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Abstract
While research on scientific claim verification
has led to the development of powerful systems
that appear to approach human performance,
these approaches have yet to be tested in a real-
istic setting against large corpora of scientific
literature. Moving to this open-domain evalua-
tion setting, however, poses unique challenges;
in particular, it is infeasible to exhaustively an-
notate all evidence documents. In this work,
we present SCIFACT-OPEN, a new test col-
lection designed to evaluate the performance
of scientific claim verification systems on a
corpus of 500K research abstracts. Drawing
upon pooling techniques from information re-
trieval, we collect evidence for scientific claims
by pooling and annotating the top predictions
of four state-of-the-art scientific claim verifica-
tion models. We find that systems developed
on smaller corpora struggle to generalize to
SCIFACT-OPEN, exhibiting performance drops
of at least 15 F1. In addition, analysis of the
evidence in SCIFACT-OPEN reveals interesting
phenomena likely to appear when claim veri-
fication systems are deployed in practice, e.g.,
cases where the evidence supports only a spe-
cial case of the claim. Our dataset is available at
https://github.com/dwadden/scifact-open.

1 Introduction

The task of scientific claim verification (Wadden
et al., 2020; Kotonya and Toni, 2020) aims to help
system users assess the veracity of a scientific
claim relative to a corpus of research literature.
Most existing work and available datasets focus
on verifying claims against a much more limited
context—for instance, a single article or text snip-
pet (Saakyan et al., 2021; Sarrouti et al., 2021;
Kotonya and Toni, 2020) or a small, artificially-
constructed collection of documents (Wadden et al.,
2020). Current state-of-the-art models are able to
achieve very strong performance on these datasets,
in some cases approaching human agreement (Wad-
den et al., 2022).

SCIFACT-ORIG

SCIFACT-
OPEN (500K)

Claim: Cancer risk is lower in individuals with a 
history of alcohol consumption
Supports: Alcohol consumption was associated 
with a decreased risk of thyroid cancer
Refutes: We found that the risk of cancer rises 
with increasing levels of alcohol consumption

Figure 1: SCIFACT-OPEN, a new test collection for
scientific claim verification that expands beyond the
5K abstract retrieval setting in the original SCIFACT
dataset (Wadden et al., 2020) to a corpus of 500K ab-
stracts. Each claim in SCIFACT-OPEN is annotated with
evidence that SUPPORTS or REFUTES the claim. In the
example shown, the majority of evidence REFUTES the
claim that alcohol consumption reduces cancer risk, al-
though one abstract indicates that alcohol consumption
may reduce thyroid cancer risk specifically.

This gives rise to the question of the scalability
of scientific claim verification systems to realistic,
open-domain settings that involve verifying claims
against corpora containing hundreds of thousands
of documents. In these cases, claim verification sys-
tems should assist users by identifying and catego-
rizing all available documents that contain evidence
supporting or refuting each claim (Fig. 1). How-
ever, evaluating system performance in this setting
is difficult because exhaustive evidence annotation
is infeasible, an issue analogous to evaluation chal-
lenges in information retrieval (IR).

In this paper, we construct a new test collec-
tion for open-domain scientific claim verification,
called SCIFACT-OPEN, which requires models to
verify claims against evidence from both the SCI-
FACT (Wadden et al., 2020) collection, as well as
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additional evidence from a corpus of 500K scien-
tific research abstracts. To avoid the burden of
exhaustive annotation, we take inspiration from the
pooling strategy (Sparck Jones and van Rijsber-
gen, 1975) popularized by the TREC competitions
(Voorhees and Harman, 2005) and combine the pre-
dictions of several state-of-the-art scientific claim
verification models—for each claim, abstracts that
the models identify as likely to SUPPORT or RE-
FUTE the claim are included as candidates for hu-
man annotation.

Our main contributions and findings are as fol-
lows. (1) We introduce SCIFACT-OPEN, a new test
collection for open-domain scientific claim verifica-
tion, including 279 claims verified against evidence
retrieved from a corpus of 500K abstracts. (2) We
find that state-of-the-art models developed for SCI-
FACT perform substantially worse (at least 15 F1)
in the open-domain setting, highlighting the need
to improve upon the generalization capabilities of
existing systems. (3) We identify and character-
ize new dataset phenomena that are likely to occur
in real-world claim verification settings. These
include mismatches between the specificity of a
claim and a piece of evidence, and the presence of
conflicting evidence (Fig. 1).

With SCIFACT-OPEN, we introduce a challeng-
ing new test set for scientific claim verification that
more closely approximates how the task might be
performed in real-word settings. This dataset will
allow for further study of claim-evidence phenom-
ena and model generalizability as encountered in
open-domain scientific claim verification.

2 Background and Task Overview

We review the scientific claim verification task, and
summarize the data collection process and model-
ing approaches for SCIFACT, which we build upon
in this work. We elect to use the SCIFACT dataset
as our starting point because of the diversity of
claims in the dataset and the availability of a num-
ber of state-of-the-art models that can be used for
pooled data collection. In the following, we refer
to the original SCIFACT dataset as SCIFACT-ORIG.

2.1 Task definition
Given a claim c and a corpus of research ab-
stracts A, the scientific claim verification task
is to identify all abstracts in A which contain
evidence relevant to c, and to predict a label
y(c, a) ∈ {SUPPORTS, REFUTES} for each evi-
dence abstract. All other abstracts are labeled

y(c, a) = NEI (Not Enough Info). We will re-
fer to a single (c, a) pair as a claim / abstract pair,
or CAP. Any CAP where the abstract a provides
evidence for the claim c (either SUPPORTS or RE-
FUTES) will be called an evidentiary CAP, or ECAP.
Models are evaluated on their precision, recall, and
F1 in identifying and correctly labeling the evi-
dence abstracts associated with each claim in the
dataset (or equivalently, in identifying ECAPs).1

2.2 SCIFACT-ORIG

Each claim in SCIFACT-ORIG was created by re-
writing a citation sentence occurring in a scientific
article, and verifying the claim against the abstracts
of the cited articles. The resulting claims are di-
verse both in terms of their subject matter—ranging
from molecular biology to public health—as well
as their level of specificity (see §3.3). Models are
required to retrieve and label evidence from a small
(roughly 5K abstract) corpus.

