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Abstract

From a visual scene containing multiple people,
human is able to distinguish each individual
given the context descriptions about what hap-
pened before, their mental/physical states or
intentions, etc. Above ability heavily relies on
human-centric commonsense knowledge and
reasoning. For example, if asked to identify
the “person who needs healing” in an image,
we need to first know that they usually have in-
juries or suffering expressions, then find the cor-
responding visual clues before finally ground-
ing the person.

We present a new commonsense task, Human-
centric Commonsense Grounding, that tests
the models’ ability to ground individuals given
the context descriptions about what happened
before, and their mental/physical states or in-
tentions. We further create a benchmark, Hu-
manCog, a dataset with 130k grounded com-
monsensical descriptions annotated on 67k
images, covering diverse types of common-
sense and visual scenes. We set up a context-
object-aware method as a strong baseline that
outperforms previous pre-trained and non-
pretrained models. Further analysis demon-
strates that rich visual commonsense and pow-
erful integration of multi-modal commonsense
are essential, which sheds light on future
works. Data and code will be available at
https://github.com/Hxyou/HumanCog.

1 Introduction

Visual scenes often involve multiple people. For
instance, as in movies, a frame can involve multiple
characters. Complex human interaction happens
because different people may have different inten-
tions, roles, and emotions. When observing such
scenes, humans can understand the scene and dif-
ferentiate the characters from each other according
to the context description, such as what will hap-
pen/happened to them, attributes, mental/physical
states, and intentions.

PERSON1

PERSON2 PERSON3

PERSON1 has mouth open because 
PERSON1 is yelling for someone.

If PERSON3 dropped the food, 
PERSON3 will stein his pants.

PERSON1 is going to get 
something forgot in kitchen.

Causal - Explanation

Temporal - Conditional
Temporal - After

(Intention)

PERSON1

PERSON2

PERSON2 feels distressed

PERSON2 had a fight with others.

Mental

Temporal - Before

Figure 1: Human-centric Commonsense Grounding:
given an image, a set of candidate person boxes and
a human-centric commonsensical description, a model
must ground the persons in description to correct person
boxes in image.

Take the bottom image in Fig. 1 as an exam-
ple. When the context description talks about the
figure who is “going to get something forgot in
the kitchen”, humans can match that description
to PERSON1 because PERSON1 is standing up,
looking around, and speaking. We can also con-
nect dots via the understanding that PERSON2 and
PERSON3 are sitting and focusing on eating food
without any sign of leaving. We can achieve this
because we understand the commonsense, such as
causal, temporal, mental, etc., behind the human
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interactions and the subtle visual clues can serve as
hints to identify them.

Understanding human-centric commonsense re-
lations is important in widely broad fields. e.g.
in human-robot communication, it’s crucial for
medical-aid robots to identify “person who needs
healing” and take actions to help. Despite the im-
portance and challenges, lack of development ex-
ists for this task. Existing works are limited to con-
ventional visual object grounding. The state-of-the-
art grounding models can ground objects by the de-
scription of their geometric/spatial relation and ap-
pearance (Mao et al., 2016; Lin et al., 2014; Plum-
mer et al., 2015), and ground people by actions
(Cui et al., 2021), but struggle with complex scenes
requiring human-centric commonsense knowledge
and sophisticated reasoning ability. Meanwhile,
tasks that focus on evaluating commonsense reason-
ing often take the form of multi-choice QA (Zellers
et al., 2019) or free-form generation (Park et al.,
2020). Such formulation tends to offer less inter-
pretability and could contain easy shortcuts. We
formulate our task as a grounding task, with a sim-
ple output format (i.e., finding the alignment be-
tween humans and bounding boxes) while covering
a wide range of commonsense understanding.

