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Abstract
Image-to-text tasks, such as open-ended image
captioning and controllable image description,
have received extensive attention for decades.
Here, we further advance this line of work by
presenting Visual Spatial Description (VSD), a
new perspective for image-to-text toward spa-
tial semantics. Given an image and two objects
inside it, VSD aims to produce one description
focusing on the spatial perspective between the
two objects. Accordingly, we manually anno-
tate a dataset to facilitate the investigation of the
newly-introduced task and build several bench-
mark encoder-decoder models by using VL-
BART and VL-T5 as backbones. In addition,
we investigate pipeline and joint end-to-end
architectures for incorporating visual spatial re-
lationship classification (VSRC) information
into our model. Finally, we conduct experi-
ments on our benchmark dataset to evaluate all
our models. Results show that our models are
impressive, providing accurate and human-like
spatial-oriented text descriptions. Meanwhile,
VSRC has great potential for VSD, and the
joint end-to-end architecture is the better choice
for their integration. We make the dataset and
codes public for research purposes.1

1 Introduction

Text generation from images is a widely-adopted
means for deep understanding of cross-modal data
that has received increasing interest of both com-
puter vision (CV) and natural language processing
(NLP) communities (He and Deng, 2017). Image-
to-text tasks generate natural language texts to as-
sist in understanding the scene meaning of a spe-
cific image, which might be beneficial for a variety
of applications such as image retrieval (Diao et al.,
2021; Ahmed et al., 2021), perception assistance
(Xu et al., 2018; Shashirangana et al., 2021), pedes-
trian detection (Hasan et al., 2021), and medical
system (Miura et al., 2021).

∗Corresponding author
1https://github.com/zhaoyucs/VSD

Task Condition Target Text
Image Captioning —— A man is walking past a car.

VSR-guided Captioning walk; ⟨Arg⟩, ⟨Loc⟩ A man is walking cross a street.
Visual Question Answering What color is the car? The car is red.

Our Task: VSD
⟨man, car⟩ A man is walking behind a red car

from right to left.
⟨car, pole⟩ A red car is parked to the left of a pole.

Figure 1: A comparison of three example image-to-text
generation tasks and the proposed VSD in this work.

Image-to-text tasks take on various forms when
serving different purposes. Figure 1 illustrates
a comparison of three example tasks. First, the
generic open-ended image captioning aims to pro-
vide a summarised description that describes an in-
put image and reflects the overall understanding of
the image (Lindh et al., 2020; Vinyals et al., 2015;
Ji et al., 2020). Furthermore, the verb-specific se-
mantic roles (VSR) guided captioning (Chen et al.,
2021) and visual question answering (VQA) (Antol
et al., 2015) are two examples of controllable image
description, which produce human-like and styl-
ized descriptions under specified conditions based
on a thorough comprehension of the input image
(Chen et al., 2021; Fei et al., 2021b; Mathews et al.,
2018; Cornia et al., 2019; Lindh et al., 2020; Pont-
Tuset et al., 2020; Deng et al., 2020; Zhong et al.,
2020; Kim et al., 2019; Chen et al., 2020a; Fei
et al., 2022; Jhamtani and Berg-Kirkpatrick, 2018).
The VSR-guided captioning produces a description
focusing on a verb with specified semantic roles,
and the VQA generates a reasoning answer based
on a given question.

In this work, we extend the line of controllable
image description by presenting the spatial seman-
tics of image-to-text, which is essential but has
received little attention previously. Spatial seman-
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tics is a fundamental aspect of both language and
image interpretation in relation to human cogni-
tion (Zlatev, 2007), and it has shown great value in
spatial-based applications such as automatic navi-
gation, personal assistance, and unmanned manip-
ulation (Irshad et al., 2021; Raychaudhuri et al.,
2021; Zeng et al., 2018). Here, we introduce a new
task, Visual Spatial Description (VSD), which gen-
erates text pieces to describe the spatial semantics
in the image. The task takes an image with two
specified objects in it as inputs and outputs one
sentence that describes the detailed spatial relation
of the objects. We manually annotate a dataset for
inquiry to benchmark this task.

VSD is a typical vision-language generation
problem that can be addressed by multi-modal
encoder-decoder modeling. Multi-modal models
allow both visual and linguistic inputs and encode
them to a joint representation that can learn infor-
mation from both modal inputs. Moreover, recent
studies show that vision-language pretraining can
bring remarkable achievements in most image-to-
text tasks (Lu et al., 2019; Sun et al., 2019; Tan
and Bansal, 2019; Zhou et al., 2020; Li et al., 2019;
Hu and Singh, 2021; Li et al., 2021; Xiao et al.,
2022). Here, we follow these tasks and adopt
VL-BART and VL-T5 (Cho et al., 2021) as back-
bones, which exhibit state-of-the-art performance
in vision-language generation.

