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Abstract

Language models (LMs) trained on large
amounts of data (e.g., Brown et al., 2020; Pat-
wary et al., 2021) have shown impressive per-
formance on many NLP tasks under the zero-
shot and few-shot setup. Here we aim to better
understand the extent to which such models
learn commonsense knowledge — a critical
component of many NLP applications. We con-
duct a systematic and rigorous zero-shot and
few-shot commonsense evaluation of large pre-
trained LMs, where we: (i) carefully control
for the LMs’ ability to exploit potential surface
cues and annotation artefacts, and (ii) account
for variations in performance that arise from
factors that are not related to commonsense
knowledge. Our findings highlight the limi-
tations of pre-trained LMs in acquiring com-
monsense knowledge without task-specific su-
pervision; furthermore, using larger models or
few-shot evaluation are insufficient to achieve
human-level commonsense performance.

1 Introduction

Common sense — the implicit knowledge about
everyday situation that is shared by humans — is
an important prerequisite for developing general-
purpose intelligent systems (McCarthy et al., 1960;
Liu and Singh, 2004; Gunning, 2018). Intrigu-
ingly, recent large language models (LMs, Brown
et al., 2020; Patwary et al., 2021; Rae et al., 2021)
have achieved remarkable performance at various
common sense benchmarks (e.g., Sakaguchi et al.,
2020; Zellers et al., 2019a; Bisk et al., 2020b; Sap
et al., 2019b), even when they are evaluated in
a zero-shot or few-shot fashion, without explicit
commonsense supervision. We revisit this apparent
success, and conduct a rigorous study to better un-
derstand the extent to which such pre-trained LMs
are able to capture commonsense knowledge.

∗ Work done during DeepMind internship when Lorraine
was a PhD student at UMass Amherst. ♢ Work done at Deep-
Mind

Figure 1: The experiment settings with their correspond-
ing input to the LM. The example is taken from Social
IQa (Sap et al., 2019b) where we convert questions to
natural text using the rules of Shwartz et al. (2020); this
conversion yields to better performance (§5).

In this work, we focus on zero- and few-
shot evaluations of pre-trained LMs without
commonsense-specific fine-tuning for two reasons:
First, we aim to examine if a pre-trained LM is
able to acquire general commonsense knowledge.
As pre-trained LMs constitute a foundational build-
ing block of NLP today, any deficiencies in their
commonsense understanding can thus adversely
manifest in downstream applications (Bommasani
et al., 2021). Fine-tuning the LM would make it
hard to disentangle how much of the commonsense
knowledge is acquired by the underlying LM, as op-
posed to the task-specific supervision from a bench-
mark (Yogatama et al., 2019). Second, human-
annotated commonsense datasets are expensive to
collect due to the vast, diverse, and growing nature
of commonsense knowledge (Elazar et al., 2021).

Concretely, our work differs from prior work
on commonsense evaluation of LMs (Brown et al.,
2020; Patwary et al., 2021) by way of a more rigor-
ous evaluation, in which we: (i) carefully control
for the LM’s ability to exploit potential surface
cues and annotation artefacts to predict the answer,
without reasoning over the context. We further (ii)
account for the variations in factors influencing the
LM’s performance, which arise from certain evalu-
ation design choices — independently of common-
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sense knowledge in the models. We systematically
conduct this study on four commonsense bench-
marks, six model sizes (up to a very large LM with
280B parameters), and multiple evaluation settings
(e.g., different score functions and prompt format).

We begin with our first question: When evaluat-
ing a large LM in a zero-shot setting, how does its
zero-shot performance compare to a strong base-
line (§3)? Controlling for the LM’s ability to guess
the correct answer, without even looking at the
question (Poliak et al., 2018; Trichelair et al., 2019,
Answer-only baseline, top of Fig. 1), we find that,
despite the LM’s strong zero-shot performance, the
Answer-only baseline can nevertheless perform sur-
prisingly well on some benchmarks. Despite the
clear importance of comparing with answer-only
baselines as shown in Figure 2, these comparisons
are absent from recent work on large LMs (Zhou
et al., 2020; Brown et al., 2020; Rae et al., 2021).
Furthermore, increasing model size alone is un-
likely to bridge the gap with human performance
in the near future: Our analysis of scaling behavior
suggests that much larger dense LMs (with 100T
to 1018 parameters — which are infeasibly large at
present) are needed to achieve human performance
for 3 out of 4 benchmarks.

Does familiarizing the LM with the task format
using a few-shot evaluation setting substantially
improve performance (§4)? We find that the few-
shot evaluation (using up to 64 examples) does not
substantially improve the LMs’ performance for
most tasks except Social IQa. Moreover, using the
few-shot/in-context demonstration setting fails to
bridge the gap between the LM and current SOTA.

Finally, we ask: to what extent does the model’s
zero-shot performance vary depending on certain
evaluation design choices, such as the format of
the prompt or the score function (§5)? We find
that these design choices — though they have little
to do with common sense — can result in large
fluctuations in performance (up to 19%). This find-
ing challenges the notion that large LMs are largely
able to work well out-of-the-box with minimal task-
specific tuning. Based on these findings, we em-
phasize the need to carefully select such design
choices, explicitly state them to enable fair compar-
ison with prior work, and quantify the robustness of
the observed results across different design choices.

All in all, our findings suggest that acquiring
human-level commonsense knowledge, without re-
lying on surface cues or task-specific supervision,

Choices Knowledge Types Questions

HellaSwag (Zellers et al., 2019a) 4 Temporal, Physical 10042
WinoGrande (Sakaguchi et al., 2020) 2 Social, Physical 1267
Social IQa (Sap et al., 2019b) 3 Social 1954
PIQA (Bisk et al., 2020b) 2 Physical 1838

Table 1: Benchmark Statistics. Choices: the number
of candidate answers for each question; Questions: the
number of candidate answers for each question.

remains beyond the reach of current large LMs.
Given the marginal improvements from increasing
model size, we conjecture that other techniques,
such as explicit commonsense supervision, multi-
modal grounding, or physical embodiment (Bisk
et al., 2020a), are promising ways forward.

2 Experimental Setting

We begin by outlining our experimental setup, and
describe the benchmarks, model, baselines, and
other relevant experimental settings.