In this paper, we formulate the task as Human-
centric Commonsense Grounding. Given an im-
age containing multiple candidate persons and a
commonsensical description (including temporal,
causal, mental , etc. human-interaction), a machine
must ground the persons mentioned in the descrip-
tion to correct person boxes in the image. To back
the study of this task, we introduce HumanCog, a
new dataset with 130k "commonsensical" descrip-
tions where context descriptions are constituted
with human-centric commonsense relations like
mental states, intentions, etc.. Those relations with
associated pronouns can all be grounded to 230k
persons in 67k images, covering diverse visual
scenes. HumanCog is automatically collected by
transferring the questions and correct answers in Vi-
sual Commonsense Reasoning (VCR) to grounded
statements through a set of pre-defined rules, which
also preserves the paired person-box groundings
(i.e., co-reference links). Since the questions in
VCR require commonsense to answer, our trans-
ferred grounded statements also cover various types
of commonsense needed to ground the persons.
Further we employ NLP specialists to iteratively re-
fine the rules until reaching a acceptably low error

rate. Moreover, the validation and test sets are ver-
ified by Amazon Mechanical Turk, and the result
testifies the preciseness of our annotation.

We introduce a context-object-aware method as a
strong baseline on this task based on pre-trained vi-
sion and language Transformer architecture (Chen
et al., 2019). We take the candidate person region
features as weights in classifier and classify the
person tokens in text by cross-entropy loss. To fa-
cilitate the interaction between people and visual
scenes, detected context objects are also input to
the model. Further, at the feature level, we draw the
person tokens in text and neighbor context objects
pertaining to corresponding persons, while push
them away from other persons, through a proposed
context contrastive loss.

Comprehensive experiments are conducted with
a wide range of methods, from heuristic methods to
pre-trained models. We further present both qual-
itative and quantitative analysis and find that rich
contextualized visual representation, effective us-
age of context objects, and better integrating vision
and text by vision-language pre-training, are the
keys to improve the performance.

In summary, our main contribution is threefold.
(1) We introduce a new task, human-centric com-
monsense grounding, to ground the persons men-
tioned in commonsensical descriptions. (2) A large-
scale dataset, HumanCog, containing 130k com-
monsensical descriptions on 67k images. (3) A
context-object-aware model to facilitate the visual
commonsense learning, establishing a strong base-
line on our new challenge.

2 Related Work

Visual Grounding Dataset Ground the corre-
sponding regions in images given text information
is an essential task to bridge image and text modali-
ties. There are in general two conventional settings
in existing grounding datasets. In the first setting,
the entire sentence is mainly describing one object
and its environment/attribute, and only refers to
one box in image, which is termed as Referring
expression comprehension (REC). RefCOCO (Yu
et al., 2016), RefCOCO+ (Yu et al., 2016) and Re-
fCOCOg (Mao et al., 2016) are commonly used
REC datasets annotated on top of MSCOCO (Lin
et al., 2014). RefCOCO and RefCOCO+ are an-
notated using ReferIt Game (Kazemzadeh et al.,
2014), but RefCOCO+ focuses more on appear-
ance description since location words are not al-
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lowed. RefCOCOg is collected by Mechanical
Turks in a non-interactive setting. CLEVR-Ref+
(Liu et al., 2019) is collected on synthesized im-
ages where objects of different attributes are put
on plane. KB-REF (Wang et al., 2020) enriches
the sentence description by injecting knowledge re-
trieved from the external knowledge base. Flick30k
Entity (Plummer et al., 2015) is the pioneer to estab-
lish the second setting: multiple phrases inside one
caption can be grounded to different boxes. Who’s
Waldo(Cui et al., 2021) further studies grounding
the persons in sentence. Our work differs from
Who’s Waldo and KB-REF in that the descriptions
contain rich human-centric commonsense such as
temporal, causal, mental, etc.

Visual Grounding Approaches Current meth-
ods can be divided into two categories: one-stage
and two-stage(Qiao et al., 2020). In two-stage
methods, a set of candidate object regions are first
detected by object detection models, then multi-
modal models are used to predict the links be-
tween detected boxes and text. LSTM-based mod-
els (Luo and Shakhnarovich, 2017; Hu et al., 2017),
attention-based models(Yu et al., 2018; Kim et al.,
2018; Fukui et al., 2016), graph-based models (Liu
et al., 2020; Yang et al., 2019) and pre-trained mod-
els (Li et al., 2019; Lu et al., 2019; Chen et al.,
2019) are explored. In one-stage models, the co-
ordinates of grounded object box are directly pre-
dicted by a single model (Liao et al., 2020; Deng
et al., 2021; Kamath et al., 2021).More can be
found in a survey (Qiao et al., 2020). Since our
dataset already gives ground-truth person candi-
date boxes, i.e., the first stage results in two-stage
schema are provided, we mainly focuses on build-
ing better model for image-text understanding (sec-
ond stage in two-stage schema).

