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Abstract

Recently, active learning (AL) methods have
been used to effectively fine-tune pre-trained
language models for various NLP tasks such
as sentiment analysis and document classifica-
tion. However, given the task of fine-tuning
language models, understanding the impact of
different aspects on AL methods such as label-
ing cost, sample acquisition latency, and the
diversity of the datasets necessitates a deeper
investigation. This paper examines the perfor-
mance of existing AL methods within a low-
resource, interactive labeling setting. We ob-
serve that existing methods often underperform
in such a setting while exhibiting higher latency
and a lack of generalizability. To overcome
these challenges, we propose a novel active
learning method TYROGUE that employs a hy-
brid sampling strategy to minimize labeling
cost and acquisition latency while providing a
framework for adapting to dataset diversity via
user guidance. Through our experiments, we
observe that compared to SOTA methods, TY-
ROGUE reduces the labeling cost by up to 43%
and the acquisition latency by as much as 11X ,
while achieving comparable accuracy. Finally,
we discuss the strengths and weaknesses of
TYROGUE by exploring the impact of dataset
characteristics.

1 Introduction

While fine-tuning pre-trained language models has
become a standard practice for NLP tasks, data
labeling remains a major bottleneck for NLP. To
alleviate this problem, active learning (AL) has
been recently employed to fine-tune language mod-
els for downstream tasks (Ash et al., 2020; Yuan
et al., 2020; Margatina et al., 2021, 2022). Active
learning aims to reduce the human labeling effort

∗This work was done when Seiji Maekawa was a research
intern at Megagon Labs.

by focusing on the most informative samples that
can enhance model performance efficiently.

Unfortunately, even with state-of-the-art AL ap-
proaches, the number of labels needed to fine-tune
language models is still significant. However, the
availability of suitable annotators is often scarce,
and obtaining human annotation can be expensive.
For example, labeling tens of thousands of data
samples may be impractical for domains such as
medical or legal, considering the cost and time for
labeling as well as the overhead of finding and
training domain experts. This paper focuses on the
low-resource setting where less than 1,000 sam-
ples are labeled in total, following Grießhaber
et al. (2020); Yuan et al. (2020); Schröder et al.
(2022).

Given such a low-resource setup, another chal-
lenge is the interactivity of AL methods. AL in-
teractivity is often not considered in existing lit-
erature, but annotators’ waiting time between la-
beling iterations can be a significant bottleneck.
In addition, low latency is essential for the early
stages of model building, where NLP researchers
and practitioners aim to explore the model perfor-
mance over faster AL iterations. However, when
selecting samples, existing methods operate over
the entire unlabeled dataset leading to higher la-
tency in acquiring labeling candidates. As a result,
the acquisition time for SOTA methods often vio-
lates the time-constraint of interactive systems (Liu
and Heer, 2014). Therefore, we argue that an in-
teractive low-resource acquisition strategy must
balance the trade-off between labeling budget and
the model performance, as they acquire samples
while ensuring faster turnaround time.

Another relevant aspect we observe through ex-
periments is that state-of-the-art AL approaches
acquire redundant samples. Existing AL acqui-
sition strategies focus on uncertainty (Houlsby
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(a) Ground
truth. (b) Uncertainty-based (c) Diversity-based (d) Hybrid. (e) Proposed.

Figure 1: Illustration of the sample redundancy challenge on AgNews dataset (Zhang et al., 2015). (a) shows 2D
projection of BERT embeddings, where colors indicate ground truth class labels. (b) Uncertainty-based methods
tend to acquire similar data points from a specific area within an iteration (see the red box). (c) Diversity-based
methods tend to acquire data points similar to the samples acquired in previous iterations (see the blue circles). (d)
Hybrid methods may suffer from either sample redundancies depending on which objective they prioritize, i.e.,
diversity (BADGE (Ash et al., 2020) and ALPS (Yuan et al., 2020)) vs. uncertainty (CAL (Margatina et al., 2021)).
(e) Our proposed method TYROGUE balances diversity and uncertainty by acquiring samples that are diverse and
also closer to the model decision boundary. We use t-SNE (Van Der Maaten, 2014) to project the embeddings.

et al., 2011; Gal et al., 2017) or diversity (Sener
and Savarese, 2018; Bādoiu et al., 2002; Gissin
and Shalev-Shwartz, 2019), or both (Yuan et al.,
2020; Margatina et al., 2021). Uncertainty-based
methods select samples near decision boundaries,
whereas diversity-based methods try to obtain di-
verse samples. As shown in Figure 1b, uncertainty-
based methods acquire similar samples within
an AL iteration — intra-iteration redundancy.
Diversity-based AL approaches acquire similar
samples across iterations — inter-iteration redun-
dancy (Figure 1c). Existing hybrid methods aiming
to balance uncertainty and diversity objectives sur-
prisingly prioritize one objective over another and
do not provide any mechanism to control the bal-
ance between these objectives. Therefore, even
existing hybrid approaches also suffer from the
aforementioned redundancies. Such redundancy
leads to a wasted labeling budget, indicating room
for reducing labeling costs across AL iterations.
Moreover, as existing methods optimize for spe-
cific objectives, i.e., uncertainty, and diversity, it
is unclear whether these approaches generalize to
datasets of varying degrees of difficulty with re-
spect to scale and domain diversity.