2.1 Commonsense Benchmarks

Commonsense knowledge spans many categories,
such as physical common sense (e.g., a car is heav-
ier than an apple), social common sense (e.g., a
person will feel happy after receiving gifts), and
temporal common sense (e.g., cooking an egg takes
less time than baking a cake). Given this diverse
nature of commonsense knowledge, various bench-
marks have been proposed to test these different
types of knowledge (e.g., Zellers et al., 2019a; Sak-
aguchi et al., 2020; Sap et al., 2019b; Bisk et al.,
2020b; Lin et al., 2020; Boratko et al., 2020).

Commonsense benchmarks broadly consist of
two tasks: (a) multiple-choice evaluation (Zellers
et al., 2018, 2019a; Sap et al., 2019b; Bisk et al.,
2020b), where a model needs to choose the correct
answer from a list of plausible answers; (b) gen-
erative evaluation (Boratko et al., 2020; Lin et al.,
2020, 2021), which requires a model to generate
an answer given a question and some additional
context. Here we focus on multiple-choice bench-
marks, since they provide a more reliable automatic
metric (i.e., accuracy), whereas automated metrics
used to evaluate language generation (e.g., BLEU,
Papineni et al., 2002) do not correlate perfectly
with human judgment (Liu et al., 2016; Novikova
et al., 2017).1 We use a diverse set of four represen-
tative multiple-choice commonsense benchmarks

1Human judgment of LM output is not only costly to ob-
tain, but also imperfect (Clark et al., 2021), compounding the
difficulty of commonsense evaluation in a generation setup.
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to better understand the extent to which pre-trained
LMs are able to acquire different types of common-
sense knowledge. We use the validation split of
each benchmark, as their test splits are not public.
HellaSwag (Zellers et al., 2019a) is designed to
evaluate a model’s ability to understand physical,
grounded, and temporal common sense. Given a
four-sentence story, the model must choose the cor-
rect ending from four candidates. The stories are
either video captions from AcitivityNet (Heilbron
et al., 2015), or WikiHow passages (Koupaee and
Wang, 2018). When evaluating LMs on a similar
dataset (Zellers et al., 2018), incorrect answers can
be easy to distinguish from correct ones; hence in
constructing HellaSwag, Zellers et al. (2019a) re-
moved easy negatives through adversarial filtering.
WinoGrande (Sakaguchi et al., 2020) is a co-
reference resolution benchmark that mainly exam-
ines physical and social common sense. Each exam-
ple consists of a sentence (e.g., “The trophy did not
fit the suitcase because it is too big.”) and two can-
didate entities (e.g., “trophy” or “suitcase”). The
task is to choose the correct entity for the pronoun,
e.g., “it” refers to “trophy” in the example.
Social IQa (Sap et al., 2019b) focuses on evalu-
ating social commonsense, in particular theory of
mind — the capacity to reason about others’ mental
states (Flavell, 2004). Given context sentences and
a corresponding question, the task is to choose the
correct response from three candidates. Annota-
tors use the ATOMIC knowledge base (Sap et al.,
2019a) to create context sentence and questions;
the answers are provided by additional annotators.
PIQA (Bisk et al., 2020b), short for physical in-
teraction question answering, mainly covers the
physical aspect of common sense. Each data point
consists of a task and two alternative solutions to
finish the task; one of which is correct. The tasks
are curated from a website2 with instructions for ev-
eryday tasks (e.g., separating egg yolks from eggs);
the solutions are provided by human annotators.

2.2 Pre-trained Language Model

We use the pre-trained language model of Rae et al.
(2021), Gopher, which is an autoregressive Trans-
former (Vaswani et al., 2017) language model with
280 billion parameters. We choose Gopher be-
cause of its excellent zero-shot and few-shot per-
formance at various benchmarks, in addition to its
large model size, which has been shown to improve

2https://www.instructables.com/

language modeling and downstream performance
(Kaplan et al., 2020). Notably, Gopher is more than
50% larger than GPT3 and as of March 2022, is
one of the largest dense LMs developed to date.

Gopher hyper-parameters. The pre-trained Go-
pher language model has 80 layers, 128 attention
heads, 128-dimensional key/value vectors, and a
feedforward layer dimension of 16,384. To bet-
ter understand the effect of different model sizes
(§3.2), we experiment with five other model sizes:
44M, 117M, 417M, 1.4B, and 7.1B. Similar to Go-
pher, each of these models was pre-trained by Rae
et al. (2021); a full list of model hyper-parameters
is summarized in Table 1 of Rae et al. (2021). Each
model is trained by subsampling from the Mas-
siveText dataset, which consists of more than 2
trillion tokens from various domains including web
pages, news, books, and codes (Rae et al., 2021).
The authors have removed documents that overlap
significantly with the evaluation sets from training
set including benchmarks used in our work. We
use TPUv3 to conduct all evaluations, with an esti-
mated total compute budget of 2× 1020 FLOPs.

Score function. On the multiple-choice bench-
marks, we evaluate the pre-trained LM by calcu-
lating the score for each answer choice under the
model, and select the highest-scoring answer ŷ:

ŷ = argmax
y∈Y (x)

sθ(y|x);

here x denotes the question or prompt, Y (x) the set
of answer choices for a given question, and sθ(·)
the score of an answer choice y given x, under
the pre-trained LM with parameters θ. We provide
some examples in Table 2.3 For Social IQa, we
convert questions to natural text using the rules
of Shwartz et al. (2020); we find this natural text
format to yield better results, as discussed in §5.

Unless otherwise stated, we use cross-entropy
(or token-level log prob) to score each answer:

sθ(y|x) =
∑∥y∥

i=0 log(pθ(yi|x, y0...yi−1))

∥y∥ . (1)

This score function reduces the impact of length;
without dividing by ∥y∥, longer answers might
have lower probabilities (Stahlberg and Byrne,
2019). GPT3 (Brown et al., 2020) also employs
this score function for zero-shot evaluation.

3For Social IQa, we concatenate the context sentence and
question together to form the prompt x.
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Dataset Prompt: x Answer: y

HellaSwag A woman is outside with a bucket and a dog. The dog is running
around trying to avoid a bath. She gets the dog wet, then it runs away again.

WinoGrande The GPS and map helped me navigate home. I got lost when the GPS got turned off.

Social IQa Jordan was in charge of taking the food on the camping trip and
left all the food at home. Jordan felt

horrible that he let his friends down on
the camping trip.