Models for SCIFACT-ORIG generally follow a
two-stage approach to verify a given claim. First, a
small collection of candidate abstracts is retrieved
from the corpus using a retrieval technique like
BM25 (Robertson and Zaragoza, 2009); then, a
transformer-based language model (Devlin et al.,
2019; Raffel et al., 2020) is trained to predict
whether each retrieved document SUPPORTS, RE-
FUTES, or contains no relevant evidence (NEI) with
respect to the claim.

As we show in §4 and §5, a key determinant
of system generalization is the negative sampling
ratio. A negative sampling ratio of r indicates that
the model is trained on r irrelevant CAPs for every
relevant ECAP. Negative sampling has been shown
to improve performance (particularly precision) on
SCIFACT-ORIG (Li et al., 2021). See Appendix
A.4 for additional details.

3 The SCIFACT-OPEN dataset

In this section, we describe the construction of
SCIFACT-OPEN. We report the performance of
claim verification models on SCIFACT-OPEN in §4,
and perform reliability checks on the results in §5.

Our goal is to construct a test collection which
can be used to assess the performance of claim
verification systems deployed on a large corpus

1The original SCIFACT task also requires the prediction
of rationales justifying each label. Due to the expense of
collecting rationale annotations, in this work we do not require
rationales; we evaluate using the abstract-level label-only F1
metric described in Wadden et al. (2020).
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Figure 2: Pooling methodology used to collect evidence for SCIFACT-OPEN. We construct the pool by combining
the d most-confident predictions of n different systems. A single CAP is represented as a colored box; the number
in the box indicates a hypothetical confidence score. In this example, the annotation pool contains 3 CAPs from
Claim 1, 2 for Claim 2, and 1 for Claim 3. Annotators found evidence for 4 / 6 of these CAPS.

of scientific literature. This requires a collection
of claims, a corpus of abstracts against which to
verify them, and evidence annotations with which
to evaluate system predictions. We use the claims
from the SCIFACT-ORIG test set as our claims for
SCIFACT-OPEN.2 To obtain evidence annotations,
we use all evidence from SCIFACT-ORIG as ev-
idence in our new dataset and collect additional
evidence from the SCIFACT-OPEN corpus.

For our corpus, we filter the S2ORC dataset (Lo
et al., 2020) for all articles which (1) cover topics
related to medicine or biology and (2) have at least
one inbound and one outbound citation. From the
roughly 6.5 million articles that pass these filters,
we randomly sample 500K articles to form the cor-
pus for SCIFACT-OPEN, making sure to include the
5K abstracts from SCIFACT-ORIG. We choose to
limit the corpus to 500K abstracts to ensure that we
can achieve sufficient annotation coverage of the
available evidence. Additional details on corpus
construction can be found in Appendix A.

Unlike SCIFACT-ORIG (which is skewed toward
highly-cited articles from “high-impact” journals),
we do not impose any additional quality filters on
articles included in SCIFACT-OPEN; thus, our cor-
pus captures the full diversity of information likely
to be encountered when scientific fact-checking
systems are deployed on real-world resources like
S2ORC, arXiv,3 or PubMed Central.4

3.1 Pooling for evidence collection

To collect evidence from the SCIFACT-OPEN cor-
pus, we adopt a pooling approach popularized by

2We remove 21 claims (out of 300 total) whose source
citations lack important metadata; see Appendix A for details.

3https://arxiv.org
4https://www.ncbi.nlm.nih.gov/pmc

the TREC competitions: use a collection of state-
of-the-art models to select CAPs for human annota-
tion, and assume that all un-annotated CAPs have
y(c, a) = NEI. We will examine the degree to
which this assumption holds in §5.

Pooling approach We annotate the d most-
confident predicted CAPS from each of n claim
verification systems. An overview of the process is
in shown in Fig. 2; we number the annotation steps
below to match the figure.

We select the most confident predictions for a
single model as follows. (1) For each claim in
SCIFACT-OPEN, we use an information retrieval
system consisting of BM25 followed by a neu-
ral re-ranker (Pradeep et al., 2021) to retrieve k
abstracts from the SCIFACT-OPEN corpus. (2)
For each CAP, we compute the softmax scores
associated with the three possible output labels,
denoted s(SUPPORTS), s(REFUTES), s(NEI). We
use max(s(SUPPORTS), s(REFUTES)) as a mea-
sure of the model’s confidence that the CAP con-
tains evidence. (3) We rank all CAPs by model
confidence, and add the d top-ranked predictions
to the annotation pool. The final pool (4) is the
union of the top-d CAPs identified by each system.
Since some CAPs are identified by multiple sys-
tems, the size of the final annotation pool is less
than n×d; we provide statistics in §3.2. Finally, (5)
all CAPs in the pool are annotated for evidence and
assigned a final label by an expert annotator, and
the label is double-checked by a second annotator
(see Appendix A for details).

We choose to prioritize CAPS for annotation
based on model confidence, rather than annotating
a fixed number of CAPs per claim, in order to maxi-
mize the amount of evidence likely to be discovered
during pooling. In §3.3, we confirm that our pro-
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Model Source Negative
sampling

Pooling and Eval

VERT5ERINI Pradeep et al. (2021) 0
PARAGRAPHJOINT Li et al. (2021) 10
MULTIVERS Wadden et al. (2022) 20
MULTIVERS10 Wadden et al. (2022) 10

Eval only

ARSJOINT Zhang et al. (2021) 12

Table 1: Models used for pooled data collection and
evaluation (top), and for evaluation only (bottom). “Neg-
ative sampling” indicates the negative sampling ratio.
MULTIVERS10 shares the same architecture as MUL-
TIVERS, but trains on fewer negative samples.

cedure identifies more evidence for claims that we
would expect to be more extensively-studied.

Models and parameter settings We set k = 50
for abstract retrieval. In practice, we found that the
great majority of evidentiary abstracts were ranked
among the top 20 retrievals for their respective
claims (Appendix A.3), and thus using a larger
k would serve mainly to increase the number of
irrelevant results. We set d = 250; in §5.1, we
show that this is sufficient to ensure that our dataset
can be used for reliable model evaluation.

