a predicate b and a sequence of its semantic
arguments a1, a2, a3, . . . , aT , the objective of the
model is to maximize the average log probability:

1
T

T

∑
t=1

log p(at |b, at+ j,−c≤ j ≤ c, j 6= 0) (1)

where c is the size of the training context around
the center argument at . We define probability us-
ing the softmax function:

p(at |b, acontext) ∝ exp
(
vT

c v0
)
, (2)

where v0 is the target argument vector and vc the
context vector formed from predicate and con-
text arguments vectors. Vectors are trained using
stochastic gradient descent where the gradient is
obtained via back-propagation. After the training
converges, predicates and arguments with similar
meaning are mapped to a similar position in the
vector space.

Every predicate is mapped to a unique vec-
tor vpred, with the vocabulary of vectors shared
across the data set. For the arguments, we generate
feature vectors f−1 and f+1 from syntactic infor-
mation (dependency relations and POS-tags), con-
catenated with a distributional vector to represent
the head word token in each argument. The repre-
sentation vectors v−1 and v+1 are calculated from
the feature vectors using v j = Wcontext f j, where
the matrix Wcontext is also updated as part of the
learning process. Wcontext is common for all ar-
guments. In a similar manner, the representation
vector v0 for the target argument is calculated us-
ing v0 = Wargument f0. The predicate and argument
vectors are concatenated to predict the middle ar-
gument in a context. Other ways of dividing the
argument window between context and predicted
argument, and of combining context vectors, are
possible. As the full list of arguments in a sentence
is known, we use a symmetric window. The ad-
vantage of concatenating the vectors is that infor-
mation on the sequence of arguments is preserved.
An illustration of our model is given in Figure 2.

argt−1 argt argt+1 predicate

f−1 f+1

v−1 v+1 vpred

×Wcontext×Wcontext

vc

v0

f0

×Wargument

Context

features

Context

representation

Concatentation

Target

representation

Target

features

Figure 2: Distributional model for learning repre-
sentations of predicates and semantic arguments.

Through a context window of arguments rather
than neighboring tokens, our model captures a
semantic representation of each verbal predicate.
Furthermore, the arguments themselves are posi-
tioned in vector space as a result of the selectional
preferences of the predicates. In the next section,
we use the induced semantic space to cluster argu-
ments into semantic roles.

3.2 Argument Clustering

Hierarchical clustering is a method of clustering
which seeks to build a hierarchy of clusters, often
presented in a dendrogram. In such a represen-
tation, all possible pairs of clusters are merged at
some level. It is typically implemented as a greedy
heuristic algorithm with no explicit objective func-
tion. Instead, it requires a measure of dissimilar-
ity between sets of observations, typically through
a measure of distance between pairs of observa-
tions. An example is the agglomerative clustering
technique used in Lang and Lapata (2014). Their
algorithm starts from seed clusters based on shared
syntactic information, and then repeatedly merges
pairs of clusters “bottom up” to form a hierarchy.

It is possible to formalize hierarchical clustering
as an integer linear programming (ILP) problem
with the dendrogram properties enforced as linear
constraints (Gilpin et al., 2013). Although exact
solvers exists for ILP, their performance is highly
dependent on the number of variables involved,
and we found it necessary to develop a linear pro-
gramming (LP) relaxation to provide approximate
solutions faster. Dynamic programming is an al-
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ternative approximation technique that could be
explored; it has recently been used successfully
in the context of supervised semantic role labeling
(Täckström et al., 2015).

But first, we consider the exact formalization
of agglomerative clustering as an ILP. In order to
generate a legal dendrogram, it is necessary for the
model to enforce the following partition proper-
ties:

Reflexivity A seed cluster is always in the same
merged cluster as itself.

Symmetry If seed cluster a is merged into the
same cluster as seed cluster b, then b is also
in the same cluster as a.

Transitivity If a and b are merged at a certain
level, and b and c are also merged at the same
level, then a is in the same cluster as c at that
level.

To model hierarchical clustering as an ILP prob-
lem, we consider all pairs of clusters a and b,
and introduce variables Mab to represent the merge
level between clusters a and b. Reflexivity is en-
forced by the constraint:

Maa = 0, (3)

Meanwhile the symmetry requirement is captured
by the constraint:

Mab = Mba. (4)

The transitivity requirement and the objective to
find the hierarchy that minimizes pair-wise dis-
tances are modeled in the objective of the ILP
using auxiliary variables Oabc that represent the
merge order of pairs (a,b) and (a,c), and coeffi-
cients wabc that are set equal to the difference be-
tween distance metrics D between those pairs:

argmax
M ,O

∑
a,b,c∈Instances

wabcOabc

subject to:

Mab is a merge function

Oabc =

{
1 if Mab <Mac

0 otherwise

wabc = D(a,c)−D(a,b).

Although exact solutions can be found using ILP
solvers, for the problems we consider there are

typically over 100 seed clusters. This generates
in the order of 106 transitivity constraints, and it is
this in particular that results in combinatorial com-
plexity from off-the-shelf ILP solvers.

An LP relaxation provides approximate solu-
tions faster. A maximum merge level L is first de-
fined as a parameter, although as this is not an inte-
ger problem and fractional levels are possible, this
does not represent the number of levels. Auxiliary
variables Zab≥ac capture the merge hierarchy, and
Tabc rewards transitivity by a factor α:

arg max
M ,O,Z

∑
a,b,c∈Instances

wabcOabc +αTabc

subject to:

0≤ T ≤ 1

0≤ O≤ 1

0≤ Z ≤ 1

0≤M ≤ L

−L≤Mac−Mab− (L+1)Oabc ≤ 0

−L≤Mab−Mac− (L+1)Zab≥ac +1≤ 0

−L≤Mbc−Mac− (L+1)Zbc≥ac +1≤ 0

Zab≥ac +Zbc≥ac ≥ Tabc

(5)

To capture the linguistic principles involved in
semantic role labeling (Lang and Lapata, 2014),
our formulation includes additional constraints.
These are expressed explicitly through the con-
struction of the linear programme:

Role Uniqueness Semantic roles are unique
within a particular frame. This principle is cap-
tured by constraining the merge level of two seed
clusters a and b to be at the top level L of the hi-
erarchy, where a and b are roles that occur within
the same frame, with the constraint:

Mab = L ∀(a,b) in frame. (6)

Syntactic Position Arguments occurring in a
specific syntactic position within a specific link-
ing all bear the same semantic role. This is han-
dled by construction of the problem, where all ar-
guments of a particular predicate occurring in a
specific syntactic position are collected into a seed
cluster at the beginning of the merging problem.

Argument Head Distribution The distribution
over argument heads is the same for two clusters
that represent the same semantic role. The distri-
bution of arguments is captured in vector space by
the model described in Section 3.1. We calculate
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centroid vectors from the instances in each clus-
ter. To measure similarity between clusters a and
b, we use cosine similarity between centroids:

D(a,b) =
vT

a vb

‖va‖‖vb‖
(7)

Equations (3)–(7) comprise the LP model.

4 Experimental Setup

In this section we present our experimental setup
for assessing the performance of the model pre-
sented above. We explain how it was trained and
tested, and also briefly introduce the models used
for comparison with our approach.

4.1 Training
To obtain distributed representations, we used text
from a subset of the English Gigaword corpus
(Parker et al., 2011), comprising almost 64 mil-
lion tokens (2.7 million sentences). The training
corpus was pre-processed using MATE (Björkelund
et al., 2009) to lemmatize the words, provide
POS-tags and a dependency parse, identify verbal
predicates and the position of arguments.

The neural network model described in Sec-
tion 3.1 was trained using Matlab. We restricted
the predicate vocabulary to use the 5,000 most fre-
quent verbs in the training corpus, and the verbal
predicates found in the CoNLL-2008 shared task
data set (Surdeanu et al., 2008). Predicates were
represented as vectors of size 80, while vectors
of length 50 were used for arguments. We used
a symmetric context window of size c = 1. As
the mechanism to prevent all vectors from hav-
ing the same value, we used “negative-sampling”
(Mikolov et al., 2013b), where there are k = 5 ran-
domly sampled negative examples of (context, tar-
get) pairs for each data sample. This technique
has the advantage that we do not need to provide
numerical probabilities for the noise distribution.
Model parameters were updated during training
using stochastic gradient descent over 5 epochs,
decreasing the update step size at each epoch.

4.2 Argument clustering
Following common practice in unsupervised role
induction (Titov and Klementiev, 2012; Lang and
Lapata, 2014), we evaluated our model on the
complete CoNLL-2008 shared task data set. We
used the clustering metrics of purity, collocation
and their harmonic mean F1. In addition, we used

V-measure (Rosenberg and Hirschberg, 2007), an
entropy-based measure which explicitly evaluates
how successfully the criteria of homogeneity and
completeness have been satisfied.

In previous work on unsupervised role induc-
tion, the results for each predicate were weighted
in proportion to the number of times the predicate
appeared in the CoNLL-2008 test set. In addi-
tion to this measure, we evaluate clustering where
predicates are uniformly weighted. In a data set
where the top 10 predicates account for almost
20% of the samples, these metrics give a view
of performance on the other 3,000-plus predicates
where less predicate-specific data is available.

4.3 Comparison Models

We compared our model against a baseline that
assigns arguments to clusters based on their syn-
tactic functions (SYNTF; Lang and Lapata, 2014).
Specifically, the baseline forms clusters from the
syntactic position of an argument using four cues:
the verb’s voice, the argument’s position relative
to the predicate, its syntactic relation, and any re-
alizing preposition.1

To assess whether our argument-based model
has any advantages over other word-based dis-
tributed representations we compared the follow-
ing variants: (a) the arg2vec model presented in
Section 3.1 trained on the subset of Gigaword;
(b) the continuous bag-of-words model trained
using word2vec on the same Gigaword corpus;
and (c) 300–dimensional vectors pre-trained on
part of the Google News dataset2 (about 100
billion words), again using word2vec. In all
three instances, we performed argument cluster-
ing using the LP of Section 3.2. We also com-
pare against Agglomerative-cosine (AGGLOM),
the best performing model of Lang and Lapata
(2014).3 Where applicable, we also refer to the
models presented in Titov and Klementiev (2012).

5 Results

Our results on the semantic role induction task are
summarized in Tables 1 and 2. Table 1 presents
results using the gold standard parses and argu-

1Differences in the results compared to Lang and Lapata
(2014) are due to our re-implementation of the predicate la-
beling stage, to be consistent with the preprocessing we used
for the other comparison systems.

2http://code.google.com/p/word2vec/
3Differences from published results are again due to

changes at the predicate labeling stage.
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Weighted Unweighted Weighted Unweighted
PU CO F1 PU CO F1 HO CO V1 HO CO V1

SYNTF 81.6 78.1 79.8 90.0 86.8 87.8 71.7 66.2 68.8 85.5 81.7 82.1
AGGLOM 87.4 75.3 80.9 95.1 80.7 86.5 79.2 65.5 71.7 93.1 78.1 84.0
word2vec-GIGAWORD 82.8 77.9 80.3 91.4 86.3 88.2 78.8 63.7 70.4 90.2 81.1 84.4
word2vec-GOOGLENEWS 83.4 76.2 79.7 91.6 85.7 87.9 78.7 63.7 70.4 90.2 80.7 84.1
arg2vec-GIGAWORD 87.9 74.7 80.8 94.2 85.4 88.9 86.1 64.6 73.8 94.6 80.9 86.2

Table 1: Purity, collocation and F1 measures (left), and homogeneity, completeness and V1 measures
(right) for CoNLL-2008 data set, using gold syntax information.

Weighted Unweighted Weighted Unweighted
PU CO F1 PU CO F1 HO CO V1 HO CO V1

SYNTF 68.3 72.1 70.1 80.6 81.3 80.3 55.2 54.9 55.0 74.4 74.3 73.2
AGGLOM 75.5 69.5 72.4 89.3 77.9 82.4 64.9 55.7 60.0 86.1 74.6 78.8
DEPREL+MATE 81.4 77.7 79.5 88.7 84.8 86.2 71.5 65.7 68.5 83.7 79.2 80.3
word2vec-GIGAWORD 83.3 76.1 79.5 91.3 85.7 87.8 78.4 63.4 70.1 89.9 80.3 83.9
word2vec-GOOGLENEWS 82.9 77.4 80.1 91.3 86.0 88.0 78.3 63.6 70.2 89.9 80.9 84.2
arg2vec-GIGAWORD 87.7 74.6 80.6 93.9 85.3 88.8 85.7 64.4 73.5 94.4 80.8 86.1

Table 2: Purity, collocation and F1 measures, and homogeneity, completeness and V1 measures for
CoNLL-2008 data set using automatic parse syntax information.

ments available in the CoNLL 2008 data set. No-
tice that our embeddings are still learned using au-
tomatically identified arguments. Table 2 uses au-
tomatic parses with automatically identified argu-
ments which is a more realistic evaluation setting.

As can be seen in Table 1, when gold standard
information is used the syntactic function baseline
(SYNTF) is very effective. When considering F1
(weighted by the number of instances), arg2vec
performs on the same par with graph-based ag-
glomerative clustering (AGGLOM). Interestingly,
word2vec performs worse when trained either
on Gigaword or the Google News corpora. Ac-
cording to (weighted) V1, arg2vec outperforms
all other comparison models. When predicates
are weighted uniformly, arg2vec is the best per-
forming model using F1 or the more information-
centric V-measure. This suggests that our model
performs well on the the less-frequent predicates
and rarer semantic roles. The results also show
that our model captures semantic information use-
ful for this task more successfully than the word-
based distributional models. Both word2vec mod-
els have similar performance, despite significant
differences in the size of their training data.

Table 2 shows similar trends. The poorer per-
formance of SYNTF and AGGLOM can partly be
ascribed to the heuristics used for argument iden-
tification: DEPREL+MATE gives the baseline per-
formance of our dependency parser and argu-
ment identification. Nevertheless, when compar-
ing systems that have access to the same prepro-
cessing, our arg2vec model gives the best per-

formance particularly in the information-centric
V-measures. Also note, that it seems robust to
noise incurred by the automatic parsing and argu-
ment identification procedures.

Titov and Klementiev (2012) report a
(weighted) F1 of 83.0 on the gold standard
CoNLL-2008 dataset, using a coupled model
where parameters are shared across verbs and
a form of smoothing which replaces argument
fillers by lexical cluster ids stemming from
Brown et al.’s (1992) algorithm (trained on the
RCV1 corpus, about 63 millions words). Our
model would presumably benefit from a similar
coupling mechanism which we could enforce as
a constraint in the ILP. However, we leave this to
future work. When tested on automatic parses and
gold arguments, their model yields a weighted
F1 of 78.8. For comparison, arg2vec obtains an
F1 of 80.6 on automatic parses and arguments.
Figure 4 shows visualizations of the argument
semantic space as captured by the arg2vec-
GIGAWORD model, for the predicates eat and
win. Dimensionality reduction was performed by
the t-SNE library.4 The visualization suggests
that the model learns similarities beyond simple
word contexts.

The evaluation presented so far assesses the
quality of the argument representations learned
by our model. We also wanted to see whether
the predicate embeddings capture meaningful se-
mantic content. Figure 3 shows a visualization

4http://lvdmaaten.github.io/tsne/
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Figure 3: 2-D representation of the induced predi-
cate space for the 100 most frequent predicates in
CoNLL-2008.

of the predicate semantic space as captured by
arg2vec when it is trained on the Gigaword cor-
pus. It shows a projection of the 100 most frequent
verbs in CoNLL-2008, with dimensionality reduc-
tion again performed by t-SNE. The visualization
suggests that the model captures non-trivial predi-
cate similarities. Verbs relating to buying and sell-
ing lie close together (e.g., offer, buy, receive, pay,
sell). Verbs denoting growth or decrease are also
grouped together (drop, fall, increase, grow, re-
duce, cut). Interestingly, verbs with similar argu-
ment structure share regions of the space (e.g., say,
estimate, or believe, think or seem, appear). Use-
fully, verbs are represented in a continuous space
rather than discrete clusters (e.g., acquire is some-
where between buy and own).

In order to quantitatively evaluate the qual-
ity of the predicate representations induced by
our model, we compared the cosine distances
between vectors to the hierarchy of VerbNet
(Schuler, 2005). VerbNet is a hierarchical domain-
independent broad-coverage verb lexicon for En-
glish, organizing verbs into classes. The evalua-
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Figure 4: 2-D representation of the induced argu-
ment space for the predicates eat (top) and win
(bottom). In both representations, A0 arguments
are clustered bottom left, while A1 arguments are
found top right.

tion task was, for all pairs of predicates, to predict
whether they would be in the same cluster at the
top layer of the hierarchy of VerbNet. To form
the top layer of VerbNet, we took the first inte-
ger of each VerbNet class number. As an exam-
ple, the verbs believe (VN class conjecture-29.5),
think (consider-29.9), expect (conjecture-29.5-1),
and adopt (appoint-29.1) would all be in the same
class 29. According to this reduction of VerbNet,
there are 101 classes. The prediction was based
on whether the cosine distance between the pair
of vectors was above a threshold value. We mea-
sured area under the precision-recall curve (AUC)
which captures performance at all thresholds, and
F1-score at the best threshold. arg2vec does bet-
ter in both measures than a baseline of random
vectors of the same dimension, scoring 0.637 for
AUC compared to a baseline of 0.505, and 29.5
against 22.9 for F1.

6 Conclusion

In this paper we presented a new approach for
learning distributed representations for predicates
and their arguments which we show is useful for
unsupervised semantic role labeling. Rather than
creating a task-specific algorithm for role induc-
tion, we learn a task-specific representation. We
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thus decouple feature learning from clustering in-
ference, which results in a conceptually simpler
model. Through a formulation of the clustering
problem as a linear programme, we are able to per-
form clustering efficiently and incorporate task-
specific constraints. In the future, we would like
to investigate how our approach generalizes across
languages and tasks.
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Abstract

Modeling the entailment relation over sen-
tences is one of the generic problems of
natural language understanding. In or-
der to account for this problem, we de-
sign a theorem prover for Natural Logic,
a logic whose terms resemble natural lan-
guage expressions. The prover is based on
an analytic tableau method and employs
syntactically and semantically motivated
schematic rules. Pairing the prover with a
preprocessor, which generates formulas of
Natural Logic from linguistic expressions,
results in a proof system for natural lan-
guage. It is shown that the system obtains
a comparable accuracy (≈81%) on the un-
seen SICK data while achieving the state-
of-the-art precision (≈98%).

1 Introduction

A problem of recognizing textual entailments
(RTE)—given two text fragments T (for a text)
and H (for a hypothesis), determine whether T
entails, contradicts or is neutral to H—is consid-
ered as a complex and, at the same time, funda-
mental problem for several NLP tasks (Dagan et
al., 2005). For more than a decade, RTE chal-
lenges have been held, where systems are compet-
ing to each other with respect to human annotated
RTE test data; but there are few systems that try
to solve RTE problems by computing meanings
of linguistic expressions and employing inference
engines similar to proof procedures of formal log-
ics. Moreover, those few systems are usually used
in combination with shallow classifiers since the
systems’ performances alone are poor.

The current paper advocates that purely deduc-
tive inference engines over linguistic representa-
tions backed up with a simple lexical knowledge
base could be solely and successfully used for the

RTE task. Our work builds on the theory of an
analytic tableau system for Natural Logic (Natural
Tableau) introduced by Muskens (2010). The the-
ory offers to employ a tableau method—a proof
procedure used for many formal logics—for the
version of Natural Logic that employs Lambda
Logical Forms (LLFs)—certain terms of simply
typed λ-calculus—as Logical Forms (LFs) of lin-
guistic expressions. The merits of the current ap-
proach are several and they can be grouped in two
categories: virtues attributed to the tableau prover
are (i) the high precision for the RTE task charac-
teristic to proof procedures, (ii) the transparency
of the reasoning process, and (iii) ability for solv-
ing problems with several premises; and those
concerning LLFs are (iv) an evidence for LFs that
are reminiscent of Surface Forms but still retaining
complex semantics, and (v) an automatized way of
obtaining LLFs from wide-coverage texts.

The rest of the paper is organized as follows.
First, Natural Tableau is introduced, and then a
method of obtaining LLFs from raw text is de-
scribed. We outline the architecture of an imple-
mented theorem prover that is based on the the-
ory of Natural Tableau. The power of the prover is
evaluated against the SICK data; the results are an-
alyzed and compared to related RTE systems. The
paper concludes with future work.

2 Natural Tableau for Natural Logic

Natural Logic is a vague notion and refers to log-
ics that account for valid inferences of natural
languages, where reasoning and the grammar are
strongly related to each other and LFs resemble
surface forms (Lakoff, 1972). On the other hand,
a tableau method (Beth, 1955) is a popular proof
procedure and nowadays many formal logics have
their own version of it (D’Agostino et al., 1999).
A combination of these two devices is offered by
Muskens (2010), where the language of Natural
Logic is considered to be a part of simply typed
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X A B : [ ] : F

A : [c] : T
B : [c] : F

∀F

s.t. X ∈ {all, every}
and c is a fresh term

A B : [
#�

C ] : X

A : [B,
#�

C ] : X
PUSH

A : [B,
#�

C ] : X

A B : [
#�

C ] : X
PULL

A : [
#�

C ] : T
B : [

#�

C ] : F

× ≤×
s.t. A ≤ B

X A B : [ ] : F

A : [d] : F B : [d] : F
∃F

s.t. X ∈ {some, a} and d is an old term

not A : [
#�

C ] : X

A : [
#�

C ] : X
NOT

Figure 1: Tableau rules for quantifiers (∀F and ∃F ), Boolean operators (NOT), formatting (PUSH and
PULL) and inconsistency (≤×). The relation ≤ stands for entailment,

#�

C and X are meta-variables over
sequences of terms and truth signs (T and F), respectively; the bar operator X negates a sign.

λ-terms that are built up from variables and lexi-
cal constant terms with the help of application and
lambda abstraction. The terms of the language
are called LLFs and resemble linguistic surface
forms:1

a(et)(et)t birdet flyet

some(et)(et)t birdet (not(et)et flyet)

not((et)(et)t)(et)(et)t all(et)(et)t birdet flyet

Note that common nouns and intransitive verbs
are typed as properties (i.e. functions from enti-
ties to truth values) and quantifiers as binary rela-
tions over properties; the latter typing treats quan-
tified noun phrases (QNPs) as generalized quanti-
fiers (GQs)—a term of type properties over prop-
erties (et)t.

A Natural Tableau entry is a tuple containing
a term, a sequence of terms representing an argu-
ment list, and a truth sign. The entries are such that
when a term is applied to all arguments from an ar-
gument list in the order of the list, the resulted term
is of type truth value. For example, Aeetce : [de] :T
is a valid tableau entry (i.e. a node) since it con-
sists of a term Aeetce, an argument list [de] and
a truth sign T standing for true, and additionally,
Aeetcede is a term of type t.

A tableau method is a refutation method and it
proves an argument by searching a counterexam-
ple. The search process is guided by applications
of certain set of rules. A tableau rule is a schema
with a set of antecedent nodes above a line and a
set of precedent branches below a line, where each

1Since modeling intensionality is beyond the scope of
the paper, we present LLFs typed with extensional seman-
tic types, i.e. types are built up from basic e (for entities) and
t (for truth values) types. We use the comma as a type con-
structor, e.g., (e, t) stands for a functional type from entities
to truth values. The comma is omitted when types are de-
noted by single letters, e.g., et stands for (e, t). Taking into
account right-associativity of the type constructor we often
drop parentheses for better readability. Terms are optionally
annotated with their types in a subscript.

1 : not all bird fly : [ ] : T
2 : some bird (not fly) : [ ] : F

3PUSH[1] : not all bird : [fly] : T

4PUSH[3] : not all : [bird, fly] : T

5NOT[4] : all : [bird, fly] : F

6PULL[5] : all bird : [fly] : F

7PULL[6] : all bird fly : [ ] : F

8∀F [7] : bird : [c] : T
9∀F [7] : fly : [c] : F

11∃F [2] : not fly : [c] : F

13NOT[11] : fly : [c] : T
14≤×[9,13] :×

10∃F [2] : bird : [c] : F
12≤×[8,10] :×

Figure 2: The closed tableau serves as a proof for:
not all birds fly→ some bird does not fly

branch consists of (precedent) nodes. A rule is ap-
plicable if all its antecedent nodes match to some
nodes in a tableau, and after the rule is applied,
precedent nodes of the rule are introduced in the
tableau. A tableau consists of branches where each
branch models a situation and is either closed (i.e.,
inconsistent) or open (i.e., consistent) depending
whether it contains a closure × sign (i.e., an ob-
vious contradiction). A tableau is closed if all its
branches are closed, otherwise it is open.

In Figure 2, a tableau proof, which employs the
rules of (Muskens, 2010) from Figure 1, is pre-
sented. In order to show a way the tableau is de-
veloped, the nodes are enumerated and annotated
with a source rule and IDs of nodes from which
a current node is obtained. For example, 3 is ob-
tained from 1 by the PUSH rule. In order to prove
an argument, the tableau starts with a counterex-
ample of the argument, i.e. a premise being true
and a conclusion false. After several rule applica-
tions, all the branches of the tableau close meaning
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that none of the situations for the counterexample
were consistent.

An advantage of Natural Tableau is that it treats
both single and multi-premised arguments in the
same fashion and represents a deductive procedure
in an intuitive and transparent way.

3 Obtaining LLFs for Natural Tableau

3.1 CCG and the C&C Parser

Combinatory Categorial Grammar (CCG) is a lex-
icalized grammar formalism that assigns a syntac-
tic category and a semantic interpretation to lexi-
cal items, where the items are combined via com-
binatory rules (Steedman, 2000; Steedman and
Baldridge, 2011). The CCG category A/B (or
A\B) is a category of an item that becomes of cat-
egory A when it is combined with an item of cat-
egory B on its right (or left, respectively) side. In
the example below, the sentence every man walks
is analyzed in the CCG formalism, where lexical
items are combined via the forward application
rule and unspecified semantic interpretations are
written in a boldface:

every
(S/(S\NP ))/N : every

man
N : man

S/(S\NP ) : every man

walks
S\NP : walk

S : (every man) walk

The CCG derivation trees are suitable structures
for obtaining LLFs for at least two reasons. First,
the CCG framework is characterized by a trans-
parent interface between syntactic categories and
semantic types; second, there exist efficient and
robust CCG parsers for wide-coverage texts.

During obtaining LLFs, we employ the C&C
CCG parser of Clark and Curran (2007) and Easy-
CCG of Lewis and Steedman (2014). While the
C&C parser is a pipeline of several NLP sys-
tems: POS-tagger, chunker, named entity recog-
nizer (NER), lemmatizer (Minnen et al., 2001)
supertagger and sub-parser, EasyCCG is an ex-
tremely simple but still comparably accurate CCG
parser based on A* parsing.2 These two parsers
use different settings for supertagging and parsing;
therefore, it is interesting to test both parsers for
our application.

In Figure 3, there is a CCG derivation by the

2The employed C&C parser is trained on rebanked CCG-
bank (Honnibal et al., 2010)—an updated version of CCG-
bank (Hockenmaier and Steedman, 2007) with improved
analyses for predicate-argument structures and nominal mod-
ifiers. For EasyCCG, input sentences are already processed
by the POS-tagger and the NER of the C&C parser.

ba[Sdcl]

fa[Sdcl\NPthr]

fa[NP ]

ba[N ]

lx[N\N,Sng\NP ]

fa[Sng\NP ]

fa[NP ]

tomato
N

tomato
NN

a
NP/N

a
DT

cutting
(Sng\NP )/NP

cut
VBG

one
N

one
NN

no
NP/N

no
DT

is
(Sdcl\NPthr)/NP

be
VBZ

There
NPthr
there
EX

Figure 3: The CCG tree by the C&C parser for
there is no one cutting a tomato (SICK-2404),
where thr, dcl, ng category features stand for an
expletive there, declarative and present participle,
respectively.

C&C parser displayed in a tree style: terminal
nodes are annotated with tokens, syntactic cate-
gories, lemmas and POS-tags while non-terminal
nodes are marked with combinatory rules and re-
sulted categories; some basic categories are sub-
categorized by features.

3.2 From CCG Trees to LLFs

Initially, it may seem easy to obtain fine-grained
LLFs from CCG trees of the parsers, but careful
observation on the trees reveals several compli-
cations. The transparency between the categories
and types is violated by the parsers as they employ
lexical (i.e. type-changing) rules—combinatory
rules, non-native ones for CCG, which changes
categories. Lexical rules were initially introduced
in CCGbank (Hockenmaier and Steedman, 2007)
to decrease the total number of categories and
rules. In the tree of Figure 3, a lexical rule changes
a category Sng\NP of a phrase cutting a tomato
with N\N . In addition to this problem, the trees
contain mistakes from supertaggers (and from the
other tools, in case of the C&C parser).

The first step in processing CCG trees is to re-
move directionality from the categories. This step
is the same as obtaining unspecified semantic in-
terpretation of a phrase in the CCG framework.
While converting categories A\B and A/B into
a non-directional type (b, a), the arrangement of
nodes must be changed in a corresponding way.
For instance, in case of the top backward appli-
cation rule (ba[Sdcl] in Figure 3), the order of
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sdcl

There
npthr
there
EX

npthr, sdcl

np

n

one
n

one
NN

n, n

np, sng

np

tomato
n

tomato
NN

a
n, np

a
DT

cutting
np, np, sng

cut
VBG

no
n, np
no
DT

is
np, npthr, sdcl

be
VBZ

Figure 4: A CCG term obtained from the CCG tree
of Figure 3. Categories are converted into types.

nodes is reversed to guarantee that the function
category (sdcl, npthr) precedes its argument cate-
gory npthr. There are about 20 combinatory rules
used by the parsers and for each of them we de-
sign a way of reordering subtrees. In the end, the
order of nodes coincides with the order according
to which semantic interpretations are combined.
The reordering recipes for each combinatory rule
is quite intuitive and can be found in (Steedman,
2000) and (Bos, 2009), where the latter work also
uses the C&C parser to obtain semantic interpre-
tations. Trees obtained after removing the direc-
tionality from the categories are called CCG terms
since they resemble syntactic trees of typed λ-
terms (see Figure 4).

onnp,pp(icen)np −→ onnp,pp(an,npicen) (1)

runnp,s(dogsn)np −→ runnp,s(sn,npdogn) (2)

(DowPERn,n JonesPERn )np −→ Dow Jonesnp (3)

(twon,n dogsn)np −→ twon,np dogsn (4)

her(pp,n),np carpp,n −→ hern,np carn (5)

whowV (Qn,npN) −→ Qn,np(whow′V N) (6)

nobody −→ non,np personn (7)

Lexical rules are the third most commonly used
combinatory rules (7% of all rules) by the parsers
on the SICK data (Marelli et al., 2014b), and there-
fore, they deserve special attention. In order to
compositionally explain several category changes
made by lexical rules (represented with (.)α oper-
ator in terms), either types of constant terms are
set to proper types or lexical entries are inserted in
CCG terms. For explaining a lexical rule n; np,
mainly used for bare nouns, an indefinite deter-
miner is inserted for singular nouns (1) and a plu-

sdcl

There
npthr
there
EX

npthr, sdcl

np

n

person
n

person
NN

n, n

vpdcl

vpng

np

tomato
n

tomato
NN

a
n, np

a
DT

cutting
np, vpng

cut
VBG

is
vpng, vpdcl

be
VBZ

which
vpdcl, n, n

which
WDT

no
n, np
no
DT

is
np, vpthr,dcl

be
VBZ

Figure 5: A fixed CCG term that is obtained
from the CCG term of Figure 4. A node with a
dashed (solid) frame is inserted (substituted, re-
spectively). A type vpa,b abbreviates (npa, sb).

ral morpheme s is used as a quantifier for plurals
(2). Also identifying proper names with the fea-
ture assigned by the C&C NER tool helps to elim-
inate n; np change (3). Correcting the type of a
quantifier that is treated as a noun modifier is an-
other way of eliminating this lexical rule (4). In
case of (s, np) ; (n, n) change, which is phrase
is inserted and salvages the category-type trans-
parency of CCG (see Figure 5). As a whole, the
designed procedures explain around 99% of lex-
ical rules used in CCG terms of the SICK sen-
tences. Note that explaining lexical rules guaran-
tees a well-formed CCG term in the end.

Apart from the elimination of lexical rules, we
also manually design several procedures that fix a
CCG term: make it more semantically adequate or
simplify it. For example, the C&C parser assigns
a category N/PP of relational nouns to nouns that
are preceded by possessives. In these cases, a type
n is assigned to a noun and a type of possessive is
changed accordingly (5). To make a term seman-
tically more adequate, a relative clause is attached
to a noun instead of a noun phrase (6), where a
type w ≡ (vp, np, s) of a wh-word is changed with
w′ ≡ (vp, n, s). CCG terms are simplified by sub-
stituting terms for no one, nobody, everyone, etc.
with their synonymous terms (see (7) and Figure
5). These substitutions decrease a vocabulary size,
and hence, decrease the number of tableau rules.

The final operation is to convert a fixed CCG
term into an LLF, meaning to convert QNPs into
GQs of (Montague, 1974; Barwise and Cooper,
1981). In this procedure, a type (n, np) of a quan-
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tifier is replaced with (n, (np, s), s), and the re-
sulted new NP is applied to the smallest clause it
occurs in; but if there are other QNPs too, then
it also applies to the clauses where other QNPs
are situated. This operation is not deterministic
and can return several terms due to multi-options
in quantifier scope ordering. As an example, two
λ-terms, (9) and (10), are obtained from the CCG
term (8) of Figure 5.3

b(no(w(b(c(a t)))p))th (8)

no
(
w(b(λx.a t(λy. cyx)))p

)(
λz.b z th

)
(9)

a t(λx.no
(
w(b(cx))p

) (
λz.b z th

)
) (10)

Eventually the final λ-terms, analogous to (9)
and (10), obtained from CCG trees will be con-
sidered as LLFs that will be used in the wide-
coverage theorem prover. It has to be stressed that
generated LLFs are theory-independent abstract
semantic representation. Any work obtaining se-
mantic representations from CCG derivations can
combine its lexicon with (already corrected) LLFs
and produce more adequate semantics in this way.

3.3 Extending the Type System
An obvious and simple way to integrate the LLFs,
obtained in Subsection 3.2, in Natural Tableau is
to translate their types into semantic types built up
from e and t.4 We will not do so, because this
means the information loss since the information
about syntactic types are erased; for example, usu-
ally syntactic types pp, n and (np, s) are trans-
lated as et type. Retaining syntactic types also
contributes to fine-grained matching of nodes dur-
ing rule application in the prover. For instance,
without syntactic types it is more complex to de-
termine the context in which a term game occurs
and find an appropriate tableau rule when consid-
ering the following LLFs, gamen,ntheory and
gamepp,n(of X), as both (n, n) and (pp, n) are
usually translated into (et)et type, like it is done
by (Bos, 2009).

In order to accommodate the LLFs with syntac-
tic types in LLFs of (Muskens, 2010), we extend
the semantic type system with np, n, s, pp basic
syntactic types corresponding to basic CCG cate-

3We use initial letters of lemmas to abbreviate a term cor-
responding to a lexical entry. Note that (9) represents a read-
ing with no one having a wide scope while, in (10), a tomato
has a wide scope.

4The similar translation is carried out in (Bos, 2009) for
Boxer (Bos, 2008), where basic CCG categories are mapped
to semantic types and the mapping is isomorphically ex-
tended to complex categories.

gories. Thus complex types are now built up from
the set {e, t, np, n, s, pp} of types. The extension
automatically licenses LLFs with syntactic types
as terms of the extended language.

We go further and establish interaction between
semantic and syntactic types in terms of a subtyp-
ing v relation. The relation is defined as a partial
order over types and satisfies the following condi-
tions for any α1, α2, β1, and β2 types:

(a) e v np, s v t, n v et, pp v et;
(b) (α1, α2)v(β1, β2) iff β1vα1 and α2vβ2;

Moreover, we add an additional typing rule to the
calculus: a term is of type β if it is already of type
α and α v β. According to this typing rule, now a
term can be of multiple types. For example, both
walknp,s and mann terms are also of type et, and
all terms of type s are of type t too. From this
point on we will use a boldface style for lexical
constants of syntactic types.

Initially it may seem that the lexicon of con-
stant terms is doubled in size, but this is not
the case as several syntactic constants can mir-
ror their semantic counterparts. This is achieved
by multiple typing which enables to put seman-
tic and syntactic terms in the same term. For in-
stance, lovenp,np,s ce johnnp and atnp,pp ce de are
well-formed LLFs of type t that combine terms
of syntactic and semantic types, and there is no
need of introducing semantic terms (e.g., ateet or
loveeet) in order to have a well-formed term. In
the end, the extension of the language is conserva-
tive in the sense that LLFs and the tableau proof
of Section 2 are preserved. The latter is the case
since the tableau rules are naturally extensible to
match new LLFs.

4 Implementation of the Prover

In order to further develop and evaluate Natural
Tableau, we implement the prover, LangPro, based
on the extended theory. Its general architecture
is based on the first-order logic (FOL) prover of
Fitting (1990). The prover also contains a mod-
ule for λ-calculus that roughly follows (Blackburn
and Bos, 2005).

Setup of the inventory of rules is a crucial for ef-
ficiency of the prover. There is a priority order for
the categories of rules according to their computa-
tional efficiency. The prover most prefers to em-
ploy non-branching rules that introduce no fresh
terms and antecedents of which can be ignored af-
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ter the application (e.g., NOT). Less preferred and
inefficient rules are the ones that branch, produce
new terms or antecedents of which are kept after
the application (e.g., ∀F and ∃F ). In order to en-
courage finding short proofs, admissible rules rep-
resenting shortcuts of several rule applications are
also introduced (e.g., FUN↑ and ARG in Figure 9).
The inventory consists of about 50 rules, where
most of them are manually designed based on RTE
problems (see Section 5.1) and the rest represents
the essential part of the rules found in (Muskens,
2010).

The LLF generator (LLFgen) is a procedure that
generates LLFs from a CCG derivation in the way
described in Subsection 3.2. We also implement
an LLF-aligner that serves as an optional prepro-
cessor between LLFgen and the prover itself; it
aligns identical chunks of LLFs and treats them as
a constant (i.e. having no internal structure). This
treatment often leads to smaller tableau proofs.
The example of aligned LLFs is given in Figure 8.

LangPro uses only the antonymy relation and
a transitive closure of the hyponymy/hypernymy
relations from WordNet 3.0 (Fellbaum, 1998) as
its knowledge base (KB). The entailment ≤ (con-
tradiction ⊥) relation between lexical constants of
the same type A ≤ B (A⊥B) holds if there ex-
ists a WordNet sense of A that is a transitive hy-
ponym (an antonym) of some WordNet sense of
B. Note that there is no word sense disambigua-
tion (WSD) used by the prover; therefore, adopt-
ing these interpretations of entailment and contra-
diction amounts to considering all senses of the
words. For example, a man is crying entails a man
is screaming as there are senses of cry and scream
that are in the entailment relation.

All in all, chaining a CCG parser, LLFgen, the
LLF-aligner, the prover and KB results in an au-
tomatized tableau prover LangPro which operates
directly over natural language text.

5 Learning and Evaluation

5.1 Learning
For learning and evaluation purposes, we use the
SICK data (Marelli et al., 2014b). The data con-
sists of problems that are rich in the lexical, syn-
tactic and semantic phenomena that compositional
distributional semantic models (Mitchell and La-
pata, 2010) are expected to account for.5 The

5SICK is partitioned in three parts (trail, train and test)
and used as a benchmark for RTE14 (Marelli et al., 2014a).

SICK data contains around 10K text-hypothesis
pairs that are classified in three categories: entail-
ment, contradiction, and neutral.

During learning we used only the trial portion
of the data, SICK-trial, including 500 problems.
The learning process consists of improving the
components of the prover while solving the RTE
problems: designing fixing procedures of LLFgen,
adding new sound rules to the inventory, and intro-
ducing valid relations in KB that were not found
in WordNet (e.g., woman≤lady, note≤paper and
food≤meal). During learning, each RTE problem
is processed as follows:

input: (T,H, answer);
1: t = the first LLF of llf(T );
2: h = the first LLF of llf(H);
3: case answer, tab{t :T, h :F}, tab{t :T, h :T}

ENTAILMENT, CLOSED, OPEN: HALT;
CONTRADICTION, OPEN, CLOSED: HALT;
NEUTRAL, OPEN, OPEN: HALT;

4: otherwise
5: if t or h is incorrect then try to amend llf; go to 1
6: else if a rule is missing then add it; go to 3
7: else if a relation is missing then add it; go to 3
8: else HALT;

A function llf denotes the combination of
LLFgen and a CCG parser; for learning
we use only the C&C parser. A function
tab : S → {CLOSED, OPEN} returns CLOSED if
one of the tableaux initiated with aligned or non-
aligned set S of nodes closes; otherwise it re-
turns OPEN. For instance, while checking a prob-
lem (T,H) on entailment (contradiction), tableau
starts with a counterexample: T being true and H
false (true, respectively). Note that 5-7 procedures
are carried out manually while the phase is signifi-
cantly facilitated by graphical proofs produced by
LangPro.6

As a result, there were collected around 30 new
rules where about a third of them are admissible
ones; the new rules cover phenomena like noun
and adverbial modifiers, prepositional phrases,
passive constructions, expletive sentences, verb-
particle constructions, auxiliaries, light verb con-
structions, etc. Most of the new rules are discussed
in more details in (Abzianidze, 2015).

The data and the system results of RTE14 are available at
http://alt.qcri.org/semeval2014/task1/

6Automating a tableau rule extraction is quite hard for the
following reasons: it is unclear how to determine automat-
ically whether a CCG derivation is wrong, a tableau rule is
missing, or lexical knowledge is lacking; and the general for-
mat of a rule makes search procedure extremely inefficient.
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ID Gold/LP Problem (premise ? conclusion)
3670 E/N It is raining on a walking man ? A man is walking in the rain
219 E/N There is no girl in white dancing ? A girl in white is dancing

5248 N/E Someone is playing with a toad ? Someone is playing with a frog
8490 N/C A man with a shirt is holding a football ? A man with no shirt is holding a football
7402 N/C There is no man and child kayaking through gentle waters ? A man and a young boy are riding in a yellow kayak
1431 C/C A man is playing a guitar ? A man is not playing a guitar
8913 N/C A couple is not looking at a map ? A couple is looking at a map

Table 1: Problems from SICK-trial and SICK-train with gold and LangPro judgments.

