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Abstract
A recurring challenge of crowdsourcing NLP
datasets at scale is that human writers often
rely on repetitive patterns when crafting exam-
ples, leading to a lack of linguistic diversity.
We introduce a novel approach for dataset cre-
ation based on worker and AI collaboration,
which brings together the generative strength
of language models and the evaluative strength
of humans. Starting with an existing dataset,
MultiNLI for natural language inference (NLI),
our approach uses dataset cartography to auto-
matically identify examples that demonstrate
challenging reasoning patterns, and instructs
GPT-3 to compose new examples with similar
patterns. Machine generated examples are then
automatically filtered, and finally revised and
labeled by human crowdworkers. The resulting
dataset, WANLI, consists of 107,885 NLI ex-
amples and presents unique empirical strengths
over existing NLI datasets. Remarkably, train-
ing a model on WANLI improves performance
on eight out-of-domain test sets we consider,
including by 11% on HANS and 9% on Ad-
versarial NLI, compared to training on the 4×
larger MultiNLI. Moreover, it continues to be
more effective than MultiNLI augmented with
other NLI datasets. Our results demonstrate the
promise of leveraging natural language gener-
ation techniques and re-imagining the role of
humans in the dataset creation process.

1 Introduction

As much as large-scale crowdsourced datasets have
expedited progress on various NLP problems, a
growing body of research has revealed fundamen-
tal limitations in existing datasets: they are often
flooded with repetitive and spurious patterns, rather
than covering the broad range of linguistic phenom-
ena required by the task (Bowman and Dahl, 2021).
This leads to models that seem to achieve human-
level performance on in-domain test sets, yet are
brittle when given out-of-domain or adversarial ex-
amples (Ribeiro et al., 2020; Glockner et al., 2018).

Figure 1: An illustration of our pipeline for creating
WANLI. Starting with a data map (Swayamdipta et al.,
2020) of an existing dataset relative to a trained model,
(1) we automatically identify pockets of data instances
exemplifying challenging reasoning patterns. Next, (2)
we use GPT-3 to generate new instances with the same
pattern. These generated examples are then (3) auto-
matically filtered via a metric we introduce inspired by
data maps, and (4) given to human annotators to assign
a gold label and optionally revise.

We attribute this problem to an inherent chal-
lenge in the crowdsourcing design—the prevalent
paradigm for creating large-scale NLP datasets—
where a relatively small number of workers create
a massive number of free text examples. While
human annotators are generally reliable for writ-
ing correct examples, crafting diverse and creative
examples at scale can be challenging. Thus, crowd-
workers often resort to a limited set of writing
strategies for speed, at the expense of diversity
(Geva et al., 2019; Gururangan et al., 2018). When
models overfit to such repetitive patterns, they fail
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to generalize to out-of-domain examples where
these patterns no longer hold (Geirhos et al., 2020).

On the other hand, there has been remarkable
progress in open-ended text generation based on
massive language models (Brown et al., 2020; Raf-
fel et al., 2020, i.a.). Despite known deficiencies
such as incoherence or repetition (Dou et al., 2021),
these models often produce human-like text (Clark
et al., 2021) and show potential for creative writing
tasks (Lee et al., 2022). Importantly, these models
are capable of replicating a pattern given just a few
examples in context (Brown et al., 2020, GPT-3).

In this paper, we introduce a novel approach for
dataset creation which brings together the gener-
ative strength of language models and the evalua-
tive strength of humans through human and ma-
chine collaboration (§2). The key insight of our
approach is that language models can create new
examples by replicating linguistic patterns that are
valuable for training, without necessarily “under-
standing” the task itself. Illustrated in Figure 1,
our pipeline starts with an existing dataset. We use
dataset cartography from Swayamdipta et al. (2020)
to automatically identify pockets of examples that
demonstrate challenging reasoning patterns rela-
tive to a trained model. Using each group as a set
of in-context examples, we leverage a pretrained
language model to generate new examples likely
to have the same pattern (see Table 1). We then
propose a novel metric, building on dataset cartog-
raphy, to automatically filter generations that are
most likely to aid model learning. Finally, we vali-
date the generated examples by subjecting them to
human review, where crowdworkers assign a gold
label and (optionally) revise for quality.

We demonstrate the effectiveness of our ap-
proach on the task of natural language inference
(NLI), which determines whether a premise entails
(i.e., implies the truth of) a hypothesis, both ex-
pressed in natural language. Despite being one of
the most resource-available tasks in NLP, analy-
sis and challenge sets repeatedly demonstrate the
limitations of existing datasets and the brittleness
of NLI models trained on them (Gururangan et al.,
2018; Poliak et al., 2018; Tsuchiya, 2018). Using
MultiNLI (Williams et al., 2018) as our original
dataset, we use our pipeline to create a dataset of
107,885 examples, which we call Worker-and-AI
NLI (WANLI).1

1Pronounced wan-li like the Chinese characters万理, as in
ten thousand reasoning. A demo, data, and code are available
at https://wanli.allenai.org/.

Remarkably, empirical results demonstrate that
replacing MultiNLI supervision with WANLI
(which is 4 times smaller) improves performance
on eight different out-of-domain test sets, including
datasets that are converted to the NLI format from
downstream tasks such as question-answering and
fact verification (§3). This result holds even when
augmenting MultiNLI with other NLI datasets and
recently proposed augmentation sets. Moreover,
including WANLI in the training data can help im-
prove performance on certain in-domain test sets.
We then analyze WANLI and show that it has fewer
previously documented spurious correlations than
MultiNLI (§4), and provide insights into the col-
laborative framework (§5).

Our approach contrasts with previous instruction-
based generation of dataset examples (Schick and
Schütze, 2021; West et al., 2021), which require the
model to understand the task from context, funda-
mentally limiting the complexity of generated out-
put to what is accessible by the model. Moreover,
our human-in-the-loop approach is collaborative,
rather than adversarial (Dinan et al., 2019; Nie
et al., 2020; Bartolo et al., 2020). Overall, we lever-
age the best of both worlds: a powerful model’s
ability to efficiently generate diverse examples, and
humans’ ability to improve and ensure the quality
of generations.

Our worker-AI collaborative approach is more
scalable compared to the traditional crowdsourc-
ing framework. Our approach is generalizable,
allowing for rejuvenating datasets on many dif-
ferent classification tasks, especially when perfor-
mance seems to stagnate due to overfitting to pop-
ular benchmarks (Recht et al., 2019). Our work
shows the promise of leveraging language models
in a controlled way to aid the dataset creation pro-
cess, and we encourage the community to think of
dataset curation as an AI challenge itself.

2 Worker-AI Collaborative Dataset
Creation for NLI

We describe our four-stage approach for dataset
creation based on worker and AI collaboration. In
this work, we apply it to the task of natural lan-
guage inference (NLI), which involves predicting
whether a premise entails, contradicts or is neu-
tral to a hypothesis. NLI has broad applicability
in NLP: it has proven useful for pretraining (Clark
et al., 2019; Phang et al., 2018), and can be applied
to verify candidate answers in question-answering
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Seed MultiNLI example Generated WANLI Example Label & Reasoning

P: 5 percent probability that each part will be defect free.
H: Each part has a 95 percent chance of having a defect.

