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Abstract

Inspired by human fact checkers, who use dif-
ferent types of evidence (e.g. tables, images,
audio) in addition to text, several datasets with
tabular evidence data have been released in re-
cent years. Whilst the datasets encourage re-
search on table fact-checking, they rely on in-
formation from restricted data sources, such as
Wikipedia for creating claims and extracting
evidence data, making the fact-checking pro-
cess different from the real-world process used
by fact checkers. In this paper, we introduce
PubHealthTab, a table fact-checking dataset
based on real-world public health claims and
noisy evidence tables from sources similar to
those used by real fact checkers. We outline our
approach for collecting evidence data from var-
ious websites and present an in-depth analysis
of our dataset. Finally, we evaluate state-of-the-
art table representation and pre-trained models
fine-tuned on our dataset, achieving an overall
F'; score of 0.73.

1 Introduction

Fact-checking is the task of establishing the verac-
ity of factual information, commonly performed
manually by journalists. In addition to classifying
how truthful claims are, human fact checkers also
provide evidence for their judgements. To support
this process with computational tools, researchers
have compiled several datasets for evidence-based
automated fact-checking (AFC), which include in-
formation about the sources supporting or refuting
the claims alongside veracity labels (Thorne et al.,
2018; Chen et al., 2020b; Aly et al., 2021; Schuster
et al., 2021; Ngrregaard and Derczynski, 2021).
While a large share of the datasets used in
evidence-based AFC focus on textual evidence
(e.g. (Thorne et al., 2018; Augenstein et al., 2019;
Diggelmann et al., 2020; Schuster et al., 2021)),
some recent datasets also cover structured data, for
instance in the form of web tables (Chen et al.,

1

2020b; Aly et al., 2021). This is useful, as hu-
man fact checkers often need to consider a range
of data modalities to verify claims. However, two
main limitations remain. First, existing table fact-
checking datasets consist largely of claims which
have been ‘artificially’ created via online crowd-
sourcing, starting from randomly selected evidence
tables. Second, the datasets use single sources of
evidence, for instance Wikipedia; this is different
from how human fact checkers go about the task -
more often than not, they consult multiple primary
sources, including websites, databases, and public
reports.

To overcome these limitations, we propose Pub-
HealthTab', a new table fact-checking dataset,
using the PubHealth dataset (Kotonya and Toni,
2020) as a seed. PubHealth has a number of advan-
tages. It contains public health claims that human
fact-checkers work on. The authors compared the
complexity of these claims to real-world political
claims, as well as to claims created by crowdwork-
ers (Kotonya and Toni, 2020). As a proxy for com-
plexity, they determined the reading skills needed
to understand the claims. They established that
public health claims are much more challenging,
requiring high school levels of reading of 10 to 12
rather than 6 to 8 for political and crowdsourced
claims. PubHealth also includes multiple sources
of evidence for the claims, however, the evidence
is purely text-based. In our dataset, we include web
tables as evidence, extracted from different web-
sites, similar to those used by human fact-checkers.

We designed a hybrid dataset pipeline, which
takes PubHealth claims and links them, via
Wikipedia articles, to other websites containing
potential evidence tables. We used crowdsourc-
ing in three ways: to establish the relevance of the
extracted tables; to adjust PubHealth claims to sup-
port or refute the tables; and finally to assess the

"https://github.com/mubasharaak/
PubHealthTab
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quality of the new claims. The result is a dataset of
1,942 claim-table pairs about public health, draw-
ing on evidence from more than 300 websites.

We analysed the dataset to spot potential biases
in the way we collected the data and compared
PubHealthTab with other table-based fact-checking
datasets. Moreover, we experimented with several
BERT-based models and table representations to
understand how our dataset performs on state-of-
the-art AFC, achieving an overall I} score of 0.73.
Both allowed us to identify areas of future improve-
ment, in particular to refute claims against evidence
consisting of mostly numerical data or with noisy
text headers.

2 Background & Related Work

2.1 Evidence-based Fact-Checking

Evidence-based AFC requires one to predict a
veracity label against the evidence. While most
datasets focus on textual sources of evidence
(Thorne et al., 2018; Jiang et al., 2020; Diggel-
mann et al., 2020; Schuster et al., 2021), human fact
checkers use a wider range of modalities (Nakov
et al., 2021). To verify factual information, they
commonly ask experts, search in databases, and
consult text, tables, and graphics from a multitude
of sources, including scholarly literature, public
reports, and official statistics.”

2.2 Table Fact-Checking Datasets

There is a small number of datasets that consider
tables in AFC. However, in all cases, the claims
are created by crowdworkers given evidence from
Wikipedia. For instance, TabFact (Chen et al.,
2020b) contains tables extracted from Wikipedia
and considers two classes for the claim veracity:
entailment and contradiction. The InfoTabs dataset
(Gupta et al., 2020) has claims that can be veri-
fied using information from Wikipedia info-boxes,
with an additional “neutral” class. In FEVEROUS
(Aly et al., 2021), claims are verified using text,
tables, and lists from Wikipedia. Finally, the recent
Sem-Eval fact-checking challenge, Sem-Tab-Facts
(Wang et al., 2021), released a table fact-checking
dataset with tables extracted from scientific articles.
Claims were created by crowd workers based on
sentences in the article describing these tables.

https://ballotpedia.org/The_
methodologies_of_fact-checking

2.3 Tables in Other NLP Tasks

There is an increasing body of literature looking
at tables alongside text for NLP tasks such as ta-
ble question answering (tableQA) or table-to-text
natural language generation (NLG). The former
aims to find answers to natural language questions
in tabular data (Pasupat and Liang, 2015; Zhong
et al., 2017; Iyyer et al., 2017) and inspired the first
table fact-checking dataset (Chen et al., 2020b).
Researchers later introduced variations of the task
with additional modalities (Chen et al., 2020c; Han-
nan et al., 2020) or sub-tasks such as table retrieval
(Chen et al., 2021). There are also several table-
to-text NLG datasets, for instance numericNLG
(Suadaa et al., 2021) with tables extracted from sci-
entific papers, and LogicNLG (Chen et al., 2020a)
with Wikipedia tables. We used some of the meth-
ods proposed by the numericNLG team (Suadaa
et al., 2021) to represent tables in our experiments.

2.4 The PubHealth Dataset

As noted earlier, we used PubHealth (Kotonya and
Toni, 2020) as a starting point for creating our table
fact-checking dataset. PubHealth consists of real-
world claims about public health extracted from
fact-checking and news review websites. The au-
thors comment that the majority of fact-checking
datasets either concentrate on politics (Wang, 2017;
Augenstein et al., 2019) or are built for research
purposes (Thorne et al., 2018; Chen et al., 2020b).
Each record in the PubHealth dataset consists of
a claim, the full text of the fact-checking or news
article, which discusses its veracity, and the article
summary or a justification for the veracity label.

3 The PubHealthTab Dataset

Figure 1 shows an overview of the data construc-
tion pipeline. In the top half, we automatically
create pairs of claims and tables. We start from
the PubHealth claims, assess them for relevance
and then match the remaining ones with web tables
(see Section 3.1). In the bottom half, we use crowd-
sourcing to filter tables, adjust claims to tables, and
check for quality (see Section 3.1.2).

3.1 Dataset Construction

3.1.1 Steps 1 to 3: From Claims to Tables

In Step 1 we removed ambiguous and out-of-
domain claims from the PubHealth dataset using a
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Figure 1: Dataset creation process.

lexicon of 4132 medical terms from: Wikipedia;?
medical dictionaries from Harvard University,*
University of Michigan®, and Schulich School of
Medicine and Dentistry®; as well as the Concept-
Net knowledge graph.” We retained the claims that
contained at least one token matching the lexicons.
For the other claims, we carried out NER to de-
tect medical entities that the lexicons might have
missed, using SciSpacy (Neumann et al., 2019).
We kept the claims for which we could find an
entity in the claim text whose ConceptNet node
was liked to a lexicon term via the “hasContext”
relation.®

In Step 2 we linked the claims from Step 1 to
Wikipedia articles using two entity linking services:
ELQ (Li et al., 2020) and WAT,? for better cover-
age. We then took the websites referenced by the
articles as a source of evidence tables. In Step 3,
from all Wikipedia references, we kept those in
English that could be scraped and which contained
at least one table HTML tag ({table)). We heuristi-
cally removed all tables that were used purely for
formatting reasons, and then ranked the remaining
tables based on their BM25 similarity to the claim
text. The result of this step was a set of 1915 claim-
table pairs (1010 claims and 1422 tables from 1196
websites), which was fed to the crowdsourced half

*https://en.wikipedia.org/wiki/
Glossary_of_medicine
*https://www.health.harvard.edu/
a-through-c
Shttps://apps.lib.umich.edu/
medical-dictionary/
*https://www.schulich.uwo.ca/pathol/
about_us/resources/glossary_of_medical_
terms.html
"https://conceptnet.io/
$https://github.com/commonsense/
conceptnet5/wiki/Relations
‘https://sobigdata.d4dscience.org/web/
tagme/wat-api

of the pipeline.

3.1.2 Steps 4 to 6: Crowdsourcing

We ran three crowdsourcing tasks on Amazon Me-
chanical Turk (MTurk) in May-June 2021: ta-
ble relevance, claim adjustment, and verification,
loosely following the “find-fix-verify" crowdsourc-
ing workflow for text processing by Bernstein et al.
(2015). For each of the three tasks, we checked
for quality, evaluated worker agreement, and aggre-
gated the results before feeding them to the subse-
quent task.

Recruitment and training of workers. We al-
located each task to three crowdworkers. Only
workers with minimum 1000 previously-approved
tasks and an approval rate of 95% or above were
eligible to work on the tasks. Moreover, all work-
ers had to pass a table literacy qualification test
(see appendix). To train the workers, we followed
the recommendations from Gadiraju et al. (2015);
Doroudi et al. (2016) and included examples of
expert-labelled tasks in the instructions, including
the rationales for the chosen labels.

Tasks design. The tasks were designed as fol-
lows (see appendix for instructions and interfaces):

1. Task 1 - table relevance: We asked crowd-
workers if claims and tables were related
to each other. This was needed to evaluate
the ranked list of tables from Step 3 (Fig-
ure 1), where we matched claims to tables
using BM25. For each claim-table pair, work-
ers could choose between four options: ta-
ble supports, refutes, is related but more in-
formation is needed, and is unrelated to the
claim. In addition, we also asked the crowd to
name the columns which contributed to their
choice. Each task had seven claim-table pairs,
of which two were from the gold standard (see
quality assurance below). We used majority
voting to aggregate the answers.

2. Task 2 - claim adjustment: The input for this
task were only the claim-table pairs which
were judged as related but not enough infor-
mation in the previous step. We asked crowd-
workers to adjust a claim so that they could be
supported or refuted by the table. The workers
also had to flag whether the table supported
or refuted the claim. Each task consisted of
five claim-table pairs. As this was an open-
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K- F-kx R-k
026 0.38 0.65
0.60 0.60 0.67

Table relevance
Verification

Table 1: Inter-annotator agreement scores for the table
relevance task and the verification task.

ended task, we evaluated the results in the
third crowdsourcing task.

3. Task 3 - verification: We asked crowdworkers
to verify the adjusted claims. Again, each task
had seven pairs of claims and tables, with two
gold pairs. Workers could choose between
four labels: supports, refutes, related but not
enough information, and unrelated. We per-
formed majority voting to aggregate the an-
SWers.

For the final dataset (see Section 3.2), we dis-
carded the pairs of adjusted claims and tables la-
belled as unrelated by the majority of workers.

Quality assurance. For each task, we followed
best practices to maintain annotation quality and
detect malicious behaviour. One of the authors
created a gold standard of 30 claim-table pairs for
the close-ended tasks (table relevance and verifi-
cation); we used two gold pairs per task. Workers
who failed those two gold pairs could not submit
their work. For the remaining submissions, we
computed the inter-annotator agreement.

Table 1 shows the inter-annotator agreement
scores using Krippendorff’s alpha (K-«), Fleiss’
kappa (F-x), and Randolph’s kappa (R-k). F-x
is prone to the high agreement but low kappa phe-
nomenon when the dataset is imbalanced (Feinstein
and Cicchetti, 1990); this was the case for the table
relevance task: after aggregating the answers with
majority voting, we had the following distribution:
less than 1% support, less than 1% refute, 22%
related but not enough information, and 77% unre-
lated. This is why we used R-x, which yields more
accurate results for imbalanced data. For the ver-
ification task, the data was more balanced, which
is reflected in the similar scores. For both tasks,
we obtained a R-x value of at least 0.65, which in-
dicates substantial agreement according to Landis
and Koch (1977).

The claim adjustment task was open-ended. We
allowed only submissions which met a set of cri-
teria, for instance by looking at the time spent per
task and comparing the original and adjusted claim;

Claim: Measles outbreak in Quebec carries a different strain than
that in Ontario in recent years.

. Number of Duration .
Province | Year Strain
cases (weeks)

Quebec 2007 94 24 D4
Ontario 2008 53 11 D8
British D8 and
Columbia 2010 82 / H1
Quebec 2011 20 11 D4
Quebec 2011 678 33 D4

Caption: Table 1. Measles Outbreaks in Canada, by province,
2007 to 2011

Website title: Guidelines for measles outbreak in Canada -
Canada.ca

Veracity label: SUPPORTS

Source: https://www.canada.ca/en/public-
health/services/reports-publications/canada-communicable-
disease-report-ccdr/monthly-issue/2013-39/guidelines-
prevention-control-measles-outbreaks-canada.html

Figure 2: A support example from PubHealthTab.

the full list of criteria is in the appendix. We also
manually inspected the adjusted claims before ac-
cepting them. We randomly sampled one claim
for each submission and accepted the work if its
quality was sufficient. After a first pilot round,
we banned workers with malicious behaviour, e.g.
workers who did not adjust the claims, but only
added or removed one token.

3.2 Dataset Statistics

Our PubHealthTab dataset comprises 1, 942 claim-
table pairs. A claim is a natural language sentence
checked against a table. Each pair is labelled as
support, refute, or not enough information (NEI),
following Thorne et al. (2018); Gupta et al. (2020);
Diggelmann et al. (2020); Aly et al. (2021). The
dataset has 1,019 supported claims, 462 refuted
claims, and 461 NEI claims. Figure 2 shows an
example.

The evidence table is organised as a list of n
rows. Each row is a list of cells, where m, the num-
ber of cells, can vary across rows. If the first row is
a header, it is instead saved as “header_horizontal”.
Similarly, if the first column is a header, it is saved
as “header_vertical”. For each table, we provide
the source website and, if available, the table cap-
tion. Moreover, each record also includes the orig-
inal PubHealth claim text, which was adjusted by
crowdworkers in Step 5 (Figure 1).

Table 2 compares the original PubHealth dataset
with our dataset, PubHealthTab.



PubHealthTab PubHealth Adj. claim length  Veracity label
Entries 1,942 11,832 Table length 0.05 (Pearson) 0.35 (F-test)
Evidence type Table Text Adj. claim length - 0.47 (F-test)
Claim length 20 - 194 25-400 Caption available  0.36 (F-test) 0.05 (x? test)
{supports, {true, mixture, Header available  0.16 (F-test) 0.03 (x? test)

Veracity labels

refutes, NEI} false, unproven}

Table 2: Comparison between our dataset and Pub-
Health (Kotonya and Toni, 2020).

4 Dataset Analysis

We analysed the PubHealthTab dataset for biases
and correlations, and compared it to other table
fact-checking datasets. We applied three methods:
(i) correlation analysis of table attributes; (ii) Local
Mutual Information (LMI) on adjusted claims; and
(iii) claim-only veracity prediction.

4.1 Correlation analysis of table attributes

While correlations between claims and veracity la-
bels in fact-checking datasets have been previously
explored (Schuster et al., 2019; Aly et al., 2021;
Thorne et al., 2021), such underlying relationships
might also be present in the evidence data. Thus,
we examined correlations related to tables in the
PubHealthTab dataset. We analysed if the veracity
labels and the length of adjusted claims were corre-
lated with the following table attributes that were
visible to crowdworkers during annotation: table
length (i.e. number of rows), availability of table
captions, and availability of table headers.

Depending on the type of the attribute analysed,
we used: the Pearson correlation coefficient, the y2
test, and the Anova F-test and a significance level
a of 0.05 to examine correlations. The p-values for
all attribute pairs are shown in Table 3. No signifi-
cant correlations were found between the adjusted
claim length and the table attributes’ length, cap-
tion availability, and header availability. Given p-
values > «, the hypothesis of independence holds
for these pairs of variables. Similarly, the veracity
labels were not significantly correlated with the ta-
ble length, caption availability, and adjusted claim
length. For the correlation between veracity labels
and header availability, we calculated a p-value of
0.03 indicating an underlying relationship between
the variables. Examining the attributes in detail, we
found that tables with headers were more promi-
nent for supported and refuted claims than for NEI
claims in the PubHealthTab dataset.

Table 3: Calculated p-values for the significance tests.

Bigram b LMI | p(l,b) | count

» | the highest 1009 0.86 44
£ | has the 989 | 08 | 60
S | percentage of 579 0.88 24
E had a 423 0.88 17
‘g highest number 418 0.93 14
= there is 376 0.79 24
»2 | more than 364 0.73 37
- found on 1030 0.61 28
£ | breast cancer 617 0.46 35
£ | is found 599 | 0.48 29
= | be found 493 0.62 13
E on page 471 0.42 36
&) is about 450 0.64 11

has a 433 0.34 86

the table 675 0.46 13
« | of domestic 621 0.8 5
'% health care 584 0.25 36
o | domestic violence | 564 0.67 6
@ | ina 516 0.57 7
Z | for health 398 0.6 5

to the 365 0.28 18

Table 4: Top LMI-ranked bigrams for support, refute
and NEI claims (including probability and count).

4.2 Local Mutual Information

Following Schuster et al. (2019), we analysed the
correlation between frequently occurring phrases in
adjusted claims and their veracity labels. We com-
puted the Local Mutual Information (LMI) score
(Evert, 2005) between a bigram b and the claim’s
veracity label I: LMI(b,l) = p(b,1) * log(%).
Unlike the Point-wise Mutual Information (PMI)
score, PM1I = log(%), the LMI score avoids
over-weighting bigrams with no or low occurrences
in the overall dataset by multiplying it with the
probability p(b, 1), where p(b,[) is approximated

b %f‘(b’l), |B| is the number of all bigrams in

the dataset and count(b, ) is the number of times
b and [ occur together.

Table 4 shows the top LMI-ranked bigrams for
PubHealthTab claims. We found similar bigrams in
different classes, for example “has a” appears in re-
futed claims and “had a” in supported claims. Fur-
thermore, no top-ranked bigram of refuted claims
contains negation tokens such as “not”, “never” or
“false”. Thus, we conclude that the top-ranked bi-
grams occurring in claims are not specific to their
veracity labels.



4.3 Claim-only Veracity Prediction

We fine-tuned a BERT base model (Devlin et al.,
2019) on PubHealthTab claims to predict their ve-
racity labels using only the text as input and ig-
noring evidence tables. A claim-only model that
performs well could indicate underlying correla-
tions between the claims and the veracity labels. A
similar approach was used by Schuster et al. (2019)
to evaluate claim-only biases in the FEVER dataset
(Thorne et al., 2018). Using the fine-tuned claim-
only BERT model, we obtain an F score of 0.51
on our test set. Comparing the F} score of the
claim-only model to the performance of models
using evidence data (see Section 5), we conclude
that claims alone are not sufficient for the BERT
model to predict the veracity labels.

4.4 Table Analysis

We compared PubHealthTab to three fact-checking
datasets that use tables, TabFact, InfoTabs, and
FEVEROUS (Table 5). Whilst almost all TabFact,
InfoTabs and FEVEROUS tables have headers, this
is not the case in more than half (56.9%) of Pub-
HealthTab tables. Similarly, all TabFact and In-
foTabs tables include captions and approximately
only one-fifth of PubHealthTab tables (21%) and
FEVEROUS tables (22%) have captions. While
captions and headers can be useful for understand-
ing the context of a table, these attributes are not
always present in real-world tables.

The average number of characters per cell is 13.4
for PubHealthTab tables, more than the average cell
length of TabFact tables (8.6) and less than for In-
foTabs (22.6) and FEVEROUS (17.3). Moreover,
PubHealthTab tables show the highest ratio of cells
with numerical content (59%) and the smallest ra-
tio with text-only content compared to the other
datasets. Numerical content can pose a challenge
for state-of-the-art NLP models as previous works
have shown (Suadaa et al., 2021).

5 Experiments and Results

We experimented with several table representa-
tion techniques and state-of-the-art models on Pub-
HealthTab to understand related challenges.

5.1 Table Representation

To assess the impact of different table represen-
tation methods on the table fact-checking task,
we used five table representation techniques. We
also used the BERT-based TAPAS model which

extends the BERT model architecture with three
additional embeddings to encode table structure.
We describe the TAPAS model in more detail when
we discuss the modelling approaches in Section
5.2. We describe the table representations in detail
below:

Concatenation: transforms the entire content
of a table into one flat string ignoring the table
structure. The table caption, headers, and content
are concatenated and used jointly as input for label
prediction.

Template-based concatenation: maps table
columns and cell values into a structured form
using the following template applied to each
row: column_1l:cell_value,
column_2:cell value, [...]. The
row and column tokens were replaced by the
corresponding vertical header (for row) and
horizontal header (for column), if available.
Template-based sentences: We defined a template
to convert table content to one sentence per row.
For example, given a table with headers “medicine”
and “price”, and two cells in the first row, we
generate the following template-based sentence
for this row: In row one column one (medicine) is
Panadol, column two (price) is £15.

TS (concatenation): Similarly to Suadaa et al.
(2021), we used text from representation concate-
nation as input to the TS text generation model
(Raffel et al., 2020) to generate sentences that
describe the tables.

TS (template): We used text from representation
template-based sentence as input to the T5 model.

row_1:

5.2 Modelling Approaches

Based on the previously described table represen-
tation methods, we evaluated state-of-the-art NLP
models on PubHealthTab. We use models previ-
ously applied in table fact-checking (BERT, AL-
BERT, RoBERTa) (Chen et al., 2020b; Gupta et al.,
2020; Aly et al., 2021), as well as domain-specific
models (BioBERT, BlueBERT, ClinicalBERT), pre-
trained on large-scale health datasets. We describe
the models below:

BERT: We used the uncased BERT-base (Devlin
et al., 2019) model from huggingface librarylo.
ALBERT: A transformer-based model that extends
BERT with a parameter-reduction technique, re-
sulting in lower memory consumption and higher
training speed (Lan et al., 2020).

Yhttps://huggingface.co
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Our Dataset TabFact InfoTabs FEVEROUS
Total number of tables 1,942 16,573 2.540 28,760
% of tables with caption 21% 100% 100% 22%
% of tables with header 56.9% 100% 100% 97%
% of tables with <5 rows 23.1% 0.1% 7.5% 18%
% of tables with =>5 rows & <= 10rows 53.8% 40.7% 56% 449
% of tables with >10 rows 23.1% 59.2% 36.5% 38%
Ratio of cells with only string content 30.6% 40.1% 45.8% 34%
Ratio of cells with numerical content 59% 53.6% 35.5% 40%
Avg number of characters per cell 13.4 8.6 22.6 17.3
Table 5: Comparison of table fact checking datasets.
Train Valid Test Sum Represent. (;Aé:) gu7P2- (1)1;2 lglg*lf
concatenation N . . .
Support 810 106 103 1019 £ | template sent. | 0.57 | 0.78 | 0.04 | 0.89
Refute 370 46 46 462 & | template concat. | 0.57 | 0.75 | 0.11 | 0.85
NEI 373 43 45 461 TS5 concat. 0.55 | 0.75 | 0.07 | 0.83
T5 template 0.53 | 0.71 | 0.03 | 0.84
Sum 1553 195 194 1942 | concatenation | 0.55 | 0.72 | 0.15 | 0.79
r | template sent. 0.58 | 0.69 | 0.27 | 0.79
Table 6: Class distribution across dataset split. = | template concat. | 0.55 | 0.71 | 0.17 | 0.78
j T5 concat. 0.54 | 074 | 0.07 | 0.83
TS template 0.55 | 0.75 | 0.11 | 0.79
tenati 0.69 | 0.79 | 0.44 | 0.84
RoBERTa: We used the RoBERTa-Large model 5 ffﬁ;?afgzéﬁﬂ 0.70 | 0.77 | 0.48 | 0.84
released by Nie et al. (2020). The model was pre- 4 | template concat. | 0.66 | 0.75 | 0.39 | 0.84
trained on SNLI (Bowman et al., 2015), MNLI 2 | Teoomte | 0en | 074 | o5 | 04
(Wllharns et al., 2018), ANLI (Nle et al., 2020), . concatenation 0.57 | 0.68 | 0.29 | 0.76
and FEVER (Thorne et al., 2018) % template sent. 0.60 0.71 0.33 0.76
BioBERT: A domain-specific BERT model, pre- 2 EF;H é)éitceaioncat' 822 822 00_'333 8;;
trained on PubMed abstracts and PMC full-text A | T5 template 0.58 | 0.71 | 0.30 | 0.74
articles (Lee et al., 2020). The model was fine- > Conc?tenaﬁon 822 8;? 83‘3‘ 8;71
tuned on two NLI datasets, SNLI and MultiNLI. I iﬁgﬁ:ﬁ zzr;ltc'at. 054 069 | 020 | 075
BlueBERT: The model was pre-trained on 2 | T5 concat. 0.52 | 0.70 | 0.13 | 0.72
PubMed abstracts and MIMIC-III clinical notes, = | TS template 054 | 068 | 022 | 0.72
. £ | concatenation 051 | 0.75 0 0.78
a database of electronic health records from ICU 2 | template sent 058 | 072 | 020 | 0.83
patients at a Boston hospital (Peng et al., 2019). = | template concat. | 0.58 | 0.74 | 0.19 | 0.80
ing . ; } -2 | TS concat. 0.55 | 0.76 | 0.10 | 0.80
Cll.nlcalBERT. A BERT model which was pre 5 T5 template 035 | 073 | 013 | 078
trained on MIMIC-III data (Huang et al., 2019) TAPAS 048 | 0.67 | 0.28 | 0.48

TAPAS: An extension to BERT which uses ad-
ditional, table-specific embeddings (column em-
beddings, row embeddings, rank embeddings) that
capture the table structure (Herzig et al., 2020).
We experiment with TAPAS on our dataset as it
achieved good performance on the TabFact dataset.

We partitioned the dataset into training (80%),
test (10%), and validation (10%) sets. Table 6
shows the class distribution across the dataset
split. We performed hyper-parameter search on
the validation set and evaluated the following pa-
rameters for each model before selecting the best-
performing combination: {4, 8, 16} for batch size,
{le-3, le-5, le-7} for learning rate, {2,3,4,5}
for training epochs, and {0.01,0.001, 0.0001} for

Table 7: Fi (macro) score for different state-of-the-art
models and table representations on PubHealthTab.

weight decay.

5.3 Discussion

We evaluated and compared the table representa-
tion and modelling approaches, and report the over-
all (macro) Fj score and the F scores for each
class in Table 7.

Table Representations. The resulting F scores
across all models and veracity classes remained
overall the same when different methods for table
representation were applied. The template-based



Dataset All | Sup. | Ref. | NEI
| PubHealthTab | 0.69 | 0.79 | 0.44 | 0.84
S | InfoTabs 0.78 | 0.78 | 0.76 | 0.81
§ | TabFact 049 | 034 | 0.65 -
| FEVEROUS | 0.68 | 0.89 | 0.87 | 0.29
| PubHealthTab | 0.70 | 0.77 | 0.48 | 0.84
£ | InfoTabs 0.77 | 0.77 | 0.73 | 0.81
2 | TabFact 0.44 | 023 | 0.65 -
& | FEVEROUS | 0.66 | 0.88 | 0.85 | 0.27
= | PubHealthTab | 0.66 | 0.75 | 0.39 | 0.84
S | InfoTabs 0.78 | 0.78 | 0.75 | 0.81
S | TabFact 0.50 | 0.36 | 0.65 -
& | FEVEROUS | 0.67 | 0.88 | 0.86 | 0.26
= | PubHealthTab | 0.73 | 0.78 | 0.52 | 0.89
2 | InfoTabs 0.73 | 0.72 | 0.69 | 0.77
S | TabFact 047 | 0.29 | 0.65 -
2 | FEVEROUS | 0.64 | 0.86 | 0.83 | 0.22
< | PubHealthTab | 0.68 | 0.74 | 0.45 | 0.84
% InfoTabs 072 | 0.72 | 0.68 | 0.77
= | TabFact 0.46 | 0.25 | 0.67 -
& | FEVEROUS | 0.64 | 0.86 | 0.83 | 0.24

Table 8: F) score for RoOBERTa with different represen-
tation methods on various table fact-checking datasets.

sentence approach outperforms other representa-
tion techniques in terms of the overall F7 score for
four out of six models (i.e. ALBERT, BioBERT,
BlueBERT, and Clinical BERT). However, for all
four models, the difference to the second high-
est scoring representation was relatively small, be-
tween 0.02 and 0.03. Thus, choosing between con-
catenation and template did not seem to influence
the overall claim classification.

Models. RoBERTa outperformed the other
models across all representations, followed by
BioBERT. The highest macro F} score (0.73) was
obtained using RoBERTa with T5 concatenation.
The BioBERT model outperformed BERT, AL-
BERT and all other domain-specific models for all
representations except concatenation where BERT
yielded a slightly higher overall F} score. Sur-
prisingly, TAPAS achieved the lowest score. We
believe that this is attributed to the small dataset;
while TAPAS is one of the best-performing models
on TabFact (Eisenschlos et al., 2020), our training
set is much smaller, which can pose a challenge to
the BERT-based model.

Performance on refuted claims. Across all
applied models and table representations, we ob-
tained a noticeable low F} score for PubHealthTab
refuted claims compared to the two other veracity
classes, support and NEI. The F; scores ranged
from O (ClinicalBERT with concatenation) to 0.52
(RoBERTa and T5 concatenation).

To determine if this scenario was specific to our
dataset, we compared the F scores we obtained

on our dataset using RoOBERTa with other table
fact-checking datasets. The results are shown in
Table 8. While the Fj score for PubHealthTab
refuted claims was between 0.39 and 0.52 us-
ing RoBERTa, this value was between 0.65 and
0.87 for refuted claims from TabFact, InfoTabs
and FEVEROUS. Whilst the low performance of
RoBERTa on FEVEROUS NEI claims can be at-
tributed to the imbalanced class distribution (Aly
et al., 2021), this is not the case for PubHealthTab
as the three veracity classes {support, refute, NEI}
are present in a ratio of 2:1:1 in our training set.
We believe that the comparably low performance
of RoBERTa on PubHealthTab refute claims is due
to the fact that state-of-the-art representation and
modelling approaches were previously evaluated
on Wikipedia evidence tables. These approaches
seem to struggle with noisy web tables: lacking
table captions and headers, a higher ratio of nu-
merical content, and a lower ratio of string-only
content (see Section 4.4) could pose a challenge for
generating table representations and for pre-trained
models previously evaluated on tables from single
data sources.

The results we obtained using RoBERTa on
TabFact are lower compared to the other datasets.
Whilst Chen et al. (2020b) do not report the re-
sults per class, the overall F score we obtained is
comparable to their baseline.

6 Conclusion

We introduced PubHealthTab, a table-based dataset
for evidence-based fact checking centred on real-
world public health claims. Our dataset comprises
1, 942 claim-table pairs, with tabular evidence data
extracted from websites similar to those used by
fact checkers. We described the dataset creation
process and the steps taken to minimise biases and
correlations. We evaluated state-of-the-art repre-
sentation and modelling approaches and showed
that the ROBERTa model achieves the highest per-
formance on PubHealthTab across all representa-
tion methods compared to other models. In con-
trast to previous table-based fact-checking datasets
that contain tables from single data sources, state-
of-the-art models struggle to correctly classify re-
fute claims from PubHealthTab against evidence
consisting of mostly numerical data or with noisy
text headers, making PubHealthTab a challenging
dataset for table-based fact-checking research.



Ethics Statement

The PubHealthTab dataset can be used for develop-
ing and evaluating fact checking systems intended
for a real-world context. The labels supports, re-
futes and not enough information describe a claim’s
veracity given the evidence table. We do not make
any statement on PubHealthTab claims’ truthful-
ness in a real-world context.

We obtained ethical clearance prior to crowd-
sourcing from the relevant authority in the aca-
demic institution. We informed the participants
about the data being collected and its purpose. Par-
ticipants had the opportunity to withdraw at any
time and to provide feedback at the end of each task.
All workers were from English speaking countries.
The payment was above the minimum wage and
decided based on the time workers spent on the
pilot tasks. For the first and third tasks we paid
0.75USD (2.5 minutes per task on average) and
for the second 1.35U 5D (average 5 minutes per
task).
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A Supplementary Materials

A.1 Dataset Creation

We evaluated the following conditions for the sec-
ond crowdsourcing task. Workers could only sub-
mit their work if all checks were passed:

* A veracity label is selected for the adjusted
claim.

* Minimum 2.5 seconds are spend on each HIT
page for adjusting the claim.

* Adjusted claim length is between 5 and 30
tokens.

* The adjusted claim is different from the initial
claim.

* The adjusted claim text does not contain am-
biguous words, i.e. maybe, probably, mostly,
occasionally, frequently, might, many, few,
some, several, most of, sometimes.

* The adjusted claim does not contain negation
words, i.e. not, never, none, nobody.

A.2 Experiments

After hyperparameter tuning on the validation set,
we selected the following parameters for the differ-
ent modelling approaches displayed in Table 9.
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Task instructions

Welcome to the Table-Claim-Checking-Task.

We will show you seven claims related to public health. Each claim comes with a table. For each claim, you will be asked to answer the following questions: Is
the table displayed supporting or refuting the claim? Is the table related (= mention the same topic) or unrelated to the claim? Answer the question
using only information from the table. Please avoid using any additional sources or own knowledge.

We will show you some examples of how to solve this task on the next page.

Afterwards, we will ask you three questions. You can progress to the task by answering these questions correctly. The task also includes some checks. You can
only submit and receive payment by passing them successfully.

The data collected in this study consist of your inputs, the time you spent on the task and the buttons clicked. This experiment received ethical clearance on

17th April, 2021 from

. with registration number
any questions or need further assistance, please contact

he data controller for this project will -ou have

By continuing with the task, you agree to take part in this research project and consent for the data collected to be used for the purpose of this study.

Figure 3: Introduction text for table relevance and verification task.

Task instructions

Welcome to the Table-Claim-Generation-Task.

We will show you five claims related to public health. Each claim comes with an accompanied table. For each claim, you will be asked to do the following:
Adjust the claim so that it can be verified or refuted given the table. Write the claim using only information from the table. Avoid using any additional

sources or own knowledge.

We will show you some examples of how to solve this task on the next page.

Afterwards, we will ask you three questions. You can progress to the task by answering these questions correctly. The task also includes some checks. You can
only submit and receive payment by passing them successfully.

The data collected in this study consist of your inputs, the time you spent on the task and the buttons clicked. This experiment received ethical dearance on
with registration number I The data controller for this project will [N you have

17th April. 2021 from

any questions or need further assistance, please contact

By continuing with the task, you agree to take part in this research project and consent for the data collected to be used for the purpose of this study.

Figure 4: Introduction text for claim adjustment task.

Model TE

BS LR

WD

BERT 5
AIBERT 5
RoBERTa 4
BioBERT 5
BlueBERT 5
ClinicalBERT 4

4  le-5
16 1le-5
le-5
le-5
le-5
le-5

H 0 b~

0.001
0.001
0.01
0.001
0.001
0.01

Table 9: Hyperparameters evaluated on the Pub-
HealthTab dataset: training epochs (TE), batch size

(BS), learning rate (LR), weight decay (WD).
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Previous Proceed

Task instructions
Task Qualification Test:

Below you find a table and a few related questions. You need to answer them successfully to start with the task. If you fail, you get a second chance. The task
will terminate if you fail a second time.

Cities Population|Region .
New York 19,979,477 |Northeast
Los Angeles 13,291,486 |West
Chicago 9,498,716 |Midwest
Dallas-Fort Worth 7,539,711 |South
Houston 6,997,384 (South
Washington, D.C. 6,249,950 |South
Miami 6,198,782 |South
Philadelphia 6,096,372 [Northeast|
Detroit 4,326,442 |Midwest
Seattle 3,939,363 [West
Minneapolis-St. Paul 3,629,790 [Midwest
San Diego 3343364 |West
Tampa-5t. Petersburg|3,142,662 |South
Denver 2932415 |West
St. Louis 2,805,465 |Midwest .
4 »

What is the first column describing?

Countries  Cities Regions

Which city has the largest population?
Los Angeles Miami  New York City

Houstaon has a larger number of population than Chicago.

False True

Figure 5: Crowdsourcing qualification test.
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Task instructions

Examples

In this task you will see a claim and a table.

You need to select whether the table 1) supports the claim, 2) refutes the claim, 3) is related to the claim but not providing enough information or 4) is
unrelated to the claim.

If you selected "supports”, “refutes” or “related but not enough information”, please tick-mark the columns you used for your decision which can be
found at the bottom of the page.

1. Example: SUPPORT

1. Considering the claim:

The typical Wisconsin worker makes $5,000 less each year than our neighbors in Minnesota

2. And considering the table (and its caption, if available):

State or territory |Per person income|Population
District of Columbia($45,877 658,893
Alaska $33,062 736,732
Minnesota $32,638 5,457,173
Colorado $32,357 5,355,866
Washington $31,841 7,061,530
Rhode Island $30,830 1,055,173
Delaware 530,488 935,614
California $30,441 38,802,500
lowa $28,361 3,107,126
Wisconsin $28,213 5,757,564
Maine $27,978 1,330,089
Kansas $27,870 2,904,021

1 3

Caption:

3. Select if the table supports of refutes the claim.

If the table is related to the claim but does not provide enough information, select the third option ("Related but not enough information"). If the
table is completely unrelated to the claim, select option "Unrelated”.
Supparts Refutes Related but not enough information Unrelated

4. If you selected "Supports”, "Refutes” or "Related but not enough information”, select below which calumn(s) from the table led to your
decision:

You have to select a value for at least one of them.
State or territory Per person income Population

Explanation Text: The claim states that a typical worker in Wisconsin earns $5,000 less per year compared to a typical worker in Minnesota. We can
say that this claim is supported by the table by looking at the column “Per person income™. The income value in row Wisconsin is $28,213. The
income in Minnesota is $32,638. This is approximately $4,500 more than Wisconsin. Therefore, we decide that the claim is supported.

Figure 6: Author-annotated crowdsourcing example.
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Show Instructions

Reference 1 of T:

1. Considering the claim:

Hydrocodone has a larger conversion factor than Hydromorphone.

2. And considering the table (and its caption, if available):

Opioid Conversion factor®| “
Codeine 0.15
Fentanyl transdermal (in mcg/hnf2.4
Hydrocodone 1
Hydromorphone 4
Methadone
120 mg/day 4
2140 mg/day
4160 mg/day 10
6180 mg/day 12
Marphine 1
(Oxycodone 1.5
Oxymorphone 3
Tapentadol 0.4
4 2

Caption: TABLE 2. Morphine milligram equivalent (MME) doses for commonly prescribed opioids

3. Select if the table supports of refutes the claim.

If the table is related to the claim but does not provide enough information, select the third option (*Related but not enough information”). If the
table is completely unrelated to the claim, select option "Unrelated”.

-

O Related but not enough information O Refutes O Unrelated O Supports

4. If you selected "Supports”, "Refutes” or "Related but not enough information”, select below which column(s)
from the table led to your decision:

You have to select a value for at least one of them.
O Opioid [ Conversion factor™

Figure 7: User Interface for the table relevance and verification task.
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Show Instructions

Reference 1 of 5:

1. Considering the claim:

Movartis drug cut death risk by 35 percent in gene mutation breast cancer

2. And considering the table (and its caption, if available):

Stage (TNM Definitions) Standard Treatment Options -
Surgery with or without radiation therapy

Early/localized/operable breast cancer - . -
Adjuvant therapychemotherapy, endocrine therapy, HER2-directed therapy

Surgery
Radiation therapy and chemotherapy

Locoregional recurrent breast cancer

Metastatic breast cancer Hormone therapy and/or chemotherapy
T = primary tumor; N = regional lymph node; M = distant metastasis; HER2 = human epidermal growth factor
receptor 2.
-
4 3

Caption: Table 2. Standard Treatment Options for Male Breast Cancer

3. Adjust the given claim such it can either verified or refuted when considering the table.

You are allowed to change the meaning of the given claim if it does not match the table. You can look at the examples from before by clicking on
"Show Instructions” at the top of this page.

Write adjusted claim here...

4. Select if the adjusted claim can be verified or refuted given the table.

O Refuted O Verified

Figure 8: User Interface for the claim adjustment task.
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Learning to Jointly Predict Quantities and Units from Textual Context
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Abstract

Physical measurements constitute a large por-
tion of numbers in academic papers, engineer-
ing reports, and web tables. Current bench-
marks fall short of properly evaluating numer-
acy of pretrained language models on mea-
surements, hindering research on developing
new methods and applying them to numeri-
cal tasks. To that end, we introduce a novel
task, Masked Measurement Prediction (MMP),
where a model learns to reconstruct a number
together with its associated unit given masked
text. MMP is useful for both training new nu-
merically informed models as well as evalu-
ating numeracy of existing systems. To ad-
dress this task, we introduce a new Generative
Masked Measurement (GeMM) model that
jointly learns to predict numbers along with
their units. We perform fine-grained analy-
ses comparing our model with various abla-
tions and baselines. We use linear probing
of traditional pretrained transformer models
(RoBERTa) to show that they significantly un-
derperform jointly trained number-unit models,
highlighting the difficulty of this new task and
the benefits of our proposed pre-training ap-
proach. We hope this framework accelerates
progress towards building more robust numeri-
cal reasoning systems in the future.!

1 Introduction

Many natural language processing tasks require
a deep understanding of numbers — for example,
reading comprehension (Ran et al., 2019), textual
entailment (Sammons et al., 2010; Roy, 2017) and
hybrid table tasks such as fact-verification (Chen
et al., 2020) or question answering (Chen et al.,
2021). Masked number prediction (MNP) is a popu-
lar pretraining objective to imbue language models
with numerical understanding and evaluate existing
models for their numerical capacity.

"We will release our trained models and data-splits upon
acceptance on Github.
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S

[ Alex Honnold climbed for [#NUM] [UNIT]. |

‘ ransformer |

Pred. Canonical
Number
(metric log-space)

Pred.
Dimension

D

Pred. Unit Exponentiation

Pred. Canonical
_  Number
Y (in meters)

Conversion factor
Feet — Meters

Unit Conversion
Meters — Feet

Figure 1: We present the Masked Measurement Predic-
tion (MMP) task where the model predicts the dimen-
sion, unit and real-valued number. We also show the
model architecture of Generative Masked Measurement
model (GeMM), the model we propose to perform MMP.
We display the fixed operations used during unit conver-
sion in yellow. In black, we show the different compo-
nents of the model’s prediction.

As an example of MNP, given the sentence
“Cats have [#NUM] paws.” a model learns to pre-
dict the number 4. While appropriate for numerical
commonsense, MNP is deficient when it is used
to predict measurements. Measurements, such as
2 meters or 13.2 square miles, are a special class
of particularly common numbers in text that have
a well-defined and typed system of units. Given
a simple question: “How long did Alex Honnold
climb for?”, a single number alone is an insuffi-
cient answer since it is meaningless without the
unit. Answers like 1000 meters or 4 hours could
both suffice.

Current MNP systems do not jointly reason
about numbers with units. It is reasonable to ex-
pect that pretrained models like BERT could lever-
age information of units directly as text without

Findings of the Association for Computational Linguistics: NAACL 2022, pages 17 - 29
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any special treatment. However, in preliminary ex-
periments we find that this yields poor numerical
abilities (see Appendix B). Furthermore, including
units as text directly raise more questions: should
we evaluate using all units (meters, feet, inches)?
Should we equally weight across the units? Cur-
rent models have no opinion about which unit is
appropriate because they are not required to make
unit predictions during training. Together, this indi-
cates that current training objectives do not capture
sufficient representations of measurements and that
a direct application of MNP to evaluate numeracy
of measurements is ill-suited.

To address these shortcomings, we propose the
more challenging task of Masked Measurement
Prediction (MMP) along with a new model. In this
task, a model must reconstruct both the number
together with the correct unit. In Figure 1 we show
how in a MMP setting our model generates a di-
mension (“Length”), a number in metric log-space
(“3.00”), the unit ("feet") and then uses the con-
version factor (“3.28”) to deterministically output
the full measurement (“3280 feet””). This exam-
ple illustrates a key distinction in that our model
is flexible and can generate non-metric measure-
ments (feet) but evaluates numerical prediction in
canonical units (meters).>

MMP is useful for two reasons: 1) as a way to
train models to give them better numeracy 2) as a
new kind of evaluation that allows for a much more
fine-grained analysis of reasoning over numerical
quantities. The task of measurement estimation
decouples the different aspects of numeracy allow-
ing for a more interpretable and thorough analy-
sis of numerical reasoning. We introduce a new
evaluation benchmark for MMP based on Wiki-
Convert (WiCo) (Thawani et al., 2021a), a large
scale dataset of English Wikipedia sentences with
ground truth measurement annotations. We com-
pare the performance of our models on their ability
to accurately predict the dimension, unit, and value
of a measurement. We employ a large pretrained
transformer model as our textual encoder and ex-
amine the performance of different discriminative,
generative, and latent variable models along with
several ablations. Our contributions are as follows:

* We introduce a novel challenging task MMP
for pretraining and evaluating numeracy.

2Our metric of choice described in Equation 2 is invariant
to the specific choice of canonical unit i.e., log-mae in meters
is equal to log-mae in feet.
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Figure 2: GeMM as a graphical model. The broken
arrows represent a deterministic unit conversion. Exam-
ples of unit values and their corresponding dimension
values are also shown.
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@
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* We show that linear probing of existing pre-
trained models on MMP significantly under-
performs fully finetuned models.

We train a model that reasons jointly about
numbers and units which predicts numbers
8.1 times more accurately than the probed
pretrained models.

We find our best performing generative model
outperforms human annotators on two evalu-
ations, achieving 7.4-7.8% better dimension
accuracy and 33.5-39.9% better unit accuracy.
Furthermore, this model predicts a number
closer to ground truth than our annotators
66.2-78.8% of the time.

Furthermore there are numerous applications
of better measurement prediction and unit re-
construction such as in table to text genera-
tion (Moosavi et al., 2021), answering numeri-
cal queries (Sarawagi and Chakrabarti, 2014; Ho
et al., 2019) or for improving e-commerce product
search(Arici et al., 2021). We hope that Masked
Measurement Prediction becomes a standard bench-
marking tool from which we can gain insight how
to best incorporate new numeracy modeling tech-
niques as well as evaluate existing models.

2 Models

2.1 Background + Notation

The International System of Units (SI) defines
seven fundamental dimensions (Length, Time,
Mass, etc.) and seven corresponding base SI units
(meters, seconds, kilograms, etc.). The SI system
is the most widely adopted measurement standard



and is used internationally in domains such as com-
merce, finance, logistics, and science. We des-
ignate D to be the set of composite dimensions
obtained from (and including) the fundamental di-
mensions. Values of D include velocity and power.
We let U be the set of all units: the various ways to
describe dimensions. For example, units of Length
include meters and miles. Each training example
consists of a real number ¥, a dimension d € D, a
unit v € U, and the remainder of the sentence S.
In MMP, our task is to predict y, d, and u given
only S. In the next sections we describe our gen-
erative model designed for MMP followed by the
ablations we consider.

2.2 Model

Measurements have complex semantic meanings,
shaped by many standards, particular instruments,
and natural world phenomena. Consider a text
concerning rainfall. From a dimensional analysis
perspective, the units inches per year (in/y) and
meters per second (m/s) share the same dimension
velocity. However, mentioning in/y usually implies
that the text is discussing total rainfall in a region.
Likewise, the use of m/s suggests that the text is
examining the speed of falling rain droplets. To
capture this complexity, we consider a generative
model that learns the joint distribution of the num-
ber, dimension, and unit.

We now describe the generative process of our
full model. To start, conditioned on S, our model
samples a discrete dimension variable . Then
conditioned on the sampled dimension, our model
samples a discrete unit variable U compatible with
the dimension. For example, conditioned on the
dimension velocity our model will output a distri-
bution over the units of velocity such as [miles per
hour; meters per second, inches per year] as op-
posed to all of &/. We then separately predict a
distribution on the canonicalized measurement, Y,
which is the numerical quantity represented in a
base canonical (metric) unit like meters. During
inference time, we use the highest scoring dimen-
sion and unit and choose the proper conversion
factor to deterministically produce the final num-
ber y represented in the predicted unit. We refer
to this Generative Masked Measurement model as
GeMM, where the joint p(D, Y, U|S) is given by
the following equation:

p(D|S) x p(U|D, S) x p(Y|S)
We show the graphical model of GeMM in Figure
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2. We also consider, GeMM BN, a slight variant
where we have a direct dependence between the
unit and number prediction with a joint equal to:

p(DI|S) x p(U|D,S) x p(Y|U, S)

2.3 Discrete Latent Dimension Model

We also consider an unsupervised generative model
which treats the dimension as a discrete latent vari-
able. We use the same number of dimension classes
|D| and train to maximize the log-likelihood of the
observed Y. We refer to this model as Lat-Dim
and is characterized by:

p(Y|S) =Y p(D|S) xp(Y|D,S)
D

To evaluate this model we build a contingency
matrix of the predicted classes and using a linear
solver find the best mapping between our predicted
and true dimensions. We can then apply this map-
ping to the model predictions and calculate classifi-
cation metrics for dimension prediction.

2.4 Model Ablations

We also consider several model ablations of GeMM.
Our first ablation is GeMM which models
p(D|S). The second, GeMM [-Y], learns the distri-
bution p(U, D|S) = p(D|S) x p(U|D, S). The
third, GeMM [FU], models p(Y', D|S) = p(D|S) x
p(Y|D, S). Our final ablation is GeMM [-UJ-D]
which learns P(Y'|.S) directly.

2.5 Model Architectures

For our textual encoder, we use the Huggingface
Transformers (Wolf et al., 2020; Liu et al., 2019)
implementation of ROBERTa4, a pretrained 12-layer
transformer. We refer to this text encoder as T'
such that given a sentence S, our model outputs a
768-dimensional vector h. We use a single linear
layer, Wg € R768*M to project hr to h and treat
the dimension M as a hyper-parameter. To form
a distribution over the real number line R we use
a Log-Laplace model, a competitive model used
in the numeracy literature (Spokoyny and Berg-
Kirkpatrick, 2020; Thawani et al., 2021a; Zhang
et al., 2020). This is equivalent to L; regression
in log-space and yields the following loss function
where Y and Y* are predicted and ground truth
numbers, respectively:

log P(Y|S) = [logY* —log Y| + log ‘ (1)

L
Y



Split Examples Max # Min #
All 919,237 5.5E+36 1E-06
Train 728,629 5.5E+36 1E-06
Val 91,110 4.4E+14 1.2E-06
Test 91,092 1.6E+21 1.8E-06

Table 1: Summary statistics for Wiki-Convert. The
median number of characters and tokens per example is
106 and 33, respectively.

As shown in Figure 1, we project h with a lin-
ear layer Wp € RMXIPI to obtain a distribution
over D. We then use a separate linear layer,
Wy € RM*UI o project h and obtain a distri-
bution over U. To predict Y, we project h with
a linear layer Wy . In the case of GeMM, we let
Wy € RM*IPl jn order to parameterize a mean
of a Log-Laplace distribution for each dimension
in D. For GeMM BN, we set Wy € RM*IU
to output the mean of a Log-Laplace distribution
for each unit in U and the remaining models, we
set Wy € RM*! resulting in a single mean of
a Log-Laplace distribution. For training, we use
cross-entropy loss for the dimension and unit dis-
tributions, and the loss from the equation above for
number prediction.

3 Dataset

We train and evaluate our models on WiCo
(Thawani et al., 2021a), a dataset of English
Wikipedia sentences where the number and unit
in each sentence are human-annotated. We canoni-
calize the units and map each to a single dimension.
For example both feet per second and miles per
hour map to velocity. We show the distribution of
all measurements and lengths in Figure 3. The re-
sulting dataset consists of 919,237 sentences with
annotated (number, unit, dimension) triples. We
provide more details on the data in Appendix A.

4 Experiments

We train all models using a batch size of 200 and
use the AdamW (Loshchilov and Hutter, 2019)
optimizer with a learning rate of 1e~* and a linear
warm-up schedule of 500 steps. We use the ke
symbol to indicate that we freeze the transformer
parameters for training. For all frozen models we
use a log frequency weighted cross-entropy due to
the highly imbalanced classes as well as a higher
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Model 10-shot 40-shot 70-shot 100-shot
GeMM YUK 15.5 50.0 525 53.4
GeMM 425 51.2 57.6 60.5
Majority 14.3 14.3 14.3 14.3

Table 2: Results (measured by F1 1) of our few-shot ex-
periment on dimension classification (probing p(D|5)).
x-shot implies the model is trained on x labeled exam-
ples per dimension. GeMM indicates an ablation
of GeMM where Y and U are not modeled. * indi-
cates the model’s parameters are frozen during training.

Model 10-shot 40-shot 70-shot 100-shot
GeMMEUDEE  1.94 1.82 1.72 1.75
GeMM 1.70 1.56 143 1.41
Median 1.99 1.99 1.99 1.99

Table 3: Results (log-mae |) of our few-shot experiment
on number prediction (probing p(Y'|.5)).

learning rate of 1le~3. We employ early stopping
with a patience of five epochs on validation score.

To evaluate the performance of our models, we
report the macro averaged F1 score for dimension
and unit prediction and /og-mae to evaluate number
prediction. We define log-mae in Equation 2 where
Y is the predicted number and Y* is the ground
truth number. As a simple baseline for dimension
and unit prediction, we employ majority class vot-
ing. For number prediction we use the median of
all the numbers in the training set.

1
‘ Dtest ‘

log-mae = Z |log,o Y™ —log, Y|
Drest

)
4.1 Few-Shot

To study the degree to which current pretrained
models capture different aspects of numeracy, we
consider the following few-shot experiment. We
sample a balanced dataset of dimensions where
each class gets 10, 40, 70, or 100 labeled exam-
ples. We train GeMM and GeMM on
the few-shot task where the pretrained text encoder
T parameters are frozen and compare their perfor-
mance against full fine-tuning. Due to the high
variance of GeMM YJU], we report the average
of three random seeds. In Table 2 and Table 3 we
show results of GeMM and GeMM
respectively.

Although performance improves with more data,
the frozen models significantly underperform their
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Model Probing Type Val Test Model Probing Type Val Test
Majority - 33.1 33.1 Majority - 89 9.0
GeMM+  p(D|S) 69.1 675  GeMM¥  p(U|D,S) 298 29.8
GeMM p(D|S) 88.0 86.8 GeMME pU|D,S) 529 517
GeMM Y] p(D|S) 87.0 87.3 GeMM p(U|D, S) 51.5 549
GeMM[U] p(D|S) 87.2 86.6 GeMMGNl p(U|D,S) 49.3 478
Lat-Dim p(D|S) 9.0 9.1
GeMM p( D| S) 874 87.0 Table 6: Results (F1 1) on unit prediction conditioned
i i on the true dimension and text. Ablations are above the
GeMM p(D|S) 86.4 86.1 double horizontal line.

Table 4: Results (F1 1) for dimension prediction con-
ditioned on S only. GeMM indicates a variant of
GeMM where Y is dependent on U (in addition to S).

Model Probing Type Val Test
GeMM[Ul  p(D|Y,S) 95.5 95.7
GeMMG¥ p(D|Y, S) 96.4 96.6

Table 5: Results (F1 1) for dimension prediction condi-
tionedon Y and S.

unfrozen counterparts across all dataset sizes. For
example, in the 100-shot dataset, the frozen model
shows 7.1 lower F1 and 0.34 higher log-mae. These
results suggest that current pretrained transformers
do not capture numeracy to a large extent.

4.2 Dimension Prediction

We train our models and their ablations on the full
dataset and measure their performance on dimen-
sion prediction. In Table 4, we show the results
of dimension prediction conditioned on S. We ob-
serve that the performance gap between the frozen
and unfrozen GeMM grows to 19.5 F1 on the test
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split despite training on 3 orders of magnitude more
training data than the few-shot setting.

By using Bayes’ rule, we perform dimension
prediction conditioned on both S and Y™ and show
our results in Table 5. We observe that both models
show improved dimension prediction ability when
supplied with the number with GeMM reach-
ing 96.6 F1 score, an effective error rate reduction
of 75%.

4.3 Unit Prediction

We show the unit prediction performance of our
models in Table 6. The strongest performing model
for unit prediction was GeMM with a F1 score of
54.9. Again, the frozen GeMM¥ produced a 25.1
lower F1 score than its unfrozen counterpart.

We note that even though the F1 scores on unit
prediction are much lower than dimension predic-
tion, they are still significantly better than the ma-
jority baseline. Although one can freely substitute
a unit with one in the same dimensional class, we
tend to be more systematic and choose units that
allow for more straightforward human readability
or reflect the actual instruments used for measure-
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Model Probing Type  Val Test
Median - 198 1.97
GeMM¥ p(Y]S) 1377 1.370
GeMM[-UID] p(Y|S) 0.529 0.531
Y|D,S) 0.468  0.469
p(f )
Ge M p(Y,D|S) 0517 0518
Lat-Dim p(Y,D|S) 0.545 0.546
GeMM p(Y|S) 0.517 0.515
Y|U,D,S) 0401 0.401
- p(f 9 9
GeMM p(Y,U,D|S) 0526 0526

Table 7: Results (log-mae |) for number prediction con-
ditioned on S. In the second row of GeMM [-U], we
select the highest scoring d* € D and predict y condi-
tioned on d* and S. In the second row of GeMM [BX],
we select the highest scoring ©* € U and d* € D and
predict y conditioned on u*, d*, and S. For Lat-Dim,
we sum over the latent variable D to predict y condi-
tioned on S.

ment. As a result, we gravitate towards regularities
that models can learn to recognize. The converse
of this is also interesting as it suggests that the ex-
pressed units imply more semantic meaning than
what is captured in the standardized measurement.

4.4 Number Prediction

We show the number prediction performance of our
models in Table 7. Consistent with our previous
experiments, all models outperform GeMM=¥. Fur-
thermore, we observe that not modeling U and D
(as is the case in GeMM [FUID]) increases log-mae,
i.e., results in worse numerical prediction. While
competitive with GeMM and its variants on num-
ber prediction, Lat-Dim cannot predict dimensions
with the same efficacy (Table 4).

We also experiment with the setting where
GeMM U] conditionally generates the number for
a particular dimension. In this setting, GeMM
improves log-mae to 0.469. Extending this set-
ting further, we condition GeMM on both a
unit and a dimension to produce the best log-mae
among our models: 0.401.

We now revisit our original motivating example:
‘Alex Honnold climbed for [NUM] [UNIT]”. As-
sume we want to know the distance of a climb. To
do this, we condition GeMM on D = length
and U = feet. If, on the other hand, we want to
know the duration of a climb, we change the condi-
tioning to D = time and U = hours. Now, if we
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want to know the length of Alex Honnold’s climb-
ing career, we condition GeMM on D = time
and U = years. These examples illustrate the flex-
ibility of GeMM and the importance of jointly
modeling numbers, units, and dimensions.

4.5 Quantitative Analysis
4.5.1 Dimensions and Unit

In Figure 4a we visualize a confusion matrix of
dimension predictions by GeMM B34, The low
accuracy for electric charge and temperature is at-
tributed to a mislabeling in the dataset.> For mass,
we find many ambiguous situations where either
mass or length are appropriate. See the first row of
Table 10 for such an example.

Thus far, we have treated dimensions as distinct
classes with no relationships. However, dimen-
sions are compositions of the seven fundamental
dimensions. Therefore, dimensions that share fun-
damental dimensions are more similar than those
that do not. To quantify this similarity, we can treat
dimensions as a vector where each element rep-
resents the exponent of a fundamental dimension.
Then to measure the similarity of two dimensions,
we take their Manhattan distance. To illustrate,
assume there exist only two fundamental dimen-
sions: Length and Time. Let speed = (1, —1) and
length = (1,0) where the first element represents
Length and the second represents Time. The Man-
hattan distance between speed and length is equal
to one. In Figure 5, we visualize the Manhattan dis-
tance between the predictions of GeMM and
ground truth. We observe that there is generally
an inverse relationship between error count and the
distance of the errors. This observation suggests
that our model has learned that some dimensions
are more similar than others. This suggestion is re-
inforced by Figure 4a where misclassifications tend
to have small distances from the true dimension.
For example, velocity is most often misclassified as
length. For unit prediction, we find that most mis-
takes occur substituting units with ones that have
similar magnitudes like feet for meters or kilome-
ters for miles.

4.5.2 Numeracy

In Table 8, we show log-mae by dimension as pre-

dicted by GeMM B3I, We note that errors are not

uniform across dimensions, predicting areas is 2.2
3Sentences with mislabeled Celsius as Coulombs,

which may due to wrong annotation between °C and C. Also
observed by Elazar et al. (2019)
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Figure 4: Confusion matrices for predictions by GeMM [B2¥] over the validation split. Left 4a: Dimension prediction.
Most misclassified dimensions are similar to their ground truth counterparts in terms of Manhattan distance. Right
4b: Unit prediction for examples that share the length dimension. Most misclassified units of length share similar

magnitudes to their ground truth units.
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Figure 5: Manhattan distance between true and pre-
dicted dimensions by GeMM ¥, We treat dimensions
as vectors whose elements are the exponents of the fun-
damental dimensions that compose a given dimension.
Note that the y-axis is in log-scale.
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Mass
0.55

Power

0.27

Length Area Velocity
0.37 0.54 0.19

Table 8: log-mae | by dimension. It is harder to predict
numbers of Area and Mass than other dimensions.

Model Human Model >

Human

D U D U Y

Tech Ann.  96.7 86.2 889 463 78.8
AMT Ann. 96.7 77.0 893 435 66.2

Table 9: Dimension and unit prediction accuracy of
our human evaluation experiment. GeMM ¥ outper-
formed the human annotators in both evaluations. Tech
Ann. is over a balanced set of 90 sentences labeled by
Technical Annotators. AMT Ann. is over a balanced
set of 2,122 sentences annotated by AMT Annotators.
The final column shows the model predicted a number
closer to ground truth in 66.2-78.8% of the cases.

times harder velocities. We also observe that the
magnitudes of errors seem to be positively corre-
lated with the variances observed in Figure 3.

4.5.3 Human Evaluation

We perform two evaluations of GeMM [B2¥] against
human annotators. In the first evaluation, we com-
pare against the combined effort of three Technical
Annotators on a balanced set of 90 sentences ran-
domly sampled from the test set. The annotators
worked together to predict the missing dimensions,



True GeMM Prediction Human Prediction
# Text Dim Unit Num Dim Unit Num Dim Unit Num
1 Hope is gaff rigged, *V’-bottomed and has an [#NUM] [UNIT] Mass pounds 385.6  Length feet 297 Length meter 50
centerboard.
iles
2 Some have been running for over 50 years, each covering about Velocity fres 0.10 Area sqgkm 2.09E+10 Area sqmi 2.59E+07
[#NUM] [UNIT]. year
3 Another medium-sized corvid, the [#{NUM] [UNIT] Eurasian magpie =~ Mass grams  0.22 Mass grams 0.05 Mass grams 0.2
(Pica pica) is also amongst the most widely reported secondary prey
species for goshawks there.
4 The twin cylinder, liquid-cooled, in-line two-stroke, [¥{NUM] [UNIT] Power horse- 47725 Power horse- 39248 Power horse- 45000
Rotax 582 has also been used. power power power
5 Chrysothamnus may grow up to a [#NUM] [UNIT] tall shrub or Length cms 1.2 Length meters 1.147  Length meters 1
subshrub, usually with woody stem bases
iles il ters
6 Kurt Busch was the fastest in the first practice session with a time of ~ Velocity s 751 Velocity mmiles 63.584  Velocity s 19
hour hour second

21.372 seconds and a speed of [#NUM] [UNIT].

Table 10: Instances of the MMP task performed during our human evaluation experiment, all numbers are in SI
units. In ex. 1, both the model and humans predict the incorrect dimension length instead of mass. The preceding
sentence of ex. 2 references “trains” leading both to incorrectly predict area instead of velocity. In ex. 6 the model
predicts the speed of the NASCAR driver Kurt Busch’s car whereas the humans had mistaken him for a runner.

units, and accurate measurement estimates. Ex-
amples of sentences and annotations shown in Ta-
ble 10.

In the second evaluation, we compare against
Amazon Mechanical Turk (AMT) Annotators on a
balanced set of 2,122 sentences randomly sampled
from the test set. We show the results for both
evaluations in Table 9.

In both evaluations, the model outperforms the
human annotators on every task. For dimension pre-
diction, the model led by 7.4-7.8 percentage points.
Of the sentences where the dimension was correctly
annotated, the model led by 33.5-39.9 percentage
points on unit prediction. For sentences where both
the model and human correctly predicted the di-
mension, the model predicted a number closer to
ground truth 66.2-78.8% of the time.

4.6 Qualitative Analysis
4.6.1 Semantic Head Embeddings

In Figure 6 we plot the t-SNE embeddings of the
sentences’ h, the output of our text encoder. We
label each h with the masked measurement’s true
dimension, unit and exponent of the number. In 6a
we observe that most embeddings labeled by their
true dimension tend to form tight clusters. In 6b
we filter to only show embeddings that share the
Length dimension and label them by their units.
We find that clusters are organized by the rela-
tive magnitudes of their units: large (Kilometers,
miles), medium (feet, meters), and small (millime-
ters, inches, centimeters). Further we see that yards
appear close to other imperial units of feet and
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miles. Finally, in 6c when embeddings are binned
by the exponent of their values we observe that
the left to right direction appears to capture the
increasing magnitude of a number.

5 Related Work

5.1 Numeracy

Multiple works have probed word embeddings like
word2vec, GloVe, FastText (Naik et al., 2019) and
contextual embeddings from models like BERT
(Wallace et al., 2019; Zhang et al., 2020) or TS
(Pal and Baral, 2021) on a variety of numerical
tasks like sorting, numeration, magnitude predic-
tion, and common sense (Lin et al., 2020). Several
works have targeted numeracy pretraining using
left to right language models (Spithourakis and
Riedel, 2018), CNN and RNN based models (Chen
et al., 2019), pretrained transformers (Spokoyny
and Berg-Kirkpatrick, 2020; Jin et al., 2021), for
an overview (Thawani et al., 2021b).

Incorporating synthetic mathematical data aug-
mentations (Geva et al., 2020) has improved ques-
tion answering while numerical pretraining has
been shown to lower masked language modelling
perplexity (Thawani et al., 2021a). Either directly
or indirectly units have been involved in providing
more interpretable explanation of quantities (Cha-
ganty and Liang, 2016), solving Fermi problems
(Kalyan et al., 2021) and resolving numeric Fused-
Heads (Elazar and Goldberg, 2019).
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Figure 6: t-SNE visualizations of semantic head embeddings labeled by (left 6a) dimension, (middle 6b) units of
length, and (right 6¢) number exponent bin. Middle: we observe a clustering of imperial units: feet, yards, miles.
Right: we show two directions where magnitudes of length and area measurements increase in value.

5.1.1 Numeracy Benchmarks

Several numeracy benchmarks have been proposed
like quantitative reasoning in natural language en-
tailment (Ravichander et al., 2019) and synthetic
measurement estimation (Jin et al., 2021). The
closest benchmark to our work is the Distribution
over Quantities dataset (DoQ) introduced by Elazar
et al. (2019). A rule-based method was combined
with simple heuristics to build DoQ resulting in its
high-coverage albeit also higher noise. Although,
WiCo is smaller, it has much higher fidelity since
it utilizes a feature used by editors of Wikipedia to
automatically convert quantities into different units.
Further, WiCo provides the whole sentence as con-
text as opposed to triplets of words. Zhang et al.
(2020) use artificial templates to probe models on
DoQ and find little difference between numerically
pretrained and frozen embeddings such as ELMo.
In contrast, our findings show there is a significant
gap on WiCo between fully finetuned models and
their frozen counterparts.

6 Limitations

The pretrained RoBERTa model we use in ex-
periments was likely pretrained on data that in-
cluded WiCo. Thus, it is reasonable to be con-
cerned about inflated test performance. That said,
the task we consider is distinct from the self-
supervised task used to pretrain RoBERTa (i.e.
masked word classification vs. masked number
regression). Further, our experiments on directly
probing RoBERTa to predict masked numbers and
units showed poor performance — indicating, per-
haps, that even if ROBERTa’s pre-training set did
include WiCo, RoBERTa did not memorize aspects
of our test set relevant to masked number predic-
tion, partially mitigating these concerns.

The human evaluation studies we conducted are
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a quite limited ‘guesstimating’ task. The human
annotators were not allowed to use any external
information from searching the internet or looking
up answers in knowledge-bases. Their total aver-
age completion time per question was 33 seconds.
Furthermore, many annotators may not have strong
intuition about measurements with unfamiliar and
uncommon unit types. For these reasons it is not
surprising that our models outperform the human
annotators in this limited experiment. However,
these human evaluation studies do help calibrate
the difficulty of the MMP task on WiCo.

7 Conclusion

In this work we propose Masked Measurement Pre-
diction, a new task that requires models to jointly
predict masked numbers and units in running text.
We motivate this task as an important extension
of existing masked number-only prediction tasks
that addresses their limitations and allows for bet-
ter evaluation of numeracy in NLP models. In
our study, we show that probing of traditional pre-
trained transformers exposes a gap in their under-
standing of contextualized quantities. Through
careful quantitative and qualitative analysis of our
new model, which directly reasons about underly-
ing units and dimensions, we find that it is possible
to learn good representations of measurements. For
future work we aim to extend this dataset to cover
more existing standardized units from organiza-
tions such as UNECE.* We hope our MMP task
encourages research into further development of
better numeracy methodologies.

*United Nations Economic Commission for Europe
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A Dataset

We train and evaluate our models on Wiki-Convert
(WiCo) (Thawani et al., 2021a), a dataset of
English Wikipedia sentences where the number
and unit in each sentence are human-annotated.
The built-in template in Wikipedia can ensure
the text contains numbers and units. For ex-
ample, { {convert|2|km|mi}} displays as 2
kilometres (1.2 mi). By searching within
Wikipedia articles for the use of this template,
the authors of WiCo automatically extract human-
annotated numbers. To perform unit canonical-
ization, we use Pint > whenever the mapping is
unambiguous. In the ambiguous case, we man-
ually inspect the sentence and perform the map-
ping. For example, we map the unit sgmi in
WiCo to square miles to let pint perform unit

SPint: https://github.com/hgrecco/pint
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meters  miles cms  kilometers mm feet inches

yards

Figure 7: log-mae | by units of length. Predicting num-
bers for small magnitude units is easier than predicting
numbers for their larger counterparts.

canonicalization. Table 10 shows examples of the
extended dataset. The original dataset contains
924,473 sentence. The median sentence length is
106 characters, with 29,597 sentences has a length
shorter than 20 characters. We provide statistics of
the data in Table 1. For preprocessing we exclude
sentences which have more than 64 tokens to have
efficient computing memory or where the number
is negative for simplicity. According to Thawani
et al. (2021a) WiCo, “... has been extracted from
Wikipedia dumps, which are licensed under the
GNU Free Documentation License (GFDL) and
the Creative Commons Attribution-Share-Alike 3.0
License.” Thawani et al. (2021a) constructed WiCo
with the intent that it be used to further numeracy
NLP research. Our use of WiCo is aligned with its
authors’ goals.

B MLM Preliminary Unit Probe

We perform a preliminary unit probe shown in Ta-
ble 11. The model predicts vastly different numbers
when conditioned on different units. We observe a
mean of 3086.8 and a standard deviation of 5820
for all the converted metric output.

C Experiments

We train our model GeMM [B8¥ on a single Nvidia
GeForce RTX 2080 Ti for 4 hours and 14 minutes
with a total parameter of 124,696,538.

C.1 Quantitative Analysis

In Figure 7, we show log-mae is relatively small
for small magnitude units, which means predicting
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Input: [UNIT] m km ft mi yd in meters  kilometers  feet miles yards  inches

Output 200 10 200 2 100 1 200 20 20 2 50 3

Convertion factor 1 1000 0.3048 1609.34 0.9144 0.0254 1 1000 0.3048 1609.34 0.9144 0.0254

Metric Output 200.0 10000.0 60.96 3218.68 91.44 0.0254 200.0 200000  6.096 3218.68 4572 0.0762

Mean (Metric Output) - 3086.8 m
std (Metric Output) - 5820 m

Table 11: Example outputs for Alex Honnold climbed for [MASK] [UNIT].

numbers for small magnitude units is easier than

predicting numbers for their larger counterparts.
In Figure 4, we show confusion matrices of di-

mension and unit predictions by GeMM ¥,

D Human Annotators

D.1 Evaluation 1

The Technical Annotators have diverse scientific
backgrounds ranging from chemistry, earth sci-
ences, and computer science. One annotator is a
native Chinese speaker, and two are native English
speakers.

D.2 Evaluation 2

In Figure 8 we show the instructions provided along
with the interface we designed for our MMP task.
While the workers’ geographic location were not
provided to us by Mechanical Turk, we aimed to
compensate the workers above the US federal min-
imum wage of $7.25. We paid workers $0.15 per
annotation with an average completion time of 33
seconds. This equates to an hourly rate of $12.80
after Mechanical Turk fees. Other demographic
information is only provided by Mechanical Turk
for an extra fee.

E Ethical Considerations

Like any system that makes predictions, those made
by GeMM are not necessarily accurate and may be
used by malicious actors to generate fake infor-
mation to mislead their audience. Additionally,
GeMM is an extension of ROBERTa and therefore
inherits the biases learned during the training of
RoBERTa. Our work focuses exclusively on En-
glish and Arabic numerals. As noted by Thawani
et al. (2021a), the units in WiCo are heavily biased
towards European and American units as they are
over-represented in English Wikipedia.
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Labeling Instructions X

Instructions: For each sentence please give your best estimate for the number in the units.
Do not look things up, certain questions are ambiguous and that's okay. Really important the
number will be interpreted in the units that you select! For number please just input the digits
and decimals points without any spaces or commas.

Some examples:

1. "My car weights [#NUM][UNIT]." Answer: Dimension=Mass, Unit=ton, Value=1

2. 'My brother is [#NUM][UNIT] tall." Answer: Dimension=Length, Unit=ft, Value=5.8

3. 'My house is [#NUM][UNIT] large.' Answer: Dimension=area, Unit=sqft, Value=1200.41

My building is [#NUM] [UNIT] tall.
Please Guess the Dimension

Lengthl! Mass Areal® Velocity!l
Please Guess the Number

100

and the Units

meters (m)i!

miles (mi)®!

centimeters (cm)!®

kilometers (km)tdl

millimeters (mm)!
feet (ft)le!

inches (i)t

yards (yd)el

Figure 8: Left: Instructions for labeling task. Right: we show the interface used by the labelers
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Abstract

Recently, prompt learning has received signif-
icant attention, where the downstream tasks
are reformulated to the mask-filling task with
the help of a textual prompt. The key point of
prompt learning is finding the most appropriate
prompt. This paper proposes a novel model
PromptGen, which can automatically gener-
ate prompts conditional on the input sentence.
PromptGen is the first work considering dy-
namic prompt generation for knowledge prob-
ing, based on a pre-trained generative model.
To mitigate any label information leaking from
the pre-trained generative model, when given a
generated prompt, we replace the query input
with “None”. We pursue that this perturbed
context-free prompt cannot trigger the correct
label. We evaluate our model on the knowl-
edge probing LAMA benchmark, and show
that PromptGen significantly outperforms other
baselines.

1 Introduction

Prompt learning (Petroni et al., 2019; Kassner et al.,
2021) is a new learning paradigm for utilizing pre-
trained language models (LM), where downstream
tasks are reformulated as a mask filling task with
the help of a textual prompt in the original pre-
trained LM. Recently, prompt learning has been
used in applications such as knowledge probing
(Petroni et al., 2019; Zhong et al., 2021; Jiang et al.,
2021), text classification (Gao et al., 2021; Han
et al., 2021; Chen et al., 2021; Chai et al., 2020),
natural language inference (Shin et al., 2020; Gao
et al., 2021). Furthermore, prompt learning has
shown its utility in solving few-shot learning prob-
lems (Schick and Schiitze, 2021; Gao et al., 2021).

The essence of prompt learning is designing the
most appropriate prompts to trigger the correct tar-
get text for downstream tasks from an LM. The lat-
est methods to construct prompts include: i) hand-
written prompts (Petroni et al., 2019), where users
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manually create intuitive templates based on hu-
man introspection, and ii) automatically searched
prompts (Shin et al., 2020; Zhong et al., 2021;
Gao et al., 2021; Qin and Eisner, 2021), where
researchers search over the space of input tokens
or embeddings for prompts that elicit correct pre-
dictions in the dev set. Although manually writ-
ten prompts are interpretable, they are limited by
the manual effort, and might not be optimal for
eliciting correct predictions. The automated ap-
proaches (Shin et al., 2020; Zhong et al., 2021; Gao
et al., 2021) can overcome the limitations of man-
ual prompts by training a model, but they learn a
universal prompt for each task (e.g., factual probing
for one relation), regardless of different inputs. But
such a setting may result in sub-optimal prompts.
For example in factual probing, different subjects
might have a different context when describing the
same relation in an open-domain corpus. Similarly,
for sentiment analysis, different query sentences
might have different syntax or semantics.

We hypothesize that learning different prompts
conditioned on inputs can benefit the overall
masked filling accuracy in prompt learning. To-
wards that end, we propose a dynamic prompt gen-
eration model, named as promptGen, to automat-
ically generate prompts based on inputs by leverag-
ing the pre-trained generative model BART (Lewis
et al., 2020). Generally, PromptGen consists of
an encoder and an autoregressive decoder based
on Transformer (Vaswani et al., 2017). We
show the overall architecture of PromptGen ap-
plied on factual probing task in Figure 1. A
knowledge fact is defined as a triplet: <sub,
rel, obj>. The encoder produces a latent rep-
resentation from input <sub, rel>, and the de-
coder autoregressively generates prompt in the
form of [sub][Dy]...[MASK]..., [Dy,+n]. Generated
prompts are then passed to a fixed pretrained LM
(e.g., BERT) to fill <MASK> as [obj]. A cross-
entropy loss will be calculated based on the pre-
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[sub] D; ... Dy <MASK> ...
T

t t

T

</s> [obj]

Dm+n

Encoder :j

Autoregressive Decoder

Masked Language
Model

Mask filling ~ 1

1

tf %
[sub] was born in [MASK]. <s> [sub] D;

T
o Dy <MASK> ... Dppan

Figure 1: The overall architecture of our model PromptGen. PromptGen consists of an encoder and an
autoregressive decoder. The downstream MLM is fixed and without fine-tuning. We will fine-tune the encoder and
decoder to generate optimal prompts. Note that [sub] and <MASK> are directly copied in the decoding stage.

dicted [obj] v.s. ground-truth and backpropagated
to update BART’s weights. Compared to previ-
ous search models, although PromptGen has a
higher computation cost, we find more appropriate
and contextualized prompts, which is especially
important for knowledge probing.

However, it is nontrivial to adopt a generative
model for prompt generation. First, to make our
model end-to-end trainable, at each decoding step,
our decoder outputs a multinomial distribution over
predefined vocabulary. Hence we finally get a se-
quence of distributions as our prompt, instead of a
sequence of tokens. The token embedding of each
[D;] is a linear combination of the embedding of all
tokens in the vocabulary. We then pass the gener-
ated prompts into an LM to fill the mask. Moreover,
we should avoid any label information leaking from
the pre-trained generative model. With pretraining,
generative models can store related knowledge re-
garding input subjects, but we want to generate
context-aware (i.e., <sub, rel>) prompts without
leaking label information (i.e., object). Without
any constraint, after generative model fine-tuning,
the generated prompts could be trivial. For exam-
ple, for input <Obama, place of birth>, the prompts
could be “Obama...Hawaii...[MASK]...”. It is triv-
ial since it leaks the object label “Hawaii”. To miti-
gate label leaking, we replace [sub] of a generated
prompt with “None” and pass the perturbed prompt
to LM. We pursue that the perturbed prompt cannot
trigger the corresponding [obj] from a downstream
MLM. Such a perturbation strategy was previously
used for calibration (Zhao et al., 2021) and robust-
ness improvement (Wang et al., 2021), and we are
the first to use this strategy for the prompt genera-
tion.

Our contributions are as follows: i) We propose
the first generative model based prompt generation
method for knowledge probing. Meanwhile, we de-
velop effective strategies to make the whole frame-
work end-to-end trainable and avoid label leaking,
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ii) We evaluate our model on the factual probing
benchmark LAMA (Petroni et al., 2019) and show
that our model can significantly outperform other
baselines. Detailed comparison and analysis justify
our modeling choice.

2 Related Work

Factual Probing The factual probing setting was
introduced by the LAMA benchmark (Petroni et al.,
2019; Jiang et al., 2020; Shin et al., 2020), where
given subject and relation, we want to infer the
object by querying a pre-trained MLM. In contrast
to previous knowledge graph completion models
(Zhang et al., 2022b; Huang et al., 2019; Zhang
et al., 2020; Liu et al., 2020; Yu et al., 2021) and
information extraction models (Zhang et al., 2021,
2022a), where they need to fine-tune a pre-trained
MLM. Here, we convert the knowledge graph com-
pletion task into a mask filling task, without MLM
fine-tuning.

Pre-trained Generative Models. Our work is
based on generative models, hence recent pre-
trained generative models are related, including
GPT-3 (Brown et al., 2020), BART (Lewis et al.,
2020) and T5 (Raffel et al., 2020), all of which
are capable of filling in missing spans in the in-
put. Among all prompt search methods, Gao et al.
(2021) is the most similar to ours since they used
TS5 to construct prompts. Compared with our work,
Gao et al. (2021) uses T5 without fine-tuning, and
they learn one prompt for all inputs. In our work,
we learn dynamic prompts conditional on the given
input and fine-tune on the generative model.

Instance-level Prompt Learning. Concurrently,
couple instance-level prompt learning methods are
developed, where given different query input, they
utilize different prompts. Jin et al. (2022) learns
instance-level prompts through calculating the rele-
vance scores between token embedding in a univer-
sal prompt and token embedding in a given query,



then the relevance scores are used to map the uni-
versal prompt into an instance-level prompt. IDPG
(Wu et al., 2022) leans a light-weight generator to
generate prompts, which are similar to our Prompt-
Gen. However, for downstream tasks, IDPG ex-
tracts the representation of [CLS] token to make
the final predictions. So, IDPG has to fine-tune the
pre-trained MLM, while we keep the downstream
MLM frozen.

3 Methodology

We elaborate our method on the application of the
LAMA task, in which the downstream MLM is
BERT (Devlin et al., 2019). Our generative model
adopts pre-trained BART (Lewis et al., 2020).

Given a subject s, relation r, a generated prompt
T<rs>, and an MLM, we can identify the word
0 € V to which the MLM assigns the highest prob-
ability of P([MASK] = 6|7, s>), where T<, o~
represents the generated prompt conditional on re-
lation 7 and subject s; ) represents the predefined
vocabulary. If the MLLM can fill in the mask with
the correct object, we conclude that the MLM en-
codes information about the fact. In this work, we
will fine-tune BART using our novel approach to
generate the optimal prompts.

3.1 Conditionally Generate Prompts
3.1.1 Input and Output Format

The input of our generative model is the manual
prompt provided by the LAMA dataset. For in-
stances: for relation “place of birth”, our input is
“[sub] was born in [MASK]”; for relation “occupa-
tion”, our input is “[sub] is a [MASK] by profes-
sion”. Here, [sub] will be replaced by a concrete
subject name, e.g., “Obama”, “Dante”.

The prompt is generated from the decoder. Our
prompt is in the following form:

[sub] D)1 [D]2...[Dlm [MASK] [Dme...[Dlmsn

where m is pre-defined maximal number of triggers
between [sub] and [MASK]; n is the maximal num-
ber of triggers after [MASK]; each [D]; represents
a multinomial distribution over vocabulary Veommon-
Since the vocabulary of the generative model and
the vocabulary of MLM could be different, we con-
sider the intersection of their vocabularies, which
is represented as Veommon-

3.1.2 Generating Procedure

Generative models usually are trained under the
sequence-to-sequence framework. While, in our
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work, the target sequence (i.e., prompt) is un-
known, our model will generate the optimal target
sequence through exploration. Also, in the classic
sequence-to-sequence framework, people consider
the teacher forcing training strategy, where during
training, the model uses the ground truth as de-
coder input. Since we have no ground truth target
sequence, at each decoding step, we use the model
output from a prior time as the current input.

At each decoding step ¢, our decoder com-
putes the current hidden state h; and current to-
ken distribution Dy, based on the current sequence
[D1], ..., [D¢—1], and the encoding output hepcode:

hencode = Encoder(s, )
hi = Decoder (hencode, [D1]; -+, [Di—1])
D; = Softmax(h;)

where, Encoder and Decoder both adopt Trans-
former architecture; hepcoge ONly needs to be com-
puted once for each input <s,r>; h; and D, are
calculated recursively from Decoder. In the
below section, we will elaborate how to com-
pute word embedding for sequence of distributions
[D1], ..., [Dim+r] in Transformer Decoder.

Assuming the BART word embedding matrix for
tokens in vocabulary Veommon 18 £y € RIVIXd we
know that each [D;] is a multinomial distribution
on Veommon, S0 the embedding vector £p, for each
[D;] is a linear combination on &y :

€]

Encoding position embedding for [D;] is straight-
forward, depending on its position in a sequence.
During generating, assuming the current output
is D;, where ¢ € [1,m], if the highest possibility
token is </s> or the sequence reaches the maxi-
mal number m, we stop current generation, and
start generating [Dy;,+1]...[Dy+n]. The same is for
generating [D;], where i € [m + 1,m + n].

SDi :DZT*EV

3.2 Optimization

The generated prompt 7, .~ is passed forward
to a downstream MLM. Following the convention
of BERT, we add special tokens [CLS] (or <s>),
[SEP] (or </s>) at the first and the last position of
the prompt, separately. The calculation of word
embedding of [D;] in the downstream MLM is the
same as Equation (1), where &y will be from the
MLM.

The downstream MLM can be viewed as a black-
box, and it is used as a critic to evaluate the



quality of our generated prompts. We fine-tune
the parameters of the generative model to mini-
mize the negative log-likelihood of a training set
IT = {<s,r,0>}:

1

Ly=—
]

> log P(IMASK] = 0| T<r ),

<s,r,0>€ll

where we use all the training data from different
relations together to train our model.

3.2.1 Label Information Leaking Constraint

The pre-trained generative model has the ability to
store open-domain knowledge during pre-training.
Without any constraint, the generated prompts
could be trivial and leak the label information.

To avoid label leaking, we develop a novel
constraint. We replace the [sub] of 7., ,~ with
“None”, and get a perturbed prompt 7'3};? We
argue that for a non-trivial 7, -, its correspond-

ing 7'2](;@ has no ability to trigger the correct
[obj] from the downstream MLM, since <§grl>e) isa

context-free input. For example, assuming we pass
“None was born in [MASK]” into an MLM, the
possibility of filling the mask with “Hawaii” will
be low without knowing the subject of “Obama”.
We define the second objective function as:

1

Lperunt = [y > log P(IMASK] = |

<s,r,0>€ll

7-(N0ne)
<r,s>

through which the log-likelihood of training set is
minimized. Finally, the overall objective function
becomes £ = L1 + a * Lperturb, Where e > 0is a
hyper-parameter.

4 Experiments

4.1 Experimental setup

Following the same setting of Shin et al. (2020);
Zhong et al. (2021), we use the original test set, and
the training LAMA dataset contains 1000 facts for
each of the 41 relations from T-REx dataset (ElSa-
har et al., 2018) and Wikidata. Refer to Appendix
for implementation details.

We compare our model with the following base-
lines: 1) manually created prompts (Petroni et al.,
2019). 2) LPAQA (Jiang et al., 2020). 3) Gao
etal. (2021) !. 4) AutoPrompt (Shin et al., 2020),

"We generate one prompt for each relation using T3, given
input in the form of “[sub] [extra_id_0] [obj] [extra_id_1]",
where [sub] and [obj] are from training set. The filling result
of [extra_id_0] and [extra_id_1] will be used as final prompt.

)7
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where “* [T]s” means using * token triggers. 5)
OptiPrompt (Zhong et al., 2021), where “* [V]s”
means using * vector triggers; “manual” means
using manually designed prompts as initialization.

4.2 Results

For all our models, we set m=10, n=5. Our re-
sults are in Table 1. The LAMA results are broken
down by relation category. Relations from each
category can refer to Table 4 in Appendix. Overall,
PromptGen outperforms the previously reported
results in terms of top-1 accuracy on the LAMA
benchmark. The improvement is consistent across
all categories, except for the “1-1” category, which
contains two relations, “capital” and its inverse
“capital of”. We see that the best result in this
category is the manual prompt. The intuitive ex-
planation behind this is that the variety of natural
language expressions about “capital of” in open-
domain knowledge is low, so it’s hard for our model
outperforms manually designed prompts.

The detailed results on each relation are in Table
4 in the Appendix.