Taking these observations into consideration, we
propose TYROGUE 1, a low-resource interactive ac-
tive learning method that minimizes labeling bud-
get by reducing sample redundancy while achiev-
ing comparable accuracy. TYROGUE adopts a hy-
brid strategy where it incorporates independent

1Tyrogue is a Pokèmon that evolves in its appearance
depending on the situation https://bulbapedia.
bulbagarden.net/wiki/Tyrogue_(Pok%C3%
A9mon)

steps implementing diversity and uncertainty sam-
pling while instrumenting a control parameter to
adapt the degree of influence of each objective dur-
ing acquisition. Moreover, TYROGUE performs
an initial filter on the unlabeled data to reduce the
candidate sampling pool, thereby reducing latency
without negatively impacting model performance.
Our contributions are the following:
• We identify design criteria for developing low-

resource interactive AL methods that address
three challenges: high labeling cost, high ac-
quisition latency, and sample redundancy.
• We propose a method, TYROGUE, that imple-

ments the design criteria, making it suitable
for adoption in an interactive low-resource set-
up. TYROGUE outperforms SOTA methods
(Ash et al., 2020; Yuan et al., 2020; Margatina
et al., 2021) in terms of both effectiveness and
efficiency. Compared to SOTA methods, TY-
ROGUE reduces:

• labeling cost by up to 43% while achiev-
ing comparable accuracy.

• acquisition latency by as much as 11X .

• Finally, we explore how aspects such as do-
main diversity and class distribution may im-
pact the model’s performance. We also dis-
cuss how user-guided adaptation strategies
can ensure consistent performance in terms
of accuracy across datasets.

2 Related Work

We now discuss related work relevant to our setup.
Learning with pre-trained LMs. Two popular
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methods for learning with pre-trained language
models (LMs) are few-shot in-context learning
(ICL) and fine-tuning. ICL enables pre-trained
LMs to perform a new task without any gradient-
based training by providing a small number of train-
ing examples as part of the input. However, ICL
lacks interactivity as it processes all of the training
examples for each prediction made, incurring sig-
nificant storage and computational costs (Liu et al.,
2022). Fine-tuning, on the other hand, trains pa-
rameters to enable a model to perform the new task.
We specifically focus on active learning strategies
to acquire samples for fine-tuning.

Several settings for active learning have been
proposed over the years (Settles, 2009). These
methods can be either instance-based, i.e., acquir-
ing a single data point, or batch-based, i.e., ac-
quiring a collection of data points. Batch active
learning is suitable for meaningfully fine-tuning
language models. In this paper, we adopt the batch
active learning as in recent existing studies (Ash
et al., 2020; Yuan et al., 2020; Citovsky et al., 2021;
Margatina et al., 2021, 2022).

Acquisition strategies for batch AL. As men-
tioned in Section 1, uncertainty-based methods
employ various techniques such as leveraging the
model’s predictive entropy, predictive confidence,
and mutual information, to select data points for
annotation (Cohn et al., 1996; Houlsby et al., 2011;
Gal et al., 2017). Diversity-based methods em-
ploy strategies such as core-set construction-based
sampling (Bādoiu et al., 2002) and discriminative
learning (Gissin and Shalev-Shwartz, 2019) to se-
lect data points that are representative of the unla-
beled data pool. All of these approaches optimize
for the accuracy of the model and do not capture
other aspects such as labeling budget, acquisition
latency, and generalizability to diverse datasets.
TYROGUE aims to address all three challenges for
fine-tuning language models for NLP tasks.

Hybrid acquisition strategies combine uncer-
tainty and diversity sampling. To combine both
objectives, both BADGE (Ash et al., 2020) and
ALPS (Yuan et al., 2020) leverage model uncer-
tainty to compute embeddings of data points and
then perform clustering to acquire diverse samples.
Cluster-Margin (Citovsky et al., 2021) operates in
large batches, i.e., selecting 100k data points, and
combines hierarchical clustering with predictive

uncertainty to acquire data points. These methods
ignore the interactive setting and employ clustering
over the entire unlabeled pool which can be time-
consuming. CAL (Margatina et al., 2021) balances
the trade-off between uncertainty and diversity by
acquiring contrastive data points that are similar
in the model feature space but differ in model’s
predictive likelihoods. To operate efficiently, CAL
requires a larger batch size than expected in a low-
resource setting. Hence, these hybrid methods
are not suitable for the low-resource and interac-
tive setting. Moreover, they use a single acquisi-
tion objective combining diversity and uncertainty
without any control afforded to the user. As a
result, they tend to prioritize one objective over
another (e.g., CAL is highly uncertainty-focused),
depending on the algorithm designs even though
datasets may have different characteristics. Unlike
these approaches, TYROGUE introduces a hybrid
acquisition strategy with tunable control param-
eters, which is suitable for the low-resource and
interactive setting.
Low-resource active learning for LMs.
Schröder et al. (2022) explore the performance
of state-of-the-art uncertainty-based active
learning methods in a low-resource setting
while fine-tuning language models such as
BERT (Devlin et al., 2018) and RoBERTa (Liu
et al., 2019). The authors highlight that there is
significant drop in performance of the models
in a low-resource setting. In our work, besides
uncertainty-based methods, we investigate the
performance of diversity-based and hybrid
methods in a low-resource setting while exploring
additional dimensions such as interactivity and
dataset diversity. While ALPS (Yuan et al., 2020)
also operates in low-resource setting, it’s not
interactive due to the higher latency in clustering
the entire unlabeled data pool. Hence, ALPS is
not suitable for the interactive setting. Finally,
Grießhaber et al. (2020) also explore low-resource
active learning with regards to aspects such as
model update strategies which is beyond the scope
of this paper.

3 Low-resource Interactive AL

We now present TYROGUE, a novel acquisition
function that performs effectively and efficiently
in the low-resource and interactive setting. We
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first explain the limitations of existing AL methods
and then describe our problem setting. We then
describe key design criteria and the corresponding
pipeline for TYROGUE to overcome the limitations.