In particular, a closely-related task, visual spatial
relationship classification (VSRC), which outputs
the spatial relationship between two objects inside
an image, might be beneficial for our proposed
VSD. The predefined discrete spatial relations such
as “next to” and “behind”, in VSRC should be able
to effectively guide the VSD generation. To this
end, we first make a thorough comparison of the
connections between VSD and VSRC, which can
be regarded as shallow and deep analyses of spatial
semantics, respectively, and further investigate the
VSRC-enhanced VSD models, performing visual
spatial understanding from shallow to deep. Specif-
ically, we present two straightforward architectures
to integrate VSRC into VSD, one being the pipeline
strategy and the other being the end-to-end joint
strategy, respectively.

Finally, we conduct experiments on our con-
structed dataset to evaluate all proposed models.
First, we examine the two start-up models for VSD
only with VL-BART and VL-T5. The results show
that the two models are comparable in terms of

performance, and both models can provide highly
accurate and fluent human-like outputs of spatial
understanding. Second, we verify the effective-
ness of VSRC for VSD and find that: (1) VSRC
has great potentials for VSD because gold-standard
VSRC can lead to striking improvements on VSD;
(2) VSD can be benefited from automatic VSRC,
and the end-to-end joint framework is slightly bet-
ter. We further perform several analyses to inten-
sively understand VSD and the proposed models.

2 Related Work

Image-to-text has been intensively investigated
with the support of neural networks in the past
years (He and Deng, 2017). The encoder-decoder
architecture is an often considered framework,
where the encoder extracts visual features from
the image and the decoder generates text for spe-
cific tasks. Early works employ a convolutional
neural network (CNN) as the visual encoder and a
recurrent neural network (RNN) as the text decoder
(Vinyals et al., 2015; Rennie et al., 2017). Re-
cently, the Transformer neural network (Vaswani
et al., 2017), which is impressively powerful in
feature representation learning on both vision and
language, has gained increasing interest. The
Transformer-based encoder-decoder models have
been adopted in a wide range of image-to-text
tasks (Cornia et al., 2020; Herdade et al., 2019; Fei
et al., 2021a). These models coupled with visual-
language pretraining have achieved the top perfor-
mance for these tasks (Lu et al., 2019; Sun et al.,
2019; Tan and Bansal, 2019; Zhou et al., 2020; Li
et al., 2019; Hu and Singh, 2021; Li et al., 2021). In
this work, we exploit the Transformer-based archi-
tecture and two pretrained visual-language models:
VL-BART and VL-T5 (Cho et al., 2021), reaching
several strong benchmark models for our task.

Image-to-text can be varied depending on the ob-
jective of the visual description. Image captioning
is the most well-studied task, which aims to summa-
rize a given image or to describe a particular region
in it (Karpathy and Fei-Fei, 2015; Vinyals et al.,
2015). Several subsequent studies have attempted
to produce captions with specified patterns and
styles (Cornia et al., 2019; Kim et al., 2019; Deng
et al., 2020; Zhong et al., 2020; Zheng et al., 2019).
For example, VQA and visual reasoning can be
regarded as such attempts, which are conditioned
by a specific question directed at the input image
(Antol et al., 2015; Agrawal et al., 2018; Hudson
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and Manning, 2019; Johnson et al., 2017). The
VSR-guided image captioning (Chen et al., 2021)
is the most close to our work, which generates a
sentence for a particular event in the image with
well-specified semantic roles. Here we focus on
spatial semantics instead, generating a description
based on the spatial relationship.

Spatial semantics is an important topic in both
language and visual analysis. Kordjamshidi et al.
(2011) propose an preliminary study on text-based
spatial role labeling. Later, spatial element extrac-
tion and relation extraction from texts are investi-
gated by (Nichols and Botros, 2015). Pustejovsky
et al. (2015) present a fine-grained spatial semantic
analysis in texts with rich spatial roles. Based on
the image input, Yang et al. (2019) propose VSRC
and benchmark it with a manually-crafted dataset.
The VSRC is actually a shallow task for visual spa-
tial analysis based on a closed relationship set and
by using a simple classification schema. Following,
Chiou et al. (2021) build a much stronger model
on the dataset. Many studies have exploited spatial
semantics to assist other image understanding tasks
(Kim et al., 2021; Wu et al., 2021; Collell et al.,
2021; Xiao et al., 2021; Pierrard et al., 2021). In
addition, learning spatial representations from mul-
tiple modalities also receives particular attention
(Collell and Moens, 2018; Dan et al., 2020). In
this work, we extend image-to-text and propose
VSD, which aims for the spatial understanding of
the image.