Method 1-1  N-1 N-M Al
Manual 68.0 324 247 31.1
LPAQA 65.0 359 279 34.1

Gao et al. (2021) 225 127 85 11.4
AutoPrompt (5 [T]s) 58.0 46.5 34.0 422
OptiPrompt (5 [V]s) 49.6 53.1 394 47.6
OptiPrompt (10 [V]s) 60.7 532 39.2 48.1
OptiPrompt (manual) 59.6 54.1 40.1 48.6
Ours (o = 0.3) 548 553 44.0 51.0

Table 1: Micro-averaged results (top-1 accuracy in %)
on the LAMA benchmark using the BERT-base-cased
model, averaged over relations.

4.2.1 Hyper-parameter Analysis

In this section, we analyze the effect of hyper-
parameter cv. We set « equals to 0.0, 0.2, 0.3 and
0.4, separately, and the results of variants are re-
ported in Table 2. The best result comes from
a = 0.3. Although oo = 0.0 gives us the second
best result, we find that when we replace the [sub]
in generated prompts into ‘None”, the top-1 accu-
racy is still 48.1, which proves that without label
information leaking constraint (o« = 0.0), the gen-
erated prompts are trivial. For o = 0.2,0.3,0.4,
their top-1 accuracy using perturbed prompts all
equals to 0, which proves the effectiveness of our
label information leaking constraint.



Method 1-1 N-1 N-M All  “None”
a=0.0 539 539 431 49.7 481
a=0.2 534 535 433 496 0.0
a=0.3 548 553 44.0 51.0 0.0
a=04 394 493 384 449 0.0

Table 2: Results of Variants on the LAMA benchmark.

4.2.2 Case Study of Generated Prompts

We show two case studies on relation “instrument
in Table 3 comparing with AutoPrompt, which used
a fixed prompt for one relation regardless of input.
We report the generated prompts by choosing the
highest probability token for each D;, and the top-1
predictions from BERT. We highlight the [sub] in
blue, and wrong predictions in red.

E3]

Method Generated prompt top-1
AutoPro Joe Pass playingdrum concer- piano
toative electric [MASK].
“Ours  Joe Pass and not violin yeah guitar -
much like majority depending
Resources [MASK].
AutoPro Marco Benevento playing- piano
drum concertoative electric
[MASK].
“Ours  Marco Benevento and not vio- piano -

lin yeah much like trafficking
UNESCO partly [MASK].

Table 3: Case Study on relation “instrument”.

We find that AutoPrompt always triggers the
MLM to predict the majority label “piano”, regard-
less of the subject. Through dynamic prompts, we
bypass this issue.

5 Conclusion

In this work, we propose Prompt Gen for knowl-
edge probing, which can automatically gener-
ate prompts conditional on the given query
(i.e., subject, relation). Our PromptGen lever-
ages a pre-trained generative model, e.g., BART.
PromptGen is end-to-end trainable, where we
fine-tune the parameters of the generative model,
while keeping the downstream pre-trained MLM
frozen. We evaluate PromptGen on the bench-
mark LAMA dataset. We observe the significant
improvement of the performance on the down-
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stream MLM by finding more appropriate dynamic
prompts without label information leaking.
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A Appendix

Relation  Type Name Maunal LPAQA  AutoPro OptiPro Ours
P1376 1-1 capital of 73.8 67.8 56.2 56.7 61.6
P36 1-1 capital 62.1 62.1 59.7 61.3 522
P103 N-1 native language 72.2 722 79.7 86.8 86.9
P127 N-1 owned by 34.8 325 443 49.6 54.0
P131 N-1  located in the admin. territorial entity 233 22.8 28.9 414 40.3
P136 N-1 genre 0.8 16.8 55.3 63.6 68.4
P138 N-1 named after 61.4 59.5 70.7 73.4 76.1
P140 N-1 religion 0.6 59.8 60.5 76.5 80.9
P159 N-1 headquarters location 324 35.6 35.7 374 37.6
P17 N-1 country 31.3 39.8 51.0 57.8 54.2
P176 N-1 manufacturer 85.5 81.5 87.5 87.3 91.6
P19 N-1 place of birth 21.1 21.1 19.5 20.6 22.8
P20 N-1 place of death 27.9 27.9 29.8 33.8 35.8
P264 N-1 record label 9.6 6.3 42 45.5 5.6
P276 N-1 location 41.5 41.5 43.0 47.1 46.5
P279 N-1 subclass of 30.7 14.7 54.9 64.7 65.6
P30 N-1 continent 25.4 16.9 78.6 86.3 89.1
P361 N-1 part of 23.6 31.4 37.0 46.4 41.1
P364 N-1  original language of film or TV show 44.5 43.9 45.0 51.3 54.6
P37 N-1 official language 54.6 56.8 52.7 58.6 62.9
P407 N-1 language of work or name 64.2 65.2 68.4 71.0 68.2
P413 N-1 position played on team / speciality 0.5 23.7 41.7 44.0 51.5
P449 N-1 original network 20.9 9.1 33.1 36.0 39.8
P495 N-1 country of origin 28.7 322 35.8 40.8 37.7
P740 N-1 location of formation 8.9 13.7 13.1 15.0 17.3
P1001 N-M applies to jurisdiction 70.5 72.8 80.5 85.2 87.0
P101 N-M field of work 9.9 53 12.1 14.1 194
P106 N-M occupation 0.6 0.0 13.6 35.7 31.3
P108 N-M employer 6.8 5.7 7.8 11.2 12.5
P1303 N-M instrument 7.6 18.0 23.1 23.6 45.8
P1412 N-M  languages spoken, written or signed 65.0 64.7 71.5 76.1 77.1
P178 N-M developer 62.9 59.4 64.3 67.9 68.6
P190 N-M twinned administrative body 22 1.7 24 3.1 3.9
P27 N-M country of citizenship 0.0 41.5 45.8 47.1 46.5
P31 N-M instance of 36.7 36.7 53.6 64.9 68.9
P39 N-M position held 8.0 16.1 27.2 42.8 69.6
P463 N-M member of 67.1 57.3 64.0 64.0 73.8
P47 N-M shares border with 13.7 13.7 19.2 22.2 21.2
P527 N-M has part 11.2 10.6 22.1 34.8 38.7
P530 N-M diplomatic relation 2.8 3.9 2.8 33 2.8
P937 N-M work location 29.8 39.1 344 433 48.2

Table 4: The accuracy of different prompts on LAMA for each relation using BERT-base-cased.

A.1 Implementation Details

We adopt “BART-large” as our generative module and “BERT-base-cased” as our MLM module, both of
which are collected from Huggingface website?>. We use the Adam optimizer with learning rate 5e — 5,
set warm-up ratio to 0.1, and weight decay to 1e-3. We repeat our experiments five times and report the
average metrics on the test set.

A.2 Detailed Results

Table 4 shows the per-relation accuracy for each prompting method. We see that our method achieves the
best performance for most cases.

https://huggingface.co/models
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Abstract

A key challenge of Conversational Recommen-
dation Systems (CRS) is to integrate the rec-
ommendation function and the dialog genera-
tion function smoothly. Previous works employ
graph neural networks with external knowl-
edge graphs (KG) to model individual recom-
mendation items and integrate KGs with lan-
guage models through attention mechanisms
for response generation. Although previous
approaches prove effective, there is still room
for improvement. For example, KG-based ap-
proaches only rely on entity relations and bag-
of-words to recommend items and neglect the
information in the conversational context. We
propose to improve the usage of dialog context
for both recommendation and response gen-
eration using an encoding architecture along
with the self-attention mechanism of transform-
ers. In this paper, we propose a simple yet
effective architecture comprising a pre-trained
language model (PLM) and an item metadata
encoder to integrate the recommendation and
the dialog generation better. The proposed item
encoder learns to map item metadata to em-
beddings reflecting the rich information of the
item, which can be matched with dialog context.
The PLM then consumes the context-aware
item embeddings and dialog context to generate
high-quality recommendations and responses.
Experimental results on the benchmark dataset
REDIAL show that our model obtains state-
of-the-art results on both recommendation and
response generation tasks'.

1 Introduction

An automated conversational recommendation sys-
tem (CRS) (Li et al., 2018; Zhou et al., 2020) is
intended to interact with users and provide accu-
rate product recommendations (e.g., movies, songs,
and consumables). It has been a focal point of re-
search lately due to its potential applications in the

'Code is available online https://github.com/
by2299/MESE
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e-commerce industry. Traditional recommendation
systems collect user preferences from implicit feed-
back such as click-through-rate (Zhou et al., 2018)
or purchase history and apply collaborative filter-
ing (Su and Khoshgoftaar, 2009; Shi et al., 2014)
or deep learning models (Covington et al., 2016;
He et al., 2017) to construct latent spaces for user
preferences. Unlike traditional recommendation
systems, CRSs directly extract user preferences
from live dialog history to precisely address the
users’ needs.

Although some progress has been made in this
area, there is still room for improvement. First, pre-
vious CRSs (Chen et al., 2019; Zhou et al., 2020; Li
et al., 2021) track entities mentioned in the dialog
context, and then search related items in knowledge
graphs to recommend to users. However, these
systems require a named-entity recognition (NER)
module to extract mentioned entities from the di-
alog context. Thus we need to collect additional
domain-specific data to train the NER module. In
practice, such NER modules have deficient perfor-
mance, leading to a bad accuracy of CRS. Second,
existing CRSs built upon graph neural networks
(Kipf and Welling, 2017; Schlichtkrull et al., 2018)
cannot quickly scale up or respond to rapid changes
of the underlining entities. In e-commerce, items
for recommendation change frequently due to con-
stant updates of merchants and products. Exist-
ing approaches require either re-training the en-
tire system when the structure of knowledge graph
changes (Dettmers et al., 2018) or adding complex
architectures on top to be adaptive (Wu et al., 2019).
A more flexible architecture can help the system
react to rapid changes and adapt itself to new items.

Moreover, meta-information about the items can
be leveraged. Similar information can be found
in both dialog context and item meta-information.
For example, in a movie recommendation setting,
words like "crime, gangsters, etc." are likely to ex-
ist in the dialog context when a user is searching
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for crime movies. In the synopsis of a crime movie,
such keywords are likely to exist as well. Ideally,
an alignment between the semantics of dialog con-
text and the item meta-information can be used to
improve system’s performance.

Driven by the motivations above, we present
a Metadata Enhanced learning approach via
Semantic Extraction from dialog context i.e.
MESE. The major components of MESE contain
a pre-trained language model (PLM) and an item
encoder architecture. The item encoder takes item
metadata as input and outputs a vector embedding.
By jointly training the encoder and the PLM, the en-
tire system can extract co-occurring information be-
tween dialog context and item metadata, and item
encoders can systematically construct representa-
tions reflecting this alignment. Item embeddings
are then consumed with dialog context by the self-
attention mechanism of the PLM. This mechanism
smoothly integrates dialog context and item infor-
mation well into the recommendation and response
generation tasks.

The key contributions of this paper are summa-
rized as follows: This paper presents MESE, a
novel CRS framework that considers both item
metadata and dialog context for recommendations.
Our model employs a simple yet effective item
metadata encoder that learns to represent rich item
information during training. Such encoder can
adapt to database changes quickly and is indepen-
dent of task-specific architectures. Extensive exper-
iments on standard dataset REDIAL demonstrate
that MESE outperforms previous state-of-the-art
methods on both response generation and recom-
mendation with a large margin.

2 Related Work

The current CRS paradigm contains two major
modules: a recommendation module that suggests
items based on conversational context and a re-
sponse generation module that generate responses
based on dialog history and the recommended
items. Integrating these two modules to perform
well on both tasks has been a major challenge.
Chen et al. (2019) leverage external knowledge and
employees graph neural networks as the backbone
to model entities and entity relations in the knowl-
edge graph (KG) to enhance performance. Zhou
et al. (2020) introduce a word-level KG (Speer
et al., 2017) to the system with semantic fusion
(Sun et al., 2019a) to enhance the semantic repre-
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sentations of words and items. Since item informa-
tion and dialog context are processed separately in
the above approaches, they loss integrated sentence-
level information. We propose to condition recom-
mendation on integrated contextual information of
both dialog context and mentioned entity informa-
tion. More recent works adopt pre-trained language
models (PLM) (Vaswani et al., 2017; Radford et al.,
2019; Zhang et al., 2020) and template-based meth-
ods to facilitate response generation. Liang et al.
(2021) generate a response template containing a
mixture of contextual words and slot locations to
incorporate recommended items better. Wang et al.
(2021) expand the vocabulary list of the PLM to
include items to unify the process of item recom-
mendation with response generation. We propose
to enhance our PLM with an item metadata en-
coder to extract context-aware representations by
jointly training on both recommendation and re-
sponse generation tasks. We also generate response
templates with slot locations to better incorporate
recommended items into responses.

Our work is also inspired by studies from
other areas. Recent works have shown that cross-
modality training across vision and language tasks
can lead to outstanding results in building multi-
modal representations (Tan and Bansal, 2019; Lu
et al., 2019). In (Tan and Bansal, 2019), a large-
scale transformer-based model is adapted with
cross-modal encoders to connect visual and linguis-
tic semantics and pre-trained on vision-language
pairs to learn cross-modality relationships. Prompt
tuning (Li and Liang, 2021; Gao et al., 2021) meth-
ods show that PLMs are capable of integrating dif-
ferent sources of information into the same embed-
ding space. In terms of using PLM as a recom-
mendation system, Sun et al. (2019b) train a bidi-
rectional self-attention model to predict masked
items and achieve remarkable results. Inspired by
the above studies, we propose to use an encoder
module to map item meta-information to an embed-
ding space. By jointly training on dialog context
and encoded item representations, the system can
align these two information streams by fusing the
semantic spaces.

3 Approach

In this section, we present our framework MESE
that integrates item metadata with dialog context.
We first introduce how to encode item metadata
and how to blend item information into dialog con-



text. We then illustrate how the recommendation
module and the response generation module are
built. Finally, we describe the training objectives
and the testing process.

3.1 Encoding Item Metadata

We propose to use an item encoder to directly map
the metadata of each item to an embedding. In the
movie recommendation setting, description on title,
genre, actors, directors, and plot are collected as
metadata and concatenated with a "[SEP]" token
for each movie. This concatenated information is
the input to the item encoder which produces a vec-
tor representation for each item. The item encoder
consists of a DistilBERT (Sanh et al., 2019) model
that maps the input sequence to a sequence of vec-
tor embeddings, a pooling layer that condenses the
sequence embeddings to a single vector embedding,
and a feed-forward layer to produce the output em-
bedding with a certain dimension. A visualization
of this module is shown in Figure 1.

Output Embedding

f

Feed Forward Layer

f

Pooling Layer

f
( DistilBERT )
f f
Venom [SEP] Tom Hardy [SEP] ... When Eddie ...
(Title) (Actor) (Movie Plot)

Figure 1: Item Encoder takes in the metadata of an item
and outputs an embedding of the item

Next, we discuss how to incorporate items into
dialog context with the encoded embeddings and
the PLM (Radford et al., 2019). Previous studies
have shown that KG-based frameworks cannot al-
ways integrate recommended items into generated
replies (Wang et al., 2021). To solve this issue,
we introduce a special placeholder token "[PH]" to
the vocabulary list of the PLM. Every occurrence
of item name in the corpus is replaced with this
"[PH]" token. This modified dialog sequence is
then mapped to a sequence of word token embed-
dings (WTE) by the vocabulary embedding matrix
of the PLM. To include item information into the
context, an instance of the item encoder is used to
encode item metadata into token embeddings. The
item encoder takes in item metadata and outputs
an item token embedding (ITE) with the same di-
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mensionality as a WTE of the PLM. The ITE is
then concatenated with the WTEs constructed from
the dialog context to be consumed by the PLM. An
example is shown in 2.

GPT-2

T

WTEs

T

Have you seen [PH] ? [

T

Have you seen Venom ?

T

ITE

T

Item Encoder ]

I

Venom Metadata

Figure 2: Dialog context is represented as a concatena-
tion of WTEs and ITEs to be consumed by the PLM.

3.2 Recommendation Module

Similar to (Covington et al., 2016), we pose rec-
ommendation as a two-phase process: candidate
selection and candidate ranking. During candidate
selection, the entire item database is traversed and
narrowed down to a few hundred candidates based
on a calculated similarity score between the dialog
context and the item metadata. During candidate
ranking, similarity scores between the dialog con-
text and the generated candidates are recomputed
with finer granularity by the self-attention mecha-
nism of the PLM.

3.2.1 Candidate Selection

In this section, we describe the training objective
of candidate selection. We add a special token
"[REC]" to the vocabulary embedding matrix of
PLM. This token is used to indicate the start of the
recommendation process and to summarize dialog
context. At the end of each turn, a token embed-
ding sequence is created following Figure 2 in the
format of an interleaving of word token embed-
dings (WTE) and item token embeddings (ITE) to
represent all previous dialog context. When recom-
mendation is labeled in a conversation turn in the
training dataset, the WTE of "[REC]" is appended
to the previous token embedding sequence to form
a new sequence D. Next, the PLM takes in D
and produces an output embedding sequence. We
denote the last vector of this output embedding se-
quence as Dg which corresponds to the appended
special token "[REC]". Dpgr summarizes dialog
context and can be used to retrieve candidate items.
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Figure 3: Overview of MESE. During training, M items are sampled from the database to compute the joint loss
Lselect and Ly, which are then combined with the response generation loss L and jointly optimized. During
testing, the entire metadata DB is stored as a nearest neighbor index (NNI). First, dialog context is condensed
into a vector Dp. An approximate nearest neighbor search is performed on Dy to get candidate items, which is
then passed to the ITE Encoder to compute their ranking scores and the the highest-ranked candidate is used as a
prompt to generate responses. We only present the case when there’s only one ground truth recommendation in the
utterance. However, it’s easy to extend the above approach to multiple recommendations.

We randomly sample M items and their meta-
data from the database as negative examples and
combine them with the ground truth item labeled
in the dataset to get the training samples. Another
instance of the item encoder, is used to create candi-
date token embeddings for each item in the training
samples. The item Encoder takes in the metadata of
samples items and outputs a set of candidate token
embeddings C' = (¢, ¢1,...,cpr), each with the
same dimensionality as Dg. The recommendation
task at this phase is posed as a multi-class classifi-
cation problem of predicting the ground truth item
over the negative samples (Covington et al., 2016).
The probability of each candidate item is defined in
(1) and optimized by a cross-entropy loss function,
denoted as Lgelect:

eC'L’DR

P(i) =
g >l

ey

eCn'DR

Note that the purpose of this learning objective
is to let the model learn how to construct the Dy
representation instead of learning the probabilities
of candidate items. The D, representation is later
used in an approximate nearest neighbor search
(Liu et al., 2004) to select candidates from the en-
tire database in testing 3.5.
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3.2.2 Candidate Ranking

In this section, we describe the training objective of
candidate ranking. The goal of candidate ranking
is to further perform more fine-grained scoring on
the similarities between generated candidates and
dialog context so that the final rankings of items
can better reflect users’ preferences. We propose
to use the PLM and its self-attention to compute
ranking scores.

During training, the same context token embed-
ding sequence D and the same training sample with
M negative examples are used. The ITE encoder
from section 3.1 is used to map the metadata of the
sample to an ITE set T = (to, t1,...,tpr), where
the subscript of each ¢; corresponds to their index
in the database. A concatenation of context se-
quence D and T are created and consumed by the
same PLM used above and the output embeddings
are computed. The order of candidate items should
not make a difference in the values of the outputs.
Therefore, we add the same positional encoding
to each ITE in T" and remove the attention masks
among the ITEs. The output embeddings of PLM
that correspond to the ITEs in 7" are then passed to
a feed-forward layer to reduce each vector from a
higher dimension to a single number with dimen-
sionality equals 1. This set of numbers is denoted



by Q = (qo,q1, ---,qn) where the index of each
number corresponds to their index in 7". The final
ranking score of each candidate item is defined in
(2) and optimized by a cross-entropy loss function,
denoted as Lank:

eqi

R(i) = (2)

edn

M
anO
3.3 Response Generation Module

In this section, we describe how to train the model
to generate responses based on the recommended
items’ metadata. The same token embedding se-
quence D is used as context and current system
utterance U = (wg, w1, ..., wy,) is used as targets
where each w; represents a WTE. We only optimize
the PLM to reconstruct system utterances.

If the current utterance contains recommenda-
tions, we create ITEs by passing metadata of the
recommended items through the item Encoder used
in 2 and append the ITEs to context token embed-
ding sequence D to obtain D’. If the current utter-
ance doesn’t contain recommendations, D’ is the
same as D. The PLM is trained to reconstruct the
ground truth U based on D’. The probability of
generated response is formulated as:

PUID") = [ P(wilwi1,...;wo, D')
=1

3)
The loss function is set to be:
1 N
Lres - _NE;ZOQ(P(UZ‘D/)) (4)
1=

Where N is the total number of system utterances
in one dialog.

3.4 Joint Training

Finally, we use the following combined loss to
jointly train both the encoders and the PLM:

Loss = a - Lselect + b+ Lrank + ¢ Lres ©)

Where a, b and c are the weights of language train-
ing and recommendation training objectives. Dur-
ing training, all weight parameters of the two item
encoders, the PLM and relevant feed-forward lay-
ers participate in back-propagation. An overview
of training is shown in Figure 3.
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3.5 Testing

During testing, a candidate embedding set over
the entire item database is built by running meta-
data through the item encoder used in section 3.2.1
and stored with a nearest neighbor index (NNI)
(Muja and Lowe, 2014). During response genera-
tion, when a "[REC]" token is generated, candidate
selection 3.2.1 is activated. An approximate near-
est neighbor search is conducted over the NNI and
K closest candidates are selected based on their
similarities from the D g vector?. Candidate rank-
ing is then activated and the PLM and the item
encoder from Figure 2 are used to generate a score
for each candidate. When ranking finishes, the ITE
that receives the highest ranking score is appended
to the dialog context D and response generation
continues until the end-of-sentence token is gener-
ated. After generation is completed, we replace the
occurrence of the placeholder token "[PH]" with
the title of the recommended item to form the fi-
nal response. Note that when the turn involves
no recommendation, our PLM simply generates a
clarification question or a chitchat response with
no placeholder tokens. An overview of testing is
shown in Figure 3.

4 Experiments

In this section, we discuss the datasets used, exper-
imental setup, experimental results on both recom-
mendation and language metrics, and report analy-
sis results with ablation studies.

4.1 Datasets

We evaluated our model on two datasets: ReDial
dataset (Li et al., 2018) for comparison with previ-
ous models and INSPIRED dataset (Hayati et al.,
2020) for ablation studies. Both datasets were col-
lected on Amazon Mechanical Turk (AMT) plat-
form where workers made conversations related
to movie seeking and recommending following a
set of extensive instructions. The statistics of both
datasets are shown in Table 1.

Dataset dialogs utterances avg turns
ReDial 10006 182150 18.2
INSPIRED 1001 35811 10.73

Table 1: Statistics of Datasets

“Multi-Source Selection in Appendix A



4.2 Experimental Setup
4.2.1 Baselines

The baseline models for evaluation on the ReDial
dataset is described below:

ReDial (Li et al., 2018): A dialogue generation
model using HRED (Sordoni et al., 2015) as back-
bone for dialog module

KBRD (Chen et al., 2019): The dialog genera-
tion module based on the Transformer architecture
(Vaswani et al., 2017). It exploits external knowl-
edge to perform recommendations and language
generation.

KGSF (Zhou et al., 2020): Concept-net is used
alongside knowledge graph to perform semantic-
aware recommendations.

CR-Walker (Ma et al., 2021): performs tree-
structured reasoning on a knowledge graph and
guides language generation with dialog acts

CRFR (Zhou et al.,, 2021): conversational
context-based reinforcement learning model with
multi-hop reasoning on KGs.

NTRD (Liang et al., 2021): an encoder-decoder
model is used to generate a response template with
slot locations to be filled in with recommended
items using a sufficient attention mechanism.

RID (Wang et al., 2021): pre-trained language
model and knowledge graph are used to improve
CRS performance.

4.2.2 Implementation Details

We employed GPT-2 model (Radford et al., 2019)
as the backbone of MESE for dialog generation,
which contains 12 layers, 768 hidden units, 12
heads, with 117M parameters. We recruited 2 item
encoders (Sanh et al., 2019) to encoder items in
candidate generation 3.2.1 and candidate ranking
3.2.2, respectively, each has a distil-bert model
with 6 layers, 768 hidden units, 12 heads, with
66M parameters. We used the AdamW optimizer
(Loshchilov and Hutter, 2019) with epsilon set to
1e~5, learning rate set to 3e~°. The model was
trained for 8 epochs on ReDial dataset, and the
first epoch was dedicated to warm up with a linear
scheduler. We set the sample size M during can-
didate generation and candidate ranking to be 150.
We set a=0.8, b = 1.0 and ¢ = 0.28 as coefficients
for 3 loss functions respectively. We chose K =500
for the number of candidates during testing.

4.2.3 Evaluation Metrics

We performed two evaluations, recommendation
evaluation and dialog evaluation, for the model. For
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recommendation evaluation, we used Recall@X
(R@X), which shows whether the top X items rec-
ommended by the system include the ground truth
item suggested by human recommenders. In par-
ticular, we chose R@1, R@10 and R@50 follow-
ing previous works (Chen et al., 2019; Zhou et al.,
2020). We also defined recall accuracy of MESE
to be the percentage of ground truth items that ap-
pear among the 500 generated candidates in the
candidate generation phase 3.2.1 and ranking ac-
curacy to be the percentage of items that appear in
the top k (k=1, 10, 50) position of the sorted can-
didates in the candidate ranking phase 3.2.2. The
product of the recall and ranking accuracy is the
final recommendation accuracy of MESE. We also
adopted end-to-end response evaluation following
(Wang et al., 2021). We computed response recall
(ReR) as whether the final response contains the tar-
get items recommended by human annotators. For
dialog evaluation, we adopted perplexity, distinct n-
grams (Li et al., 2016), and BLEU score (Papineni
et al., 2002) for automatic evaluations. Human
evaluation (on a random sampling of 100 dialogs
from the test set) is also conducted on dialog evalu-
ation in comparison with KGSF. We invite three
annotators to score the generated samples in two
aspects, Fluency and Informativeness. The annota-
tor is asked to select a better response based on the
given context. Ties are allowed if two responses
have similar qualities. The score is the percentage
of the model’s response being selected. The final
performance is calculated using the average scores
of the three annotators.

5 Experimental Results

5.1 Evaluation Results

We first report recall, ranking, and final accuracy
on REDIAL dataset of MESE in table 3. From the
results, it can be seen that candidate ranking has
remarkable performance gains in scoring the items.
It demonstrates that PLMs have great potential in
making recommendations. One possible reason
behind this is that the PLM and its self-attention
mechanism is effective in learning the similarities
and discrepancies between item semantics and dia-
log semantics.

Table 2 compares different models on REDIAL
dataset. The superiority of MESE persists across
recommendation and language generation. On all
recommendation metrics, including R@1, R@10,
and R@50, MESE outperforms the state-of-the-art



Recommendation metrics

Language generation metrics

Model " p@l R@I0 R@50 ReR  PPL Dist2 Dist3 Distd Bleu2 Bleud
ReDial 24 140 320 07 281 0225 0236 0228 0.178 0074
KBRD 3.1 150 336 08 179 0263 0368 0423 0.185 0.074
KGSE 39 183 378 09 56 0289 0434 0519 0.164 0.074
CR-Walker 40 187 376 - - - - - ; -
CRFR 40 202 399 - - ; : - ; ;
RID - - ; 3.1 541 0518 0624 0598 0204 0.110
NTRD ; - ; 1.8 44 0578 0820 1.005 - ;
MESE 5.6 256 455 6.4 129 0.822 1152 1313 0.246 0.143

Table 2: Results and comparison with the literature on REDIAL.

topk Ranking Acc Recall Acc Final Acc
@1 7.2 0.778 5.6
@10 33.0 0.778 25.6
@50 58.5 0.778 45.5

Table 3: Recall, Ranking and Final Accuracy of MESE.

models by a large margin. We argue in 5.2 that
this significant gain of performance is due to the
effectiveness of the item encoder. MESE also per-
forms well on the ReR score, which indicates that
the filling placeholder tokens can help integrate
recommended items into responses. For language
generation, MESE also achieves significantly bet-
ter performance than all other models on distinct
ngrams and bleu scores with the exception that the
PPL is worse than those of KGSF and NTRD. This
indicates that MESE can generate more diverse
responses while sticking to the topic.

Model Fluency Informativeness
KGSF  24% 19%
MESE  38% 31%

Table 4: Human Evaluation of Response Generation

Table 4 presents the results of human evaluation.
Our proposed model MESE outperforms KGSF by
a large margin on both fluency and informativeness.
Responses of MESE have a 50% more chance of
being chosen as the better answer than responses of
KGSF. By using the encoded item embeddings and
joint training, MESE can better integrate its pre-
trained weights with the injected item information.
Therefore, it generates more fluent responses that
contain richer information about the items.
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5.2 Ablation Studies and Analysis

In this section, we first analyze the reason behind
the performance gain of our recommendation mod-
ule by analyzing the embeddings learned by the
item encoder.

How much does metadata help recommen-
dation? We argue that our training objectives on
recommendation enable the item encoder to selec-
tively extract useful features pertinent to the recom-
mendation task from item metadata and construct
item representations that resonate with instructional
semantic properties in the dialog histories. For
example, in REDIAL dataset, movie genre infor-
mation is the most frequently mentioned property
in dialog histories and human recommenders of-
ten make recommendation decisions based on this
property. Although other properties like actors also
help with recommendations, they do not appear in
the corpus as often as genres or movie plots. We
designed the following experiments to test our hy-
pothesis. First, we train MESE with movie genre
and plot information removed from the metadata,
which we refer to as MESE w/o content, and com-
pare its recommendation performance with MESE
in Table 5.

Model R@]l R@10 R@50
MESE w/o content 3.9 19.5 37.9
MESE 5.6 25.6 45.5

Table 5: Comparison Results of MESE and MESE w/o
content.

As we can see from the table, there is a signifi-
cant performance decrease after we remove genre
and plot information, which indicates that MESE
depends on the item information to make high-
quality recommendations. We also point out that
movie titles contain weak genre information but



are not able to provide adequate features for the
item encoder to extract from.

How does the item encoder help recommen-
dation? We claim that the item encoder can con-
struct embeddings in a systematic way that aligns
matching information between its input and dialog
context. We designed an experiment to prove the
point. Specifically, we select all movie items with
only one genre as our candidates, resulting in a sub-
set of ~700 movies. We then select 2 item encoders
(section 3.2.2) from MESE, MESE w/o content,
and the item encoder before training (MESE raw),
respectively, and obtain 3 sets of item embeddings
of the selected movie subset. On each set of em-
beddings, we run a K-means clustering algorithm
with K being set to be 3, 4, and 5, respectively. For
each cluster obtained, we calculated the proportion
of the majority genre among all item candidates.
This process is repeated 20 times and the average
accuracy is reported in Table 6. Genre informa-
tion appears most frequently in dialog context and
most recommendations are made based on genre
attributes. Our item encoder, after joint training,
should construct item embeddings that reflect genre
information. Hence, the embeddings should be
more clustered in terms of genre.

Model K=3 K=4 K=5
MESE raw 0.492 0.514 0.574
MESE w/o content 0.555 0.589 0.606
MESE 0.695 0.725 0.738

Table 6: Item Encoders Clustering Accuracy

As we can see from the table, without training,
MESE raw, being the least sensitive to genre infor-
mation, achieves the lowest accuracy scores on all
clusters. MESE w/o content, although deprived of
genre and plot, still has slightly higher accuracy
than MESE raw due to its exposure to REDIAL
conversations. MESE is most sensitive to genre
information. This is an indication that by aligning
matching information in both dialog context and
item metadata, our item encoder is able to generate
meaningful representations, which can facilitate
the PLM to produce better rankings through its
self-attention mechanism.

What if we remove mentioned entities from
dialog context? Mentioned entities are crucial
to previous approaches (Chen et al., 2019; Zhou
et al., 2020) in terms of recommendations. We
train MESE with mentioned entities removed from
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dialog history and compare its performance with
MESE on REDIAL dataset and INSPIRED dataset
in table 7.

Dataset Model R@l R@10 R@50
REDIAL MESE w/o item 34 18.1 38.7
MESE 5.6 25.6 45.5
INSPIRED MESE w/o item 4.3 11.9 26.7
MESE 4.8 13.5 30.1

Table 7: Results of MESE and MESE w/o on REDIAL
and INSPIRED.

We can see removing the entities led to an aver-
age of 26.3% performance drop on REDIAL and an
average of 11.2% performance drop on INSPIRED.
The recommendation performance on REDIAL is
more impacted by the removal of entities because
the conversations in REDIAL are rich with enti-
ties and weak in semantic information, whereas
INSPIRED is more sparse on entities but contains
richer dialog information. In REDIAL, there is 1
mentioned movies among every 21.85 word tokens.
The sentence level distinct 1-grams and 3-grams
are 0.15 and 2.81. In contract, there is 1 men-
tioned movies among every 63.54 word tokens in
INSPIRED. Its sentence level distinct 1-grams and
3-grams are 0.59 and 6.84. This proves that our
model can efficiently infer user interests from texts
to make high-quality recommendations without ex-
plicitly using mentioned entities. This property
could be useful in an e-commerce setting where
users tend to convey their requirements more with
texts than entities. It could also be useful in a cold
start scenario where we don’t have many entities in
the context.

6 Conclusion and Future Work

In this paper, we introduced MESE, a novel CRS
framework. By utilizing item encoders to construct
embeddings from metadata, MESE can provide
high-quality recommendations that align with the
dialog history. Our approach yields better perfor-
mance than existing state-of-the-art models. Abla-
tion studies explain the reason behind this perfor-
mance gain. As for future work, we will consider
applying this approach to a broader domain of CRS
datasets. Currently, we only experiment on movie
recommendations. However, the encoder of MESE
is flexible and can potentially work well with cross-
modality tasks. Multi-modal CRSs can be explored
in the e-commerce domain with MESE.
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A Candidate Selection With Multiple
Sources

To maximize the performance of candidate selec-
tion, we blend candidates selected from the nearest
neighbor search source with a rule based source.
The rule based source is constructed by travers-
ing the training data and maintaining a list of co-
occurring items for each individual item. For ex-
ample, if item A and item B both occurred in a con-
versation in the training set, we add them to each
other’s list. During testing, if item A is mentioned
in the dialog context, the maintained co-occurring
item list is combined with the candidates retrieved
by nearest neighbor search as the final selection.

B Response Generation and
Recommendation Trade-Off

The trade-off between response generation and
recommendation during training. We separate
language training objective from the jointly trained
loss and compare the trained models on language
generation metrics on ReDial in table 8. MESE-
LG denotes the model trained with only the lan-
guage generation objective Lyes.

Model Dist2 Dist4 Bleu2 Bleud
MESE-LG 113 225 0.295 0.171
MESE 0.822 1.313 0.246 0.143

Table 8: Results of MESE and MESE-LG on REDIAL.

As we can see, training only on language gener-
ation objective yields better results. In the settings
of MESE, both tasks update the weights of the
same pre-trained language model simultaneously
with different goals: In recommendation, the
language model needs to construct meaningful
scores for generated candidates; In response gener-
ation, the language model aims to generate next
token given previous contexts. This experiment
showed that this joint training approach induces a
trade-off between training on response generation
and recommendation: back-propagation on the
recommendation objective can lead to catastrophic
forgetting of information learned from pre-
training, which leads to worse language metrics.
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C Response Generation Example

We include example dialog of human seeker and
MESE model in table 9.

User: Hello, how are you?
System: Good, how are you?
What type of movies do you like?
User: I'm great. thanks!
I’m looking for crime movies to watch.
System: Have you seen Goodfellas?
User: Yes, I love that movie.
Could you recommend another one?
System: If you haven’t seen The Rise of
the Krays you should give it a try.
User: I never saw that I should check it out.
Thank you and have a great afternoon!
System: You too! Have a great day!

Table 9: Conversation Example
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Jingfeng Yang! Haoming Jiang! Qingyu Yin'
Danging Zhang' Bing Yin' Diyi Yang?
T Amazon
' Georgia Institute of Technology
{jingfe, jhaoming, gingyy, danginz, alexbyin}@amazon.com
dyang888@gatech.edu
Abstract paired data is usually limited, as the annotation

Recent research showed promising results on
combining pretrained language models (LMs)
with canonical utterance for few-shot seman-
tic parsing. The canonical utterance is often
lengthy and complex due to the compositional
structure of formal languages. Learning to gen-
erate such canonical utterance requires signifi-
cant amount of data to reach high performance.
Fine-tuning with only few-shot samples, the
LMs can easily forget pretrained knowledge,
overfit spurious biases, and suffer from compo-
sitionally out-of-distribution generalization er-
rors. To tackle these issues, we propose a novel
few-shot semantic parsing method — SEQZERO.
SEQZERO decomposes the problem into a se-
quence of sub-problems, which correspond to
the sub-clauses of the formal language. Based
on the decomposition, the LMs only need to
generate short answers using prompts for pre-
dicting sub-clauses. Thus, SEQZERO avoids
generating a long canonical utterance at once.
Moreover, SEQZERO employs not only a few-
shot model but also a zero-shot model to alle-
viate the overfitting. In particular, SEQZERO
brings out the merits from both models via en-
semble equipped with our proposed constrained
rescaling. SEQZERO achieves SOTA perfor-
mance of BART-based models on GeoQuery
and EcommerceQuery, which are two few-shot
datasets with compositional data split.'

1 Introduction

Semantic parsing is the transformation of input ut-
terance into formal language, such as SQL query
(Zelle and Mooney, 1996), and plays a critical
role in NLP applications, such as question answer-
ing (Yih et al., 2014), dialogue system (Gupta
et al., 2018), and information extraction (Yao
and Van Durme, 2014). Training neural seman-
tic parsers requires numerous annotated input ut-
terance and formal language pairs. However, the

'Code and data to be released at https://github.

com/amzn/SeqgZero.
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requires experts’ knowledge and can be expen-
sive. For example, annotating SQL queries requires
programming knowledge, while annotating formal
meaning representations like Abstract Meaning
Representations (AMR) requires linguistics knowl-
edge. Therefore, semantic parsing in the few-shot
setting is a demanding technique.

Researchers have adopted large-scale pretrained
language models (LMs, Radford et al. (2019);
Brown et al. (2020)) to improve few-shot learn-
ing performance. The LMs are usually pretrained
on large unlabeled open-domain natural language
data and achieve impressive performance on few-
shot text-to-text generation problems via proper
prompt designing (Brown et al., 2020). Consid-
ering the difference between natural and formal
language, adapting LMs to semantic parsing is
non-trivial. Prior works typically first finetune the
LMs to generate canonical utterance, which is then
transformed into the final formal language through
grammars (Shin et al., 2021; Schucher et al., 2021).

However, the canonical utterance is lengthy and
complex due to compositional structure of the
formal languages. Learning to precisely gener-
ate canonical utterances still requires significant
amount of data. Meanwhile, fine-tuning with only
few-shot samples, the LMs can easily forget pre-
trained knowledge, overfit spurious biases, and suf-
fer from compositionally out-of-distribution (OOD)
generalization errors. Figure 1 presents an compo-
sitionally OOD generalization error of direct fine-
tuning BART (Lewis et al., 2019) on the GeoQuery,
a dataset about querying in a geographic database.
The model incorrectly predicts the table name as
“city”, because the training samples always come
from the “city” table as long as the query follows
the “how many people live in xxx” pattern. Such
errors account for about 75% of all prediction er-
rors of Base model on GeorQuery test set (refer to
Section 5.7 for details).
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Question:
how many people live in Utah ?

Gold SQL:

SELECT state . population FROM state
WHERE state . state_name = "Utah”

Finetuned BART Predicted SQL:

SELECT city . population FROM city
WHERE city . city_name = "Utah"

Figure 1: Finetuned BART’s OOD generalization errors
due to overfitting the spurious biases.

To address the aforementioned issues, we pro-
pose a novel prompt-based few-shot learning
method — SEQZERO. Instead of directly generating
the whole formal language, SEQZERO decomposes
the problem into a sequence of sub-problems, and
the LMs only need to make a sequence of short
prompt-based predictions, where zero-shot (un-
finetuned) models can also be leveraged to avoid
overfitting the spurious biases in specific caluses.
Specifically, SEQZERO decomposes the problem
into predicting the sub-clauses, which make up the
formal languages. When predicting a sub-clause,
SEQZERO adopts a slot-filling natural language
prompt, where the filled prompt can be transformed
into the sub-clause through grammars. For filling
each prompt, SEQZERO employs two models: a
few-shot model and a zero-shot model. Both mod-
els ingest the input utterance and the prompt to
fill in the slots in the prompt. The few-shot model
uses a fine-tuned LM to fill in the slots of each
prompt. The zero-shot model directly infers the
value in the slots by decoding a pretrained LM with
a constrained vocabulary. We then ensemble the
prediction from both models, and convert the re-
sults for all sub-clauses into the final output (e.g.,
SQL query). We notice that, the probability mass of
the zero-shot model, on the constrained vocabulary,
is much smaller than that of the few-shot model.
As a result, the zero-shot model cannot take effect
in the vanilla ensemble. Therefore, we propose
to rescale the probability of the zero-shot model
on the constrained vocabulary before ensemble to
bring out the advantages of both models.

We conduct experiments on two datasets: Geo-
Query, a benchmark dataset that consists of natural
language and formal language pairs from geogra-
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phy domain, and EcommerceQuery, a newly col-
lected dataset from E-commerce domain. Results
show that our approach outperforms the baseline al-
gorithm and achieves state-of-the-art performance
on the compositional split of the two datasets. To
sum up, our contributions are:

* We propose to decompose semantic parsing
to filling a sequence of prompts, each cor-
responding to a sub-clause of original SQL
query. Compared with direct fine-tuning,
predicting sub-clauses is easier, which en-
ables flexible prompt designing and zero-shot
model inference.

We propose the ensemble of few-shot and
zero-shot models with help of constrained
probability rescaling, which improves out-of-
distribution generalization while maintaining
in-distribution performance.

We create and release a new Ecommerce-
Query dataset. We empirically verify that
our approach achieves SOTA, among BART-
based models, on both GeoQuery and Ecom-
merceQuery.

2 Preliminary

Language Modeling aims to estimate the proba-
bility distribution for a given sequence of words
x = (w1, ws, ..., wy,) in an autoregressive way:

Py(x) = [ ] Po(wilws, ..., wi),
i=1

where 6 is the parameters of the language model.
This approach not only allows estimation of
Py(x) but also any conditionals of the form
Py(w;, wit1, .., wp|wi, ..., w;—1), which is essen-
tially a seq2seq model. One can leverage a seq2seq
model to generate a sequence via a decoding algo-
rithm (e.g., beam-search): y = Decode(FPy(-|z))
In recent years, there have been significant progress
in training large transformer-based language mod-
els (Radford et al., 2019; Brown et al., 2020; Lewis
et al., 2019) on large natural language corpus.
Semantic Parsing is to transform an input utter-
ance u into a formal language m. Without loss of
generality, we hereafter discuss the case of SQL
query as the formal language. One can directly
train a language model for semantic parsing:

Py(m]u).



Directly learning such a language model is chal-
lenging as the difference between the formal lan-
guage and natural language is huge. To bridge the
gap, Berant and Liang (2014); Shin et al. (2021)
propose Semantic Parsing via Paraphrasing (SPP)
— a two-stage framework. In the first stage, they
paraphrase w to its canonical utterance c using a
paraphrasing language model:

P9(6|U).

In the second stage, the canonical utterance c is
transformed into SQL query m by a grammar or a
set of rules:

m = Grammar(c).

3 Method

In this section, we describe SEQZERO. SEQZERO
first decomposes the problem into a sequence of
sub-problems as illustrated in Figure 2. For each
sub-problem, SEQZERO employs an ensemble of
zero-shot and few-shot models to predict a sub-
clause of the formal language based on prompts as
illustrated in Figure 3.

Problem Decomposition

___________________

FROM xxx SELECT xxx WHERE xxx

Original Problem O okttt 1

WHERE xxx

Sub-Problem

Figure 2: The problem of predicting a SQL can be
composed into 3 steps: predicting “FROM?” clause, “SE-
LECT” clause, and “WHERE” clause.

3.1 Problem Decomposition and Sequential
Prompt Filling

Each SQL query can be regarded as a composi-
tion of different types of sub-clauses, such as “SE-
LECT”, “FROM”, “WHERE":

m = Compose(my, ..., My),

where m; is the sub-clause of the i-th type, n is the
number of all possible types of sub-clauses, and the

composition is conducted via a rule-based system.
A simple example of the composition function is
direct concatenating the sub-clauses, whereas the
real implementation requires some dedicated de-
sign. For example, m; can be a null clause, e.g.,
not every SQL query contains a “WHERE” clause.
We discuss the implementation details of the com-
position in Appendix C.

We turn the problem of direct predicting m
into predicting m,; sequentially from m; to m,,.
We remark that the prediction of m; depends on
mi,...,m;_1, as illustrated in Figure 3. Similar to
the SPP framework, we design a canonical utter-
ance c; for each sub-clause m;. The transformation
between c¢; and m; is conducted by a grammar:

m; = Grammar(c;).

Each ¢; consists of two parts: a natural language
slot-filling prompt p; and a value in the slot v;:

¢; = FillSlot(p;, v;).

The prompt p; is shared across all sub-clauses of
the i-th type, while the value v; varies for different
instances. As a result, the problem is turned into
predicting the values {v; }]" ; given the input utter-
ance u, and prompts {p; }}_; sequentially from i =
1 to ¢ = n. The prediction is conducted via decod-
ing a language model, Py, (-|u,m1,...,m;—1,p;),
where the canonical utterances of previous sub-
clauses (mi,...,m;—1) are also provided as the
extra context. We summarize the process in Algo-
rithm 1.

Algorithm 1: Sequential Prompt Filling

Input: u: input utterance; {p;}7" ;:
prompts; Grammar: grammar for
parsing the canonical utterance;
{ Py, }_,: LMs.

fori=1,--- ,ndo

x = (u,my,...,mi—1,p;)
v; = Decode(FPy, (-|x))

¢; = FillSlot(p;, v;)

m; = Grammar(c;)

end

m = Compose(mi, ..., Mmy,)

Output: m: SQL query

3.2 Ensemble of Few-shot and Zero-shot
Models

Despite the apparent advantages of sequential
prompt filling, directly fine-tuning LMs on few-
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Figure 3: Pipeline of sequential prompt filling and SQL generation on GeoQuery. Note that, the scale of the
prediction probability of the zero-shot model is very small before rescaling.

shot samples will fall short due to the overfitting.
Because of the better OOD generalizability of zero-
shot models, we propose to employ the ensemble
of a few-shot model Pgi’ s and a zero-shot model
Py, . for each language model Py, .

Few-shot Model. Each few-shot model is obtained
by finetuning a pretrained language model via min-
imizing the negative log-likelihood loss:

arg %lin —log Py, ; (vilu,ma,...,mi—1,p:),
i
where v;, m1, ..., m;—1 are the ground truth from

the few-shot training data. It is essentially the
teacher forcing training strategy. Note that we omit
the summation over the training set for simplicity
and clarity.

Zero-shot Model. Each zero-shot model directly
adopts the pretrained language model Fy,. Without
any guidance, Py, may generate any free text even
if we provide the input utterance and prompt. In
order to mine the knowledge from P, we only
allow the zero-shot model to generate from a list
of candidate values. The candidate values are col-
lected from multiple sources including SQL gram-
mar, table schema, input utterance and training data.
When predicting the j-th word for v;, the zero-shot
model rescales the probability on a constraint vo-
cabulary, which is specifically designed for the ¢-th
clause:

L(w € Vi(z)) By, (w])

By, . (wlz) = (D

' ije%(m) Fa, (wj|x) 7
where w is a predicting word, z= =
(w,m1,...,mi—1, pj, wi,..,wj—1) is the con-
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text for predicting the i-th value, {wt}{;ll is
the prefix in the value, V;(z) is the constraint
vocabulary. Given the list of candidate values, we
use a trie (prefix tree) to compute all the allowed
tokens, and thus V;(z) = V;({w; }i;ll ) depends on
the prefix of the values. Note that, to develop a
more flexible method, a trie/prompt could start at
intermediate steps.

Ensemble. We then obtain Py, by a linear ensem-
ble of the few-shot model PQL P and the zero-shot
model Py, _:

(@)

where 7; is a clause-specific weight for trade-off
between two models.

Remark. We employ a normalization step in the
zero-shot model Eq. (1). The normalization is not
necessary for the zero-shot model itself, but plays
a critical role in the ensemble. This is because the
scales of the predicted probabilities of few-shot
and zero-shot models are different, as illustrated
in Figure 3. The Fy,’s prediction probability is
distributed over the whole vocabulary. There is
only a very small probability mass assigned to the
allowed tokens, V;(z). On the other hand, the few-
shot model’s prediction probability is almost en-
tirely distributed over V;(x). Without rescaling, the
zero-shot model will only have little effect when
ensembling with the finetuned model.

P9i = ’Yipei,f + (1 - %)Pei,z’

4 Experiment Setup

Dataset To evaluate the performance of our pro-
posed method, we conduct experiments on the Geo-



Query dataset (Zelle and Mooney, 1996), where
there are 880 queries to a database of U.S. geog-
raphy. To test compositional generalizability, we
adopted the compositional split for SQL released
by Finegan-Dollak et al. (2018), where templates
created by anonymizing entities are used to split
the original dataset, to make sure that all examples
sharing a template are assigned to the same set.
There are 536/159/182 examples for train/dev/test
set, thus this setting can be regarded as the few-
shot setting. We also experimented with even fewer
training examples (50, 150).

Besides, we create and release the Ecommerce-
Query, a new SQL semantic parsing dataset in E-
commerce domain. Specifically, we collect natural
language utterances from user input search queries
to an e-commerce website. To create correspond-
ing SQL queries, we use some self-defined rules
with manual audition. We construct compositional
splits, where there are unseen SQL query patterns
in the dev/test set. Finally, train/dev/test set con-
tains 1,050/353/355 examples respectively. For
details, please refer to Appendix B. Two examples
from EcommerceQuery are shown in Table 8.

Baselines and Models We use seq2seq finetuned
BART as our main baseline on both datasets. With-
out explicit notations, we use BART large in all
of the following experiments. Otherwise, we de-
note large or base models. On GeoQuery dataset,
we use prior state-of-the-art methods as additional
baselines. On EcommerceQuery dataset, we use
only LSTM seq2seq and BART as baselines, be-
cause lyer et al. (2017) requires user feedbacks, and
Zheng and Lapata (2020) requires domain specific
semantic tags, which are not available in Ecom-
merceQuery.

Evaluation Following Andreas (2019), we use
exact-match accuracy as the evaluation metric,
namely the percentage of examples that are cor-
rectly parsed to their SQL queries.

5 Experimental Results

5.1 Main Results

Table 1 shows our main results on GeoQuery and
EcommerceQuery datasets. As shown in Table
I, on GeoQuery dataset, the finetuned BARTY yge
beats all the previous baseline methods. Our ap-
proach outperforms all baseline systems by a sub-
stantial margin, reaching new SOTA performance.
Note that directly combining BART with the se-
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Method GeoQuery EcoQuery

Iyeretal. (2017) 40.0 -
Andreas (2019) T 49.0 -
Zheng and Lapata (2020) 7© 69.6 -

Our Implementation

BARTgse 44.5 37.5
SEQZEROg,, 50.0 42.5
"LSTM seq2seq 390 93
BART Large 72.5 377
BARTLae + SPP 66.5 37.2
SEQZEROLarge 74.7 46.2

Table 1: Results on GeoQuery test set of compositional
split, and on EcommerceQuery (EcoQuery) dataset. f:
we directly report the metrics in the original papers,
while our reproduction achieves similar performance. ©:
Zheng and Lapata (2020) took an unfair advantage of
anonymized variables.

mantic parsing via paraphrasing (SSP) framework
even decrease the performance of BART, because
paraphrased canonical utterances for SQL on Geo-
Query is too long and complex to directly gen-
erate. Even comparing with Zheng and Lapata
(2020), SEQZERO achieves a much better perfor-
mance without the usage of anonymized variables
2. In addition, on EcommerceQuery dataset, our
SEQZERO further achieves considerable improve-
ments over the baseline methods, reaching SOTA
performance. Comparing with BART, the best base-
line model, SEQZERO gains improvement in exact-
match accuracy by 8.5%. In all words, our model
is an extremely strong performer and substantially
outperforms baseline methods, which demonstrate
the efficiency of our method.

5.2 Ablation Study

To demonstrate the utility of sequential prompt
filling and zero-shot model, we conduct a set of
ablation experiments, as shown in Table 2. In each
ablation experiment, we delete one of these two key
components of SEQZERO, namely “—SEQ” and
“—ZERO”.

SEQZERO —ZERO means that we directly use
finetuned few-shot models to fill in sequential
prompts without using the zero-shot model.

SEQZERO —SEQ is equivalent to the ensemble
of a finetuned BART and a un-finetuned BART for

*Zheng and Lapata (2020) could not directly compare with
our method, because they use anonymized variables (i.e. ora-
cle entities), while other models including SEQZERO require
generating entities instead of using oracle entities. Thus, for
fair comparison, their method without variable anonymization

would have even worse performance, indicating even larger
improvements of our method.



Method GeoQuery EcoQuery

SEQZERO 74.7 46.2
—SEQ 74.2 44.5
—ZERO 71.4 37.7

Table 2: Ablation study of SEQZERO.

predicting the SQL query directly without sequen-
tial prompt filling.

On both datasets, “—SEQ” decreases the per-
formance of SEQZERO. It indicates that design-
ing clause-specific prompt can better mine the
pretrained knowledge from the language model.
Meanwhile, zero-shot model ensemble brings our
model better out-of-distribution generalization abil-
ity. Consequently, when zero-shot model ensemble
is ablated, the performance drops a lot (“—ZERO”
vs “SEQZERO”).

5.3 Analysis of Sequential Prompt Based
Models

Here, we try to understand how the sequential
prompt based model performs on different clauses.
We report the prediction accuracy of SEQZERO and
“—ZERO” on 5 clauses on the GeoQuery dataset in
Table 3. SEQg,q4 means we use finetuned BART to
generate clauses given previous gold clauses. We
can see that finetuned BART has the worst perfor-
mance on “FROM” clause because of its poor OOD
generalizability. We can clearly see that SEQZERO
has better performance than “—ZERO” because of
the zero-shot model’s strong performance on the
“FROM” clause.

Method FROM SELECT WHERE GROUP ORDER

SEQooy 841 879 = 923 995 995
SEQZERO 885 77.5 747 747 747
~Zero 841 742 714 714 714

Table 3: Prediction accuracies on all 5 clauses on Geo-
Query dataset.

Recall that the prediction of the latter clauses
depends on the previous ones, the performance of
each next clause generally decreases due to error
propagation in SEQZERO. The same performance
of “WHERE”, “GROUP” and “ORDER” is because
there are very few “GROUP” and “ORDER” clauses
on test set. SEQZERO achieves much better perfor-
mance than “—ZERO” on the “FROM” clause and
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Method Exact Match
GeoQuery “FRoM” Clause
" FEW SHOTBase 582
ZERO SHOTRBase 67.0
- FEW SHOTLgree 841
ZERO SHOTyrge 78.0
ENSEMBLEL arge 88.5

EcommerceQuery “CONDITION” Clause

FEW SHOTLarge 40.0
ENSEMBLEL arge 51.8
Table 4:  Zero-shot and few-shot BARTg,. and

BARTLyee models’ performance compares with their
ensemble on critical clauses.

thus significantly reduces the error propagation,
leading to better performance on all clauses.

5.4 Comparison of Zero-shot, Few-shot
models, and Their Ensemble

According to Section 5.3, our model’s major im-
provement comes from the contribution of zero-
shot models and ensemble in critical clauses. We
further compare the performance of zero-shot, few-
shot and ensemble models in Table 4. We can see
that on GeoQuery “FROM” Clause, with BART s,
zero-shot model itself with constraint decoding is
already much better than few-shot model, verifying
our intuition that few-shot finetuning could lead
model to overfit spurious biases, and achieves poor
compositional out-of-distribution (OOD) general-
izability. With BARTY g, zero-shot model’s per-
formance is still worse than the few-shot fintuned
model, but our ensemble method can effectively
leverage the better OOD generalizability of zero-
shot model and achieves better performance?. Sim-
ilarly, on EcommerceQuery “CONDITION” Clause,
our ensemble method significantly outperforms the
few-shot model.

5.5 Impact of Prompt Designing

Table 5 shows the performance of the few-shot
finetuned BART and the zero-shot BART (in con-
strained decoding setting) with several representa-
tive prompts on “FROM” clause of GeoQuery test

3We tried both uncertainty based model selection and
model ensemble on “FROM” clause of GeorQuery dataset,
and found out that they have similar performance. Thus, we
choose model ensemble as our major method, because it lever-
ages all steps’ probability to make selection, leading to poten-
tially better performance in other datasets. See Appendix for
results of uncertainty based model selection.



Prompt Few ZERO

the answer can be obtained from 81.3 65.9
the sentence talks about 84.1 78.0

Table 5: Impact of prompt designing for few-shot Few
and zero-shot ZERO BART on “FROM” clause of Geo-
Query test set.

Prompt attribute+relation relation
the sentence requires 39.2 49.3
where 21.1 51.5
the condition is : 51.1 57.3

Table 6: Impact of prompt designing for zero-shot
BART on “CONDITION” clause of EcommerceQuery
test set. In attribute+relation setting, we let zero-shot
model generate both attributes and relations. In relation
setting, we let zero-shot model generate relations only.

set. We can see that prompt designing highly af-
fects the the zero-shot model’s performance, while
it has less impact on few-shot finetuned model.
Table 6 shows the performance of the zero-shot
BART on “CONDITION” part of EcommerceQuery
test set, where different prompts also lead to signif-
icantly different performance. These results reveal
the necessity of sequential prompt filling. Without
this component, one cannot easily come up with a
proper prompt for achieving a better model perfor-
mance. In practice, we design 20 prompt sets and
select the best one based on the zero-shot model’s
performance on the development dataset.

5.6 Impact of Training Data Size

Table 7 shows the performance of baseline BART
and our SEQZERO (as well as ablation of ZERO),
facing different numbers of training data points in
the few-shot setting. With 50, 150 training samples,
we make sure that each SQL query template occurs
only once to maximize the diversity of training data.
For the full dataset, there are 536 samples with 158
different training templates in total.

#of Samples 50 150 536
BART 412 73.1 725
SEQZERO 48.9 74.2 74.7

—ZERO 31.3 73.1 714

Table 7: Model accuracy with different numbers of
training samples on GeoQuery dataset.

Our SEQZERO outperforms BART in all settings
(50, 150, 536 training samples), which shows the
effectiveness of our method in the few-shot setting.
From 50 to 150 training samples, the model see
more SQL templates, which help compositional
generalization, and lead to the increased perfor-
mance of all models. From 150 to 536 samples,
the performance of BART and “—ZERO” decrease
slightly. That is because there are multiple samples
of the same templates in the 536 training samples,
and the models overfit to those training templates.
In contrast, SEQZERO avoids such overfitting with
the help of zero-shot models and achieves better
performance by leveraging more training samples.

Without the aid of zero-shot model, “—ZERO”
performs worse than SEQZERO. When there are
only 50 samples, the performance degradation is
the most significant. When there are 536 samples,
the decrease led by ablation of zero-shot model is
larger than that of 150 samples. It is because when
there are many cases for each template, ensemble
of zero-shot model can alleviate overfitting such
templates.

Furthermore, “—ZERO” has similar performance
with BART when there are over 150 training sam-
ples. On the other hand, the performance of
“—ZERO” is worse than BART when there are very
few training samples (50 samples). We conjecture
that this is because BART shares the model param-
eter between all sub-clauses, while “—ZERO” fine-
tunes models separately on different sub-clauses.
The parameter sharing will further lead to knowl-
edge sharing across sub-clauses and improves the
performance. How to leverage the benefit from
both parameter sharing and SEQZERO could be an
interesting future research topic.

5.7 Case Study

Table 8 shows BART and SEQZERO’s predictions
for some cases. For first example, BART gives a
wrong prediction, because few-shot training sam-
ples introduce too many spurious biases to the fine-
tuned model. In contrast, SEQZERO gives correct
prediction. Actually, after analyzing the errors
made by finetuned BARTg,se model on GeoQuery,
among all errors on test set, the common error for
around 75% examples is the table name error in
“FROM?” clause, which is due to spurious biases.
For the second example, BART predicts “PRICE
<” incorrectly even seeing “over”, because Ecom-
merceQuery Dataset is designed to include only



“PRICE <” but no “PRICE >" template. Our SE-
QZERO could give the correct prediction because
of better OOD generalizability with the help of
zero-shot models.

Even with our SEQZERO, there are still many
errors. For instance, in the third example, it still
struggles with identifying the size in the natural
language query and generating the Size filtering
condition in WHERE clause.

6 Related Work

Few/Zero-shot Semantic Parsing Shin et al.
(2021); Schucher et al. (2021) conducted few-
shot semantic parsing by using pretrained LMs
to first generate canonical natural language utter-
ances, and then transform them to final formal lan-
guage through synchronous context-free grammar
(SCFG) (Jia and Liang, 2016). However, dealing
with complex structure and lengthy canonical lan-
guage is still challenging for models in the few-
shot setting. Also, canonical languages created
through SCFG allows limited space for prompt
designing, and canonical language’s form is still
too strange for language models to understand.
Zhong et al. (2020) explored zero-shot semantic
parsing via generation-model-based data augmen-
tation. Other ways of bootstrapping a semantic
parsing requires rules/grammars to synthesize train-
ing examples (Xu et al., 2020; Wang et al., 2015;
Yu et al., 2020; Campagna et al., 2019; Weir et al.,
2020; Marzoev et al., 2020; Campagna et al., 2020).
Yang et al. (2021) used language-independent fea-
tures for zero-shot cross-lingual semantic parsing.

Semantic Parsing via Paraphrasing Berant and
Liang (2014) started the line of work where se-
mantic parsing is finished through an intermediate
paraphrasing step. Wang et al. (2015); Marzoev
et al. (2020) generated paraphrase candidate values
from a grammar of legal canonical utterances, and
incrementally filtered the bottom-up or top-down
generation by scoring the partial candidates against
final formal language. All such work did not ex-
ploit the power of pretrained models to generate
intermediate paraphrases.

Compositional Generalization in Semantic Pars-
ing Compositional generalization is an essential
problem in semantic parsing because formal lan-
guages are internally compositional. Generally,
one way to improve compositional generalizability
is to incorporate inductive biases directly to models
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through moduler models (Dong and Lapata, 2018),
symbolic-neural machines (Chen et al., 2020), la-
tent variables/intermediate representations (Zheng
and Lapata, 2020; Herzig and Berant, 2020), meta-
learning (Lake, 2019) etc. Another way is to first
do data augmentation and then train a model with
augmented data (Andreas, 2019; Zhong et al., 2020;
Yu et al., 2020; Akyiirek et al., 2020). Pretrained
models has also been shown useful for composi-
tional semantic parsing (Oren et al., 2020; Furrer
et al., 2020). None of prior work used sequential
prompts or zero-shot models for compositional gen-
eralization. Yang et al. (2022) adopted attention
biases to alleviate spurious biases in table semantic
parsing.

Prompting for Few/Zero-shot learning Natural
language prompts are widely used in few-shot or
zero-shot learning. There are several fashions to
use prompts in Autoregressive Language Models
(Liu et al., 2021a). One is tuning-free prompting,
for example, Petroni et al. (2019); Shin et al. (2020)
used a fill-in-the-blank paradigm, while Brown
et al. (2020); Shin et al. (2021) used “few-shot”
prompts that included several examples of inputs
followed by target outputs, with the actual task in-
put appended at the end. One is Fixed-LM Prompt
Tuning, as used by Li and Liang (2021); Schucher
et al. (2021); Qin and Eisner (2021); Liu et al.
(2021b), which requires training less parameters
compared with tuning the whole model. Another
is Fixed-prompt LM Tuning, which is similar to
our setting. We choose to use this way because it
is demonstrated better than other methods in many
few-shot NLP tasks (Gao et al., 2020) when tun-
ing the whole model is not a concern. This is also
more efficient at inference time, as it is no longer
necessary to select training examples to precede
the test input. Note that, Mishra et al. (2021) em-
ployed prompt decomposition during tuning-free
prompting, which is validated in other NLP tasks.

Zero-shot pretrained models for OOD gener-
alization Wortsman et al. (2021) showed that,
in computer vision tasks, although fine-tuning
approaches substantially improve accuracy in-
distribution, they reduce out-of-distribution ro-
bustness, while zero-shot pretrained models have
higher OOD generalizability. Thus, model weight
ensemble (Wortsman et al., 2021) and model edit-
ing (Mitchell et al., 2021) were leveraged to manip-
ulate zero shot pretrained models, which motivetes



Cases Text

Question what is the population of utah
BART SELECT city . population FROM city WHERE city . city_name = "utah"
SEQZERO SELECT state . population FROM state WHERE state . state_name = "utah"
Ground Truth SELECT state . population FROM state WHERE state . state_name = "utah"
Question petrol trimmer over 100 dollar

BART SELECT * FROM ASINs WHERE Maching Algorithm(*“petrol trimmer””) == True and Price < 100
SEQZERO SELECT * FROM ASINs WHERE Maching Algorithm(*“petrol trimmer”) == True and Price > 100
Ground Truth SELECT * FROM ASINs WHERE Maching Algorithm(“petrol trimmer”’) == True and Price > 100
Question mi4 64 gb mobile phone
BART SELECT * FROM ASINs WHERE Maching Algorithm(“mi4 64 gb mobile phone”) ORDER BY date
SEQZERO SELECT * FROM ASINs WHERE Maching Algorithm(“mi4 64 gb mobile phone”) ORDER BY date
Ground Truth SELECT * FROM ASINs WHERE Maching Algorithm(*“mi4 mobile phone”) and Size = 64 gb

Table 8: Case study. The first example is from GeoQuery, and the last two examples are from EcoQuery.

us to ensemble zero-shot and few-shot models dur-
ing the generation process of semantic parsing.
We tried weight ensemble proposed by Wortsman
et al. (2021), but it does not work in our gener-
ation setting. The reason is the same as why di-
rect ensemble in prediction space is not working.
That’s said, weights in a zero-shot model corre-
spond to the probability over the whole vocabulary
while weights in a finetuned model correspond to
the probability over constrained vocabulary. Thus,
weights in the zero-shot model have little effect on
the constrained vocabulary.

7 Conclusion

Although prior work leveraged pretrained LMs
and canonical language for few-shot semantic pars-
ing, generating lengthy and complex canonical lan-
guage is still challenging, leading finetuned mod-
els to overfitting spurious biases in few-shot train-
ing examples and demonstraining poor composi-
tional generalizability. To tackle this, we propose
to filling in sequential prompts with LMs and then
compose them to obtain final SQL queries. Dur-
ing the process, our proposed zero-shot pretrained
model ensemble or uncertainty-based model selec-
tion could significantly boost the performance on
critical clauses, leading to overall SOTA perfor-
mance, among BART based models, on GeoQuery
and our released EcommerceQuery semantic pars-
ing dataset. In the future, we plan to extend our
methods to other pretrained models (e.g. T5) and
other compositional semantic parsing datasets.

Ethical Impact

SEQZERO is a general framework for few-shot se-
mantic parsing on text, such as search queries. SE-
QZERO neither introduces any social/ethical bias to
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the model nor amplify any bias in the data. When
creating EcommerceQuery dataset, we collected
data on an E-commerce search platform without
knowing customers’ identity. No customer/seller
specific-data is disclosed. We build our algorithms
using public code bases (PyTorch and FairSeq). We
do not foresee any direct social consequences or
ethical issues.
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A Configuration

A.1 Training Details

During training, we use fairseq (Ott et al., 2019)
to implement BART model. We use Adam as opti-
mizer with a learning rate 1e-5. We use dropout and
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attention dropout with 0.1 as dropout rate. Also, we
use label smoothing with a rate 0.1. Batch sizes are
1024 tokens. Besides, we employ a weight-decay
rate 0.01. All the parameters are manually tuned
based on the dev performance.

We train all models on NVIDIA A100 SXM4 40
GB GPU. We set the max training epoch to be 100
and select the best performed epoch according to
dev performance. Training process on each clause
or whole sequence could be finished within 3 hours.

A.2 Inference Details

During inference, we use greedy search to decode.
We also use ensemble of zero-shot and few-shot
models during this process. The ensemble weight
v; in Eq. (2) is chosen from [0, 1] and tuned by
grid search according to performance on dev set.

B EcommerceQuery Dataset

When we create the EcommerceQuery dataset, we
first we collect natural language utterances from
user input search queries to an e-commerce web-
site. To create corresponding SQL queries, we
use regular expressions to create “SIZE” filtering
conditions, and use some rules to create “PRICE”
filtering conditions, “DELIVERY” attributes and
“SUBSCRIBE” attributes in “WHERE” clauses. Fi-
nally, we manually audit each pair of data to ensure
the quality.

To construct compositional splits, we make
sure that there is no “PRICE>", “SIZE=", and
“SUBSCRIBE=" SQL templates in training set but
the majority of SQL queries on dev and test set con-
tains such templates. Ideally, a model with good
compositional generalizability could generalize
from “PRICE<” and “S1ZE>" to “PRICE>", gener-
alize from “PRICE=""and “SIZE>" to “SIZE=", and
generalize from “DELIVERY=""to “SUBSCRIBE=".

C Problem Decomposition on GeoQuery
and EcommerceQuery

In this section we introduce the problem decom-
position for GeoQuery and EcommerceQuery in
details. We answer the following two questions: 1.
what are the sub-clauses in the sub-problems? 2.
how to compose the final formal language from the
sub-clauses.

C.1 GeoQuery

On GeoQuery, there are totally 5 sub-clauses,
namely FROM, SELECT, WHERE, GROUP-BY,



Method Exact Match
FEW SHOTLarge 84.1
ZERO SHOTarge 78.0
"MOC SELECTIONp 4 885
ROC SELECTIONL grge 88.5
ENSEMBLEL arge 88.5

Table 9: Ensemble of zero-shot and few-shot models
compares with uncertainly based selection of zero-shot
and few-shot models on GeoQuery “FROM” Clause.

ORDER-BY clauses. we first generate FROM from
clause with the prompt “the sentence talks about”.
Then we generate SELECT clause with the prompt
“the sentence talks about”, generate “Where clause
with the prompt THE SENTENCE REQUIRES”, gen-
erate GROUP-BY clause with the prompt THE SEN-
TENCE REQUIRES TO GROUP BY, and generate
ORDER-BY clause with the prompt “the sentence
requires the result to be ordered by” Note that prior
generated clauses are used as additional prefix to
generate current clauses. The filled value for each
clause could be “None”. When the filled value is
“None”, which means there is no such clause in the
final SQL query. Finally, we compose all clauses
(if the filled value is not “None”) sequentially to
obtain the final SQL query.

C.2 EcommerceQuery

On EcommerceQuery, there are totally 2 sub-
clauses, namely MATCHING, and CONDITION
clauses. Because thes two clauses are less de-
pendent, we generate each clause separately and
then compose the generated values of each clause.
When generating MATCHING clause, we use the
prompt “matching algorithm (. When generat-
ing CONDITION clause, we use the prompt “the
condition is :”.

D Uncertainty based Model Selection

As an alternative to model ensemble, we can also
decide whether to use the predicted sequence of the
zero-shot model or the fine-tuned model based on
zero-shot model’s uncertainty score over the gener-
ated sequence. Specifically, during greedy search,
we compute an uncertainty metric with the rescaled
zero-shot model prediction p*”', where T is the first
decoding step after the pre-designed prompt *. The

*The reason why we choose T'th step is that we do not want
to consider the probability of [EOS] token into uncertainty,
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uncertainty metric could be Margin of Confidence
(MoC) or Ratio of Confidence (ROC) . Formally,
assume the largest value in vector p*” is p{T, and
the second largest value in vector p*7 is p3’, we
compute these two uncertainty metrics as:

MoC =1 — (pi" — p3") 3
RoC = p3" /pi"

The results are shown in Table 9.

because for most table name tokens, there is little probability
that the [EOS] token occurs after them in zero-shot models.
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Abstract

The scientific claim verification task requires
an NLP system to label scientific documents
which SUPPORT or REFUTE an input claim,
and to select evidentiary sentences (or ratio-
nales) justifying each predicted label. In this
work, we present MULTIVERS, which predicts
a fact-checking label and identifies rationales in
a multitask fashion based on a shared encoding
of the claim and full document context. This ap-
proach accomplishes two key modeling goals.
First, it ensures that all relevant contextual in-
formation is incorporated into each labeling
decision. Second, it enables the model to learn
from instances annotated with a document-level
fact-checking label, but lacking sentence-level
rationales. This allows MULTIVERS to per-
form weakly-supervised domain adaptation by
training on scientific documents labeled using
high-precision heuristics. Our approach out-
performs two competitive baselines on three
scientific claim verification datasets, with par-
ticularly strong performance in zero / few-shot
domain adaptation experiments. Our code and
data are available at https://github.com/
dwadden/multivers.

1 Introduction

The proliferation of scientific mis- and dis-
information on the web has motivated the release
of a number of new datasets (Saakyan et al., 2021;
Sarrouti et al., 2021; Wadden et al., 2020; Kotonya
and Toni, 2020) and the development of modeling
approaches (Pradeep et al., 2021; Li et al., 2021;
Zhang et al., 2021) for the task of scientific claim
verification. The goal of the task is to verify a given
scientific claim by labeling scientific research ab-
stracts which SUPPORT or REFUTE the claim, and
to select evidentiary sentences (or rationales) re-
porting the findings which justify each label.

A common approach to this task is to first ex-
tract rationales from the larger document context,
and then make label predictions conditioned on the
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Claim:

{ Ibuprofen worsens COVID-19 symptoms }

Evidence abstract:

Covid-19 and avoiding Ibuprofen.

a potential increased risk of COVID-19
infection was feared with ibuprofen use

At this time, there is no supporting evidence
to discourage the use of ibuprofen

Label: REFUTES

Figure 1: A claim from the HealthVer dataset, refuted
by a research abstract. The sentence in red is a rationale
reporting a finding that REFUTES the claim. However,
this finding cannot be interpreted properly without the
context in blue, which specifies that the finding applies
to Ibuprofen as a treatment for COVID. MULTIVERS
incorporates the full context of the evidence-containing
abstract when predicting fact-checking labels.

selected rationales. This “extract-then-label” ap-
proach has two important drawbacks, which we
aim to address in this work. First, the rationales
may lack information required to make a prediction
when taken out-of-context; for instance, they may
contain acronyms or unresolved coreferences, or
lack qualifiers that specify the scope of a reported
finding (Figure 1 provides an example). Second,
the “extract-then-label” approach requires training
data annotated with both sentence-level rationales
and abstract-level labels. While sentence-level ra-
tionale annotations are costly and require trained
experts, abstract-level labels can be created cheaply
using high-precision heuristics, e.g., the titles of
research papers sometimes make claims that are
supported by their abstracts.

Motivated by these challenges, we introduce
MULTIVERS (Multitask Verification for Science):
Given a claim and evidence-containing scientific
abstract, MULTIVERS creates a shared encoding of
the entire claim / abstract context, using the Long-
former encoder (Beltagy et al., 2020) to accommo-
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date long sequences. Then, it predicts an abstract-

level fact-checking label and sentence-level ratio-

nales in a multitask fashion, enforcing consistency
between the outputs of the two tasks during de-
coding. This modeling approach ensures that label
predictions are made based on all available con-
text, and enables training on instances derived via
weak supervision for which abstract-level labels
are available, but sentence-level rationales are not.

In experiments on three scientific claim verifi-
cation datasets, we find that MULTIVERS outper-
forms two state-of-the-art baselines, one of which
has more than 10x the parameters of our system.

In addition, we show that training MULTIVERS

on weakly-labeled in-domain data substantially im-

proves performance in the zero / few-shot domain

adaptation settings. The ability to achieve reason-
able performance given limited labeled data is es-
pecially valuable in specialized domains, due to the
high cost of collecting expert annotations.

In summary, our contributions are as follows:

. We introduce MULTIVERS, a multitask sys-
tem for full-context scientific claim verification.
MULTIVERS improves fully-supervised fact-
verification performance by an average of 11%
on three datasets over two state-of-the-art base-
lines, with improvements of 14% and 26% in
the few-shot and zero-shot settings.

. We present weak supervision heuristics to as-
sign fact-checking labels to two large scientific
datasets, and show that training on these an-
notations more than doubles zero-shot domain
adaptation performance.

. Through ablations and analysis, we demonstrate
that our multitask modeling approach achieves
our goals of incorporating full-document con-
text into label predictions, and facilitating zero /
few-shot domain adaptation.

2 Background

2.1 The scientific claim verification task

We use the definition of scientific claim verification
from the SCIFACT task (Wadden et al., 2020), and
provide a brief overview of the task here. Other
works have cast scientific claim verification as a
sentence-level natural language inference (NLI)
task; in §4.1, we describe how we process these
datasets to be compatible with the task as consid-
ered in this work.

Task definition Given a claim ¢ and a collec-
tion of candidate abstracts which may contain
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evidence relevant to ¢, the scientific claim veri-
fication task requires a system to predict a label
y(c,a) € {SUPPORTS, REFUTES, NEI'}, which
indicates the relationship between c and a for each
candidate a. For all abstracts labeled SUPPORTS
or REFUTES, the system must also identify ratio-
nales R(c,a) = {ri(c,a),...,mp(c,a)}, where
each 7;(c, a) is a sentence from a that either entails
or contradicts the label (¢, a).? The rationales may
not be self-contained, and may require additional
context from elsewhere in the abstract to resolve
coreferential expressions or acronyms, or to deter-
mine qualifiers specifying experimental context or
study population.> Examples of these situations are
provided in Figure 1 and Appendix A.3.

Evaluation The SCIFACT task reports four evalu-
ation metrics. We have found that two of these met-
rics are sufficient to convey the important findings
for our experiments: (1) abstract-level label-only
evaluation computes the model’s F1 score in iden-
tifying abstracts that SUPPORT or REFUTE each
claim. Predicting the correct label y(c, a) is suf-
ficient; models do not need to provide rationales.
(2) Sentence-level selection+label evaluation com-
putes the point-wise product of the model’s F1
score in identifying the rationales R(c,a), with
the model’s abstract-level label y(c, a); this metric
rewards precision in identifying exactly which sen-
tences contain the evidence justifying the label. In
this work, we refer to these two metrics as “abstract”
and “sentence” evaluation respectively.

Retrieval settings For open scientific claim ver-
ification, the system must retrieve candidate ab-
stracts from a corpus of documents. In the abstract-
provided setting, candidate abstracts for each claim
are given as input. We describe the retrieval set-
tings for all datasets in §4.1.

Supervision settings We consider three supervi-
sion settings. In the zero-shot domain adaptation
setting, models may not train on any in-domain fact-
checking data, though they may train on general-
domain fact-checking data and other available sci-
entific datasets. In the few-shot domain adaptation
setting, models may train on 45 claims from the tar-
get dataset. In the fully-supervised setting, models

'NEI stands for “Not Enough Info”.

This rationale definition is simplified slightly from the
one presented in Wadden et al. (2020).

3This convention is consistent with related tasks in ratio-

nalized NLP for biomedical literature, such as Lehman et al.
(2019) and DeYoung et al. (2020).



may train on all claims from the target dataset.

While most existing work on scientific fact-
checking has focused on the fully-supervised set-
ting, some recent work has examined the zero-shot
setting. Lee et al. (2021) use language model per-
plexity as a measure of claim veracity. Wright
et al. (2022) generate claims based on citation sen-
tences, and verify each generated claim against the
abstracts mentioned in the claim’s source citation.
Given the high potential impact of fact verifica-
tion systems for specialized domains, combined
with the substantial cost of creating these datasets,
we believe that the development of techniques for
zero / few-shot domain adaptation represents an
important area for continued research.

2.2 Scientific claim verification datasets

Several scientific claim verification datasets have
been released in the past few years. COVIDFact
(Saakyan et al., 2021) and HealthVer (Sarrouti
et al., 2021) verify COVID-19 claims against sci-
entific literature. PUBHEALTH (Kotonya and Toni,
2020) verifies public health claims against news
and web sources. SCIFACT (Wadden et al., 2020)
verifies claims made in citations in scientific papers.
CLIMATE-FEVER (Diggelmann et al., 2020) veri-
fies claims about climate change against Wikipedia.
In this work, our focus is verifying claims against
scientific literature. We therefore perform experi-
ments on the COVIDFact, HealthVer, and SCIFACT
datasets. Preprocessing details and summary statis-
tics for these datasets are included in §4.1.

2.3 Models

Motivated in part by the SCIVER shared task (Wad-
den and Lo, 2021) and leaderboard, a number of
models have been developed for SCIFACT (the fo-
cus of the shared task). The two strongest systems
on the shared task were VERTSERINI (Pradeep
et al., 2021) and PARAGRAPHJOINT (Li et al.,
2021), which we adopt as baselines. More recently,
ARSJOINT (Zhang et al., 2021) achieved perfor-
mance competitive with these two systems.*

Given a claim ¢ and candidate abstract
a, these models make predictions in two
steps. First, they predict rationales E(c, a) =
{r1(c,a),...,Tn(c,a)} likely to contain evidence.
Then, they make a label prediction §(c, fr(R(c, a))
based on the claim and predicted rationales, where
fr is a function which creates a representation of
the predicted rationales.

“Recent progress can be found on the SciFact leaderboard.
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While existing models share this general ap-
proach, they use different functions fr to construct
rationale representations. For VERTSERINTI, ratio-
nale selection and label prediction are performed by
two separate T5-3B models, and fr concatenates
the text of the selected rationales. As a result, the
label predictor may not have access to all context
needed to make a correct label prediction. PARA-
GRAPHJOINT and ARSJOINT attempt to address
this issue by encoding the claim and full abstract
(truncating to 512 tokens), and using these represen-
tations as the basis for both rationale selection and
label prediction. The function fr consists of self-
attention layers over the (globally-contextualized)
token representations of the predicted rationales.
Thus, PARAGRAPHJOINT and ARSJOINT can in-
corporate abstract-level context into label decisions.
However, the mechanism by which this occurs is
more complex than for our proposed system and
requires rationale supervision for all training in-
stances.

3 The MULTIVERS model

We propose the MULTIVERS model for full-
context claim verification. In §3.1, we describe our
modeling approach. Rather than predicting ratio-
nales R(c, ) followed by the overall fact-checking
label §(c, fr(R(c,a))), we predict §(c, a) directly
based on an encoding of the entire claim and ab-
stract, and enforce consistency of R(c,a) with
Y(c, a) during decoding. A similar idea has been
shown to be effective on sentiment analysis and
propaganda detection with token-level rationales
(Pruthi et al., 2020). In §3.2, we explain how our
approach facilitates few-shot domain adaptation
using weakly-labeled scientific documents.

3.1 Full-context claim verification

Long-document encoding Given a claim ¢ and
candidate abstract a consisting of title ¢ and sen-
tences si, ..., S, We concatenate the inputs sepa-
rated by </ s> tokens. The </ s> token following
each sentence s; is notated as </s>; :

<s>c</s>t</s>81</8>1 ...8,</s>,

The model input sometimes exceeds the 512-token
limit common to transformer-based language mod-
els like BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019); see Table 1 for details on how
frequently this occurs. Therefore, we use the Long-
former model (Beltagy et al., 2020) as our encoder.



We assign global attention to the <s> token, as
well as all tokens in c and all </s> tokens.

Multitask rationale selection and label predic-
tion Given the full-context Longformer encoding,
we predict whether sentence s; is a rationale via a
binary classification head, consisting of two feed-
forward layers followed by a two-way softmax, on
top of the globally-contextualized token </s>; .

Similarly, we predict the overall fact-checking
label y(c, a) by adding a three-way classification
head over the encoding of the <s> token. Since
the <s> token is trained with global attention, the
model makes predictions based on a representation
of the entire claim and abstract.

During training, we compute the cross-entropy
losses for the label and rationale predictions, and
train to minimize the multitask loss:

(D

L= Llabel + )\rationaleLrationale

where Arationale 18 tuned on the dev set.

At inference time, we first predict y(c, a) to be
the label with the highest softmax score. If the
predicted label is NEI, we predict no rationales.
If the predicted label is either SUPPORTS or RE-
FUTES, then we predict rationales as all sentences
with an assigned softmax score of greater than 0.5.
If no sentences have a rationale softmax over 0.5,
then we predict the highest-scoring sentence as the
sole rationale. In §6.2, we show that this ability to
condition the rationale predictions on the label pre-
diction (as opposed to conditioning the label on the
predicted rationales) leads to substantial improve-
ment in the zero-shot domain adaptation setting.

Candidate abstract retrieval For datasets that
require retrieval of candidate abstracts, we rely
on the VERTSERINI (Pradeep et al., 2021) re-
trieval system, which achieved state-of-the-art per-
formance on the SCIVER shared task (SCIVER
used the SCIFACT dataset for evaluation). This
model first retrieves abstracts using BM25 (Robert-
son and Zaragoza, 2009), then refines the predic-
tions using a neural re-ranker based on Nogueira
et al. (2020), which is trained on the MS MARCO
passage dataset (Campos et al., 2016).

3.2 Training for domain adaptation

Three types of data are available to train scien-
tific claim verification systems. (1) In-domain
fact-checking annotations are the “gold standard”,
but they are expensive to create and require ex-
pert annotators. (2) General-domain fact-checking
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datasets like FEVER (Thorne et al., 2018) are abun-
dantly available, but generalize poorly to scientific
claims (see §6.1). (3) Scientific documents — ei-
ther unlabeled or labeled for different tasks — are
abundant, and high precision heuristics (described
in §4.2) can be used to generate document-level
fact-checking labels y(c, a) for these data.

We train MULTIVERS as follows: we first pre-
train on a combination of general-domain fact-
checking annotations, combined with weakly-
labeled in-domain data.’ Then, we finetune on
the target scientific fact-checking dataset. The mul-
titask architecture of MULTIVERS is well-suited
to this strategy, since the model can be trained on
data with or without rationale annotations. When
no rationales are available, we set Arationale = 0 In
the loss function and train as usual. By contrast,
training an “extract-then-label” model on weakly-
supervised data requires creating rationale annota-
tions R(c, a), which is quite noisy (see §4.2).

4 Datasets

4.1 Scientific claim verification datasets

We experiment with three scientific claim verifi-
cation datasets. Table 1 provides a summary of
important dataset characteristics. Preprocessing
steps and additional statistics can be found in Ap-
pendix A. HealthVer and COVIDFact were orig-
inally released in an NLI format, pairing claims
with (out-of-context) evidentiary sentences. We
convert to our task format by identifying the ab-
stracts in the CORD-19 corpus (Wang et al., 2020)
containing these sentences.

We use the following terminology: an atomic
claim makes an assertion about a single property
of a single entity, while a complex claim may make
assertions about multiple properties or entities.

ScIFACT Claims in SCIFACT (Wadden et al.,
2020) were created by re-writing citation sentences
occurring in biomedical literature into atomic
claims, which were verified against the abstracts of
the cited documents. REFUTED claims were cre-
ated by manually negating the original claims. Ab-
stracts that were cited but which annotators judged
not to contain evidence were labeled NEI. ScI-
FACT requires retrieval of candidate abstracts.

HealthVer (Sarrouti et al., 2021) consists of
COVID-related claims obtained by extracting snip-
pets from articles retrieved to answer questions

>We use “pretraining” as shorthand for “training on the tar-
get task with out-of-domain and/or weakly-supervised labels.”



D . D . Clai 0 Has Claim Negation Train  Eval >512
atase omain aim source PeN NEI complexity method claims claims  tokens
HealthVer COVID TREC-COVID X v/ Complex Natural 1,622 230 14.9%
COVIDFact COVID  Reddit X X Complex Automatic 903 313 12.4%
ScIFACT Biomed  Citations v v Atomic Human 1,109 300 27.4%
FEVER Wiki Wikipedia - v Atomic Human 130,644 - 332%
PUBMEDQA Biomed  Paper titles - v/ Complex Automatic 58,370 - 12.1%
EVIDENCEINFERENCE Biomed  ICO prompts - v/ Atomic Automatic 7,395 - 427%

Table 1: Summary of datasets used in experiments. The top group of datasets are scientific claim verification
datasets, and the bottom group are for pretraining. Datasets with a v for “Open” require that candidate abstracts be
retrieved from a corpus; those with a X provide candidate abstracts as input. Datasets with a v for “Has NEI” require
three-way (SUPPORTS / REFUTES / NEI) label prediction, while those with an X are (SUPPORTS / REFUTES) only.
The “> 512 tokens” column indicates the percentage of claim / abstract contexts that exceed 512 tokens.

from TREC-COVID (Voorhees et al., 2020), ver-
ified against abstracts from the CORD-19 corpus
(Wang et al., 2020). Claims in HealthVer may be
complex. REFUTED claims occur naturally in the
article snippets. HealthVer provides candidate ab-
stracts for each claim, but some of these candidates
do not contain sufficient information to justify a
SUPPORTS / REFUTES verdict and are labeled NEI.