For our models, we utilized all state-of-the-art
models developed for SCIFACT-ORIG for which
modeling code and checkpoints were available (to
our knowledge). We used n = 4 systems for
pooled data collection. During evaluation, we in-
cluded a fifth system — ARSJOINT— which be-
came available after the dataset had been collected.
Model names, source publications, and negative
sampling ratios are listed in Table 1; see Appendix
A for additional details.

3.2 Dataset statistics

We summarize key properties of SCIFACT-OPEN.
Table 2a provides an overview of the claims, cor-
pus, and evidence in the dataset. Table 2b shows the
fraction of CAPs annotated during pooling which
were judged to be ECAPs (i.e. to contain evidence).
Overall, roughly a third of predicted CAPs were
judged as relevant; this indicates that existing sys-
tems achieve relatively low precision when used in
an open-domain setting. Relevance is somewhat
higher (roughly 50%) for CAPs predicted by more
than one system. The majority of CAPs are selected
by a single system only, indicating high diversity
in model predictions. As mentioned in §3.1, the

ECAPs

Claims Corpus SCIFACT-ORIG Pooling Total

279 500K 209 251 460

(a) Summary of the SCIFACT-OPEN dataset, including the
number of claims, abstracts, and ECAPs (evidentiary claim /
evidence pairs). ECAPs come from two sources: those from
SCIFACT-ORIG, and those discovered via pooling.

Num. systems Annotated Evidence % Evidence

1 528 154 29.2
2 150 71 47.3
3 44 20 45.5
4 10 6 60.0

All 732 251 34.3

(b) Relevance of CAPs annotated during the pooling process.
The first row indicates that 528 CAPs were identified for pool-
ing by one system only; of those CAPs, 154 were judged by
annotators as containing evidence. The more systems identi-
fied a given CAP, the more likely it is to contain evidence.

Total Retrieved Annotated

ECAPs 209 187 (89%) 171 (82%)

(c) Count of how many ECAPs from SCIFACT-ORIG would
have been identified during pooled data collection. “Retrieved”
indicates the number of ECAPs that would have been retrieved
among the top k, and “Annotated” indicates the number that
would further have been included in the annotation pool.

Table 2: Annotation results and dataset statistics for
SCIFACT-OPEN.

total number of annotated CAPs is 732 (rather than
4 models × 250 CAPs / model = 1000) due to
overlap in system predictions.

Table 2c shows how many of the ECAPs from
SCIFACT-ORIG would have been annotated by our
pooling procedure. The fact that the great majority
of the original ECAPs would have been included
in the annotation pool suggests that our approach
achieves reasonable evidence coverage.

3.3 Evidence phenomena in SCIFACT-OPEN

We observe three properties of evidence in
SCIFACT-OPEN that have received less attention in
the study of scientific claim verification, and that
can inform future work on this task.

Unequal allocation of evidence Fig. 3 shows
the distribution of evidence amongst claims in
SCIFACT-OPEN. We find that evidence is dis-
tributed unequally; half of all ECAPs are allocated
to 34 highly-studied claims (12% of all claims in
the dataset). We investigated the characteristics of
highly-studied claims, and found that they tend to
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Figure 3: Evidence allocation among claims in
SCIFACT-OPEN. The x-axis indicates the number
of ECAPs (evidentiary claim / abstract pairs) associ-
ated with a given claim, and the y-axis is the number
of claims with the corresponding number of ECAPS.
For instance, 125 claims are associated with a single
evidence-containing abstract.

Claim ECAPs

Obesity is determined in part by genetic factors. 19

Inhibiting HDAC6 decreases survival of mice
with ARID1A mutated tumors. 0

Table 3: Example of a claim with a number of ECAPs
annotated during pooled data collection (top), and an-
other with no new ECAPs (bottom). Well-studied
ECAPs tend to be shorter and mention a small num-
ber of common entities.

be short and mention a small number of common,
well-studied scientific entities. For instance, enti-
ties mentioned in well-studied claims (≥ 4 ECAPs)
return, on average, 4 times as many documents
when entered into a PubMed search, compared to
claims with no evidence (detailed results in Ap-
pendix B). Table 3 shows an example.

Mismatch in claim and evidence specificity
During evidence collection for SCIFACT-OPEN,
annotators reported situations where a claim and ab-
stract exhibited a relationship, but where the claim
applied at a different level of specificity from the
evidence. For instance, in Fig. 1, the claim and
refuting evidence discuss the effects of alcohol con-
sumption on overall cancer risk, while the support-
ing evidence indicates that alcohol consumption
lowers thyroid cancer risk in particular; the sup-
porting evidence is more specific than the claim.
We also saw cases where the abstract was more
general than the claim (e.g. claim discusses thy-
roid cancer, abstract discusses cancer in general),
and where the abstract was closely related to the
claim (e.g. claim discusses thyroid cancer, abstract

Category ECAPs

Evidence matches claim 115
Evidence more specific than claim 53
Evidence more general than claim 18
Evidence closely related to claim 20

(a) Specificity relationship between claim and evidence, for
206 ECAPs. Specificity mismatches are common, comprising
44% of annotated examples.

Claim: Teaching hospitals provide better care than
non-teaching hospitals.

Evidence: Teaching centers . . . prolong survival in women
with any gynecological cancer compared to community or
general hospitals.

Revised claim: Teaching hospitals provide better
gynecological cancer care than non-teaching hospitals

(b) A CAP where the evidence SUPPORTS a special case of the
claim, paired with a revised version of the claim that matches
the evidence. The claim discusses medical care overall, while
the evidence discusses gynecological cancer care specifically.

Table 4: Claim / evidence specificity mismatch in
SCIFACT-OPEN.

discusses throat cancer).5

Based on this observation, we attempted to quan-
tify the frequency of specificity mismatches. For
206 CAPs in the SCIFACT-OPEN annotation pool,
in addition to collecting a SUPPORTS / REFUTES /
NEI label, annotators indicated the specificity re-
lationship between claim and abstract, and wrote
a revision of the claim such that the revised claim
matched the specificity of the abstract. These anno-
tations will be released as part of SCIFACT-OPEN.