# 10 20 50 100 200 400 800 1600

.45
.5

.55

.75
.8

.98
1

mins. 2 5 9 14 23 38 60 115
#Rule applications & runtime for 2.4GHz CPU

Acc
Rec
Prec

Figure 6: Performance of LangPro on SICK-train
(4500) using CCG derivations of the C&C parser.

LangPro was unable to prove several problems
requiring complex background knowledge (e.g.,
SICK-3670 in Table 1) or having wrong CCG
derivations from the C&C parser (e.g., in SICK-
219, white dancing is a noun constituent).

5.2 Development

The part of the SICK data, SICK-train, issued for
training at RTE14 was used for development. Af-
ter running LangPro on SICK-train, we only an-
alyzed false positives, i.e. neutral problems that
were identified either as entailment or contradic-
tion by the prover. The analysis reveals that the
parsers and WordNet are responsible for almost
all these errors. For example, in Table 1, SICK-
5248 is classified as entailment since toad and
frog might have synonymous senses; this problem
shows the advantage of not using WSD, where a
proof search also searches for word senses that
might give rise to a logical relation. SICK-7402
was falsely identified as contradiction because of
the wrong analyses of the premise by both CCG
parsers: no man and child... are in coordination,
which implies there is no man, and hence, contra-
dicts the conclusion. SICK-8490 is proved as con-
tradiction since the prover considers LLFs where
shirt takes a wide scope. With the help of Lang-
Pro, we also identified inconsistency in the annota-
tions of problems, e.g., SICK-1431, 8913 are sim-
ilar problems but classified differently; it is also

XXXXXXXXXXXLangPro
SICK test (4927 problems)

Prec% Rec% Acc%
Baseline (majority) - - 56.36
+C&C+50 98.03 53.75 79.52
+EasyCCG+50 98.03 51.41 78.53
LangPro Hybrid-50 97.99 57.03 80.90
+C&C+800 97.99 54.73 79.93
+EasyCCG+800 98.00 52.67 79.05
LangPro Hybrid-800 97.95 58.11 81.35

Table 2: Evaluation of the versions of LangPro

surprising that SICK-5248 is classified as neutral.
During this phase, also the effective (800) and

efficient (50) upper bounds for the rule application
number were determined (see Figure 6). More-
over, 97.4% of proofs found in 1600 rule appli-
cations are actually attainable in at most 50 rule
applications; this shows that the rule application
strategy of LangPro is quite efficient.

5.3 Evaluation

We evaluate LangPro on the unseen portion of the
SICK data, SICK-test, which was used as a bench-
mark at RTE14; the data was also held out from
the process of designing LLFgen. The prover clas-
sifies each SICK problem as follows:

input: (T,H);
try t = the first LLF of llf(T );

h = the first LLF of llf(H)
if no error then

case tab{t :T, h :F}, tab{t :T, h :T}
CLOSED, OPEN: classify as ENTAILMENT;
OPEN, CLOSED: classify as CONTRADICTION;
OPEN, OPEN: classify as NEUTRAL;
CLOSED, CLOSED: classify as ENTAILMENT; report it;

else classify as NEUTRAL; report it;

The results, in Table 2, show evaluation of
LangPro on SICK-test using both parsers sepa-
rately with the efficient and effective rule applica-
tion upper bounds. Slightly better results with the
C&C parser is explained by employing the parser
in the learning phase. The difference of .5% in
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XXXXXXXXXXXSystem
Measure+

Prec% Rec% Acc% (+LP)

Illinois-LH 81.56 81.87 84.57 (+0.55)
ECNU 84.37 74.37 83.64 (+1.69)
UNAL-NLP 81.99 76.80 83.05 (+1.44)
SemantiKLUE 85.40 69.63 82.32 (+2.78)
The Meaning Factory 93.63 60.64 81.59 (+2.72)
LangPro Hybrid-800 97.95 58.11 81.35
UTexas 97.87 38.71 73.23 (+8.97)
Prob-FOL - - 76.52
Nutcracker - - 78.40
Baseline (majority) - - 56.69

Table 3: Comparing LangPro to the top or related
RTE systems and combining their answers7

accuracy between the C&C-based and EasyCCG-
based provers show that LLFgen was not fitted to
the C&C parser’s output during the learning phase.

In order to eliminate at some extent errors com-
ing from the parsers, hybrid provers are designed
that simply combine answers of two systems—if
one of the systems proves a relation then it is an
answer. Both hybrid versions of LangPro show
more than 80% of accuracy while only 5 systems
were able to do so at RTE14, where 77.1% was a
median accuracy. The prover turns out to be ex-
tremely reliable with its state-of-the-art precision
being almost 98%. A high precision is conditioned
by the formal deductive proof nature of LangPro
and by the sound rules it employs.

In Table 3, we compare the best version of hy-
brid LangPro to the top 5 systems of RTE14 on
SICK-test and show the improvement it gives to
each system when blindly adopting its positive an-
swers (i.e. entailment and contradiction).

The decision procedure of the prover is com-
pletely rule-based and easy to comprehend since
it follows the intuitive deductive rules. Tableaux
proofs by LangPro for SICK-247 (in Figure 7) and
SICK-2895 (in Figure 8) show step by step how T
contradicts and entails, respectively, H .8 Several
new rules employed in these tableaux are given in
Figure 9. Note that the both problems, SICK-247,
2895, were wrongly classified by all the top 7 sys-
tems of the RTE14. Taking into account that solv-
ing SICK-247 requires a sort of De Morgan’s law

7The top 5 systems of RTE14 are Illinois-LH (Lai and
Hockenmaier, 2014), ECNU (Zhao et al., 2014), UNAL-NLP
(Jimenez et al., 2014), SemantiKLUE (Proisl et al., 2014) and
The Meaning Factory (Bjerva et al., 2014).

8In the tableaux, due to lack of space, several constants
are denoted with initial characters of their lemmas and some
intermediate nodes are omitted. Some of the nodes are anno-
tated with a sequence of source rule applications.

for negation and disjunction, this demonstrates
where LangPro, a purely logic-based system, out-
performs non-logic-based systems.9 The another
problem, SICK-2895, is an evidence how unreli-
able the state-of-the-art and non-logic-based RTE
systems might be since solving the problem only
requires a lexical knowledge barbell ≤ weight ,
which is available in WordNet.

6 Related Work

Using formal logic tools for a wide-coverage RTE
task goes back to the Nutcracker system (Bos and
Markert, 2005), where a wide-coverage semantic
processing tool Boxer (Bos, 2008), in combination
with the C&C tools, first produces discourse rep-
resentation structures of (Kamp and Reyle, 1993)
and then FOL semantic representations (Curran et
al., 2007). Reasoning over FOL formulas is car-
ried by off-the-shelf theorem provers and model
builders for FOL.10 Our approach differs from
the latter in several main aspects: (i) the under-
ling logic of LLFs (i.e. higher-order logic) is
more expressive than FOL (e.g., it can properly
model GQs and subsective adjectives), (ii) LLFs
are cheap to get as they are easily obtained from
CCG derivations, and (iii) we develop a com-
pletely new proof procedure and a prover for a ver-
sion of Natural Logic.

The other related works are (MacCartney and
Manning, 2008) and (Angeli and Manning, 2014).
Both works contribute to Natural Logic and are
based on the same methodology.11 The approach
has two main shortcomings compared to Natural
Tableau; namely, it is unable to process multi-
premised problems, and its underling logic is
weaker (e.g., according to (MacCartney, 2009), it
cannot capture the entailment in Figure 2).

9Even a shallow heuristic—if H has a named entity that
does not appear in T , then there is no entailment—is not suf-
ficient for showing that SICK-247 is contradiction. We thank
our reviewer for mentioning this heuristic w.r.t. SICK-247.

10Nutcracker obtains 3% lower accuracy on SICK than our
prover (Pavlick et al., 2015). The Meaning Factory (Bjerva
et al., 2014) that is a brother system of Nutcracker, instead
of solely relying on decisions of theorem provers and model
builders, uses machine learning methods over the features ex-
tracted from these tools; this method results in a more ro-
bust system. RTE systems UTexas (Beltagy et al., 2014) and
Prob-FOL (Beltagy and Erk, 2015) also use Boxer FOL rep-
resentations but employ probabilistic FOL. For comparison
purposes, the results of these systems on the SICK data are
given in Table 3.

11They relate two sentences by a sequence of string edits;
the final logical relation between the sentences is computed
by composing logical relations associated with these edits.
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1 : the w (not (be (λx.or (a hd) (s gl) (λy.wear y x)))) : [ ] : T
2 : a w (be (λx.a (Eg hd) (λy.wear y x))) : [ ] : T

3∃T [2] : w : [c] : T

4∃T [2] : be (λx.a (Eg hd) (λy.wear y x)) : [c] : T

5AUX[4] : λx.a (Eg hd) (λy.wear y x) : [c] : T

6λPULL[5] : a (Eg hd) (λy.wear y c) : [ ] : T

7THE C[1,3] : not (be (λx.or (a hd) (s gl) (λy.wear y x))) : [c] : T

9AUX, NOT[7] : λx.or (a hd) (s gl) (λy.wear y x) : [c] : F

10λPULL[9] : or (a hd) (s gl) (λy.wear y c) : [ ] : F

11ARG D[10] : or (a hd (λy.wear y c)) (s gl (λy.wear y c)) : [ ] : F

12ORF [11] : a hd (λy.wear y c) : [ ] : F

16∃T [6] : Eg hd : [d] : T

18λPULL, ∃T [6] : wear d c : [ ] :T

19SUB ADJ[16] : hd : [d] : T

21λPULL, ∃CT [12,19] : wear d c : [ ] : F
22≤×[18,21] :×

Figure 7: A closed tableau for SICK-247:
The woman is not wearing glasses or a headdress
⊥ A woman is wearing an Egyptian headdress

7 Conclusion and Future Work

We made Natural Tableau of Muskens (2010) suit-
able for the wide-coverage RTE task by extending
it both in terms of rules and language. Based on
the extended Natural Tableau, the prover LangPro
was implemented, which has a modular architec-
ture consisting of the inventory of rules, KB and
the LLF generator. As a whole, the prover repre-
sents a deductive model of natural reasoning with
the transparent and naturally interpretable decision
procedure. While learning only from the SICK-
trial data, LangPro showed the comparable accu-
racy and the state-of-the-art precision on the un-
seen SICK data.

For future work, we plan to explore the FraCaS
(Consortium et al., 1996) and newswire RTE (Da-
gan et al., 2005) data sets to further improve the
LLF generator and enrich the inventory of tableau
rules. These tasks are also interesting for two rea-
sons: to find out how much effort is required for

1 : not (be (λx.s weight (λy.lift y x))) M : [ ] : T
2 : be (λx.s barbell (λy.lift y x)) M : [ ] : T

4AUX, PUSH[2] : (λx.s barbell (λy.lift y x)) : [M] : T

5λPULL[4] : s barbell (λy.lift y M) : [ ] : T

7NOT, PUSH[1] : be (λx.s weight (λy.lift y x)) : [M] : F

9λPULL, AUX[7] : s weight (λy.lift y M): [ ] : F

10FUN↑[5,9] : s barbell : [λy.lift y M] : T

11FUN↑[5,9] : s weight : [λy.lift y M] : F
12≤×[10,11] :×

Figure 8: A closed tableau for SICK-2895: The
man isn’t lifting weights ⊥ The man is lifting
barbells, where M abbreviates a shared term
the man aligned by the LLF-aligner.

G A : [
#�

C ] : T
H A : [

#�

C ] : F

G : [A,
#�

C ] : T
H : [A,

#�

C ] : F

ARG

the N V : [ ] : X
N : [c] : T

V : [c] : X
THE C

X V : [
#�

C ] : X

V : [
#�

C ] : X
AUX

s.t. X ∈ {be,do}

F A : [
#�

C ] : T
F B : [

#�

C ] : F

A : [
#�

D] : T
B : [

#�

D] : F

FUN↑

s.t.
#�

D is fresh and
F is upward monotone

A N : [c] : T

N : [c] : T
SUB ADJ

s.t. A is subsective

λx.A : [d
#�

C ] : X

A[x := d] : [
#�

C ] : X
λPULL

Figure 9: Several rules learned from SICK-trial

adapting the LLF generator to different data, and
which rules are to be added to the inventory for
tackling the new RTE problems. Incorporating
more WordNet relations (e.g., similarity, deriva-
tion and verb-group) and the paraphrase database
(Ganitkevitch et al., 2013) in KB is also a part of
our future plans.
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Abstract 

Cross-domain sentiment classification 

(CSC) aims at learning a sentiment 

classifier for unlabeled data in the target 

domain based on the labeled data from a 

different source domain. Due to the 

differences of data distribution of two 

domains in terms of the raw features, the 

CSC problem is difficult and challenging. 

Previous researches mainly focused on 

concepts mining by clustering words 

across data domains, which ignored the 

importance of authors’ emotion contained 

in data, or the different representations of 

the emotion between domains. In this 

paper, we propose a novel framework to 

solve the CSC problem, by modelling the 

emotion across domains. We first develop 

a probabilistic model named JEAM to 

model author’s emotion state when 

writing. Then, an EM algorithm is 

introduced to solve the likelihood 

maximum problem and to obtain the latent 

emotion distribution of the author. Finally, 

a supervised learning method is utilized to 

assign the sentiment polarity to a given 

online review. Experiments show that our 

approach is effective and outperforms 

state-of-the-art approaches. 

1 Introduction 

Cross-domain sentiment classification (CSC) is 

the task that learns a sentiment classifier for 

unlabeled data in the target domain based on the 

labeled data from the source domain. With the 

increasing amount of opinion information 

                                                           
 Corresponding author 

available on the Internet, CSC has become a hot 

spot in recent years. Traditional machine learning 

algorithms often train a classifier utilizing the 

labeled data for CSC. However, in some practical 

cases, we may have many labeled data for some 

domains (source domains) but very few or no 

labeled data for other domains (target domains). 

Due to the differences of the distribution of two 

domains in terms of raw features, e.g. raw term 

frequency, the classifier trained from the source 

domain often performs badly on the target domain. 

To overcome this issue, several feature-based 

studies have been proposed to improve the 

sentiment classification domain adaptation   

[Zhuang et al., 2013; He et al., 2011; Gao and Li, 

2011; Li et al., 2012; Dai et al., 2007; Zhuang et 

al., 2010; Pan et al., 2010; Wang et al., 2011; Long 

et al., 2012; Lin and He, 2009]. 

 Existing studies build various generative 

models to solve the domain adaptation problems 

for CSC. In most cases, the models are trained by 

using the whole corpora without specifying on the 

sentiment of the texts. For example, [Zhuang et al., 

2013] propose a general framework HIDC to mine 

high-level concepts (e.g. word clusters) across 

various domains. However, their learned concepts 

contain many topics not restricted to the sentiment. 

On the other hand, some researchers focus on the 

usage of the sentiment in CSC study [Mitra et al., 

2013a; Mitra et al., 2013b; He et al., 2011]. [He et 

al., 2011] modify JST model [Lin and He, 2009] 

by incorporating word polarity priors through 

adjusting the topic-word Dirichlet priors. 

However, they fail to consider the expression 

differences among various domains.  

To overcome the above issues, we employ 

“emotion”, for its ubiquity among domains. The 

sentiment words in different domains might vary 
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significantly, but the emotion can be effectively 

transferred. For example, when expressing the 

emotion “happiness”, one uses “bravo” in the 

domain of sport, while “yummy” in the domain of 

food. Therefore, we propose an EA framework to 

model the latent emotions which are commonly 

contained in subjective articles and expressed by 

“emotional words”. We infer the sentiment 

polarity of a document based on the emotion state. 

The hierarchy of EA is composed by four layers: 

(1) Sentiment Layer 

Normally, the sentiment of a document is the 

general opinion towards a certain event or object. 

For example, a movie review in IMDB might 

voice the feeling about the movie by a reviewer 

[Yu et al., 2013].  

(2) Emotion Layer 

Based on the emotion classification theories 

in psychology [Plutchik, 2002], the emotion can 

be classified into the basic ones influenced by the 

physiological factors, e.g. happiness, sadness, 

anger, etc., and dozens of complicated ones 

formed under some specific social conditions, e.g. 

shame, guilt, abashment, etc. Additionally, the 

emotion can be classified as positive and negative 

(similar to the sentiment classification) based on 

dimensional models of emotion [Schlosberg, 

1954; Plutchik, 2002; Rubin and Talerico, 2009]. 

Intuitively, we assume that a document tends to 

contain the emotions of similar polarity.  

(3) Lexicon Layer 

To build the connection between words and 

the emotion, we introduce emotional words 

instead of raw word features into our model. By 

utilizing the emotional lexicon MPQA [Wiebe et 

al., 2005], we select groups of strong polar words, 

which get high scores in the emotional lexicon. 

These words are considered highly correlated to 

the certain emotion of the same polarity. And 

these strong polar words have invariant polarity 

across domains. Therefore, the emotion can be 

substantialized by a series of emotional words 

drawn from corresponding probability distribution. 

(4) Expression Layer 

In many practical cases, data come from 

different domains. We suppose that the 

correlation between emotion state and sentiment 

orientation is stable over domains, but one 

emotion may have different expressions when 

domain varies. E.g., “satisfaction” may be 

expressed as “interesting” or “attractive” for a 

book; meanwhile, it may be expressed “efficient” 

for an electronics device. Formally, we have 

𝑝(𝑒|𝑦, 𝑟1) = 𝑝(𝑒|𝑦, 𝑟2) = 𝑝(𝑒|𝑦)     (1) 

𝑝(𝑤𝑒|𝑒, 𝑟1) ≠ 𝑝(𝑤𝑒|𝑒, 𝑟2)         (2) 

where 𝑒  denotes the emotion, y denotes the 

author’s sentiment orientation, 𝑟1  and 𝑟2 

denotes two different domains, and 𝑤𝑒  denotes 

the emotional words.  

 Along this line, we propose the Joint 

Emotion Analysis Model (named JEAM for 

abbreviation) utilizing the probabilistic methods. 

See details in the next section. 

2 Proposed Model 

2.1 Problem Formulation 

The CSC problem can be formulated as follows: 

Suppose we have two sets of data, denoted as 𝐷𝑠 

and 𝐷𝑡, which represent the source domain data 

and the target domain data respectively. In the 

CSC problem, the source domain data consist of 

labeled instances, denoted by  𝐷𝑠 =

{(𝑥𝑖
(𝑠)

, 𝑦𝑖
(𝑠)

)}|𝑖=1
𝑛𝑠 , where 𝑥𝑖

(𝑠)
∈ ℝ𝑘  is an input 

vector, 𝑦𝑖
(𝑠)

∈ {0,1} is the output label, and 𝑛𝑠 

is the number of documents in 𝐷𝑠. Unlike that of 

the source domain, the target domain data consists 

of samples without any label information, denoted 

by 𝐷𝑡 = {𝑥𝑖
(𝑡)

}|𝑖=1
𝑛𝑡 , where 𝑥𝑖

(𝑡)
∈ ℝ𝑘 is an input 

vector, and 𝑛𝑡 is the number of documents in 𝐷𝑡. 

The task of CSC is to leverage the training data of 

source domain 𝐷𝑠  to predict the label 𝑦𝑖
(𝑡)

 

corresponding to input vector 𝑥𝑖
(𝑡)

 of target 

domain 𝐷𝑡.  

2.2 The JEAM Model 

To model the author’s emotion state contained in 

the document, we propose the JEAM model based 

on the probabilistic graphical principle. Note that 

all the factors and edges in JEAM are derived 

from the specific concepts and relations in EA, 

e.g., Eq(1) and Eq(2). We draw the graphical 

representation of JEAM in Figure 1, and show the 

notations of this paper in Table 1. 

In Figure 1, y denotes the sentiment 

orientation of the author, which is a latent variable 

in this model. 𝑒   denotes any emotion (topic) 

generated by y from a conditional 

probability 𝑝(𝑒|𝑦). 𝑒 is also a latent variable in 

this model. 𝑟  denotes any data domain, e.g., 

books, dvd, kitchen, and electronics etc. 𝑑 

denotes any document chosen from domain r with 

label y. For documents from the source domain, 

the conditional probability 𝑝(𝑑|𝑟, 𝑦) is known, 

which can be used to supervise the modeling 

process. 𝑢 denotes the prior sentiment polarity of 

the corresponding emotional word. In practice, 𝑢 

can be obtained from the emotional lexicon,  
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Figure 1. The Graphical representation of JEAM. 

All the latent variables are marked in white, and 

all the observed variables are marked in gray. 

 

Table 1.  Means of Symbols 

 

which classifies a series of words into positive and 

negative categories.  𝑤𝑒 denotes any emotional 

word with polarity u, which is chosen over words 

conditioned on emotion e and domain r from 

conditional probability 𝑝(𝑤𝑒|𝑒, 𝑟, 𝑢) . In this 

paper, we only select emotional words with strong 

sentiment polarities to represent the vector of the 

document. Therefore, we rebuild the data with the 

help of emotional lexicon cutting out the non-

emotional words. As a result, any word chosen 

from the rebuilt data will be an emotional word, 

which is supposed not to change its polarity in 

different domains. Additionally, the joint 

probability over all the observed variables can be 

defined as follows based on the hidden variables: 

𝑝(𝑤𝑒 , 𝑑, 𝑟, 𝑢) = ∑ 𝑝(𝑒, 𝑦, 𝑤𝑒 , 𝑑, 𝑟, 𝑢)𝑒,𝑦   (3) 

Based on the graphical model, we have: 

𝑝(𝑒, 𝑦, 𝑤𝑒 , 𝑑, 𝑟, 𝑢) = 

𝑝(𝑤𝑒|𝑒, 𝑟, 𝑢)𝑝(𝑑|𝑟, 𝑦)𝑝(𝑒|𝑦)𝑝(𝑟)𝑝(𝑦)𝑝(𝑢) (4) 

We need to learn the unobservable 

probabilities (e.g.,  𝑝(𝑤𝑒|𝑒, 𝑟, 𝑢), 𝑝(𝑑|𝑟, 𝑦),  
𝑝(𝑒|𝑦), 𝑝(𝑦) ) to infer the hidden emotion 

distribution. Therefore, we develop an 

Expectation-Maximization (EM) algorithm to 

maximize the log likelihood of generating the 

whole dataset and obtain the iterative formula in 

E-step as follows: 

𝑝(𝑒, 𝑦|𝑤𝑒 , 𝑑, 𝑟, 𝑢) =  

𝑝(𝑤𝑒|𝑒, 𝑟, 𝑢)𝑝(𝑑|𝑟, 𝑦)𝑝(𝑒|𝑦)𝑝(𝑟)𝑝(𝑦)𝑝(𝑢)

∑ 𝑝(𝑤𝑒|𝑒, 𝑟, 𝑢)𝑝(𝑑|𝑟, 𝑦)𝑝(𝑒|𝑦)𝑝(𝑟)𝑝(𝑦)𝑝(𝑢)𝑒,𝑦
 (5) 

where all the factors are calculated in M-step 

similar to PLSA and HIDC (Hoffman, 1999; 

Zhuang et al., 2013). 

2.3 CSC via JEAM 

To use JEAM to solve CSC problems, we adopt 

two optimizations: 

First, we supervise the EM optimization with 

the polarity information of emotional words and 

instances respectively in the source domain. On 

the one hand, we estimate 𝑝(𝑒, 𝑦|𝑤𝑒 , 𝑑, 𝑟, 𝑢) 

utilizing the polarity label of the emotional words.  

Let the emotion set 𝐸 be divided into positive set 

𝐸𝑝  and negative set  𝐸𝑛 . We set 

𝑝(𝑒𝑖 , 𝑦|𝑤𝑒 , 𝑑, 𝑟, 𝑢𝑤𝑒
) = 0 during the whole EM 

process when the polarities of the emotion and 

current emotional word are different. On the other 

hand, we estimate the probability 𝑝(𝑑|𝑟, 𝑦) with 

the label information of instances in the source 

domain. When the document is from the source 

domain, we set 𝑝(𝑑|𝑟, 𝑦) = 0  if  𝑦   is 

different with the ground truth. 

Second, we reconstruct the document as 

follows, 

𝑑∗ = [𝑒1, 𝑒2, … 𝑒𝑚], 𝑒𝑖 = {
    1 +

|𝑊𝑒𝑖
𝑟|

∑ |𝑊𝑒𝑗
𝑟|𝑚

𝑗=1

, 𝑖𝑓 𝑊𝑒𝑖
𝑟 ≠ ∅

 
0, 𝑜𝑡ℎ𝑒𝑟𝑠

     (6) 

where [𝑒1, 𝑒2, … 𝑒𝑚]  is the distribution over 

emotions, 𝑊𝑒𝑖
𝑟 = {𝑤𝑒|𝑒𝑤𝑒

𝑟 = 𝑖} , 𝑒𝑤𝑒
𝑟 =

𝑎𝑟𝑔𝑚𝑎𝑥𝑒  𝑝(𝑒|𝑤𝑒 , 𝑟) , and 𝑝(𝑒|𝑤𝑒 , 𝑟)  can be 

computed based on  𝑝(𝑤𝑒|𝑒, 𝑟, 𝑢) , 𝑝(𝑒|𝑦), 𝑝(𝑢) 

and 𝑝(𝑟) obtained after EM algorithm. The main 

function of this step is to process a new given 

document faster, avoiding training JEAM again 

with the new input. Finally, a machine learning 

method Support Vector Machine (SVM) is 

introduced to train a classifier with the labeled 

data from the source domain and assign polarities 

to documents from the target domain based on our 

reconstructed data.  

3 Experiments 

3.1 Experimental Setup 

We demonstrate the effectiveness of JEAM on the 

Multi-Domain sentiment data set [Blitzer et al., 

2007] which contains four types (domains) of 

real-world product documents taken from 

Amazon.com, which are books, dvd, electronics 

and kitchen. We randomly select 1800 documents 

from the one domain (source domain) and 200 

documents from another domain (target domain). 

Then, we train a sentiment classifier using 

documents selected from the source domain and 

𝑒 Emotion 

𝑤𝑒 Emotional word 

𝑟 Domain 

𝑑 Document  

𝑢 Prior sentiment polarity of the emotional word 

𝑦 Sentiment polarity of the document 

𝑋 All the observed variables 

𝜃 All the model parameters 
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assign labels to documents selected from the 

target domain, which generates 12 classification 

tasks. We preform 10 random selections and 

report the average results over 10 different runs. 

We use MPQA subjective lexicon 1  as the 

emotional lexicon. In our experiments, only 

strongly subjective clues are considered as 

emotional words, consisting of 1717 positive and 

3621 negative words. We rebuild the dataset by 

cutting out the non-emotional words. For 

experiment parameters, we set 𝑝 = 25, 𝑛 = 25, 

and 𝑇 = 100  after plenty of experiments. 

Considering the data in practice, the sentiment 

orientation y has only two forms, positive or 

negative. Note that we do neither instance 

selection nor complicated feature selection (only 

filter the low-frequency words) to our proposed 

method and other methods in comparison. 

3.2 Experimental Result 

Performance of Emotional Words 
We show the effectiveness of introducing 

emotional words to solve the CSC problem. In 

JEAM, we reconstruct the documents by cutting 

out the non-emotional words. To compare the 

classification accuracy on the original documents 

and the reconstructed (emotional) documents, we 

choose two common classification algorithms, 

linear SVM and PLSA (topic size=10) for 

experiment respectively. The experiment results 

shows that both SVM and PLSA perform better 

on the emotional documents (60.43% and 60.48%) 

than on the original documents (57.73% and 

56.69%) for the average accuracy over 12 

classification tasks.  

Effectiveness of using domain information 
and word polarity 
We show the effectiveness of using domain 

information and word polarity, which are 

employed in our approach. For this purpose, we 

repeat the experiment without introducing domain 

and word polarity (node u and node r) into the 

model. Figure 2 shows the results. As it is clear, 

the highest performance can be achieved when 

domain information and word polarity are both 

used, while the lowest performance is obtained 

when neither of them is used.  

Comparison with the Baselines 

We compare our proposed approach with PLSA, 

SVM, SFA [Pan et al., 2010], JST [He et al., 2011] 

and HIDC [Zhuang et al., 2013]. The 

experimental results of the 12 classification tasks 

are shown in Figure 3. It can be observed that our  

                                                           
1 http://www.cs.pitt.edu/mpqa 

 

 

 

 

 

 

 

 

 

 

Figure 2: Effectiveness of using domain 

information and word polarity 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Comparison with the Baselines 

 

 

proposed approach outperforms all the other 

approaches in general. Note that in order to obtain 

a more precise comparison of the algorithms, we 

do neither the instance selection nor the 

complicated feature selection. The result of our 

proposed approach can possibly be improved with 

the help of these selection strategies. 

4 Conclusion 

In this paper, we propose a novel framework to 

solve the CSC problem, by modelling emotions 

across domains. We deeply analyze the relation 

between the author and the document based on the 

emotion theories in the field of psychology. Along 

this line, we propose a framework named EA, 

which takes the emotions and domains into 

account. Based on EA, we propose a novel model 

named JEAM to model the author’s emotion state 

for Cross-domain sentiment classification. We 

conduct extensive experiments on real datasets to 

evaluate JEAM. The experiment results show that 

emotion plays an important role in CSC and 

JEAM outperforms existing state-of-the-art 

methods on the task of CSC. 
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Abstract

This paper presents a new method to iden-
tify sentiment of an aspect of an entity. It
is an extension of RNN (Recursive Neu-
ral Network) that takes both dependency
and constituent trees of a sentence into ac-
count. Results of an experiment show that
our method significantly outperforms pre-
vious methods.

1 Introduction

Aspect-based sentiment analysis (ABSA) has been
found to play a significant role in many applica-
tions such as opinion mining on product or restau-
rant reviews. It is a task to determine an attitude,
opinion and emotions of people toward aspects in
a sentence. For example, given a sentence “Except
the design, the phone is bad for me”, the system
should classify positive and negative as the senti-
ments for the aspects ‘design’ and ‘phone’, respec-
tively.

The simple approach is to calculate a sentiment
score of a given aspect as the weighted sum of
opinion scores, which are defined by a sentiment
lexicon, of all words in the sentence (Liu and
Zhang, 2012; Pang and Lee, 2008). This method is
further improved by identifying the aspect-opinion
relations using tree kernel method (Nguyen and
Shirai, 2015a).

Other researches have attempted to use unsuper-
vised topic modeling methods. To identify the sen-
timent category of the aspect, topic models which
can simultaneously exploit aspect and sentiment
have been proposed, such as TSLDA (Nguyen and
Shirai, 2015b), ASUM (Jo and Oh, 2011), JST
(Lin and He, 2009) and FACTS model (Lakkaraju
et al., 2011).

Recursive Neural Network (RNN) is a kind of
deep neural network. Using distributed represen-
tations of words (aka word embedding) (Bengio et

al., 2003; Hinton, 1986), RNN merges word rep-
resentations to represent phrases or sentences. It
is one of the best methods to predict sentiment la-
bels for the phrases (Socher et al., 2011; Socher et
al., 2012; Socher et al., 2013). AdaRNN (Adap-
tive Recursive Neural Network) is an extension of
RNN for Twitter sentiment classification (Dong et
al., 2014a; Dong et al., 2014b).

This paper proposes a new method PhraseRNN
for ABSA. It is an extended model of RNN and
AdaRNN, which are briefly introduced in Section
2. The basic idea is to make the representation of
the target aspect richer by using syntactic infor-
mation from both the dependency and constituent
trees of the sentence.

2 Recursive Neural Networks for ABSA

In RNN and AdaRNN, given a sentence contain-
ing a target aspect, “binary dependency tree” is
built from a dependency tree of the sentence. Intu-
itively, it represents syntactic relations associated
with the aspect. Each word (leaf) or phrase (inter-
nal node) in the binary dependency tree is repre-
sented as a d-dimensional vector. From bottom to
up, the representations of a parent node v is calcu-
lated by combination of left and right child vector
representations (vl and vr) using a global function
g in RNN:

g(vl, vr) = W

[
vl
vr

]
+ b (1)

where W ∈ <d×2d is the composition matrix and
b ∈ <d is the bias vector. Then v = f(g(vl, vr))
where f is a nonlinear function such as tanh.

Instead of using only a global function g,
AdaRNN employed n compositional functions
G = {g1, · · · , gn} and selected them depending
on the linguistic tags and combined vectors as fol-
lows:

v = f

(
n∑
i=1

P (gi|vl, vr, e)gi(vl, vr)
)

(2)
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Figure 1: Example of a Constituent Tree

where P (gi|vl, vr, e) is the probability of function
gi given the child vectors vl, vr and external fea-
ture vector e. The probabilities are estimated as
Equation (3). P (g1|vl, vr, e)

· · ·
P (gn|vl, vr, e)

 = softmax

βR
 vl
vr
e


(3)

where β ∈ < is a hyper-parameter, and R ∈
<n×(2d+|e|) is the parameter matrix.

The vector of the root node of the binary depen-
dency tree is regarded as a representation of the
target aspect. It is fed to a logistic regression to
predict the sentiment category of the aspect.

3 PhraseRNN: Phrase Recursive Neural
Network

In this model, a representation of an aspect will be
obtained from a “target dependent binary phrase
dependency tree” constructed by combining the
constituent and dependency trees. In addition, in-
stead of using a list of global functions G as in
AdaRNN, two kinds of composition functions G
in inner-phrase and H in outer-phrase are used.

3.1 Building Hierarchical Structure
First, the basic phrases (noun phrases, verb
phrases, preposition phrases and so on) are ex-
tracted from the constituent tree of the sentence.
For example, a list of phrases P = {PP[Except the
design], NP[the phone], VP[is bad for me]} is ex-
tracted from the constituent tree in Figure 1.

Given a dependency tree and a list of phrases,
a phrase dependency tree is created by Algorithm
1. The input is a dependency tree T = (V,E)
consisting of a set of vertices V = {v1, · · · , v|V |}
and a set of relation edges E = {(rji, vi, vj)}
between two vertices, and a list of phrases P =
{p1, · · · , pK} extracted from the constituent tree.
The output is a phrase dependency tree pT =

(pV, pE) where pV = {T1, · · · , TK} (Ti =
(Vi, Ei) is a subtree) and pE = {(rji, Ti, Tj)} (a
set of relations between two subtrees). With the
dependency tree and the phrase list in Figure 2(a),
the algorithm will output a phrase dependency tree
in Figure 2(b).

Algorithm 1: Convert to Phrase Dependency
Tree
Input: dependency tree T = (V,E), phrase

list P = {p1, · · · , pK}
Output: phrase dependency tree:

pT = (pV, pE) where
pV = {T1, · · · , TK}, Ti = (Vi, Ei)
and pE = {(rji, Ti, Tj)}

1 for each phrase pi ∈ P do
2 Vi ← {vj |vj ∈ pi}
3 end
4 for each edge (rnm, vm, vn) ∈ E do
5 vm ∈ pk, vn ∈ pl
6 if k = l then
7 Ek ← Ek ∪ {(rnm, vm, vn)}
8 else
9 pE ← pE ∪ {(rnm, Tk, Tl)}

10 end
11 end

The phrase dependency tree is transformed into
a target dependent binary phrase dependency tree
bpT by Algorithm 2. The input of the algorithm
is a phrase dependency tree pT = (pV, pE) and a
target word vt (the aspect word we want to predict
the sentiment category). The output is the binary
tree bpT . Note that the leaves of the binary tree
bpT are binary subtrees bT1, · · · , bTK which are
the binary versions of subtrees T1, · · · , TK . On
the other hand, the leaves of binary subtree bTi are
the words in phrase pi. bpT and bTi are obtained
by convert function defined as Algorithm 3. It can
convert an arbitrary tree to a binary tree 1. Figure
2(c) and Figure 3 show the outputs for the aspect
‘design’ and ’phone’, respectively.

3.2 Constructing the Aspect Representation

Each node in the binary tree is represented as a d-
dimensional vector. In this research, we use the
pre-trained Google News dataset 2 by word2vec
algorithms (Mikolov et al., 2013). Each word is

1Note that convert function returns a tree represented by
nested brackets such as [PP,[NP,VP]].

2https://code.google.com/p/word2vec/
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Figure 2: Hierarchical Structures in PhraseRNN: (a) Dependency Tree, (b) Phrase Dependency Tree and
(c) Target Dependent Binary Phrase Dependency Tree

Algorithm 2: Convert to Target Dependent Bi-
nary Phrase Dependency Tree
Input: phrase dependency tree:

pT = (pV, pE), target vt
Output: target dependent binary phrase

dependency tree: bpT
1 for Ti = (Vi, Ei) ∈ pV do
2 if vt ∈ Vi then
3 h← vt
4 else
5 h← vertex having no head in Ei
6 end
7 bTi ← convert(Ei, h)
8 end
9 Tvt ← Ti that contains vt

10 bpT ← convert(pE, Tvt)
11 Replace all Ti in bpT with bTi

Algorithm 3: Convert to a Binary Tree

1 Function convert(E, vt):
2 v ← vt
3 for vi → vt, vt → vi in E do
4 if vt → vi then
5 E′ ← E \ {vt → vi}
6 w ← [convert(E, vi), v]
7 else
8 E′ ← E \ {vi → vt}
9 w ← [v, convert(E, vi)]

10 end
11 v ← w

12 end
13 return v
14 end

Figure 3: Another Target Dependent Binary
Phrase Dependency Tree (Target Aspect ‘phone’)

represented as a 300-dimensional vector in this
pre-trained dataset.

PhraseRNN uses two kinds of composition
function G = {g1, · · · , gn} for inner-phrase and
H = {h1, · · · , hm} for outer-phrase. n and m are
the number of functions in G and H , respectively.

The vector of the parent node vin in the binary
subtree bTi, where vl and vr are the vectors of the
left and right children, is computed as:

vin = f

(
n∑
i=1

P (gi|vl, vr, ein)gi(vl, vr)
)

(4)

where ein is the external feature vector.
P (gi|vl, vr, ein) is the probability of function
gi given the child vectors vl, vr and ein. It is
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defined as Equation (5). P (g1|vl, vr, ein)
· · ·

P (gn|vl, vr, ein)

 = softmax

βR
 vl
vr
ein


(5)

where β ∈ < is a hyper-parameter, and R ∈
<n×(2d+|ein|) is the parameter matrix.

In the target dependent binary phrase depen-
dency tree bpT , the vector of the parent node vout,
where the vectors of the left and right children are
vl and vr, is computed as:

vout = f

(
m∑
i=1

P (hi|vl, vr, eout)hi(vl, vr)
)

(6)

P (hi|vl, vr, eout) is the probability of function hi
given the child vectors vl, vr and external feature
vector eout as shown in Equation (7). P (h1|vl, vr, eout)

· · ·
P (hm|vl, vr, eout)

 = softmax

βS
 vl

vr
eout


(7)

where S ∈ <m×(2d+|eout|) is the parameter matrix.
The external features ei (ein and eout) of the

node vi consists of three types of features: Labell,
Labelr and DepTypei. Labell and Labelr are
the labels of the left and right child nodes, respec-
tively. If node vl is a leaf word, Labell is the POS
of the word vl. Otherwise, it is the non-terminal
symbol of the lowest common parent of descen-
dants of vl in the constituent tree. For example,
the Label of the node combined from ‘the’ and
‘design’ in Figure 2(c) is ‘NP’ which is the low-
est common parent of these two words in the con-
stituent tree in Figure 1. DepTypei is the depen-
dency relation for node vi. If the left and right
children of vi are leaf nodes, it is the direct relation
in the dependency tree between them. Otherwise,
DepTypei is the relation between head words of
the left and right nodes. For instance, in Figure
2(c), let a be the parent of ‘is’ and ‘bad’, b is the
parent of ‘for’ and ‘me’, c is the parent of a and b.
DepType of a and b are ‘COP’ and ‘POBJ’ that
are direct relations between two child nodes in the
dependency tree in Figure 2(a). While, DepType
of c is ‘PREP’ that is the dependency relation be-
tween two head words ‘bad’ and ‘for’. ei is a bi-
nary vector where the weight of the vector repre-
sents the presence of each feature.

We suppose a batch training data consist-
ing ofB instances {(x(1), t(1)), · · · , (x(B), t(B))},

where x(b) and t(b) are the aspect and its sentiment
category of b-th instance. Let y(b) be the predicted
sentiment category for aspect x(b) by PhraseRNN.
The goal is to minimize the loss function which is
the sum of the mean of negative log likelihood and
L2 regularization penalty in a batch training set as
in Equation (8).

L = − 1
B

B∑
b=1

log(P (y(b) = t(b)|x(b), θ)) + λ
∑
θi∈θ
‖ θi ‖2

(8)
where λ is a constant controlling the degree of
penalty, θ is all the parameters in the model.

Stochastic gradient descent is used to optimize
the loss function. Backpropagation is employed to
propagate the errors from the top node to the leaf
nodes. The derivatives of parameters are used to
update the parameters.

4 Evaluation

We use the restaurant reviews dataset in Se-
mEval2014 Task 4 consisting of over 3000 English
sentences. For each aspect, “positive”, “negative”
or “neutral” is annotated as its polarity. Dataset is
divided into three parts: 70% training, 10% devel-
opment and 20% test.

We compare the following methods:
ASA w/o RE: It defines a sentiment score of a

given aspect as the weighted sum of opinion scores
of all words in the sentence, where the weight is
defined by the distance from the aspect (Liu and
Zhang, 2012; Pang and Lee, 2008).

ASA with RE: It improves “ASA w/o RE” by
firstly identifying the aspect-opinion relations us-
ing tree kernel, then integrating them to the senti-
ment calculation (Nguyen and Shirai, 2015a).