COVIDFact (Saakyan et al., 2021) collects
claims about COVID-19 scraped from a COVID-19
subreddit, and verifies them against linked scien-
tific papers, as well as documents retrieved via
Google search. Claims in COVIDFact may be
complex, and candidate abstracts for each claim
are provided. All candidates either SUPPORT or
REFUTE the claim. Claim negations were created
automatically by replacing salient words in the orig-
inal claims, and as a result the labels y(c, a) are
somewhat noisy (see Appendix A).

4.2 Pretraining datasets

We briefly describe our pretraining datasets and
the weak supervision heuristics used to construct
them. Detailed descriptions of these heuristics can
be found in Appendix A.1.

FEVER (Thorne et al., 2018) consists of claims
created by re-writing Wikipedia sentences into
atomic claims, verified against Wikipedia articles.

EVIDENCEINFERENCE (Lehman et al., 2019;
DeYoung et al., 2020) was released to facilitate un-
derstanding of clinical trial reports, which examine
the effect of an intervention on an outcome, rela-
tive to a comparator (“ICO” elements). The dataset
contains ICO prompts paired with (1) labels indi-
cating whether the outcome increased or decreased
due to the intervention, and (2) rationales justifying
each label. We use rule-based heuristics to convert
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these prompts into claims — for instance “[interven-
tion] increases [outcome] relative to [comparator]”.

PUBMEDQA (Jin et al., 2019) was released to
facilitate question-answering over biomedical re-
search abstracts. We use the PQA-A subset, which
is a large collection of abstracts with “claim-like” ti-
tles — for instance, “Vitamin B6 supplementation in-
creases immune responses in critically ill patients.”
We treat the paper titles as claims and the matching
abstracts as the evidence sources.

To train models requiring rationale supervision,
we create weakly-supervised rationales by select-
ing the sentences with highest similarity to the
claim as measured by cosine similarity of Sentence-
BERT embeddings (Reimers and Gurevych, 2019).
These annotations are not used to train MUL-
TIVERS. To estimate the precision of our rationale
labeling heuristic, we predict rationales in the same
fashion for our supervised datasets and compute
the Precision@1 with which this method identi-
fies gold rationales. The scores are relatively low:
494, 48.8, and 43.4 for SCIFACT, COVIDFact, and
HealthVer respectively.

5 Experimental setup

We describe our model training procedure, the sys-
tems against we compare MULTIVERS, and our
ablation experiments.

5.1

Our complete training procedure consists of pre-
training on the three datasets from §4.2, followed
by finetuning on one of the target datasets from
§4.1. We conduct experiments with three different
levels of supervision. For zero-shot experiments,
we perform pretraining only. For few-shot exper-
iments, we pretrain followed by finetuning on 45

Model training
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target examples. For fully-supervised experiments,
we pretrain and then train on all target data.

Following Li et al. (2021), we found that nega-
tive sampling was important to achieve good pre-
cision on SCIFACT, which requires document re-
trieval. We train with 20 negative samples per claim
and retrieve 10 abstracts per claim at inference time.
Appendix C.3 shows results without negative sam-
pling. For the other datasets, no negative sampling
was used. Additional details including batch sizes,
learning rates, number of epochs, etc. can be found
in Appendix B.

During model development, we experimented
with training on all three target datasets combined
before predicting on each one, but found that this
did not improve performance; see Appendix C.4.

5.2 Baseline systems

We use PARAGRAPHJOINT and VERTSERINI as
baselines. VERTSERINI is the largest model,
with 5.6B parameters. MULTIVERS and PARA-
GRAPHJOINT are comparably-sized, with 440M
and 360M parameters, respectively.

In the fully-supervised setting, we compare
against both baselines. For prediction on SCIFACT,
we use publicly available model checkpoints as-
is. For training on HealthVer and COVIDFact,
we use the code provided by the authors, start-
ing from the available checkpoints trained on SCI-
FACT. Model hyperparameters (learning rate, batch
size, epoch number, etc.) for all systems including
MULTIVERS were tuned based solely on SCIFACT
and not adjusted further. Additional details can be
found in Appendix B.4.

Evaluation in the few-shot and zero-shot set-
tings requires pretraining and finetuning as de-
scribed in §5.1. Due to the expense of pretraining
T5-3B, we do not perform these experiments for
VERTSERINI, and compare only against PARA-
GRAPHJOINT (which shows comparable perfor-
mance in the fully-supervised setting). We pretrain
PARAGRAPHIJOINT on the data described in §4.2.

5.3 Ablations

Since PARAGRAPHJOINT and VERTSERINTI differ
from MULTIVERS along a number of important
dimensions (e.g. model architecture, number of pa-
rameters, and base encoder), we conduct ablations
to characterize the performance contributions of
three key components of MULTIVERS.

Pretraining data We compare the results of three
different pretraining strategies. For FEVERSCI, we
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pretrain on all available data as described in §5.1.
For FEVER, we pretrain on FEVER only. For No-
Pretrain, we perform no pretraining.

Base encoder We compare the performance
achieved using LongFormer as the encoder for
MULTIVERS, compared to the results when we
swap in RoBERTa but keep other settings identical.
We use Longformer-large and RoBERTa-large.

Modeling approach We compare three model-
ing approaches: (1) The Multitask approach is the
method used by MULTIVERS as described in §3.1.
(2) The Pipeline approach consists of two separate
Longformer modules. The first selects rationales
as described in §3.1, but with Ly, removed from
Eq. 1, and the second module predicts a label given
the text of the rationales selected by the first mod-
ule as input. When pretraining on PUBMEDQA, we
train on the rationales chosen by Sentence-BERT
as described in §4.2. (3) The Multitask train /
Pipeline inference (MT / PI) approach takes the
model trained using the Multitask approach, and
performs inference using the Pipeline approach.
Specifically, MT / Pl is trained to make label pre-
dictions based on full abstracts, but must make test-
time label predictions based on predicted rationales
only. By contrast, the Pipeline model makes label
predictions based on gold and predicted rationales
at train and test time, respectively.

6 Experimental results

We compare MULTIVERS performance relative to
our baseline systems, and present ablation results.

6.1 Main Results

Table 2 compares the performance of MULTIVERS
against PARAGRAPHJOINT and VERTSERINI. A
few trends are apparent. First, MULTIVERS out-
performs the baselines on all datasets, with rel-
ative improvements — averaged over the three
datasets and two evaluation methods — of 26%,
14%, and 11% in the zero-shot, few-shot, and fully-
supervised settings respectively. We examine pos-
sible causes of this improvement in §6.2. Second,
while all models score within roughly six points
of each other on HealthVer and SCIFACT, variabil-
ity is much greater on COVIDFact. We suspect
that this is due to the automatically-generated na-
ture of COVIDFact negations. Third, we observe
that HealthVer appears to be the most challenging
dataset of the three. Few-shot abstract-level F1
scores for COVIDFact and SCIFACT are generally
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HealthVer COVIDFact ScIFACT
Abstract Sentence Abstract Sentence Abstract Sentence
Setting Model p R FI p R Fl p R FI p R Fl p R FI p R Fl
Zero PARAGRAPHJOINT 723 144 24.0 229 27 49 513 379 43.6 315 160 21.3 529 324 40.2 364 149 21.1
MULTIVERS 60.6 20.5 30.7 250 46 7.8 488 457 47.2 327 185 23.6 490 446 46.7 39.0 216 27.8
Few PARAGRAPHJOINT 62.7 41.6 50.0 46.0 293 35.8 733 60.6 66.3 443 306 36.2 444 514 47.6 33.0 351 34.0
MULTIVERS 63.6 479 54.7 419 31.0 35.7 713 68.1 69.7 39.5 354 374 764 541 63.3 517 403 45.3
VERTSERINI 713 740 72.6 656 612 63.3 766 52.7 624 448 272 339 640 73.0 68.2 60.6 665 63.4
Full PARAGRAPHJOINT 750 68.3 71.5 699 606 64.9 715 68.1 69.8 41.4 403 40.8 758 63.5 69.1 689 546 60.9
MULTIVERS 789 763 77.6 714 67.0 69.1 773 773 773 415 46.1 43.7 738 712 72.5 674 670 67.2

Table 2: Performance of MULTIVERS and baselines.

In the fully-supervised setting, we compare to PARA-

GRAPHJOINT and VERTSERINI, which exhibit comparable performance. In the zero and few-shot settings, we
compare to PARAGRAPHJOINT only due to the high cost of pretraining VERTSERINI. We report performance using
abstract-level and sentence-level evaluation as defined in §2.1.

within 10 F1 of their fully-supervised values, while
the gap is roughly 20 F1 for HealthVer. This may
be due to the high complexity of HealthVer claims.

6.2 Ablations

The results of all ablations are shown in Table 3.
We report abstract and sentence-level F1 scores in
the main text; full results can be found in Table 9
in Appendix C.

In-domain pretraining substantially improves
zero / few-shot performance In Table 3a, we
compare the performance of models pretrained on
FEVERSCI, FEVER, and No-Pretrain. In the zero-
shot setting, removing scientific data during pre-
training results in a relative performance decrease
of 65%, averaged over the three datasets and two
evaluation methods. The decrease is driven primar-
ily by very low recall (see Table 9a).

In the few-shot setting, FEVER pretraining
scores within 4% of FEVERSCI, while No-Pretrain
results in a 39% decrease relative to FEVERSCI.
This suggests that training on a handful of target
examples is sufficient to recalibrate a model trained
for a different domain, but not to learn the task from
scratch. In the fully-supervised setting, FEVER
pretraining is only slightly worse than FEVERSCT,
while No-Pretrain lags by roughly 9%. Overall,
the results indicate that pretraining always helps,
and pretraining on weakly-labeled in-domain data
helps especially when target data are scarce.

Longformer improves performance on datasets
with long documents Table 3b compares the per-
formance of MULTIVERS when Longformer and
RoBERTa are used as the base encoder. Using
Longformer consistently helps on SCIFACT, but

does not help on the other two datasets. This is
unsurprising, since 27% of SCIFACT instances ex-
ceed the RoOBERTa token limit, compared to less
than 15% for the other two datasets (Table 1).

Multitask modeling improves zero / few-shot
performance Results comparing our three dif-
ferent modeling approaches are shown in Table
3c. In the zero-shot setting, we find that Multitask
performs best, with both MT / PI and Pipeline ex-
hibiting performance drops greater than 50%. The
Multitask approach of predicting rationales con-
ditioned on the predicted label leads to improved
recall (see Table 9¢). Similarly, in the few-shot
setting, both Pipeline and MT / PI perform roughly
10% worse than Multitask. Collectively, the results
indicate that Multitask makes the best use of the
available data when target annotations are limited.

We also find that MT / PI outperforms Pipeline
in the zero-shot setting. This supports our intu-
ition from §3.2 that, while training on weakly-
supervised document-level labels improves zero-
shot performance, training on weakly-supervised
sentence-level rationales (as for Pipeline) leads to
worse performance than not training on these ratio-
nales (as for MT / PI).

In the fully-supervised setting, Multitask per-
forms best on SCIFACT, while Pipeline slightly
outperforms Multitask on HealthVer and COVID-
Fact. MT / PI performs substantially worse than
the other approaches on all datasets. We investigate
these findings further in §7.1; our results indicate
that Pipeline may, in effect, be trained to make
predictions based on insufficient evidence.
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Pretraining  HealthVer COVIDFact SCIFACT Self- Context-
Jero FEVERSCI  30.7/78 47.2/23.6 46.7/278 contained dependent
FEVER 1.3/0.7 252/11.2 239/11.8 Approach P R Fl p R Fl VAYAN
FEVERSCI 54.7/35.7 69.7/374 63.3/45.3 Multitask  86.1 829 84.5 903 609 72.7 -14.0%
Few FEVER 53.4/319 744/421 54.5/39.0 Pipeline 924 890 90.7 84 609 70.0 -22.8%
No-Pretrain  39.4/27.0 67.8/22.6 24.2/10.8 MT /PI 91.8 549 68.7 1000130 23.1  -66.4%
FEVERSCI  77.6/69.1 77.3/43.7 72.5/67.2 Count 82 46
Full FEVER 77.1/703 77.4/433 67.9/61.7
No-Pretrain ~ 74.5/69.7 69.7/36.6 63.3/58.4

(a) Effect of pretraining data. In-domain pretraining is very
effective in the zero- and few-shot settings. In the zero-shot
setting, “No-Pretrain” metrics are not shown since this would

correspond to no training at all.

Encoder HealthVer COVIDFact SCIFACT
Zero Longformer  30.7/7.8 47.2/23.6 46.7/27.8
RoBERTa 342/9.2 483/262 452/259
Few Longformer 54.7/35.7 69.7/374 63.3/45.3
RoBERTa 51.2/36.9 72.1/41.0 50.5/34.0
Full Longformer 77.6/69.1 77.3/43.7 72.5/67.2
RoBERTa 78.8/72.7 782/43.4 67.6/623

(b) Effect of base encoder. Longformer improves performance
on SCIFACT, which has the largest fraction of instances ex-

ceeding the ROBERTa token limit.

Approach HealthVer COVIDFact ScIFACT
Multitask 30.7/7.8 47.2/23.6 46.7/27.8
Zero Pipe 32/09 19.0/10.5 225/12.8
MT /PI 45/1.8 26.7/13.5 28.3/17.7
Multitask 54.7/35.7 69.7/374 63.3/453
Few Pipe 52.8/29.5 68.3/382 53.0/399
MT /PI 46.7/32.3 59.3/34.1 56.2/41.1
Multitask 77.6/69.1 77.3/437 72.5/67.2
Full Pipe 78.4/69.2 77.6/47.7 70.9/66.2
MT /PI 70.6/64.3 733/440 60.3/57.0

(c) Effect of model architecture. The Multitask approach
performs best in the zero- and few-shot settings. We examine
the fully-supervised setting in detail in §7.1.

Table 3: Ablations examining the effects of pretraining
data, base encoder, and modeling approach. Entries are
formatted “{ Abstract-level F1} / {Sentence-level F1}”.

7 Analysis

7.1 Fully-supervised Pipeline performance

In §6.2, we found that the Pipeline approach (but
not the MT / PI approach) performed on par with
the Multitask approach in the fully-supervised set-
ting. To understand this finding, we collected
detailed annotations for 128 claim / evidence in-
stances from the SCIFACT test set. For each in-
stance, an annotator indicated whether the anno-
tated rationales were “self-contained” — i.e. suffi-
cient to justify the fact-checking label when taken
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Table 4: Performance of the Multitask, Pipeline, and MT
/ PI modeling approaches on SCIFACT instances with
rationales that are self-contained (can be interpreted in
isolation) or context-dependent (must be interpreted in
the context of the abstract). Evaluation is performed in
the abstract-provided setting. We report abstract-level
metrics; sentence-level results are similar. The %A
indicates the drop in F1 score on context-dependent
instances relative to self-contained instances. Multitask
suffers the smallest performance loss, while MT / PI
suffers the largest.

in isolation, or “context-dependent” — i.e. only
sufficient when taken in the context of the abstract.
Figure 1 and Table 8 provide examples; see Choi
et al. (2021) for a detailed discussion of different
forms of context-dependence.®

Table 4 compares the performance of the
three modeling approaches on instances with self-
contained vs. context-dependent evidence. We
find that all approaches have lower performance
on context-dependent instances relative to self-
contained instances, but the size of the perfor-
mance drop varies widely. The Multitask approach
performs 14.0% worse on context-dependent in-
stances, while the Pipeline approach performs
22.8% worse. Most interestingly, MT / PI per-
forms 66.4% worse, driven predominantly by low
recall. The MT / PI model frequently (and cor-
rectly) predicts that context-dependent rationales
are not sufficient to justify a SUPPORTS / REFUTES
decision. These findings suggest that (1) the Mul-
titask approach is, as expected, best at verifying
claims with context-dependent evidence, and (2)
the Pipeline approach has, in effect, over-fit to
context-dependent rationales and learned to make
predictions based on insufficient evidence.

7.2 Performance upper bound

To determine an “upper bound” on the achievable
performance of scientific fact-checking models, we

®Unlike Choi et al. (2021), we do not include the presence
of acronyms as “context-dependent,” since an acronym can
be matched with its expansion based on surface-level textual
features. See Appendix C.2 for further analysis of acronyms.
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Abstract Sentence

P R F1 P R F1
VERTSERINI 907 743 81.7 796 622 69.8
PARAGRAPHJOINT 872 644 74.1 767 551 64.1
MULTIVERS 874 752 809 805 703 75.0
Human 948 841 89.1 674 674 674

Table 5: Performance on SCIFACT in the “abstract-
provided” setting. Models exceed human agreement as
measured by sentence-level F1, but not abstract-level.

assign 151 claim-evidence pairs from SCIFACT for
independent annotation by two different annotators.
We estimate human-level performance by treating
the first annotator’s results as “gold,” and the sec-
ond annotator’s results as predictions. For compar-
ison, we make predictions using MULTIVERS and
our two baseline models, with candidate abstracts
provided as input. The results are shown in Table 5.
Existing systems already exceed human agreement
for sentence-level evaluation, but not abstract-level,
indicating that experts tend to agree on the overall
relationship between claim and abstract, but may
disagree about exactly which sentences contain the
best evidence. This constitutes another reason not
to rely solely on selected rationales when predict-
ing a fact-checking label: the choice of rationales
is itself somewhat subjective.

In addition, these results suggest that one key
subtask of scientific claim verification — namely,
predicting whether an evidence-containing abstract
SUPPORTS or REFUTES a claim — may be nearly
“solved” in the setting where (1) the claims are
atomic and (2) roughly 1,000 in-domain labeled
claims are available for training.

8 Related work

Background on scientific claim verification is cov-
ered in §2; we discuss other relevant work here.
Nye et al. (2020) have previously observed that
document-level context is often required to prop-
erly interpret scientific findings.

DeYoung et al. (2020) use an “extract-then-label”
pipeline for the original EVIDENCEINFERENCE
task. Multitask label prediction and rationale se-
lection was proposed by Pruthi et al. (2020) and
applied to sentiment analysis and propaganda de-
tection. As in this work, the authors condition on
the predicted label when predicting rationales. An-
other alternative to supervised rationale selection
is to treat rationales as latent variables (Lei et al.,
2016; Paranjape et al., 2020).
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Long-document encodings for fact verification
have been explored by Stammbach (2021), who use
Big Bird (Zaheer et al., 2020) for full-document ev-
idence extraction from FEVER. Domain adaptation
for scientific text has been studied in a number of
works, including Gururangan et al. (2020); Beltagy
et al. (2019); Lee et al. (2020); Gu et al. (2021).
In those works, the primary focus is on language
model pretraining. Here, we focus on training on
the target task using out-of-domain and weakly-
labeled data.

9 Conclusion

This work points to a number of promising future
directions for scientific claim verification. These
include applying the approach presented here to de-
velop scientific claim verification models for new
scientific sub-domains or other specialized fields
given a handful of labeled examples, and extending
the task definition to verify claims against longer
contexts (e.g. full scientific papers) or larger cor-
pora. Our task formulation also offers an oppor-
tunity to study the effects of rationale decontex-
tualization (Choi et al., 2021), especially in cases
where models may be making predictions based on
insufficient evidence.

In presenting the MULTIVERS system, we ad-
dressed two challenges associated with scientific
claim verification: incorporating relevant informa-
tion beyond rationale boundaries by modeling full-
document context, and facilitating zero / few-shot
domain adaptation through weak supervision en-
abled by a multitask modeling approach. Our ex-
periments show that MULTIVERS outperforms ex-
isting systems across several scientific claim veri-
fication datasets. We hope that the task, data, and
modeling resources presented in this paper will
encourage further work and progress towards the
broader goals of identifying and addressing scien-
tific mis- and disinformation.

10 Ethical considerations and broader
impact

One long-term goal of research on scientific claim
verification is to build systems that can automati-
cally identify mis- and dis-information, which we
believe would be socially beneficial given the cur-
rent prevalence of mis- and dis-information online.

In the shorter term, this work presents two po-
tential risks. First, automated systems for scientific
fact-checking are not mature enough to inform real-



world medical decisions. We will include a dis-
claimer with released software to this effect. Sec-
ond, bad actors could potentially use this work to
develop disinformation generators trained to “fool”
automated fact-checkers. While this risk cannot
be ruled out, we believe that the benefits of pub-
lishing this work and making our models available
to the community to facilitate further research out-
weigh the risks that this work will be misused by
malicious actors.
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A Data processing and statistics

A.1 Data preprocessing

SCIFACT We use SCIFACT in its original form,
as it was released by the paper authors (Wadden
et al., 2020).

HealthVer The HealthVer (Sarrouti et al., 2021)
data release available at https://github.com/
sarrouti/Healthver appears in NLI format, pair-
ing claims with evidence-containing sentences;
the documents from which the sentences were
extracted are not provided. We match evidence-
containing sentences to their abstracts in the
CORD-19 corpus (Wang et al., 2020) using a sim-
ple substring search, after normalizing for capital-
ization and whitespace differences. Evidence for
which no match was found in the corpus is dis-
carded.

We then segment the abstracts into sentences.
Any sentence in the abstract with a string overlap
of > 50% with the evidence provided in the origi-
nal data is marked as a rationale. A small number
of claims in HealthVer had both supporting and
refuting evidence in the same abstract; we remove
these claims as well to conform to our task defini-
tion. Modeling conflicting evidence is a promising
direction for future work.



COVIDFact The COVIDFact data available
athttps://github.com/asaakyan/covidfact i
released in a similar format to HealthVer. Like
HealthVer, we perform string search over CORD-
19 to identify the abstracts containing evidence,
and use the same procedure for assigning rationale
labels to sentences from the abstract. COVIDFact
also includes evidence from sources scraped from
the web that are not contained in CORD-19, such
as news articles. These sources are not provided
with the data release; we discard evidence from
non-CORD-19 sources’.

Refuted claims in COVIDFact are generated
automatically by replacing words in the original
claim. Based on a manual inspection, we found this
process to generate a truly refuted claim roughly a
third of the time; in most other cases, it generated
a claim that was either ungrammatical or for which
the provided evidence was irrelevant. A few cases
are provided in Table 6.

FEVER We use the FEVER dataset as-is.

EVIDENCEINFERENCE The EVIDENCEINFER-
ENCE dataset consists of “ICO” (intervention / com-
parator / outcome) prompts, paired with labels in-
dicating whether the intervention leads to an in-
crease, decrease, or no change in the outcome with
respect to the comparator. The dataset is avail-
able at https://evidence-inference.ebm-nlp.
com/. We use templates to convert these prompts to
claims. See Figure 2 for an example. Rationale an-
notations are provided for this dataset. Additional
examples of templates are below; the full list will
be included in the code release. Refuted claims are
generated by swapping “increase” and “decrease’
templates.

B

¢ Increase: [intervention] raises [outcome] rel-
ative to [comparator]

* No change: [intervention] and [comparator]
have very similar effects on [outcome]

¢ Decrease: [intervention] results in a decrease
in [outcome], relative to [comparator]

PUBMEDQA We use the PQA-A subset released
at https://pubmedga.github.io/, which is fil-
tered for “claim-like” titles. We generate negations
by identifying titles with the phrases “does not”,

"Upon request, the paper authors did kindly provide us
with scraped evidence documents. Unfortunately, we did
not have time to re-run our experiments on these additional
sources.
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| Outcome _[og _ Label

pre-term birth  decreased

Treatment with
birth relative to

decreases pre-term

Figure 2: An example showing how an evidence infer-
ence prompt (top) can be converted into a claim (bottom)
using templates. A refuted claim could be generated by
substituting “increases” for “decreases” in the prompt
text.

LT3 LRI T3

“do not”, “are not”, “is not”. “Does not” and “do
not” are removed and the relevant verbs are mod-
ified to have the correct inflection; for instance
“smoking does not cause cancer” is converted to
“smoking causes cancer”. Similarly, “are not” and
“is not” are replaced by “are” and “is”.

To generate rationales needed to train pipeline
models on PUBMEDQA, we employ the following
procedure. First, we encode the claim and all ab-
stract sentences using the a11-MiniIM-L6-v2
model from the Sentence-Transformers package
https://www.sbert.net/. Then, we rank ab-
stract sentences by cosine similarity with the claim
and label the top-k sentences as rationales, where
k is randomly sampled from {1, 2, 3} with a 4:2:1
frequency ratio (this matches the distribution of k
in SCIFACT).

A.2 Dataset statistics

Table 7 provides counts showing the number of
claim / evidence pairs with each label (SUPPORTS,
REFUTES, NEI), in each of our target datasets.
Note that a given claim may be (and often is) paired
with more than one abstract containing evidence.
HealthVer is the largest dataset. COVIDFact is
the smallest, in part due to the aggressive evidence
filtering described in §A.1.

A.3 Examples of context-dependent rationales

Table 8 provides an example of a context-
dependent rationale (as defined in §7.1), as well
as an example of a rationale with an undefined
acronym. The latter occurs when an acronym ap-
pears in a rationale but its full expansion does not;
an analysis of undefined acronyms is included in
Appendix C.2. The code and data release will con-
tain full annotations indicating which of the 128
human-annotated examples described in §7.1 are
context-dependent, and which contain undefined
acronyms.



Original claim

Automatic negation

Comment

Sars-cov-2 reactive t cells . .. are likely Sars-cov-2 reactive t cells . .. are not
expanded by beta-coronaviruses

expanded by beta-coronaviruses

Successful negation

Regn-cov?2 antibody cocktail prevents On-cov2 antibody cocktail prevents
and treats sars-cov-2 infection . ..

and treats sars-cov-2 ...

Ungrammatical; “On-cov2” isn’t a
scientific entity.

...immunity is maintained at 6
months following primary infection

...immunity is maintained at 6 weeks
following primary infection

Not refuted; The original claim entails the
negation. Immunity at 6 months implies
immunity at 6 weeks.

Table 6: Automatic negations from COVIDFact. Some are successful, in the sense that the attempted negation
contradicts the original claim. Others are either ungrammatical or are entailed by the original claim.

Fold Dataset SUPPORTS NEI REFUTES
SCIFACT 508 485 265
Train COVIDFact 299 - 641
HealthVer 2384 2384 1464
SCIFACT 113 127 109
Eval COVIDFact 102 - 215
HealthVer 374 304 225

Table 7: Evidence distribution by dataset.

A.4 Annotators

In §7, we report an analysis based on annotations
performed on the SCIFACT dataset. These annota-
tions were performed by students and / or profes-
sional annotators associated with the authors’ re-
search institutions. Annotators were paid between
$15 and $20 / hour.

B Modeling details

B.1 Implementation

We implement MULTIVERS using PyTorch Light-

ning (https://www.pytorchlightning.ai/),

which relies on PyTorch (https://pytorch.

org/).

B.2 Model training

Pretraining For pretraining, we train for 3
epochs on FEVER, EVIDENCEINFERENCE, and
PUBMEDQA, with the data randomly shuffled. We
train on 4 negative samples (i.e. abstracts contain-
ing no evidence) per claim, which we find improves
precision. We train on 8 NVIDIA RTX 6000 GPUs
with a batch size of 1 / gpu (effective batch size
of 8), using a learning rate of 1le — 5, using the
PyTorch Lightning implementation of the AdamW
optimizer with default settings. We initialize from
a Longformer-large checkpoint pretrained on the
S20RC corpus (Lo et al., 2020).

Finetuning For finetuning, we train for 20
epochs on the target dataset (SCIFACT, Health Ver,

or COVIDFact). For SCIFACT, we train on 20 neg-
ative samples / claim. To create “hard” negatives

— i.e. abstracts that have high lexical overlap with
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the claim — we create a search index from 500K
abstracts randomly selected from the biomedical
subset of the S20RC corpus. For each claim, we
obtain negative abstracts by using the VERTSERINT
retrieval system from §3.1 to retrieve the top-1000
most-similar abstracts from this index, removing
abstracts that are annotated as containing evidence,
and randomly sampling 20 abstracts to be used as
negatives during training.

Since HealthVer and COVIDFact do not have
a retrieval step, they do not require negative sam-
pling, and we train on the original datasets as-is.

Retrieval For SCIFACT, we performed dev set
experiments retrieving 10, 20, or 50 abstracts /
claim, and found that 10 was the best. We use
that in our final experiments.

B.3 Model hyperparameters

No organized hyperparameter search was per-
formed. We consulted with the authors of the Long-
former paper for suggestions about good model pa-
rameters, and generally followed their suggestions.

The loss function in Section 3.1 requires a
weight Aationate- This is set to 15 for all final experi-
ments. We informally experimented with values of
1, 5, and 15; no organized hyperparameter search
was performed. We selected the learning rate from
the values [9e — 5, be — 5, 1e — 5].

We performed all experiments with the
same random seed, 76, used by invoking the
seed_everything function in PyTorch Light-
ning.

All reported results are from a single model run.

B.4 Baselines

VERTSERINI For prediction on  SCI-
FACcT, we use the checkpoint available at



Category Example
Claim: Errors in peripheral IV drug administration are most common during bolus administration
OBJECTIVES: To determine the incidence of errors in the administration of intravenous
Context- Context: O ‘
dependent o
P Evidence: ... Most errors occurred when giving bolus doses
Explanation: = The evidentiary sentence reporting the finding does not specify the type of error.
Claim: Hematopoietic stem cells segregate their chromosomes randomly.
Undefined Context: we tested these hypotheses in hematopoietic stem cells (HSCs). . .
acronym Evidence: ... indicated that all HSCs segregate their chromosomes randomly.
Explanation:  HSCs is an acronym for Hematopoietic stem cells.

Table 8: Examples from the SCIFACT dataset showcasing rationales that are context-dependent (top example), or

include an undefined acronym (bottom example).

https://github.com/castorini/pygaggle/
tree/master/experiments/vert5erini. For
COVIDFact and HealthVer, we follow the instruc-
tions in that repository to convert the data to the
required format, and train using the available
training code as-is, beginning from the available
SCIFACT checkpoint. We used Google Cloud TPU
for training and inference.

We use the code
https://github.com/jacklxc/
For predictions on
SCIFACT, we make predictions using the publicly
available checkpoint. For the other two target
datasets, we use the training code in the repo
without modification.

We used PARAGRAPHJOINT as our baseline for
zero / few-shot learning experiments, and hence
also performed pretraining on PARAGRAPHJOINT.
The repository provides code to train on the FEVER
dataset, which we used for pretraining with EVI-
DENCEINFERENCE and PUBMEDQA added to the
data.

PARAGRAPHJOINT
available at
ParagraphJointModel.

C Additional results and analysis

C.1 Full ablation results

In Table 3, we presented F1 scores for ablations
comparing pretraining data, model architecture,
and encoder used. Table 9 presents the full results,
including precision and recall.

C.2 Performance on rationales with undefined
acronyms

In §7.1, we examined the difference in perfor-
mance on instances with self-contained vs. context-
dependent evidence. Here, we show the results of
evaluation on instances containing an undefined
acronym vs. cases without one. We find that unde-
fined acronyms do not pose a challenge for Multi-
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task and Pipeline, but do cause a small performance
drop on MT / PL.

C.3 Negative sampling

In §5.1 we described how, for SCIFACT, we trained
on 20 negative abstracts per claim. The effect
of training on these additional negative samples
is shown in Figure 11. In the abstract-provided
setting, negative sampling is not very beneficial.
However, when the model must select evidence
from retrieved abstracts, precision drops off dra-
matically without negative sampling. This is worth
noting since it suggests that performance reported
when models are provided with “gold” candidate
abstracts may not offer an accurate estimate of the
accuracy these systems would achieve when de-
ployed in a real-world setting, which could require
systems to verify claims over hundreds of thou-
sands of documents.

C.4 Cross-dataset generalization

In §5, we discussed how the available scientific fact-
checking datasets differ in a number of important
respects. Here, we explore whether models trained
on one system are able to generalize to another
despite these differences. We train MULTIVERS
on each of our three datasets and then evaluate its
performance on the other two. We also train a ver-
sion of MULTIVERS on all three datasets together,
and evaluate on each one. Since COVIDFact has
no NEI instances, during evaluation we remove
all NEI instances from the other two datasets, and
evaluate in the abstract-provided setting.

The results are shown in Table 12. The sentence-
level evaluation results (Table 12b) indicate that
none of the datasets generalize well to each other
in their ability to identify rationales. The situation
is better for abstract labeling (Table 12a). SCIFACT
and HealthVer each generalize reasonably well to



HealthVer COVIDFact ScIFACT
Abstract Sentence Abstract Sentence Abstract Sentence
Pretraining p R FI p R Fl p R FI P R Fl p R FI p R Fl
Zero FEVERSCI 60.6 205 30.7 250 46 7.8 488 457 47.2 327 185 23.6 490 446 46.7 390 216 27.8
FEVER 800 07 13 667 04 0.7 958 145 252 635 62 11.2 838 140 239 649 65 11.8
FEVERSCI 63.6 479 54.7 419 310 3577 713 681 69.7 395 354 37.4 764 541 63.3 517 403 45.3
Few  FEVER 564 508 53.4 348 294 31.9 744 744 T74.4 393 453 42.1 724 437 54.5 488 324 39.0
No-Pretrain 385 404 39.4 285 257 27.0 678 678 67.8 249 207 22.6 200 306 242 95 127 10.8
FEVERSCI 789 763 77.6 714 670 69.1 713 713 773 415 461 437 738 712 72.5 674 6710 67.2
Full FEVER 715 766 717.1 708 698 703 775 773 77.4 406 465 43.3 643 721 679 571 670 61.7
No-Pretrain 750 740 74.5 718 678 69.7 69.7 697 69.7 353 381 36.6 649 617 63.3 627 546 58.4
(a) Effect of pretraining data.
HealthVer COVIDFact ScIFACT
Abstract Sentence Abstract Sentence Abstract Sentence
Encoder p R FI p R FI ~p R F1 P R FI p R Fl P R Fl
Zero Longformer 60.6 205 30.7 250 46 7.8 48.8 457 472 327 185 23.6 490 446 46.7 390 216 27.8
RoBERTa 595 240 34.2 254 56 9.2 493 473 48.3 352 209 26.2 455 450 452 344 208 25.9
Few Longformer 63.6 479 54.7 419 310 35.7 713 681 69.7 395 354 374 764 541 63.3 517 403 453
RoBERTa 550 479 51.2 390 350 369 725 716 721 397 425 41.0 590 441 50.5 368 316 34.0
Full Longformer 789 763 77.6 714 670 69.1 773 773 77.3 415 461 437 738 712 725 674 610 67.2
RoBERTa 778 800 78.8 734 720 727 782 782 782 408 463 43.4 671 680 67.6 627 619 62.3
(b) Effect of base encoder.
HealthVer COVIDFact ScIFACT
Abstract Sentence Abstract Sentence Abstract Sentence
Approach p R F1 p R F1 p R FI p R F1 P R F1 P R Fl
Multitask 60.6 205 30.7 250 46 7.8 48.8 457 47.2 327 185 23.6 490 446 46.7 390 216 27.8
Zero  Pipe 588 17 32 294 05 0.9 673 1.0 19 574 58 105 806 131 225 722 70 12.8
MT /PI 609 23 45 417 09 1.8 785 161 26.7 577 16 13.5 809 17.1 28.3 755 100 17.7
Multitask 63.6 479 54.7 419 310 357 713 681 69.7 395 354 37.4 764 541 63.3 517 403 45.3
Few  Pipe 563 497 52.8 326 27.0 29.5 694 672 68.3 406 360 382 548 514 53.0 437 368 39.9
MT/PI 670 359 46.7 445 253 32.3 72.6 502 59.3 402 297 34.1 853 419 56.2 547 330 41.1
Multitask 789 763 77.6 714 670 69.1 713 713 T77.3 415 461 43.7 738 712 72.5 674 6710 67.2
Full  Pipe 787 78.1 78.4 702 683 69.2 799 754 77.6 482 472 477 685 734 709 645 681 66.2
MT /PI 776 648 70.6 700 595 64.3 777 69.4 73.3 436 444 44.0 80.5 482 60.3 705 478 57.0

(c) Effect of model architecture.

Table 9: Full ablation results.

each other, but not to COVIDFact. COVIDFact
generalizes well to SCIFACT, but not to HealthVer.

In general, SCIFACT appears the “easiest” dataset No undefined Undefined
to generalize to; this could be explained by the fact acronym acronyim
that SCIFACT claims were written to be atomic and =~ Appreach p R Fl P R FI %A
therefore simple to verify. Multitask ~ 88.1 738 80.3 80 771 81.3  1.2%

Pipeline 89.9 775 83.2

Finally, a model trained on all datasets combined MT/PL  ort 425 591

88.6 812 84.8 1.9%
850 354 50.0 -15.4%

manages to achieve reasonable performance across
Count 80

48

all three datasets, though falling short of the per-
formance of models trained specifically for each

Table 10: Performance of different modeling approaches

individual dataset. on instances with vs. without an undefined acronym.
We perform evaluation on the same data as reported in

Table 4.
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Retricval g;ﬁ' . Abstract Sentence
P P R F1 P R F1
Abstract- X 819 856 83.7 695 697 69.6
provided v 852 752 799 7190 703 74.4
Open X 389 806 52.5 354 651 459
P v 738 712 725 674 670 67.2

Table 11: Effect of negative sampling on SCIFACT.

Eval — HealthVer COVIDFact SCIFACT

Train | F1 A F1 A F1 A
Health Ver 86.1 0.0 50.2 -24.0 73.4 -15.8
COVIDFact 50.6 -35.6 74.1 0.0 76.1 -13.1
SCIFACT 70.5 -15.7 54.6 -19.6 89.2 0.0
Combined 83.0 -3.2 643 -9.8 87.8 -1.3

(a) Abstract-level evaluation. SCIFACT and HealthVer gener-
alize fairly well to each other. COVIDFact generalizes well to
ScIFACT, but not HealthVer.

Eval — Health Ver COVIDFact SCIFACT

Train | F1 A F1 A F1 A
HealthVer 74.2 0.0 28.0 -12.6 39.7 -324
COVIDFact 14.6 -59.5 40.6 0.0 41.6 -30.6
ScIFACT 20.5 -53.7 339 -6.7 72.1 0.0
Combined 714 -2.8 39.8 -09 70.5 -1.6

(b) Sentence-level evaluation. None of the datasets generalize
particularly well to each other. HealthVer generalizes better to
SCIFACT than vice versa.

Table 12: Cross-dataset generalization performance.
The rows and columns indicate the training and eval-
uation datasets, respectively. The A values indicate
the loss in performance from evaluating on a dataset
different from the one the model was trained on. The
“Combined” row indicates training on all datasets com-

bined.

76



An Item Response Theory Framework for Persuasion

Anastassia Kornilova

Daniel Argyle

Vlad Eidelman

FiscalNote Research
vlad@fiscalnote.com

anastassia,

Abstract

In this paper, we apply Item Response Theory,
popular in education and political science re-
search, to the analysis of argument persuasive-
ness in language. We empirically evaluate the
model’s performance on three datasets, includ-
ing a novel dataset in the area of political ad-
vocacy. We show the advantages of separating
these components under several style and con-
tent representations, including evaluating the
ability of the speaker embeddings generated by
the model to parallel real-world observations
about persuadability.

1 Introduction

Persuasion is the art of instilling in someone a given
belief or desire to take a given action. The ac-
tion can be expressing agreement with the speaker
in a debate (Durmus and Cardie, 2019), making
a donation to a crowdfunding campaign (Yang
et al., 2019) or non-profit (Wang et al., 2019), or a
Supreme Court ruling (Danescu-Niculescu-Mizil
et al., 2012). Social psychology frameworks for
understanding persuasion, such as the Elaboration
Likelihood Model (ELM), argue that attributes of
successful persuasion fall into three groups: (1)
message, the text of the argument; (2) audience;
and (3) speaker, the source of the argument. (Petty
and Cacioppo, 1986; Lukin et al., 2017; Cialdini,
2009).

Although much attention has been given to study-
ing the text, text in isolation fails to capture how
the audiences’ prior beliefs and predispositions can
affect their response to the same argument. Sev-
eral recent studies have considered all three factors
within the context of specific datasets by creating
features to represent the audience as a whole or
by building separate models for different types of
audiences (Lukin et al., 2017; Tan et al., 2016; Dur-
mus and Cardie, 2019; El Baff et al., 2020). In this
paper, we present a broad framework that can rep-
resent individual audience members in one model
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across a diverse set of persuasion tasks.

Since implementing the ELM framework re-
quires separate data about the speaker, audience,
and argument, it is difficult to validate empirically.
Often, we only have access to the observed out-
come (e.g. did the person donate money). Both the
persuadability of the audience and the persuasive-
ness of the argument are unobserved. Motivated by
this, we explicitly model a persuasive scenario as a
function of latent variables describing the persuad-
ability of the audience and the persuasiveness of
the text.

Our approach is based on Item Response Theory
(IRT), a framework for modeling the interaction be-
tween latent traits and observable outcomes. While
these types of models are well known in the context
of education (Fischer, 1973; Lord, 1980; McCarthy
et al., 2021) and politics (Clinton et al., 2004), to
our knowledge this is the first application of an IRT
model to study persuasion. Using this framework,
we model the interaction between the grouped ar-
gument and speaker, and the audience, explicitly.
The argument and speaker are grouped together be-
cause in practice it is hard to separate their effects,
especially in the written tasks covered in this study.

We explore two variations on the IRT framework
and apply it to three different persuasion tasks. In
addition to two previously studied tasks, we intro-
duce a novel setting related to political advocacy
group campaigns, where a recipient is asked by an
organization to take a specific action.

We evaluate these models with different param-
eterizations, including style and content features,
showing that they are both effective for predicting
persuasion, and have the ability to uncover latent
characteristics of the audience that were modeled
explicitly in previous works.

Our contributions are as follows: 1) we formal-
ize the use of IRT model formulations for persua-
sion and show the advantages of them over exist-
ing approaches, 2) we introduce a new dataset of

Findings of the Association for Computational Linguistics: NAACL 2022, pages 77 - 86
July 10-15, 2022 ©2022 Association for Computational Linguistics



political advocacy emails, 3) we apply the formu-
lations with style and content features on three
persuasion tasks, and 4) we show that the sep-
arate latent audience component is interpretable
and consistent with external information. All code
associated with the paper is available at https:

//github.com/akornilo/IRT_Persuasion.

2 Item Response Theory

Item Response Theory (IRT) represents a set of
models that explain an observed outcome based
on latent traits. These models are frequently used
when an outcome is easily observed, but the fac-
tors predicting that model are unobservable. For
example, in education an outcome could be a stu-
dent’s answer to an exam question, and the latent
predictive traits are a students knowledge and the
difficulty of the question; in politics an outcome
could be a vote on a bill and the unobservable traits
are the legislator’s and bill’s ideology. Crucially,
an IRT model provides both a prediction of the
outcome, and an interpretable measurement of the
latent variables.

In applying IRT to persuasiveness, we can view
the audience as having a response to the item,
where the item is an argument composed of the
speaker and message pair.

2.1 Rasch Testing Model

We build on two specific IRT parameterizations.
The first, the Rasch model (Rasch, 1960) is com-
monly used in education research to model the diffi-
culty of standardized test questions (Fischer, 1973;
Lord, 1980). In it the probability that an individual
7 answers test question j is given by:

p(yij =1 a,B) =oc(o; — ;) (1)

where «; represents a respondent (e.g. a student’s
ability) and 3; represents the item (e.g. the diffi-
culty of a test question). Intuitively, if the ability
is greater than the question difficulty, then the stu-
dent will answer the question correctly. Given a
series of exam sessions one can estimate values
of o and S for all of the students and questions in
the dataset. This can be done using a variety of
optimization strategies, such as Expectation Maxi-
mization or Bayesian techniques (Bock and Aitkin,
1981; Natesan et al., 2016).

However, one limitation of this approach is that
it cannot be used to perform inference on new
test questions because all parameters are estimated
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simultaneously. To solve this problem, Fischer
(1973) proposed the linear logistic test model that
parameterizes the difficulty, 3, as a weighted linear
combination of test features. In this formulation,
the student (o) remains a latent variable, but the
[ of an unseen question can be predicted using
attributes of the question itself.

Following Fischer (1973), the parameterization
used to predict the item parameters is a weighted
linear sum of features:

K
By =) wp X i )
k=1

where )i is an input feature representing the item,
and wy, is the associated weight.

In order to apply this model to persuasion,
we propose considering argumentation as follows:
First, arguments can vary in quality, similar to test
questions having different difficulty levels. Sec-
ond, we can only measure the quality of an argu-
ment based on how the audience reacted; similar to
how a students ability is measured via their perfor-
mance. Third, it is possible that a good argument
is matched with an audience reticent to persuasion,
similar to a good student receiving a particularly
hard question. Note that this requires an audience
member observe multiple arguments, and that each
argument be heard by multiple audience members.
Inspired by the linear logistic model, we model
the latent argument parameter as a function of at-
tributes of the argument itself, thus allowing us
to include attributes of the speaker and text in the
model directly.

2.2 Two Parameter IRT

While the simplicity of the Rasch model is pow-
erful, a two parameter generalization of an IRT
model (a two parameter logistic - 2PL) provides
additional benefits for our application (Birnbaum,
1968). In the simplest version, a two parameter
model (so called because the item is modeled with
two parameters) is as follows:

plyij =1, ¢,8)=0(ci-¢;—8;) 3
where as before, «; represents the respondent (stu-
dents ability), and 3; is the item’s difficulty,' but

! Analogous to the Rasch model, this tells us the overall
difficulty level of the question
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now ¢; represents the item’s discrimination.” We
similarly generalize this model by estimating the
two item parameters, 3; and ¢;, as linear functions
of features as in Equation 2.

This framework has commonly been be used to
explain legislator voting behavior (Clinton et al.,
2004), a useful analogy as many of the persuasion
contexts we consider have political undertones. In
this case, the response y;; is a vote by respondent
¢ (a legislator) on item j (a bill). Clinton et al.
(2004) show that the parameter «; can then be in-
terpreted as the respondent’s ideology (e.g negative
values are more liberal, positive values are more
conservative); ¢; is referred to the bills polarity (i.e.
discrimination);> B; represents the bill’s popularity
(i.e. difficulty).* Persuasion is a generalization of
this framework because popularity can correspond
to properties of arguments that are appealing over-
all, while polarity represents techniques or topics
that appeal only to a subset of the audience.

2.3 Audience Analysis

Once a Rasch or a 2PL model is fit, the learned «
can be interpreted as a one-dimensional respondent
embedding. In the legislator voting context these
values can be interpreted as ideologies: legislators
with very negative or very positive embeddings re-
flect very liberal and conservative stances, respec-
tively, while those with small-value embeddings
map to moderate legislators. While interpretation
of these values will depend on the task, in general,
similar embeddings will map to similar audience
members and can be grouped together for further
analysis.

3 Related Works

Audience Effects The properties of the audience
in relation to argument persuasiveness have previ-
ously been examined in several predictive studies.
Lukin et al. (2017) show that audiences with a more
“open” personality respond better to emotional argu-
ments, while El Baff et al. (2020) show that liberals
are more affected by the style of a new editorial

Discrimination is how well the question is able to tell
which students perform better, a high value indicates clearly
separates high scoring students from low scoring, a negative
value would indicate that low performing students are more
likely to get the question right than high performing.

3Large negative or positive values indicate that a bill is
strongly ideological, a value close to zero means the vote isn’t
strongly driven by ideology.

*Large values indicate a bill that is “difficult” to vote for
and is less likely regardless of ideology.
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than conservatives. Wang et al. (2019) also find
that people with different personality types respond
differently to emotional vs. logical appeals. Tan
etal. (2016) show how “malleable” different Reddit
users are to new perspectives. Durmus and Cardie
(2018, 2019) show that prior beliefs play a strong
role in how persuadable someone is. Cano-Basave
and He (2016) study persuasiveness of style in po-
litical speeches. In contrast to these studies, our
method is designed to work when we have limited
or no information about the audience of an argu-
ment.

Item Response Theory As described in the pre-
vious section, IRT models have primarily been ap-
plied in politics to measure the ideology of politi-
cians (Clinton et al., 2004; Poole and Rosenthal,
1985). While most IRT implementations here
rely only on the responses as data, more recent
work augment the models to take advantage of
the text through a simultaneously estimated topic
model (Gerrish and Blei, 2012; Vafa et al., 2020;
Lauderdale and Clark, 2014).

The efficacy of IRT has been applied on large-
scale datasets to verify the validity of standardized
tests both in the U.S. and internationally (AERA
et al., 2014; Rutkowski et al., 2014). Recent ad-
vances have focused on polytomous test questions
and creating new questions (the ‘cold-start’ prob-
lem: Settles et al., 2020; McCarthy et al., 2021). In
this paper, we focus on the simplest form, but this
area of research points to many possible extensions.

Argument Quality Argument mining has been
studied in various domains (Palau and Moens,
2009). Most relevant here, several studies have at-
tempted to study argument quality through pairwise
ranking as the outcome (Habernal and Gurevych,
2016; Gleize et al., 2019; Toledo et al., 2019).

Framing Theory In the study of framing effects,
the expectancy value model (Chong and Druckman,
2007) represents an attitude as ZZ v; X w;, where
v; is the favorability of the object of evaluation
(e.g. a candidate), on dimension ¢ (e.g. foreign af-
fairs or personality), and w; is the salience weight
(3_; w; = 1). Our parameterization of ; and ¢;
can be seen in this paradigm as identifying frames
in communication, with each feature of the style
and content as a dimension, and learning the fram-
ing effect of each.



4 Datasets

In order to apply the IRT framework, an audience
member must respond to multiple arguments (and
arguments must be observed by multiple audience
members). Too few responses implies that an audi-
ence member’s latent value will be driven entirely
by the one or two arguments. While not many exist-
ing argument mining datasets meet this criteria, we
are able to study three diverse settings. Addition-
ally, our advocacy task is akin to many real-world
settings where users on one-platform are asked to
complete an arbitrary task (e.g. a retail mailing list
getting users to click on a promotion).

4.1 NYTimes Editorials

The NYTimes Editorial corpus’ consists of 975
editorials from the New York Times news portal
(El Baff et al., 2018). Each publication was re-
viewed by 3 conservatives and 3 liberals from a
pool of 12 conservative and 12 liberal reviewers.

Each reviewer rated the editorials as either ‘chal-
lenging’, ‘reinforcing’ or ‘no effect’. These labels
must be approached with care as reinforcing could
imply ‘reinforced view against the article’s stance’.
El Baff et al. (2020) study this corpus in a ternary
setting by aggregating the liberal and conservative
votes and building separate models for each side.
For our study, we construct a binary task for pre-
dicting ‘whether this article had an effect’. While
this framing elides whether the speaker succeeded
according to her intent, it does relay whether the
argument was persuasive.

4.2 Debates (DDO) Corpus

DDO is a corpus of 78k debates scraped from
debate.org.® Each debate has two speakers and
an audience votes on a winner.” In addition, each
audience member can fill out their profile with their
political and religious ideology, and stance on var-
ious political issues (e.g. Abortion or the Border
Wall). Originally, it was used to study how prior
beliefs and similarities between the audience and
the speaker affected debate outcomes (Durmus and
Cardie, 2018, 2019).

Shttps://webis.de/data/
webis-editorial-quality-18.html

*https://www.cs.cornell.edu/
~esindurmus/ddo.html

"While the audience can assign points to various aspects
of the debate, this study will only consider the cumulative sum
of the points.
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To preprocess the data, we removed all debates
that have fewer than three rounds, end in a forfeit
or a tie, have fewer than 100 words per side, or
have fewer than 5 points awarded total. In addition,
we excluded debates not on the following issues:
Politics, Religion, Society, Philosophy, Education
and Economics. Since we are interested in mod-
eling individual audience members, we identify
audience members who have responded on at least
10 debates, then remove debates where none of
those members responded. The final dataset con-
tains approximately 60k datapoints; 6320 debates
and 1131 responders.

Each debate has one side with a pro argument
and one side with a con argument, resulting in the
wining side being “assigned more points”. The pre-
diction task consists of whether a responder gave
more points to a given debate side. Since our mod-
els only consider one argument at a time, we treat
each side of the debate as a separate item, concate-
nating texts from all rounds from that speaker.®

4.3 Advocacy Campaign Corpus

Grassroots advocacy is the process wherein orga-
nizations (e.g. companies, non-profits, coalitions)
encourage individual citizens to influence their gov-
ernment. In the United States, such lobbying often
takes the form of advocacy email campaigns, sent
by an organization to specific audiences, asking
them to take an action, such as contacting their
legislators to vote yes or no on a particular bill.

We construct a dataset containing the text and
metadata of these emails, from a popular advo-
cacy software platform, paired with whether re-
cipients took the requested action.” Organizations
will send different messages to the same audience
over time, allowing us to identify which emails
(items) elicited a response from specific recipients.
Thus, it is possible to distinguish messages that
did not generate interest overall (popularity) from
messages that did not resonate with specific groups
of recipients (polarity).

The dataset contains 63,795 individual recipi-
ents of 7,067 email campaigns from 328 different
organization, resulting in approximately 2 million
individual data points. Each recipient has data for

8We are interested in how a single unit of argument affects
the audience, and leave extension of this to account for both
simultaneously to future work.

°Due to privacy concerns, this dataset will not be released,
but platform users agreed to terms of services providing for
internal analysis.
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15 to 100 emails and had an action rate between
of 5% - 95%.'° Each email included in the dataset
had at least 6 responses.

The data is not balanced with respect to organi-
zations; while the largest organizations sent over
200 emails, the median is 6. One possibility of this
imbalance is overfitting a feature that is only per-
tinent to one, particularly prevalent organization.
To mitigate such effects, we include an indicator
variable to specify the organization.'!

5 Model Features

Argument analysis is often separated into style and
content features (Cano-Basave and He, 2016; Long-
pre et al., 2019; El Baff et al., 2020), with additional
categories included for argument quality and task
specific properties. Since we group the speaker and
the argument text together, we combine features
representing both as inputs to ¢ and .

Lexicon Style Features Style features represent
higher-level properties of words and rhetorical
structures. We chose the following sets of such
features from lexicons that were commonly used
in previous argumentation literature:

LIWC lexicon of 93 metrics ranging from parts-
of-speech to thinking styles to emotions (Pen-
nebaker et al., 2015);'? Valence, Arousal, Dom-
inance (Warriner et al., 2013); Concreteness (Brys-
baert et al., 2014). (These features were shown to
be useful for argument quality analysis by Tan et al.
(2016).) Argument features developed by Soma-
sundaran et al. (2007), including necessity, empha-
sizing, desire, contrasting and rhetorical question;
NRC Lexicon: Word-level level associations for
emotions like anger, disgust and fear (Mohammad
and Turney, 2013); Sentiment and Subjectivity: as
implemented in the TextBlob Python Library.'3

Argument Text We use TF-IDF unigrams to rep-
resent the text directly (tuned with respect each

0Those with a lower or higher action rate are unlikely to
be illustrative of persuasion characteristics.

' Alternatively, we could construct separate models for
each organization, but refrain from doing so for three reason.
First, about a quarter of recipients are ‘multi-org’ - they re-
ceive emails from multiple sources, thus, we would like to
model their behavior across all of them. Second, as many of
the organizations are not well represented, they benefit from
patterns that appear across different organizations. Finally,
maintaining a separate model for every recipient and recipient
is not as efficient or scalable.

2We purchased a copy of the software from liwc.

wpengine.com to obtain these labels.
Bhttps://textblob.readthedocs.io/
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task). While we initially explored using deep, con-
textual text representations, they did not show ben-
efit, and the motivation for this paper is to under-
stand the benefits of the IRT framework, rather
than optimize performance based on the argument
alone.

Debate-Only Speaker Features In the debate
platform, users can optionally specify a stance -
for, against, undecided or no stance - on 48 issues
such as Abortion, Death Penalty or Gay Marriage.
These can be viewed as a proxy for the content as
users often present arguments that align with their
views.

Advocacy-Only Org Indicator An indicator to
account for the large variation in action rate be-
tween organizations. Additional indicators are used
to represent the industry and organization size.

Advocacy-Only Appeals Using data from Wang
et al. (2019), we built a multi-class classifier to
recognize ‘emotional’, ‘logical’ and ‘credibility’
appeals. The classifier was applied at a sentence
level to the emails, and features were created for
the average and the sum of the scores across the
sentences.

Advocacy-Only Misc Features : The day of the
week and time of day have a strong effect on email
click rate.'* We include indicator features for the
day of the week and the hour of day. We include
an urgency indicator feature, based on a custom list
of words indicative of high urgency and timeliness
(e.g. “soon”, “now”, “hurry”).

IBM Quality Gretz et al. (2019) released a
dataset of 30k sentence-level arguments with O-
1 quality ratings. Unlike our tasks where quality is
a latent property, these sentences were assessed for
quality directly. We re-implemented the BERT-FT
model from this paper, using the MACE-P score.
Since these scores were trained on short texts, we
apply them to individual sentences in the input text,
then use the min, max, average, range, 25th, 50th,
and 75th percentiles of these scores. As far as we
know, this is the first study to transfer the qual-
ity model to longer texts. These features will be
grouped with Style for the analysis.

“https://sleeknote.com/blog/
best-time-to-send-email
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Model Accuracy
Audience Prior 0.662
Style 0.741
Text 0.754
Style + Text 0.750

Table 1: Results for the Editorials Task (Rasch Model).

6 Models and Results

Since the Editorials corpus is the smallest, we
use the simpler Rasch parameterization, while the
2PL model is used for the Debates and Advocacy
tasks.'> Each of the models is trained using a regu-
larized binary cross-entropy loss:

L (9i,vi) = —yilog 9 — (1 — ;) log (1 — 9s)
+c- ||, B, 8|

where ¥; is the output from equation 1 or 3, and y;
is the binary label, representing if the persuasion
was successful. The second part of the equation
represents a regularization parameter. Details on
the experimental parameters can be found in Ap-
pendix A. For each task, an audience prior baseline
is used. It is generated by calculating the rate at
which the audience member was persuaded in the
training data (e.g. did the article have an effect,
how many recipients took the requested action),
then drawing labels on the test data accordingly.

6.1 Editorial Results

The results on the Editorial task are shown in Table
1. The performance for all three feature sets is rela-
tively similar, with all outperforming the audience
prior.

The embeddings and weights generated by the
model can be analyzed separately for further in-
sights. First, in Figure 1 we compare the distribu-
tion of audience embeddings («) for the liberal and
conservative reviewers. According to our theory,
these can be interpreted as individuals reticence to
being persuaded. While a majority of reviewers
are close to 0, we see two liberals with larger neg-
ative values (meaning they are particularly open
to the messages) and several conservatives on the
right (suggesting they are more closed off to these
messages). This supports El Baff et al. (2020) ob-
servation that conservatives are generally resistant

15In addition, there is natural polarity in the Debate task that
lends itself to the 2PL model, as ¢ in equation 2 is designed
to model such an effect.
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Figure 1: Reviewer Embeddings for the Editorial
Rasch Model on the x-axis. Blue represents liberal re-
viewers, red represents conservative reviewers.

to the New York Times style; however, the fact that
the majority of reviewers from both sides have sim-
ilar embeddings, suggests that the pattern is not
very strong.

This data also contained information from each
reviewers Big 5 Personality test. We measured the
Pearson correlation between the reviewers embed-
dings and found a strong correlation with extrover-
sion (r=-0.568, p<0.05) and openness (r=-0.344,
p<0.1). These findings closely match El Baff et al.
(2018)’s analysis between Big 5 Personality Rat-
ings and the affectedness labels. The audience
embedding is a latent parameter, thus, it does not
explicitly represent personality or political prefer-
ences. This analysis has two implications: first, the
IRT framework is successful in situations where
additional data about the audience is not available;
second, analyzing the embeddings lets us learn
qualities of the audience post-hoc.

For style, the highly weighted features in-
cluded negative sentiment markers (nrc_negative,
liwc_negative_emotions); this aligns with El Baff
et al. (2020)’s observation that ineffective editorials
tend to have a neutral tone (although their study
only focuses on liberal reviewers). The quality
features do not show consistent behavior: the qual-
ity_mean feature has a large negative weight (e.g
sign of a bad editorial), but the 75th and 25th per-
centile features have positive weights; suggesting
that the quality measure does not transfer well to
editorials.

6.2 Debate Results

The Debates data is approximately 10 times larger
than Editorials and contains a more diverse audi-
ence. The results are shown in Table 2. Without the



Model Accuracy
Random 0.500
Style 0.561
Text 0.581
Speaker 0.611
Speaker + Style 0.626
-3 (popularity) layer 0.604

Table 2: Results for Debates Task (2PL Model).
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Figure 2: Distribution of one-dimensional audience em-
beddings on the y-axis.

popularity parameter, /3 the performance decreases,
which confirms the theory that both polarity and
popularity are necessary to adequately represent
the argument and the speaker. The Speaker stance
model outperforms just Text; a probable explana-
tion is that the stances are a proxy for the actual
opinions expressed in the text that a simple unigram
representation can not capture.

To understand the latent audience embeddings
we compare them to the self-reported political af-
filiations from their profiles. Figure 2 shows a
clear separation between liberals and conservatives
(the two largest groups). This finding supports the
work of Durmus and Cardie (2019) which showed
that similarity on ‘Big Issue Stance’ between the
speaker and the audience member is a good indica-
tor for predicting outcome. As with Editorials, the
advantage of our approach is that we were able to
infer audience member preferences without using
their profiles.

To understand what ¢ and S tells us about per-
suasive theory, we will focus on the Speaker+Style
model:

High Polarity: Abortion, Gay Marriage, Progres-
sive Tax;

&3

= =2 =2
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Figure 3: Contrast of weights from popularity vs polar-
ity features.

Low Polarity: Border Fence, Gun Rights, Home-
schooling;

High Popularity: quality_max, quality_range,
liwc_differ;

Low Popularity: liwc_Exclam, liwc_authentic,

liwc_drives

For popularity the significant factors are related
to style and quality. The high ‘quality_max’ feature
suggests that the quality model transfers better to
this context than Editorials. The low popularity
value for ‘liwc_authentic’ is interesting, as El Baff
et al. (2020) also found that authenticity generally
led to No Effect editorials.

For polarity, the highest weighted are the stances.
‘Polarity High’ corresponds to having a Pro stance
on those issues, which in this case represent a Lib-
eral view point. This corresponds with the Liberal
recipient embeddings in Figure 2 having generally
positive embeddings (alignment in weights results
in positive final weight). The opposite is true for the
Conservative issues and embeddings. This align-
ment reinforces the finding that prior beliefs play
a strong role in outcomes (Durmus and Cardie,
2018).

Figure 3 plots the weights learned for each fea-
ture for the polarity and popularity parameters.'®

Notably, the orthogonal pattern extends beyond
the top features, features that strongly predict
whether the audience responds to an argument do
not usually strongly predict whether the argument
is popular overall.

!This figure excludes features that had very small weights
along both dimensions.



Overall Audience Average Org Average

Acc. Macro-F1  Acc. Macro-F1I  Acc. Macro-F1
Org Prior 0.608 0.514 0.606 0.263  0.630 0.513
Audience Prior 0.710 0415 0.716 0.318 0.714 0.472
Org Only 0.757 0.667 0.759 0.589 0.728 0.573
Org + Style 0.781 0.708 0.761 0.662 0.771 0.678
- B (popularity) 0.750 0.653 0.749 0.643 0.756 0.654
Sep Feat V1 0.725 0.619 0.726 0.571 0.700 0.520
Sep Feat V2 0.748 0.678 0.750 0.604 0.698 0.654

Table 3: Results For Advocacy Task (2PL Model).

6.3 Advocacy Results

Table 3 shows the results for the Advocacy task.!”
The overall accuracy and macro-F1 scores repre-
sent results across all data, while the Org and Audi-
ence average accuracy represent data for individual
organizations and respondents. Due to the variation
in action rate and sample size, the macro-F1 results
are particularly important.

While the Org Only model performs well,'8 the
improved performance with the additional of Style
suggests that the style of an email still affects the
user. The style features may have an advantage for
recipients associated with a diverse set of organiza-
tions. Without 3, the performance is significantly
worse, again confirming the need for both parame-
ters.

To better understand the effect of style and org
features, two additional models are trained that
separate between polarity and popularity. In Sep
Feat V1, ¢ receives style features, 3 receives org
indicators. In this setting, (o - ¢) represents how
individuals are affected by style, while 8 models
the organizations base rate. In Sep Feat V2 the fea-
tures are reversed. V1 has the worst performance of
all five 2PL models, suggesting that modeling the
interaction between the recipient and organization
(o - ¢) is important. Org-Only and V2 have mixed
performance on accuracy, but V2 performs better
on macro-F1, suggesting that style influences the
recipients’ decisions to act.

Finally, we analyze the features with lowest and
highest magnitudes from /3 in the Org+Style model.

"Due to computational constraints, we omitted the raw text
model from this task.

180ne likely explanation for this performance is that audi-
ence is not independent of the speaker - by virtue of receiving
emails from this organization, recipients may also have similar
preferences.
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The highest weighted features include concreteness,
average-logical-appeal, word count and quality
75th percentile. The lowest weighted features (un-
likely to produce action) include valence, quality
mean, arousal and liwc-we. Similar to the Edito-
rials, the quality features are contradictory, sug-
gesting the connection between sentence level and
document level quality needs to be investigated
further. The logical appeal feature shows they are
particularly effective (the corresponding scores for
emotional and credibility appeals had smaller, neg-
ative weights).

7 Conclusion and Future Work

In this paper, we validate the social psychology
frameworks for persuasion using the IRT frame-
work to explicitly model the audience and the
speaker. Our approach lets us analyze how dif-
ferent audience members respond to the same argu-
ment, and we show that our representation implic-
itly learns latent audience features modeled explic-
itly by other models.

We empirically showed several additional in-
sights about persuasion. In the Debates and Ad-
vocacy tasks, the Popularity parameter improved
performance showing that certain stylistic elements
are universally appealing. In the Debates task, the
audiences’ embeddings aligned with their politi-
cal affiliation, showing that prior beliefs play a
strong role in their argument perception. While the
background information about the audiences was
available for these tasks, we did not need to model
it explicitly; as a result this setup allows us to make
predictions for audiences who do not report their
affiliation.

A potential negative side of the models is they
may learn latent characteristics of the speaker or



audience they may not be aware of or consider
private. However, all datasets studied in this paper
were either public and anonymous or private with
audiences who consented to analysis.

This study focused on simple representations to
show the viability of our method and provide for
explainability. To build on this foundation in future
work, we will: expand argument text representa-
tions with contextual word embeddings and stance
detection models; include higher dimensional em-
bedding for audience and item parameters (the IRT
models easily generalize to this set-up). These
improvements will allow us to better capture the
elements of persuasion, especially in a complex
case like Advocacy.
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A Model Training Details

The models described in section 6 were trained
as follows. In equation (6), c is set to le* for
all experiments. L2 loss is used for the Editorials
and Advocacy corpus and text model for Debates,
L1 is used for the remaining models in the Debates
corpus. Editorial models are trained for 200 epochs;
Debates for 25; Advocacy for 5. A learning rate
of 0.01 is used for Editorials and Debates; 0.005 is
used for Advocacy.

All results are reported over 5-fold cross-
validation, with the splits performed at an argument
level. All models are fit using the AdamW opti-
mizer. The o embedding initializations are drawn
from a uniform distribution of —0.5 to 0.5.
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Abstract

In this paper, we present an approach to im-
prove the robustness of BERT language models
against word substitution-based adversarial at-
tacks by leveraging adversarial perturbations
for self-supervised contrastive learning. We cre-
ate a word-level adversarial attack generating
hard positives on-the-fly as adversarial exam-
ples during contrastive learning. In contrast to
previous works, our method improves model
robustness without using any labeled data. Ex-
perimental results show that our method im-
proves robustness of BERT against four differ-
ent word substitution-based adversarial attacks,
and combining our method with adversarial
training gives higher robustness than adversar-
ial training alone. As our method improves the
robustness of BERT purely with unlabeled data,
it opens up the possibility of using large text
datasets to train robust language models against
word substitution-based adversarial attacks.

1 Introduction

Pretrained language models such as BERT (De-
vlin et al., 2019, inter alia) have had a tremendous
impact on many NLP tasks. However, several re-
searchers have demonstrated that these models are
vulnerable to adversarial attacks, which fool the
model by adding small perturbations to the model
input (Jia and Liang, 2017).

A prevailing method to improve model robust-
ness against adversarial attacks is adversarial train-
ing (Madry et al., 2018). In NLP, adversarial train-
ing in the input space has been challenging, as
existing natural language adversarial attacks are
too slow to generate adversarial examples on the
fly during training (Alzantot et al., 2018; Ebrahimi
et al., 2018; Ren et al., 2019). While some recent
works (Wang et al., 2021c¢) have started exploring
efficient input space adversarial training (e.g., for
text classification), scaling adversarial training to

*The first two authors contributed equally to this work.
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pretrained language models like BERT has been
challenging.

In this work, we in particular focus on improving
the robustness of BERT against word substitution-
based adversarial attacks. We propose an approach
to adversarially finetune BERT-like models without
using any labeled data. In order to achieve this, we
rely on self-supervised contrastive learning (Chen
et al., 2020). Self-supervised contrastive learning
has recently gained attention in the community and
contrastive learning has been used to learn better
representations for text classification (Giorgi et al.,
2021; Kim et al., 2021; Gao et al., 2021). How-
ever, how to use these methods to improve model
robustness remains an open question.

We combine self-supervised contrastive learning
with adversarial perturbations by using adversarial
attacks to generate hard positive examples for con-
trastive learning. To efficiently create adversarial
examples, we leverage an adversarial attack, that
is capable of generating multiple adversarial exam-
ples in parallel. The attack adversarially creates
hard positive examples for contrastive learning by
iteratively replacing words to follow the direction
of the contrastive loss (see fig. 2).

Experiments show that our method can improve
the robustness of pretrained language models with-
out looking at the labels (in other words, be-
fore finetuning). Additionally, by combining our
method with adversarial training, we are able to
obtain better robustness than conducting adversar-
ial training alone (see section 4.4). Our study of
the vector representations of clean examples and
their corresponding adversarial examples indeed
explains that our method improves model robust-
ness by pulling clean examples and adversarial ex-
amples closer.

Our contributions! in this paper are two-fold.
On the one hand, we improve the robustness of

"We will release our code at https://github.com/
LotusDYH/ssl_robust
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the pretrained language model BERT against word
substitution-based adversarial attacks by using self-
supervised contrastive learning with adversarial
perturbations (see section 3.2). On the other hand,
to facilitate adversarial self-supervised contrastive
learning, we create for BERT a word-level adver-
sarial attack to create hard positive examples. The
attack makes contrastive learning and adversarial
training with on-the-fly generated adversarial exam-
ples possible. Additionally, we also show that our
method is capable of using out-of-domain data to
improve model robustness (see table 2 and sec-
tion 4.4). This opens an opportunity for using
large-scale unlabeled data to train robust language
models against word substitution-based adversarial
attacks.

2 Related Work

2.1 Adversarial Training for NLP

Adversarial training improves model robustness by
augmenting clean examples with adversarial exam-
ples during training. Previous works on adversarial
training for natural language mainly focus on per-
turbations in the vector space, while actual adver-
sarial attacks create adversarial examples by chang-
ing natural language symbols. For example, Zhu
et al. (2020) and Liu et al. (2020) improve model
generalization ability by adversarial training on the
word embedding space, without mentioning model
robustness. However, they either ignore model ro-
bustness, or only test model robustness against the
adversarial dataset ANLI, without paying attention
to actual adversarial attacks. Other works conduct
adversarial training in the word space (Alzantot
etal., 2018; Ren et al., 2019). Still, they can only
do adversarial training on a limited number of pre-
generated adversarial examples due to the low effi-
ciency of the attacks. A recent work (Wang et al.,
2021c) conducts adversarial training efficiently in
the word space, but their method is limited to non-
contextualized models.

Apart from adversarial training, other supervised
learning methods (Dong et al., 2021; Zhou et al.,
2021; Wang et al., 2021a; Li and Qiu, 2020) have
also been proposed to improve robustness. How-
ever, these methods are supervised and are not com-
parable to our work.

Our work also differs from previous works in
natural language adversarial training. On the one
hand, as opposed to previous works, which are
supervised, we propose a self-supervised learning
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scheme to improve the robustness of pretrained
language models. On the other hand, while previ-
ous works mostly focus on adversarial training in
embedding space, we conduct efficient adversar-
ial training with pretrained language models at the
word level.

2.2 Contrastive Learning for NLP

Contrastive learning was first proposed in the im-
age domain to improve model performance in a
self-supervised fashion (He et al., 2020; Chen et al.,
2020). These methods bring representations of sim-
ilar examples closer and push representations of
dissimilar examples further apart. Additionally,
researchers also find that by adding adversarial
perturbations during contrastive learning, image
classification models become more robust against
adversarial attacks (Kim et al., 2020).

In NLP, previous works on contrastive learn-
ing mainly focus on improving model generaliza-
tion. Gunel et al. (2021) boost performance of
RoBERTa by adding supervised signals during fine-
tuning on downstream tasks. Lee et al. (2021)
tackle the “exposure bias" problem in text gen-
eration by adding adversarial signals during con-
trastive learning. Other similar works include Pan
et al. (2021), Giorgi et al. (2021), and Gao et al.
(2021). Although these works have demonstrated
the usefulness of contrastive learning in NLP appli-
cations, few have addressed the robustness of NLP
models, particularly pretrained language models,
against word substitution-based natural language
adversarial attacks.

Recently, Wang et al. (2021b) claimed that their
method improves model robustness against adver-
sarial sets. However, such sets are pre-generated
and are less challenging than adversarial exam-
ples generated on the fly by actual adversarial at-
tacks (Jin et al., 2020; Ren et al., 2019). In this
paper, we focus on improving the robustness of pre-
trained language models against word substitution-
based adversarial attacks. We present the details of
our method in section 3.

3 Methodology

In this section, we describe our method for self-
supervised contrastive learning with adversarial
perturbations. Specifically, section 3.1 gives the
background and motivation of our problem, and
section 3.2 describes the adversarial contrastive
learning framework. Finally, in section 3.3, we
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Figure 1: An illustration of our method. (a) For the original example X, we obtain the hard positive example X’ by
Geometry Attack for contrastive loss (see section 3.3). (b) Before contrastive learning, in the vector space, the clean
example z, the hard positive example 2/, and the adversarial example 2% are far from each other. Contrastive
learning pulls the clean example z, and the hard positive example 2’ together. (¢) After contrastive learning, the
clean example z, the hard positive example 2/, and the adversarial example z?%" are close. We omit MLP in this
figure for simplicity. We use a different color to show another example from the dataset. See section 3 for details.
Note that the adversarial example X 2% and its corresponding vector 2%% are not used in contrastive learning. We
nevertheless show X ¥ and z? for illustration purposes.

describe the adversarial attack used in contrastive By conducting the word substitution, the attack
learning. a(-) aims to fool the model with X%, Formally,
we have:

3.1 Background and Motivation

In this work, we focus on text classification tasksZ.

adv __ .
Let us assume that we have an example text X; = X = a(Xy)

{wy,ws, ..., wr} with L words and let y; be the hotv — f(Xxadv)

corresponding class label for X;. Our text classifi- jadv — o hqd”)

cation model consists of a BERT encoder f(-) and ! !

an MLP classification head c(-). where X0% = {wy, wy, ..., wi® . w} 1<

. . d
We obtain the vector representation h; € R k < L. Assuming the attack successfully fools the
of the example X; by feeding X; into the BERT model, we would have §; # @zqdv‘ The key assump-
encoder f(-). Then the MLP classificationhead ¢(-)  tion in our approach is that although X; and X 94

takes h; as input to give us the prediction. Formally,  are very similar to each other at the word level, it is

we have: possible that the encoder f embeds them in such a

way that the distance between their representations

h; and hgd” are large and the classification head

hi = f(Xi) c(-) predicts X; and X2 to be of different classes.

i = c(h;) Thus, the goal of our method is to obtain a robust

model, on which we have y; = y; and ¢; = yfdv.

where ; is the predicted label. We have §; = y; if | other words, the robust model defends an ad-

the model prediction is correct. versarial example X #% of the original example X

A word substitution-based adversarial attack a(-)  guccessfully, if the robust model gives the same cor-

takes an original example X; as input and generates  rect prediction on the original example X; and the

an adversarial example X /% by substituting the k- ,dversarial example X%, We use attack success

th original word wy, in X; with another word w¢™. 14z as the evaluation metric for model robustness.

To make the orignal example X;; and the adversarial  The attack success rate is defined as the rate of an

example X/ close in semantics, existing works  agtack successfully fooling the model on all test
often use synonyms as substitutions (Ren et al., examples.

2019; Morris et al., 2020). To obtain a robust model, we optimize the en-

Tugjlour formulation can also be extended to several coder such that h; and h?dv become similar to

other problems. each other. We achieve this goal by conducting
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self-supervised contrastive learning on the encoder
with adversarial perturbations, during which we use
an attack to create hard positive examples, maxi-
mizing the contrastive loss. The rest this section
gives the details of our method.

3.2 Self-Supervised Contrastive Learning
with Adversarial Perturbations

Following previous works on self-supervised con-
trastive learning (He et al., 2020; Chen et al., 2020),
we formulate our learning objectives as follows.
Consider we have a batch of n examples and X;
is the i-th input, we first obtain X/ = ¢(X;) as an
augmentation of X; by transformation ¢(-). We call
X, and X a pair of positive examples. All other
examples in the same batch are considered negative
examples of X; and X/.

To take advantage from using more negative ex-
amples, we use MoCo (He et al., 2020) as our
framework, in which we employ an encoder f,
for the positive examples, and another momentum
encoder fj, for the negative examples. We then
have:

hz’ = fq(Xz)
hi = fu(X;)

where h;, h; € R% are representations of X; and
X/, respectively. During training, f, and f, are
initialized the same. We update f; momentarily:

Op <~ m- -0+ (1—m)-6,

where 0, and 0, denote the parameters of f; and
fq- respectively. We then have:

Zi = gq(hi)
zz/' = gq(h/i)

where z;, 2z, € R, g4(-) and gi(-) are MLPs with
one hidden layer of sigmoid activation, respec-
tively. Following Chen et al. (2020), we conduct
contrastive learning on z instead of h to prevent
the contrastive learning objective from removing
information useful for downstream tasks. After
contrastive learning, we use h as the sentence rep-
resentation for downstream tasks.

Additionally, we also maintain a dynamic first-
in-first-out queue for the negative examples. Dur-
ing training, before computing contrastive loss at
the end of each batch, all encoded examples of the
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current batch are enqueued into the queue, and the
oldest examples are dequeued simultaneously.

In our experiments, we use the attack described
in section 3.3 or back-translation (Zhu et al., 2015)
for augmentation ¢(-). Assume that we have an
encoded example z; and the encoded examples in
the queue are {zo, 21, -, 2Q—1}, where @ is the
size of the queue. Among the encoded examples in
the queue, one of them is z], which forms a pair of
positive examples with z;. We use contrastive loss
to maximize the similarity between positive exam-
ples, while minimizing the similarity of negative
examples. We then have:

exp(sim(z;, 27) /7)

¢
Zszo exp(sim(z;, zx)/7)

— log ey

where 7 is the temperature parameter, sim(-, -) is
the similarity function, and () is the size of the dy-
namic queue. In this paper, we compute similarity
by dot product as in MoCo.

By optimizing eq. (1), the goal is to maximize
the similarity of representations between similar
(positive) pairs of examples while minimizing the
similarity of representations between dissimilar
(negative) examples. We use the geometry-inspired
attack described in section 3.3 as the transforma-
tion ¢(+) to create pairs of examples that are similar
on the word level but at the same time are distant
from each other in the representation space.

We illustrate our method in fig. 1. In fig. 1 (b)
and (c), by conducting contrastive learning and
using the Geometry Attack generated adversarial
examples as hard positives, the vector representa-
tions obtained from the model become invariant to
the adversarial attacks.

| Ziy

1Py, |

[P, |l

Figure 2: An illustration of one iteration in Geometry
Attack for contrastive loss. See section 3.3 for details.

3.3 Creating Hard Positive Examples by
Geometry Attack

As mentioned in section 3.2, we use an attack as
the transformation ¢(-) during contrastive learning.



We describe how this attack creates adversarial ex-
amples for contrastive loss during self-supervised
contrastive learning (see fig. 1 (b)) in this subsec-
tion.

Inspired by Meng and Wattenhofer (2020), who
leverage geometry of representations to generate
natural language adversarial examples for text clas-
sification tasks, we also use the geometry of pre-
trained representations to create adversarial exam-
ples for contrastive loss. The created adversarial
examples are used as positive examples of the origi-
nal examples in our contrastive learning framework,
and at the same time are created to maximize the
contrastive loss. Hence, we refer to adversarial
examples created by the attack as hard positive
examples.

The intuition of our attack is that we repeat-
edly replace words in the original texts such that
in each iteration, the replaced word increases the
contrastive loss as much as possible. To be specific,
consider an example X;, we then have:

1. Determine Direction for Sentence Vector Com-
pute the gradients of ¢; with respect to z;. In this
step, we find the direction we should move from
z; to increase the contrastive loss ¢;. We have the
gradient vector v,, = V¢;.

Choose Original Word to be Replaced Com-
pute the gradients of ¢; with respect to input word
embeddings of X;. For words tokenized into mul-
tiple tokens, we take the average of the gradients
of the tokens. In this step, we find the word w;
which has the most influence in computing ¢;.
Specifically, assuming we have L words, then we
choose t = argmax{||g1l [lgall; - -, llgzlI},
where gy, is the gradients of [; with respect to the
embeddings of word wy, 1 < k < L.

. Generate Candidate Set Suppose we choose
the word w; in step 2. In this step, we use a pre-
trained BERT to choose the most probable can-
didates w; to replace it in the original text. We
have the candidates set = {wy,, wy,, -+ , Wi, }-
Following Jin et al. (2020), we filter out seman-
tically different words from the candidate set by
discarding candidate words of which the cosine
similarity of their embeddings between the em-
beddings of w; is below a threshold €. We set
the threshold € = 0.5 and use counter-fitted word
embeddings (Mrksic et al., 2016) to compute the
cosine similarity.

Choose Replacement Word Replace w; with
words in the candidates set, resulting in text vec-
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tors {zi,, Ziy, - -+ , Zip ;. We compute delta vec-
tor vy, < 2z, — 2. The projection of 74, onto v,

[loz; ]l -
m < argmax; ||p;;||. In other words, wy,, re-
sults in the largest projection p;,, onto v, .

. Repetition Replace w; with w;,, in X;, then we
have z; < z; . Repeat step 1-4 for N iterations,
where N is a hyperparameter of our method. We
expect ¢; to increase in each iteration.

Figure 2 illustrates an iteration of our attack, in
which we have two options to choose from the can-
didate set. This attack can be easily implemented in
a batched fashion, making it possible for us to gen-
erate adversarial examples on the fly during training.
Furthermore, our efficient implementation makes it
possible to conduct contrastive learning with adver-
sarial perturbations as well as adversarial training
with adversarial examples generated on the fly. We
give a speed comparison of our attack and other
attacks in appendix D. We also give pseudocode
of the attack in algorithm 1 of appendix A.

is: Di; < We select word wy,, , where

4 Experiments

4.1 Datasets and Evaluation Metrics

We test how our method improves model robust-
ness on four text classification datasets: AG’s
News, Yelp, IMDB, and DBpedia (See appendix B
for details).

We report the attack success rate and the replace-
ment rate of the attacks as the evaluation metrics.
Following Alzantot et al. (2018); Ebrahimi et al.
(2018), to prevent the model accuracy on clean ex-
amples from confounding the results, we define the
success rate of an attack on all correctly classified
examples in the test set. Lower success rates indi-
cate higher robustness. The replacement rate refers
to the percent of original words replaced in the
clean example. Higher replacement rates indicate
that the attack needs to replace more words to fool
the model, and thus mean that the model is more
robust.

4.2 Attacks for Evaluating Robustness

We use four word substitution-based adversarial
attacks to evaluate the model robustness.
Geometry Attack We use the same attack de-
scribed in section 3.3 to generate adversarial exam-
ples for sentence classification tasks by replacing
contrastive loss with cross-entropy classification
loss. We set the maximum number of replaced
words to 20.



TextFooler, PWWS, and BAE-R We use the de-
fault implementations from TextAttack (Morris
et al., 2020).

All these attacks will give up and terminate once
the maximum number of replaced words (some-
times also called perturbation budget) is reached.

4.3 Experimental Design

We have the following hypotheses for our method:

H1: Self-supervised contrastive learning improves
model robustness against adversarial attacks. More-
over, using adversarial perturbations during con-
trastive learning further improves robustness.

To validate this hypothesis, we set three different
pretraining schemes:

BTCL: Pretraining with back-translation as the
transformation ¢(-) for self-supervised contrastive
learning.

ADCL: Pretraining with Geometry Attack for con-
trastive loss (see section 3.3) as transformation #(-)
for self-supervised contrastive learning.

NP: Apart from the above two settings, we also add
a No Pretraining baseline to understand the general
effectiveness of contrastive learning.

H2: Combining self-supervised contrastive learn-
ing with adversarial training gives higher robust-
ness than conducting adversarial training alone.

We use different finetune strategies to understand
how adding adversarial training to our method af-
fects model robustness. We have two settings:
FTC: We finetune the pretrained model on the clean
examples of the corresponding downstream dataset.
ADV: We conduct adversarial training by leverag-
ing supervisedly generated adversarial examples.
Note that our adversarial training is different from
previous works (Ren et al., 2019; Alzantot et al.,
2018), which merely finetune the model on a fixed
number of pre-generated adversarial examples. In-
stead, our adversarial training scheme is similar
to Madry et al. (2018), where the model is fine-
tuned on clean examples and adversarial examples
generated on the fly during each batch of training.

We use Geometry Attack for adversarial train-
ing as the remaining three attacks are not efficient
enough to generate adversarial examples on the fly
(see appendix D for details).

H3: Our contrastive learning method is capable
of using out-of-domain data to improve the model
robustness.

While in HI and H2, we use the same dataset for
pretraining and finetuning, we want to test how our
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method can leverage out-of-domain data. Hence,
we have two additional experimental settings:
In-Domain: We use the same dataset during con-
trastive learning and finetuning.
Out-of-Domain: We use different datasets for
contrastive learning and finetuning.

H4: By optimizing eq. (1), our method pulls the
representations of the clean samples and their cor-
responding hard positive examples closer in the
vector space while pushing other different exam-
ples further. In this way, the representations of
clean examples and their adversarial examples are
also closer in the vector space.

We validate this hypothesis by conducting a vector
space study. See section 4.4 for details.

Note that to avoid confusing adversarial exam-
ples generated during contrastive learning and ad-
versarial examples generated during finetuning,
we refer to the former as hard positive examples
(see section 3.3).

4.4 Results

Table 1 shows the experimental results for validat-
ing H1 and H2. For each dataset, when evaluating
the model robustness, we use the same perturbation
budget across different settings. Note that although
the replacement rates vary across different settings
of the same dataset, the perturbation budget for the
same attack is the same in these settings. By using
the same perturbation budget, we ensure that the
success rates of the attacks provide us with a fair
evaluation of the robustness of the model (Wang
et al., 2021c; Ren et al., 2019).
H1: To validate H1, we focus on rows with the
FTC setting during finetuning. We can observe that
models without any contrastive pretraining (NP)
are the most vulnerable to adversarial attacks. For
example, the success rate of the Geometry Attack
for AG’s News dataset is 86.2% for the NP model.
In contrast, for BTCL and ADCL, the success rate of
the Geometry Attack is at least 5.6% lower than this
setting. This shows that self-supervised contrastive
learning does improve model robustness.
Additionally, we can also see from table 1 that
ADCL improves the model robustness more than
BTCL. For example, in the IMDB dataset, the
model pretrained with ADCL is 9.1% more robust
than the model pretrained with BTCL (93.3% —
84.2%), showing that using adversarial pertur-
bations during contrastive learning further im-
proves model robustness against adversarial at-



Dataset Pretrain Finetune Acc. (%) Success Rate (%) | Replaced (%) T

Geometry TextFooler PWWS BAE-R  Geometry TextFooler PWWS BAE-R

. FTC 94.2 86.2 87.6 63.6 17.9 18.6 25.7 20.9 7.4

ADV 94.4 20.7 25.1 26.1 10.7 20.5 29.3 223 7.7

AG BTCL FTC 94.4 80.6 84.6 63.1 17.7 18.1 24.6 20.9 7.5

AbCL FTC 94.3 76.5 0.7 55.9 14.1 19.1 26.7 22.6 7.5

ADV 94.4 18.7 235 24.7 9.7 20.6 29.3 22.2 7.2

. FTC 97.1 94.6 94.3 97.0 42.1 10.6 10.4 7.1 6.7

ADV 96.2 38.8 524 62.7 22.2 12.8 17.3 113 8.8

Yelp BTCL FTC 97.1 92.3 91.6 4.8 39.2 11.0 10.1 7.7 6.9

ADCL FTC 97.0 83.6 88.2 91.1 37.8 10.4 10.5 7.4 6.9

ADV 96.1 35.6 50.1 61.0 21.0 134 17.1 11.2 8.3

. FTC 92.3 98.7 99.0 99.2 54.0 3.5 6.5 4.3 3.0

ADV 92.0 51.4 75.3 79.1 35.1 7.4 12.7 9.3 3.6

IMDB ., FTC 92.5 93.3 96.6 95.1 52.0 45 7.4 44 3.3

AbCL FTC 92.4 84.2 87.8 87.8 48.0 3.7 8.7 5.1 2.3

ADV 91.9 48.7 74.4 77.6 31.8 8.1 12.4 9.1 3.5

. FTC 99.2 79.6 79.3 46.7 14.3 17.8 23.2 16.2 13.3

ADV 99.0 13.9 16.5 17.7 10.9 21.6 28.2 18.9 14.1

DBpedia ~ cp, FTC 99.2 774 76.8 45.1 13.0 18.9 22.8 18.1 13.1

ADCL FTC 99.1 73.6 74.5 42.6 11.6 18.2 22.9 17.6 12.8

ADV 99.0 124 14.8 16.2 10.1 20.1 28.6 18.2 13.8

Table 1: Experimental results for Hl and H2. In-Domain setting is used. We bold the best results, while the

second best is in italic.

tacks. Hence, we do not combine BTCL with ADV
in later experiments for simplicity.

