
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 1466–1477
December 7-11, 2022 ©2022 Association for Computational Linguistics

Improving the Extraction of Supertags for Constituency Parsing
with Linear Context-Free Rewriting Systems

Thomas Ruprecht
Faculty of Computer Science

Technische Universität Dresden
01062 Dresden, Germany

thomas.ruprecht@tu-dresden.de

Abstract

In parsing phrase structures, supertagging
achieves a symbiosis between the inter-
pretability of formal grammars and the accu-
racy and speed of more recent neural models.
The approach was only recently transferred
to parsing discontinuous constituency struc-
tures with linear context-free rewriting sys-
tems (LCFRS). We reformulate and parame-
terize the previously fixed extraction process
for LCFRS supertags with the aim to improve
the overall parsing quality. These parameters
are set in the context of several steps in the
extraction process and are used to control the
granularity of extracted grammar rules as well
as the association of lexical symbols with each
supertag. We evaluate the influence of the pa-
rameters on the sets of extracted supertags and
the parsing quality using three treebanks in the
English and German language, and we com-
pare the best-performing configurations to re-
cent state-of-the-art parsers in the area. Our re-
sults show that some of our configurations and
the slightly modified parsing process improve
the quality and speed of parsing with our su-
pertags over the previous approach. Moreover,
we achieve parsing scores that either surpass
or are among the state-of-the-art in discontin-
uous constituent parsing.

1 Introduction

Discontinuous constituency parsing deals with
the task to find hierarchies of – possibly non-
contiguous – phrases (constituents) in a given sen-
tence and assigns a label (constituent symbol) to
each phrase. Traditional approaches use gram-
mar formalisms such as linear context-free rewrit-
ing systems (LCFRS) to model these hierarchies
(Maier and Søgaard, 2008; Kallmeyer and Maier,
2013; van Cranenburgh et al., 2016; Gebhardt,
2020). Statistical parsing with these grammars is
remarkably slow and inaccurate by today’s stan-
dards. But they still find some attraction as both,

the grammars and parsing with them, are eas-
ily interpretable. More recent parsers use neu-
ral classifiers and either leverage the parsing pro-
cess into a linear task (Coavoux, 2021; Fernández-
González and Gómez-Rodrı́guez, 2021b,a, 2022)
or score constituent labels for selected phrases
(Corro, 2020; Stanojević and Steedman, 2020).
Although, in the latter approaches, the occurring
discontinuities are restricted to a small degree.

In supertagging-based parsing (Bangalore and
Joshi, 1999), a grammar is accompanied by a clas-
sifier that selects and scores a small sample of
rules. After that, these rules and their scores are in-
terpreted as a weighted grammar and used for sta-
tistical parsing in the usual manner. This remain-
ing statistical parsing process is significantly faster
than the traditional approach, as the grammar is
much smaller. The approach was investigated in
combination with tree adjoining grammars (TAG;
Kasai et al., 2017; Bladier et al., 2018) and com-
binatory categorial grammars (CCG; Clark, 2002;
Kadari et al., 2018), often in the context of depen-
dency parsing. Since the introduction of recurrent
neural networks (RNN) as classifiers, the accu-
racy of the supertag prediction has improved by far
(Vaswani et al., 2016; Kasai et al., 2017; Bladier
et al., 2018; Kadari et al., 2018). A recent publica-
tion (Ruprecht and Mörbitz, 2021) showed that su-
pertagging improves the quality and speed of pars-
ing constituency structures with LCFRS, bringing
it close to recent discontinuous parsing methods.
However, their extraction process for supertags is
rather convoluted and uses hard-wired strategies
for, e.g., the lexicalization and binarization. In
this work, we investigate if the quality of predic-
tions and parsing with LCFRS supertags can be
improved by introducing parameters that replace
these hard-wired configurations in the extraction.

Section 3 presents a formulation of supertags
and an extraction algorithm that is – in our eyes
– easier to grasp than the previous definition, be-

1466

pos: WRB PT NN VBD VBN RP
w: where the survey was carried out

ξ:

SBAR

S

VP

VP

WH

0 4

PRT

53

NP

1 2

Figure 1: Discontinuous constituent tree for the phrase
where the survey was carried out. The tree is illus-
trated with crossing branches, so that the leaves appear
ordered. For each constituent, the path to its lexical
head is double-struck.

cause it avoids cumbersome transformations of
LCFRS derivations. Both tackle the following
limitations of the existing approach: (i) Before the
extraction of grammar rules, the constituent trees
were binarized using specific fixed parameters.
We will investigate the impact of varying those pa-
rameters to the processes for extraction and pars-
ing. (ii) Constructing lexical LCFRS rules picked
a sentence position for each inner node of the con-
stituent tree according to a fixed strategy. We will
investigate multiple such strategies, which we will
call guide constructors. (iii) LCFRS rules were
constructed with constituent symbols as nontermi-
nals, which were then supplemented with anno-
tations during the lexicalization process. The au-
thors noted that the sets of extracted supertags are
rather large compared to other approaches, and we
deem that the granularity of nonterminals plays a
significant role in this issue. We decouple the non-
terminals from the other extraction processes and
introduce multiple strategies to define them, called
nonterminal constructors. Section 4 describes ex-
periments with the discontinuous English Penn
Treebank (DPTB, Marcus et al., 1994; Evang and
Kallmeyer, 2011), and the two German treebanks
NeGra (Skut et al., 1998) and Tiger (Brants et al.,
2004). It explains how we found viable config-
urations for the introduced parameters and gives
results for parsing with them. The implementation
is available as free software.1

2 Notation

A discontinuous constituent tree is a tuple
(ξ, pos, w) as follows: w is a sequence of termi-

1https://github.com/truprecht/
lcfrs-supertagger

S → [x1 the y1 x2](V,N)

V → [x1,wasx2](V)

V → [x1, carried y1](L-V,V|<>)

L-V → [where] V|<> → [out]

N → [survey]

Figure 2: A binary lexical LCFRS derivation for the
string where the study was carried out.

nal symbols (phrase), pos is a sequence of part-
of-speech (pos) symbols with the same length as
w, and the constituent structure ξ is a tree; its in-
ner nodes are constituent symbols and its leaves
are positions 0, . . . , |w| − 1 such that each occurs
exactly once in ξ. Figure 1 shows an example.

We use the usual notation for (Gorn-)positions2

in the constituent structure, i.e. each position de-
termines exactly one node in ξ. The set of all inner
node positions in ξ is denoted by npos(ξ). The
subtree of ξ at position ρ is denoted by ξ|ρ. The
yield yd(ξ) is the set of leaves in ξ. The fanout of
(a set of leaves) L is the smallest number of con-
tiguous subsets of L. For instance, in Fig. 1, the
yield of the subtree governed by the upper node
labeled by VP is the set {0, 3, 4, 5}, its fanout is 2.
ξ(ρ) denotes the constituent symbol at position ρ.