RNN: It uses only one global function g1 over
the binary dependency tree.

AdaRNN: It uses multi-composition functions
G = {g1, · · · , gn} over a binary dependency tree
(Dong et al., 2014a).

PhraseRNN-1: our PhraseRNN with only one
global function: G = H = g1

PhraseRNN-2: our PhraseRNN with two
global functions. One for inner-phrase, the other
for outer-phrase: G = g1 and H = h1

PhraseRNN-3: our PhraseRNN with multiple
global functions: G = H = {g1, · · · , gn}

PhraseRNN-4: our PhraseRNN with two lists
of global functions. One for inner-phrase, the
other for outer-phrase: G = {g1, · · · , gn} and
H = {h1, · · · , hm}
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Stanford CoreNLP (Manning et al., 2014) is
used to parse the sentence and obtain constituent
and dependency trees. For RNN, AdaRNN and
PhraseRNN, the optimal parameters, which mini-
mize the error in the development set, are used for
the sentiment classification of the test set. We set
β = 1 for AdaRNN and PhraseRNN since it is re-
ported that β = 1 is the best parameter (Dong et
al., 2014a). The optimized number of composition
functions n andm = n

2 are selected by grid search
with n = {2, 4, 6, 8, 10} on the development set.
λ = 0.0001 is employed. Accuracy (A), Preci-
sion (P), Recall (R) and F-measure (F) are used as
evaluation metrics 3.

Table 1 shows the results of the methods. Dif-
ferences of PhraseRNN and RNN are verified by
statistical significance tests. We use the paired
randomization test because it does not require
additional assumption about distribution of out-
puts (Smucker et al., 2007). The results indi-
cate that four variations of our PhraseRNN out-
perform “ASA w/o RE”, “ASA with RE”, RNN
and AdaRNN methods from 5.35% to 19.44% ac-
curacy and 8% to 16.48% F-measure. Among
four variations, PhraseRNN-2 and PhraseRNN-
3 achieved the best performance. By using dif-
ferent global functions in the inner and outer
phrases, PhraseRNN-2 improves PhraseRNN-1 by
2.54% F-measure while keeping the comparable
accuracy. Using multi-composition functions is
also effective since PhraseRNN-3 was better than
PhraseRNN-1 by 1.55% accuracy. PhraseRNN-4
improved PhraseRNN-3 by 6.38% precision while
keeping comparable in other metrics.

Since our PhraseRNN-1 and PhraseRNN-3 out-
perform RNN and AdaRNN (the models rely-
ing on the binary dependency tree) respectively,
we can conclude that our target dependent binary
phrase dependency tree is much effective than bi-
nary dependency tree for ABSA.

In the data used in (Dong et al., 2014a), one sen-
tence contains only one aspect. On the other hand,
two or more aspects can be appeared in one sen-
tence in SemEval 2014 data. It is common in the
real text. To examine in which cases our method is
better than the others, we conduct an additional ex-
periment by dividing the test set into three disjoint
subsets. The first subset (S1) contains sentences
having only one aspect. The second subset (S2)

3Precision, Recall and F-measure are the average for three
polarity categories weighted by the number of true instances.

Table 1: Results of ABSA

Methods A P R F

ASA w/o RE 46.76 54.63 46.76 48.06
ASA with RE 52.39 53.91 52.39 52.54

RNN 60.85 53.59 60.85 54.21
AdaRNN 60.42 36.78 60.42 45.73

PhraseRNN-1 64.65† 58.59† 64.65† 59.67*

PhraseRNN-2 63.94† 62.40* 63.94† 62.21*

PhraseRNN-3 66.20* 53.88 66.20* 59.32*

PhraseRNN-4 65.92* 60.26† 65.92* 59.80*

Notes: Statistical significance test of PhraseRNN compar-
ing to RNN.

* Significant at the 1 percent level.
† Significant at the 5 percent level.

Table 2: The Number of Correctly Identified As-
pects in Subsets S1, S2 and S3

Methods S1 S2 S3

ASA w/o RE 98 (49.00) 156 (48.30) 78 (41.71)
ASA with RE 111 (55.50) 176 (54.49) 85 (45.45)

RNN 123 (61.50) 226 (69.97) 83 (44.39)
AdaRNN 117 (58.50) 234 (72.45) 78 (41.71)

PhraseRNN-1 129 (64.50) 248 (76.78) 82 (43.85)
PhraseRNN-2 125 (62.50) 247 (76.47) 82 (43.85)
PhraseRNN-3 125 (62.50) 257 (79.57) 88 (47.06)
PhraseRNN-4 128 (64.00) 250 (77.40) 90 (48.13)

and third subset (S3) have two or more aspects in
each sentence. All aspects in a sentence in S2 have
the same sentiment category, while different sen-
timent categories in S3. The number of aspects in
S1, S2 and S3 are 200, 323 and 187, respectively.

Table 2 shows the number of aspects where their
sentiments are correctly identified by the methods
in the subsets S1, S2 and S3. The accuracies are
also shown in parentheses. Among three subsets,
S3 is the most difficult and ambiguous case. In all
methods, the performance in S3 is worse than S1
and S2. Comparing with other methods in each
subset, PhraseRNN improves the accuracy in S2
more than in S1 and S3.

5 Conclusion

We proposed PhraseRNN to identify the sentiment
of the aspect in the sentence. Propagating the
semantics through the binary dependency tree in
RNN and AdaRNN could not be enough to rep-
resent the sentiment of the aspect. A new hierar-
chical structure was constructed by integrating the
dependency relations and phrases. The results in-
dicated that our PhraseRNN outperformed “ASA
w/o RE”, “ASA with RE”, RNN and AdaRNN.
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Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and

Christian Janvin. 2003. A neural probabilistic lan-
guage model. The Journal of Machine Learning Re-
search (JMLR), 3:1137–1155.

Li Dong, Furu Wei, Chuanqi Tan, Duyu Tang, Ming
Zhou, and Ke Xu. 2014a. Adaptive recursive neural
network for target-dependent twitter sentiment clas-
sification. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(ACL), pages 49–54.

Li Dong, Furu Wei, Ming Zhou, and Ke Xu. 2014b.
Adaptive multi-compositionality for recursive neu-
ral models with applications to sentiment analysis.
In Twenty-Eighth AAAI Conference on Artificial In-
telligence (AAAI), pages 1537–1543.

Geoffrey E Hinton. 1986. Learning distributed repre-
sentations of concepts. In Proceedings of the eighth
annual conference of the cognitive science society,
volume 1, page 12. Amherst, MA.

Yohan Jo and Alice H Oh. 2011. Aspect and senti-
ment unification model for online review analysis.
In Proceedings of the fourth ACM international con-
ference on Web search and data mining, pages 815–
824. ACM.

Himabindu Lakkaraju, Chiranjib Bhattacharyya, Indra-
jit Bhattacharya, and Srujana Merugu. 2011. Ex-
ploiting coherence for the simultaneous discovery
of latent facets and associated sentiments. In Pro-
ceedings of the Eleventh SIAM International Confer-
ence on Data Mining (SDM), pages 498–509. SIAM
/ Omnipress.

Chenghua Lin and Yulan He. 2009. Joint senti-
ment/topic model for sentiment analysis. In Pro-
ceedings of the 18th ACM conference on Infor-
mation and knowledge management (CIKM), pages
375–384. ACM.

Bing Liu and Lei Zhang. 2012. A survey of opinion
mining and sentiment analysis. In Mining Text Data,
pages 415–463. Springer.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Proceedings of 52nd
Annual Meeting of the Association for Computa-
tional Linguistics: System Demonstrations (ACL),
pages 55–60.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems (NIPS), pages 3111–3119.

Thien Hai Nguyen and Kiyoaki Shirai. 2015a. Aspect-
based sentiment analysis using tree kernel based re-
lation extraction. In Alexander Gelbukh, editor,

Computational Linguistics and Intelligent Text Pro-
cessing (CICLing), volume 9042 of Lecture Notes in
Computer Science, pages 114–125. Springer Inter-
national Publishing.

Thien Hai Nguyen and Kiyoaki Shirai. 2015b. Topic
modeling based sentiment analysis on social media
for stock market prediction. In Proceedings of the
53rd Annual Meeting of the Association for Com-
putational Linguistics (ACL), Volume 1: Long Pa-
pers, pages 1354–1364. The Association for Com-
puter Linguistics.

Bo Pang and Lillian Lee. 2008. Opinion mining and
sentiment analysis. Foundations and trends in infor-
mation retrieval, 2(1-2):1–135.

Mark D Smucker, James Allan, and Ben Carterette.
2007. A comparison of statistical significance tests
for information retrieval evaluation. In Proceedings
of the sixteenth ACM conference on Conference on
information and knowledge management (CIKM),
pages 623–632. ACM.

Richard Socher, Cliff C Lin, Chris Manning, and An-
drew Y Ng. 2011. Parsing natural scenes and natu-
ral language with recursive neural networks. In Pro-
ceedings of the 28th international conference on ma-
chine learning (ICML), pages 129–136.

Richard Socher, Brody Huval, Christopher D Manning,
and Andrew Y Ng. 2012. Semantic compositional-
ity through recursive matrix-vector spaces. In Pro-
ceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-
CoNLL), pages 1201–1211. Association for Compu-
tational Linguistics.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of the conference on
empirical methods in natural language processing
(EMNLP), volume 1631, page 1642. Citeseer.

2514



Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 2515–2519,
Lisbon, Portugal, 17-21 September 2015. c©2015 Association for Computational Linguistics.

ASTD: Arabic Sentiment Tweets Dataset

Mahmoud Nabil
Computer Engineering

Cairo University
Giza, Egypt

mah.nabil@cu.edu.eg

Mohamed Aly
Computer Engineering

Cairo University
Giza, Egypt

mohamed@mohamedaly.info

Amir F. Atiya
Computer Engineering

Cairo University
Giza, Egypt

amir@alumni.caltech.edu

Abstract

This paper introduces ASTD, an Arabic
social sentiment analysis dataset gathered
from Twitter. It consists of about 10,000
tweets which are classified as objective,
subjective positive, subjective negative,
and subjective mixed. We present the
properties and the statistics of the dataset,
and run experiments using standard par-
titioning of the dataset. Our experiments
provide benchmark results for 4 way sen-
timent classification on the dataset.

1 Introduction

Arabic sentiment analysis work is gaining large at-
tention nowadays. This is mainly due to the need
of a product that can utilize natural language pro-
cessing technology to track and analyze the public
mood through processing social data streams. This
calls for using standard social sentiment analysis
datasets. In this work we present ASTD (Arabic
Sentiment Tweets Dataset) an Arabic social sen-
timent analysis dataset gathered from Twitter. We
discuss our method for gathering and annotating
the dataset, and present its properties and statis-
tics through the following tasks: (1) 4 way sen-
timent classification (2) Two stage class classifi-
cation; and (3) sentiment lexicon generation. The
contributions in this work can be summarized as:

1. We present an Arabic social dataset of about
10k tweets for subjectivity and sentiment
analysis gathered from.

2. We investigate the properties and the statis-
tics of the dataset and provide standard splits
for balanced and unbalanced settings of the
dataset.

3. We present a set of benchmark experiments
to the dataset to establish a baseline for future
comparisons.

4. We make the dataset and the used experi-
ments publicly available1.

2 Related Work

The detection of user sentiment in texts is a re-
cent task in natural language processing. This
task is gaining a large attention nowadays due to
the explosion in the number of social media plat-
forms and the number of people using them. Some
Arabic sentiment datasets have been collected
(see Table 1). (Abdul-Mageed et al., 2014) pro-
posed the SAMAR system that perform subjectiv-
ity and sentiment analysis for Arabic social media
where they used different multi-domain datasets
collected from Wikipedia TalkPages, Twitter, and
Arabic forums. (Aly and Atiya, 2013) proposed
LABR, a book reviews dataset collected from
GoodReads. (Rushdi-Saleh et al., 2011) presented
an Arabic corpus of 500 movie reviews collected
from different web pages. (Refaee and Rieser,
2014) presented a manually annotated Arabic so-
cial corpus of 8,868 Tweets and they discussed
the method of collecting and annotating the cor-
pus. (Abdul-Mageed and Diab, 2014) proposed
SANA, a large-scale, multi-domain, and multi-
genre Arabic sentiment lexicon. The lexicon au-
tomatically extends two manually collected lex-
icons HUDA (4,905 entries) and SIFFAT (3,325
entries). (Ibrahim et al., 2015) built a manual cor-
pus of 1,000 tweets and 1000 microblogs and used
it for sentiment analysis task. (ElSahar and El-
Beltagy, 2015) introduced four datasets in their
work to build a multi-domain Arabic resource
(sentiment lexicon). (Nabil et al., 2014) and (El-
Sahar and El-Beltagy, 2015) proposed a semi-
supervised method for building a sentiment lexi-
con that can be used efficiently in sentiment anal-
ysis.

1https://github.com/mahmoudnabil/ASTD
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Data Set Name Size Source Type Cite
TAGREED (TGRD) 3,015 Tweets MSA/Dialectal (Abdul-Mageed et al., 2014)

TAHRIR (THR) 3,008 Wikipedia TalkPages MSA (Abdul-Mageed et al., 2014)
MONTADA (MONT) 3,097 Forums MSA/Dialectal (Abdul-Mageed et al., 2014)

OCA(Opinion Corpus for Arabic) 500 Movie reviews Dialectal (Rushdi-Saleh et al., 2011)
AWATIF 2,855 Wikipedia TalkPages/Forums MSA/Dialectal (Abdul-Mageed and Diab, 2012)

LABR(Large Scale Arabic Book Reviews) 63,257 GoodReads.com MSA/Dialectal (Aly and Atiya, 2013)
Hotel Reviews (HTL) 15,572 TripAdvisor.com MSA/Dialectal (ElSahar and El-Beltagy, 2015)

Restaurant Reviews (RES) 10,970 Qaym.com MSA/Dialectal (ElSahar and El-Beltagy, 2015)
Movie Reviews (MOV) 1,524 Elcinemas.com MSA/Dialectal (ElSahar and El-Beltagy, 2015)

Product Reviews (PROD) 4,272 Souq.com MSA/Dialectal (ElSahar and El-Beltagy, 2015)
Arabic Twitter Corpus 8,868 Tweets MSA/Dialectal (Refaee and Rieser, 2014)

Table 1: Arabic sentiment data sets

Figure 1: Tweets Histogram: The number of
tweets for each class category. Notice the un-
balance in the dataset, with much more objective
tweets than positive, negative, or mixed.

3 Twitter Dataset

3.1 Dataset Collection

We have collected over 84,000 Arabic tweets. We
downloaded the tweets over two stages: In the
first stage we used SocialBakers 2 to determine the
most active Egyptian Twitter accounts. This gave
us a list of 30 names. We got the recent tweets
of these accounts till November 2013, and this
amounted to about 36,000. In the second stage we
crawled EgyptTrends 3, a Twitter page for the top
trending hash tags in Egypt. We got about 2500
distinct hash tags which are used again to down-
load the tweets. We ended up obtaining about
48,000 tweets. After filtering out the non-Arabic
tweets, and performing some pre-processing steps
to clean up unwanted content like HTML, we
ended up with 54,716 Arabic tweets.

3.2 Dataset Annotation

We used Amazon Mechanical Turk (AMT) ser-
vice to manually annotate the data set through an

2http://www.socialbakers.com/twitter/
country/egypt/

3https://twitter.com/EgyptTrends

Total Number of conflict free tweets 10,006
Subjective positive tweets 799
Subjective negative tweets 1,684
Subjective mixed tweets 832

Objective tweets 6,691

Table 2: Twitter dataset statistics

Figure 3: Feature Counts. Number of unigram,
bigram, and trigram features per each class cate-
gory.

API called Boto4. We used four tags: objective,
subjective positive, subjective negative, and sub-
jective mixed. The tweets that are assigned the
same rating from at least two raters were consid-
ered as conflict free and are accepted for further
processing. Other tweets that have conflict from
all the three raters were ignored. We were able to
label around 10k tweets. Table 2 summarizes the
statistics for the conflict free ratings tweets.

3.3 Dataset Properties
The dataset has 10,006 tweets. Table 2 contains
some statistics gathered from the dataset. The his-
togram of the class categories is shown in Fig. 1,

4https://github.com/boto/boto
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Figure 2: ASTD tweets examples. The English translation is in the second column, the original Arabic
review on the middle column, and the rating shown in right.

Number of tweets 10,006
Median tokens per tweet 16

Max tokens per tweet 45
Avg. tokens per tweet 16

Number of tokens 160,206
Number of vocabularies 38,743

Table 3: Twitter Dataset Statistics..

where we notice the unbalance in the dataset, with
much more objective tweets than positive, nega-
tive, or mixed. Fig. 2 shows some examples from
the data set, including positive, negative, mixed
,and objective tweets.

4 Dataset Experiments

In this work, we performed a standard partition-
ing to the dataset then we used it for the sentiment
polarity classification problem using a wide range
of standard classifiers to perform 4 way sentiment
classification.

4.1 Data Preparation

We partitioned the data into training, validation
and test sets. The validation set is used as a mini-
test for evaluating and comparing models for pos-
sible inclusion into the final model. The ratio of
the data among these three sets is 6:2:2 respec-
tively.

Fig. 4 and Table 4 show the number of tweets
for each class category in the training, test, and
validation sets for both the balanced and unbal-
anced settings. Fig. 3 also shows the number of
n-gram counts for both the balanced and unbal-
anced settings.

4.2 4 Way Sentiment Classification

We explore using the dataset for the same set of ex-
periments presented in (Nabil et al., 2014) by ap-

.

Figure 4: Dataset Splits. Number of tweets for
each class category for training, validation, and
test sets for both balanced and unbalanced set-
tings.

plying a wide range of standard classifiers on the
balanced and unbalanced settings of the dataset.
The experiment is applied on both the token counts
and the Tf-Idf (token frequency inverse document
frequency) of the n-grams. Also we used the
same accuracy measures for evaluating our results
which are the weighted accuracy and the weighted
F1 measure.

Table 5 shows the result for each classifier after
training on both the training and the validation set
and evaluating the result on the test set (i.e. the
train:test ratio is 8:2). Each cell has numbers that
represent weighted accuracy / F1 measure where
the evaluation is performed on the test set. All
the experiments were implemented in Python us-
ing Scikit Learn5. Also the experiments were per-
formed on a machine with Intel® Core™ i5-4440

5http://scikit-learn.org/
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Balanced Unbalanced
Positive Negative Mixed Objective Positive Negative Mixed Objective

Tweets Count
Train Set 481 481 481 481 481 1012 500 4015
Test Set 159 159 159 159 159 336 166 1338

Validation Set 159 159 159 159 159 336 166 1338

Features Count
unigrams 16,455 52,040

unigrams+bigrams 33,354 88,681
unigrams+bigrams+trigrams 124,766 225,137

Table 4: Dataset Preparation Statistics. The top part shows the number of reviews for the training,
validation, and test sets for each class category in both the balanced and unbalanced settings. The bottom
part shows the number of features.

Features Tf-Idf
Balanced Unbalanced

1g 1g+2g 1g+2g+3g 1g 1g+2g 1g+2g+3g

MNB
No 0.467/0.470 0.487/0.491 0.491/0.493 0.686/0.604 0.684/0.590 0.682/0.584
Yes 0.481/0.484 0.491/0.492 0.484/0.485 0.669/0.537 0.670/0.539 0.669/0.538

BNB
No 0.465/0.446 0.431/0.391 0.392/0.334 0.670/0.540 0.669/0.537 0.669/0.537
Yes 0.289/0.184 0.255/0.110 0.253/0.107 0.669/0.537 0.669/0.537 0.669/0.537

SVM
No 0.425/0.421 0.443/0.440 0.431/0.425 0.644/0.611 0.679/0.625 0.679/0.616
Yes 0.451/0.450 0.469/0.467 0.461/0.460 0.687/0.620 0.689/0.624 0.691/0.626

Passive Aggressive
No 0.421/0.422 0.447/0.443 0.439/0.435 0.639/0.609 0.664/0.621 0.671/0.616
Yes 0.448/0.449 0.469/0.469 0.459/0.458 0.641/0.616 0.671/0.633 0.677/0.632

SGD
No 0.282/0.321 0.324/0.276 0.311/0.261 0.318/0.276 0.360/0.398 0.386/0.423
Yes 0.340/0.295 0.409/0.382 0.415/0.388 0.664/0.557 0.671/0.557 0.669/0.551

Logistic Regression
No 0.451/0.447 0.448/0.444 0.440/0.435 0.682/0.621 0.694/0.620 0.693/0.614
Yes 0.456/0.456 0.454/0.454 0.451/0.449 0.680/0.576 0.676/0.562 0.675/0.557

Linear Perceptron
No 0.395/0.399 0.428/0.426 0.429/0.425 0.480/0.517 0.656/0.622 0.649/0.618
Yes 0.437/0.436 0.456/0.455 0.440/0.439 0.617/0.602 0.650/0.625 0.648/0.629

KNN
No 0.288/0.260 0.283/0.251 0.285/0.244 0.653/0.549 0.654/0.547 0.651/0.540
Yes 0.371/0.370 0.406/0.406 0.409/0.409 0.665/0.606 0.663/0.611 0.666/0.615

Table 5: Experiment 1: 4 way Classification Experimental Results. Tf-Idf indicates whether tf-idf
weighting was used or not. MNB is Multinomial Naive Bayes, BNB is Bernoulli Naive Bayes, SVM is
the Support Vector Machine, SGD is the stochastic gradient descent and KNN is the K-nearest neighbor.
The numbers represent weighted accuracy / F1 measure where the evaluation is performed on the test
set. For example, 0.558/0.560 means a weighted accuracy of 0.558 and an F1 score of 0.560.

CPU @ 3.10GHz (4 cores) and 16GB of RAM.
From table 5 we can make the following obser-

vations:

1. The 4 way sentiment classification task is
more challenging than the 3 way sentiment
classification task. This is to be expected,
since we are dealing with four classes in the
former, as opposed to only three in the latter.

2. The balanced set is more challenging than
the unbalanced set for the classification task.
We believe that this because the the balanced
set contains much fewer tweets compared to
the unbalanced set. Since having fewer train-
ing examples create data sparsity for many n-
grams and may therefore leads to less reliable
classification.

3. SVM is the best classifier and this is consis-
tent with previous results in (Aly and Atiya,
2013) suggesting that the SVM is reliable
choice.

5 Conclusion and Future Work

In this paper we presented ASTD an Arabic social
sentiment analysis dataset gathered from twitter.
We presented our method of collecting and anno-
tating the dataset. We investigated the properties
and the statistics of the dataset and performed two
set of benchmark experiments: (1) 4 way senti-
ment classification; (2) Two stage classification.
Also we constructed a seed sentiment lexicon from
the dataset. Our planned next steps include:

1. Increase the size of the dataset.

2. Discuss the issue of unbalanced dataset and
text classification.

3. Extend the generated method either auto-
mated or manually.
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Abstract

For fine-grained sentiment analysis, we
need to go beyond zero-one polarity and
find a way to compare adjectives that share
a common semantic property. In this
paper, we present a semi-supervised ap-
proach to assign intensity levels to adjec-
tives, viz. high, medium and low, where
adjectives are compared when they belong
to the same semantic category. For exam-
ple, in the semantic category of EXPER-
TISE, expert, experienced and familiar are
respectively of level high, medium and
low. We obtain an overall accuracy of 77%
for intensity assignment. We show the sig-
nificance of considering intensity informa-
tion of adjectives in predicting star-rating
of reviews. Our intensity based prediction
system results in an accuracy of 59% for a
5-star rated movie review corpus.

1 Introduction

Sentence intensity becomes crucial when we need
to compare sentences having the same polarity ori-
entation. In such scenarios, we can use inten-
sity of words to judge the intensity of a sentence.
Words that bear the same semantic property can
be used interchangeably to upgrade or downgrade
the intensity of the expression. For example, good
and outstanding both are positive words from the
QUALITY category, but the latter can be used to
intensify positive expression in a sentence.

There are several manually or automatically
created lexical resources (Liu, 2010; Wilson et al.,
2005b; Wilson et al., 2005a; Taboada and Grieve,
2004) that assign a fixed positive (+1) or nega-
tive (−1) polarity to words, making no distinction
among them in terms of their intensity. This pa-
per presents a semi-supervised approach to assign
intensity levels to adjectives, viz. high, medium

and low, which share the same semantic property.
We have used the semantic frames of FrameNet-
1.5 (Baker et al., 1998) to obtain these semantic
categories. Our approach is based on the idea that
the most intense word has higher contextual simi-
larity with high intensity words than with medium
or low intensity words. We use the intensity an-
notated movie review corpus to obtain the most
intense word for a semantic category. Then, co-
sine similarity between word vectors of the most
intense word and other words of the category is
used to assign intensity levels to those words. Our
approach with the used resources is shown in fig-
ure 1.

Figure 1: Intensity Analysis System

Our Contribution: Corpus based approaches suf-
fer from the data sparsity problem. Our approach
tackles this problem by using word vectors for in-
tensity assignment (Section 2.3). It also provides
a better overall accuracy (77%) than current state
of the art when compared with gold-standard in-
tensity levels (Section 6.2). In addition to this,
we show that accuracy of the star rating prediction
task improves when we incorporate our intensity
levels as features in addition to standard features
such as unigrams (Section 6.3).
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2 Idea Used for Deriving Adjectival Scale

In this paper, we dealt with 52 semantic (polar)
categories of the FrameNet data and derived the
polarity-intensity ordering among adjectives for
each category. Examples of these semantic cate-
gories with a few words that belong to the category
are as follows.

• INTELLIGENCE: Brainy, brainless, intelli-
gent, smart, dim etc.

• CANDIDNESS: Honest, dishonest, trust-
worthy, reliable, gullible etc.

• EMOTION: Sad, upset, appalled, tormented,
gleeful, happy, pleased etc.

Our algorithm to assign intensity levels to adjec-
tives is based on the following ideas:

2.1 What Does Intensity Annotated Corpus
Tell About The Intensity of Words?

Rill et al. (2012) showed that an intensity anno-
tated polar corpus can be used to derive the in-
tensity of the adjectives. A high intensity word
will occur more frequently in high intensity re-
views. For example, the word excellent is found
118 times, while average is found only 16 times in
5-star rated movie reviews (Section 3). Based on
this distribution, we use a weighted mean formula
to find intensity of the words from the corpus. We
call it Weighted Normalized Polarity Intensity
(WNPI) formula. For a 5-star intensity rating cor-
pus, the WNPI formula is as follows:

WNPI(word) =
∑5

i=1 i ∗ Ci
5 ∗∑5

i=1Ci
(1)

whereCi is the count of theword in i-star reviews.

2.2 Need Significant Occurrence of A Word
The WNPI formula gives a corpus based result,
hence can give biased scores for words which oc-
cur less frequently in the corpus. For example,
in our movie review data-set, the word substan-
dard occurs only 3 times in the corpus, and these
occurrences happen to be in 1-star and 2-star re-
views only. Hence, the WNPI formula assigns a
higher score to substandard. To avoid such a bias,
we integrate WNPI formula with Chi-Square
test. Sharma and Bhattacharyya (2013) used Chi-
Square test to find significant polar words in a do-
main. We use the same categorical Chi-Square test
in our work.

2.3 How to Get Intensity Clue for All Words?

A combination of WNPI formula and Chi-
Square test cannot assign intensity scores to ad-
jectives, which are not present in the corpus. To
overcome this data sparsity problem, we restrict
the use of WNPI formula to identify the most
intense word in each category. We explore pre-
computed context vectors of words, presented by
Mikolov et al. (2011) (Section 3), to assign in-
tensity levels to remaining words of the semantic
category:

Case-1 Words which have less number of
senses: These words will have a limited set of con-
text words. Hence, their context vectors will also
be based on these limited words. Example: excel-
lent, extraordinary, amazing, superb, great etc.

Case-2 Words which have many senses: These
words will have a large set of context words.
Hence their context vectors will be based on a set
of large number of words. Example: good, fair,
fine, average etc.
Inferences:

1. Two words expressing similar meaning, and
satisfying case-1 will have similar context. Hence,
their word vectors will exhibit high cosine similar-
ity. Whereas a word satisfying case-2 will be less
similar to a word satisfying case-1.

2. The classical semantic bleaching theory1

states that a word which has less number of senses
(possibly one) tends to have higher intensity in
comparison to a word having more senses. Con-
sidering semantic bleaching phenomenon as a
base, we deduce that words which satisfy case-1
tend to be high intensity words while words satis-
fying case-2 are low intensity words.

Hence, we conclude that high intensity words
(case-1) have higher cosine similarity with each
other than with low or medium intensity words
(case-2). Therefore, cosine similarity with a high
intensity word can be used to obtain intensity or-
dering for remaining words of the category.

3 Data and Resources

This section gives an overview of the corpus and
lexical resources used in our approach.

Semantic Categories: We worked with frames
of FrameNet-1.5 (Baker et al., 1998). A frame

1The semantic bleaching phenomenon in words was
reported in US edition of New York Times: http:
//www.nytimes.com/2010/07/18/magazine/
18onlanguage-anniversary.html?\_r=0
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Rating Definition Size
0 Totally painful, unbearable

picture
179

1 Poor Show ( dont waste your
money)

1057

2 Average Movie 888
3 Excellent show, look for it 1977
4 A must see film 905

Table 1: Review ratings with their definitions and
number of reviews.

represents a semantic property and contains words
bearing the property. We explored the FrameNet
data manually and found 52 frames (semantic cat-
egories) with polar semantic properties.

Intensity Annotated Corpus: To identify a
high intensity word for a semantic category, we
use a movie review corpus2 (Pang and Lee, 2005)
of 5006 files. Each review is rated on a scale of 0
to 4, where 0 indicates an unbearable movie and
4 represents a must see film. Table 1 describes the
meanings of the rating scores with the count of re-
views in each rating. We can infer that increase in
rating corresponds to increase in positive intensity
and decrease in negative intensity.

Sentiment Lexicon: To identify the polarity
orientation of words, we use a list of positive
(2006) and negative (4783) words3 (Liu, 2010).
We manually assign polarities to universally po-
lar words like enduring, creditable and nonsensi-
cal, which are missing in this lexicon, using other
standard lexicons. We found a total of 218 such
missing words.

Context Vectors: We use the precomputed
context vectors of words generated using Recur-
rent Neural Network Language Model (RNNLM)
(Mikolov et al., 2013). The RNN is trained with
320M words from the broadcast news data.

4 Gold Standard Data Preparation

We asked five annotators to assign words to differ-
ent intensity levels: high, medium, and low. An-
notators were given positive and negative words
of each category separately. The level chosen by
a majority of annotators is selected as the gold

2Written and rated by four authorized movie crit-
ics. Available at: http://www.cs.cornell.edu/
people/pabo/movie-review-data/

3Available at: http://www.cs.uic.edu/˜liub/
FBS/sentiment-analysis.html\#datasets

standard intensity level for the word. To compute
agreement among five annotators, we used fleiss’
kappa, and obtained a score of 0.61.

Figure 2: Intensity scale for QUALITY category,
where extraordinary was found as Pos-pivot and
awful as Neg-pivot.

5 Identification of Intensity of Adjectives

In this section, we give a step-by-step description
of our approach.

Step 1: Find Intensity of Words
We calculate polarity-intensity of each word of a
semantic category using WNPI formula (eq. 1).
Based on the polarity orientation of a word, the
WNPI formula uses intensity interpretation of
star-rating as shown in table 2. The variable i of
theWNPI formula refers to these star ratings (in-
tensity levels). The polarity orientation of an ob-
served word is obtained using Bing Liu’s lexicon.

aaaaaaaaaa
Word-Orientation

Star-Rating
0 1 2 3 4

Positive 1 2 3 4 5
Negative 5 4 3 2 1

Table 2: Interpretation of star rating as intensity
scores of reviews for positive and negative words.

Step 2: Find Pivot Using Chi-Square Test
The word which gives the highest Chi-Square
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score with the highest intensity score as per
WNPI is set as pivot (Pos-pivot and Neg-pivot).
The Chi-Square test helps us to exclude the biased
words, which are getting high intensity scores by
the WNPI formula, just by chance (Section 2.2).

Step 3: Obtain Similarity Scores with Pivot
Further, we compute the cosine similarity between
the context vectors of the pivot and the other words
of the category. We use Pos-pivot, if the observed
word is positive and Neg-pivot, if the observed
word is negative.

Step 4: Assign Intensity Level to Words
Finally, we arrange similarity scores obtained
above in decreasing order, and place 2 break
points in the sequence where consecutive similar-
ity scores differ the most. We set these break-
points as the thresholds for intensity levels.

Figure 2 shows the intensity scale obtained by
our approach for the QUALITY category, where
extraordinary was found as Pos-pivot and awful as
Neg-pivot.

6 Experiments And Results

To evaluate the performance of our approach, we
consider three measures: accuracy with the gold-
standard data, comparison with state of the art and
accuracy for the star rating prediction task.

6.1 Evaluation Using Gold Standard Data

We compute accuracy as the fraction of adjectives
for which the predicted intensity level is the same
as the gold standard level. We obtained an overall
accuracy of 77% across 52 polar categories, con-
taining a total of 697 adjectives.

6.2 Comparison with State of The Art

Ruppenhofer et al. (2014) showed that a cor-
pus based method called MeanStar approach per-
forms the best for intensity ordering task among
existing approaches (De Melo and Bansal, 2013;
Kim and de Marneffe, 2013; Fahrni and Klen-
ner, 2008; Dragut et al., 2010) for polar seman-
tic categories. Figure 3 shows the comparison be-
tween MeanStar and our approach for four seman-
tic categories4. For first three categories, our ap-
proach performs better than MeanStar and for EX-
PERTISE we obtain the same level of accuracy.
MeanStar approach gives an overall accuracy of

4We have used the same semantic categories and inten-
sity annotated movie review corpus in our work as used by
Ruppenhofer et al. (2014).

73% across 52 polar categories, which is signifi-
cantly lesser than the accuracy obtained with our
approach. MeanStar approach does not assign in-
tensity score to words missing from the corpus.
While, 88 out of 122 missing words are assigned
correct intensity levels by our approach.

Figure 3: Accuracy obtained with MeanStar and
our approach

6.3 Evaluation Using Star Rating Prediction
There have been several successful attempts at
sentiment polarity detection in the past (Turney,
2002; Pang et al., 2002; Pang and Lee, 2004; Mo-
hammad et al., 2013; Svetlana Kiritchenko and
Mohammad, 2014). However, prediction of star
ratings still considered as a challenging task (Qu
et al., 2010; Gupta et al., 2010; Boteanu and Cher-
nova, 2013). We implemented three systems to
evaluate the significance of intensity annotated ad-
jectives in star rating prediction task.

System 1: A rule based system based on the
concept that negatively high intense words will oc-
cur more frequently in the low star reviews and
positively high intense words will occur more fre-
quently in the high star reviews. This system uses
the following function I to assign intensity score
to a review r:

I(r) =
∑3

i=1 i ∗ CPi −
∑3

i=1 i ∗ CNi
3 ∗ (

∑3
i=1C

P
i +

∑3
i=1C

N
i )

(2)

where CPi and CNi respectively represent sum of
the term-frequencies of positive and negative ad-
jectives with intensity i.

Eq. 2 gives us an intensity score between −1
and +1 for each review. We need four breakpoints
on these intensity scores to map intensity scores
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into 5-star ratings. We learn these breakpoints by
maximizing accuracy for the training data5 over all
possible breakpoints.

System 2: In this system, we consider intensity
of each adjective as +1 or −1 as per its polarity,
and then uses eq. 2 to find review intensity.

System 3: This is an SVM based system which
uses four different types of features: (a) unigrams,
(b) unigrams with the modification that if adjec-
tive belongs to our intensity annotated adjective
list, then feature value is intensity of the adjective,
(c) and (d) use the scores coming from eq. 2 as an
additional feature over those in (a) and (b) respec-
tively.

System Accuracy(%) MSE MAE
1 42.28 0.94 0.69
2 27.33 1.12 0.86

3(a) 55.81 0.63 0.50
3(b) 57.21 0.56 0.47
3(c) 58.71 0.57 0.46
3(d) 59.21 0.54 0.45

Table 3: Comparison of rating prediction systems,
where MSE is the Mean Squared Error and MAE
is the Mean Absolute Error

Table 3 shows the results obtained with the
above systems. System 3(d) achieves the maxi-
mum accuracy depicting that inclusion of intensity
information with the standard features improves
the star rating prediction significantly.

7 Related Work

Sentiment analysis on adjectives has been exten-
sively explored in NLP literature. However, most
of the works addressed the problem of finding po-
larity orientation of adjectives (Hatzivassiloglou
and McKeown, 1997; Wiebe, 2000; Fahrni and
Klenner, 2008; Dragut et al., 2010). The first work
in the direction of adjectival scale was done by
Hatzivassiloglou and McKeown (1993). They ex-
ploited linguistic knowledge available in the cor-
pora to compute similarity between adjectives.
However, their approach did not consider polarity
orientation of adjectives, they provided ordering
among non-polar adjectives like, cold, lukewarm,
warm, hot.

5We use 80% of the star-rated movie review corpus as
training data and 20% as test data. The results reported in
table 3 are based on the 20% test data.

The task of ordering adjectives according to
their polarity-intensity has recently received much
attention due to the vital role of intensity analy-
sis in several real world tasks. Kim et al. (2013)
interpreted the continuous space word representa-
tion by demonstrating that vector off-set can be
used to derive scalar relationship amongst adjec-
tives. Their approach provided relationship among
all the adjectives independent of their semantic
property. De Melo and Bansal (2013) used a pat-
tern based approach to identify intensity relation
among adjectives, but their approach had a severe
coverage problem. They also did not consider the
semantic property of adjectives, assuming one sin-
gle intensity-scale for all adjectives.

Ruppenhofer et al. (2014) provided ordering
among polar adjectives that bear the same seman-
tic property. Their approach was completely cor-
pus dependent, it was not able to derive intensity
of those adjectives which were not found in the
corpus. We have used the same star-rated movie
review corpus in our work as used by Ruppenhofer
et al. (2014) and found 122 polar adjectives which
are absent from the corpus. Our system is able
to identify intensity levels for these missing adjec-
tives. Moreover, we obtained an improvement of
4% in overall accuracy.

8 Conclusion

In this paper, we have proposed an approach that
assigns intensity levels to domain independent ad-
jectives, viz. high, medium and low. The impor-
tant feature of our approach is that it is not fully
corpus dependent, hence is able to assign inten-
sity to adjectives that are absent in the corpus. We
have reported that the overall results are better than
the recently reported corpus based approach and
fairly close to human agreement on this challeng-
ing task.

The use of adjectives with their intensity infor-
mation can enrich existing sentiment analysis sys-
tems. We have shown the significance of consider-
ing intensity information of adjectives in predict-
ing the intensity of movie reviews.
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Abstract

Sentiment analysis models often use rat-
ings as labels, assuming that these rat-
ings reflect the sentiment of the accom-
panying text. We investigate (i) whether
human readers can infer ratings from re-
view text, (ii) how human performance
compares to a regression model, and (iii)
whether model performance is affected by
the rating “source” (i.e. original author
vs. annotator). We collect IMDb movie
reviews with author-provided ratings, and
have them re-annotated by crowdsourced
and trained annotators. Annotators re-
produce the original ratings better than
a model, but are still far off in more
than 5% of the cases. Models trained on
annotator-labels outperform those trained
on author-labels, questioning the useful-
ness of author-rated reviews as training
data for sentiment analysis.

1 Introduction

Machine learning approaches have become the
dominant paradigm for sentiment analysis since
introduced by Pang et al. (2002). While these
approaches produce good results, they need
to be trained on sufficiently large labeled data
sets. Since human annotation can be both slow
and expensive, many studies use data with an
inherent subjectivity indicator, such as movie or
product reviews with user ratings (Dave et al.,
2003; Pang and Lee, 2005; Snyder and Barzilay,
2007; Elming et al., 2014, i.a.). While it is a fair
assumption that the rating expresses the author’s
attitude towards the subject, it is less obvious to
what extent the review text reflects this attitude,
and hence what the relation between text and
rating is. In this study, we ask

(i) whether readers are able to infer the author’s
numerical rating based on the author’s review text,

(ii) how well learning algorithms perform on
the task compared to human readers, and

(iii) whether model performance is affected by
the rating source used for labeling (i.e. how the
numerical rating is obtained) .

In order to investigate these questions, we com-
pile a data set of user-generated movie reviews
with author ratings and collect both crowdsourced
annotator ratings and trained annotator ratings.
This setup allows us to evaluate the reproducibility
of ratings for both humans and models.

We address (i) by comparing author ratings
to crowdsourced and trained annotator ratings.
Author ratings supposedly capture the essence
of the author’s sentiment, but we do not expect
annotators to perfectly reproduce these ratings
based on text alone.

We investigate (ii) by evaluating a linear re-
gression model on author-labeled data. Sentiment
analysis models supposedly emulate the cognitive
process of text-based rating inference. The gap
between human and model performance is inter-
esting, because if human annotators are unable to
consistently infer author ratings, we cannot expect
learning algorithms to achieve this goal.

Finally, we address (iii) by comparing re-
gression models trained on data labeled with
crowdsourced and author ratings. Existing work
treats both labeling sources as ontologically in-
terchangeable. That is, it does not matter whether
a text was labeled by the author in the process of
writing said text, or by an annotator who has been
paid to label the text a posteriori. This is not at all
self-evident.

To the best of our knowledge, no previous
study has investigated the assumption that the
sentiment of a text can be objectively inferred.
Since sentiment analysis is still far from being
solved, investigating this core bias can help
address current limitations.
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2 Data

We collect 2,000 user-generated IMDb movie
reviews and randomly sample 200 authors, each
contributing 10 reviews of a length between 800
and 2,000 characters. All reviews are rated on a
10-point scale. Some authors mention their rating
in the review text. This mention is of course an
unwanted clue for the annotators, why we remove
these reviews.