To further understand how contrastive learning
improves the model robustness, we study the trans-
ferability of the adversarial examples between mod-
els without any contrastive pretraining (NP) and the
models pretrained with ADCL. To be specific, the
models are first pretrained using either NP or ADCL,
and then finetuned on clean examples (FTC). Then,
we use a NP model to generate adversarial exam-
ples on the test set of each dataset, and then test
the corresponding model pretrained with ADCL on
these adversarial examples. And vice versa.

Table 3 shows the results. We can see that adver-
sarial examples generated by models pretrained
with ADCL have much higher success rates on
models without any contrastive pretraining (NP).
For example, for the AG’s News dataset, the suc-
cess rates increase by 32.1%, 35.3%, 33.8%, and
22.1% for Geometry Attack, TextFooler, BAE-R,
and PWWS, respectively. This demonstrates that
by self-supervised contrastive learning with adver-
sarial perturbations, the models become more ro-
bust against attacks.

H2: To validate H2, we compare two settings of
NP + ADV and ADCL + ADV. We note that when
compared with conducting adversarial training
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alone (NP + ADV), combining our self-supervised
contrastive learning method with adversarial train-
ing (ADCL + ADV) constantly results in higher ro-
bustness. In other words, the adversarial attacks
have lower success rates and higher replacement
rate in ADCL + ADV models than in NP + ADV
models. For instance, for the IMDB dataset, the
ADCL + ADV model is 2.7% more robust than the
NP + ADV model, when both models are tested
against the Geometry Attack (Success rates of Ge-
ometry attack: ADCL + ADV: 48.7%, NP + ADV:
51.4%; Replacement rates: ADCL + ADV: 8.1%,
NP + ADV: 7.4%).

Note that when test NP + ADV models and
ADCL + ADV models against the other three ad-
versarial attacks, ADCL + ADV models do not show
an advantage over NP 4+ ADV models in terms of re-
placement rates, despite that ADCL + ADV models
still constantly make lower success rates against
the adversarial attacks. We argue that this is be-
cause we use the Geometry Attack for adversarial
training during finetuning, and the adversarial ex-
amples from the Geometry Attack might not fully
match the distribution from the other attacks. Nev-
ertheless, we can still conclude that ADCL + ADV
models are more robust than NP + ADV models.

Our experiments also show that during con-



Success Rate (%) |

Replaced (%) 1

Dataset Domain Pretrain Acc. (%)
Geometry TextFooler PWWS  BAE-R  Geometry TextFooler PWWS  BAE-R
- NP 94.2 86.2 87.6 63.6 17.9 18.6 25.7 20.9 7.4
AG Tn-Domain BTCL 94.4 80.6 84.6 63.1 17.7 18.1 24.6 20.9 7.5
* ADCL 94.3 76.9 80.7 55.9 14.1 19.1 26.7 22.6 7.5
Out-of-Domain  ADCL 94.1 79.2 84.0 60.4 16.3 18.7 25.9 21.9 7.5
- NP 92.3 98.7 99.0 99.2 54.0 3.5 6.5 4.3 3.0
IMDB In-b , BTCL 92.5 93.3 96.6 95.1 52.0 4.5 7.4 4.4 33
prbomatn ADCL 92.4 84.2 87.8 87.8 48.0 3.7 8.7 5.1 2.3
Out-of-Domain  ADCL 92.5 92.3 95.7 94.5 50.1 4.4 8.6 53 3.1

Table 2: Comparison of Out—of-Domain with In-Domain. We use the DBpedia dataset as the out-of-domain
dataset for AG’s News and IMDB. Models are finetuned on clean examples after pretraining (FTC). Best results are

bolded, while the second best are in italic.

Dataset Attack Success Rate (%)
NP — ADCL ADCL — NP

Geometry 30.2 62.3

|44

AG TextFooler 19.7 55.0

BAE-R 26.4 60.2

PWWS 28.3 50.4

Geometry 30.1 36.4

Yel TextFooler 22.4 28.0

P BAER 37.4 415

PWWS 34.8 36.3

Geometry 38.2 41.4

TextFooler 22.1 25.2

IMDB BAE-R 28.9 30.8

PWWS 24.7 26.0

Geometry 34.6 52.2

. TextFooler 27.5 42.8

DBpedia 5,k R 32.5 55.8

PWWS 55.3 58.8

Table 3: Transferability of adversarial examples. The
models are pretrained under either NP or ADCL, and
then finetuned on clean examples. NP — ADCL: Gener-
ate adversarial examples with the model pretrained with
NP, then test the model pretrained with ADCL on these
adversarial examples. Same applies to ADCL — NP.

trastive learning, the queue size (see section 3.2)
has an impact on the final performance. We give
the detailed analysis in appendix C.

H3: For the Out-of-Domain setting, we use
the DBpedia dataset as the out-of-domain dataset
for the AG’s News and IMDB datasets, mainly be-
cause (1) Computational limits: While using larger
datasets such as BookCorpus or Wikipedia might
be more useful, conducting self-supervised con-
trastive learning on these datasets exceeds the limits
of our computational infrastructure; (2) The DBpe-
dia dataset is several times larger than AG’s News
and IMDB. This should give us a glimpse of what
it looks like when we scale self-supervised con-
trastive learning with adversarial perturbations to
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even larger out-of-domain datasets; (3) The DBpe-
dia dataset (topic classification on Wikipedia) has
a different task and domain compared to the AG’s
News dataset (news classification from a newspa-
per) and IMDB dataset (sentiment classification
on movie reviews). This discrepancy allows us to
understand how out-of-domain datasets could help.

Table 2 shows our results. We can see
that models pretrained with ADCL under the
Out-of-Domain setting are more robust than
models without any pretraining at all (NP). This
shows that our method can improve model robust-
ness using out-of-domain data. For instance, for
the IMDB dataset, the success rate of TextFooler
decreases from 98.7% for FT models to 92.3% for
Out-of-Domain ADCL models. This shows that
our method can improve the model robustness even
if the dataset used for contrastive learning is from
a completely different domain. Note that in table 2,
after pretraining, we finetune the model on clean
examples (FTC).

We also notice that models pretrained with ADCL
under the Out —of-Domain setting are not as ro-
bust as models pretrained with ADCL under the
In-Domain setting. This indicates we might need
to use much larger unlabeled raw datasets to obtain
more improvements.

H4: To validate this hypothesis, we study the vector
representations of M/ = 1000 clean examples of
the AG’s News dataset and their corresponding
adversarial examples. We obtain the adversarial
examples by attacking a NP 4 FTC model.

Let v, vo...vy and v}, v)...v), be the vector
representations of the clean examples and corre-
sponding adversarial samples, respectively. For
each setting, we evaluate three metrics:

* Average distance d,,s between each of the posi-
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Figure 3: t-SNE plot of the vector representations of clean examples and adversarial examples from the AG’s
News dataset. Markers of the same color indicate a pair of clean example (o) and adversarial example (A).
Check section 4.4 for the evaluation settings. The ranges of x-axis and y-axis are normalized to [0, 1]. We connect
each clean example by a dotted line to its corresponding adversarial example.

Dataset Distance (dpos/dneg/9)

NP + FTC ADCL 4+ FTC NP + ADV ADCL + ADV

AG  24/39/15 18/4.0/22 0.7/4.1/34 0.7/4.4/3.7
Yelp  3.5/3.7/02 2.9/4.0/1.1 0.7/3.2/2.5 0.5/3.4/2.9
IMDB  3.0/3.7/0.7 2.3/3.8/1.5 0.6/3.4/2.8 0.6/3.8/3.2
DBpedia 2.8/4.8/2.0 2.3/5.1/2.8 0.4/4.9/45 0.4/5.2/4.8

Table 4: Vector space study. For each setting, we
evaluate three metrics: (a) Average distance between
positive pairs; (b) Average distance between negative
pairs; (c) Difference between (a) and (b).

tive pairs v; and vg, where 1 < ¢ < M. Then we
have:

1 M
e = 173 (o)
=1

where d(-,-) denotes the distance between two
vectors.
* Average distance d,,., between negative pairs:

MM ]l#j(d('vi,'vj) +d('vi,v;)

ey =32 2(M —1)

i=1 j=1

* Difference 0 = djcq — dpos between (a) and (b).
Furthermore, we evaluate the above metrics un-

der the following settings:

* NP + FTC: Finetune on clean examples.

* ADCL + FTC: First do ADCL pretraining, and
then finetune on clean examples.

* NP + ADV: Finetune with adversarial training.

* ADCL + ADV: First do ADCL pretraining. Then
finetune with adversarial training.

Table 4 shows the results. We can see that our

method (1) increases the distance between negative

pairs in all settings; (2) decreases the distance be-

tween positive pairs in NP+ FTC and ADCL+FTC
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models, while the distances between positive pairs
barely change in NP 4+ ADV and ADCL + ADV mod-
els; (3) increases ¢ in all settings. The above ob-
servations validate H4 in section 4.3, and further
explain that our method achieves higher robustness
by pushing vector representations of clean exam-
ples and adversarial examples closer.

In fig. 3, we further give qualitative analysis on
the distances between clean examples and adversar-
ial examples of the AG’s News dataset by showing
the t-SNE plot. We can see from the plot that the
distances between the clean examples and the corre-
sponding adversarial examples are closer when we
apply ADCL pretraining, and that combining ADCL
with ADV gives the smallest distance between su-
pervised adversarial examples. Additional plots of
other datasets are available in appendix H.

5 Conclusion and Future Work

In this paper, we improve the robustness of pre-
trained language models against word substitution-
based adversarial attacks by using self-supervised
contrastive learning with adversarial perturbations.
Our method is different from previous works as we
can improve model robustness without accessing
annotated labels. Furthermore, we also conduct
word-level adversarial training on BERT with on-
the-fly generated adversarial examples. Our adver-
sarial training is different from previous works in
that (1) it is on the word level; (2) we generate ad-
versarial examples on the fly, instead of generating
a fixed adversarial set beforehand. Experiments
show that our method improves model robustness.
We find that combining our method with adversar-
ial training results in better robustness than con-
ducting adversarial training alone. In the future,
we plan to scale our method to even larger out-of-
domain datasets.



Ethical Considerations

To the best of our knowledge, the data used in
our work does not contain sensitive information.
Although our models are evaluated on academic
datasets in this paper, they could also be used in
sensitive contexts, e.g. healthcare or legal scenarios.
It is essential that necessary anonymization and
robustness evaluation is undertaken before using
our models in these settings.
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A Geometry Attack for Contrastive Loss

Algorithm 1 is the pseudocode of our Geometry
Attack for contrastive loss. Refer to Section 3.3 for
more details.

B Datasets
Dataset  Labels AvgLen Train Test
AG’s News 4 44 120K 7.6K
IMDB 2 292 25K 25K
DBPedia 14 67 560K 70K
Yelp 2 177 560K 38K

Table 5: Statistics of the datasets.

The statistics of each dataset are shown in Ta-
ble 5. In our work, the maximum sequence length
is set to 128 for AG’s News and DBpedia, 256
for Yelp, and 512 for IMDB. To save time during
evaluating the model robustness against attacks,
we randomly select a part of the test examples in
each dataset for evaluation. Specifically, we select
1,000 samples from IMDB, 2,000 samples from
Yelp, and 5,000 samples from DBpedia. We use
all 7,600 samples from the AG’s News test set for
evaluation.

AG’s News® Topic classification dataset with four
types of news articles: World, Sports, Business and
Science/Technology.

IMDB (Maas et al., 2011) Binary sentiment clas-
sification dataset on positive and negative movie
reviews.

Yelp Yelp review dataset for binary sentiment clas-
sification. Following Zhang et al. (2015), reviews
with star 1 and 2 are considered negative, and re-
views with star 3 and 4 are considered positive.

DBpedia (Zhang et al., 2015) Topic classification
dataset with 14 non-overlapping classes. Both con-
tent and title fields are used in our work.

C Effect of Queue Size

We conduct additional experiments to study the
effect of queue size. We use a queue size of
8192, 16384, 32768, and 65536 under the setting
of ADCL+FT for the AG’s News dataset. As is
shown in Table 6, a larger queue size generally
helps improve the model robustness. However, we
also notice that when the queue size is too large

‘http://groups.di.unipi.it/~gulli/AG_
corpus_of_news_articles.html

Queue Size Original Acc. (%) Success (%) Replaced (%)
Vanilla 94.2 86.2 18.6
8192 94.4 7.8 18.9
16384 94.3 76.9 18.7
32768 94.3 76.5 19.1
65536 94.4 76.7 19.3

Table 6: Effect of queue size. We use the Geometry
Attack to evaluate the robustness of each model. The
FT model is finetuned without contrastive learning.

(65536), the model robustness starts to decrease.
We argue that this is because a too large queue size
results in less frequent queue updates, which makes
the vectors in the queue stale.

D Speed of Different Attacks

We show in Table 7 the average number of seconds
each attack needs for one example. We obtain
the average time by attacking 1000 examples and
then taking the average. We can observe that the
Geometry attack is at least four times faster than
TextFooler, and 4 to 10 times faster than PWWS
and BAE-R.

Attack  AG’sNews IMDB DBpedia Yelp
Geometry 0.44 2.02 0.69 1.16
TextFooler 2.48 8.69 2.89 4.86

PWWS 6.29 21.86 2.52 10.27

BAE-R 5.37 24.10 7.74 16.03

Table 7: Average number of seconds each attack needs
for an example.

E Adversarial Training with
Pre-generated Examples

We compare two different methods for adversarial
training:

* Pre-generated We pre-generate for each ex-
ample in the training set an adversarial exam-
ple. We then augment the original training
set with the adversarial examples. Finally, the
model is finetuned on the augmented dataset.

* On-the-fly This setting is the same as ADV
in Table 1, where we generate adverarial ex-
amples on the fly for each mini-batch during
training.

Table 8 shows the results on the AG’s News
dataset. We can see that on all four attacks, adver-
sarial training with on-the-fly generated adversarial
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Algorithm 1 Geometry Attack for Contrastive Loss

1: Input: Example X; = {wy, wy, ..
2: Output: Adversarial example X/
3: Initialize z; < g(f(X;))

4: foriter=1to N do

.,wr,}, encoder f and MLP g

5:  calculate ¢; using Equation 1
6: Uy, VZZEZ
7. E < BertEmbeddings(X}) = {ej,es,...,eL}
8: G%VE&:{gl,gg,...,gL}
9: ¢+ argmaxy ||g¢|
10 C + BertForMaskedIM({wy, - ,wi—1, [MASK], w1, -+ ,wr})
11:  C <« Filter(C)// construct candidates set C' = {wy,, wy,, - -, wy, }; filter using counter-fitted
embeddings
12:  for each wy; € C,1<j<Tdo
13: Xi]. %{wl,--- y Wi—1, Wi, Wi41, " ,wL}
14: Zj; g(f(XzJ))
15: Ti; £ Zi; — 2
7V,
16: Pi; — Hi’izznl
17:  end for
18:  m <+ argmax; ||p;, ||
19: X; + Xl'm
20: Zi & 24,
21: end for
2: X!+ X;

23: return X;

Success Rate / Replaced (%)

Dataset Geometry TextFooler PWWS  BAE-R
Pre-generated 55.3/17.1  59.4/22.6  42.0/17.4 16.5/1.3
On-the-fly 20.7/20.5  25.1/29.3  26.1/22.3  10.7/1.7

Table 8: Comparison between adversarial training with
pre-generated adversarial examples and on-the-fly gen-
erated adversarial examples.

examples gives higher robustness than adversarial
training with pre-generated adversarial examples.

F Implementation Details

In our paper, we use PyTorch Lightning* and Hug-
gingFace Transformers’ in our implementation.
We use BERT as the encoder f(-), and the rep-
resentation of the [CLS] symbol in the last layer
is used for h. ¢g(-) is a two-layer MLP, of which
the output size ¢ is 128. g(-) uses Tanh as activa-
tion function in the output layer. We use FP16 in
training step to reduce GPU memory usage, and

*https://www.pytorchlightning.ai/
Shttps://huggingface.co/transformers/

99

use FusedAdam from DeepSpeed® as the optimizer.
We enable DeepSpeed ZeRO Stage 2 to further
speed up training. We conduct all our experiments
on 8 RTX TITAN GPUs.

Contrastive learning For Geometry Attack for
contrastive loss, to reach a balance between attack
success rate and efficiency, the maximum num-
ber of iterations K is set to 10 for AG’s News,
DBpedia, and Yelp, and 15 for IMDB dataset.
We do not perturb words that were already per-
turbed in previous iterations. For an example X; =
{wy,we, ..., wr}, at most min{K,0.2- L} words
can be perturbed. For each word wy,1 <t < L,
the upper limit of the candidate set size 7' is set to
25. Due to the various maximum lengths in down-
stream datasets and GPU memory limits, we use
different batch sizes for different datasets. During
contrastive learning, the batch size is set to 1024
for AG’s News and DBpedia, 448 for Yelp, and
192 for IMDB.

Fine-tuning During finetuning, we train the model
for two epochs for AG’s News and DBpedia, 3 for

*https://www.deepspeed.ai/
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Yelp, and 4 for IMDB. The learning rate is set to
2e — b and is adjusted using linear scheduling.

Adversarial training For adversarial training, the
number of training epochs is set to 3 with an
additional first epoch of finetuning on clean ex-
amples. The adversarial examples are generated
on the fly in each batch during training. For the
Geometry Attack in adversarial training, at most
min{K,0.4-1len(X;)} words can be perturbed in
an example. The upper limit of the candidate set
size is set to 50.

Back Translation We use pretrained trans-
lation  models opus-mt-en-roa  and
opus—mt-roa—-en from Helsinki-NLP to
generate one translation for each example.

G Hard Positive Examples from
Geometry Attack for Contrastive Loss

In Table 9, we show hard positive examples gener-
ated by our Geometry Attack for contrastive loss
from the AG’s News dataset.

Original Zurich employees plead guilty in probe new york
(reuters) - two senior insurance underwriters at zurich
american insurance co pleaded guilty on tuesday to mis-
demeanors related to bid-rigging in the insurance mar-
ket.

Zurich employees plead guilty in probe new york
(reuters) - two senior insurance agents at zurich ameri-
can insurance co testified guilty on tuesday to violations
related to bid-rigging in the insurance market.

Adversarial

Original Black watch troops move into position the first units
of a black watch battlegroup are due to arrive today
in their new positions south of baghdad as tony blair
indicated that more british troops may replace them in
the american - controlled zone before the end of the

year.

Adversarial Black watch troops move into place the first units of a
black watch operation are due to arrive today in their new
positions south of baghdad as tony blair indicated that
more british troops may replace them in the american -

controlled zone before the end of the year.

Table 9: Hard positive examples generated by Geometry
Attack for contrastive loss. Blue words in the original
examples are replaced by red words in the adversarial
examples.

H Additional t-SNE plots

We give t-SNE plots of the vector representations
of clean examples and adversarial examples from
Yelp, IMDB and DBpedia in fig. 4, fig. 5 and fig. 6,
respectively.
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Figure 4: t-SNE plot of the vector representations of
clean examples and adversarial examples from the Yelp
dataset.
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Figure 5: t-SNE plot of the vector representations
of clean examples and adversarial examples from the
IMDB dataset.

Figure 6: t-SNE plot of the vector representations of
clean examples and adversarial examples from the DB-
pedia dataset.
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Abstract

Question generation (QGen) models are often
evaluated with standardized NLG metrics that
are based on n-gram overlap. In this paper, we
measure whether these metric improvements
translate to gains in a practical setting, focus-
ing on the use case of helping teachers auto-
mate the generation of reading comprehension
quizzes. In our study, teachers building a quiz
receive question suggestions, which they can
either accept or refuse with a reason. Even
though we find that recent progress in QGen
leads to a significant increase in question accep-
tance rates, there is still large room for improve-
ment, with the best model having only 68.4% of
its questions accepted by the ten teachers who
participated in our study. We then leverage the
annotations we collected to analyze standard
NLG metrics and find that model performance
has reached projected upper-bounds, suggest-
ing new automatic metrics are needed to guide
QGen research forward.

1 Introduction

Question generation is a text generation task with
practical applications in several settings such as
asking clarification questions in dialogue systems
(Braslavski et al., 2017), recommending questions
during a reading session (Laban et al., 2020),
or other educational scenarios such as creating
quizzes to emphasize core concepts and engage
learners through interaction (Kurdi et al., 2020;
Steuer et al., 2021).

The most common automatic evaluation of
QGen borrows from other NLG tasks, using met-
rics such as BLEU (Papineni et al., 2002) to
compare system-generated questions with held-
out human-written references in terms of n-gram
overlap (Amidei et al., 2018). Although they are
straightforward to compute, these metrics have
been shown to correlate weakly with human opin-
ion in NLG (Gatt and Krahmer, 2018), do not pro-
vide a ceiling performance, or insights into the

Which questions would you include in a quiz about
the Statue of Liberty?

Reading material:

The copper statue, [...], was designed by
French sculptor Frédéric Auguste Bartholdi and its
metal framework was built by Gustave Eiffel.

Teacher selects quiz concept:
A" Gustave Eiffel

Teacher picks questions added to quiz
and selects error category otherwise:

GpT2-base Who built the bronze statue of
the Statue of Liberty?

pistil-GPT2 Who design the copper satus?

Disfluent

Off Target

BART-L  Who built the framework? Wrong Context

Who built the metal framework of
the Statue of Liberty?

MixQG-L No Error

Figure 1: Illustration of the Quiz Design Task. For
a topic, a teacher selects a quiz concept, picks which
candidate questions from various models to include in
the quiz, and gives a reason to reject others.

types of errors prevalent in generated questions.

Some prior work has proposed automatic metrics
that are specific to QGen, however the metrics are
either rule-based (Nema and Khapra, 2018), match-
ing for the presence of certain elements in gen-
erated question with limited flexibility, or shown
not be beneficial when used to optimize a QGen
model through Reinforcement Learning, according
to human raters (Hosking and Riedel, 2019).

In this paper, we propose to evaluate QGen with
the help of teachers through the Quiz Design Task,
illustrated in Figure 1. Human teachers are tasked
with creating reading comprehension quizzes for
hypothetical students, and QGen models interac-
tively suggest quiz questions which can be accepted
or rejected by the teachers. Model performance is
tied to the acceptance rate of each model, in other
words, the best QGen model is the one with the
largest proportion of accepted questions.

There are several definitions for QGen, from clar-
ification question generation (Rao and Daumé III,
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(Paragraph, Target Answer, Question)

Wrong Tense
Awkward Phrasing
Not a Question
Phrasing

Is question fluent?
Disfluent

o Unanswerable

i %
Is question on target? « Other answer span

o Too specific
Is question suitable o Reveals answer
in context? « Inconsistent
L]

Context Not specific enough

Acceptable Question

Figure 2: Hierarchical categorization of errors for
question generation. Three error categories (Disfluent,
Off Target, Wrong Context) each with several subtypes.

2018), to knowledge-graph QGen (Indurthi et al.,
2017), multiple-choice distractor generation (Araki
et al., 2016) and answer-aware QGen (Sun et al.,
2018), in which given a context paragraph and a
target answer, the model must generate a question
answered by the target. We select the answer-aware
QGen setting for our evaluation, as it allows for
teachers to guide the QGen model by selecting de-
sired concepts to include in the quiz by selecting
target answers.

Our contribution is threefold: 1) we propose the
Quiz Design Task, a conceptually simple task that
allows us to evaluate QGen models in the setting
of helping teachers design quizzes. 2) We collect
3,164 human-annotated samples from running the
Quiz Design Task with 10 teachers. We find that ac-
ceptance rates of generated questions vary widely
from as low as 30% for small pre-trained Trans-
former models, up to 68% for the best performing
model we evaluated. 3) We carefully analyze an-
notator agreement levels and compare between our
results and n-gram-based metrics, revealing that
there is some correlation between the widely used
metrics and model performance in the Quiz Design
Task. We also report an estimate of a ceiling for
these automatic scores, which are already neared
by the state-of-the-art QGen models we evaluate.
We release all annotations as well as the interface
used during the study publicly.!

2 Quiz Design Task

We propose to evaluate QGen models by measuring
how helpful they are for quiz creation. Teachers
often have experience with carefully crafting quiz

'https://github.com/salesforce/QGen

questions, and possess knowledge as to what makes
a quality question for a quiz (Pearson and Gal-
lagher, 1983; Kendeou et al., 2016). Meanwhile,
they are for the most part unfamiliar with recent
progress in language modeling, and do not nec-
essarily know of the limitations of deep learning-
based text generation. Therefore they can act as
impartial judge in this particular setting in verifying
whether question generation models have reached a
level at which they can be used to facilitate reading
comprehension quiz creation.

2.1 Task Definition

Teachers with experience in designing quizzes are
invited to use a quiz design interface (Figure A1),
and follow the steps illustrated in Figure 1. They
begin by selecting a quiz topic, such as the history
of the Statue of Liberty in Figure 1. The system
loads reading material relevant to the topic, which
can be sourced from a textbook or Wikipedia.

The objective for the teacher is to leverage the
reading material and automated QGen models to
design an entire quiz composed of 8-12 questions.
The teachers proceed by selecting a quiz concept,
such as an entity, phrase, or keyword they wish to
probe students on. Each evaluated QGen model
then generates a candidate question given the entire
reading material and the selected quiz concept.

After receiving candidate questions from the
QGen models, teachers review and pick which to
include in the quiz. Importantly, candidate ques-
tions are anonymized and presented in a shuffled
order. It is possible that several QGen models gen-
erate identical candidates, so we deduplicate the
candidates before presenting them to annotators.

Existing question answering human evaluation
design either automatically select quiz concepts
or answers and questions are evaluated by distinct
crowd-workers (Du et al., 2017; Trischler et al.,
2017). In the case of Quiz Design Task, we believe
that it is important to enable teachers to select quiz
concepts themselves, as it allows them to have spe-
cific learning objectives, permitting them to assess
generated questions with this context in mind.

2.2 Question Error Categorization

To understand model performance beyond over-
all acceptance rates and assess model limitations,
annotators were made to select a reason for each re-
jected question. However, unlike other NLG tasks,
QGen does not have an established error catego-
rization. Therefore, we carried out a formative
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study to construct a reusable error categorization
for QGen. We collected questions by sampling the
QGen models used in the study, and gradually con-
structed the categorization by labeling and refining
the annotations on 976 generated questions. The
final categorization is illustrated in Figure 2.

The QGen error categorization we propose is
hierarchical, with errors falling in three nested cat-
egories. First, similar to the MQM categorization
(Lommel et al., 2014) used for translation, the ques-
tion can be rejected because it is disfluent for exam-
ple with errors in grammar or repetition. Second,
if the question is fluent, it can be rejected for being
off target: the answer to the generated question is
not the target answer originally selected. Third, if
the question is fluent and on target, it can be re-
jected for being wrong in context (wrong context),
for example by being too specific to be natural or
not specific enough to be self-contained. Examples
of question errors in each category in Table Al.

3 Quiz Setup and Results

3.1 Participant Recruitment

We recruit teachers or ex-teachers from an online
group forum. In total, 20 participants filled out
an interest form, 14 were selected, and 10 com-
pleted the study (with the other 4 either forgetting
to complete the task, or completing it partially).
The participants had been teachers for at least a
year and 3.6 years on average, and had taught di-
verse subjects such as sciences, history, literature,
and IT topics, at various levels from primary school
to college-level. The study was meant to last a max-
imum of two hours, and participants were gifted a
$50 gift card upon completion.

The study session began with a tutorial on the
interface (see Appendix B) and detailed examples
of the error categories. Participants could then
clarify any detail before commencing annotation.

3.2 Quiz Topic Selection

Participants were tasked with creating between 5-7
quizzes, each with a minimum of 8 concepts, and
could pick from a set list of 7 quiz topics, which
we pre-selected from the list of featured Wikipedia
articles?. We purposefully selected articles within
different domains to benchmark the QGen models
in diverse topical settings: two in physics (Sustain-
able Energy, Californium Atom), two in biology

https://en.wikipedia.org/wiki/
Wikipedia:Featured_articles

B No Error M Disfluent Off Target M Wrong Context

21.5%

Distil-GPT2 33.4% 29.9%

GPT2-base 22.3%
GPT2-med 14.2%

Bart-Base ZY 13.1% 22.6%

ProphetNet 9.5% EEXE

12.2% FRIEES

9.7%SK¥5 16.2%

Bart-Large
MixQG-L

0% 25% 50% 75%

Figure 3: Error distribution. Seven QGen models are
evaluated by 10 teachers on the Quiz Design Task. The
high proportion of disfluency errors of ProphetNet is
explained in Section 4.1.

(DNA, Enzymes), two in history (Statue of Liberty,
Palazzo Pitti), and one in geology (the K-T extinc-
tion). Participants were given the first 500 words
of the Wikipedia page of each topic as reading ma-
terial to select Quiz concepts from.

3.3 QGen Models Evaluated

We include seven QGen models of varying
size and architecture in our study. First, we
finetune three GPT2 baselines (Radford et al.,
2019) on the SQuAD dataset (Rajpurkar et al.,
2016): GPT2-distil (Sanh et al.,, 2019),
GPT2-base and GPT2-medium. We further
add two BART-based (Lewis et al., 2020) mod-
els trained on SQuUAD as well: BART-base and
BART-large. Finally, we include two recent
QGen top-performers, ProphetNet (Qi et al.,
2020) and M1 xQG-L (Murakhovs’ka et al., 2022).
We limit ourselves to seven models, and exclude
larger models (such as GPT2-XL and MixQG-3b)
to maintain an interface latency of under 200ms
and limit burden to users (Miller, 1968). Details on
model training and usage in Appendix A.

3.4 Annotated Results

In total, the study participants annotated 3,164
questions, with 52% of them accepted into a quiz.
The distribution of errors per model is summarized
in Figure 3. As expected, model size has an effect
on performance, with the largest model MixQG-L
achieving the highest performance with an accep-
tance rate of 68.4%, which is more than double the
33.4% achieved by Distil-GPT2.

Almost all models have the largest portion of
errors coming from the Wrong Context category.
In fact, model improvement mostly comes from
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the other two categories of errors, with a de-
crease of 40-80% in numbers of errors made in the
Disfluent and Off Target categories. In
contrast, the MixQG model still generates aWrong
Context question 16.2% of the time, a modest
decrease from Distil-GPT2’s 22.3%.

As expected, the Wrong Context category
is the most challenging: models have learned to
generate fluent questions that are answered by a de-
sired target concept, and still struggle with phrasing
the question in a fashion adequate to the context.

4 Analysis

With the annotations collected, we calculate inter-
annotator agreement and use the data to benchmark
commonly-used NLG metrics.

4.1 Inter-Annotator Agreement

Even though we allow teachers to select their own
quiz concepts, in 95 cases, two or more annotators
selected the same concept and annotated an iden-
tical set of seven candidate questions. This leads
us to have a total of 665 questions on which we
can compute inter-annotator agreement. On this
subset, we measure a Pearson correlation coeffi-
cient (Benesty et al., 2009) of 0.47 which can be
interpreted as moderate inter-annotator agreement
(Schober et al., 2018).

When breaking down the analysis by model
origin, the two lowest-performing models (Distil-
GPT2 and GPT2-base) obtain the highest agree-
ment rates (above 0.6), showing a stronger agree-
ment on low-quality questions. Notably, Prophet-
Net obtained the lowest agreement level (0.26).
Further investigation reveals that it is the only
model generating questions in lowercase. Because
our guidelines did not specify how to deal with
improper capitalization, some annotators labeled
lower-cased questions as a fluency error. This fur-
ther explains why ProphetNet generated the largest
number of disfluent questions. Future work should
carefully indicate how to deal with casing and other
normalization (such as punctuation) errors.

4.2 Analysis of Existing Metrics

Because several questions for each given context
are annotated, we have a unique opportunity to
study the commonly-used NLG metrics, and assess
which correlate with our annotators’ judgements.
We evaluate four of the most commonly used met-
rics in QGen evaluation: BLEU (Papineni et al.,

Model Name %Acc. BLEU R-1 R-L MET BERT
Distil-GPT2 334 212 474 454 368 50.2
GPT2-base 40.9 263 53.1 51.1 430 56.1
GPT2-med 51.3 312 576 554 46.1 59.5
BART-Base 52.0 312 572 548 460 599
ProphetNet 53.5 333 62.1 593 517 57.4
Bart-Large 58.4 324 592 569 488 61.1
MixQG-L 68.4 335 59.6 572 50.6 60.0
Upper Bound  100.0 339 604 58.0 502 61.4
Instance Corr. - 201 233 231 221 244
System Corr. - 724 665 672 .689 711

Table 1: NLG evaluation metrics. For each metric, an
upper-bound, and correlations at the instance-level and
system-level are computed.

2002), ROUGE (Lin, 2004) (we include ROUGE-1
and ROUGE-L variants), METEOR (Banerjee and
Lavie, 2005), and BERTScore (Zhang et al., 2019).
Results are detailed in Table 1.

First, we can use accepted questions as refer-
ences, and compute metric performance by each
system on the dataset we’ve collected. For each
metric, we can compute an instance-level correla-
tion (i.e., how well does a metric correlate with
annotations for each individual question), as well
as system-level correlation (i.e. how similar is
the ranking of models according to annotators and
according to the metric). As echoed in previous
work (Novikova et al., 2017; Chaganty et al., 2018),
instance-level correlations are low, but the aggre-
gated metric scores provide high correlation at the
system level, with BLEU achieving the highest
system-level correlation.

Second, in cases where several questions were
marked as acceptable, we can consider each as a
valid reference. In such a case, we generate all
pairs of references, treating one as a candidate, the
other as a reference and computing scores with the
standard metrics. The score obtained can be inter-
preted as an upper-bound for each metric, as they
are scores obtained by questions that are judged to
all be acceptable.

For all metrics, we find that MixQG has already
either surpassed this upper-bound or is within 0.4-
1.4 points of doing so. This analysis reveals that
even though standard metrics have been useful at
measuring progress in NLG, upper-bound perfor-
mance may be reached soon, and better metrics are
needed to guide future progress in QGen and NLG
research.
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5 Limitations

We now discuss the limitations of the work we’ve
presented.

First, even though we attempted to create a real-
istic scenario in which to evaluate QGen models,
some components of the protocol are simplified for
practical purposes. For example, the created quiz
were not assigned to students, and we rely solely
on the teacher’s opinion of the questions as a signal
of question quality. Pushing the study further by
assigning the quizzes to students and tying question
quality to student performance on the quiz would
add complexity, but render the protocol more re-
alistic and provide practical learning signals from
students.

Second, although we treat teacher annotations
as the ground truth, there is some level of disagree-
ment amongst the teachers we recruited, and we
measured a moderate level of agreement in Sec-
tion 4.1. This emphasizes the necessity of thorough
and precise guidelines requirements for evaluation
protocols, as our lack of rules around the treatment
of capitalization of questions led to low agreement
on questions generated by an uncased model.

Third, although we gathered a large number of
annotations overall, with 3,164 questions annotated
in total, this remains small due to the fact that there
are many variables on which to break down perfor-
mance on (e.g., source document, model of origin,
annotator). We plan to release the annotation in-
terface as well as the content and models we used
to allow future work to expand and reproduce the
results.

6 Conclusion

We introduce the Quiz Design task, a human evalua-
tion protocol used to evaluate Question Generation
models in an applied scenario. In the QD task,
teachers creating a quiz for their students are rec-
ommended generated questions, which they can
accept in their quiz or reject with a reason from a
newly proposed error categorization. We run a QD
task with 10 teachers, annotating 3,164 questions
originating from seven models, and find that accep-
tance rates vary widely with the latest QGen mod-
els obtaining the highest acceptance rate of 68.4%.
Finally, analysis of automatic metrics on our task’s
data reveals that even though metrics correlate well
with system-level ranks, models have reached po-
tential metric upper-bounds, and improved metrics
are required to guide NLG forward.

7 Ethical Considerations

Our experiments were all run for the English lan-
guage, and even though we expect the study design
to be adaptable to other languages, we have not
verified this assumption experimentally and limit
our claims to the English language. Expanding
the claims to other languages would require trained
question generation models in the studied language.

The teacher annotators that participated in our
study were compensated at a rate above minimum
wage, and we have insured that no personally iden-
tifiable information is available in the annotations
we’ve released.
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Appendix
A Training Details

We trained five of the QGen models used in the
Quiz Design study. They were all trained for
ten epochs on the training portion of the SQuAD
dataset (Rajpurkar et al., 2016), using the ADAM
optimizer (Kingma and Ba, 2015), with hyper-
parameter tuning based on model loss on the vali-
dation set. The model checkpoint that achieves the
lowest validation loss is selected as the final model.
Selected hyper-parameters were:

Distil-GPT2: batch-size 32, learning rate 2 x
1075,

GPT2-base: batch-size 32, learning rate 2 x
1075,

GPT2-medium: batch-size 16, learning rate 2 x
107°.

BART-base: batch-size 32, learning rate 1 x
1074,

BART-large: batch-size 32, learning rate 2 x
107°.

Finally, the last two QGen we used are publicly
available on the HuggingFace model hub (Wolf
et al., 2020), and we use them as is:

ProphetNet: microsoft/
prophetnet-large-
uncased-squad-qg

MixQG: Salesforce/mixgg-large

With all models, we used beam search to gen-
erate candidate questions, using a beam-size of 2,
and a sequence length maximum of 30.

B Guidelines to Annotators

We provide the exact guidelines that were given to
study participants before they started the annotation
procedure:

1. Your objective is to design a quiz about a par-
ticular topic for a class of students. The pro-
cedure is the following:

2. Select a quiz topic from the list (for example
"Sustainable Energy")

3. The system will load a text about the topic.

4. Select a concept that you want to quiz your
students on (for example a phrase, a figure, or
a keyword) and confirm your selection.

5. Important: It is recommended to select
shorter concepts, and not full sentences to

obtain more precise question. Selecting con-
cepts of up to about 8 words is ideal.

6. The system will load a list of questions that
attempt to quiz students about the selected
concept.

7. Go over each question, and remove ones you
would not include in your quiz. We will next
go over types of questions that should be re-
moved.

8. Important: you can keep one, multiple or
none of the questions (if none of the questions
are satisfactory). For each question you re-
move, you have to choose the reason that the
question is unsatisfactory (more on this later).

9. Once you’ve finalized the question for a con-
cept, select another concept and repeat the
question selection process. Try to select 8-12
concepts per topic to generate long enough
quizzes.

10. Once you’ve finished a full quiz set, you can
move on to another quiz topic. We have found
that in one hour, you should be able to com-
plete the quizzes for 5 topics.

Following these guidelines, the annotators were
provided definitions for each error category, as well
as examples similar to the ones shown in Table Al.

C Error Categorization Question
Examples

The examples listed in Table A1 were collected
during a formative study to establish an error cate-
gorization for the task of Question Generation.

D Interface Screenshot

Figure Al displays a screenshot of the interface
used for the Quiz Design Task.
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Category Finer Category Example Question Rationale
Wrong Tense What were historically used to disen- Should be "What was histori-
franchise racial minorities? cally..."
Awkward Phrasing ~ When did the woolly mammoth die? Should be "go instinct" rather

than "die"

Disfluent Not a Question In January 2020, scientists reported Sentence in declarative format
that climate-modeling of the extinction
event favors the asteroid impact and not
volcanism?
Repetition Who led the team that led the K-Pg "led" is repeated twice
boundary clay?
Unanswerable Why are DNA studies so important? Not answered in the DNA
Wikipedia page.
Off Target Other Answer Span  Who designed the Statue of Liberty? True answer is Bartholdi, even
though target answer was Eiffel
(the metalwork builder)
Too Specific Where was the 181 km (114 mi) crater Not standard to have unit transla-
discovered? tions in questions
Reveals Answer What was the name of the Federal Re- Question’s target answer is Fed-
serve System? (leading to the creation eral Reserve System
Wrong Ctxt of the Federal Reserve System)
Inconsistent What are the only two animals that sur- The Wikipedia article mentions
vived the Cretaceous-Paleogene extinc- species and not animals
tion?
Not Specific What are some ectothermic species? Too many ectothermic species
Enough are mentioned in the article.

Table Al: Example generated questions collected during formative study. These examples form the basis for the
error categorization we propose for the QGen task.
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Quiz Design

Californium v Re-Open Tutorial

Californium Quiz Questions

How was californium first

Californium is a radioactive chemical element with the symbol Cf and % synthesized?

atomic number 98. The element was first synthesized in 1950 at the
Lawrence Berkeley National Laboratory (then the University of = as-the-elernentfirst
California Radiation Laboratory), % by bombarding curium with synthesized?

alpha particles (helium-4 ions) . Itis an actinide element, the sixth

How was Californium first

transuranium element to be synthesized, and has the second-highest A
& synthesized?

atomic mass of all the elements that have been produced in amounts
large enough to see with the unaided eye (after einsteinium). The

What was the first atomic
element was named after the university and the U.S. state of number?

California. ® Off Target Wrong Context
Two crystalline forms exist for californium under normal pressure: one Disfluent

above and one below 900 °C (1,650 °F). A third form exists at high

Figure Al: Screenshot of annotation interface used for the Quiz Design Task. The teacher has selected the
concept highlighted in blue in the reading material in the left column. In the right column, the system gives proposes
candidate questions, which can be added to the quiz, or refused with a reason.
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Abstract

Single-task models have proven pivotal in solv-
ing specific tasks; however, they have limita-
tions in real-world applications where multi-
tasking is necessary and domain shifts are ex-
hibited. Recently, instructional prompts have
shown significant improvement towards multi-
task generalization; however, the effect of in-
structional prompts and Multi-Task Learning
(MTL) has not been systematically studied in
the biomedical domain. Motivated by this,
this paper explores the impact of instructional
prompts for biomedical MTL. We introduce
the BoX, a collection of 32 instruction tasks
for Biomedical NLP across (X) various cate-
gories. Using this meta-dataset, we propose a
unified model termed as In-BoXBART, that can
jointly learn all tasks of the BoX without any
task-specific modules. To the best of our knowl-
edge, this is the first attempt to propose a uni-
fied model in the biomedical domain and use
instructions to achieve generalization across
several biomedical tasks. Experimental results
indicate that the proposed model: 1) outper-
forms single-task baseline by ~3% and multi-
task (without instruction) baseline by ~18% on
an average, and 2) shows ~23% improvement
compared to single-task baseline in few-shot
learning (i.e., 32 instances per task) on an aver-
age. Our analysis indicates that there is signifi-
cant room for improvement across tasks in the
BoX, implying the scope for future research
direction.!

1 Introduction

For long, task-specific models have played a cen-
tral role in achieving state-of-the-art performance
in both general and biomedical NLP (Wang et al.,
2021a; Banerjee et al., 2021). During 2017-2019,
pre-train and fine-tune paradigm (Liu et al., 2021)
became the prevalent approach in NLP. Due to suc-
cess of Language Models (LMs) in the biomedical

lhttps ://github.com/Mihir3009/In-BoXBART

Input: Stem Cell Therapy: A promising approach in the treatment of the COVID-19
pandemic is a global health crisis in the 21st Century. Question: What is the

promising approach for treating COVID-19?
COVID-19
<disease>

NER \ Input
Biomedical Instruction: From the given
input recognize all the disease and
chemical named entities. ...

QA

Input

Biomedical Instruction: In this task, you H "’ . Stem Cell
are given a context and a question, your T < Gy Tﬁemrapey
task is to find the answer for the given &P

question based on the given context. ...

Systematic Review |
Biomedical Instruction: You are given an
abstract and title of the paper as the
context. Your task is to classify a given
article into Include or Exclude, based on
the given criteria. ...

Input

Include

Figure 1: Schematic representation of multi-tasking
in biomedical domain using instructional prompts. In
this approach, a model is allowed to utilize tasks to get
familiar with instructions and use them to map a given
input to its corresponding output.

domain such as BioBERT (Lee et al., 2020), Clini-
calXLNET (Huang et al., 2020), and others (Alrow-
ili and Shanker, 2021; Kraljevic et al., 2021; Phan
et al., 2021), this paradigm is widely used for creat-
ing many task-specific models (Wang et al., 2021a;
Banerjee et al., 2021). However, task-specific mod-
els have limitations to real-world applications be-
cause this approach is computationally expensive
(i.e., require large computational resources) and
time-consuming (Strubell et al., 2019; Schwartz
et al., 2020). Hence, there is a need for gener-
alization where a single model can perform var-
ious tasks leading to a computationally efficient
approach. Past attempts have been made in general-
domain NLP to achieve generalization across tasks
such as MQAN (McCann et al., 2018), UNICORN
(Lourie et al., 2021), and UnifiedQA (Khashabi
et al., 2020). However, approaches to achieve gen-
eralization across various biomedical NLP tasks
have not been systematically studied. Hence, this
paper studies the multi-tasking approach that can
generalize over different biomedical NLP tasks.
Figure 1 shows the overview of our proposed multi-
tasking approach for various biomedical NLP tasks.
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Recently, prompt-based models have been
widely used because of their ability to achieve
generalization instead of task-specific models (Liu
et al., 2021). Mishra et al. (2021b); Wei et al.
(2021) and Sanh et al. (2021) show the effective-
ness of instructional prompts in generalizing on
seen as well as unseen general-domain NLP tasks.
In this paper, we adapt this instructional prompt-
based approach for the first time to achieve gener-
alization across various biomedical NLP tasks. To
this extent, this paper introduces a collection of 32
instruction tasks for Biomedical NLP across (X)
various categories (BoX) and proposes a unified
model that can generalize over 32 different biomed-
ical NLP tasks. The proposed unified model (i.e.,
In-BoXBART) is trained on the instruction-based
meta-dataset (i.e., BoX) and evaluated on each task
individually from the BoX.

To evaluate the proposed approach, we compare
our model (i.e., In-BoXBART) with two baselines:
(1) single-task models (i.e., models trained on one
task and evaluated on the same task), and (2) multi-
task model (i.e., a single model trained on a com-
bination of all tasks) without instructions. Experi-
mental results show that In-BoXBART outperforms
single-task baseline by ~3%, and multi-task base-
line by ~18%. We also analyze few-shot learning
scenario using In-BoXBART since obtaining an-
notated data in the biomedical domain is costly
and time-consuming (Luo et al., 2022b). In the
few-shot setting (i.e., 32 instances per task), In-
BoXBART outperforms the single-task baseline by
23.33%. This indicates that Multi-Task Learning
(MTL) and instruction-tuning have an advantage
in the low resources settings. Although the per-
formance of the In-BoxBART is promising, our
analysis reveals that there is still room for improve-
ment on some tasks, implying the scope for future
research direction. Concisely, our contributions
can be summarized in three folds:

1. This paper introduces the first benchmark meta-
dataset in biomedical domain, i.e., BoX: a col-
lection of 32 instruction tasks for Biomedical
NLP across (X) various categories. Each task is
processed in a unified format and equipped with
instructions that can be used to train sequence-
to-sequence models.

2. Using this meta-dataset, we propose an
instruction-tuned Bidirectional and Auto-
Regressive Transformer (BART) model,
termed as In-BoXBART. The comparison of

In-BoxBART and two baselines shows that
In-BoXBART outperforms single-task baseline
by ~ 3% and multi-task (without instruction)
baseline by ~ 18%.

3. In the few-shot setting, we show that In-
BoxBART significantly outperforms the single-
task baseline by ~ 23%. This indicates the
potential application of instruction-tuning in the
biomedical domain where annotated data is dif-
ficult to obtain.

2 Related Work

Multi-task Learning Owing to the problems as-
sociated with single-task learning in terms of their
space and time requirements, several multi-task
learning approaches have been proposed over the
years. DecaNLP (McCann et al., 2018) built a
multi-tasking model by converting format of each
tasks to question answering format. Several other
works have followed similar approach, for exam-
ple, by converting tasks to reading comprehension
(Mishra et al., 2022) and textual entailment for-
mat (Wang et al., 2021b). The multitasking model
TS5 (Raffel et al., 2020) was built with the help of
a unified framework that converts all text-based
language problems into a text-to-text format. SCI-
FIVE (Phan et al., 2021) involved building a text-
to-text model for the biomedical literature. Agha-
janyan et al. (2021) introduced pre-finetuning, an
additional large-scale learning stage between lan-
guage model pre-training and fine-tuning to im-
prove multitask learning performance. Models
empowered by multi-task learning have achieved
SOTA in many different tasks, e.g., Question An-
swering (QA) (Khashabi et al., 2020), common-
sense reasoning (Lourie et al., 2021) and structured
knowledge grounding tasks (Xie et al., 2022).

Instruction Learning The turking test (Efrat and
Levy, 2020) was proposed to measure the effi-
cacy of models to follow instructions. Studies
have been made to investigate the effect of nat-
ural language instructions on model performance
(Hase and Bansal, 2021; Ye and Ren, 2021b; Zhong
et al., 2021; Weller et al., 2020). Moreover, Mishra
et al. (2021b) proposed Natural Instructions which
break down each task to multiple sub-tasks that
help models in following instructions and subse-
quently generalize to unseen tasks (i.e., cross-task
generalization). FLAN (Wei et al., 2021) and
TO (Sanh et al., 2021) models were built by lever-
aging instruction/prompt-tuning on diverse range
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Figure 2: Schematic representation of 9 categories of
tasks: each block represents one category with various
tasks equipped with instruction.

of tasks and achieving zero-shot generalization on
target unseen tasks. Task reframing (Mishra et al.,
2021a) proposed several guidelines to reframe task
instructions to improve model response to follow
instructions. Analysis introduced to understand
in-context learning better on a large set of train-
ing tasks (Min et al., 2021, 2022). InstructGPT
model (Ouyang et al., 2022) is proposed, which is
fine-tuned with human feedback to follow natural
instructions. Furthermore, many works focused on
investigating whether LMs understands meaning of
natural language and prompts (Webson and Pavlick,
2021; Zhao et al., 2021). Weller et al. (2020) and
Ye and Ren (2021a) use task descriptions to achieve
generalization to new tasks. Puri et al. (2022) intro-
duced instruction augmentation to improve model
performance and sample complexity. Wang et al.
(2022) has developed instruction-based multi-task
framework for few-shot Named Entity Recogni-
tion (NER) task. Prasad et al. (2022) introduced
Gradient-free Instructional Prompt Search (GrIPS)
for improving task instructions for large LMs. Re-
cently, many approaches have been proposed to im-
prove model performance using instructions (Wu
et al., 2021, 2022; Lin et al., 2021; Kuznia et al.,
2022).

3 BoX

We use 29 existing, widely adopted biomedical
NLP datasets collected from various challenges,
platforms and organizations to create BoX. We de-
fine the BoX as a benchmark dataset for biomedical
MTL across 9 different categories. In the BoX,

Category # of training samples
NER 82503
De-identification 106
POS Tagging 16323
QA 5778
RE 23359
Sentiment Analysis 2860
Systematic Review 5761
Document Classification 3119
Risk Factor Identification 986
Total 140795

Table 1: Size of training samples in each category

we reframed all the datasets as text generation
tasks (see examples in Appendix B) and created
32 instruction tasks. BoX consists of high-quality
human-authored Biomedical Instructions (BIs) for
all 32 tasks. Figure 2 shows the 9 different cate-
gories and corresponding generated tasks. Each
category is defined as colored box and each box
contains instruction tasks re-purposed from origi-
nal datasets.

3.1 Tasks

Table 1 shows the number of training samples we
have used for each category. Further details of each
instruction task statistics is shown in Appendix A.
Each category and corresponding tasks from the
BoX are defined as below:

Named Entity Recognition (NER) NER has
been considered a necessary first step in process-
ing literature for biomedical text mining where the
model helps in identifying named entities such as
protein, gene, chemical, disease, treatment. We use
fifteen publicly available biomedical NER datasets
(Crichton et al., 2017) to create instruction tasks.

De-Identification (DI) In this task, the model
takes medical discharge records of a patient as input
and identify Private Health Information (PHI) such
as organizations, persons, locations, dates. We
use n2c2 2006 de-identification challenge dataset
(Uzuner et al., 2007) to perform this task.

Part-Of-Speech (POS) Tagging The goal of
this task is to identify various POS tags from the
biomedical text. We use GENIA corpus (Tateisi
et al., 2005) built from MEDLINE abstracts for the
POS tagging task.
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Question-Answering (QA) QA models receive
a question and a corresponding context as input
and output the relevant answer from the given con-
text. To execute this task, we used the BioASQ-8b
dataset (Nentidis et al., 2020) for different question
types, i.e., yes/no, factoid, and list type questions.
We created three different tasks from this dataset.
Also, we use PubMedQA dataset (Jin et al., 2019)
for this task.

Relation Extraction (RE) We used two datasets
for this task: (1) CHEMPROT corpus from biocre-
ative VI precision medicine track (Islamaj Dogan
et al., 2019), and (2) Drug-Drug Interaction (DDI)
corpus from SemEval 2013 DDI Extraction chal-
lenge (Herrero-Zazo et al., 2013). Here, we only
consider binary RE tasks without any label describ-
ing the type of the relation.

Systematic Review (SR) We have included data
from the following five Systematic Reviews (SRs)
that were conducted using the traditional (manual)
process and published in relevant venues by Mayo
Clinic physicians: (1) Hormone Replacement Ther-
apy (HRT), (2) Cooking, (3) Accelerometer, (4)
Acromegaly, and (5) COVID for this task (Parmar,
2021). More details about these datasets creation
and statistics are given in Appendix C.

Sentiment Analysis (SA) Analyzing the senti-
ment of people towards medical drugs is an essen-
tial task in the biomedical domain. To that effect,
we use medical drug sentiment analysis dataset” to
identify one of three sentiments: (1) positive, (2)
negative, and (3) neutral.

Document Classification (DC) We have used
the Hallmarks of Cancer (HoC) dataset (Baker
et al., 2016) for this task.

Risk Factor Identification (RFI) The goal of
this task is to identify risk factors for Coronary
Artery Disease (CAD) in diabetic patients over
time. For this, we used n2¢2 2014 shared task track
2 dataset (Kumar et al., 2015) with two different
purposes: (1) identify if the risk factor is presented
in the medical discharge summary and (2) time of
risk factor present in the discharge records.

3.2 Biomedical Instructions

Motivated by Mishra et al. (2021b), we have used
a similar approach to create Biomedical Instruc-

https://www.kaggle.com/arbazkhan971/
analyticvidhyadatasetsentiment

ﬁnstruction \

Definition Prompt
Examples
‘ Input ‘ [ Output ’

Explanation

# of Examples

Instances \

Task Instance

‘ Input Output ’

# of Instances

A 4

Figure 3: Unified schema used to create a Biomedical
Instruction (BI).

Example of Instruction for BioNLP11ID dataset

Qﬂition: In this task, you are given a context and you need to extract the Chemical, Organism,
[Protein, Regulon-operon entities from the context. In your answer, each entity is followed by the
corresponding category. Generate the output in this format: entityl <type_of entityl>,
entity2 <type_of_entity2>.

[Prompt: You are given a context and you need to extract any entity that belongs to Chemical,
Organism, Protein, Regulon-operon.

Example

input: If so, we reasoned that SrcA should contribute to animal colonization because the SPI - 2 T3SS
is essential for host infection.,

output: SrcA <Protein>, host <Organism>,

explanation: SrcA is a protein and host is organism in the context, and since SrcA appears first, you
extract this entity first.

Example of Instances from BioNLP11ID dataset

Task Instances

input: Attenuation of S. equi Virulence by vicK Deletion.,

output: S. equi <Organism>, vicK <Protein>

input: Whether they sense self-produced or external Al - 2, or a combination of both , indicating a
quorum sensing mechanism or a regulation similar to AHL as described above, remains to be
elucidated.,
output: Al - 2 <Cl

, AHL <ClI

Figure 4: Example of Biomedical Instruction (BI) and
task instances from BioNLP11ID (NER) dataset.

tions (BIs). BI consists of natural language instruc-
tions that describe a task and contain instances of
that task. Here, we introduce a unified schema to
present BI and described how we can construct BI
for each task given in the BoX. Figure 3 illustrates
the schematic representation of the schema, and
Figure 4 shows an example of BI that describes a
“Named Entity Recognition (NER)” task accompa-
nied with a few positive examples.

3.2.1 Unified Schema

All Bls are mapped to the unified schema. As
shown in Figure 3, unified schema consists of a
definition, prompt, and positive examples. This
schema helps in organizing each BI. Each of the
elements of the schema is explained below:
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Definition contains the core explanation about
the task and detailed instruction to the model that
what needs to be done in the given task.

Prompt is the short explanation of the task that
needs to be done.

Examples contain the input/output pairs of the
task instance along with the explanation of how
the output is generated. Generally, we provide 2-3
examples for each task.

Instances contain the input/output pairs of train-
ing samples from the task datasets.

3.2.2 Construction of BI

We have created a BI for each dataset given in the
BoX. To create BI, we manually fill in the fields
of unified instruction schema (Figure 3). For each
dataset, the BI is created by one author and were
verified by other authors.

Quality of BIs In the instruction verification pro-
cess, we edit Bls if needed in terms of grammar,
typos, ambiguity, etc. to improve the quality. Ac-
cording to (Beltagy et al., 2020), concise instruc-
tions are more beneficial compared to repetition,
hence, we also redact repetition from Bls. As a
result, our BIs consists of high-quality, short, and
meaningful task definition, and prompts.

Positive examples and its explanation For each
dataset, we have provided 2-3 positive examples
and corresponding explanations to give an idea of
how to perform the given task. As we know, the
selection of examples has an impact on model per-
formance (Lu et al., 2021). To that extent, we have
been careful in selecting examples for text gener-
ation and classification tasks. For text generation,
we have provided 2-3 examples with a detailed ex-
planation about how the output is generated. For
text classification tasks, we have included examples
corresponding to each class with an explanation of
why the particular class is assigned to a given input
instance. All positive examples are drawn from
training instances and have been removed from
training in order to avoid repetition. All the expla-
nations of examples pass through the verification
process to maintain high quality.

Collection of input/output instances Since each
biomedical NLP dataset included in the BoX has
its own annotated input/output instances, we con-
verted them into text-to-text format (Lourie et al.,
2021). Example of instances converted for each

task is given in Appendix B. After this, we ap-
pended all instances tuple (i.e., <input, output>)
with instruction schema (as shown in Figure 3).

4 Problem Setup and Models
4.1 Problem setup

Let us assume, we have input/output instances pair
(X4, Y:) for given task t. Along with that, each task
is described in terms of its instruction Bl;.

Single-task models Traditional supervised mod-
els learn a mapping function (f,s) between input
() and output (y), where (z,y) € (X", y;5ain)
and are evaluated on the same task (X", Y;'**").
We refer this setup as single-task learning.

Multi-task models In this setup, we combined
training data and corresponding biomedical in-
struction of all tasks together. The goal of multi-
task learning models is to learn mapping function
(far) between input (x), output (y) and biomedi-
cal instruction By, i.e., fas(BI;,x) = y, where
(x,y) € (X¢, Yz). This model is evaluated on task-
specific instances (z,y) € (X", ¥;**") In con-
trast to single-task models, a single model is used
here to solve various tasks, hence, achieving gener-
alization. We refer this setup as MTL.

4.2 Models

We propose an instruction-based model to achieve
multi-tasking and compare it with two baselines:
(1) single-task models, and (2) multi-task models
without instructions. We have fine-tuned the BART
(base) model (Lewis et al., 2020) to build baselines
as well as the proposed model.

4.2.1 Baselines

Single-Task models As formulated in the single-
task problem setup, we have trained the BART
model on each task from the BoX and evaluated it
on the same task.

Multi-task without instruction To build this
baseline, we have combined training data of each
task from the BoX together without appending Bls
and trained a single model on the combined data.
We refer this model as Vanilla-BoXBART. This
model is evaluated on each task of the BoX.

4.2.2 Proposed Model

As formulated in the multi-task problem setup, we
have combined training data and the correspond-
ing BI of each task. To combine instruction with
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input instances, we map a Bl and an input (x) into
the textual format and obtain enc(BI;, x). After
that, BART model is used to predict an output (y)
using a mapping function fy; : enc(Bl, x) — y.
To perform encoding, a standard NLP paradigm
of mapping is used, i.e., mapping an input to text.
Here, we map each element of BI (i.e., definition
and positive examples as shown in the schema)
to a textual format and append it before the in-
put instances. After appending BI of each task to
instances, we combined all training data of each
task. Now, we fine-tuned the BART model with
this combined instruction meta-dataset. We refer
this instruction-tuned model as In-BoXBART.

5 Experiments and Analysis

5.1 Experimental Setup

We have used BART (base) model to build all base-
lines and proposed model. All the experiments
are performed using Quadro RTX 8000 GPU. All
models are trained for 3 epochs. In particular, we
have used huggingface implementation (Wolf et al.,
2020) of the BART and its pre-defined functions for
the training and evaluation with default parameters.

Instance Selection As we know, BART (base)
can accept the input of a maximum 1024 token
length. Since there are few instances in some
datasets that exceed this limit (after including
instructions), we have discarded those instances
while creating instruction tasks. We have also re-
moved the same instances while training two base-
lines to do a fair comparison. We have discarded
long samples (>1024 token length) from validation
and testing data as well.

Example Selection As discussed in Lu et al.
(2021), the selection and order of the examples in-
cluded in instructions matters for mainly classifica-
tion tasks and affects the performance of the model.
We empirically conclude that the proposed model
benefits from ignoring examples from biomedical
instructions for classification tasks during training
and evaluation. Hence, we have discarded all exam-
ples from the Bls associated with the classification
instruction tasks.

Instance Sampling Some classification datasets
used to create the BoX are imbalanced. To bal-
ance these datasets, we have applied the sampling
techniques (Poolsawad et al., 2014) before using
datasets to create BoX. In particular, we have

analyzed three sampling techniques: (1) under-
sampling, (2) average-sampling, and (3) over-
sampling. In under-sampling, we have reduced
instances for all the classes to the class with the
lowest number of instances. In contrast, we have
over-sampled instances via replication of random
instances to the class with the highest number of
instances to achieve over-sampling. In average sam-
pling, we calculated mean of number of instances
across all the classes and over-sampled or under-
sampled instances accordingly for each class.

Few-shot setting Similar to the (Schick and
Schiitze, 2021), we have started with 32 randomly
selected instances for each instruction task from
the BoX to exhibit few-shot learning. After that,
we have increased randomly selected instance in-
stances per task to 100/1k/4k. If any task have
already less number of instances than the threshold
(i.e., 100/1k/4k), we keep all the instances from
that task. While selecting the instances, we made
sure that we select balanced data for the classifica-
tion tasks. Moreover, the BoX contains an average
6k instances per task.

Evaluation Metric We use Rouge-L (Lin, 2004)
as our evaluation metric since we treat all the tasks
as text generation problems. We also use Fi-Score
for evaluations.

5.2 Results and Findings

Effect of Sampling As mentioned above, we con-
duct three experiments to analyze the effect of sam-
pling on In-BoXBART. We train our model using
training data obtained from (1) under-sampling,
(2) average-sampling, and (3) over-sampling. We
achieve on an average (across all instruction
tasks) 69.62, 70.23 and 73.49 Rouge-L for under-,
average- and over-sampling, respectively. Here,
we observe from the experimental results that
over-sampling gives better performance compared
to under- and average-sampling since there is
a loss of training data samples for under- and
average-sampling. Hence, we report results of over-
sampling as the main result in Table 2.

Performance comparison Table 2 presents the
results for single-task model, Vanilla-BoXBART
and In-BoXBART. We can see from Table 2 that
the single-task model, Vanilla-BoXBART, and
In-BoXBART achieve on an average (across all
tasks) Rouge-L of 70.51, 55.55, and 73.49, respec-
tively. They achieve 70.15%, 55.21%, and 73.01%
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Category ~ Task Rouge-L F1-Score
Single Task  V-BB  I-BB  Single Task V-BB  [-BB
AnatEM 84.88 3230 8393 85.55 33.50 84.61
BC2GM 77.66 50.87  74.10 78.56 50.86  75.03
BC4CHEMD 88.85 71.05  86.50 89.06 71.44  86.97
BC5CDR 74.83 69.81 74.76 75.13 70.11  75.24
BioNLPI11EPI 84.64 50.10 87.60 84.95 52.85  88.04
BioNLP11ID 71.08 59.12  72.64 71.64 60.15  73.39
BioNLP13CG 64.19 55.18  67.72 61.68 53.88  65.09
NER BioNLP13GE 83.74 4930 86.71 84.08 51.78  87.39
BioNLP13PC 70.42 53.06 72.46 66.89 51.61 67.77
BioNLP09 85.16 51.54  88.09 85.54 5431 88.48
CRAFT 63.72 51.85 64.10 63.92 5231  64.30
Ex-PTM 82.32 49.61  83.73 82.38 52.07 84.49
JNLPBA 71.65 69.37 71.54 70.79 68.60  70.26
NCBI 89.51 7446  86.11 89.81 75.55  80.91
linnaeus 94.43 4499  93.46 93.21 44.59  93.77
Average 79.14 55.51  79.54 78.88 56.24  79.45
DI DI 2006 12.60 46.38  50.82 10.60 43.28 4745
POS Genia 71.45 27.94  71.26 70.48 27.50 7199
BioASQS8b (factoid) 52.95 51.14  47.28 54.67 53.52  49.51
QA BioASQS8D (list) 38.96 19.87 36.11 - 17.74  35.59
BioASQS8b (yesno) 61.74 62.61  68.25 63.48 62.61  68.25
PubMedQA 27.12 2548  24.49 31.44 30.74  29.58
Average 45.19 39.78  44.03 46.39 41.15 45.73
RE ChemProt 76.08 76.00 81.61 63.89 52.17  63.22
DDI 91.78 8297  89.35 94.10 82.97  89.35
Average 83.04 79.48 8548 79.00 67.57 76.28
SA Medical Drugs 47.51 46.39  47.37 47.51 46.39  47.37
Accelerometer 74.65 7254  81.25 74.65 72.54  81.25
Acromegaly 80.21 81.77 80.71 80.21 81.77 80.71
SR COVID 74.81 7630 77.28 74.81 7630  77.28
Cooking 71.71 8293  83.25 71.71 82.93  83.25
HRT 75.68 77.17  82.70 75.68 77.17  82.70
Average 75.41 78.14  81.04 75.41 78.14  81.04
DC HoC 88.53 49.64  82.53 88.53 49.51  82.53
RFHD 2014 (yesno) 57.21 6497  69.17 57.21 6497  69.17
RFI RFHD 2014 (time-riskfactor) 66.18 0.97 85.24 66.18 0.97 85.28
Average 72.87 5730 77.21 61.69 3297 77.22
Average - 70.51 55.55 73.49 70.15 55.21  73.01

Table 2: Results comparison between single-task baseline, Vanilla-BoXBART and In-BoXBART in terms of Rouge-
L and F}-Score. All the results for F}-Score are presented in %. V-BB: Vanilla-BoXBART, I-BB: In-BoXBART,

RFHD: Risk Factor for Heart Disease.

F1-Score, respectively, exhibiting the same per-
formance behaviour as Rouge-L. Hence, we use
Rouge-L for further comparisons. From the result,
we can observe that Vanilla-BoXBART reduces
the complexity compared to the single-task model
(i.e., 110 million parameters vs. 32x110 million pa-

rameters), however, on an average the performance
drops by 14.96% in terms of Rouge-L, and com-
pared to single-task models. This indicates that
multi-task learning in the biomedical domain is
more difficult than general domain NLP since many
previous works have shown that the multi-task
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Figure 5: Comparison of on an average Rouge-L
across all instruction tasks between single-task and In-
BoXBART based on the average number of training
instances per task.

model outperforms the single-task model (Lourie
et al., 2021; McCann et al., 2018). On the other
hand, In-BoXBART, which has the same complex-
ity as Vanilla-BoXBART, significantly outperforms
Vanilla-BoXBART by on average 17.94%, and also
outperforms the single-task model by a 2.98% mar-
gin, precisely. This indicates the benefit of using
instructions to achieve the MTL in the biomedical
domain.

Effect of instruction in few-shot learning We
have compared the average Rouge-L of In-
BoXBART with a single-task baseline for few-
shot setting. Figure 5 shows the relative perfor-
mance of In-BoXBART compared to single-task
baseline. We have shown results for all few-shot
learning experiments in Appendix D. From the re-
sults, we see that In-BoXBART achieves on an av-
erage 60.64% Rouge-L and the single-task model
achieves 37.31% for 32 instances per task. In-
BoxBART significantly outperforms the single-task
baseline by 23.33%. From Figure 5, we can see
that In-BoXBART consistently perform better com-
pared to the baseline. As we know, obtaining a
large annotated dataset in the biomedical domain
is difficult, time-consuming and costly. From few-
shot learning, we can see that instructions are ben-
eficial in achieving high performance compared to
task-specific models.

5.3 Analysis

For which tasks, instruction is helpful? From
Table 2, we can see that In-BoXBART outper-
forms baselines for 5 categories, i.e., NER, de-
identification, RE, SR and risk factor identifica-
tion. From this, we can see that instructions are

more helpful in these five categories. However, In-
BoXBART achieves performance lower or par with
the single-task baseline for the tasks from QA, POS
tagging, sentiment analysis and document classi-
fication which indicates room for improvement in
this direction.

Which are harder tasks to solve using instruc-
tions? Although instructions help in achieving
better performance for some tasks compared to
the single-task model, the overall performance is
still lower. For example, instruction improves
performance for de-identification, but overall per-
formance on this task is only 50.82% which can
be improved. A similar pattern we can see for
BioNLP12CG and CRAFT from NER; BioASQ-
8b (factoid, list) and PubmedQA from QA; and
Medical Drug from the sentiment analysis category.
In general, we can observe that tasks that include
either multi-class scenario or answer generation
from the context are most likely to be harder to
solve using instructions. For example, CRAFT and
BioNLP13CG have 6 entity types which are higher
than any other tasks from NER, and we can see
that the performance for these two tasks is lower
compared to other tasks of NER.

For which tasks, instruction is the most ben-
eficial in few shot setting? From the results
shown in Appendix D, tasks from the NER, de-
identification, QA, sentiment analysis and risk fac-
tor identification shows on average larger improve-
ment compared to baselines for the few-shot set-
tings (i.e., 32 and 100 instances per task). This in-
dicates that instructions are beneficial for the tasks
from the above categories.

6 Discussion

Can we design better instructions? Since in-
struction teach the model how to solve a given task,
domain specific information rich instructions can
improve model performance. One potential way is
to use the knowledge of domain experts. However,
designing a good biomedical instruction can be one
research direction.

How to handle long-context input? Training
instances of many biomedical datasets consist Elec-
tronic Health Records (EHRs) or discharge sum-
maries of patients. Because of this, these instances
are long and exceed the maximum input length of
LMs such as BERT, BART. In this scenario, en-
coding extra information in terms of prompts or
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instructions becomes difficult. One potential so-
lution is to use Longformer (Beltagy et al., 2020),
and another solution is to use TS kind of models
which use relative position embeddings so that the
inference length can be longer (Luo et al., 2022a).

How to handle multi-class classification tasks?
Multiple classes cause an issue while creating
biomedical instructions because we can not present
one example per class. If we do that, the encoding
of BI and input will exceed the maximum length
of LMs. A naive solution is to select examples of
a few labels or remove the examples. However,
this will cause a label bias issue or performance
degradation. Potential future research direction can
be designing a methodology to handle multi-class
classification tasks.

How far we are from the SOTA? We have pre-
sented preliminary comparison of our results w.r.t.
state-of-the-art (SOTA) single-task systems for 21
instruction tasks from the BoX as shown in Ap-
pendix E. Form the results, we can see that the
performance of the proposed model remains far
from the SOTA for some tasks, indicating signifi-
cant room for further research in this domain.

7 Summary and Conclusions

This research shows the impact of instructions in
MTL for the first time in the biomedical domain.
To this extent, we introduced the BoX, a first bench-
mark dataset consisting of 32 instruction tasks
across various biomedical NLP domains. Using
this meta-dataset, we proposed a unified model, i.e.,
In-BoXBART which outperforms single-task base-
line and Vanilla-BoxBART by ~ 3% and ~ 18%,
respectively. Our proposed approach also shows an
effective performance for a few-shot setting which
is more beneficial in the biomedical domain where
obtaining large annotated datasets is difficult. We
hope that the BoX benchmark, In-BoXBART, and
experimental results encourage future research into
more unified models for biomedical NLP.
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A Statistics of Instruction Tasks

This section provides all the statistics of training,
validation and inference data used for experiments
in Table 3. All the number of instances provided in
Table 3 are calculated after discarding the instances
with more than 1024 token length as described in
the section 5.1. We have divided the dataset into
standard 70/10/20 splits for train/validation/test if
there is no separate validation and testing set pro-
vided in the dataset.

B Instruction Tasks and Examples

To build all the models (baselines, proposed model
and few-shot learning), we adapt the unified format
for all the tasks of BoX. We converted all the tasks
into the text-to-text format, including the classifi-
cation tasks. Table 4 shows an example of input
and output from each category. Moreover, we have
also re-purposed some biomedical datasets to cre-
ate more than one task as described in the section
3.1.

C Systematic Review Datasets

This section describes the brief data creation pro-
cess for Systematic Reviews (SRs) that are used
in this study. The relentless growth in clinical re-
search and published articles have created a need
for automation to expedite the process of SRs and
to enable Living Systematic Reviews (LSRs). A
crucial step in both SRs and LSRs is the title and
abstract-based screening of the articles. A new
dataset was developed from six SRs in the clin-
ical domain by Mayo clinic physicians. In this
study, we used data from the following five SRs
that were conducted using the traditional (man-
ual) process and published in relevant venues: (1)
Hormone Replacement Therapy (HRT), (2) Cook-
ing, (3) Accelerometer, (4) Acromegaly, and (5)
COVID. The initial bibliographic search was de-
signed and conducted by an experienced librarian
with guidance from the principal investigators for
the respective studies. The search was conducted
in different bibliographic databases like PubMed,
PubMed Central (PMC), Embase, EBM Reviews,
and Ovid MEDLINE(R). Each article in the bib-
liographic search results was categorized by two
physicians with domain expertise as “Include” or
“Exclude”, by reading the title and abstract of the
article. When there was a disagreement between
two annotators, a positive class (i.e., “Include’)
was preferred.

D Few-Shot Learning results

This section presents the results of few-shot learn-
ing for all instruction tasks in Table 5.

E State-of-the-art results

In Table 6, we present State-Of-The-Art (SOTA)
results for 21 tasks. To compare the SOTA re-
sults with the proposed model, we calculate the
corresponding metric used in particular research
from our model predictions. For each task, we
gather the best performance, and specifically, they
are BioASQ-8b (Nentidis et al., 2020), Chemprot
(Peng et al., 2019), DDI (Peng et al., 2019). In
Chemprot and DDI, we compare results with the
base LMs instead of large for a fair comparison.
SOTA results for all 15 NER datasets are obtained
from (Banerjee et al., 2021). Best performance
for the HoC dataset is obtained from (Peng et al.,
2019). Here, we have considered the result of the
best system submitted to (Stubbs et al., 2015) as
SOTA result.
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Category  Tasks # of Instances

Train Dev Test
AnatEM 3507 1121 2303
BC2GM 6427 1291 2570
BC4CHEMD 14466 14568 12397
BC5CDR 4940 4940 5158
BioNLP11EPI 3796 1242 2836
BioNLP11ID 2466 780 1869
BioNLP13CG 4591 1489 2759
NER BioNLP13GE 1503 1663 1937
BioNLP13PC 2945 1070 1997
BioNLP09 4710 1013 1699
CRAFT 12839 4423 8882
Ex-PTM 855 278 1160
JNLPBA 15124 1533 3152
NCBI 2922 488 538
linnaeus 1484 524 993
DI DI 2006 106 22 27
POS Genia 16323 2174 2035
QA BioASQ8b (factoid) 695 16 115
BioASQ8b (list) 373 8 45
BioASQ8b (yesno) 543 16 115
PubMedQA 4167 500 473
RE ChemProt 3350 2415 2660
DDI 20009 2780 2660
SA Medical Drugs 2860 526 804
Accelerometer 499 58 142
Acromegaly 663 80 192
SR COVID 2385 300 675
Cooking 735 84 205
HRT 1479 171 410
DC HoC 3119 445 890
RFHD 2014 (yesno) 834 360 451
RFI RFHD 2014 (time-riskfactor) 152 177 69
Total - 140795 46554 64561

Table 3: Statistics of training (i.e., Train), validation (i.e, Dev) and evaluation (i.e., Test) data for all instruction
tasks from the BoX. RFHD: Risk Factor for Heart Disease.
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Category

| Task

Input

| Output

NER

BC5CDR

Such interactions may result in serious cardio-
vascular complications even after cessation of
an infusion of ritodrine.

cardiovascular complications <Disease>,
ritodrine <Chemical>

de-identification

DI2006

757085252 HLGMC 1228824 18705/605b
3/25/1993 12:00:00 AM CONGESTIVE
HEART FAILURE . Unsigned DIS Report
Status : Unsigned ADMISSION DATE : 3/25/93
DISCHARGE DATE : 4/4/93 PRINCIPAL
DIAGNOSIS : congestive heart failure . AS-
SOCIATED DIAGNOSIS : aortic stenosis ;
coronary artery disease , status post multi vessel
coronary artery bypass graft surgery , ... , M.D.
TR : go/bmot DD : 4/4/93 TD : 04/06/93 CC :
[ report_end ]

3/25 <DATE>, 18705/605b <ID>,
757085252 <ID>, go / bmot <DOCTOR>,
4/4 <DATE>, 04/06 <DATE>

POS-Tagging

Genia

Binding sites were mapped for each factor .

Binding <VBG> sites <NNS> were
<VBD> mapped <VBN> for <IN> each
<DT> factor <NN>. <.>

QA

BioASQ8b
(factoid)

Context: Hyperosmia is suspected in pregnancy;
however, no empirical study using validated mea-
sures of olfactory function has clearly confirmed
the anecdotal reports of this phenomenon. sub-
jective hyperosmia is associated with primarily
negative odor-related experiences. Hyperosmia
is increased olfactory acuity \n Question: What
is hyperosmia

Hyperosmia is increased olfactory acuity.

RE

Drug-Drug
Interaction

Context: Antacids may interfere with the ab-
sorption of LEVSIN. Drug_1: Antacids Drug_2:
LEVSIN

true

Sentiment
Analysis

Medical
Drugs

Why don’t more folk opt for Cladribine? \n
Drug: cladribine \n Optionl: Neutral Option2:
Positive Option3: Negative

Positive

Systematic
Review

Acromegaly

No greater incidence or worsening of cardiac
valve regurgitation with somatostatin analog
treatment of acromegaly CONTEXT: Excess
GH and IGF-I in acromegaly are associated with
reduced life expectancy due to cardiovascular
complications. Option_1: Include, Option_2:
Exclude.

Include

Document
Classification

Hallmarks
of Cancer
(HoC)

Studies of cell-cycle progression showed that the
anti-proliferative effect of Fan was associated
with an increase in the G1/S phase of PC3 cells.

Evading growth suppressors, Sustaining
proliferative signaling

Risk
Factor
Identification

n2c2 - Risk
Factors Heart
Disease 2014
(yesno)

Context: Record date: 2157-08-27 History of
Present Illness ID:Admitted from cardiac cath
lab. HPI:Mr. Doty is a 80 y.o. male with
h/o HTN, DM, PVD, elevated cholesterol who
presents with 6 month h/o chest and upper ex-
tremity discomfort on exertion along with SOB.
He has limited his activities to prevent symp-
toms. ... \n Risk Factor: Diabetes

Yes

Table 4: Examples of one instruction tasks converted into text-to-text format for each category
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32 100 1k Ak
S IBB| S IBB| S IBB| S BB

Category  Task

AnatEM 1274 60.73 | 20.68 79.34 | 87.81 86.76 | 84.88  83.44
BC2GM 1692 65.65 | 21.31 7039 | 8292 77.19 | 77.66 74.11
BC4CHEMD 10.55  71.05 1493 73.85 | 86.53 83.75 88.85 86.19
BC5CDR 11.75  60.37 1258 67.51 69.62 73.66 | 7483 7434
BioNLP11EPI 31.14  78.64 | 42.31 81.51 85.71 85.57 | 84.64  86.68
BioNLP11ID 11.00 62.38 10.06 6892 | 7141 71.62 | 71.08 71.96
BioNLP13CG 12.39  49.15 12.53 5268 | 5523 63.15 | 64.19 67.23
NER BioNLP13GE 26.10 78.80 | 25.00 81.82 | 84.77 8429 | 83.74 85.58
BioNLP13PC 12.40  69.29 1259 7189 | 68.11 6849 | 7042 71.97
BioNLP09 32,51  78.17 | 30.51 82.71 87.48 8639 | 85.16 86.33
CRAFT 8.07 37.35 8.60 40.38 | 49.67 51.56 | 63.72  63.35
Ex-PTM 16.06 7432 | 4793 76.15 | 82.92 84.11 82.32  83.81
JNLPBA 20.15 57.61 19.77 5954 | 6446 63.63 | 71.65 70.45
NCBI 38.69 68.82 | 3046 7935 | 93.02 90.36 | 89.51 86.46
linnaeus 2875 58.69 | 3694 67.29 | 93.81 9250 | 94.43  70.57
Average 19.28 64.74 | 23.08 70.22 | 77.56 77.54 | 79.14 77.50
DI DI 2006 12.67 50.19 \ 13.30  49.54 \ 13.54  55.28 \ 12.60  50.10
POS Genia 5148 13.41 \ 48.26  30.65 \ 66.27 6193 \ 7145  70.57
QA BioASQ8b (factoid) 36.63 3599 | 41.89 40.77 | 51.96 49.84 | 5295 51.72
BioASQ8b (list) 1499 2091 19.66 2938 | 40.14 29.59 | 38.96 34.68
BioASQS8b (yesno) 4348  61.11 39.13 5794 | 6696 6032 | 56.52 52.17
PubMedQA 1732 19.28 | 25.16 2326 | 27.68 25.86 | 27.12 2496
Average 28.11 3432 | 3146 37.84 | 46.68 41.40 | 43.89 40.88
RE ChemProt 61.64 72.02 | 66.07 6491 66.01 5522 | 76.86 77.38
DDI 85.53 7737 | 8553 8137 | 46.99 5541 87.39 73.04
Average 7359 7470 | 75.80 73.14 | 56.50 55.31 82.12 75.21
SA Medical Drugs 3329  63.48 \ 24.51 63.66 \ 4341 31.58 \ 37.31 49.50
Accelerometer 76.76  717.78 75.35  68.06 83.80 73.61 72.54  70.83
Acromegaly 80.21 80.71 81.25 75.63 | 76.56  79.19 | 76.04 77.66
SR COVID 87.85 88.36 | 87.85 84.85 | 61.93 86.96 | 73.93 78.12
Cooking 88.29 87.08 | 87.80 87.56 | 81.95 87.08 | 80.98 82.78
HRT 85.86 86.02 | 85.61 75.12 | 89.08 8199 | 83.87 80.81
Average 83.79 83.99 | 83.57 7824 | 78.66 81.77 | 7747 178.04
DC HoC 17.06  19.87 \ 1798 27.13 \ 4694  52.36 \ 88.53 81.51
RFHD 2014 (yesno) 5721 5178 | 57.21 51.50 | 43.02 66.35 | 43.86 66.46
RFI RFHD 2014 (time-riskfactor)  54.51 64.22 | 5275 63.37 | 66.18 59.60 | 66.18 62.70
Average 55.86  58.00 | 5498 57.43 | 5460 6298 | 5493 64.58
Average - 37.31 60.64 \ 39.24  63.38 \ 66.75 67.98 \ 69.81 70.23

Table 5: Comparison of few-shot learning results in terms of Rouge-L between single-task models and In-BoXBART
for 32/100/1000 training samples per instruction tasks. All results are presented in %. S: Single-task model, I-BB:
In-BoxBART, RFHD: Risk Factor for Heart Disease.
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Multi-Task

Category  Task Metric SOTA "~ "
V-BB I-BB
AnatEM F 91.61 33.50 84.61
BC2GM F 83.47 50.86 75.03
BC4CHEMD F 9239 7144 8697
BC5CDR F 90.50 70.11 75.24
BioNLP11EPI F 88.66 52.85 88.04
BioNLP11ID F 87.36  60.15 73.39
BioNLP13CG F 90.16 53.88 65.09
NER BioNLP13GE F 85.81 51.78 87.39
BioNLP13PC F 91.65 51.61 67.77
BioNLP09 F 91.94 5431 88.48
CRAFT F 90.12 52.31 64.03
Ex-PTM F 87.08 52.07 84.49
JNLPBA F 79.19  68.60 70.26
NCBI F 89.82 7555 8691
linnaeus F 95.68 4459 93.77
QA BioASQS (list) F 5299 17.74 35.59
BioASQS8 (yesno) F 89.95 62.61 68.25
RE Chemprot F 7440 52.17 63.22
DDI F 79.40 8297 89.35
DC HoC F 85.30 49.51 82.53
RFI RFHD 2014 (time-riskfactor) F 92,76 097 8528
Average - - 85.55 50.36 72.24

Table 6: The state-of-the-art (SOTA) results for each task compared with Vanilla-BoXBART and In-BoXBART. All
results are in %. F: F';-score, V-BB: Vanilla-BoXBART, I-BB: In-BoXBART, RFHD: Risk Factor for Heart Disease.
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Abstract

Translate-train or few-shot cross-lingual trans-
fer can be used to improve the zero-shot per-
formance of multilingual pretrained language
models. Few-shot utilizes high-quality low-
quantity samples (often manually translated
from the English corpus). Translate-train em-
ploys a machine translation of the English cor-
pus, resulting in samples with lower quality
that could be scaled to high quantity. Given
the lower cost and higher availability of ma-
chine translation compared to manual profes-
sional translation, it is important to systemati-
cally compare few-shot and translate-train, un-
derstand when each has an advantage, and in-
vestigate how to choose the shots to translate
in order to increase the few-shot gain. This
work aims to fill this gap: we compare and
quantify the performance gain of few-shot vs.
translate-train using three different base mod-
els and a varying number of samples for three
tasks/datasets (XNLI, PAWS-X, XQuAD) span-
ning 17 languages. We show that scaling up the
training data using machine translation gives a
larger gain compared to using the small-scale
(higher-quality) few-shot data. When few-shot
is beneficial, we show that there are random
sets of samples that perform better across lan-
guages and that the performance on English
and on the machine-translation of the samples
can both be used to choose the shots to manu-
ally translate for an increased few-shot gain.!

1 Introduction

With the emergence of large-scale multilingual Pre-
trained Language Models like mBERT (Devlin
et al., 2019) and XLM-R (Conneau et al., 2020), a
significant amount of research went into exploring
the cross-lingual transfer capabilities of these mod-
els, allowing for an easier adaptation to a task in
many various languages. This is achieved through
a number of approaches.

!Code available under:
https://github.com/imanjundi/cross-lingual-transfer

Zero-shot cross-lingual transfer has become a re-
search focus, e.g. XTREME / XTREME-R bench-
mark (Hu et al., 2020; Ruder et al., 2021). In this
approach, transfer to new languages is done by
fine-tuning a multilingual PLM on the task at issue,
using only an English corpus (source language)
and reporting the performance on multiple target
languages.

Few-shot cross-lingual transfer was recently shown
to give an advantage over zero-shot cross-lingual
transfer (Lauscher et al., 2020). In this approach,
it is shown that fine-tuning the model using a
small amount of target-language task data (few-
shot) improves the performance, especially for low-
resource languages.

Translate-train is another common approach to
improve the performance. Here the full training
dataset is machine translated to the target language
and used for fine-tuning. There exists relatively
good Machine Translation (MT) systems for the
languages that are usually studied in the few-shot
approach? that could be used in translate-train.

In the following, we use few-shot to refer to
fine-tuning using fewer samples of high-quality
professional manual translation. Translate-train
is used to refer to fine-tuning using lower-quality
machine translation that has the potential to be
scaled to a larger number of samples. Although
some research has dealt with few-shot cross-lingual
transfer and analyzing it (Lauscher et al., 2020;
Zhao et al., 2021), no systematic study was done to
compare it to translate-train. Given that both zero-
shot and few-shot cross-lingual transfer assume the
availability of a large-scale English corpus of the
task for source training, we hypothesize that the
translate-train approach might have an advantage
over few-shot given the scale of data that would be
available even if not at the best quality.

2 All target languages in the studied datasets are supported
by e.g. Google Translate:
https://cloud.google.com/translate/docs/languages
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On the other hand, when there is a need for few-
shot cross-lingual transfer for some task and there-
fore a need for professional translation of some
training samples, this entails significantly more ef-
fort and cost compared to MT. It is then important
to find out which samples to manually translate
given the high variance in performance depending
on the choice of samples as shown in (Zhao et al.,
2021).