Table 4a shows counts for different specificity
relationships. We find that 91 / 206 (44%) of the
examined CAPs exhibit some form of specificity
mismatch. Table 4b shows an example where the
evidence is more specific than the claim, along
with a revised version of the claim that matches the
specificity of the evidence. Examples for all speci-
ficity relation types — along with analysis showing
that mismatches occur in both well-studied and
less-studied claims — are included in Appendix
B.2. We discuss possible implications of speci-
ficity mismatch for future work on scientific claim
verification in §7.

Conflicting evidence Conflicting evidence oc-
curs when a single claim is SUPPORTED by at least
one ECAP in SCIFACT-OPEN, and REFUTED by
another (see Fig. 1). Of the 81 claims in SCIFACT-
OPEN with at least 2 ECAPs, 16 of them (20%)

5In cases of mismatching evidence, we follow the conven-
tion used in Thorne et al. (2018) to assign an overall SUP-
PORTS / REFUTES / NEI label; see Appendix B.2 for details.
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SCIFACT-ORIG SCIFACT-OPEN

Model P R F1 P R F1 Average Precision

VERT5ERINI 64.0 73.0 68.2 25.01.9 67.22.9 36.42.2 27.53.2
PARAGRAPHJOINT 75.8 63.5 69.1 54.73.2 46.53.5 50.32.7 40.53.1
MULTIVERS 73.8 71.2 72.5 73.62.9 40.73.3 52.43.0 44.93.7
MULTIVERS10 63.0 73.0 67.6 49.63.0 53.03.7 51.32.4 43.43.4
ARSJOINT ∗ 72.2 70.3 71.2 46.12.9 37.63.4 41.42.7 -

Table 5: System performance on SCIFACT-OPEN. For comparison, metrics on SCIFACT-ORIG are also reported.
Performance is substantially lower on SCIFACT-OPEN relative to SCIFACT-ORIG. Precision, recall, and F1 vary
widely by system, based on the negative sampling rate used during training. Subscripts indicate standard deviations
over 1,000 bootstrap-resampled versions of the claims in SCIFACT-OPEN (see Appendix C).
∗The results for ARSJOINT are not comparable with the other systems, since ARSJOINT was not used for data
collection. We did not compute model confidence scores for ARSJOINT; therefore average precision is not reported.

have conflicting evidence. In examining these con-
flicts, we found that they were often a result of
specificity mismatches as shown in Fig. 1 (see
Appendix B for additional examples), indicating
that modeling evidence specificity represents an
important area for future work.

4 Model performance on SCIFACT-OPEN

We evaluate all models from Table 1 on SCIFACT-
OPEN. These models represent the state-of-the-art
on SCIFACT-ORIG, making them strong baselines
to assess the difficulty of our new test collection.

SCIFACT-OPEN is challenging Table 5 shows
the performance of all models on SCIFACT-OPEN,
as well as on SCIFACT-ORIG for comparison. Due
to the wide variation in the precision and recall of
different models on SCIFACT-OPEN, we also report
average precision, which summarizes performance
via the area under the precision / recall curve. We
find that models rank similarly on F1 and average
precision. Model performance drops by 15 to 30
F1 on SCIFACT-OPEN relative to SCIFACT-ORIG,
indicating that all models have trouble generalizing
to large corpora unseen during training. PARA-
GRAPHJOINT, MULTIVERS, and MULTIVERS10

all exhibit similar performance (within one stan-
dard deviation of each other), while VERT5ERINI

performs worse due to low precision.
In Appendix C, we examine model performance

on well-studied and less-studied claims separately.
We find that higher-recall models tend to perform
better on well-studied claims (for which more evi-
dence is available), while higher-precision models
perform better on less-studied claims.

Negative sampling affects generalization As
mentioned in §2.2, all models except VERT5ERINI
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Figure 4: Overlap between the ECAPs predicted by dif-
ferent systems, as measured by Jaccard similarity. Cells
below the diagonal show the similarity for abstracts
contained in SCIFACT-ORIG, while cells above the di-
agonal show similarity for abstracts that were added
in SCIFACT-OPEN. Overlap is high on abstracts from
SCIFACT-ORIG, but much lower when models general-
ize to documents not seen during training.

were trained with negative sampling. We observe
that negative sampling rate has a much larger im-
pact on precision and recall in the open setting than
was observed for SCIFACT-ORIG. VERT5ERINI

has recall more than double its precision; for MUL-
TIVERS, the situation is reversed. The behavior
of MULTIVERS10 is much more similar to PARA-
GRAPHJOINT than MULTIVERS, indicating that
negative sampling has a larger impact on model
generalization behavior than does model architec-
ture. ARSJOINT is qualitatively similar to PARA-
GRAPHJOINT and MULTIVERS10, but with lower
overall performance since its top predictions are
not annotated for evidence (see §5.3).

Models have low agreement on SCIFACT-OPEN
Fig. 4 shows the overlap among the ECAPs pre-
dicted by different systems, measured using Jac-
card similarity. Overlap is relatively high (≥ 0.5)
for predictions involving abstracts that were found
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in SCIFACT-ORIG, and is much lower (≤ 0.2) on
abstracts added in SCIFACT-OPEN. From a data
collection standpoint, low agreement on SCIFACT-
OPEN is a benefit, as it ensures that a diverse set
of documents was included in the annotation pool.
From a modeling standpoint, it suggests that agree-
ment between existing models when deployed on
novel corpora is lower than what has previously
been observed. Understanding the differences in
the information being identified by each model rep-
resents an important direction for future work.

5 Dataset reliability

The total number of annotations collected during
pooling (§3.1) is determined by two parameters:
the number of annotations per system d, and the
number of systems n for which we collect annota-
tions. These parameters must be large enough that
increasing them further is unlikely to (1) lead to the
discovery of a large number of additional ECAPs
or (2) alter the performance metrics of models eval-
uated on the dataset. Following Zobel (1998), we
conduct checks to ensure that conditions (1) and
(2) hold for our choices of d and n.

5.1 Annotations per system
To ensure that the number of annotations per sys-
tem d = 250 (also called the pool depth6) is large
enough to ensure reliable evaluation, we examine
how much additional evidence is discovered, and
how our evaluation metrics change, as d increases
from 0 to its final value.