We sometimes consider lexical heads for the
constituent structure. For each inner node, the lex-
ical head is the critical sentence position that deter-
mines its symbol; and we call each of the node’s
children that does not contain the lexical head a
modifier. In Fig. 1, for each inner node in ξ, the
path to its lexical head is double struck. E.g. for
the inner node with symbol S, the lexical head is
the position 3. The subtree starting at the NP node
is its only modifier.

We briefly cover the notation for binary lex-
ical LCFRS (in the following just LCFRS).
Each rule is either of the form A → [w]
(nullary), A → [u1, . . . , uk](B1) (unary) or A →
[u1, . . . , uk](B1, B2) (binary). A is the left-hand
side (lhs) nonterminal, B1, B2 are right-hand side
(rhs) nonterminals, and w is the rule’s lexical
symbol (or terminal). The non-empty strings
u1, . . . , uk consist of exactly one lexical symbol
and variables x1, . . . , xn (and y1, . . . , ym in bi-
nary rules). They denote a function composing k

2Each position is a sequence of integers, where, starting
with the root in the tree and from left to right in the sequence,
each n in the sequence recursively addresses the n-th child
of the current node. We expect that the children of each node
are ordered according to their leftmost leaf. E.g. ε is the root
node’s, and 1.2 the NP node’s position in Fig. 1.

1467

https://github.com/truprecht/lcfrs-supertagger
https://github.com/truprecht/lcfrs-supertagger

constituent tree

binary con-
stituent tree

binary constituent
tree with guide supertag

derivation
supertags

(v)(vi)

(i) (ii)
(iii) (iv)

binarization
parameters

guide construc-
tor

nonterminal
constructor

WRB PT NN VBD VBN RP

SBAR

S

VP

VP

WH

0 4

PRT

53

NP

1 2

WH+
WRB PT NN VBD VBN PRT

+RP

SBAR+S

VP

VP

0

VP|<>

4 53

NP

1 2

1

2

3

4

5

(SBAR+S, S→ [x1 1 y1 x2](V2,N), PT, 2)

(VP, V2 → [x1, 3x2](V2), VBD, None)

(VP, V2 → [x1, 4 y1](L-V2,V|<>), VBN, 2)

(None, L-V2 → [0], WH+WRB, None)

(None, V|<>→ [5], PRT+RP, None)

(NP, N→ [2], NN, None) (None, L-V2 → [], WH+WRB, None)

(SBAR+S, S→ [x1 y1 x2](V2,N), PT, 2)

(NP, N→ [], NN, None)

(VP, V2 → [x1, x2](V2), VBD, None)

(VP, V2 → [x1, y1](L-V2,V|<>), VBN, 2)

(None, V|<>→ [], PRT+RP, None)

(i)+(ii) (iii)
(iv)

(v)

(vi)

lr bin
v = 1
h = 0

strict
guide

coarse
nonterminals

Figure 3: (Top) Visualization of the extraction (left to right) and parsing (right to left) process. (Bottom) Examples
for the steps shown in the top. The results after steps (i) and (ii) are shown in tandem: gray boxes next to the inner
nodes show the leaves assigned by the guide. Dashed gray boxes show parameters involved in the extraction.

strings from the lexical symbol and n (respectively
n+m in the binary case) argument strings.

An LCFRS derivation is a tree where each
node is a rule such that its number of succes-
sors matches the rule’s arity and its rhs nontermi-
nals match the successors’ lhs nonterminals; Fig. 2
shows an example. The strings produced by a
derivation are obtained recursively for each node
from bottom to the top as follows:

• If the node is a nullary rule A → [w] and has
no successors, then the produced string is w.

• If the node is either a unary or binary rule of
the form A → [u1, . . . , uk](B⃗) with |B⃗| succes-
sors, then it produces k strings which are obtained
from u1, . . . , uk by replacing each variable xi with
the i-th string produced by the first and yj with the
j-th string produced by the second successor.

3 Contributions

This section presents all concepts involved with
the processes for the extraction from (discontin-
uous) constituency treebanks and parsing with
LCFRS supertags. We will start in Section 3.1
with a short motivation for our notation for su-
pertags, which deviates from the previous formu-
lation. Section 3.2 describes our process for the
extraction of supertags and highlights parts that re-
quire sets of parameters. These parameters are de-
scribed in detail in the following Section 3.3. Sec-
tion 3.4 concludes with an overview for the pars-
ing process. All the described steps and concepts
are illustrated along the arrows in Fig. 3, their la-
beling conforms with the numbering in the para-

graph headings of Sections 3.2 and 3.4.

3.1 Supertags
Ruprecht and Mörbitz (2021) introduced LCFRS
supertags as rules with certain annotations that do
not fit into the usual framework but are necessary
to convert derivations into constituent trees. More-
over, their notation is closely tied to the extraction
and parsing pipeline, which, as explained in Sec-
tion 1, assumes some fixed choices that we estab-
lish as hyperparameters. To tackle these limita-
tions, we introduce the following notation for su-
pertags: a supertag is a tuple (r, t, c, p) where

• r is an LCFRS rule, its terminal is a wildcard,
• t is None or an index in {1, 2} tracking the

transformations for the extraction of lexical rules,3

• c is either None or a constituent symbol4, and
• p is a pos symbol.5

3.2 Extraction Process
The process described in this section is used to ex-
tract a sequence of supertags, one for each word in
a sentence, from a given constituent tree. We dis-
tinguish four steps (i–iv) which are executed con-
secutively. The parameters for steps (i–iii) are de-
scribed in detail in the next section.

3t targets the limitation ii in Section 1 and allows us to
remove the annotation swap that was introduced by Ruprecht
and Mörbitz (2021) in step 5 of their lexicalization procedure.
This annotation does not fit into the LCFRS framework, but
is considered an integral part of the extracted supertag.

4The symbol c targets the limitation iii. It decouples the
induction of nonterminals from constituent symbols.

5Pos symbols are usually handled separately from the
constituent structure in most recent parsing approaches, in-
cluding the existing LCFRS supertag parser.

1468

pos: WH+WRB PT NN VBD VBN PRT+RP

ξ:

SBAR+S

VP

VP

0

VP|<>

4 53

NP

1 2

3

1

0

4

5

Figure 4: Constituent structure and pos symbols after
binarization (v = 1, h = 0; ho and lr binarization co-
incide) of Fig. 1. The symbol “VP|<>” was introduced
during binarization; former unary nodes were joined by
“+”. Gray integers next to inner nodes show the leafs
assigned by a guide for the constituent structure.