Multimodal Commonsense Reasoning Multi-
modal commonsense reasoning has attracted wide
research interest in recent years. VCR (Zellers
et al., 2019) introduces commonsense question that
requires a deep understanding of both image and
text, and is formulated as a multi-choice answering
task. VisualCOMET (Park et al., 2020) focuses
on inferring the temporal and causal information
given current image and description, regarded as
a generation task. VLEP (Lei et al., 2020) also
requires machine to predict future event but is in
multi-choice answering format. We are similar
to VCR in that we collect images from VCR and

transform the questions&answers in VCR to state-
ments. However, we differs from above works in
that we target at the human-centric commonsense
grounding ability of machines.

3 Task: Human-centric Commonsense
Grounding

We present a challenging task, human-centric com-
monsense grounding, to mimic the inference ability
of humans to distinguish wanted persons in im-
age by corresponding commonsensical description.
The input of one sample in this task includes: (1)
An image I . (2) A set of N (N ≥ 2) candidate per-
son boxes r, covering all the persons in the image.
(3) A commonsensical description t = {ti}ni=1

of the image, where n is the token number, e.g.,
“PERSONX feels distressed.” ti is either a token in
vocabulary or a person link (PERSONX in above
example) that remains to be grounded/referred to
ground-truth person in image. At least one person
link exists.

Given above input, the goal of the task is to
ground/refer the person links to corresponding cor-
rect person boxes out of all candidate person boxes,
i.e., argmaxr f(ti|t, I, r) = rj , {ti, rj} ∈ L,
where L is the set of ground-truth reference pairs
and f is the desired model. We evaluate the accu-
racy of correct prediction among candidate person
boxes.

Take Fig. 1 as an example. For the top picture,
a commonsensial description is “PERSONX feels
distressed”, where “PERSONX” is an person link,
and its corresponding ground-truth person in image
should be “PERSON2”. It’s noted that there might
be more than one person links referring to the same
person in image (see the bottom picture in Fig. 1).

4 Dataset Collection and Analysis

The HumanCog dataset contains 130k commonsen-
sical descriptions on 67k images, where in total
230k persons are grounded. In the following, we
describe how HumanCog is constructed and anno-
tated, and provide detailed analysis of the dataset.

4.1 Data Collection

To support the research of human-centric com-
monsense grounding task, we hope the samples
in dataset should have two properties: (1) cover a
wide range of visual scenes, (2) have rich and prac-
tical commonsense in the description. Although
employing annotators to annotate from scratch is a
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PERSON1

PERSON2 PERSON3

Q: Why does PERSON1 have mouth open?
A: PERSON1 is yelling for someone

Rule-based 
Transformation

PERSON0 have mouth open 
because PERSON0 is yelling 

for someone

Generated Statement

Post-
Processing

Reject

Verification by 
Workers

Iterative 
Refinement

Figure 2: Diagram of data collection.

Question: What will PERSON3 do if PERSON3 dropped the food? 
Answer: He will stein his pants

Step1:          Detect If-condition in Q; Delete will-support.
Generated: What will PERSON3 do if PERSON3 dropped the food? 

Step2:          Reverse wh-movement.
Generated: What PERSON3 if PERSON3 dropped the food? 

Step3:          Delete wh-movement.
Generated: PERSON3 What if PERSON3 dropped the food? 

Step4:          Concatenate Answer.
Generated: PERSON3 will stein his pants if PERSON3 dropped the 
food?

Step5:          Switch Order; Delete/Add marks.
Generated: If PERSON3 dropped the food, PERSON3 will stein his 
pants.

Figure 3: An example of applying one of the rules to a
sample.

feasible way, it might be costly to build such a large-
scale dataset. Instead, we find VCR (Zellers et al.,
2019) a perfect base for our usage, because VCR’s
images are from movie clips depicting complex and
diverse situations, and its questions and answers are
carefully annotated by turkers in free-form focus-
ing on various commonsense. To build HumanCog
dataset, we extend and tailor VCR dataset by fol-
lowing steps: (1) Rule-based Transformation with
Iterative Refinement (2) Post-processing (3) Vali-
dation with Amazon Turker.