PIQA Make Halloween lanterns. Draw ghost faces on empty milk bottles,
put a candle in each one.

Table 2: Examples of the prompt x and the correct answer y in different benchmarks.

2.3 Baselines

We compare the performance of Gopher with two
baselines. The first, simple baseline is to randomly
select an answer candidate, where the chance of se-
lecting the correct one is 1

number of choices . We hence-
forth refer to this as the Random Baseline. We ex-
periment with two other baselines: Either choosing
the majority label from the training data, or choos-
ing the longest answer. We omit these baselines as
they perform similarly to the Random Baseline.

More importantly, we consider an Answer-only
Baseline, where we select the highest-scoring an-
swer choice under the LM, without conditioning
on the question. More formally, this baseline con-
siders sθ(y), as opposed to sθ(y|x) in Eq. 1. This
baseline reveals the extent to which the pre-trained
LM conducts the appropriate reasoning over the
context to select the answer, as opposed to relying
on potential surface cues or annotation artefacts
that make the correct answer a priori more prob-
able than the rest. We illustrate this baseline at
the top of Fig. 1. For WinoGrande, we calculate
the cross-entropy of the text starting by the pro-
noun replacement, as shown in Table 2. Ideally,
each answer choice should be equally likely if we
do not consider the question, and the Answer-only
performance should be close to the Random base-
line. Similar hypothesis-only baselines are well-
studied for natural language inference datasets (Po-
liak et al., 2018); Trichelair et al. (2019) further
explored such an Answer-only baseline, albeit only
on the SWAG benchmark (Zellers et al., 2018).

3 Zero-shot Performance

In Fig. 2, we report the zero-shot performance
of our pre-trained LM (with 280B parameters,
§2.2) on the four commonsense benchmarks, along-
side: (i) the Random and Answer-only baselines,
and (ii) the current state-of-the-art (SOTA) re-
sult. The SOTA results are achieved by the UNI-

CORN (Lourie et al., 2021) model with 11B pa-
rameters, which is pre-trained on 6 existing com-
monsense datasets (Zellers et al., 2019a; Bisk et al.,
2020b; Sap et al., 2019b; Sakaguchi et al., 2020;
Bhagavatula et al., 2020; Huang et al., 2019).

Zero-shot performance. At first glance, we ob-
serve strong zero-shot results, outperforming the
Random Baseline in all benchmarks (compare
“Rand” and “ZS” in Fig. 2). However, the gap
between the stronger Answer-only baseline and the
zero-shot result is smaller for all benchmarks (com-
pare “Answer” and “ZS”): Whereas this gap is still
sizable for HellaSwag and WinoGrande (>20), it is
much smaller for Social IQa and PIQA. Finally, in
all cases, there is still a large gap between the SOTA
and zero-shot performance (>10); this gap is largest
for WinoGrande and Social IQa, suggesting that
social and physical commonsense is challenging
for pre-trained LMs — even a large one with 280B
parameters — without task-specific supervision.4

3.1 Answer-only bias

As shown in Fig. 3, the performance gap between
the Random and Answer-only baselines is notably
large for HellaSwag and PIQA, where the Answer-
only baseline outperforms the Random baseline
by more than 32% and 23%, respectively. This
large gap highlights an existing answer-only bias
in these benchmarks: the correct answer can, in
fact, be selected by the LM without conducting the
appropriate commonsense reasoning over the pro-
vided context. On the other hand, the Answer-only
baseline performs similarly to the random base-
line on WinoGrande and Social IQa; hence, the
zero-shot performance on these benchmarks is a
more reliable estimate of the model’s acquisition of

4We remark that the 530B-parameter LM of Patwary et al.
(2021) achieves slightly better performance than Gopher on
HellaSwag (80.2), PIQA (82), and WinoGrande (73), although
there remains a large gap with the SOTA performance.
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Figure 2: Random Baseline (Rand), Answer-only Baseline (Answer), zero-shot (ZS), and the current state-of-the-art
(SOTA) for each benchmark, which is achieved by UNICORN (Lourie et al., 2021).
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Figure 3: The performance gap between Answer-only
and Random baselines for each benchmark.

commonsense knowledge. Given the existing (and
sometimes inevitable) answer-only biases in some
benchmarks, it is important to contextualize the
zero-shot results by comparing with strong base-
lines, although such comparisons are missing from
recent work (e.g., Zhou et al., 2020; Brown et al.,
2020; Rae et al., 2021).

3.2 Does Increasing Model Size Help?

Gopher (the largest LM we have access to) achieves
a decent zero-shot performance for most common-
sense benchmarks, but maintains a notable gap with
fine-tuned SOTA results. Can we eventually reach
human-level performance on these commonsense
benchmarks by increasing model size alone?

Since we do not have access to larger language
models than Gopher, we examine the extent to
which zero-shot performance improves when us-
ing Gopher compared to a range of smaller models
(i.e., scaling plots). Such scaling plot can help
us predict the performance for larger models than
Gopher. To that end, we use 6 pre-trained model
sizes from 44M to 280B parameters (see §2.2).5

We present the findings in Table 3. On all four

5Each model size is trained on the same dataset; hence any
performance differences can be attributed to model size.

Answer ZS FS(1) FS(10) FS(64)

HellaSwag

44M 25.8 28.0 28.0 28.1 27.9
117M 29.2 33.5 33.3 34.0 33.5
417M 35.6 44.1 43.4 43.3 43.3
1.4B 43.2 56.7 56.4 56.2 56.5
7.1B 50.4 69.5 67.6 67.9 67.9
Gopher 57.0 79.1 77.8 79.2 79.3

WinoGrande

44M 48.5 51.3 51.1 50.8 50.6
117M 50.8 52.0 51.9 50.9 50.8
400M 49.9 52.2 51.8 50.8 52.5
1.3B 49.7 58.1 56.4 56.0 57.3
7B 52.4 64.6 62.1 63.1 62.0
Gopher 50.8 71.1 69.2 71.4 74.6

Social IQa

44M 35.5 42.0 41.2 40.9 40.9
117M 36.1 43.7 42.7 42.1 42.2
400M 36.0 45.6 44.5 45.2 45.3
1.3B 35.8 46.9 46.4 48.6 50.5
7B 36.9 48.1 48.1 52.9 54.2
Gopher 36.3 50.2 50.2 55.3 57.5