We investigate both those research directions
using 3 base models (mMBERT}, 5., XLM-Rpgse,
XLM-Ry4rge) on 3 high-level semantic tasks and
datasets: XNLI (Natural Language Inference), X-
PAWS (Paraphrase Detection) and XQUAD (Ques-
tion Answering), spanning 17 diverse languages.
We investigate the following research questions:

Q1. How does the performance of few-shot cross-
lingual transfer compare to that of translate-train?
We show that there is a performance advantage
for few-shot transfer over translate-train given the
same number of samples, but that with the increase
of samples used for translate-train, this gap shrinks,
and using the full large-scale corpus in translate-
train results in a clear advantage over few-shot.
We show that at a scale of 10x-100x of machine-
translation to manual-translation, quantity trumps
quality and it is recommended in this case to use
translate-train if MT is available for the language.
Few-shot transfer still has an advantage when less
source data is available and it is therefore not pos-
sible to benefit from the scale gain of using MT.

Q2. Are there sets of samples that have better

few-shot performance if translated and how can
those sets be identified?
We show that when few-shot transfer is beneficial
for the task, there are random sets of samples that
perform better across most target languages and
across different model initializations. We investi-
gate using the performance on the English version
of the samples and the machine-translated version
to choose the best candidates to manually translate
and use for few-shot transfer. We show that there is
a correlation between the performance of the same
set of shots across languages and that the few-shot
samples that perform better on the source language,
English, perform also better across languages. A
similar observation is made also using MT of the
samples. We further show empirically that choos-
ing the sets of samples for few-shot transfer using
those heuristics or a model, using such features of
the samples, results in more bang for your shots.

2 Related Work

Cross-lingual transfer: The cross-lingual trans-
fer capabilities of multilingual pretrained language
models have led to major recent advances and a
growing number of such models have been intro-
duced, e.g., mBERT (Devlin et al., 2019), XLM-R
(Conneau et al., 2020), mT5 (Xue et al., 2021) etc.
The cross-lingual transfer is usually exploited in a
zero-shot setup, and benchmarks are built based on
this assumption e.g. XTREME/XTREME-R (Hu
et al., 2020; Ruder et al., 2021).

Few-shot: There has been recently some focus
on few-shot cross-lingual transfer and its analy-
sis. Lauscher et al. (2020) shows the effectiveness
of few-shot compared to zero-shot cross-lingual
transfer especially in lower-resource and distant
languages, where zero-shot is least effective and
few-shot gives a large gain. Zhao et al. (2021) ana-
lyzes few-shot cross-lingual transfer emphasizing
that the choice of shots has a significant effect on
the performance. The experiments are conducted at
a small scale of around 10 samples. Compared to
this, we conduct larger-scale few-shot experiments
with a size up to hundreds of samples and focus on
choosing the best-performing samples.

Translate-train: is commonly used to boost the
performance for a target language using a machine
translation of the source corpus (Conneau et al.,
2018; Lample and Conneau, 2019; Conneau et al.,
2020; Hu et al., 2020). Xue et al. (2021) shows that,
similar to zero-shot, translate-train performance in-
creases with the scale of the model. No systematic
study tested the effect of the scale of the translated
data in comparison with few-shot to understand the
interplay of data quality vs. quantity in this context.

Choosing samples: Two related areas are sam-
ple selection (Rousseeuw, 1984) which is used for
robust training on noisy data (Song et al., 2019)
and active learning (Cohn et al., 1994; Krogh and
Vedelsby, 1994) used to choose the best potential
samples to annotate (Siddhant and Lipton, 2018).
Both assume access to the actual sample input (with
or without label). On the other hand, this work
investigates choosing samples while only having
access to the source-language sample input/output.

3 Datasets

We focus on high-level tasks and conduct our ex-
periments on 2 classification tasks and a question
answering task (Table 1) from the XTREME bench-
mark. The details and properties of the languages
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Dataset [Trainl  ImDevl ImTestl |Langsl metric
XNLI 392,702 2,490 5,010 15 Acc
PAWS-X 49,401 2,000 2,000 7 Acc
XQuAD 87,599 261  1,190-261=930 11 Fl

Table 1: Datasets statistics. Train is the English training
dataset. ImDevl and ImTestl are used to indicate the size
of the multilingual split of the dataset.

can be found in Appendix Table 6. When attempt-
ing to choose the shots, we rely on measuring the
performance of the same set of samples across
different languages, so we are limited to datasets
with parallel corpus, i.e. the target language cor-
pus is created by translating the English corpus
as opposed to collecting and annotating the target
language corpus from scratch: XNLI (Conneau
et al., 2018) is a professional translation of the
dev and test set of the MultiNLI dataset (Williams
etal., 2018) into 14 languages. The dataset consists
of pairs of sentences, a premise and a hypothesis,
where the task is to predict whether the premise
entails, contradicts, or is neutral to the hypothe-
sis. PAWS-X (Yang et al., 2019) dataset is a pro-
fessional translation of the dev and test set of the
PAWS dataset (Zhang et al., 2019) into 6 languages.
The dataset consists of pairs of sentences and the
task is to predict whether those two sentences are
paraphrases of each other. XQuAD (Artetxe et al.,
2020b) is a professional translation of the dev set
from SQuAD v1.1 (Rajpurkar et al., 2016) into 10
other languages. The dataset consists of a para-
graph and a set of questions. The task is to select
the span of the paragraph that answers the ques-
tion. 10 paragraphs from the multilingual split are
reserved, similar to Lauscher et al. (2020), as dev
(total of 261 question/answer samples) and the rest
as test set.

4 Experiments

Three main models are used: mBERT (base), XLLM-
Rp (base) and XLM-Ry, (large). We report results
on XLM-Rp3 if not specified otherwise, because it
strikes a balance between good performance and
efficient training. For each task, we fine-tune the
model on the source language (English) corpus for
5 epochs with early stopping using the loss on the
English dev set. We then continue fine-tuning the
model on the target language either in a few-shot or
translate-train setup as explained in the following
sections. Training details are in Appendix A.

4.1 Few-shot experiments

We use samples from the multilingual dev set as
training samples. Few-shot fine-tuning is done
as follows: for each language, we separately con-
tinue fine-tuning the source model for one epoch
on n € {10,50,100,500, 1k} samples from the
target language corpus for the two classification
tasks and for n € {10, 50, 100, 250} for the Ques-
tion Answering task, given the smaller amount of
data available for training in this case. We report
the results on the test set for each target language.
For each n number of samples, the performance is
averaged across 5 different sets of random samples
using 5 different fine-tuned models with different
random initializations, 25 runs in total. This is
to ensure more robust results when measuring the
gain over zero-shot given the high variance across
different sets of samples (Zhao et al., 2021) as well
as the variance in zero-shot performance across all
random initializations (Keung et al., 2020). For
comparing the performance across shots, we make
sure to use the same set of parallel samples across
languages, using the sample ids, to compare how a
set of samples performs when translated to differ-
ent languages. This is possible due to our selection
of tasks and datasets that have a parallel corpus for
the various target languages.

4.2 Translate-train experiments

We train using MT of the source train set to each tar-
get language® and adapt a similar setup as few-shot:
for each language, continue fine-tuning separately
onn € {10, 50, 100,500, 1k, 10k, |dataset|} sam-
ples from the machine-translated train set and re-
port the results on the test set of the target language.

5 Results

5.1 How to translate your samples? Few-shot
vs. translate-train

To demonstrate the full potential for each approach,
Table 2 shows a performance summary for zero-
shot, few-shot and translate-train when the maxi-
mum possible number of samples is used. The gap
to English performance is the average of the gap
between the target language performance and the
performance on the English test set. Both few-shot
and translate-train help bridge the gap, but using
translate-train on a large scale has an advantage

3We use the Machine Translation provided by the
XTREME Benchmark:

https://console.cloud.google.com/storage/browser/xtreme_translations
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XNLI PAWS-X XQuAD
langs avg engap gain | langsavg engap gain | langsavg engap gain
English performance
mBERT | 81.85+0.99 - - | 92.81+0.33 - - | 83.74+£0.36 - -
XLM-Rp | 84.04+0.65 - - | 93.99+0.35 - - | 83.10+0.29 -
XLM-Ry, | 88.98+0.29 - - | 95.13+0.35 - - | 87.07£0.59 - -
zero-shot (only en training)
mBERT | 65.75£0.31 -16.10 - | 81.24+1.58 -11.57 - | 61.51£0.24 -22.22 -
XLM-Rp | 73.79+0.34 -10.26 - | 82.08+0.92 -11.92 -1 70.51+£0.32  -12.60 -
XLM-Ry, | 79.61£0.61  -9.37 - | 85.89£0.59  -9.24 - | 76.98+0.25 -10.10 -
few-shot (max 1k high-quality translated samples)
mBERT | 67.96£0.29 -13.89 221 | 83.01+091 -9.80 1.76 | 65.06+0.27 -18.67 3.55
XLM-Rp | 75.50£0.30  -8.54 1.71 | 82.83+0.53 -11.16 0.76 | 70.68+0.28 -12.42 0.17
XLM-Ry, | 81.70£0.14  -7.27 2.10 | 86.73+0.17  -8.40 0.84 | 77.06£0.16 -10.01 0.08
translate-train (full machine-translated training set)
mBERT | 72.81£0.24  -9.04 7.06 | 85.74+0.67 -7.07 4.50 | 69.84+0.34 -13.89 8.33
XLM-Rp | 76.95£0.32  -7.09 3.16 | 85.06+0.66  -8.93 2.99 | 72.16+0.16 -10.95 1.65
XLM-Ry, | 82.46+0.19 -6.51 2.86 | 88.73+0.20 -6.40 2.83 | 77.26+0.35 -9.81 0.29

Table 2: Performance summary. The average performance on all languages along with the gap to the English
performance and the gain over zero-shot performance. Using translate-train on a large scale has a clear advantage.

in further narrowing the gap as compared to the
small scale of few-shot transfer. This results in
translate-train having the best performance for all
models across all datasets. The highest gain is seen
for the model with the highest en gap (mBERT)
for both few-shot and translate-train. For XLM-R
on XQuAD, the gain is low and negligible. Given
that there is a significant gain for mBERT and the
same experimental setup is used for all models, the
lack of gain is probably not dataset-specific and
possible happens with some models.

To see the effect of the available dataset size in
each scenario, Figure 1 shows the average perfor-
mance across languages for few-shot vs. translate-
train across varying number of samples. We can
see an advantage of having manual over machine
translation resulting in a clear performance gap be-
tween both on XNLI for the same number of sam-
ples. This gap increases with the increase of the
number of samples as seen at 1k. The availability
of manual translation for few-shot is limited though
and starting from 10k-100k, the scale of translate-
train has an advantage for all tasks (similar results
for the other models are in Appendix Figure 7, 8).
The performance on PAWS-X and XQuAD does
not improve much with few-shot as shown in Fig-
ure 1b and 1c, and the clear boost comes from using
the large scale machine-translated dataset. We dis-
cuss the observed large variance on XQuAD across
languages near the end of the following section.

Detailed results & language analysis: Figure 2
shows the translate-train performance gain (over
zero-shot) across a varying sample size for each
language family (More details about the languages
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Figure 1: Avg performance across langs for translate-
train vs. few-shot using XLM-Rg. The biggest perfor-
mance boost comes from using translate-train
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Figure 2: Translate-train gain on language families. European languages especially Germanic have the least gain,

whereas various other families like Koreanic and Niger-Kongo have the most gain (detailed results in Appendix C)

in Appendix Table 6). We can see, across all tasks
and models, that European languages have a small
gain compared to non-European languages which
show the largest gain e.g. Swabhili (Niger-kongo)
in XNLI, Korean and Japanese in PAWS-X, and
Turkish and Chinese for XQuAD. Those languages
also tend to have a larger zero-shot performance
gap to English and are more distant to it (the source
language). Those results are comparable to the
few-shot results of Lauscher et al. (2020). We can
see that the languages with the most gain differ be-

tween mBERT and XLM-R mainly because XLM-
R extends the pre-training corpus using Common-
Crawl to have more data that less-spoken languages
benefit especially from e.g. Turkish zero-shot per-
formance on XQuAD is low with mBERT as com-
pared to XLM-R models which result in more gain
for Turkish with mBERT on XQuAD (detailed re-
sults on XQuAD in Appendix Figure 15, 14, 16).
Appendix C contains the detailed performance
gains for few-shot and translate-train over zero-
shot for each language across varying sizes of sam-
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Figure 3: Detailed Results on XNLI using XLM-Rg. Gains in performance over zero-shot for few-shot and
translate-train. Low-resource languages like Swahili have the most gains in both cases

ples. Figure 3 shows the detailed results for XNLI
as an example, where we see that once the full
machine-translated training set is used, a clear ad-
vantage for translate-train is seen across almost all
languages and in all tasks. We can see that the
gain for Urdu (ur) is the highest on XNLI up until
100k when it starts decreasing. We think this might
be due to a lower-quality MT. The same effect is
seen for Thai (th) on XQuAD with a significant per-
formance degrade when the full training dataset is
used (details in the Appendix in Figure 15). This is
also the reason for the degrade and high variance
in performance seen at this point in Figure 19b.

We investigate whether longer training would
have changed the results and would have been bene-
ficial, especially for few-shot where longer training
on the high-quality manual translation might be
beneficial. We split the available set of samples
into train/dev and train for 10 epochs with early
stopping on dev. Although some languages benefit
from this setup, it still yields comparable results
and translate-train still has a clear advantage. (re-
sults in Appendix Figure 17 and 18).

5.2 How to choose your shots? Which samples
to translate for few-shot?

Few-shot can still have an advantage over translate-
train when the English dataset is not large enough
to benefit from the scale effect of translate-train.
It can also be necessary when adapting to a target
language that does not have an existing machine
translation system or does not have a good one.
Creating few-shot samples, in this case, can be

done by collecting and labeling new samples or
by translating samples from the available English
dataset. The latter is a common method and 4 out
of the 7 non-retrieval datasets in XTREME use
manual professional translation to create samples
in the target languages (all of which high-level
semantic tasks). It is beneficial then to support
in selecting the samples with higher performance-
potential to translate and do few-shot training on.
To emphasize the significance of choosing the
samples, we plot in Figure 4 the XNLI perfor-
mance variance on different shots (using the
same model initialization) across 20 sets of ran-
dom few-shot samples varying in size from 10 to
1k samples. The performance varies, sometimes
significantly, depending on the set of samples used.
Zhao et al. (2021) shows similar variance obser-
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Figure 4: XNLI accuracy variance on different shots.
High variance decreases with an increased data size
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Figure 5: XNLI Pearson correlation between the performance on English and the performance on other languages.

ar  bg de el es fr

hi

ru SW th tr ur vi zh

065 086 0.89 075 088 0.88 0.80 075 0.72 0.85 086 0.61

0.89 0.89

Table 3: XNLI Pearson correlation between the performance of machine translation and manual translation

vations on a smaller number of samples (around
10). We consider a larger size range that is more
representative of the data size if a manual transla-
tion is conducted. The performance variance across
shots decreases with the increased number of shots.
This means that choosing the shots to translate is
more important when a smaller size of samples is
used. (similar results on PAWS-X and XQuAD are
in Appendix Figure 19 although for XQuAD the
variance increases with the size). In the following,
we focus mainly on XNLI as the task that had the
most few-shot gain. We investigate whether there
are sets of samples that have a potential for better
performance across languages and what could be
an indication of that. For a set of shots, we con-
sider two indicators: the performance of this set in
another language, and the performance on the MT
of the samples in the set.

5.2.1 Correlation between performance across
languages

If the performance of a set of samples for one lan-
guage can be an indication of its performance on
another language, a high correlation between the
performance for both languages is expected. To es-
timate this, we calculate the performance using the
manual translations across languages of the same
set of training samples. We then calculate the Pear-

son correlation of the performance across 5 random
sets of samples (with varying sample-set sizes) us-
ing 5 models with different random initialization.
As seen in Figure 5, there is a high positive corre-
lation between the performance on XNLI for the
various languages (using XLM-R ). This is also
the case, but to a lesser degree for PAWS-X as seen
in the Appendix Table 8. XQuAD, on the other
hand, has low and sometimes even negative corre-
lation (Appendix Table 11), which might be due to
the QA task being harder and requiring more data
and the fact that we have less data in this case for
both training and test. It is also worth noting that
the correlation is lower for both tasks, PAWS-X
and XQuAD, which had low few-shot gain.

A breakdown of the English correlation based
on data size is show in the Appendix Table 7 and 9.
As an example of this, Figure 6 shows XNLI few-
shot gain over zero-shot performance for 5 random
sets of samples { A, B,C, D, E'} each containing
10 samples. The performance is shown for 3 differ-
ent XLM-Rp initializations. The sets {A, C, E'}
perform better than { B, D} across target languages
and on average as well as across different initial-
izations. The performance on English can be used
as an indicator of the best shots to choose as seen
when comparing the English performance (top) to
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Figure 6: XNLI few-shot gain over zero-shot across 5 sets of samples (size=10) for 3 different model initializations.
Sets C, A, and E yield better performance for the 3 different initializations. The English performance can be used as

an indicator when choosing samples to translate

the average (bottom, excluding the English perfor-
mance). This is here the case even when further
fine-tuning a model on English samples results in a
decreased English performance as seen for the 2nd
model initialization. The least negative sets of sam-
ples still correspond to the best performing shots.
The results generalize for varying sizes of few-shot
sets e.g. 1000 samples in Appendix Figure 20.

5.2.2 Correlation between manual and
machine translation performance

Another possible indicator of the best performing
set of samples could be the performance of the sam-
ples in the set when they are machine translated
to the target language. Artetxe et al. (2020a) has
shown that subtle patterns in the (machine or man-
ual) translated samples can have a notable impact
on the model performance, so it is important to em-
pirically study the relation between both. Similar to
the above, we calculate the correlation between the
performance for both manual and machine trans-
lation of the same set of samples for each target
language. As seen for XNLI in Table 3, there is an
even higher correlation than with the English per-
formance. A somewhat lower correlation is seen
for PAWS-X in Appendix Table 10. Lower corre-
lation might be a result of lower-quality MT or a
result of the different patterns introduced by MT as
mentioned before.

5.2.3 Gain from choosing shots

We show in Table 4 the few-shot performance
gain resulting from choosing the shots with the
highest English performance and the highest MT

performance. Random samples are used for few-
shot cross-lingual transfer in related work, so we
compare to the average few-shot gain across the
different shots in no choosing (avg), and also to
the minimum in no choosing (min), because an im-
portant aspect of choosing shots is avoiding the
worst-performing ones (Comparing to the average
hides the fact that we might accidentally use a very
bad set of shots). We can see a clear gain in most
cases across all models when using en performance
or mt performance. When there is no gain com-
pared to no choosing (avg), the performance is
still comparable and the benefit of not choosing
the worst performing shots is still there as com-
pared to no choosing (min). The few-shot gain with
chosen-shots is most significant at smaller number
of samples where the gain is almost double that
from no choosing (avg).

Combining both En and MT performance when
choosing the shots is expected to result in more
gain, so we investigate feeding the performance
values as features to a linear model that takes as
input the performance of a set of samples and pre-
dicts the performance gain when this set is manu-
ally translated and used for few-shot. Predicting
the performance gain is also helpful to avoid trans-
lating any set of samples if all are expected to result
in a negative or low gain. We use the performance
metrics as a dataset: collecting the performance of
En/MT of random sets of samples along with the
performance of the actual manual translation. This
is done using 5 different random sets of samples
for 5 different XLM-R p initialization with varying
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10 50 100
mBERT

no choosing (avg) 0.22 0.51 0.92 135 221
3 | no choosing (min) -0.18 -0.00 0.17 0.11  0.99
% [ enperformance 059 0.84 106 137 243
mt performance 0.76 0.87 1.23 1.87 252
no choosing (avg)  0.22 -0.02 -0.02 0.89 1.76
E no choosing (min)  0.04 -0.24 -0.28 0.24 0.67
% | enperformance ~ 0.03 037 -0.02 121 189
mt performance 046 0.54 0.27 0.72  2.00
A | nochoosing (avg) 0.64 1.68 2.28 3.55
Z | nochoosing (min)_-0.15 035 059 059
< | en performance 0.80 158 2.34 3.52
XLM-Rp
no choosing (avg) 036 0.64 1.13 1.38 1.71
no choosing (min)  0.04 -0.15 0.10 036 0.65
5 [ enperformance 071  1.15 132 1.82 1.90
E mt performance 088 1.08 1.36 1.81 2.01
en+mtmodel 085 LIl 142 185 201
+ lang features 0.83 113 144 1.85 2.03
no choosing (avg)  0.19 0.02 -0.20 044 0.76
no choosing (min) -0.34 -043 -1.05 -0.23 0.10
% | en performance ~ 0.i7 0.10 023 033 071
Z | mtperformance 038 0.9 009 042 073
en + mt model 032 0.09 0.13 044 0.76
+ lang features 026 0.04 0.00 0.52 0.84
A | nochoosing (avg) 0.04 0.06 -0.02 0.17
Z | no choosing (min)_-036 071 076 131
< | en performance 0.04 0.08 -0.15 0.17
XLM-Rj,
_ | nochoosing (avg) 0.53 0.76  1.35 1.84 2.10
2 | no choosing (min) 0.28 0.32  0.70 097 129
“ [ enperformance 071 1.09 151 178 211
» | no choosing (avg)  0.06 -0.10 -0.52 046 0.84
£ | no choosing (min) -0.56 -0.75 -0.78 0.02 0.04
£ | enperformance ~ -0.14 027 018 055 1.04
A | no choosing (avg) 0.05 0.06 -0.08 0.08
g | no choosing (min)_ 020 042 097 117
< | en performance 0.09 0.0 -0.01 0.06

(*) 250 for XQuAD

Table 4: Chosen-shots performance gain. Gain over
zero-shot performance when choosing the best set of
shots using a heuristic (en or mt performance) or a linear
model that predicts the performance.

sample sizes across all languages (excluding En-
glish) resulting in 1750, 750, 1100 data points for
XNLI, PAWS-X and XQuAD. For each language,
we train the model using the data from all other
languages and evaluate on the selected language.
Cross-validation is done on the data after excluding
the selected language to choose the best hyperpa-
rameters. The following features are considered
as input: En and/or MT performance gain for the
set of samples corresponding to each data point. In
all cases, we consider: the zero-shot performance
(since the gain is usually larger when the zero-shot
performance is lower), and the number of sam-
ples used for that data point. We also investigate

whether adding language features* can improve
the prediction in a way similar to the analysis by
Lauscher et al. (2020). lang2vec 3 from Littell et al.
(2017) is used to obtain the feature vectors for each
language. The cosine similarity between the En-
glish vectors and the vectors for each language are
added as 5 new scalar features (values are in Ap-
pendix Table 6). Those features can help the model
better use the English performance depending on
the similarity between the language and English.
The prediction error of the linear models is reported
in Appendix Table 13. We can see in Table 4 that
using the models improves the chosen-shots per-
formance gain for XNLI with the best result, as
before, using a combination of all features. This is
not the case for PAWS-X and could be partially due
to having a smaller performance data and fewer lan-
guages to train on (7 as compared to 15 for XNLI).

The detailed results for the different languages
are in the Appendix Figure 21. Choosing the shots
improves the few-shot performance on XNLI for
all languages across almost all sample sizes. For
PAWS-X, there is mixed gain/loss but the improve-
ment when using English performance at maximum
size is concentrated in the European languages.

6 Conclusion and Future Work

This work conducted a systematic comparison be-
tween translate-train and few-shot cross-lingual
transfer. It quantified the performance gain for each
and showed that starting from 1k samples, MT data
could be used to improve over zero-shot perfor-
mance, and that at 10k-100k, there is an advantage
for translate-train over few-shot.

For the tasks that benefit from few-shot, we show
that there are random sets of samples that perform
better across languages and that the English per-
formance of the samples in those sets can help
us identify them. The performance of the MT of
the samples can also be used as another indicator.
When not incurring gain, both help at least avoid
the worst performing samples.

Further analysis in the future could help identify
why some datasets do not benefit from few-shot
transfer with certain models, and analysing the sam-
ples might lead to uncovering interesting properties
in the best/worst performing sets of samples.

#Using syntax, phonology, inventory, family and geograph-
ical location as features
Shttps://github.com/antonisa/lang2vec
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A Training Details

Software: We use the Huggingface Transformers ¢ for fine-tuning the pretrained language models. We
use scikit-learn 7 to train the performance prediction models. Our code is made publicly available 8.
Hardware: NVIDIA GeForce GTX 1080 Ti with 11G memory is used for most experiments. The linear
model is trained locally on a CPU.

Model: mBERT (base, cased) has 12-layer, 768-hidden, 12-heads, 110M parameters. Trained on cased
text in the top 104 languages with the largest Wikipedias. XLM-R g (base) has ~270M parameters with
12-layers, 768-hidden-state, 3072 feed-forward hidden-state, 8-heads, and trained on on 2.5 TB of newly
created clean CommonCrawl data in 100 languages. XLM-Ry, (large) ~355M parameters with 24-layers,
1027-hidden-state, 4096 feed-forward hidden-state, 16-heads,’.

Hyperparameters: For the two classification tasks, we use a maximum sequence length of 128. We limit
hyperparmeter tuning to a search for the learning rate in {7e — 6, 1le — 5,3e — 5} and use a batch size of
32. For Question Answering, we use a maximum sequence length of 384 with a paragraph slide of 128.
We train using a learning rate of 3e — 5 and a batch size of 12 for 2 epochs. The used learning rate for
XLM-R g along with the dev performance for a model with seed=42 is reported in Table 5. We use four
other models fine-tuned on the English train split with seed € {2,4, 8,16}

XNLI PAWS-X XQuAD

le-5 Te-6 3e-5
84.82 92.45 89.10
Accuracy  Accuracy F1

Table 5: learning rate and English dev performance

Training & Evaluation Runs: Starting from each of the 5 source fine-tuned models, we fine-tune on
the target language for 5 different sets of samples. This is repeated for each size resulting in 25 runs per
size. The runtime for the target language fine-tuning varies based on the number of samples used and the
number of languages in each dataset. For smaller sample sizes, most runtime is spent for the evaluation
on the large test set.

B Languages

code ) (J)anguage properties(!) ) cosine similar.ity to Englishm. XNLI PAWS-X XQuAD
name sizel®)  script language family | syntax phonology inventory family geo

ar Arabic 1.02  Arabic Afro-Asiatic 0.65 0.70 0.71 0.00 0.97 X X

vi Vietnamese 1.24 Latin Austro-Asiatic | 0.66 0.78 0.75 0.00 0.85 X X

de German 2.37 Latin IE: Germanic 0.90 0.81 0.76 0.54 1.00 X X X

en English 5.98 Latin IE: Germanic 1.00 1.00 1.00 1.00 1.00 X X X

el Greek 0.17  Greek IE: Greek 0.78 0.95 0.65 0.15 0.99 X X

hi Hindi 0.13 Devanagari IE: Indo-Aryan | 0.62 0.78 0.71 0.13 091 X X

ur Urdu 0.15  Perso-Arabic IE: Indo-Aryan | 0.62 0.86 0.72 0.13 0.93 X

es Spanish 1.56 Latin IE: Romance 0.82 0.86 0.64 0.10 1.00 X X X

fr French 2.16 Latin IE: Romance 0.81 0.75 0.74 0.10 1.00 X X

u Russian 1.58  Cyrillic IE: Slavic 0.81 0.86 0.65 0.17 0.96 X X

bg Bulgarian 0.26  Cyrillic IE: Slavic 0.86 0.86 0.68 0.14 0.99 X

ja Japanese 1.18 Ideograms Japonic 0.50 0.67 0.65 0.00 0.86 X

ko Korean 0.47 Hangul Koreanic 0.55 0.75 0.71 0.00 0.87 X

th Thai 0.13  Brahmic Kra-Dai 0.64 0.78 0.75 0.00 0.85 X X

SW Swahili 0.05 Latin Niger-Congo 0.46 0.91 0.76 0.00 0.92 X

zh Mandarin 1.09 Chinese ideograms ~ Sino-Tibetan 0.71 0.73 0.70 0.00 0.88 X X X

tr Turkish 0.34 Latin Turkic 0.51 0.82 0.67 0.00 0.98 X X

(1) properties taken from XTREME
(2) similarity calculated using lang2vec
(3) size is the #wikipedia articles in millions

Table 6: Languages in the Datasets

®https://github.com/huggingface/transformers
"https://github.com/scikit-learn/scikit-learn
8https://github.com/imanjundi/cross-lingual-transfer

°from https://huggingface.co/transformers/pretrained_models.html
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Figure 7: Average performance across languages  Figure 8: Average performance across languages for
for translate-train vs. few-shot using mBERT. The  translate-train vs. few-shot using XLM-R;. The
biggest performance boost comes from using translate-  biggest performance boost comes from using translate-
train train
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C Detailed Results

a

2
L

66.08+0.70] -0.05+0.61 | 0.18+0.77 | 1.2220.36 | -0.5220.67 | -0.800.91 [ -0.27+0.52 | 1.05+0.37 | 3.61%0.36 | 5.67+0.38
bg 69.44+0.47] 0.15+0.63 | 0.70+0.73 | 2.21+0.50 || 0.03+0.57 | 0.25+0.88 | 0.50+0.46 | 2.23+0.57 | 4.81%0.64
de 471.2720.61]] 0.20+0.65 | 0.84+0.51 | 1.69%0.63 | 0.29+0.57 | -0.12+1.26 | 0.25+0.83 | 1.680.46 | 3.77%0.39
167.38+0.42) 0.2120.74 | 0.5120.96 | 1.6420.86 || 0.08+0.60 | -0.31%1.33 | -0.51%0.66 | 1.62%0.70 | 4.74+0.30
es 474.72+0.81/| 0.04+0.94 | 0.5720.92 | 0.99+0.76 | -0.03+0.80 | -0.28+1.16 | -0.2620.83 | 0.88+0.60 | 2.50+0.66 | 4.17%0.25
fr 473.7020.62)| 0.39+0.58 | 0.77+0.62 | 1.18+0.63 [|-0.01%0.71 | -0.19+1.03 | -0.48+0.87 | 0.84+0.50 | 2.32+0.53 | 3.97+0.23
60.34+0.41} 0.60+0.88 | 2.04+0.80 | 3.93+0.41 | -0.08+0.74 | -0.11+1.45 | 1.09+0.60 | 3.41+0.47 Ak 7.9240.39
ru469.28+0.55) 0.29+0.69 | 1.1620.70 | 1.6620.57 -0.05+0.79 | 0.07+1.09 | 0.06+0.92 | 1.33+0.58
sw 151.31+0.53] -0.05+0.70 | 0.56+0.37 | 2.02+0.78 [ -0.39+0.58 | 0.21+0.52 | 0.35+0.62 | 5.99%0.61 |kl VEL=r RERLET W]
th 155.05+0.38) 0.43+1.01 | 1.70+0.74 | 4.37+0.63 | -0.63+0.70 | -0.86+1.30 | 0.51+0.99 | 4.2620.43 | :hy/10loht Slolrdela)
163.09+0.20) -0.18+0.51 | 0.17+0.60 | 1.77+0.44 [-0.04+0.68 | -0.40+0.75 | -0.16+0.62 | 2.90+0.51 9.17+0.41
ur 458.42+0.35/| 0.26+0.68 | 1.23+0.97 | 3.10£0.74 | 0.48+0.47 | 1.3320.75 | 1.97%0.75 | 3.39£0.42 | 4.66+0.42 | 5.79%0.44

470.62+0.51§ 0.28+0.78 | 0.85%+1.00 | 1.82+0.49 ||-0.13%£0.72 | 0.08+1.20 | -0.07+0.72 | 1.83+0.34 | 3.94%£0.48 | 5.15+0.44
zh 469.88+0.56f 0.55+0.73 | 1.61+0.68 | 3.33%£0.64 §-0.28+0.97 | 0.66+1.05 | 1.73+£0.70 | 2.78+0.68 | 4.96+0.62
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Figure 9: Detailed Results on XNLI using mBERT. Gains in performance over zero-shot for few-shot and
translate-train. Low-resource languages like Swahili have the most gains in both cases

ar478.77+0.73 0.48+0.70 | 1.65+0.52 _0.0310.93 0.94+0.78 | 1.29+0.42 | 1.57+0.29 3.76+0.39
bg 483.75+0.46/| 0.67£0.45 | 1.23+0.31 | 1.69+0.25 | 0.25+0.52 | 0.89+0.32 | 0.70+0.45 | 0.99+0.32 | 1.70+0.48
de 182.87+0.47] 0.36+0.58 | 0.71+0.49 | 1.41+0.28 || 0.08+0.55 | 0.06+0.71 | 0.75+0.34 | 0.99+0.30 | 1.54+0.38
el 182.37x0.71]| 0.510.60 | 1.22+0.30 | 1.82+0.43 | 0.18+0.62 | 0.73+0.56 | 0.64+0.68 | 1.16+0.45
es 484.590+0.46 0.33x0.45 | 0.70+0.50 | 1.29+0.40 | 0.09+0.57 | 0.30+0.67 | 0.20%0.63 | 0.59+0.45
fr 183.26+0.24)] 0.42+0.32 | 0.95+0.29 | 1.42+0.26 || 0.11+0.55 | 0.330.66 | 0.38+0.56
hi 76.83+0.88/| 0.54+0.93 | 1.48+0.56 _0.5310.72 0.90+0.84 | 1.030.47
ru180.88+0.45) 0.55+0.48 | 1.31%0.34 | 2.00+0.27 | 0.26+0.62 | 1.01+0.41 | 0.69+0.77
sw172.3320.85)| 0.28+0.95 | 1.14+0.64 | 2.10+0.75 | 0.37+0.82 | 0.11+0.81 | 0.21+1.14
th477.18+1.23| 0.85:1.04 | 2.3920.58 /-0
tr479.35+0.52 ) 0.3420.60 | 1.20%0.38
ur472.5621.16)) 1.09£1.07 | 2.1520.56 | -hi-rio) /15
vi180.1220.65)| 0.40+0.81 | 1.36+0.37
zh 179.64=0.89)| 0.53+0.76 | 1.47+0.44

1.26+0.41 | 1.61+0.39
0.80£0.31 | 1.52+0.19 | 2.13+0.22
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Figure 10: Detailed Results on XNLI using XLM-R;. Gains in performance over zero-shot for few-shot and
translate-train. Low-resource languages like Swahili have the most gains in both cases
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de 4 84.86+1.27 § 0.23x1.17 0.12+1.54 1.97+0.98 0.20£1.07 0.36+0.85 0.47+0.88 1.82+0.98 2.70%0.66
es - 87.87+1.31 | 0.04+1.06 -0.04+1.18 0.71+£0.96 § -0.06+1.27 | -0.28+1.22 0.26+0.86 1.53+0.64 2.62%0.52
fr 4 87.03+0.64 | 0.07+0.63 -0.12+0.90 0.67+0.54 § -0.03+0.57 | -0.04%0.60 0.39+0.35 1.40+0.38 2.78%0.56
ja- 74.23£2.36 | 0.14%=1.54 -0.28+2.15 2.76x1.28 § -0.14+1.58 0.20+1.62 1.91+0.90 5.02+0.73 7.42+1.07
ko 74.51+2.31 § 0.75+1.43 0.15+2.28 2.28+1.43 0.55+1.80 0.20+1.56 1.04+1.40 3.73+1.29 6.30+1.26
zh 4 78.96+2.22 | 0.08+1.37 0.05+1.71 2.18+1.25 0.25%1.25 0.34+1.11 1.75+0.94 3.53%+0.59 5.18+0.48
avg 81.24 0.22 -0.02 1.76 .13 0.13 0.97 2.84 4.50

|
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Figure 11: Detailed Results on PAWS-X using mBERT. Gains in performance over zero-shot for few-shot and
translate-train. Non-European language show the most gain especially Japanese and Korean.

de 4 86.75+0.95 §| -0.34+0.97 | -0.42+1.18 0.17+0.74 § -0.29+1.00 | -0.33%1.02 | -0.52%1.12 0.46+1.00 1.29+0.82
es - 87.94+0.65 | 0.02+0.53 -0.52+1.18 0.24+0.55 -0.82+0.97 | -0.91%1.17 | -0.01+0.64 0.77+0.70 1.77+0.38
fr 4 88.74+0.85 § -0.16+0.73 | -0.18+0.86 0.10+0.65 -0.07+0.58 | -0.59+0.93 0.11+0.57 0.68+0.56 1.58+0.57
ja+ 75.91+x0.59 § 0.07+0.56 -1.05+1.60 0.63+0.87 0.10+0.51 0.10+0.85 0.34+0.85 1.96+0.68 80
ko 73.95%+1.32 § 1.02+0.93 0.85+0.77 1.92+0.88 § -0.18+1.75 0.81+0.94 0.96+1.03 4.05+0.78 6.43+1.07
zh 4 79.16%x1.43 § 0.52+0.66 0.11+1.13 1.49+0.63 0.20%1.43 0.07+1.08 1.14+1.00 2.65%0.57
avg - 82.07 0.19 -0.20 0.76 -0.18 -0.14 0.34 1.76
! l
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. cl; 10 ) Iltl)p 1k 10 100 o 1_'|< - 10k 50k

Figure 12: Detailed Results on PAWS-X using XLM-R . Gains in performance over zero-shot for few-shot and
translate-train. Non-European language show the most gain especially Korean.

de 4 90.26+0.25 J| -0.56+0.86 | -0.78+0.87 0.37+0.54 § -0.21+0.59 | -0.48+0.60 | -0.27+0.45 0.46+0.35 1.25+0.17
es - 90.47+0.47 §| -0.05+0.88 | -0.75%1.32 0.46+0.48 § -0.56%+1.15 | -0.33%1.30 0.17+0.57 1.06+0.34 1.69+0.47
fr4 90.76+0.53 J| -0.31+0.99 | -0.73%0.91 0.04+0.51 -0.23+0.76 | -0.06%0.62 0.07+0.45 0.93+0.42 1.65+0.39

ja- 80.36x0.76 § 0.41x0.42 -0.72+1.56 1.02+0.58 0.23+1.00 -0.03x1.29 0.55+0.53 2.33+£0.57 4.00+0.29

ko - 80.31+1.55 § 0.70%x1.57 0.34x1.77 2.11+0.64 0.34£1.65 0.79+1.11 1.50%+0.77 6+0.36 4.94+0.24
zh 4 83.21+0.82 § 0.16+1.01 -0.46x1.67 1.03+0.88 0.06+0.98 0.03%+0.85 0.79+0.64 2.06+0.38 460
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Figure 13: Detailed Results on PAWS-X using XLM-R,. Gains in performance over zero-shot for few-shot and
translate-train. Non-European language show the most gain especially Japanese and Korean.

143



ar461.3620.80] 0.54+1.17 | 1.47+1.65 | 2.20+0.81 | 0.43+0.89 | 1.46=1.27 | 2.39+0.90 | 4.83+0.87 | 7.73%0.58 | 9.17%1.03
de 172.06+1.02] 0.18+0.69 | 0.23+£0.95 | 0.10+0.83 || 0.35+0.82 | 0.00+0.92 | 0.03+0.87 | 0.81+0.88 | 2.59+0.52 | 4.20+0.64
el 461.92+1.36/| 0.60+1.12 | 2.26+1.23 | 2.61=1.14 || 0.14+1.38 | 1.64=1.40 | 2.07+1.10 | 4.65+0.86 | 7.42%0.59 |1} 0rt0/ 1
es 174.38+0.74]] 0.37+1.05 | 0.63+0.92 | 0.65=0.63 || 0.59+0.96 | 0.86+1.03 | 1.37+0.90 | 2.76+0.58 | 4.04+0.50
hi456.41+1.11)] 0.42+1.10 | 2.43+1.27 | 3.821.06 | 0.76+1.24 | 2.02+1.17 | 3.90+1.30 | 7.2120.67 el Ea LI ELREETIE
ru470.76+0.50f -0.13+0.77 | -0.59+1.03 | -0.59+0.93 | 0.38+0.39 | 0.15+0.75 | 0.26=0.73 | 1.46+0.61 | 2.84+0.56 | 5.05=0.60
th 138.1620.52/| 2.98+1.66 | o)l a0 2.13+1.65 | 7.3922.13 FPNI SR IERRT TSR] 8.89+2.12 | -0.18+1.50
tr452.95+1.03] 1.25£1.24 | 4.45+1.46 | 6.68+1.15 | 1.73+1.04 | 4.70=1.63 | 7.29+1.46 |ki)cr:rtbe ko ER LN RN PP TR
vi469.16+0.43)] 0.3120.94 | 1.44+0.97 | 2.63+0.86 || 0.27+1.05 | 1.27+1.01 | 2.22+1.02 | 3.94=0.71 | 6.28+0.61 A 8.31+0.27
zh 457.98+0.85) -0.15+1.01 | 0.81+1.36 | 1.99+1.18 || 0.03+0.87 | 0.09+1.36 | 1.59+1.01 | 3.64=0.95 | 6.76+0.64 A 8.39+0.39
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Figure 14: Detailed Results on XQuAD using mBERT. Gains in performance over zero-shot for few-shot and
translate-train. Non-European languages show the most gain especially Chinese. Thai shows a significant degrade
when using the full machine-translated dataset. This might be due to lower-quality machine translation for Thai.

ar 467.7620.61] 0.08+0.57 | -0.32+0.86 | -0.29+0.81 ]| 0.29+0.52 | -0.03£0.66 | 0.17+0.75 | 1.49+0.74 | 3.68+0.81 | 3.31%0.37
de 474.75+1.02) -0.26+0.90 | -0.70+1.00 | -1.31+0.85 | 0.03+0.87 | -0.67+0.97 | -1.05=1.00 | -1.04+0.90 | 0.22+0.55 | 1.000.29
el 473.01+0.32]| -0.3620.37 | -0.75+0.75 | -0.99+0.54 || -0.350.45 | -1.06+0.88 | -1.29+0.56 | -0.89+0.60 | 0.27+0.63 | 2.36+0.41
es 176.16=0.70) -0.13+0.52 | -0.45+0.54 | -0.53+0.64 | -0.13+0.57 | -0.530.64 | -0.16+0.72 | 0.35+0.75 | 1.07+0.58 | 2.88+0.16
hi 468.36+1.17/| -0.00+0.84 | -0.22+0.83 | -0.40+0.68 || 0.23+0.95 | -0.13+0.80 | 0.200.91 | 0.98+0.89 | 3.25+0.64 | 4.73+0.44
ru473.5320.96/| -0.10£0.86 | -0.7620.76 | -1.080.64 || -0.04+0.84 | -0.26+0.77 | -0.58+0.76 | -0.38+0.77 | 0.72+0.52 | 2.74+0.86
th 66.40+1.08l 0.79+0.92 | 1.58+0.88 | 2.53+1.12 || 0.67+1.09 | 1.72+1.09 | 3.36+1.35 | 7.24%0.81 1.73:1.63
tr467.1121.19) -0.05+1.14 | -0.13+1.33 | -0.34=0.66 || -0.06+0.95 | -0.170.69 | 0.22+1.05 | 1.44+0.89 | 3.61+0.65 | 4.22+0.65
vi473.84+0.33]| -0.04+0.43 | 0.04+0.77 | 0.39£0.94 || 0.05+0.41 | -0.02+0.71 | -0.20+0.63 | 0.73+0.71 | 2.27+0.43 | 3.39+0.35
zh 164.19+0.94| 0.46+0.76 | 1.51+0.94 | 3.75+1.08 | -0.39+0.85 | -0.54=1.20 | 0.09+1.08 | 1.95+0.89 | Ilraovi) 7.78=1.84
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Figure 15: Detailed Results on XQuAD using XLM-R . Gains in performance over zero-shot for few-shot and
translate-train. Non-European languages show the most gain especially Chinese. Thai shows a significant degrade
when using the full machine-translated dataset. This might be due to lower-quality machine translation for Thai.

ar476.67+0.26§§ 0.38+0.37 | -0.12+0.58 | -0.50%+0.82 || 0.50+0.46 | 0.42+0.74 | 0.24+0.75 | 0.98+0.55 | 2.16+0.58 | 1.38+0.45
de 480.00+0.78{ -0.03+0.56 | -0.62+0.68 | -0.89+0.77 § -0.17+0.63 | -0.74%0.73 | -0.89+0.77 | -1.23+0.83 | -0.71£0.56 | -0.01+0.57
el 479.51+0.67 -0.20+0.49 | -0.59+0.68 | -0.89+0.73 § -0.12+0.49 | -0.94+0.67 | -1.07+0.66 | -0.91+0.62 | -0.25+0.65 | 0.35%+0.88
es 480.91+0.63§ 0.09+0.66 | -0.08+0.60 | -0.31+0.59 § 0.06%+0.71 | -0.25%+0.74 | -0.28+0.52 | 0.30+0.65 | 1.39+0.68 | 2.11+0.20
hi 475.85+0.32§ 0.10+£0.39 | -0.33+£0.81 | -0.66+0.85 | 0.16+0.47 | -0.16+0.55 | -0.23+£0.74 | 0.05+£0.72 | 0.89+0.54 | 1.98%0.55
ru-79.55+£0.65) -0.13+0.45 | -0.97+0.61 | -1.17+0.61 § -0.07+0.51 | -0.48+0.59 | -0.66+0.54 | -0.83+0.54 | -0.17£0.55 | 0.69+0.45
th {73.86+1.20 0.38+0.72 | 0.87+1.16 | 2.00+1.00 § 0.59%1.05 | 1.73+0.82 | 2.77+0.60 | 6.38+£0.59 | 2.00+1.42
tr474.08+0.53§ -0.02+£0.41 | 0.03+0.47 | -0.04+0.72 § 0.10+0.40 | 0.08+0.65 | 0.13+£0.59 | 0.93+0.72 | 2.39£0.71 | 2.94+0.98
Vi 479.93+£0.491 -0.11+0.42 | -0.06+0.55 | 0.04%0.51 §-0.15+0.44 | -0.17%0.60 | -0.53+0.55 | -0.31+0.45 | 0.46+0.54 | 1.20+0.41
zh {69.41+0.44} 0.03£0.66 | 1.06*+1.21 | 3.27+1.69 || -0.17+0.54 | -0.34+0.92 | -0.19%£0.93 | 1.13%+0.82 8.6711.49 6.29+0.95
avg-4 76.98 0.05 -0.08 0.08 0.07 -0.09 -0.07 0.65 1.68 0.29
' '

' ' '
0 10 100 250 10 100 250 1k 10k 88k
zer-shot few-shot translate-train

Figure 16: Detailed Results on XQuAD using XLM-R; . Gains in performance over zero-shot for few-shot and
translate-train. Non-European languages show the most gain especially Chinese. Thai shows a significant degrade
when using the full machine-translated dataset. This might be due to lower-quality machine translation for Thai.
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ar{71.98+0.50) 0.44+1.06 | 1.15+0.70 | 1.44+0.80 | 2.15%2.34 | -0.11+1.12 | 0.40+0.86 | 0.82+1.14 | 1.7720.21 JRLEINY,
bg 477.73+0.25) 0.46+0.99 | 1.07+0.36 | 1.39+0.48 || 0.09+1.36 | 0.18+0.83 | -0.69+1.68 | 0.55+0.45 | 1.87+0.32
de 476.59+0.26 | 0.58+0.99 | 1.05+0.52 | 1.91+0.56 | 0.40+1.02 | -0.15+0.96 | 0.06+1.41 | 1.17+0.51 | 1.69+0.68 | 2 r-ol (]
el 476.42+0.42 0.06+0.99 | 0.53+0.75 | 1.28+0.47 [|-0.31+1.20 | 0.02+0.80 | -1.10+1.55 | 0.23+0.61 | 0.88+0.27 | 0.79+0.23
es 179.02+0.23)| 0.24+0.92 | 0.30£0.64 | 1.06+0.57 | -0.04+0.72 | -0.41+0.86 | -1.15+1.07 | 0.26+0.65 | 0.65+0.49 | 1.81%0.26
fr 478.64+0.57| 0.24+0.85 | 0.32+0.73 | 0.77+0.64 | -0.31+1.09 | -0.65+1.20 | -0.35+1.07 | -0.08+0.91 | 1.03+0.41 | 1.42+0.27
hi 470.40+0.96 | 0.49+1.40 | 1.31+0.94 | 1.98+0.73 || -0.38+1.37 | -0.05+1.38 | -1.07+1.59 | 0.97+1.23 | 2.68 2.76+0.56
ru475.99+0.450 0.17+0.81 | 0.84+0.46 | 1.21+0.28 |-0.43%1.10 | -0.09%0.75 | -0.15+0.61 | 0.25+0.87
sw 465.49+0.56 1 -0.10+0.83 | 0.53+0.99 | 1.32+0.89 | -0.03+0.81 | -0.73+1.21 | -0.37+1.56 | 2.3820.63 | =1l 10 -k WRFETNLE
th 471.90+0.85 0.79+1.68 2.17:0.36_0.0711.64 0.62£1.24 | 1.0420.70 | 2.1420.73 PEllE 0L PP RN Y]
tr473.17+0.30(-0.02+1.20 | 1.07+0.68 | 1.44+0.62 | 0.43+1.03 | -0.08+0.95 | -0.50+1.06 | 0.89+0.88 | 1.52+0.45 | 1.97+0.44
ur 466.57+0.69 | 0.85+1.56 | 1.91+0.68 | 2.51£0.50 | 0.07+1.09 | 0.72+0.67 | 0.80%0.66 | 0.21+0.81 | -0.43+0.29 | 0.49+0.46
vi475.39+0.63) 0.92+1.51 | 1.71+0.62 | 2.03+0.67 | 0.40+1.11 | 0.53+0.98 | -0.11+1.19 | 1.3120.74 | 2.22+0.31 [ EILET0o),
zh 473.75+0.48) 0.70+1.45 | 2.13+0.48 3.0010.48 -0.44+1.52 | -0.13+1.23 | 0.56%1.51 | 2.0620.92 | 77kt s BENREToeh!
avg4 73.79 0.41 1.15 1.72 -0.19 -0.02 -0.19 0.94 1.80

1 1 1 1
0 10 100 1k 10 100 1k 10k 100k
zer-shot few-shot translate-train

1
400k

Figure 17: Detailed Results on XNLI using a part of the available data as dev. The few-shot performance only
changes slightly with minor increases and decreases for across the languages. The highest increase on average is
at 10 samples with an increase of 0.05%. Translate-train performance decreases for almost all languages and on
average.

de 4 86.75+0.95 J| -1.20%£1.58 | -0.25+0.71 0.22+0.75 -0.64+1.42 | -1.12+0.97 | -0.85%1.22 0.17+1.04 ‘ 1.69+0.42 |
es - 87.94+0.65 J| -0.57%0.97 0.08+0.51 0.26+0.46 § -1.40+1.44 | -0.31+1.06 | -0.56%0.85 0.64+0.54 ‘ 2.53+0.60 |
fr 4 88.74+£0.85 § -0.77%£1.33 | -0.27+0.74 | -0.08+0.78 § -0.82+1.39 | -0.61%+1.17 | -0.30%0.85 0.29+1.07 2.49+0.38
ja+ 75.91+0.59 § -0.56+1.29 0.05+0.55 0.26x1.07 -0.77+1.38 | -0.44%0.94 0.03+1.13 2.13+0.82 5.42+0.40
ko - 73.95+1.32 §| -0.33%£1.65 1.09+1.04 2.19+0.76 § -0.26+2.11 0.49+1.39 1.23+1.57 4.27+1.05 7.71+0.64
zh 4 79.16%x1.43 § 0.53+0.79 0.55+0.95 1.20+0.85 -0.10%+1.47 | -0.12%+1.32 0.61+1.02 2.42+0.53 4.71+0.18
avg - 82.07 -0.48 0.21 0.67 -0.67 -0.35 0.03 1.65 4.09
! ! l l

1 1 1 1 1
0 10 100 1k 10 100 1k 10k 50k

Figure 18: Detailed Results on PAWS-X using a part of the available data as dev. The few-shot performance
shows mixed gains decreasing by ~0.60% for 10 samples, increasing by ~0.40% at 100 then decreasing againg by
~0.10%. Translate-train performance decreases util the full dataset is used where it increases by ~1%.
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(a) PAWS-X Performance variance on different shots.(b) XQuAD Performance variance on different shots.
Variance decreases with an increased data size Variance increases with an increased data size

Figure 19: Performance variance on different shots
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lang ar bg de el es fr hi o sw th tr ur vi zh  avg

10 0.64 042 042 051 063 0.75 049 -025 063 048 0.70 0.19 048 042 0.50
50 082 059 059 076 074 0.87 066 0.11 070 081 0.84 054 073 056 0.69
100 0.76 053 047 046 064 0.77 0.69 -050 0.58 0.58 064 0.06 073 033 0.52
500 0.84 0.64 077 079 073 081 077 0.18 0.67 071 0.88 0.54 077 073 0.72
1000 0.72 0.63 0.74 069 0.72 084 060 0.10 006 051 0.80 0.03 051 075 0.58
all 077 059 062 069 073 079 066 0.15 0.62 057 079 038 0.65 0.55 0.64

Table 7: XNLI Pearson correlation between the performance on English and the performance on other languages
using the same set of samples.

de en es fr ja ko zh

de 1.00 066 052 056 021 054 0.64
en 066 1.00 056 041 0.11 0.37 0.36
es 052 056 1.00 057 022 054 0.57
fr 056 041 057 1.00 0.03 0.59 0.55
ja. 021 011 022 0.03 1.00 0.16 0.32
ko 054 037 054 059 0.16 1.00 0.54
zh  0.64 036 057 055 032 054 1.00
avg 0.59 050 057 053 029 054 057

Table 8: PAWS-X Pearson correlation of the performance between languages.

lang de es fr ja ko zh  avg

10 047 065 034 -022 053 056 048
50 081 056 057 -035 0.53 048 0.51
100 0.78 053 042 040 047 044 0.57
500 052 055 053 016 041 011 047
1000 0.75 0.77 030 -0.01 -0.02 035 0.45
all 0.66 056 041 011 037 036 0.50

Table 9: PAWS-X Pearson correlation between the performance on English and the performance on other
languages using the same set of samples.

de es fr ja ko zh
0.66 0.62 0.68 045 038 0.52

Table 10: PAWS-X Pearson correlation between the performance of machine translation and manual translation.
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ar de zh vi en es hi el th tr ru ro
ar 1.00 -0.14 0.03 0.07 0.12 -0.02 0.01 -0.03 0.07 025 0.12 -0.06
de -0.14 100 -054 -0.18 035 057 042 022 -026 040 -0.09 -0.00
zh 0.03 -054 1.00 0.16 -037 -0.38 -0.21 -041 0.55 -0.17 -0.24 -0.22
vi 0.07 -0.18 0.16 1.00 -0.08 -0.02 -0.08 -0.01 0.02 -0.18 -0.12 -0.26
en 0.12 035 -037 -0.08 1.00 046 008 0.07 -0.17 0.06 -0.04 -0.06
es -0.02 057 -038 -002 046 100 0.10 002 -031 0.09 -029 -0.24
hi 0.01 042 -0.21 -0.08 0.08 0.10 1.00 0.18 0.06 037 027 0.18
el -0.03 022 -041 -001 007 002 018 1.00 -0.15 0.01 034 0.13
th 0.07 -0.26 055 0.02 -0.17 -031 0.06 -0.15 1.00 0.17 0.07 0.10
tr 025 040 -0.17 -0.18 0.06 0.09 037 0.01 0.17 1.00 033 0.27
ru 0.12 -0.09 -0.24 -0.12 -0.04 -0.29 0.27 034 0.07 033 1.00 0.56
ro -0.06 -0.00 -022 -026 -0.06 -024 0.18 0.13 0.10 027 056 1.00
avg 0.12 0.15 -0.07 003 0.12 0.08 020 0.11 0.10 022 0.16 0.12

Table 11: XQuAD Pearson correlation of the performance between languages.

lang ar de zh vi es hi el th tr ru ro  avg
10 054 041 008 -040 030 005 -0.10 043 044 -025 -023 0.19
50 037 024 -028 0.11 -0.01 0.19 027 0.12 021 -0.04 -0.08 0.18
100 -0.37 035 -0.54 -0.03 0.71 0.02 0.08 -0.09 -0.08 -040 -0.12 0.05
250 0.08 020 -0.25 0.03 0.65 -0.16 -0.38 -0.31 -045 -0.33 -0.34 -0.02
all 0.12 035 -0.37 -008 046 008 0.07 -0.17 0.06 -0.04 -0.06 0.12

Table 12: XQuAD Pearson correlation between the performance on English and the performance on other
languages using the same set of samples.
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XNLI PAWS-X

MSE RMSE MSE RMSE
avg (baseline) 1.05£0.56  0.99+0.26 1.26+0.76 1.08+0.34
model using features:
en performance 0.68+0.41 0.80+0.23 1.08+0.92 0.97+0.42
mt performance 0.34+0.28 0.56+0.20 0.92+0.56 0.93+0.28
en + mt performance  0.33+0.26 0.55+0.18 0.91+0.56 0.92+0.28
+ lang features 0.32£0.25 0.54+0.18 0.58+0.27 0.75+0.17

only lang features 0.93+0.47 0.93+0.24 1.01+0.45 0.98+0.25

Table 13: Performance prediction error. Predicting the few-shot performance gain using models with the English
and MT performance as features. For each language, the average performance gain for all other languages is used
as a baseline. +lang features further adds features from lang2vec. Having a combination of English and MT
performance with language features achieves the best results.

en 1.17% 1.29% 1.27% en-1.24% 0.68% 1.22% 0.84% 1.04% en-1.20% 1.06% 0.88% 1.00% 1.02%
2.85% | 2.21%

2.95% | 2.35% | 2.83% | 2.77% | 2.29%

ar
bg- 1.72% 0.82% 2.02% 138% 142%

b9 EELL] 159% EEE 163%, 1ast
de-2.03% 094% 175% 128% 132%

bg

de -PXTA 1.79% | de 7 1.13% %
-1.40% 0.92% 1.02% 1.08% 0.84% el ] el-1.61% 1.50%
es-[1.70% 0.78% 1.08%  1.40% ) es{ZEP70 0.76% |1.84% |1.72% es-1.56% 0.82%
fr- 1.06% 0.72% 0.84% 0.34% 0.52% fr- 0.90% 0.44% 0.82% 0.04% 0.46% fr-[1.78% 0.66% 1.56% 0.78% 1.28%
ru ru 12% 1.18% 1.10% ru % 0.94% 1. 1.55%
sw -- sw- 0.92% 1.18% 0.78% 1.04% 0.84%

th

Vi Vi

bAR 3.43% | 2.94% | 3.00% | 3.02% | 2.80% f4® 3.00% | 2.92% | 2.76% | 2.68% POl 3.32% | 2.82% | 3.30% | 2.52% | 3.12%
avg - 2 LY 201 8% BV 2.29% 2.27% g avg - 4 2.34% | 2.05% | 2.17%
{ '

A B C D E

A B C D E

A B C D E

Figure 20: XNLI few-shot gain over zero-shot across 5 sets of samples (size=1000) for 3 different model
initalizations. Sets A and C yield better performance for the 3 different initalizations. The English performance can
be used as an indicator.
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ar (ESNON 0.04(+1.01) MOEVIESWEIN 0.28(+1.61) ar 0.22(+0.61) | -0.02(+0.95) | 0.08(+1.29) | -0.09(+1.25)
0.74(+1.25) 4 0.29(+1.72) bg - 0.32(+0.68) 0.23(+1.36) 0.13(+1.56)
0.25(+1.15) | 0.24(+1.39) WAF(CR2] ) de 0.29(+1.19) | 0.19(+1.34) | 0.35(+1.99) | 0.35(+2.19)

0.29(+0.62) [IFTERL)) 0.12(+1.27)
es 40.26(+0.51) MVEVIETR:D)) +0.85) | 0.32(+1.22) | 0.28(+1.46)
0.17(+0.41) | 0.32(+0.72) | 0.09(+0.74) [WEHIELN 0.32(+0.97)
0.30(+1.09)

el 4 0.35(+0.68) | 0.37(+0.66) | 0.37(+0.93) | 0.25(+0.92) | 0.31(+1.46)
es - 0.30(+0.55) WOR:IEN R 0.28(+0.76) | 0.28(+1.17) | 0.39(+1.57)
fr - 0.38(+0.63) | 0.36(+0.76) | 0.08(+0.73) 0.27(+0.92)
0.25(+1.60) | ERIEPIPIO N -0.16(+1.94) hi 4 0.41(+0.90) | 0.36(+1.15) | 0.18(+1.53) [ok:l3 3 0.20(+2.30)

ru - 0.31(+0.55) 0.03(+0.94) | 0.14(+1.35) | 0.21(+1.58) ru- 0.41(+0.64) | 0.29(+0.86) | 0.24(+1.15) | 0.08(+1.29) | 0.28(+1.65)
B 0.55(+0.59) 0.90(+0.75) [ 0.52(+0.63) 0.57(+0.93) NUXES¥L)) sw - 0.22(+0.26) 0.33(+1.67)

[R 0.59(+0.89) 0.10(+1.93) | 0.26(+2.46) | 0.10(+2.71) IO 1.19(+1.50 0.34(+2.17) | 0L e 0.29(+2.90)
tr 0.53(+1A14) 0.14(+1.14) 0.25(+1.72) '8 0.69 0.17(+0.78) | 0.02(+1.02) | 0.31(+1.47) | 0.39(+1.85)
ur (NS TESHON -0.04(+2.15) 0.25(+2.58) ur 9) 0.8 0.35(+2.54)

B 0.68(+1.02) 0.80(+1.54) [[RZIESEIN 0.78(+2.51) [IREIEEED) YR 0.70 0.6 A0 0.17(+1.79) ORCIEPEN 0.40(+2.58)
zh +1.50) | -0.02(+1.89) | 0.27(+2.91) | 0.22(+3.19) zh - 0.32(+0.84) 0.17(+2.08) | 0.35(+3.00) | 0.38(+3.35)
avg - 1) EFIEERD N 0.19(+1.32) 0.19(+1.90) avg 0.23(+1.36) 0.30(+2.01)
100 1000 10 50 100 500 1000
(a) XNLI chosen-shots gain (b) XNLI chosen-shots gain
using English performance using machine translation performance
0.41(+0.80) | -0.02(+0.95) -0.09(+1.25) ar -0.02(+0.95) 0.01(+1.34)
| 0.47(+0.99) 0.12(+1.55) bg - 0.31(+0.66) 0.35(+1.48) | 0.42(+1.34) | 0.36(+1.79)
0.37(+2.21) de 0.29(+1.19) | 0.19(+1.34) 0.37(+2.21)
el { 0.35(+0.68) el - 0.35(+0.68) 0.23(+0.90) | 0.31(+1.46)

s 0.30(+0.55) | 01,0 <k0 | 0.42(+0.90) | 0.32(+1.22) | 0.32(+1.50) es-| 0.33(+0.58) | (/[ 0kl | 0.42(+0.90) | 0.32(+1.22) | 0.32(+1.50)
fr- 0.36(+0.61) | 0.30(-+0.70) | 0.04(+0.69) | 0.51 0.31(+0.96) fr 4 0.36(+0.61) | 0.33(+0.73) | 0.04(-+0.69) 0.31(+0.96)
hi - 0.37(+0.86) | 0.36(+1.15) 0.86(+2.61) [IRIEZIED) hi | 0.36(+0.85) | 0.36(+1.15) e XEN 0.20(+2.30)
ru - 0.35(+0.59) | 0.29(+0.86) 0.28(+1.65) ru- 0.35(+0.59) | 0.29(+0.86) | 0.20(+1.11) | 0.31(+1.52) | 0.28(+1.65)
sw - 0.22(+0.26) 0.48(+0.84) | 0.33(+1.67) sw - 0.22(+0.26) 0.67(+0.78 0.33(+1.67)
R 1.19(+1.50) 0.32(+2.15) LN 0.29(+2.90) th 0 0.32(+2.15) 0.35(+2.96)
'8 0.69(+1.12) 0.28(+1.28) 0.39(+1.85) tr 0.37(+0.98) | 0.28(+1.28) | 0.24(+1.40) | 0.39(+1.85)
ur RZESENIREIEE XN 0.38(+2:57) | ( ) ur REEPIN 0.15(+2.34)

vi RIS RENMNNIESWEN 0.16(+1.78) [ORLIETIENN 0:40(+2.58) YR 0.79 0.37(+1.98) |[ICLICEI0 0.40(+2.58)
zh 0.18(+2.09) | 0.35(+3.00) | 0.30(+3.28) zh 4 0.21(+0.74) | 0.37(+1.49) | 0.18(+2.09) | 0.35(+3.00) | 0.30(+3.28)
avg - 0.50(+0 0.4 11) | 0.29(+1.42) | 0.4 0.29(+2.01) avg 0.31(+1.44) 0.32(+2.03)
10 50 100 1000 10 50 100 500 1000
(c) XNLI chosen-shots gain (d) XNLI chosen-shots gain
using (en + mt) model using (en + mt + lang features) model

de -| -0.22(-0.56) | 0.10(-0.10)
- -0.06(-0.04) | 0.36(+0.20)

) | 0.15(+0.09) | 0.15(+0.32)
0.09(+0.33) | ¢ )

de - 0.23(-0.11) | 0.10(-0.10) | 0.34(-0.08) | 0.16(+0.10) | -0.29(-0.12)
es - 0.22(+0.24) | 0.38(+0.22) | 0.12(-0.40) |-0.08(+0.16) |-0.13(+0.11)

e

n

fr- 0.04(-0.12) | 0.13(-0.30) | -0.04(-0.22) | -0.09(-0.32) | 0.18(+0.28) fr- 0.18(+0.02) | 0.06(-0.37) | 0.13(-0.05) | 0.11(-0.12) | 0.35(+0.45)
ja-0.12(+0.19) | 0.09(-0.26) RMUIENEIR -0.37(-0.27) |-0.10(+0.53) ja-0.25(+0.32) | 0.32(-0.03) WMLJENIN -0.23(-0.13) | -0.26(+0.37)
ko - 0.07(+1.09) | 0.12(+1.09) | 0.14(+0.99) -0.85(+1.07) ko --0.01(+1.01) | 0.04(+1.01) | 0.07(+0.92) |-0.28(+1.28) | 0.16(+2.08)
zh -0.06(+0.46) | -0.28(+0.00) 0 0.30(+1.33) | -0.05(+1.44) zh - 0.26(+0.78) | 0.16(+0.44) | -0.01(+0.10) | 0.20(+1.23) | 0.03(+1.52)
avg -0.02(+0.17) | 0.08(+0.10) 0.09(+0.53) | -0.04(+0.71) avg - 0.19(+0.38) | 0.17(+0.19) | 0.29(+0.09) |-0.02(+0.42) | -0.02(+0.73)
1‘0 5‘0 560 10‘00 1‘0 5‘0 160 560 10‘00
(e) PAWSX chosen-shots gain (f) PAWS-X chosen-shots gain
using English performance using machine translation performance
0.26(-0.16) | 0.12(+0.06) | 0.13(+0.30)

de- 0.22(-0.12) | 0.05(-0.15) | 0.26(-0.16) | 0.12(+0.06) | 0.03(+0.20) de - 0.20(-0.14) | -0.10(-0.30)

- 0.20(+0.22) | 0. 0 0.0 -0.17(+0.07) | -0.13(+0.11) es - -0.03(-0.01) | 0.19(+0.03)
fr-| 0.05(-0.11) | 0.09(-0.34) | 0.08(-0.10) | -0.06(-0.29) fr- 0.05(-0.11) | 0.09(-0.34)
ja-{-0.04(+0.03) | 0.26(-0.09) 00(-0.0 -0.02(+0.08) | -0.31(+0.32) ja- -0.08(-0.01) | 0.26(-0.09)

e

n

[WRY/CXOEIN -0.17(+0.07) | -0.13(+0.11)
0.13(-0.05) | -0.06(-0.29) | 0.16(+0.26)
1.00(-0.05) 0.20(+0.83)

ko- 0.10(+1.12) | 0.09(+1.06) | -0.02(+0.83) |-0.04(+1.52) | -0.01(+1.91) ko - 0.10(+1.12) | 0.07(+1.04) | -0.06(+0.79) | -0.04(+1.52) | -0.01(+1.91)
zh -{ 0.29(+0.81) 0.12(+0.23) | 0.14(+1.17) | 0.03(+1.52) zh - 0.29(+0.81) -0.17(-0.06) | 0.24(+1.27) | -0.16(+1.33)
avg - 0.14(+0.32) | 0.07(+0.09) | 0.33(+0.13) | -0.00(+0.44) | -0.00(+0.76) avg -| 0.09(+0.28) | 0.01(+0.03) | 0.29(+0.09) | 0.09(+0.53) | 0.03(+0.79)
1‘0 5‘0 160 560 10‘00 1‘0 5‘0 160 560 10‘00
(g) PAWS-X chosen-shots gain (h) PAWS-X chosen-shots gain
using (en + mt) model using (en + mt + lang features) model

Figure 21: Chosen-shots gain in performance. The gain of choosing shots over the average of no-choosing
(average over 5 random sets). The actual few-shot gain (compared to zero-shot) is shown in parenthesis as follows:
chosen-shots-gain (few-shot-gain). When chosen-shots-gain is positive (green), choosing the shots results in more
gain. When negative (red), it hurts and results in less gain.
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Figure 22: XQuAD chosen-shots gain in performance (no gain!). The gain of choosing shots over the average of
no-choosing (average over 5 random sets). The actual few-shot gain (compared to zero-shot) is shown in parenthesis
as follows chosen-shots-gain (few-shot-gain). We can see that there is no gain in choosing the shots. Experiments
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Abstract

Open-domain question answering systems need
to answer question of our interests with struc-
tured and unstructured information. However,
existing approaches only select one source to
generate answer or only conduct reasoning on
structured information. In this paper, we pro-
pose a Document-Entity Heterogeneous Graph
Network, referred to as DEHG, to effectively
integrate different sources of information, and
conduct reasoning on heterogeneous informa-
tion. DEHG employs a graph constructor to in-
tegrate structured and unstructured information,
a context encoder to represent nodes and ques-
tion, a heterogeneous information reasoning
layer to conduct multi-hop reasoning on both
information sources, and an answer decoder
to generate answers for the question. Experi-
mental results on HybirdQA dataset show that
DEHG outperforms the state-of-the-art meth-
ods.

1 Introduction

Open-domain question answering (ODQA) is a
task to answer any form of question in general
domains with provided evidence (Chen and Yih,
2020; Sun et al., 2019, 2018b). The evidence that
is used can be categorized into unstructured text
like Wikipedia passages (Yang et al., 2018; Min
et al., 2020; Izacard and Grave, 2021) and struc-
tured data like WikiData/WikiTables (Pasupat and
Liang, 2015; Chen et al., 2020b; Wang et al., 2020;
Feng et al., 2022). In practice, an ideal ODQA
model should be able to analyze evidence from
both unstructured text and structured data sources,
as both types of evidence have their own advan-
tages: 1) the unstructured text covers more general
domains; 2) the structured data has better explain-
ability to solve complex multi-hop reasoning.

One line of research accesses unstructured text
and structured data independently (Sun et al., 2019;
Xiong et al., 2019; Pan et al., 2021; Eisenschlos

et al., 2021). The input question is sent to unstruc-
tured text system (TextQA) and structured knowl-
edge base system (KBQA), and one of them is
selected to output the final answer. These meth-
ods cannot combine the two sources of informa-
tion properly. Recently, a new line of research
aggregates heterogeneous information to find the
answer (Chen et al., 2020b), which can construct
connection between passages and table data. How-
ever, the method only conducts multi-hop reason-
ing on table data. It is difficult to handle questions
that need to be answered when multi-hop reasoning
on both sources is required.

In this work, we propose a novel Document-
Entity Heterogeneous Graph Network (referred to
as DEHG) for open-domain question answering
which can conduct multi-hop reasoning on aggre-
gated heterogeneous information. DEHG com-
prises a graph constructor to integrate heteroge-
neous information sources, a context encoder to
generate representations for nodes and question, a
heterogeneous information reasoning layer to ex-
plore multi-hoop connectivity of both information
sources, and an answer decoder to generate answers
for the question.

Our contributions can be summarized as follows:
(1) we examine how to homogenize structured and
unstructured knowledge in open-domain question
answering for multi-hop reasoning. To the best
of our knowledge, our work is the first to conduct
multi-hop reasoning on integrated heterogeneous
information in open-domain question answering.
(2) We propose a Document-Entity Heterogeneous
Graph Network to analyze complex relation of het-
erogeneous information in open-domain question
answering. (3) We present experimental results that
show DEHG outperforms previous state-of-the-art
on HybirdQA dataset. We also perform an ablation
study of our model to provide further insights.
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Figure 1: Overview of DEHG.

2 Our Approach

2.1 Graph Constructor

In order to cope with heterogeneous information,
we propose a Document-Entity Heterogeneous
Graph Constructor to enable rich heterogeneous
information interaction. We divide the graph build-
ing process into two phases and describe them sep-
arately below:

Linking: This phase is aimed to link questions
to their related information in tables and passages
from two sources: 1) Table Cell Matching: in or-
der to link related table cells to the question, we
follow these three criteria: the table cell’s value
is explicitly mentioned by the question; the ta-
ble cell’s value is greater/less than the mentioned
value in question; the table cell’s value is maxi-
mum/minimum over the whole column if the ques-
tion involves superlative words. 2) Passage Match-
ing: it aims to link cells implicitly mentioned by
the question through its hyperlinked passage. The
linking model is a TF-IDF retriever with 3-gram
lexicon which calculates the distances with all the
passages in the pool and highlight the ones with
distance lower than a threshold.

Building: this phase is aimed to build a heteroge-
neous graph to connect all linked cells and their
corresponding hyperlinked passages. The struc-
ture of a heterogeneous graph is shown in Figure
1. For a heterogeneous graph G = (V, E), V and
E denote the set of nodes and the set of edges in
the graph. The nodes V' consist of the set of cells

Ve, and the set of phrases of hyperlinked passages
Vp. The edges E have three types, Cell-Cell edges
E.. that reflect the relations between cells, Cell-
Phrase edges E), that describe the hyperlinked re-
lation between cell and phrase, and Phrase-Phrase
edges E, that express the semantic relation be-
tween phrases in the passage.

We utilize Open Information Annotation
(OIA) (Sun et al., 2020), which is a predicate-
function-argument annotation system for texts, to
split passage into phrases and obtain the relation be-
tween phrases. Cells are connected to root phrase
of its corresponding hyperlinked passage. All se-
lected cells are connected to transfer information
between cells on the heterogeneous graph.

2.2 Context Encoder

We use a BERT encoder to generate representations
for every table cell, phrase of passage, and question
as the initial node embedding in DEHG.

Each linked cell is encoded by 4-element tu-
ple (CONTENT, LOCATION, SOURCE, SCORE).
CONTENT represents the string representation
in the table; LOCATION refers to the ab-
solute row and column index in the table;
SOURCE denotes where the entry comes from (e.g.
equal/greater/less/min/max/passage); SCORE de-
notes the score of linked score normalized to [0,
1]. The first input token is [CLS], followed by
the tokens of 4-element tuple, separated by [SEP].
The state of the first [CLS] is used as the cell’s
embedding s..

Each phrase in the passage is encoded by 2-
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element tuple (TYPE, CONTENT). TYPE refers
to the type of phrase extract by OIA (e.g. con-
stant/predicate/function); CONTENT represents the
sub-string in the passage; The input sequence starts
with [CLS], followed by the tokens of 2-element
tuple with [SEP] as a separator. The representation
of [CLS] is used as the phrase’s embedding s,,.
To generate the question’s semantic embed-
ding s4, a BERT encoder is given the token se-
quence X = ([CLS],z1,...,xn, [SEP]), where
the sub-word tokens of the question are denoted as
z1,...,xn. [CLS] and [SEP] are start-of-text and
separator pseudo-tokens respectively. The state of
the first [CLS] is used as the question’s embedding.

2.3 Heterogeneous Information Reasoning

Message passing: we define how information prop-
agates over the graph in order to do reasoning over
DEHG. According to the types of edges, the het-
erogeneous graph can be divided into three sub-
graphs: Cell-Cell subgraph, Cell-Phrase subgraph,
and Phrase-Phrase subgraph. In each subgraph, we
follow the message passing design in GCN (Kipf
and Welling, 2017) to discriminate the importance
of neighbors. To fuse the information of all sub-
graphs, we use the question-based attention to learn
the corresponding weight of different subgraphs.
With the learned weights as coefficients, we can
fuse these subgraph embeddings to produce the
finial node embedding.

Information Propagation: To explore the higher-
order connectivity information of cells and pas-
sages, we stack 7" layers of subgraph representa-
tion and subgraph integration. Each layer k takes
the node embedding from the previous layers as in-
put, and outputs the updated node embedding after
the current diffusion process finishes. The updated
node embeddings are sent to the k + 1 layer for the
next diffusion process.

2.4 Answer Decoder

The state decoder sequentially generates the answer
for the given question, which is represented as a se-
quence of pointers to cells of the tables and tokens
of the passages. The pointers point to the nodes in
the heterogeneous graph.

The state decoder is an LSTM using
pointer (Vinyals et al., 2015) and attention (Bah-
danau et al., 2015). It takes nodes semantic
representations as input. At each decoding step ¢,
the decoder receives the embedding of the previous

item wy1, the utterance context vector ¢;, and the
previous hidden state h;;, and produces the current
hidden state hy,

hy = LSTM(w;—1, hi—1, ¢t). (D

We adopt the attention function in (Bahdanau et al.,
2015)to calculate the context vectors as follows,

ct = atten(ht,l, N, N) )

The decoder then generates a pointer from the set
of pointers in the cells in the table and the phrases
in the passages on the basis of the hidden state
h;. Specifically, it generates a pointer of item w
according to the following distribution,

Y = v! tanh(Wihy + Wany,), 3)
P(w) = softmaz(yy), 4)

where w is the pointer of node w, n,, is the repre-
sentation of node w, v, W1, and W5 are trainable
parameters, and softmax is calculated over all pos-
sible pointers.

3 Experiment

3.1 Dataset

We evaluate our multi-hop reasoning model DEHG
on the HybridQA (Chen et al., 2020b) dataset,
which contains factual questions that requires multi-
hop reasoning using table and text. Tables and text
are crawled from Wikipedia. Each row in the ta-
ble describes several attributes of an instance. A
table has its hyperlinked Wikipedia passages that
describe the detail of attributes.

3.2 Baselines

In the following experiments, we compare our ap-
proach against previously published state-of-the-art
approaches on the HybridQA dataset.

HyBrider (Chen et al., 2020b): A hybrid model
that combines heterogeneous information to find
the answer. Unsupervised-QG (Pan et al., 2021):
An unsupervised framework that can generate ques-
tions by first selecting/generating relevant informa-
tion from each data source. DocHopper (Sun et al.,
2021): A multihop retrieval method that retrieves a
paragraph or sentence. Pointer (Eisenschlos et al.,
2021): A Transformer architecture that uses heads
to attend to either rows or columns in a table.
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3.3 Evaluation Measures

We use the following automatic evaluation metrics
in our experiments. Exact Match (EM): Measures
what part of the predicted knowledge span matches
the ground truth factoid exactly. Token-Level F1:
We treat the predicted spans and ground truth fac-
toids as bags of tokens, and compute F1.

3.4 Implementation Details

We use the pre-trained BERT model ([BERT-Base,
Uncased]), which has 12 hidden layers of 768 units
and 12 self-attention heads to encode cell, phrase,
and question. The hidden size of LSTM decoder is
also 768. The dropout probability is 0.1. We also
use beam search for decoding, with a beam size of
5. The batch size is set to 4. Adam (Kingma and
Ba, 2015) is used for optimization with an initial
learning rate of 1e-4. We implement the algorithm
using the PaddlePaddle Deep Learning Platform
(Maet al., 2019).

3.5 Experimental Results

In Table 1, we show the results of the our proposed
DEHG graph based model on both development
and test set and compare it with previously pub-
lished results. It shows that our proposed DEHG
works significantly better than the baselines in
terms of EM and F1 on HybridQA. The results
indicate that DEHG is really a general and effec-
tive model for multi-hop question answering over
tabular and textual data. Specifically, DEHG can
leverage the cell and phrase for question answering.
It can also effectively handle multi-hop reasoning
on the heterogeneous graph.

Dev Test
Model EM Fl | EM Fl
Unsupervised-QG | 25.7 30.5 - -
HyBrider 44.0 50.7 | 43.8 50.6
DocHopper 4777 550 | 463 533
POINTR 634 71.0 | 62.8 70.2
DEHG 65.2 763|639 755

Table 1: Performance of our model and related work
on the HybridQA dataset; Numbers in bold denote best
results in that metric.

3.6 Ablation Study

We conduct ablation study on test set. We validate
the effects of three factors: BERT-based encoder,
heterogeneous information reasoning, and pointer

100

= DEHG

I DEHG-w/oBert
B DEHG-w/oGraph
Em DEHG-w/oMulti-hop
mmm DEHG-w/oPointer

90 A

80

HybridQA

100

= DEHG

s DEHG-w/oBert
Bmm DEHG-w/oGraph
BN DEHG-w/oMulti-hop
mmm DEHG-w/oPointer

90 A

75.5

HybridQA

Figure 2: Ablation study results of DEHG.

generation decoder. The results indicate that all the
components of DEHG are indispensable.

Effect of BERT: To investigate the effectiveness
of using BERT in the context encoder, we re-
place BERT with Bi-directional LSTM and run
the model on HybridQA. As shown in Figure 2, the
performance of the BiLSTM-based model DEHG-
w/oBert in terms of EM and F1 decreases com-
pared with DEHG. It indicates that the BERT-based
context encoder can create and utilize more accu-
rate representations for tabular and textual data and
question understanding.

Effect of Heterogeneous Information Reasoning:
To investigate the effectiveness of using the hetero-
geneous graph, we compare DEHG with DEHG-
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w/oGraph which eliminates the heterogeneous in-
formation graph, and DEHG-w/oMulti-hop which
removes the multi-hop information propagation.
From Figure 2, one can observe that without the
heterogeneous information graph the performances
deteriorate considerably. In addition, the perfor-
mances of DEHG-w/oGraph are inferior to DEHG-
w/oMulti-hop. Thus, utilization of heterogeneous
graph to representation multi-hop relation between
passages and tables is desirable.

Effect of Pointer Decoder: To investigate the ef-
fectiveness of the pointer generation mechanism,
we directly generate words from the vocabulary
instead of generating pointers in the decoding pro-
cess. Figure 2 also shows the results of DEHG-
w/oPointer. From the results we can see that pointer
generation is crucial for coping answer from cells
and passages. It is due to HybridQA contains a
large number of questions which answers are ex-
tracted from the tabular and textual data.

4 Related Work

Most work on QA uses structured and structured
data independently (Talmor and Berant, 2018; Sun
et al., 2018a; Kwiatkowski et al., 2019; Sun et al.,
2019; Xiong et al., 2019; Chen et al., 2020a; Zhang
et al., 2020; Liu et al., 2020; Pan et al., 2021; Eisen-
schlos et al., 2021; Yu et al., 2021). They use
unstructured text system (TextQA) and structured
knowledge base system (KBQA) to utilize differ-
ent information. These methods cannot integrate
different sources of information. A new method
is proposed to aggregate heterogeneous informa-
tion to find answer (Chen et al., 2020b; Feng et al.,
2021). However, it only conducts multi-hop reason-
ing on table data. It is difficult to handle questions
when multi-hop reasoning on both sources is re-
quired.

5 Conclusion

We have proposed a new approach to multi-hop
question answering over tabular and textual data.
The approach, referred to as DEHG, takes question
answering as a problem of reasoning answers on
the basis of a heterogeneous information graph.
DEHG employs BERT in encoding of questions
and passages respectively and generates pointers
in decoding of answer generation. Experimental
results show that DEHG significantly outperforms
the state-of-the-art methods.
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Abstract

Increasing concerns and regulations about data
privacy and sparsity necessitate the study
of privacy-preserving, decentralized learn-
ing methods for natural language processing
(NLP) tasks. Federated learning (FL) pro-
vides promising approaches for a large num-
ber of clients (e.g., personal devices or or-
ganizations) to collaboratively learn a shared
global model to benefit all clients while al-
lowing users to keep their data locally. De-
spite interest in studying FL methods for NLP
tasks, a systematic comparison and analysis is
lacking in the literature. Herein, we present
the FedNLP!, a benchmarking framework for
evaluating federated learning methods on four
common formulations of NLP tasks: text clas-
sification, sequence tagging, question answer-
ing, and seq2seq generation. We propose
a universal interface between Transformer-
based language models (e.g., BERT, BART)
and FL methods under various non-IID parti-
tioning strategies. Our extensive experiments
with FedNLP provide empirical comparisons
between FL methods and help us better under-
stand the inherent challenges of this direction.
The comprehensive analysis points to intrigu-
ing and exciting future research aimed at de-
veloping FL methods for NLP tasks.

1 Introduction

Fine-tuning large pre-trained language models
(LMs) such as BERT (Devlin et al., 2019) of-
ten leads to state-of-the-art performance in many
realistic NLP applications (e.g., text classifica-
tion, named entity recognition, question answer-
ing, summarization, etc.), when large-scale, cen-
tralized training datasets are available.
ever, due to the increasing concerns and regu-
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Figure 1: The FedNLP benchmarking framework.

lations about data privacy (e.g., GPDR (Regula-
tion, 2016)) emerging data from realistic users
have been much more fragmented and distributed,
forming decentralized private datasets of multiple
“data silos” (a data silo can be viewed as an in-
dividual dataset) — across different clients (e.g.,
organizations or personal devices).

To respect the privacy of the users and abide
by these regulations, we must assume that users’
data in a silo are not allowed to transfer to a cen-
tralized server or other clients. For example, a
client cannot share its private user data (e.g., docu-
ments, conversations, questions asked on the web-
site/app) with other clients. This is a common
concern for organizations such as hospitals, finan-
cial institutions, or legal firms, as well as personal
computing devices such as smartphones, virtual
assistants (e.g., Amazon Alexa, Google Assistant,
etc.), or a personal computer. However, from a
machine learning perspective, models trained on
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a centralized dataset that combine the data from
all organizations or devices usually result in bet-
ter performance in the NLP domain. Therefore, it
is of vital importance to study NLP problems in
such a realistic yet more challenging scenario —
i.e., training data are distributed across different
clients and cannot be shared for privacy concerns.

The nascent field of federated learning (et al,
2019; Li et al., 2020a) (FL) aims to enable many
individual clients to train their models jointly
while keeping their local data decentralized and
completely private from other users or a central-
ized server.
methods is that each client sends its model param-
eters to the server, which updates and sends back

A common training schema of FL

the global model to all clients in each round. Since
the raw data of one client has never been exposed
to others, FL is promising as an effective way to
address the above challenges, particularly in the
NLP domain, where many user-generated text data
contain sensitive and/or personal information.

Despite the growing progress in the FLL domain,
research into and application for NLP has been
rather limited. There are indeed several recent
works on using FL. methods for processing med-
ical information extraction tasks (Sui et al., 2020).
However, such prior work usually has its exper-
imental setup and specific task, making it diffi-
cult to fairly compare these FL. methods and an-
alyze their performance in other NLP tasks. We
argue that future research in this promising direc-
tion (FL for NLP) would highly benefit from a uni-
versal benchmarking platform for systematically
comparing different FL. methods for NLP. To the
best of our knowledge, such a benchmarking plat-
form is still absent from the literature.

Therefore, our goal in this paper is to provide
comprehensive comparisons between popular FL.
methods (e.g., FedAvg (McMabhan et al., 2017a),
FedOPT (Reddi et al., 2021), FedProx (Li et al.,
2020b)) for four mainstream formulations of NLP
tasks: text classification, sequence tagging, ques-
tion answering, and seq2seq generation. Although
there are few available realistic FL. datasets for
NLP due to privacy concerns, we manage to use
existing NLP datasets to create various non-1ID
data partitions over clients. These non-IID parti-
tions simulate various kinds of distribution shifts
(e.g., label, features, quantities, etc.) over the

clients, which often happen in real-world NLP
applications. As for the base NLP models, we
use the Transformer architecture (Vaswani et al.,
2017) as the backbone and support a wide range of
pre-trained LMs such as DistilBERT (Sanh et al.,
2019), BERT (Devlin et al., 2019), BART (Lewis
et al., 2020), etc. To conduct extensive experi-
ments, we need to support the experiments with
multiple options on dimensions such as (1) fask
Sformulations, (2) NLP models, (3) FL algorithms,
and (4) non-IID partitions. Therefore, we propose
FedNLP, a modular framework with universal in-
terfaces among the above four components, which
is thus more extensible for supporting future re-
search in FL for NLP.

We aim to unblock the research of FL for NLP
with the following two-fold contributions:

* Evaluation and analysis. We system-
atically compare popular federated learning
algorithms for mainstream NLP task formu-
lations under multiple non-IID data parti-
tions, which thus provides the first compre-
hensive understanding. Our analysis reveals
that there is a considerably large gap between
centralized and decentralized training in var-
ious settings. We also analyze the efficiency
of different FL. methods and model sizes.
With our analysis, we highlight several direc-
tions to advance FL for NLP.

* Resource. The implementation of our ex-
periments also forms a general open-source
framework named FedNLP, which is capable
of evaluating, analyzing, and developing FL
methods for NLP. We also provide decentral-
ized NLP datasets of various task formula-
tions created by various non-IID partitioning
strategies for future research.

The remainder of this paper is structured as fol-
lows. We introduce the background knowledge
of federated learning and several typical FL al-
gorithms in §2. Then, we present the proposed
non-IID partitioning strategies to create synthetic
datasets for different task formulations in §3. Our
results, analysis, and findings are in §4. Finally,
we discuss related work (§5) and conclusions (§6).

2 Federated Learning for NLP

In this section, we first introduce the background
knowledge of federated learning (FL) in the con-
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text of NLP tasks. Then, we illustrate a unified
FL framework that we used to study typical FL
algorithms. Based on this, we build our research
framework, a general pipeline for benchmarking
and developing FL. methods for NLP.