Transformation via rules with Iterative Refine-
ment Since the task of VCR is question answer-
ing, the text part of each sample in VCR contains
one question and four answer choices. To extend
VCR for our task, following (Demszky et al., 2018),
we transform the questions and answers to state-
ments/descriptions via a set of rules. More specifi-
cally, in each example, among four answer choices,
we take the correct answer agti and question qi as
input {qi, agti }, since the other answer choices are
semantically wrong or irrelevant. Assume we have
a set of Q pre-defined rules {Ti}Qi=1. During trans-
formation, we first examine whether each sample
{qi, agti } can match certain rule out of all rules. We
discard the unmatched examples while keeping the

matched ones, which preserves 93.3% samples in
train and validation set of VCR (223k out of 239k).
Then we transform each {qi, agti } to a statement
via the matched rule.

To design different rules, we start from question
types and find there are mainly 7 question types in
VCR, which begin with what, whose, how, where,
who and which. We first define a basic rule for each
question type. Then we employ NLP specialists to
iteratively refine those basic rules to cover as many
as possible various scenarios under each question
type. To be more concrete, in every iteration, 20
question-answer pairs per question types are sam-
pled, the NLP specialist have to examine whether
current rules can perfectly transform them. If not,
they can revise current rules or create new rules for
unseen scenarios. Tens of iterations are conducted
until current rules can correctly transform all sam-
ples in last 5 iterations. In Fig. 3, We show one
example of applying a rule to a question-answer
pair in our data. At the end, 15 rules are summa-
rized to do the transformation. The accuracy of
our rules are validated by further Amazon Turker
Annotation, which will be introduced later.

Post-processing After obtaining the statements,
several steps are applied in post-processing. (1)
VCR contains all person bounding boxes and
object bounding boxes in image, which are al-
ready verified by Amazon Turker, and annotated
person/object-region co-reference links. Among
verified bounding boxes, we only keep the person
bounding boxes as candidate person boxes in our
task. As for the co-reference links, we keep person-
box links as ground-truth grounding labels, and
replace the object-region links mentioned in state-
ment with their object names. In that way, each
token in statements is either a word in vocabulary
or a person link. (2) We remove the samples that
have no person links in statements or no person
candidate box in images. (3) We remove samples
that have only one candidate person box in image,
in that the accuracy would be 100% for those sam-
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Dataset V. Src. #Description #Image #Target Avg. Word Len. Human-centric Knowledge Reqiured

RefCOCO MSCOCO 142k 20k 142k 3.61 % Spatial/Appearance/Action
RefCOCO+ MSCOCO 141k 20k 141k 3.53 % Appearance
RefCOCOg MSCOCO 104k 27k 104k 8.43 % Spatial/Appearance/Action

Flickr 30k entities Flickr 159k 32k 276k - % Spatial/Appearance/Action
Who’s Waldo News 193k 193k 215k - ! Event/Activity

HumanCog(ours) Movies 130k 67k 230k 10.32 ! Commonsense-Temporal/Causal/Mental

Table 1: Comparison with other grounding datasets. ‘-’ denotes data not provided in their paper. Additionally, the
average number of people in the image (sentence) in our dataset is 4.11 (1.85).

PERSON0 is quite shocked. PERSON4 are ' s arms raised because 
PERSON4 is excited

(a) (b)

Figure 4: Ambiguous and unreadable examples.

ples. (4) Some samples contain too many persons
in image, where the persons tend to be blurry and
incomplete. To reduce such noise, we remove sam-
ples that have more than 10 persons in image. (5)
In some cases, there will be two or more person
links tied together in description, e.g., “PERSON1
and PERSON2”. As a result, the person links can
be exchanged, which causes the ambiguity. We
simply remove those samples.

In summary, after above post-processing, we
keep 134k samples (out of 223k), which are split
into 120k training, 7k validation and 7k test set.