3.1 Limitations of Existing Methods

High labeling cost. Several existing studies
(Citovsky et al., 2021; Margatina et al., 2021, 2022)
assume that annotators label a large batch of data
points per iteration, e.g., larger than 1% of data
points in an unlabeled pool. Labeling such a
large batch is impractical when we have large-scale
datasets. Hence, we focus on small labeling bud-
gets and more iterative acquisition, i.e., the low-
resource interactive setting.
High acquisition latency. Existing AL meth-
ods (Ash et al., 2020; Yuan et al., 2020; Margatina
et al., 2021, 2022) consider the entire unlabeled
pool during sampling, i.e., constructing representa-
tions for all data points in the unlabeled data pool
and/or executing clustering on the pool. As the ac-
quisition time depends on the size of the unlabeled
pool, existing methods do not scale to large unla-
beled datasets — computing the representation for
or executing clustering over all data points can be
time-consuming. Hence, in an interactive setting,
a new solution should avoid the computation over
the entire unlabeled data pool.
Sample redundancy. Given the low-resource and
interactive setting, it is crucial to acquire sam-
ples that are critical for fine-tuning the model and
salient such that acquisition time is not wasted on
redundant samples. As shown in Figure 1, we ob-
served two sample redundancies in existing meth-
ods: intra- and inter-iteration redundancy.

Uncertainty-based methods tend to sample simi-
lar data points in the same iteration as they priori-
tize the model’s predictive performance — all the
data points selected based on uncertainty may be
very similar (Figure 1b). Diversity-based methods,
e.g., FTbertKM (Yuan et al., 2020), tend to sample
similar data across AL iterations as they empha-
size acquiring diverse samples in the unlabeled
pool while ignoring data points already labeled —
the unlabeled pool may contain data points similar
to annotated data (Figure 1c).

Existing hybrid approaches usually employ a sin-
gle metric to both enhance diversity and reduce the
uncertainty during sample acquisition. However,

these methods tend to prioritize one objective over
the other due to the design of their acquisition func-
tion. CAL’s (Margatina et al., 2021) choice for se-
lecting the most contrastive data points — assumed
to enforce diversity — utilizes the model’s predic-
tive confidence, a metric employed by uncertainty-
based methods. As CAL does not employ di-
versity measures, the selected contrastive points
may be similar, causing intra-iteration redundancy.
We empirically show that CAL acquires similar
data points within an iteration (see Figure 1d).
Methods such as BADGE (Ash et al., 2020) and
ALPS (Yuan et al., 2020), on the other hand, pri-
oritize diversity. As explained in Section 2, both
approaches employ clustering on the uncertainty-
based embeddings of the unlabeled data points and
acquire candidates from diverse clusters, represent-
ing varying degrees of uncertainty. Such selec-
tion is prone to inter-iteration redundancy as data
points similar to the labeled data and predicted with
higher confidence by the model may be selected.
Figure 1d shows that BADGE and ALPS exhibit
similar sampling distribution to the diversity-based
method FTbertKM. These redundancies indicate
more room for further reducing the labeling budget
than SOTA methods and performing active learn-
ing in a low-resource setting. Therefore, an AL
method should aim to minimize such redundan-
cies.

3.2 Design Criteria of TYROGUE

Motivated by the aforementioned limitations, we
identify two key designs that can improve the ef-
fectiveness and efficiency of sample acquisition:
D1 reduce the unlabeled pool being considered
for acquisition and D2 decouple the diversity and
uncertainty objectives in hybrid acquisition.

D1. Random sampling to reduce acquisition
latency. The first design involves applying ran-
dom sampling to an unlabeled data pool to obtain
a smaller candidate set on which the acquisition
function can then be applied. Such filtering reduces
the latency of acquisition, a bottleneck in applying
existing methods in an interactive setting. While
existing methods only focus on the model perfor-
mance (i.e., selecting informative data samples to
fine-tune language models), we focus on both the
model performance and acquisition latency, lead-
ing to an accuracy-latency trade-off. Random sam-
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pling enables us to execute inference and clustering
on a small subset of the unlabeled pool. Despite
the significant computational cost reduction, we
show empirically that such sampling does not hurt
performance much in a low-resource setting.

D2. Employing diversity and uncertainty sam-
pling independently to reduce redundancy. The
second design proposes effectively combining di-
versity and uncertainty sampling to avoid intra- and
inter-iteration redundancies. As mentioned in Sec-
tion 3.1, existing hybrid methods may suffer from
these redundancies due to unifying the uncertainty
and diversity objectives into a single acquisition
function — such strategies often exhibit affinity
toward one objective over another. The basic idea
is a two-step selection; executing 1) diversity sam-
pling, e.g., selecting cluster centers, to reduce intra-
iteration redundancy and 2) uncertainty sampling,
e.g., selecting data points with high entropy, to
avoid inter-iteration redundancy.

In the first step, by using diversity sampling, we
select a subset of an unlabeled data pool consist-
ing of diverse data points in the BERT embedding
space. As for the second step, by using uncer-
tainty sampling, we acquire data points from the
subset, which are predicted with low confidence
by the current model. We assume that data points
in an unlabeled pool are predicted with high confi-
dence if they are similar to those in the labeled pool.
Uncertainty sampling is expected to mitigate the
inter-iteration sample redundancy since it selects
data points with low model confidence. In fact,
we empirically show that our method of explic-
itly combining diversity and uncertainty sampling
outperforms a diversity-based method FTbertKM
(Yuan et al., 2020) suffering from the sample re-
dundancy across iterations (see Figure 1c and 1e).