PIQA

44M 60.2 62.6 62.1 62.3 61.3
117M 62.1 65.5 64.6 65.1 65.3
400M 65.9 70.9 68.8 70.5 70.1
1.3B 68.4 74.4 73.3 74.4 74.6
7B 70.0 77.4 75.5 77.6 78.1
Gopher 73.2 80.5 79.3 81.4 81.5

Table 3: Performance of all models across benchmarks
under different experimental settings. Ans: Answer-
only Baseline; ZS: zero-shot performance; FS(n): few-
shot performance where n is the number of examples.

benchmarks, the LM’s zero-shot performance (Ta-
ble 3, ZS column) consistently gets better as we
use increasingly larger models. This finding is also
consistent with that of Brown et al. (2020), who
showed that larger models have better performance
at HellaSwag, WinoGrande, and PIQA. But, cru-
cially, we argue that this does not necessarily mean
that larger models are better at commonsense rea-
soning: For HellaSwag and PIQA, the Answer-only
baseline also substantially improves with model
size (Table 3, Answer column). Hence, for these
benchmarks, larger models are also better at ex-
ploiting potential surface cues and annotation arte-
facts to guess the correct answer, without reasoning
over the context. To properly assess commonsense
reasoning, we should focus on the performance dif-
ference between the zero-shot and the Answer-only
baseline.
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Figure 4: The difference between zero-shot performance and Answer-only baseline for different model sizes.

We plot this performance difference with respect
to different model sizes in Fig. 4. We observe
that larger models have better performance across
benchmarks — when increasing model size, the
zero-shot performance gains are more than the per-
formance gains of the Answer-only baseline. Nev-
ertheless, the magnitude of this improvement varies
depending on the benchmark: We see a substantial
improvement on WinoGrande, but smaller improve-
ments on HellaSwag, Social IQa and PIQA.

Scaling behavior. Based on these trends, what
model size would be required to achieve human-
level performance on these benchmarks? Through
a linear regression analysis (see Appendix B for
more details), given the current rate of improve-
ment in performance when gradually increasing
the model size from 44M up to 280B, we need a
model of at least 1.4T parameters to achieve human
performance on HellaSwag, and a model of >100T
parameters (∼400x larger than Gopher) for other
benchmarks. This result suggests that training ever-
larger models may not help us reach human perfor-
mance, at least in the near future. Indeed, given the
enormous compute costs for training even larger
LMs than the Gopher model with 280B parameters,
we conjecture that there are more efficient ways
of acquiring commonsense knowledge in an unsu-
pervised fashion, for instance through multi-modal
learning and grounding (Bisk et al., 2020a).

4 Few-shot Performance

Recent work has shown that large LMs can per-
form surprisingly well at various tasks in a few-
shot fashion (Brown et al., 2020; Patwary et al.,
2021). Under this setup, the model is provided
with n examples of the downstream task, which
are then appended to the prefix. Concretely, for
the four commonsense benchmarks, we append n
examples that include the question and the correct
answer; these examples — which are randomly

sampled from the training split of each benchmark
— appear before the evaluated question, as shown
in Fig. 1. This few-shot formulation is appealing
as it relies only on a small number of task-specific
examples to get the LM accustomed to the task,
without any fine-tuning. To what extent can we
improve the model performance on commonsense
benchmarks, by shifting from the zero-shot to the
few-shot evaluation protocol?6

In Fig. 5, we compare the performance of Go-
pher under different evaluation protocols: (i) zero-
shot and (ii) few-shot (n) where we use n ∈
{1, 10, 64} examples. We run the few-shot ex-
periments between 5 and 10 times — sampling
different examples each time — and report the av-
erage performance. The variance across runs is
very small and is shown as the error bar in Fig. 5.7

Interestingly, model performance with few-shot (1)
is sometimes worse than the zero-shot model, but
the few-shot (10) and (64) models outperform their
zero-shot counterpart (albeit sometimes by small
margins). On HellaSwag and PIQA, we do not
observe substantial improvement from few-shot
evaluation compared to the zero-shot baseline (less
than 2%).8 While few-shot evaluation does not
help much for most datasets, the only exception is
Social IQa, where the few-shot (64) model outper-
forms the zero-shot model by a > 7% margin. We
attribute this to the less natural text of Social IQa;9

hence adding task-specific examples provides in-
formation about what is expected of the task.

6The ability of large LMs to perform few-shot/in-context
learning was first demonstrated by GPT3. Here we use an
even-larger model than GPT3, which we expect to be able to
leverage in-context learning to a similar extent as GPT3.

7Our findings on the small variance with different few-shot
examples is consistent with Min et al. (2022), who found that
replacing real examples with random labels can work as well.

8In few-shot experiments (n = 50), Brown et al. (2020)
also found small improvements for PIQA and HellaSwag
(<1.5%), with a larger improvement (7.5%) for WinoGrande.

9We found that Gopher has the highest perplexity when
predicting Social IQa answers compared to the other datasets.
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Figure 5: Accuracy on the benchmarks for zero-shot (ZS) and few-shot (FS) settings (with 1, 10, and 64 examples).
We additionally report the error bars, although the error bars are not always visible due to the very small variance.

Overall, we observe that the usefulness of the
few-shot setting is benchmark dependent. More-
over, using task-specific examples in a few-shot
setting does not bridge the gap to SOTA or human
performance for any of the benchmarks.

Knowledge base retrieval. We further examine
if adding pre-extracted commonsense knowledge
base triplets to the context — as a different form
of few-shot/in-context learning — helps improve
model performance. (See Appendix D for details.)
In contrast to work of Shwartz and Choi (2020),
we observe no improvements when appending the
triplets; we attribute this discrepancy to the strong
performance of our base models (see §5).

5 Robustness of Reported Results

Different evaluation design choices — such as
the format of the prompt or the choice of score
functions — can impact the LM’s zero-shot per-
formance, and crucially result in different conclu-
sions about a model’s commonsense understanding
ability. Moreover, the lack of a standardized zero-
shot LM evaluation protocol makes direct com-
parisons between papers difficult (Shwartz et al.,
2020; Bosselut et al., 2021). To what extent can we
attribute variance in the reported results to these
evaluation design choices — even though they have
little to do with commonsense knowledge?