Validation with Amazon Turker Workers on
Amazon Turker are employed to verify the valida-
tion and test set of our data. Now that the person-
box grounding links and candidate person boxes
have been checked by workers in VCR, we as-
sume the correctness of them are guaranteed. The
two focuses of our verification are ambiguity of
grounding links and grammar mistakes or typos
in transformed statement. The ambiguity means
that in some samples the person mentioned in state-
ment can refer to multiple person boxes in the im-
age. For example, in Fig. 4 (a), the description
is “PERSONX” is quite shocked”. However, both
“PERSON0” and “PERSON1” are quite shocked
in the image. So the ground-truth “PERSON1” is
not complete and this sample is ambiguous. Even
though it’s acceptable that the noise brought by
incomplete links exists in the training, we hope
to remove it from validation and test set to make

Figure 5: Commonsense Type Analysis

sure a precise evaluation. By annotation of workers,
only 29% data are ambiguous to certain degree. For
grammar mistakes or typos, it’s because questions
and answers in VCR are in free-form, and finite
rules may not cover all cases. As shown in Fig. 4
(b), “PERSONX are ’ s arms raised” is wrong due
to the lack of consideration of genitive cases in rule
design. Through annotation, we find only 3% data
having grammar mistakes or typos.

We remove the ambiguous and unreadable sam-
ples. Then, the validation/test set shrinks to
4.9k/4.9k samples, while the training set remains
120k. We pay the workers 0.05$ per sample to
make their wage 12$ to 15$ per hour. In order to
obtain high quality data, only workers that have fin-
ished more than 400 HITs with a decent approval
rate of 96% are allowed for our annotation, which
gives us around 90% agreement in identifying the
most likely referred person.

4.2 Data Analysis

Commonsense Types Our dataset covers plenti-
ful daily scenarios with an enormous diversity in
commonsense types. We classify the commonsense
types according to the templates. As shown in Fig.
5, 43% samples involve causal commonsense, 36%
samples are related to highly semantic activity com-
monsense. For some categories, such as causal
and temporal, we can further find sub-categories.
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Causal commonsense can be either causal inference
or causal explanation. Temporal commonsense in-
cludes before, after and conditional commonsense.
Some examples are shown in Fig. 1 and more can
be found in experiment section.

Comparison with Other Grounding Datasets
Tab. 1 exhibits a comparison of our dataset to
previous visual grounding datasets. HumanCog is
the only one specializing on human-centric com-
monsense grounding. Who’s Waldo (Cui et al.,
2021) is most similar to us, in that both focus on
grounding persons. Nevertheless, their samples
are crawled from news, where the descriptions are
mostly about low-level human actions that are vis-
ible straight from images, seldom requiring extra
hop of inference and commonsense knowledge.

5 Method

In this section, we introduce a context-object-aware
method as a strong baseline to solve the task. To
jointly encode vision and text input, our architec-
ture is built on a pre-trained vision-language Trans-
former, UNITER (Chen et al., 2019) for its gener-
ality, which will be covered in Sec. 5.1. In Sec.
5.2, we introduce the classification loss and the
proposed context contrastive loss that can facili-
tate the visual commonsense learning between the
human-object interaction. The diagram of method
is shown in Fig. 6

5.1 Architecture

Visual Input Given the image I and candidate
person boxes r, we follow UNITER (Chen et al.,
2019) to use the Faster R-CNN (Ren et al., 2015) to
extract the pooled ROI features of each region ri as
visual features. Location features are encoded by a
7-dimensional vector, [x1, y1, x2, y2, w, h, w ∗ h]1.
Visual and location features are transformed into
the same dimension through two FC layers, and are
then summed up and normalized by a LN, as the
input features of each region. Additionally, to com-
plement person representation and enrich the visual
scene understanding, we take extra detected object
proposals2 r

′
by Faster R-CNN and append their

features together with candidate person boxes as in-
put. It’s validated in experiments that the additional
proposals are essentially helpful to this task.

1[normalized top/left/bottom/right coordinates, width,
height, area.]

2Objectness Threshold is 0.2, Max. No. of object is 100.