We employ diversity sampling first as opposed
to uncertainty sampling to avoid intra-iteration re-
dundancy — uncertainty-based acquisition strate-
gies are prone to obtaining redundant samples as
they prioritize the model’s predictive performance.
Moreover, in a low-resource setting, in earlier ac-
tive learning iterations, the data points can be po-
tentially less informative since the model is trained
on insufficient data. In our experiments, we em-
pirically show that an uncertainty-based method
such as Entropy (Wang and Shang, 2014) does not
perform well in the low-resource setting due to the

Algorithm 1 AL iterations
Require: labeled data Dl, unlabeled data Du, ac-

quisition size b, modelM, acquisition func-
tion A

1: Dl = {}
2: for iterations t = 1, . . . , T do
3: Qt ← Acquire b data points by acquisition

function A on modelM, data Du

4: Dt ← Label acquired samples Qt

5: Dl = Dl ∪ Dt

6: Du = Du\Dt

7: M← Fine-tuneM on Dl
returnM

Figure 2: Overall pipeline of TYROGUE.

lack of sample diversity as shown in Figure 1b.
Concretely, Entropy acquires many similar data
points from a specific area within an iteration even
though the area is not close to a decision bound-
ary for the model trained on the entire AgNews
dataset (Zhang et al., 2015) (see the red box in
Figure 1a). Hence, we execute diversity sampling
first to ensure that acquired data points are diverse.

3.3 Problem Setting

We define Dl and Du as a labeled and unlabeled
data pool, respectively. Given these data pools, we
perform AL for T iterations. For each iteration,
we train a model on Dl and then acquire a batch
Q consisting of b data points from Du by using
an acquisition function (see Algorithm 1). Then,
the acquired data points are labeled (line 4), added
to the labeled data pool Dl (line 5), and removed
from the unlabeled data pool Du (line 6). Follow-
ing previous work (Margatina et al., 2021; Ash
et al., 2020; Yuan et al., 2020), we simulate the AL
setting, i.e., we assume the data pool Du to be un-
labeled even though their labels are available in the
benchmark and use the labels for evaluation. In our
experiments, we fine-tune BERT modelM (De-
vlin et al., 2018) at each AL iteration using the
current labeled data pool Dl (line 7).
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3.4 Pipeline of TYROGUE

Figure 2 outlines the detailed pipeline of TY-
ROGUE in an AL iteration. First, TYROGUE ob-
tains a subset Drand of an unlabeled data pool Du

by drawing |Drand| samples uniformly at random
(see the “Random sampling” in the figure) from
the unlabeled pool. This step ensures the data can-
didate pool for the next step is small enough to
satisfy design criteria D1. Note that |Drand| is a
user-specified parameter which impacts the latency
of the eventual acquisition. For example, a higher
value of |Drand| causes a higher latency during
clustering due to the larger pool of data points.
In our experiments we set |Drand| = 10, 000, to
ensure that the execution time of k-means is faster.

TYROGUE then performs diversity and uncer-
tainty sampling in separate steps to enforce design
criteria D2. We utilize a user-specified parameter
r to control the trade-off between diversity and un-
certainty while acquiring b samples. TYROGUE

applies the k-means clustering algorithm to l2-
normalized BERT embeddings of the randomly
selected data points. TYROGUE first sets k = r× b
as the clustering parameter and then selects the
cluster centers as samples2, thus enforcing diver-
sity. From the k = r × b samples, TYROGUE ac-
quires top-b data points based on the entropy of the
current model’s prediction, thus enforcing uncer-
tainty. By appropriately setting r, TYROGUE can
flexibly incorporate both diversity and uncertainty
into its acquisition. Therefore, TYROGUE enables
the users to control the degree of emphasis on one
objective over another, unlike other hybrid strate-
gies. For an extreme example, TYROGUE skips
uncertainty sampling when r = 1 and diversity
sampling when r ≥ |Drand|/b.

4 Experiments

We now present the experiment set-up and results.
Setup. To demonstrate the reduction in label-
ing cost and acquisition latency, we compare TY-
ROGUE with SOTA uncertainty-based (Entropy),
diversity-based (FTbertKM), and hybrid (BADGE,
ALPS, and CAL) methods. Note that Entropy is a
baseline used in Margatina et al. (2021). We also
include Random, which draws samples uniformly

2Following existing approaches like FTbertKM and ALPS,
we select samples closest to the cluster center.

at random from the unlabeled pool. Random ac-
quisition is non-active (or passive) as its sample
selection does not depend on any model output.

We evaluate the methods by fine-tuning the pre-
trained BERT in active iterations on seven datasets
used by Margatina et al. (2021) and the PAWS-
QQP dataset (Zhang et al., 2019). Used datasets are
described in Table 1. Following the low-resource
setting in Grießhaber et al. (2020), we evaluate
our method with a total labeling budget of 1,000
samples. We set batch size per iteration as 50
samples to ensure interactivity. Note that CAL
uses a labeled validation set to help the selection
of samples. To ensure a fair comparison across
methods, we exclude the validation step.
Implementations. We use the HuggingFace
(Wolf et al., 2020) implementation of BERT-
BASE (Devlin et al., 2018) with an additional clas-
sification layer. We use the open-source imple-
mentations of baseline methods used by CAL3. We
repeat all experiments with five random seeds to
get different initial model output layer weights and
initial Dl. Entropy, CAL, and BADGE start from
an initial random sample set (warm start), while
FTbertKM, ALPS, and TYROGUE utilize the active
acquisition functions from the first iteration (cold
start). For each active iteration, we train the model
for three epochs. As for hyper-parameters we set
|Drand| = 10, 000 and r = 3 in following exper-
iments based on empirical observations. In fact,
we observe that |Drand|’s values >1K (5K, 10K,
20K) do not lead to significant accuracy differences
(see Appendix B). We execute all experiments on
a GPU node with 8 NVIDIA A100-SXM cores.
More details can be found in Appendix A, and
Appendix B.