Model. Quantifying the robustness of the re-
ported results necessitates scoring a large num-
ber of examples under different evaluation design
choices, which is infeasible to do with the largest
(280B-parameter) model that has a slow inference
speed. Hence, we conduct the following experi-
ments using the 7B-parameter model, which is still
∼5 times larger than GPT2 (Radford et al., 2019).

Score functions. Prior work employs different
score functions to assess the plausibility of each
answer choice given a question (Brown et al., 2020;
Shwartz et al., 2020; Bosselut et al., 2021; Holtz-
man et al., 2021), which makes a direct comparison
between different results challenging. Here we in-
vestigate the impact of different score functions
on the reported performance. In addition to cross-
entropy (defined in §2.2), we experiment with two
other score functions. The first is sequence log
probability, defined as the log probability of the
answer choice y conditional on the question x. Let-
ting yi be the i-th token in the answer y:

s(y|x) =
∥y∥∑

i=0

log(p(yi|x, y0...yi−1)) (2)

Another widely used score function (Bosselut
et al., 2021; Holtzman et al., 2021) is point-wise
mutual information. This score function takes into
account the probability of the answer choices alone,
and the probability of the answer choices condi-
tional on the question. This metric assesses whether
the question adds additional information, as com-
monsense reasoning should be established within
the context of the question. As this score function
accounts for the prior probability of answer options,
it can yield lower accuracy than score functions like
cross-entropy that do not account for such factor
(Answer-only baseline, §2.3).

s(y|x) = PMI(y,x) = log
p(y|x)
p(y)

(3)

Prompt format. Another important factor is the
format of the prompt; here we consider a few
such choices. In addition to the concatenation of
the question and the answer, we experiment with
adding special symbols "[Question]" and "[An-
swer]" to specify the question and the answer
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(Brown et al., 2020). Moreover, for Social IQa
and PIQA, we experiment with a set of predefined
rules (taken from Shwartz et al., 2020) to convert
the questions into sentences, which are closer to
the LM’s pre-training data format. Finally, we find
that having the correct lower/upper case and punc-
tuation is important; thus we manually checked all
benchmarks to correct for case and punctuation.10

Scored text. The next option is whether to score
the entire question–answer pair (Shwartz et al.,
2020), or only the answer choice (conditional on
the given question as prefix) as done by Brown et al.
(2020) i.e., whether to calculate s(x;y) or s(y|x),
where ; implies text concatenation.

5.1 Do These Design Choices Matter?

Table 4 shows the performance difference of using
the worst versus the best design choices, which are
independently optimized for each task. To sweep
over the above design choices, instead of consider-
ing all combinations of parameters, we iterate the
options in one category (e.g., score function), while
fixing the parameters in the other categories.11

Overall, we observe a difference between the
best and worst settings on all benchmarks; this
gap is especially large for HellaSwag and PIQA.
This result shows that large language models do
not simply work out of the box for some common-
sense benchmarks, because for some tasks, these
evaluation design choices can account for a large
variation in model performance. We find that the
score function plays the most important role —
cross-entropy yields the highest accuracy values
across most benchmarks, but sequence log prob-
ability achieves a slightly better performance for
WinoGrande. However, when using these scores,
we should account for the Answer-only baseline
(§3). Moreover, converting questions to sentences
makes the largest difference for Social IQa. We
also find that scoring the answer conditional on the
question — as opposed to scoring the concatena-
tion of questions and answers — works best, except
for WinoGrande, which has no questions.

10Recent work learns the prefix that would maximize perfor-
mance (e.g., Li and Liang, 2021). Here we focus on evaluation
setups with no parameter updates, and leave this extension to
future work. Our findings also indicate that the score function
choice — which is not covered by lightweight fine-tuning ap-
proaches — is more important than the prompt format (§5.1).

11This decision saves compute resources, while offering a
lower bound on the performance variations. Our goal here is
not to seek the highest achievable performance, but to under-
stand how much performance varies across different settings.

Worst Best Difference

HellaSwag 50.8 70.5 19.7
PIQA 62.5 78.7 16.2
Social IQa 43.9 48.5 4.6
WinoGrande 59.7 62.0 2.3

Table 4: The performance difference between the worst
and best design choices for each benchmark.

Answer-length bias. Although cross-entropy
generally achieves the best reported performance,
this score function is sensitive to answer lengths.
As shown in Appendix C, cross-entropy tends to
assign higher scores to longer answers; to vary-
ing extent, this pattern holds for PIQA, Social IQa,
and WinoGrande. We attribute this to the higher
probability assigned to subsequent tokens in the
sequence, as such tokens have the most context
and thus can be more easily predicted than tokens
in the beginning of the answer. As longer answers
have more such easier-to-predict tokens, their cross-
entropy tends to be lower. This pattern is reversed
in metrics such as sequence log probability, where
shorter sequences often have higher scores (Koehn
and Knowles, 2017; Stahlberg and Byrne, 2019).
Note that this bias does not change the results re-
ported in this work since there is no correlation be-
tween answer length and correctness (Appendix C).

Takeaways. We conclude this section with three
concrete recommendations for future work.

• Although cross-entropy often achieves the best
performance, it does not take into account the
probability of selecting the correct answer with-
out reasoning over the context (§3). We recom-
mend future work to either: (i) use cross-entropy
and report the gap with the answer-only baseline,
or (ii) use the PMI score function, which already
takes the probability of the answer into account.

• In the same way that we search for the best model
hyper-parameters, future work should search
over certain important evaluation design choices,
such as the format of the prompt, and whether to
convert the questions into declarative sentences.

• Lastly, we strongly encourage future work to re-
port the variance of the observed results across
different design choices. This can provide an
indication of the robustness of the language mod-
els’ performance on commonsense benchmarks.
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6 Related Work

While recent work evaluates LMs against common-
sense benchmarks in a zero- and few-shot fashion,
they do not examine the extent to which model per-
formance can be attributed to superficial cues or
annotation artefacts in a given dataset (e.g., through
strong baselines), nor do they quantify how robust
the model performance is under different evalua-
tion design choices. Trichelair et al. (2019); Elazar
et al. (2021) investigate the existence of dataset bias
in commonsense co-reference resolution bench-
marks (Levesque et al., 2012; Sakaguchi et al.,
2020) and SWAG (Zellers et al., 2018); here we
conduct a more comprehensive investigation on
four diverse commonsense benchmarks.