2.1 Federated Learning Concepts

Federated learning (FL) is a machine learning
paradigm where multiple entities (clients) collab-
orate in solving a machine learning problem un-
der the coordination of a central server or service
provider. Each client’s raw data is stored locally
and not exchanged or transferred; instead, focused
updates intended for immediate aggregation are
used to achieve the learning objectives (Kairouz
et al., 2019). Therefore, federated learning has
been seen as a promising direction to decrease the
risk of attack and leakage, reduce the difficulty
and cost of data movement, and meet the privacy-
related data storage regulations.

In the basic conception of federated learning,
we would like to minimize the objective function,

F(x) = Eiwp[Fi(z)],

1
where Fi(x) = E¢op,[fi(z, §)]. M

x € RY represents the parameter for the global
model, F; : R? — R denotes the local objective
function at client 4, and P denotes a distribution
on the collection of clients Z. The local loss func-
tions f;(x, &) are often the same across all clients,
but the local data distribution D; will often vary,
capturing data heterogeneity.

Federated averaging (FedAvg) (McMahan
et al., 2017a) is a common algorithm to solve (1)
by dividing the training process into rounds. At
the beginning of the ¢-th round (¢ > 0), the server
broadcasts the current global model ) to a co-
hort of participants: a random subset of clients
from S®) which includes M clients in total. Then,
each sampled client in the round’s cohort performs
7; local SGD updates on its own local dataset and
sends the local model changes Agt) = wgt’n) —z®
to the server. Finally, the server uses the aggre-
gated AZ@ to update the global model: x(+1) =

(t) Liest) pil("
A N e

L s Pi .
of client ¢. The above procedure will repeat un-

til the algorithm converges. In the cross-silo set-
ting where all clients participate in training on ev-
ery round (each cohort is the entire population),

. where p; is the relative weight

we have S®) = {1,2,..., M}. Consequently, we
can learn a global model to benefit all clients while
preserving their data privacy.

2.2 Our Unified Framework for FL.

Algorithm 1: FEDOPT (Reddi et al,
2021)): A Generic FedAvg Algorithm

Input: Initial model w(o), CLIENTOPT,
SERVEROPT

1 fort € {0,1,...,7 — 1} do

2 Sample a subset S of clients

3 for client i € S*) in parallel do

4 Initialize local model z!**) = 2

5

6

fork=0,...,7 —1do

Compute local stochastic gradient
(t.k)

gi(z; ™)

7 Perform local update «

CLIENTOPT ("% g, (z{""), n, 1)

8 Compute local model changes

A® = L) _ (80

(tk41) _

i

9 Aggregate local changes

AW =3 s DAY ) s i

10 Update global model

2tV = SERVEROPT (2, —A®) 1)

In this work, we propose to use FedOPT (Reddi
et al., 2021), a generalized version of FedAvg, to
build the FedNLP platform. As the pseudo-code
presented in Algorithm 1, the algorithm is parame-
terized by two gradient-based optimizers: CLIEN-
TOPT and SERVEROPT with client learning rate
n and server learning rate 7, respectively. While
CLIENTOPT is used to update the local models,
SERVEROPT treats the negative of aggregated lo-
cal changes —A(") as a pseudo-gradient and ap-
plies it to the global model. This optimization
framework generalizes to many aggregation-based
FL algorithms and simplifies the system design.

To make our research general, we explore dif-
ferent combinations of SEVEROPT and CLIEN-
TOPT. The original FedAvg algorithm implicitly
sets SEVEROPT and CLIENTOPT to be SGD, with
a fixed server learning rate 7 of 1.0. FedProx (Li
et al., 2020b), tackling statistical heterogeneity by
restricting the local model updates to be closer to
the initial (global) model, can be easily incorpo-
rated into this framework by adding L2 regular-
ization for better stability in training. Moreover,
given that AdamW (Loshchilov and Hutter, 2019)
is widely used in NLP, we set it for ClientOpt
and let the ServerOpt be SGD with momentum

159



to reduce the burden of tuning.

2.3 The Proposed FedNLP Framework

To support our research in this paper and other fu-
ture work in the area of federated learning for NLP,
we build a general research framework named
FedNLP, based on the above universal optimiza-
tion framework. We here briefly highlight its
unique features and leave the details in the fol-
lowing content and a detailed design is shown in
App. F. First, FedNLP is the very first frame-
work that connects multiple FL algorithms with
Transformer-based models, to our best knowledge.
Also, we implement a flexible suite of interfaces to
support different types of NLP tasks and models,
as well as different non-IID partitioning strategies
(Sec. 3.2). To study security and privacy guaran-
tees, we incorporate state-of-the-art secure aggre-
gation algorithms such as LightSecAgg (see E.5).

3 Benchmarking Setup with FedNLP

In this section, we introduce the creation of our
benchmark datasets from a set of chosen NLP
tasks with different non-IID partition methods. We
evaluate various FL methods on these datasets.

3.1 Task Formulations, Datasets, and Models

There are numerous NLP applications, but most
of them can be categorized based on four main-
stream formulations: text classification (TC), se-
quence tagging (ST), question answering (QA),
and seq2seq generation (SS). The formal def-
inition of each formulation is detailed in Ap-
pendix §B. To cover all formulations while keep-
ing our experiments in a reasonable scope, we se-
lect one representative task for each formulation:

* Text Classification: 20Newsgroup (Lang,
1995) is a news classification dataset with an-
notations for 20 labels. @ We showcase our
FedNLP with this dataset as it has a larger out-
put space (20 labels) than sentiment-analysis
datasets, which is an important factor for the
label-distribution shift scenarios. .

* Sequence Tagging: OntoNotes (Pradhan
et al., 2013) (5.0) is a corpus where sentences
have annotations for the entity spans and types.
We use it for the named entity recognition task,
which is fundamental to information extraction
and other applications.

Task H Txt.Cls. ‘ Seq.Tag. ‘ QA
Dataset H 20News‘ Onto. ‘MRQA‘ Giga.

‘ Seq2Seq

#Training | 113k | S0k | 539k | 10k
# Test 7.5k 5k 3k 2k
# Labels 20 37* N/A | N/A
Metrics || Acc. F-1 F-1 | ROUGE

Table 1: Statistics of the selected datasets for our ex-
periments. *37 is the size of the tag vocabulary.

* QA: MRQA (Fisch et al., 2019) is a bench-
mark consisting of 6 popular datasets’:
SQuAD (Rajpurkar et al., 2016) (8529/431),
NewsQA (Trischler et al., 2017) (11877/613),
TriviaQA (Joshi et al., 2017) (4120/176) ,
SearchQA (Dunn et al., 2017) (9972/499)
, HotpotOQA (Yang et al, 2018b) , and
NQ (Kwiatkowski et al., 2019) (9617/795).

* Seq2Seq Generation: Gigaword (DBL,
2012) is a news corpus with headlines that are
often used for testing seq2seq models as a sum-
marization task. Other tasks such as dialogue
response generation and machine translation can
also be adapted to this format.

We show the basic statistics of the above
datasets in Table 1. Note that our FedNLP as a
research platform supports a much wider range of
specific tasks of each formulation, while we only
introduce the ones used in our experiments here
with typical settings. Moreover, our contribution
is more of a general FL+NLP benchmarking plat-
form instead of particular datasets and partitions.

Base NLP Models. Fine-tuning pre-trained
LMs has been the de facto method for NLP re-
search, so we focus on testing Transformer-based
architectures in FedNLP. Specifically, we choose
to use BART (Lewis et al., 2020), a text-to-text
Transformer model similar to the T5 model (Raf-
fel et al., 2020), for seq2seq tasks.

3.2 Non-IID Partitioning Strategies

The existing datasets have been used for central-
ized training in NLP. As our focus here is to test
decentralized learning methods, we need to dis-
tribute the existing datasets to a set of clients. It
is the non-IIDness of the client distribution that

“We only use part of the data to demonstrate and verify
our hypothesis; we show the train/test split in brackets.

160



makes federated learning a challenging problem.
Thus, we extend the common practice widely used
in prior works to the NLP domain for generating
synthetic FL benchmarks (Li et al., 2021a). We
first introduce how we control the label distribu-
tion shift for TC and ST, then the quantity dis-
tribution shift, and finally how we model the dis-
tribution shift in terms of input features for non-
classification NLP tasks (e.g., summarization).

Non-IID Label Distributions. Here we present
how we synthesize the data partitions such that
clients share the same (or very similar) number
of examples, but have different label distribu-
tions from each other. We assume that on ev-
ery client training, examples are drawn indepen-
dently with labels following a categorical distri-
bution over L classes parameterized by a vec-
tor g (¢; > 0,7 € [1,L] and ||q|[s = 1). To syn-
thesize a population of non-identical clients, we
draw ¢ ~ Dirp(ap) from a Dirichlet distribu-
tion, where p characterizes a prior class distribu-
tion over L classes, and « > 0 is a concentra-
tion parameter controlling the identicalness among
clients. For each client C;, we draw a g; as its la-
bel distribution and then sample examples without
replacement from the global dataset according to
qj. With a — o0, all clients have identical dis-
tributions to the prior (i.e., uniform distribution);
with o« — 0, on the other extreme, each client
holds examples from only one class chosen at ran-
dom. In Fig. 2, we show heatmaps for visualizing
the distribution differences between each client.
Figure 3 shows an example of the concrete label
distributions for all clients with different o. We
can see that when « is smaller, the overall label
distribution shift becomes larger.

Controlling non-IID Quantity. It is also com-
mon that different clients have very different data
quantities while sharing similar label distribution.
We thus also provide a quantity-level Dirichlet al-
location z ~ Diry(f) where N is the number of
clients. Then, we can allocate examples in a global
dataset to all clients according to the distribution z
—i.e., |Di| = z|Dg|. If we would like to model
both quantity and label distribution shift, it is also
easy to combine both factors. Note that one could
assume it is a uniform distribution z ~ U(N), (or
B — o00) if we expect all clients to share a sim-
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Figure 2: The J-S divergence matrix between
100 clients on the 20News dataset when a &€
{1,5,10,100}. Each sub-figure is a 100x100 symmet-
ric matrix. The intensity of a cell (¢, 7)’s color here
represents the distance between the label distribution
of Client ¢ and j. It is expected that when « is smaller,
the partition over clients is more non-1ID in terms of
their label distributions.

ilar number of examples. A concrete example is
shown in Figure 8 (Appendix).

Controlling non-IID  Features. Although
straightforward and effective, the above label-
based Dirichlet allocation method has a major
limitation — it is only suitable for text classifi-
cation tasks where the outputs can be modeled
as category-based random variables. To create
synthetic partitions for other non-classification
NLP tasks and model distribution shifts, we
thus propose a partition method based on feature
clustering. Specifically, we use Sentence-
BERT (Reimers and Gurevych, 2019) to encode
each example to a dense vector by their text then
we apply K-Means clustering to get the cluster
label of each example; finally, we use these cluster
labels (as if they were classification tasks) to
follow the steps in modeling label distribution
shift. There are two obvious benefits of this
clustering-based Dirichlet partition method: 1) It
enables us to easily synthesize the FL datasets for
non-classification tasks (i.e., ST, QA, SS) as they
do not have discrete labels as output space; 2) The
BERT-based clustering results naturally imply
different sub-topics of a dataset, and thus feature
shift can be seen as a shift of latent labels — we
can reuse the same method for the label-based
Dirichlet partition method.

Natural Factors For datasets like MRQA, we
consider a cross-silo setting where each client is
associated with a particular sub-dataset (out of the
six datasets of the same format), forming a natu-
ral distribution shift based on the inherent factors
such as data source and annotating style.



Task Dataset ‘ Partition Clients | FedAvg FedProx FedOPT | # Rounds
Text Classification 20news «a =1 (label shift) 100 0.5142 0.5143 0.5349 22
Sequence Tagging  OntoNotes | « =0.1 (label shift) 30 0.7382 0.6731 0.7918 17
Question Answering MRQA natural factor 6 0.2707 0.2706 0.3280 13
Seq2Seq Generation  Gigaword | « =0.1 (feature shift) 100 0.3192 0.3169 0.3037 13

Table 2: The comparisons between different FL methods under the same setting on different NLP tasks. The
number of workers per round are 10, expect for the MRQA task, which uses 6.

20 labels Ratio - 1.0
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Figure 3: Visualizing the non-IID label distributions
on 20News with « being {1,5,10,100}. Each sub-
figure is a 100x20 matrix, where 100 is the number of
clients, and 20 is the number of labels. The intensity of
a cell here represents the ratio of a particular label in the
local data of a client. When « is smaller (1, 5, 10), each
client has a relatively unique label distribution, thus the
differences between clients are larger; when o = 100,
every client has a nearly uniform label distribution.

4 Experimental Results and Analysis

In this section, we aim to analyze typical federated
learning methods (introduced in our benchmark
datasets with multiple dimensions with the base
NLP models listed previously. We put more im-
plementation details and additional results in Ap-
pendix. We organize our extensive experimental
results and findings from the analysis as a collec-
tion of research questions with answers.

Experimental Setup and Hyper-parameters.
We use DistilBERT and BART-base for most of
our experiments, as the former is a distilled ver-
sion of the BERT model and has a 7x speed
improvement over BERT-base on mobile devices
— a common scenario for FL applications; the
BART-base model is the most suitable option con-
sidering the trade-off between performance and
computation cost. We leave our implementation
details and the selected hyper-parameters in the

submitted supplementary materials.

Our experiments cover both cross-device and
cross-silo settings. As shown in Table 2, in the
cross-device setting, we use uniform sampling to
select 10 clients for each round when the client
number in a dataset is very large (e.g., 100). For
the cross-silo setting, each round will select the
same number of clients (we use 6 for the QA task).
The local epoch number is set to 1 for all experi-
ments. To make our results reproducible, we use
wandb.ai to store all experiment logs and hyper-
parameters as well as running scripts.

Q1: How do popular FL methods perform
differently under the same setting?

We compare the three typical FL. methods under
the same setting (i.e., data partition, communica-
tion rounds, etc.) for each task formulation. As
shown in Table 2, we report the results of FedAvg,
FedProx, and FedOPT. We can see that overall Fe-
dOPT performs better than the other two methods,
with the only exception being in the seq2seq gen-
eration task. FedAvg and FedProx perform sim-
ilarly with marginal differences, but FedAvg out-
performs FedProx in sequence tagging. These two
exceptions are surprising findings, as many prior
works in the FL. community show that FedOPT is
generally better than FedProx and FedAvg on vi-
sion tasks and datasets.

We conjecture that such inconsistent perfor-
mance across tasks suggests the difference in
terms of the loss functions has a great impact on
FL performance. Seq2seq and sequence tagging
tasks usually have more complex loss landscapes
than text classification, as they are both typical
structured prediction tasks, while the text classi-
fication has a much smaller output space. From
Fig. 4, we see that the FedOPT outperforms the
other two methods at the beginning while gradu-
ally becoming worse over time.
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Figure 4: The learning curves of the three FL Methods on four different task formulations. The metrics used for
these tasks are accuracy, span-F1, token-F1, and ROUGE respectively; The x-axis is the number of rounds.
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Figure 5: Testing FedOPT with Disti1BERT for
20News under different data partition strategies.

This tells us that the use of AdamW as the client
optimizer may not always be a good choice, es-
pecially for a complex task such as the Seq2Seq
ones, as its adaptive method for scheduling learn-
ing rates might cause implicit conflicts. These ob-
servations suggest that federated optimization al-
gorithms need to be tailored for various NLP tasks,
and exploring FL-friendly model architecture or
loss function can also be promising directions to
address these challenges.

Q2: How do different non-I1ID partitions of
the same data influence FL performance?

The FedNLP platform supports users to inves-
tigate the performance of an FL algorithm with a
wide range of data partitioning strategies, as dis-
cussed in §3.2. Here we look at the training curves
of the FedOPT on different partitions, as shown in
Figure 5. We reveal several findings:

* When « is smaller (i.e., the partition is more
non-IID in terms of their label distribution), the
performance tends to degrade, based on the three
curves (o = {1,5,10}).

* The variance is also larger when the label distri-
bution shift is larger. Both uniform and quantity-

Frozen Layers | # Tunable Paras. | Cent. FedOpt.
None 67.0M 86.86  55.11
E 43.1M 86.19  54.86
E+ Ly 36.0M 86.54 5291
E+ Lo 29.0M 86.52  53.92
E+ Los2 21.9M 85.71  52.01
E+ Loss 14.8M 85.47  30.68
E+ Loy 7™ 82.76  16.63
E+ Loss 0.6M 63.83 1297

Table 3: Performance (Acc.%) on 20news (TC) when
different parts of Disti1BERT are frozen for central-
ized training and FedOpt (at 28-th round). E stands for
the embedding layer and L; means the ¢-th layer. The
significant lower accuracy are underlined.

skew partitions have a smoother curve, while the

variance is smaller for a larger « (e.g., 10).

* Quantity skew does not introduce a great chal-
lenge for federated learning when the label dis-
tribution is closer to the uniform one.

These findings suggest that it is important to
design algorithms to mitigate data heterogene-
ity. One promising direction is personalized FL,
which enables each client to learn its personalized
model via adapting its local data distribution and
system resources (Dinh et al., 2020; Fallah et al.,
2020; Li et al., 2021b).

Q3: How does freezing of Transformers in-
fluence the FL performance?

Communication cost is a major concern in the
federated learning process. It is thus natural to
consider freezing some Transformer layers of the
client models to reduce the size of the trainable pa-
rameters that will be transmitted between servers
and clients. To study the influence of freezing lay-
ers on the FL performance, we conduct a series of
experiments that freeze the layers from the embed-
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Figure 6: Testing FedOPT with Disti1BERT for
20News under different frozen layers.
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Figure 7: FedOPT for 20News with different LMs.

ding layer (E) to the top layer (Ls) of DistilBERT
with both centralized training and FedOPT on the
text classification task.

We report our results in Table 3 and Figure 6.
We find that in centralized training, the largest
performance gain happens when we unfreeze the
last layer, while in FedOPT we have to unfreeze
the last three layers to enjoy a comparable per-
formance with the full model. This suggests that
reducing communication costs via freezing some
layers of Transformer LMs is feasible, though one
should be aware that the experience in centralized
training may not generalize to the FL experiments.

Q4: Are compact model DistilBERT ade-
quate for FL+NLP?

We know that BERT has a better performance than
DistilBERT for its larger model size. However,
is it cost-effective to use BERT rather than Dis-
tilBERT? To study this, we compare the perfor-
mance of both models with FedOPT on text classi-
fication, sharing the same setting as the above ex-
periments. As shown in Figure 7, although BERT-

base achieves better performance, the performance
of DistilBERT is not significantly worse. Consid-
ering the communication cost (BERT-base is al-
most 2x larger), we argue that using DistilBERT is
a more cost-effective choice for both experimental
analysis and realistic applications.

5 Related Work

FL benchmarks and platforms. In the last few
years a proliferation of frameworks and bench-
mark datasets have been developed to enable re-
searchers to better explore and study algorithms
and modeling for federated learning, both from
academia: LEAF(Caldas et al., 2018), FedML (He
et al., 2020c), Flower (Beutel et al., 2020), and
from the industry: PySyft (Ryffel et al., 2018),
TensorFlow-Federated (TFF) (Ingerman and Os-
trowski, 2019), FATE (Yang et al., 2019), Clara
(NVIDIA, 2019), PaddleFL. (Ma et al., 2019),
Open FL (Intel®, 2021). However, most platforms
only focus on designing a unified framework for
federated learning methods and do not provide
a dedicated environment for studying NLP prob-
lems with FL. methods. LEAF (Caldas et al., 2018)
contains a few text datasets, however, it is limited
to classification and next-word prediction datasets
and does not consider the pre-trained language
models. We want to provide a dedicated platform
for studying FL methods in realistic NLP applica-
tions with state-of-the-art language models.

Federated learning in NLP applications.
There are a few prior works that have begun
to apply FL methods in privacy-oriented NLP
applications. For example, federated learning has
been applied to many keyboard-related applica-
tions including (Hard et al., 2018; Stremmel and
Singh, 2020; Leroy et al., 2019; Ramaswamy
et al., 2019; Yang et al., 2018a), sentence-level
text intent classification using Text-CNN (Zhu
et al., 2020), and pretraining and fine-tuning of
BERT using medical data from multiple silos
without fetching all data to the same place (Liu
and Miller, 2020). FL methods also have been
proposed to train high-quality language models
that can outperform the models trained without
federated learning (Ji et al., 2019; Chen et al.,
2019).
has been done in medical relation extractions (Ge

Besides these applications, some work
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et al., 2020) and medical name entity recognition
(Sui et al., 2020). These methods use federated
learning to preserve the privacy of sensitive
medical data and learn data on different platforms,
excluding the need for exchanging data between
different platforms.

Our work aims to provide a unified platform
for studying various NLP applications in a shared
environment so that researchers can better design
new FL methods either for a specific NLP task or
as a general-purpose model. The aforementioned
prior works would thus be a particular instance of
the settings supported by the FedNLP platform.

6 Conclusion and Future Directions

Our key contribution is providing a thorough and
insightful empirical analysis of existing federated
learning algorithms in the context of NLP mod-
els. Notably, We compare typical FL. methods
for four NLP task formulations under multiple
non-IID data partitions. Our findings reveal both
promise and the challenges of FL for NLP. In ad-
dition, we also provide a suite of resources to sup-
port future research in FL for NLP (e.g., a unify-
ing framework for connecting Transformer mod-
els with popular FL methods and different non-1ID
partition strategies). Thus, we believe our well-
maintained open-source codebase to support fu-
ture work in this area.

Promising future directions in FL for NLP in-
clude: 1) minimizing the performance gap, 2) im-
proving the system efficiency and scalability, 3)
trustworthy and privacy-preserving NLP, 4) per-
sonalized FL methods for NLP, etc. (Please see
Appendix E for more details.)

Ethical Considerations and Limitations(*)

Ethical considerations. The key motivation of
FedNLP (and FL) is to protect the data privacy of
general users by keeping their data on their own
devices while benefiting from a shared model from
a broader community. Among the risks that need
to be considered in any deployment of NLP are
that responses may be wrong, or biased, in ways
that would lead to improperly justified decisions.
Although in our view the current technology is still
relatively immature, and unlikely to be fielded in
applications that would cause harm of this sort, it
is desirable that FedNLP methods provide audit

trails, and recourse so that their predictions can be
explained to and critiqued by affected parties.

Limitations. One limitation of our work is that
we have not analyzed the privacy leakage of FL
We argue that novel privacy-centric
measures are orthogonal to the development of FL
methods, which is beyond the scope of our work.
How to fairly analyze the privacy leakage is now
still an open problem for both FL. and NLP, and
it is only possible to study this when we have an
existing platform like FedNLP.

methods.
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Appendix

A FL+NLP

Many realistic NLP services heavily rely on users’
local data (e.g., text messages, documents and
their tags, questions and selected answers, etc.),
which can be located at either personal devices
or larger data-silos for organizations. These lo-
cal data are usually regarded as highly private and
thus not directly accessible by anyone, according
to many data privacy regulations; this makes it dif-
ficult to train a high-performance model to benefit
users. Federated learning aims to solve machine
learning under such a privacy-preserving use case,
thus offering a novel and promising direction to
the community: FL+NLP.

Apart from the goal of learning a shared global
model for all clients, FL also provides a new per-
spective for many other interesting research ques-
tions in NLP. One related direction is to develop
personalized models for NLP applications, which
requires both protection of data privacy and trans-
ferred ability on users’ own input feature distri-
bution caused by language styles, interested top-
ics and so on. The recent concerns on adversar-
ial attacks and safety issues of NLP models are
also highly related to FL+NLP. We thus believe
FL+NLP is of vital importance for applying NLP
technologies in realistic use cases and could bene-
fit many relevant research areas.

A.1 Challenges of Applying FL in NLP

Given the promising benefits of studying FL+NLP,
however, this research direction is currently
blocked by the lack of a standardized platform
providing fundamental building blocks: bench-
mark datasets, NLP models, FL methods, evalu-
ation protocols, etc. Most of the current FL plat-
forms either focus on unifying various FL meth-
ods and use computer vision models and datasets
for their experiments, but lack the ability to con-
nect the study of pre-trained language models, the
most popular NLP, and realistic NLP applications
of various task formulations.

The first challenge in developing a comprehen-
sive and universal platform for FL+NLP is to deal
with various task formulations for realistic NLP
applications, which have different input and output

formats (Section B). As the non-IID data partition
over clients is the major feature of FL problems, it
is also a challenge to simulate the realistic non-1ID
partition for existing NLP datasets (Section 3.2).
Finally, a platform also must integrate various FL
methods with the Transformer-based NLP mod-
els for a variety of task types, and thus a flexible
and extensible learning framework is needed. In
particular, the conventional trainer component of
Transformers now needs to be modified for effi-
cient and safe communications towards federated
learning (Section F).

B Basic Formulations of NLP Tasks

There are various types of NLP applications, but
many of them share a similar task formulation
(i.e., input-and-put formats). We show four com-
mon task formulations that can cover most of the
mainstream NLP applications: text classification,
sequence tagging, question answering, sequence-
to-sequence generation.

Text Classification (T'C) The input is a sequence
of words, x = [w1, w2, ..., and the output is a la-
bel y in a fixed set of labels £. Many NLP applica-
tions can be formulated as text classification tasks.
For example, we can use TC models for classi-
fying the topic of a news article to be political,
sports, entertainment, etc., or analyzing movie re-
views to be positive, negative or neutral.

Sequence Tagging (ST) The input is a sequence
of words, x = [wy,ws,...,wy]|, and the out-
put is a same-length sequence of tags y =
[t1,t2,...,tN], where ¢; is in a fixed set of labels
L. The main difference between TC and ST is that
ST learns to classify the label of each token in a
sentence, which is particularly useful in analyzing
syntactic structures (e.g., part-of-speech analysis,
phrase chunking, and word segmentation) and ex-
tracting spans (e.g., named entity recognition).

Question Answering (QA) Given a passage P =
[wi,ws,...,wy] and a question ¢ as input, the
task is to locate a span in the passage as the an-
swer to the question. Thus, the output is a pair of
token index (s, e) where s,e € {1,2,..., N} for
denoting the begin and end of the span in the pas-
sage. This particular formulation is also known as
reading comprehension.

Natural Language Generation (NLG) Both in-
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Figure 8: The probability density of quantity of train-
ing examples in each of the 100 clients on the 20News
dataset with different 3. When S is larger, then all
clients share more similar numbers of examples; when
B is smaller, then the range of the quantity is much
wider — i.e., the larger differences between clients in
terms of their sizes of datasets.

put and output are sequence of words, x
Swh] Ly = [whwg, .. wq,]. Ttis
shared by many realistic applications such as sum-
marization, response generation in dialogue sys-
tems, machine translation, etc.

Language Modeling (LM) The left-to-right lan-
guage modeling task considers a sequence of
words as the input x
token y = wy1 as the output. The output token
is expected to be the most plausible next word of
the incomplete sentence denoted as x. Although
the direct application of LM is limited, a high-
performance pre-trained language model can ben-
efit a wide range of NLP applications (as above)
via fine-tuning. It also serves as an excellent test
bed as it requires no human annotations at all.

[wi,w%, ..

[w1,wa, ..., wy,] and a

Others. There are some other applications that
not are covered by the above four basic formu-
lations, and our extensible platform (detailed in
Section F) enables users to easily implement their
specific tasks. For each task formulation, we show
which datasets are used in FedNLP and how we
partition them in Section 3.

C Implementation Details

Non-IID. Label Distribution Note that this
might cause a few clients not to have enough ex-
amples to sample for particular labels if they are
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already used up. Prior works choose to stop as-
signing early and remove such clients, but it conse-
quently loses the other unused examples and also
causes the inconsistency of client numbers. Thus,
to avoid these issues, we propose a dynamic re-
assigning method which complement the vacancy
of a label by filling in the examples of other la-
bels based on their current ratio of remaining unas-
signed examples.

C.1 The FedNLP Training Pipeline: Security
and Efficiency

Under the definition of federated learning in Algo-
rithm 1, we design a training system to support the
research of NLP in the FL paradigm. We highlight
its core capabilities and design as follows.

Supporting diverse FL algorithms. FedNLP
aims to enable flexible customization for future
algorithmic innovations. We have supported a
number of classical federated learning algorithms,
including FedAvg (McMahan et al., 2017a), Fe-
dOPT (Reddi et al., 2021), and FedProx (Li et al.,
2020b). These algorithms follow the same frame-
work introduced in Algorithm 1. The algorithmic
APIs are modularized: all data loaders follow the
same format of input and output arguments, which
are compatible with different models and algo-
rithms and are easy to support new datasets; the
method of defining the model and related trainer is
kept the same as in centralized training to reduce
the difficulty of developing the distributed train-
ing framework. For new FL algorithm develop-
ment, worker-oriented programming reduces the
difficulty of message passing and definition. More
details are introduced in Appendix F.3.

Enabling  secure  benchmarking  with
lightweight secure aggregation. In partic-
ular, FedNLP enhances the security aspect of
federated training, which is not supported by ex-
isting non-NLP-oriented benchmarking libraries
(e.g., TFF, LEAF). This is motivated by the fact
that model weights from clients may still have
the risk of privacy leakage (Zhu et al., 2019). To
break this barrier, we integrate secure aggregation
(SA) algorithms to the FedNLP system. NLP
researchers do not need to master security-
related knowledge and also benefit from a secure

distributed training environment. To be more



specific, FedNLP supports state-of-the-art SA
algorithms Light SecAgg, SecAgg (Bonawitz
etal., 2017), and SecAgg+ (Bell et al., 2020). At
a high-level understanding, SA protects the client
model by generating a single random mask and
allows their cancellation when aggregated at the
server. Consequently, the server can only see the
aggregated model and not the raw model from
each client. In this work, our main effort is to
design and optimize these SA algorithms in the
context of the FedNLP system. We provide an
algorithmic performance comparison in Appendix
F5.

Realistic evaluation with efficient distributed
system design. FedNLP aims to support dis-
tributed training in multiple edge servers (e.g,
AWS EC2) or edge devices (e.g., [oTs and smart-
phones). To achieve this, the system is designed
with three layers: the application layer, the algo-
rithm layer, and the infrastructure layer. At the ap-
plication layer, FedNLP provides three modules:
data management, model definition, and a single-
process trainer for all task formats; at the algo-
rithm layer, FedNLP supports various FL algo-
rithms; at the infrastructure layer, FedNLP aims
at integrating single-process trainers with a dis-
tributed learning system for FL. Specifically, we
make each layer and module perform its own du-
ties and have a high degree of modularization. We
refer readers to Appendix F for a detailed descrip-
tion of the system architecture and design philos-

ophy.
D More Related Works

Federated Learning Methods. Federated
Learning (FL) is a widely disciplinary research
area that mainly focuses on three aspects: sta-
tistical challenge, trustworthiness, and system
optimization.  Numerous methods have been
proposed to solve statistical challenges, including
FedAvg (McMahan et al., 2017b), FedProx (Li
et al., 2020b), FedOPT (Reddi et al., 2021),
FedNAS (He et al., 2020a,d), and FedMA (Wang
et al., 2020b) that alleviate the non-IID issue
with distributed optimization, and new formu-
lations, MOCHA (Smith et al., 2017), pFedMe
(Dinh et al., 2020), perFedAvg (Fallah et al.,
2020), and Ditto (Li et al., 2021b), that consider

personalization and fairness in federated training.

For trustworthiness, security and privacy are the
two main research directions that are mainly con-
cerned with resisting data or model attacks, recon-
struction, and leakage during training (So et al.,
2021b,a, 2020; Prakash et al., 2020; Prakash and
Avestimehr, 2020; Elkordy and Avestimehr, 2020;
Prakash et al., 2020; Wang et al., 2020a; Lyu
et al., 2020). Given that modern deep neural net-
works are over-parameterized and dominate nearly
all learning tasks, researchers also proposed algo-
rithms or systems to improve the efficiency and
scalability of edge training (He et al., 2020b,c,
2019, 2021). We refer readers to the canonical sur-
vey (Kairouz et al., 2019) for details.

Although tremendous progress has been made
in the past few years, these algorithms or systems
have not been fully evaluated on realistic NLP
tasks introduced in this paper.

E Future Directions

Minimizing the performance gap. In the FL
setting, we demonstrate that federated fine-tuning
still has a large accuracy gap in the non-IID dataset
compared to centralized fine-tuning. Develop-
ing algorithms for Transformer models with NLP
tasks is of the highest priority.

Improving the system efficiency and scalabil-
ity. Transformer models are usually large, while
resource-constrained edge devices may not be able
to run large models. Designing efficient FL meth-
ods for NLP tasks is thus a practical problem
worth solving. How to adopt a reasonable user se-
lection mechanism to avoid stragglers and speed
up the convergence of training algorithms is also a
pressing problem to be solved.

Trustworthy and privacy-preserving NLP.
We argue that it is an important future research
direction to analyze and assure the privacy-
preserving ability of these methods, although our
focus in this paper is the implementation and
performance analysis of the FL. methods for NLP
tasks. It is now an open problem for both FL
and NLP areas, while it is an orthogonal goal
for improving the trustworthy of decentralized
learning, and it is only possible to study privacy
preservation when we have an existing FL+NLP
platform. This is also part of our motivation in
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proposing FedNLP, and we believe our framework
provides a set of flexible interfaces for future
development to analyze and improve the privacy-
preserving ability of FL methods for NLP tasks
and beyond.

Personalized FedNLP. From the perspective of
the data itself, user-generated text is inherently
personalized. Designing personalized algorithms
to improve model accuracy or fairness is a very
promising direction. In addition, it is also an inter-
esting problem to adapt the heterogeneous model
architecture for each client in the FL network. We
show that it is feasible to only fine-tune a small
amount of the parameters of LMs, so it is promis-
ing to adapt recent prefix-tuning methods (Li and
Liang, 2021) for personalizing the parameters of
NLP models within the FedNLP framework.

F The System Design of FedNLP

The FedNLP platform consists of three layers:
the application layer, the algorithm layer, and
the infrastructure layer. At the application layer,
FedNLP provides three modules: data manage-
ment, model definition, and single-process trainer
for all task formats; At the algorithm layer,
FedNLP supports various FL algorithms; At the
infrastructure layer, FedNLP aims at integrating
single-process trainers with a distributed learning
system for FL. Specifically, we make each layer
and module perform its own duties and have a high
degree of modularization.

F.1 Overall Workflow

The module calling logic flow of the whole frame-
work is shown on the left of Figure 9. When
we start the federated training, we first complete
the launcher script, device allocation, data load-
ing, and model creation, and finally call the API
of the federated learning algorithm. This process
is expressed in Python-style code (see Alg. 2).

F.2 The Application Layer

Data Management. In data management, What
DataManager does is control the whole workflow
from loading data to returning trainable features.
To be specific, DataManager is set up for read-
ing h5py data files and driving a preprocessor

to convert raw data to features. There are four

Algorithm 2: The FedNLP Workflow

# using text classification (TC) as an example
# initialize distributed computing environment

process_id, ... = FedNLP_init ()

# GPU device management
device = map_process_to_gpu(process_id, ...)

# data management
data_manager = TCDataManager (process_id, ...)
# load the data dictionary by process_id

data_dict = dm.load_federated_data ocess_id)

# create model by specifying the task
client_model, . = create_model (model_args,
formulation="classification")

# define a customized NLP Trainer
client_trainer = TCTrainer (device,
client_model, ...)

# launch the federated training (e.g.,

FedAvg_distributed(..., device,
client_model,
data_dict, ...,
client_trainer)

FedAvgqg)

types of DataManager according to the task def-
inition. Users can customize their DataManager
by inheriting one of the pataManager class, spec-
ifying data operation functions, and embedding a
particular preprocessor. Note that the raw data’s
u5py file and the non-IID partition file are pre-
processed offline, while pataManager only loads
them in runtime.

Model Definition. We support two types of
models: Transformer and LSTM. For Transformer
models, to dock with the existing NLP ecology,
our framework is compatible with the Hugging-
Face Transformers library (Wolf et al., 2020), so
that various types of Transformers can be directly
reused without the need for re-implementation.
Specifically, our code is compatible with the three
main classes of Tokenizer, Model, and Config
in HuggingFace. Users can also customize them
based on HuggingFace’s code. Although LSTM
has gradually deviated from the mainstream, we
still support LSTM to reflect the framework’s in-
tegrity, which may meet some particular use cases
in a federated setting.

NLP Trainer (single process perspective). As
for the task-specific NLP Trainer, the most
prominent feature is that it does not require users
to have any background in distributed comput-
ing. Users of FedNLP only need to complete
single-process code writing. A user should in-
herit the Trainer class in the application layer
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Application Layer:

Text Classification, Span Extraction, Sequence Tagging, Seq2Seq, Language Modeling
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Figure 9: The overall workflow and system design of the proposed FedNLP platform.

to implement the four methods as shown in the
figure: 1. the get_model_params () interface al-
lows the algorithm layer to obtain model param-
eters and transmit them to the server; 2. the
set_model_params () interface obtains the up-
dated model from the server’s aggregation and
then updates the model parameters of the local
model; 3. the programming of the train () and
test () function only needs to consider the data
of a single user, meaning that the trainer is com-
pletely consistent with the centralized training.

F.3 The Algorithm Layer

In the design of the algorithm layer, we follow
the principle of one-line API. The parameters of
the API include model, data, and single-process
trainer (as shown in Algorithm 2). The algorithms
we support include:

Centralized Training. We concatenate all client
datasets and use the global data Dg to train a
global model — i.e., the conventional protocol for

learning an NLP model on a dataset.

FedAvg (McMahan et al., 2017a) is the de facto
method for federated learning, assuming both
client and server use the SGD optimizer for up-
dating model weights.

FedProx (Li et al., 2020b) can tackle statistical
heterogeneity by restricting the local model up-
dates to be closer to the initial (global) model with
L2 regularization for better stability in training.

FedOPT (Reddi et al., 2021) is a generalized
version of FedAvg. There are two gradient-based
optimizers in the algorithm: ClientOpt and
ServerOpt (please refer to the pseudo code in
the original paper (Reddi et al., 2021)). While
ClientOpt is used to update the local models,
SerevrOpt treats the negative of aggregated lo-
cal changes —A(") as a pseudo-gradient and ap-
plies it on the global model. In our FedNLP frame-
work, by default, we set the ClientOpt to be
AdamW (Loshchilov and Hutter, 2019) and the
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SerevrOpt to be SGD with momentum (0.9)
and fix server learning rate as 1.0.

Each algorithm includes two core objects,
ServerManager and ClientManager, which in-
tegrate the communication module ComManager
from the infrastructure layer and the Trainer of
the training engine to complete the distributed al-
gorithm protocol and edge training. Note that
users can customize the Trainer by passing a cus-
tomized Trainer through the algorithm APIL.

F.4 The Infrastructure Layer
The infrastructure layer includes three modules:

1) Users can write distributed scripts to man-
age GPU resource allocation. In particular,
FedNLP provides the GPU assignment API
(map_process_to_gpu() in Algorithm 2) to as-
sign specific GPUs to different FL Clients.

2) The algorithm layer can use a unified and ab-
stract ComManager to complete a complex al-
gorithmic communication protocol. Currently,
we support MPI (Message Passing Interface),
RPC (Remote procedure call), and MQTT (Mes-
sage Queuing Telemetry Transport) communica-
tion backend. MPI meets the distributed training
needs in a single cluster; RPC meets the communi-
cation needs of cross-data centers (e.g., cross-silo
federated learning); MQTT can meet the commu-
nication needs of smartphones or loT devices.

3) The third part is the training engine, which
reuses the existing deep learning training engines
by presenting as the Trainer class.
rent version of this module is built on PyTorch,
but it can easily support frameworks such as
TensorFlow. In the future, we may consider sup-
porting the lightweight edge training engine opti-
mized by the compiler technology at this level.

Our cur-

F.5 Enhancing Security with Secure
Aggregation (SA)

FedNLP supports state-of-the-art SA algorithms
LightSecAgg, SecAgg (Bonawitz et al.,
2017), and SecAgg+ (Bell et al., 2020). Here, we
provide a short performance comparison of these
three algorithms. In general, LightSecAgg
provides the same model privacy guarantees as
SecAgg (Bonawitz et al., 2017) and SecAgg+
(Bell et al., 2020)) while substantially reducing the
aggregation (hence run-time) complexity (Figure

??). The main idea of LightSecAgg are that
each user protects its local model using a locally
generated random mask. This mask is then en-
coded and shared with other users, in such a way
that the aggregate mask of any sufficiently large
set of surviving users can be directly reconstructed
at the server. Our main effort in FedNLP is in-
tegrating these algorithms, optimizing its system
performance, and designing user-friendly APIs to
make them compatible with NLP models and FL.
algorithms.
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Abstract

Recent studies show that pre-trained language
models (LMs) are vulnerable to textual adver-
sarial attacks. However, existing attack meth-
ods either suffer from low attack success rates
or fail to search efficiently in the exponentially
large perturbation space. We propose an effi-
cient and effective framework SemAttack to
generate natural adversarial text by construct-
ing different semantic perturbation functions.
In particular, SemAttack optimizes the gen-
erated perturbations constrained on generic se-
mantic spaces, including typo space, knowl-
edge space (e.g., WordNet), contextualized
semantic space (e.g., the embedding space
of BERT clusterings), or the combination of
these spaces. Thus, the generated adversar-
ial texts are more semantically close to the
original inputs. Extensive experiments reveal
that state-of-the-art (SOTA) large-scale LMs
(e.g., DeBERTa-v2) and defense strategies (e.g.,
FreeLLB) are still vulnerable to SemAttack.
We further demonstrate that SemAttack is
general and able to generate natural adversar-
ial texts for different languages (e.g., English
and Chinese) with high attack success rates.
Human evaluations also confirm that our gen-
erated adversarial texts are natural and barely
affect human performance. Our code is pub-
licly available at https://github.com/
Al-secure/SemAttack.

1 Introduction

Deep neural networks have achieved remarkable
success in many machine learning tasks. Partic-
ularly, BERT (Devlin et al., 2019) has inspired a
suite of large-scale pre-trained language models
(Yang et al., 2019; Zhang et al., 2019; Lan et al.,
2019), which achieved new SOTA for many NLP
tasks. In addition to BERT’s dominant performance
on English datasets, Tenney et al. (2019) points out
that BERT is similarly effective on other languages

*Equal Contribution

yu.cheng@microsoft.com

Original Input: They need to hire experienced sales rep who
are mature enough to handle questions and sales.
Adversarial Input: They need to hire skilled sales rep who
are mature enough to handle questions and sales.

Sentiment Prediction: Most Negative — Most Positive

Original Input: ZfH4RKE51R: FATRRESET?
(Translation: What can attract you: our overseas students? )
Adversarial Input: S5 48051k FA1MEI-T2
(Translation: What can attract you: our overseas students?)

Topic Prediction: Education News — Entertainment News

Table 1: Adversarial texts generated against English and Chi-
nese BERT classifiers by SemAttack on Yelp and THUCTC
datasets. Replacing a word/character with an adversarial one
misleads the correct prediction to a wrong class without fool-
ing human.

such as Chinese, whose granularity of words is
more complex, given the model’s ability to dis-
ambiguate information from high-level representa-
tions (Ding et al., 2019).

Although effective for many NLP tasks, the
robustness of these neural models is often chal-
lenged by carefully crafted adversarial exam-
ples. Specifically, attackers can add subtle human-
imperceptible perturbation to the original input and
induce dramatic changes in model output. Current
adversarial text generation (Jia and Liang, 2017; Li
et al., 2018; Alzantot et al., 2018) is mainly heuris-
tic and only achieves low attack success rates for
BERT-based models. Other work (Cheng et al.,
2020; Ebrahimi et al., 2018) allows an input word
to be substituted by any other word in the vocabu-
lary, which fails to consider the semantic perturba-
tion constraints and is prone to invalid adversarial
examples. Recent work (Jin et al., 2020; Zang et al.,
2020) relies on external knowledge to constrain the
perturbation yet poorly handles large search space
that grows exponentially with the input length, as
it requires hundreds of queries to generate one ad-
versarial example in practice.

Furthermore, most existing textual adversarial
attacks are not generalizable to other languages,
due to unique language-dependent characteristics
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Original Input: You don't know what I've here.
All | can say is don't go to this place. There's a much better
mall in town.

Original Prediction: 1-star (most negative)

Original Input: They need to hire sales rep who
are mature enough to handle questions and sales.

Original Prediction: 1-star (most negative)

participated ) expertise expert
witnessed supervised
saw skilled A d
experience ) experience
seen xpert experienced trained
experienced good )
o professional
encountered experiencing .
had proficient

Adversarial Input: You don't know what I've
here. All | can say is don't go to this place. There's a much
better mall in town.

Adversarial Prediction: 5-star (most positive)

Adversarial Input: They need to hire sales rep who
are mature enough to handle questions and sales.

Adversarial Prediction: 5-star (most positive)

Figure 1: Adversarial texts against BERT sentiment classifier generated by SemAttack that formulates two different
contextualized semantic perturbation spaces based on BERT embedding clusters (the embedding space is projected by PCA
onto 2D space). The word “experienced” reveals different meanings (past tense of the verb “experience” or adjective form) in
different contexts (clusters). Our contextualized semantic perturbation chooses “saw” or “encountered” as the perturbation for
verb “experienced”, while “skilled” or “trained” for the adjective form.

and the lack of universal linguistic resources. More-
over, character-level adversarial attacks designed in
English context (Ebrahimi et al., 2017) are often in-
effective for Chinese-character-level attacks, as the
size of candidate characters increases by two orders
of magnitude, resulting in surging computational
costs especially for BERT-based models.

We tackle these limitations in textual adversar-
ial attacks by proposing an effective and efficient
framework SemAt tack, which can be used to fur-
ther evaluate the robustness of NLP models. We
generalize existing word-level attacks and propose
generic semantic perturbation functions, which op-
timize and constrain the perturbations within differ-
ent semantic spaces, so that the generated adversar-
ial texts retain their semantic meaning. We mainly
consider three types of semantic spaces: (1) Typo
Space, using typo words or characters that can fool
the models but not human judges; (2) Knowledge
Space, utilizing external linguistic knowledge base
(e.g., WordNet (Miller, 1995)) as valid perturbation
candidates; and (3) Contextualized Semantic Space,
exploiting the embedding space of BERT to gener-
ate a contextualized perturbation set semantically
close to the original word (Figure 1). The contextu-
alized semantic space does not require additional
knowledge, and therefore can scale to other lan-
guages, especially low-resource languages where a
large knowledge base is unavailable.

After the candidate semantic space is determined,
SemAttack searches for the optimal perturbation
combination. Instead of requiring thousands of
queries to generate one adversarial example, opti-

mal perturbations can be efficiently found in the
embedding space by solving an optimization prob-
lem. We also control the magnitude of perturbation
to be small as shown in Table 1. Extensive ex-
periments on four datasets demonstrate that SOTA
LMs and defense methods are still vulnerable to
our adversarial attack, which are natural and barely
affects human judgment. For example, the accuracy
of BERT sentiment classifier drops from 70.6% to
2.4% by simply replacing fewer than 5% words
with our method. Although these adversarial ex-
amples are generated in the whitebox setting, they
can effectively transfer to two different blackbox
attack settings while retaining higher than 90% at-
tack success rate for BERT and other large-scale
LMs such as DeBERTa-XXLarge.

Our contributions are summarized as follows: 1)
We propose a unified and effective adversarial at-
tack framework SemAttack by constructing se-
mantic perturbation functions, which constraint
perturbations within different semantic spaces and
their combinations. 2) SemAttack generates con-
textualized perturbations that require no external
knowledge and thus can easily adapt to different
languages. 3) We conducted extensive experiments
on different datasets and languages to show that ad-
versarial texts generated by SemAttack are more
semantically close to the benign inputs, and achieve
much higher attack success rates than existing at-
tack algorithms in different settings. 4) Compre-
hensive studies demonstrate that SOTA LMs and
defenses are still vulnerable to SemAttack, and
human evaluation verifies the naturalness and va-
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lidity of our adversarial examples.

2 SemAttack

2.1 Problem Formulation

Given an input x = [zg, 21, ..., Ty, where z; is the
i-th input token, the classifier f maps the input to fi-
nal logits z = f(x) € RY, where C is the number
of classes, and outputs a label y = arg max f(x).

During attack, we evaluate the effectiveness of
attack algorithms by calculating the targeted attack
success rate (TSR):

TSR =

Z I[argmax f(z') =y*] (1)

|Dadv‘ @’ €Dy

and untargeted attack success rate (USR):

USR= —— 3 tfargmax f(') £y] (@)
| Dagv ®' €Dy

where the attack algorithm generates one adversar-
ial sentence for each sample to form an adversarial
dataset D,y , y* is the targeted false class, y is
the ground truth label, and 1(-) is the indicator
function.

2.2 Semantic Perturbation Functions

To control adversarial examples to be semantically
close to the original input, we design a general
form of semantic perturbation function F, which
takes one token x as input, and returns its candidate
perturbation space S = {z{, 27, ..., 2}, }. We next
discuss the types of perturbation function F.
Typo-based Perturbation Function /7 constrain
the search space S in the typo space, which uses
typo words or characters to replace original to-
kens so that human can still understand the origi-
nal meaning while models are fooled. In English,
we follow the generation process introduced in
TextBugger (Li et al., 2018) to generate typos.

In order to illustrate how our proposed method
can be easily adapted to multilingual settings, we
also generate typo-based semantic space for Chi-
nese. Specifically, for each Chinese token x, we
prepare a set of common Chinese characters S that
look similar (+#i#5~) or have the same pronuncia-
tion (~&iF%~) as the original token x. We use the
open-source similar Chinese character list that con-
tains more than 9,000 common Chinese characters.
To search for the Chinese characters with the same
pronunciation (i.e., pinyin), we first query the pro-
nunciation of input x and then choose the charac-
ters returned based on the same pronunciation. If
x is a heteronym that has multiple pronunciations,
we only use one pronunciation to do the query. We

also limit the size of Chinese characters of the same
pronunciation to be less than 6 so that the search
space is not too large. For the Chinese example
shown in Table 1, we use “# to replace “t as they
share the same pronunciation and are a common
typo that will not affect human understanding.

Knowledge-based Perturbation Function Fj
considers the knowledge space to constrain the per-
turbation search space S. Specifically, Fy utilizes
existing knowledge base to build a candidate per-
turbation set. In our work, we use WordNet as an
example to illustrate how our framework can inte-
grate rule-based knowledge to enhance the quality
of adversarial examples. WordNet is a large lexi-
cal dataset of more than 200 languages that groups
words into sets of cognitive synonyms. With the
manually labeled semantic relations among words,
synonyms queried from WordNet (i.e., synsets)
share the same semantic meaning as the query
word x. Therefore we choose these synonyms re-
turned from WordNet to be the search space S. We
note that WordNet also contains hypernyms and
hyponyms information, but including them into the
search space may incur some unnatural replace-
ment (e.g., replacing “fifth” with “rank”). There-
fore, we only consider synsets as the candidate
search space S. In addition, even for the same to-
ken (e.g., “use”) in WordNet, it may have different
part-of-speech (POS) tags (e.g., “use” as verb or as
noun), and thus has different synonyms (e.g., “ex-
ploitation” for noun “use” and “practice” as verb
“use”), which may result in nonsensical replace-
ment. In order not to include synonyms that have
unusual part of speech, we counted the frequency
of POS in the synset and only selected the words
with the most frequent POS. Using the synonym set
S after filtering, we are able to generate adversarial
input texts that mislead models’ prediction while
barely affect on human understanding.

Contextualized Semantic Perturbation Func-
tion F¢ is a novel perturbation function that ex-
plores the BERT embedding space and searches
for contextualized perturbation to tackle the issue
of most language tokens being polysemous. Pre-
vious work (Li et al., 2018; Jin et al., 2020) takes
it as a standard practice to use the proximity in
embedding space to query the semantic similarity.
However, their embedding space is built on a non-
contextualized word embedding from GLoVE (Pen-
nington et al., 2014) or Word2Vec (Mikolov et al.,
2013), thus failing to consider the polysemy when
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generating the perturbation. We propose to explore
the BERT embedding space, which is verified by
(Hewitt and Manning, 2019; Coenen et al., 2019;
Papadimitriou et al., 2021) that BERT embeddings
can preserve syntactic and semantic information
for word sense disambiguation better than GLoVE
or Word2Vec. So the contextualized space from
Fc is valid semantic perturbations. Similar to our
parallel work (Li et al., 2020) of using BERT to
generate adversarial perturbations, F¢ also does
not require external linguistic resources such as
POS checker. Thus F¢ can be adapted to other
languages, as long as pre-trained BERT of such
language models is available.

Specifically, we first choose a set of commonly
used tokens X'. For each word x € X, we select at
most 100 example sentences from Wikipedia that
contain the word x so that these sentences represent
different meanings of x in different contexts. We
then feed these sentences into a pretrained BERT
model to obtain the contextualized embeddings for
each word z. Finally, the contextualized embed-
dings for all words in X formulate a large BERT
embedding space. Figure 1 visualizes a BERT em-
bedding space projected into 2D space by PCA.

To query the search space S for token x, we first
calculate the BERT embedding of token x given its
context sentence. Even for the same token, given
different contexts and meanings, BERT will gener-
ate distinct representations in the high dimensional
embedding space. For the example in Figure 1,
the token “experienced” given different contexts
have different latent representations and neighbors.
Then we use k nearest neighbors (KNN) algorithm
to choose the neighbors of the contextualized em-
bedding of z as its perturbation search space S.
To ensure high quality of search space S, we fur-
ther filter S and only return the words that appear
more frequently than a threshold e among & nearest
neighbors. In this way, we remove the noisy to-
kens that are rarely used and retain the high-quality
neighbor tokens whose contextualized semantics
are mostly close to the original token .

Discussion. The final search space S can be the
union of the search spaces mentioned above. This
makes existing defense algorithm (Jones et al.,
2020) difficult to apply, as they can only defend
against typo-based perturbation but fails to detect
other types of perturbation.

F is a generalization of most existing word-level
textual adversarial attacks. Though F7 and Fx

have been discussed in the previous literature (see
§Related Work), we note that the goal of our pa-
per is not to improve or propose better typo or
knowledge perturbation, but to consider multiple
semantic spaces at the same time to help generate
natural high-quality adversarial examples.

2.3 Attack Algorithm SemAttack

The full pipeline is shown in Appendix Algorithm 1.
Essentially, SemAttack searches for the optimal
perturbations from different semantic spaces deter-
mined by semantic perturbation functions, which
is efficiently solved as an optimization problem
so that we only perturb as few tokens as possible
while achieving the targeted attack.

Unlike generating adversarial examples in the
continuous data domain, it is difficult to directly
utilize the gradient to guide token substitution due
to the discrete nature of text. Thus, we search
perturbation in the embedding space and map the
perturbed embedding back to tokens. Specifically,
the one-hot representation of each discrete token
xz; € RIVI(V is the vocabulary set) is mapped
into an embedding space of dimension d. via the
embedding matrix M, € RV

[e1; e2;5...5en] = M. [mo;ml;...;mn]. 3)
We optimize perturbation e* added to the original
embedding e for m iterations. In each iteration,
we freeze all the parameters of the classifier f and
optimize variable e* only. Following Carlini and
Wagner (2016), we minimize the loss function as:
L(e) =lle"|lp + - g(="), @
where the first term controls the magnitude of per-
turbation, while ¢(-) is the attack objective function
depending on the attack scenario. c weighs the at-
tack goal against attack cost.

In targeted attack scenarios, we define g(-) as:
g(x") = max[max{ f(z'); : i #t} — f(x'), —k],
where ¢ is the targeted false class and f(x’); is the i-
th class logit. A larger x encourages the classifier to
output targeted false class with higher confidence.

In untargeted attack scenarios, g(-) becomes
g(@’) = max[f(2’). — max{f(a’); : i # t}, ],
where ? is the ground truth class.

After each iteration of gradient descent, we have
an optimized perturbation e* in the embedding
space that tends to fool the classifier f with small
perturbations. We choose the perturbed token x; €
S = F(xz;) that is from the semantic search space
S returned by F(z;) and semantically closest to
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the perturbed embedding e.
¢ = eitel,
’_ . r ’ 5)
x; = argmin(||e; — Mexj|[p).
wées
Finally, we obtain an optimal perturbation e*
after repeating the optimization step and token sub-
stitution step for m iterations. Under such settings
and constraints, most tokens remain the same and
very few are perturbed to their semantically close
neighbors. Thus, the adversarial examples still look
valid to humans but can fool the models.

3 Experimental Results

In this section, we conduct comprehensive exper-
iments to evaluate our attack method in various
settings. We first apply our attack method to
two standard NLP models, BERT and SOTA Self-
Attention LSTM. We evaluate on two different
types of NLP tasks, sentiment analysis and nat-
ural language inference (NLI). Secondly, we in-
vestigate the effectiveness of SemAttack against
SOTA large-scale language models and defense
methods. Thirdly, we take Chinese as an exam-
ple to measure SemAttack’s generalization abil-
ity across different languages. We evaluate BERT
models finetuned on two Chinese datasets. Finally,
we conduct extensive human evaluations on both
English and Chinese datasets.

We find that: 1) SemAttack can achieve better
attack success rates than existing textual adversarial
attack methods with better language quality and ad-
versarial transferability. 2) SOTA LMs and defense
methods are still vulnerable to our SemAttack.
3) SemAttack is a general textual adversarial at-
tack framework and can be easily adapted to other
languages in addition to English with high attack
success rates. 4) Adversarial examples generated
by SemAttack are natural and barely affect hu-
man performance.

3.1 Whitebox and Blackbox Attack

Datasets For sentiment classification task, we
choose the standard 5-class sentiment classification
dataset, Yelp dataset. Note that unlike previous
work (Li et al., 2020; Jin et al., 2020) that uses
binary sentiment classification dataset, we focus on
the standard 5-class Yelp dataset to further evaluate
the targeted attack capability of SemAttack.
For NLI task, we choose SNLI dataset. The de-
tailed dataset descriptions are in Appendix §C.

Models We evaluate the robustness of BERT and
Self-Attention LSTM (Lin et al., 2017). We present
their test accuracy on the benign test sets in Table 2.
More hyperparameter settings and training details
are discussed in Appendix §B.

Attack Baselines We consider SOTA whitebox
and blackbox attack baselines.
e HotFlip (Ebrahimi et al., 2017) is a whitebox
attack method for generating adversarial exam-
ples on both character-level and word-level. In
terms of preserving semantic meaning, we only use
word-level attacks in our experiments, which uses
gradient-based optimization method to flip words.
e TextFooler (Jin et al., 2020) is a blackbox attack
method for generating adversarial text, which uses
similarities between pre-calculated word embed-
dings to find synonyms for each word.
e BERT-Attack (Li et al., 2020) is a strong black-
box attack method using pre-trained masked lan-
guage models such as BERT to replace words in in-
put sentences, where pre-trained masked language
models provide candidate words that have high se-
mantic similarity between original texts.

These methods all perform untargeted attacks.
We adapt them to both untargeted and targeted at-
tack settings in our experiments.

Attack Goal In the sentiment analysis task, we
consider the targeted attack, and choose the most
opposite sentiment class as the targeted class, so
sentences with original label lower than 2 (nega-
tive) are attacked to class 4 (most positive), and
others are attacked to class 0 (most negative). In
the NLI task, Contradiction and neutral will be
attacked to entailment while entailment will be at-
tacked to contradiction.

Adversarial Attack Evaluation We perform
SemAttack on BERT and LSTM-based classi-
fiers in both the whitebox and blackbox settings.
The whitebox setting approximates the worst-case
scenario, where attackers have the access to the
model parameters and gradients; while the black-
box setting assumes that attackers can only access
the model’s output confidence.

For the whitebox attack shown in Table 2,
SemAttack can outperform all the SOTA base-
lines and achieve the highest success rates in both
untargeted and targeted settings for BERT and
LSTM-based models with smaller or compara-
ble perturbation rates. For example, untargeted
SemAttack achieves 97.6% attack success rate
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Model Attack Method % USR/TSR % Perturbation Model Attack Method % USR/TSR % Perturbation
HotFlip 71.5/24.0 14.9/44.9 HotFlip 83.3/44.9 27.0/30.3
BERT SemAttack (+Fr) 42.4/9.3 4.7/9.1 BERT SemAttack (+Fr) 21.2/10.2 13.1/16.5
(Acc: SemAttack (+Fk) 84.6/69.3 6.7/13.9 (Acc: SemAttack (+Fk) 53.8/23.2 14.8/22.3
0.706) SemAttack (+F¢) 91.3/79.7 4.7/11.1 0.829) SemAttack (+F¢) 90.2/69.7 15.3/26.9
SemAttack (+all) 97.6/93.8 4.3/10.2 SemAttack (+all) 92.6/72.6 15.6/20.0
. . HotFlip 16.3/3.2 2.5/17.4 . . HotFlip 32.3/17.8 11.6/13.4
Sell AURION  serattack (+Fr) 6726494 1471211 Sell AUSHION  semattack (+Fr) 538334 23.9/29.1
(Acor SemAttack (+Fk)  47.9/43.6 10.4/18.3 (Acor Semattack (+Fk) 4077232 21.4/22.2
0.705) SemAttack (+F¢) 67.3/56.5 15.1/23.2 0.705) SemAttack (+F¢) 76.5/63.8 30.9/36.3
SemAttack (+all) 88.1/84.0 19.2/29.2 SemAttack (+all) 86.2/68.5 39.0/36.9

(a) Yelp Dataset

(b) SNLI Dataset

Table 2: Whitebox attack success rate for different attacks under targeted/untargeted attacks (TSR/USR) and corresponding
word perturbation percentage against self-attention LSTM and BERT on Yelp and SNLI datasets.

Model Attack Method % USR/TSR % Perturbation
TextFooler 83.2/57.1 22.5/21.3
BERT-ATTACK 84.4/36.6 19.4/17.9
Dfﬁf;ﬁ SemAttack (+Fr)  88.1/58.3 17.8/16.0
Acc: 0 9é8) SemAttack (+Fk) 82.1/53.7 22.1/20.9
o SemAttack (+F¢) 80.3/33.6 27.6/27.7
SemAttack (+all) 83.0/41.2 21.4/20.5
TextFooler 86.4/57.1 22.1/20.3
BERT-ATTACK 83.4/37.2 19.2/17.8
(X]¥Sa€;Ti2 SemAttack (+Fr) 90.5/65.5 17.6/16.2
Acc: 0 931)’ SemAttack (+Fk) 86.8/58.4 22.3/21.7
T SemAttack (+F¢) 80.6/38.7 27.6/27.9
SemAttack (+all) 82.7/42.9 21.2/20.2
TextFooler 63.0/31.5 22.1/22.0
BERT-ATTACK 65.6/31.1 19.1/18.6
FreeLB SemAttack (+Fr) 71.4/26.2 17.0/14.7
(Acc: 0.924) SemAttack (+Fk) 63.2/32.6 22.9/23.9
SemAttack (+F¢) 66.7/32.7 27.8/28.0
SemAttack (+all) 64.3/32.2 20.9/20.5

Table 3: Zero-query blackbox attack success rate for different
attacks under targeted/untargeted attacks (TSR/USR) and cor-
responding word perturbation percentage against large-scale
LMs and defense methods on SNLI datasets.

for BERT models by perturbing 4% words on the
Yelp dataset, when searching from the combination
of the semantic spaces of Fr, Fx and F.

To adapt SemAttack to the blackbox attack
setting, we distill the blackbox (teacher) model to
train a whitebox (student) model, and transfer the
adversarial examples from the whitebox student
model to attack the blackbox model. More details
can be found in Appendix §D.

For the blackbox attack shown in Appendix
Table 8, the transferability-based SemAttack
achieves higher attack success rates than SOTA
blackbox attacks for self-attention LSTM. We also
observe that BERT-ATTACK achieves a higher at-
tack success rate on BERT than SemAttack. We
think it is mainly because that BERT-ATTACK
adopts an aggressively large candidate perturba-
tion size (top-k=48), which may lead to large se-
mantic changes (indicated by the worse human
performance as shown in Table 5). For instance,
we observe that some words are even changed to
their antonym in BERT-ATTACK. On the contrary,

the average size of search spaces for SemAttack
(+all) is only 11.87, aiming to guarantee the nat-
uralness and validity of the generated adversarial
examples. We present more details of our semantic
space in Appendix §D.3.

In addition, we observe that Self-Attention
LSTM models are more robust than BERT in most
settings. For example, we achieve the highest USR
of 88.1% in whitebox attack on the Yelp dataset,
which is 9.5% lower than BERT in the same set-
ting. This suggests that self-attention mechanism
can improve the robustness of vanilla WordLSTM
by a large margin, as WordLSTM is known less
robust than BERT (Jin et al., 2020).

3.2 Attack SOTA LMs and Defense Methods

In this section, we evaluate SemAttack and base-
line attacks against various SOTA large-scale lan-
guage models and defense methods.

Dataset and Attack Baselines Following §3.1,
we evaluate SemAttack on SNLI dataset.
We choose the same blackbox attack methods,
TextFooler and BERT-Attack, as our baselines.

Models We consider the following models and
defense methods following the Adversarial GLUE
Benchmark (Wang et al., 2021). The selected large-
scale models and defense methods not only repre-
sent SOTA performance on NLU tasks, but also
achieve the highest robustness in the leaderboard.

e DeBERTa (He et al., 2020) improves BERT-
based models by introducing disentangled attention
mechanism and enhanced mask decoder, which is
one of the best models in the GLUE leaderboard
(Wang et al., 2018). In our experiment, we use
DeBERTa (Large) and DeBERTa (XXLarge-v2).

e FreeLB (Zhu et al., 2019) is an adversarial
training algorithm that defends adversarial attacks
by adding perturbations to word embeddings and
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minimizing the corresponding adversarial loss.

Attack Goal To demonstrate the model robust-
ness in an approximately real-world scenario, we
consider a zero-query setting, a more rigorous and
common scenario that assumes the target models
are not accessible during the attack phase. Since
we can not access the target model, we perform a
transferability-based backbox attack. Specifically,
we attack the selected language models and defense
methods using adversarial SNLI texts generated by
SemAttack against BERT classifier in §3.1.

Adversarial Attack Evaluation We finetune the
above models on the SNLI dataset and attack them
using adversarial texts generated against BERT.
The results are shown in Table 3.

For the zero-query setting, SemAttack al-
ways achieves the highest success rates. Specif-
ically, among all the attack methods, SemAttack
(+F7) always has the highest USR regardless
of the model it is tested on. For example, on
the largest model, DeBERTa (XXLarge-v2), we
achieve 90.5% USR, which is 7.1% higher than
BERT-ATTACK.

Furthermore, we find that increasing the num-
ber of model parameters and expanding the model
architecture have little effect on defense against ad-
versarial attacks. DeBERTa (XXLarge-v2), for
example, is substantially larger than DeBERTa
(Large), yet the attack success rates are similar. In
some cases DeBERTa (XXLarge-v2) is even less
robust than DeBERTa (Large). We also observe
that introducing some defense strategies slightly
improves the model’s robustness. When we use
the defense strategy of FreeLLB, we can see that the
robustness increases, but it is still not satisfactory
to defend existing adversarial attacks.

3.3 Adapt SemAttack to Chinese

Datasets We evaluate our performance on the fol-
lowing two datasets in Chinese: 14-category news
classification dataset THUNews (Sun et al., 2016)
and 11-class Wechat Finance dataset. More details
about these datasets are introduced in Appendix C.

Models We use BERT pre-trained on Chinese
corpora and finetune on the two datasets separately.
After finetuning, our BERT achieved 0.818 accu-
racy on THUNews dataset and 0.891 on Wechat
Finance Dataset, as shown in Table 4

Attack Baselines Since both TextFooler and
BERT-Attack adopt an aggressively large perturba-

Attack Method

HotFlip
White- SemAttack (+Fr)
box SemAttack (+Fk)
THUNews ~Mack  semattack (+Fc)
(Acc: SemAttack (+all)

HotFlip
Black- SemAttack (+Fr)
box SemAttack (+Fk)
Attack  semAttack (+Fc)
SemAttack (+all)

% Perturbation

21.7/27.9
20.1/34.7
16.1/17.4
17.4/29.4
15.1/26.3

15.4/10.8
19.7/35.3
12.7/13.1
17.6/28.6
16.4/25.8

% USR/TSR

81.4/40.4
96.6/81.7
15.6/3.6
95.0/78.3
99.0/92.1

44.3/10.0
52.3/34.0
8.4/1.3
55.9/37.0
58.6/48.2

Dataset Setting

0.818)

95.2/0.0 11.4/-
86.0/88.3 7.2/12.4
32.8/24.5 5.2/7.6
96.8/96.4 5.8/9.4
98.7/98.0 4.6/8.7

21.7/0.0 8.9/-

49.4/35.8 7.3/17.4
19.5/11.7 4.01.7
51.8/42.4 5.3/12.2
54.5/36.7 4.0/11.7

HotFlip
White- SemAttack (+Fr)
box SemAttack (+Fk)
Attack Y
Wechat acl SemAttack (+Fc)
(Acc: SemAttack (+all)

0.891) HotFlip
Black-  SemAttack (+Fr)
box SemAttack (+Fk)
Attack  semAttack (+F¢)
SemAttack (+all)

Table 4: Whitebox and blackbox attack success rate for differ-
ent attacks under targeted/untargeted attacks (TSR/USR) and
corresponding word perturbation percentage against Chinese
BERT on THUNews and Wechat Finance datasets.

tion candidate space and thus require additional lan-
guage resources (e.g., POS checker; stop words fil-
tering) to ensure the proposed candidate words are
valid, they cannot be adapted to Chinese due to the
lack of corresponding language resources. There-
fore, we adapt HotFlip for Chinese classification
task, since it does not rely on any other linguistic
resources. We also adapt it to transferability-based
blackbox attack settings as well as the targeted at-
tack setting for fair comparison.

Attack Goal In this paper, we choose the targeted
attack class as “technology news” for THUNews
dataset and “Bank” for Wechat dataset (when the
ground truth label is the targeted class, we switch
the target to another random class). This strategy
achieves the highest targeted attack success rate as
shown in Appendix F.7.

Adversarial Attack Evaluation In the whitebox
attack scenario in Table 4, SemAttack is able
to make the model mistakenly classify nearly all
sentences with only a small number of characters
being manipulated in both targeted and untargeted
settings. The untargeted attack achieves 99% suc-
cess rate by substituting merely two tokens on aver-
age on the THUNews dataset. On Wechat Finance
dataset, it achieves 98.7% attack success rate by
perturbing 4.6% tokens on average in the input se-
quences. In the targeted attack scenario, we always
make BERT output as our expected false class on
both datasets, resulting in a huge performance drop
on BERT models. We achieve 92.1% and 98.0%
on THUNews dataset and Wechat Finance dataset,
respectively.
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Dataset Attack Method % Perturbation PPL BertScore  Human Ratings

HotFlip 14.9 57.1 0.79 3.337 £ 1.650

Yelp TextFooler 135 43.7 0.78 3.361 + 1.326
(English) BERT-ATTACK 4.2 314 0.92 3.513 +£1.280
SemAttack (+all) 43 344 0.91 3.524 +1.584

THUNews HotFlip 21.7 488.3 0.60 3.770 &+ 1.061

(Chinese) SemAttack (+all) 15.1 3174 0.76 3.846 + 0.906

Table 5: Language quality evaluation for the generated
adversarial texts in both Chinese and English.

We also present the blackbox attack results
in Table 4. We can see that SemAttack (+all)
achieves the highest success rates in most cases,
which suggests that our semantic perturbation
spaces have high adversarial transferability. Note
that we do not present the targeted attack on Wechat
Finance dataset for HotFlip since all attack attempts
failed.

Ablation Studies We conduct a series of abla-
tion studies such as exploration of BERT embed-
ding space, attack strategies, £, norm selection for
Eq.(4), hyper-parameter selection, and attack effi-
ciency comparison, etc. in Appendix F.

3.4 Adversarial Text Quality Evaluation

To confirm that our generated adversarial texts
are valid and natural to humans, we conduct both
automatic evaluation and human evaluation on
both English and Chinese NLP tasks, considering
language quality and utility preservation. More
evaluation details can be found in Appendix G.

Language Quality Evaluation We sample 100
original sentences from the test set for both Chinese
and English such that all of them can be success-
fully attacked by SemAttack and our baselines.
For automatic evaluation, we consider the aver-
age perturbation rate, perplexity (PPL) (based on
GPT-2), and BertScore as metrics to indicate the
language quality. For human evaluation, we present
every generated adversarial sentence to 5 human
annotators, ask them to rate the language quality
from 1 to 5, and calculate the average ratings. We
present the evaluation results in Table 5.

We can see that SemAttack has the best hu-
man ratings across different baselines for both Chi-
nese and English. In terms of automatic evalua-
tion metrics, we observe that SemAttack is quite
close to the SOTA BERT-ATTACK. We think the
reason why SemAttack is slightly weaker than
BERT-ATTACK in terms of PPL and BertScore
is that SemAttack also considers typos and
knowledge-based perturbations. Such perturba-
tions usually look good to humans, but may greatly

Dataset Human BERT
Yelp clean 0.9562 + 0.0006  0.706
(English) ™ fversarial  0.9390 + 0.0010  0.000
THUNews clean 0.9400 +0.0014  0.818

(Chinese) -
adversarial 0.9369 £ 0.0015 0.000

Table 6: Human performance compared to BERT classi-
fiers on the original and adversarial datasets.

impact the scores calculated by pretrained language
models such as GPT-2 and BERT.

Utility Preservation Evaluation To evaluate hu-
man performance on our generated adversarial data,
we randomly sample 50 clean sentences and 50
adversarial sentences generated by the targeted
SemAttack (+all) for both the English Yelp and
the Chinese THUNews dataset. For each sentence,
we present the annotators with two labels: a ground
truth label and a targeted wrong label (e.g., the
most opposite sentiment), and request annotators
to choose the correct one. Both clean text and ad-
versarial text are randomly shuffled.

The detailed evaluation results with standard de-
viation are shown in Table 6. We find that our ad-
versarial text barely impacts human perception, as
the human performance on adversarial Yelp data is
93.9%, only 2% lower than the clean data. Human
performance on the adversarial Chinese THUNews
is 93.7%, which is very close to the performance
of 94.0% on the clean dataset.

4 Related Work

Our proposed semantic perturbation functions gen-
eralize the existing textual adversarial attacks.

For typo-based perturbation function Fr, ex-
isting work (Li et al., 2018; Ebrahimi et al.,
2017) applies character-level perturbation to care-
fully crafted typo words (e.g., from “foolish™ to
“fo0lish”), thus making the model ignore or misun-
derstand the original statistical cues.

Knowledge-based perturbation function Fx
uses knowledge base to constrain the search space.
For example, Zang et al. (2020) uses sememe-based
knowledge base from HowNet (Dong et al., 2010)
to construct a search space for word substitution.

Different from our contextualized semantic per-
turbation function F¢, other work (Jin et al., 2020;
Li et al., 2018) uses a non-contextualized word em-
bedding from GLoVe (Pennington et al., 2014) or
Word2Vec (Mikolov et al., 2013) to build synonym
candidates, by querying the cosine similarity or eu-
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clidean distance between the original and candidate
word and selecting the closet ones as the replace-
ments. However, some antonyms also have high
cosine similarity in the Word2Vec space. Thus, ad-
ditional hand-crafted filtering rules are needed to
ensure that the meaning is not changed.

Other work (Garg and Ramakrishnan, 2020; Li
et al., 2020, 2021) also leverages pre-trained mod-
els to generate contextualized perturbations by
masked language modeling, which is a parallel
work to SemAttack, where we explore the BERT
embedding clusters to generate high-quality adver-
sarial examples.

In terms of optimization, unlike the heuristic-
based previous work that uses greedy (Jin et al.,
2020) or genetic algorithms (Zang et al., 2020)
which search for the optimal perturbations, or
gradient-based methods (Wang et al., 2020; Guo
et al., 2021) which search for perturbation on a
tree-autoencoder with only syntactic constraints or
a distribution of adversarial examples, we use an
optimization-based method to efficiently and effec-
tively search for the optimal adversarial perturba-
tion in the semantic preserving spaces to ensure the
validity and naturalness of perturbed sentences.

5 Conclusion

In this paper, we propose a novel semantic adver-
sarial attack framework SemAttack to probe the
robustness of LMs. Comprehensive experiments
show that SemAttack is able to generate natural
adversarial texts in different languages and achieve
higher attack success rates than existing textual
attacks. We also demonstrate that existing SOTA
LMs and defense methods are still vulnerable to
SemAttack. We expect our study to shed light
on future research on evaluating and enhancing the
robustness of LMs for different languages.
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A Broader Impact

In this paper, we propose an effective and novel ad-
versarial attack framework SemAttack to probe
the robustness of state-of-the-art NLP models. Our
experiments show that even pre-trained large-scale
language models for different languages are not
robust under SemAttack. We will open-source
our code to shed light on future research to eval-
uate and enhance the robustness of NLP models.
Considering attackers may leverage our code to
perform adversarial attacks to NLP models, we
suggest using adversarial training as an effective
approach to improving adversarial robustness, and
our proposed framework has provided an efficient
way to generate these adversarial training data.

B Model Settings

Whitebox Classifier For English dataset, we use
BERT and self-attention LSTM as the classifiers.
BERT is a transformer (Vaswani et al., 2017) based
model, which is unsupervised pretrained on large
corpora. We use the 12-layer BERT-base model
with 768 hidden units, 12 self-attention heads, and
110M parameters. For self-attention LSTM, we
set the self-attention LSTM to 10 attention hops
internally, and use a 300-dim BiLSTM and a 512-
units fully-connected layer before the output layer.

We fine-tune BERT on Yelp dataset with a batch
size of 64, learning rate of 2e—5 and early stopping.
We train the Self-attention LSTM-based model
on 500K review training set for 29 epochs with
stochastic gradient descent optimizer under the ini-
tial learning rate of 0.1. We run our experiments on
17-7820X CPU with 128GB memory on one RTX
2080Ti GPU.

For both Chinese datasets, we use BERT (Devlin
et al., 2019) as the classifier. Chinese BERT is a
transformer (Vaswani et al., 2017) based model,
which is unsupervisedly pretrained on large Chi-
nese corpora and is effective for downstream Chi-
nese NLP tasks. We use the 12-layer BERT-base
model with 768 hidden units, 12 self-attention
heads and 110M parameters. We fine-tune BERT
on each dataset independently with a batch size of
64, learning rate of 2e-5 and early stopping.

Blackbox Classifier The blackbox LSTM and
BERT classifiers are trained/finetuned from scratch.
The parameters of blackbox models are different
from the whitebox ones.

C Dataset Details

o Yelp Dataset consists of 2.7M yelp reviews and
each one has its corresponding star level to be pre-
dicted by our model. The target stars level is an in-
teger number in the inclusive range of [0, 4], which
can be treated as 5 classes. We follow the pro-
cess in Lin et al. (2017) to randomly select S00K
review-star pairs as the training set, 2, 000 as the
development set, and 2, 000 as the test set.

e SNLI Dataset (Bowman et al., 2015) consists
of 570k human-written English sentence pairs and
each pair contains one premise and one hypothesis.
These pairs are manually labeled as entailment,
contradiction, or neutral, which can be predicted
by our model. We use 550k pairs as training set,
10k as the development set, and 10k as the test set.
We follow the baseline setting (Li et al., 2020) and
only allow perturbations on hypotheses (Table 2)
or premises (Appendix Table 9 & 10).

e THUNews (Sun et al., 2016) is a public Chinese
14-category news classification dataset. It consists
of more than 740k news articles from Sina News be-
tween 2005 and 2011. These articles are classified
into 14 categories, such as education, technology,
society and politics. To speed up the evaluation
process, we use the news titles for classification.
We evenly sample articles from all classes, and use
585, 390 articles as the training set, 250, 682 as the
development set, and another 1, 000 as the testing
set for the adversarial evaluation.

e Wechat Finance Dataset is a private dataset
from the Wechat team, who collect 13,051 sub-
scription accounts in the finance domain. They
use crowd-sourcing to classify the account into 11
sub-classes, such as insurance, banks and funds.
Each account description has 94.18 Chinese char-
acters on average. We split the dataset into training
set (10, 000 descriptions), validation set (1, 163 de-
scriptions) and test set (1, 888 descriptions).

Dataset  avglength LSTM Acc  BERT Acc
Yelp 135 0.705 0.706
SNLI 13(P)/7(H) 0.716 0.829

Table 7: Statistics of Yelp Dataset and SNLI Dataset
together with benign accuracy of two models. In SNLI
Dataset, we calculate the average length of premises (P)
and hypotheses (H) separately.
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Algorithm 1 semAttack: Generating multilingual natu-
ral adversarial examples

Input: Input tokens & = [xq, €1, ..., x|, classifier

f : @ — z maps input to logits, attack objective function
g(+), embedding matrix M., constants ¢ and , max iteration
steps m, semantic perturbation function F

Output: Adversarial text x’

1: Initialize perturbation e < 0
2: e+ M.x

e +—e+e}

4: ' +—=x

5. fork=0,1,....,m —1do

6: // Phase I: Optimize over the e;,

7. Ley) < llegllr +c-g(z’)

8: €., < e, —aVLi(ey)

9: // Phase II: Token Substitution

10: e e+ € s

11: for:=1,2,...,ndo

12: S = F(x:) / Get the perturbation search space
13 @} argming, s (||ef — Mea}l,)

14: end for

15: end for

16: return =’

D Experimental Setting
D.1 Attack Setup

SemAttack is a whitebox attack method which
requires access to the model parameters and gradi-
ents. However, it can be easily adapted to blackbox
settings. In our experiment, we consider the follow-
ing two blackbox settings: a soft-label blackbox
setting and a more rigorous zero-query blackbox
setting. In soft-label blackbox setting, attackers
can only query the classifier for output probabili-
ties on a given input. We adapt our method to this
setting by distillation. The output confidence of
the blackbox (teacher) model is used to train a stu-
dent model. Then we run whitebox attacks on the
student model and attack the teacher model with ad-
versarial instances provided by the student model.
In zero-query blackbox setting, the target models
(usually state-of-the-art large-scale language mod-
els enhanced with cutting-edge defense methods)
are unavailable during the attacking phase, which
is a common scenario in real-world applications
and better demonstrates the algorithm’s ability to
generalize across models. We adapt SemAttack
and baseline methods to this setting by performing
a transferability-based backbox attack, in which we
use adversarial texts created by BERT to attack the
target models.

D.2 Embedding Space Construction

To construct the contextualized semantic perturba-
tion function F¢, we select 22, 271 English words

commonly used as X', which is also the vocabulary
used by English BERT. For each word, We select at
most 100 sentences that contain this specific word
from wikidump. These contextualized embeddings
form an embedding space of 2, 181, 622 vectors in
total. We choose k£ = 700 and € = 8, which means
we only choose words that appear more than 8
times in the 700 nearest neighbors as the pertur-
bation set S. We apply similar strategies when
constructing Chinese BERT embedding space, by
choosing 5,178 Chinese tokens appearing in the
training data and up to 100 sentences from Chi-
nese Wikipedia, which form an embedding space of
508, 619 vectors in total. When performing KNN,
we choose £ = 700 and € = 5. The query time of
Fc is around 2.6s for English and 0.9s for Chinese.
We provide more detailed settings in Appendix E.

D.3 Semantic Perturbation Functions

English We evaluate the following semantic per-
turbation functions for English corpus: typo-based
perturbation function Fr, knowledge-based pertur-
bation function Ff, and contextualized semantic
perturbation function F¢ based on BERT embed-
ding clusters, together with the combination of Fr,
Fx and F¢. The average sizes of search spaces
obtained by Fr, Fx and F¢ are 5.03, 2.38 and
4.46, respectively.

Chinese We implement semantic perturbation
functions for Chinese corpora as follows: (1) typo-
based perturbation function Fr, where typos are
defined as Chinese characters with similar strokes
or pronunciations, (2) knowledge-based perturba-
tion function Fx, where synonyms are obtained
from Chinese WordNet, (3) contextualized seman-
tic perturbation function F¢ by Chinese BERT em-
bedding clusters, and (4) the combination of these
three functions.

Because in Chinese there are many characters
with the same pronunciation, we limit the number
of characters obtained by similar pronunciations to
5. The average sizes of perturbation search space
collected by Fr, Fx and F¢ are 8.53, 0.27 and
17.06. Fx gives fewer candidate perturbations be-
cause Chinese WordNet has limited hand-crafted
knowledge, while F¢ gives more choices because
it searches in BERT embedding space without hu-
man supervision.
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D.4 Attack Hyper-parameter Settings

For English dataset, we set the max optimization
steps m to 100 and use ¢3 norm in the loss function
(equation 4) that is iteratively optimized via Adam
(Kingma and Ba, 2014). Constants c and « are set
to le2 and 1 in Yelp dataset, le4 and 0 in SNLI
dataset, which result in higher attack success rate
and lower perturbation rate based on a series of
ablation studies provided in Appendix Figure 5.
We set our random seed to 1111 for reproducibility.
For Chinese dataset, we follow the experiment
setting in English attacks for optimizing adversarial
examples and training BERT models. Constants ¢
and k are set to 100 and 1 respectively to get the
best performance. We set our random seed to 1111
for reproducibility. We experiment with different
attack strategies in Appendix Table 11 to 13.

E SemAttack Implementation Details

E.1 Typo-based Perturbation Function
Implementation

We use the similar Chinese character list' that con-
tains more than 9,000 common Chinese characters.
We use the existing Python library? to query the
pronunciations for Chinese characters and another
library? to search for the words that share the same
pronunciations. Because in Chinese there are many
characters with the same pronunciation, we limit
the number of characters obtained by similar pro-
nunciations to 5.

E.2 Knowledge-based Perturbation Function
Implementation

In this paper, we use WordNet as an example to
illustrate how our framework can integrate the rule-
based knowledge to enhance the quality of our ad-
versarial examples. For an input token z, we first
query the synonym set s in the WordNet. For each
meaning of the input word, the output synonym
set s contains several synonyms that have this spe-
cific meaning. The output synonyms are given with
their corresponding part-of-speech tags. In order
not to include synonyms that have unusual part of
speech, which may result in strange grammatical
errors after replacement, we counted the frequency

"Publicly available at https://github.com/
zzboy/chinese/
2Publicly available at https://github.com/

mozillazg/python-pinyin
SPublicly available at https://github.com/
letiantian/Pinyin2Hanzi
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Figure 2: English perturbation space size selection.
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Figure 3: Chinese perturbation space size selection.

of each part of speech in set s and only selected the
words with the highest frequency of part of speech.
Using the synonym set after filtering, we are able to
generate adversarial input texts that mislead mod-
els’ prediction while having little effect on human
understanding.

F Ablation Studies

F.1 Perturbation space size selection

In Figure 2, 3, we present the attack success rates
and perplexity scores of generated adversarial ex-
amples under different sizes of perturbation search
space. We observe that in both languages, larger
K lead to higher attack success rates. In English,
PPL score decreases when K continues to increase,
while in Chinese PPL score remains at a similar
level.

F.2 Attack Efficiency

SemAttack is more efficient than existing base-
lines since it can substantially decrease the query
time when performing attacks. SemAttack searches
for the optimal perturbation e* for a whole sen-
tence in one query, instead of querying every
word. Quantitatively, SemAttack is designed to
query the model for less than 100 iterations, while
BERT-ATTACK and TextFooler require hundreds
of queries to generate one adversarial example on
average.
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Model Method % USR/TSR % Perturbation Model Method % USR/TSR % Perturbation
TextFooler 84.7/48.6 13.5/32.2 TextFooler 73.2/30.8 22.3/24.7
BERT BERT-ATTACK 95.4/71.1 42/11.2 BERT BERT-ATTACK 88.9/61.8 17.0/20.1
(Acc: SemAttack (+Fr) 32.6/6.7 4.6/9.1 (Acc: SemaAttack (+Fr) 19.1/6.8 10.2/11.2
0.706) SemAttack (+Fk) 58.8/51.5 5.9/15.5 0.829) SemAttack (+Fk) 36.7/12.5 12.9/20.0
SemAttack (+Fc) 68.4/61.3 4.7/12.1 SemAttack (+Fc) 59.8/45.0 14.8/26.1
SemAttack (+all) 67.5/72.4 4.0/11.7 SemAttack (+all) 63.9/40.5 15.2/17.1
TextFooler 17.5/5.7 9.6/28.0 TextFooler 52.9/24.2 20.1/24.7
Self-Attention BERT-ATTACK 65.0/24.7 2.2/3.7 Self-Attention BERT-ATTACK 62.8/36.9 17.9/18.7
LSTM SemAttack (+Fr) 51.2/25.0 18.3/22.4 LST™M SemAttack (+Fr) 49.9/33.3 26.4/32.9
(Acc: SemAttack (+Fk) 39.2/24.0 15.0/19.2 (Acc: SemAttack (+Fk) 40.3/22.5 22.1/25.6
0.705) SemAttack (+Fc) 57.7/33.7 23.4/26.7 0.705) SemAttack (+Fc) 68.9/56.9 33.0/39.5
SemAttack (+all) 74.1/67.0 30.6/35.8 SemAttack (+all) 75.4/57.0 42.3/37.9

(a) Yelp Dataset (b) SNLI Dataset

Table 8: Soft-label blackbox attack success rate for different attacks under targeted/untargeted attacks (TSR/USR) and
corresponding word perturbation percentage against self-attention LSTM and BERT on Yelp and SNLI datasets.
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(a) Visualization. (b) Confusion matrix.