4.1 Performance Evaluation

Labeling cost. To start with, we look at labeling
cost reduction with respect to the number of la-
beled data points needed to achieve comparable
prediction performance with the models fine-tuned
on the entire training set (i.e., fully supervised).
We set the target F1 score to be 85% and 95% of
the fully supervised model. In Figure 3, we report
the average number of data samples needed over
five random trials for each acquisition function.

3https://github.com/mourga/
contrastive-active-learning
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Table 1: Summary of datasets. Tasks: Sentiment Analysis (SA), Topic Classification (TC), Natural Language
Inference (NLI), and Paraphrase Detection (PD).

Dataset Task Domain Train/Val/Test Classes

IMDB (Maas et al., 2011) SA Movie Reviews 22.5K/2.5K/25K 2
SST-2 (Socher et al., 2013) SA Movie Reviews 60.6K/6.7K/871 2
AgNews (Zhang et al., 2015) TC News 114K/6K/7.6K 4
DBPEDIA (Zhang et al., 2015) TC News 20K/2K/70K 14
PubMed (Dernoncourt and Lee, 2017) TC Medical 180K/30.2K/30.1K 5
QNLI (Wang et al., 2019) NLI Wikipedia 99.5K/5.2K/5.5K 2
PAWS-QQP (Zhang et al., 2019) PD Social QA Questions 10.8K/1.2K/677 2
QQP (Wang et al., 2019) PD Social QA Questions 327K/36.4K/80.8K 2
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Figure 3: Average labeling cost (number of data samples) per iteration to achieve 85% and 95% of the F1 score by
a model trained with the entire training set. With TYROGUE, models can achieve the same prediction F1 using up
to 43% fewer labeled training examples compared to second best acquisition algorithm.

We only report the cost if a model achieves the tar-
get F1-score, leaving bars empty for failure cases.
Moreover, we do not report the performance of FT-
bertKM and ALPS for QQP, the largest dataset, due
to computing resource constraints in performing
k-means clustering on the entire unlabeled data.

For all datasets tested, with a good acquisition
algorithm, models can reach the target of 85%
of the fully-supervised performance with 1,000
actively selected training samples. The batch
size is less than 1% for large datasets like QQP
and PubMed. In our low-budget setting, models
achieve the highest target of 95% for half of the
used datasets. TYROGUE reduces the labeling cost
by up to 43% to achieve the same accuracy com-
pared with the second-best method FTbertKM on
AgNews. At 95% target accuracy, TYROGUE is
the best-performing algorithm except for DBPE-
DIA. At 85% target accuracy, TYROGUE is among
the 2 best performing algorithms except for DB-
PEDIA and PAWS-QQP. PAWS-QQP is an arti-
ficial dataset derived from the QQP corpus and
the DBPEDIA dataset. We look closely at their
characteristics in Section 4.2.

Interactivity. To ensure an interactive experience
for iterative model development and debugging,
the latency of acquisition algorithms matters. Fig-
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Figure 4: Average per-iteration acquisition time over
5 random runs. Unlike other approaches, TYROGUE’s
runtime does not increase with the size of the datasets ,
thereby, significantly reducing acquisition latency.

ure 4 reports the time needed to select the next
batch of samples to annotate for each acquisition
method, averaged over all active iterations and five
random trials. TYROGUE reduces the run time up
to 11 times (compared with CAL on QQP) and is
the fastest algorithm for six of the eight datasets.
Diversity-based methods are known to be slow due
to the expensive embedding calculation and clus-
tering for the entire corpus. CAL also tends to be
slow since it needs to compute the nearest labeled
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neighbors of data points in the entire unlabeled
pool. Without compromising accuracy, TYROGUE

can acquire samples in time which is dramatically
less than the state-of-the-art algorithms. Our exper-
iment’s average training time per iteration is 2330s,
comparable to the acquisition time for slower algo-
rithms. Further, training can run in parallel with
the acquisition in the next iteration. So reducing
the acquisition time is crucial to the interactive
experience of the active learning loops.

4.2 Impact of datasets and parameter r

Aside from an appropriate acquisition strategy,
model performance depends on the characteris-
tic of datasets and tasks. We empirically observe
that larger datasets (e.g., QQP and PubMed) and
data from a specialized domain (e.g., PubMed) are
“harder” cases for actively fine-tuning under a lim-
ited budget. Complex tasks involving sentence or
paragraph pairs (e.g., QNLI and the QQP datasets)
are harder compared to sentiment and topic classi-
fication tasks.

(a) DBPEDIA (b) PAWS-QQP (c) QQP

Figure 5: Two-dimensional visualization of the em-
beddings by the BERT fine-tuned on the full training
data set for (a) DBPEDIA, (b) PAWS-QQP, and its
source (c) QQP. DBPEDIA dataset has diverse classes
distributed over the space, requiring acquisition algo-
rithms with good coverage and sample diversity. PAWS-
QQP consists of artificially constructed pairs from the
original QQP data, and unlike QQP, has a near-linear
class separation. The simple class distribution reduces
the need for overall sample coverage compared to QQP
and favors uncertainty algorithms to acquire critical
samples near the class boundaries. We use t-SNE (Van
Der Maaten, 2014) to project the embeddings.

In Section 4.1, we demonstrated the effective-
ness of TYROGUE in saving labeling cost and
reducing acquisition latency. The benefit of in-
corporating uncertainty and diversity generalizes
well across datasets except for two unique datasets.
For DBPEDIA, diversity-based algorithms like FT-
bertKM and hybrid methods that prioritize diver-
sity like BADGE exhibit lower costs. All acqui-

sition functions are outperformed by random se-
lection, which can be considered a naive diversity-
based acquisition strategy. While for PAWS-QQP,
uncertainty-based like Entropy and hybrid methods
that prioritize uncertainty like CAL perform better
in terms of cost reduction.