Another line of work probe for commonsense
knowledge in LMs through knowledge base com-
pletion (Petroni et al., 2019; Davison et al., 2019)
or manually-designed probing tasks (Weir et al.,
2020; Shwartz and Choi, 2020). Zhou et al. (2020)
evaluate pre-trained LMs against commonsense
benchmarks and propose a new dataset requiring
multi-hop reasoning. In contrast, we focus on zero-
and few-shot evaluation of commonsense under-
standing using the existing benchmarks.

7 Conclusion

We conduct a systematic and rigorous study of large
LM performance on a diverse set of commonsense
benchmarks, in a zero-shot and few-shot fashion.
While pre-trained LMs can seemingly achieve a
good zero-shot performance on these benchmarks,
these results can be partially attributed to the LM’s
ability to exploit potential surface cues and annota-
tion artefacts to guess the correct answer, without
reasoning over the provided context. We further
observed that substantially increasing model size
yields rather small improvements on most com-
monsense benchmarks: Based on the scaling plots,
achieving human-level performance requires much
larger model sizes than what is currently feasible.
In addition, model performance can be highly sen-
sitive to certain evaluation design choices. Overall,
our findings offer valuable insights and best prac-
tices for rigorously evaluating large LMs.

Ethical Considerations

The primary aim of this paper is to conduct a sys-
tematic and rigorous commonsense evaluation of a
large language model, which — in the case of this

work — is achieved by using the pre-trained Go-
pher language model (Rae et al., 2021) with 280B
parameters. Hence, the same risks stemming from
large language model research are also broadly ap-
plicable to this work (Bender et al., 2021). We
briefly discuss these ethical considerations below.

Training compute. In practice, pre-training large
language models like Gopher requires an enormous
amount of compute, which may contribute to in-
creased carbon emissions (Strubell et al., 2019;
Patterson et al., 2021). In this work, we do not pre-
train the language model from scratch, although we
acknowledge that conducting inference and evalua-
tion with large language models like Gopher still
has substantial computational costs. Given the need
to construct even-larger language models (>100
trillion parameters) to achieve human-level perfor-
mance on most of these benchmarks in an unsuper-
vised fashion (§3.2), we encourage future work to
focus on potentially more efficient ways of acquir-
ing commonsense knowledge directly from data,
e.g., through multi-modal learning, grounding, and
human interaction (Bisk et al., 2020a).

Fairness and bias. Given the enormous size of
the pre-training data — about 2 trillion tokens in
the case of Gopher pre-training — it is conceivable
that the training dataset may inadvertently contain
toxic and biased material. Such toxic material —
which is not always easily identifiable in the large
training dataset — can in turn encourage the model
to produce biased, harmful, or toxic output, es-
pecially when they are prompted with toxic text
(Gehman et al., 2020). In fact, Rae et al. (2021)
demonstrated that — up to a certain model size
— larger language models may respond to toxic
prompts with greater toxicity compared to smaller
ones. Furthermore, the enormous size of the train-
ing data does not necessarily guarantee diversity:
We expect the training data to contain a smaller
proportion of vernacular or regional English that is
used by underrepresented communities (Blodgett
et al., 2016; Bender et al., 2021). Furthermore, the
language model may also acquire harmful biases
and stereotypes, e.g., assign lower probabilities
to women becoming doctors as opposed to men
(Rudinger et al., 2018; Cao and Daumé III, 2021).

Language model misuse. Our work highlights
both the success and limitations of large language
models at multiple commonsense benchmarks.
Nevertheless, the success and expressive power
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of large language models come at the expense of
potential misuse. Given their ability to generate
realistic-looking — albeit not necessarily factual
— content, large language models can also be used
for malicious purposes. For instance, large lan-
guage models can be used to generate convincing
fake news (Zellers et al., 2019b), and more power-
ful generator can in turn generate even more con-
vincing and influential fake news. Given the diffi-
culty of manually distinguishing between human-
generated text and machine-generated ones (Clark
et al., 2021), how we can better detect and defend
against malicious use of large language models is
an important and exciting avenue for future work.

Limitations

There are limitations to this work: first, we only
assessed models’ performance on multiple-choice
questions (and not in a generative setting). Mul-
tiple choice problems have a more reliable auto-
matic metric; in contrast, metrics used for genera-
tive tasks do not always accurately reflect human
judgment (Clark et al., 2021) Second, we only eval-
uate the benchmarks on one family of models, the
Gopher models and their variants; given the com-
putational cost and also the lack of availability of
different large language models (LLM), we cannot
run our experiments on different model families
than Gopher. However, we include zero-shot re-
sults on common-sense benchmarks from existing
work on other LLMs in the paper (such as the GPT2
result in Table 7). Moreover, LLMs behave very
similarly on various benchmarks, and we expect
our results to generalize to other LLMs as well.
Last but not least, we only evaluate models that
are solely trained on language. Recent multimodal
models have shown impressive performance on a
range of tasks (Saharia et al., 2022). Will models
trained on multiple modalities have more common-
sense? We aim to answer this question in future
work.
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A Appendix Structure

We begin by quantifying the scaling behavior of the
model to predict how performance changes with
larger model sizes (Appendix B). We then plot
the relationship between cross-entropy and answer
length for each of the four datasets (Appendix C).
After that, we describe experiments that use knowl-
edge base triplets as a form of in-context learning
(Appendix D). Lastly, in Appendix E, we provide
qualitative examples that show which examples: (i)
all model sizes get right, (ii) all model sizes get
wrong, and (iii) only the larger models get right.

B Scaling Behavior

When we estimate the performance needed to reach
human-level performance, we fit a linear model to
estimate accuracy from log(params). We derive
the human performance from each respective pa-
per and/or leaderboard. For HellaSwag and PIQA,
human-level performance is at 95%. For Wino-
Grande, it is at 94% and for Social IQa it is at 84%.
On HellaSwag, we predict that 1.4T parameters
are needed to achieve human-level performance;
on PIQA we predict 102T parameters; on Wino-
Grande we predict over 2000 Trillion parameters.
Social IQa scales particularly poorly, and we esti-
mate over 1018 parameters being needed.
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C Cross-entropy vs answer length for all
datasets

(a) Answer length vs cross-entropy (average log probabil-
ity across tokens) for PIQA.

(b) Answer length vs cross-entropy (average log probabil-
ity across tokens) for SocialIQA.

(a) Answer length vs cross-entropy (average log probabil-
ity across tokens) for HellaSWAG.

