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Abstract

Patent Landscaping, one of the central tasks of
intellectual property management, includes se-
lecting and grouping patents according to user-
defined technical or application-oriented cri-
teria. While recent transformer-based models
have been shown to be effective for classifying
patents into taxonomies such as CPC or IPC,
there is yet little research on how to support
real-world Patent Landscape Studies (PLSs) us-
ing natural language processing methods. With
this paper, we release three labeled datasets
for PLS-oriented classification tasks covering
two diverse domains. We provide a qualitative
analysis and report detailed corpus statistics.

Most research on neural models for patents has
been restricted to leveraging titles and abstracts.
We compare strong neural and non-neural base-
lines, proposing a novel model that takes into
account textual information from the patents’
full texts as well as embeddings created based
on the patents’ CPC labels. We find that for
PLS-oriented classification tasks, going beyond
title and abstract is crucial, CPC labels are an
effective source of information, and combining
all features yields the best results.

1 Introduction

A patent is a public document granting the exclu-
sive rights to an invention, e.g., a product or a
process that provides a new technical solution to
a problem. When entering new markets or devel-
oping new products, it is of utmost importance for
organizations such as companies to be aware of the
patent landscape, i.e., the existing patents with
regard to their business endeavor in order to ensure
their freedom to operate. Experiments conducted
with expert patent examiners in a context of a fea-
sibility study on prior art search showed that while
fully automating the process is infeasible, Natu-
ral Language Processing (NLP) methods can help
to significantly reduce time and cost by assisting
patent examiners (Setchi and Spasic, 2020).
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Figure 1: A Patent Landscape Study commonly in-
volves the classification of patents into a set of business-
or application-oriented target classes.

The task of obtaining an overview of the rele-
vant intellectual property with the aim of support-
ing strategic decisions is also called performing a
Patent Landscape Study (PLS). A PLS consists
of three steps: search, classification, and analysis.
The first step identifies relevant documents that are
then grouped into a set of user-defined categories.
Finally, the labeled dataset is used to derive essen-
tial insights. Most efforts towards automating the
PLS process (Abood and Feltenberger, 2018; Choi
et al., 2022) focus on the first step of the process.
In contrast, in this work, we address document clas-
sification, i.e., the second step of the PLS process.

Most prior work on patent classification engages
in the task of assigning labels from the Interna-
tional Patent Classification (IPC) taxonomy and its
extension, the Co-operative Patent Classification
(CPC) taxonomy (Smith, 2002; Grawe et al., 2017;
Li et al., 2018; Lee and Hsiang, 2020; Pujari et al.,
2021). This hierarchical multi-label classification
task is challenging due to the large number of CPC
codes, but lots of training data exists as each patent
gets assigned CPC labels upon submission to the
patent office. CPC classification provides a good
testbed for developing representations of patents.

However, PLSs are performed on a set of patent
applications or granted patents with the aim of
categorizing the documents according to a set of
application- or business-oriented criteria, which
may correspond to CPC categories only to a lim-
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ited extent. To clearly differentiate from prior work
on CPC classification, we call this PLS-oriented
task the target classification task (see Figure 1).
In our setting, documents are already labeled with
CPC labels, and thus these labels can be leveraged
as one source of information. Despite the expected
major impact on the speed and accuracy of PLSs,
NLP research on such PLS-oriented target classifi-
cation tasks has been hindered by the unavailability
of public datasets with exemplary tasks.

The first important contribution of this work is to
release three real-world datasets from two diverse
domains, providing a testbed for developing PLS-
oriented classifiers.1 We release a large manually
curated patent corpus, which has been annotated
with target labels related to injection valves during
a time period of 20 years by domain experts of an
industrial collaborator. In addition, we enrich two
smaller document collections from WIPO, created
during real-world PLSs on HIV drugs, and define
benchmark tasks on them. We provide a detailed
analysis and corpus statistics, highlighting the diffi-
cult nature of the target classification tasks due to
class imbalance and multi-label scenarios.

Our second main contribution is a computational
study to tackle the target classification, comparing
recently proposed neural and non-neural models
that have been shown to be effective for CPC classi-
fication. Building on the work of Choi et al. (2022),
and inspired by Pujari et al. (2022), we experiment
with combinations of content- and label-based fea-
ture vectors. We generate SciBERT-based (Beltagy
et al., 2019) embeddings for the patents’ title and
abstract, claims, and description. To represent the
semantics of CPC labels, we compare different
approaches to generate embeddings based on a la-
bel co-occurrence graph and the label descriptions’
texts. We find that using all textual fields as well
as the CPC embeddings results in a robust method
that works consistently well across our three PLS
datasets, outperforming all baselines.

In sum, our contributions are as follows:

• We define the novel task of PLS-oriented
target classification and provide three real-
world datasets as benchmarks.

• Our in-depth corpus study details the nature
of the datasets as well as the target tasks.

• In our computational study, we propose a
robust architecture that works well across
all three datasets.

1https://github.com/boschresearch/pls_benchmark_emnlp2022

• We show that across datasets, good accuracy
(micro-F1) can be reached by only annotating
about 200 samples, but that further research is
needed to boost performance in the long tail.

2 Related Work

We group our review of related work into patent
classification, automated patent landscaping, and
metadata-based patent document representations.

Patent Datasets. For CPC classification, vari-
ous datasets are available (Pujari et al., 2021, 2022;
Li et al., 2018). Similar to our target classification
task, Richter and MacFarlane (2005) study classi-
fication for a patent alert system for the biochemi-
cal domain, but the dataset was not open-sourced.
Sharma et al. (2019) provide a patent dataset with
human-written abstractive summaries. In the con-
text of prior-art search, Risch et al. (2020) release
a dataset mapping claims to prior-art passages.

Patent Classification. Early patent classifica-
tion systems (Fall et al., 2003; Guyot et al., 2010;
Wu et al., 2010; Verberne and D’hondt, 2011) use
a TF-IDF feature vector exploiting the full docu-
ment text. CNNs (Li et al., 2018; Niu and Cai,
2019), RNNs (GRU (Risch and Krestel, 2019),
and LSTMs (Grawe et al., 2017)) have also been
used to represent patent text. Recently, pre-trained
transformer-based models have been shown to be
effective for patent classification (Lee and Hsiang,
2020; Pujari et al., 2021; Althammer et al., 2021).
Transformer-based models are constrained to a
maximum length of 512 input tokens. Increasing
the maximum sequence length to 4096 tokens, Za-
heer et al. (2020) propose Big Bird, a long-text
transformer, and apply it to CPC classification us-
ing the concatenated text of title, abstract, and
claims as input. As these approaches are inefficient
(Park et al., 2022) and to date have shown only
limited improvements over RoBERTa (Liu et al.,
2019) for patent classification, we leave research
on long-transformer methods to future work.