Figure 5 shows two-dimensional visualizations
of the embeddings for the two datasets and the orig-
inal QQP dataset. The embeddings are generated
by models trained on the entire training dataset,
and colors represent the class labels. The scatter-
plots show that DBPEDIA data points from the
14 classes are distributed over disconnected clus-
ters over the space. Models need diverse samples
with good domain and class coverage, thus favor-
ing diversity-heavy methods. On the other hand,
PAWS-QQP consists of artificially constructed Ad-
versarial pairs from the QQP data and is less di-
verse than its source. The near-linear class separa-
tion leads to a reduced need for sample diversity.
In such a case, uncertainty-based samples near the
decision boundary can help the model make better
predictions in the ambiguous area.

The observations above highlight that the per-
formance of an active learning method may vary
depending on dataset characteristics such as scale
and domain diversity. The design of TYROGUE en-
ables users to control the balance between diversity
and uncertainty by tuning the parameter r.

Figure 6 demonstrates the effect of varying pa-
rameter r for two datasets — PAWS-QQP4 and
DBPEDIA — representing two extreme cases. As
shown in Figure 5b, PAWS-QQP is almost lin-
early separable and thus more suitable for the
uncertainty-based acquisition, where acquiring
samples only from the decision boundary may be
sufficient for high-quality fine-tuning. The DB-
PEDIA dataset (Figure 5a), on the other hand, ex-
hibits a more complex class boundary and requires
a more diverse acquisition strategy to acquire repre-
sentative samples. Generally, the larger r is, the TY-
ROGUE tends to perform uncertainty-based acquisi-
tion. On the other hand, when r = 1, TYROGUE ig-
nores the uncertainty-based sampling and performs
diversity-based acquisition only. If r = |Drand|/b,
TYROGUE skips the diversity sampling and per-

4Since PAWS-QQP is a harder dataset where no algorithm
can reach the high 95% target accuracy, here we show results
for a lower target 89%.

3237



PAWS-QQP DBPEDIA
Datasets

0

200

400

600

800

1000

Av
er

ag
e 

La
be

lin
g 

Co
st

Target percentage: 0.85
Algorithm
TYROGUE_r1
TYROGUE_r3
TYROGUE_r150
TYROGUE_r200
Entropy
FTbertKM

PAWS-QQP DBPEDIA
Datasets

0

200

400

600

800

1000

Av
er

ag
e 

La
be

lin
g 

Co
st

Target percentage: 0.89
Algorithm
TYROGUE_r1
TYROGUE_r3
TYROGUE_r150
TYROGUE_r200
Entropy
FTbertKM

Figure 6: Imapct of parameter r varing in range [1, |Drand|/b] on the special datasets PAWS-QQP and DBPEDIA,
comapring with uncertainty-based (Entropy) and diversity-based (FTbertKM) algorithms.

forms uncertainty-based acquisition only. In keep-
ing with these observations, the results in Figure 6
show that PAWS-QQP favors uncertainty-based
methods, and DBPEDIA requires reasonable diver-
sity in training samples. We believe such observa-
tions lay a solid foundation for future work on the
design of automatically adaptive algorithms.

5 Conclusion and Future work

We present TYROGUE, a novel active learning
method that overcomes the two major limitations
of existing methods: 1) high acquisition latency
and 2) sample redundancy. Through our exper-
iments, we observe that TYROGUE runs faster
than existing methods for larger datasets and re-
duces sample redundancy through effective com-
bination of diversity and uncertainty, thereby re-
ducing the labeling cost. We also observe how
adaptability is crucial for obtaining consistent per-
formance across datasets and identify the impor-
tance of instrumenting mechanisms to balance the
uncertainty-diversity trade-off.
Towards adaptive acquisition. The trade-off be-
tween uncertainty and diversity is essential for ac-
tive acquisition algorithms. We believe TYROGUE

and the observations in this work lay the foundation
for future work on adaptive acquisition functions
that balance both objectives. Future extensions to
our work can investigate strategies for attaining
the optimal balance of uncertainty and diversity by
taking into account aspects such as model perfor-
mances and dataset characteristics.
Adoption in practical systems. The multi-step
adaptive method proposed, TYROGUE can be incor-
porated into any annotation platforms. As outlined
in Section 1, such frameworks can enable rapid
iterations in the early stages of modeling building.

Therefore, understanding how TYROGUE can be
integrated into the existing annotation platforms is
an interesting research problem.
Transparency and control for practitioners. Fu-
ture studies may explore how users operate within
the interactive AL framework. Our proposed de-
sign affords control to the users in balancing the ac-
quisition dichotomy as mentioned above. However,
it is imperative to understand how aspects such as
transparency of the framework and interpretability
of the model may impact users’ experience as they
reason over the control parameters.

6 Limitations

TYROGUE has been tested only on popular textual
data classification tasks like sentiment analysis and
pair classification like paraphrase detection.

We only used the base BERT model, which is
pre-trained on the standard Wikipedia and book
datasets, for all the diversity-based approaches.
Schröder et al. (2022) utilized both BERT and Dis-
tilRoBERTa to test the performance of uncertainty-
based methods. DistilRoBERTa showed similar
results with a smaller model with fewer parameters.
The conclusion opens up interesting future work on
the choice of embedding models in low-resource
scenarios. To work well on less represented do-
mains such as scientific publications, customized
pre-trained models may be necessary for our low-
budget setting.