(b) Answer length vs cross-entropy (average log probabil-
ity across tokens) for Winogrande.
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D Commonsense Knowledge Bases

Given the implicit nature of commonsense knowl-
edge, a language model’s pretraining corpora might
not contain all of the supporting evidence that is
required to answer commonsense understanding
questions — a phenomenon widely known as the
reporting bias problem (Gordon and Van Durme,
2013). Thus, prior work has proposed to use exter-
nal knowledge bases for improving the zero-shot
performance of LMs on commonsense benchmarks
(Bosselut et al., 2021; Bauer and Bansal, 2021).
These approaches are particularly interesting, as
the knowledge base augmentation only happens at
test time, rendering this approach compatible with
any pretrained generative LM. While prior work
has shown the effectiveness of this approach over
the zero-shot baseline that lacks access to common-
sense knowledge bases (CSKBs), we find that the
performance of the baseline model is highly sen-
sitive to certain evaluation design choices (§5). A
natural question, therefore, is the following: If we
carefully optimize the evaluation design choices of
the baseline model, would we still observe similar
improvements through CSKB augmentation?

Setup. To answer this, we replicate prior work
by adding commonsense knowledge base entries at
test time; such knowledge base triplets can poten-
tially provide the relevant implicit commonsense
knowledge that makes the correct answer more
likely than the rest. To ensure the generality of our
findings, we apply this approach to multiple model
sizes that we explored in §3.2. Here we consider
the pre-extracted knowledge base triplets that are
made publicly available by Shwartz et al. (2020).
We use a similar score function as Shwartz et al.
(2020), where, for each answer choice y ∈ Y (x),
we choose the knowledge base triplet that yields
the highest score:12

skg(y|x) ≜
∑

t∈T
s(y; t|x) ≈ maxt∈T s(y; t|x),

where s(y; t|x) denotes the cross-entropy of the
concatenated answer choice y and the extracted
knowledge base triplet t, conditional on the ques-
tion/context x. Here T denotes the set of all ex-
tracted commonsense knowledge triplets, which
are generated from Comet (Bosselut et al., 2019).

12We experimented with other score functions, such as ap-
pending the extracted knowledge base triplets to the question
instead of the answer, although this approach does not yield
better results than the one proposed by Shwartz et al. (2020).

ZS w/t Comet w/t Atomic w/t CN

44M 42.3 42.9 42.3 40.6
117M 43.6 44.0 43.6 42.2
400M 46.3 46.8 44.7 44.1
1.3B 47.0 46.8 46.4 44.7
7B 48.5 48.6 47.5 46.1

ZS w/t Comet Self-Talk

GPT2 41.113 47.5 46.2

Table 7: Zero-shot performance on Social IQa when us-
ing different knowledge bases. GPT2 results are taken
from Shwartz et al. (2020). ZS: zero-shot performance;
CN: ConceptNet. We do not include the Gopher results
— with 280B parameters — due to computational con-
siderations and much slower inference.

One key difference is that we score the answer and
knowledge base triplet conditional on the question,
whereas Shwartz et al. (2020) scored the concate-
nation of question, answer, and triplet instead.

In Table 7, we summarize our results on Social
IQa, which has the highest gap between the zero-
shot and SOTA performance (Fig. 2). We compare
our results with those of Shwartz et al. (2020), who
used GPT2 as the base model. Our results in Ta-
ble 7 provide an interesting contrast to the find-
ings of Shwartz et al. (2020): Our baseline zero-
shot model with 1.3B parameters achieves an accu-
racy of 47.0% on Social IQa, substantially outper-
forming the reported GPT2 result of Shwartz et al.
(2020) — which achieves 41.1% — despite the fact
that GPT2 has more parameters (1.5B vs our 1.3B).
In fact, the same 1.3B zero-shot model — which
does not benefit from any commonsense knowl-
edge base triplets — nearly matches the perfor-
mance of GPT2 augmented with Comet (Bosselut
et al., 2019) (47.0% for our zero-shot 1.3B model
vs 47.5% for GPT2 augmented with COMET; Ta-
ble 7), and also outperforms the GPT2 model that
is augmented with self-talk. Nevertheless, we find
that adding knowledge base triplets fails to yield
substantial improvements for our models; this find-
ing is consistent across three different knowledge
bases and five model sizes. On the contrary, adding
such knowledge base triplets can occasionally de-
crease performance compared to the zero-shot base-
line.

We remark on two significant aspects of our find-
ings. First, it is important to compare proposed
improvements against strong, well-tuned baselines

13By similarly tuning the evaluation design choices, we
achieved 46.7 when evaluating GPT2 in the zero-shot setting.

11853



(Henderson et al., 2018; Melis et al., 2018), which
can achieve surprisingly competitive performance.
We identify the choice of the scored span as a partic-
ularly important design choice: Whereas Shwartz
et al. (2020) scored the GPT2 model on the con-
catenation of both question and answer, we instead
calculate the cross-entropy of the answer given the
question. Second, certain improvements that are
observed under a particular set of evaluation design
choices may not necessarily be replicated under a
different set. This finding reiterates the importance
of explicitly stating the evaluation design choices
used in each experiment, and identifying whether
or not the observed improvements are robust across
different evaluation design choices (§5).

E Examples

E.1 Social IQa
All Models Incorrect

{ ’ c o n t e x t ’ : " Tracy didn ’ t go home
t h a t e v e n i n g and r e s i s t e d

Ri l ey ’ s a t t a c k s . " ,
’ q u e s t i o n ’ : ’ What does Tracy need

t o do b e f o r e t h i s ? ’ ,
’ answerA ’ : ’ make a new plan ’ ,
’ answerB ’ : ’Go home and s e e Ri l ey