(i) Binarization. We construct a binary con-
stituent tree with the usual strategies in constituent
parsing (Kallmeyer and Maier, 2013): Each unary
node is merged with its child (or pos symbol, if the
child is a leaf), and nodes with arity n > 2 are split
into n − 1 binary nodes according to the parame-
ters described in Section 3.3. After this step, the
constituent tree for a sentence w is equipped with
|w| − 1 inner nodes. Figure 4 shows a binary tree
resulting from binarization of the tree in Fig. 1.

(ii) Guide. In this step, we define a guide for the
binary constituent structure ξ, i.e. a mapping G be-
tween inner node positions and leaves in the con-
stituent structure. In the following step, a lexical
LCFRS rule will be constructed for the constituent
at each inner node and the assigned leaf. Intu-
itively, the guide determines which sentence po-
sition is “responsible” for the constituent at each
position. Formally, a guide for ξ is an injec-
tive function G : npos(ξ) → yd(ξ) such that, for
each ρ ∈ npos(ξ), the assigned leaf G(ρ) is in
yd(ξ|ρ). Figure 4 shows a guide for our example
constituent structure, assigning a leaf (illustrated
in gray circles) to each inner node. As G is injec-
tive and there is one less inner node than leaves in
ξ, there is exactly one leaf that is not in the im-
age of G. We will investigate multiple strategies,
called guide constructors, to define guides for a
given constituent tree as discussed in Section 3.3.

(iii) Lexical rule induction. In this step, we will
construct a lexical LCFRS rule r′ and the compo-
nents c, t and p of the supertag for each leaf in the
constituent structure. The nonterminals in the rule
are determined by a chosen hyperparameter NT,
called the nonterminal constructor, in terms of the
constituent symbol and the guide G as described in

Section 3.3. We give examples for (the root posi-
tion in) the tree in Fig. 4, the guide values shown
in pentagons (shortest guide constructor) and con-
stituent symbols as nonterminals (classic nonter-
minal constructor).

We start with the leaf i′ that is not in the image
of G and define a new nonterminal L-A using the
fixed string “L-” and the nonterminal A produced
by NT for the parent of i′. In that case c = t =
None, p = pos(i′), and r′ = L-A → [i′]. In
Fig. 4, the leaf i′ = 2 is not in the image of G, it
yields r′ = L-NP→ [2], and p = NN).

After that, we define the following for each po-
sition ρ ∈ npos(ξ) (from bottom up) and its as-
signed leaf i = G(ρ):

• The LCFRS rule r′ is assembled in the usual
manner from i as lexical symbol and variables
for the spans formed by the leaves in each suc-
cessor except those leaves that are assigned by G
to ρ’s ancestors. NT produces the lhs nontermi-
nal for ρ, the rhs nonterminals are the lhs non-
terminals constructed for ρ’s children. In our ex-
ample, r is assembled from the lexical symbol 3,
the left successor’s leaves are {0

(x1)
, 4, 5

(x2)
} and

the right one’s are {1, 2
(y1)
}; hence r = S →

[x1 y1 3x2](VP2,NP).
• t is None if the leaf G(ρ) is a direct child of ρ,

otherwise it is the index among the children where
G(ρ) is located. In our example, 3 is not a child of
the root, it is in its first successor; therefore t = 1.

• c is ξ(ρ) if it was not introduced during bi-
narization (i.e. the symbol ξ(ρ) does not contain
some markers |<..>), otherwise it is None. In
our example, c = SBAR+S.

• p is the pos symbol at G(ρ) in pos . In our
example p = VBD.

(iv) Supertag extraction. The tuples con-
structed in the previous step closely resemble su-
pertags as described in the previous subsection.
We pull them from the constructed tree and order
them according to the sentence position included
in the lexical rule. Lastly, the sentence position in
each rule is replaced by a wildcard symbol “ ”.

3.3 Extraction parameters

Apart from the constituent treebank, our extraction
algorithm expects parameters for binarization, a
guide constructor and a nonterminal constructor.
The vanilla parameters coincide with the existing
algorithm.

1469

SBAR+S

VP

VP

0

VP|<>

4 53

NP

1 2

1

2

3

0

4

(a) vanilla guide

SBAR+S

VP

VP

0

VP|<>

4 53

NP

1 2

1

2

3

4

5

(b) strict guide

SBAR+S

VP

VP

0

VP|<>

4 53

NP

1 2

2

1

3

0

4

(c) least guide

SBAR+S

VP

VP

0

VP|<>

4 53

NP

1 2

2

1

5

0

4

(d) modifier guide

Figure 5: Guides defined by the constructors introduced in Section 3.3. Gray integers show the leaf assigned to
each inner node for the binary constituent structure. Encircled leaves are not in the image of the guide. The guide
defined by the shortest constructor is shown in Fig. 4.

Binarization parameters. During binarization,
we distinguish factorization (the direction in
which new nodes are introduced) from left to right
(lr bin) or head-outward (ho bin, mixes left and
right-branching nodes such that the node’s lexical
head is among at the last one).6 Both strategies
are extended by markovization. The width of the
horizontal markovization window is denoted by h,
the vertical one by v.

Guide constructors. We define guides for given
constituent structures using the following strate-
gies. Figures 4 and 5 show the leaf assigned to
each inner node for each guide constructor in an
example constituent structure.

• vanilla: The guide maps each node position
either to the leftmost leaf that is a direct succes-
sor, or (if not available) to the leftmost leaf in the
yield of its right successor. The assignment is de-
termined for each node from top to bottom.

• strict: The guide maps each node position to
the leftmost leaf in the yield of its right successor.

• modifier: The guide maps each position to
its modifier’s lexical head. This guide requires
that the constituents structures are binarized head-
outward, which guarantees that each inner node
has exactly one modifier.

• least: The guide aims to map many positions
to leafs that are direct children. The guide is de-
termined for each position from bottom to the top
and selects the nearest (and leftmost, if ambigu-
ous) leaf for each position.

• shortest: The guide aims to map many posi-
tions to leaves that are as near as possible. The

6All three treebanks that we used are biased towards
right-branching structures. In this setting, parsing with
right-branching grammars has been shown to be more ef-
ficient and equally accurate than with left-branching gram-
mars. (Bodenstab, 2012) Here, we focus on comparing right-
branching to the linguistically motivated head-outward bina-
rization scheme, and drop an investigation for left-branching
binarization.

guide is determined for each position from top to
bottom and, similar to the least guide, selects the
nearest (and leftmost, if ambiguous) leaf for each
position. When searching for the nearest leaf, we
exclude a subtree if a leaf in it was selected previ-
ously.