P: 1 percent of the seats were vacant.
H: 99 percent of the seats were occupied.

Entailment
Set complements

P: The artisans, tradespeople, and providers of entertainment
(reputable and not so reputable) lived downtown on the
reclaimed marshlands north and east, in the area still known
as Shitamachi.
H: The only place where artisans, tradespeople and entertainers
could live was in the marshlands to the north and east.

P: At the time of the Revolution, the old port of Marseille
was a great center of shipbuilding and commerce.
H: The only place where ships were built was in the old
port of Marseille.

Neutral
Hypothesis introduces
exclusivity

P: To the south, in the Sea of Marmara, lie the woods and
beaches of the Princes’ Islands.
H: In the north is the Sea of Marmara where there are
mountains to climb.

P: From the park’s southern entrance, follow the avenue
south to the Hotel de Ville.
H: From the park’s northern entrance, follow the avenue
north to the Hotel de Ville.

Contradiction
Reversing cardinal
directions

P: Democrats released documents indicating that Republicans
sold big political donors meals with the party’s leaders in
federal buildings in 1995.
H: It is illegal for a party to solicit products to donors.

P: In the late 1960s, students at a university in Wisconsin
tried to organize a union.
H: It was illegal for the students to organize a union.

Neutral
Illegal things
can happen

P: She ducked and parried the blow.
H: She ducked to miss the blow.

P: She stepped on the brake and the car came to a stop.
H: She stepped on the brake to stop the car.

Entailment
Implied intention

P: To build a worldclass finance organization and help
achieve better business outcomes, each of the organizations
we examined set an agenda for transforming the finance
organization by defining a shared vision -i.e.
H: The transformation was a disaster and the entire
organization had to be scrapped.

P: In order to help improve customer service, I suggested
that they send a representative to our office to discuss
our concerns.
H: The representative sent to our office did not solve
our problems and we lost a lot of business.

Neutral
Intended goals may
not actualize

P: Salinger wrote similar letters to other young female writers.
H: Other young female writers received similar letters from
Salinger as well.

P: The three schools have a number of students who are
from families with no history of financial difficulties.
H: Families with no history of financial difficulties
send their children to the three schools.

Entailment
Substituting a verb
with a different
subcategorization frame

Table 1: Seed MultiNLI examples, and corresponding WANLI examples generated by GPT-3. P stands for premise,
H for hypothesis. The seed example is “ambiguous” according to the definitions of Swayamdipta et al. (2020),
discussed in §2. The remaining in-context examples (shown in Appendix C.1) share the same pattern and are found
using distance in [CLS] embeddings of a trained task model. The reasoning is a short description of the pattern we
observe from the group, and which is successfully repeated in the generated example.

(Chen et al., 2021) or factuality of generated sum-
maries (Maynez et al., 2020).

Our approach requires as prerequisites an initial
dataset D0 and a strong task model M trained on
D0. We use MultiNLI (Williams et al., 2018), a
large-scale multi-genre NLI dataset, as D0. We
finetune RoBERTa-large (Liu et al., 2019) on
MultiNLI for our task model M (training details
in Appendix B).

As an overview, we first automatically collect
groups of examples exemplifying challenging rea-
soning patterns in D0 relative to M, using data
maps (Swayamdipta et al., 2020; Stage 1, see §2.1).
Then we overgenerate similar examples by lever-
aging the pattern replication capabilities of GPT-3
(Brown et al., 2020) (Stage 2; §2.2). While GPT-3
can generate examples efficiently, it may not re-
liably replicate the desired pattern and its output
quality will not be uniform. We address this by au-
tomatically filtering the generated examples using
a metric derived from data maps (Stage 3; §2.3).
We finally subject the collected data to human
review, in which crowdworkers optionally revise

examples and assign gold labels (Stage 4; §2.4).

Dataset Cartography. A key component of our
pipeline is inspired by data maps (Swayamdipta
et al., 2020), which automatically reveal different
regions in a dataset, w.r.t. the behavior of a classifi-
cation model during training. These include easy-
to-learn examples which the model consistently
predicts correctly through training, hard-to-learn
examples on which it is consistently incorrect, and
ambiguous examples for which the model’s confi-
dence in the correct answer exhibits high variability
across train epochs. Our pipeline focuses on am-
biguous examples, which were shown to lead to
more robust models. Additionally, ambiguous ex-
amples contain fewer spurious correlations (Gard-
ner et al., 2021), suggesting that they capture under-
represented counterexamples to spurious correla-
tions. Indeed, such counterexamples take more
epochs of training to learn and are crucial for gen-
eralization (Tu et al., 2020), providing a potential
explanation for why they appear ambiguous across
early epochs and lead to more robust models.
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2.1 Stage 1: Collection of Exemplars

In this stage, we automatically collect groups of ex-
amples from D0 which represent linguistic patterns
we wish to include in the target dataset. We begin
with a seed example (xi, yi) ∈ D0 belonging to the
most ambiguous p = 25% relative to M.2

To generate a new example with the same rea-
soning pattern, we wish to leverage the ability of
GPT-3 (Brown et al., 2020) for in-context learning;
hence, we need to first collect examples that test a
similar kind of reasoning to xi. To do this, we use
the [CLS] token representation of each example
relative to the task model M, and find the k = 4
nearest neighbors via cosine similarity to xi that
have the same label. Detailed qualitative inspection
shows that the nearest neighbors in this represen-
tation space tend to capture a human-interpretable
similarity in the reasoning required to solve an ex-
ample, rather than lexical or semantic similarity
(examples in Table 1).

Han and Tsvetkov (2021) give another interpreta-
tion for this approach: for examples with the same
label, the similarity of [CLS] token embeddings ac-
tually represents the similarity of gradient updates
in the row of the final projection layer correspond-
ing to that label. Thus, two examples are close if
training on them would “update” the final layer of
the model similarly.

By automatically identifying areas for augmenta-
tion, our method does not require any prior knowl-
edge of challenging patterns and makes our method
tractable for building on top of large-scale datasets.
Nonetheless, exemplar collection could potentially
be approached in different ways (e.g., through ex-
pert curation or category labels).

2.2 Stage 2: Overgeneration

Given an automatically extracted group of k+1 ex-
amples from the original dataset D0, we construct a
natural language context (prompt) for a left-to-right
language model; in this work, we use GPT-3 Curie
(the second-largest GPT-3 model). The prompt
template we use is shown in Figure 2, where we
order the examples in increasing similarity to the
seed example.

Note that our method leverages GPT-3 in way

2For exemplar collection, we exclude the telephone genre
of MultiNLI, which consists of telephone conversation tran-
scripts, due to their low fluency and ill-defined entailment re-
lationships. During pilots, we found that generated examples
mimicking telephone conversations would require crowdwork-
ers to revise low-quality text for basic fluency.