We pay annotators on CrowdFlower to rate the
semantic orientation of reviews on a scale from 1
(negative) to 10 (positive). Each review is labeled
by five experienced annotators. Overall, 171 an-
notators participated in the task. We incorporate
control items in the annotation task, and each
annotator starts by completing eight of these test
questions. Further test questions are inserted ran-
domly throughout the annotation tasks. We define
a range of permitted ratings (within two steps of
the original author rating). If annotators fall below
an accuracy of 70%, they are removed from the
project. Reviews used as test questions (10% of
the initial data) are not part of the final data set.

We use three trained annotators to rate a 20%
subset of the reviews: two authors of this study,
and a student. All three annotate the full subset.
We use stratified sampling to select the subset,
considering each rating as a stratum. The distribu-
tion of author ratings in our subset thus matches
the distribution of author ratings in the full data
set. The subset contains 317 reviews, the full data
set 1,629 reviews. Notice that only the subset is
used to answer (i), whereas the full data set is
used for the regression-based tasks (ii) and (iii).

3 Experiments

We want to establish the reproducibility of author
ratings from text by human annotators and statis-
tical models. In order to measure performance of
the different methods, we use mean absolute error
(MAE) and root mean squared error (RMSE).
While RMSE is more common, MAE is more
directly interpretable, as it does not emphasize
outliers. For this reason, we focus on MAE in our
analysis.

MAE and RMSE measure the proximity
between two sets of observations, but we also
need a measure of the relative movement between
observations. For this purpose, we use mainly
Spearman’s ρ, but also report Krippendorff’s α
and Cohen’s κ. The latter is a standard agreement

measure, but does not work as well for ordinal
ratings such as these, since it assumes a uniform
distribution to compute chance agreement.

We have two sources of human annotations,
namely three trained annotators and five crowd-
source annotators per review. In order to obtain
our final ratings, we average over each of those
annotation sources.1 This result is more robust
towards individual biases and misinterpretations.
This effect is known as wisdom of the crowd and
well-documented in the literature, e.g. Steyvers
et al. (2009). However, we also wish to inves-
tigate how well individual annotators perform.
Therefore, we also compute error and pairwise
correlation for each individual annotator with the
authors or other annotators, and then average over
the pairwise comparisons for each annotator type.

This measure is equivalent to a macro-score and
captures the average influence of individual anno-
tators. When comparing across the two groups of
annotators, we use all possible 3x5 combinations.

We use the same measures as outlined above
to compare the different annotators to each other
within the two groups. Hence, we compute
both MAE, RMSE and correlation calculated
between the individual crowdsource and trained
annotators, respectively.

In order to control for different levels vari-
ance in the rating distributions, we align the
crowdsource annotator and author distribution
by sub-sampling. The number of reviews per
rating is determined by the distribution with fewer
reviews for the given rating. The resulting two
data sets contain the same number of reviews per
rating, and a total of 1,319 reviews. The main
implication of aligning the distributions, is that
variance for both distributions will be identical,
thus making the comparison more appropriate.

3.1 Model

We use a linear least-squares model with L2

regularization (ridge regression) to reduce over-
fitting.2 L2 imposes a term α, which penalizes the
parameters w of the model if they grow too large.
Formally, w can be calculated by

min
w
‖Xw − y‖2 2 + α‖w‖2 2

We also experiment with incorporating a prior,

1Aggregating with an item-response model like MACE
(Hovy et al., 2013) results in worse estimates, since it requires
nominal data.

2Experimenting with support vector regression did not
yield better results, so we chose the simpler model.
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to model the tendency of authors to use the
extremes more than predicted by a Gaussian
distribution. We use a beta distribution with shape
parameters (0.8, 0.8).

We use 10-fold cross validation for robust
results, and 5-fold cross validation on each of
the then training folds in order to determine the
optimal α.

We use bag-of-words features, including all un-
igrams appearing more than twice in the training
data. 3

4 Results

As baselines, we use the average rating over
each of the entire rating distributions. Since the
distributions differ between author and annotator
ratings, the baseline differs from task to task.
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Figure 1. Rating distributions for authors, crowd-
sourced, and trained annotator ratings. Dots indi-
cate aligned distribution.

Human Rating Inference (i) Figure 1 shows
the rating distributions of the three human
sources. Note the more peaked distributions of
both annotator types, as compared to the author
distribution. Especially crowdsource annotators
have a smaller variance. Furthermore, the author
distribution includes more extreme ratings, while
the annotator distributions show no such “flaps”.

3To rule out that the lack of any syntactic information
(which human annotators use) disadvantages the model, we
also experimented with including dependency triples (dobj
and nsubj, the most frequent dependencies) using the Stan-
ford Parser (Klein and Manning, 2003). However, perfor-
mance did not improve, so due to limited space, we did not
further explore this option.

Trained annotators are more correlated with
one another (ρ = 0.90, α = 0.67, κ = 0.34)
than the crowdsource annotators (ρ = 0.75, α =
0.52, κ = 0.09). Likewise, we see a lower MAE
among trained annotators (0.75) than among
crowdsource annotators (1.13), indicating a more
diverse set of ratings for the latter.

aut - cs aut - tr tr - cs

Corr. (ρ)
Mean 0.84 0.85 0.94
Ind. 0.71 0.83 0.80

MAE
Mean 0.96 0.96 0.71
Ind. 1.15 1.05 1.07

RMSE
Mean 1.31 1.30 1.01
Ind. 1.61 1.44 1.48

Table 1. Pairwise comparisons between author
(aut), trained (tr), and crowdsource (cs) ratings.

Table 1 compares the different rating sources.
We find a higher correlation and lower error
between the two sets of annotator ratings than be-
tween the author ratings and any of the annotator
ratings. However, when comparing the individual
rating correlations, author ratings are highly
correlated with trained, but not with crowdsource
annnotators, showing the uncertain nature of
crowdsource annotators.

There is no discernible difference between the
two annotator groups in terms of error margins.
80% of mean annotator ratings, regardless of
source, are correctly inferred or one step off.
Slightly more than 5% of ratings are more than
two steps off. However, comparing individual
annotator ratings instead of mean ratings, some
crowdsource annotators are a full nine steps off,
and in a single case, even one of the trained
annotators was eight steps off.

Ridge +Prior Aligned
Aut 1.66 / 2.14 1.70 / 2.21 1.52 / 1.95
Base 2.15 / 2.62 2.15 / 2.62 1.85 / 2.24
Ann 1.31 / 1.69 - 1.34 / 1.72
Base 1.85 / 2.23 - 1.85 / 2.24
Ann/Aut 1.60 / 2.05 - -
Base 2.15 / 2.62 - -

Table 2. MAEs/RMSEs for baselines and
regressors trained and tested on Aut=authors;
Ann=crowdsource annotators; Ann/Aut=trained
on annotators and tested on authors.

In the next section, we compare the MAE be-
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tween author ratings and the two sets of annotator
ratings with the performance of the linear model.
Conveniently, the numbers for the two types of
annotators are equal (0.96), making it unnecessary
to distinguish between them.

Human vs. Machine (ii) Table 2 shows the
regression results. Since we want to compare the
ability of people and regressors to infer author
ratings from text, we only look at the Author row.
Both the full rating distributions and the aligned
distribution(s) are presented in Figure 1. All
settings easily outperform the baseline.

The regression model achieves an MAE of 1.66,
whereas both sets of human annotators achieve a
MAE of 0.96 (see Table 1). This is an absolute
difference of 0.70 in favor of the annotators. Or, in
relative terms: the MAE of the learning algorithm
is 72.6% larger than the human MAE.

Author vs. Annotator Labels (iii) In order to
test whether the model is influenced by the label
source, we compare the results in the Author
and Annotator rows of Table 2. The regressor
performs noticeably better on the annotator
ratings than on the author ratings when using
the full data set. Just as human annotators, the
regressor under-estimates the extreme ratings (i.e.,
the “flaps”). Even incorporating a prior to address
this shortcoming does not increase performance.

The performance difference between the mod-
els trained on the aligned distributions is smaller,
but still noticeable. This is an important result,
indicating that the model’s performance drop
when trained on authors is not solely due to the
variance in the underlying distribution, but to the
quality of the ratings.

The Ann/Aut row indicates that even if the
goal is to predict author ratings, it could still be
advantageous to train on annotator-labeled data.

5 Related Work

Since Pang et al. (2002) used author-labeled IMDb
user reviews in their seminal study, author-labeled
data has been used for a wide range of do-
mains, like user-generated product reviews (Dave
et al., 2003), restaurant reviews with several aspect
ratings (Snyder and Barzilay, 2007), movie re-
views from experienced film critics (Pang and Lee,
2005), business reviews (Hardt and Wulff, 2012;
Elming et al., 2014; Hovy, 2015), and many more.

Pang and Lee (2005) also argue that it is unrea-
sonable to expect a learning algorithm to predict
ratings on a fine-grained scale if humans are not
able to do so. To test this, they presented pairs
of movie reviews from a single author rated on a
10-point Likert scale to two subjects (the authors
themselves). Subjects had to decide whether one
review was more, less, or equally positive than
the other. Subjects correctly discerned reviews
separated by more than three steps, but accuracy
dropped when relative difference decreases. Pang
and Lee (2005) also identify three obstacles for
humans to accurately infer author ratings, namely
lack of calibration, author inconsistency and
textually unsupported ratings.

While suitable for their purposes, the study
does not answer our research questions. First of
all, the experiment is rather small (178 instances),
which limits general validity and reliability. Sec-
ond, the study tests the human ability to discern
relative, not absolute differences. If two reviews
rated 7 and 8 are judged a 3 and a 4, the relative
difference will be correctly identified, even though
the guess is far off in absolute terms. Furthermore,
single-author reviews dilute the effects of the three
aforementioned obstacles. Inconsistencies within
a single author are undoubtedly smaller than
inconsistencies between multiple authors. Single-
author use also affects lack of calibration, since
subjects can adjust to the writing style of one au-
thor better than that of several. Finally, we expect
experienced authors to be less prone to producing
reviews that do not support their ratings.

Annotator labels are typically used for phrase-
level semantics (Wilson et al., 2005; Wiebe et al.,
2005; Socher et al., 2013). Alternatively, labels
can be induced from salient sentiment-related
features like emoticons (Pak and Paroubek, 2010;
Go et al., 2009; Tang et al., 2014) or hashtags
(Kouloumpis et al., 2011). Often, the label source
tends to be a matter of convenience, rather than
theoretical reflection. The lack of considerations
regarding potential differences between author
and annotator labels implies that these are often
perceived as ontologically equivalent. We do not
believe this to be the case.

6 Discussion

Human rating inference (i) We observe some
interesting differences between the three rating
distributions. First, the “flaps” in the extreme
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ratings in the author ratings are not present in the
annotator rating distributions. This phenomenon
might be explained by the observation that
“the propensity to post online reviews is higher
for movies that are perceived by consumers to
be exceptionally good or exceptionally bad”
(Dellarocas and Narayan, 2006). However, this
tendency does not explain why the flaps are not
present in the annotator distributions. One pos-
sible explanation is risk aversion. An annotator
might estimate a review to be between 6 and
10. She might also estimate 10 to be the most
likely rating and 6 the least. However, in order
to minimize the margin of error, picking 8 is a
better option than 6 or 10, since it will ensure
the annotator is within two steps of the author’s
rating. This behavior is especially prevalent with
crowdsourced annotators, who have a monetary
incentive to minimize their error, which could
explain the lack of flaps in their distribution. In-
deed, the trained annotators show some evidence
of flaps, but are still less extreme than the authors
(i.e. their mean is closer to the center of the scale).

We also want to stress the role of wisdom of
the crowd. Individual annotators perform worse
(with regard to both correlation and MAE) than
the mean over all annotators. This holds for
both annotator types. Human ability to infer
author ratings should thus be seen in light of
these results. No individual annotator performed
better than the mean of all annotators. The
wisdom-of-the-crowd effect might also explain
why crowdsource annotators perform as well as
trained annotators: using five crowdsourced (vs.
three trained) annotators provides more robust
estimates to counter sloppy annotators.

We might expect a simple answer to our initial
research question whether humans are able to
infer author ratings. Of course, this is not the case.
Most annotator ratings were within two steps of
the original author rating. Only slightly more than
5% were further off. These results indicate that
humans in most cases are able to infer the original
author rating with decent accuracy, if allowed to
“work together”.

Human vs. Machine (ii) Based on our results,
learning algorithms are still worse than humans
in detecting semantic orientation of text. This
difference holds even though humans, too, fail in a
considerable number of cases. Overall, our results
provide an upper bound for the performance we

can expect from learning algorithms.

Author vs. Annotator Labels (iii) As hy-
pothesized, using annotator labels lowered the
MAE more than using author labels. Presumably,
annotator labels follow a more regular, and thus
predictable, pattern than author labels, since the
former are generated by the reader’s interaction
with the text.

The aligned-distribution results support this
theory. Aligning the distributions controls for
different levels of rating variation in the distribu-
tions, thus ruling it out as confounder for the MAE
difference. The aligned-distribution results also
indicate that the model is biased towards mean
ratings: MAE improves for author labels, since the
relatively high variation is eliminated, but worsens
for the annotator labels, as variance increases.

However, alignment also creates problems.
First, the reviews contained in the author and
annotator data sets differ in 18.6 % of the cases,
although this should not be of significant advan-
tage to either set. Second, aligned distributions do
not evaluate the natural rating distributions. How-
ever, results follow the same trend as when using
unmodified distributions (and hence the exact
same reviews): annotator labels outperform author
labels. All this suggests that annotator labels are
more aligned with the text than author labels.

7 Conclusion

We find that readers infer author ratings from the
review text fairly accurately (on average less than
one step off on a 10-point scale). However, in
more than 5% of the cases, the annotators were
off by at least three points.

Human annotators outperform a linear regres-
sion model, even when adding a prior. We believe
that no trivial adjustments can bridge this gap.
However, the model achieves better results using
annotator rather than author ratings, even when
controlling for rating variance as a confounding
factor. This suggests that author ratings are
not optimal data labels for text-based sentiment
analysis models.
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Abstract

We present the Trip-MAML dataset, a
Multi-Lingual dataset of hotel reviews
that have been manually annotated at the
sentence-level with Multi-Aspect senti-
ment labels. This dataset has been built
as an extension of an existent English-only
dataset, adding documents written in Ital-
ian and Spanish. We detail the dataset
construction process, covering the data
gathering, selection, and annotation. We
present inter-annotator agreement figures
and baseline experimental results, compar-
ing the three languages. Trip-MAML is
a multi-lingual dataset for aspect-oriented
opinion mining that enables researchers (i)
to face the problem on languages other
than English and (ii) to the experiment the
application of cross-lingual learning meth-
ods to the task.

1 Introduction

Reviews of products and services that are sponta-
neously produced by customers represent a source
of unquestionable value not only for marketing
strategies of private companies and organizations,
but also for other users since their purchasing de-
cisions are likely influenced by other customers’
opinions (Chevalier and Mayzlin, 2006).

Overall ratings (e.g., in terms of a five stars rat-
ing scale), and also aspect-specific ratings (e.g.,
the Cleanliness or Location of a hotel), are the typi-
cal additional information expressed by customers
in their reviews. Those ratings help to derive a
number of global scores to facilitate a first screen-
ing of the product or service at hand. Notwith-
standing, users who pay more attention to a par-
ticular aspect (e.g., the Rooms of a hotel) remain

constrained to manually inspect the entire text
of reviews in order to find out the reasons other
users argued in that respect. Methods for au-
tomatic analysis of the aspect-oriented sentiment
expressed in reviews would enable highlighting
aspect-relevant parts of the document, so as to al-
low users to perform a faster and focused inspec-
tion of them.

Previous work on opinion mining (Pang and
Lee, 2008) has already faced the overall sentiment
prediction (Pang et al., 2002), multiple aspect-
oriented analysis (Hu and Liu, 2004), and fine-
grained phrase-level analysis (Wilson et al., 2009).
Most of the available opinion mining datasets con-
tain only documents written in English, as this lan-
guage is the most used on the Internet and the one
for which more NLP tools and resources are avail-
able. (Hu and Liu, 2004) worked on the summa-
rization of reviews by means of weakly supervised
feature mining. (Täckström and McDonald, 2011)
used a finer-grained dataset in which global po-
larity annotation is applied also to each sentence
composing the document. Similarly did (Socher
et al., 2013) with the Stanford Sentiment Tree-
bank, which annotates each syntactically plausi-
ble phrase in thousands of sentences using anno-
tators from Amazon’s Mechanical Turk, annotat-
ing the polarity of phrases on a five-level scale.
(Lazaridou et al., 2013) performed a single-label
polarity annotation of elementary discourse units
of TripAdvisor reviews, adopting ten aspect labels.
(Marcheggiani et al., 2014) did a similar annota-
tion work, using sentences as the annotation ele-
ments and adopting a multi-label polarity annota-
tion, i.e., each sentence can be assigned to zero,
one, or more than one aspect.

Cross-lingual sentiment classification (Wan,
2009; Prettenhofer and Stein, 2011) explores the
scenario in which training data are available for
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a language that is different from the language of
the test documents. Cross-lingual learning meth-
ods have important practical applications, since
they allow to build classifiers for many languages
reusing the training data produced for a single lan-
guage (typically English), probably giving up a bit
of accuracy, but compensating it with a large save
in terms of human annotation costs.

Multi-lingual datasets are beneficial to the re-
search community both as a benchmark to ex-
plore cross-lingual learning and also as resources
on which to develop and test new NLP tools for
languages other than English. Prettenhofer and
Stein (2010) used a multi-lingual dataset focused
on full-document classification at the global po-
larity level. Denecke (2008) used a dataset of 200
Amazon reviews in German to test cross-lingual
document polarity classification using an English
training set. Klinger and Cimiano (2014) pro-
duced a bi-lingual dataset (English and German),
named USAGE, in which aspect expressions and
subjective expressions are annotated in Amazon
product reviews. In (Klinger and Cimiano, 2014)
aspect expressions can be any piece of text that
mentions a relevant property of the reviewed en-
tity (e.g., washer, hose, looks) and are not categor-
ical label, as in our dataset. The USAGE dataset is
thus more oriented at information extraction rather
than at text classification applications. Banea et al.
(2010) used machine translation to create a multi-
lingual version of the information-extraction ori-
ented MPQA dataset (Wiebe et al., 2005) on six
languages (English, Arabic, French, German, Ro-
manian and Spanish).

In this paper we present Trip-MAML, which
extends the Trip-MA1 dataset of Marcheggiani et
al. (2014) with Italian and Spanish annotated re-
views. We describe Trip-MAML and report ex-
periments aimed at defining a first baseline. Both
the dataset and the software used in experiments
are publicly available at http://hlt.isti.
cnr.it/trip-maml/.

2 Annotation Process

We recall the annotation process adopted by
Marcheggiani et al. (2014) for Trip-MA and the
procedure we employed to extend it into Trip-
MAML. We will use the national codes EN, ES,

1Marcheggiani et al. (2014) gave no name to their dataset,
here we name it Trip-MA to identify its source and its multi-
aspect nature.

and IT, to denote the English, Spanish, and Ital-
ian parts of the Trip-MAML dataset, respectively.
Note that EN coincides with Trip-MA.

2.1 English Reviews

The Trip-MA dataset was created by Marcheg-
giani et al. (2014) by annotating a set of 442
reviews, written in English, randomly sampled
from the publicly available TripAdvisor dataset of
Wang et al. (2010), composed by 235,793 reviews.
Each review comes with an overall rating on a dis-
crete ordinal scale from 1 to 5 “stars”. The dataset
was annotated according to 9 recurrent aspects fre-
quently involved in hotel reviews: Rooms, Clean-
liness, Value, Service, Location, Check-in, Business,
Food, and Building. The last two are not officially
rated by TripAdvisor but were added because they
are frequently commented in reviews. Two “catch-
all” aspects, Other and NotRelated, were also added,
for a total of 11 aspect. Aspect Other denotes
opinions that are pertinent to the hotel being re-
viewed, but not relevant to any of the former nine
aspects (e.g., generic evaluations like Pulitzer ex-
ceeded our expectations). Aspect NotRelated de-
notes opinions that are not related to the hotel
(e.g., Tour Eiffel is amazing).

If a sentence is relevant to an aspect, the possi-
ble sentiment label values are three: Positive, Neg-
ative, and Neutral/Mixed2. Neutral/Mixed annotates
subjective evaluations that are not clearly polar-
ized (e.g., The hotel was fine with some excep-
tions).

2.1.1 Annotation protocol

Marcheggiani et al. (2014) relied on three human
annotators to annotate each sentence of the 442 re-
views with respect to polarities of opinions that are
relevant to any of the 11 aspects. 73 reviews, out
of 442, were independently annotated by all the
annotators in order to measure the inter-annotator
agreement, while the remaining 369 reviews were
partitioned into 3 equally-sized sets, one for each
annotator. Bias in the estimation of inter-annotator
agreement was minimized by sorting the list of re-
views of each annotator so that every eighth re-
view was common to all annotators; this ensured
that each annotator had the same amount of coding
experience when labeling the same shared review.

2Marcheggiani et al. (2014) initially distinguished be-
tween implicit and explicit opinions but the human agreement
was so low they removed this distinction from the schema.

2534



# Reviews # Sentences # Opinion-laden sentences

EN 442 5799 4810
ES 500 2620 2400
IT 500 2593 2392

Table 1: Number of reviews, sentences, and sen-
tences with at least one opinion annotation.

2.2 Spanish and Italian Reviews

For the creation of ES and IT parts of the Trip-
MAML dataset we followed the same annotation
protocol of Marcheggiani et al. (2014), employ-
ing teams of three native speakers as annotators
for each language. We crawled the Spanish and
Italian reviews from TripAdvisor by accessing its
websites with the ‘.es’ and ‘.it’ domains, which
mostly contains reviews in the national language.
From that domains we downloaded the reviews
for the 10 most visited cities in Spain and Italy,
respectively. We downloaded 10 reviews for ev-
ery hotel of each city, obtaining a total of 17,020
reviews for Spanish and 33,325 for Italian. For
each dataset, 500 reviews were selected by ran-
domly sampling 50 reviews for each city. We thus
obtained 139 unique reviews for each annotator,
plus 83 reviews which all three annotators inde-
pendently annotated.

We decided to annotate the aspects that were
ratable on TripAdvisor at the time of our crawl
(April 2015: Rooms, Cleanliness, Value, Service, Lo-
cation, and Sleep Quality). Differently from the as-
pect schema in EN, we included the new aspect
Sleep Quality, and we did not consider the miss-
ing aspects Check-in and Businnes, which are, in
any case, the least frequent aspects in the Trip-MA
dataset (see Table 2). We kept the additional as-
pects Food, Building, Other, and NotRelated, as they
still appear frequently in the reviews. We adopted
the same 3-values sentiment label schema of EN,
i.e., Positive, Negative, or Neutral/Mixed.

Following the same procedure adopted by
Marcheggiani et al. (2014), the Spanish and Ital-
ian annotator teams performed a preliminary an-
notation session on reviews not included in the fi-
nal dataset. This preliminary activity was aimed at
aligning the annotators’ understanding about the
labeling process for the different aspects, by shar-
ing and solving any doubt that might arise during
the annotation of some examples.

2.3 Statistics

Table 1 shows that English reviews have, on av-
erage, about double the number of sentences of
Spanish and Italian reviews. This can be in part
motivated by observing that the sentences in EN
are, on average, 25% shorter than in ES and IT.
Also, after a manual inspection of the data, we
found that the EN part contains some reviews re-
lated to long vacations in resorts, thus describ-
ing in longer details the experience, while IT and
ES reviews are mainly related to relatively short
visits to classic hotels. However, the portion of
opinionated sentences is similar across the three
parts, indicating homogeneity in content, which is
confirmed by the detailed aspect-level statistics re-
ported in Table 2.

Both aspect and sentiment labels show imbal-
anced distributions that follow similar distribu-
tions across the three parts. The most frequent
aspect in all collections is Other, followed by
Rooms, Service, and Location. Building and Value
are among the least frequent ones. The average
value of the Pearson correlation between the lists
of the shared aspects ranked by their relative fre-
quency, measured pairwise among the three parts,
is 0.795, which indicates a good uniformity of
content among the parts. In all the three parts, Pos-
itive is the most frequent sentiment label, followed
by Negative. Location is always the aspect with the
highest frequency of positive labels.

3 Inter-annotator Agreement

We measured the inter-annotator agreement in two
steps. The F1 score measures the agreement on
aspect identification, regardless of the sentiment
label assigned. Then symmetric Macro-averaged
Mean Absolute Error (sMAEM ) (Baccianella et
al., 2009) measures the agreement on sentiment
labels on the annotations for which the annotators
agreed at the aspect level. Aspect NotRelated is not
included in agreement evaluation, nor in the ex-
periments of Section 4. sMAEM is computed be-
tween each of the three possible pairs of annota-
tors and then averaged to determine the agreement
values reported in Table 3.

Agreement on aspect detection is higher for ES
and IT than for EN. This difference is in part moti-
vated by the fact that the two aspects that are miss-
ing in ES and IT have low agreement on EN, and
the novel Sleep Quality aspect has instead a high
agreement. However, also on the other aspects
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Other Service Rooms Clean. Food Loc. Check-in Sleep-q. Value Build. Busin. NotRelated Total

EN

Pos 893 513 484 180 287 435 93 - 188 185 23 63 3344
Neg 353 248 287 66 127 51 56 - 87 62 3 40 1377
Neu 167 40 111 5 82 38 12 - 35 22 4 350 866
Total 1413 801 882 251 496 524 161 - 310 269 30 453 5587

ES

Pos 634 382 275 181 128 452 - 126 114 71 - 39 2402
Neg 244 85 159 40 37 38 - 75 48 28 - 38 792
Neu 46 19 62 6 32 22 - 6 18 7 - 4 222
Total 924 486 496 227 197 512 - 207 180 106 - 81 3416

IT

Pos 582 415 267 259 207 389 - 103 135 77 - 50 2484
Neg 189 74 110 65 56 22 - 50 27 43 - 15 651
Neu 102 30 59 10 52 49 - 1 32 32 - 100 467
Total 873 519 436 334 315 460 - 154 194 152 - 165 3602

Table 2: Number of opinion expressions at the sentence level of the datasets.

Other Service Rooms Clean. Food Loc. Check-in Sleep-q. Value Build. Busin. Avg

EN F1 .607 .719 .793 .733 .794 .795 .464 - .575 .553 .631 .675
sMAEM .308 .219 .191 .114 .234 .259 .003 - .202 .150 .029 .171

ES F1 .789 .911 .854 .933 .882 .896 - .895 .829 .538 - .836
sMAEM .174 .093 .133 .303 .120 .293 - .000 .150 .184 - .161

IT F1 .676 .812 .788 .913 .884 .856 - .789 .858 .532 - .790
sMAEM .292 .166 .242 .114 .204 .204 - .067 .292 .114 - .188

Table 3: Inter-annotator agreement. F1 on sentence-level aspect identification (higher is better). sMAEM

on sentence-level sentiment agreement (only on matching aspects, lower is better).

there is, in general, a higher or equal agreement in
ES and IT with respect to EN, indicating that the
formers two were annotated in a more consistent
way. The agreement on assignment of sentiment
label is rather similar across the whole dataset.

4 Experiments

The experiments we present here are aimed at
defining a shared baseline for future experiments.
For this reason we chose a relatively simple setup
that uses a simple learning model and minimal lin-
guistic resources. We used a sentence-level Linear
Chain (LC) Conditional Random Field (Lafferty
et al., 2001) as described by Marcheggiani et al.
(2014). With respect to the features extracted from
text, we used three simple features types: word
unigrams, bigrams, and SentiWordNet-based fea-
tures, which consist of a Positive and a Negative
feature extracted every time the review contains
a word that is marked as such in SentiWordNet
(Baccianella et al., 2010). To use SentiWord-
Net on ES and IT, we used Multilingual Cen-
tral Repository (Gonzalez-Agirre et al., 2012) and
MultiWordNet (Pianta et al., 2002) to map senti-
ment labels to Spanish and to Italian, respectively.

Experiments were run separately on the EN, ES,

and IT parts, leaving cross-lingual experiments to
future work. On each part we built five 70%/30%
train/test splits, randomly generated by sampling
the reviews annotated by single reviewers (we left
out reviews annotated by all the reviewers, as we
consider that part of the dataset more useful as
a validation set for the optimization of methods
tested in future experiments). We then run the five
experiments and averaged their results.

4.1 Evaluation Measures

As for the agreement evaluation (Section 3), we
split the evaluation of experiments into two parts,
aspect detection and sentiment labeling. For the
sentiment labeling part we used simple Macro-
averaged Mean Absolute Error (MAEM , not the
symmetric version) as the true dataset labels are
the reference ones in this case, while in the anno-
tator agreement case the two sets of labels have
equal importance.

4.2 Results

Experiments on ES and IT obtain better F1 values
than on EN, indicating that the observed higher
human agreement can be also explained by a lower
hardness of the task when working with Spanish
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Other Service Rooms Clean. Food Loc. Check-in Sleep-q. Value Build. Busin. Avg

EN F1 .482 .595 .626 .729 .541 .616 .230 - .331 .281 .222 .465
MAEM .549 .822 .641 .968 .585 .959 .264 - .598 .471 .000 .586

ES F1 .520 .668 .766 .782 .567 .730 - .416 .593 .215 - .584
MAEM .839 .737 .515 .377 .516 1.002 - .395 .564 .000 - .549

IT F1 .576 .747 .646 .770 .697 .757 - .254 .630 .087 - .574
MAEM .707 .781 .809 .887 .829 .746 - .053 .403 .000 - .579

Table 4: Linear Chain CRFs experiments. F1 on sentence-level aspect identification (higher is better).
MAEM on sentence-level sentiment assignment (only on correctly identified aspects, lower is better).

and Italian.
MAEM values are all similar across languages,

again confirming what has been observed on
agreement. However, MAEM values on experi-
ments are sensibly worse than those measured on
agreement, possibly due to the fact that we used
very basic features, with limited use of sentiment-
related information.

5 Conclusion

We have presented Trip-MAML a multi-lingual
extension of Trip-MA, originally presented in
(Marcheggiani et al., 2014). The extension pro-
cess involved crawling and selecting the reviews
for the two new languages, Spanish and Italian,
and their annotation by a total of six native lan-
guage speakers. We measured dataset statistics
and inter-annotator agreement, which show that
the new ES and IT parts we produced are consis-
tent with the original EN part. We also presented
experiments on the dataset, based on a linear chain
CRFs model for the automatic detection of aspects
and their sentiment labels, establishing a baseline
for future research. Trip-MAML enables the ex-
ploration of cross-lingual approaches to the prob-
lem of multi-aspect sentiment classification.
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Abstract 

We present a novel way of extracting fea-

tures from short texts, based on the acti-

vation values of an inner layer of a deep 

convolutional neural network. We use the 

extracted features in multimodal senti-

ment analysis of short video clips repre-

senting one sentence each. We use the 

combined feature vectors of textual, vis-

ual, and audio modalities to train a classi-

fier based on multiple kernel learning, 

which is known to be good at heteroge-

neous data. We obtain 14% performance 

improvement over the state of the art and 

present a parallelizable decision-level da-

ta fusion method, which is much faster, 

though slightly less accurate. 

1 Introduction 

The advent of the Social Web has enabled any-

one with a smartphone or computer to easily cre-

ate and share their ideas, opinions and content 

with millions of other people around the world.  

Much of the content being posted and consumed 

online is video.  With billions of phones, tablets 

and PCs shipping today with built-in cameras 

and a host of new video-equipped wearables like 

Google Glass on the horizon, the amount of vid-

eo on the Internet will only continue to increase. 

It has become increasingly difficult for re-

searchers to keep up with this deluge of video 

content, let alone organize or make sense of it.  

Mining useful knowledge from video is a critical 

need that will grow exponentially, in pace with 

the global growth of content. This is particularly 

important in sentiment analysis (Cambria et al., 

2013a; 2013b; 2014), as both service and product 

reviews are gradually shifting from unimodal to 

multimodal. We present a method for detecting 

sentiment polarity in short video clips of a person 

uttering a sentence.  

We do it using all three modalities: visual, 

such as facial expression, audio, such as pitch, 

and textual, the contents of the uttered sentence. 

While the visual and the audio modalities pro-

vide additional evidence that improves classifica-

tion accuracy, we found the textual modality to 

have the greater impact on the result (Cambria 

and Hussain, 2015; Cambria et al., 2013c; Poria 

et al., 2015a; 2015b). 

In this paper, we propose a novel way for fea-

ture extraction from text. Given a training corpus 

with hand-annotated sentiment polarity labels, 

following Kim (2014), we train a deep convolu-

tional neural network (CNN) on it. However, 

instead of using it as a classifier, as Kim did, we 

use the values from its hidden layer as features 

for a much more advanced classifier, which gives 

superior accuracy. Similar ideas have been sug-

gested in the context of computer vision for deal-

ing with images, but have not been applied in the 

context of NLP to textual data, and, specifically, 

for sentiment polarity classification. 

2 Overview of the Method 

In this paper, we present two different methods 

for dealing with multimodal data: feature-level 

fusion and decision-level fusion, each one having 

its advantages and disadvantages. 

We extracted features from the data for each 

modality independently. In the case of feature-

level fusion, we then concatenated the obtained 

feature vectors and fed the resulting long vector 

into a supervised classifier. In the case of deci-

sion-level fusion, we fed the features of each 

modality into separate classifiers, and then com-

bined their decisions. Our experimental results 

show that both of these methods outperform the 

state of the art by a large margin. 
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3 Textual Features 

We used a CNN as a trainable feature extractor 

to extract features from the textual data. Utter-

ances in the original dataset are in Spanish. 

While usually it is better to work directly with 

the source language (Wang et al., 2013), in this 

work we translated utterances into English using 

Google translator. Without the translation into 

English, 68.56% accuracy was obtained. 

The choice of CNN for feature extraction is 

justified by the following considerations: 

1. The convolution layers of CNN can be seen 

as a feature extractor, whose output is then 

fed into a rather simplistic classifier useful 

for training the network but not the best at 

actual classification. CNN forms local fea-

tures for each word and combine them to 

produce a global feature vector for the whole 

text. However, the features that CNN builds 

internally can be extracted and used as input 

for another, more advanced classifier. This 

turns CNN, originally a supervised classifier, 

into a trainable feature extractor. 

2. As a feature extractor, CNN is automatic and 

does not rely on handcrafted features. In par-

ticular, it adapts well to the peculiarities of 

the specific dataset, in a supervised manner. 

3. The features it gives are based on a hierarchy 

of local features, reflecting well the context. 

A drawback of CNN as a classifier is that it 

finds only a local optimum, since it uses the 

same backpropagation technique as MLP. How-

ever, inspired by ideas introduced in the context 

of computer vision (Bluche et al., 2013), we, for 

the first time in the context of NLP, extract the 

features that CNN builds internally and feed 

them into a much more advanced classifier. In 

our experiments, this was SVM, or roughly its 

multi-kernel version MKL, which is good at 

finding the global optimum. Thus, the properties 

of CNN and SVM complement each other in 

such a way that their advantages are combined. 

To form the input for the CNN feature extrac-

tor, for each word in the text we built a 306-

dimensional vector by concatenating two parts: 

1. Word embeddings. We used a publicly avail-

able word2vec dictionary (Mikolov et al., 

2013a; 2013b; 2013c), trained on a 100 mil-

lion word corpus from Google News using 

the continuous bag of words architecture. 

This dictionary provides a 300-dimensional 

vector for each word. For words not found in 

this dictionary, we used random vectors. 

2. Part of speech. We used 6 basic parts of 

speech (noun, verb, adjective, adverb, prepo-

sition, conjunction) encoded as a 6-

dimensional binary vector. We used Stanford 

Tagger as a part of speech tagger. 

For each input text, the input vectors for the 

CNN were a concatenation of three parts: 

1. Left padding. Two dummy “words” with 

zero vectors were added at the beginning of 

each text, in order to provide space for con-

volution, since at the convolution layers we 

used the kernel size of at most 3. 

2. Text. All 306-dimensional vectors corre-

sponding to each word were concatenated, 

preserving the word order. 

3. Right padding. Again, at least 2 dummy 

“words” with zero vectors were added after 

each sentence to provide space for convolu-

tion. To form vectors for all texts in the cor-

pus of the same dimensionality, they were al-

so padded at the right with the necessary 

amount of additional dummy “words.”  

In our experiments, all texts were very short, 

consisting of one sentence, the longest one being 

of 65 words. Thus all input vectors were of di-

mension 306  (2 + 65 + 2) = 21,114. 

The CNN we used consisted of 7 layers: 

1. Input layer, of 21,114 neurons. 

2. Convolution layer, with a kernel size of 3 

and 50 feature maps. The output of this layer 

was computed with a non-linear function; we 

used the hyperbolic tangent. 

3. Max-pool layer with max-pool size of 2. 

4. Convolution layer: kernel size of 2, 100 fea-

ture maps, also using the hyperbolic tangent. 

5. Max-pool layer with max-pool size of 2. 

6. Fully connected layer of 500 neutrons, 

whose values were later used as the extracted 

features. For regularization, we employed 

dropout on the penultimate layer with a con-

straint on L2-norms of the weight vectors. 

7. Output softmax layer of 2 neurons, by the 

number of training labels—the sentiment po-

larity values: positive or negative. This layer 

was used only for training the CNN. 

The CNN was trained using a standard back-

propagation procedure. The training data for the 

output layer were the known sentiment polarity 

labels present in the training corpus for each text. 

As features of the given text, we used the val-

ues of the penultimate, fully connected, layer of 

the CNN. In this way, we used the last output 
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layer of the CNN only for training, but for actual 

decision-making, we replaced it with much more 

sophisticated classifiers, namely, with SVM or 

MKL. Using only CNN as a classifier, 75.50% 

was obtained which is in fact lower than the re-

sult (79.77%) obtained when CNN was used to 

extract trainable features for the SVM classifier. 

We also tried other word vectors having dif-

ferent dimensions, e.g., Glove word vectors and 

Collobart’s word vectors. However, the best ac-

curacy was obtained using Google word2vec. 

4 Visual Features 

We split each clip into frames (still images). 

From each frame, we extracted 68 facial charac-

teristic points (FCPs), such as the position of the 

left corner of the left eye, etc., using the facial 

recognition library CLM-Z (Baltrušaitis et al., 

2012). For each pair of FCPs, we calculated the 

distance. Thus, we characterized each facial ex-

pression by 68  67 / 2 = 2,278 distances. In ad-

dition, for each frame we extracted 6 face posi-

tion coordinates (3D-dimensional displacement 

and angular displacement of face and head) using 

the GAVAM software. This gave 2,278 + 6 = 

2,284 values per frame. 

For each of these values, we calculated its 

mean value and standard deviation over all 

frames of the clip; 4568 features in total. 

5 Audio Features 

We used the openSMILE software (Eyben et al., 

2010) to extract audio features related to the 

pitch and voice intensity. This software extracts 

the so-called low-level descriptors, such as Mel 

frequency cepstral coefficients, spectral centroid, 

spectral flux, beat histogram, beat sum, strongest 

beat, pause duration, pitch, voice quality, percep-

tual linear predictive coefficients, etc., and their 

statistical functions, such as amplitude mean, 

arithmetic mean, root quadratic mean, standard 

deviation, flatness, skewness, kurtosis, quartiles, 

inter-quartile ranges, linear regression slope, etc. 

This gave us 6373 audio features in total. 

6 Feature-Level Fusion 

Feature-level fusion consisted in concatenation 

of the feature vectors obtained for each of the 

three modalities. The resulted vectors and along 

with the sentiment polarity labels from the train-

ing set, were used to train a classifier with a mul-

tiple kernel learning (MKL) algorithm; we used 

the SPF-GMKL implementation (Jain et al., 

2012) designed to deal with heterogeneous data. 

Clearly, feature vectors resulted from concatenat-

ing so different data sources are heterogeneous. 

The parameters of the classifier were found by 

cross validation. We chose a configuration with 8 

kernels: 5 RBF with gamma from 0.01 to 0.05 

and 3 polynomial with powers 2, 3, 4. We also 

tried Simple-MKL; it gave slightly lower results. 

7 Feature Selection 

We significantly reduced the number of features 

using feature selection. We used two different 

feature selectors: one based on the cyclic correla-

tion-based feature subset selection (CFS) and 

another based on principal component analysis 

(PCA) with top K features, where K was experi-

mentally selected and varied for different exper-

iment. For example, in case of audio, visual and 

textual fusion, K was set to 300.  

The union of the features selected by the two 

methods was used. For each unimodal, each bi-

modal, and the multimodal experiment, separate 

feature extraction was performed. The number of 

 

Text Visual Audio 
Pérez-Rosas 

et al. (2013) 

Our method 

 without feature 

selection 

with feature 

selection 

# features, without selection 500 4568 6373    

Unimodal               

#
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437 – – 70.94% 79.14%  79.77%  

– 398 – 67.31% 75.22%  76.38%  

– – 325 64.85% 74.49%  74.22%  

Bimodal 

379 109 – 72.39% 84.97%  85.46%  

384 – 81 72.88% 83.85%  84.12%  

– 242 209 68.86% 82.95%  83.69%  

Multimodal 305 74 58 74.09% 87.89%  88.60%  

Table 1. Accuracy of state-of-the-art method compared with our method with feature-level fusion. 

The number of features is for our experiments, not for [16]. Shaded cells are shared with Table 2. 
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selected features for each experiment is given in 

Table 1. In all cases except for the unimodal ex-

periment with audio modality, feature selection 

slightly improved the results, in addition to the 

improvement in processing time. In the only case 

where feature selection slightly deteriorated the 

result, the difference was rather small. 

8 Unimodal Classification and 

Decision-Level Fusion 

For unimodal experiments and for decision-level 

fusion, we used one classifier per each modality; 

specifically, we used SVM. For each modality, in 

this way we obtained the probabilities of the la-

bels. In unimodal experiments, we chose the la-

bel with the greater probability. 