Fig. 5a shows the total number of ECAPS dis-
covered as a function of pool depth. Annotating
the 50 most-confident CAPs per system leads to
the discovery of 83 ECAPs, while increasing pool
depth from 200 to 250 yields 24 new ECAPs—a
more than three-fold decrease. This indicates that
condition (1) approximately holds; the majority of
the evidence in the corpus has been annotated by
d = 250.

Fig. 5b shows the F1 score of each model as a
function of pool depth. While F1 scores change
initially, increasing the pool depth from d = 225
to d = 250 changes the F1 score of each model
by less than 2% (see Appendix D for plots). This
indicates that condition (2) also holds: further in-
creases to pool depth are unlikely to affect perfor-
mance metrics. We also find that generalization

6In TREC, the pool depth refers to the number of annota-
tions collected per system for a single query. We use it to refer
to the number of annotations collected per system.
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(a) Total number of ECAPs discovered as a function of pool
depth. For instance, annotating to a depth d = 100 would
have resulted in the discovery of roughly 120 ECAPs.
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(b) F1 score as a function of pool depth. The blue dot at pool
depth 100 indicates that VERT5ERINI would have achieved
an F1 score of roughly 30, if annotation had stopped at a depth
of 100. Results are ARSJOINT are shown as a dashed line to
indicate that this system was not used for data collection.

Figure 5: Effect of pool depth on evidence discovery
and evaluation metrics. As pool depth increases, fewer
new ECAPs are discovered and F1 score stabilizes.

behavior is influenced more by negative sampling
rate than by model architecture. Performance of
MULTIVERS decreases with depth, indicating that
it was over-fit to the documents in SCIFACT-ORIG,
while VERT5ERINI improves with depth. These
observations hold if we use average precision rather
than F1 to measure performance (Appendix D).

5.2 System count

We repeat the analysis from §5.1, but this time vary-
ing the number of systems used for data collection
(the system count).7 As was the case for pool depth,
Fig. 6a shows that fewer new ECAPs are discov-
ered as more systems’ predictions are annotated.
Fig. 6b shows that F1 scores stabilize as system
count increases, but not as completely as for pool
depth; adding a fourth system still leads a 10%
change in F1 score for VERT5ERINI and MUL-
TIVERS (Appendix D). Thus, while conditions
(1) and (2) are increasingly satisfied as the system
count increases, SCIFACT-OPEN would likely ben-
efit from the collection of additional data identified
by new models. Unfortunately, unlike pool depth,

7There are 4! possible system orderings. We compute
metrics using all orderings, and display the mean and standard
deviation (as error bars) in Fig. 6.
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Figure 6: Effect of system count (i.e. number of sys-
tems used during pooling) on evidence discovery and
evaluation metrics. As in Fig. 5, we see diminishing
returns to increasing system count.

the system count that we can achieve is limited by
the number of available systems for this task.

5.3 System inclusion
To measure the effect on measured performance of
including a given system in the annotation pool, we
evaluate each system on the evidence that would
have been collected if that system’s predictions had
not been included. Results are shown in Table 6.
All systems except MULTIVERS suffer a roughly
15% drop. When excluded from data collection,
PARAGRAPHJOINT and MULTIVERS10 both have
performance comparable to ARSJOINT. MUL-
TIVERS does not benefit from having its own pre-
dictions included, since it was over-fit to SCIFACT-
ORIG and struggles to identify new evidence not
seen during training. Overall, for fair model com-
parisons, the performance of new models should
be compared against the “Excluded” performance
of models used for data collection.

6 Related work

TREC and pooled data collection Pooling for
IR evaluation was popularized by the TREC infor-
mation retrieval competitions (Voorhees and Har-
man, 2005), with a number of recent competitions
focusing on retrieval in the biomedical domain
(Roberts et al., 2020a,b, 2016). Relative to this
work, TREC datasets are characterized by a smaller
number of queries (or “topics”), a larger number of

Model Included Excluded % Change

VERT5ERINI 36.4 30.5 -16.3
PARAGRAPHJOINT 50.3 42.3 -15.9
MULTIVERS 52.4 51.6 -1.5
MULTIVERS10 51.3 43.7 -14.7

ARSJoint - 41.4 -

Table 6: Change in F1 score when each model is in-
cluded in the annotation pool, vs. excluded. Omission
leads to a performance decrease of roughly 15% for all
models except MULTIVERS.

models available for annotation, and a fixed num-
ber of annotations per topic (often around 50)—
although previous works have proposed strategies
to prioritize topics or models for annotation (Zobel,
1998; Cormack et al., 1998). In contrast, to max-
imize our annotation yield, we collect a variable
number of annotations per claim based on model
confidence.

Claim verification and revision Stammbach
et al. (2021) studied scientific claim verification
against a large research corpus, but simplified the
task by evaluating accuracy at predicting a single
global truth label per claim, rather than identify-
ing all relevant documents. The Climate-FEVER

dataset (Diggelmann et al., 2020) is also open-
domain, but assumes a global truth label and veri-
fies claims against Wikipedia, not research papers.

In §3.3, we proposed claim revisions as a so-
lution to claim / evidence specificity mismatch.
Claim revision has previously been studied for fact
verification over Wikipedia, with the goal of chang-
ing the claim from REFUTED to SUPPORTED or
vice versa (Thorne and Vlachos, 2021; Schuster
et al., 2021; Shah et al., 2020). Previous work has
also examined the related task of generating claims
based on citation contexts (Wright et al., 2022)
and revising questions to match the specificity of
answers found in Wikipedia (Min et al., 2020).

7 Discussion & Conclusion

In this work, we introduced a new test collection,
SCIFACT-OPEN, to support performance evalua-
tion for open-domain scientific claim verification.
The construction of SCIFACT-OPEN was enabled
by our adaptation of the pooling strategy from IR
for identification and annotation of evidence from a
corpus of 500K documents. We hope such method-
ology can see further usage on other NLP tasks for
which exhaustive annotation is infeasible.