Figure 2: Prompt template instructing GPT-3 to gener-
ate a new example, given a set of in-context examples.
To separate the premise and hypothesis, the word “Im-
plication” is used for entailment examples (shown here),
“Possibility” for neutral examples, and “Contradiction”
for contradiction examples.

that is distinct from its typical usage in few-shot
settings, where given examples demonstrating a
task, GPT-3 performs the task on a new, unlabeled
example. Here, we instead give GPT-3 examples
representing a particular slice of the task, and ask
GPT-3 to generate a new example in the same slice.

For each context, we sample from GPT-3 to cre-
ate n = 5 distinct examples. We use top-p decod-
ing (Holtzman et al., 2020) with p = 0.5 (addi-
tional details in Appendix C.2). Although gener-
ated examples at this stage could be assumed to
share label of its k + 1 in-context examples, we
instead consider the resulting dataset Dgen = {xi}i
at the end of Stage 1 to be unlabeled.

2.3 Stage 3: Automatic Filtering
In this step, we wish to filter generated examples
from Stage 2 to retain those that are the most am-
biguous with respect to M. However, computing
ambiguity for an example requires that it be a part
of the original training set, whereas we wish to esti-
mate the ambiguity of an unlabeled example with-
out additional training. Thus we introduce a new
metric called estimated max variability, which
measures the worst-case spread of predictions on an
example xi across checkpoints of a trained model.
Let E be the total epochs in training, Y the label
set, and pθ(e) the probability assigned with parame-
ters θe at the end of the e-th epoch. We define the
estimated max variability as:

σi = max
y∈Y

σ
(
{pθ(e)(y | xi)}e∈E

)
, (1)

where σ is the standard deviation function.
Concretely, we retroactively compute the pre-

diction from each saved epoch of M on xi. The
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only assumption made is that the single example,
if it had been a part of the training set, would have
made a negligible difference on each model check-
point (at least as observed through its posterior
probabilities).3 In taking a maximum across labels,
we consider xi to be ambiguous as long as M is
undecided on any label ∈ Y .

We first employ simple heuristics to discard ex-
amples exhibiting observable failure cases of GPT-
3. Specifically, we discard examples where 1) the
premise and hypothesis are identical, modulo punc-
tuation or casing, 2) the generated example is an
exact copy of an in-context example, 3) the ex-
ample contains some phrases from the instruction
(e.g., “pair of sentences”), or 4) the premise or
hypothesis is shorter than 5 characters. Then, we
compute the estimated max variability for the re-
maining examples with respect to M, and retain an
equal number of examples from each (intended) la-
bel class with the highest max variability, to create
a dataset Dfiltered that is half the size of Dgen.

2.4 Stage 4: Human Review

As the final stage of our pipeline, we recruit hu-
man annotators on Amazon Mechanical Turk to
review each unlabeled example xi ∈ Dfiltered. (De-
tails about crowdworkers and guidelines in Ap-
pendix D.) The annotator may optionally revise xi
to create a higher-quality example x′i, or let x′i = xi.
Either way, they assign a label yi. When revising
examples, we asked annotators to preserve the in-
tended meaning as much as possible through mini-
mal revisions.4 However, if an example would re-
quire a great deal of revision to fix or if it could be
perceived as offensive, they should discard it. This
results in the labeled dataset Dcollab = {(x′i, yi)}i.

Crowdworkers annotate a total of 118,724 ex-
amples, with two distinct workers reviewing each
example. For examples that both annotators labeled
without revision, we achieved a Cohen’s κ of 0.60,
indicating substantial agreement. To create the final
dataset, we discard an example if either annotator
chose to discard it, and we keep a revision only if
both annotators revise an example (and choose a
revision uniformly at random). When both anno-
tators label the example as-is but choose different
labels, we sample one of the two labels uniformly

3Indeed, we find a high correlation between variability and
estimated max variability; see Appendix A.

4In pilots, we found that when annotators exercised too
much freedom in revision, they often re-introduced the same
artifacts that have been well-documented in NLI.

Split Size Label distribution (E/N/C)

Train 102,885 38,511 / 48,977 / 15,397
Test 5,000 1,858 / 2,397 / 745

Table 2: WANLI dataset statistics.

at random. The rationale for this is discussed in
Appendix D.4. This leads to a labeled dataset of
107,885 examples (90.87% of all annotated exam-
ples, with the remaining discarded). Of the labeled
examples, 3.54% were revised.

We randomly split the data into a train and test
sets. Key dataset statistics are summarized in Ta-
ble 2. Unlike MultiNLI, WANLI is not label-
balanced; see §5.3 for a discussion.

In general, we believe the role of revision de-
pends on the quality of machine-generated exam-
ples. Indeed, we need to strike a balance between
leveraging human capabilities and avoiding the re-
emergence of annotation artifacts that may come
with too much freedom in revision.

3 Training NLI Models with WANLI

We finetune different copies of RoBERTa-large
(Liu et al., 2019) on different training sets, and
evaluate each resulting model’s performance on a
large suite of NLI challenge sets. Given that the
challenge sets were constructed independently of
MultiNLI or WANLI, we consider them out-of-
distribution (OOD) for both training datasets.

3.1 NLI Test Suite

The NLI challenge sets come from a wide array of
domains, methodologies (e.g., crowdsourcing, ex-
pert curation, generation), and initial task formats
(e.g., question-answering, fact verification).5

NLI Diagnostics (Wang et al., 2018) is a manually-
curated test set that evaluates a variety of linguis-
tic phenomena using naturally-occurring sentences
from several domains.

HANS (McCoy et al., 2019) targets unreliable syn-
tactic heuristics based on lexical overlap between
the premise and hypothesis.

QNLI was adapted from the Stanford Question-
Answering Dataset (Rajpurkar et al., 2016) by the
GLUE benchmark (Wang et al., 2018). Each exam-

5We evaluate on the development set for every dataset,
except for Winograd NLI, where we combine the train and
development set for greater statistical power, and Adversarial
NLI, where we use the test set as the labels were not hidden.
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Test Set

Diagnostics HANS* QNLI* WNLI* NQ-NLI* ANLI FEVER-NLI BIG-Bench* WANLI
Data size 1104 30K 5266 706 4855 3200 20K 3324 5000

Tr
ai

ni
ng

Se
t

MNLI 393K 68.47 78.08 52.69 56.09 62.34 32.37 68.29 64.68 64.62

MNLI + Tailor 485K 67.75 79.03 54.89 56.23 63.83 32.87 68.75 72.38 64.27
MNLI + Z-Aug 754K 66.39 80.52 57.72 55.52 62.30 33.37 68.73 66.12 64.78
MNLI ⋄ ANLI 393K 67.75 79.90 68.74 60.48 62.49 54.59 72.30 72.32 65.96
MNLI + ANLI 556K 66.84 77.94 62.41 57.08 62.84 53.84 72.30 71.11 65.93
MNLI ⋄ FEVER-NLI 393K 66.75 76.50 56.70 57.08 61.81 35.65 76.83 58.39 63.31
MNLI + FEVER-NLI 601K 67.57 76.05 52.90 54.95 63.02 35.37 76.93 64.65 64.53
MNLI + SNLI + ANLI 943K 68.75 78.65 63.38 58.49 62.94 54.21 72.02 71.05 65.10

MNLI ⋄ WANLI 393K 71.01 83.10 77.00 61.89 62.94 36.46 71.14 76.17 75.49
MNLI + WANLI 496K 71.64 82.00 68.40 60.05 63.21 36.78 70.79 70.81 75.26
WANLI 103K 72.73 89.28 81.40 67.28 64.18 41.12 70.13 85.19 75.40

Table 3: Empirical comparison of different training sets for RoBERTa-large, for generalization to out-of-distribution
(OOD) challenge sets. Gray cells mark settings that do not represent an OOD challenge. Top: Training on MultiNLI
alone. Middle: Comparison of combination schemes with MultiNLI. We consider two data combination strategies,
augmentation (+), and random replacement (⋄), where the resulting dataset size is unchanged. Bottom: Training
sets that include WANLI. The highest accuracy on each test set (excluding gray cells) is bolded. Test sets with *
contain two label classes: entailment and non-entailment.

ple consists of a premise that is a sentence, and a
hypothesis that is a question, which is entailed if
the question is answered by the premise.