PERSONX have mouth open 
because PERSONY is yelling 

for someone

CNN Tokenizer

…Region 
Features

Token
Embeddings

Vision&Language Transformer

…

PERSON1

PERSON2 PERSON3

0.5 0.3 0.2

0.2 0.7 0.1 1 0 0

1 0 0
PERSONX

PERSONY

PERSON1 PERSON2 PERSON3

CE
Loss

Ground-Truth Labels

Classification Loss

PERSONX

PERSONY

Context Contrastive Loss Push Away
Pull Together

Person Tokens

Candidate 
Person Boxes

Context boxes of 
Person1

Image

Description

Figure 6: Diagram of our context-object-aware method

Textual Input We tokenize the input description
into WordPieces (Wu et al., 2016). The word em-
beddings and position embeddings are summed up
and normalized by a LN, as input text features.
As for person links in description, following VL-
BERT (Su et al., 2019), we replace them with ran-
dom neutral names, e.g., James or Mary. Compared
with initializing new embeddings, it can better uti-
lize the pre-training knowledge.

Transformer Encoder The visual and textual
features are input into the Transformer (Chen et al.,
2019), pre-trained with 9.5M image-caption pairs.
The self-attention layers inside enable the contextu-
alization of the two modalities. We take the hidden
layers’ features for loss calculation.

5.2 Loss Function

Classification Loss We treat the task as a clas-
sification problem, where each person link ti in
description t should be classified into the ground-
truth person box rj out of N candidate person boxes
r. In that way, we transform the features of candi-
date person boxes into classifier weights and apply
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a cross-entropy loss Lcls:

Q(i, j) = f(ti)W1 × (f(rj)W2)
T

Lcls = −1

k

k∑

i=1

log(Softmax(Q(i, :))),

where f(·) denotes the final layer’s feature output,
W1 and W2 are linear weight matrices, and k is the
number of person links in description.

Context Contrastive Loss Although the classi-
fication loss is straightforward to model human-
human interaction, the relationship between de-
tected object proposals and persons is not fully
exploited, i.e., the human-object interaction. The
surrounding objects can provide plentiful and dis-
tinctive semantics to the persons, which is essen-
tial to diversify persons and identify ground-truth
(GT) persons from other persons. In response to
that, we propose a context contrastive loss, where
context objects pertaining to GT persons are re-
garded as positive instances and their features are
aligned with corresponding person embeddings in
text. More specifically, we pull the person links
in description closer to context objects pertaining
to corresponding GT persons and push them away
from other negative persons in feature space. At
first, for person link ti in text, whose GT person
box is rj in image, we define the pertaining con-
text objects C(i) as those detected boxes that have
higher IoU scores with GT person and lower IoU
scores with other persons:

C(i) = {r′
c|r

′
c ∈ r

′
and IoU(r

′
c, rj) > T1

and max(IoU(r
′
c, r\rj)) < T2, {ti, rj} ∈ L},

where T1 and T2 are two thresholds as hyper-
parameters. Then we further include GT person
box rj also in the positive instances, P (i) =
C(i) ∨ rj . The negative instances are other per-
son boxes N(i) = r\rj . Contrastive loss has
been widely studied in recent works, e.g., InfoNCE
(Oord et al., 2018) and its related extensions (He
et al., 2020; Khosla et al., 2020; Radford et al.,
2021; Jia et al., 2021). To realize contrastive learn-
ing in our scenario, considering the pertaining ob-
jects that have more overlap with GT person rj
tend to be semantically more aligned, we further
utilize their IoU scores as the weights in proposed
context contrastive loss:

Lcon = −1

k

k∑

i=1

Li
con

Li
con =

∑

rp∈P (i)

IoU(rp, rj)

|P (i)| ·

log
exp(gl(ti) · gl(rp)/τ)∑

rn∈N (i)∨P (i) exp(gl(ti) · gl(rn)/τ)
,

where τ is the temperature and gl(·) denotes the
encoded feature of l-th hidden layer from the last
(l=3 in our case). Through context contrastive loss,
we encourage the person link representations more
similar to the correct persons and contextual neigh-
bors of them, and more distinguished from other
persons.

In training, two losses are ensembled together
with a coefficient λ to adjust the significance of
contrastive loss, which is shown as follows. In ex-
periments, we find λ = 1 already gives satisfactory
performance. In inference, we take the classifica-
tion logits and select the box with the highest score
as prediction, regardless of the contrastive part.