3 Visual Spatial Description

3.1 Task Description

Formally, we define the task of VSD as follows:
given an image I and an object pair ⟨O1, O2⟩ in-
side I , the VSD aims to output a word sequence
S = {w1, ..., wn} to describe the spatial semantics
between O1 and O2. The provided O1 and O2 in-
clude both the object tags and their bounding boxes.
In Figure 1, we would receive “A man is walking
behind a red car from right to left.” for ⟨man, car⟩
and “A red car is parked to the left of a pole.” for
⟨car, pole⟩ based on the same input image. The
generated sentences of VSD must encode the spa-
tial semantics between the given two objects, which
differs from conventional image-to-text generation.

3.2 Compared with VSRC

Noticeably, VSRC is another representative task of
visual spatial understanding that decides the spatial

relation of two objects in an image. The relation is
chosen from a closed set which is manually prede-
fined. We can regard VSRC as a shallow analysis
task for spatial semantics understanding, while the
VSD task can offer a deeper spatial analysis by
using the much more flexible output.

In particular, compared with VSRC, VSD has
three major advantages. First, VSD can offer richer
semantics which could be necessary for spatial un-
derstanding. Meanwhile, VSRC only outputs a
spatial relation from a closed set in general. VSD
can raise other semantic roles to deepen the spa-
tial understanding beyond the relations, such as
predicates and object attributes. Second, the spatial
relations might be overlapped. For example, the
two relationships, “behind” and “to the right of”
might be both correct for VSRC given the “man”
and “car” in Figure 1. The newly proposed task
VSD can more accurately describe the multiple
spatial semantics. Third, from the viewpoint of
downstream tasks, especially the systems that re-
quire automatic content-based image indexing or
visual dialogue, VSD is more straightforward and
adequate to support them.

3.3 Data Collection

We build an initial dataset To benchmark the VSD
task. The constructed dataset is extended from
a VSRC dataset to facilitate the investigation be-
tween VSD and VSRC. Thus, our final corpus in-
cludes both VSRC and VSD annotations.

Our VSRC dataset is sourced from two existing
datasets: SpatialSense (Yang et al., 2019) and Vi-
sualGenome (Krishna et al., 2017). SpatialSense is
a dataset initially constructed for VSRC with nine
well-defined spatial relations, namely, “on”, “in”,
“next to”, “under”, “above”, “behind”, “in front of”,
“to the left of”, and “to the right of”. The only
disadvantage of SpatialSense is its relatively-small
scale. Consequently, we enlarge the corpus with
the help of VisualGenome a widely adopted dataset
for scene graph generation with annotations in the
form of ⟨subject, predicate, object⟩. We add the
triplets in VisualGenome, whose predicates can be
easily aligned with the nine spatial relations in Spa-
tialSense.2 Accordingly, we can obtain a larger
dataset of VSRC.

We develop a simple visualization tool to facili-
tate the VSD annotation. The system randomly as-

2The alignment is achieved by a map, which will be re-
leased along with the dataset.
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Object Pair: 〈man, woman〉
1: Description Writing

The man in a white shirt is standing on the right of the woman laughing.
The man in white and the woman laughing are standing opposite each other.
The man is standing on the right of the woman.
The man is sitting next to the woman laughing.
The man in white is standing in front of the woman laughing.

2: Description Checking
The man in a white shirt is standing on the right of the woman laughing.!
The man in white and the woman laughing are standing opposite each other.!
The man is standing on the right of the woman.#
The man is sitting next to the woman laughing.#
The man in white is standing in front of the woman laughing.#

Figure 2: The data annotation flow.

signs the instances to the annotators. Each instance
contains one image and two objects inside it. The
annotators are asked to write text descriptions for
the given instance. We also set up another interface
for experts to check the correctness of all annotated
sentences and to ensure the quality of these written
descriptions. In the description checking step, the
given instances include the image inputs, paired
objects, and the written descriptions by the first
step. The annotator mainly checks whether the de-
scription is valid. The annotation flow is shown in
Figure 2.