Winograd NLI was adapted by the GLUE bench-
mark from the Winograd Schema Challenge
(Levesque et al., 2011), which tests correct corefer-
ence via common sense. To convert this dataset to
NLI, an entailed hypothesis is formed by substitut-
ing a correct referent and a non-entailed hypothesis
is formed by substituting an incorrect referent.

Adversarial NLI (ANLI; Nie et al., 2020) is
an adversarially-constructed dataset where crowd-
workers are instructed to write examples that stump
existing models. Examples are collected in three
rounds that progressively increase in difficulty,
with model adversaries trained on MultiNLI, SNLI
(Bowman et al., 2015), FEVER-NLI (discussed
below), as well as ANLI sets from earlier rounds.

Natural Questions NLI (NQ-NLI, Chen et al.,
2021) is created from the Natural Questions QA
dataset (Kwiatkowski et al., 2019). The premise
is a decontextualized sentence from the original
context; the hypothesis consists of a question and
answer candidate converted into declarative form.

FEVER NLI is adapted from the FEVER fact
verification dataset (Thorne et al., 2018), and in-
troduced along with ANLI. In each example, the
premise is a short context from Wikipedia, and the
hypothesis is a claim that is either supported (en-
tailed), refuted (contradicted), or neither (neutral).

BIG-Bench NLI is a combination of four datasets
from BIG-Bench (Srivastava et al., 2022) about

entailment: Analytic Entailment, Epistemic Rea-
soning, Disambiguation QA, Presuppositions NLI.

3.2 Training Datasets

In addition to stand-alone WANLI and MultiNLI,
we also consider combining MultiNLI with other
NLI datasets. We use the train sets of SNLI (Bow-
man et al., 2015), ANLI, and FEVER-NLI, as
well as the augmentation set generated via TAILOR

(Ross et al., 2022), which perturbed SNLI hypothe-
ses to create examples with high lexical overlap
between the premise and hypothesis, and the aug-
mentation set Z-Aug (Wu et al., 2022), which was
created by generating in-distribution examples and
filtering them based on spurious correlations.

We consider two schemes for combining datasets
A and B: 1) augmentation (A + B), in which
the two datasets are concatenated, and 2) random
replacement (A ⋄ B), where |B| examples from A
are randomly swapped out and replaced with all
examples from B.

3.3 Results

Results are shown in Table 3. When comparing
MultiNLI (MNLI) and WANLI alone, training a
model on WANLI instead of MultiNLI leads to
better performance on every test set we consider,
including by 4% on Diagnostics, 11% on HANS,
and 9% on Adversarial NLI. This is remarkable
given WANLI is 4× smaller than MultiNLI, and
contains primarily machine-written examples.

A WANLI-trained model continues to outper-
form baselines that combine MultiNLI with other

6831



Test Set

Diagnostics HANS* ANLI BIG-Bench* WANLI

ANLI 65.67 80.58 55.21 77.10 63.85
ANLI + WANLI 72.82 88.58 56.59 84.89 75.84

Table 4: Comparison of whether including WANLI
in the training data of ANLI improves in-domain test
performance, when finetuning RoBERTa-large.

NLI datasets and augmentation sets, in every OOD
setting. This includes when comparing to a model
trained on 9× more data from three existing NLI
datasets, MNLI + SNLI + ANLI. The consistent
advantage of WANLI over datasets that include
ANLI (e.g., MNLI + ANLI) is noteworthy, as
ANLI’s adversarial creation pipeline posed a much
greater challenge for human workers, and used
more existing resources to train model adversaries.

Quite surprisingly, training on WANLI alone
also outperforms combining WANLI with
MultiNLI. This reinforces that more data might
not necessarily be better, especially when the data
predominantly consists of easy-to-learn examples.

In addition to the OOD setting, we consider
whether augmentation with WANLI can improve
in-domain test performance for another dataset (Ta-
ble 4). Indeed, augmenting ANLI’s train set with
WANLI improves test accuracy on ANLI by 1.4%,
while greatly aiding OOD test performance.

4 Artifacts in WANLI

We next investigate whether WANLI contains sim-
ilar artifacts to MultiNLI.6 We find that while
WANLI contains fewer previously known spurious
correlations, it has a distinct set of lexical correla-
tions that may reflect artifacts in GPT-3 output.

4.1 Partial Input Models

Given that the task requires reasoning with both
the premise and the hypothesis, a model that sees
only one of the two inputs should have no infor-
mation about the correct label. We reproduce the
methodology from Gururangan et al. (2018) and
train fastText classifiers to predict the label using
partial input. After first balancing WANLI, a model
trained on just the hypotheses of WANLI achieves
41.6% accuracy on the test set compared to 49.6%
for MultiNLI, when restricted to the same size. A

6We note, however, that recent work has challenged
whether artifacts based on partial input and lexical correlations
in the dataset pose genuine robustness threats (Srikanth and
Rudinger, 2022; Eisenstein, 2022).

Figure 3: Competency problem-style statistical correla-
tion plot between individual words and particular class
labels, where the y-axis is the probability of label y
given the presence of the word xi, and the x-axis is the
number of times word xi appears in the data. All points
representing (word, label) pairs above the blue line have
detectable correlations (Gardner et al., 2021).

premise-only model trained on WANLI achieves
an accuracy of 42.9%.7

4.2 Lexical Correlations

Gardner et al. (2021) posit that all correlations be-
tween single words and output labels are spurious.
We plot the statistical correlation for every word
and label in Figure 3, after balancing WANLI and
downsampling MultiNLI. We observe that WANLI
also contains words with detectable correlations,
suggesting that GPT-3 may have some artifacts of
its own due to the slightly different templates and
different sets of in-context examples for each label.
Interestingly, the correlations tend to be a different
set of words than for MultiNLI (other than “not”
and “no”), with less interpretable reasons for corre-
lating with a certain label (e.g., “second”, “was”).