For decision-level fusion, we added these 

probabilities with weights, which were chosen 

experimentally, and, again, used the most proba-

ble label. The weights we used for decision-level 

fusion were chosen using detailed search with an 

intuition that best performing unimodal classifier 

has higher importance in the fusion. We do not 

claim that these weights are optimal. They are 

indeed sub-optimal and hence encourage the 

scope of future research. 

Knowing a specific decision for the text mo-

dality allowed us to use evidence from a separate 

classifier; we used the one based on the Sentic 

Patterns (SP) (Poria et al., 2014a). It structures 

natural language clauses into a sentiment hierar-

chy used to infer the overall polarity label (posi-

tive vs. negative) for the input sentence. E.g., a 

sentence “The car is very old but it is rather not 

expensive”, is positive, expressing a favorable 

sentiment of the speaker, who recommends pur-

chasing the product. However, “The car is very 

old though it is rather not expensive” is negative, 

expressing reluctance of the speaker to purchase 

the car. Despite the latter contains exactly the 

same concepts as the former, the polarity is op-

posite because of the adversative dependency.  

On benchmark datasets, SP perform better 

than state of the art sentiment classifiers, which 

outperforms the textual classifier described in 

Section 3. Since SP are a superior classifier, we 

used it as a bias to modify the weight of the tex-

tual modality. However, SP do not report a prob-

ability, but only a binary decision, so we only 

used them to tweak the weights in the probability 

mix: when the text-based unimodal classifier 

agreed with SP, we increased the weight of the 

text modality. Another benefit of the decision-

level fusion is its speed, since fewer features are 

used for each classifier and since SVM, used as a 

unimodal classifier, is faster than MKL. In addi-

tion, separate classifiers can be run in parallel. 

9 Experimental Results 

We report results for tenfold cross-validation. 

9.1 Dataset 

We experimented on the dataset described by 

Morency et al. (2011). The dataset consists of 

498 short video fragments where a person utters 

one sentence. The items are manually tagged for 

sentiment polarity, which can be positive, nega-

tive, or neutral. We discarded the neutral items 

from the dataset, which gave us a dataset of 447 

clips tagged as positive or negative. 

The video in the dataset is present in MP4 

format with the resolution of 360  480, to which 

the developers converted all videos originally 

collected in different formats with different reso-

lution. The duration of the clips is about 5 sec-

onds on average. About 80% of the clips present 

female speakers. The developers provided tran-

scription of the text of the sentences, which we 

used in our textual modality processing. 

9.2 Results for Each Modality Separately 

As a baseline, we used classifiers trained on fea-

tures extracted from each modality separately. 

The results are shown in Table 1, unimodal sec-

tion. The number of features after feature selec-

tion is indicate for the modality used. 

The table shows that the best results were ob-

tained for textual modality; the visual modality 

performed worse, and the audio was least useful. 

However, even the worst of our results is much 

better than the state-of-the-art (Pérez-Rosas et 

al., 2013). In each modality separately, our re-

sults outperform the state of the art by about 9%, 

which is about 30% reduction in error rate. 

9.3 Results with Feature-level Fusion 

As a yet another baseline, we tried feature-level 

fusion of only two modalities.  

The results are shown in Table 1, bimodal sec-

tion. Again, the number of features after feature 

selection is indicated for the two modalities used. 

As expected, missing the audio features was the 

least important, missing the video features was 

more significant, and missing the text features 

was most painful for the accuracy.  

Even the worst result obtained with fusion of 

two modalities outperformed our best unimodal 

result, as well as the best result of the state of the 
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art. Finally, the best result, shown in the multi-

modal section of Table 1, was obtained when all 

three modalities were fused. This result outper-

forms the corresponding result of the state of the 

art by 14%, which gives 56% of error reduction. 

9.4 Results with Decision-level Fusion 

The results for decision-level fusion are shown in 

Table 2, last column. The shaded cells are shared 

with Table 1. In the second section, three classi-

fiers were fused at the decision level. In the third 

section, two modalities indicated with the plus 

sign were fused at the feature level (giving the 

accuracy indicated in the penultimate column) 

and then this classifier was fused at the decision 

level with the third modality. The weights corre-

spond to the share of each modality. In the last 

section, the weight for the unimodal classifier is 

shown, and the weight for the bimodal classifier 

was its complement to 1. 

For the experiments that involved tweaking of 

the weights with the SP oracle, pairs of weights 

are shown: the weight used when the text mo-

dality results corresponded (left) with the SP 

prediction and the weight used when they did not 

(right). The accuracy with at least partial feature-

level fusion was better than that for no feature-

level fusion at all (3-way). As in the bimodal sec-

tion of Table 1, excluding audio from feature-

level fusion was least problematic and excluding 

text was most problematic.  

In all cases, decision-level fusion did not sig-

nificantly improve the accuracy of the best sum-

mand. However, separating text-based classifier 

permitted us to use the Sentic Patterns tweak, 

which cannot be used if the text-only results are 

not known. With this tweak, the best result was 

obtained. Even with this improvement, the accu-

racy of decision-level fusion was slightly lower 

than that of feature-level fusion; in exchange for 

much about twice better processing speed. 

A baseline decision level evaluation strategy 

was taken which allowed us to take majority vot-

ing among the predicted class labels by unimodal 

classifiers. Based on this strategy the final class 

label was chosen by the maximum of the three 

unimodal models’ votes. For the multimodal fu-

sion using this baseline method only 72.83% ac-

curacy was obtained. As expected the proposed 

feature and decision level fusion outperformed 

this baseline method by a large margin. 

10 Conclusion 

We have presented a novel method for determin-

ing sentiment polarity in video clips of people 

speaking. We combine evidence from the words 

they utter, the facial expression, and the speech 

sound. The main novelty of this paper consists in 

using deep CNN to extract features from text and 

in using MKL to classify the multimodal hetero-

geneous fused feature vectors. 

We also presented a faster variant of our 

method, based on decision-level fusion. In case 

of the decision level fusion experiment, the cou-

pling of Sentic Patterns to determine the weight 

of textual modality has enriched the performance 

of multimodal sentiment analysis framework 

considerably. However, the parameter selection 

for decision level fusion produced suboptimal 

results. A systematic mathematical approach for 

decision level fusion is an important future work. 

Our future work will focus on extracting more 

relevant features from the visual modality. We 

will employ deep 3D convolutional neural net-

works on this modality for feature extraction. We 

will use a feature selection method to obtain key 

features; this will ensure the scalability as well as 

stability of the framework. We will continue our 

study of reasoning over text (Jimenez et al., 

2015; Pakray et al., 2011; Sidorov et al., 2014; 

Sidorov, 2014) and in particular of concept-

based sentiment analysis (Poria et al., 2014b). 

 Sentic 

Patterns 

Weights  Fusion Accuracy 

Text Visual Audio  Feature Decision 

Unimodal accuracy 81.73% 79.77% 76.38% 74.22%    

Unimodal 

3-way 

 3-way majority voting   72.83% 

no 0.45 0.3 0.25   81.24% 

yes 0.5 / 0.25 0.3 / 0.4 0.2 / 0.35   82.06% 

Bimodal 

with unimodal 

 + + 0.3  85.46% 85.53% 

 + 0.23 +  84.12% 84.86% 

no 0.4 + +  83.69% 84.48% 

yes 0.45 / 0.3 + +  same 86.27% 

Table 2. Accuracy of our method with decision-level fusion and feature selection. 
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Abstract

Sentiment analysis has been a major area
of interest, for which the existence of high-
quality resources is crucial. In Arabic,
there is a reasonable number of sentiment
lexicons but with major deficiencies. The
paper presents a large-scale Standard Ara-
bic Sentiment Lexicon (SLSA) that is pub-
licly available for free and avoids the de-
ficiencies in the current resources. SLSA
has the highest up-to-date reported cover-
age. The construction of SLSA is based on
linking the lexicon of AraMorph with Sen-
tiWordNet along with a few heuristics and
powerful back-off. SLSA shows a relative
improvement of 37.8% over a state-of-the-
art lexicon when tested for accuracy. It
also outperforms it by an absolute 3.5% of
F1-score when tested for sentiment analy-
sis.

1 Introduction

Sentiment analysis is the process of identifying
and extracting subjective information using Nat-
ural Language Processing (NLP). It helps identi-
fying opinions and extracting relevant information
that lies behind the analyzed data. Sentiment anal-
ysis has received enormous interest in NLP, and
in particular in the context of web content. This
includes social media, blogs, discussions, reviews
and advertisement.

While there has been extensive work on senti-
ment analysis in English and other languages of
interest, less work has been done for Arabic. A
major concern in Arabic NLP is the morphological
complexity of the language along with the limited
number of resources, corpora in particular.

The goal of this work is to build a publicly
available large-scale Sentiment Lexicon for Stan-
dard Arabic (SLSA). For every lemma and part-
of-speech (POS) combination that exists in a large
Standard Arabic lexicon, SLSA assigns the scores
of three sentiment labels: positive, negative and
objective, in addition to the English gloss. The

positive and negative scores range between zero
and one, while the objective score is defined as 1 -
(positive score + negative score).

The existence of SLSA is valuable to the field
of Arabic sentiment analysis, which is expected
to receive considerable focus during the current
decade. SLSA is the first sentiment lexicon for
Arabic to combine the following four strengths.
High coverage SLSA lists the sentiment of about
35,000 lemma and POS combinations, which is
the highest coverage reported for Standard Arabic
sentiment lexicons.
High quality Unlike many of the current lexicons
whose construction is based on semi-supervised
learning and heuristic-based approaches, SLSA
is not constructed via machine learning models,
while the use of heuristics is minimal.
Richness As opposed to sparse surface-based lex-
icons, SLSA is a lemma-based resource that at-
taches POS and English gloss information to each
lemma, where the information of a lemma is appli-
cable to its inflected forms. This makes the lexicon
more useful when used by other research.
Public Availability SLSA is based on free re-
sources and is publicly available for free.1

2 Related Work

Work on building Arabic sentiment lexicons
mainly falls into two categories: 1) linking an Ara-
bic sentiment lexicon with an English one, and 2)
applying semi-supervised or supervised learning
techniques on Arabic resources. We summarize
these two types in turn.

We start with a survey of work based on trans-
lation, which our work falls into as well. The
most similar work to the one presented in this
paper is ArSenL (Badaro et al., 2014). ArSenL
is considered the first publicly available large-
scale Standard Arabic sentiment lexicon. It was
constructed using a combination of SentiWordNet
(Baccianella et al., 2010), Arabic WordNet (Black
et al., 2006) and SAMA (Graff et al., 2009). Ar-

1The lexicon is available at http://volta.ldeo.
columbia.edu/˜rambow/slsa.html
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SenL outperforms the state-of-the-art Arabic sen-
timent lexicons. However, we show that SLSA
has better coverage and quality. Moreover, Ar-
SenL uses SAMA which is not publicly available
for free, as opposed to SLSA which is based on
free resources.

Another similar work to ArSenL is the resource
developed by Alhazmi et al. (2013). They linked
the Arabic WordNet to SentiWordNet via the pro-
vided synset offset information. However, the con-
structed lexicon has a limited coverage of nearly
10K lemmas, which makes it not very useful for
further applications.

Abdul-Mageed and Diab (2014) presented
SANA, a subjectivity and sentiment lexicon for
Arabic. The lexicon combines pre-existing lexi-
cons and involves automatic machine translation,
manual annotations and gloss matching across
several resources such as THARWA (Diab et al.,
2014) and SAMA. SANA includes about 225K
entries, where many of them are duplicates, in-
flected or not diacritized, which makes the re-
source noisy and less useable. Additionally, the
automatic translation does not utilize the POS in-
formation, which affects the quality of the re-
source.

Other work that follows the translation ap-
proach includes the one presented by El-Halees
(2011) where SentiStrength (Thelwall et al., 2010)
was translated using a dictionary along with man-
ual correction. Another instance is SIFAAT
(Abdul-Mageed and Diab, 2012), an earlier ver-
sion of SANA but with more reliance on transla-
tion. Another lexicon was built by Elarnaoty et al.
(2012) who manually translated the MPQA lex-
icon (Wilson et al., 2005). The common aspect
among those resources is the lack of adequate cov-
erage and quality.

Mobarz et al. (2011) created a sentiment Ara-
bic lexical Semantic Database (SentiRDI) by us-
ing a dictionary-based approach. The database has
many inflected forms, i.e., it is not lemma-based.
Moreover, the authors reported insufficient quality
and plan to try other alternatives.

We now turn to work based entirely on Arabic
resources. Mahyoub et al. (2014) created an Ara-
bic sentiment lexicon that assigns sentiment scores
to the words in Arabic WordNet using a lexicon-
based approach. The lexicon was initially based
on a few words and then expanded by exploit-
ing synset relations in a semi-supervised learning
manner. However, the lexicon is limited to about
23k lemmas and is not publicly available.

Another Arabic sentiment lexicon was created
by Elhawary and Elfeky (2010). The lexicon was
built using a similarity graph where the edges have

similarity scores. A major drawback is the low
coverage of the lexicon. Moreover, expanding the
graph requires a huge corpus with polarity and se-
mantic annotations and adds more sparsity.

3 Approach
Following the example of ArSenL (Badaro et al.,
2014), SLSA is constructed by linking the lexicon
of an Arabic morphological analyzer with Senti-
WordNet (Baccianella et al., 2010). Unlike Ar-
SenL, SLSA uses AraMorph (Buckwalter, 2004),
a morphological analyzer for Standard Arabic. An
AraMorph entry represents a morpheme and con-
tains the surface, lemma, part of speech (POS),
and gloss information. The gloss information
consists of a list of gloss terms, each of which
contains one or more words (such as “time limit
/ end”). On the other side, SentiWordNet is a
large-scale sentiment lexicon for English that as-
signs sentiment scores (positive, negative and ob-
jective) to the synsets in English WordNet (Miller
et al., 1990) along with the POS and gloss infor-
mation. Upon linking the two resources, the sen-
timent scores in SentiWordNet are applied to the
entries of AraMorph to construct SLSA. The ques-
tion this paper addresses is how to link these two
resources, and we present a new linking algorithm
compared to that used by ArSenL, with improved
performance.

3.1 Preparing the Resources
It might seem intuitive to join the entries of
AraMorph and SentiWordNet based on their
glosses, but this does not work as expected.
AraMorph and SentiWordNet were developed for
different reasons and have different gloss struc-
tures (synonyms in AraMorph versus detailed de-
scriptions in SentiWordNet). Mapping the glosses
is one of the major bottlenecks in ArSenL, which
is not able to find a match for 24% of the en-
tries in SAMA. Instead, we link the two resources
by relating the glosses of AraMorph to the synset
terms in SentiWordNet. Additionally, we take
POS into consideration as the glosses and synset
terms might not be enough to disambiguate an en-
try. Next, we discuss the preparation steps that al-
low for the linking of the resources.

Cleaning-up AraMorph Some POS and
lemma decisions in AraMorph are erroneous or
not optimal. For example, some entries are as-
signed wrong POS tags, such as the NO FUNC
cases, or have inconsistent spellings of the lem-
mas. Also, some adverbs are redundant as they
have the same lemma as an adjective. Accord-
ingly, we cleaned up AraMorph in a way that al-
lows for a better linking with SentiWordNet. The
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cleaned-up AraMorph is closer to SAMA (used
in ArSenL), which is itself a modified version
of AraMorph. Practically, SAMA can replace
AraMorph. However, the integration of AraMorph
allows the lexicon to be publicly available for free,
which SAMA prohibits.

Gloss Normalization Since the entries in
AraMorph are bound to stems, the English glosses
are inflected for number. As a result, we lem-
matize the English glosses in AraMorph in or-
der to be able to match to the synset terms in
SentiWordNet. The lemmatization is done using
Stanford CoreNLP Natural Language Processing
Toolkit (Manning et al., 2014). Additionally, we
remove from the glosses any descriptive text be-
tween parentheses, as well as the stop words be,
a, an and the (unless be is the actual lemma of the
AraMorph gloss). Moreover, if any of the lemma-
tized words in an AraMorph gloss does not match
any of the synset terms in SentiWordNet and has
a regular morphological derivation, the effect of
the derivation is removed if the removal results in
an existing synset term, e.g., voluntariness is con-
verted to voluntary and orientalization becomes
orientalize. We created the list of the deriva-
tional patterns manually by examining AraMorph
glosses.

POS Mapping AraMorph has a rich POS
tagset, while SentiWordNet has only four tags
corresponding to nouns, adjectives, adverbs and
verbs. Accordingly, AraMorph POS tags are
mapped to the four tags in SentiWordNet. Some
AraMorph POS types, such as particles, pronouns
and prepositions, do not map to any SentiWord-
Net tags, and we exclude them as they have zero
polarity scores, by definition.

AraMorph Rearrangement We collapse all
the entries in AraMorph that have the same
(lemma, POS) pair, and the English glosses
become the union of the normalized glosses
before the collapse. For example, a lemma
might appear in two entries with two POS tags;
VERB PERFECT and VERB IMPERFECT . Af-
ter the preparation, the POS tags in both entries
become the same (VERB), and the two entries col-
lapse into one entry whose gloss is the union of the
lemmatized past-tense and present-tense glosses.
Figure 1 shows a sample of AraMorph before and
after the preparation process (the Arabic translit-
eration is in the Buckwalter scheme (Buckwalter,
2004)).

SentiWordNet Rearrangement We extract all
the unique combinations of synset terms and POS
tags in SentiWordNet, while the indices of the
synset terms are stripped off. However, since a
synset term might appear in different synsets un-

!
!
!
!
!
!
!
!
!
!
!
Stem% English%Gloss% POS% Lemma%
baliy~! tribulation/affliction! NOUN! baliy~ap_1!
balAyA! tribulations/afflictions! NOUN! baliy~ap_1!
balA! afflict/test! VERB_PERFECT! balAAu_1!
balaw! afflict/test! VERB_PERFECT! balAAu_1!
bal! afflict/test! VERB_PERFECT! balAAu_1!
boluw! afflict/test! VERB_IMPERFECT! balAAu_1!
bol! afflict/test! VERB_IMPERFECT! balAAu_1!
bolaY! be!afflicted/be!tested! VERB_IMPERFECT! balAAu_1!
Original!AraMorph!
! !
Lemma% POS% English%Gloss%
baliy~ap_1! NOUN! affliction/tribulation!
balA_1! VERB! afflict/test!
Processed!AraMorph!

Figure 1: A sample of the original AraMorph (the upper ta-
ble) and the processed version (the lower table). The glosses
are normalized, while the POS tags are mapped to the tags
in SentiWordNet. The entries of the same POS and lemma
combinations are then collapsed, where their gloss becomes
the union of the normalized glosses in the collapsed entries.

der the same POS with different indices and sen-
timent scores, the sentiment scores of an extracted
entry is calculated as the average of all the sen-
timent scores that appear with the corresponding
synset term and POS. Figure 2 shows a sample
of SentiWordNet before and after the preparation
process.
!
POS$ ID$ +ve$$ *ve$ Synset$Terms$ Gloss$
n! 07305234! 0! 0.625! affliction#3! a!cause!of!great!suffering!and!distress!
n! 14213199! 0! 0.625! affliction#2! a!condition!of!suffering!or!distress…!
n! 14477342! 0! 0.625! affliction#1! a!state!of!great!suffering!and!distress…!
v! 00259927! 0! 0.875! smite#3!afflict#2! cause!physical!pain!or!suffering!in!
v! 01797730! 0.125! 0.625! afflict#1! cause!great!unhappiness!for!
Original!SentiWordNet!
!
Synset$Term$ POS$ +ve$$ *ve$
affliction! NOUN! 0! ! 0.625!
afflict! VERB! 0.0625! 0.75!
Processed!SentiWordNet!
!

Figure 2: A sample of the original SentiWordNet (the upper
table) and the processed version (the lower table). The unique
combinations of the synset terms and POS tags are extracted,
where the sentiment scores of the extracted entries are the
average of the scores in the contributing ones.

3.2 Linking the Resources
We start out by creating a link between an
AraMorph entry and a SentiWordNet entry if any
of the AraMorph one-word gloss terms and the
POS match the SentiWordNet. Upon linking, we
assign the AraMorph entry the sentiment scores of
the matching one in SentiWordNet. The linking
condition above applies successfully to 83.6% of
the entries in AraMorph. If the condition does
not apply, we relax it to allow for a more le-
nient POS agreement where NOUN and ADJ POS
tags are used interchangeably, while the VERB
entries in AraMorph become matchable with the
ADJ ones in SentiWordNet. The reasons be-
hind the decisions above are that AraMorph has
hundreds of cases where the same lemma ap-
pears as NOUN and ADJ, while it is frequent that
AraMorph assigns an adjectival gloss (preceded
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by be) to VERB entries. The relaxed condition
enables linking an additional 6.7% of AraMorph
entries. If the relaxed condition is still not appli-
cable for an AraMorph entry, the linking condi-
tion becomes more lenient by completely ignoring
the POS agreement. The sentiment scores in that
case become the average of the sentiment scores of
the corresponding synset term across all the POS
types. The latter condition allows matching addi-
tional 0.6% of AraMorph entries.

It might happen that none of the one-word gloss
terms matches a synset term, or the gloss does not
have any one-word gloss terms. In such a case,
we consider multi-word gloss terms. We first re-
move the stop words, and then we test the relaxed
condition on each word separately, starting with
the shortest terms first. The process succeeds if a
match could be established for all the words in a
gloss term, and the sentiment scores become the
average sentiment scores of the matching synset
terms. The relaxed condition on multi-word terms
solves additional 7.9% of the cases. Finally, if no
match could be established across all the differ-
ent gloss terms (1.2% of the entries), default neu-
tral sentiment scores are assigned. The analysis of
such cases is discussed in section 4.

Sometimes, a multi-word gloss term consists of
words that denote excess (e.g., most and more),
scarcity (e.g., less and few) or negation (e.g., not).
We do not match such words to synset terms. In-
stead, they affect the polarity scores; we double
the score, halve the score and swap the sign, re-
spectively. We created the list of such words man-
ually by examining AraMorph glosses.

Figure 3 illustrates the linking process between
a sample of the processed AraMorph with a sam-
ple of the processed SentiWordNet, resulting in
the construction of SLSA. The final SLSA lexicon
consists of 34,821 entries. The counts of the dif-
ferent POS tags in SLSA along with the percent-
ages of the different sentiment classes are reported
in Table 1, while examples from the final lexicon
are listed in Table 2.

POS Count Neutral % +ve % -ve % Mixed %
NOUN 20,263 58.1 12.7 15.4 13.8
VERB 9,117 42.5 19.3 21.9 16.4
ADJ 5,395 36.5 18.7 17.0 27.8
ADV 46 73.9 10.9 2.2 13.0
ALL 34,821 50.7 15.3 17.3 16.7

Table 1: Statistics of SLSA: The counts of the different POS
tags and the percentages of the different sentiment classes.

!
!
Lemma% POS% English%Gloss%
baliy~ap_1! NOUN! affliction/tribulation!
balA_1! VERB! afflict/test!
Processed!AraMorph!
!
Synset%Term% POS% +ve%% 8ve%
affliction! NOUN! 0! 0.625!
afflict! VERB! 0.0625! 0.75!
Processed!SentiWordNet!
!
Lemma! POS! English%Gloss! +ve%! 8ve! Objective%
baliy~ap_1! NOUN! affliction/tribulation! 0! 0.625! 0.375!
balA_1! VERB! afflict/test! 0.0625! 0.75! 0.1875!
SLSA!
!
!
!
!
!

Figure 3: The linking between SentiWordNet and AraMorph
by matching the AraMorph normalized glosses to the synset
terms in SentiWordNet with respect to POS. The upper two
tables are samples of the processed AraMorph and Senti-
WordNet, respectively, while the lower table represents a
sample of SLSA based on the linking process. The objective
score is calculated as 1 -(positive score+negative score).

Lemma POS English Gloss +ve -ve Obj.
niEom 1 NOUN wonderful 0.8 0 0.2
tawaE∼aY 1 VERB be attentive/cautious 0.4 0 0.6
AiHotiyAj 1 NOUN need;requirement 0.1 0.2 0.7
$ahoriy∼ 1 ADJ monthly 0 0 1
katab 1 VERB write 0 0 1
mulaT∼ax 1 ADJ stained/sullied 0 0.3 0.7
dana> 1 VERB be vile;be despicable 0 0.5 0.5
kamod 1 NOUN swarthiness;sadness 0 0.8 0.2

Table 2: Examples of SLSA entries; Obj. = Objective. All
scores are rounded for readability.

4 Evaluation

4.1 Intrinsic Evaluation
As mentioned in section 3, no match could be es-
tablished for 1.2% of AraMorph entries. We man-
ually investigate these cases more closely. About
75% of the entries that are not covered in SLSA
have lemmas that express Arabic or Islamic sub-
jects that do not have English counterparts such as
hamozap (an Arabic name) and kunAfap (an Ara-
bic food). Another 5% of the cases are countries
or nationalities that are not listed in SentiWord-
Net such as EAjiy (Ivorian). Additional 2% of the
cases are due to misspelled or non-English glosses
in AraMorph such as bon appetit. The remaining
cases (around 18%) have glosses that do not match
any of the synset terms in SentiWordNet.

We then conduct an intrinsic evaluation of
SLSA where the performance is compared to that
of ArSenL, which is the most similar state-of-the-
art lexicon (see Section 2). First, we randomly
select 400 (lemma, POS) pairs for the evaluation.
Only four pairs (1%) are not covered in SLSA. On
the other side, 103 pairs (26%) are absent in Ar-
SenL, which is consistent with the claim of the
authors of ArSenL that only 76% of SAMA en-
tries are matched in SentiWordNet. We then eval-
uate the random entries that exist in both SLSA
and ArSenL (297 entries). We ask human anno-
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tators to judge the correctness of the values in the
two lexicons. ArSenL may have several sentiment
values for the same entry, each with its own confi-
dence score, so we used the sentiment values with
the highest confidence score (averaged in the case
of multiple answers). Since judging the values as
real numbers is hard for humans, we map the senti-
ment scores into three classes of intensity (zero, up
to 0.55 and above 0.55). An entry is correct only
if the values of the positive and negative polarity
classes are both correct. Each entry was judged
by two annotators (without knowing its origin).
They had to discuss and come to an agreement
in the cases of disagreement (about 15% of the
cases). SLSA and ArSenL have the exact same
scores in 58.2% of the cases, which increases to
83.5% when mapping to the intensity classes.

Table 3 lists the accuracy of a majority baseline
(neutral), SLSA and ArSenL for the different POS
types2. SLSA gives error reductions of 58.7% and
37.8% over the baseline and ArSenL, respectively.

About 93% of SLSA errors are cases where the
sentiment scores are doubtful in SentiWordNet,
while the other errors are due to incorrect glosses
in AraMorph. It might happen that an AraMorph
entry is incorrectly linked to a SentiWordNet entry
causing an error, but we do not see this in any of
the manually analyzed data.

POS Count Baseline % ArSenL % SLSA %
NOUN 183 57.4 71.6 81.4

ADJ 50 42.0 66.0 74.0
VERB 62 43.5 58.1 80.6
ADV 2 50.0 100.0 100.0
All 293 51.9 68.0 80.1

Table 3: Accuracy results of a majority baseline (neutral),
SLSA and ArSenL, evaluated on a test set that is covered in
both SLSA and ArSenL

4.2 Extrinsic Evaluation

We conduct an extrinsic evaluation of SLSA on
the task of sentiment analysis where a subjective
sentence is classified to be either positive or nega-
tive. The performance is compared to that of Ar-
SenL. We use an evaluation setup similar to the
one described in (Badaro et al., 2014) using the
corpus developed by Abdul-Mageed et al. (2011).
The corpus involves 400 documents from the Penn
Arabic Treebank (part 1 version 3) (Maamouri
et al., 2004) where the sentences are tagged as
objective, subjective-positive, subjective-negative
and subjective-neutral. The evaluation only in-
volves the sentences tagged as subjective-positive

2There are only few adverbs in the test set because they
are rare in Arabic, where only 0.1% of the lexicon entries are
adverbs.

and subjective-negative. Random 80% of the sen-
tences are used for training, while the rest are left
for testing.

We train a Support Vector Machines classifier,
through LIBSVM (Chang and Lin, 2011), using
sentence vectors of three features representing the
averages of the positive scores, negative scores
and objective scores of the non-stop words in the
sentence divided by the count of the underlying
words. The scores are obtained by querying the
lexicon using the lemma and POS information.

We optimize the classification to obtain the
best F1-score based on five-fold cross validation
on the training set using different SVM kernels
and parameters. Polynomial kernels give the
best weighted-average F1-score3 of 68.6% (us-
ing SLSA), which is an absolute 0.2% improve-
ment over linear kernels. Table 3 lists the preci-
sion, recall and F1-score of a majority baseline
(subjective-negative), SLSA and ArSenL. SLSA
provides absolute weighted-average F1-score im-
provements of 22.9% and 3.5% over the baseline
and ArSenL, respectively.

Baseline % ArSenL % SLSA %

Positive
F1 0.0 54.5 58.5

Precision 0.0 56.5 61.8
Recall 0.0 52.5 55.6

Negative
F1 75.4 72.0 75.2

Precision 60.6 70.4 72.8
Recall 100.0 73.7 77.6

Weighted-Ave. F1 45.7 65.1 68.6

Table 4: Sentiment analysis results of a majority baseline
(subjective-negative), SLSA and ArSenL

5 Conclusion and Future Work

We have presented a publicly available large-scale
Standard Arabic Sentiment Lexicon (SLSA) that
avoids the deficiencies in the current lexicons. The
construction of SLSA is based on linking the lex-
icon of AraMorph with SentiWordNet along with
a few heuristics and powerful back-off. SLSA has
the highest up-to-date reported coverage. SLSA
shows a relative improvement of 37.8% over a
state-of-the-art lexicon when tested for accuracy.
It also outperforms it by an absolute 3.5% of F1-
score when tested for sentiment analysis.

The future plans include manually correcting
SLSA to reach a nearly 100% accuracy. Addi-
tionally, the work will be extended to the Arabic
dialects for which AraMorph-like morphological
analyzers are available. We also plan to study the
cases where English and Arabic translations have
different sentiments due to cultural differences.

3The weighted-average F1-score is the sum of the F-1
score of the positive class and the F1-score of the negative
class, each multiplied by its percentage.
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Abstract

For sentiment classification, it is often
recognized that embedding based on dis-
tributional hypothesis is weak in captur-
ing sentiment contrast–contrasting words
may have similar local context. Based on
broader context, we propose to incorporate
Theta Pure Dependence (TPD) into the
Paragraph Vector method to reinforce top-
ical and sentimental information. TPD has
a theoretical guarantee that the word de-
pendency is pure, i.e., the dependence pat-
tern has the integral meaning whose under-
lying distribution can not be conditionally
factorized. Our method outperforms the
state-of-the-art performance on text clas-
sification tasks.

1 Introduction

Word embeddings can be learned by training a
neural probabilistic language model or a uni-
fied neural network architecture for various NLP
tasks (Bengio et al., 2003; Collobert and We-
ston, 2008; Collobert et al., 2011). In global
context-aware neural language model (Huang et
al., 2012), the global context vector is a weighted
average of all word embeddings of a single docu-
ment/paragraph. After trained with all word em-
beddings belonging to the current paragraph, a re-
sulting Paragraph Vector can be obtained. Actu-
ally, Le and Mikolov’s Paragraph Vector (Le and
Mikolov, 2014) is trained based on the log-linear
neural language model (Mikolov et al., 2013a).

For text classification, using a straightforward
extension of language model (e.g. Le and
Mikolov’s Paragraph Vector) is considered not to
be sensible. Embeddings learned for text classifi-
cation should be very different from that learned
for language modeling. For example, language

∗Corresponding authors: Yuexian Hou and Peng Zhang.

models often calculate the probability of a sen-
tence, therefore this is a good movie and this is
a bad movie may not be discriminated from each
other. In sentiment analysis task, the semantic
representation of words needs to tell word good
from bad, even if the two words have the same
local context. For this reason, the local depen-
dency is insufficient to model topical or sentiment
information. Fortunately, if we have the global
context of good like interesting or amazing, the
sentiment meaning of the embedding will be ex-
plicit. However, the training of log-linear neural
language model is based on local word dependen-
cies (e.g., the co-occurrence of the words in a local
window). Thus, Paragraph Vector can not explic-
itly model the word dependencies for those words
that do not frequently appear in a local window but
are actually closely dependent on each other.

In this paper, our aim is to extend the Paragraph
Vector with global context which can capture topi-
cal or sentiment information effectively. However,
if one explicitly considers the dependency patterns
that are beyond the local window level, there is a
possibility that the noisy dependency patterns can
be involved and modeled in the distributed repre-
sentation methods. Moreover, there should be an
unique and explicit topical meaning in the patterns
to guarantee no ambiguity in the global context.
Therefore, we need a dependency mining method
that not only models the long range dependency
patterns, but also provides a theoretical guarantee
that the dependency patterns are pure. Here, the
“pure” dependency pattern is an integral seman-
tic meaning/concept that cannot be factorized into
sub dependency patterns.

In the language of statistics, Conditional Pure
Dependence (CPD) means that the underlying dis-
tribution of the dependency patterns cannot be fac-
torized under certain conditions (e.g., priors, ob-
served words, etc.). It has been proved that CPD
is the high-level pure dependence in (Hou et al.,
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2013). However, judging CPD is NP-hard (Chick-
ering et al., 2004). Fortunately, Theta Pure De-
pendence (TPD) is the sufficient criteria of CPD
and can be identified in O(N) time, where N is the
number of words (Hou et al., 2013). This finding
motivates us to adopt TPD as the global context.
Moreover, compared with other conventional co-
occurrence-based methods, such as the Apriori al-
gorithm (Agrawal et al., 1993), TPD based on the
Information Geometry (IG) framework has a solid
theoretical interpretations in statistics to guarantee
the dependence is pure.

2 Modeling Topic with TPD

Compared with local context, global context can
usually capture the text topic more precisely. It
is easy to get local context by a sliding window.
We define the centered word as the current word
and the other words in the window as local con-
text words. Global context words are extracted
from all the documents in the corpus and can be
divided into two parts: a) the words in the current
document but outside of the local context window;
b) the words never appeared in the document but
in the corpus. The following example shows the
words mentioned above, and the topic (the scene
of filming) is easily captured by TPD:

• TPD: scene camera acting movie
Text: there [is great atmosphere in the scene from the
location , the] lighting , the fog and such , but the
camera should be slowly following the killer. . .

The bracket stands for the local context window,
and the size of window is 5, i.e. there are five lo-
cal context words (in italics) in both sides of the
current word (in bold). Global context words are
underlined in the example.

In order to model the topic explicitly, the depen-
dence pattern should report one and only one topi-
cal meaning. TPD has a theoretical guarantee that
the dependency has an integral meaning whose un-
derlying distribution can not be conditionally fac-
torized. Formally, given a set of binary random
variables X = {X1, . . . , Xn}, where Xi denotes
the occurrence (Xi = 1) or absence (Xi = 0) of
the i-th word. Then the n-order TPD over X can
be defined as follows.

DEFINITION 1. (TPD): X = {X1, . . . , Xn} is
of n-order Theta Pure Dependence (TPD), iff the
n-order θ coordinate θ12...n is significantly differ-
ent from zero. (Hou et al., 2013)

TPD can be effectively identified by an explicit
statistical test procedure: Log Likelihood Ratio

Test (LLRT) (Nakahara and Amari, 2002) for θ-
coordinate of IG. (Hou et al., 2013)

Here, we introduce two negative examples to
further emphasize the importance of utilizing
TPD. Example 1: can, with, of. The joint distri-
bution of this words combination can be uncon-
ditionally factorized directly, since the occurrence
of any word does not necessarily imply the occur-
rence of others. Example 2: London, Chelsea,
Sherlock Holmes. As we all know, both Chelsea
and Sherlock Holmes are closely related to Lon-
don. Chelsea and Sherlock Holmes are two rela-
tively independent topics, i.e. they are conditional
independent given London. Although the three
phrases are unconditionally dependent, their joint
distribution can be conditionally factorized. Thus
the dependency in both two examples can not be
pure.

To explain TPD and the characteristic “pure”
intuitively, let us look at a typical example of
TPD: climate, conference, Copenhagen. The co-
occurrence of the three words implies an un-
separable high-level semantic entity compared
with the two negative examples, introduced above.
In negative examples, the high frequency of words
co-occurrence can be explained as some kind of
“coincidence”, because each of them or their pair-
wise combinations has a high frequency, indepen-
dently. However, the co-occurrence of TPD words
cannot be fully explained as the random coinci-
dence of, e.g., the co-occurrence of Copenhagen
and conference (which can be any other confer-
ences in Copenhagen) and the occurrence of cli-
mate.

The word “pure” in Hou et al. (2013) means that
the joint probability distribution of these words is
significantly different from the product of lower-
order joint distributions or marginal distributions,
w.r.t all possible decompositions. More formally,
it requires that the joint distribution cannot be
factorized unconditionally (UPD) or conditionally
(CPD) in the language of graphical model. Let
xi ∈ {0, 1} denote the value of Xi. Let p(x),
x = [x1, x2, . . . , xn]T , be the joint probability dis-
tribution over X. Then the definitions of UPD and
CPD are as follows:

DEFINITION 2. (UPD): X = {X1, . . . , Xn}
is of n-order Unconditional Pure Dependence
(UPD), iff it can NOT be unconditionally fac-
torized, i.e., there does NOT exist a k-partition
{C1, C2, . . . , Ck} of X, k > 1, such at p(x) =
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p(c1) ∗ p(c2). . .p(ck), where p(ci), i = 1, . . . , k,
is the joint distribution over Ci. (Hou et al., 2013)

DEFINITION 3. (CPD): X = {X1, . . . , Xn} is
of n-order Conditional Pure Dependence (CPD),
iff it can NOT be conditionally factorized, i.e.,
there does NOT exist C0 ⊂ X and a k-partition
{C1, C2, . . ., Ck} of V = X − C0, k > 1, such at
p(v|c0) = p(c1|c0) ∗ p(c2|c0). . .p(ck|c0), where
p(v|c0) is the conditional joint distribution over
V given C0, and p(ci|c0), i = 1, 2, . . . , k, is the
conditional joint distribution over Ci given C0. In
case that C0 is an empty set, we define p(c0) =
1. (Hou et al., 2013)

Actually, CPD is stricter than UPD, and the
dependence which just satisfies UPD is not pure
enough to model the global context. Therefore,
“pure” in our paper refers to the characteristic of
CPD. However judging CPD is NP-hard. It is
proved that a significant nonzero n-order θ param-
eter (TPD) entails the n-order CPD/UPD in Hou
et al. (2013). The highest-order coordinate pa-
rameter in IG is a proper metric for the purity
(i.e., the unique semantics) of high-order depen-
dence. A pattern is TPD, iff the n-order θ coor-
dinate θ12...n is significantly different from zero.
Moreover, The Log Likelihood Ratio Test imple-
mented in the mixed coordinates can test whether
θ12...n is significantly different from zero.

Contrasting to TPD, the semantic coupling
among the associations in the two negative exam-
ples is much weaker. In conclusion, can, with, of
cannot give an explicit topic and London, Chelsea,
Sherlock Holmes includes at least two topics. the
co-occurrence of words in TPD (e.g. climate,
conference, Copenhagen) implies an un-separable
(pure) high-level semantic entity. A sufficient and
unbroken meaning of dependence can not only
supply the context but also avoid the ambiguity (or
noise) in global context. Therefore, the meaning
of pure is important in such a global context mod-
eling method.

3 Global PV-DBOW and Dependence
Vectors

A version of Paragraph Vector in Le and Mikolov
(2014) PV-DBOW is extended with TPD to a
new model: Global PV-DBOW (Glo-PV-DBOW).
TPD has been extracted from the corpus before
training. Given a sequence of training words w1,
w2, w3, . . . , wT and the global context glot of wt,
the objective of Glo-PV-DBOW is to maximize the

average log probability:

L =
1
T

T∑
t=1

[ ∑
−c≤j≤c,j ̸=0

log p(wt|wt+j)

+ log p(wt|glot) + log p(wt|doct)
] (1)

where c is the local context window size. The in-
dicator of the document that the current word wt

belongs to is denoted by doct. Further, we define
p(wt|glot) in equation (2):

p(wt|glot)

=
A∏
a

[
p(wt|depa

t )p(wt|wa
1 , wa

2 , . . . , wa
N )

] (2)

The indicator of the a-th wt’s TPD pattern is de-
noted as depa

t and can be trained to be a distributed
representation of TPD: dependence vector vdepa

t
.

This (N+1)-order TPD consists of N+1 words: wa
1 ,

wa
2 . . . wa

N and wt. The energy function of wt and
wi = (wt+j , doct, depa

t ) is uniform as follows:

E(wt, wi) = −vwt
T vwi (3)

We define the energy function of TPD words:

E(wt, w
a
1 , wa

2 , . . . wa
N ) = − 1

N

N∑
n=1

vwt
T vwa

n
(4)

The resulting predictive distributions are given by

p(wt|wi) =
exp(vwt

T vwi)∑W
m=1 exp(vwm

T vwi)
(5)

p(wt|wa
1 , wa

2 , . . . , wa
N )

=
exp( 1

N

∑N
n=1 vwt

T vwa
n
)∑W

m=1 exp( 1
N

∑N
n=1 vwm

T vwa
n
)

(6)

Hierarchical softmax (Morin and Bengio, 2005)
is adopted to reduce the cost of computation.
The binary tree is specified with a Huffman tree,
and the Huffman code of pseudo words mi in
wt’s Huffman path is denoted as xmi . For more
about hierarchical softmax we used, please re-
fer to (Mikolov et al., 2013b). Using stochas-
tic gradient descent (SGD), distributed representa-
tions of the word, dependence and document have
been trained. The update procedure of vwi =
(vwt+j , vdoct , vdepa

t
) is as same as the procedure

described in (Mikolov et al., 2013b). Thus, the
pseudo code for training TPD words is listed indi-
vidually:
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SGD FOR TRAINING THE TPD WORDS

1 vwt ← current word

2 vwa
ave
← 1

N

∑N
n=1 vwa

n

3 err ← 0
4 for ∀mi

5 do g ← (1− xmi − σ(vmi
T vwa

ave
)) ∗ α

6 err+ = g ∗ 1
N ∗ vmi

7 mi+ = g ∗ vwa
ave

8 for n← 1 to N
9 do vwa

n
+ = err

4 Experiments

Apriori (not a pure dependency method) is con-
trastively adopted to implement Glo-PV-DBOW.
Glo-PV-DBOW-TPD and Glo-PV-DBOW-Apri
are all evaluated in two text classification tasks:
sentiment analysis and topic discovery. The suffix
(e.g., -2, -5) of our global method name denotes
the order of dependency (the number of words in
a dependence pattern). The order of dependency
is changed because we want to show the superi-
ority of the high-order TPD. The high-order TPD
provides the more rich and explicit global context
than the lower-order one since the high-order TPD
cannot be reduced to the random coincidence of
lower-order dependencies.