Automating Patent Landscaping. We are
aware of several works aiming at automating the
first step of the PLS process. Abood and Fel-
tenberger (2018) first identify relevant patents by
expanding a seed list, performing forward and back-
ward traversal on the patent citation graph, also
relying on the relevant CPC labels. They then train
a classifier using one-hot embeddings of references
and CPC codes, as well as an embedding of the
patent abstract using word2vec and an LSTM to
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predict whether a patent is relevant to a PLS or not.
Similarly, for a PLS in the artificial intelligence
domain, Giczy et al. (2022), propose a classifier
concatenating the LSTM output for abstract and
claims to the citation embedding. Choi et al. (2022)
employ a model architecture more similar to ours,
using a transformer to embed the abstract and the
graph neural network diff2vec (Rozemberczki and
Sarkar, 2018) to embed CPC labels. In contrast to
these works, we target the second step of the PLS
process, categorizing a set of retrieved documents
into business- or application-oriented categories.

Embedding Metadata for Patent Classifica-
tion. In the contexts of classification (Richter and
MacFarlane, 2005; Benites et al., 2018) and cluster-
ing (Vlase et al., 2012), non-neural count- and TF-
IDF-based feature vectors reflecting IPC, inventor,
and assignee information have been proposed. For
CPC classification, Niu and Cai (2019) leverage
the BM25-similarity between the document text
and the CPC label descriptions. Fang et al. (2021)
compute embeddings over graphs constructed from
word co-occurrence, inventor, and assignee infor-
mation, and combine them using attention-based
sums. In contrast, we decide to restrict our study
to content-based features, as using inventor and
assignee information might introduce biases that
contradict with the goal of a PLS.

3 Patent Landscaping: Task and Datasets

In this section, we propose a target classification
task to support PLS, and introduce three new data
sets from diverse domains (mechanical systems and
biochemistry). We have curated one dataset from
in-house annotations of patents in the domain of
injection valves and compiled two datasets from
freely available WIPO patent landscape studies.
All datasets are publicly available for future bench-
marking in a convenient format. Dataset statistics
are provided in Table 1. Label distributions are
shown in Figure 2.

3.1 Target Classification Task

Given the training data {⟨d(i),C(i)
d ,L

(i)
d ⟩}ni=1, the

target classification task estimates a function map-
ping a document d(i) that comes with a set of CPC
labels C(i)

d to a target label set L(i)
d . A patent docu-

ment d consists of the textual fields title (t), abstract
(a), claims (cl), and description (desc). The CPC
labels Cd are taken from the predefined CPC tax-
onomy, which also provides a textual description

# Unique Avg. # Labels
Dataset # Instances Labels Per Instance

InjVal 9,465 16 1.01
Rito 781 7 1.35
Atz 640 8 2.14

Table 1: Target label statistics of PLS datasets.

for each label.2 The target label set Ld contains
the user-defined application- or business-oriented
categories relevant to the current PLS.

3.2 Injection Valves Dataset

In the InjVal dataset, patent families are labeled
with categories describing types of injection valves
and related technologies. The dataset has been
labeled by an in-house domain expert, a patent
attorney and expert in injection valves with over
30 years experience in the related IP management,
who performed the classification task on a weekly
basis for the past 25 years. Each week, a candidate
set of patents is generated by an alert system that
filters the new incoming patents using a CPC-based
search query. The domain expert identifies relevant
patents in the candidate set, and categorizes them
into a technical target category. Since most patents
belong to mechanical systems, the domain expert
often made use of the patents’ figures when making
relevance judgments.

The 9,465 patent families are labeled with 16
different target labels indicating the injector com-
ponents or injection types. The majority of patents
are from the Japanese and German Patent Of-
fices, followed by US patents (see appendix A.2,
Figure 6a). We add the corresponding English
machine-translated text for each field.3 The dataset
covers a broad domain (5,068 CPC labels) and
hence corresponds to a higher-level PLS. The av-
erage number of labels per instance is close to 1,
resulting in a single-label classification task.

3.3 Ritonavir and Atazanavir Datasets

We derive two labeled datasets from two publicly
available PLSs by the World Intellectual Prop-
erty Organization (WIPO) on Ritonavir (Rito) and
Atazanavir (Atz), two drugs developed for the treat-

2We use IPC/CPC labels, but only refer to CPC labels for
readability in the following.

3We thank PatBase (/www.patbase.com), RWS (www.rws.com)
and MineSoft (https://minesoft.com/) for agreeing to the publica-
tion of the translated texts.
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Figure 2: Label distributions in the PLS-oriented target classification task datasets.

ment of HIV infections and AIDS.4 The motivation
of the studies, both conducted in 2011, was to track
the development of the drug manufacturing process
as well as the drugs’ compositions and usage since
the filing of the first invention. In contrast to InjVal,
these two datasets contain patent families within a
narrow scope about a single invention.

The PLSs have been conducted within WIPOs
Development Agenda project “Developing Tools
for Access to Patent Information,” which aims to re-
search and describe the patterns of patenting and in-
novation activity related to specific technologies.5

For each report, WIPO collaborated with institu-
tional partners working in the respective field and
having an interest in the specific topic. The search
methodology was documented carefully. The re-
port on Atazanavir was conducted by the Thomson
Reuters IP Solutions and IP Consulting Group in
cooperation with the Medicines Patent Pool (MPP).
The report on Ritonavir has been compiled by Lan-
don IP.

The WIPO studies have been conducted in an
iterative manner. First, a keyword-based search
yielded a list of relevant documents, which was
then filtered using relevant CPC labels. With
a forward-backward citation search, some addi-
tional patents have been identified and added to
the dataset. Each study provides a spreadsheet-like
overview with meta-information about the search
and patents, for instance, labels have been assigned
to the patents which correspond to classification tar-
get labels performed during a PLS. The labels have
been carefully assigned by WIPO professionals

4https://www.wipo.int/publications/en/details.jsp?id=230
https://www.wipo.int/publications/en/details.jsp?id=265

5https://www.wipo.int/edocs/mdocs/mdocs/en/cdip_4/cdip_4_6.pdf,
DA_19_30_31_01

during search (for Rito) and post-hoc supported by
text mining software6 (in the case of Atz). In con-
trast to the gold-standard InjVal and Rito datasets,
the labels in Atz should thus rather be considered
as silver standard. By analysing the descriptions
within the reports, we select subsets of these labels
as PLS target labels for our experimental studies.

The Atz data as provided by WIPO contains the
title and an abstract by Derwent7 together with the
first claim. The Rito data only lists title, abstract,
and claims. As part of our contribution, we derive
a structured full-text dataset from the information
provided by WIPO by adding additional informa-
tion from PatBase. In an easy-to-use format, we
provide title, abstract, (all) claims, the description
text, CPC labels, the patent number, the family
number, and the publication date.

The Rito dataset consists of 781 patent families,
labeled with seven distinct target labels. These
correspond to broad categories that have been as-
signed during search by carefully choosing queries
based on keywords such as disease names or chem-
ical compositions in combination with CPC classes.
The categories include Methods of Treating HIV,
and Combination and Prodrug, which relate to the
methods of administering the drug. The remain-
ing four categories (Pharmaceutical Composition,
Derivatives, Synthesis and Crystalline Forms, and
Stabilized Forms) define the form, composition,
and derivatives of Ritonavir.