Ltrain = Lcls + λLcon.

6 Results

For evaluation, we comprehensively study the ef-
fect of various methods on this task. We first intro-
duce previous state-of-the-art (SOTA) methods and
compare them with the proposed context-object-
aware model (Sec. 6.2). And we conduct ablation
experiments to quantify the importance of different
components in this task (Sec. 6.3). Further, we
provide qualitative results for analysis (Sec. 6.4).

6.1 Experimental Setup

We compute accuracy of predicted person boxes
for all mentioned persons in descriptions as the
evaluation metric. For the visual features, if not
specified, we use an off-the-shelf pre-trained Faster-
RCNN (Anderson et al., 2018) to extract the region
features of both person candidate boxes and de-
tected boxes from image. As for the training of
proposed context-object-aware model, pre-trained
weight of UNITER is loaded as the initialization.
AdamW (Loshchilov and Hutter, 2017) optimizer
is used with a learning rate of 6e-5. Following
UNITER, we use dynamic sequence length to batch
the samples by their number of input tokens, so that
padding is reduced and training is speeded up. We
set the batch size to 4000 and train 4k steps. Our
model is implemented in Pytorch and trained with
4 TITAN RTX GPUs. (Paszke et al., 2019)
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Model Model-size
# Pre-training

Acc.
Pairs

Random - - 30.9

B→ S - - 39.2
L→ R - - 31.0

L→ R (Biggest) - - 39.6

BAN(LSTM) - - 56.2 ±0.36
BAN(BERT) - - 62.8 ±0.32

VL-BERT
base 3.3M 67.4 ±0.27
large 3.3M 68.2 ±0.22

VILLA
base 9.5M 68.1 ±0.56
large 9.5M 68.5 ±0.52

UNITER
base 9.5M 67.9 ±0.29
large 9.5M 68.9 ±0.31

Ours large 9.5M 69.8 ±0.23

Human - - 92.3

Table 2: Comparison against previous methods

Model Acc.(%)

Ours 69.8

− Context Contrastive Loss 68.9
− Detected Context Objects 66.9
− Pre-training on Image-Text Pairs 64.5

Table 3: Ablation of different components in our method

6.2 Compared with Previous Methods

Several previous visual grounding methods are im-
plemented to be compared with our context-object-
aware model, including heuristic methods, models
w/o image-text pre-training and models w/ image-
text pre-training.
Heuristic Methods Similar to (Cui et al., 2021),
we probe the biases in dataset by several hand-
crafted heuristics. To be more specific, we assign
the persons mentioned in description from left to
right to person candidate boxes in image that are
sorted based on following heuristics: (1) big to
small with decreasing areas; (2) left to right accord-
ing to the upper-left coordinates (3) left to right
with only top-k biggest boxes, where k is the num-
ber of mentioned persons in description.
Human Evaluation We go through the test set and
obtained a 92.3% accuracy with human evaluation.
It can be treated as an reasonable upperbound of
current machine models.
Methods w/o Image-Text Pre-training In pre-
vious works of non-pretrained vision&Language
models, we choose BAN (Kim et al., 2018) for

its superior performance on visual grounding and
other downstream tasks. BAN extracts visual fea-
tures and text features, and then fuse two modali-
ties by a bilinear attention network. A classification
loss as in Sec. 5.2 is applied afterward to do the
classification. In our implementation, text feature
can be extracted either by a LSTM (Hochreiter and
Schmidhuber, 1997) module, as in the original pa-
per, or a pre-trained BERT (Devlin et al., 2018)
module. We name those two BAN(LSTM) and
BAN(BERT).

Methods w/ Image-Text Pre-training Recently,
there have been a lot research interests in vi-
sion&language pre-training models for their ef-
fectiveness and generalizability. We imple-
ment widely-used VL-BERT (Su et al., 2019),
UNITER (Chen et al., 2019) and VILLA (Gan
et al., 2020), whose numbers of pre-training image-
caption pairs range from 3.3M to 9.5M. Similarly,
we also apply the classification loss for training.