Figure 4: Ablation studies. (a) shows the visualization
of English words in BERT embedding clusters. (b)
shows the TSR confusion matrix on THUNews dataset.

F.3 BERT Embedding Space
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In Figure 4a, we visualize three clusters: “car”,
“bird” and “keyboard”. Here “keyboard” is used as
an instrument, not a peripheral device of PCs. As
we can see, ‘bird’ has neighbors such as “pigeons”,
“parrot” and “flyer”’, which are not present in knowl-
edge space. Word “keyboard” has neighbors such
as “drummer”, “violin” and “guitarist”, which are

contextualized based on the query context.

F.4 Additional Results on Attacking SNLI

We follow the setting of (Li et al., 2020) and per-
turb only hypotheses or premises for SNLI tasks.
Attack results for perturbing hypotheses are shown
in main paper Table 2. Attack results for perturbing
premises only are shown in Table 9 and 10.

F.5 Ablation Studies on Attack Capability

In this section, we will evaluate the possible factors
that will affect the attack success rate. Here, we
set the candidate search space S to be the whole
vocabulary V' to eliminate variables introduced by
the perturbation function.

Model Method % USR/TSR % Perturbed
HotFlip 43.6/20.5 28.0/29.8
BERT SemAttack (+Fr) 11.6/4.1 11.2/12.5
(Acc: 0.829) SemAttack (+Fk) 25.4/12.2 12.9/17.2
SemAttack (+F¢) 66.4/36.7 16.4/21.2
SemAttack (+all) 72.7/46.1 17.5/21.6
HotFlip 10.8/8.2 10.2/10.0
Self-Attention ~ SemAttack (+Fr) 47.5/29.3 15.5/19.1
LSTM SemAttack (+Fk) 43.4/22.2 13.2/15.0
(Acc: 0.716) SemAttack (+F¢) 69.7/48.5 28.2/35.5
SemAttack (+all) 70.7/46.5 29.5/36.6

Table 9: The whitebox attack success rate (in terms of
“USR/TSR”) and corresponding word perturbation per-
centage against LSTM and BERT on the SNLI dataset
by only perturbing premises.

Model Method % USR/TSR % Perturbed
TextFooler 61.3/31.1 15.0/17.0
BERT-ATTACK 60.2/34.8 25.6/34.4

BERT SemAttack (+Fr) 11.5/4.3 4.9/5.6

(Acc: 0.829)  semattack (+Fk) 17.0/7.0 11.2/13.1
SemAttack (+F¢) 43.0/24.8 13.4/16.1
SemAttack (+all) 47.0/30.2 14.6/17.5
TextFooler 19.1/10.6 10.3/10.6
Self-Attention BERT-ATTACK 42.9/31.5 19.4/23.0
LSTM SemAttack (+Fr7) 29.4/22.7 23.1/27.6
(Acc: 0.716) SemAttack (+Fk) 23.2/15.8 20.7/23.0
SemAttack (+F¢) 55.9/46.3 43.5/45.7
SemAttack (+all) 59.0/49.7 45.7/147.8

Table 10: The blackbox attack success rate (in terms of
“USR/TSR”) and corresponding word perturbation per-
centage against LSTM and BERT on the SNLI dataset
by only perturbing premises.

F.6 Norm selection

In the main experiment, we use [ norm for our at-
tack loss function (equation 7). However, because
[1 norm is known for good at feature selection and
generating sparse features, we conduct the follow-
ing experiments by setting /,, to /1 and make an
comparison with /o norm. The experimental results
are shown in Table 11 and 12. We find the overall
attack success rates decrease when switching to /1
norm. However, given the same set of constants ¢
and «, we find the [; attack does change less words.
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Dataset Original SemAttack (l2 untargeted)  SemAttack (I; untargeted) Baseline
Acc c/k 5/5 10/5  10/10  10/10 10/100  20/20  (untargeted)
target - - - - - - -
THUCTC 0.818 untarget  1.000  1.000 1.000 0.983 0.983 0.995 0.040
#/chars 1.583 1.690 1.718 1.577 1.614 1.884 2.000

Table 11: Untargeted attack success rates on Chinese BERT-based classifier for THUCTC dataset. “target” and
“untarget” calculate the targeted attack success rate (equation 1) and the untargeted attack success rate (equation 2).
“#/chars” counts the number characters are modified in average.

Dataset Original SemAttack (I; targeted) SemAttack (I2 targeted) Baseline
Acc c/k 10/10 10/20 30/30  5/5 10/5  10/10  (untargeted)
target 0.797 0.797 0.898 0941 0.945 0.945 -
THUCTC 0.818 untarget  0.828 0.828 0.920 0953  0.958 0.958 0.040
#/chars 2.000 1.956 3280 2924 3.186 3.045 2.000

Table 12: Targeted attack success rates on Chinese BERT-based classifier for THUCTC dataset. “target” and
“untarget” calculate the targeted attack success rate (equation 1) and the untargeted attack success rate (equation 2).
“#/chars” counts the number charcters are modified in average.

F.7 Attack Strategy

As we have achieved 100% attack success rate in
the untargeted attack scenario, we now focus on
the targeted attack scenario and see which factor
contributes to the targeted attack success rate. It
is straightforward to think different targeted attack
strategies will impact the targeted attack success
rate, because maybe some classes look "farther"
than semantic closer classes. So we tried two strate-
gies on THUCTC dataset: 1) as used in the main
paper, we set the targeted false class as “technology
news”. 2) we enumerate all the classes and set the
targeted false class to be numerically the next class
index. The targeted attack success rate is shown
in Table 13. We do find choosing different attack
strategies will impact the attack success rate.

F.8 Hyper Parameter Selection

We have two constants in our attack algorithm, c
and «, which control the attack success rates and
the perturbation rates in our experiments. In order
to find out the impact of these hyper parameters,
we test with several combinations of different c and
k. We test on Yelp Dataset and we use BERT as
our model. We show our results in Figure 5. As
shown in Figure 5a, we first fix x = 10 and test how
TSR and perturbation rate will change according
to different ¢. We find that under the same x, ¢
mainly controls the attack success rate at the cost
of perturbation rate. In some certain range, a larger
c encourages the algorithm to achieve our attack
goal with the expense of more substitutions. And

TSR and Perturbation Rate with fixed k = 10

TSR and Perturbation Rate with fixed c = 100
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(a) Fixed x and different c.  (b) Fixed c and different x.

Figure 5: Hyper parameter selection. In Figure Sa,
we first fix k = 10 and test different c to see how
TSR and perturbation rate will change. we test ¢ =
1,10,10%,103,10* and find best ¢ = 100 to obtain
the highest TSR with less perturbations. A smaller
or larger ¢ will result in a low TSR or a high perturba-
tion rate. In Figure 5b, after fixing ¢ = 100, we test
k =0,1,5,10,15. We find that x has little influence on
TSR while it can change perturbation rate dramatically.
A smaller « is able to effectively limit the number of
words to be changed. In our experiment, we choose
k=0,1.

after exceeding a certain value, TSR will start to
decrease while perturbation rate remains high. We
then fix ¢ = 100 and test different k. We show our
results in Figure 5b. We find that x doesn’t help
to increase TSR and a smaller « helps to limit the
words changed without affecting TSR.

For hyper-parameter selection for Chinese
datasets, we witness the same phenomenon in En-
glish attacks that increasing constant ¢ can improve
the attack success rate at the cost of more perturbed
characters, while lowering constant x limits the per-
turbation rate without affecting the attack success
rate.
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Dataset Original SemAttack (targeted ¢/k = 10/10) Baseline
Acc strategy 1 strategy 2 (untargeted)
target 0.945 0.903 -
THUCTC 0.818 untarget 0.958 0913 0.040
#/chars 3.045 4.543 2.000

Table 13: Attack success rates on Chinese BERT-based classifier for two datasets. “target” and “untarget” calculate
the targeted attack success rate (equation 1) and the untargeted attack success rate (equation 2). “#/chars” counts the

number characters are modified in average.

Transfer Method % TSR % USR
TextFooler 424 439
Self-Attention  BERT-ATTACK 8.1 335
LSTM SemAttack (+Fr) 44.4 32.5
— SemAttack (+Fk) 57.7 62.0
BERT SemAttack (+Fc)  74.3 81.2
SemAttack (+all) 70.0 79.8
TextFooler 30.8 31.9
BERT BERT-ATTACK 17.6 28.5
- SemAttack (+Fr) 26.8 34.6
Self-Attention  semattack (+Fx) 353 35.6
LSTM SemAttack (+Fc)  35.5 36.0
SemAttack (+all) 30.9 31.0

Table 14: Targeted and untargeted attack success rate of
transferability attack on Yelp Dataset, evaluating adver-
sarial examples generated against Self-attention LSTMs
on BERT, and vice versa.

F.9 Vulnerability Between Classes

In THUNews dataset, the article titles are classified
into 14 categories. In order to find out the vulnera-
bility of each class, we test the attack success rate
of each source class and target class. The heatmap
of results is provided in Figure 4b. We find that
“technology news” and “entertainment news” as
target classes have higher average success rates
than other classes, while “lottery ticket” is the low-
est. We also find that “constellation news” has the
highest average success rate as source class, while
“sports news” has the lowest, which means “con-
stellation news” is vulnerable and easy to attack
while “sports news” is much more robust.

F.10 Transferability Analysis

We evaluate the transferability of adversarial ex-
amples between different models by attacking a
blackbox BERT classifier by using adversarial text
generated from a whitebox LSTM, and vice versa.

The transferability-based attack results on Yelp
Dataset are shown in Table 14. We find that the
robustness of the two models is highly different
from each other. When we feed adversarial texts
generated from the LSTM model into the blackbox
BERT model, attack success rate is higher than

70%. However, when we test the performance of
the blackbox LSTM model on adversarial texts gen-
erated from the whitebox BERT, attack success rate
is around 30%, which is much lower than previous
experiment. These results show that Self-Attention
LSTMs are more robust than BERT models, and
the adversarial examples generated from a robust
model has higher attack transferability than non-
robust one. Therefore, we can attack blackbox
BERT models using a strong Self-Attention LSTM
trained by ourselves to generate adversarial texts
with high success rates. We also observe that the
USR of transferability-based attack is generally
higher than that of targeted attack. Particularly, we
achieve the highest success rate of 81.2% when
attacking blackbox BERT with text generated by
LSTM attacks under untargeted setting.

Furthermore, we find that the adversarial ex-
amples generated by the contextualized semantic
perturbation functiuon F¢ have the highest attack
transferability, which suggests that our contextual-
ized semantic perturbation is more generalizable
than rule-based perturbation functions.

G Human Evaluation Details

Language Quality Evaluation Details We use
Amazon Turk for English adversarial example qual-
ity annotations, and Alibaba Cloud for Chinese
example quality annotations. Each sentence is an-
notated by 5 annotators. This evaluation only evalu-
ates language quality and grammatical correctness,
and thus does not require additional background or
domain knowledge.

We present the annotation instructions on Ama-
zon Turk below.

Please rate the language quality (from 1 to
5, in terms of coherence, fluency, and grammar
correctness) of the presented sentence. 5 means
the best language quality, and 1 means the lowest
language quality.

* 5: The sentence looks totally correct. There
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are no grammatical errors. I can fully under-
stand the sentence.

* 4: The sentence looks somewhat correct.
There are one or two grammatical errors or
typos. But I can mostly understand the sen-
tence.

¢ 3: The sentence looks OK to me. There are
some grammatical errors or typos. I can partly
understand the sentence.

¢ 2: The sentence looks bad to me. There are
grammatical errors or typos everywhere. I can
understand it a little.

* 1: The sentence totally does not make any
sense. I cannot understand it.

Utility Preservation Evaluation Details We use
the targeted SemAttack to generate the adver-
sarial dataset with with ¢/x = 100/1. In total,
we collected annotations from 21 graduate students
from US universities for English datasets and 26 an-
notators from native Chinese speakers for Chinese
datasets. Both classification tasks do not require do-
main knowledge. The detailed human performance
results are shown in Table 6.
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H Perturbation Search Space Examples

H.1 English Perturbation Search Space S Examples

Table 15: English Perturbation Search Space S Examples Generated by SemAttack for BERT-based Classifier
using Fr, Fg and F¢. In the first example, we list some words and corresponding candidate sets generated by these
functions. We can see that words generated by F¢ reflect the meaning of the current context. For example, when we
say that a hotel is good, we may say it’s spacious. When word come is followed by back, we may mean return. In
the following two examples, we show that the same word may have different perturbation sets in different contexts.
In the second example, by using order, the person means that he ordered food. Considering the context, F provides
eat, taste in its candidate set. In the last example, order means the person orders a drink. As a consequence, we
have drink as a verb with a similar meaning in its candidate set.

Input English Text: This was my fifth time traveling to vegas! I have stayed at hotels such as the Bellagio,
Aria, Cosmopolitan, the venetian, and fortunately enough got a chance to stay at vdara. Considering the
reviews I didn’t expect vdara to be that-good of a hotel! Vdara was extremely clean, very modern, new, great
customer service, close to the strip-connected to the bellagio. easy access to casinos and heart of the strip.
Definitely coming back to vegas and booking a room at vdara.

Fr(stay) = stay
Fr (stay) = quell, last out, bide, persist, stay
Fc(stay) = staying, stay, vacationing, stays, relax, internship, enroll, stayed, visit, settle

Fr(good) = good, god
Fr (good) = estimable, adept, full, effective, dear, beneficial, dependable, good
Fc(good) = spacious, marvelous, marvel, wonderful, good

Fr(clean) = clean
Fr (clean) = blank, clean, uninfected
Fc(clean) = spacious, luxurious, lively, vibrant, cleanest, cozy, cleaned, renovated, clean

Fr(close) = close
Fr (close) = close, conclude, close up
Fc(close) = connected, near, close, nearer, closeness

Fr(coming) = coming
Fr (coming) = come, derive, issue forth, arrive, hail, total, occur, do, fall
Fc(coming) = returning, traveling, transferring, staying, relocating, visiting, talking, coming

Input English Text: Stopped by this place for lunch . Ordered the veggie slice and patty they put lettuce
cheese and mayo in it and both the slice and patty were amazing. Definitely will be back for more.

Fr(Ordered) = ordered
Fr (Ordered) = rate, ordain, arrange, order, regulate
Fc(Ordered) = ate, tasted, ordered

Input English Text: Love this speakeasy bar. Last time I was at this location it was still the Panda bar. The
place itself is super cozy and intimate. We went there to grab a drink before our Ali Wong show. Hubby
ordered a Hendricks gin tonic (12$-happy hour price?) and I got a cocktail with Pimms (9$ before 9pm). The
drinks were HUMONGOUS! So much so I couldnt finish mine and hubby was tipsy lol.

Fr(Ordered) = ordered
Fr (Ordered) = rate, ordain, arrange, order, regulate
Fc(Ordered) = ate, drank, ordered
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H.2 Chinese Perturbation Search Space S Examples

Table 16: Chinese Perturbation Search Space S Examples Generated by SemAttack for BERT-based Classifier
using Fr, Fx and F¢. Chinese characters are intrinsically polysemous, which requires candidate characters to be
contextualized. We list four examples here. In the first two examples, we show two different meanings of character
“3” in two different sentences. One referring to the US which has some other countries’ names in its perturbation
set, another meaning poignant which is used as an adjective. In the last two examples, we show “1<”, a well-known
Chinese character that has multiple pronunciations and multiple meanings. We show that our two perturbation
functions return different candidate sets. In the third example, “4” means a job title, while in the last example it
means growth.

Input Chinese Text: Vji%: SEESIEE MRS E SRR S 24T
Translation: Interview: U.S. visa officer interprets the essentials of student visa

Fr(3£) =%, £, 7, 77, #, &, tH(mustard, nice, world, support, magnesium, each, lintel)

Fkr (%) = FE(US)

Fo(3£) =3, 95, &, Bk, B, 8, @, 77, 5, ¥, 48, ), #5(US, Britain, Hong Kong, Europe, Japan, Australia,
Russian, Netherlands, Germany, Hong Kong, China, Portugal, Korean)

Input Chinese Text: [55% I (ER) KHRz 85 2 HISIRIEE)

Translation: Chen Jia’s "Painted Skin" changes skin, poignant love wins tears (photo)

}'T(%) =¥, 3%, 5L, 3%, B, &, PB(mustard, nice, world, support, magnesium, each, lintel)

Fr (3) = F(poignant)

}—c(%) =T 8 9h 3R, B K, & I, B, B, G, 'fﬁyT(lonely, sincere, wonderful, nice, greasy, cool,
rotten, make up, bumpy, sad, awful, sad, sad)

Input Chinese Text: b3 555 BIHRLH KBRAZ 07 Al 35815 7]
Translation: Chen Zhi, Deputy Secretary-General of the Beijing Housing Association, talks about the integrity
of the real estate industry

Fr(¥) = K, K, %, i, 4(clan name, foundation, palm, rise, long)

Fr (&) = K(general)

Fo(k) = &, &, W, &, W, Z, JT, #, &, i, &, #E(general, professor, minister, member, teacher,
committee, office, secretary, deputy, consultant, official, director)

Input Chinese Text: IMFAIE i BAF £ EREHFHE K THH
Translation: IMF sharply lowered its forecast for global economic growth next year

Fr(¥) = K, &K, %, ¥, ¥(clan name, foundation, palm, rise, long)
Fr () = &, I, K(growth, increase, increase)
Fo (k) =1k, #, |, 3, 5, 4, 1, HR(swell, increase, inflate, speed, rise, grow, plus, fast)
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H.3 English Adversarial Examples

Table 17: English Adversarial Examples Generated by SemAttack for BERT-based Classifier using Fr.

Input (red = Modified character, bold = original character.)

Original English Text: I went to AAA for their travel service. They could not help me at all with my trip to
Belize. They have zilch information and resources. This is a prime destination of American tourists. I was
disappointed.

Adversarial English Text: I went to AAA tor their travel service. They could not help me at all with my trip
to Belize. They have zilch information and resources. This is a prime destination of American tourists. I was
disappointed.

Model Prediction: 1-star (most negative) — 5-star (most positive)

Original English Text: I called numerous times and noted that they are going to deliver at a work address
between 9 am to 5 pm. They attempted delivery three times after 5 pm. I got ups to pick up my parcel and got
it delivered on time.

Adversarial English Text: I called numerous times and noted that they are going to deliver at a work address
between 9 am to 5 pm. They attempted delivery three times after 5 pm. I hot ups to pick up my parcel and got

it delivered on time.

Model Prediction: 1-star (most negative) — 5-star (most positive)

Original English Text: Mercedes does the best mani and pedi! You really have to go in at least once to see
what I mean.

Adversarial English Text: Mercedes does the bet mani and pedi! You really have to go in at least once to see
what I mean.

Model Prediction: 5-star (most positive) — 1-star (most negative)

Original English Text: I was charged $ 200 to add 6 lbs of Freon to my air conditioning. I went to
amazon.com and 25 Ibs cost $ 120 including shipping. That should be approx $ 29 for 6 1bs of Freon. So labor
which was 20 min, transportation, and equipment up - keep for john, the service person who came, was $ 171.
I feel that’s somewhat unreasonable. Just fair warning for the next customer. Update: after listening to my
complaint, the owner offered to refund my payment. That was quite reasonable of them. Therefore, I switch
my review to 4 stars.

Adversarial English Text: [ was charged $ 200 to ad 6 Ibs of Freon to my air conditioning. I went to
amazon.com and 25 1bs cost $ 120 including shipping. That should be approx $ 29 fog 6 lbs of Freon. So labor
which was 20 min, transportation, and equipment up - keep for john, the service person who came, was $ 171.
I feel that’s somewhat unreasonable. Just fair warning for the next customer. Update: after listening to my
complaint, the owner offered to refund my payment. That was quite reasonable of them. Therefore, I switch
my review to 4 stars.

Model Prediction: 4-star (positive) — 1-star (most negative)

Original English Text: Liked how they were open late and also had happy hour specials after 10 pm. We
really liked the bulgogi and korean prime kalbi. They were marinated very flavor-fully . the mushroom medley
and sweet corn were also very good. Would definitely keep this place on my list of late night eats or when iia
just craving korean barbecue.

Adversarial English Text: Lied how they were open late and also had happy hour specials after 10 pm. We
really lied the bulgogi and korean prime kalbi. They were marinated very flavor-fully . the mushroom medley
and sweet corn were also very good. Would definitely keep this place on my list of late night eats or when iia
just craving korean barbecue.

Model Prediction: 4-star (positive) — 1-star (most negative)
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Table 18: English Adversarial Examples Generated by SemAttack for BERT-based Classifier using Fr.

Input (red = Modified character, bold = original character.)

Original English Text: Like the others below, I had a similar bad experience with this company. I also forgot
to check here before I bought the living social deal. I am having some issues getting it refunded as well. Maid
affordable was a no show, will not call back, and does not answer the phone or emails. Definitely take your
business to someone else.

Adversarial English Text: Like the others below, I had a similar bad experience with this company. I also
forgot to check here before I bought the living social deal. I am having some topic getting it refunded as well.
Maid affordable was a no show, will not shout back, and does not answer the phone or emails. Definitely take
your business to someone else.

Model Prediction: 1-star (most negative) — 5-star (most positive)

Original English Text: Just another reason why I will never bank with chase.... so now you can’t deposit any
amount of cash without showing your id..... so much for just running to the bank quick.

Adversarial English Text: Just another reason why I will never bank with chase.... so now you can’t deposit
any amount of cash without usher your id..... so much for just running to the bank quick.

Model Prediction: 1-star (most negative) — 5-star (most positive)

Original English Text: My 2017 camry got a check engine light and my car had a strong odor of gasoline
after service closed, I asked the receptionist if there was anyway they could get me a rental and she said they
were closed so she recommended me to come in bright and early at 7am on monday so they could look at my
car so I told her I left for work at 6am cause I work in north scottsdale so I told her I didn’t not want to drive
my car to scottsdale and back because I was afraid my car would blow up or something from the strong odor of
gasoline and she put me on hold to talk to a manager. When she came back on the phone she said her manager
was going to get a hold of the rental manager to see if someone could come in tomorrow ( today now ) to get
me a rental and I left my name and number and no one has reached out to me. It’s great to know they don’t
care if their customer’s car blows up on the freeway cause it’s not a sale! Thanks avondale toyota you guys
rock ! ! I'! The dealership I work at teaches their receptionist to hand out rentals cause they know stuff like this
happens, you guys might want to look into that !

Adversarial English Text: My 2017 camry got a check engine light and my car had a strong odor of gasoline
after service closed, I asked the receptionist if there was anyway they could get me a rental and she said they
were closed so she recommended me to come in bright and early at 7am on monday so they could look at my
car so I told her I left for work at 6am cause I work in north scottsdale so I told her I didn’t not want to drive
my car to scottsdale and back because I was afraid my car would blow up or something from the strong odor of
gasoline and she put me on hold to talk to a manager. When she came back on the phone she said her manager
was going to get a hold of the rental manager to see if someone could come in tomorrow ( today now ) to get
me a rental and I left my name and number and no one has achieve out to me. It’s great to know they don’t care
if their customer’s car blows up on the freeway cause it’s not a sale! Thanks avondale toyota you guys rock
!1'1 1] The dealership I work at teaches their receptionist to hand out rentals cause they know stuff like this
happens, you guys might want to look into that !

Model Prediction: 1-star (most negative) — 5-star (most positive)

Original English Text: I called numerous times and noted that they are going to deliver at a work address
between 9 am to 5 pm. They attempted delivery three times after 5 pm. I got up to pick up my parcel and got it
delivered on time .

Adversarial English Text: I called numerous times and noted that they are going to deliver at a work address
between 9 am to 5 pm. They attempted delivery three meter after 5 pm. I got up to pick up my parcel and got it

delivered on time .

Model Prediction: 1-star (most negative) — 5-star (most positive)
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Table 19: English Adversarial Examples Generated by SemAttack for BERT-based Classifier using F¢.

Input (red = Modified character, bold = original character.)

Original English Text: If you think Las Vegas is getting too white trash, don’t go near here. This place is
like a Steinbeck novel come to life. I kept expecting to see donkeys and chickens walking around. woo - pig -
soooeeee this place is awful ! ! !

Adversarial English Text: If you senses Las Vegas is getting too white trash, don’t go near here. This place
is like a Steinbeck novel come to life. I kept expecting to see donkeys and chickens walking around. woo - pig -

soooeeee this place is awful ! ! !

Model Prediction: 1-star (most negative) — 5-star (most positive)

Original English Text: My 2017 camry got a check engine light and my car had a strong odor of gasoline
after service closed, I asked the receptionist if there was anyway they could get me a rental and she said they
were closed so she recommended me to come in bright and early at 7am on monday so they could look at my
car so I told her I left for work at 6am cause I work in north scottsdale so I told her I didn’t not want to drive my
car to scottsdale and back because I was afraid my car would blow up or something from the strong odor of
gasoline and she put me on hold to talk to a manager. When she came back on the phone she said her manager
was going to get a hold of the rental manager to see if someone could come in tomorrow ( today now ) to get
me a rental and I left my name and number and no one has reached out to me. It’s great to know they don’t care
if their customer’s car blows up on the freeway cause it’s not a sale ! Thanks avondale toyota you guys rock ! !
! ! the dealership I work at teaches their receptionist to hand out rentals cause they know stuff like this happens,
you guys might want to look into that !

Adversarial English Text: My 2017 camry got a check engine light and my car had a strong odor of gasoline
after service closed, I asked the receptionist if there was anyway they could get me a rental and she said they
were closed so she recommended me to come in bright and early at 7am on monday so they could look at my
car so I told her I left for work at 6am cause I work in north scottsdale so I told her I didn’t not want to drive
my car to scottsdale and back because I was worry my car would blow up or something from the strong odor of
gasoline and she put me on hold to talk to a manager. When she came back on the phone she said her manager
was going to get a hold of the rental manager to see if someone could come in tomorrow ( today now ) to get
me a rental and I left my name and number and no one has reached out to me. It’s great to know they don’t care
if their customer’s car blows up on the freeway cause it’s not a sale ! Thanks avondale toyota you guys rock ! !
! ! the dealership I work at teaches their receptionist to hand out rentals cause they know stuff like this happens,
you guys might want to look into that !

Model Prediction: 1-star (most negative) — 5-star (most positive)

Original English Text: I have used this company twice. The first time they were great. We spent over 5,000
for installation of a new ac unit on a rental property. Since they did an excellent job, we had them do a redesign
of ac system in our home to improve the cooling in our house. It was one of the most frustrating customer
service experiences I’ve had with a contractor in the 25 years I have lived in phoenix. They didn’t complete
the job in the time frame they promised. They damaged the faux ceiling in the kitchen, they drilled holes and
didn’t repair them in the bedroom. They left marks on the ceiling in the living room, where they marked to
cut a hole and then didn’t. Which told me they installers were not skilled or professional. After waiting for 2
months for them to repair the mistake in the kitchen, we gave up and paid to have it repaired. I heard a lot of
promises, no solution. I would never use this contractor again.

Adversarial English Text: I have used this company twice. The first time they were great. We spent over
5,000 for installation of a new ac unit on a rental property. Since they did an exemplary job, we had them do
a redesign of ac system in our home to improve the cooling in our house. It was one of the most frustrating
customer service experiences I've had with a contractor in the 25 years I have lived in phoenix. They didn’t
complete the job in the time frame they promised. They damaged the faux ceiling in the kitchen, they drilled
holes and didn’t repair them in the bedroom. They left marks on the ceiling in the attic room, where they
marked to cut a hole and then didn’t. Which told me they installers were not skilled or professional. After
waiting for 2 months for them to repair the mistake in the kitchen, we gave up and paid to have it repaired. I
heard a lot of promises, no solution. I would never use this contractor again.

Model Prediction: 1-star (most negative) — 5-star (most positive)

Original English Text: There’s so many choices of food in Las vegas. Don’t choose this place. It is no
exaggeration that mcdonalds and arby’s have better hash browns, eggs, and bacon. Missed items in the dishes
we ordered. All around disappointment to the las vegas allure.

Adversarial English Text: There’s so many choices of food in Las vegas. Don’t choose this place. It is no
exaggeration that mcdonalds and arby’s have better hash browns, eggs, and bacon. Missed items in the dishes

we ordered. All around sorrow to the las vegas allure.

Model Prediction: 1-star (most negative) — 5-star (most positive)
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Table 20: English Adversarial Examples Generated by SemAt t ack for BERT-based Classifier using all perturbation
functions.

Input (red = Modified character, bold = original character.)

Original English Text: I went to AAA for their travel service. They could not help me at all with my trip to
Belize. They have zilch information and resources. This is a prime destination of American tourists. I was
disappointed.

Adversarial English Text: I went to AAA for their travel service. They could not help me at all with my
voyage to Belize. They have zilch information and resources. This is a prime destination of American tourists.

I was disappointed.

Model Prediction: 1-star (most negative) — 5-star (most positive)

Original English Text: My wife and I have been to this location multiple times, and have only had 1 bad
experience where the people in the check out area were a little brain dead that day. (they told us that the rug we
purchased wasn’t in stock, then it was, then wasn’t, then was again...) Other than that, we are always helped
right away, and checking out goes quickly. They also have free self serve Starbucks coffee which I always help
myself to.

Adversarial English Text: My wife and I have been to this location multiple times, and have only had 1 worst
experience where the people in the check out area were a little brain dead that day. (they told us that the rug we
purchased wasn’t in stock, then it was, then wasn’t, then was again...) Other than that, we are always served
right away, and checking out goes quickly. they also have free self serve Starbucks coffee which I always help
myself to.

Model Prediction: 4-star (positive) — 1-star (most negative)

Original English Text: I love shopping at buffalo exchange but when it comes to selling I prefer selling to the
phoenix location because the employees are a lot more genuine, there’s less of a hipster pretentious vibe there,
and I usually sell more there too. Not to mention the tempe location usually turns the music off at 8:30, which
gives an unwanted feeling to their guests. I am giving two stars for the sake of finding things at all locations.
Go phoenix location!

Adversarial English Text: I love shopping at buffalo exchange but when it comes to selling I prefer selling to
the phoenix location because the employees are a lot more genuine, there’s less of a hipster pretentious vibe
there, and I usually sell more there anyway. Not to mention the tempe location usually turns the music off at
8:30, which gives an unwanted feeling to their guests. I am giving two stars for the sake of finding things at all
locations. Go phoenix location!

Model Prediction: 2-star (negative) — 5-star (most positive)

Original English Text: There’ s so many choices of food in Las Vegas. Don’t choose this place. It is no
exaggeration that mcdonalds and arby’s have better hash browns, eggs, and bacon. Missed items in the dishes
we ordered. All around disappointment to the Las Vegas allure.

Adversarial English Text: There’s so many choices of food in Las Vegas. Don’t choose this place. It is no
exaggeration that mcdonalds and arby’s have delicious hash browns, eggs, and bacon. Missed items in the
dishes we ordered. All around disappointment to the Las Vegas allure.

Model Prediction: 1-star (most negative) — 5-star (most positive)

Original English Text: Not only is this place in my neighborhood, it is exactly what I’'m looking for. I have
pale skin, green eyes, and freckles yet I have been cheated out of having naturally red hair by mother nature!!
Therefore I have been a fake redhead for at least a decade. You can imagine the cost and damage to my hair I
have endured. Fringe has a new dye that is ammonia free! It’s basically just a oil and water dying process! I've
gone twice in a row and my hair has never been in such good condition. I'm paying the same amount for hair
dying as my old salon except here I get a better cut and style and it’s not frying my hair! Also Chanel (who
dyes my hair) is a totally cool chic and always has interesting things to talk about! This is my new go to salon!

Adversarial English Text: Not only is this place in my neighborhood, it is exactly what I’m looking for. I
have pale skin, green eyes, and freckles yet I have been humiliated out of having naturally red hair by mother
nature!! Therefore I have been a fake redhead for at least a decade. You can imagine the cost and damage to
my hair [ have endured. Fringe has a new dye that is ammonia free! It’s basically just a oil and water dying
process! I’ve gone twice in a row and my hair has never been in such good condition. I'm paying the same
amount for hair dying as my old salon except here I get a better cut and style and it’s not frying my hair! Also
Chanel (who dyes my hair) is a totally cool chic and always has interesting things to talk about! This is my new
go to salon!

Model Prediction: 5-star (most positive) — 1-star (most negative)
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Table 21: English Adversarial Examples Generated by SemAt tack for BERT-based Classifier on SNLI Dataset
using all perturbation functions.

Input (red = Modified character, bold = original character.)

Original Premise: Four boys are about to be hit by an approaching wave.
Adversarial Premise: Four boys are about to be smashed by an approaching wave.
Hypothesis: The wave missed the boys.

Model Prediction: contradiction — entailment

Original Premise: A yellow race car sliding through a corner as spectators watch.
Adversarial Premise: A yellow race car slipping through a corner as spectators watch.
Hypothesis: A NASCAR is being watched.

Model Prediction: neutral — entailment

Original Premise: A group of people on the bark, brightly lighten street, while one man with a gray hat holds
a large colorful sign with arrows.

Adversarial Premise: A group of people on the bark, brightly lighten street, while one man with a gray hat
holds a large colorful sign with swords.

Hypothesis: The people are walking down the street.

Model Prediction: entailment — contradiction

Original Premise: A man takes a drink in the doorway of a home.
Adversarial Premise: A man takes a drinking in the doorway of a home.
Hypothesis: A man is looking out onto his front lawn from the doorway of his home.

Model Prediction: neutral — contradiction

Original Premise: A dog attacking a man wearing protective gear.
Adversarial Premise: A dog hurting a man wearing protective gear.
Hypothesis: He was training a police dog.

Model Prediction: neutral — entailment

Original Premise: A white man in a red shirt riding a bike.
Adversarial Premise: A white man in a golden shirt riding a bike.
Hypothesis: An old guy wears a shirt on a bike.

Model Prediction: neutral — entailment

Original Premise: A child in a blue and white striped shirt crosses his arms and smiles while standing on red
carpeted stairs.

Adversarial Premise: A child in a blue and white striped shirt crosses his arms and smiles while standing on
red carpeted terraces.

Hypothesis: A child is smiling as he watches a clown.

Model Prediction: neutral — contradiction

Original Premise: This man, with a red & white shirt has water bottles on this white truck.
Adversarial Premise: This man, with a red & white shirt has beer bottles on this white truck.
Hypothesis: The guy has bottles on the truck for me.

Model Prediction: neutral — entailment

Original Premise: Three people are riding a carriage pulled by four horses.
Adversarial Premise: Three people are riding a carriage hauled by four horses.
Hypothesis: The oxen are pulling the carriage.

Model Prediction: contradiction — entailment
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H.4 Chinese Adversarial Examples

Table 22: Chinese Adversarial Examples Generated by SemAttack for BERT-based Classifier on THUNews
Dataset using Fr.

Input (red = Modified character, bold=original character.)

Original Chinese Text: =18 {5 #1 i & LT B MR T 14 13 B
Translation: Gaolujie’s new anti-hypersensitive toothpaste solves tooth hypersensitivity

Adversarial Chinese Text: 1515 7 #7 i T AGLECT B MR T 14 13
Translation: Gaoluji’s new anti-hypersensitive toothpaste solves tooth hypersensitivity
Model Prediction: Fashion News (I ##7/#) — Entertainment News (%&/RH1H)

Original Chinese Text: #H&: 09 5HEFIFHFHEEF S8AHIK
Translation: Photos: 8 highlights of 09 Paris Haute Couture Show

Adversarial Chinese Text: 4H/: 09FEE % E HIFH A E S8

Translation: Photos: 8 cooking sessions of 09 Paris Haute Couture Show

Model Prediction: Fashion News (Ff[#7/8) — Entertainment News ({5 5:57/H)
Original Chinese Text: k5 AFRHEST & Fi 2L 5

Translation: New standards for boyfriends in this autumn to create a new era of men

Adversarial Chinese Text: <7k 5 & HTFREST 8B 5

Translation: New standards for boyfriends in golden autumn to create a new era of men

Model Prediction: Fashion News (Ff[##7[f) — Entertainment News (i5%/K¥H7/H)

Original Chinese Text: ¥ & BT BE N SWERIF LEZLFE
Translation: It is said that the Taiwan Union Party may order Lai Xingyuan to resign as chairman of the MAC

Adversarial Chinese Text: P75 &K I BE T S MiE R LGRS £
Translation: The drama said that the Taiwan Union Party may order Lai Xingyuan to resign as chairman of
the MAC

Model Prediction: Politics news (FfBUH[E) — Entertainment News (155K 357/E)

Original Chinese Text: 155 80% & K43 5E A E B E S HEE G
Translation: Mammoth 80% genome deciphered complete prehistoric behemoth is expected to be resurrected

Adversarial Chinese Text: 719580 %%: KA IEER LR EBHEE
Translation: Mammoth 80% genome deciphered complete prehistoric behemoth is expected to be resurrected

Model Prediction: Technology News (%®}4#7/H) — Entertainment News (% /R#7/H)
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Table 23: Chinese Adversarial Examples Generated by SemAttack for BERT-based Classifier on THUNews
Dataset using F.

Input (red = Modified character, bold=original character.)

Original Chinese Text: F45#Mie: T2 M HEER (HE)
Translation: Handbag progression theory: the secret cornerstone of the road to the workplace (photo)

Adversarial Chinese Text: FL4#F 0. BRI BN ZEER (HE)
Translation: Handbag progression theory: the confidential cornerstone of the road to the workplace (photo)

Model Prediction: Fashion News (Ff{#i#[E) — Technology News (FHTE)
Original Chinese Text: HE#REE A& A7+ — 8 &5 H R IR
Translation: China UnionPay releases card tips for Golden Week.

Adversarial Chinese Text: 9 [E#REEL i1 —5 48 A FEE

Translation: China UnionPay releases card reminders for Golden Week.

Model Prediction: Financial and economic news (I142#7[#) — Technology News (FRHHTH)

Original Chinese Text: X S2£1 AR — L RE
Translation: Buying and selling mahogany is a risky business.

Adversarial Chinese Text: K241 R E— TGRS
Translation: Buying and selling mahogany is a dangerous business.

Model Prediction: Financial and economic news (IF42#7[8) — Home News (FK/EHHE)
Original Chinese Text: 15~ FNEMEIK XSG A ZER R
Translation: Credit card profits soar with increased risk tolerance.

Adversarial Chinese Text: 15 H R FEGIK XL A D ER T
Translation: Credit card profits soar with increased risk tolerance.

Model Prediction: Financial and economic news (I442#78]) — Stock News (BXZZH7IH])
Original Chinese Text: Z4R{F: RFEPPINTTEES B WA BER

Translation: Zhenwei Li: Different cities have their own development models.

Adversarial Chinese Text: ZR(H: NRIETTHES B WA B

Translation: Zhenwei Li: Different cities have their own development models.

Model Prediction: Real Estate News (5/#7[8) — Technology News (FRl#7/H)
Original Chinese Text: F5E 12538 T/ OEFE:  HHLHE vk Rt

Translation: South Korea’s aviation experiment center revealed: fighter jets were frozen in the test.

Adversarial Chinese Text: F5E AT IE A OB KL KR

Translation: South Korea’s aviation test center revealed: fighter jets were frozen in the test.

Model Prediction: Technology News (RH{#i[H) — Current Affairs News (HsJEHTE)
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Table 24: Chinese Adversarial Examples Generated by SemAttack for BERT-based Classifier on THUNews
Dataset using F¢.

Input (red = Modified character, bold=original character.)

Original Chinese Text: =1 # {5 #71 i & LHCT B MR T 14 13
Translation: Gaolujie’s new anti-hypersensitive toothpaste solves tooth hypersensitivity

Adversarial Chinese Text: 7= &2 U357 i & S HUBCT B BT 4 B
Translation: Gaolujie’s new anti-hypersensitive toothpaste solves tooth hypersensitivity

Model Prediction: Fashion News (HJ[#3#7[8) — Entertainment News (4% R #11H)

Original Chinese Text: S£3%: SKEiFREREEEMEWH F O\ —#)
Translation: Record: Zhang Yu, Amulon and Wang Rui as a guest to talk about the new film "Eighty-one
Patterns"

Adversarial Chinese Text: SEf%: SKEIFIEEEEMZEIHH O\ +—#)
Translation: Record: Zhang Yu, Amulon and Wang Rui as a guest to talk about the new film "Eighty-one
Patterns"

Model Prediction: Entertainment News (#RR#1H) — Technology News (RHSHTIE])

Original Chinese Text: REFHA K2 E: KF44.6 TETITLHE
Translation: Focus on credit card full penalty interest: RMB 44.6 arrears generate interest of RMB 1, 000

Adversarial Chinese Text: RATEHF2HTE: RKK44.6 TTHETILHE
Translation: Focus on credit card full penalty interest: RMB 44.6 arrears generate interest of RMB 1, 000

Model Prediction: Financial and economic news (I142#7[#) — Technology News (RHHTH)

Original Chinese Text: FF57 & IM4000/7 F 5ty A K 45508 (&)
Translation: Research found that whales had 4 legs 40 million years ago (photo)

Adversarial Chinese Text: /57 H40007 gl 1 KH 4508 (&)
Translation: Research found that carp had 4 legs 40 million years ago (photo)
Model Prediction: Technology News (HRH¥5[E) — Social News (fh:23TH)

Original Chinese Text: %[ TS5 TR E AR
Translation: Post-Ho Hong Era Conjecture in Macau’s Gaming Industry

Adversarial Chinese Text: 8| TR\ J5 (AT I AL TTAR
Translation: Post-Ho Hong Era Prediction in Macau’s Gaming Industry

Model Prediction: Stock news (JEZEH1H) — Technology News (BHHTIHE)
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Table 25: Chinese Adversarial Examples Generated by SemAttack for BERT-based Classifier on THUNews
Dataset using all perturbation functions.

Input (red = Modified character, bold=original character.)
Original Chinese Text: X1i% FIFE: @I EIGIEME (E)

Translation: Dialogue with Wang Huihao: Difficulties faced by overseas returnees in starting a business
(photo)

Adversarial Chinese Text: %115 FRFE: @300V EIEMEE ()
Translation: Dialogue with Wang Huiyao: Difficulties faced by overseas returnees in starting a business
(photo)

Model Prediction: Education News (BE#i/#) — Entertainment News (IR/KH/H)
Original Chinese Text: it 48EMTIR: FATHIEINETF?
Translation: What can attract you: our overseas students?

Adversarial Chinese Text: ARG K. FATEI AT
Translation: What can attract you: our overseas students?

Model Prediction: Education News (#(E#7/8) — Entertainment News (& FKF1/H)

Original Chinese Text: JHZAVEE/ N D WLAEME D S ARIER 5
Translation: Exclusive dialogue with Feng Xiaogang: It’s difficult for multiple audiences, and it’s easy for
less audiences

Adversarial Chinese Text: JHZXF &0/ N 2N ASERE D O ARBESS 2
Translation: Exclusive dialogue with Gao Xiaogang: It’s difficult for multiple audiences, and it’s easy for
less audiences

Model Prediction: Entertainment News (f2:R#7H) — Sports News (FREHTH)

Original Chinese Text: =1 #25#7 i & M UET B RIR T 1513 5L
Translation: Gaolujie’s new anti-hypersensitive toothpaste solves tooth hypersensitivity

Adversarial Chinese Text: = #& 5 i & ACUBCT B ARR T 510 8
Translation: Gaolujie’s new anti-hypersensitive toothpaste solves tooth coating hypersensitivity
Model Prediction: Fashion News (Ff4i#7[8) — Entertainment News (%% 5%HH)

Original Chinese Text: 2010 2R S FkH_FiE 7N
Translation: Six most of the 2010 art autumn auctions

Adversarial Chinese Text: 2010 2K fhifk¥a Li#E /S 2im
Translation: Six most comprehensive of the 2010 art autumn auctions

Model Prediction: Financial and economic news (W%5357[H) — Entertainment News (#5& 5515 )

Original Chinese Text: JiJE /NG A INFE W EE IR (HE)
Translation: Rare blue lobster found on British island (photo)

Adversarial Chinese Text: B/ NG AMEREENE (LHA)
Translation: Rare blue turtle found on British island (photo)

Model Prediction: Technology News (FH¥5[E) — Social News (fh23T[H)
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Table 26: Chinese Adversarial Examples Generated by SemAttack for BERT-based Classifier on Wechat Finance
Dataset using all perturbation functions.

Input (red = Modified character, bold=original character.)

Original Chinese Text: (%[ 7> 2 & 57 & E BHRIAETS - REETE . BB « TR |
FANERAT SIS . -

Translation: Fanbei.com shares wealth and asset management information knowledge and skills. Pay attention
to the latest information in the fields of trust, financial leasing, futures insurance, and private banking.

Adversarial Chinese Text: &1 7> ZI & B & B BTHANARTT « RIEFE - BIETAE - R
ke~ RABRITEIEEHEE -

Translation: Fanbei.com shares wealth and asset management information knowledge and skills. Pay attention
to the latest information in the fields of trust, financial leasing, accident insurance, and private banking.

Model Prediction: Comprehensive (454) — Bank (8R47)

%riginal Chinese Text: i RHPBERIRHHPEARSS - MECHREITH] Pk M BT - W&
18] o

Translation: The Post Office at Hot Spring Branch provides postal services, personalized stamp ordering,
home delivery of small parcels, and mail inquiries.

Adversarial Chinese Text: i REBEUFERIZHHRERSS « MECHREETT ]« BRaf/ Ve BT - il
=i .

Translation: The Hot Spring Post Office provides postal services, personalized stamp ordering, home delivery
of small parcels, and mail inquiries.

Model Prediction: Bank (¥21T7) — Insurance (£Rf%)

Original Chinese Text: HEIf0] (Jh3%) EE&HR AT (EWR: TEIEA) AL T2012 F3 H29
_EIREEE%B&QEE%ME/? . AFEERRAREEZNZEILAR, ATFEILFRREED ML &
[ A ©

Translation: Zhongrong Huachuang (Beijing) Fund Co., Ltd. (abbreviated as Zhongrong Huachuang) was
established on March 29, 2012. Headquartered in the capital, Beijing, the company is registered with the
National Development and Reform Commission, and is a legal financial institution that is issued a financial
license by the Securities Investment Fund Association of China.

Adversarial Chinese Text: FIEif 0] (b)) FELHRAF (FFR: FEEE]) AL TF2012 43 A29
%EEE\%B&QEE%MEE, AAEERRBEREZAZBILER, HPEIEFRRESD ML &
Rl RS RE .

Translation: Shenrong Huachuang (Beijing) Fund Co., Ltd. (abbreviated as Zhongrong Huachuang) was
established on March 29, 2012. Headquartered in the capital, Beijing, the company is registered with the
National Development and Reform Commission, and is a legal financial institution that is issued a financial
license by the Securities Investment Fund Association of China.

Model Prediction: Fund (%:4:) — Comprehensive (474)

Original Chinese Text: LT XE R, MHITHAETZ . LHWIERLS, HFRZHSE
F, RS HEE !

Translation: The futures industry is surging, and the futures market is familiar with ever-changing conditions.
Trading helps fun trading, and join hands with many futures experts to make trading easier!

Adversarial Chinese Text: ST KGEZH, HWITHENERZ . LHWIELL S, BT R
T, LS ER A

Translation: The futures bond industry is surging, and the futures market is familiar with ever-changing
conditions. Trading helps fun trading, and join hands with many futures experts to make trading easier!

Model Prediction: Futures (#%7) — Comprehensive (4%4)

Original Chinese Text: Ififf 55 AN %3 TR HE « IEHRE AT MR &, WEHE— —
Kty ARG - BERR S E 2 RIS -

Translation: Ruini Capital focuses on equity investment, securities investment and derivatives research and
other fields. Its business covers primary and secondary markets, including angel investment and hedging, equity
and fixed income securities investment.

Adversarial Chinese Text: Fii 77 5 AR VLT RAIGT - UEAR B MAT AR T 04, b 5ia— —
Kty ARG« R RS E 2 RIS -

Translation: Ruiquan Capital focuses on equity investment, securities investment and derivatives research
and other fields. Its business covers primary and secondary markets, including angel investment and hedging,
equity and fixed income securities investment.

Model Prediction: Comprehensive (4%4) — Segurities (IE#)
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Abstract

We present a self-supervised pre-training ap-
proach for learning rich visual language rep-
resentations for both handwritten and printed
historical document transcription. After su-
pervised fine-tuning of our pre-trained en-
coder representations for low-resource docu-
ment transcription on two languages, (1) a
heterogeneous set of handwritten Islamicate
manuscript images and (2) early modern En-
glish printed documents, we show a mean-
ingful improvement in recognition accuracy
over the same supervised model trained from
scratch with as few as 30 line image transcrip-
tions for training. Our masked language model-
style pre-training strategy, where the model is
trained to be able to identify the true masked
visual representation from distractors sampled
from within the same line, encourages learning
robust contextualized language representations
invariant to scribal writing style and printing
noise present across documents.

1 Introduction

Document transcription is the task of converting
images of handwritten or printed text into a sym-
bolic form suitable for indexing, searching, and
computational analysis.! Historical documents,
whether they were (re)produced via handwriting
or the early printing press, confound current sta-
tistical document transcription models due to (1)
extremely varied style and content across domains,

"'We use the generic term document transcription to refer
to both the task of optical character recognition (OCR), which
is typically reserved for printed documents, and handwritten
text recognition (HTR) for manuscripts.
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Figure 1: Example page image crops from an Islamicate
manuscript dated to 1842 (Top, ref: Leiden Or. 669),
showcasing its dense, visual complexity with extensive
marginalia, and printed proceedings of London’s Old
Bailey Courthouse (Bottom, c. 18" century) (Shoe-
maker, 2005).

(2) the presence of noise, and (3) a dearth of la-
beled data.

First, historical printed documents, such as
books produced from early modern England (c.
16M-18" centuries; bottom of Fig. 1), use non-
standardized spacing and fonts (Shoemaker, 2005)
and can contain code-switching that confuses lan-
guage models (Garrette et al., 2015). However,
this variation pales in comparison to their hand-
written counterparts. For instance, pre-modern
Islamicate manuscripts (i.e., Persian and Arabic
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handwritten documents from c. 719 centuries;
top of Fig. 1), differ in script family, scribal hand-
writing style, and symbol inventory/vocabulary. As
a result, a large degradation in performance is ob-
served when evaluating HTR models on unseen
manuscripts (Jaramillo et al., 2018).

Production and imaging noise also present a
problem for historical document transcription mod-
els. Whether it be uneven inking from a printing
press, inconsistent text baselines, or holes resulting
from insect damage to ancient pages, techniques
must be designed to cope with the noise (Berg-
Kirkpatrick and Klein, 2014; Goyal et al., 2020).

While neural networks have a demonstrated ca-
pability to model complex data distributions, they
typically require large amounts of supervised train-
ing data to do so, which is infeasible for historical
documents. Unsupervised, non-neural transcrip-
tion models with fewer parameters alleviate the
need to create labeled data (Berg-Kirkpatrick et al.,
2013), but struggle with complex handwriting vari-
ation. For Islamicate manuscripts, ground truth
transcription often requires paleography experts to
decipher the ancient writing systems as they appear
in each scribal writing style.

In this paper, we propose a self-supervised learn-
ing framework designed to overcome these three
challenges presented by historical documents. In-
spired by the astounding success of self-supervised
pre-training techniques for masked language mod-
eling (MLM) in NLP (Devlin et al., 2019), visual
models (Chen et al., 2020; Radford et al., 2021),
and speech recognition (Baevski et al., 2020), our
approach pre-trains a neural text line-image en-
coder by learning to distinguish masked regions of
unlabeled line images from other distractor regions.
Specifically, our contribution is the following:

* we show that the recent pre-train/fine-tune
paradigm is particularly advantageous for low-
resource historical document transcription,
obtaining large improvements in both printed
and handwritten documents in both English
and Arabic-script languages.

* we motivate the self-supervised contrastive
loss for document transcription through the
lens of “lacuna reconstruction”, where blank
parts of a document called lacuna must be
inferred by human readers.

In doing so, we argue that our approach to pre-
training implicitly incentivizes the model to dis-
cover and encode discrete character classes in its
internal representations, while ignoring style dif-
ferences occurring in lines using different fonts or
languages, or authored by other scribes.

2 Related Work

Masked Pre-training Our approach to self-
supervised pre-training follows a growing body
of work in both NLP and speech that leverages
mask-predict objectives for learning useful, task-
agnostic language representations from unlabeled
data. In the self-supervised pre-train/supervised
fine-tune paradigm, these representations can then
be updated on the task of interest using in-domain
labeled data. Past work covers learning representa-
tions for NLP from monolingual and multilingual
text (Devlin et al., 2019; Yang et al., 2019), speech
(Baevski et al., 2019; Jiang et al., 2019; Song et al.,
2020; Wang et al., 2020), and images grounded
with text (Radford et al., 2021). Representations
can be learned through either reconstruction-type
objectives (Jiang et al., 2019; Song et al., 2020;
Wang et al., 2020) or probabilistic contrastive loss
functions (Oord et al., 2018; Baevski et al., 2019,
2020). Most similar to our work is the speech
recognition system wav2vec2.0 (Baevski et al.,
2020), which uses the same two phase training
setup with a self-supervised contrastive loss dur-
ing pre-training and Connectionist Temporal Clas-
sification (CTC) loss on transcribed speech data
during fine-tuning. Talnikar et al. (2020) presents
that the self-supervised loss regularizes the super-
vised loss during joint learning of both objectives.
Follow up work has shown the usefulness of the
pre-trained speech representations for exploring
speech variation (Bartelds et al., 2020). In this pa-
per, we show that the same learning paradigm can
also be successfully applied to very low resource
document transcription settings.

Islamicate HTR While machine recognition
of handwritten, historic English/German docu-
ments can range from 5-12% character error
rate (CER) on a sufficient amount of in-sample
manuscript training data (Sanchez et al., 2019),
performance on Arabic-script languages is much
more challenging, leading to substantially higher
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CER. Pre-modern Islamicate manuscripts (i.e.,
Persian and Arabic handwritten documents from
c. 7"-19" centuries), often differ in script fam-
ily, scribal handwriting style, and symbol inven-
tory/vocabulary. In the top of Figure 1, we present
an extreme example of some of the problematic vi-
sual variation that can be observed. Even a model
trained in a supervised fashion on such a com-
plex document sees a large degradation in perfor-
mance when evaluating HTR models on unseen
manuscripts (Jaramillo et al., 2018) . Until re-
cently, OCR performance on Arabic-script printed
texts was still poor, typically above 25% CER (Al-
ghamdi and Teahan, 2017), which is too high for
downstream users (i.e., researchers and librarians).
Recent studies involving Islamicate manuscripts
found that state-of-the-art systems are only able
to achieve 40 to mid-20% CER using pro-
prietary software (e.g., Google Cloud Vision,
RDI, Transkribus) (Clausner et al., 2018; Keinan-
Schoonbaert, 2020, 2019). However, results from
these studies only report in-domain performance—
an unrealistic scenario where considerable amounts
of labeled data can be obtained to enable both train-
ing and testing on the same manuscript. In contrast,
out-of-domain performance tends to suffer consid-
erably, supported by Romanov et al. (2017)’s study
of neural OCR for printed Arabic-script documents.
Our work aims to address such performance is-
sues for both in-domain and out-of-domain Islami-
cate HTR settings by learning general, content-rich
pre-trained language representations from large
amounts of heterogeneous unlabeled data.

Historical OCR Closely related to manuscript
transcription, OCR is another task involving lan-
guage recognition from images. However, OCR
operates on documents that have been printed by a
machine with regular, re-used character fonts ex-
hibiting much less superficial glyph variation than
human handwriting. OCR is far from a solved
problem in the case of documents printed on early
modern (c. 16M-18" centuries; see bottom of
Fig. 1), movable-type printing presses, where hu-
mans would manually set metal type casts with
non-standard spacing and fonts (Shoemaker, 2005).
In this setting, inking noise and historical font
shapes confuse OCR models trained on modern,
computer-generated documents (Arlitsch and Her-
bert, 2004). Berg-Kirkpatrick et al. (2013)’s Ocular

explicitly uses a generative probabilistic model in-
spired by historical printing processes to model
such noise. Later work has extended it to handle
more typesetting noise (Garrette et al., 2015), and
produce both diplomatic and normalized transcrip-
tions (Garrette and Alpert-Abrams, 2016). Sep-
arately, OCR post-correction models have been
proposed to resolve OCR outputs in historical doc-
uments (Himéldinen and Hengchen, 2019; Dong
and Smith, 2018) and other low-resource settings
(Rijhwani et al., 2020, 2021). In contrast, our ap-
proach pre-trains the visual language recognition
model’s encoder, which produces better contextual-
ized representations in order to reduce the amount
of errors the model itself makes. Unlike Ocular, our
proposed method does not use a language model
and is not fully unsupervised as we require 1-3
pages of transcribed data for learning to transcribe
during fine-tuning.

3 Approach

When human readers encounter a lacuna, a
blank information gap in a portion of a book or
manuscript, they must infer its latent meaning us-
ing nearby context like in a cloze test (Taylor,
1953). We argue that the most useful information
for inference lies in the ability to reason about the
identities of the missing characters in the lacuna us-
ing the identities of the surrounding characters. In-
deed, MLM-style pre-training techniques are also
motivated by the idea of the cloze test, and recent
research indicates that language representations
learned through the prediction of missing content
using surrounding sentential context are useful for
many downstream tasks (Devlin et al., 2019; Clark
et al., 2019, 2020). Our approach combines the
ideas of lacuna inference and masked pre-training
to provide a useful learning signal for downstream
historical document transcription, a setting with
massive digitized collections but few transcribed
examples.

Specifically, we introduce a self-supervised pre-
training method that randomly masks lacuna-like
regions of document line images and learns to re-
construct them by distinguishing them from nearby
line image segments, or foils. While lacuna can be
reconstructed in a generative way, we find that a
discriminative contrastive loss works better in prac-
tice. By leveraging a diverse set of unlabeled data
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Figure 2: Our proposed two-stage approach for low-resource

document transcription first pre-trains a line image encoder using

a self-supervised contrastive loss on unlabeled data (left), followed by a fine-tuning phase, in which the pre-trained encoder
learns to transcribe 1-3 pages of supervised data using a CTC loss (right).

for pre-training, the model is forced to infer the
identities of masked text regions in the presence of
scribal writing variation or typesetting noise ubig-
uitous in historical documents. In the next sections,
we describe our model/masking strategy in detail.

3.1 Model

In Figure 2, we show our two-stage pre-train/fine-
tune modeling approach. First, we describe the
document line image encoder that is shared be-
tween stages. For simplicity of description, we
assume that each document line image, X, is n
pixels tall and m pixels wide, and that pixels are
binary-valued. Thus, the space of input text line
images can be denoted as X' = {0,1}"*"™. We
first process the input with a convolutional fea-
ture extractor, f : X — 7, that maps the input,
X, to an encoding matrix, H, using a deep convo-
lutional neural network followed by a reshaping of
the image height dimension into the channels di-
mension. Next, a contextual encoder, g : H — C,
computes a contextualized representation matrix,
C, from H using a neural sequence model, param-
eterized by a bidirectional LSTM (Hochreiter and

Schmidhuber, 1997). We describe both the design
of f, which determines the output size of the con-
volutional encoding space H, and g in Section 5.1.
Together, both the convolutional and contextual
layers form the encoder of text line images used
for downstream document transcription. Ideally,
f will capture the underlying visual appearance
of distinct character classes, while g will discover
linguistic correlations between these classes.

3.2 Masking

During pre-training, we replace randomly sampled,
non-overlapping segments of H with a learned
mask embedding vector prior to computing con-
textualized representation matrix C. We train the
model to distinguish the masked region from a foil
using the contrastive loss presented in Section 3.3.

3.3 Pre-training Objective

We use the following self-supervised contrastive
loss whose variants have demonstrated success in
self-supervised representation learning (Oord et al.,

209



2018; Baevski et al., 2020):

exp (s(ct, ht))
> exp (s(ct, hy))

Ly(c) = —log

Here, c¢; (depicted in Figure 2) is the contextual
encoder’s output representation of the masked line
image at position ¢. Similarly, h; (also depicted
in Figure 2) is the convolutional encoder’s output
representation of the masked region itself. Further,
s(c, h) represents a scoring function that computes
the similarity between representation vectors c and
h. We use the cosine similarity similar to Baevski
et al. (2020), but compute it using only raw vec-
tors, instead of the raw vectors and quantized vec-
tors. The cross-entropy loss requires the model to
distinguish the representation of the true masked
region, h;, from distractor representations: the con-
volutional encodings of other segments, hy with

'+t
3.4 Fine-tuning Objective

After learning pre-trained representations, we add
the randomly initialized, fully connected character
vocabulary projection layer to the top of our con-
text encoder network (top right of Fig. 2) and per-
form supervised training using the Connectionist
Temporal Classification (CTC) objective (Graves
et al., 2006; Graves, 2012; Baevski et al., 2020)
with transcribed data. CTC is a commonly used
loss function for supervised training in speech and
handwriting recognition systems. In this case, CTC
is used to marginalize over all monotonic align-
ments between the sequence of input visual rep-
resentations and the observed ground truth output
sequence of characters.

4 Datasets

In this section, we describe the unlabeled pre-
training and labeled fine-tuning/testing datasets
used in our experiments. Representative line im-
ages from five of the datasets are exhibited in Fig-
ure 3.

4.1 Islamicate Manuscripts

First, we introduce a variety of pre-modern Islami-
cate manuscript datasets (i.e., Persian and Arabic
handwritten documents from c. 7"-19" centuries)
selected for both their uniquely different domain

B ne s o A , s VLI
£ o3l g BUPOF Oub g Ly LodLl 7 e

R M 1 S A o 5>
Drought 1o, and fent a boat o
[ the Pnioner and Lornifb wear ogt together |

Figure 3: Assortment of cropped, grayscale line im-
ages from a selection of our datasets, as extracted by
annotators. From top to bottom, RASM 2019 (Keinan-
Schoonbaert, 2020), Attar-Mubhij, Huliyya, Trove (Hol-
ley, 2010), Old Bailey (Shoemaker, 2005). The Islami-
cate line images are shown pre-binarization, while the
English line images come binarized.

content (e.g., scientific to legal to religious) and
their visually distinct scribal handwriting style. All
but the first pre-train dataset are professionally tran-
scribed by Islamicate manuscript scholars.

HMML Pre-train Through a collaboration
with the Hill Museum and Manuscript Library
(HMML), we obtain about 100 early modern,
mostly Syrian, naskh? manuscripts dating from
1600-1775 with some voweling, but with ornamen-
tally voweled texts excluded (i.e., texts in which
every single vowel and orthographic feature is in-
cluded, usually for ornamental reasons). We filter
out manuscripts with extensive marginalia, figures,
or tables, though some marginal notes and other
elements (e.g., seals, interlinears) are still present.
This results in a dataset containing roughly 750,000
unlabeled line images.

HMML Fine-tune We obtain transcriptions for
115 line images from a 4-page held-out subset
of the HMML Pre-train dataset. This dataset is
designed for in-domain fine-tuning/testing experi-
ments with our pre-trained models.

RASM 2019 For the ICDAR 2019 Competi-
tion on Recognition of Historical Arabic Scien-
tific Manuscripts, the British Library released
2,164 transcribed line images from scientific
manuscripts written in various scribal hands
(Keinan-Schoonbaert, 2020). RASM 2019 has
become a popular benchmark for Arabic-script

https://en.wikipedia.org/wiki/Naskh_
(script)
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handwriting recognition due to its relatively large
amount of supervised data for the task.

Attar-Mubhij An Arabic-language legal text
with 190 transcribed line images obtained from
OpenlITIL?

Huliyya A 229-line Persian, nasta’liq* devo-
tional text written by an early modern scholar con-
taining mostly prayers (also obtained from Open-
ITI).

4.2 Early Modern English Printed Works

Next, we describe several English book and news-
paper datasets used in our experiments that were
originally printed in early modern England and
Australia.

EEBO Pre-train We harvest 750,000 unlabeled
line images from a randomly sampled collection
of document images from Early English Books
Online (EEBO),” which contains “almost every
work printed in the British Isles and North America,
as well as works in English printed elsewhere from
1470-1700.”

Trove A dataset of historic Australian newspa-
pers (c. 1803-1954) from the National Library
of Australia (Holley, 2010). We use the manu-
ally transcribed version totaling 450 lines (Berg-
Kirkpatrick et al., 2013).

Old Bailey A manually transcribed set of 20 doc-
uments printed 1716-1906, consisting of 30 lines
per document, taken from Berg-Kirkpatrick and
Klein (2014). Shoemaker (2005) compiled the doc-
uments, which describe proceedings of London’s
Old Bailey Courthouse.

4.3 Line Extraction

Since our model processes individual line im-
ages of a document, we use Kiessling (2020)’s
line extraction method to automatically segment
page images into their component text line images
for at-scale collection of the pre-training datasets.
We find and discard poorly extracted line images
outside an empirically determined pixel width-to-
height ratio range of 6-23.

*https://openiti.org

‘nttps://en.wikipedia.org/wiki/
Nastaliqg

Shttps://www.proquest .com/eebo

S Experiments

In this section, we describe our experimental setup,
including architectural details and hyperparameters
for the neural line image encoder, pre-train/fine-
tune specifics, dataset splits, and the baseline sys-
tems we compare against.

5.1 Experimental Details

Encoder For all experiments, we binarize the
line images and scale them to a height of 96 pixels,
but allow them to vary in width. We base our CNN
architecture on the Kraken OCR system (Kiessling,
2019): two rectangular 4 x 2 kernels first process
the input image, each followed by a Leaky ReLLU
activation and Group Norm. Two max pooling
operations are applied, one before and one after the
final 3 x 3 convolutional layer kernel, with kernel
sizes/strides of 4 x 2/1 x 2 for both. The first kernel
uses a stride of 4 x 2 and the final two both use
1 x 1. The convolutional hidden dimensions are 64,
128, and 256. We use a 3-layer BiLSTM for our
contextual encoder with a hidden size of 512. This
results in 6,408,000 trainable parameters. Models
are implemented in PyTorch (Paszke et al., 2019)
and Fairseq (Ott et al., 2019). Code is available at
https://github.com/nvog/lacuna.

Pre-training During pre-training, we perform a
grid search over masking probability and length
using 75k lines of data and select the best model
based on lowest fine-tuned CER on HMML Fine-
tune. We determine p = 0.5/p = 0.65 to perform
best for Islamicate manuscript/English print with a
non-overlapping segment length of 12 time steps.
We ensure that 8 time steps are between each non-
overlapping segment. A maximum of 100 time
steps are sampled and used as foils in the denomi-
nator of the loss from Sec. 3.3. We use the same
learning rate scheduler and Adam optimizer from
Baevski et al. (2020) that warms up for the first 8%
of updates to a learning rate of 5e-4 and linearly
decays it afterwards. Models are pre-trained for
3-5 days on 4 RTX 2080 Ti cards.

Fine-tuning During fine-tuning, we use a tri-
stage learning rate schedule with the Adam op-
timizer, which warms up the learning rate to Se-4
during the first 10% of updates and decays it lin-
early by a factor of 0.05 for the final 50% of train-
ing. We only update the fully connected layer for
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Test Dataset CER (/) Table ~1: Document t.ranscription results on

— - Islamicate manuscripts. Character error

System HMML-F RASM  Attar-Mubhij Huliyya ..o (CER) is reported on held-out test sets
Google Cloud OCR 49.0 57.0 61.2 714 introduced in Section 4.1. For baselines,

30 Lines for Supervised Fine-tuning

we compare against the current Google

Fine-tune/Test Dataset CER (])

Cloud OCR via the API, and the state-of-
the-art, neural network-based architecture

# Lines Pre-train HMML-F RASM Attar-Mubhij Huliyya from Kraken (Kiessling, 2019), which does
0 51.0 63.9 60.4 703 not use self-supervised pre-training (i.e., 0
75k 297 46.1 30.4 529 lines pre-train). With access to the same
750k 14.8 36.2 237 45.5 amount of 30 and 90 lines of supervised

90 Lines for Supervised Fine-tuning

fine-tuning data as this system, our pro-
posed self-supervised pre-training regime

Fine-tune/Test Dataset CER (])

(using 75k and 750k lines of unlabeled

# Lines Pre-train HMML-F RASM Attar-Mubhij Huliyya manuscript data) shows a large improve-
ment across all datasets.

0 36.9 61.7 36.8 52.5

75k 15.2 34.4 20.8 37.5

750k 10.0 259 15.0 28.3

the first 200 epochs of training and then proceed
to update the contextual encoder as well. These
optimization choices are inspired by Baevski et al.
(2020). We use a small batch size of 8 and train
for a maximum of 700 epochs with the CTC loss
(Sec. 3.4). We use greedy decoding after removing
the CTC’s blank token and do not use any external
language model. For Islamicate manuscript exper-
iments we perform NFD unicode normalization.
Character Error Rate (CER) is computed using
Kraken OCR (Kiessling, 2019).

5.2 Fine-tune/Test Splits

For Islamicate manuscript datasets, we hold out
10% of RASM 2019 for testing and the final
page each of HMML Fine-tune, Attar-Mubhij, and
Huliyya. For English print datasets, we use the
same test splits as Berg-Kirkpatrick and Klein
(2014) for fair comparison and fine-tune on the
validation set of each dataset.

5.3 Baselines

For our first baseline, we use the proprietary
Google Cloud OCR API (Fujii et al., 2017; Ingle
et al., 2019), which provides state-of-the-art results
on multilingual handwritten and printed modern
documents. In contrast to our system’s unlabeled
pre-training procedure for historical documents,
this system uses synthesized handwriting strokes
and data perturbation to obtain more supervised
data for improved performance.

For our second baseline, we use the pop-
ular, state-of-the-art open-source Kraken OCR
(Kiessling, 2019), which consists of a CNN-LSTM
encoder trained in a supervised fashion with the
same segmentation-free Connectionist Temporal
Classification (Graves et al., 2006) loss function
we use during our method’s fine-tuning stage. We
provide the encoder’s implementation details in
Section 5.1.

For early modern English print experiments, we
also compare to the fully unsupervised Ocular
(Berg-Kirkpatrick et al., 2013), which is a gen-
erative probabilistic model purpose-built for the
historical printing process, yet unable to handle
complex glyph variation observed in handwriting.

6 Results

In this section, we present document transcription
results for both Islamicate manuscripts and early
modern English works introduced in Section 4. We
compare performance against supervised and un-
supervised prior work, and investigate the impact
of pre-training/fine-tuning dataset sizes.

6.1 Islamicate Manuscripts

In Table 1, we present single-run supervised fine-
tuning results on in-domain subsets of each dataset
limited to 30 and 90 lines for low-resource set-
ting evaluation. These two settings are roughly
equivalent to 1 and 3 pages of transcribed data
for each manuscript. Each row represents a dif-
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Baselines

Test Dataset CER (])
System Trove  Old Bailey
Google Tesseract 37.5 -
ABBYY FineReader 22.9 -
Ocular 14.9 14.9
Ocular Beam 12.9 10.9
Ocular Beam-SV 11.2 10.3
Google Cloud OCR 13.3 8.5

30 Lines for Supervised Fine-tuning

Test Dataset CER (])
# Lines Pre-train Trove  Old Bailey
0 70.5 60.0
75k 20.3 26.5
750k 19.6 12.2

90 Lines for Supervised Fine-tuning

Test Dataset CER (])
# Lines Pre-train Trove  Old Bailey
0 38.7 28.6
75k 12.2 94
750k 10.4 7.6

Table 2: Document transcription results on early mod-
ern English printed works. Character error rate (CER) is
reported on held-out test sets introduced in Section 4.2.
First 5 baselines are taken from Berg-Kirkpatrick and
Klein (2014). Similar to Table 1, supervised data is
limited to 30 and 90 line settings.

ferent set of encoder parameters, which we use
to initialize the fine-tuning experiments. The 0 #
lines pre-train row represents a randomly initial-
ized Kraken-style encoder, while 75k and 750k set-
tings use the encoder parameters pre-trained with
our lacuna reconstruction objective on different or-
ders of magnitude of unlabeled HMML Pre-train
line images. We also compare to the Google Cloud
OCR introduced in Section 5.3.

The first thing we can observe is the extremely
high character error rates for both the commer-
cial Google Cloud OCR system and the randomly
initialized Ok pre-train models, especially in the
30-line setting. Access to about 2 more pages of
data (in the 90-line setting) improves results for
this setting in the Arabic-language legal text Attar-

Mubhij, but does not seem to help much for RASM
2019, a larger collection of scientific manuscripts.
This is probably due to the higher amount of diver-
sity in content and style in this benchmark dataset
for Arabic-language HTR. Seemingly, without any
signal from pre-training and only tens of lines of
transcribed data, the model is unable to learn a suf-
ficient visual encoder for the large variety of scribal
hands and scripts observed in the manuscripts (ex-
amples shown in Fig. 3). Pre-training on just 75k
lines halves the error rate for Attar-Mubhij in the
30-line setting. Furthermore, 750k pre-train re-
duces the Attar-Mubhij CER from 60.4 to 23.7.

The HMML Fine-tune dataset (HMML-F in Ta-
ble 1) has the largest relative error rate difference
between the pre-trained models and models with-
out pre-training. Errors are reduced by about 55%
for 75k-30, 70% for 750k-30, 58% for 75k-90, and
73% for 750k-90, which is at least 10 points higher
than other datasets on average. Since manuscripts
in HMML-F are sourced from the same library as
the HMML Pre-train dataset, the results suggest
that in-domain pre-training data provides an ad-
vantage over the other documents from different
collections. Regardless, our approach’s improved
performance on 30-line settings compared to the su-
pervised 90-line results trained from scratch across
all datasets is impressive and shows promising gen-
eralization ability.

6.2 Early Modern English Printed Works

In Table 2, we present supervised fine-tuning re-
sults on in-domain subsets of each dataset limited
to the same 30 and 90 line settings as in the Islami-
cate manuscript experiments. Our first observation
is that the randomly initialized encoder from the
(O-line pre-train setting sees a much larger improve-
ment from 30 to 90 lines of supervised fine-tuning
data than the Islamicate manuscript experiments.
We speculate this is due to the more similar and
repeated glyph shapes on printed data compared
to handwritten data, which makes learning of the
visual encoder easier. Still, pre-training the visual
encoder cuts CER across both datasets, though we
do see a slightly bigger relative error rate reduction
when fine-tuning on Trove versus Old Bailey.

In Figures 4 & 5, we show comparisons across
predicted transcriptions from different systems and
datasets for illustrative purposes. First, we observe
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Line image:
Ground truth:
Google Cloud:
Ok Pre-train:
75k Pre-train:
750k Pre-train:

s0 far as the Serpentine within forty or ity yards—it was not near Apsleg
so far as the Serpentine within forty or fifty yards-it was not near Apsley
Bo far as the Nerpentine within forty orlifty yarda-it WAB Dot near Apsley
tlshr olthelerpensinlwitlin forty or fifty yardl--it wnltot mor Amlen

to sar as the Perpentine witlhin forty or fisty yards—lit was not near Aptley

so far as the Serpentine within forty or fifty yards-it was not near Apaley

Figure 4: Comparison of results on the Old Bailey test set with errors highlighted. Pre-trained results are from the

90-line fine-tuning setting.

Line image:
Ground truth:

sale are giveu by the Spurisman’s ¢ Special

sale are given by the Sportsman's "Special

Google Cloud: Bale are giveu by the Spmrtsinan‘slSpecial

0k Pre-train:
75k Pre-train:

Iule are givemn by the fpvrruzon.peceinl

sale ars given by the Sportsmonl‘sISpecial

750k Pre-train: sale are given by the Sportsmon'ls "ISpecial

Figure 5: Comparison of results on the Trove test set with errors highlighted. Pre-trained results are from the

90-line fine-tuning setting.

that Google Cloud OCR, the best baseline system
on Old Bailey, consistently struggles with inking
variation. For example, the bleeding ink on the ini-
tial ‘s’ of each line image is mistaken for a ‘B’, the
‘n’ in ‘not’ in Fig. 4 is mistaken for a ‘D’ due to
the subtle connection of the glyph’s legs from over-
inking, and the ‘m’ in ‘Sportsman’ in Fig 5 is
confused for the characters ‘in’ because of under-
inking. However, the Ok pre-train baseline clearly
makes the most insertion/deletion/substitution er-
rors since it must learn how to transcribe noisy line
images from a randomly initialized encoder using
only 90 transcribed line images for supervised pa-
rameter learning. Initializing the visual encoder
with parameters learned from our self-supervised
regime on 75k unlabeled line images from EEBO
reduces a lot of these nonsensical errors to only
superficial glyph recognition issues. By increasing
the pre-training amount by an order of magnitude
to 750k, we obtain our best results. Future work
could integrate a language model during decod-
ing to address the unlikely sequences of charac-
ters/words still output by our best system, like the
words ‘Apaley’ and ‘Sportsmon’.

7 Conclusion

In this paper, we proposed a two-phase pre-
train/fine-tune approach for document transcrip-

tion and applied it to historical documents in
low-resource settings. Our pre-training strategy,
inspired by reconstructing missing information,
or lacuna, in documents uses hundreds of thou-
sands of unlabeled line images to learn rich vi-
sual language representations. After supervised
fine-tuning on tens of transcribed line images, we
showed large character error rate reduction on Is-
lamicate manuscripts exhibiting major script and
style variation and we improved over several state-
of-the-art OCR systems on early modern English
printed works. We estimate that our approach
could save human annotators significant amounts
of time and enable more distant readings of library
collections.

Ethical Considerations

While more accurate transcription of printed and
handwritten documents in low-resource settings
can expand research access for language and his-
tory scholars, it could also potentially facilitate
government surveillance of marginalized commu-
nities. Separately, bad actors could more easily
scan and digitize document images containing sen-
sitive information and use them for nefarious pur-
poses.

214



Acknowledgements

This material is based upon work supported by
the National Science Foundation Graduate Re-
search Fellowship Program under Grant No. DGE-
2038238. Any opinions, findings, and conclusions
or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect
the views of the National Science Foundation. The
project is also funded in part by the NSF under
grants 1618044 and 1936155.

References

Mansoor Alghamdi and William Teahan. 2017. Ex-
perimental evaluation of arabic ocr systems. PSU
Research Review, 1(3):229-241.

Kenning Arlitsch and John Herbert. 2004. Microfilm,
paper, and ocr: Issues in newspaper digitization. the
utah digital newspapers program.

Alexei Baevski, Michael Auli, and Abdelrahman Mo-
hamed. 2019. Effectiveness of self-supervised pre-

training for speech recognition. arXiv preprint
arXiv:1911.03912.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020. wav2vec 2.0: A frame-
work for self-supervised learning of speech represen-
tations. Advances in Neural Information Processing
Systems, 33.

Martijn Bartelds, Wietse de Vries, Faraz Sanal, Caitlin
Richter, Mark Liberman, and Martijn Wieling. 2020.
Neural representations for modeling variation in en-
glish speech. arXiv preprint arXiv:2011.12649.

Taylor Berg-Kirkpatrick, Greg Durrett, and Dan Klein.
2013. Unsupervised transcription of historical docu-
ments. In ACL.

Taylor Berg-Kirkpatrick and Dan Klein. 2014. Im-
proved typesetting models for historical ocr. In ACL.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In
International conference on machine learning, pages
1597-1607. PMLR.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and
Christopher D Manning. 2019. Electra: Pre-training
text encoders as discriminators rather than generators.
In International Conference on Learning Represen-
tations.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and
Christopher D Manning. 2020. Pre-training trans-
formers as energy-based cloze models. arXiv
preprint arXiv:2012.08561.

10

C. Clausner, A. Antonacopoulos, N. Mcgregor, and
D. Wilson-Nunn. 2018. Icthr 2018 competition on
recognition of historical arabic scientific manuscripts
— rasm2018. In [16th International Conference
on Frontiers in Handwriting Recognition (ICFHR),
pages 471-476.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186.

Rui Dong and David A Smith. 2018. Multi-input atten-
tion for unsupervised ocr correction. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2363-2372.

Yasuhisa Fujii, Karel Driesen, Jonathan Baccash, Ash
Hurst, and Ashok C Popat. 2017. Sequence-to-label
script identification for multilingual ocr. In 20717
14th IAPR International Conference on Document
Analysis and Recognition (ICDAR), volume 1, pages
161-168. IEEE.

Dan Garrette and Hannah Alpert-Abrams. 2016. An
unsupervised model of orthographic variation for
historical document transcription. In Proceedings of
the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies, pages 467-472.

Dan Garrette, Hannah Alpert-Abrams, Taylor Berg-
Kirkpatrick, and Dan Klein. 2015. Unsupervised
code-switching for multilingual historical document
transcription. In NAACL.

Kartik Goyal, Chris Dyer, Christopher Warren, Max
G’Sell, and Taylor Berg-Kirkpatrick. 2020. A proba-
bilistic generative model for typographical analysis
of early modern printing. In Proceedings of 2020
Annual Conference of the Association for Computa-
tional Linguistics.

Alex Graves. 2012. Offline arabic handwriting recog-
nition with multidimensional recurrent neural net-
works. In Guide to OCR for Arabic scripts, pages
297-313. Springer.

Alex Graves, Santiago Fernadndez, Faustino Gomez, and
Jiirgen Schmidhuber. 2006. Connectionist temporal
classification: labelling unsegmented sequence data
with recurrent neural networks. In Proceedings of the
23rd international conference on Machine learning,
pages 369-376.

Mika Hamaildinen and Simon Hengchen. 2019. From
the paft to the fiiture: a fully automatic nmt and word

215


https://doi.org/10.1108/PRR-05-2017-0026
https://doi.org/10.1108/PRR-05-2017-0026
https://ieeexplore.ieee.org/document/8583806
https://ieeexplore.ieee.org/document/8583806
https://ieeexplore.ieee.org/document/8583806

embeddings method for ocr post-correction. arXiv
preprint arXiv:1910.05535.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735—
1780.

Rose Holley. 2010. Trove: Innovation in access to
information in australia. Ariadne, (64).

R Reeve Ingle, Yasuhisa Fujii, Thomas Deselaers,
Jonathan Baccash, and Ashok C Popat. 2019. A scal-
able handwritten text recognition system. In 2079
International Conference on Document Analysis and
Recognition (ICDAR), pages 17-24. IEEE.

José Carlos Aradillas Jaramillo, Juan José Murillo-
Fuentes, and Pablo M Olmos. 2018. Boosting hand-
writing text recognition in small databases with trans-
fer learning. In 2018 16th International Conference
on Frontiers in Handwriting Recognition (ICFHR),
pages 429-434. IEEE.

Dongwei Jiang, Xiaoning Lei, Wubo Li, Ne Luo, Yux-
uan Hu, Wei Zou, and Xiangang Li. 2019. Improving
transformer-based speech recognition using unsuper-
vised pre-training. arXiv e-prints, pages arXiv—1910.

Adi Keinan-Schoonbaert. 2019. Using transkribus for
arabic handwritten text recognition. British Library
Digital Scholarship Blog.

Adi Keinan-Schoonbaert. 2020.  Results of the
rasm2019 competition on recognition of historical
arabic scientific manuscripts. British Library Digital
Scholarship Blog.

Benjamin Kiessling. 2019. Kraken-an universal text
recognizer for the humanities. Proceedings of the
DH.

Benjamin Kiessling. 2020. A modular region and text
line layout analysis system. In 2020 17th Inter-
national Conference on Frontiers in Handwriting
Recognition (ICFHR), pages 313-318. IEEE.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018.
Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for se-
quence modeling. arXiv preprint arXiv:1904.01038.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances
in neural information processing systems, 32:8026—
8037.

11

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models
from natural language supervision. arXiv preprint
arXiv:2103.00020.

Shruti Rijhwani, Antonios Anastasopoulos, and
Graham Neubig. 2020. Ocr post correction
for endangered language texts. arXiv preprint
arXiv:2011.05402.

Shruti Rijhwani, Daisy Rosenblum, Antonios Anas-
tasopoulos, and Graham Neubig. 2021. Lexi-
cally aware semi-supervised learning for ocr post-
correction. Transactions of the Association for Com-
putational Linguistics, 9:1285-1302.

Maxim Romanov, Matthew Thomas Miller,
Sarah Bowen Savant, and Benjamin Kiessling.
2017. Important new developments in arabographic
optical character recognition (ocr). arXiv preprint
arXiv:1703.09550.

Robert Shoemaker. 2005. Digital london: Creating a
searchable web of interlinked sources on eighteenth
century london. Program.

Xingchen Song, Guangsen Wang, Yiheng Huang, Zhiy-
ong Wu, Dan Su, and Helen Meng. 2020. Speech-
xInet: Unsupervised acoustic model pretraining for
self-attention networks. Proc. Interspeech 2020,
pages 3765-3769.

Joan Andreu Sanchez, Verénica Romero, Alejandro H.
Toselli, Mauricio Villegas, and Enrique Vidal. 2019.
A set of benchmarks for handwritten text recogni-
tion on historical documents). Pattern Recognition,
94:122-134.

Chaitanya Talnikar, Tatiana Likhomanenko, Ronan Col-
lobert, and Gabriel Synnaeve. 2020. Joint masked
cpc and ctc training for asr. arXiv e-prints, pages
arXiv—2011.

Wilson L Taylor. 1953. “cloze procedure”: A new
tool for measuring readability. Journalism quarterly,
30(4):415-433.

Weiran Wang, Qingming Tang, and Karen Livescu.
2020. Unsupervised pre-training of bidirectional
speech encoders via masked reconstruction. In
ICASSP 2020-2020 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 6889-6893. IEEE.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. Advances in Neural Infor-
mation Processing Systems, 32:5753-5763.

216


https://blogs.bl.uk/digital-scholarship/2020/01/using-transkribus-for-arabic-handwritten-text-recognition.html
https://blogs.bl.uk/digital-scholarship/2020/01/using-transkribus-for-arabic-handwritten-text-recognition.html
https://blogs.bl.uk/digital-scholarship/2019/09/rasm2019-results.html
https://blogs.bl.uk/digital-scholarship/2019/09/rasm2019-results.html
https://blogs.bl.uk/digital-scholarship/2019/09/rasm2019-results.html

FreeTransfer-X: Safe and Label-Free Cross-Lingual Transfer from
Off-the-Shelf Models

Yinpeng Guo and Liangyou Li and Xin Jiang and Qun Liu
Huawei Noah’s Ark Lab

{guo.yinpeng, liliangyou,

Abstract

Cross-lingual transfer (CLT) is of various ap-
plications. However, labeled cross-lingual cor-
pus is expensive or even inaccessible, espe-
cially in the fields where labels are private,
such as diagnostic results of symptoms in
medicine and user profiles in business. Al-
though being lack of labels, there are off-the-
shelf models in these sensitive fields. Instead
of pursuing the original labels, a workaround
for CLT is to transfer knowledge from the
off-the-shelf models without labels. To this
end, we define a novel CLT problem named
FreeTransfer-X that aims to achieve knowl-
edge transfer from the off-the-shelf models in
rich-resource languages. To address the prob-
lem, we propose a 2-step knowledge distil-
lation (KD, Hinton et al., 2015) framework
based on multilingual pre-trained language
models (mPLM)'. The significant improve-
ment over strong neural machine translation
(NMT) baselines demonstrates the effective-
ness of the proposed method. In addition to
reducing annotation cost and protecting pri-
vate labels, the proposed method is compati-
ble with different networks and easy to be de-
ployed. Finally, a range of analyses indicate
the great potential of the proposed method.

1 Introduction

Cross-lingual transfer (CLT) is a critical topic for
natural language processing due to the data imbal-
ance between languages. While models of rich-
resource languages (e.g. English) have been ap-
plied on various real-world tasks, the progress on
poor-resource languages lags behind. CLT re-
searches enable the knowledge transfer from the
rich-resource languages to the poor-resource lan-
guages.

Although the application of CLT is valuable,
data labels are expensive or even inaccessible in

'Source code are available at https:/github.com/huawei-
noah/noah-research/tree/master/NLP/FreeTransfer-X

jiang.xin,

qun.liu}@huawei.com

private and sensitive domains, such as medicine
and business. For example, the diagnostic results
of a user’s symptoms are private and a company’s
internal description of users are confidential. Since
short of labels for CLT, even though there are ex-
cellent applications in rich-resource languages, it is
difficult to benefit the people using poor-resource
languages. Previous CLT researches have not well
studied how to leverage knowledge of rich-resource
languages without labels. To define and tackle this
problem will benefit both the community and the
industry.

In order to reduce the demand of labels, exist-
ing works mainly fall into two paradigms as fol-
lows. One paradigm focuses on learning language-
agnostic representation and model parameters.
CLT is realized by either aligning parameters of
monolingual models or sharing parameters among
different languages (Liu et al., 2019; Devlin et al.,
2019b; Conneau et al., 2020; Wang et al., 2020).
The objective is to build a unified representation,
which is used by downstream tasks, for all the lan-
guages. In this paradigm, although the demand of
labels is reduced, it still requires a certain number
of labels to adapt the model to a particular language
and task. Besides, models in this paradigm are
usually large-scale Transformers (Vaswani et al.,
2017) based on mPLMs, which limits their deploy-
ment in real-world. Another paradigm is to lever-
age machine translation (MT) systems to generate
training or testing pseudo-corpus for a specific lan-
guage (Conneau et al., 2018). For simplicity, we
take English as the rich-resource languages in this
paper. Translate—train translates annotated
training corpus from English to other languages.
Gold labels are directly applied to the translated
data. Although labels in poor-resource languages
are not required, gold labels in English are still
necessary. On the contrary, Translate-test
translates testing corpus from poor-resource lan-
guages to English. This method can directly lever-
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Figure 1: Overview of the proposed 2-step knowledge distillation (KD) framework. KD-(1) distills knowledge
from the off-the-shelf English model to the mPLM. KD-(2) distills knowledge from the mPLM to the model in the

target language. Blue modules: in the source language src,

age off-the-shelf English models, but it runs a 2-
pass inference which highly limits its efficiency.
Both the two CLT paradigms mentioned above re-
quire language-specific and task-specific labels,
except for the 2-pass Translate-test. The
demand of labels highly limits the reuse of the En-
glish knowledge in private and sensitive domains.
Then a question comes up: Is it possible to perform
CLT totally without labels?