4.3 Premise-Hypothesis Semantic Similarity

We explore the semantic similarity between the
premise and hypothesis within each label class
using Sentence-BERT (Reimers and Gurevych,
2019); these distributions are shown in Figure 4.
In both MultiNLI and WANLI, entailed hypothe-
ses are naturally most semantically similar to the
premise. In MultiNLI, this is followed by neutral

7Unlike WANLI, each MultiNLI premise is associated
with hypotheses from all three labels; a premise-only baseline
is thus guaranteed to have no information about the label.
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Figure 4: Semantic similarity between the premise
and hypothesis, computed based on SBERT embed-
dings (Reimers and Gurevych, 2019). The distributions
for each label class are much more well-separated in
MultiNLI than in WANLI.

examples and then contradiction examples. In con-
trast, in WANLI there is much greater overlap in
the three distributions, and those for neutral and
contradiction examples are nearly indistinguish-
able. This suggests in WANLI, the semantic simi-
larity between the premise and hypothesis provides
less signal of the label.

5 What does WANLI show about the
human machine collaboration pipeline?

We discuss observations from collecting WANLI
that may shed insight for future work in the direc-
tion of collaborative dataset creation.

5.1 What kinds of revisions do annotators
tend to make?

We find that revisions fall broadly into two cat-
egories: improving the fluency of the text, and
improving the clarity of the relationship. The ma-
jority of revisions change the length only slightly,
with 74% of both premise revisions and hypoth-
esis revisions changing the word count between
−1 and +2 words. Fluency revisions often tar-
get well-documented issues with text generation,
such as redundancy and self-contradiction. Clarity
revisions often resolve ambiguities in the exam-
ple that make the entailment relationship difficult
(or impossible) to determine, such as ambiguous
coreference or temporal references. We provide
examples of revisions in Appendix D.3.

5.2 What kinds of examples do annotators
disagree on?

We find that examples on which annotators disagree
provide an extremely interesting test bed for how
ambiguities surface in classification tasks. Upon in-
specting the examples (some are shown in Table 5),
we observe that they represent genuinely ambigu-
ous cases rather than careless mislabels, echoing

previous findings (Pavlick and Kwiatkowski, 2019).
See further discussion in Appendix D.4.

5.3 How reliably does GPT-3 reproduce the
in-context pattern?

One characteristic of WANLI is its imbalanced
label distribution: even though the set of seed ex-
amples for generation was constructed to be bal-
anced, after undergoing human labeling, only 15%
of examples are given the contradiction label. We
observe that contradiction patterns in in-context
examples are generally much more challenging for
GPT-3 to copy, likely because it was trained on
(mostly) coherent sequences of sentences. More
broadly, we find that more abstract reasoning pat-
terns are harder for GPT-3 to mimic than patterns
that involve simpler transformations.

Nonetheless, even when GPT-3 does not suc-
cessfully copy the examples, the diverse set of
in-context examples leads to a variety of creative
output that may be challenging for human crowd-
workers to achieve.

6 Related Work

Crowdsourcing The scalability and flexibility of
crowdsourcing has enabled the creation of founda-
tional NLP benchmarks across a wide range of sub-
problems, and made it the dominant paradigm for
data collection (Mihaylov et al., 2018; Rajpurkar
et al., 2016; Huang et al., 2019; Talmor et al., 2019,
i.a.). Nonetheless, a growing body of research
shows that resulting datasets may not isolate the
key linguistic phenomena (Jia and Liang, 2017;
Chen et al., 2016; Sugawara et al., 2020).

For crowdsourcing NLI datasets, where the anno-
tator is given a premise and asked to write a hypoth-
esis of each label (Bowman et al., 2015; Williams
et al., 2018), the presence of annotation artifacts is
especially well-studied (Gururangan et al., 2018;
McCoy et al., 2019; Glockner et al., 2018). Recent
work attempted to remedy this through different
data collection protocols but found negative results
(Vania et al., 2020; Bowman et al., 2020), showing
this is a hard problem requiring greater innovation.

Adversarial data collection In this paradigm, an-
notators are asked to produce examples on which
current systems fail (Kiela et al., 2021; Talmor
et al., 2021; Zellers et al., 2019, i.a.). Beyond
increasing annotator effort (Bartolo et al., 2020),
adversarial methods have been challenged for not
leading to better generalization on non-adversarial
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Example Labels Ambiguity

P: According to the most recent statistics, the rate of violent crime
in the United States has dropped by almost half since 1991.
H: The rate of violent crime has not dropped by half since 1991.

Entailment
Contradiction

Does “almost half” mean “not
half” or “basically half”?

P: As a result of the disaster, the city was rebuilt and it is now one
of the most beautiful cities in the world.
H: A disaster made the city better.

Entailment
Neutral

Do indirect consequences
count?

P: It is a shame that the world has to suffer the pain of such
unnecessary war.
H: The world does not have to suffer such pain.

Entailment
Contradiction

Is the scope of “has to”
in the hypothesis given
the war or not?

P: The original draft of the treaty included a clause that would have
prohibited all weapons of mass destruction.
H: The clause was removed in the final version of the treaty.

Entailment
Neutral

Does the premise imply that the
clause is no longer in the treaty?

P: If you can’t handle the heat, get out of the kitchen.
H: If you can’t handle the pressure, get out of the situation.

Entailment
Neutral

Is the premise to be interpreted
literally or figuratively?

P: In a world of increasing uncertainty, the only certainty is that
nothing is certain.
H: There is no certainty in the world.

Entailment
Contradiction

Self-contradictory but
coherent premise

Table 5: Examples where two annotators assigned different labels. We find that many examples represent genuinely
ambiguous cases rather than careless mislabels, echoing previous findings (Pavlick and Kwiatkowski, 2019).

test sets (Kaushik et al., 2021) and decreasing
data diversity (Bowman and Dahl, 2021). More-
over, the resulting data has been shown to depend
strongly on the adversaries, inhibiting a fair evalua-
tion (Phang et al., 2021). Finally, these approaches
may produce examples beyond the scope of the
task. For example, in Adversarial NLI (Nie et al.,
2020), an estimated 58% of examples required “rea-
soning from outside knowledge or additional facts,”
which is arguably separate from the underlying
problem of understanding semantic entailments.
We argue that we can better leverage the strengths
of machines and humans by having them collabo-
rate rather than act as adversaries.

Dataset generation Another recent approach
leverages language models toward fully automatic
dataset creation (Schick and Schütze, 2021; Wu
et al., 2022; West et al., 2021; Bartolo et al., 2021a,
i.a.). Removing human input may fundamentally
limit the complexity of examples to phenomena
already accessible by the model, when our goal is
precisely to teach models more diverse phenom-
ena. The most similarly-motivated work to ours,
Lee et al. (2021), trains a data generator on “data-
rich slices” of an existing dataset, and applies it to
under-represented slices. However, they use labels
or metadata to represent slices, leaving automatic
methods of identifying slices to future work.

Human-machine collaboration In terms of
human-machine collaboration, Tekiroğlu et al.
(2020) and Yuan et al. (2021) employ a language
model to generate counter-narratives to hate speech
and biographies, respectively, which are validated
and revised by humans. This was for a generative
task, and we complement their findings by show-
ing that human-machine collaboration can also be
useful for generating labeled datasets for robust
classification models. Contemporary work (Bar-
tolo et al., 2021b) finetunes a generative annotation
assistant to produce question-answer pairs that hu-
mans can revise for extractive QA.