All annotators we recruited are college students
who are native English speakers. During the prepa-
ration, we train the annotators with a guideline and
perform two pre-annotation tests from easy to dif-
ficult. In the first test, the annotators are asked to
participate in the checking interface, where several
well-written descriptions are prepared in advance
by experts and various pseudo-ill-conditioned de-
scriptions by intentional word substitutions. There-
after, we start the second test to let annotators write
the real spatial descriptions. The annotators are al-
lowed for official annotations only when both tests
are passed. All annotators are properly paid under
the open market competition.

Specifically, we have three basic principles
mainly in our data annotation guideline as follows:

• The sentence must correctly describe the spa-
tial semantics of the given object pair.

Sect.
Input Output

#Img #OBJ-TAG #SENT AvgLEN

Train 20,490 4,506 116,791 7.35
Dev 2,927 1,416 16,823 7.33
Test 5,855 2,104 10,038 8.04

Table 1: The statistics of our constructed VSD dataset.

• The descriptions can help us correctly locate
the exacted objects in the image.

• The length of each text description should be
limited to no more than 40 tokens.

The annotation submissions with excess invalid an-
notations (more than 4/100) according the above
principles would be returned to the annotators to
rework until it reaches the standard. Figure 2 shows
some examples of invalid annotations. There might
be several exceptions, such as, spelling mistakes
or mismatches between the image and object tag
inputs. In these cases, annotators should skip and
report these instances, leaving them for further dis-
cussions by expert. In the expert-checking step,
the remaining invalid and controversial annotations
would be be discussed and then finalized.

Finally, we annotate a total of 29K images with
143K descriptions, wherein 6,591 images are from
the SpatialSense with 9,744 descriptions, and the
remaining images and descriptions are sourced
from VisualGenome. Furthermore, we randomly
split the whole annotated VSD dataset by a ratio of
7:1:2 as training / validation / testing sections. The
statistics of the dataset are shown in Table 1.

4 Model

We exploit the Transformer-based encoder-decoder
architecture to accomplish our VSD goal. The
architecture can be partially pretrained from ultra-
large-scale self-supervised datasets, which makes
it capable of obtaining the top performance on a
range of image-to-text generation tasks (Hu and
Singh, 2021; Li et al., 2021; Tan and Bansal, 2019;
Chen et al., 2020b). In this section, we first briefly
summarize the adopted model architecture and de-
scribe the two well-pretrained models exploited as
backbones.

4.1 Model Architecture

The encoder-decoder architecture contains a vision-
language (V&L) encoder and a text decoder. The
encoder takes the combined V&L inputs to learn
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Figure 3: Overview of our pipeline and end-to-end models with VSRC, where FC denotes fully-connected network.

a joint feature representation, and the text decoder
generates the output sentential words incrementally
with the joint representation.

Formally, the VSD input includes: (1) one image
I and (2) the inside object pair ⟨O1, O2⟩. First, we
obtain a sequence of visual features by:

F V = VisionExtractor(I),

EV = FC(F V),
(1)

where F V is obtained by a Faster R-CNN (Ren
et al., 2015). Then a fully-connected (FC) linear
transformation layer is used to align the vectorial
dimensions between vision and language, leading
to EV.

Second, a textual embedding layer is used to
represent O1 and O2 by their respective textual
tags (i.e., TO1 and TO2):

ET = TextEmbed([TO1 , TO2 ]), (2)

where ET(|ET| = |TO1 | + |TO2 |) (| · | indicates
the sequence length) is the textual representation
of the two objects.

Thereafter that, a Transformer is exploited to
produce the final encoder output by the following
expression:

H = Transformer([ET,EV]), (3)

where ET and EV are concatenated and then fed
into the Transformer, resulting in H which is a
sequence of the high-level joint V&L representa-
tions.

We generate a sequence of words incrementally
for the decoder, wherein one word is predicted each

step based on the previous context:

oj(y|yi<j) = FC
(
Transformer(yi<j ,H)

)
,
(4)

where yi < j denotes the previously generated to-
kens and H represents the encoder outputs. The
decoder is also dominated by Transformer. There-
after, an FC layer is used to score all candidate
words.

We exploit the cross-entropy as objective loss to
train the model, following the majority of sentence
generation models (Lewis et al., 2020; Raffel et al.,
2020). During the decoding, we can apply the beam
search algorithm to obtain better results.

4.2 VL-BART and VL-T5

VL-BART is a well-pretrained model that can
be directly applied to our VSD model with an
initializing-then-fine-tuning mode. VL-BART is a
standard Transformer-based model similar to our
VSD model with a bidirectional joint V&L encoder
and an autoregressive text decoder, which is ex-
tended from BART (Lewis et al., 2020) by import-
ing an extra visual embedding module for the joint
encoding. Before pretraining, VL-BART is par-
tially initialized with BART on the shared param-
eters, which is trained on the text-only corpus by
corrupting documents and optimizing the model by
a reconstruction loss.