Nonterminal constructors. A nonterminal con-
structor computes a lhs nonterminal for the gram-
mar rule included in each supertag. Each of the
following constructors computes a nonterminal for
the position ρ in ξ from the constituent symbol
ξ(ρ), the set of leaves yd(ξ|ρ) below ρ and the
set of leaves L assigned by G to the ancestors of
ρ. We omit the fanout subscripts if they are 1. We
give examples using the shortest guide, as shown
in Fig. 4, for the root position ε where ξ(ε) =
SBAR+S, yd(ξ|ε) = {0, . . . , 5} and L = ∅ and
the position 1.1 of the bottom VP node where
ξ(1.1) = VP, yd(ξ|1.1) = {0, 4, 5}, L = {0, 3}
and fo(yd(ξ|1.1) \ L) = 1.

• vanilla: The nonterminal consists of the sym-
bol ξ(ρ), the fanout fo(yd(ξ|ρ)) as subscript, and
if L contains any leaf in yd(ξ|ρ), then the differ-
ence in fanout fo(yd(ξ|ρ) \ L) − fo(yd(ξ|ρ)) as
superscript. This superscript indicates the differ-
ence in fanout at ρ in the original constituent tree
compared to the leaves assigned to the nodes in the
subtree at ρ by the guide. (At most one leaf is as-
signed to an ancestor of ρ.) In our two examples,
we construct the nonterminals SBAR+S and VP−1

2

• classic: The nonterminal consists of the first
symbol7 in ξ(ρ) (including markers introduced
during binarization) and the fanout fo(yd(ξ|ρ)\L)
as subscript. This constructor omits annotations
that depend on the guide and is more akin to
usual strategies in LCFRS extraction (Maier and
Søgaard, 2008). For our examples, the nontermi-
nals are SBAR and VP.

7After merging unary nodes in step (i) of the extraction,
each node may consist of multiple constituent symbols.

1470

• coarse: Like the classic nonterminals, but we
replace the constituent symbols occurring in the
treebank by their first letter. This is a very rough
approximation of nonterminals in coarse-to-fine
parsing (Charniak et al., 2006) that does not need
a specific clustering for each treebank. For our ex-
amples, the nonterminals are S and V.

3.4 Parsing
For parsing, a small sample of supertags is pre-
dicted for each position in the input. Each tag
is equipped with a score expressing its prediction
confidence among all supertags for this position.

(v) Supertag derivations. For each predicted
tag, the wildcard in the LCFRS rule is replaced
by the input position it was predicted for. The se-
quence of input positions is parsed using the set of
all lexical LCFRS rules inside the supertags. We
equip each LCFRS rule with the prediction confi-
dence of its supertag8 and use discodop (van Cra-
nenburgh et al., 2016), an off-the-shelf statistical
parser, to pick an LCFRS derivation which max-
imizes the product of prediction confidences. In
this derivation, we replace each LCFRS rule by
the supertag tuple it was taken from.

(vi) Transformation into constituent trees.
The function listed in Algorithm 1 transforms the
tree of supertags obtained in the previous step into
a constituent structure for each node from top to
bottom via recursive calls. Its first argument is
the (sub-)tree to transform, the second one (i1) is
either None or a leaf that is transported from the
top to a lower position. The leaf for the current
supertag (i2) is read from the lexical rule r (line
4). The list of children d⃗ in the supertag tree and
the index t determine how the list of (usually) two
children s⃗ is assembled (lines 6–12): each child in
d⃗ will establish a child in s⃗ via a recursive call (line
9); if there is only one child in d⃗, t will determine
which leaf in {i1, i2} is absorbed into s⃗ (line 6 and
11); if there is no child then both i1 and i2 are in
s⃗ (line 11). Remaining leaves in {i1, i2} will be
transported into the children according to t (line 6
and 9). If c is not None, the function adopts the
constituent symbols (lines 13–15), otherwise the
children in s⃗ are merged with their siblings (lines
16 and 10). The pos symbol p for the leaf i2 is
stored in a set pos (line 5) and merged with the
other pos symbols for each leaf (lines 9 and 15).

8If multiple supertags have the same LCFRS rule, we use
the greatest prediction confidence.

Algorithm 1 Transforming a derivation of su-
pertags into a constituent structure and pos tags.
SYMB(r) is the terminal in the lexical rule r.

Require: d = tag(d⃗): tree of supertags with root
tag and list of children d⃗ where |d⃗| ∈ {0, 1, 2}

Ensure: if d was extracted in steps (i–iii)
from a constituent tree (ξ, p, w), then
CTREE(d,None) = (ξ, {(i, p(i)) | 1≤ i≤|p|})

1: function CTREE(tag(d⃗), i1)
2: (r, t, c, p)← tag
3: s⃗← ε
4: i2 ← SYMB(r)
5: pos ← {(i2, p)}
6: if t = 1 then i1, i2 ← i2, i1

7: for idx in {1, 2} do
8: if |d⃗| ≥ idx then
9: add CTREE(d⃗[idx], iidx) to s⃗, pos

10: else if iidx ̸= None then
11: add iidx to s⃗ as a leaf
12: if c is not None then
13: for c′ in reverse(split(c,+)) do
14: s⃗← c′(s⃗)

15: return s⃗, pos

4 Experiments

Our experiments are conducted with the usual
train/dev/test splits9 for the three discontinuous
constituent treebanks DPTB, NeGra and Tiger.
For each treebank, we select parameters for the
extraction using an incomplete grid search as
described in Section 4.1. For the final mod-
els, we fine-tune each a bert-base-cased (bert-
base-german-cased for NeGra and Tiger) and a
bert-large-cased (gbert-large, respectively; Devlin
et al., 2019; Chan et al., 2020) model with the
selected parameter configurations for 20 epochs
and report the parsing scores and speed in Ta-
ble 6. We use the selected parameters for fine-
tuning the same classifiers (Devlin et al., 2019,
cf. sec. A.2). Appendix A lists the details for the
classifier’s training parameters and the used com-
puting infrastructure. Results for models trained
without any pretrained embeddings are shown in
Appendix B.

9We use the split for NeGra by Dubey and Keller (2003),
for Tiger by Seddah et al. (2013), and the standard split for
DPTB (sections 2–21 for training, 22 for development, 23
for testing). In evaluation, we use the implementation for
F-scores by van Cranenburgh et al. (2016) with default pa-
rameters in proper.prm.