We cross-validate the hyperparameters and set
the local context window size as 10, the dimen-
sion of embeddings as 100. In sentiment anal-
ysis task, Apriori’s minimum support and TPD’s
theta 0 is respectively set as 0.004 and 1.4. While
in topic discovery task, Apriori’s minimum sup-
port and TPD’s theta 0 is around 0.020 and 2.0 re-
spectively. Since the classification accuracy of the
approaches compared is a single result, we do not
include any results for test of significance in our
method and only report the average accuracy.

4.1 Sentiment Analysis on Movie Reviews

The binary sentiment classification on the IMDB
dataset proposed by (Maas et al., 2011) is con-
ducted. Results in Fig.1 show that global methods’
performance is more stable than PV-DBOW’s.
Moreover, TPD works much better than Apriori,
especially in the high-order dependence. Note
that TPD-5 works better than TPD-2, while Apri-
5 works worse than Apri-2. It can be explained
that the Apriori algorithm is short of an explicit
statistical test procedure to guarantee the pure de-
pendence. Therefore, the Apriori algorithm is not
suitable for generating the high-order dependence.
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Figure 1: Box plot of classification accuracy over
a local method (PV-DBOW) and 4 global methods
(Apri-2/5, TPD-2/5).

Instead, the high-order TPD can provide the rich
and explicit global context for the model. Mean-
while, it is verified that our method is good at cap-
turing sentiment contrast.

Table 1 shows that Glo-PV-DBOW with 5-order
TPD achieves the state-of-the-art performance.
A promising result is an improvement of more
than 2% over result published in Le and Mikolov
(2014). Note that the algorithm process of Para-
graph Vector (Le and Mikolov, 2014) is much
more complex than PV-DBOW’s. Paragraph Vec-
tor includes an extra inference stage. In addition,
Paragraph Vector’s document vector is a combina-
tion of two vectors: one learned by PV-DBOW and
the other learned by Distributed Memory Model
of Paragraph Vectors (PV-DM) (Le and Mikolov,
2014). The combined document vector has 800
dimensions, while all vectors in our experiments
only have 100 dimensions.

4.2 Topic Discovery on News
The 20 Newsgroups dataset is a collection of ap-
proximately 20,000 newsgroup documents, parti-
tioned across 20 different newsgroups. We fol-
low (Crammer et al., 2012) to create binary prob-
lems from the dataset by creating binary decision
problems of choosing between two similar groups.
Therefore, the dataset is split into two sub-datasets
as follows: comp: comp.sys.ibm.pc.hardware vs.
comp.sys.mac.hardware and sci: sci.electronics
vs. sci.med. Similarly, 1800 examples balanced
between the two labels were selected for each
problem.

The classification accuracy on each sub-dataset
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Table 1: The performance of our method com-
pared with other approaches on the IMDB dataset.

Model Accuracy rate
BoW (bnc) (Maas et al., 2011) 87.80%

Full+Unlabeled+BoW (Maas et al., 2011) 88.89%
WRRBM (Dahl et al., 2012) 87.42%

WRRBM + BoW (bnc) (Dahl et al., 2012) 89.23%
SVM-bi (Wang and Manning, 2012) 89.16%

NBSVM-bi (Wang and Manning, 2012) 91.22%
PV-DBOW (Le and Mikolov, 2014) 90.79%

Paragraph Vector (Le and Mikolov, 2014) 92.58%
Sentence Vector + RNN-LM + NB-LM 92.57%

(Mesnil et al., 2014)
mvCNNo&w (Johnson and Zhang, 2015) 93.34%

Glo-PV-DBOW-Apri-2 93.76%
Glo-PV-DBOW-Apri-5 92.41%
Glo-PV-DBOW-TPD-2 94.83%
Glo-PV-DBOW-TPD-5 95.05%

Table 2: The performance of our method com-
pared to other approaches on 20 Newsgroup.

Model Comp Sci
Confidence-weighted 94.39% 97.56%
(Crammer et al., 2012)

PV-DBOW 92.60% 98.02%
(Le and Mikolov, 2014)
Glo-PV-DBOW-Apri-2 94.56% 98.42%
Glo-PV-DBOW-Apri-5 94.43% 98.13%
Glo-PV-DBOW-TPD-2 94.59% 99.20%
Glo-PV-DBOW-TPD-5 95.47% 98.74%

is recorded in Table 2. Compared with
Confidence-weighted (Crammer et al., 2012) and
PV-DBOW (Le and Mikolov, 2014), our extended
models achieve the highest accuracy on each sub-
dataset. Moreover, TPD as a pure dependence
works better than Apriori when they provide the
global context for our model. The topical infor-
mation is effectively reinforced in embeddings by
incorporating TPD.

4.3 Analysis on Word Embeddings

The cosine similarity of each word pair in 20
Newsgroups is computed. We list four center
words and their nearest neighbors in PV-DBOW
and Glo-PV-DBOW groups respectively. The
rankings are labeled in front of neighbor words,
and some notable neighbor words are in bold.

From Table 3, we can see that the statistical
information of corpus like words co-occurrence
can be mined by TPD. Therefore, the Glo-PV-
DBOW’s embeddings are context-aware and it can
help a lot for classification tasks. The top 40 near-
est neighbors of ibm are investigated, and we find
macintosh and mac appeared in the PV-DBOW
group but not in the Glo-PV-DBOW group. In

Table 3: Nearest neighbors of words ranking list
based on cosine similarity.

Center word PV-DBOW Glo-PV-DBOW

ibm

1:aix
2:pc
. . .
23:macintosh
34:mac

1:aix
2:pc
3:pc’s
4:austin
5:workstations

mac

1:macintosh
2:quicktime
3:portable
4:utilities
5:macs

1:macintosh
2:apple’s
3:quicktime
4:apple
5:macs

486

1:386
2:486dx
3:33mhz
4:486dx2
5:cpu

1:386
2:cpu
3:486dx
4:486dx2
5:33mhz

Kingston

1:aix
2:mike
3:sharks
4:jones
5:ibm

1:aix
2:ibm
3:jones
4:sharks
5:mike

the corpus, the topic of documents is either ibm or
mac. If we perform a classification task on ”ibm
versus mac”, it will be hard to classify in the PV-
DBOW group. That is because PV-DBOW tends
to regard ibm and mac both as computers. How-
ever, the two different computer brands are distin-
guished in Glo-PV-DBOW. Further, ibm and mac
co-occur rarely in one document, and the statisti-
cal information is noted by TPD.

5 Conclusion

This paper proposes to incorporate Theta Pure De-
pendence into Paragraph Vector to capture more
topical and sentimental information in the con-
text. The extended model is applied to a sen-
timent classification task and a topical detection
task. Our accuracy outperforms the state-of-the-
art result on the movie and news datasets. The ap-
proach can be improved further to fully leverage
the un-factorized sense of high-order Theta Pure
Dependence. In future, we will explore the appli-
cations of dependence distributed representation.
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Abstract

We propose a novel data augmentation ap-
proach to enhance computational behav-
ioral analysis using social media text. In
particular, we collect a Twitter corpus of
the descriptions of annoying behaviors us-
ing the #petpeeve hashtags. In the qual-
itative analysis, we study the language
use in these tweets, with a special focus
on the fine-grained categories and the ge-
ographic variation of the language. In
quantitative analysis, we show that lexi-
cal and syntactic features are useful for au-
tomatic categorization of annoying behav-
iors, and frame-semantic features further
boost the performance; that leveraging
large lexical embeddings to create addi-
tional training instances significantly im-
proves the lexical model; and incorporat-
ing frame-semantic embedding achieves
the best overall performance.

1 Introduction

In the ever-expanding era of social media, many
scientific disciplines, such as health and health-
care, biology, and learning sciences, have adopted
computational approaches to exploit patterns and
behaviors in large datasets (Wang et al., 2015;
Chen and Lonardi, 2009; Baker and Yacef, 2009).
In contrast, the primary methods for behavioral
sciences still rely on lab experiments with limited
amount of subjects, which are time consuming and
financially expensive. In addition to this, it is also
difficult to obtain a set of samples with geograph-

∗We understand that many people find long titles annoy-
ing, so we intentionally use a very long one to help people
understand what “pet peeve” means.

Figure 1: An anonymized example of #petpeeve tweets.

ical variations in traditional lab-based behavioral
experiments.

While the social media data are abundantly
available, computational approaches to behavioral
sciences using Twitter are not well-studied. Even
when statistical techniques are applied to these
tasks, their concentration has been on simple sta-
tistical significance tests and descriptive statis-
tics (De Charms, 2013; Zhang et al., 2013). There-
fore, we believe that statistical natural language
processing techniques are needed for insightful
analysis and interpretation in behavioral studies.

In this paper, we use Twitter as a corpus for
computational behavioral science. More specifi-
cally, we focus on a case study of analyzing an-
noying behaviors. To do this, we exploit a corpus
of 9 million tweets (Cheng et al., 2010), and ex-
tract the tweets that describe these behaviors us-
ing the #petpeeve hashtags. #petpeeve is a pop-
ular Twitter hashtag, which describes behaviors
that might be annoying to others. An example
of #petpeeve tweets is shown in Figure 1. To fa-
cilitate the analysis, we manually annotate 3,375
tweets with 60 fine-grained categories, which will
be described in Section 3. We use a sparse mixed-
effects topic model to analyze the salient words
in each category, as well as the geographic varia-
tions. We show that lexical, syntactic, and seman-
tic features enhance the automatic categorization
of annoying behaviors; and that the performance
is further improved with a novel lexical and frame-
semantic embedding based data augmentation ap-
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proach. Our main contributions are three-fold:

• We provide a Twitter corpus with fine-
grained annotations for computational behav-
ior studies;

• We qualitatively analyze the Twitter language
concerning annoying behaviors, with a focus
on the topics and geographical variations;

• We propose various linguistic features and a
novel data augmentation approach for auto-
matic categorization of annoying behaviors.

We outline related work in the next section. The
dataset is described in Section 3. We introduce the
approach for analyzing #petpeeve Tweets in Sec-
tion 4. Experimental results are shown in Sec-
tion 5. We discuss possible applications in Sec-
tion 6, and conclude in Section 7.

2 Related Work

Psychologists, behavioral scientists, and computer
scientists have studied a wide-range of methods
for behavior extraction (Mast et al., 2015). For ex-
ample, in lab experiments, arm and body postures
(Marcos-Ramiro et al., 2013) are often used to ex-
tract self-touch and gestures, while eye gaze (Fu-
nes Mora and Odobez, 2012), head pose (Ba and
Odobez, 2011), face location and motion (Nguyen
et al., 2012), and full-body pose (Shotton et al.,
2013) can also be used as cues to extract gaz-
ing, nodding, and arm-related behaviors. There
are also significant amount of studies of extract-
ing facial and speech features to understand smil-
ing (Bartlett et al., 2008), eye contact (Marin-
Jimenez et al., 2014), and verbal behaviors (Basu,
2002).

With the surge of interest in computational
social science (Lazer et al., 2009), Twitter has
become a popular resource to study data-driven
methods in social science (Miller, 2011). For ex-
ample, O’Connor et al. (2010a) align the Twit-
ter messages with public opinion time series to
study computational political science. Ritter et
al. (2010) study Twitter dialogues using a clus-
tering approach. Bollen et al. (2011) use a sen-
timent analysis approach to predict the Ameri-
can stock market via Twitter. Li et al. (2014b)
have investigated the alignment of Twitter mood
with weather for sentiment analysis. In recent
years, language technology researchers have fo-
cused on developing genre-specific Twitter part-
of-speech tagging (Gimpel et al., 2011), named

Label % Label %
appearance .14 services .02
disrespect .06 traffic .02
language .06 advertisement .01
hygiene .05 bragging .01
relationship .05 children .01
dishonesty .03 complaining .01
hypocrisy .03 indolence .01
incompetence .03 physical .01
interruption .03 punctuality .01
monetary .03 racial .01
sexual .03 religious .01
arrogance .02 selfishness .01
celebrity .02 silence .01
ignorance .02 smoking .01
privacy .02 talkative .01
products .02 weather .01

Table 1: The categories and percentages of annoying behav-
iors in #petpeeve tweets in our dataset. Note that 17% of the
#petpeeve tweets are identified as other unrelated behaviors
(not shown).

entity recognition (Ritter et al., 2011), summariza-
tion (O’Connor et al., 2010b), sentiment analy-
sis (Agarwal et al., 2011), event extraction (Ritter
et al., 2012; Li et al., 2014a), paraphrasing (Xu et
al., 2014), machine translation (Ling et al., 2013),
and dependency parsing (Kong et al., 2014) meth-
ods. To the best of our knowledge, even though
there have been studies on using Twitter hashtags
to study language-related behaviors (González-
Ibánez et al., 2011; Bamman and Smith, 2015),
Twitter NLP approaches to non-linguistic behav-
iors are not well studied in general.

3 The Dataset

We use the Twitter corpus with 9 million sam-
pled messages collected in prior work (Cheng et
al., 2010), which includes a total of 121K users.
The dataset includes latitude and longitude infor-
mation.

We extract 3,375 tweets1 with #petpeeve hash-
tags. We follow past work to annotate the
tweets (Ritter et al., 2012; Li et al., 2014a): we
apply the LDA clustering + human-identification
approach to label the categories of the described
annoying behaviors in these tweets. The human
annotation process includes two stages: first, the
annotators identify the 50 categories from the clus-
tering process, and use these topics as a candi-

1http://www.cs.cmu.edu/˜yww/data/petpeeves.zip

2558



date label set to annotate the data; in the second
stage, the categories are refined (to 60 classes)
from the first pass, and the data is re-annotated
with the refined human-specified category labels.
Due to the complexity of this fine-grained anno-
tation task, the inter-annotator agreement rate be-
tween two annotators is moderate (0.445).

The annotated categories and label distribution2

of the dataset are shown in Table 1. In our random
samples, the states that post the most #petpeeve
tweets are NY, MD, CA, NJ, FL, GA, VA, TX,
NC, PA, and DC. In our predictive experiments,
we randomly select 60% of tweets for training, and
40% for testing.

4 Our Approach

In this section, we describe our methods for the
qualitative and quantitative analyses. In particular,
we briefly review a supervised approach of using
sparse mixed-effects topic model to visualize the
topical words to analyze this behavior data. For
the quantitative task of automatic categorization of
tweets, we propose a novel approach to create ad-
ditional training data, using continuous lexical and
semantic representations.

4.1 Supervised Topic Modeling

To analyze the salient words for each category of
annoying behaviors, we utilize SAGE (Eisenstein
et al., 2011), a state-of-the-art mixed-effect topic
model, which has been used in several NLP ap-
plications (Sim et al., 2012; Wang et al., 2012).
SAGE is ideal for our text analytic purposes, be-
cause it is supervised, and it builds relatively clean
topic models by considering the additive effects
and the background distribution of words. There-
fore, we can use SAGE to visualize the salient
words for each category of annoying behaviors
using the 3,375 #petpeeve tweets. Each tweet
is treated as a document, and we use Markov
Chain Monte Carlo for inference. To facilitate
the geographical analysis, we use Google’s reverse
geocoding service to extract the state information
from coordinates, and apply SAGE for visualiza-
tion.

2The categories that are not shown in the table are back-
stabbing, boring, copycat, drinking, drug, empty promise,
impoliteness, inconsiderate, indirect, insecurity, interference,
irresponsible, jealous, judge, loneliness, misunderstanding,
negativity, noisy, parents, politics, repetition, showoff, snob-
bish, stability, swearing, time-wasting, ungratefulness, and
others.

4.2 Embedding-Based Data Augmentation
for Automatic Categorization of Tweets

In addition to the visualization task, we also ask
the question: can we use linguistic cues to predict
tweets that describe different annoying behaviors?
We formulate the problem as a multiclass classi-
fication task, and consider the following feature
sets:

• Lexical Features: we extract unigrams as
surface-level lexical features.

• Part-of-Speech Features: to model shallow
syntactic cues, we extract lexicalized part-of-
speech features using the Stanford part-of-
speech tagger (Toutanova et al., 2003).

• Dependency Triples: to better understand
the deeper syntactic dependencies of key-
words in tweets, we have also extracted typed
dependency triples (e.g., nsubj(hate,I)) using
the MaltParser (Nivre et al., 2007).

• Frame-Semantics Features: SE-
MAFOR (Das et al., 2010) is a state-of-
the-art frame-semantics parser that produces
FrameNet-style semantic annotation. We use
SEMAFOR to extract frame-level semantic
features.

Embeddings for Data Augmentation Since the
Twitter messages are often short and noisy, and
the training data is relatively scarce for each class,
we consider the feasibility of leveraging external
resources, in particular, continuous word embed-
dings (Mikolov et al., 2013a) to enhance the mul-
ticlass text categorization model.

Two major challenges for leveraging word em-
beddings for tweet classification are: 1) because
word embeddings are continuous, it is difficult to
fuse them with other discrete syntactic and se-
mantic features; 2) it is not straightforward how
one should transform the word-level representa-
tion to the tweet-level representation. In our pre-
liminary experiments, we have evaluated the con-
tinuous word representation method (Turian et al.,
2010), as well as incorporating neighboring words
in the embeddings as additional features, but both
methods fail to outperform the lexical baseline that
uses only bag-of-word unigrams.

To solve this problem, we propose the use of
neighboring words in continuous representations
to create new instances to augment the training

2559



weather ungratefulness traffic timewasting talkative swearing stability snobbish
rains helped cop wastingmytime Tweeters curse mood smut

STORM ungrateful lane colleagues Xs teary sensitive intellectual
Blizzarad clearly pulled Wen wht qweet91 dudes moneycars
snowed r speed BruklynFinest sheesh swears nigga LoWQUI
SNOW them Slow hold TwitterJail 10 up lifestyle

smoking silence showoff sexual services selfishness repetition religious
JAYECANE guilty louis box fil ONLY dislike sinners

reggie R rims wonder requests Selfish repeat IAmKevinTerrell
smoking response seein Preach convos selfish myself spiritual
smoke conversation makin suck TIP stay same CHURCH

smokers sending bag pussy products hit over FOLK

Table 2: The salient words for categories of annoying behaviors learned by the sparse additive generative model of text.

State Top Topical Words
NY stalkers niqqas der den part dats liek havin
MD fuckouttahere missing ima dmv fan situation tongue
CA pocket clown phones football fit acting lip
NJ nite blame p hips pum summer elses seein
FL daddy both chipped pum rims nappy foh children
GA oo affioncrockett season cigarettes year tatoos
VA lane language middle might check winter past duke
TX drama lmaoooo gtfoh nappy two jk stare unfollow
NC everyday ear chic during hello wayansjr tryn nicca
PA 10 huh killyaself lifestyle shades round texts fucc
DC dmv uncle nosey stare cares bish 1st lips

Table 3: The geographical variation of the annoying behav-
iors.

dataset. More specifically, in the embedding vo-
cabularyW , we search for the k-nearest-neighbor
(knn) word w for a query term using cosine sim-
ilarity between query ~Q and target word vectors
~W :

arg max
w∈W

cosine( ~Q, ~W ) (1)

For each word in a tweet, we query the exter-
nal embeddings, and replace them with their knn
words to create a new training instance. For ex-
ample, consider the tweet “Being late is terrible”
with the punctuality label, after searching for knn
words for each token, we create a new training in-
stance: “Be behind are bad” with the same label.
Frame-Semantic Embeddings Although lexi-
cal (Mikolov et al., 2013a) and dependency based
embeddings (Levy and Goldberg, 2014) have been
studied, semantic-based embedding is still less un-
derstood. We consider the continuous embedding
of semantic frames (Baker et al., 1998). To do this,
we semantically parsed 3.8 million tweets using
SEMAFOR (Das et al., 2010), and built a continu-
ous bag-of-frame model to represent each seman-
tic frame using Word2Vec3. We then use the same
data augmentation approach to create additional
instances with these semantic frame embeddings.

3https://code.google.com/p/word2vec/

Features Precision Recall F1
Lexical .341 .342 .341
+POS .345 .346 .346
+Dependency* .349 .350 .350
+Semantic Frames* .365 .367 .366

Table 4: Comparing linguistic features for categorizing an-
noying behaviors. The best results are highlighted in bold.*
indicates that the result is significantly better than the lexical
baseline (p < .0001).

5 Experiments

5.1 Qualitative Analysis

We show the results of the visualization of salient
words for each category of tweets in Table 2.
SAGE clearly does a good job identifying annoy-
ing specific behaviors in each category. For ex-
ample, in the traffic category, we see that the key-
words “cop” and “pulled” that associate with traf-
fic stop are identified. Also, “slow” and “speed”
are also recognized as annoying behaviors dur-
ing traffic. In the selfishness category, the word
“ONLY” and “Selfish” are corrected identified. In
the silence category, we see that the word “R” is
promising, because it indicates the behavior when
someone reads a blackberry message without re-
ply. We see that many slang expressions are asso-
ciated with various labels.

In Table 3, we show the geographical varia-
tion of tweets. The word “dmv” (DC-Maryland-
Virginia) is correctly associated with MD and DC,
and when we search the database, these #petpeeve
tweets mainly refer to the 2010 snowstorm in the
Winter affecting these areas. The “daddy” is
prominent in the state of Florida, while the word
“rims” is also identified, showing the unique car
culture of this southern state.

5.2 Quantitative Evaluation

Experimental Setup We use the logistic regres-
sion model from LibShortText (Yu et al., 2013)
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Methods Prec. Rec. F1 Imp.
Lexical Baseline (No Data Augmentation) .341 .342 .341 —
+ UrbanDictionary Embeddings .343 .344 .344 0.9%
+ Twitter Embeddings* .357 .358 .358 4.7%
+ GoogleNews Embeddings* .364 .366 .365 6.1%
All Features Baseline (No Data Augmentation) .365 .367 .366 —
+ Lexical (GoogleNews) and Frame-Semantic Embeddings* .376 .377 .376 2.7%
+ Lexical (Twitter) and Frame-Semantic Embeddings* .379 .380 .379 3.6%
+ Lexical (UD) and Frame-Semantic Embeddings* .379 .381 .380 3.8%

Table 5: The effectiveness of leveraging continuous embeddings to create additional training instances. Imp.: relative improve-
ment to the baseline without data augmentation. The best results for each section are highlighted in bold.* indicates that the
result is significantly better than the baseline without data augmentation (p < .0001).

as the classifier in our 60-way multi-class classifi-
cation experiments. Grid search is used to select
the best hyper-parameter using the training data
only. A final classifier is then trained using the
best hyper-parameters and test set results are re-
ported. We set k = 5 for knn in our data augmen-
tation experiments: the training data is expanded
to 5 times of the original size. We use a paired
two-tailed student’s t test to assess the statistical
significance.

Word2Vec is used to train various lexical and
semantic embedding models. We consider three
lexical embeddings and one frame-semantic em-
beddings for data augmentation: 1) Google-
News Lexical Embeddings trained with 100 bil-
lion words (Mikolov et al., 2013b); 2) Twitter Lex-
ical Embeddings trained with 51 million of words;
3) Urban Dictionary lexical embeddings trained
with 53 million of words from slang definitions
and examples; 4) Twitter Semantic Frame Embed-
dings trained with 27 million frames.
Varying Feature Sets We compare various fea-
tures in Table 4. We see that adding shallow part-
of-speech features does not have a strong effect
on the performance, but adding the dependency
triples significantly outperforms the lexical base-
line. We see that the semantic frames are partic-
ular useful, showing a 7% relative improvement
over the baseline.
The Effectiveness of Data Augmentation Table 5
shows the results of data augmentation. We see
that using the Google News lexical embeddings to
augment the training data brings a 6.1% relative
F1 improvement over the lexical baseline. When
considering the additional frame-semantic embed-
dings from Twitter, our system obtains the best F1
of 0.380, bringing a 3.8% improvement over the
no data augmentation baseline with all linguistic

features.

6 Discussion

We provide a case study of automatically cat-
egorizing annoying behaviors using #petpeeve
Tweets. We hope that this study can further solicit
relevant research on fine-grained analysis of an-
noying behaviors in different dimensions, and use
computational approaches to improve social good.
For example, by using coordinates and other APIs,
one might analyze the annoying behaviors in the
public working environments (e.g., office, meeting
rooms, etc.). By understanding what annoys their
employees, companies can renovate their working
setups, refine their policies, and improve the satis-
faction and productivity of their employees.

In addition to #petpeeve Tweets, there are many
other interesting hashtags that align well with tra-
ditional topics in behavior sciences. For exam-
ple, hashtags like #occupywallstreet can be used
to study crowd behaviors in terms of a political un-
rest. The #ALS hashtag can be used to study public
behaviors in reaction to philanthropic campaigns.
Overall, Tweets from carefully selected hashtags
can be inexpensive to obtain, and facilitate signif-
icant amount of behavioral studies.

7 Conclusion

In this paper, we have presented a case study of the
annoying behaviors using Twitter as a corpus. Our
fine-grained visualization approach shows insights
of different categories of these behaviors, with the
geographical effects. We also show that linguis-
tic cues are useful to categorize these behaviors
automatically, and that using lexical and semantic
embeddings as a data augmentation method sig-
nificantly improves the performance.
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Abstract

We propose a method to detect hidden data
in English text. We target a system pre-
viously thought secure, which hides mes-
sages in tweets. The method brings ideas
from image steganalysis into the linguis-
tic domain, including the training of a
feature-rich model for detection. To iden-
tify Twitter users guilty of steganography,
we aggregate evidence; a first, in any do-
main. We test our system on a set of 1M
steganographic tweets, and show it to be
effective.

1 Introduction

Consider this: two isolated prisoners, communi-
cating by letters scrutinised by the prison warden.
They cannot write openly about escape plots, and
the warden destroys any written in code. They
must hide the true message within the letter, us-
ing steganography: the art of hiding information.

In cover modification1steganography, a cover
object is tweaked so that it carries a hidden mes-
sage: this is called embedding, the tweaked ver-
sion is the stego object, and the message is the pay-
load (Fridrich, 2009). The message should not be
detectable to any observer (the standard terminol-
ogy for this is the warden, taken from the prisoner
metaphor) who knows the system is deployed, but
does not know the original cover.

We are concerned here with linguistic steganog-
raphy, in which the cover is a piece of text, and
the message is embedded using textual transfor-
mations intended to preserve the meaning of the
original: synonym substitutions, syntactical trans-
formations, etc. Note that we are not concerned

1There are other steganographic paradigms, not in scope.
Translation based methods hide information in the automatic
translation of the cover (e.g. Meng et al. (2011)). Cover gen-
eration methods automatically produce text containing the
payload (e.g. Chapman et al. (2001)).

with the subset of linguistic steganography that
hides in file formatting (e.g. white space, as in
Por et al. (2008)), which has no security against an
informed warden (in the case of hiding informa-
tion by adding extraneous white space, the warden
simply has to look for consistent irregular use of
spaces to spot an active steganographer).

The field suffers from a number of issues: com-
pared to images, text covers have low capac-
ity (Chang and Clark, 2010); certain methods
are weak against human attackers (Grosvald and
Orgun, 2011) (most paraphrase systems cannot
guarantee perfectly fluent stego objects); finally,
authors are generally concerned with the perfor-
mance of the transformation (whether they pro-
duce grammatically/semantically correct transfor-
mations), rather than whether the generated stego
objects are detectable or not (e.g. Chang and Clark
(2010)).

However, there is a new challenger in the field.
We proposed a new linguistic stegosystem (Wilson
et al., 2014) and verified its security against hu-
man judges, who were unable to distinguish gen-
uine covers from manipulated stego objects.

This paper aims to attack CoverTweet statisti-
cally. We are in the shoes of the warden, attempt-
ing to classify stego objects from innocent2cover
objects. We propose techniques new to linguis-
tic steganalysis, including a large set of features
that detect unusual and inconsistent use of lan-
guage and the aggregation of evidence from mul-
tiple sentences. This last development, known in
the steganographic literature as pooled steganaly-
sis (Ker, 2007), represents a first in both linguistic
and image steganalysis.

2It is usual to call steganographers and their output
‘guilty’ (with non-steganographers and unchanged cover ob-
jects being ‘innocent’). This has the possibility of seeming
politically charged, so we will use the term ‘active’ instead:
be aware that this is not the usual terminology.

2564



2 Linguistic Stegosystems

T-Lex (Winstein, 1998) is the oldest available
cover-modification based linguistic stegosystem.
It uses a dictionary containing a small number
of disjoint synonym sets extracted from Word-
Net (Miller, 1995). Each set is unambiguously or-
dered (e.g. alphabetically), then values are embed-
ded by changing cover words for their synonyms.
Due to the the small dictionary, the capacity of
covers is only ∼ 0.1 bits per sentence.

CoverTweet is a modern evolution of T-Lex.
It hides information in tweets by applying para-
phrase rules taken from the Paraphrase Database
(PPDB) (Ganitkevitch et al., 2013), a set of 169M
rules. The system applies suitable rules to a given
cover, generating a set of possible stego objects.
These are ranked by a distortion measure (derived
from the probabilities of applied rules and from
sentence probabilities given by a language model),
and assigned a keyed hash. A human operator fil-
ters the options for fluency, and chooses the best
stego object with the desired hash.

CoverTweet uses a subset of the PPDB, re-
stricted to lexical and phrasal substitutions. Even
with the reduced set of rules, 4 bits can be embed-
ded per tweet, and it was proven secure against
human judges (Wilson et al., 2014).

Twitter is a realistic setting for steganography.
There is precedent for information hiding and
mass monitoring on micro-blogging sites, such as
the use of code words and government censorship
on the Chinese website Sina Weibo (Chen et al.,
2013). For this reason, we are attacking this set-
ting.

There are many other linguistic stegosystems,
using an array of different hiding methods (e.g.
adjective deletion, word order, anaphora reso-
lution: (Chang and Clark, 2012a), (Chang and
Clark, 2012b), (Vybornova and Macq, 2007)).
Approximately 1 bit of payload per cover sentence
is usual, making CoverTweet the exception. Un-
fortunately for steganalysis literature, the vast ma-
jority of these require data that is unavailable (and
too expensive to reproduce); beyond CoverTweet,
the only system that can be evaluated is T-Lex.

3 Related Work

To our knowledge, there have been only five prior
attempts at linguistic steganalysis on cover mod-
ification based systems; of these, four attack T-
Lex, the other attacks an equivalent proprietary

system. Taskiran et al. (2006) was the first, us-
ing n-gram language models to extract features
from stego text, before training a support vector
machine (SVM) on the features. We will adopt
some of these features for our attack.

Subsequent work (Xin-guang et al. (2006); Yu
et al. (2009); Chen et al. (2011); Xiang et al.
(2014)) has used smaller models: they have all de-
signed a single feature to exploit a weakness, and
used this (or the mean and variance of it) to train a
classifier for attack. Analysis of results, especially
the effect of embedding rate on detection, has been
lacking or non-existent. This focus on individual
features echoes the early work on image steganal-
ysis, which has since shifted towards feature-rich
models. We will be utilising the latter here, in ad-
dition to the pooled steganalysis paradigm.

4 Proposed features

Below we describe four classes of proposed fea-
tures for individual tweets. Each class will be eval-
uated individually, and in combination.

Basic features Including: word count (includ-
ing tokenised punctuation); the mean and variance
of the number of characters in each word; the total
stop word count3; and the counts for each individ-
ual stop word. (131 features)
n-gram features Using a 5-gram model, for n

from 1 to 5, the mean, variance and total log like-
lihood of the n-grams in the tweet. (15 features)

Word length Equivalent to the n-gram features,
using a 10-gram model of word length. We expect
the PPDB to replace common words with uncom-
mon longer words, or multiple shorter words. (30
features)

PPDB features Kerckhoffs’ principle (Fridrich,
2009), which states that a stegosystem must be se-
cure even when the attacker (us) knows how the
system works, introduces an interesting opportu-
nity for linguistic steganalysis. As all linguistic
stegosystems rely on automatic paraphrasing, and
generally require a source of data, it is conserva-
tive to assume that the attacker has access to this
data source. As the attacker, we can derive fea-
tures from this data.

Applying this, we extracted features using the
same subset of the PPDB that CoverTweet uses.
To our knowledge, this is the first work to ex-
plicitly apply Kerckhoffs’ principle to linguistic

3We use the Natural Language Toolkit (Bird, 2006) for
the list of 127 stop words.
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steganalysis. This set includes: a repeat of the
n-gram features, but only taking into account
n-grams that contain at least one word in4 the
PPDB; the mean and variance of character count
for words in the PPDB; for phrase lengths j from
1 to 5, the proportion of j-grams in the tweet that
are in the PPDB; likelihood of the most proba-
ble paraphrased sentence, extracted by generating
sentences in the same way as CoverTweet. Finally,
a substitution score: each word or phrase in the
PPDB is replaced by its most likely substitute, ac-
cording to the language model. The max, min,
mean and variance of the log likelihoods for the
resulting sentences are used. (27 features)

4.1 Pooling the features

Individual linguistic stego objects carry a tiny pay-
load, making detection an incredibly difficult task.
In some cases, the stego tweet will be identical to
the cover, making the task impossible. Although
we do not hope to reliably identify stego tweets
individually, the warden can still try to catch the
active steganographers: through pooled steganal-
ysis (Ker, 2007). Here, the warden considers all
the evidence for each user, and aims to identify
those actively using steganography. We combine
features from batches of tweets, by the same user:
taking the max, min, mean and variance of each
feature. If performing steganography causes small
consistent changes to a feature, this will be appar-
ent in the mean. If it causes inconsistent changes,
it may be apparent in the variance. If it occasion-
ally produces an extreme result, the max and min
will capture this. (812 features)

5 Method and Results

Here we take the role of an automatic censor, at-
tempting to identify users on Twitter who are send-
ing secret messages. We imagine a scenario where
CoverTweet is openly available, and so can as-
sume this is the system utilised by the active users.

5.1 Data and Embedding

From the Harvard TweetMap (Mostak, 2013),
we gathered 72M English language tweets, from
1.2M users. Each tweet was canonicalised as fol-
lows: tokenised; made lowercase; usernames re-
placed by a uniform token; URLs replaced by a

4Where we say a word or phrase is ‘in’ the PPDB, we
mean it features in one or more paraphrase rules that could
have been applied to the original tweet.

uniform token. We randomly selected 1000 users
with 1000-2000 tweets to train and test a classifier.
On the remaining tweets, we trained a 10-gram
word length model, and a 5-gram language model,
using SRILM (Stolcke, 2002) with Kneyser-Ney
smoothing. For vocabulary, the language model
was given every word in the PPDB, and every
word in the set of tweets, including the removed
tweets. We do not expect this to provide an unre-
alistic advantage to the censor: any word not in the
PPDB cannot hide information.

We randomly took 10 users from the set of
1000, and produced 100 stego tweets for each, for
three payload sizes: 1, 2 and 4 bits. The stego
tweets were generated using CoverTweet, with a
human operator selecting the most fluent option
containing a desired (randomly generated) pay-
load. If there were no fluent options, the tweet was
skipped. If the tweet already contained the desired
payload (if the hash value of the tweet already
matched the message), it was left unchanged. We
refer to this data as Manual CoverTweet (M-CT).

Due to the expensive nature of generating data
with a human judge, and to assess the value of
the human in-the-loop, we also automatically gen-
erated 1M stego tweets, by embedding data in
1000 tweets for each of the 1000 users. The same
three payload sizes were used. Here, the tweet
with the highest probability (provided by the lan-
guage model and the PPDB) was selected. Again,
the tweet was left unchanged if the tweet already
contained the desired payload. Tweets were only
skipped if there were no options with the correct
payload. We refer to this as Automatic Cover-
Tweet (A-CT). Finally, we embedded 1 bit in the
same tweets using T-Lex, rejecting any that con-
tained no words in the T-Lex dictionary; the result
was approximately 100 tweets on average per user.

We split the users in half, training a linear
ensemble classifier (Kodovskỳ et al., 2012) (de-
signed to work with large feature sets for steganal-
ysis) on feature instances from one half, testing it
on the other. We only classified tweets by users for
whom the classifier had no prior knowledge. All
error rates are averaged over 10 different random
user splits. For the M-CT data, where we have a
much smaller set of data, we performed 10-fold
cross validation, leaving one user out for testing
each fold.

In each experiment we matched training and
testing data: the training data was produced by the

2566



0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 p

o
si

ti
v
e
 r

a
te

A-CT

M-CT

T-Lex

Individual

Batch of 100

Figure 1: ROCs for each embedding method, for
individual tweets or batches containing 1 bit.

Batch size AUC
A-CT 1 0.551
M-CT 1 0.509
T-Lex 1 0.667
A-CT 100 0.9631

Table 1: AUC values for the ROCs shown in Fig-
ure 1

same method as the testing data. For M-CT we
tried an alternative scheme, by training on A-CT
data, but testing on M-CT; this did not work reli-
ably, and the accuracy of the resulting model went
down as pooled batch size increased. The explo-
ration of this phenomenon is left for later work.

5.2 A note on unchangeable covers

Some tweets cannot hide the payload, either when
there are no paraphrase options for that hash, or
when the human (for M-CT) vetoes all the op-
tions. This is the non-shared selection channel
problem in steganography. Methods such as syn-
drome trellis codes (Filler et al., 2011) allow the
unchangeable cover elements to be sent without
compromising the message. These have not been
applied to linguistic steganography, but we simu-
late their use: we remove the unchangeable tweets
from the cover and stego sets, essentially giving
the steganographer and detector the ability to ig-
nore such tweets.
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Figure 2: The effect of batch size on error rate.
Batches of 100 are the maximum for M-CT and
T-Lex, but we go up to 1000 with A-CT.

5.3 Results

As expected, the performance of the classifiers
trained on individual tweets is poor (see Figure 1).
In particular, the models trained on A-CT and M-
CT data have very low accuracy on data with 1 bit
payload, performing only slightly better than ran-
dom guessing. T-Lex tweets prove slightly easier
to detect. This does not mean that the systems are
secure however. Though we cannot identify in-
dividual stego tweets, when we pool evidence we
find we are able to train a model that can identify
active users with high accuracy, for all data sets.

Figure 2 shows the change in error rate as the
batch size (the number of tweets we pool) is in-
creased. We can clearly see that increasing batch
size improves accuracy. We also see that in-
creasing payload size makes active users easier to
spot. This is unsurprising: CoverTweet is forced
to choose from fewer options when payload in-
creases.

The experiment showed us that M-CT is the
most secure stegosystem, though not immune to
the effects of pooling. When combining features
from 100 tweets, the classifier had an error rate
of 0.21 on 4 bit M-CT data; data generated in the
same way, with the same payload, was previously
shown to be secure against human judges. With
large batches, detection of A-CT is almost perfect.

To establish which class of features had the
biggest effect on detection, we trained models on
each combination of features described in Sec-
tion 4. A subset of these combinations are shown
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b n p w b+n n+p p+w b+n+p p+n+c all
A-CT (2 bits) 0.345 0.311 0.217 0.376 0.266 0.204 0.203 0.180 0.191 0.169
T-Lex (1 bit) 0.448 0.226 0.273 0.317 0.226 0.202 0.218 0.198 0.168 0.168

Table 2: Error rates for models trained on different combinations of feature class, for a batch of 10. The
feature sets are as follows: basic (b), n-gram (n), PPDB (p) and word length (w).

in Table 2, for A-CT and T-Lex.We can see that for
A-CT, the PPDB features easily outperform oth-
ers, with an error rate of 0.217 when used alone;
the warden’s knowledge of the system is power-
ful. The second best is the n-gram set, though it
performs better on T-Lex than on A-CT. This is
most likely due to CoverTweet’s use of the lan-
guage model in the embedding stage: the system
is attempting to minimise the distortion that these
features are looking for. T-Lex has no such distor-
tion measure, leaving it open to this sort of attack.

Basic and PPDB feature sets fare worse on T-
Lex. The basic features are aimed at changes in
word count and stop word usage: neither of these
are affected by T-Lex substitutions. The PPDB
features are at a disadvantage with T-Lex, as they
are designed for CoverTweet. If T-Lex’s data
source were used instead of CoverTweet’s, the per-
formance would likely improve significantly.

The combination of PPDB and n-gram features
on T-Lex gives us some interesting insight: despite
the mismatch of substitution source, we still see
an improvement over the n-gram features used on
their own. This suggests that the warden does not
need the exact data source as the steganographer
for these features to be useful.

6 Conclusion

It was believed that linguistic steganography was
weak against humans, but CoverTweet disproved
it. We have shown that individual stego objects are
seemingly also strong against statistical attacks.
However, by pooling multiple pieces of evidence
against a user, the warden can drastically improve
detection rate. With each steganographic tweet
sent, the user creeps closer to being caught. This
is the first steganalytic classifier, in any domain,
that successfully exploits pooled evidence. The
design of steganographic systems must now take
this type of attacker into account. It would inter-
esting to determine whether human judges are ca-
pable of pooling large amounts of scant evidence:
we conjecture not.

Results suggest that detection is improved by

utilising rich-feature models; we only scratched
the surface with regards to this. There are many
avenues to explore, such as using multiple lan-
guage models from which to extract features (this
is the analogue of filter banks used in contempo-
rary image steganalysis (Fridrich and Kodovskỳ,
2012)).