VL-T5 is similar to VL-BART on model archi-
tecture but differs in that it extends from T5 (Raffel
et al., 2020). The T5 model uses relative position
embeddings on text representation and is trained on
a very different text-only corpus with a span-based
reconstruction process.
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5 Enhancing with VSRC

Our VSD task aims to control image-to-text genera-
tion by the aspect of spatial semantics. If we know
the explicit spatial relation by VSRC in advance for
the given two objects, then the description genera-
tion could be more instructional. In this section, we
introduce two architectures of integrating VSRC
into the above-mentioned VSD models.

5.1 Pipeline
The pipeline architecture includes two stages. In
the first stage, VSRC is executed to extract spatial
relations between the two given objects of the VSD
input. In the second stage, our VSD model adds the
spatial relation as one additional textual input to
enhance the encoder. We illustrate the architecture
in the left portion of Figure 3.

Our VSRC model takes the same input as VSD,
an image and two objects inside it. Accordingly,
our encoder can be highly similar to that of the
VSD model: VisionEmbed and TextEmbed, fol-
lowed by the Transformer as mentioned in Equa-
tions 2 and 3. Here, we make a slight modifica-
tion to adapt the VSRC task. Specifically, a special
[MASK] token is added inside the TextEmbed mod-
ule:

ET = TextEmbed([TO1 , TO2 ,MASK]), (5)

where the updated TextEmbed has been illustrated
in Figure 3 by the input depiction of the VSRC. We
only use one vector hMASK from the sequential en-
coder output H for relation classification, which is
exactly corresponding to the position of the special
[MASK] token.

Before the final-step classification, we follow
(Chiou et al., 2021) to add the bounding box co-
ordinates of the two objects for geometric infor-
mation. Each bounding box is converted into a
4-dimensional vector, thus we have cO1 and cO2

for the two objects, respectively. Then, we use
the following fully-connected (FC) networks se-
quentially to reach a bounding box representation:

h̃coord = FC(cO1) + FC(cO2),

hcoord = FC(FC(h̃coord)),
(6)

where hcoord is the desired bounding box represen-
tation. Finally, we concatenate hcoord and hMASK
to score candidate spatial relations:

oVSRC = MLPVSRC([hMASK,hcoord]), (7)

where MLPVSRC is the classifier for VSRC. In this
way, the VSRC task is accomplished. The mid-
dle part of Figure 3 shows the detailed network
operation of the classification.

Our VSD task receives three types of inputs from
the VSRC output, with additional spatial relation as
one supplement compared with the original VSD.
Considering the textual property of the spatial rela-
tion, we add this information to the textual embed-
ding of the original VSD encoder:

ET = TextEmbed([TO1 , TO2 , rO1,O2 ]), (8)

where rO1,O2 is the textual expression of the spa-
tial relation between the given objects O1 and O2.
This distinction is the only difference between the
VSRC-enhanced and the original VSD models, and
the other parts remain the same.

5.2 End to End

The end-to-end model for joint VSRC and VSD is
not only more elegant in form, allowing their full
natural interactions, but also can avoid the error
propagation problem where the VSRC errors may
result in further degraded VSD performance.

We adopt multi-task learning (MTL) to achieve
the end-to-end goal with a single model. Figure
3 shows the detailed structure by the right part.
The joint encoder is directly borrowed from the
individual VSRC model, resulting in the encoder
output H . Thus, the input of the joint model is the
same as the original VSD model and the VSRC
model. Then, we execute the decoders of VSRC
and VSD, achieving the goal of joint learning.

During the training, given the VSRC input (also
the joint input) and the VSRC and VSD outputs,
we optimize the end-to-end model by the joint loss,
which is a weighted addition of the VSRC and VSD
losses. During the inference, we have two strategies
for our VSD task. First, we can use the end-to-end
joint model to simultaneously obtain the VSRC and
VSD results under the MTL architecture (Figure 3
End2End without the red dashed line). Second, we
can execute the end-to-end model by two rounds,
where the first round outputs the VSRC result, and
the second round uses the VSRC result to substitute
the [MASK] part of the joint encoder, and then
executes the VSD part only. The second strategy
is similar to the pipeline architecture, but only a
single model is involved.
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VSD VSRC
BLEU-4 METEOR ROUGE CIDEr SPICE Acc(%)