1471

Table 1: Number of extracted core supertags, parsing
scores (F1, F1-d), number of parse fails (E) and predic-
tion accuracy (acc.) in NeGra for varying cores.

core no. core F1 F1-d E acc.
tags core c t p

r 2078 88.0 62.1 7 86.8 94.4 95.7 98.8
rt 2294 88.8 68.9 8 86.7 94.3 — 98.7
rc 2151 89.0 62.8 2 86.5 — 95.4 98.8
rp 7695 86.9 62.1 15 84.5 94.1 95.5 96.3
rtc 2368 90.6 70.7 1 86.9 — — 98.7
rtp 8207 87.4 64.1 18 84.6 94.3 — 96.1
rcp 7784 87.6 60.3 10 84.2 — 95.7 96.4
rtcp 8295 88.7 66.4 12 84.0 — — 96.8

4.1 Parameter selection.
For each treebank, we conduct a parameter search
in four steps to select a satisfactory configuration.

(i) First, we investigate which components of
the supertag tuples to predict in tandem (core
supertags) and which ones separately for
each position in a sentence.

(ii) We investigate a set of combinations for non-
terminal and guide constructors and elimi-
nate underperforming ones.

(iii) The previously found set of combinations is
investigated for each binarization configura-
tion and one final configuration is chosen.

(iv) Finally, we assess how many tags per sen-
tence position (k) shall be predicted.

Each step is implemented as a grid search. For
each configuration in a grid, we fine-tune a bert-
base model for 5 epochs using the supertags ex-
tracted from the training set, and evaluate using
the dev set of the treebank. This process is doc-
umented for the NeGra treebank in the following
paragraphs in very detail as an example.

(i) Core supertags. We investigate if there are
advantages in predicting subsets of supertag com-
ponents jointly (core) while the others are deter-
mined independently.10 The core components al-
ways include the grammar rule r. During parsing,
we use the top k predictions for core components
and only the best prediction for each other compo-
nent. We ran this experiment with one parameter
configuration (vanilla guide, classic nonterminals,

10In supertags as defined by Ruprecht and Mörbitz (2021),
grammar rules r, constituent symbols c and indices t were all
stored in the grammar rules, the pos symbols were predicted
separately.

Table 2: No. supertags extracted from NeGra by non-
terminal constructors (rows) and guides (columns).

vanilla strict least shortest modifier

vanilla 3265 2773 4677 4236 4528
classic 2367 2228 3544 3611 3587
coarse 1754 1677 2823 2837 2933

Table 3: Parsing scores (F1) and supertag prediction
accuracy (acc.) in NeGra for combinations of nonter-
minal constructors (rows) and guides (columns).

vanilla strict least shortest modifier
F1 acc. F1 acc. F1 acc. F1 acc. F1 acc.

vanilla 89.7 85.9 90.9 88.2 86.9 78.9 87.4 78.9 89.1 87.1
classic 90.5 84.6 91.2 89.0 88.8 82.6 87.8 78.8 90.4 87.3
coarse 89.9 85.7 90.8 88.8 88.3 82.5 87.7 79.6 90.1 87.8

lr bin with v = 1 and h = 0, k = 10). and propose
that the results shown in Table 1 are clear enough
to omit repeating this experiment with other con-
figurations. They suggest that the prediction and
parsing accuracies benefit from the absence of pos
tags as well as the presence of both other com-
ponents. Not including the pos tags, there are far
less core supertag tuples and the quality of pos tag
prediction is significantly better. We continue all
following experiments with the core (r, t, c).

(ii) Guide and Nonterminal Constructors.
Here, we extract supertags for each combination
of nonterminal and guide constructor. Binariza-
tion is fixed to lr (except for the modifier guide
which requires ho) with h = 0 and v = 1, and
k = 10. In Table 2, we can clearly see that
both parameters determine the size of the gram-
mar; of course that behavior was intended for the
nonterminal constructors. Significantly less su-
pertags are extracted using the strict and vanilla
constructors than with the three other guides. Ta-
ble 3 shows that the strict guide takes a clear lead
in prediction and parsing accuracy. We continue
the search restricted to the strict guide and all three
nonterminal constructors.

(iii) Binarization. We extract supertags using
the following configurations for binarization: ho
and lr, each with horizontal markovization con-
text h ∈ {0, 1} and vertical markovization context
v ∈ {0, 1, 2}. Table 4 shows the parsing scores
for supertags extracted using these combinations.
Markovization contexts h > 0 and v > 1 do not
seem to give us an advantage in this setting, it is
clearly disadvantageous with vanilla and classic

1472

Table 4: Parsing scores (F1) in NeGra using supertags
extracted with different configurations for binarization
(rows distinguish lr and ho, columns distinguish values
for h and v) and nonterminal constructors (rows).

h = 0 h = 1
v = 0 v = 1 v = 2 v = 0 v = 1 v = 2

F1 F1 F1 F1 F1 F1

vanilla
rl 90.8 90.9 89.9 89.3 87.5 85.0
ho 84.6 89.8 88.6 88.2 86.2 81.1

classic
rl 90.9 91.2 89.9 89.8 88.5 86.1
ho 84.2 90.9 88.5 89.2 87.6 83.9

coarse
rl 90.5 90.8 90.1 90.4 90.0 89.5
ho 84.2 90.5 89.7 89.6 89.9 89.2

Table 5: Parsing scores (F1, F1-d), number of parse
fails (E) and speed (sent/s) in NeGra for varying
amounts of supertags considered during parsing (k).

k
NeGra Tiger DPTB

F1 F1-d E sent/s F1 F1-d E sent/s F1 F1-d E sent/s

5 90.7 73.1 10 148 92.9 76.1 110 133 93.6 85.9 34 85
10 91.1 73.8 1 125 93.1 76.9 10 130 94.7 88.0 7 61
15 91.2 74.4 0 109 93.1 76.8 0 115 94.8 88.1 3 50
25 91.3 74.4 0 72 93.1 76.5 0 83 94.9 88.3 2 52
40 91.3 74.9 0 65 93.1 76.6 0 65 94.9 88.6 0 35

nonterminals. The impact of greater contexts is
significantly less with coarse nonterminals. How-
ever, it does not benefit from higher values either.
We select the final configuration for NeGra via the
highest F1-score in the table: classic nonterminals
and lr bin with h = 0 and v = 1.

(iv) Predictions per Position After training the
final models with bert-base, we pick a suitable
value for k from the set {5, 10, 15, 25, 40}. From
the results in Table 5, we suggest that there is only
one case where a value k ̸= 10 shows improve-
ments in quality that justifies the given decrease in
speed, that is k = 15 for parsing NeGra. For both
other treebanks, we continue with k = 10.