The security of a system should first be mea-
sured against a powerful (informed) attacker. We
played this role by using features extracted using
exact knowledge of the CoverTweet system (the
PPDB features); this class of features was partic-
ularly effective against CoverTweet. The system
should now be evaluated against a weaker attacker.
We have seen that detection is still reliable when
the warden knows the wrong system (T-Lex), but
further experiments are required to determine ex-
actly how detection rate is affected by mismatches
in paraphrase sources, or language model.
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Abstract

We consider the task of automatically
identifying participants’ motivations in the
public health campaign Movember and in-
vestigate the impact of the different moti-
vations on the amount of campaign dona-
tions raised. Our classification scheme is
based on the Social Identity Model of Col-
lective Action (van Zomeren et al., 2008).
We find that automatic classification based
on Movember profiles is fairly accurate,
while automatic classification based on
tweets is challenging. Using our classifier,
we find a strong relation between types of
motivations and donations. Our study is a
first step towards scaling-up collective ac-
tion research methods.

1 Introduction

Social media is a valuable source for studying
health-related behaviors (De Choudhury, 2014).
For example, Twitter was used for disease surveil-
lance (Lamb et al., 2013; Aramaki et al., 2011),
and was studied for its role in disseminating med-
ical information (Desai et al., 2012) and organiz-
ing public health campaigns (Emery et al., 2014;
Wehner et al., 2014). Social media data pro-
vides many opportunities to study social phenom-
ena such as health campaigns, but statistics based
on aggregating across social media users only pro-
vide a big picture of the phenomenon. A deeper
analysis of such phenomena requires fine-grained
information about the involved users. Since such
information is often not readily available, numer-
ous studies have appeared on automatically infer-
ring user characteristics (Bamman et al., 2014;
Eisenstein et al., 2010; Nguyen et al., 2013).

In the context of health campaigns, social sci-
entists have been interested in the motivations of
the participants (Cugelman et al., 2011). Knowl-
edge about individual motivations helps to explain

the emergence and effectiveness of collective ac-
tion, such as volunteering (Bekkers and Wiepking,
2011) or mobilizing other people (van den Broek
et al., 2015). The Social Identity Model of Collec-
tive Action (SIMCA) (van Zomeren et al., 2008)
identifies three key motivations of participants: 1)
social identification with the campaign organiza-
tion and community, 2) a perception of injustice
about the cause, and 3) collective efficacy, the col-
lective belief that the campaign can make a differ-
ence. Taken together, these three motivations pre-
dict the chance that an individual will participate
in collective action, such as participation in an on-
line health campaign. Aggregating motivations to
group-level may explain the effectiveness of on-
line health campaigns. Social scientists, however,
have not used computational methods to measure
these motivations (Johnston et al., 2009), so that
their analyses are often confined to small datasets.

Our study is a first step towards scaling-up
collective action research methods. To do so,
we explore automatic classification of the motiva-
tion types according to the SIMCA model. We
analyze the global health campaign Movember
(movember.com), which aims to raise funds and
awareness of men-related health issues by engag-
ing online conversations. Movember’s fundrais-
ers ask their friends to sponsor their moustache
and their efforts in the month of November. The
funds are donated to research concerned with men-
related health issues, such as prostate cancer.

Movember participants provide their motiva-
tions in their Movember profile. For example, a
participant writing ‘In honor of my Grandfather’
could be considered having an injustice motiva-
tion, while ‘To lead the brave men of Team [...]
(and our exceptionally understanding significant
others) in epic moustachery.’ indicates a social
identification motivation. Because such explicit
motivation statements are not available for many
online health campaigns, we also explore motiva-
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tion classification based on the tweets of partici-
pants during the campaign instead.

Our paper makes the following contributions:

• We automatically classify the motivations of
Movember participants and explore the use of
free-text motivations provided in Movember
profiles and tweets posted by the participants
during the campaign (Section 3).

• We apply our classifier to all US and UK
Movember profiles and find that participants
with an injustice motivation raise signifi-
cantly more funds (Section 4).

2 Dataset

In this section we discuss the collection and the
annotation of the data.

2.1 Collection
We collect data from two different sources.

Movember Profiles We focus on participants
from the two countries with the highest number
of English speaking Movember participants: the
United States and the United Kingdom. From
Movember we obtained the identifiers of all par-
ticipants of these two countries and we crawled
all US and UK Movember profiles in May 2015.
We extracted information such as the name, mo-
tivation (free-text), amount raised and whether
the participant was part of a team. We collected
166,422 US and 138,546 UK profiles.

Twitter Data We link Movember participants to
Twitter accounts based on tweets with a link to a
Movember profile in 2013 and 2014 (e.g., ‘please
support my moustache [LINK]’). If the Leven-
shtein distance between the name of the author of
the tweet and the name in the Movember profile
was 1 or less, we considered it a match (in total:
5,519 users). Manual inspection of 100 matches
showed that this method was highly precise (100%
precision). However, some matches were missed
due to the low Levenshtein distance threshold. For
each Twitter user in our dataset, we collected the
last 3,600 tweets.

We kept all tweets written between October 18
and December 14 (2 weeks before and after the
campaign). For each user, we used tweets from ei-
ther 2013 or 2014, depending on whether the user
posted a tweet with a Movember link at least once
during the period, given preference to the year
2014.

2.2 Annotation
We annotated the campaign participants based on
their provided motivations in their ‘My motiva-
tion’ section of their Movember profiles. The
motivation categories in our codebook are based
on the Social Identity Model of Collective Action
(van Zomeren et al., 2008):

• Injustice: A shared emotion that includes
both affective (e.g, anger) and cognitive per-
ceptions (ideology) of an unfair situation (van
Zomeren et al., 2008). It covers the ideolog-
ical motivation to join a campaign, when po-
tential participants compare the cause and the
situation of patients with their personal val-
ues (Klandermans, 2004). For example, ‘my
dad’, ‘I had testicular cancer’ or ‘because
men’s health is important to me’.

• Social identity: A sense of belonging to-
gether that emerges out of common at-
tributes, experiences and external labels (van
Zomeren et al., 2008). Participants may have
social motivations to identify with the on-
line health campaign, while not being inter-
ested in the cause (Kristofferson et al., 2014).
This category includes psychological bene-
fits, such as reputation or fun, that the so-
cial interactions of a campaign provide. For
example, ‘my friends asked me again to join
them’, or ‘a great excuse to grow a stache’.

• Collective efficacy: The shared belief that
ones group is capable of resolving its
grievances through a campaign (Bandura,
2000; Klandermans, 2004; van Zomeren et
al., 2008), for example by stating ‘this cam-
paign can make a difference!’.

Multiple motivations may be assigned to a sin-
gle campaign participant. Exactly recurring mo-
tivation texts that occurred frequently (more than
50 times, based on data analysis), were most likely
prefilled texts. They were not annotated, because
it was unclear whether participants used these ‘de-
fault’ motivations on purpose. For example, the
most frequent motivation ‘my motivation is to use
the power of the moustache to have an everlast-
ing impact on the face of mens health’ appeared in
104k profiles. The interrater reliability calculated
using Cohen’s Kappa was found to be satisfactory
to good based on 200 double annotations: injus-
tice (0.71), social identity (0.67) and collective ef-
ficacy (0.47) (Landis and Koch, 1977).
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Features Injustice Social Identity Collective Efficacy
P R F1 AUC P R F1 AUC P R F1 AUC

Tokens 0.813 0.789 0.801 0.833 0.768 0.792 0.779 0.790 0.595 0.656 0.624 0.708
LDA 0.789 0.802 0.795 0.829 0.809 0.795 0.802 0.815 0.514 0.688 0.588 0.669

Length 0.644 0.615 0.629 0.693 0.526 0.632 0.574 0.564 0.419 0.642 0.507 0.582
Country 0.422 0.559 0.481 0.522 0.495 0.493 0.494 0.524 0.373 0.498 0.426 0.523

All 0.823 0.810 0.816 0.846 0.777 0.799 0.788 0.798 0.597 0.660 0.627 0.710

Table 1: Results free-text motivations: precision (P), recall (R), F1 score and AUC.

From the set of Movember participants with
matched Twitter accounts, we annotated a ran-
domly selected subset of 2,108 participants.
21.8% of the participants had more than one mo-
tivation type assigned. We randomly split our
dataset into a training and test set (Table 2). We
have made our annotations available to other re-
searchers1.

Train Test

# Participants 1,494 614
% US / UK 54.8/45.2 53.3/46.7
% Injustice 37.6 40.2

% Social identity 48.7 46.9
% Collective efficacy 36.1 35.0

Table 2: Dataset statistics

3 Classification Experiments

In this section we present results on automat-
ically identifying the motivations of Movember
participants. Because participants may have mul-
tiple motivation types, we train binary classifica-
tion models for each motivation type separately.
We use logistic regression with L2 regularization,
implemented using the Scikit-learn toolkit (Pe-
dregosa et al., 2011). We report results on the
test set using precision, recall, F1 score and the
Area Under Curve (AUC) metric. Note that a
majority class classifier achieves an AUC of 0.5.
Feature development and parameter tuning was
done based on cross-validation on the training set.
Based on the same set of Movember participants,
we explore the use of two different types of data:
the provided free-text motivations in Movember
profiles (Section 3.1) and tweets of the participants
(Section 3.2).

1http://www.dongnguyen.nl/data.html: The
identifiers of the Movember and corresponding Twitter ac-
counts, the country, text provided in the Movember profiles,
and the annotations.

3.1 Free-text Movember Motivations
All text is lowercased and tokenized. We explore
the following features: 1) Token unigrams and bi-
grams (frequency values), 2) LDA with 20 topics
(Blei et al., 2003) trained on text from all US and
UK Movember profiles (with the topic proportions
as feature values), 3) Text length, and 4) Country
(US=1, UK=0) to control for prior motivation dis-
tributions in the two countries.

The token features already lead to a high per-
formance, and no notable increase in performance
is observed by adding the other features (Table 1).
The features with the highest weight are shown in
Table 4. The performance numbers are in line with
the obtained inter-annotator agreement. For exam-
ple, the performance is highest on the injustice cat-
egory, which also had the highest inter-annotator
agreement (and vice versa for collective efficacy).

The lengths of texts alone have predictive
power. The texts are short (on average 158.4
characters), but there are markable differences
between motivation types. Participants with an
injustice motivation write longer motivations: the
average length of their texts is 213.74 chars in
the training set, compared to 148.24 chars (social
identity) and 130.93 chars (collective efficacy).

Injustice Social Identity Collective Efficacy

LDA topica fun LDA topicb

cancer team beat
friend moustache and family
lost mo change
father grow yourself
had mustache all of
survivor LDA topicc awareness
prostrate fuzz for movember
for my movement awareness of
my look last

Table 4: Top-weighted features for free-text
motivation experiments.

atopic about family/friends who had cancer
btopic about raising funds for research
ctopic about the Movember campaign
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Features Injustice Social Identity Collective Efficacy
P R F1 AUC P R F1 AUC P R F1 AUC

1: Tokens 0.456 0.445 0.451 0.544 0.528 0.563 0.545 0.559 0.394 0.465 0.426 0.540
2: URLs 0.421 0.304 0.353 0.511 0.469 0.736 0.573 0.500 0.360 0.209 0.265 0.504

3: Mentions 0.435 0.340 0.382 0.522 0.477 0.694 0.566 0.511 0.360 0.721 0.480 0.515
4: Effort 0.434 0.518 0.472 0.532 0.489 0.531 0.509 0.520 0.363 0.498 0.420 0.513
5: LDA 0.427 0.510 0.465 0.525 0.512 0.538 0.525 0.542 0.378 0.521 0.438 0.530

6: Behavior 0.415 0.526 0.464 0.514 0.463 0.410 0.435 0.495 0.360 0.581 0.445 0.513
1+3+4+5+cntry 0.463 0.453 0.458 0.550 0.520 0.542 0.531 0.550 0.381 0.419 0.399 0.526

Table 3: Results on tweets: precision (P), recall (R), F1 score and AUC.

3.2 Tweets

In this section, we present experiments on identi-
fying the motivations based on Twitter data.

Preprocessing Many of the tweets posted dur-
ing the time of the campaign are not about the
campaign itself. Based on manually selected char-
acter sequences2, we separate relevant from non-
relevant tweets. The tweets are tokenized using
the CMU POS tagger (Owoputi et al., 2013). The
average number of tweets per user during the stud-
ied period is 109.1 (median: 46.0) and the average
number of relevant tweets is 8.0 (median: 4.0).

Features We explore the same features as with
the free-text motivations and several new features:

• Unigram and bigram tokens: URLs and user
mentions are replaced by generic tokens. We
only keep tokens used by at least 10 Twitter
users and we use their normalized frequency.

• URLs: We extract tokens from URLs by
taking the hostname, and paths up to depth
2 (e.g., us.movember.com/team/12345 results
in us.movember.com, us.movember.com/team
and us.movember.com/team/12345).

• User mentions: The Twitter accounts that are
mentioned.

• Effort: Length (#characters), #tweets about
Movember, #tweets about Movember/#total
number of tweets.

• LDA with 20 topics (Blei et al., 2003). The
model is trained on 1.5M tweets from 2013
and 2014 about the Movember campaign.

• Country: US=1, UK=0.

• Behavior: Fraction of retweets, tweets that
contain a user mention, hashtag, URL, or are
a reply. Number of days with a tweet about
Movember. Fraction of tweets in each week.

Results The results are reported in Table 3.
The URLs and behavior features were excluded
from the run with the combined feature set, be-
cause their individual results suggest no predic-
tive power (possibly due to the small training set).
The results are fairly low and just above the 0.5
AUC value of a random classifier. To test whether
the best performing classifiers for each motivation
type (based on their AUC scores) are significantly
better than a random classifier, we use permuta-
tion tests. We permute the labels to break the link
with the features and calculate the AUC scores of
the classifiers by training and testing on 1000 of
such permutations. The best classifiers for the in-
justice and social identity motivation types are sig-
nificantly better than random (p <0.01), but the
performance of the collective efficacy classifier is
only slightly significant (p <0.05).

To understand the low performance numbers,
we took a closer look at the task and the data. First,
we aimed to get a sense of the difficulty of the task.
In a small experiment based on 100 Twitter users
from the test set, one of the authors read the tweets
and tried to identify the motivations. The results
were also low (injustice: 0.488, social identity:
0.548, and collective efficacy: 0.590), suggesting
that the task in itself is also difficult for humans.

The task is challenging because many users
only post a few tweets about the campaign. In
our data, 382 users have only one relevant tweet
and 1,271 users have 5 relevant tweets or less.
Furthermore, many of the tweets posted during
the campaign focus on the Movember community
(Bravo and Hoffman-Goetz, 2015; Dwi Prasetyo
et al., 2015), making it hard to distinguish be-
tween the different motivations. For example, in-
stagram.com is among the top three of hostnames
for all motivation types. Sometimes participants

2‘movember’, ‘mobro’, ‘mosista’, ‘cancer’, ‘shave’, ‘do-
nat’, ‘tache’, ‘prostate’, ‘ mo ’, ‘testicular’, ‘ mental ’ ‘ men’s
health’
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do explicitely mention their motivation (e.g., ‘In
honour of my dad, [..], I’m growing a horrible
moustache for an incredible cause, #Movember.
Donate here: [LINK]’), but such instances are rare
and in general the motivations of participants are
much less visible through their tweets.

Social media plays a large role in mediating so-
cial relationships and users adapt their behavior
to the online communities they are participating
in (Danescu-Niculescu-Mizil et al., 2013; Nguyen
and Rosé, 2011). This may explain why most
participants, regardless of their motivation, em-
phasize the Movember community and its prac-
tices (such as the growing of moustaches) in their
tweets. Various studies within the emerging field
of Computational Social Science (Lazer et al.,
2009) have found that Twitter tends to be a good
reflection of society (Lamb et al., 2013; O’Connor
et al., 2010). However, our results emphasize that
the nature of the used platform influences how hu-
mans behave, and that this should be taken into
account when interpreting the data. In the case of
Movember, Twitter data alone could give a mis-
leading view of the motivations of the campaign’s
participants.

4 Motivations and Campaign Behavior

In this section we present a linear regression anal-
ysis (n=90,484) of how motivations affect cam-
paign donations by applying our classifier to all
US and UK Movember profile texts. Participants
of the Movember campaign can be part of a team.
We therefore included actual team membership as
a control variable, as we expect that team mem-
bers increase fundraisers’ effort due to peer pres-
sure. In our analysis, we exclude all participants
that have predefined motivations (214,484 out of
the 304,968 profiles), because these may not re-
flect the actual motivation.

The social identity motivation is the most fre-
quent in both countries, but the countries differ in
their distributions regarding the injustice and col-
lective efficacy motivations (Table 5).

% Injustice % Identity % Efficacy

UK 31.0 49.7 46.1
US 37.6 50.3 32.1

Table 5: Motivation distribution based on auto-
matic annotation (n=90,484). Note that partici-
pants may have multiple motivations.

On average, US participants donate more than
UK participants (Table 6). US campaign partic-
ipants with an injustice motivation raise signifi-
cantly (coef = 91.525, p < 0.001) more money
than participants with a social identity (coef =
−5.479, p = not significant) or collective efficacy
motivation (coef = −5.765, p < 0.1). Participants
that are part of a team raise significantly (coef =
75.849, p < 0.001) more money than participants
without a team. Similar results were obtained for
the UK. Furthermore, participants with a social
identity motivation are more often part of a team
(UK: 58% vs. 51% of the participants without
a social identity motivation, US: 80% vs. 76%).
The regression analysis reveals that being part of a
team has a stronger and more positive effect on the
amounts raised than the expression of identity as a
motivation in the Movember profiles. Our findings
are in line with recent Slacktivism research which
proposes that people that express social motiva-
tions are reluctant to give more than token support
due to a lack of interest in the campaigns cause
(van den Broek et al., 2015; Kristofferson et al.,
2014). Actual team membership, however, con-
tributes to the effectiveness of online fundraising.

Injustice Identity Efficacy

UK ($) 203.74 128.36 123.39
US ($) 234.47 156.07 169.03

Table 6: Average amount raised (n=90,484).
British pounds were converted in dollars follow-
ing the exchange rate in November 2013.

5 Conclusion

We explored the task of automatically identifying
the motivations of Movember campaign’s partic-
ipants. A classifier based on Movember profile
texts performed better than a classifier based on
Twitter data, possibly due to the role of Twitter
in building social relationships. Based on US and
UK Movember data, we found a strong link be-
tween motivations and donations, and motivations
and team membership. Classification of motiva-
tions might help campaign organizers to improve
their communication strategies. Our study is lim-
ited to the Movember campaign. Future research
might diverge to other types of online collective
action, such as online petitions and open source
communities. We also plan to explore larger
datasets and features based on network structures.
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Abstract

Domestic abuse affects people of every
race, class, age, and nation. There is sig-
nificant research on the prevalence and ef-
fects of domestic abuse; however, such re-
search typically involves population-based
surveys that have high financial costs. This
work provides a qualitative analysis of do-
mestic abuse using data collected from the
social and news-aggregation website red-
dit.com. We develop classifiers to detect
submissions discussing domestic abuse,
achieving accuracies of up to 92%, a sub-
stantial error reduction over its baseline.
Analysis of the top features used in detect-
ing abuse discourse provides insight into
the dynamics of abusive relationships.

1 Introduction

Globally, 30% of women fifteen and older have ex-
perienced physical and/or sexual intimate partner
violence at some point in their life (Devries et al.,
2013). While domestic abuse tends to have greater
prevalence in low-income and non-western coun-
tries, it is still endemic in regions like North Amer-
ica and Western Europe. In the United States, by
an intimate partner, 9.4% of women have been
raped, 16.9% of women and 8% of men have expe-
rienced sexual violence other than rape, and 24.3%
of women and 13.8% of men have experienced se-
vere physical violence (Black et al., 2011). This
translates to an estimated economic cost of $5.8
billion for direct medical and mental health care
services, along with lost productivity and reduced
lifetime earnings (Craft, 2003). Economic costs
are calculable and provide concrete metrics for
policy makers, but the physical and psychologi-
cal effects felt by victims of domestic abuse are
the true costs. Domestic abuse is the 12th leading
cause of years of life lost (Murray et al., 2013),

and it contributes to health issues including fre-
quent headaches, chronic pain, difficulty sleeping,
anxiety, and depression (Black et al., 2011).

The data used to calculate such statistics are
often derived from costly and time-consuming
population-based surveys that primarily seek to
obtain insight into the prevalence and conse-
quences of domestic abuse. Due to safety con-
cerns for victims and researchers, these surveys
follow strict guidelines set by the World Health
Organization (Garcia-Moreno et al., 2001). Great
care must be taken by the researchers to ensure the
safety of the participants, and therefore the num-
ber of participants is often quite small (Burge et
al., 2014). One way to avoid the cost of wide
scale surveys while still maintaining appropriate
research conditions is to leverage the abundance
of data publicly available on the web. Of particular
interest are moderated forums that allow discourse
between users.

Reddit1 is one such website, and the chosen
source of data for this paper. This site has a
wide range of forums dedicated to various topics,
called subreddits, each of which are moderated by
community volunteers. For subreddits dedicated
to sensitive topics such as depression, domestic
abuse, and suicide, the moderators tend to ensure
that the anonymous submitter has access to local
help hotlines if a life-threatening situation is de-
scribed. They also enforce respectful behavior and
ensure that the submissions are on topic by delet-
ing disrespectful or off-topic posts. Finally, they
ensure that site rules are followed, including the
strict disallowal of doxing, the practice of using
submission details to reveal user identities.

Reddit allows lengthy submissions, unlike Twit-
ter, and therefore the use of standard English is
more common. This allows natural language pro-
cessing tools like semantic role labelers trained on
standard English to function better. Finally, Red-

1See www.reddit.com.
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dit allows users to comment on submissions, pro-
viding them with the ability to ask questions, give
advice, and provide support. This makes its data
ideal for sensitive subjects not typically discussed
in social media.

This work makes two contributions: classifiers
for identifying texts discussing domestic abuse
and an analysis of discussions of domestic abuse
in several subreddits.

2 Related Work

Social media sites are an emerging source of data
for public health studies, such as mental health,
bullying, and disease tracking. These sites provide
less intimidating and more accessible channels
for reporting, collectively processing, and making
sense of traumatic and stigmatizing experiences
(Homan et al., 2014; Walther, 1996). Many re-
searchers have focused on Twitter data, due to its
prominent presence, accessibility, and the charac-
teristics of tweets. For instance, De Choudhury et
al. (2013) predicted the onset of depression from
user tweets, while other studies have modeled dis-
tress (Homan et al., 2014; Lehrman et al., 2012).
Most relevantly, Schrading et al. (2015) used the
#WhyIStayed trend to predict whether a tweet was
about staying in an abusive relationship or leaving,
analyzing the lexical structures victims of abuse
give for staying or leaving.

Reddit has been studied less in this area, with
work mainly focusing on mental health. In
Pavalanathan and De Choudhury (2015), a large
number of subreddits on the topic of mental health
were identified and used to determine the differ-
ences in discourse between throwaway2 and regu-
lar accounts. They observed almost 6 times more
throwaway submissions in mental health subred-
dits over control subreddits, and found that throw-
away accounts exhibit considerable disinhibition
in discussing sensitive aspects of the self. This
motivates our work in analyzing Reddit submis-
sions on domestic abuse, which can be assumed
to have similar levels of throwaway accounts and
discussion. Additionally, Balani and De Choud-
hury (2015) used standard ngram features, along
with submission and author attributes to classify a
submission as high or low self-disclosure.

2Anonymous, one-time accounts to submit a single (often
personal or sensitive) submission or comment.

3 Dataset3 and Data Analysis

Following the procedure in Balani and De Choud-
hury (2015) for subreddit discovery, we identified
several subreddits that focus on domestic abuse.
Additionally, we determined subreddits unrelated
to domestic abuse, to be used as a control set. Ta-
ble 1 shows the subreddits, the total number of
unique posts (called submissions4), and total num-
ber of replies to those submissions (called com-
ments) collected.

Domestic Abuse # Submissions # Comments
abuseinterrupted 1653 1069
domesticviolence 749 2145
survivorsofabuse 512 2172

Control # Submissions # Comments
casualconversation 7286 285575
advice 5913 31323
anxiety 4183 23300
anger 837 3693

Table 1: The domestic abuse subreddits and con-
trol subreddits with the total number of submis-
sions and comments collected.

The anger and anxiety subreddits were chosen
as control subreddits in order to help the classi-
fier discriminate between the dynamics of abusive
relationships and the potential effects of abuse on
victims. For example, anxiety and anger may be
affect caused by domestic abuse, but they are also
caused by a wide variety of other factors. By in-
cluding these subreddits in the control set, a classi-
fier should utilize the situations, causes, and stake-
holders in abusive relationships as features, not
the affect particularly associated with abusive rela-
tionships. Similarly, the advice subreddit was cho-
sen as a way to help the classifier understand that
advice-seeking behavior is not indicative of abuse.
The casualconversation subreddit allows discus-
sion of anything, providing an excellent sample
of general written discourse. The domestic abuse
subreddits have far fewer active users, submis-
sions, and comments in total.

3.1 Preprocessing

All experiments used the same preprocessing
steps. From the collected subreddits, only sub-
missions with at least one comment were chosen
to be included for study. We then ran the sub-
mission text through the Illinois Curator (Clarke et

3Released on nicschrading.com/data/.
4Submission text is its title and selftext (an optional text

body) concatenated together.
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al., 2012) to provide semantic role labeling (SRL)
(Punyakanok et al., 2008). A total of 552 domestic
abuse submissions were parsed, and we randomly
chose an even distribution of the control subred-
dits (138 each), yielding a total sample size of
1104. All submissions were normalized by low-
ercasing, lemmatizing, and stoplisting. External
links and URLs were replaced with url and refer-
ences to subreddits, e.g. /r/domesticviolence, were
replaced with subreddit link.

3.2 Descriptive Statistics

We present basic descriptive statistics on the set
of 552 abuse submissions and 552 non-abuse sub-
missions in Table 2.

Abuse Non-Abuse
Avg comments/post 5.4± 6.1 13.2± 25.3
Avg score/post 6.1± 5.1 7.5± 16.4
Avg tokens/post 278± 170 208± 164
# unique submitters 482 535
Avg comment depth 0.96± 1.5 1.5± 1.9
Avg comment score 2.2± 2.7 2.1± 2.9
Avg tokens/comment 107± 128 53.4± 79.9
# comments 2989 6964
# unique commenters 1022 2519

Table 2: Basic descriptive statistics. The
score is provided by users voting on submis-
sions/comments they feel are informative. The
depth of a comment indicates where in a reply
chain it falls. A depth of 0 means it is in reply
to the submission, a depth of 1 means it is in re-
ply to a depth 0 comment, etc. The ± values are
standard deviation metrics.

In general, the non-abuse subreddits have more
discourse between commenters, as indicated by a
larger comment depth, however, the abuse subred-
dits tend to have longer submissions and replies.
The abuse subreddits perhaps also have a smaller
more tight-knit, community as indicated by fewer
numbers of unique submitters and commenters.

3.3 Ngram Attributes

To get a sense of the language used between the
two sets of subreddits, the most frequent 1-, 2-
, and 3-grams were examined. While there are
many common and overlapping ngrams in the
two sets, each set does have distinct ngrams. In
the abuse set, distinct ngrams include the obvi-
ous abuse (1595 occurences), domestic violence
(202), and abusive relationship (166). Addition-
ally, unique 3-grams related to the agents and situ-
ations in abusive relationships like local dv agency

(12) and make feel bad (11) appear. Also included
are unique empathetic and helping discourse from
comments, including let know (121), and feel free
pm5 (27). This indicates that comment data could
improve classification results, as support and em-
pathy may be more prevalent in the abuse set than
in the control set.

3.4 Semantic Role Attributes

From the SRL tool, our dataset was tagged with
various arguments of predicates. This data is par-
ticularly useful in our study, as we are interested
in examining the semantic actions and stakehold-
ers within an abusive relationship. By perform-
ing a lookup in Proposition Bank (Martha et al.,
2005) with a given argument number, predicate,
and sense, we retrieved unique role labels for each
argument.

We determined the top 100 most frequent roles
and predicates in the two sets, and took only the
unique roles and predicates within each set to
see what frequently occurring but unique roles
and predicates exist within the abuse and control
group.

Role Label Predicate
caller, 175 abuse, 433
thing hit, 174 share, 167
agent, hitter - animate only!, 164 believe, 164
abuser, agent, 162 call, 151
entity abused, 139 remember, 149
utterance, 115 cry, 147
patient, entity experiencing
hurt/damage, 113 !tell, 142

utterance, sound, 104 send, 127
belief, 104 thank, 127
benefactive, 103 realize, 124

Table 3: Top 10 unique roles and predicates with
their frequency for the abuse data. An exclamation
point on a predicate indicates negation.

Table 3 contains roles and predicates that are
powerful indicators of an abusive relationship, in-
cluding a caller, hitter, thing hit, abuser, and entity
experiencing hurt/damage. Importantly, several
predicates that appear in this data also appear in a
study on discussions of domestic abuse in Twitter
data, including believe and realize, which indicate
cognitive manipulation in the victims of domestic
abuse (Schrading et al., 2015).

5The initials pm stand for private message.
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Classifer N P R N+P N+R P+R N+P+R
Linear SVM 90± 3 72± 5 73± 4 88± 3 88± 3 73± 4 87± 3

Table 4: Classification accuracies of Linear SVM. N=Ngrams, P=Predicates, R=Roles.

4 Classification Experiments

In order to discover the semantic and lexical fea-
tures salient to abusive relationships, we designed
several classifiers. The subreddit category to
which a submission was posted was used as the
gold standard label of abuse or non-abuse. The la-
bels were validated by examining the top ngrams,
roles, and predicates in Section 3, and taking into
account that these subreddits are moderated for
on-topic content. We ran several experiments to
study classifiers, the impact of features, and the
effect of comments on prediction performance.

4.1 Combinations of Features

We used the 1-, 2-, and 3-grams in the submis-
sion text, the predicates, and the semantic role
labels as features, using TF-IDF vectorization6.
Perceptron, naı̈ve Bayes, logistic regression, ran-
dom forest, radial basis function SVM, and lin-
ear SVM classifiers were parameter optimized us-
ing 10-fold cross validation. Table 4 contains the
results for the best classifier. The best features
are the ngrams, achieving the highest accuracies
alone. Predicates and semantic roles perform ad-
mirably, but bring the classifier accuracies down
slightly when added to ngrams. To determine
the top features for prediction, we examined the
weights of the top performing classifier, Scikit-
learn’s (Pedregosa et al., 2011) Linear SVM with
C=0.1, as in Guyon et al. (2002). These, along
with their weights, are shown in Table 5.

4.2 Comment Data Only

We experimented with only comment data to pre-
dict if they were posted in an abuse or non-abuse
subreddit. Because ngram features performed best
in the previous experiment, a larger set of sub-
missions (1336 per class) was used. A final held
out testset was created from 10% of these submis-
sions, giving 1202 submissions per class for the
devset and 134 per class for the testset. Taking the
comments from these submissions yielded 4712
abuse and 19349 non-abuse comments for the de-
vset and 642 abuse and 2264 non-abuse comments

6Binary features and only unigrams were tried but these
did not improve results.

Abuse Non Abuse
abusive, 1.3 anxiety, 1.1
child, 0.93 anger, 1.1
abuser, 0.86 job, 0.52
relationship, 0.84 school, 0.46
therapy, 0.83 hour, 0.45
survivor, 0.83 week, 0.45
domestic, 0.73 fuck, 0.44
happen, 0.72 class, 0.42
violence, 0.68 college, 0.41
father, 0.67 fun, 0.40

Table 5: Top 10 features based on Linear SVM
weights using only ngrams from submissions. The
classifier may be relying heavily on the anxi-
ety and anger subreddits to discriminate between
abuse and non-abuse, as indicated by the sharp
drop in SVM weight from anger to job. Abuse
word weights are more evenly distributed.

for the testset. 10-fold cross-validation was used
on the devset to tune the classifier. Using a Linear
SVM with C=1 achieved an F1 score of 0.70± .02
on the devset. On the held out testset, it achieved
a precision of 0.68, recall of 0.62, and F1 score of
0.65. Examining its weights gives features similar
to those in Table 5, with additional empathetic dis-
course like thank, hug, and safe in the abuse class.

4.3 Comment and Submission Text
Combined

Concatenating the comments to their respective
submissions may improve results, but because
comments can be completely off-topic or in re-
ply to other comments, we experimented with only
the top-scoring comments and those most simi-
lar to the submission text. To compute similar-
ity we used a sum of the word vector representa-
tions from Levy and Goldberg (2014) as included
in spaCy (Honnibal, 2015) and used cosine simi-
larity. Taking only the top 90th percentile in user
voting score and text similarity, we had 2688 abuse
comments and 7852 non-abuse comments con-
catenated to the 1336 submissions of their class.
This method achieves extremely high accuracy of
94%±2% on the devset and 92% on the testset us-
ing a Linear SVM with C=1. A classifier trained
only on the submission text data from the same
devset/testset split obtains the lower accuracies of
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90%±2% on the devset and 86% on the testset, in-
dicating that comments can add predictive power.
The top features are similar to those in Table 5.

4.4 Uneven Set of Submissions
Using the method in Section 4.3 to train the clas-
sifier, a larger, uneven set of data was examined
(still using only ngrams). This set contained 1336
abuse and 17020 non-abuse instances. From this
set, 15% were held out for final examination as a
testset and the rest was used as a devset with 5-
fold cross-validation. On the devset, an F1 score
of 0.81± 0.01 was achieved while on the testset it
had a precision of 0.84, recall of 0.74, and F1 score
of 0.79. The best classifier was a Linear SVM with
C=100. The confusion matrix of the testset is in
Table 4.4.

Predicted Class
Abuse Non-Abuse

Actual
Class

Abuse 152 53
Non-Abuse 29 2520

Table 6: Confusion matrix on the testset of the
Abuse/Non-Abuse classifier.

This classifier has good precision for the abuse
class, and decent recall, meaning that there can be
confidence that submissions flagged as abuse are
indeed about abuse. By applying this classifier to
a large held out set of data, these results suggest
that many potentially relevant submissions would
be flagged for examination, and they would mostly
be about abuse.

4.5 Testing on Completely Held Out
Subreddits

To get a sense of efficacy in the wild in detecting
submissions about abuse, the best classifier from
Section 4.4 was taken (trained on the devset data)
and run on a large set of submissions from the
relationships and relationship advice subreddits.
These subreddits are general forums for discussion
and advice on any relationship (not necessarily in-
timate). Their submissions tend to be long, de-
scriptive, and extremely personal.

After running the abuse classifier on the submis-
sions from these subreddits with at least 1 com-
ment (13623 in total, with their 90th percentile
comments concatenated), 423 submissions were
flagged as being about abuse. 101 of these 423
were annotated by 3 annotators (co-authors), us-
ing the labels A (the submission discusses an abu-

sive relationship), M (off-hand mention of abuse),
N (not about abuse), and O (off-topic submission
or other).

From the three annotators’ annotations, on av-
erage 59% are A, 16% are M, 23% are N, and
2% are O. The percentage of overall agreement
was 72% and Randolph’s free-marginal multirater
kappa (Warrens, 2010) score was 0.63. Annota-
tors occasionally had a hard time distinguishing
between A and M, as context may have been miss-
ing. Combining the two by considering all M as
A, the average percent of A increases to 75%, the
percentage of overall agreement improves to 86%
and the kappa score improves to 0.79. Taking the
statistic that on average 75% of the flagged sub-
missions in the annotated subset are about abuse
or have a mention of abuse indicates that this clas-
sifier should hopefully have a precision of around
0.75 on unseen Reddit data at large. Understand-
ably, the precision drops by about .1 compared to
its use on the subreddits it was trained and tested
on. A precision of 0.75 on this set of data would
mean that any statistics from this set may include
some noise, but overall, the trends should reveal
important results about abuse.

5 Conclusion

This work provides an analysis of domestic abuse
using the online social site Reddit. Language anal-
ysis reveals interesting patterns used in discussing
abuse, as well as initial data about the semantic
actions and stakeholders involved in abusive rela-
tionships. Multiple classifiers were implemented
to determine the top semantic and linguistic fea-
tures in detecting abusive relationships. Simpler
features such as ngrams performed above the more
complex predicate and role labels extracted from
a semantic role labeler, though the more complex
structures contribute to interesting insights in data
analysis. Future work could use a larger training
set from multiple online sites to analyze the pat-
terns of online abuse discourse across varied fo-
rums.
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Abstract

First Story Detection is hard because
the most accurate systems become pro-
gressively slower with each document
processed. We present a novel ap-
proach to FSD, which operates in constant
time/space and scales to very high volume
streams. We show that when computing
novelty over a large dataset of tweets, our
method performs 192 times faster than a
state-of-the-art baseline without sacrific-
ing accuracy. Our method is capable of
performing FSD on the full Twitter stream
on a single core of modest hardware.

1 Introduction

First Story Detection (FSD), also called New
Event Detection, is the task of identifying the
very first document in a stream to mention a new
event1. FSD was introduced as port of the TDT2

initiative and has direct applications in finance,
news and government security. The most accurate
approaches to FSD involve a runtime ofO(n2) and
cannot scale to unbounded high volume streams
such as Twitter. We present a novel approach to
FSD that operates in O(1) per tweet. Our method
is able to process the load of the average Twit-
ter Firehose3 stream on a single core of mod-
est hardware while retaining effectiveness on par
with one of the most accurate FSD systems. Dur-
ing the TDT program, FSD was applied to news
wire documents and solely focused on effective-
ness, neglecting efficiency and scalability. The tra-
ditional approach to FSD (Petrovic et al., 2010)
computes the distance of each incoming document

1e.g. a natural disaster or a scandal
2TDT by NIST - 1998-2004. http://www.itl.nist.gov/

iad/mig/tests/tdt/resources.html (Last Update: 2008)
3 5,700 tweets per second https://about.twitter

.com/company (last updated: March 31, 2015)

to all previously seen documents and the mini-
mum distance determines the novelty score. Doc-
uments, whose minimum distance falls above a
certain threshold are considered to talk about a
new event and declared as first stories. Conse-
quently, the computational effort increases with
each document processed.

1.1 Related Work

Researchers have proposed a range of approaches
to scale FSD to large data streams. Sankara-
narayanan et al. (2009) were one of the first to
apply FSD to Twitter. They reduced the volume
by classifying documents into news/non-news and
only compared to tweets within a 3-day window.
They did not perform a quantitative evaluation of
their approach. Sakaki et al. (2010) and Li et
al. (2012) applied keyword filtering in conjunc-
tion with classification algorithms, which allowed
them to efficiently detect certain events with high
precision. These two approaches, although effi-
cient and effective, require a user to explicitly de-
fine a set of keywords or to provide a set of exam-
ples that he wants to track. The approach cannot
detect previously unknown events.
Phuvipadawat and Murata (2010), Ozdikis et al.
(2012) and Cordeiro (2012), scale their systems by
only considering tweets containing hashtags. Al-
though efficient, this method don’t consider 90%
of the tweets (Petrovic, 2013), which limits their
scope.
Cataldi et al. (2010), Weng et al.(2011) and
Cordeiro (2012) use the degree of burstiness of
terms during a time interval to detect new events.
This approach is not suitable for FSD as events are
detected with a time lag, once they grow in popu-
larity.
Petrovic et al. (2010) were the first to demonstrate
FSD on Twitter in constant time and space, while
maintaining effectiveness comparable to those of
pair-wise comparison systems. The key was to
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reduce the search space using Locality Sensitive
Hashing (LSH). Each tweet was hashed, placing
it into buckets that contain other similar tweets,
which are subsequently compared. Operation in
constant space was ensured by keeping the number
of tweets per bucket constant. Because LSH alone
performed ineffectively, Petrovic et al. (2010) ad-
ditionally compared each incoming tweet with the
k most recent tweets.
Allan et al. (2003) analysed scoring functions for
novelty detection while focusing on their effec-
tiveness. They presented a language-model (LM)
based novelty measure using the KL divergence
between the LM of a document and a single LM
built on all previously scored documents, which
they referred to as an aggregate measure language
model. The idea of maintaining a single repre-
sentation covering all previously seen documents,
instead of performing pairwise comparisons with
every document is closely related to the approach
presented in this paper.

2 Approach

First Story Detection is a challenging task (Al-
lan et al., 2000). The highest FSD accuracy is
achieved by nearest-neighbour methods, where
each incoming document (tweet) is compared to
all documents that came before it, and the nov-
elty score is determined by the most-similar doc-
uments in the past. This approach requires us to
make n−1 comparisons4 to determine the novelty
of document dn. The approach becomes progres-
sively slower with each processed document, and
cannot scale up to unbounded streams like Twitter.
Prior attempts to speed up FSD involve organising
previously seen documents d1. . .dn−1 into clus-
ters (Allan et al., 1989) or LSH buckets (Petrovic
et al., 2010). The document dn is then compared
only to past documents in the nearest cluster or
LSH bucket, resulting in substantially fewer than
n comparisons. While this approach is reasonably
effective, it does lead to decreased accuracy, as
potentially relevant past documents may exist in
other clusters/buckets and would not be compared
against.

2.1 First Story Detection in constant time

Our method computes the novelty of document dn
in a time that is constant with respect to n. The

4Each comparison requires |dn| scalar multiplications; |d|
denotes the number of distinct words in document d.

main difference from previous approaches is that
we do not compare dn to individual documents
that came before it. Instead, we store the content
of past documents d1. . .dn−1 in a single lookup
table Hn−1. When dn arrives, we count what frac-
tion of its content is novel by looking it up in
Hn−1. The number of lookups is polynomial in
|dn| (the length of the document), and is indepen-
dent of n.
Formally, let dn denote the set of distinct words
occurring in the n’th document in the stream.
Let a k-term t={w1, w2, . . .} denote a non-empty
set of up to k distinct words. We define the
content cn to be the set of all k-terms that
can be formed from the words in the document
dn : cn = { t : t ⊂ dn, |t| ≤ k}. We
estimate the novelty of document dn as the pro-
portion of novel k-terms, i.e. k-terms that do not
appear in the history Hn−1:

N(dn) =
∑
t∈cn

α|t|

(|dn|
|t|
)−1{1 : t 6∈Hn−1

0 : t∈Hn−1

}
(1)

Here α|t| is the weight assigned to k-terms of size
|t|, and

(|dn|
|t|
)

is the total number of such k-terms
formed from dn. After the novelty is computed,
we update the history H to include all k-terms
formed from dn:

Hn ← Hn−1 ∪ cn (2)

The computational cost of equations (1) and (2)
is determined by the number of k-terms formed
from the document dn, and can be bounded at
O(|dn|k) operations. The complexity is manage-
able, as tweets are short and we keep k small.