TYROGUE focuses on the acquisition steps in
active learning iterations and assumes standard it-
erative model fine-tuning in batches. For example,
with the training strategy that adapts to downstream
application proposed by Margatina et al. (2022),
our conclusions on the acquisition strategies may
not generalize directly.
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A Experimental Details

A.1 Hyperparameters for Pre-trained Model

As for the detailed set up of BERT-BASE, we fol-
low Margatina et al. (2021). Concretely, we train
all models with batch size 16, learning rate 2e− 5,
no weight decay, and AdamW optimizer with ep-
silon 1e − 8. For all datasets we use maximum
sequence length of 128, except for IMDB that con-
tains longer input texts, for which we use 256. The
base model has 12 layers, 768 hidden, 12 heads
and 110M parameters.

A.2 Dataset Split

If available, we use the default test and train splits
provided for all datasets. Otherwise, we randomly
sample a validation set from the training set and
use the split ratio in Margatina et al. (2021) as fol-
lows. For IMDB, SST-2, QNLI, and PAWS-QQP,
we randomly sample 10% from the training set to
serve as the validation set. As for AgNews and
QQP we sample 5%. For DBPEDIA, we under-
sample both training and validation sets from the
standard splits. The reason that we prepare a val-
idation set is to allow future researchers to easily
utilize a validation set for their settings. For all
datasets, we use the default test set.

A.3 Detailed Procedure for Model Training
with Active Learning

There are two major approaches to fine-tune pre-
trained LMs in active learning. First, some meth-
ods such as Citovsky et al. (2021) use the same
model across iterations and iteratively train it us-
ing the accumulated labeled data points that are
acquired over iterations. This approach may pri-
oritize data points acquired in early AL iterations
since they are used for training more times than
those acquired in later AL iterations. Other meth-
ods such as Ash et al. (2020); Yuan et al. (2020);
Margatina et al. (2021) initialize a model for each
AL iteration and train the initialized pre-trained
model by using the current labeled data points that
are accumulated. This approach requires more
training epochs per iteration since it needs to fine-
tune an initialized model. To accommodate our
low-resource interactive setting, we use the first
approach – same model across iterations in our
experiments.
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Table 2: Labeling cost (number of data samples per iteration) with 95% confidence intervals to achieve target
accuracy 85%, 90%, and 95% of the fully-supervised model.

IMDB SST-2 DBPEDIA AgNews PubMed QNLI PAWS-QQP QQP

a) Target accuracy: 85%

TYROGUE 180.0+/-30.4 140.0+/-46.5 230.0+/-84.2 140.0+/-46.5 270.0+/-63.3 360.0+/-72.4 640.0+/-154.1 770.0+/-206.3
CAL 210.0+/-72.4 200.0+/-78.5 310.0+/-46.5 260.0+/-149.0 500.0+/-171.2 470.0+/-231.0 470.0+/-186.7 980.0+/-49.7
Entropy 210.0+/-46.5 180.0+/-63.3 290.0+/-46.5 180.0+/-74.5 480.0+/-160.0 400.0+/-68.0 480.0+/-108.2 980.0+/-49.7
FTbertKM 200.0+/-55.5 180.0+/-63.3 230.0+/-63.3 150.0+/-39.3 280.0+/-74.5 360.0+/-106.8 770.0+/-282.1 -
ALPS 166.7+/-58.6 120.0+/-30.4 - 130.0+/-49.7 340.0+/-72.4 420.0+/-100.9 750.0+/-633.3 -
BADGE 180.0+/-49.7 150.0+/-55.5 220.0+/-63.3 130.0+/-49.7 250.0+/-0.0 360.0+/-132.6 550.0+/-117.8 960.0+/-72.4
Random 190.0+/-46.5 180.0+/-74.5 200.0+/-39.3 140.0+/-24.8 290.0+/-60.8 320.0+/-84.2 860.0+/-347.7 990.0+/-24.8

b) Target accuracy: 90%

TYROGUE 220.0+/-30.4 190.0+/-46.5 260.0+/-91.2 180.0+/-49.7 420.0+/-108.2 900.0+/-117.8 950.0+/-124.2 -
CAL 250.0+/-68.0 260.0+/-91.2 370.0+/-63.3 320.0+/-144.8 800.0+/-238.8 790.0+/-226.9 820.0+/-186.7 -
Entropy 250.0+/-55.5 270.0+/-84.2 310.0+/-72.4 240.0+/-132.6 950.0+/-68.0 750.0+/-161.9 880.0+/-217.2 -
FTbertKM 260.0+/-72.4 240.0+/-99.3 250.0+/-103.9 180.0+/-74.5 600.0+/-152.1 - 920.0+/-198.7 -
ALPS 200.0+/-101.4 190.0+/-46.5 - 180.0+/-84.2 740.0+/-220.0 - - -
BADGE 250.0+/-78.5 230.0+/-74.5 230.0+/-63.3 190.0+/-72.4 500.0+/-141.6 860.0+/-226.9 990.0+/-24.8 -
Random 270.0+/-63.3 260.0+/-132.6 210.0+/-46.5 150.0+/-0.0 820.0+/-198.7 - - -

c) Target accuracy: 95%

TYROGUE 450.0+/-87.8 400.0+/-87.8 270.0+/-92.9 450.0+/-87.8 - - - -
CAL 480.0+/-84.2 640.0+/-276.0 410.0+/-60.8 900.0+/-68.0 - - - -
Entropy 540.0+/-72.4 590.0+/-212.9 330.0+/-84.2 850.0+/-166.6 - - - -
FTbertKM 540.0+/-126.6 560.0+/-149.0 270.0+/-84.2 790.0+/-168.4 - - - -
ALPS 883.3+/-211.1 480.0+/-231.0 - - - - - -
BADGE 600.0+/-157.1 490.0+/-209.2 260.0+/-72.4 810.0+/-154.1 - - - -
Random 780.0+/-139.4 770.0+/-213.6 240.0+/-46.5 950.0+/-124.2 - - - -

Table 3: Average acquisition time (in seconds) per iteration, averaged over 5 random trials.