7 Conclusion

At the heart of dataset creation is distilling hu-
man linguistic competence into data that models
can learn from. The traditional crowdsourcing
paradigm takes the view that the best approach
for this is to solicit people to write free-form ex-
amples expressing their capabilities. In this work,
we present a worker-and-AI collaborative approach
and apply it to create WANLI, whose empirical
utility suggests that a better way of eliciting human
intelligence at scale is to ask workers to revise and
evaluate content. To this end, we hope to encour-
age more work in developing generative algorithms
to aid the dataset creation process, and therefore
re-imagining the role of human annotation.
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8 Ethics Statement

We acknowledge that text generated from large pre-
trained language models is susceptible to perpetu-
ating social harms and containing toxic language
(Sheng et al., 2019; Gehman et al., 2020). To par-
tially remedy this, we ask annotators to discard
any examples that may be perceived as offensive.
Nonetheless, it is possible that harmful examples
(especially if they contain subtle biases) may have
been missed by annotators and included in the fi-
nal dataset. Specifically due to the above harms,
we additionally caution readers and practitioners
against fully automating any data creation pipeline.

In addition, we are cognizant of the asymmet-
rical relationship between requesters and workers
in crowdsourcing. We took great care to pay fair
wages, and were responsive to feedback and ques-
tions throughout the data collection process (see
Appendix D for details). The only personal infor-
mation we collect is the worker IDs from Amazon
Mechanical Turk, which we will not release. The
annotation effort received an IRB exemption.

9 Limitations

In this paper, we apply our collaborative dataset cre-
ation pipeline to a single language and task, English
natural language inference, and leave application
of the pipeline more broadly to future work.

It is possible (if not likely) that datasets partially
authored by language models will have artifacts of
their own, especially those reflecting social biases
that may not be captured by our accuracy-based
evaluation setup. For investigation of a specific
generation artifact observed by Yuan et al. (2021)
in their own collaborative dataset, namely the over-

representation of Western entities, please see Ap-
pendix C.4.

We are not able to perform ablations on different
parts of the pipeline to understand the effectiveness
of each component, e.g., by comparing different
means of collecting exemplar groups or different
templates for prompting GPT-3. Unfortunately,
such variations would be prohibitively expensive as
they each require collecting a dataset of sufficient
scale (along with the necessary human annotation).

Finally, although we uncover examples where
annotators disagree for valid reasons (see Table 5),
we only use one label per example for training
and evaluation. This is because to show the effec-
tiveness of WANLI, we need to compare WANLI
to existing (singly-labeled) training datasets via
performance on established (singly-labeled) bench-
marks. We encourage future work to understand
the limitations of forcing inherently ambiguous in-
stances into the n-way classification scheme, or
otherwise discarding these potentially valuable ex-
amples of linguistic reasoning as noise.
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A Estimated Max Variability

In order to test the correlation between variability
and estimated max variability on a dataset D, we
would have to repeatedly hold out a single exam-
ple x, train a model on D \ {x}, and evaluate how
well the estimated max variability from the model
trained on D \ {x} correlates with the true vari-
ability from the model trained on D, which saw x
during training.

Unfortunately, this would be a very expensive
experiment. Instead, we split the MNLI train set
into 99% for training and 1% (3928 examples) for
evaluation. For each of the held-out examples,
we calculate the variability under MMNLI and es-
timated max variability under MMNLI 99%. The
correlation is shown in Figure 5, and has a Pear-
son’s correlation coefficient of 0.527 with a p-value
of 7× 10−281.
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Figure 5: Correlation between variability of examples
on a model that trains on the full MNLI dataset, and
estimated max variability of the same examples when
they are held out of the training set.

B Modeling Details

All model training is implemented with the Hug-
gingFace (Wolf et al., 2020) library and uses the
original hyperparameters from the RoBERTa paper
for finetuning on GLUE (Liu et al., 2019). We train
the model for five epochs and evaluate the final
model. We choose not to use an early stopping
scheme in order to isolate the training data as the
object of study and control for training length as
a confounding factor. This is important since Tu
et al. (2020) showed that counter-examples can be
learned better with longer training.

All training was performed on a single Nvidia
Quadro RTX 6000 GPU. The duration of training
varied depending on the size of the training data,
from 3 hours for WANLI to 14 hours for MultiNLI
+ WANLI.

Hyperparameter Assignment

Model RoBERTa-large
Number of parameters 345M

Number of epochs 5
Learning rate 10−5

Batch size 32
Weight decay 0.1

Learning rate decay linear
Warmup ratio 0.06

Table 6: Training hyperparameters for RoBERTa-large.

C WANLI Details and Discussion

C.1 Example GPT-3 Context

We include some examples of full GPT-3 contexts
in Table 12, 13, 14, 15.

C.2 GPT-3 Generation Hyperparameters

We queried the GPT-3 Curie model available
through the OpenAI API8 on the dates November
3 to November 5, 2021. In total, the generation
cost $677.89. Hyperparameters for generation9 are
shown in Table 7.

Hyperparameter Assignment

Top p 0.5
Temperature 1
Max tokens 120
Stop string \n\n

Presence penalty 0.0
Frequency penalty 0.0

Table 7: Hyperparameters for generation from GPT-3.

C.3 Dataset sizes at each stage

In Stage 1, we collect the top 25% most ambigu-
ous examples from each label class in MultiNLI
as our set of seed examples. This leads to 98,176
seed examples, where each seed example corre-
sponds to a unique context for GPT-3. We generate
n = 5 examples per seed example, and skip exam-
ples that are not properly formatted with a distinct
premise and hypothesis following the context tem-
plate (Figure 2). At the end of Stage 2, the size
of Dgen is 372,404. After applying the filtering
heuristics described in §2.3 on Dgen, the remaining
dataset size is 287,241. Of the examples discarded,
79,278 generated examples had identical premise
and hypothesis (sans punctuation and casing), and
4,732 examples had copied an in-context exam-
ple. Next, we keep the half with the highest esti-
mated max variability by sourcing an equal number
of examples from each (intended) label class for
a balanced dataset, resulting in Dfiltered with size
143,619. However, we do not actually recruit hu-
man review on all of Dfiltered, and instead annotate
a total of 118,724 examples. Since some of these
examples are discarded, the final WANLI dataset

8https://openai.com/api
9described at https://beta.openai.com/docs/

api-reference/completions/create
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contains 107,885 examples. These correspond to
57,825 seed examples from MultiNLI.

C.4 Investigation of Western entities in
WANLI versus MNLI

While we investigated known artifacts of crowd-
sourced datasets in §4, generated datasets may have
distinct kinds of artifacts. Indeed, recent related
work qualitatively observed an over-representation
of Western entities in generated biographies (Yuan
et al., 2021). To investigate whether this is also
characteristic of WANLI, we use flair (Akbik
et al., 2019) to perform named entity recognition
on MultiNLI and WANLI. Due to the challenges
and ethical risks of automatically determining the
origin of names and organizations, we focus on the
diversity of locations mentioned. We use geopy10

to map all locations (e.g., cities, provinces, land-
marks, as well as countries) to a country.