VL-BART 52.71 41.96 77.57 471.21 67.83 -
VL-BART+VSRC-pipeline 53.49 42.14 77.79 474.34 67.97 53.32
VL-BART+VSRC-end2end 53.60 42.45 78.15 476.47 68.18 54.53
VL-BART+VSRC-golden 72.30 50.90 87.44 578.27 76.59 golden
VL-T5 52.58 41.94 77.63 472.24 67.90 -
VL-T5+VSRC-pipeline 53.71 42.56 78.33 480.32 68.72 53.50
VL-T5+VSRC-end2end 54.31 42.63 78.38 481.13 68.74 56.36
VL-T5+VSRC-golden 72.12 50.95 87.54 579.41 77.29 golden
OSCAR+ 37.17 35.06 66.47 427.21 67.41 -
OSCAR++VSRC-end2end 38.70 35.81 67.89 438.28 67.54 57.90

Table 2: The main results of our proposed models on the VSD test dataset, where we implement three types of
baseline models (i.e., VL-BART, VL-T5 and OSCAR+), and the ones equipped with VSRC supporting.

6 Experiments

6.1 Setup
Implementation Details We initialize our encoder-
decoder backbone with two pretrained models VL-
BART and VL-T5, and follow (Anderson et al.,
2018) to obtain visual region features from Faster
R-CNN. We use the two-round strategy as default
for the decoding of the end-to-end models with
VSRC, . We present more model details and hyper-
parameters in Appendix A.
Evaluation We report five standard evaluation met-
rics of the text generation for the VSD task, in-
cluding BLEU-4 (Papineni et al., 2002), ROUGE
(Lin, 2004), METEOR (Banerjee and Lavie, 2005),
CIDEr (Vedantam et al., 2015) and SPICE (Ander-
son et al., 2016). In this work, we use BLEU-4 and
SPICE as the primary metrics to evaluate our mod-
els, where the former can measure the syntactic
quality of the generated descriptions, and the latter
emphasizes the consistency with the input scene
graphs. Although CIDEr has been widely-adopted
for image-to-text generation as the major metric,
it might be unsuitable for our VSD task because it
can lower the importance of frequently occurring
words closely related to spatial relations by the IDF
values. We conduct each experiment by five times
and report the average number.

6.2 Main Results
Table 2 shows the main results on the test dataset.
The model results based on VL-BART and VL-
T5 are reported in two different regions. The first
row of each region shows the performance of our
original models. The base VL-BART and VL-T5

models can achieve impressive performance as a
whole, and the two models are generally compa-
rable. The rows with “+VSRC–*” stand for the
results of our VSD models with the support of spa-
tial relation. Meanwhile, the “VL-T5-*” models
demonstrate better performance under this setting.

To show the potential of VSRC for VSD, we first
examine the oracle performance with gold-standard
spatial relations as input. The results are highly
exciting, as shown by “+VSRC–golden” with the
gray numbers. We can obtain very large improve-
ments over all evaluation metrics based on both
VL-BART and VL-T5. The observation indicates
that spatial relation is very useful to our VSD task.
However, using gold-standard spatial relations in
real scenarios is impractical. Thus, it is deserved
to investigate the benefits of spatial relations out-
putted from a VSRC model.

Spatial relations from a VSRC model can be
incorporated in two ways, as shown by “+VSRC-
pipeline” and “+VSRC-end2end” in Table 2. The
two types of models show significant performance
decreases compared with that of “+VSRC-golden”.
Nonetheless, these models can still lead to pos-
itive gains on the VSD task by comparing their
performance with the basic models without spatial
relation information. In addition, our end-to-end
joint models (i.e., “+VSRC-end2end”) outperform
their corresponding pipelines. If the gain on VSRC
is larger, then the increase on VSD is also more
significant, indicating that the VSRC performance
is the key.

Furthermore, we compare our VL-BART and
VL-T5 models with another representative image-
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Figure 4: Fine-grained results of the VL-T5+VSRC-
end2end model in terms of spatial relations.

to-text model, namely OSCAR+ (Zhang et al.,
2021). The major difference between our models
and OSCAR+ is that OSCAR+ exploits VL-BERT
as the backbone, which only contains an encoder.
The spatial relation can effectively improve the
OSCAR+ model as well. Notice that VL-BERT
excels at understanding tasks because of its dis-
criminative pretraining benefiting based on sole en-
coder learning, so we can find that Oscar++VSRC-
end2end can achieve the best VSRC accuracy.
Overall, the OSCAR+ models still obtain lower
VSD performance than our suggested VL-BART
and VL-T5 models, demonstrating the advantage of
the encoder-decoder pretraining on the VSD task.