The Atz dataset consists of 640 patent families
and eight target labels, which are the names of
the type of disease whose treatment is described
in the patent. While the primary indication of

6thevantagepoint.com/6-products/thomson-data-analyzer.html
7clarivate.com/derwent/solutions/derwent-world-patent-index-dwpi
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Field InjVal Rito Atz

abstract 104 ± 43 60 ± 35 56 ± 34
claims 358 ± 346 1215 ± 1051 1231 ± 948
description 2121 ± 1171 11579 ± 8800 16401 ± 10245

Table 2: Token Counts: Mean and standard deviation
by dataset and textual field.

Atazanavir is HIV, medical professionals have ad-
ministered it for other indications, and we select
the subset of patents that describe a non-HIV indi-
cation, defining the target task as identifying the
corresponding (non-HIV) disease.8 Among the
target labels, Cancer is the most frequent one, fol-
lowed by Autoimmune-Inflammatory.

While both Atz and Rito focus on HIV-related
drugs, the two PLS tasks are qualitatively different:
Rito divides patents by technology, Atz divides
patents by application. As shown in Table 1, the
average label per instance is larger than 1, i.e., Rito
and Atz constitute multi-label classification tasks.

3.4 Dataset Analysis and Corpus Statistics

The characteristics of a dataset affect the perfor-
mance of classification models. To allow for a bet-
ter interpretation of our experimental results, we
first perform a statistical analysis of the datasets.

Token Counts / Text Lengths. We tokenize the
texts of all patent fields using the NLTK whitespace
tokenizer and report average token counts in Ta-
ble 2. The abstracts in InjVal are longer compared
to those of Rito and Atz, which have longer claims
and description sections. Also, we see a high vari-
ation in the token count, in particular within the
description section for Rito and Atz.

Publication Date. The publication date of a
patent family is the earliest publication date among
its family members. The InjVal dataset covers
patent families with a broader time horizon of
around 100 years, while Atz and Rito contain
patents within a shorter period of 16 and 22 years,
respectively (see appendix A.1, Figure 5).

Patent Office / Original Language. For Rito
and Atz, most patents are from USPTO or have a
worldwide filing through WIPO (see appendix A.2,
Figure 6). Thus, respective patents are written in
English. For InjVal, the majority (68%) of patents

8Despite this definition of target labels in Atz, the cor-
rect classification of patents cannot be easily achieved with
keyword-based approaches and our more sophisticated, ro-
bust approach (cf. Section 4) highly outperforms such simple
baselines. See Appendix D for further details.

Dataset Documents Unique Labels Labels Per Instance

InjVal 9465 5068 6.42
Rito 781 3543 26.87
Atz 640 3171 31.18

Table 3: CPC/IPC Statistics of PLS datasets.

consist of machine-translated text.
Duplicate Abstracts. As patent abstracts are not

legally binding, companies often re-use the same
abstracts, sometimes to consciously conceal infor-
mation. In our datasets, there are 48, 109, and 90
patents in InjVal, Atz and Rito, respectively, that do
not have unique abstracts. Some abstracts in InjVal
and Rito occur up to 20 times (for more details,
see appendix A.3, Figure 7). This illustrates why
methods based only on abstracts are suboptimal.

CPC Labels. Table 3 shows the CPC statistics.
The patents within the WIPO datasets have a higher
number of labels compared to the InjVal dataset.
The InjVal dataset contains only one patent with
a CPC count of more than 50, whereas Rito and
Atz contain 13 and 18 such patents, respectively.
Also, the numbers of unique CPC labels within
the WIPO datasets are comparatively higher given
the relatively smaller sizes of the datasets. We
hypothesize that the effectiveness of using CPC
labels as features depends on the correspondence
between CPC and the target labels. In our analysis
(Appendix B) comparing the Pointwise Mutual In-
formation (Church and Hanks, 1990) between CPC
and target labels, we observe a higher similarity
between CPC and target labels in InjVal than in
Rito and Atz. Compared to Atz, target labels in
Rito have a higher correspondence to CPC labels.

4 Computational Models

In this section, we describe our computational mod-
els for predicting target categories for patents based
on their text and CPC labels. We first introduce
the representations of the patent text (Section 4.1),
as well as the generation of embeddings for CPC
labels (Section 4.2), and then describe the classifier
used on top of them (Section 4.3).

4.1 Neural Patent Text Representations

For a given textual field, we generate a sequence
of word-piece tokens, truncate it to a maximum se-
quence length of 510, and pass it through SciBERT
(Beltagy et al., 2019), a BERT-style text encoder
(Devlin et al., 2019) pre-trained on scientific text.
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Althammer et al. (2021) found that SciBERT-based
models outperform BERT on a CPC classification
task. We use the last hidden state of [CLS] token as
the text’s embedding, denoted by e(.). We fine-tune
a model on the CPC classification task described
by Pujari et al. (2021), and then use the resulting
fine-tuned SciBERT model to compute embeddings
in all of our experiments. We compute three text
embeddings: e(t+ a) using the concatenated text
of title and abstract; e(cl) using the claims’ text;
and e(desc) using the text of the description. When
using them jointly, we use vector summation (⊕)
following Pujari et al. (2022).

4.2 CPC Label Embeddings

We experiment with four different ways of em-
bedding knowledge about the CPC labels associ-
ated with a patent document. The simplest em-
bedding consists of a multi-hot encoded vector
(cpcmultihot) with each dimension indicating the
presence of one CPC label.

Each CPC label comes with a textual description.
For example (see Figure 3), the description of the
label F02B29 is “Engines characterised by provi-
sion for charging or scavenging.” For each CPC
label, the full description is generated by traversing
the path from the respective main-group node, con-
catenating the label descriptions at each hop. For
example, the label description for F02B29/0406 is
the concatenation of the descriptions of F02B29,
F02B29/04, and F02B29/0406. We then compute
a SciBERT-embedding for the description text
as described in Section 4.1. The document-level
embedding cpctext is the mean over the CPC la-
bel embeddings of all CPC classes assigned to the
patent. Further, since label descriptions contain im-
portant domain-specific keywords, we compute a
140k-dimensional TF-IDF feature vector cpctf.idf
for the concatenated label-description texts of
the CPC labels assigned to a document using a TF-
IDF model computed over all the label description
within the CPC taxonomy.

In addition, we compute graph embeddings
for CPC labels. For this, we construct a graph
with all CPC labels that occur in our datasets as
nodes. Pairs of nodes are connected if the corre-
sponding CPC labels co-occur in a document. Edge
weights correspond to the co-occurrence count of
the two CPC labels. To generate the label embed-
dings, we use the node2vec algorithm proposed by
Grover and Leskovec (2016), employing the Stellar-
Graph (Data61, 2018) implementation. The algo-
rithm performs multiple random walks, generating
random biased node sequences (influenced by the
edge weights) that are fed into a word2vec model
(Mikolov et al., 2013), which then computes the
node embeddings. The document-level cpcgraph
embedding is the mean of the embeddings of the
document’s CPC labels.

4.3 Classification Model

Our classification model architecture is similar to
the Transformer-based Multi-task Model (TMM,
Pujari et al., 2021). As input to the model, the
CPC-label and patent-text based embeddings are
either used in isolation or combined using vector
concatenation (;). The TMM model employs one
classification head for each label. Each head con-
sists of three dense layers. The last dense layer has
a binary softmax output, predicting whether or not
a label applies.