In analyzing the evidence in SCIFACT-OPEN
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(§3.3), we found that some claims possess a large
amount of conflicting evidence, and that evidence
may not always match the specificity of the claims
as written. We consider two future directions to
improve the expressiveness of scientific claim ver-
ification. (1) As discussed in §3.3, one could still
require systems to label each ECAP, but also to
generate a revised claim matching the specificity of
each evidence abstract. This output would provide
users with fine-grained information indicating the
conditions under which an input claim is likely to
hold. We release 91 claim revisions, which can
be used to facilitate exploratory research in this
direction. (2) One could use the evidence identified
by a claim verification system as input into a sum-
marization system (DeYoung et al., 2021; Wallace
et al., 2021) — potentially using additional quality
criteria (e.g. citation count, publication venue) to
filter or re-weight the articles included in the sum-
mary. This approach has the benefit of providing a
concise summary to the user, but there is a greater
risk of hallucination (Maynez et al., 2020).

Overall, our analysis indicates that evaluations
using SCIFACT-OPEN can provide key insights
into modeling challenges associated with scientific
claim verification. In particular, the performance of
existing models declines substantially when eval-
uated on SCIFACT-OPEN, suggesting that current
claim verification systems are not yet ready for de-
ployment at scale. It is our hope that the dataset
and analyses presented in this work will facilitate
future modeling improvements, and lead to sub-
stantial new understanding of the scientific claim
verification task.

8 Limitations

A major challenge in information retrieval is the
infeasibility of exhaustive relevance annotation. By
introducing an open-domain claim verification task,
we are faced with similar challenges around anno-
tation. We adopt TREC-style pooling in our setting
with substantially fewer systems than what is typ-
ically pooled in TREC competitions, which may
lead to greater uncertainty in our test collection.
We perform substantial analysis (§5) to better un-
derstand the sensitivity of our test collection to
annotation depth and system count, and our results
suggest that though further improvements are pos-
sible, SCIFACT-OPEN is still useful as a test collec-
tion and is able to discern substantive performance
differences across models. As other models are

developed for claim verification, we may indeed
incorporate their predictions in pooling to produce
a better test collection.

Through analysis of claim-evidence pairs in
SCIFACT-OPEN, we identified the phenomenon of
unequal allocation of evidence (§3.3). Some claims
are associated with substantially higher numbers of
relevant evidence documents; we call these highly-
studied claims. In this work, we do not treat these
claims any differently than those associated with
limited evidence. It could be that highly-studied
claims are more representative of the types of
claims that users want to verify, in which case we
may want to distinguish between these and other
types of claims in our dataset, or develop annota-
tion pipelines that would allow us to identify and
verify more of these highly-studied claims. In the
context of this paper, we derive all claims from
the original SCIFACT test collection, and do not
provide additional claims.

Finally, we rely on a single retrieval system to
identify candidate abstracts. While our analysis
indicates that this system identifies the great ma-
jority of relevant abstracts (Appendix A.3), future
work could extend the dataset collected here by
retrieving documents using a wider variety of IR
approaches.
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A Dataset construction

A.1 Corpus
We use 2019-09-28 release of the the S2ORC cor-
pus (Lo et al., 2020) as our source of abstracts. We
filter for documents whose mag_field_of_study
field includes at least one of Medicine or Biology,
and which have at least one inbound and one out-
bound citation; the latter check serves as a basic
quality filter to make sure that the article is related
to other articles found in the literature. This filter-
ing leaves us with roughly 6.5 million documents,
from which we randomly sample our SCIFACT-
OPEN corpus of 500K documents (making sure to

include the 5K documents from SCIFACT-ORIG).
For more information on S2ORC, see https://

github.com/allenai/s2orc.

A.2 Claims and evidence

Claims As mentioned in §3, we removed 21
claims from the SCIFACT-ORIG test set when
constructing SCIFACT-OPEN, leaving 279 claims.
Each claim in the dataset is based on a source ci-
tation. We removed claims for which we could
not find metadata in S2ORC providing informa-
tion about the source citation — in particular, the
article it came from or the year the article was
published. No analyses based on this information
were included in the final version of this work, but
the dataset had already been collected when we
realized that this claim filtering step had been un-
necessary. Regardless, there is no reason that the
availability (or lack thereof) of source metadata
would correlate with any linguistic properties of
the claims; thus, the omission of these 21 claims
should not bias our findings in any way.

Evidence annotation Evidence annotations were
performed by three professional annotators with
undergraduate degrees in fields related to biology.
Before beginning annotations, they participated in
a training session with one of the authors to en-
sure that they understood the task. Annotations
are performed as follows. First, every CAP in the
annotation pool is assigned randomly to one of the
three annotators. The assigned annotator makes a
decision on whether the instance clearly does not
contain evidence, or whether it might. If it clearly
does not, it is marked NEI and annotation stops.
If it might contain evidence, the first annotator as-
signs a label, and a second annotator checks the
label to confirm. In the case of disagreement, the
two annotators discuss the instance and collectively
decide on a final label.

A.3 Retrieval

In §3.1, we chose to retrieve k = 50 abstracts per
claim; these abstracts were then rank-ordered by
model confidence, and the most-confident predic-
tions were annotated for evidence. Using k = 50
is justified if worse-ranked retrievals are unlikely
to be annotated as ECAPs during the pooling pro-
cess. Figure 7 confirms that this is indeed the case;
the great majority of evidentiary abstracts have re-
trieval ranks of 20 or better, and very few have
ranks worse than 40.
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Figure 7: Number of ECAPs discovered as a function of
k, the number of abstracts retrieved per claim. The great
majority of abstracts judged as ECAPs were ranked
among the top 20 retrievals for their respective claims.

A.4 Models

For pooled annotation collection, we used all mod-
els achieving state-of-the-art or competitive per-
formance on the SCIFACT leaderboard8 for which
modeling code and checkpoints were available as
of early summer 2021, when annotation collection
began. The available systems were VERT5ERINI

(Pradeep et al., 2021) and PARAGRAPHJOINT (Li
et al., 2021) — the two leaders on the SciVer
shared task (Wadden and Lo, 2021) — and MUL-
TIVERS (Wadden et al., 2022), formerly called
LongChecker. Early in annotation, we noticed
that the systems exhibited different precision and
recall behavior, and hypothesized that this was
due to differences in negative sampling rate. To
test this, we also collected annotations with a ver-
sion of MULTIVERS trained with a negative sam-
pling ratio of 10 (negative sampling ratio is de-
fined in §2.2), referred to as MULTIVERS10, and
found that this model indeed behaved more like
PARAGRAPHJOINT than MULTIVERS in terms
of precision and recall. We decided to include
MULTIVERS10 in the annotation process to in-
crease the diversity of annotation pool. Subse-
quently, ARSJOINT (Zhang et al., 2021) was re-
leased and achieved comparable performance with
the four systems used for data collection. We con-
duct evaluations on this system as well.