4.2 Final configurations.

In the parameter search, we found the following
configurations for our final models:

(DPTB) strict guide, classic nonterminals with
lr binarization where h = 0 and v = 2,

(NeGra) strict guide, classic nonterminals with
lr binarization where h = 0 and v = 1,

(Tiger) strict guide, coarse nonterminals with lr
binarization where h = 0 and v = 1.
Each model is trained to predict pos symbols sep-
arately from the other supertag components. We
use the top k = 10 (DPTB, Tiger) and k = 15
(NeGra) predicted supertags during parsing.

5 Conclusion

We generalized the extraction of supertags from
treebanks by introducing parameters for previ-
ously fixed parts of the construction. The parame-
ters allow us to control the part of the constituent
tree that is associated with a terminal for each su-
pertag (guide constructor) as well as the granular-
ity of the grammar rules (nonterminal construc-
tor). At the same time, the extraction process was
re-ordered so that its description is less convoluted
while retaining the same functionality.

Some introduced guide and nonterminal con-
structors performed better than the vanilla vari-
ants. Specifically, we observe the following:
While the highly ambiguous grammars extracted
from DPTB benefit from finer nonterminal gran-
ularity with greater markovization window, the
large and more specific grammars extracted from
Tiger improve with coarser granularity; the gram-
mar for NeGra lies somewhere in between.

Compared to the previous implementation of
supertagging with LCFRS, we could improve the
parsing quality across all three discontinuous tree-
banks. The improvements close the gap between
the quality of parsing with LCFRS supertagging
and the most recent discontinuous parsing strate-
gies. In case of the two German treebanks, we
could even surpass them, most notably in terms of
the F1-score for discontinuous constituents.

6 Limitations

In our experiments, we chose to heavily restrict the
set of hyperparameters for the supertag extraction
and training of the neural model to finish them in
feasible time. (We used fixed parameters for train-
ing and a step-wise incomplete grid search for the
extraction.) Therefore, some interactions between
parameters might still be concealed and optimal
solutions yet to be found.

While we achieve state-of the art results with
the two German treebanks NeGra and Tiger, our
results fall behind the competition in the English
DPTB. We could not find a concluding reason for
that, and it should be further investigated.

We clearly emphasize that our implementation
is a prototype, especially the reported parsing
speed in Table 6 should not be considered final for
the approach. The two major reasons are that

• the statistical LCFRS parser that we used for
step (v) in Section 3.4 is not optimized for

1473

Table 6: Our results on test sets compared to other published parsers for discontinuous constituents. The column
“Type” gives a rough classification of the parsing approach in the following concepts: G – statistical grammar-
based, GS – grammar-based with supertagging, C – grammarless chart-based, T – transition-based, N – untradi-
tional neural approaches. bert-b and bert-L are language specific bert-base and bert-large models.
† – Fernández-González and Gómez-Rodrı́guez (2021a) use RoBERTa-large (Liu et al., 2019) and GottBERT-base
(Scheible et al., 2020) instead of bert-large and gbert-large.

Type Model pretrained NeGra Tiger DPTB
embeddings F1 F1-d sent/s F1 F1-d sent/s F1 F1-d sent/s

G
van Cranenburgh et al., 2016 – 76.8 – 2 78.2 – 1 87.0 – < 1
Gebhardt, 2020 – 81.7 43.5 – 77.7 40.7 – – – –
Versley, 2016 – – – – 79.5 – – – – –

GS
ours (bert-b) 91.8 74.6 120 89.7 72.6 105 94.4 82.0 81
ours (bert-L) 93.9 79.1 88 91.6 75.4 77 94.9 82.4 64
Ruprecht and Mörbitz, 2021 (bert-b) 90.9 72.6 68 88.3 69.0 60 93.3 80.5 57

C Corro, 2020 (bert-b) 91.6 66.1 – 90.0 62.1 – 94.8 68.9 –
Stanojević and Steedman, 2020 – 83.3 50.7 15 83.4 53.5 9 90.5 67.7 –

T Coavoux, 2021 (bert-b) 91.7 73.3 – 90.2 72.9 – 95.0 82.5 –

N

Vilares, Gómez-R., 2020 (bert-b) 84.2 46.9 80 84.7 51.6 80 91.7 49.1 80
Vilares, Gómez-R., 2020 (bert-L) – – – – – – 92.8 53.9 –
Fernández-G., Gómez-R., 2021a (bert-b) 90.0 65.9 275 88.5 63.0 238 94.0 72.9 231
Fernández-G., Gómez-R., 2021a (bert-L) 92.0 67.9 216 90.5 68.1 207 95.1 74.1 193
Fernández-G., Gómez-R., 2021b (bert-L)† 89.1 67.1 – 88.5 67.8 – 95.5 82.9 –
Fernández-G., Gómez-R., 2022 (bert-b) 91.0 76.6 – 90.0 62.6 – – – –

lexical grammar rules and could possibly be
improved upon, and

• flair, the framework that we use for train-
ing the neural classifiers, is easy to use in de-
velopment but rather slow during execution.

In this approach we extract supertags equipped
with lexical grammar rules using an injective map-
ping between binary constituent tree nodes and
sentence positions (called guide, cf. step (iii) in
Section 3.2). We suggest it could be sensible to
associate some sentence positions with multiple
constituent tree nodes or no nodes at all. E.g.
we found a guide that maps each node position to
its lexical head intuitive, but multiple nodes may
share the same lexical head while some leaves are
not the lexical head of any node. Even though we
decouple the constituent symbols from the gram-
mar rules in our formulation, the formalisms that
we use can not keep track of the child relations in
multiple constituent nodes per supertag.

Lastly, our approach inherits the problem of in-
complete coverages from parsing with grammars.
As Table 5 shows, there are still small amounts
of sentences in all three used datasets that fail to
parse in certain configurations. We chose to accept
these in a trade-off with parsing speed. However,
in settings where parse fails are critical, the ex-
traction and parsing parameters should be selected
very carefully.

References
Srinivas Bangalore and Aravind K. Joshi. 1999. Su-

pertagging: An approach to almost parsing. Com-
putational linguistics, 25(2):237–265.

Tatiana Bladier, Andreas van Cranenburgh, Younes
Samih, and Laura Kallmeyer. 2018. German and
French neural supertagging experiments for LTAG
parsing. In Proceedings of ACL 2018, Student Re-
search Workshop, pages 59–66, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Nathan Matthew Bodenstab. 2012. Prioritization and
Pruning: Efficient Inference with Weighted Context-
Free Grammars. Ph.D. thesis.

Sabine Brants, Stefanie Dipper, Peter Eisenberg, Sil-
via Hansen-Schirra, Esther König, Wolfgang Lezius,
Christian Rohrer, George Smith, and Hans Uszkor-
eit. 2004. TIGER: Linguistic interpretation of a Ger-
man corpus. Research on language and computa-
tion, 2(4):597–620.