5 Experiments

In Section 4, we have introduced several content
and label embeddings for PLS target classification
tasks. Our experiments described in this section
aim to identify a patent document representation
that works robustly across PLSs. We analyze the
performance of different embeddings when consid-
ered individually or in combination (Section 5.3),
and compare it to strong baselines (Section 5.4).
Finally, as an important analysis in the context of
PLSs, in Section 5.5, we address the question of
how many labeled training examples are necessary
for training a PLS target task classifier. Details
about hyperparameters for our proposed approach
are provided in appendix C.

5.1 Baselines

We compare our approach against state-of-the-art
neural and non-neural models.

TMM with e(t+ a). As a neural baseline, we
use the setup as proposed by Pujari et al. (2021)
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InjVal Rito Atz
Model macro-F1 micro-F1 macro-F1 micro-F1 macro-F1 micro-F1

Benites et al. (2018): SVM 61.4±2.1 74.1±4.3 51.1±6.8 58.2±2.5 65.4±1.8 71.9±2.5

Pujari et al. (2021): TMM + e(t+ a) 65.2±2.1 79.2±1.3 44.3±4.0 66.0±3.0 62.1±2.2 70.6±1.1

TMM + e(t+ a)⊕ e(cl) 66.1±2.0 82.0±0.8 39.3±5.1 64.5±1.8 64.7±1.8 71.3±2.1

TMM + e(t+ a)⊕ e(cl)⊕ e(desc) 66.2±4.9 82.2±1.7 49.1±6.9 66.3±1.9 62.6±4.0 71.2±2.6

TMM + cpcmultihot 49.8±3.7 77.8±0.9 17.3±2.5 42.0±8.0 23.8±5.3 39.9±5.2

TMM + cpctext 54.7±2.8 73.8±0.5 28.1±1.9 60.5±2.5 37.0±3.5 47.9±1.5

TMM + cpcgraph 58.6±1.7 76.5±0.7 35.2±5.5 62.9±1.9 44.2±3.2 50.8±3.8

TMM + cpctf.idf 60.4±1.9 75.9±0.8 39.2±6.0 60.5±3.9 44.4±2.5 52.8±2.2

SVM + cpctf.idf 63.0±1.2 76.7±1.4 45.2±5.4 61.4±2.1 50.1±1.9 58.6±1.2

TMM + e(t+ a)⊕ e(cl)⊕ e(desc); cpctf.idf 66.6±0.5 83.9±0.4 46.4±5.7 65.1±2.6 63.4±2.8 71.1±1.1

TMM + e(t+ a)⊕ e(cl)⊕ e(desc); cpcgraph 67.7±2.5 84.3±0.5 53.9±6.6 67.7±3.2 66.2±1.8 73.2±2.1

Table 4: Comparison of text-based and CPC-based embeddings. Benites et al. (2018) uses TF-IDF-based vectors for
title, abstract, description, and claims.

for multi-label classification with a Transformer-
based Multi-task Model (TMM). Document repre-
sentations correspond to the e(t+ a) method using
SciBERT.

SVM. Conceptually simpler term fre-
quency–inverse document frequency (TF-IDF)
vectors are still often used in text classification
tasks (Malmasi et al., 2016; Sulea et al., 2017;
Benites et al., 2018). They often show surprisingly
strong performance despite their simplicity, likely
because they can easily incorporate information
from long documents. For instance, in the context
of the ALTA 2018 shared task on multi-label
IPC classification, Benites et al. (2018) achieved
competitive results with a support vector machine
(SVM, Cortes and Vapnik, 1995) ensemble-based
approach. The 140k-dimensional feature vector for
the complete document text, i.e., t+ a+ cl+ desc,
comprises TF-IDF values for 70k character
n-grams (3- to 6-chars) and 70k word n-grams (1-
to 2-grams).

5.2 Dataset Splits

We divide each dataset into two parts. The heldout
test set is a sample that a model has never seen
during training and contains 15% of the total in-
stances. The remaining 85% of the data are used
for 5-fold cross-validation (CV), which we use to
tune the models. For each cross-validation fold,
we use three folds as our training set, one fold for
tuning, and one as dev set. Finally, each of the five
models is evaluated on the test set. We report the
mean and standard deviation values across these
five evaluations.9

9The relatively high standard deviations we report result
from using slightly different training sets in each of the five

5.3 Comparison of Patent Embeddings

The upper part of Table 4 reports scores for using
various combinations of the patent text embed-
dings. For InjVal, we see consistent improvements
when adding e(cl) and e(desc). Adding e(cl) leads
to mixed results on Rito and Atz, however, with the
exception of macro-F1 for Atz, using all three text
embeddings at once performs generally well.

The middle part of Table 4 shows results
for using various CPC-label based embeddings.
Among these, SVM+cpctfidf achieves the best
macro-F1 scores and the highest micro-F1 scores
for InjVal and Rito. The patent-text based embed-
dings outperform the best model using only CPC
information (SVM+cpctfidf ). Among the more
sophisticated CPC label feature vectors, TF-IDF
with the concatenated label descriptions (cpctf.idf )
performs best across datasets in terms of macro-
F1. Comparing the neural label embeddings across
datasets, we observe that the graph-based em-
beddings (cpcgraph) consistently outperform the
description-based embeddings (cpctext).

Finally, as a sanity check to demonstrate that
there is no one-to-one mapping between target la-
bels and CPC labels in our proposed datasets, we
evaluate the performance with multi-hot encoded
vector cpcmultihot as the only feature. As expected
due to the analysis in Section 3.4, performance for
InjVal is higher than for the WIPO datasets.

When combining CPC embeddings with the
patent-text embeddings in TMM, cpcgraph outper-
forms cpctfidf . While cpcgraph is directly trained
as a dense embedding, combining cpctfidf with the
TMM model is not straightforward due to its high

folds. We use this setting because it leads to more realistic
estimates.
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dimensionality. For scalability reasons, we linearly
down-project the cpctf.idf embedding from 140k to
768 dimensions when integrating it into the TMM
model. We hypothesize that this dimensionality
reduction is responsible for the performance drop.
We conclude that the combination of all patent text
field embeddings and cpcgraph is most effective for
the target classification tasks across datasets.

5.4 Comparison with the Baselines
Table 5 shows that our best-performing approach
(TMM + e(t+a)⊕ e(cl)⊕ e(desc); cpcgraph) out-
performs the baselines in terms of macro- and
micro-F1 across the three datasets. The SVM
model by Benites et al. (2018) excels in terms of
recall, but our method achieves a much higher preci-
sion and hence higher macro- and micro-F1 scores,
especially for the gold-standard datasets InjVal and
Rito. Note that the prediction threshold of the SVM
model is optimized to maximize the macro-F1 on
the dev split.

Comparing to the neural baseline, TMM with
e(t + a), which has recently reported state-of-
the-art results on CPC classification (Pujari et al.,
2021), we find that adding information from addi-
tional text fields and the CPC embeddings consis-
tently improves performance.

Our analysis has shown that abstracts are often
duplicated across patents (see Section 3.4). The
problem aggravates when performing a PLS within
a narrow field, e.g., around an invention. Therefore,
using additional textual content fields is paramount.