The full experimental result, including random
guessing, is shown in Tab. 2. By comparing the
heuristic methods with random guessing, it’s found
that the strongest heuristic can only improve 9%,
which indicates the spatial bias and area bias is
not severe in our dataset. From the comparison of
models w/ and w/o image-text pre-training, we find
that, in general, larger pre-training data can bring
higher performance. Last but not least, proposed
context-object-aware method can further outper-
form UNITER by 0.9%, reaching a final perfor-
mance of 69.8% and establishing a strong baseline.

6.3 Ablation Study

Components We further validate the effective-
ness of different components in our method. In
Tab. 3, we present the results. If the multi-modal
Transformer weight is initialized from a BERT
model without image-caption pre-training, the per-
formance drops by 5.3%, which is in line with
the finding in previous section that image-text pre-
training is beneficial. Removing the context con-
trastive loss and the detected context objects also
bring a performance degrade of 0.9% and 2.9%
respectively. It highlights the importance of incor-
porating contextual objects and enhancing human-
object interactions. In summary, both strong image-
text fusion and effective human-object visual com-
monsense modeling are crucial for this task, which
suggests the avenues to future works.
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GT: PERSON2 is about to kiss PERSON1
Pred.: PERSON2 is about to kiss PERSON1

GT: PERSON2 is messing with his food trying to figure out what it is
Pred.: PERSON2 is messing with his food trying to figure out what it is

GT: If PERSON1 grab the envelope, PERSON2 will get upset
Pred.: If PERSON1 grab the envelope, PERSON2 will get upset

GT: PERSON4 is waiting for a phone call.
Pred.: PERSON3 is waiting for a phone call.

GT: PERSON5 is closing the door.
Pred.: PERSON3 is closing the door.

GT: PERSON4 is looking at his food like that because PERSON4 thinks it’s poisoned.
Pred.: PERSON7 is looking at his food like that because PERSON7 thinks it’s poisoned.

Correct Predictions:

Wrong Predictions:

Figure 7: Qualitative Results. GT denotes ground-truth links in description. Pred. denotes predicted links.

Hyperparameters We ablated where to insert
the context contrastive loss. We found taking the
output of 3rd Transformer layer from the last to
compute context contrastive loss performs the best.
Others bring at most 0.6% performance drop. We
infer that contrastive and classification loss are not
fully complementary when added to the same layer.
Putting the auxiliary loss earlier helps the last sev-
eral layers specialize in the classification target.

6.4 Qualitative Results

In Fig.7, we present qualitative results of our
method. Ours can correctly ground to the GT per-
son boxes in many cases. In the second correct sam-
ples, our model can predict it’s PERSON2 instead
of PERSON1 probably by the facial expression and
the food in front of him. Our model can also work
well under the complex causal scenarios, such as
the third correct sample. Sometimes, we fail on
those samples where the visual information might
be incomplete, blurry or misleading. For example,
in the first wrong sample, the object PERSON3
is holding a cell phone from appearance, which
might mislead the model. And in the 2nd wrong
sample, the door is unseen from the image. Some
too complex descriptions that require detailed and
subtle observation may also cause failure. In the
3rd wrong sample, the PERSON7 is actually hiding
something while the PERSON4 is stirring his food,
making models hard to tell.

7 Conclusion

In this work, we present a new task: human-centric
commonsense grounding, where machines are re-
quired to ground the persons mentioned in a com-
monsensical description. Correspondingly, we col-
lect a new dataset for training and evaluation. Also,
we proposed a context-object-aware method that
exploits background context objects via context
contrastive loss for a strong vision-language under-
standing. Through detailed analysis, we find there
is still an ample room for improvement and we
point out the potential directions for further works.
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Limitations

One limitation of our work is that the training data
might be noisy compared with validation and test
data. But according to the statistics summarized
from validation and test data, we only have around
3% unreadable samples and 29% ambiguous sam-
ples in the training set, which is acceptable. It’s
also a design choice to include ambiguous samples
as we would like to test if a model can generalize
well by learning from noisy data. The noisy setting
simulates the process that humans learn from am-
biguous examples rather than heavily curated data.
And our experimental results prove that trained
with noisy data, machines can still greatly outper-
form random guess.
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