Branden Chan, Stefan Schweter, and Timo Möller.
2020. German’s next language model. In
Proceedings of the 28th International Conference
on Computational Linguistics, pages 6788–6796,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Eugene Charniak, Mark Johnson, Micha Elsner, Joseph
Austerweil, David Ellis, Isaac Haxton, Catherine
Hill, R Shrivaths, Jeremy Moore, Michael Pozar,
et al. 2006. Multilevel coarse-to-fine pcfg parsing.
In Proceedings of the Human Language Technology
Conference of the NAACL, Main Conference, pages
168–175.

1474

https://www.aclweb.org/anthology/J99-2004.pdf
https://www.aclweb.org/anthology/J99-2004.pdf
https://doi.org/10.18653/v1/P18-3009
https://doi.org/10.18653/v1/P18-3009
https://doi.org/10.18653/v1/P18-3009
https://doi.org/10.1007/s11168-004-7431-3
https://doi.org/10.1007/s11168-004-7431-3
https://doi.org/10.18653/v1/2020.coling-main.598
https://aclanthology.org/N06-1022/

Stephen Clark. 2002. Supertagging for combinatory
categorial grammar. In Proceedings of the Sixth In-
ternational Workshop on Tree Adjoining Grammar
and Related Frameworks (TAG+ 6), pages 19–24.

Maximin Coavoux. 2021. BERT-proof syntactic struc-
tures: Investigating errors in discontinuous con-
stituency parsing. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 3259–3272, Online. Association for Compu-
tational Linguistics.

Caio Corro. 2020. Span-based discontinuous con-
stituency parsing: a family of exact chart-based al-
gorithms with time complexities from O(nˆ6) down
to O(nˆ3). In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2753–2764, Online. Associa-
tion for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Amit Dubey and Frank Keller. 2003. Probabilistic
parsing for German using sister-head dependencies.
In Proceedings of the 41st Annual Meeting of the As-
sociation for Computational Linguistics, pages 96–
103, Sapporo, Japan. Association for Computational
Linguistics.

Kilian Evang and Laura Kallmeyer. 2011. PLCFRS
parsing of English discontinuous constituents. In
Proceedings of the 12th International Conference on
Parsing Technologies, pages 104–116, Dublin, Ire-
land. Association for Computational Linguistics.

Daniel Fernández-González and Carlos Gómez-
Rodrı́guez. 2021a. Discontinuous grammar as a
foreign language.

Daniel Fernández-González and Carlos Gómez-
Rodrı́guez. 2021b. Reducing discontinuous to
continuous parsing with pointer network reordering.

Daniel Fernández-González and Carlos Gómez-
Rodrı́guez. 2022. Multitask pointer network for
multi-representational parsing. Knowledge-Based
Systems, 236:107760.

Kilian Gebhardt. 2020. Advances in using grammars
with latent annotations for discontinuous parsing. In
Proceedings of the 16th International Conference on
Parsing Technologies and the IWPT 2020 Shared
Task on Parsing into Enhanced Universal Depen-
dencies, pages 91–97, Online. Association for Com-
putational Linguistics.

Rekia Kadari, Yu Zhang, Weinan Zhang, and Ting Liu.
2018. CCG supertagging via bidirectional LSTM-
CRF neural architecture. Neurocomputing, 283:31–
37.

Laura Kallmeyer and Wolfgang Maier. 2013. Data-
driven parsing using probabilistic linear context-
free rewriting systems. Computational Linguistics,
39(1):87–119.

Jungo Kasai, Bob Frank, Tom McCoy, Owen Ram-
bow, and Alexis Nasr. 2017. TAG parsing with neu-
ral networks and vector representations of supertags.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1712–1722, Copenhagen, Denmark. Association for
Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Wolfgang Maier and Anders Søgaard. 2008. Treebanks
and mild context-sensitivity. In Proceedings of the
13th conference on Formal Grammar, pages 61–76,
Hamburg, Germany. CSLI Publications.

Mitch Marcus, Grace Kim, Mary Ann Marcinkiewicz,
Robert MacIntyre, Ann Bies, Mark Ferguson, Karen
Katz, and Britta Schasberger. 1994. The penn tree-
bank: annotating predicate argument structure. In
Proceedings of the workshop on Human Language
Technology, pages 114–119, Plainsboro, New Jer-
sey. Association for Computational Linguistics.

Thomas Ruprecht and Richard Mörbitz. 2021.
Supertagging-based parsing with linear context-free
rewriting systems. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Online. Association for
Computational Linguistics.

Raphael Scheible, Fabian Thomczyk, Patric Tippmann,
Victor Jaravine, and Martin Boeker. 2020. Gottbert:
a pure german language model.

Djamé Seddah, Reut Tsarfaty, Sandra Kübler, Marie
Candito, Jinho D. Choi, Richárd Farkas, Jen-
nifer Foster, Iakes Goenaga, Koldo Gojenola Gal-
letebeitia, Yoav Goldberg, Spence Green, Nizar
Habash, Marco Kuhlmann, Wolfgang Maier, Joakim
Nivre, Adam Przepiórkowski, Ryan Roth, Wolfgang
Seeker, Yannick Versley, Veronika Vincze, Marcin
Woliński, Alina Wróblewska, and Eric Villemonte
de la Clergerie. 2013. Overview of the SPMRL 2013
shared task: A cross-framework evaluation of pars-
ing morphologically rich languages. In Proceed-
ings of the Fourth Workshop on Statistical Parsing of
Morphologically-Rich Languages, pages 146–182,
Seattle, Washington, USA. Association for Compu-
tational Linguistics.