In summary, our proposed approach consistently
outperforms the baselines across three datasets both
in terms of micro- and macro-F1 due to balanced
precision and recall scores. We hence suggest that
it provides a robust method that can be used as the
basis for future work and for target classification
tasks in real-world PLSs.

5.5 Minimum Training Instances
Motivated by the high cost of manual labeling by
domain experts, we perform a study to determine
the minimum number of training instances required
for training a classification model that has an ac-
ceptable performance over unseen data.

Figure 4 shows macro-F1 and micro-F1 scores
over different training sizes where the training in-
stances were randomly sampled. Across datasets,
we observe an acceptable micro-F1 performance
with a training set size between 200 to 300 in-
stances. On Rito and Atz near-optimal micro-F1 is

achieved with a training set size of 200 instances.
On the InjVal dataset, for a training set size of 300,
a micro-F1 of around 70 is achieved compared
to the maximum micro-F1 score of 84.3 with the
complete dataset with 4.8k instances. These re-
sults illustrate that with as few as 200 instances,
systems can be developed that already have signif-
icant value to patent professionals. However, the
lower macro-F1 indicates insufficient performance
for infrequent target labels. If these categories are
of interest, further research is needed on how to
ensure good performance with little training data
and on integrating user feedback, e.g., via active
learning.

6 Conclusions and Future Work

To foster research in the field of automating PLSs,
we have introduced the new task of target label
classification and released three real-world datasets.
We have compared various neural and non-neural
methods with different input representations cover-
ing the patents’ texts and CPC information. As a
result, we propose a competitive neural patent clas-
sification model, which leverages both patent-text
and the CPC label information, and which shows
robust performance across all three datasets. We
found that an acceptable performance in terms of
micro-F1 can be reached with only 200 to 300
training instances, demonstrating the practical ap-
plicability of the approach.

In order to improve performance for infrequent
classes, integrating our methods with active learn-
ing of few-shot techniques are potential future
directions. Our datasets also provide a valuable
testbed for future work on neural representations
for long and structured text documents.
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macro-avg. micro-avg.
Dataset Model P R F1 P R F1

InjVal Benites et al. (2018): SVM 64.0±3.8 69.7±7.1 61.4±2.1 61.7±7.0 93.8±2.3 74.1±4.3

InjVal Pujari et al. (2021): TMM + e(t+ a) 68.8±3.5 65.2±1.9 65.2±2.1 78.8±1.3 79.6±1.5 79.2±1.3

InjVal TMM + e(t+ a)⊕ e(cl)⊕ e(desc); cpcgraph 74.3±6.7 66.4±1.6 67.7±2.5 84.2±0.8 84.4±0.6 84.3±0.5

Rito Benites et al. (2018): SVM 46.6±13.0 69.9±4.6 51.1±6.8 43.1±3.3 90.1±2.3 58.2±2.5

Rito Pujari et al. (2021): TMM + e(t+ a) 58.5±5.0 42.2±4.6 44.3±4.0 67.8±2.9 64.3±3.9 66.0±3.0

Rito TMM + e(t+ a)⊕ e(cl)⊕ e(desc); cpcgraph 64.4±6.9 49.5±6.5 53.9±6.6 70.7±2.6 65.1±4.9 67.7±3.2

Atz Benites et al. (2018): SVM 66.7±7.8 70.0±5.9 65.4±1.8 65.2±6.4 81.0±4.4 71.9±2.5

Atz Pujari et al. (2021): TMM + e(t+ a) 68.6±1.4 59.7±4.0 62.1±2.2 73.0±2.6 68.8±4.4 70.6±1.1

Atz TMM + e(t+ a)⊕ e(cl)⊕ e(desc); cpcgraph 72.2±3.9 63.3±1.5 66.2±1.8 75.6±4.1 70.9±1.9 73.2±2.1

Table 5: Comparison of our best-performing approach to the non-neural and neural baselines.

200 500 1000 2000
samples

0

20

40

60

80

sc
or

e

mean micro-F1 with 4.8k samples = 84.3

mean macro-F1 with 4.8k samples = 67.7

macro-F1
micro-F1

(a) InjVal

50 100 200 300
samples

0

20

40

60

80

sc
or

e

mean micro-F1 with 400 samples = 67.7
mean macro-F1 with 400 samples = 53.9

macro-F1
micro-F1

(b) Ritonavir

50 100 200 300
samples

0

20

40

60

80

sc
or

e

mean micro-F1 with 325 samples = 73.2
mean macro-F1 with 325 samples = 66.2

macro-F1
micro-F1

(c) Atazanavir

Figure 4: Learning Curves: performance for varying numbers of training instances.

Ethical Considerations

The datasets that we release with this paper are
based on publicly available information. We en-
sured that they can be released under CC-BY 4.0
by (i) obtaining the explicit consent from the do-
main expert who has labeled the InjVal dataset, (ii)
obtaining the explicit consent of WIPO to build on
their data (which is already available under CC-BY
4.0), (ii) obtaining the permission from PatBase,
RWS, and MineSoft to publish the metadata and
translations obtained for the set of patents using
their tools.

Limitations

Our dataset provides a benchmark for the repre-
sentation and classification of long text documents.
Our experiments show that relatively simple TF-
IDF-based models perform competitively, but our
study leaves computing results for long-range mod-
els such as LongFormer or BigBird to future work.

The dataset exists of English patents or patents
translated into English; in future iterations, it
may be highly interesting to construct multilin-
gual patent landscaping dataset. Our dataset covers
three patent landscape studies from two diverse do-
mains. In the future, it would be desirable to add
even more domains. The dataset provides an ideal

testbed for methods addressing class imbalance and
long-tailed settings. In its current form, the paper
does not yet test such methods on the dataset.

References
Aaron Abood and Dave Feltenberger. 2018. Auto-

mated Patent Landscaping. Artificial Intelligence
Law, 26(2):103–125.

Sophia Althammer, Mark Buckley, Sebastian Hofstät-
ter, and Allan Hanbury. 2021. Linguistically In-
formed Masking for Representation Learning in the
Patent Domain. In Proceedings of the 2nd Workshop
on Patent Text Mining and Semantic Technologies
(PatentSemTech’21) co-located with the 44th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR’21),
Online.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciBERT:
A Pretrained Language Model for Scientific Text. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP’19), pages 3615–3620,
Hong Kong, China. Association for Computational
Linguistics.

Fernando Benites, Shervin Malmasi, and Marcos
Zampieri. 2018. Classifying Patent Applications
with Ensemble Methods. In Proceedings of the
16th Annual Workshop of The Australasian Language

11506

https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2007.14062
https://doi.org/10.1007/s10506-018-9222-4
https://doi.org/10.1007/s10506-018-9222-4
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/D19-1371
https://aclanthology.org/U18-1012
https://aclanthology.org/U18-1012


Technology Association (ALTA’18), Dunedin, New
Zealand.

Seokkyu Choi, Hyeonju Lee, Eunjeong Park, and
Sungchul Choi. 2022. Deep Learning for Patent
Landscaping Using Transformer and Graph Embed-
ding. Technological Forecasting and Social Change,
175:121413.

Kenneth Ward Church and Patrick Hanks. 1990. Word
Association Norms, Mutual Information, and Lexi-
cography. Computational Linguistics, 16(1):22–29.