2.2 Operating in constant time and space
We use a Bloom filter (Bloom, 1970) to maintain
the history Hn−1 of previously seen k-terms. For
each k-term t we compute a 32-bit Murmur5 hash-
code, and use it as an index into a fixed-length
bit-array. This ensures that both membership test-
ing (t∈H) and history update can be performed
in constant time. Constraining H to be a fixed-
length array also means that our method operates
in constant space, irrespective of the size of the
stream and its vocabulary growth. In contrast to
our method, previous approaches to FSD required
more and more memory to maintain the history of
the stream (see Figure 3).

5https://en.wikipedia.org/wiki/MurmurHash
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A potential downside of using a Bloom filter is that
it introduces a small probability of false matches:
a novel k-term ti may collide with a previously
observed k-term tj and would be reported as non-
novel. The probability of collision is directly pro-
portional to the load factor of the Bloom filter, i.e.
the fraction of non-zero bits in the array. By Heaps
law (Egghe, 2007) the number of distinct words
(and k-terms) will continue to grow and will even-
tually saturate the bit-array. To mitigate this prob-
lem, we introduce a deletion strategy: whenever
the load factor exceeds a pre-determined threshold
ρ, we zero out a random bit in H . This allows us
to keep low the probability of false matches, at the
cost of forgetting some previously-seen k-terms.

2.3 Parameter settings

We make the following parameter choices based
on initial experiments on our training dataset. We
set the maximum size of k-terms to be k = 3 and
keep the Bloom filter load factor under ρ = 0.6.
We tokenize the tweets on punctuation, treat all
hashtags and mentions as words, stem them using
the stemmer by Krovetz (1993), but do not remove
stopwords. We optimise the weights α1. . .αk us-
ing grid search on the same training data set.

3 Experiments

In a streaming setting, documents arrive one at a
time on a continual basis. FSD requires computing
a novelty score for each document in a single-pass
over the data. High novelty scores indicate new
topics. We use the standard TDT evaluation pro-
cedure (Allan, 2002) and the official TDT3 eval-
uation scripts with standard settings for evaluat-
ing FSD accuracy. The Detection Error Trade-off
(DET) curve shows the trade-off between miss and
false alarm probability for the full range of novelty
scores. The normalized Topic Weighted Minimum
Cost (Cmin) is a linear combination of miss and
false alarm probabilities, which allows comparing
different methods based on a single value metric.
Efficiency is measured by the throughput of tweets
per second and the memory footprint. To ensure
a fair comparison, all reported numbers are aver-
aged over 5 runs on an idle machine using a single
core (Intel-Xeon CPU with 2.27GHz).

3.1 Data set

We use the data set developed by Petrovic (2013),
Petrovic et al. (2013b) as a test set, which consists

of 27 topics and 116,000 tweets from the period of
April till September 2011. Parameters were tuned
using a sample of the data set annotated by Wurzer
et al. (2015) as a training set.

3.2 Baselines
We compare our system (k-term) against 3
baselines.

UMass is a state-of-the-art FSD system, de-
veloped by Allan et al. (2000). It is known for
its high effectiveness in the TDT2 and TDT3
competitions (Fiscus, 2001) and widely used
as a benchmark for FSD systems (Petrovic et
al., 2010; Kasiviswanathan et al., 2011; Petrovic
2013;). UMass makes use of an inverted index and
k-nearest-neighbour clustering, which optimize
the system for speed by ensuring a minimal num-
ber of comparisons. To maximise efficiency, we
set-up UMass to operate in-memory by turning off
its default memory mapping to disk. This ensures
fair comparisons, as all algorithms operate in
memory.

LSH-FSD is a highly-scalable system by Petrovic
et al. (2010). It is based on Locality Sensitive
Hashing (LSH) and claims to operate in constant
time and space while performing on a comparable
level of accuracy as UMass. We configure their
system using the default parameters (Petrovic et
al., 2010).

KL-FSD We also compare our approach with the
aggregate measure language model (Allan et al.,
2003) because it builds upon a similar principle.

3.3 Effectiveness and Efficiency
In Table 1, the UMass system shows state-of-the-
art accuracy (Cmin = 0.79, lower is better), but
can only process 30 tweets per second. LSH-FSD
operates 17 times faster, at the cost of a 13%
decrease in accuracy (Cmin = 0.90). Our system
(k-term) operates on par with UMass in terms of
accuracy, while being 197 times faster. KL-FSD,
which is based on uni-grams, reveals the highest
throughput at a considerable cost of efficiency
(Cmin = 0.96).

To further investigate accuracy we also compare
the systems over the full range of the novelty
thresholds illustrated by the DET plot in Figure 1.
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Algorithm Cmin %-diff tweets/sec speed-up
UMass 0.7981 - 30 -
LSH-FSD 0.9061 -13.5% 500 17x
KL-FSD 0.9648 -21% 6,600 220x
k-term 0.7966 +0.2% 5,900 197x

Table 1: Comparing the effectiveness and efficiency of our
system (k-term) with the 3 baselines

1

2

5

10

20

40

60

80

90

1 2 5 10 20 40 60 80 90

M
is

s
 p

ro
b
a
b
il
it

y
 (

in
 %

)

False Alarms probability (in %)

random Performance
90% Conf. UMASS

k-term
LSH

KL

Figure 1: DET plot of UMass, Kl-FSD, LSH-FSD and k-
term showing that LSH and k-term are statistically indistin-
guishable from UMass in terms of effectiveness;

Additionally we show the 90% confidence interval
of UMass in two solid lines. We observer that
both, FSD-LSH and our system (k-term) are
statistically indistinguishable form UMass at any
Miss-False Alarm trade-off point: their DET
curves fall entirely within the 90% confidence
interval of UMass. Note that DET curve of UMass
is formed by the middle of it’s 90% confidence
interval curves. KL-FSD in contrast results in
significantly worse accuracy than UMass in the
mid-range and in particular the high recall area
of the DET plot. We conclude that uni-grams are
insufficient for determining the novelty of tweets.

3.4 FSD in constant time and space

High-volume streams require operation in con-
stant time and space. Figure 2 compares the
change in throughput of LSH-FSD, UMass and k-
term as we process more and more tweets in the
stream. Additionally, the plot also shows the aver-
age rate of tweets in the Twitter Firehose6 at 5,787
tweets per second. Note that our system processes
the equivalent of the full Twitter stream on a sin-
gle core of modest hardware. This surpasses the
throughput of LSH-FSD, a system known for high

6https://about.twitter.com/company (last updated: March
31, 2015)
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Figure 2: Throughput of UMass, LSH-FSD and k-term in
comparison to the full Twitter stream (Firehose)

efficiency, by more than an order of magnitude.
The throughput of LSH-FSD and k-term increases
up until 20k documents because both approaches
require initialisation of their data structures, which
makes them slow when the number of documents
is low. UMass has no initialization and performs
the fastest when the number of documents is kept
low. The pair-wise comparison of UMass causes
it’s throughput to decrease drastically with every
new document. In Figure 2 we compare the mem-
ory requirements of k-term and LSH-FSD at dif-
ferent points in the stream. Although Petrovic et
al. (2010) designed their system (LSH-FSD) to
operate in constant space, we found that the mem-
ory requirement gradually increases with the num-
ber of documents processed, as seen in Figure 3.
We hypothesise that this increase results from new
terms added to the vocabulary. Our system has a
strictly constant memory footprint.
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Figure 3: Space requirement for LSH-FSD and k-term;
showing constant space for k-term

4 Conclusion

We presented an approach to FSD in a high vol-
ume streaming setting in constant time and space.
Our approach computes novelty based on a single
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lookup table that represents past documents. Shift-
ing from direct comparisons with previous doc-
uments to comparisons with a single model that
combines them, accounts for a great increase in
efficiency. For the first time, we showed that it is
possible to perform FSD on the full Twitter stream
on a single core of modest hardware. This greatly
outperforms state-of-the-art systems by an order
of magnitude without sacrificing accuracy.
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Abstract

Social media is a rich source of rumours
and corresponding community reactions.
Rumours reflect different characteristics,
some shared and some individual. We for-
mulate the problem of classifying tweet
level judgements of rumours as a super-
vised learning task. Both supervised and
unsupervised domain adaptation are con-
sidered, in which tweets from a rumour are
classified on the basis of other annotated
rumours. We demonstrate how multi-task
learning helps achieve good results on ru-
mours from the 2011 England riots.

1 Introduction

There is an increasing need to interpret and act
upon rumours spreading quickly through social
media, especially in circumstances where their ve-
racity is hard to establish. For instance, during an
earthquake in Chile rumours spread through Twit-
ter that a volcano had become active and that there
was a tsunami warning in Valparaiso (Mendoza et
al., 2010). Other examples, from the riots in Eng-
land in 2011, were that rioters were going to attack
Birmingham’s children hospital and that animals
had escaped from the zoo (Procter et al., 2013).

Social scientists (Procter et al., 2013) analysed
manually a sample of tweets expressing different
judgements towards rumours and categorised them
manually in supporting, denying or questioning.
The goal here is to carry out tweet-level judge-
ment classification automatically, in order to assist
in (near) real-time rumour monitoring by journal-
ists and authorities (Procter et al., 2013). In ad-
dition, information about tweet-level judgements
has been used as a first step for early rumour de-
tection by (Zhao et al., 2015).

The focus here is on tweet-level judgement clas-
sification on unseen rumours, based on a training

text position

Birmingham Children’s hospital has
been attacked. F***ing morons.
#UKRiots

support

Girlfriend has just called her ward
in Birmingham Children’s Hospital &
there’s no sign of any trouble #Birm-
inghamriots

deny

Birmingham children’s hospital
guarded by police? Really? Who
would target a childrens hospital
#disgusting #Birminghamriots

question

Table 1: Tweets on a rumour about hospital being
attacked during 2011 England Riots.

set of other already annotated rumours. Previous
work on this problem either considered unrealis-
tic settings ignoring temporal ordering and rumour
identities (Qazvinian et al., 2011) or proposed reg-
ular expressions as a solution (Zhao et al., 2015).
We expect posts expressing similar opinions to ex-
hibit many similar characteristics across different
rumours. Based on the assumption of a common
underlying linguistic signal, we build a transfer
learning system that labels newly emerging ru-
mours for which we have little or no annotated
data. Results demonstrate that Gaussian Process-
based multi task learning allows for significantly
improved performance.

The novel contributions of this paper are:
1. Formulating the problem of classifying judge-
ments of rumours in both supervised and unsuper-
vised domain adaptation settings. 2. Showing how
a multi-task learning approach outperforms single-
task methods.

2 Related work

In the context of rumour spread in social media,
researchers have studied differences in informa-
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tion flows between content of varying credibility.
For instance, Procter et al. (2013) grouped source
tweets and re-tweets into information flows (Lotan
et al., 2011), then ranked these by flow size, as
a proxy of significance. Information flows were
then categorised manually. Along similar vein,
Mendoza et al. (2010) found that users deal with
true and false rumours differently: the former are
affirmed more than 90% of the time, whereas the
latter are challenged (questioned or denied) 50%
of the time. Friggeri et al. (2014) analyzed a set
rumours from the Snopes.com website that have
been matched to Facebook public conversations.
They concluded that false rumours are more likely
to receive a comment with link to Snopes.com
website. However, none of the above attempted
to automatically classify rumours.

With respect to automatic methods for detect-
ing misinformation and disinformation in social
media, Ratkiewicz et al. (2011) detect political
abuse (a kind of disinformation) spread through
Twitter. The task is defined in purely information
diffusion settings and is not necessarily related
with the truthfulness of the piece of information.
Castillo et al. (2013) proposed methods for identi-
fying newsworthy information cascades on Twitter
and then classifying these cascades as credible and
not credible. The main difference from our task is
that credibility classification is carried out over the
entire information cascade, classified objects are
not necessarily rumours and no explicit judgement
classification was performed in their approach.

Early rumour identification is the focus of Zhao
et al. (2015), where regular expressions are used
for finding questioning and denying tweets as a
key pre-requisite step for rumour detection. Un-
fortunately, when we applied these regular expres-
sions on our dataset, they yielded only 16% recall
for questioning and 14% recall for denying tweets.
Consequently, this motivated us to seek a better
approach to tweet-level classification.

The work most relevant to ours is due
to Qazvinian et al. (2011). Their method first
carries out rumour retrieval, whereby tweets are
classified into rumour related and non-rumour re-
lated. Next, rumour-related tweets are classified
into supporting and not-supporting. The classi-
fier is trained by ignoring rumour identities, i.e.,
pooling together tweets from all rumours, and ig-
noring the temporal dependencies between tweets.
In contrast, we formulate the rumour classifica-

Rumour Supporting Denying Questioning

army bank 62 42 73
hospital 796 487 132
London Eye 177 295 160
McDonald’s 177 0 13
Miss Selfridge’s 3150 0 7
police beat girl 783 4 95
zoo 616 129 99

Table 2: Counts of tweets with supporting, deny-
ing or questioning labels in each rumour collec-
tion.

tion problem as transfer learning, where unseen
rumours (or rumours with few initial tweets ob-
served) are classified using already known ru-
mours – a much harder and more practical setting.
Moreover, unlike Qazvinian et al. (2011), we con-
sider the multi-class classification problem and do
not collaps questioning and denying tweets into a
single class, since they differ significantly.

3 Data

We evaluate our work on several rumours circu-
lating on Twitter during the England riots in 2011
(see Table 2). The dataset was analysed and an-
notated manually as supporting, questioning, or
denying a rumour, by a team of social scientists
studying the role of social media during the riots
(Procter et al., 2013). The original dataset also
included commenting tweets, but these have been
removed from our experiments due to their small
number (they constituted only 5% of the corpus).

As can be seen from the dataset overview in
Table 2, different rumours exhibit varying pro-
portions of supporting, denying and questioning
tweets, which was also observed in other studies of
rumours (Mendoza et al., 2010; Qazvinian et al.,
2011). These variations in majority classes across
rumours underscores the modeling challenge in
tweet-level classification of rumour attitudes.

With respect to veracity, one rumour has been
confirmed as true (Miss Selfridge’s being on fire),
one is unsubstantiated (police beat girl), and the
remaining five are known to be false. Note, how-
ever, that the focus here is not on classifying truth-
fulness, but instead on identifying the attitude ex-
pressed in each tweet towards the rumour.
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4 Problem formulation

Let R be a set of rumours, each of which consists
of tweets discussing it, ∀r∈R Tr = {tr1, · · · , trrn}.
T = ∪r∈RTr is the complete set of tweets from all
rumours. Each tweet is classified as supporting,
denying or questioning with respect to its rumour:
y(t) ∈ {0, 1, 2}, where 0 denotes supporting, 1
means denying and 2 denotes questioning.

First, we consider the Leave One Out (LOO)
setting, which means that for each rumour r ∈ R,
we construct the test set equal to Tr and the train-
ing set equal to T \ Tr. Therefore this is a very
challenging and realistic scenario, where the test
set contains an entirely unseen rumour, from those
in the training set.

The second setting is Leave Part Out (LPO).
In this formulation, a very small number of ini-
tial tweets from the target rumour is added to the
training set {tr1, · · · , trrk}. This scenario becomes
applicable typically soon after a rumour breaks
out and journalists have started monitoring and
analysing the related tweet stream. The experi-
ments section investigates how the number of ini-
tial training tweets influences classification perfor-
mance on a fixed test set, namely: {trrl , · · · , trrn},
l > k.

The tweet-level classification problem here as-
sumes that tweets from the training set are already
labelled with the rumour discussed and the atti-
tude expressed towards that. This information can
be acquired either via manual annotation as part
of expert analysis, as is the case with our dataset,
or automatically, e.g. using pattern-based rumour
detection (Zhao et al., 2015). Afterwards, our
method can be used to classify the attitudes ex-
pressed in each new tweet from outside the train-
ing set.

5 Gaussian Processes for Classification

Gaussian Processes are a Bayesian non-parametric
machine learning framework that has been shown
to work well for a range of NLP problems, of-
ten beating other state-of-the-art methods (Cohn
and Specia, 2013; Lampos et al., 2014; Beck et
al., 2014; Preotiuc-Pietro et al., 2015). We use
Gaussian Processes as this probabilistic kernelised
framework avoids the need for expensive cross-
validation for hyperparameter selection.1

1There exist frequentist kernel methods, like SVMs,
which additionally require extensive heldout parameter tun-
ing.

The central concept of Gaussian Process
Classification (GPC; (Rasmussen and Williams,
2005)) is a latent function f over inputs
x: f(x) ∼ GP(m(x), k(x,x′)), where m is the
mean function, assumed to be 0 and k is the kernel
function, specifying the degree to which the out-
puts covary as a function of the inputs. We use a
linear kernel, k(x,x′) = σ2x>x′. The latent func-
tion is then mapped by the probit function Φ(f)
into the range [0, 1], such that the resulting value
can be interpreted as p(y = 1|x).

The GPC posterior is calculated as

p(f∗|X,y,x∗) =
∫
p(f∗|X,x∗, f)

p(y|f)p(f)
p(y|X)

df ,

where p(y|f) =
n∏
j=1

Φ(fj)yj (1−Φ(fj))1−yj is the

Bernoulli likelihood of class y. After calculating
the above posterior from the training data, this is
used in prediction, i.e.,

p(y∗=1|X,y,x∗)=
∫

Φ (f∗) p (f∗|X,y,x∗) df∗ .
The above integrals are intractable and approx-

imation techniques are required to solve them.
There exist various methods to deal with calculat-
ing the posterior; here we use Expectation Prop-
agation (EP; (Minka and Lafferty, 2002)). In EP,
the posterior is approximated by a fully factorised
distribution, where each component is assumed to
be an unnormalised Gaussian.

In order to conduct multi-class classification,
we perform a one-vs-all classification for each la-
bel and then assign the one with the highest like-
lihood, amongst the three (supporting, denying,
questioning). We choose this method due to inter-
pretability of results, similar to recent work on oc-
cupational class classification (Preotiuc-Pietro et
al., 2015).

Intrinsic Coregionalization Model In the LPO
setting initial labelled tweets from the target ru-
mour are observed as well. In this case, we pro-
pose to weight the importance of tweets from the
reference rumours depending on how similar their
characteristics are to the tweets from the target ru-
mour available for training. To handle this with
GPC, we use a multiple output model based on the
Intrinsic Coregionalisation Model (ICM; (Álvarez
et al., 2012)). It has already been applied suc-
cessfully to NLP regression problems (Beck et al.,
2014) and it can also be applied to classification
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ones. ICM parametrizes the kernel by a matrix
which represents the extent of covariance between
pairs of tasks. The complete kernel takes form of

k((x, d), (x′, d′)) = kdata(x,x′)Bd,d′ ,

where B is a square coregionalization matrix, d
and d′ denote the tasks of the two inputs and kdata
is a kernel for comparing inputs x and x′ (here, lin-
ear). We parametrize the coregionalization matrix
B = κI + vvT , where v specifies the correlation
between tasks and the vector κ controls extent of
task independence.

Hyperparameter selection We tune hyperpa-
rameters v, κ and σ2 by maximizing evidence of
the model p(y|X), thus having no need for a vali-
dation set.

Methods We consider GPs in three different set-
tings, varying in what data the model is trained on
and what kernel it uses. The first setting (denoted
GP) considers only target rumour data for train-
ing. The second (GPPooled) additionally consid-
ers tweets from reference rumours (i.e. other than
the target rumour). The third setting is GPICM,
where an ICM kernel is used to weight influence
from tweets from reference rumours.

6 Features

We conducted a series of preprocessing steps in or-
der to address data sparsity. All words were low-
ercased; stopwords removed; all emoticons were
replaced with words2; and stemming was per-
formed. In addition, multiple occurrences of a
character were replaced with a double occurrence
(Agarwal et al., 2011), to correct for misspellings
and lengthenings, e.g., looool. All punctuation
was also removed, except for ., ! and ?, which we
hypothesize to be important for expressing emo-
tion. Lastly, usernames were removed as they tend
to be rumour-specific, i.e., very few users com-
ment on more than one rumour.

After preprocessing the text data, we use either
the resulting bag of words (BOW) feature repre-
sentation or replace all words with their Brown
cluster ids (Brown), using 1000 clusters acquired
from a large scale Twitter corpus (Owoputi et al.,
2013). In all cases, simple re-tweets are removed
from the training set to prevent bias (Llewellyn et
al., 2014).

2We used the dictionary from: http://bit.ly/
1rX1Hdk and extended it with: :o, : |, =/, :s, :S, :p.

method acc

Majority 0.68
GPPooled Brown 0.72
GPPooled BOW 0.69

Table 3: Accuracy taken across all rumours in the
LOO setting.

7 Experiments and Discussion

Table 3 shows the mean accuracy in the LOO
scenario following the GPPooled method, which
pools all reference rumours together ignoring their
task identities. ICM can not use correlations to tar-
get rumour in this case and so can not be used. The
majority baseline simply assigns the most frequent
class from the training set.

We can observe that methods perform on a level
similar to majority vote, outperforming it only
slightly. This indicates how difficult the LOO task
is, when no annotated target rumour tweets are
available.

Figure 1 shows accuracy for a range of methods
as the number of tweets about the target rumour
used for training increases. Most notably, perfor-
mance increases from 70% to around 80%, after
only 10 annotated tweets from the target rumour
become available, as compared to the results on
unseen rumours from Table 3. However, as the
amount of target rumour increases, performance
does not increase further, which suggests that even
only 10 human-annotated tweets are enough to
achieve significant performance benefits. Note
also how the use of reference rumours is very im-
portant, as methods using only the target rumour
obtain accuracy similar to the Majority vote clas-
sifier (GP Brown and GP BOW).

The top performing methods are GPCIM and
GPPooled, where use of Brown clusters consis-
tently improves results for both methods over
BOW, irrespective of the number of tweets about
the target rumour annotated for training. More-
over, GPICM is better than GPPooled both with
Brown and BOW features and GPCIM with
Brown is ultimately the best performing of all.

In order to analyse the importance of Brown
clusters, Automatic Relevance Determination
(ARD) is used (Rasmussen and Williams, 2005)
for the best performing GPICM Brown in the LPO
scenario. Only the case where the first 10 tweets
are used for training is considered, since it already
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Figure 1: Accuracy measures for different methods versus the size of the target rumour used for training
in the LPO setting. The test set is fixed to all but the first 50 tweets of the target rumour.

supporting denying questioning

? fake ?
10001101 11111000001 10001101

! not !
10001100 001000 10001100

not ? hope
001000 10001101 01000111110

fake ! true
11111000001 10001100 111110010110

true bullshit searching
111110010110 11110101011111 01111000010

Table 4: Top 5 Brown clusters, each shown
with a representative word. For further
details please see the cluster definitions
at http://www.ark.cs.cmu.edu/
TweetNLP/cluster_viewer.html.

performs very well. Using ARD, we learn a sepa-
rate length-scale for each feature, thus establishing
their importance. The weights learnt for differ-
ent clusters are averaged over the 7 rumours and
the top 5 Brown clusters for each label are shown
in Table 4. We can see that clusters around the
words fake and bullshit turn out to be important
for the denying class, and true for both supporting
and questioning classes. This reinforces our hy-
pothesis that common linguistic cues can be found
across multiple rumours. Note how punctuation
proves important as well, since clusters ? and !
are also very prominent.

8 Conclusions

This paper investigated the problem of classifying
judgements expressed in tweets about rumours.

First, we considered a setting where no training
data from target rumour is available (LOO). With-
out access to annotated examples of the target ru-
mour the learning problem becomes very difficult.
We showed that in the supervised domain adapta-
tion setting (LPO) even annotating a small number
of tweets helps to achieve better results. More-
over, we demonstrated the benefits of a multi task
learning approach, as well as that Brown cluster
features are more useful for the task than simple
bag of words.

Judgement estimation is undoubtedly of great
value e.g. for marketing, politics and journalism,
helping to target widely believed topics. Although
the focus here is on classifying community reac-
tions, Castillo et al. (2013) showed that commu-
nity reaction is correlated with actual rumour ve-
racity. Consequently our classification methods
may prove useful in the broader and more chal-
lenging task of annotating veracity.

An interesting direction for future work would
be adding non-textual features. For example, the
rumour diffusion pattern (Lukasik et al., 2015)
may be a useful cue for judgement classification.
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Abstract

In this paper we study the identification
and verification of simple claims about
statistical properties, e.g. claims about the
population or the inflation rate of a coun-
try. We show that this problem is similar
to extracting numerical information from
text and following recent work, instead of
annotating data for each property of inter-
est in order to learn supervised models,
we develop a distantly supervised base-
line approach using a knowledge base and
raw text. In experiments on 16 statistical
properties about countries from Freebase
we show that our approach identifies sim-
ple statistical claims about properties with
60% precision, while it is able to verify
these claims without requiring any explicit
supervision for either tasks. Furthermore,
we evaluate our approach as a statistical
property extractor and we show it achieves
0.11 mean absolute percentage error.

1 Introduction

Statistical properties are commonly used to de-
scribe entities, e.g. population for countries,
net value for companies, points scored for ath-
letes, etc. Claims about such properties are very
common in news articles and social media, how-
ever they can be erroneous, either due to au-
thor error or negligence at the time of writing
or because they eventually become out of date.
While manual verification (also referred to as fact-
checking) is conducted by journalists in news or-
ganizations and dedicated websites such as www.
emergent.info, the volume of the claims calls
for automated approaches, which is one of the
main objectives of computational journalism (Co-
hen et al., 2011; Flew et al., 2012).

In this paper we develop a baseline approach to
identify and verify simple claims about statistical

Text: Lesotho, a landlocked enclave of
South Africa, has a population of nearly
2 million and covers an area slightly
smaller than the U.S. state of Maryland.
Entity: Lesotho
Property: population
Value claimed in text: 2,000,000
Value in knowledge base: 2,193,843
Absolute percentage error: 0.09

Figure 1: Claim identification and verification.

properties against a database. The task is illus-
trated in Figure 1. Given a sentence, we first iden-
tify whether it contains a claim about a property
we are interested in (population in the exam-
ple), which entity it is about and the value claimed
(Lesotho and 2,000,000 respectively). We then
proceed to verify the value claimed in text for the
property of this entity against the value known in
a knowledge base such as Freebase and return a
score reflecting the accuracy of the claim (abso-
lute percentage error in the example).

Claim identification is essentially an instance of
information extraction. While it would be possi-
ble to develop supervised models, this would re-
quire expensive manual data annotation for each
property of interest. Instead, we follow the dis-
tant supervision paradigm (Craven and Kumlien,
1999; Mintz et al., 2009) using supervision ob-
tained by combining triples from a knowledge
base and raw text. However, statistical properties
are more challenging in applying the distant super-
vision assumption than relations between named
entities due to the fact that the numerical values
are often approximated in text, as in the example
of Figure 1. Consequently, linking the values men-
tioned in text with those in the knowledge base is
not trivial and thus it is not straightforward to gen-
erate training instances for the property of interest.
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To address this issue, we propose a distantly
supervised claim identification approach that re-
lies on approximate instead of exact matching
between values in text and the knowledge base.
In experiments on 16 statistical properties about
countries from Freebase we show that our ap-
proach identifies simple statistical claims with
60% precision, while it is able to verify these
claims without requiring any explicit supervision
for this task. In developing our approach, we
also evaluate it as a statistical property extrac-
tor achieving 0.11 mean absolute percentage er-
ror. The code and the datasets developed are pub-
licly available from https://github.com/
uclmr/simpleNumericalFactChecker.

2 Claim identification algorithm

Our approach to claim identification relies on dis-
covering textual patterns between an entity and a
numerical value used to express the property of in-
terest. For example, the first, second and fourth
patterns in Table 1 express the population prop-
erty, and we would like our approach to select
them to identify claims about this property.

During training, we assume as input a set of
entity-value pairs from the knowledge base for
the property of interest (top-right part of Table 1)
and a set of textual patterns (bottom-left part),
each associated with entity-value pairs (bottom-
right part). The patterns and the entity-value pairs
associated with them are obtained by processing
raw text, which we discuss in Section 3.

The key difficulty compared to other applica-
tions of distant supervision is that numerical val-
ues are often approximated in text. Thus, instead
of looking for patterns that report the exact val-
ues for each entity, we develop an approach for
finding the patterns that predict the values well.
Intuitively, the algorithm ranks all text patterns ac-
cording to how well they predict the values for the
property at question and then greedily selects them
till the accuracy of the aggregate predictions by the
selected paterns stop improving. To compare the
predicted entity-value pairs ÊV against the prop-
erty entity-value pairsEVprop we use the mean ab-
solute percentage error (MAPE):

MAPE (EVprop , ÊV ) =
1
|E|

∑
e∈E′

|ve − v̂e|
|ve| (1)

Note that only the values predicted for entities in
both EVprop and ÊV (denoted by E′) are taken

into account in this equation, thus in calculat-
ing MAPE for the pattern “X has inhabitants”
from Table 1 against the entity-values for popu-
lation only the two values present are considered.
MAPE is commonly used in measuring forecast-
ing accuracy of algorithms in finance (Hyndman
and Koehler, 2006). Unlike mean absolute error
or mean squared error it adjusts the errors accord-
ing to the magnitude of the correct value.

Initially (line 1) the algorithm decides on a de-
fault value (vdef ) to return for the property at ques-
tion among three options: the mean of the training
values, their median or zero. The criterion for the
choice is which one results in a better MAPE score
on the training data. We refer to this prediction as
the InformedGuess. This default value is used
when predicting (lines 16-29) in case there are no
values for an entity in the patterns selected, e.g. if
only the pattern “X has inhabitants” is selected
and the prediction for Iceland is requested.

Following this, the patterns are ranked accord-
ing to the MAPE score of their entity values with
respect to the entity values of the property at ques-
tion (lines 2-4). We then iterate over the patterns in
the order they were ranked. For every pattern, we
add it to the set of patterns used in predicting (lines
8-9), and evaluate the resulting predictions using
MAPE with respect to the training values (line 10).
If MAPE is increased (predictions become worse),
then we remove the newly added pattern from the
set and stop. Otherwise, we continue with the next
pattern in the queue.

In experiments with this algorithm we found
that while it often identified useful patterns, some-
times it was misled by patterns that had very
few entities in common with the property and the
values of those entities happen to be similar to
those of the property. For example, the pattern “
tourists visited X” in Figure 1 has only one entity-
value pair (“France:68,000,000”) and the value is
very close to the population value for “France”.
To ameliorate this issue, we adjusted the MAPE
scores used in the ranking step (line 4) according
to the number of values used in the calculation us-
ing the following formula:

adjustedMAPE =
c

c+N
MAPE (2)

where N is the number of values used in calcu-
lating MAPE in Equation 1 and c is a parame-
ter that regulates the adjustment. Lower c puts
more importance on the number of values used,
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population France:66,028,467, Russia:143,700,000, Iceland:325,600
the population of X is France:66,000,000, Russia:140,000,000, Iceland:325,000
X’s population is estimated at France:66,030,000, Russia:145,000,000
X’s inflation rate is France:0.9, Iceland:4.0
X has inhabitants Russia:140,000,000, Iceland:300,000

tourists visited X France:68,000,000

Table 1: Property and text patterns associated with entity-value pairs.

Algorithm 1: Claim identification algorithm
Input: Entity-values for property

EVprop = {(e1, v1), (e2, v2), . . .},
patterns P = {p1, p2, . . .},
entity-values for pattern p: EVp

Output: Selected patterns Psel
1 vdef = InformedGuess (EVprop)
2 priorityQueue Q = ∅
3 foreach pattern p ∈ P do
4 push (Q, (p, MAPE (EVprop, EVp)))

5 Psel = ∅
6 mp = MAPE (EVprop,predict(E,Psel))
7 while Q 6= ∅ do
8 pattern p = pop (Q)
9 P ′sel = Psel ∪ {p}

10 mp′ = MAPE (EVprop, predict
(E,P ′sel))

11 if mp′ > mp then
12 break
13 else
14 mp = mp′

15 Psel = P ′sel

16 function predict(entities E, patterns
Psel)

17 ÊV = ∅
18 foreach e ∈ E do
19 sum = 0
20 count = 0
21 foreach p ∈ Psel do
22 if (e, v) ∈ EVp then
23 sum+ = p{e}
24 count+ = 1

25 if count > 0 then
26 ÊV = ÊV ∪ (e, sum/count)
27 else
28 ÊV = ÊV ∪ (e, vdef )

29 return ÊV

thus leading the algorithm to choosing patterns as-
sessed with more values, and thus more reliably.

3 Data collection

To evaluate the claim identification approach de-
veloped we compiled a dataset of statistical prop-
erties from Freebase. We downloaded a snapshot1

of all instances of the statistical region entity type
with all their properties with their most recent val-
ues, keeping only those were from 2010 onwards.
From those we selected the 16 properties listed in
Table 2, each property having values for 150-175
regions (mostly countries).

To collect texts from which the text patterns be-
tween entities and numerical values will be ex-
tracted we downloaded documents from the web.
In particular, for each region combined with each
property we formed a query consisting of the two
and submitted it to Bing via its Search API. Fol-
lowing this we obtained the top 50 results for each
query, downloaded the HTML pages correspond-
ing to each result and extracted their textual con-
tent with BoilerPipe (Kohlschütter et al., 2010).
We then processed the texts using the Stanford
CoreNLP toolkit (Manning et al., 2014) and from
each sentence we extracted textual patterns be-
tween all the named entities recognized as loca-
tions and all the numerical values. Two kinds of
patterns were extracted for each location and nu-
merical value: surface patterns (as the ones shown
in Table 1) and lexicalized dependency paths.

This pattern extraction process resulted in a
large set of triples consisting of a region, a pattern
and a value. Different sentences might result in
triples containing the same region and textual pat-
tern but different value. Such variation can arise
due to either the approximations of values in text
or due to the pattern being highly ambiguous, e.g.
“X is ”. We distinguish between the two by re-
quiring each region-pattern combination to have
appeared at least twice and its values to have stan-

1Data was collected in May 2014.
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dard deviation less than 0.1. In this case, then the
region-pattern value is set to the mean of the val-
ues it is encountered with, otherwise is removed.

4 Information extraction experiments

We first evaluate our approach as a statistical prop-
erty extractor for two reasons. First, while our
main goal is to develop a claim identification ap-
proach, there is no data for this task to evaluate,
thus making development difficult. On the other
hand, we can evaluate statistical property extrac-
tion in a straightforward way, thus facilitating de-
velopment and parameter tuning. Second, the al-
gorithm described learns such an extractor, thus it
is of interest to know its performance.

We split the values collected from Freebase into
2/3 for training and 1/3 for testing, ensuring that
all regions are present in both datasets. The ac-
curacy is evaluated using MAPE. When using ad-
justed MAPE we set the parameter c for each prop-
erty using 4-fold cross-validation.

The performance of Algorithm 1 using the
unadjusted MAPE was 0.72 averaged over all
properties. Using the adjusted version this was
greatly improved to 0.49. We also evaluated the
InformedGuess prediction which returns the
same value for all regions (it chooses the value
that performs best among the mean, the median
and 0), and its overall MAPE was 0.79. Recalling
that Algorithm 1 returns the InformedGuess
in case no pattern is found for an entity, we also
evaluate the performance without returning a value
for such entities, thus ignoring them in the evalua-
tion. In that case the performance with unadjusted
MAPE improves to 0.17 but 10% coverage, while
with adjusted MAPE it improves to 0.11 with 43%
coverage. Best performances were achieved for
relations such as population which have a wide
range of values that is well separated from the rest,
while percentage rates were usually harder for the
opposite reason. Thus we conclude that the algo-
rithm with adjusted MAPE selects better patterns
for each property that are encountered more fre-
quently, which is important for the main goal of
this paper, claim identification.

5 Claim identification and verification

We now evaluate our approach on claim identifica-
tion. For each property, we run Algorithm 1 using
adjusted MAPE and the parameter c as chosen in
the experiments of the previous section to select

Freebase property claims precision

consumer price index 116 0.93
cpi inflation rate 464 0.92
diesel price liter 212 1.00

fertility rate 307 0.99
gdp growth rate 39 0.31

gdp nominal 308 0.98
gdp nominal per capita 415 0.20

gni 413 0.62
gni per capita 795 0.49

health expenditure 197 0.99
internet users % 93 0.00

life expectancy 581 0.45
population 1583 0.9

population growth rate 1377 0.11
renewable freshwater 105 1.00

undernourishment 87 0.13

OVERALL 7092 0.60

Table 2: Claim identification results.

patterns expressing it. We then process all texts
and if a sentence contains one of the selected pat-
terns between an entity and a value, it is returned
for manual inspection as shown in Figure 1.

The claims returned were labeled by the authors
of the paper as correctly or incorrectly identified
according to the following guidelines. A claim is
extracted correctly only if both the entity and the
value are extracted correctly and the sentence ex-
presses the property at question. E.g. a claim iden-
tified in a sentence containing a country and its
correct GDP growth rate without stating it as such
(the same percentage rate can be true for multiple
statistical properties) is considered incorrect. Fur-
thermore, we considered claims referring to past
measurements (e.g. results of a past census) to be
correctly identified.

Results for each property are shown in Table. 2.
Overall precision was 60% over 7,092 statements,
and it varied substantially across properties. Per-
fect precision was found for claims of renew-
able freshwater for which one textual pattern was
responsible for all the claims identified and it was
correct. On the other hand, the zero precision for
claims of internet user % was due to identifying
correctly sentences listing countries and their re-
spective values for this property but not identify-
ing the country-value pairs correctly. More repre-
sentative of properties with precise claim identifi-
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cation was population, for which the relatively few
errors were due to the patterns learned not being
able to distinguish between different types of pop-
ulation e.g. general vs working population. On the
other hand, the claims for gni per capita had low
accuracy because they were confused with those
of gdp nominal per capita, as their values tend to
be relatively close. The claims identified and an-
notated manually are attached to our submission.
Finally, some errors are due to the algorithm being
constrained to extract a claim considering only the
text pattern between the entity and the value, thus
ignoring parts of the sentence that might be rele-
vant. For example, the pattern “the population of
X is ” is generally reliable, but in the sentence
“The population of Tajikistan is 90 % Muslim” it
extracts a claim incorrectly.

The verification stage of the simple claims we
extract is rather simple; we just score the claims
according to the absolute percentage error of the
value claimed in text with respect to the value
in known in Freebase. In the process of la-
beling the claims identified we did a qualita-
tive analysis of the claims with high error. We
found cases where our algorithm flagged cases
of out of date estimates of populations used, e.g.
the webpage http://www.economywatch.
com/world_economy/bolivia2 states that
the population of Bolivia is 9 million, while it is
estimated to be above 10 million.

6 Discussion - Related work

As explained, we tackle claim identification as an
instance of information extraction, and propose a
baseline able to perform both tasks. However, it is
important to distinguish between them. In claim
identification we are interested in all claims about
a property, even inaccurate ones; in information
extraction on the other hand, and especially its for-
mulation as knowledge base population, we are in-
terested in the accurate claims only, since extract-
ing inaccurate ones will lead to erroneous informa-
tion added to the knowledge base. The difference
between the two tasks is captured by the verifica-
tion task. In this paper our main goals are identifi-
cation and verification, but we train our approach
on information extraction, relying on the assump-
tion that most claims made in the texts retrieved
via the web search engine are accurate.

In related work, Nakashole and Mitchell (2014)
2Accessed in August 2015.

developed an approach to verify subject-verb-
object triples against a knowledge base, taking into
account the objectivity of the language used in the
sources stating the triple. Our approach is ag-
nostic to the syntactic form of the claims, thus it
can identify claims expressed in greater linguis-
tic variety. Ciampaglia et al. (2015) fact-checked
subject-predicate-object triples against a knowl-
edge graph constructed from DBpedia, but they
considered only the paths between the subject and
the predicate in their algorithm thus ignoring the
predicate itself. Dong et al. (2015) established
the trustworthiness of a web source by comparing
the subject-predicate-object triples extracted from
it to the Knowledge Vault built by Google, but did
not focus on claim identification and verification.
Adar et al. (2009) developed an approach to detect
inconsistencies between versions of Wikipedia in
different languages, but they focused on manually
extracted infoboxes. Finally, Vlachos and Riedel
(2014) compiled a dataset of claims fact-checked
by journalists, but the claims are much more com-
plex than the ones we considered in this paper.

Other work that discussed the extraction of
statistical properties includes the approaches of
Hoffmann et al. (2010) and Intxaurrondo et al.
(2015), both employing approximate matching to
deal with the approximation of numerical values
in text. In order to learn their model, Hoffmann
et al. (2010) take advantage of the structure of
the articles in Wikipedia developing a classifier
that identifies the schema followed by each arti-
cle, which is not straightforward to extend to texts
beyond this source. Intxaurrondo et al. (2015) on
the other hand focus on tweets and make the as-
sumption that the entity discussed in each tweet
is determined in advance, thus the extractor needs
only to associate a numerical value with the prop-
erty of interest, i.e. the task is reduced from triple
extraction to labeling values.

7 Conclusions - Future work

In this paper we developed a distantly supervised
approach for identification and verification of sim-
ple statistical claims. We evaluated both as statis-
tical property extractor and as a claim identifier on
16 relations from Freebase. In future work we aim
to improve our approach by taking into account
continuous representations of the words in the pat-
terns and to extend it to more complex claims, e.g.
claims about change in financial indicators.
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