6.3 Discussion

Fine-grained Performance by Spatial Relations
The performance differences among various spa-
tial relations are interesting. Several particular
relations may be more difficult to comprehend
within the images. Figure 4 shows the BLEU-4
results across different spatial relations by the VL-
T5+VSRC-end2end model, where the VSRC pre-
cisions are also shown for comparison. Overall,
one approximative correction exists between the
VSD and VSRC performance by fine-grained eval-
uation. Additionally, spatial relations such as “to
the left of” and “to the right of” show significantly
lower performance than the others. The two possi-
ble reasons are as follows: (1) These relations (e.g.,
including ambiguities by compounds) are visually
not as clear as the others, such as “on”, “under”,
and “in”. (2) The distribution of spatial relations
is unbalanced. Although we have paid particular
attention to this issue while building our dataset,
this problem is still challenging to handle due to
the natural characteristic of spatial semantics.
Pipeline v.s. End-to-End To further understand
the disparity between the pipeline and the end-to-
end models, we divide the model outputs by the

Positive Negative
20

40

60

80

(a) BLEU-4

Pipeline End2End

Positive Negative
50

60

70

80

(b) SPICE

Figure 5: VSD results of VL-T5+VSRC-end2end by
Positive and Negative relations predicted from VSRC.
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Figure 6: A comparison of the VL-T5+VSRC-end2end
model by using one-round and two-round decodings.

VSRC correctness into two categories and then
evaluate the VSD results on them separately. Con-
cretely, if the VSRC output is correct, then we
regard the instance as positive; otherwise, it is neg-
ative. Figure 5 shows the BLEU-4 and SPICE
results by the VL-T5+VSRC-end2end model. The
end-to-end model outperforms the pipeline model
on the positive samples while doing the opposite on
negative samples. The obversion is reasonable be-
cause the end-to-end model tends to trust its VSRC
output by its overall positive influence, thus result-
ing in downgraded performance when the VSRC
outputs are incorrect. According to the finding, we
can see that the VSRC accuracy is vital for the final
VSD performance.
Decoding in End-to-end: One Round or Two As
mentioned in Section 5.2, we have two strategies
for the decoding of the end-to-end models. The
two-round strategy is selected by default. Here, we
compare the two decoding strategies based on the
VL-T5+VSRC-end2end model. Figure 6 shows the
results, where the pipeline results are also shown
for reference. The two-round decoding is highly
critical for the end2end model, without which the
model can even be inferior to the pipeline one. The
possible reason might be that the simple one-round
decoding is unable to leverage this advantage even
though our MTL architecture for the end2end learn-
ing can effectively learn the interactions between
the two tasks, .
Human Evaluation We perform a human evalua-
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Model Spatial Fluency Location Avg

VL-T5(Base) 93.2 93.8 96.1 94.4
+VSRC-pipeline 93.9 94.0 96.3 94.7
+VSRC-end2end 94.9 95.2 96.6 95.6
+VSRC-golden 99.3 95.0 96.6 97.0

Table 3: Results of human evaluation.

tion to better compare the results of our proposed
VSD models. We focus on models with VL-T5
backbone, and randomly sample 100 test instances
of each model for evaluation. The VSD outputs
of each model are scored with the following three
measurements:

• Spatial Correctness: whether the spatial se-
mantics of the generated text is consistent with
the image?

• Fluency: whether the generated text is read-
able and not different from human sentence-
making?

• Location Correctness: whether the input ob-
jects can be identified from the image accord-
ing to the generated text?

Each question will be answered by a number from
0 to 1, indicating terrible to perfect. We let three
annotators participate in a model-blind evaluation.
Table 3 shows the accumulation scores of over the
100 instances with one decimal place retained. No-
ticeably, the Spatial Correctness is different from
the VSRC accuracy in Table 2, where the former
is for human judgement of VSD descriptions and
the latter is for a nine-way classification. Gener-
ally, the VSRC accuracy can only evaluate one of
multiple reasonable spatial relations of the given
two objects while the human evaluation is more
tolerant and reasonable. The tendency in perfor-
mance is consistent with the automatic evaluation,
where VSRC can help VSD because it can offer
more spatial information, and the end-to-end model
is better in utilizing automatic VSRC. The model
with golden VSRC achieves a very high score of
99.3, which is reasonable due to the golden VSRC
information of inputs.