IMDB SST-2 DBPEDIA AgNews PubMed QNLI PAWS-QQP QQP

TYROGUE 46.6+/-1.0 54.4+/-1.6 122.2+/-4.5 58.3+/-0.8 73.8+/-2.3 58.4+/-3.3 48.1+/-2.0 90.7+/-1.7
CAL 74.8+/-0.7 227.0+/-35.4 217.6+/-1.5 402.8+/-26.0 628.0+/-43.4 330.4+/-4.7 36.1+/-0.8 1077.4+/-4.1
Entropy 46.3+/-0.0 125.5+/-0.3 117.7+/-0.8 236.8+/-0.5 376.3+/-2.0 204.7+/-0.1 21.9+/-0.0 684.5+/-2.2
FTbertKM 67.4+/-1.5 223.0+/-5.6 127.2+/-1.2 420.8+/-11.5 748.0+/-38.7 369.6+/-26.8 29.3+/-1.5 -
ALPS 119.4+/-4.2 205.9+/-8.1 - 524.4+/-10.8 678.7+/-23.8 411.3+/-4.3 36.1+/-1.1 -
BADGE 36.7+/-0.3 86.0+/-14.0 123.0+/-1.3 166.1+/-10.5 275.8+/-18.3 159.6+/-4.2 17.3+/-0.5 414.1+/-1.5
Random 0.0+/-0.0 0.0+/-0.0 0.1+/-0.0 0.0+/-0.0 0.1+/-0.0 0.1+/-0.0 0.0+/-0.0 0.2+/-0.0

Table 4: Labeling cost of Tyrogue with different hyperparameter |Drand|. Results shown with 95% confidence
intervals to achieve target accuracy 85%, 90%, and 95% of the fully-supervised model. Increasing the size of the
random filter (oversampling) beyond the default setting does not lead to significant changes in labeling costs.

IMDB SST-2 DBPEDIA AgNews PubMed QNLI PAWS-QQP QQP

a) Target accuracy: 85%

TYROGUE_DR5k 180.0+/-49.7 160.0+/-24.8 200.0+/-39.3 140.0+/-24.8 280.0+/-84.2 450.0+/-136.0 510.0+/-294.9 -
TYROGUE_DR10k 180.0+/-30.4 140.0+/-46.5 230.0+/-84.2 140.0+/-46.5 270.0+/-63.3 360.0+/-72.4 640.0+/-154.1 770.0+/-206.3
TYROGUE_DR20k 180.0+/-30.4 170.0+/-49.7 190.0+/-24.8 160.0+/-60.8 270.0+/-49.7 390.0+/-159.0 490.0+/-159.0 -

b) Target accuracy: 90%

TYROGUE_DR5k 220.0+/-74.5 190.0+/-46.5 230.0+/-30.4 190.0+/-24.8 600.0+/-171.2 890.0+/-168.4 840.0+/-243.3 -
TYROGUE_DR10k 220.0+/-30.4 190.0+/-46.5 260.0+/-91.2 180.0+/-49.7 420.0+/-108.2 900.0+/-117.8 950.0+/-124.2 -
TYROGUE_DR20k 230.0+/-30.4 240.0+/-60.8 210.0+/-24.8 220.0+/-63.3 510.0+/-99.3 860.0+/-216.5 950.0+/-78.5 -

c) Target accuracy: 95%

TYROGUE_DR5k 430.0+/-63.3 420.0+/-121.7 250.0+/-0.0 490.0+/-106.8 - - - -
TYROGUE_DR10k 450.0+/-87.8 400.0+/-87.8 270.0+/-92.9 450.0+/-87.8 - - - -
TYROGUE_DR20k 420.0+/-63.3 430.0+/-84.2 240.0+/-24.8 490.0+/-138.3 - - - -
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B Additional Results

In this section, we report detailed results of our
experiments.

Labeling cost Table 2 shows total labeling costs
to achieve target accuracy of 85%, 90%, and 95%
(compared to fully supervised models) and their
95% confidence intervals. Table 2 (a) 85% and (c)
95% correspond to the results in Figure 3.

Acquisition latency Table 3 shows acquisition
times spent per iteration (in seconds) and their 95%
confidence intervals. Table 3 corresponds to the
results in Figure 4. All results are averaged over
five trials.

|Drand| settings For accuracy/labeling cost, TY-
ROGUE is not very sensitive to |Drand| as long as
it provides representative samples of the unlabeled
pool. Empirically as shown in Table 4, we ob-
served that values >1K (5K, 10K, 20K) did not
lead to significant accuracy differences. Regard-
ing efficiency, acquisition latency grows as |Drand|
gets larger.

C Efficiency

In this section, we compare the computational ef-
ficiency of the acquisition functions used in our
experiments. TYROGUE requires O(rb|Drand|d),
where d indicates the dimension of embeddings.
This is mainly driven by k-means clustering step
on Drand. Other compared methods, Entropy, FT-
bertKM, BADGE, ALPS, and CAL, require at
leastO(|Dpool|), which is significantly higher than
O(rb|Drand|d) in real applications. By perform-
ing the initial random sampling, TYROGUE can
greatly reduce the scale of later operations like
clustering and ranking. Hence, TYROGUE runs
faster than other AL methods on middle- or large-
sized datasets (detailed numbers are included in
Table 3).
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