System descriptions Given a claim c, all mod-
els first retrieve a collection of candidate abstracts
a, and then predict labels for each retrieved candi-
date. In this work, we used the VERT5ERINI re-
trieval system for all models, since it outperformed
the performance of the techniques used with AR-
SJOINT and PARAGRAPHJOINT. VERT5ERINI

first retrieves documents using BM25, then re-
ranks the retrieved documents using a neural re-
ranker trained on MS-MARCO (Campos et al.,

8https://leaderboard.allenai.org/scifact

2016). We experimented with using dense retrieval
instead (Karpukhin et al., 2020), but found that this
did not perform well; similar results were reported
in Thakur et al. (2021).

Given a claim c and abstract a, VERT5ERINI

selects rationales (evidentiary sentences) from a
using a T5-3B model trained on SCIFACT, and
then makes label predictions based on the selected
rationales using a separate T5-3B model.

PARAGRAPHJOINT and ARSJOINT both encode
the claim and full abstract using RoBERTa (Liu
et al., 2019), truncating to 512 tokens, and use
these representations as the basis for both rationale
selection and label prediction. Rationales are pre-
dicted based on self-attention over the encodings
of the tokens in each sentence, and then a final
label is predicted based on self-attention over the
representations of the sentences that were selected
as rationales.

MULTIVERS encodes the claim and full ab-
stracts in the same fashion as PARAGRAPHJOINT

and ARSJOINT, using Longformer (Beltagy et al.,
2020) to accommodate long abstracts, and then pre-
dicts the label and rationales in a multitask fashion,
based on encodings of the leading [SEP] token and
sentence separator tokens, respectively.

Negative sampling For scientific claim verifica-
tion, negative sampling has been performed as fol-
lows: for every (c, a) instance in the training data
where y(c, a) ∈ {SUPPORTS, REFUTES}, include
r additional (c, a′i)

r
i=1 instances where y(c, a′i) =

NEI for all i. The irrelevant abstracts a′i can be
sampled randomly from the corpus, or can be cho-
sen to be “hard” negatives; for instance, abstracts
a′i could be chosen which have high lexical overlap
with claim c, but which are not annotated as SUP-
PORTS or REFUTES. Negative sampling has been
shown to increase the precision of fact verification
models (Li et al., 2021), but comes at the cost of
increasing the size of the training dataset (and thus
the training time) by a factor of r.

B Additional evidence properties

B.1 Unequal allocation of evidence
Fig. 8a shows the distribution of evidence amongst
claims in SCIFACT-OPEN, showing evidence from
SCIFACT-ORIG and evidence collected during
pooling separately. The majority of claims in
SCIFACT-ORIG have one ECAP. Pooling discov-
ered no new ECAPs for the majority of claims
in the dataset, and discovered a large amount of
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(b) Cumulative distribution of ECAPs across claims.

Figure 8: Distribution of evidence from SCIFACT-ORIG,
and from the evidence collected via pooling.

evidence for a small handful of claims. Fig. 8b
shows the cumulative distribution of evidence. 14
claims account for 50% of the ECAPs discovered
via pooling.

In §3.3, we also observed that well-studied
claims tend to be short, and mention a small num-
ber of well-studied entities. Table 7 shows these
results quantitatively by examining the characteris-
tics of claims for which pooling discovered at least
4 new ECAPs, vs. claims for which it discovered
none. Entities mentioned in well-studied claims
return, on average, 4 times as many documents
when entered into a PubMed search compared with
entities mentioned in claims with no new evidence.
We use BERN2 (Sung et al., 2022) to identify the
entities for this analysis.

B.2 Claim / evidence specificity mismatch
Annotation conventions for mismatched evi-
dence In situations where the evidence in abstract
a is more specific or more general than claim c, we
follow the convention established in the FEVER
dataset (Thorne et al., 2018) to assign a final label
y(c, a):
• If a SUPPORTS a special case of c, then assign

0 ECAPs ≥ 4 ECAPs

Avg. claim length (tokens) 14.1 10.5

Avg. entities / claim 2.3 1.7

Median PubMed results 49K 198K

Table 7: Characteristics of claims for which 0 ECAPs
were annotated during pooled data collection, compared
to claims with ≥ 4 ECAPs annotated. All differences
are significant at the 0.05 level.

Category ECAPs
Well-

studied
Less-

studied

Evidence matches claim 81 34
Evidence more specific than claim 35 18
Evidence more general than claim 3 15
Evidence closely related to claim 6 14

Table 8: Rates of claim / evidence specificity mismatch
for well-studied and less-studied claims.

y(c, a) = SUPPORTS.
• If a SUPPORTS a generalization of c, then assign
y(c, a) = NEI.

• If a REFUTES a special case of c, then assign
y(c, a) = NEI.

• If a REFUTES a generalization of c, then assign
y(c, a) = REFUTES.

Occurrence for well-studied and less-studied
claims Table 8 shows rates of claim / evidence
specificity mismatch for well-studied and less-
studied claims, respectively. Specificity mis-
matches occur for both types of claims. Inter-
estingly, CAPs where the evidence is more gen-
eral than the claim occur more frequently for less-
studied claims; this likely occurs because less-
studied claims are themselves likely to be very
specific and cover narrower topics.

Examples In §3.3, we described how the claim
and evidence in an ECAP may not have matching
levels of specificity. Table 9 provides examples of
the different forms of specificity mismatch shown
in Table 4.

B.3 Conflicting evidence
Table 10 shows examples of two claims for which
conflicting evidence was found in SCIFACT-OPEN.

C Model performance

Uncertainty estimates Table 5 includes uncer-
tainty estimates for performance on SCIFACT-
OPEN. We obtain these estimates by computing the
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Category Evidence matches claim

Claim Mitochondria play a major role in calcium homeostasis.

Evidence Mitochondria . . . are essential organelles responsible for . . . calcium homeostasis.