Corinna Cortes and Vladimir Vapnik. 1995. Support-
Vector Networks. Machine Learning, 20(3):273–
297.

CSIRO’s Data61. 2018. StellarGraph Machine Learning
Library. https://github.com/stellargraph/stellargraph.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies (NAACL’19), pages 4171–4186, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

C. J. Fall, A. Törcsvári, K. Benzineb, and G. Karetka.
2003. Automated Categorization in the International
Patent Classification. SIGIR Forum, 37(1):10–25.

Lintao Fang, Le Zhang, Han Wu, Tong Xu, Ding Zhou,
and Enhong Chen. 2021. Patent2Vec: Multi-view
Representation Learning on Patent-graphs for Patent
Classification. World Wide Web, 24(5):1791–1812.

Alexander V Giczy, Nicholas A Pairolero, and An-
drew A Toole. 2022. Identifying Artificial Intelli-
gence (AI) Invention: A Novel AI Patent Dataset.
The Journal of Technology Transfer, 47(2):476–505.

Mattyws F. Grawe, Claudia A. Martins, and Andreia G.
Bonfante. 2017. Automated Patent Classification Us-
ing Word Embedding. In Proceedings of the 16th
IEEE International Conference on Machine Learn-
ing and Applications (ICMLA’17), pages 408–411,
Cancun, Mexico. IEEE.

Aditya Grover and Jure Leskovec. 2016. Node2vec:
Scalable Feature Learning for Networks. In Pro-
ceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing (KDD’16), page 855–864, New York, NY, USA.
Association for Computing Machinery.

Jacques Guyot, Karim Benzineb, and Gilles Falquet.
2010. myClass: A Mature Tool for Patent Classifica-
tion. In Proceedings of the International Conference
of the Cross-Language Evaluation Forum (CLEF’10),
Padua, Italy. CEUR-WS.org.

Jieh-Sheng Lee and Jieh Hsiang. 2020. Patent-
BERT: Patent Classification with Fine-tuning a Pre-
trained BERT Model. World Patent Information,
61(101965).

Shaobo Li, Jie Hu, Yuxin Cui, and Jianjun Hu. 2018.
DeepPatent: Patent Classification with Convolutional
Neural Networks and Word Embedding. Scientomet-
rics, 117(2):721–744.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A Robustly Optimized BERT Pretrain-
ing Approach. CoRR, abs/1907.11692.

Shervin Malmasi, Marcos Zampieri, and Mark Dras.
2016. Predicting Post Severity in Mental Health
Forums. In Proceedings of the 3rd Workshop on
Computational Linguistics and Clinical Psychol-
ogy: From Linguistic Signal to Clinical Reality,
CLPsych@NAACL-HLT 2016, June 16, 2016, San
Diego, California, USA, pages 133–137. The Associ-
ation for Computational Linguistics.

Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient Estimation of Word Represen-
tations in Vector Space. In Workshop Track Proceed-
ings of the 1st International Conference on Learn-
ing Representations (ICLR’13), Scottsdale, Arizona,
USA.

Muyao Niu and Jie Cai. 2019. A Label Informative
Wide & Deep Classifier for Patents and Papers. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3438–
3443, Hong Kong, China.

Hyunji Park, Yogarshi Vyas, and Kashif Shah. 2022.
Efficient Classification of Long Documents Using
Transformers. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 702–709,
Dublin, Ireland. Association for Computational Lin-
guistics.

Subhash Chandra Pujari, Annemarie Friedrich, and Jan-
nik Strötgen. 2021. A Multi-task Approach to Neural
Multi-label Hierarchical Patent Classification Using
Transformers. In Proceedings of the 43rd European
Conference on Information Retrieval (ECIR’21), vol-
ume 12656 of Lecture Notes in Computer Science,
pages 513–528. Springer.

Subhash Chandra Pujari, Fryderyk Mantiuk, Mark
Giereth, Jannik Strötgen, and Annemarie Friedrich.
2022. Evaluating Neural Multi-Field Document Rep-
resentations for Patent Classification. In Proceedings
of the 12th International Workshop on Bibliometric-
enhanced Information Retrieval (BIR’22) co-located
with 44th European Conference on Information Re-
trieval (ECIR’22), volume 3230 of CEUR Workshop
Proceedings, pages 13–27, Stavanger, Norway (hy-
brid). CEUR-WS.org.

11507

https://doi.org/https://doi.org/10.1016/j.techfore.2021.121413
https://doi.org/https://doi.org/10.1016/j.techfore.2021.121413
https://doi.org/https://doi.org/10.1016/j.techfore.2021.121413
https://aclanthology.org/J90-1003
https://aclanthology.org/J90-1003
https://aclanthology.org/J90-1003
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
https://github.com/stellargraph/stellargraph
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/945546.945547
https://doi.org/10.1145/945546.945547
https://doi.org/10.1007/s11280-021-00885-4
https://doi.org/10.1007/s11280-021-00885-4
https://doi.org/10.1007/s11280-021-00885-4
https://doi.org/https://link.springer.com/article/10.1007/s10961-021-09900-2
https://doi.org/https://link.springer.com/article/10.1007/s10961-021-09900-2
https://doi.org/10.1109/ICMLA.2017.0-127
https://doi.org/10.1109/ICMLA.2017.0-127
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754
http://ceur-ws.org/Vol-1176/CLEF2010wn-CLEF-IP-GuyotEt2010.pdf
http://ceur-ws.org/Vol-1176/CLEF2010wn-CLEF-IP-GuyotEt2010.pdf
https://doi.org/10.1016/j.wpi.2020.101965
https://doi.org/10.1016/j.wpi.2020.101965
https://doi.org/10.1016/j.wpi.2020.101965
https://doi.org/10.1007/s11192-018-2905-5
https://doi.org/10.1007/s11192-018-2905-5
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/w16-0314
https://doi.org/10.18653/v1/w16-0314
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://doi.org/10.18653/v1/D19-1344
https://doi.org/10.18653/v1/D19-1344
https://doi.org/10.18653/v1/2022.acl-short.79
https://doi.org/10.18653/v1/2022.acl-short.79
https://doi.org/10.1007/978-3-030-72113-8_34
https://doi.org/10.1007/978-3-030-72113-8_34
https://doi.org/10.1007/978-3-030-72113-8_34
http://ceur-ws.org/Vol-3230/paper-04.pdf
http://ceur-ws.org/Vol-3230/paper-04.pdf


Georg Richter and Andrew MacFarlane. 2005. The
Impact of Metadata on the Accuracy of Automated
Patent Classification. World Patent Information,
27(1):13–26.

Julian Risch, Nicolas Alder, Christoph Hewel, and Ralf
Krestel. 2020. PatentMatch: A Dataset for Matching
Patent Claims & Prior Art. CoRR, abs/2012.13919.

Julian Risch and Ralf Krestel. 2019. Domain-specific
Word Embeddings for Patent Classification. Data
Technologies and Applications, 53(1):108–122.

Benedek Rozemberczki and Rik Sarkar. 2018. Fast
Sequence-Based Embedding with Diffusion Graphs.
In Complex Networks IX, pages 99–107, Cham.
Springer International Publishing.