’ ,
’ answerC ’ : ’ F ind somewhere t o go

’ ,
’ c o r r e c t ’ : ’C’ }

{ ’ c o n t e x t ’ : ’ Aubrey k e p t t h e baby
up a t n i g h t t o watch f o r a

c o n c u s s i o n . ’ ,
’ q u e s t i o n ’ : ’ What w i l l happen t o

Aubrey ? ’ ,
’ answerA ’ : " The baby f e l l a s l e e p

d e s p i t e Aubrey ’ s b e s t e f f o r t " ,
’ answerB ’ : ’ g e t s so s l e e p y b u t

s t a y s awake anyway ’ ,
’ answerC ’ : ’ and t h e baby bo th

f e l l a s l e e p l a t e i n t h e n i g h t
’ ,

’ c o r r e c t ’ : ’B’ }

All Models Correct

{ ’ c o n t e x t ’ : ’ K e n d a l l opened t h e i r
mouth t o speak and what came

o u t shocked e v e r y o n e . ’ ,
’ q u e s t i o n ’ : ’How would you

d e s c r i b e K e n d a l l ? ’ ,

’ answerA ’ : ’ a ve ry q u i e t pe r son ’ ,
’ answerB ’ : ’ a ve ry p a s s i v e person

’ ,
’ answerC ’ : ’ a ve ry a g g r e s s i v e and

t a l k a t i v e person ’ ,
’ c o r r e c t ’ : ’C’ }

{ ’ c o n t e x t ’ : ’ Sydney went t o our
f a m i l y farm , t a k i n g t h e t r a s h
wi th her , and s e t i t on f i r e
on t h e ground . ’ ,

’ q u e s t i o n ’ : ’How would Sydney
f e e l a f t e r w a r d s ? ’ ,

’ answerA ’ : ’ f e e l i n g s t r o n g ’ ,
’ answerB ’ : ’ b u r n i n g down ’ ,
’ answerC ’ : ’ u p s e t b e c a u s e t h e

f i r e has g o t t e n o u t o f c o n t r o l
’ ,

’ c o r r e c t ’ : ’C’ }

{ ’ c o n t e x t ’ : ’ Robin a lways g e t s
p i z z a on t h e way home from
work f o r h e r f a m i l y on F r i d a y s
. ’ ,

’ q u e s t i o n ’ : ’ What w i l l Robin want
t o do n e x t ? ’ ,

’ answerA ’ : ’ p i c k up t h e p i z z a ’ ,
’ answerB ’ : ’ compla in t o t h e

o t h e r s ’ ,
’ answerC ’ : ’ f i n i s h work ’ ,
’ c o r r e c t ’ : ’A’ }

Larger Models Correct The 1.4B, 7.1B, and
280B model all got the following correct:

{ ’ c o n t e x t ’ : ’ Alex p a i d e x t r a
money t o g e t more s e c r e t
d e t a i l s a b o u t t h e game
s t r a t e g y . ’ ,

’ q u e s t i o n ’ : ’ What w i l l Alex want
t o do n e x t ? ’ ,

’ answerA ’ : ’ p l a y t h e game more ’ ,
’ answerB ’ : ’ i g n o r e t h e adv i ce ’ ,
’ answerC ’ : ’ s t o p p l a y i n g t h e

v i d e o game ’ ,
’ c o r r e c t ’ : ’A’ }

The 417M, 7.1B, and 280B model all got the fol-
lowing correct:

{ ’ c o n t e x t ’ : ’ Kai and S k y l a r were
good f r i e n d s . Kai had f i n a l l y
worked up t h e c o u r a g e t o ask
S k y l a r on a d a t e . They gave
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S k y l a r a m e a n i n g f u l g i f t t o
t e s t t h e w a t e r s . ’ ,

’ q u e s t i o n ’ : ’ What w i l l Kai want
t o do n e x t ? ’ ,

’ answerA ’ : ’ say t h a n k you f o r t h e
g i f t ’ ,

’ answerB ’ : ’ F ind o u t whe the r
S k y l a r r e c i p r o c a t e s t h e
f e e l i n g s ’ ,

’ answerC ’ : " T e l l S k y l a r they ’ d
l i k e t o j u s t be f r i e n d s " ,

’ c o r r e c t ’ : ’B’ }

E.2 WinoGrande
All Models Incorrect

{ ’ l a b e l ’ : 1 ,
’ o p t i o n 1 ’ : ’ Tanya ’ ,
’ o p t i o n 2 ’ : ’ Sarah ’ ,
’ s e n t e n c e ’ : ’ Tanya was

u n r e c o g n i z a b l e a f t e r Sa rah
was done b e a t i n g them , so _
ended up go ing t o j a i l . ’ }

{ ’ l a b e l ’ : 1 ,
’ o p t i o n 1 ’ : ’ Logan ’ ,
’ o p t i o n 2 ’ : ’ J u s t i n ’ ,
’ s e n t e n c e ’ : ’ A f t e r Logan p i t c h e d

a b a l l t h a t g o t c l o b b e r e d
f o r a home run by J u s t i n i n a

b a s e b a l l game , _ f e l t
e x u l t a n t . ’ }

All Models Correct

{ ’ l a b e l ’ : 1 ,
’ o p t i o n 1 ’ : ’ sausage ’ ,
’ o p t i o n 2 ’ : ’ b a l l ’ ,
’ s e n t e n c e ’ : b ’ When t h e dog

behaves I l i k e t o g i v e him a
s a u s a g e o t h e r w i s e I g i v e him
a b a l l . I gave him t h e _
s i n c e he was bad . ’ }

{ ’ l a b e l ’ : 1 ,
’ o p t i o n 1 ’ : ’ Kayla ’ ,
’ o p t i o n 2 ’ : ’ N a t a l i e ’ ,
’ s e n t e n c e ’ : ’ Kayla a lways wears

s u n s c r e e n o u t d o o r s b u t
N a t a l i e doesn ’ t b e c a u s e _ i s n
’ t c o n c e r n e d a b o u t g e t t i n g
neck w r i n k l e s . ’ }

Only Large Models Correct Models 400M and
larger got the following correct:

{ ’ l a b e l ’ : 0 ,
’ o p t i o n 1 ’ : ’ Nick ’ ,
’ o p t i o n 2 ’ : ’ Ryan ’ ,
’ s e n t e n c e ’ : ’ Nick d i d n o t l i k e

s a u c e s made from tomato , on ly
creamy s a u c e s . Ryan knew

t h i s so he o n ly made w h i t e
s a u c e when _ came ove r . ’ }

Models 1.4B and larger got the following correct:

{ ’ l a b e l ’ : 0 ,
’ o p t i o n 1 ’ : ’Adam ’ ,
’ o p t i o n 2 ’ : ’ Jason ’ ,
’ s e n t e n c e ’ : ’Adam l o v e d dogs b u t

J a s o n was a f r a i d o f them , so
on ly _ p e t t e d t h e p o o d l e . ’ }
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