We find that 79% of location mentions in
WANLI are in Europe or North America, com-
pared to 71% in MultiNLI. In particular, the United
States is massively over-represented, accounting
for 46% of mentions in WANLI and 26% in
MultiNLI. However, both datasets feature a diver-
sity of location names: WANLI mentions loca-
tions in 210 countries across 22K location entities,
and MultiNLI mentions locations in 227 countries
across 163K location entities. We conclude that
over-representation of Western entities is indeed
a concern for generated datasets, and encourage
future work to consider this.

D Human Review

Screenshots of the instructions, guidelines, and an-
notation interface are shown in Tables 6, 7, and
8. The guidelines take inspiration from the de-
sign of the NLI Diagnostics dataset (Wang et al.,
2018). To collect a pool of qualified workers, we
designed a qualification task with examples test-
ing each of these categories. NLI is a challenging
task, and many generated examples are especially
challenging by design. Therefore, instructing an-
notators in how to think about the task and resolve
common issues is key to collecting high-quality,
label-consistent data.

D.1 The Annotators

Annotators were required to have a HIT approval
rate of 98%, a total of 10,000 approved HITs, and

10https://geopy.readthedocs.io

be located in the United States.
300 Turkers took our qualification test, of which

69 passed. Turkers who were later found to pro-
duce extremely careless annotations were removed
from the qualification list (and oftentimes, their
annotations were discarded, though they were still
paid for their work). The number of workers who
contributed to the final dataset is 62.

Throughout the data collection process, the au-
thors would review annotations and write individ-
ualized emails to Turkers with feedback, as well
as group emails to clarify common challenging
cases of NLI (such as examples involving ques-
tions). This follows the recommended crowdsourc-
ing protocol from Nangia et al. (2021).

D.2 Compensation
In designing the task, we aimed for a pay rate of
at least $15 per hour. Workers were paid $0.12 for
each example that they annotate. At the end of data
collection, we aggregate the earning and time spent
from each crowdworker, and find that the median
hourly rate was $22.72, with 85% of workers being
paid over the $15/hour target.

D.3 Revision Analysis
We provide examples of revisions in Table 9. We
find that revisions are generally targeted yet effec-
tive. The majority of revisions change the length
only slightly, with 74% of both premise revisions
and hypothesis revisions changing the word count
between −1 and +2 words. A very large propor-
tion, 11.6% of premise revisions and 20.6% of
hypothesis revisions, changed the set of pronouns
present in the text, often to clarify coreference.

We instructed annotators to revise examples only
when it would make the example more “interesting”
in some sense, or more clear without removing
what’s interesting. Nonetheless, we still observed
a large number of revisions that greatly simplified
the example, oftentimes re-introducing the same
artifacts that have been documented in prior work.
Therefore, we ultimately chose to include revisions
only when both annotators revised the example, in-
dicating that the revision was necessary to improve
the quality of the example.

D.4 Disagreement Analysis
In order to investigate the utility of collecting a
third annotation, we randomly sampled 80 exam-
ples where the two annotators disagreed on the la-
bel (and neither revised nor discarded), and two of
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the authors separately annotated each one. Shock-
ingly, the two authors agreed on the label only 49%
of the time. Furthermore, in 12% of cases, all three
labels were present among the four annotations.
This suggests that disagreement is often due to true
ambiguity rather than careless mislabeling, and a
third annotation would be unlikely to have high
payoff in terms of “correcting” the label. As a re-
sult, we choose not to collect a third annotation
in this work. Instead, we believe that the doubly-
annotated examples in WANLI have flagged many
interesting cases of ambiguity in NLI, and we en-
courage future work to design richer annotation
frameworks to uncover the source(s) of ambiguity.

We choose to keep examples with disagreement
in the WANLI dataset because we believe that fine-
tuning with one of multiple reasonable labels still
provides valuable training signal.

MNLI Dev. Set

Matched Mismatched

Tr
ai

n
Se

t MNLI 90.30 90.10
MNLI ⋄ WANLI 89.63 88.95
MNLI + WANLI 89.90 89.32
WANLI 80.17 80.46

Table 8: Results on MultiNLI’s development set.

E Additional Experiments

E.1 Additional baselines
We additionally perform comparisons with several
subsets of MultiNLI which are the same size as
WANLI: MultiNLI filtered with the AFLite al-
gorithm (MultiNLI with AFLite; Le Bras et al.,
2020), the most ambiguous examples of MultiNLI
(MultiNLI ambiguous; Swayamdipta et al., 2020),
and a random subset of MultiNLI (MultiNLI down-
sampled). Results in Table 10 show that a WANLI-
trained model outperforms these baselines on every
test set.

E.2 Evaluation on MultiNLI
We report the results on MultiNLI’s development
set in Table 8. We find that mixing WANLI into the
MultiNLI training data (either through swapping
or augmentation) maintains in-domain accuracy
within ∼1%. Training on WANLI alone drops
performance on MultiNLI’s development set by
∼10%; however, the higher performance on other
out-of-domain test sets suggests that evaluation

through MultiNLI may not be a definitive signal of
model ability.

E.3 Finetuning T5
We demonstrate that the robustness improvements
from training on WANLI generalizes to another
model architecture, T5-base (Raffel et al., 2020),
which was never used in the data curation pipeline.
Shown in Table 11, training T5-base on WANLI
also outperforms training on MultiNLI on every
test set, including by 4% of NLI Diagnostics, 10%
on HANS, and 8% on Adversarial NLI (similar
margins compared to finetuning RoBERTa-large).

F Data Map of WANLI

In Figure 9, we show a data map of MultiNLI
relative to RoBERTa-large trained on MNLI, and
of WANLI relative to RoBERTa-large trained on
WANLI.
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Figure 6: Instructions provided to crowdworkers on Amazon Mechanical Turk.

Figure 7: Guidelines provided to crowdworkers in the human review stage.
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Figure 8: The interface on Amazon Mechanical Turk used for collecting human annotations. Annotators are given
free text boxes that are pre-populated with the original premise and hypothesis, to ease the work of revision. Then,
they either select an entailment class or discard the example.

Figure 9: Left: Data map for MultiNLI train set, based on a RoBERTa-large classifier trained on MultiNLI.
Right: Data map for WANLI train set, based on a RoBERTa-large classifier trained on WANLI. A comparison
of the distribution in variability (which determines example ambiguity) is remarkable – we see that MultiNLI is
overwhelmingly dominated by easy-to-learn examples with variability close to 0. In contrast, the distribution in
variability is much more spread out in WANLI, suggesting that the dataset contains more valuable examples overall.
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Example Label Purpose of Revision

P: The power plant It is the only source of continuous electric power for
the city.
H: The power plant is very important for the city.

Entailment
Coreference
resolution

P: It was a well-known fact that it was a well-known fact that the solution
was well-known.
H: The solution was well-known.

Entailment Redundancy

P: This will be the first time the king has met the queen in person.
H: The king has met the queen in person before. Contradiction Clarity

P: She walked with a light step, as if she were floating on air.
H: She was floating on air , as if she were walking on air . Contradiction Coherence

P: There is a slight possibility that, if the same temperature data are used,
the temperature of the Earth’s surface in 1998 will be lower than the
temperature of the Earth’s surface in 1998 now .
H: The Earth’s surface in 1998 was lower than the Earth’s surface in 1998
now .