Rossi Setchi and Irena Spasic. 2020. AI-assisted Patent
Prior Art Searching-feasibility Study.

Eva Sharma, Chen Li, and Lu Wang. 2019. BIG-
PATENT: A Large-Scale Dataset for Abstractive and
Coherent Summarization. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 2204–2213, Florence, Italy. Asso-
ciation for Computational Linguistics.

Harold Smith. 2002. Automation of Patent Classifica-
tion. World Patent Information, 24(4):269–271.

Octavia-Maria Sulea, Marcos Zampieri, Shervin Mal-
masi, Mihaela Vela, Liviu P. Dinu, and Josef van
Genabith. 2017. Exploring the Use of Text Clas-
sification in the Legal Domain. In Proceedings of
the 2nd Workshop on Automated Semantic Analysis
of Information in Legal Texts (ASAIL’17) co-located
with the 16th International Conference on Artificial
Intelligence and Law (ICAIL’17), volume 2143 of
CEUR Workshop Proceedings, London, UK. CEUR-
WS.org.

Suzan Verberne and Eva D’hondt. 2011. Patent Clas-
sification Experiments with the Linguistic Classifi-
cation System LCS in CLEF-IP 2011. In Proceed-
ings of the International Conference of the Cross-
Language Evaluation Forum (CLEF’11), Amsterdam,
The Netherlands. CEUR-WS.org.

Mihai Vlase, Dan Munteanu, and Adrian Istrate. 2012.
Improvement of K-means Clustering Using Patents
Metadata. In Proceedings of the 8th International
Conference on Machine Learning and Data Mining
in Pattern Recognition (MLDM’12), volume 7376 of
Lecture Notes in Computer Science, pages 293–305,
Berlin, Germany. Springer.

Chih-Hung Wu, Yun Ken, and Tao Huang. 2010. Patent
Classification System Using a New Hybrid Genetic
Algorithm Support Vector Machine. Applied Soft
Computing, 10(4):1164–1177.

Manzil Zaheer, Guru Guruganesh, Avinava Dubey,
Joshua Ainslie, Chris Alberti, Santiago Ontanon,
Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang,
and Amr Ahmed. 2020. Big Bird: Transformers for

Longer Sequences. In Proceedings of the Annual
Conference on Neural Information Processing Sys-
tems (NeurIPS’20), online.

11508

https://doi.org/https://doi.org/10.1016/j.wpi.2004.08.001
https://doi.org/https://doi.org/10.1016/j.wpi.2004.08.001
https://doi.org/https://doi.org/10.1016/j.wpi.2004.08.001
http://arxiv.org/abs/2012.13919
http://arxiv.org/abs/2012.13919
https://doi.org/10.1108/DTA-01-2019-0002
https://doi.org/10.1108/DTA-01-2019-0002
https://doi.org/10.1007/978-3-319-73198-8_9
https://doi.org/10.1007/978-3-319-73198-8_9
https://doi.org/10.18653/v1/P19-1212
https://doi.org/10.18653/v1/P19-1212
https://doi.org/10.18653/v1/P19-1212
https://doi.org/10.1016/S0172-2190(02)00067-4
https://doi.org/10.1016/S0172-2190(02)00067-4
http://ceur-ws.org/Vol-2143/paper5.pdf
http://ceur-ws.org/Vol-2143/paper5.pdf
http://ceur-ws.org/Vol-1177/CLEF2011wn-CLEF-IP-VerberneEt2011.pdf
http://ceur-ws.org/Vol-1177/CLEF2011wn-CLEF-IP-VerberneEt2011.pdf
http://ceur-ws.org/Vol-1177/CLEF2011wn-CLEF-IP-VerberneEt2011.pdf
https://doi.org/10.1007/978-3-642-31537-4_23
https://doi.org/10.1007/978-3-642-31537-4_23
https://doi.org/10.1016/j.asoc.2009.11.033
https://doi.org/10.1016/j.asoc.2009.11.033
https://doi.org/10.1016/j.asoc.2009.11.033
https://proceedings.neurips.cc/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf


Supplementary Material

A Corpus Statistics

In the following sections, we provide some addi-
tional statistics to highlight the characteristics of
and the differences between the three datasets.

A.1 Publication Year

Figure 5 shows the time range for the three datasets
InjVal, Rito, and Atz using the publication date
of the earliest family member. The patents within
the InjVal dataset are spread across approximately
100 years (1920 - 2019) with a majority of them
being from the last 50 years. In contrast, the WIPO
datasets have a narrow timeline of roughly 20 years
(16 and 22 years for Atz and Rito, respectively).
Because of the large time horizon, we can assume
that the InjVal dataset has a higher topic drift than
the other two datasets and also a more diverse lan-
guage.

A.2 Patent Offices

An organization may file an invention across dif-
ferent patent offices around the globe to safeguard
its business interests. However, these multiple fil-
ings are associated with a common patent family
identifier. In Figure 6, we show the distribution
of publications across different jurisdictions. It is
interesting to note that most of the publications for
the InjVal dataset are filed in Japan (JP) and Ger-
many (DE), two of the primary hubs for industrial
innovation. WIPO datasets have a higher number
of worldwide filings (WO), followed by the United
States (US) as the second most popular choice for
filing a patent. This difference in the jurisdiction
indicates the documents’ language, where most
of the documents within the InjVal dataset are in
non-English language compared to WIPO datasets.
Thus, the English texts in our datasets are partially
machine-translated texts.

A.3 Problem of Duplicate Abstracts

During our analysis, we detected that abstracts
across different patents might be identical. In par-
ticular, our analysis reveals that an abstract is of-
ten duplicated across patents, particularly those
belonging to the same assignee, i.e., the organi-
zation filing a patent. As shown in Figure 7, the
InjVal dataset contains seven abstracts that occur
in at least two documents, whereas, in the case of
Rito and Atz, the number of such abstracts is 20

and 25, respectively. For example, US712496310,
US7137577B211, and US7198207B212 have iden-
tical abstracts, even though they belong to different
patent families.

B Analyzing the Correspondence between
CPC/IPC Labels and PLS-Oriented
Target Labels

The value of CPC/IPC labels for the target classi-
fication depends on the correspondence between
CPC/IPC labels and target labels. The hypothesis
is that the higher the correspondence, the better
the performance of a target classification method
which exploits CPC/IPC information will be. We
thus analyze the correspondence between CPC/IPC
labels and target labels. We use Pointwise Mutual
Information (PMI) (Church and Hanks, 1990) to
measure correspondence. We calculate PMI be-
tween each CPC/IPC / target label pair and analyze
it to determine the CPC/IPC and target label corre-
spondence for each of the three datasets.

As a first analysis, we plot the PMI values of
the top-50 CPC/IPC labels corresponding to the
target labels. The underlying assumption is that if
a CPC/IPC label is essential for a target label, it
is also essential for the dataset. In Figure 8, we
plot the PMI values for target labels and top-50
CPC/IPC labels for all three datasets. In InjVal
(Figure 8a), a large number of CPC/IPC-target pairs
have a very high PMI value, considerably higher
than in the other two datasets. For Rito (Figure 8b),
we identify fewer CPC/IPC-target pairs with high
PMI values compared to Atz (Figure 8c).