1475

https://www.aclweb.org/anthology/W02-2203.pdf
https://www.aclweb.org/anthology/W02-2203.pdf
https://doi.org/10.18653/v1/2021.findings-acl.288
https://doi.org/10.18653/v1/2021.findings-acl.288
https://doi.org/10.18653/v1/2021.findings-acl.288
https://www.aclweb.org/anthology/2020.emnlp-main.219
https://www.aclweb.org/anthology/2020.emnlp-main.219
https://www.aclweb.org/anthology/2020.emnlp-main.219
https://www.aclweb.org/anthology/2020.emnlp-main.219
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.3115/1075096.1075109
https://doi.org/10.3115/1075096.1075109
https://www.aclweb.org/anthology/W11-2913
https://www.aclweb.org/anthology/W11-2913
http://arxiv.org/abs/2110.10431
http://arxiv.org/abs/2110.10431
http://arxiv.org/abs/2104.06239
http://arxiv.org/abs/2104.06239
https://doi.org/https://doi.org/10.1016/j.knosys.2021.107760
https://doi.org/https://doi.org/10.1016/j.knosys.2021.107760
https://doi.org/10.18653/v1/2020.iwpt-1.9
https://doi.org/10.18653/v1/2020.iwpt-1.9
https://doi.org/10.1016/j.neucom.2017.12.050
https://doi.org/10.1016/j.neucom.2017.12.050
https://doi.org/10.1162/COLI_a_00136
https://doi.org/10.1162/COLI_a_00136
https://doi.org/10.1162/COLI_a_00136
https://doi.org/10.18653/v1/D17-1180
https://doi.org/10.18653/v1/D17-1180
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://web.stanford.edu/group/cslipublications/cslipublications/FG/2008/maier.pdf
https://web.stanford.edu/group/cslipublications/cslipublications/FG/2008/maier.pdf
https://www.aclweb.org/anthology/H94-1020.pdf
https://www.aclweb.org/anthology/H94-1020.pdf
https://doi.org/10.18653/v1/2021.naacl-main.232
https://doi.org/10.18653/v1/2021.naacl-main.232
http://arxiv.org/abs/2012.02110
http://arxiv.org/abs/2012.02110
https://www.aclweb.org/anthology/W13-4917
https://www.aclweb.org/anthology/W13-4917
https://www.aclweb.org/anthology/W13-4917

Wojciech Skut, Thorsten Brants, Brigitte Krenn, and
Hans Uszkoreit. 1998. A linguistically interpreted
corpus of German newspaper text. In Proceedings
of the ESSLLI Workshop on Recent Advances in Cor-
pus Annotation, Saarbrücken, Germany.

Miloš Stanojević and Mark Steedman. 2020. Span-
based LCFRS-2 parsing. In Proceedings of the 16th
International Conference on Parsing Technologies
and the IWPT 2020 Shared Task on Parsing into
Enhanced Universal Dependencies, pages 111–121,
Online. Association for Computational Linguistics.

Andreas van Cranenburgh, Remko Scha, and Rens
Bod. 2016. Data-oriented parsing with discontinu-
ous constituents and function tags. Journal of Lan-
guage Modelling, 4(1):57–111.

Ashish Vaswani, Yonatan Bisk, Kenji Sagae, and Ryan
Musa. 2016. Supertagging with LSTMs. In Pro-
ceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
232–237, San Diego, California. Association for
Computational Linguistics.

Yannick Versley. 2016. Discontinuity (re)2-visited: A
minimalist approach to pseudoprojective constituent
parsing. In Proceedings of the Workshop on Discon-
tinuous Structures in Natural Language Processing,
pages 58–69, San Diego, California. Association for
Computational Linguistics.

David Vilares and Carlos Gómez-Rodrı́guez. 2020.
Discontinuous constituent parsing as sequence la-
beling. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2771–2785, Online. Associa-
tion for Computational Linguistics.

A Neural Classifier

The following table contains the values for the
neural classifier’s architecture and hyperparame-
ters during training. All experiments were run on
the same compute server with an Intel Xeon Sil-
ver 4114 (40 cores 2.2GHz), 256GB RAM and an
Nvidia GeForce RTX 2080.

parameter value

embeddings last 4 layers of bert-base/bert-large

architecture
single feed forward layer per tag
type (core supertags and pos tags)

loss cross entropy
learning rate 5 · 10−5

weight decay 10−2

dropout 10−1

optimizer AdamW
batch size 32

epochs
5 during grid search
20 for final model

B Supervised Classifier

We trained classifiers that only rely on the data
in the training corpus (i.e. without pre-trained em-
beddings) using the same hyperparameters for the
extraction that were found in Section 4.1. For
that, we used the same supervised architecture
for word encoding as Stanojević and Steedman
(2020); Corro (2020): each word is embedded into
the concatenation of per-word vectors and the out-
put of a character-level bi-LSTM. These embed-
dings are then fed into a sentence-level bi-LSTM.
Finally, the score of each tag prediction is com-
puted using a multi-layer perceptron. The follow-
ing table gives an overview of the used architec-
ture and used hyperparameters.

parameter value

word embeddings 300
character-level bi-LSTM layers 1
character-level bi-LSTM dim 100
sentence-level bi-LSTM layers 2
sentence-level bi-LSTM dim 800
prediction MLP layers 3
prediction MLP dim 800
prediction MLP activation ReLU
loss cross entropy
learning rate 10−3

weight decay 10−1

dropout 0.5
optimizer AdamW
batch size 32
epochs 32

1476

https://arxiv.org/abs/cmp-lg/9807008
https://arxiv.org/abs/cmp-lg/9807008
https://doi.org/10.18653/v1/2020.iwpt-1.12
https://doi.org/10.18653/v1/2020.iwpt-1.12
https://doi.org/10.15398/jlm.v4i1.100
https://doi.org/10.15398/jlm.v4i1.100
https://doi.org/10.18653/v1/N16-1027
https://doi.org/10.18653/v1/W16-0907
https://doi.org/10.18653/v1/W16-0907
https://doi.org/10.18653/v1/W16-0907
https://www.aclweb.org/anthology/2020.emnlp-main.221
https://www.aclweb.org/anthology/2020.emnlp-main.221

Table 7: Our results on test sets compared to other published parsers for discontinuous constituents using su-
pervised embeddings. The column “Type” gives a rough classification of the parsing approach in the following
concepts: G – statistical grammar-based, GS – grammar-based with supertagging, C – grammarless chart-based, T
– transition-based, N – untraditional neural approaches.

Type Model pretrained NeGra Tiger DPTB
embeddings F1 F1-d sent/s F1 F1-d sent/s F1 F1-d sent/s

G
van Cranenburgh et al., 2016 – 76.8 – 2 78.2 – 1 87.0 – < 1
Gebhardt, 2020 – 81.7 43.5 – 77.7 40.7 – – – –
Versley, 2016 – – – – 79.5 – – – – –

GS ours – 83.7 52.9 132 83.7 59.5 104 91.7 74.2 82
Ruprecht and Mörbitz, 2021 – 82.7 49.0 136 82.5 55.9 101 90.1 72.9 95

C Corro, 2020 – 86.3 56.1 478 85.2 51.2 474 92.9 64.9 355
Stanojević and Steedman, 2020 – 83.3 50.7 15 83.4 53.5 9 90.5 67.7 –

T Coavoux, 2021 – 82.3 55.6 – 82.9 57.4 – 91.4 74.4 –

N Vilares, Gómez-R., 2020 – 77.1 36.5 715 79.2 40.1 568 89.1 41.8 611

1477