Revision

Explanation No revision necessary; claim and evidence are paraphrases

Category Evidence more specific than claim

Claim Teaching hospitals provide better care than non-teaching hospitals

Evidence Teaching centres . . . prolong survival in women with any gynecological cancer compared to community
or general hospitals.

Revision Teaching hospitals provide better gynecological cancer care than non-teaching hospitals.

Explanation The evidence refers to gynecological cancer care specifically, not care care in general.

Category Evidence more general than claim

Claim Somatic missense mutations in NT5C2 are associated with relapse of acute lymphoblastic leukemia.

Evidence T5C2 mutant proteins show . . . resistance to chemotherapy

Revision Mutations in NT5C2 are associated with relapse of cancer.

Explanation Evidence mentions T5C2 mutations in general, while the claim mentions somatic missense mutations
specifically. The evidence discusses chemotherapy resistance generally, while the claim discusses
relapse of acute lymphoblastic leukemia specifically.

Category Evidence closely related to claim

Claim Near-infrared wavelengths increase penetration depth in fiberoptic confocal microscopy

Evidence Longer wavelength can . . . increase the effective penetration depth of OCT (optical coherence-domain
tomography) imaging

Revision Near-infrared wavelengths increase penetration depth in optical coherence-domain tomography.

Explanation The claim discusses fiberoptic confocal microscopy. The evidence discusses a different imaging
technique, optical coherence-domain tomography.

Table 9: Examples of different forms of claim-evidence specificity mismatch. In each example, information specific
to claim or evidence is shown in italics. The revision re-writes the claim to match the specificity of the evidence.

standard deviation over 1,000 bootstrap-sampled
versions of the dataset (Dror et al., 2018; Berg-
Kirkpatrick et al., 2012). For a single bootstrap
iteration, we resample the claims from the dataset
with replacement, and evaluate against the evidence
for the sampled claims, weighting the evidence by
the number of times each claim was sampled.

Performance for well-studied and less-studied
claims Table 11 shows model performance on
well-studied vs. less-studied claims. Higher-recall
models tend to perform better on the well-studied
claims, since these are the claims where evidence
is available in the corpus. Higher-precision models
perform better on less-studied claims.

Confusion matrices Figure 9 shows confusion
matrices for all systems. Models rarely confuse
SUPPORTS with REFUTES; much more commonly,
they either mistake irrelevant abstracts for evidence
or fail to identify relevant abstracts.

D Dataset reliability: Additional
experiments

Percentage changes in evaluation metrics In
§5, we examined the effect of pool depth and sys-
tem count on F1 score. Here, we show the same
plots from §5, together with plots showing the per-
centage changes in the F1 score. Results for pool
depth are shown in Fig. 10. Results for system
count are shown in Fig. 11.

Evaluation using average precision In §5, we
examined the effect of pool depth and system count
on F1 score. We perform the same analysis using
average precision. Fig. 12 shows the effect of pool
depth, and Fig. 13 shows the effect of model count.
The qualitative conclusions are the same as for F1.
The fact that using F1 and average precision leads
to the same conclusions indicates that simply re-
calibrating each model’s classification threshold to
adjust for the negative sampling rate used during
training would not change the results.
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Claim Bariatric surgery has a deleterious impact on mental health.

SUPPORTS Our study shows that undergoing bariatric surgery is associated with increases in self-harm, psychiatric
service use and occurrence of mental disorders.

REFUTES Statistical analysis revealed significant improvements in depressive symptoms, physical dimension of
quality of life, and self-esteem . . .

Claim Teaching hospitals provide better care than non-teaching hospitals

SUPPORTS Teaching centres or regional cancer centres may prolong survival in women with any gynaecological
cancer compared to community or general hospitals

REFUTES Overall [the results] do not suggest that a healthcare facility’s teaching status on its own markedly
improves or worsens patient outcomes.

Table 10: Examples of two claims with conflicting evidence.

Well-studied Less-studied

Model P R F1 Avg. Precision P R F1 Avg. Precision

VERT5ERINI 31.7 65.2 42.7 30.0 20.9 69.1 32.1 25.5
PARAGRAPHJOINT 57.0 39.6 46.8 40.1 53.2 53.2 53.2 43.8
MULTIVERS 76.1 22.5 34.7 33.6 72.7 58.4 64.8 56.9
MULTIVERS10 59.3 42.3 49.4 38.6 44.8 63.5 52.6 52.7
ARSJOINT ∗ 37.5 22.5 28.1 11.3 51.0 52.4 51.7 27.0

Table 11: Performance on SCIFACT-OPEN, for well-studied and less-studied claims. Higher-recall models generally
perform better on well-studied claims, while high-precision models perform better on less-studied claims.
∗The results for ARSJOINT are not comparable with the other systems, since ARSJOINT was not used for data
collection.
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Figure 9: Confusion matrices for model predictions on SCIFACT-OPEN. The {NEI, NEI } cell is 0 because
SCIFACT-OPEN is a retrieval task; it’s not informative to compute agreement on unlabeled and unpredicted
documents in the corpus.
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(a) F1 score as a function of pool depth. This is the same plot
as shown in §5.1
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(b) Absolute value of percentage change in F1 score, between
adjacent points in the series shown in Fig. 10a. The blue dot at
pool depth 100 indicates that the F1 score for VERT5ERINI is
increased by roughly 6% when the pool depth increases from
75 to 100. Values close to 0 indicate that collecting additional
data does not have an appreciable effect on F1 score.

Figure 10: Percentage change in F1 as a function of
pool depth.
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(a) F1 score as a function of system count.
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(b) Absolute value of percentage change in F1 score, between
adjacent points in Fig. 11a.

Figure 11: Percentage change in F1 as a function of
system count.
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(a) Average precision as a function of pool depth.
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(b) Absolute value of percentage change in average precision.

Figure 12: Effect of pool depth on model performance,
as measured by average precision. We see the same
trends as for F1 score. ARSJOINT is not included be-
cause computing average precision requires model con-
fidence scores.
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(a) Average precision as a function of system count.
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(b) Absolute value of percentage change in average precision.

Figure 13: Effect of system count on average precision.
Again, the results here mirror the conclusions drawn
using F1 score.
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