Further, to grasp the variation in PMI scores
for top-k CPC/IPC labels, we plot the mean PMI
value in Figure 9. The InjVal dataset shows a much
higher mean PMI score across top-k CPC/IPC label
counts compared to the WIPO datasets. Among the
WIPO datasets, the mean PMI score is higher for
Rito than Atz.

Summary. The main conclusions of our analysis
can be summarized as follows: With our analysis,
we find that the InjVal dataset shows a higher cor-
relation between CPC/IPC and target labels com-
pared to Rito and Atz. Among the WIPO datasets,
Rito shows a higher correspondence than Atz.

10https://patents.google.com/patent/US7124963B2
11https://patents.google.com/patent/US7137577B2
12https://patents.google.com/patent/US7198207B2
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Figure 5: Instances per year. The InjVal dataset is from a much longer time horizon (around 100 years) when
compared to Rito and Atz datasets.
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Figure 6: Patent office for different datasets.
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Figure 7: Duplicate abstract count.

C Hyperparameters and Implementation

Below, we define the parameters for node2vec and
the classification model. We use grid-search to
identify the optimal hyperparamters for a classifi-
cation model. The neural model experiments were
performed on the Nvidia Tesla V100 GPU with
40GB VRAM.

Node2Vec. Due to the large size of a global
CPC co-occurrence graph (240k nodes and 40M
edges), we consider a subgraph comprised of CPC
labels from the three datasets with 9.5k nodes and
500k edges. This subgraph is provided as input
to the node2vec algorithm generating the label-
embeddings of dimension 128. The p and q param-
eters determine whether the next hop is selected
from the neighbouring nodes or non-neighbouring
nodes. Giving equal weightage to both these cases,
we set the p and q values to 1. For computational
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Figure 8: Plotting the correspondence between CPC/IPC and target labels.

efficiency, we perform 10 random walks with a
maximum length of 50.

TMM. We use a hidden layer size of 50 for all
dense layers in the classification heads, dropout set
to 0.25 across layers, and a batch size of 4. We
train all models for a maximum of 50 epochs with
early stopping if the macro-F1 for the dev dataset
does not increase for 7 epochs. We set a corpus-
specific learning rate of 1e-05, 3e-05, and 5e-05 for
InjVal, Rito, and Atz, respectively. The underlying
SciBERT model is fine-tuned during training.

D Baseline with Target Label Names

Since we do not have exact details on the manual
categorization process for the WIPO datasets, we
experiment with a simple baseline searching for
a label or associated keyphrases in the document
text as documented in Table 7. Table 6 reports the
results of using such a simple baseline for target
classification. In general, we see that this simple
baseline exploiting the label name and keyphrases
results in a high recall on Atz and (though less
high) Rito, precision is rather low, which shows the
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Figure 9: The plot shows the mean Pointwise Mutual
Informatio (PMI) value of top-k labels. As we can see
the InjVal dataset has much higher PMI values compared
to the WIPO datasets. Among the WIPO datasets, Rito
has higher PMI values than Atz.

need for a robust method to perform target label
classification as suggested in Section 4. The sim-
ple keyword-based method does not work for the
InjVal dataset due to extremely poor recall.

Based on our analysis, we conclude that for the
Atz dataset, the domain expert extensively used the
label name or associated keyphrases for determin-
ing document relevance. However, despite being
supported by NLP technology as reported in the
patent landscape report, we assume that the patent
professional applied his or her domain expertise
while labeling. For the InjVal dataset, we are aware
that the domain expert primarily used the IPC codes
and drawings within a patent document for judging
the relevance.
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macro-avg. micro-avg.
Dataset Model P R F1 P R F1

InjVal search with keyphrases on full-text 20.85 23.31 16.41 31.03 24.38 27.30
InjVal search with label name on full-text 17.70 7.52 9.30 51.41 6.32 11.26
InjVal search with label name on title + abstract 14.94 4.04 6.01 71.43 3.12 5.99
InjVal our best (TMM + e(t+ a)⊕ e(cl)⊕ e(desc); cpcgraph) 74.30 66.40 67.70 84.20 84.40 84.30

Rito search with keyphrases on full-text 25.67 76.03 34.38 27.48 93.63 42.49
Rito search with label name on full-text 23.39 42.24 28.24 36.52 68.15 47.56
Rito search with label name on title + abstract 18.68 5.88 7.06 20.37 7.01 10.43
Rito our best (TMM + e(t+ a)⊕ e(cl)⊕ e(desc); cpcgraph) 64.40 49.50 53.90 70.70 65.10 67.70

Atz search with keyphrases on full-text 49.11 86.51 56.71 42.53 83.58 56.38
Atz search with label name on full-text 51.24 60.88 51.27 59.71 61.19 60.44
Atz search with label name on title + abstract 55.21 11.05 17.11 89.29 12.44 21.83
Atz our best (TMM + e(t+ a)⊕ e(cl)⊕ e(desc); cpcgraph) 72.20 63.26 66.20 75.64 70.90 73.20

Table 6: Comparing the performance using simple baseline of searching label name or associated key phrases in the
document text vs. our more sophisticated robust approach.

Dataset Label Keyphrases

InjVal Exhaust Line Injector exhaust line injector ; line injector
InjVal Bi-Fuel-Injector bi-fuel-injector ; bi-fuel injector
InjVal Water Injection water injection
InjVal Piezoelectric Actuator Spring piezoelectric actuator spring
InjVal Fuel Rail fuel rail
InjVal Dual Injection dual injection
InjVal Direct Injector Piezo direct injector piezo
InjVal Port Fuel Injector port fuel injector
InjVal Direct Injector Solenoid direct injector solenoid
InjVal Air Injection Valve air injection valve
InjVal Piezoelectric Actuators for Injectors piezoelectric actuators for Injectors ; piezoelectric actuator
InjVal Pump Injector Combination pump injector combination ; pump injector
InjVal Other Injectors (SEV) other injector
InjVal Piezoelectric Ceramic Material piezoelectric ceramic material ; piezoelectric ; ceramic
InjVal Natural Gas Injector (NGI) natural gas injector ; gas injector
InjVal High Pressure Pipe high pressure pipe ; high pressure

Rito Pharmaceutical Compositions pharmaceutical compositions ; composition ; pharmaceutical
Rito Synthesis and Crystalline Forms synthesis and crystalline forms ; crystalline form ; synthesis
Rito Stabilized Forms stabilized form
Rito Methods of Treating HIV methods of treating hiv ; hiv
Rito Prodrug prodrug
Rito Derivatives derivatives
Rito Combinations combination

Atz Autoimmune - Inflammatory autoimmune ; inflamatory ; autoimmune - inflammatory ;
autoimmune-inflammatory ; autoimmune inflammatory

Atz Cancer cancer
Atz Kaposi kaposi
Atz Neurologic neurologic
Atz IBD ibd ; inflammatory ; bowel disease ; inflamatory bowel disease
Atz Herpes herpes
Atz Hepatitis C Virus hepatitis ; hepatitis c virus ; c virus
Atz Serine Protease Inhibitor serine protease inhibitor ; protease inhibitor ; inhibitor

Table 7: Keyphrases.
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