In this paper, we define a novel problem: safe
and label-free cross-lingual transfer from off-the-
shelf models (FreeTransfer-X). The FreeTransfer-X
asks researchers to achieve CLT only with off-the-
shelf English models but any labels, as formally
defined in Section 2.1. To the best knowledge of the
authors, it’s the first time that the FreeTransfer-X
is clearly defined.

To address the FreeTransfer-X, we propose a
2-step knowledge distillation (KD, Hinton et al.,
2015) framework based on mPLM, as shown in
Figure 1. Given an off-the-shelf model 0y, in the
source language (e.g. English), first we take 0, as
the teacher and an mPLM model 67',. as the student,
then train 07} . on unlabeled corpus Ds,... Second,
we take ngt as the teacher and train a student 6,
on unlabeled corpus Dy ;. This cross-lingual trans-
fer framework is label-free and applicable for any
model architecture. Experimental results demon-
strate the effectiveness of the proposed framework
on both sentence classification and sequence tag-
ging.

In short, the major contributions of this work
include:

* A novel cross-lingual transfer problem
FreeTransfer-X is defined. The FreeTransfer-
X asks researchers to achieve CLT from off-

: in the target language tgt.

the-shelf models without using labels. It re-
duces the labeling cost and protects the labels
in private domains such as medicine and busi-
ness.

* We propose a 2-step knowledge distillation
framework based on mPLMs, e.g. XLM-
RoBERTa (Conneau et al., 2020), to address
the FreeTransfer-X. It significantly outper-
forms the NMT baselines on sentence classi-
fication and sequence tagging tasks. Besides,
it’s compatible with heterogeneous networks.

* Further analysis indicates abundant research
potentials of the proposed framework. To im-
prove the two distillation steps and the mPLM
may benefit the framework.

2 Methodology
2.1 Problem Definition

Denote the source language and the target language
as src and tgt respectively. Given an off-the-shelf
model 6. (e.g. English intent classifier), unla-
beled in-domain corpus Dg,. and unlabeled in-
domain corpus Dy, the objective is to output a
model 604 in the target language tgt. For sim-
plicity in this paper, we constrain the target model
0t4¢ to be of the same network architecture to the
off-the-shelf source model 0y,...

2.2 Basic Framework

We propose to adopt knowledge distillation (KD,
Hinton et al., 2015) to address the FreeTransfer-X,
since it can transfer knowledge from teacher mod-
els without knowing original labels. In addition,
knowledge distillation is free from network archi-
tectures and can be applied between heterogeneous
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networks, which benefits the deployment in various
environment.

2.2.1 Two-Step Knowledge Distillation

For a specific natural language processing (NLP)
task, given a model .. and the unlabeled data
Dy, in the source language src and the unlabeled
data D;4; in the target language tgt. As shown in
Figure 1, we propose to train a model 6, in the
target language tgt via 2 KD steps:

1. Leverage the NLP capability of the off-the-
shelf model g, e.g. an English sentence
classifier O, 5. We distill knowledge from
the teacher 6, to the student mPLM 67" on
data Dy,..

2. Due to the zero-shot cross-lingual transfer ca-
pability of the mPLMs, 07 implicitly achieve
the NLP capability on the target language 6y,
Then similar to the step 1, we distill knowl-
edge from the teacher 6;7, to the student 60,

in the target language tgt on data Dy ;.

The proposed framework works for arbitrary net-
work including but not limited to Transform-
ers (Vaswani et al., 2017), BILSTM (Schuster and
Paliwal, 1997) and CNN (Kim, 2014).

2.2.2 Training Objectives

The training is purely based on KD that no other
training objectives is included. We only apply KD
between the classification distribution Pr(-) and
Ps(+) of the teacher and the student respectively,
which is compatible to arbitrary model architecture.
Freezing the parameters of the teacher, we train the
student by minimizing the Kullback-Leibler Diver-
gence (Divgr, Joyce, 2011) between them. De-
note the prediction category as C = [y, ¢1, ..., Ck)»
then the Divg, can be formalized as,

Divgr(Pr(C|)||Ps(C|)

_ ST 4 (210 N €D
= 2 Prleh s (e

However, KD objectives of different NLU tasks
varies a lot. We classify NLU tasks into two
categories: 1) sentence-level tasks like sentence
classification, 2) word-level tasks like sequence
tagging. Given an input example X € D as
a sequence of words X = [x¢,z1,...,2,]. For
sentence-level tasks, X’s sentence-level category is
Cx. The teacher model and student model respec-
tively output sentence-level prediction distribution

Pr(Cx|X) and Pg(Cx|X). For word-level tasks,
X’s word-level category is Cy,, ¢ € [0, n]. Then the
KD objective can be written as,

L = Divg(Pr(ClX)||Ps(C|X))
Cx ,sentence-level (2)

where C =
Cy, ,word-level

It’s worth noting that word-level Divg, cannot
be directly applied for heterogeneous teacher and
student models since their tokenizations are differ-
ent. In order to align the predictions of teacher and
student, we only adopt the prediction on the first
sub-word of each word.

2.3 Enhanced Cross-Lingual Distillation

To explore the potentials of improving the two KD
steps, we propose to enhance them with machine
translation (MT) and paraphrase generation (PG).

2.3.1 Language Balanced Distillation

During the first KD step that training the mPLM
from an English (i.e. the source language) classi-
fier, to leverage the cross-lingual transferarability
of mPLM, the conventional method is to train the
mPLM only on the English corpus. However, in
our preliminary experiments, we notice that the
mPLM’s accuracy gap between English and the tar-
get languages are very huge. It’s over 5% between
the English target model (94.0) and the average of
all target models (88.4), as reported by 2-step KD
in Table 7, Appendix A.

7777777777 MT Model e,
! (e.g. M2M100)

I Source Model

,,,,,,,,,,,,,,,,,,,,,

Oen Pen(C1X)

Figure 2: Language balanced distillation. Leverage the
MT model to translate unlabeled English D, into tar-

get languages Dﬁg?“. Perform KD on the translated

D¢ with 6., s predicted distribution Pe,, (C|X).

Hence, we propose to translate the unlabeled
English corpus D, to target languages D}fg?”s, as
depicted by Figure 2. Since D.,, and Dg?”s are
aligned, source English model’s predicted distri-
bution P, (C|X) of Dy, can be directly applied to
Dg?”s. In this way, KD is able to be performed
on not only the source language but also the target
languages.
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As shown in the lower left of Figure 1, the trans-
lated Df}¢"* is incorporated in the training of KD
step one.

2.3.2 Language-Specific Data Augmentation

Inspired by data augmentation for KD (Jiao et al.,
2020) and multilingual paraphrase generation (Guo
et al., 2019), we augment the unlabeled target cor-
pus D4 via paraphrasing.

Unlabeled o Multilingual L Paraphrased
Degt Paraphrasing Model Df gatm

Figure 3: Language-specific data augmentation. We
paraphrase the target corpus Dyy; into Df,, " as the

augmented training data. KD is then performed on the

. para
mixture of Dyg¢ and Dy, .

3 Experiments

3.1 Datasets and Preprocessing

MultiATIS++ (Xu et al., 2020) extends the Mul-
tilingual ATIS corpus (Upadhyay et al., 2018) to
9 languages across 4 language families, including
Indo-European (English, Spanish, German, French,
Portuguese and Hindi), Sino-Tibetan (Chinese),
Japonic (Japanese) and Altaic (Turkish). It pro-
vides annotations for intent recognition (sentence
classification) and slot filling (sequence tagging)
for each languages. The utterances are profession-
ally translated from English and manually anno-
tated. MultiATIS++ includes 37,084 training ex-
amples and 7,859 testing examples.

MTOP (Li et al., 2021) is a recently released mul-
tilingual NLU dataset covering 6 languages: En-
glish, German, French, Spanish, Hindi, Thai. It’s
also manually annotated for intent recognition (sen-
tence classification) and slot filling (sequence tag-
ging). MTOP provides a larger corpus consisting
of 104,445 examples, of which 10% is validation
set and 20% is testing set.

For each language, we randomly split both Mul-
tiATIS++ and MTOP into two balanced parts: an-
notated and unannotated. The annotated parts are
used to train and simulate the off-the-shelf source
models while the unannotated parts are used for
training the baselines and the proposed 2-step dis-
tillation model. We tokenize Chinese, Japanese
and Thai utterances using Jieba?, MeCab® and

Zhttps://github.com/fxsjy/jieba
3https://github.com/polm/fugashi

pythainlp* respectively.

3.2 Baselines

Translate-Test (Conneau et al., 2018) is a machine
translation based method. It performs two-pass
inferences to tackle the FreeTransfer-X problem:
1) translate the testing utterances into English (i.e.
the source language) from the target language, 2)
predict on the translated English utterances with
the off-the-shelf English model.
Translate-Train-Pseudo is also based on ma-
chine translation. It’s a variant of the Translate-
Train (Conneau et al., 2018), which translates En-
glish training examples into target languages and
applies English annotations to the translated exam-
ples. However, annotations are not provided in the
FreeTransfer-X problem. Hence, Translate-Train-
Pseudo utilizes the prediction of the off-the-shelf
English model to pseudoly annotates the translated
examples.

Gold-Supervised is for reference since it’s trained
with annotations. It replaces the first distilla-
tion step of the proposed framework with gold-
supervised training, in other words, the mPLM is
supervised by gold annotations instead of the off-
the-shelf English model. It’s supposed to be very
strong.

3.3 Experiment Settings
3.3.1 Model Architectures

We experiment with three mainstream NLU model
architectures to verify the universality of the pro-
posed framework. They are used as the backbones
of the off-the-shelf models 0, and the output mod-
els ;4 in target language.

Transformer encoder (Vaswani et al., 2017) mod-
els input sequences fully with Attention mecha-
nism. We follow the language modeling method
of BERT (Devlin et al., 2019a). We adopt absolute
positional encoding. The contextual representa-
tion vector of the first word is used for sentence
classification. Sequence tagging is based on the
contextual representation of each word.
Bidirectional LSTM (BiLSTM) (Schuster and
Paliwal, 1997) models input sequences via lever-
aging two stacked LSTM layers respectively from
backward and forward directions. We take the rep-
resentation vector of the last word for sentence
classification. Word-level representation is used
for sequence tagging like Transformer.

*https://github.com/Py ThaiNLP/pythainlp
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Models MTOP MultiATIS++ Avg
Transformer BiLSTM CNN | Transformer BiLSTM CNN

Reference Off-the-shelf En source 88.3 86.2 90.5 94.4 90.8 92.7 | 90.5
Gold-supervised target 78.4 65.0 79.2 84.6 85.2 86.6 | 79.8

Baselines Translate-test 69.6 66.0 73.8 86.4 80.7 86.2 | 77.1
Translate-train-pseudo 64.2 57.9 67.4 84.7 81.2 83.2 | 73.1

2-step KD 75.1 72.3 75.6 87.7 83.8 85.0 | 79.9

Ours + Balanced distillation 79.3 75.9 77.8 88.9 85.2 86.2 | 82.2
+ Data augmentation 79.6 79.1 78.8 88.7 86.4 86.9 | 83.3

Table 1: Classification accuracy averaged over target languages. MTOP: de, es, fr, hi, th. MultiATIS++

. de, es, fr,

hi, ja, pt, tr, zh. For simplicity, the architecture of a target model is identical to its corresponding English source

model.

Convolutional Neural Networks (CNN) (Kim,
2014) encodes input sequences with CNN mod-
ules. We adopt three kind of 1-D kernels with
kernel size of 3, 4 and 5. Output vectors from
all kernels and channels are concatenated as the
representation for sentence classification. Dilated
CNN (Strubell et al., 2017) is adopted for sequence

tagging.

3.3.2 Training Details

English is regarded as the source language in all
the experiments. Off-the-shelf English models are
trained on the hold-out annotated English corpus
as described in Section 3.1. All the experimented
models are controlled in comparable model scale.
AdamW (Loshchilov and Hutter, 2019) is adopted
as the optimizer with e = le — 8. We train the
models for 50 epochs and take the checkpoint of
the best validation accuracy as the final model.
Table 2 reports the hyper-parameters of the model
architectures.

Model Embed size Hidden size #Layers #Params
Transformer 256 256 4 5.3M
BiLSTM 256 512 2 5.3M
CNN 256 768 2 5.0M

Table 2: Hyper-parameters of the experimented mod-
els.

Initial learning rate is decided based on
a gradient-based searching heuristics proposed
by Smith (2015), since in our preliminary exper-
iments Smith (2015) stably finds better learning
rates than manual searching. We build vocabu-
laries of 10k words for each language via Byte
Pair Encoding (BPE) Sennrich et al. (2016). Ex-
periments are implemented with PyTorch (Paszke
etal., 2019) and conducted on a single Nvidia V100
32GB GPU.
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3.3.3 Auxiliary Models

M2M-100 (Fan et al., 2021) is adopted as the MT
system in our experiments. We apply the 418M
model checkpoint from Huggingface’.
XLM-RoBERTa (Conneau et al., 2020) is adopted
as the mPLM in the proposed 2-step distillation
framework.

3.4 Results

Average accuracy across languages and models
is given in Table 1 and Table 3. Language-wise
results are provided in Appendix A.

3.4.1 Sentence Classification

As shown in Table 1, the proposed 2-step KD
framework significantly outperforms the MT base-
lines on most model architectures, except for the
CNN of Translate-test. Although Translate-test is
strong in a very few cases, it requires 2-pass infer-
ence (MT and classification) that results in a high
latency. On the contrary, the proposed framework
directly produces classification models in the target
languages, which is more efficient. In addition,
the language-balanced distillation and language-
specific data augmentation further enhance our
model to a large extent, +2.3% and +1.1% respec-
tively. Language-wise results in Table 7 demon-
strate the robustness of our method across various
languages.

To our surprise, the naive 2-step KD model even
performs on par with the Gold-supervised reference
on average. We guess it’s due to the regularization
effects of knowledge distillation that brings a good
generalizability to the proposed model. It implies
the proposed framework may be a annotation-free
alternative to current zero-shot cross-lingual trans-
fer framework.

Shttps://huggingface.co/facebook/m2m100_418M



Model MTOP MultiATIS++ A
odels Transformer BiLSTM CNN | Transformer BiLSTM CNN Ve
Off-the-shelf En source 74.8 81.1 72.1 88.4 94.0 89.1 | 83.3
Reference .
Gold-supervised target 64.6 68.6 63.3 71.5 76.5 74.1 | 69.8
Baselines  Translate-test 37.2 414 34.2 24.8 38.8 40.8 | 36.2
Translate-train-pseudo 34.4 40.4 28.6 53.9 63.1 61.8 | 47.0
Ours 2-step KD 63.7 67.6 55.7 71.7 76.9 73.5 | 68.2

Table 3: Sequence tagging F1 score averaged over target languages. MTOP: de, es, fr, hi, th. MultiATIS++: de, es,
fr, hi, ja, pt, tr, zh. For simplicity, the architecture of a target model is identical to its corresponding English source

model.
Original | Finetuned Zero-Shot Cross-Lingual Transfer

Models . .
en en de es fr hi ja pt tr zh | Avg
Gold-supervised 97.9 97.6 974 974 924 90.6 97.3 83.8 92.8|93.7
Transformer Naive KD 94.4 97.2 96.9 96.8 96.2 90.8 90.1 95.6 84.3 91.3 928
AnsIOMMer | Balanced distillation : 975 | 97.6 969 96.6 954 963 96.1 90.8 97.5 959
BiLSTM Naive KD o 90.8 93.2 93,5 935 932 904 834 935 77.2 850 | 88.7
+ Balanced distillation 924 933 937 924 91.8 919 93.1 86.6 92.8 | 92.0
CNN Naive KD 92.7 94.7 91.8 94.1 932 90.3 909 942 835 90.3|91.0
+ Balanced distillation ’ 92.8 932 929 924 91.8 91.6 932 892 929|922

Table 4: Classification accuracy of the finetuned mPLM models, i.e. XLM-RoBERTa. Evaluated on MultiATIS++.
Gold-supervised is trained with gold annotations. Bold languages is not in the Indo-European language family as

English.

However, comparing the results of the English
source model and those of the target models in
Table 7, the cross-lingual transferred models still
lag far behind the original English models. There
is a great potential of the proposed framework.

3.4.2 Sequence Tagging

On the sequence tagging task, the proposed model
beats the baselines by a wide margin. The MT-
based baselines perform very poor on this task due
to the error from word-level annotation alignment.
Also because of the alignment error, we do not
apply language balanced distillation and language-
specific data augmentation on this task.

As to the comparison with the Gold-supervised
reference, our model performs slightly worse than
it. It may due to the insufficient knowledge dis-
tillation from the teacher to the student, which
comes from the discrepancy between teacher’s and
student’s tokenizations. Although, as described
in Section 2.2.2, we perfectly align their predic-
tion at word-level, only the first subword of each
word is used for distillation. More informative
subword-level aligning and distillation methods
can be explored. We leave this problem for the
future research. Besides, similar to sentence clas-
sification, gap between the English source model
and the transferred target models is huge, as shown
in Table 3.

In sum, both experimental results on sentence

classification and sequence tagging demonstrate
that the proposed model is significantly stronger
than MT-based cross-lingual transfer methods. Fur-
thermore, the proposed model only slightly lags
behind or even performs on par with the strong
Gold-supervised reference, which is not able to
address the FreeTransfer-X problem.

4 Further Analysis

In order to explore the potential of the proposed
framework, we analyze it in more details. For sim-
plicity, experiments in this Section are conducted
only on the MultiATIS++ sentence classification
task.

4.1 Effects of the Distillation

Table 4 reports the accuracy of the XLM-RoBERTa
finetuned from gold annotations, Transformer
teacher, BiLSTM teacher and CNN teacher.

First, compare the Original with the Naive KD
Finetuned of each model respectively. It’s very
interesting that the accuracy of the student mPLM
is consistently higher than its teacher. The XLM-
RoBERTa students gain 2.8%, 2.4% and 2.0% im-
provement from the Original teachers as Trans-
former, BiLSTM and CNN respectively. The phe-
nomenon implies the general effectiveness of lan-
guage modeling of mPLMs. We conjecture the
improvement comes from two aspects: 1) mPLMs’
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Original | Finetuned Zero-Shot Cross-Lingual Transfer
Models . .

en en de es fr hi ja pt tr zh | Avg

Transformer XLM-RoBERTa 94.4 97.2 969 96.8 962 90.8 90.1 956 843 91.3 928
mBERT 96.9 88.4 924 938 81.1 857 940 737 832 |86.5

BILSTM XLM-RoBERTa 90.8 93.2 935 935 932 904 834 935 772 85.0 | 88.7
mBERT 92.3 804 875 825 792 794 823 765 750|803

CNN XLM-RoBERTa 9.7 94.7 91.8 94.1 932 90.3 909 942 835 90.3|91.0
mBERT 93.3 82.6 869 879 781 787 882 729 809 | 820

Table 5: Classification accuracy of XLM-RoBERTa and mBERT. Step-1 KD: off-the-shelf English model ->

mPLM. The mPLMs are finetuned and evaluated on MultiATIS++.

Models Original | Transferred Transferred Target Languages
en en de es fr hi ja pt tr zh | Avg A
Transformer XLM-RoBERTa 94.4 94.0 944 933 90.8 857 813 924 765 871|877 -51
mBERT 95.6 86.2 91.8 928 79.8 81.7 909 729 803|846 -19
BiLSTM XLM-RoBERTa 90.8 89.8 890.8 89.7 895 841 781 849 715 83.1]|838 -49
mBERT 89.6 809 829 81.0 785 760 837 71.7 786|792 -I.1
CNN XLM-RoBERTa 9.7 90.7 879 88.1 878 850 832 863 752 86.7|850 -6.0
mBERT 89.1 794 829 815 76.0 782 824 720 795|790 -3.0

Table 6: Classification accuracy of the target models, distilled from XLM-RoBERTa and mBERT respectively.
Step-2 KD: mPLM -> target model. A: changes w.r.t Table 5. The target models are transferred and evaluated on

MultiATIS++.

generalizability learn from the large-scale pre-
training, 2) the large model scale of mPLMs, which
enhances its NLU capability. Besides, the improve-
ment with respect to the Original varies across
model architectures. Especially when compare
Transformer (+2.8%) to CNN (+2.0%), although
the Transformer’s student XLLM-RoBERTa per-
forms much closer to the Gold-supervised, it still
improves greater than the CNN'’s student. Since
the XLM-RoBERTa is Transformer-based network,
it implies that the knowledge distillation performs
better if the architectures of the teacher and the
student are more similar.

Second, under the cross-lingual transfer condi-
tion, although the Gold-supervised outperforms the
Naive KD on most target languages, it performs
weaker on Turkish (tr). It demonstrates the better
generalizability and few-shot performance of the
Naive KD, since Turkish is a low-resource language
in MultiATIS++. The number of training exam-
ples of Turkish (578) is less than other languages
(4488).

Third, the effectiveness of the proposed lan-
guage balanced distillation is very clear. In the
comparison between the Naive KD and + Balanced
distillation, the accuracy is highly boosted almost
on all the target languages. This improvement is
particularly significant on the languages that is not
in the same family of English: Hindi (hi), Japanese
(ja), Turkish (tr) and Chinese (zh). A future re-
search topic is to improve language balanced dis-

tillation on the languages similar to the source lan-
guage, e.g. European languages to English. Data
selection algorithms may have potentials.

In sum, the proposed framework and distillation
method is effective and of strong generalizability.
Future researches on heterogeneous distillation and
data selection may benefit the proposed framework.

4.2 Effects of mPLM Models

Table 5 and Table 6 respectively reports accuracy
of the step-1 KD and step-2 KD in the proposed
framework. According to Table 6, the choice of
mPLM is critical to the target models’ perfor-
mance. Performance with XLM-RoBERTa as the
mPLM is stronger than with mBERT. However,
there are interesting observations we should notice.

First, observe the performance changes (A) of
the Step-2 KD: from the mPLM teacher to the
target model student. We notice that the perfor-
mance drop of mBERT is slighter than the XLM-
RoBERT2’s, based on the results of the average
score in Table 6 minus those in Table 5. It implies
that as the capability of mPLM increases, the KD
dissipation tends to increase as well. Similar to
the analysis in Section 4.1, the KD dissipation may
come from: 1) the pre-trained language model that
the target models lack of, 2) discrepancy between
the model size of the mPLM and the target mod-
els. Hence, performance based on XLM-RoBERTa
drops more due to its gap to the target models is
greater than mBERT’s in both the two aspects of
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discrepancy. To reduce the KD dissipation, re-
searches should focus on how to reduce the model
discrepancy between mPLM and the target model,
e.g. improve the language modeling capability of
the target model. Besides, the performance differ-
ence among model architectures is consistent, ei-
ther based on XLM-RoBERTa or mBERT. It further
evidences that the proposed framework is general
and works well for different model architectures.

4.3 Cross-Architecture Transfer

To analyze the proposed framework in a more gen-
eral setting, we free the architecture ties of the
off-the-shelf English models and the target mod-
els to be heterogeneous, that the source and target
models can be different.

o o
,“:A(\‘ﬁo ‘&-{\ﬁ" o™

74 88.0

Transformer| 87.7 85.0 86.2
86.2

BiLSTM 83.7 83.8 84.2
84.8

CNN' 86.5 85.6 85.0
83.0

Figure 4: Classification accuracy of the target models
via cross-architecture transfer, averaged over all target
languages. Transfer from rows to columns. Row: ar-
chitectures of source English models, Column: archi-
tectures of the target models. Experimented on Multi-
ATIS++.

As depicted in Figure 4, the transfer performs the
best when taking Transformer as both the source
and target models. The worst comes to the trans-
fer between BiLSTM models. On one side, the
advantage of the Transformer architecture may be
a reason. On the other side, it reconfirms the ob-
servation that the more similar teacher and student
models are, the better transfer performance comes.

Besides, taking the BiLSTM as the source or
target model consistently result in lower accuracy,
no matter what the corresponding target or source
models are. Hence, we guess the architecture simi-
larity between BiLSTM and the Transformer-based
mPLM is lower than that between CNN and the
mPLM. We leave this for future work.

In addition, we study the accuracy drop from
the source English models to the target models, as
shown in Figure 5. From the perspective of the
source model, the drop is the least when BiLSTM

-5.0

Transformer  -6.7 94 -8.2
-6.8

BILSTM| =5.1 -7.0 -6.6
-8.4

CNN| -6.2 -7.1 -7.7
-10.0

Figure 5: Accuracy drop from the source English mod-
els to the target models, averaged over all target lan-
guages. Transfer from rows to columns. Row: architec-
tures of source English models, Column: architectures
of the target models. Experimented on MultiATIS++.

is the source. From the perspective of the target
model, the drop is the least when Transformer is
the target. It reveals an asymmetry between the
two KD steps with respect to the mPLM. To re-
duce the KD dissipation to the largest extent, it
seems mPLM should be distilled from a weaker
teacher architecture (e.g. BILSTM) before teaching
a stronger student architecture (e.g. Transformer).

In brief, the proposed framework works for het-
erogeneous cross-lingual transfer. The future work
may focus on how to define the similarity between
model architectures and how to evaluate the source-
target model pairs.

5 Conclusions

In this paper, we define a novel cross-lingual
transfer (CLT) problem - FreeTransfer-X, espe-
cially for CLT in private scenarios such as medi-
cal and business. The FreeTransfer-X is defined
to transfer knowledge from off-the-shelf models
in rich-resource languages to poor-resource lan-
guages, without labeled corpora. To address the
FreeTransfer-X, we propose a 2-step knowledge
distillation (2-step KD) framework based on mul-
tilingual pre-trained language models. In addi-
tion, two data augmentation methods for cross-
lingual KD are proposed to boost the performance
of the 2-step KD framework. Experimental re-
sults clearly demonstrate the effectiveness of the
proposed framework. It’s worth noting that the pro-
posed KD framework can be applied between het-
erogeneous models, which benefits the deployment
in different environment. Further analyses point
out various research directions for future work.
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A Language-Wise Results

Here we list the detailed language-wise experimen-
tal results of Table 1 and Table 3 for reference.
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Source Targets
Models en en de es fr hi ja pt tr zh | Avg
Reference Gold-supervised - 885 89.7 89.6 919 819 795 863 734 89.1 852
Baselines Translate-test 925 90.0 881 90.6 837 86.8 881 751 887|864
Translate-train-pseudo 92.7 894 90.0 90.5 83.1 748 90.1 74.1 859 |84.7
Transformer 2-step KD 944 | 940 944 933 908 857 813 924 765 87.1 | 877
Ours + Balanced distillation 943 935 929 950 84.0 830 933 785 90.7 | 889
+ Data augmentation 947 93.6 933 947 842 837 932 776 89.7| 887
Baselines Translate-test 87.1 842 834 858 779 815 844 641 842|807
Translate-train-pseudo 87.8 850 854 869 804 735 861 720 804|812
BiLSTM 2-step KD 944 |89.8 898 89.7 895 841 781 849 715 83.1 | 838
Ours + Balanced distillation 90.7 894 887 886 825 817 861 762 88.6|852
+ Data augmentation 89.1 90.6 909 88.7 834 825 867 779 90.3 | 86.4
Baselines Translate-test 90.7 86.6 863 887 869 853 882 810 86.3 | 86.2
Translate-train-pseudo 863 844 856 865 838 798 822 775 859|832
CNN 2-step KD 944 190.7 879 881 878 850 832 863 752 86.7]|85.0
Ours + Balanced distillation 89.1 885 87.8 888 857 830 862 792 90.6 | 86.2
+ Data augmentation 89.6 89.8 892 89.0 86.0 838 87.1 794 90.9 | 86.9

Table 7: Sentence classification accuracy on MultiATIS++.
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FreeTransfer-X: Safe and Label-Free Cross-Lingual Transfer from
Off-the-Shelf Models
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Abstract

Cross-lingual transfer (CLT) is of various ap-
plications. However, labeled cross-lingual cor-
pus is expensive or even inaccessible, espe-
cially in the fields where labels are private,
such as diagnostic results of symptoms in
medicine and user profiles in business. Al-
though being lack of labels, there are off-the-
shelf models in these sensitive fields. Instead
of pursuing the original labels, a workaround
for CLT is to transfer knowledge from the
off-the-shelf models without labels. To this
end, we define a novel CLT problem named
FreeTransfer-X that aims to achieve knowl-
edge transfer from the off-the-shelf models in
rich-resource languages. To address the prob-
lem, we propose a 2-step knowledge distil-
lation (KD, Hinton et al., 2015) framework
based on multilingual pre-trained language
models (mPLM)'. The significant improve-
ment over strong neural machine translation
(NMT) baselines demonstrates the effective-
ness of the proposed method. In addition to
reducing annotation cost and protecting pri-
vate labels, the proposed method is compati-
ble with different networks and easy to be de-
ployed. Finally, a range of analyses indicate
the great potential of the proposed method.

1 Introduction

Cross-lingual transfer (CLT) is a critical topic for
natural language processing due to the data imbal-
ance between languages. While models of rich-
resource languages (e.g. English) have been ap-
plied on various real-world tasks, the progress on
poor-resource languages lags behind. CLT re-
searches enable the knowledge transfer from the
rich-resource languages to the poor-resource lan-
guages.

Although the application of CLT is valuable,
data labels are expensive or even inaccessible in

'Source code are available at https:/github.com/huawei-
noah/noah-research/tree/master/NLP/FreeTransfer-X

jiang.xin,

qun.liu}@huawei.com

private and sensitive domains, such as medicine
and business. For example, the diagnostic results
of a user’s symptoms are private and a company’s
internal description of users are confidential. Since
short of labels for CLT, even though there are ex-
cellent applications in rich-resource languages, it is
difficult to benefit the people using poor-resource
languages. Previous CLT researches have not well
studied how to leverage knowledge of rich-resource
languages without labels. To define and tackle this
problem will benefit both the community and the
industry.

In order to reduce the demand of labels, exist-
ing works mainly fall into two paradigms as fol-
lows. One paradigm focuses on learning language-
agnostic representation and model parameters.
CLT is realized by either aligning parameters of
monolingual models or sharing parameters among
different languages (Liu et al., 2019; Devlin et al.,
2019b; Conneau et al., 2020; Wang et al., 2020).
The objective is to build a unified representation,
which is used by downstream tasks, for all the lan-
guages. In this paradigm, although the demand of
labels is reduced, it still requires a certain number
of labels to adapt the model to a particular language
and task. Besides, models in this paradigm are
usually large-scale Transformers (Vaswani et al.,
2017) based on mPLMs, which limits their deploy-
ment in real-world. Another paradigm is to lever-
age machine translation (MT) systems to generate
training or testing pseudo-corpus for a specific lan-
guage (Conneau et al., 2018). For simplicity, we
take English as the rich-resource languages in this
paper. Translate—train translates annotated
training corpus from English to other languages.
Gold labels are directly applied to the translated
data. Although labels in poor-resource languages
are not required, gold labels in English are still
necessary. On the contrary, Translate-test
translates testing corpus from poor-resource lan-
guages to English. This method can directly lever-
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Figure 1: Overview of the proposed 2-step knowledge distillation (KD) framework. KD-(1) distills knowledge
from the off-the-shelf English model to the mPLM. KD-(2) distills knowledge from the mPLM to the model in the

target language. Blue modules: in the source language src,

age off-the-shelf English models, but it runs a 2-
pass inference which highly limits its efficiency.
Both the two CLT paradigms mentioned above re-
quire language-specific and task-specific labels,
except for the 2-pass Translate-test. The
demand of labels highly limits the reuse of the En-
glish knowledge in private and sensitive domains.
Then a question comes up: Is it possible to perform
CLT totally without labels?

In this paper, we define a novel problem: safe
and label-free cross-lingual transfer from off-the-
shelf models (FreeTransfer-X). The FreeTransfer-X
asks researchers to achieve CLT only with off-the-
shelf English models but any labels, as formally
defined in Section 2.1. To the best knowledge of the
authors, it’s the first time that the FreeTransfer-X
is clearly defined.

To address the FreeTransfer-X, we propose a
2-step knowledge distillation (KD, Hinton et al.,
2015) framework based on mPLM, as shown in
Figure 1. Given an off-the-shelf model 0y, in the
source language (e.g. English), first we take 0, as
the teacher and an mPLM model 67',. as the student,
then train 07} . on unlabeled corpus Ds,... Second,
we take ngt as the teacher and train a student 6,
on unlabeled corpus Dy ;. This cross-lingual trans-
fer framework is label-free and applicable for any
model architecture. Experimental results demon-
strate the effectiveness of the proposed framework
on both sentence classification and sequence tag-
ging.

In short, the major contributions of this work
include:

* A novel cross-lingual transfer problem
FreeTransfer-X is defined. The FreeTransfer-
X asks researchers to achieve CLT from off-

: in the target language tgt.

the-shelf models without using labels. It re-
duces the labeling cost and protects the labels
in private domains such as medicine and busi-
ness.

* We propose a 2-step knowledge distillation
framework based on mPLMs, e.g. XLM-
RoBERTa (Conneau et al., 2020), to address
the FreeTransfer-X. It significantly outper-
forms the NMT baselines on sentence classi-
fication and sequence tagging tasks. Besides,
it’s compatible with heterogeneous networks.

* Further analysis indicates abundant research
potentials of the proposed framework. To im-
prove the two distillation steps and the mPLM
may benefit the framework.

2 Methodology
2.1 Problem Definition

Denote the source language and the target language
as src and tgt respectively. Given an off-the-shelf
model 6. (e.g. English intent classifier), unla-
beled in-domain corpus Dg,. and unlabeled in-
domain corpus Dy, the objective is to output a
model 604 in the target language tgt. For sim-
plicity in this paper, we constrain the target model
0t4¢ to be of the same network architecture to the
off-the-shelf source model 0y,...

2.2 Basic Framework

We propose to adopt knowledge distillation (KD,
Hinton et al., 2015) to address the FreeTransfer-X,
since it can transfer knowledge from teacher mod-
els without knowing original labels. In addition,
knowledge distillation is free from network archi-
tectures and can be applied between heterogeneous
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networks, which benefits the deployment in various
environment.

2.2.1 Two-Step Knowledge Distillation

For a specific natural language processing (NLP)
task, given a model .. and the unlabeled data
Dy, in the source language src and the unlabeled
data D;4; in the target language tgt. As shown in
Figure 1, we propose to train a model 6, in the
target language tgt via 2 KD steps:

1. Leverage the NLP capability of the off-the-
shelf model g, e.g. an English sentence
classifier O, 5. We distill knowledge from
the teacher 6, to the student mPLM 67" on
data Dy,..

Due to the zero-shot cross-lingual transfer ca-
pability of the mPLMs, 07 implicitly achieve
the NLP capability on the target language 6y,
Then similar to the step 1, we distill knowl-
edge from the teacher 6;7, to the student 60,

in the target language tgt on data Dy ;.

The proposed framework works for arbitrary net-
work including but not limited to Transform-
ers (Vaswani et al., 2017), BILSTM (Schuster and
Paliwal, 1997) and CNN (Kim, 2014).

2.2.2 Training Objectives

The training is purely based on KD that no other
training objectives is included. We only apply KD
between the classification distribution Pr(-) and
Ps(+) of the teacher and the student respectively,
which is compatible to arbitrary model architecture.
Freezing the parameters of the teacher, we train the
student by minimizing the Kullback-Leibler Diver-
gence (Divgr, Joyce, 2011) between them. De-
note the prediction category as C = [y, ¢1, ..., Ck)»
then the Divg, can be formalized as,

Divgr(Pr(C|)||Ps(Cl)
= 3" Pr(ed) log (224

Ps(eil)

However, KD objectives of different NLU tasks
varies a lot. We classify NLU tasks into two
categories: 1) sentence-level tasks like sentence
classification, 2) word-level tasks like sequence
tagging. Given an input example X € D as
a sequence of words X = [x¢,z1,...,2,]. For
sentence-level tasks, X’s sentence-level category is
Cx. The teacher model and student model respec-
tively output sentence-level prediction distribution

(D

)
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Pr(Cx|X) and Pg(Cx|X). For word-level tasks,
X’s word-level category is Cy,, ¢ € [0, n]. Then the
KD objective can be written as,

L = Divk(Pr(C|X)|Ps(C|X))
Cx
C.

2

, sentence-level

, word-level

where C = {

It’s worth noting that word-level Divg, cannot
be directly applied for heterogeneous teacher and
student models since their tokenizations are differ-
ent. In order to align the predictions of teacher and
student, we only adopt the prediction on the first
sub-word of each word.

2.3 Enhanced Cross-Lingual Distillation

To explore the potentials of improving the two KD
steps, we propose to enhance them with machine
translation (MT) and paraphrase generation (PG).

2.3.1 Language Balanced Distillation

During the first KD step that training the mPLM
from an English (i.e. the source language) classi-
fier, to leverage the cross-lingual transferarability
of mPLM, the conventional method is to train the
mPLM only on the English corpus. However, in
our preliminary experiments, we notice that the
mPLM’s accuracy gap between English and the tar-
get languages are very huge. It’s over 5% between
the English target model (94.0) and the average of
all target models (88.4), as reported by 2-step KD
in Table 7, Appendix A.

MT Model
(e.g. M2M100)

e Source Model
Oen

**********

,,,,,,,,,,

Pen(C1X)

Figure 2: Language balanced distillation. Leverage the
MT model to translate unlabeled English D, into tar-

get languages Dﬁg?“. Perform KD on the translated

D¢ with 6., s predicted distribution Pe,, (C|X).

Hence, we propose to translate the unlabeled
English corpus D, to target languages D}fg?”s, as
depicted by Figure 2. Since D.,, and Dg?”s are
aligned, source English model’s predicted distri-
bution P, (C|X) of Dy, can be directly applied to
Dg?”s. In this way, KD is able to be performed
on not only the source language but also the target
languages.



As shown in the lower left of Figure 1, the trans-
lated Df}¢"* is incorporated in the training of KD
step one.

2.3.2 Language-Specific Data Augmentation

Inspired by data augmentation for KD (Jiao et al.,
2020) and multilingual paraphrase generation (Guo
et al., 2019), we augment the unlabeled target cor-
pus D4 via paraphrasing.

Unlabeled o Multilingual L Paraphrased
Degt Paraphrasing Model Df gatm

Figure 3: Language-specific data augmentation. We
paraphrase the target corpus Dyy; into Df,, " as the

augmented training data. KD is then performed on the

. para
mixture of Dyg¢ and Dy, .

3 Experiments

3.1 Datasets and Preprocessing

MultiATIS++ (Xu et al., 2020) extends the Mul-
tilingual ATIS corpus (Upadhyay et al., 2018) to
9 languages across 4 language families, including
Indo-European (English, Spanish, German, French,
Portuguese and Hindi), Sino-Tibetan (Chinese),
Japonic (Japanese) and Altaic (Turkish). It pro-
vides annotations for intent recognition (sentence
classification) and slot filling (sequence tagging)
for each languages. The utterances are profession-
ally translated from English and manually anno-
tated. MultiATIS++ includes 37,084 training ex-
amples and 7,859 testing examples.

MTOP (Li et al., 2021) is a recently released mul-
tilingual NLU dataset covering 6 languages: En-
glish, German, French, Spanish, Hindi, Thai. It’s
also manually annotated for intent recognition (sen-
tence classification) and slot filling (sequence tag-
ging). MTOP provides a larger corpus consisting
of 104,445 examples, of which 10% is validation
set and 20% is testing set.

For each language, we randomly split both Mul-
tiATIS++ and MTOP into two balanced parts: an-
notated and unannotated. The annotated parts are
used to train and simulate the off-the-shelf source
models while the unannotated parts are used for
training the baselines and the proposed 2-step dis-
tillation model. We tokenize Chinese, Japanese
and Thai utterances using Jieba?, MeCab® and

Zhttps://github.com/fxsjy/jieba
3https://github.com/polm/fugashi

pythainlp* respectively.

3.2 Baselines

Translate-Test (Conneau et al., 2018) is a machine
translation based method. It performs two-pass
inferences to tackle the FreeTransfer-X problem:
1) translate the testing utterances into English (i.e.
the source language) from the target language, 2)
predict on the translated English utterances with
the off-the-shelf English model.
Translate-Train-Pseudo is also based on ma-
chine translation. It’s a variant of the Translate-
Train (Conneau et al., 2018), which translates En-
glish training examples into target languages and
applies English annotations to the translated exam-
ples. However, annotations are not provided in the
FreeTransfer-X problem. Hence, Translate-Train-
Pseudo utilizes the prediction of the off-the-shelf
English model to pseudoly annotates the translated
examples.

Gold-Supervised is for reference since it’s trained
with annotations. It replaces the first distilla-
tion step of the proposed framework with gold-
supervised training, in other words, the mPLM is
supervised by gold annotations instead of the off-
the-shelf English model. It’s supposed to be very
strong.

3.3 Experiment Settings
3.3.1 Model Architectures

We experiment with three mainstream NLU model
architectures to verify the universality of the pro-
posed framework. They are used as the backbones
of the off-the-shelf models 0, and the output mod-
els ;4 in target language.

Transformer encoder (Vaswani et al., 2017) mod-
els input sequences fully with Attention mecha-
nism. We follow the language modeling method
of BERT (Devlin et al., 2019a). We adopt absolute
positional encoding. The contextual representa-
tion vector of the first word is used for sentence
classification. Sequence tagging is based on the
contextual representation of each word.
Bidirectional LSTM (BiLSTM) (Schuster and
Paliwal, 1997) models input sequences via lever-
aging two stacked LSTM layers respectively from
backward and forward directions. We take the rep-
resentation vector of the last word for sentence
classification. Word-level representation is used
for sequence tagging like Transformer.

*https://github.com/Py ThaiNLP/pythainlp
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Models MTOP MultiATIS++ Avg
Transformer BiLSTM CNN | Transformer BiLSTM CNN

Reference Off-the-shelf En source 88.3 86.2 90.5 94.4 90.8 92.7 | 90.5
Gold-supervised target 78.4 65.0 79.2 84.6 85.2 86.6 | 79.8

Baselines Translate-test 69.6 66.0 73.8 86.4 80.7 86.2 | 77.1
Translate-train-pseudo 64.2 57.9 67.4 84.7 81.2 83.2 | 73.1

2-step KD 75.1 72.3 75.6 87.7 83.8 85.0 | 79.9

Ours + Balanced distillation 79.3 75.9 77.8 88.9 85.2 86.2 | 82.2
+ Data augmentation 79.6 79.1 78.8 88.7 86.4 86.9 | 83.3

Table 1: Classification accuracy averaged over target languages. MTOP: de, es, fr, hi, th. MultiATIS++
hi, ja, pt, tr, zh. For simplicity, the architecture of a target model is identical to its corresponding English source

. de, es, fr,

model.

Convolutional Neural Networks (CNN) (Kim,
2014) encodes input sequences with CNN mod-
ules. We adopt three kind of 1-D kernels with
kernel size of 3, 4 and 5. Output vectors from
all kernels and channels are concatenated as the
representation for sentence classification. Dilated
CNN (Strubell et al., 2017) is adopted for sequence

tagging.

3.3.2 Training Details

English is regarded as the source language in all
the experiments. Off-the-shelf English models are
trained on the hold-out annotated English corpus
as described in Section 3.1. All the experimented
models are controlled in comparable model scale.
AdamW (Loshchilov and Hutter, 2019) is adopted
as the optimizer with e = le — 8. We train the
models for 50 epochs and take the checkpoint of
the best validation accuracy as the final model.
Table 2 reports the hyper-parameters of the model
architectures.

Model Embed size Hidden size #Layers #Params
Transformer 256 256 4 5.3M
BiLSTM 256 512 2 5.3M
CNN 256 768 2 5.0M

Table 2: Hyper-parameters of the experimented mod-
els.

Initial learning rate is decided based on
a gradient-based searching heuristics proposed
by Smith (2015), since in our preliminary exper-
iments Smith (2015) stably finds better learning
rates than manual searching. We build vocabu-
laries of 10k words for each language via Byte
Pair Encoding (BPE) Sennrich et al. (2016). Ex-
periments are implemented with PyTorch (Paszke
etal., 2019) and conducted on a single Nvidia V100
32GB GPU.

3.3.3 Auxiliary Models

M2M-100 (Fan et al., 2021) is adopted as the MT
system in our experiments. We apply the 418M
model checkpoint from Huggingface’.
XLM-RoBERTa (Conneau et al., 2020) is adopted
as the mPLM in the proposed 2-step distillation
framework.

3.4 Results

Average accuracy across languages and models
is given in Table 1 and Table 3. Language-wise
results are provided in Appendix A.

3.4.1 Sentence Classification

As shown in Table 1, the proposed 2-step KD
framework significantly outperforms the MT base-
lines on most model architectures, except for the
CNN of Translate-test. Although Translate-test is
strong in a very few cases, it requires 2-pass infer-
ence (MT and classification) that results in a high
latency. On the contrary, the proposed framework
directly produces classification models in the target
languages, which is more efficient. In addition,
the language-balanced distillation and language-
specific data augmentation further enhance our
model to a large extent, +2.3% and +1.1% respec-
tively. Language-wise results in Table 7 demon-
strate the robustness of our method across various
languages.

To our surprise, the naive 2-step KD model even
performs on par with the Gold-supervised reference
on average. We guess it’s due to the regularization
effects of knowledge distillation that brings a good
generalizability to the proposed model. It implies
the proposed framework may be a annotation-free
alternative to current zero-shot cross-lingual trans-
fer framework.

Shttps://huggingface.co/facebook/m2m100_418M
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Model MTOP MultiATIS++ A
odels Transformer BiLSTM CNN | Transformer BiLSTM CNN Ve
Off-the-shelf En source 74.8 81.1 72.1 88.4 94.0 89.1 | 83.3
Reference .
Gold-supervised target 64.6 68.6 63.3 71.5 76.5 74.1 | 69.8
Baselines  Translate-test 37.2 414 34.2 24.8 38.8 40.8 | 36.2
Translate-train-pseudo 34.4 40.4 28.6 53.9 63.1 61.8 | 47.0
Ours 2-step KD 63.7 67.6 55.7 71.7 76.9 73.5 | 68.2

Table 3: Sequence tagging F1 score averaged over target languages. MTOP: de, es, fr, hi, th. MultiATIS++: de, es,
fr, hi, ja, pt, tr, zh. For simplicity, the architecture of a target model is identical to its corresponding English source

model.
Original | Finetuned Zero-Shot Cross-Lingual Transfer

Models . .
en en de es fr hi ja pt tr zh | Avg
Gold-supervised 97.9 97.6 974 974 924 90.6 97.3 83.8 92.8|93.7
Transformer Naive KD 94.4 97.2 96.9 96.8 96.2 90.8 90.1 95.6 84.3 91.3 928
AnsIOMMer | Balanced distillation : 975 | 97.6 969 96.6 954 963 96.1 90.8 97.5 959
BiLSTM Naive KD o 90.8 93.2 93,5 935 932 904 834 935 77.2 850 | 88.7
+ Balanced distillation 924 933 937 924 91.8 919 93.1 86.6 92.8 | 92.0
CNN Naive KD 92.7 94.7 91.8 94.1 932 90.3 909 942 835 90.3|91.0
+ Balanced distillation ’ 92.8 932 929 924 91.8 91.6 932 892 929|922

Table 4: Classification accuracy of the finetuned mPLM models, i.e. XLM-RoBERTa. Evaluated on MultiATIS++.
Gold-supervised is trained with gold annotations. Bold languages is not in the Indo-European language family as

English.

However, comparing the results of the English
source model and those of the target models in
Table 7, the cross-lingual transferred models still
lag far behind the original English models. There
is a great potential of the proposed framework.

3.4.2 Sequence Tagging

On the sequence tagging task, the proposed model
beats the baselines by a wide margin. The MT-
based baselines perform very poor on this task due
to the error from word-level annotation alignment.
Also because of the alignment error, we do not
apply language balanced distillation and language-
specific data augmentation on this task.

As to the comparison with the Gold-supervised
reference, our model performs slightly worse than
it. It may due to the insufficient knowledge dis-
tillation from the teacher to the student, which
comes from the discrepancy between teacher’s and
student’s tokenizations. Although, as described
in Section 2.2.2, we perfectly align their predic-
tion at word-level, only the first subword of each
word is used for distillation. More informative
subword-level aligning and distillation methods
can be explored. We leave this problem for the
future research. Besides, similar to sentence clas-
sification, gap between the English source model
and the transferred target models is huge, as shown
in Table 3.

In sum, both experimental results on sentence

classification and sequence tagging demonstrate
that the proposed model is significantly stronger
than MT-based cross-lingual transfer methods. Fur-
thermore, the proposed model only slightly lags
behind or even performs on par with the strong
Gold-supervised reference, which is not able to
address the FreeTransfer-X problem.

4 Further Analysis

In order to explore the potential of the proposed
framework, we analyze it in more details. For sim-
plicity, experiments in this Section are conducted
only on the MultiATIS++ sentence classification
task.

4.1 Effects of the Distillation

Table 4 reports the accuracy of the XLM-RoBERTa
finetuned from gold annotations, Transformer
teacher, BiLSTM teacher and CNN teacher.

First, compare the Original with the Naive KD
Finetuned of each model respectively. It’s very
interesting that the accuracy of the student mPLM
is consistently higher than its teacher. The XLM-
RoBERTa students gain 2.8%, 2.4% and 2.0% im-
provement from the Original teachers as Trans-
former, BiLSTM and CNN respectively. The phe-
nomenon implies the general effectiveness of lan-
guage modeling of mPLMs. We conjecture the
improvement comes from two aspects: 1) mPLMs’
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Original | Finetuned Zero-Shot Cross-Lingual Transfer
Models . .

en en de es fr hi ja pt tr zh | Avg

Transformer XLM-RoBERTa 94.4 97.2 969 96.8 962 90.8 90.1 956 843 91.3 928
mBERT 96.9 88.4 924 938 81.1 857 940 737 832 |86.5

BILSTM XLM-RoBERTa 90.8 93.2 935 935 932 904 834 935 772 85.0 | 88.7
mBERT 92.3 804 875 825 792 794 823 765 750|803

CNN XLM-RoBERTa 9.7 94.7 91.8 94.1 932 90.3 909 942 835 90.3|91.0
mBERT 93.3 82.6 869 879 781 787 882 729 809 | 820

Table 5: Classification accuracy of XLM-RoBERTa and mBERT. Step-1 KD: off-the-shelf English model ->

mPLM. The mPLMs are finetuned and evaluated on MultiATIS++.

Models Original | Transferred Transferred Target Languages
en en de es fr hi ja pt tr zh | Avg A
Transformer XLM-RoBERTa 94.4 94.0 944 933 90.8 857 813 924 765 871|877 -51
mBERT 95.6 86.2 91.8 928 79.8 81.7 909 729 803|846 -19
BiLSTM XLM-RoBERTa 90.8 89.8 890.8 89.7 895 841 781 849 715 83.1]|838 -49
mBERT 89.6 809 829 81.0 785 760 837 71.7 786|792 -I.1
CNN XLM-RoBERTa 9.7 90.7 879 88.1 878 850 832 863 752 86.7|850 -6.0
mBERT 89.1 794 829 815 76.0 782 824 720 795|790 -3.0

Table 6: Classification accuracy of the target models, distilled from XLM-RoBERTa and mBERT respectively.
Step-2 KD: mPLM -> target model. A: changes w.r.t Table 5. The target models are transferred and evaluated on

MultiATIS++.

generalizability learn from the large-scale pre-
training, 2) the large model scale of mPLMs, which
enhances its NLU capability. Besides, the improve-
ment with respect to the Original varies across
model architectures. Especially when compare
Transformer (+2.8%) to CNN (+2.0%), although
the Transformer’s student XLLM-RoBERTa per-
forms much closer to the Gold-supervised, it still
improves greater than the CNN'’s student. Since
the XLM-RoBERTa is Transformer-based network,
it implies that the knowledge distillation performs
better if the architectures of the teacher and the
student are more similar.

Second, under the cross-lingual transfer condi-
tion, although the Gold-supervised outperforms the
Naive KD on most target languages, it performs
weaker on Turkish (tr). It demonstrates the better
generalizability and few-shot performance of the
Naive KD, since Turkish is a low-resource language
in MultiATIS++. The number of training exam-
ples of Turkish (578) is less than other languages
(4488).

Third, the effectiveness of the proposed lan-
guage balanced distillation is very clear. In the
comparison between the Naive KD and + Balanced
distillation, the accuracy is highly boosted almost
on all the target languages. This improvement is
particularly significant on the languages that is not
in the same family of English: Hindi (hi), Japanese
(ja), Turkish (tr) and Chinese (zh). A future re-
search topic is to improve language balanced dis-

tillation on the languages similar to the source lan-
guage, e.g. European languages to English. Data
selection algorithms may have potentials.

In sum, the proposed framework and distillation
method is effective and of strong generalizability.
Future researches on heterogeneous distillation and
data selection may benefit the proposed framework.

4.2 Effects of mPLM Models

Table 5 and Table 6 respectively reports accuracy
of the step-1 KD and step-2 KD in the proposed
framework. According to Table 6, the choice of
mPLM is critical to the target models’ perfor-
mance. Performance with XLM-RoBERTa as the
mPLM is stronger than with mBERT. However,
there are interesting observations we should notice.

First, observe the performance changes (A) of
the Step-2 KD: from the mPLM teacher to the
target model student. We notice that the perfor-
mance drop of mBERT is slighter than the XLM-
RoBERT2’s, based on the results of the average
score in Table 6 minus those in Table 5. It implies
that as the capability of mPLM increases, the KD
dissipation tends to increase as well. Similar to
the analysis in Section 4.1, the KD dissipation may
come from: 1) the pre-trained language model that
the target models lack of, 2) discrepancy between
the model size of the mPLM and the target mod-
els. Hence, performance based on XLM-RoBERTa
drops more due to its gap to the target models is
greater than mBERT’s in both the two aspects of
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discrepancy. To reduce the KD dissipation, re-
searches should focus on how to reduce the model
discrepancy between mPLM and the target model,
e.g. improve the language modeling capability of
the target model. Besides, the performance differ-
ence among model architectures is consistent, ei-
ther based on XLM-RoBERTa or mBERT. It further
evidences that the proposed framework is general
and works well for different model architectures.

4.3 Cross-Architecture Transfer

To analyze the proposed framework in a more gen-
eral setting, we free the architecture ties of the
off-the-shelf English models and the target mod-
els to be heterogeneous, that the source and target
models can be different.

o o
,“:A(\‘ﬁo ‘&-{\ﬁ" o™

74 88.0

Transformer| 87.7 85.0 86.2
86.2

BiLSTM 83.7 83.8 84.2
84.8

CNN' 86.5 85.6 85.0
83.0

Figure 4: Classification accuracy of the target models
via cross-architecture transfer, averaged over all target
languages. Transfer from rows to columns. Row: ar-
chitectures of source English models, Column: archi-
tectures of the target models. Experimented on Multi-
ATIS++.

As depicted in Figure 4, the transfer performs the
best when taking Transformer as both the source
and target models. The worst comes to the trans-
fer between BiLSTM models. On one side, the
advantage of the Transformer architecture may be
a reason. On the other side, it reconfirms the ob-
servation that the more similar teacher and student
models are, the better transfer performance comes.

Besides, taking the BiLSTM as the source or
target model consistently result in lower accuracy,
no matter what the corresponding target or source
models are. Hence, we guess the architecture simi-
larity between BiLSTM and the Transformer-based
mPLM is lower than that between CNN and the
mPLM. We leave this for future work.

In addition, we study the accuracy drop from
the source English models to the target models, as
shown in Figure 5. From the perspective of the
source model, the drop is the least when BiLSTM

-5.0

Transformer  -6.7 94 -8.2
-6.8

BILSTM| =5.1 -7.0 -6.6
-8.4

CNN| -6.2 -7.1 -7.7
-10.0

Figure 5: Accuracy drop from the source English mod-
els to the target models, averaged over all target lan-
guages. Transfer from rows to columns. Row: architec-
tures of source English models, Column: architectures
of the target models. Experimented on MultiATIS++.

is the source. From the perspective of the target
model, the drop is the least when Transformer is
the target. It reveals an asymmetry between the
two KD steps with respect to the mPLM. To re-
duce the KD dissipation to the largest extent, it
seems mPLM should be distilled from a weaker
teacher architecture (e.g. BILSTM) before teaching
a stronger student architecture (e.g. Transformer).

In brief, the proposed framework works for het-
erogeneous cross-lingual transfer. The future work
may focus on how to define the similarity between
model architectures and how to evaluate the source-
target model pairs.

5 Conclusions

In this paper, we define a novel cross-lingual
transfer (CLT) problem - FreeTransfer-X, espe-
cially for CLT in private scenarios such as medi-
cal and business. The FreeTransfer-X is defined
to transfer knowledge from off-the-shelf models
in rich-resource languages to poor-resource lan-
guages, without labeled corpora. To address the
FreeTransfer-X, we propose a 2-step knowledge
distillation (2-step KD) framework based on mul-
tilingual pre-trained language models. In addi-
tion, two data augmentation methods for cross-
lingual KD are proposed to boost the performance
of the 2-step KD framework. Experimental re-
sults clearly demonstrate the effectiveness of the
proposed framework. It’s worth noting that the pro-
posed KD framework can be applied between het-
erogeneous models, which benefits the deployment
in different environment. Further analyses point
out various research directions for future work.
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A Language-Wise Results

Here we list the detailed language-wise experimen-
tal results of Table 1 and Table 3 for reference.
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Source Targets
Models en en de es fr hi ja pt tr zh | Avg
Reference Gold-supervised - 885 89.7 89.6 919 819 795 863 734 89.1 852
Baselines Translate-test 925 90.0 881 90.6 837 86.8 881 751 887|864
Translate-train-pseudo 92.7 894 90.0 90.5 83.1 748 90.1 74.1 859 |84.7
Transformer 2-step KD 944 | 940 944 933 908 857 813 924 765 87.1 | 877
Ours + Balanced distillation 943 935 929 950 84.0 830 933 785 90.7 | 889
+ Data augmentation 947 93.6 933 947 842 837 932 776 89.7| 887
Baselines Translate-test 87.1 842 834 858 779 815 844 641 842|807
Translate-train-pseudo 87.8 850 854 869 804 735 861 720 804|812
BiLSTM 2-step KD 944 |89.8 898 89.7 895 841 781 849 715 83.1 | 838
Ours + Balanced distillation 90.7 894 887 886 825 817 861 762 88.6|852
+ Data augmentation 89.1 90.6 909 88.7 834 825 867 779 90.3 | 86.4
Baselines Translate-test 90.7 86.6 863 887 869 853 882 810 86.3 | 86.2
Translate-train-pseudo 863 844 856 865 838 798 822 775 859|832
CNN 2-step KD 944 190.7 879 881 878 850 832 863 752 86.7]|85.0
Ours + Balanced distillation 89.1 885 87.8 888 857 830 862 792 90.6 | 86.2
+ Data augmentation 89.6 89.8 892 89.0 86.0 838 87.1 794 90.9 | 86.9

Table 7: Sentence classification accuracy on MultiATIS++.
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Abstract

Back translation (BT) is one of the most sig-
nificant technologies in NMT research fields.
Existing attempts on BT share a common char-
acteristic: they employ either beam search or
random sampling to generate synthetic data
with a backward model but seldom work stud-
ies the role of synthetic data in the performance
of BT. This motivates us to ask a fundamen-
tal question: what kind of synthetic data con-
tributes to BT performance? Through both the-
oretical and empirical studies, we identify two
key factors on synthetic data controlling the
back-translation NMT performance, which are
quality and importance. Furthermore, based
on our findings, we propose a simple yet ef-
fective method to generate synthetic data to
better trade off both factors so as to yield a
better performance for BT. We run extensive
experiments on WMT14 DE-EN, EN-DE, and
RU-EN benchmark tasks. By employing our
proposed method to generate synthetic data, our
BT model significantly outperforms the stan-
dard BT baselines (i.e., beam and sampling
based methods for data generation), which
proves the effectiveness of our proposed meth-
ods.

1 Introduction

Since the birth of neural machine translation
(NMT) (Bahdanau et al., 2014; Sutskever et al.,
2014) back translation (BT) (Sennrich et al., 2016a)
has quickly become one of the most signifi-
cant technologies in natural language processing
(NLP) research field. This is because 1) it pro-
vides a simple yet effective approach to advance
the supervised NMT by leveraging monolingual
data (Edunov et al., 2018) and it also serves as a key
learning objective in unsupervised NMT (Artetxe
et al., 2018; Lample et al., 2018); 2) back transla-
tion even plays a significant role in other NLP re-

*This work was done during the internship of the first

author at Tencent Al Lab. The code is available at https:
//github.com/Jiahao004/Data-for-BT

search fields beyond translation such as paraphras-
ing (Mallinson et al., 2017) and style transfer (Prab-
humoye et al., 2018; Zhang et al., 2018).

Back translation consists of two steps, namely
synthetic corpus generation with a backward model
and parameter optimization for the forward model.
Various contributions have been made on im-
proving back translation, for instance, iterative
back translation (Hoang et al., 2018), tagged
back translation (Caswell et al., 2019), confidence
weighting (Wang et al., 2019), data diversifica-
tion (Nguyen et al., 2020). Although these efforts
differ in some aspects, all of them share a common
characteristic: they employ a default way to gen-
erate synthetic data in the first step of BT which
is either beam search or random sampling with a
backward model. Seldom work studies the conse-
quences of synthetic corpus to back translation and
hence it is unclear how synthetic data influences
the final performance of BT.

The early study empirically suggests the qual-
ity of the synthetic corpus is vital for BT perfor-
mance (Sennrich et al., 2016a). However, recent
studies illustrate better test performance can be
achieved by low quality synthetic corpus (Edunov
et al., 2018). This contradictory observation indi-
cates the quality of synthetic data is not the only
element that affects the BT performance. Hence,
this fact naturally raises a fundamental question:
what kind of synthetic data contributes to back
translation performance?

In this paper, we attempt to take a step for-
ward toward the above fundamental question. To
this end, we start from a critical objective in
semi-supervised learning, which is defined by the
marginal distribution of a target language. Then we
derive an approximate lower bound of the objective
function, which is closely related to the objective
of back translation. Corresponding to this lower
bound, we theoretically find two related elements
for maximizing such a lower bound: quality of syn-
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thetic bilingual data and importance weight of its
source. Since both elements are mutually exclusive
to some extent, it may induce contradictory obser-
vation if one judges the BT performance according
to a single element. In addition, such a theoretical
explanation is supported by our empirical exper-
iments. Furthermore, based on our findings, we
propose a new heuristic approach to generate syn-
thetic data whose both elements are better balanced
o as to yield improvements over both sampling
and beam search based methods. Extensive ex-
periments on three WMT14 tasks show that our
BT consistently outperforms the standard sampling
and beam search based baselines by a significant
margin.
Our contributions are three folds:

1. We point out that importance weight and qual-
ity of synthetic candidates are two key factors
that affect the NMT performance.

2. We propose a simple yet effective method for
synthetic corpus generation, which could bet-
ter balance the quality and importance of syn-
thetic data.

3. Our experiments prove the effectiveness of
the aforementioned strategy, it outperforms
beam or sampling decoding methods on three
benchmark tasks.

2 Revisiting Back Translation

NMT builds a probabilistic model p(y|z; #) with
neural networks parameterized by 6, which is used
to translate a sentence x in source language &’ to
a sentence y in target language ). The standard
wisdom to train the model is to minimize the fol-
lowing objective function over a given bilingual

corpus B = {(;, i) }:

(B;0) = > logp(yilzi;0) (1)

(wi,y:)EB

Recently Sennrich et al. (2016a) propose a re-
markable method called Back Translation (BT) to
improve NMT by using a monolingual corpus M
in target language ) besides B3 and back transla-
tion becomes one of the most successful techniques
in NMT (Fadaee and Monz, 2018; Edunov et al.,
2018). At a high level, back translation can be
considered as a semi-supervised method because
it leverages both labeled and unlabeled data. Sup-
pose p(z|y; ) is the backward translation model

whose parameter 7 is optimized over B, the key
idea of back translation can be summarized as the
following two steps:

* Synthetic Corpus Generation: It firstly
back-translates each target sentence y € M to
Z obtain a synthetic bilingual corpus {(z,y) |

y € M} by p(z|y; 7).

* Parameter Optimization: It combines both
authentic corpus 5 and the synthetic corpus
and then optimizes the parameter 6 by mini-
mizing the loss

((B;6) + ) logp(yl;0) (2
yeM

To make BT more efficient, the standard configura-
tion is widely adopted: each sentence y is required
to generate a single source £ and both two steps
are performed for a single pass. We follow this
standard in this paper for generality but our idea
in this paper is straightforward to apply to other
configurations such as (Graga et al., 2019; Hoang
et al., 2018; Nguyen et al., 2020).

In the first step, there are two main strategies to
generate the synthetic corpus, i.e., deterministically
decoding and randomly sampling with p(x|y; 7).
The first strategy aims to search the best candidate
as follows,

" = arg max p(&[y; ) 3)
The above optimization is achieved by the beam
search decoding, which can be regarded as a de-
generated shortest path problem with respect to the
log p(&|y; ) with limited routing attempts. The al-
ternative strategy is random sampling: it randomly
samples a token with respect to the distribution
estimated by a back-translation model at each de-
coding step. Such a process can be modelled by,

#* = rand{p(ly; ™)} )

Research Question Prior work points out (Sen-
nrich et al., 2016a) that the synthetic corpus with
high quality is beneficial to the final performance
of back translation. However, the recent studies
(Edunov et al., 2018) find that NMT models with
unsatisfactory BLEU score corpus, for instance, the
corpus generated by sampling based strategy, also
establish the state-of-the-art (SOTA) achievement
among back-translation NMT models.
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This contradictory fact indicates that the quality
of synthetic corpus is not the sole element for back
translation. This motivates us to study a funda-
mental question for back translation: what kind of
synthetic corpus is beneficial to back translation?

3 Understanding Synthetic Data by Two
Factors

To answer the fundamental question presented
in the previous section, we first start from the
marginal likelihood objective defined on the target
language ), and then we theoretically explain two
factors (i.e., quality and importance) that are highly
related to the training objective of back transla-
tion. Finally, we empirically explain why synthetic
corpus with low quality may lead to better perfor-
mance than synthetic corpus with high quality by
measuring both factors.

3.1 Theoretical Explanation

Maximizing marginal likelihood is an important
principle to leverage unlabeled data. Therefore, we
rethink back translation from this principle because
it makes use of target monolingual corpus M. For
each y € M, the marginal likelihood objective can
be derived by the Bayesian Equation (5), Jansen
Inequality (6), and importance sampling (7) as fol-
lows:

log p(y; 0 p(yl|z;0) 5)

logZp
>Zp

) log p(y|z; 0) (6)

Exwp(|y){p(i_‘y) logp(y"@v 9)}
o P8 ()i 6) (7)

where p(x) is a language model on source language
X, p(zly) is a backward translation model from
Y to X which serves as the proposal distribution
for importance sampling, and % is sampled from
p(zly). If p(x|y) is set as the backward model
p(z|y; 7) optimized on B, the last term in Equation
7 is the same as the second term in BT loss (i.e.,
log p(y|Z) in Eq. 2), and the unique difference is
the multiplicative term called importance weight:

Imp(2;y) = (®)

The denominator is the candidate conditional prob-
ability to target, and the numerator is the candidate
distribution on source language distribution. Since
Imp(&; y) is constant with respect to the parameter
0, maximizing log p(y|Z; @) in BT loss implicitly
maximizes Imp(Z; y) log p(y|Z), which indicates
that back translation aims to implicitly maximize
the marginal likelihood objective. More impor-
tantly, according to Equation 7 we can find that the
following two factors are critical to influence the
marginal likelihood log p(y; 0):

* Factor 1: The quality of = as a translation of
y corresponding to the log p(y|Z; 6) in Eq. 7.

* Factor 2: The importance of % as a translation
of y corresponding to Imp(&; y) in Eq. 7.

Theoretically, if & is of higher quality and con-
tains more semantic information in y, p(y|%;0)
would be higher and thus it would lead to a higher
log p(y; 6), which is well acknowledged by prior
work (Sennrich et al., 2016a; Wang et al., 2019).
In particular, if  is with higher importance weight,
maximizing log p(y|Z; €) is more helpful to maxi-
mize log p(y; #). On the contrary, if Imp(z;y) is
very small, it needs to avoid such a sample z from
p(z|y), which is essentially the rejection control
strategy in importance sampling theory (Liu et al.,
1998; Liu and Liu, 2001).

Unfortunately, in practice, both factors are mu-
tually exclusive to some extent: if £ is with high
quality, p(&|y; #) would be higher as well leading
to lower importance weight. This fact can explain
the contradictory observation in Sec 2 that BT with
high-quality synthetic data sometimes leads to bet-
ter testing performance, while it may deliver worse
performance at other times, which will be later
justified in Sec 3.2.

Estimating Two Factors To measure the quality
of # for each y, it is natural to use the evaluation
metric such as BLEU if the reference translation
x of y is available. Otherwise, as a surrogate, we
use the log likelihood log p(Z|y; ) of the back-
ward translation model 7 which is trained on the
authentic data B. Similarly, in order to estimate the
importance of &, we train an additional language
model p(z;w) with GPT (Radford et al., 2018) on
a large monolingual corpus for &X'. In this way, the
importance weight is estimated by

p(#;w)

tmp(2) ~ Gy
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Systems BLEU(%) logp(zZly,7) Imp. Test BLEU
beam 27.20 -15.65 -95.13 32.7
sampling 7.70 -157.62 -41.86 34.1
beam* 18.50 -26.66 -95.07 31.6

* The checkpoint of the backward model for generating
synthetic corpus are only trained for 1 epoch. However,
its log p(&|y, ) is still measured by a standard backward
model 7.

Table 1: Testing BLEU (on test set), quality (measured
by both BLEU and log p(&|y; 7)) and importance (Imp.)
estimation of synthetic data (on dev set) with beam
search or random sampling on WMT14 DE-EN task.

Systems BLEU(Z) logp(zly,7) Imp. Test BLEU
en-de(en)_beam 31.90 -15.29 -91.07 29.7
en-de(en)_sampling 10.90 -139.71 -46.88 30.0
ru-en(ru)_beam 33.10 -15.49 -89.71 359
ru-en(ru)_sampling 9.50 -155.82 -47.47 35.6

Table 2: Testing BLEU (on test set), quality (measured
by both BLEU and log p(&|y; 7)) and importance (Imp.)
estimation of synthetic data (on development set) with
beam search or random sampling on WMT14 EN-DE
and RU-EN tasks.

3.2 Empirical Justification

In this subsection, we aim to justify the following
statements: 1) encouraging the quality of synthetic
corpus may to some extent hurt the performance of
BT due to the decrease of importance; 2) judging
the testing performance in terms of quality only
may be dangerous while it would be meaningful
to judge the testing performance by taking into ac-
count both factors rather than either factor. To this
end, we run some quick experiments on WMT14
datasets whose settings will be shown in Sec 5 later.

We set up two back translation systems with
two different options (i.e., beam search and sam-
pling) to generate synthetic corpus by using the
best checkpoint of p(Z|y; ) tuned on the develop-
ment set. Both beam search and sampling based
BT systems are denoted by beam and sampling. In
addition, we pick another checkpoint of p(i|y; )
which is trained for only 1 epoch, and we use this
weak checkpoint to set up another beam search
based BT system, which is denoted as beam*. Ta-
ble 1 shows BLEU on test dataset, the quality and
importance on the development set according to
three systems on WMT14 DE-EN task.

In Table 1, beam is better than sampling in the
quality of synthetic corpus but its testing perfor-
mance is worse. This is meaningful because the
former relies on the synthetic corpus with lower
importance weight according to our theoretical ex-

planation. In addition, when comparing beam with
beam*, we can find that beam delivers better test-
ing performance because its quality is better mean-
while its importance weight is almost similar to that
of beam*. Table 2 consistently demonstrates that
it is meaningless to take into account quality only
when evaluating BT. These facts justify our state-
ments and provide an answer to the fundamental
question in section 2.

4 Improving Synthetic Data for BT

As shown in the previous section, both importance
and quality of synthetic corpus are beneficial to
the overall testing performance of back translation.
It is a natural idea to promote both factors when
generating synthetic corpus such that running BT
on such corpus leads to better testing performance.
Howeyver, this is difficult because both factors are
mutually exclusive as discussed in Section 3. In this
section, we instead propose two methods (namely
data manipulation and gamma score) to trade off
both factors in the hope to yield better BT perfor-
mance.

4.1 Data Manipulation

Since the synthetic data in sampling based BT
is of high importance yet low quality whereas
the case for the synthetic data in beam search
based BT is opposite, we propose a data manip-
ulation method to trade off importance and quality
by combining both synthetic datasets. Through
balancing the ratio between beam and sampling
based synthetic corpora, we expect to find an op-
timized beam/sampling ratio to further improve
NMT model performance.

Specifically, we randomly shuffle M and divide
it into two parts with the first part accounting for ~y
(0 < v < 1); then we generate translations for the
first part with beam search while generating trans-
lations for the second part with sampling. Formally,
we use the following corpus M€ as the synthetic
corpus for BT:

ME = {(@%, y) o} U {(5, )]
k=[M]]

Where #° denotes a translation of y generated by
p(z|y; m) with beam search and Z* is a translation
with sampling, | - | means the size of the corpus,
and +y is the combination ratio for beam and sam-
pling synthetic corpora. By tuning + here, one can
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modify the weightage for the number of beam and
sampling sentences, to improve back-translation
performance by training models on a combined
synthetic corpus.

Although this method is easy to implement, its
limitation is obvious. Since each £ is either from
beam search or from sampling, the quality of M¢
is generally worse than that of beam search and its
importance weight is generally worse than that of
sampling. Consequently, we propose an alternative
method in the next part of this section.

4.2 Gamma Score

The key idea to the alternative method is that it
employs a score that balances both quality and
importance to generate a translation Z for each
y € M. A natural choice of such a score is defined
by the interpolation score as follows:

vlog Imp(#;w, m) + (1 — ) log p(Z[y; )

where -y is used to trade off both factors as in corpus
manipulation. With the help of this score, one may
optimize the & by beam search whose interpolation
score is the best among all possible translations of
y € M. Unfortunately, such an implementation
leads to limited performance in our preliminary
experiments, due to two major challenges.

On one hand, the estimations of quality and im-
portance weight of & are not well calibrated, and
in particular, quality and importance are mutually
exclusive as mentioned before. As a result, beam
search with the interpolation score over the expo-
nential space can not guarantee a desirable transla-
tion & for each y. On the other hand, quality and
importance weight of  are not at the same scale
for different y, it is difficult to balance both factors
with a fixed -y in the interpolation score for different
Y.

To alleviate these issues, we propose a simple
method as follows. Specifically, firstly, instead
of beam search with the interpolation score, we
simply utilize the backward translation p(z|y; 7)
to randomly sample a set of candidate translations
which is denoted by A(y) = {2;}Y (N = 50 in
this paper as it works well). ! Then we pick a
z; among A(y) according to the balancing score.
Secondly, for each &, we normalize the log values
of importance and quality of each candidate by its

' N-best decoding strategy with p(z|y; 7) to generate N
candidates may be another solution which remains as future
work.

sequence length, then normalize these values with
respect to all N candidates as follows:

Flag) = log (F(a&i)){jlfen(ii) — 1F

€))

where F is either importance weight or quality es-
timations, and pr = + >, log F(&;) and o =

A\ 2
2.i(log ﬁ(ﬁ) HF) are mean and variance of N sam-
pled candidates with length normalized. Finally,
the Gamma score is defined on the normalized val-

ues of importance and quality as follows:

DN(Zw,m) =
exp (YImp(&s; w, ™) + (1 — 9)p(d:ly, 7))

> exp (Ylmp(ig;w, m) + (1= 7)p(E;ly, 7))
(10)

where Imp and p are the normalized log value of
importance weight and backward translation model
p(z|y, ) as defined in Equation 9.

Once the gamma score in Equation 10 is com-
puted, there are two methods to select & from A(y),
which are deterministic and stochastic methods.
For deterministic selection, we simply select the
candidates with maximum gamma score among
N translation candidates; and for sampling, we
sample a candidate according to its gamma score
distribution. These two methods are called gamma
selection and gamma sampling in our experiments.

S Experiments

5.1 Settings

We run all the experiments by using fairseq (Ott
et al., 2019) framework. For dataset settings, since
datasets WMT14 EN-DE and DE-EN are widely
used (Li et al., 2019b; Zhu et al., 2020; Li et al.,
2020; Fan et al., 2021; Le et al., 2021), we fol-
low both standard benchmarks and additionally we
employ WMT14 RU-EN as the third dataset to val-
idate the effectiveness of the proposed methods.
For back translation experiment, we use an equal
scale monolingual corpus randomly sampled from
Newscrawl 2020 (Barrault et al., 2019) compris-
ing 4.5 million monolingual sentences for DE-EN
language pair and 2.5 million for RU-EN direction,
thus total 9 million sentences for DE-EN pair and 5
million for RU-EN direction are used. We tokenize
the parallel corpus using Mose tokenizer (Koehn
et al., 2007), and learn a source and target shared
Byte-Pair-Encoding (BPE) (Sennrich et al., 2016b)
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DE-EN

Systems
w/o bitext w bitext
Transformer - 32.1
Beam BT 27.6 32.7
Sampling BT 29.2 34.1
DM 313 34.2

DM means the data manipulation method.

Table 3: Data manipulation achieves the almost the
same BLEU score as sampling BT.

with 32K types. We develop on newstest2013 and
report the results on newstest2014.

As for model architecture, we employ
all the translation models using architecture
transformer_wmt_en_de_big, which is a
Big Transformer architecture with 6 blocks in the
encoder and decoder, and is widely used as a stan-
dard backbone on various NMT research studies.
We use the same hyperparameter settings across
all the experiments, i.e., 1024 word representation
size, 4096 inner dimensions of feed-forward layers,
and dropout is set to 0.3 for all the experiments.
In addition, for monolingual models, we apply
transformer_1m_gpt architecture (Radford
et al., 2018) on source language side of the
corpus without any extra corpus. > The detailed
hyperparameters used for training translation and
language models are shown in Appendix.

For baseline models, we train them for 400K
updating steps, and train the models with back-
translation data for 1.6M updating steps. We save
the checkpoints every 100k updating intervals, and
only select the checkpoints with highest develop
set performance. As for the back-translation data,
we study beam decoding and sampling decoding
as baselines since they are the common practice
for BT research (Roberts et al., 2020; Wang et al.,
2019). We use baseline models’ checkpoints at
400K updating steps to generate default beam5 de-
coding and sampling decoding synthetic corpus
without any penalty. For monolingual models,
we only select the checkpoints with the best de-
velop set performance. When tuning - on dev sets
for data manipulation methods we select it from
{0,1/4,1/2,3/4,1} and the optimal is v = 1/2.
For the Gamma Score method, -y is tuned among
{0.1,0.2,0.3,0.4,0.5} and it is set v = 0.2 for all
three tasks.

Note that we do not use the pre-trained language models

such as GPT-3 or TS5 to exclude our gains from large scale
monolingual data.

Systems SacreBLEU
Transformer 32.1
Beam BT 32.7
Sampling BT 34.1
DM +bitext 34.2
Gamma sampling BT 35.0%
Gamma selection BT 34.7*

Table 4: BLEU score on WMT14 DE-EN testset.
Gamma criterion based method outperform beam search
based and sampling based back-translation NMT mod-
els. The result marked with * denotes that it is signifi-
cantly better than sampling BT with p < 0.0010.

All the experiments are conducted using 8
Nvidia V100-32GB graphic cards without any gra-
dient accumulation or bitext upsampling, and the
results in this paper are measured in case-sensitive
detokenized BLEU with SacreBLEU? by Post
(2018).

5.2 Main Results
5.2.1 Results on DE-EN

Data Manipulation We conduct two experi-
ments to study the data manipulation for back-
translation NMT model performance using afore-
mentioned corpus with and without authentic cor-
pus.

Table 3 show the data manipulation results com-
pared with baseline. Firstly, for synthetic corpus
experiment, we find that even if only monolingual
corpus is used, the performance of back-translation
NMT model can still be significantly improved
to 31.3 from 29.2 by sampling or 27.6 by beam,
and it is only 0.7 lower than bitext baseline by
BLEU score measure. Secondly, for the experi-
ments with bitext, the best performance by data
manipulation only helps the back-translation NMT
model achieves almost the same performance with
sampling BT. This means data manipulation meth-
ods cannot achieve a higher BLEU score than sam-
pling or beam.

Gamma Score In this paragraph, we conduct the
experiments based on gamma score method. We
conduct both of the methods in this experiment: we
select the candidate with highest gamma score for
the deterministic method whereas sample the candi-

3We use the fairseq default shell script sacrebleu. sh,
with WMT14/full testsets to evaluate the model checkpoints.
The sacrebleu output format is BLEU + case.mixed + lang.de-
en + numrefs.1 + smooth.exp + test.wmtl4/full + tok.13a +
version.1.4.13.
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System EN-DE RU-EN
Transformer 27.4 34.1
Beam BT 29.7 359
Sampling BT 30.0 35.6
Gamma selection BT ~ 31.0%* 36.1*
Gamma sampling BT ~ 30.9* 36.3*

Table 5: SacreBLEU score on WMT14 EN-DE and
RU-EN testsets. Gamma criterion based methods out-
perform beam search based and sampling based back-
translation NMT models. The result marked with *
denotes that it is significantly better than both sampling
and beam based BT with p < 0.001.

date by gamma score distribution for the stochastic
method.

Once again, we use synthetic gamma corpus
combined with bitext to train the back-translation
NMT models on each corpus, the results are listed
in 4. From the table, we can see that our proposed
gamma sampling significantly outperforms the sam-
pling based and beam search based back-translation
baselines by 0.9 and 2.3 BLEU scores in terms of
SacreBLEU. And our two proposed gamma score
based methods outperform the data manipulation
method as well.

In the rest of the experiments, we report results
for both gamma selection and gamma sampling as
the proposed methods and their hyperparameter
for other tasks is fixed to 0.2.

5.3 Results on other Datasets

We conduct the experiments on WMT14 EN-DE
and RU-EN for both gamma selection and gamma
sampling as well, and table 5 shows that our pro-
posed gamma based methods significantly outper-
form beam and sampling based back-translation
methods on both en-de and ru-en translation for al-
most 1 and 0.4 BLEU score respectively. Recently,
Edunov et al. (2020) point out that BLEU might
overlook the contributions from back translation
since it poorly correlates with human evaluation on
the data generated in back translation scenario. Fol-
low their suggestions, to better reflect the scenario
of back translation, we also evaluate our experi-
ment using COMET metric suggested by Rei et al.
(2020). The results are shown in table 6 and we
can see that the proposed methods perform well in
terms of COMET.

Discussion on Efficiency Since our method re-
quires to run sampling with size of 50 to generate

synthetic data, its efficiency is about 10x slower
than that of beam BT with size of 5 and 50x slower
than that of sampling BT with size 1. Luckily, be-
cause the bottleneck of BT is not the synthetic data
generation but the parameter optimization on both
synthetic and authentic data, our overall overhead
is less than 0.5x slower than sampling BT. In addi-
tion, since decoding is very easy to be parallelized
on GPU or CPU machines, the cost of decoding is
not a serious issue for our method, which makes it
possible to run our method on a large scale dataset.

5.4 Analysis on Synthetic Corpus

In this subsection, we analyze the synthetic cor-
pus of proposed gamma score methods on both
sentence level and token level.

Sentence Level We evaluate the back-translation
synthetic source sentences by their sentence rep-
resentations. We use the baseline model to gener-
ate the hidden representations at the end-of-speech
token as the sentence representation. Here, we
compute the singular value spectrum of the rep-
resentations for different back-translation corpora.
4

The spectrum is shown in figure 1(a). From
the spectrum, sampling has a more uniform distri-
bution whereas beam has the worst variety. Our
proposed methods have moderate variety between
sampling and beam, and gamma sampling consists
of higher linguistic information richness compared
with gamma selection.

Figure 1(b) shows the sequence length of the
synthetic corpora of different generation methods.
Beam generates the shortest synthetic sentences
and gamma sampling generates the longest syn-
thetic sentences on average. Between them, sam-
pling and gamma selection generate almost the
same sequence length, which means gamma selec-
tion candidates provide more learning signals than
random sampling under the same length.

Token Level Figure 1(c) is the token frequency
histogram, which shows beam has higher probabil-
ity to decode high frequency tokens while sampling

*Singular value spectrum analysis is a widely used method
to measure the representation distribution. Gao et al. (2019)
firstly introduces this method to measure the isotropy of rep-
resentation, and Wang et al. (2019) directly employ spectrum
control for better NMT performance. The idea is, representa-
tions of high linguistic variety usually are more isotropic, thus
having a relatively uniform singular value distribution. We em-
ploy this method here to measure the variety of sentence-level
information.
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System DE-EN EN-DE RU-EN
Transformer 51.66 53.35 54.55
Beam BT 49.35 54.61 55.12
Sampling BT 52.71 56.01 54.34
Gamma Selection BT  53.83 58.22 57.03
Gamma Sampling BT  53.97 58.18 56.69

Table 6: COMET metric evaluation results on WMT14
DE-EN, EN-DE and RU-EN datasets. The testset results
are in accordance with BLEU metric.

prefers more low frequency tokens.

We also measure the vocabulary size, finding
that the proposed gamma sampling shares the same
vocabulary size as sampling method. This could
be the reason that gamma sampling is based on
random sampling for candidates generation.

6 Related Work

This section describes prior arts in back-translation
for NMT, data augmentation, and semi-supervised
machine translation.

Back-translation NMT Bojar and Tamchyna
(2011) firstly proposed back-translation, then
Bertoldi and Federico (2009); Lambert et al. (2011)
apply back translation to solve the domain adapta-
tion problems in phrase-based NMT systems. Sen-
nrich et al. (2016a) further extend the back transla-
tion for training NMT models integrally.

For understanding the back-translation synthetic
corpus, Currey et al. (2017) use a copy of target as
a pseudo source, and find that NMT model perfor-
mance can still be improved under the low resource
settings. Caswell et al. (2019) propose tagged
back-translation to indicate to the model that the
given source is synthetic. To further find an op-
timum back-translation corpus decoding method,
Imamura et al. (2018) firstly use sampling based
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synthetic corpus and find such a stochastic decod-
ing method outperforms beam search on boosting
NMT model performance, and Edunov et al. (2018)
broaden the investigation of a number of back-
translation generation methods for synthetic source
sentences. Their contribution shows that sampling
or noisy synthetic data gives a much stronger train-
ing signal. Graga et al. (2019) reformulate back-
translation in the context of optimization and clari-
fying to improve sampling based decoding method
search space, thus proposing N best list sampling.
Recently, Nguyen et al. (2020) diversify the train-
ing data by multiple forward and backward models
translations and combine them with the original
datasets.

Data Augmentation for NMT NMT researchers
are the pioneers of data augmentation studies since
back-translation is a natural type of data augmen-
tation method. (Sennrich et al., 2016a; Norouzi
et al., 2016; Zhang and Zong, 2016; Bi et al., 2021).
To balance the token frequency in NMT corpus,
Fadaee et al. (2017) create new sentences contain
low-frequency words. However, as observed by
Wang et al. (2018), the improvement across dif-
ferent translation tasks is not consistent, and they
invent SwitchOut data augmentation policy. Recht
etal. (2018, 2019); Werpachowski et al. (2019) also
observe such an inconsistency of variance between
training corpus and testing set as well as in the
generation tasks. Recently, Li et al. (2019a) try to
understand data augmentation from input sensitiv-
ity and prediction margin, thus obtaining relatively
low variance in generation.

Semi-supervised Machine Translation How-
ever, as high quality bitext is always limited and
costly to collect, Gulcehre et al. (2015) study meth-
ods for effectively leveraging monolingual data in
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NMT systems. He et al. (2016) develop a dual-
learning mechanism, under such a learning objec-
tive, a NMT system is able to automatically learn
from unlabeled data, thus improving NMT perfor-
mance iteratively. Based on iterative learning, Lam-
ple et al. (2018) investigates how to learn NMT
systems when only large monolingual corpora can
be used in each language.

For supervision of models, Gulcehre et al. (2017)
employ the target language model hidden states
into NMT decoder to further improve performance.
Edunov et al. (2020) show that back-translation
improves translation quality of both naturally oc-
curring text and translationese according to pro-
fessional human translators. For supervision of
learning corpus, Wu et al. (2019) study both the
source-side and target-side monolingual data for
NMT.

7 Conclusion

In this work, we answer a fundamental question
about synthetic data for back translation. We the-
oretically and empirically show two key factors
namely quality and importance weight of synthetic
data play an important role in back translation, and
then we propose a new method to generate syn-
thetic data which better balances both factors so
as to boost the back-translation performance. For
future work, we think it would be of significance
to apply our synthetic data generation method to
other BT methods or even to more broad NLP tasks
such as paraphrasing and style transfer.
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