Neutral Self-contradiction

P: She had to go to the library to find out what the name of the street was.
H: She already knew the name of the street. Contradiction

Ambiguous temporal
reference

P: A number of theories have been proposed to explain the decline of
violence in modern society.
H: Violence will decline has declined in modern society.

Entailment Consistent tense

Table 9: Some examples of revisions that were done by annotators on examples generated by GPT-3.

Test Set

Diagnostics HANS* QNLI* WNLI* NQ-NLI* ANLI FEVER-NLI BIG-Bench* WANLI
Data size 1104 30K 5266 706 4855 3200 20K 3324 5000

Tr
ai

ni
ng

Se
t MNLI 393K 68.47 78.08 52.69 56.09 62.34 32.37 68.29 64.68 64.62

MNLI (AFLite) 103K 60.50 73.73 53.91 56.37 64.28 33.12 68.04 70.75 62.19
MNLI (ambiguous) 103K 65.03 74.93 54.42 62.32 62.14 32.68 67.42 68.77 61.15
MNLI (downsampled) 103K 64.67 71.15 59.15 52.97 62.14 28.99 69.08 56.76 62.84

WANLI 103K 72.55 89.40 76.81 65.15 64.03 41.12 70.63 75.40 75.49

Table 10: Additional baselines that finetune RoBERTa-large on different subsets of MultiNLI, filtered via existing
debiasing methods.

Test Set

Diagnostics HANS* QNLI* WNLI* NQ-NLI* ANLI FEVER-NLI BIG-Bench* WANLI
Data size 1104 30K 5266 706 4855 3200 20K 3324 5000

Tr
ai

ni
ng

Se
t MNLI 393K 60.87 76.40 65.49 50.56 61.33 30.56 66.94 58.87 61.72

MNLI + Tailor 485K 61.14 74.34 63.33 50.70 62.05 31.06 67.15 68.95 61.28
MNLI + Z-Aug 754K 60.05 76.73 63.46 50.14 60.53 32.50 67.10 54.81 61.38
MNLI ⋄ ANLI 393K 61.23 73.55 69.80 52.26 61.64 49.91 70.82 68.80 61.66

WANLI 103K 64.58 86.25 74.66 51.13 63.66 38.22 68.27 76.17 72.56

Table 11: Empirical comparison of different training datasets for T5-base. For brevity, we include MNLI, WANLI,
and the strongest baselines from the results based on RoBERTa-large from Table 3.
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Write a pair of sentences that have the same relationship as the previous examples. Examples:

1. In six states, the federal investment represents almost the entire contribution for providing civil legal services
to low-income individuals.
Implication: In 44 states, the federal investment does not represent the entire contribution for providing civil
legal services for people of low income levels.

2. But if it’s at all possible, plan your visit for the spring, autumn, or even the winter, when the big sightseeing
destinations are far less crowded.
Implication: This destination is most crowded in the summer.

3. 5 percent of the routes operating at a loss.
Implication: 95 percent of routes are operating at either profit or break-even.

4. 30 About 10 percent of households did not
Implication: Roughly ninety percent of households did this thing.

5. 5 percent probability that each part will be defect free.
Implication: Each part has a 95 percent chance of having a defect.

6.

Table 12: Context corresponding to row 1 in Table 1, which contains Entailment examples from MultiNLI found
via nearest neighbors in [CLS] token embedding space. All examples require reasoning about set complements,
including from the universe of 100 percent, the 50 U.S. states, as well as the four seasons.

Write a pair of sentences that have the same relationship as the previous examples. Examples:

1. Small holdings abound, and traditional houses sit low on the treeless hillsides.
Possibility: The hills were the only place suitable to build traditional houses.

2. The inner courtyard has a lovely green and blue mosaic of Neptune with his wife Amphitrite.
Possibility: The only colors used in the mosaic of Neptune and Amphitrite are green and blue.

3. Nathan Road, Central, and the hotel malls are places to look.
Possibility: The only places to look are Nathan Road, Central and hotel malls.

4. Make your way westward to the Pont Saint-Martin for a first view of the city’s most enchanting quarter,
the old tannery district known as Petite France.
Possibility: The only place to the west of Pont Saint-Martin is the old tannery district.

5. The artisans, tradespeople, and providers of entertainment (reputable and not so reputable) lived downtown
on the reclaimed marshlands north and east, in the area still known as Shitamachi.
Possibility: The only place where artisans, tradespeople and entertainers could live was in the marshlands to
the north and east.

6.

Table 13: Context corresponding to row 2 in Table 1, which contains Neutral examples where the hypothesis
introduces an exclusivity that is not implied by the premise.
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Write a pair of sentences that have the same relationship as the previous examples. Examples:

1. Dun Laoghaire is the major port on the south coast.
Contradiction: Dun Laoghaire is the major port on the north coast.
2. Leave the city by its eastern Nikanor Gate for a five-minute walk to Hof Argaman (Purple Beach), one
of Israel’s finest beaches.
Contradiction: Leave the city by its western Nikanor Gate for a fifty five minute walk to Hof Argaman.

3. Southwest of the Invalides is the Ecole Militaire, where officers have trained since the middle of the
18th century.
Contradiction: North of the Invalides is the Ecole Militaire, where officers have slept since the early 16th
century.

4. Across the courtyard on the right-hand side is the chateau’s most distinctive feature, the splendid
Francois I wing.
Contradiction: The Francois l wing can be seen across the courtyard on the left-hand side.

5. To the south, in the Sea of Marmara, lie the woods and beaches of the Princes’ Islands.
Contradiction: In the north is the Sea of Marmara where there are mountains to climb.

6.

Table 14: Context corresponding to row 3 in Table 1, which contains Contradiction examples that flip cardinal
directions between the premise and hypothesis.

Write a pair of sentences that have the same relationship as the previous examples. Examples:

1. Vendors and hair braiders are sure to approach you.
Implication: You’re likely to be solicited by vendors or hair braiders.

2. The Carre d’Art, an ultramodern building opposite the Maison Carre, exhibits modern art.
Implication: Pieces of modern art can be found in the Carre d’Art, a structure which stands
across from the Maison Carre.

3. But they also take pains not to dismiss the trauma the Holocaust visited and continues to visit upon Jews.
Implication: The Holocaust visited trauma upon Jews, and they are careful not to dismiss this.

4. One fortunate result of this community’s influence has been the proliferation of good restaurants
and interesting bars from which to choose.
Implication: The influence of this community has led to an increase in the number of intriguing bars and
good dining establishments.

5. Salinger wrote similar letters to other young female writers.
Implication: Other young female writers received similar letters from Salinger as well.

6.

Table 15: Context corresponding to row 7 in Table 1, which contains Entailment examples that substitute a verb in
the premise with one in the hypothesis that has a different subcategorization frame. Note that the third in-context
example does not share quite the same pattern, but GPT-3 is still able to replicate the pattern present in other
examples.
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