7 Conclusion

In this work, we introduced a novel image-to-text
generation task, namely VSD, aiming to generate
text descriptions containing spatial semantics of
two objects in an image, and constructed a dataset
to benchmark this task. We adopted the models

with Transformer-based encoder-decoder architec-
tures (i.e., VL-BART and VL-T5) for our task to
obtain the baseline results. Moreover, we proposed
to integrate VSRC into our models by pipeline
and end-to-end architectures, enhancing VSD with
the support of spatial relations. The experimental
results show that the VSRC-enhanced approach
achieves significant progress over our initial mod-
els. Moreover, the end-to-end models outperform
the pipeline ones due to joint learning.

Limitations

This work has two major limitations. The first lim-
itation lies in our dataset. Our annotated dataset
is built on SpatialSence and VG-Relation, aiming
to study the relationship between VSRC and VSD.
Under this setting, the variety of the spatial rela-
tions is limited to only nine. In addition, we only
annotate one sentence for each instance, which lim-
its the diversity of the description styles. We plan
to continuously improve our dataset with more spa-
tial relations and descriptions as the future work
to improve this condition. The second limitation
is that our base models only focus on single spa-
tial relations in this work, ignoring the compound
relations such as “left” and “behind” concurrently
occurring. To solve this issue, we need to explore
more methods to model multiple relations to gen-
erate descriptions with richer semantics. We also
leave this aspect to future in-depth studies.

Ethical Considerations

We construct a new large-scale image-to-text gen-
eration dataset with crowd annotations. All the im-
ages of our dataset are sourced from two existing
public datasets, SpatialSense and VisualGenome,
which are open-access. All the annotators were vol-
untary participants and can quit at any time. They
were informed of the study’s goals before giving
their express consent. All annotators were properly
paid by their actual efforts and there is no informa-
tion related to annotator privacy in the dataset.
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A bin is above another bin.

A bin is on another bin.

A bin is put on another bin.

A bin is put on another bin.

Two bins are stacked together,
where one is put on the other.

Input

VL-T5(Base)

VL-T5+VSRC-pipeline

VL-T5+VSRC-end2end

VL-T5+VSRC-golden

Human

A tree is in front of a fence.

There is a tree behind a fence.

A tree grows behind a fence.

A tree grows behind a fence.

In the distance, there is a tree
behind a fence.

A man is next to a woman with
red dresses.

A man is on the left of a woman
dressed with a white hat.

A man stands on the right of a
woman.

A man is standing on the right
of a woman.

A man stands on the right of a
woman who wears a white hat.

A white line is on the dirt and
several people.

Some white lines is in the dirt.

There are several lines above the
dirt region.

Some white lines are on the
dirt region of a sports ground.

There are several white lines
painted on the dirt infield of
the baseball park.

Two women sit close to each
other around a table.

One women is sitting close to an-
other woman.

One women dressed in black is sit-
ting in front of another woman.

One women dressed in black is sit-
ting in front of another woman.

One women dressed in black sits
in front of another woman who is
at the other side of a dining-table.

Figure 7: Case studies, where the object in an image marked by the red box is the first object of VSD input, and the
bold orange descriptions are regarded as relatively acceptable.

A Detailed Experiment Settings

We adopt the default settings of VL-BART and
VL-T5 backbones (Cho et al., 2021). In VSRC,
the dimension size of the bounding box coordi-
nate features (cO1 and cO2 in Equation (6)) is 64
and the dimension of the fully connected layers
is set to 1024. For hyper-parameters, we detail
them in Appendix A. We train our models by us-
ing the AdamW optimizer (Loshchilov and Hutter,
2017), setting the initial learning rate to 5e−4 and
weight decay to 0.01. We apply the gradient clip-
ping mechanism by a maximum value of 5.0 to
avoid gradient explosion. The training batch size
is 16 and the max epoch number is 40.

B Case Study

We show five case studies in Figure 7 to extensively
understand the model outputs. In the first case, all
four models (human is the golden answer) are able
to output good descriptions because the relation
in the image is simple and easy to understand. In
the second case, the VL-T5 (base) model is unable
to provide a correct answer, while the other mod-
els are all correct due to the benefit from VSRC.
In the third case, the VL-T5+VSRC-end2end and
VL-T5+VSRC-golden models output acceptable
results, while the other two models fail. The rea-
son might be that the two models can identify the
correct or more important spatial relation between
the two objects. In the fourth case, we can only ob-
tain a correct description by VL-T5+VSRC-golden
because the spatial relation is very difficult to rec-
ognize by automatic VSRC. Finally, our VSRC-
enhanced VSD model fails in the fifth case even
with the golden spatial relation. The reason might

be the extreme complexity of this particular input
image.
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