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Abstract

Commonsense knowledge about the typical
functions of physical objects allows people to
make inferences during sentence understand-
ing. For example, we infer that “Sam enjoyed
the book” means that Sam enjoyed reading the
book, even though the action is implicit. Prior
research has focused on learning the prototyp-
ical functions of physical objects in order to
enable inferences about implicit actions. But
many sentences refer to objects even when they
are not used (e.g., “The book fell”). We argue
that NLP systems need to recognize whether an
object is being used before inferring how the
object is used. We define a new task called Ob-
ject Use Classification that determines whether
a physical object mentioned in a sentence was
used or likely will be used. We introduce a new
dataset for this task and present a classification
model that exploits data augmentation methods
and FrameNet when fine-tuning a pre-trained
language model. We also show that object use
classification combined with knowledge about
the prototypical functions of objects has the
potential to yield very good inferences about
implicit and anticipated actions.

1 Introduction

Physical objects play an important role in daily
life. People use them for different purposes, for
example we use knives for cutting, cars for trans-
portation, and books for reading. Recent work by
Jiang and Riloff (2021b) argued that most human-
made physical artifacts were created for a specific
purpose, and that commonsense knowledge about
an object’s prototypical function is essential for nat-
ural language understanding. For example, “she
finished the puzzle” and “she finished the cigarette”
implicitly refer to different actions associated with
puzzles (solving) vs. cigarettes (smoking). Simi-
larly, humans interpret “he used a gun” as a shoot-
ing but “he used a knife” as a stabbing based on
our knowledge of guns and knives.

Jiang and Riloff (2021b) developed a method to
learn the prototypical functions for physical arti-
facts from text corpora, with the goal of producing
a commonsense knowledge resource for physical
objects. However an open question is how to ap-
ply this knowledge for sentence understanding. It
would be risky to assume that objects are always
used in the most typical way because objects can be
used in atypical ways too. For example, “Max used
the knife to open the bottle” probably means that
Max popped the top off the bottle with the knife,
not that Max cut the bottle. But as we will discuss
in Section 4, our study found that physical artifacts
are used in the prototypical way most of the time
(96%), so it is a very good assumption.

A much bigger problem for applying knowledge
of prototypical functions is that physical objects
are often mentioned when they are not used at all!
For example, the sentences below mention a knife,
but the knife is not being used:

(a) He put the knife in the dishwasher.
(b) She found a knife in the woods.
(c) The knife fell off the table.
(d) A good pocket knife costs $100.

In addition, some sentences suggest that a phys-
ical object will be used, although it has not been
used yet. For example, Mary aims to acquire a
knife through various actions in the sentences be-
low:

(e) Mary got a knife from the drawer.
(f) Mary asked John for a knife.
(g) Mary purchased a chef’s knife.

When reading these sentences, people naturally in-
fer that Mary intends to use the knife, most likely
in the typical way (i.e., to cut things). We believe
that NLP systems should also make these predic-
tive inferences to “read between the lines” during
narrative text understanding. For example, consider
the sentence “The fish was too big for the freezer,
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so Mary got a knife.”. Human readers would as-
sume that Mary used the knife to cut the fish into
smaller pieces, even without any explicit mention
of cutting.

We propose a new NLP task, Object Use Classi-
fication, to classify the usage status of physical ob-
jects mentioned in sentences with respect to three
categories: Used, Anticipated Use, and No Use.
Our first goal is to identify sentences that state or
imply that an object was used (Used) to enable pro-
totypical function inferences when the action is im-
plicit. Our second goal is to identify sentences that
describe actions which suggest someone’s probable
intent to use the object (Anticipated Use) to enable
second-order prototypical function inferences. Fi-
nally, identifying sentences where there is no use
of a mentioned object (No Use) is important to
recognize when prototypical function inferences
should not be applied. We introduce a new object
use dataset for this task with gold standard human
annotations of sentences that mention physical ob-
jects. We found that all three use categories are
common: our annotators labeled 45% of the sen-
tences as Used, 28% as Anticipated Use, and 27%
as No Use.

We explored several methods to tackle this task.
First we applied prompting methods using two
large language models to evaluate a zero-shot gen-
eralization approach, but the results were mediocre.
Next, we fine-tuned a transformer-based model,
which yielded much better performance. Finally,
we added two data augmentation techniques, syn-
onym replacement and back translation, and also
provided exemplar sentences associated with the
object’s prototypical function frame. Our exper-
imental results show that the complete model
achieves good performance for this task.

2 Related Work

Commonsense knowledge has long been recog-
nized as an essential part of natural language under-
standing (Charniak, 1972; Woods, 1975; Schank
and Abelson, 1977). Some work specifically ar-
gued that commonsense knowledge about physical
objects is often used to make inferences and plays
an important role in narrative text understanding
(Burstein, 1979).

Recently, a variety of projects have focused on
acquiring knowledge about physical objects, in-
cluding relative physical knowledge (Forbes and
Choi, 2017), relative spatial relations (Collell et al.,

2018), location knowledge (Jiang and Riloff, 2018;
Xu et al., 2018), and object affordance (Persiani
and Hellström, 2019). Jiang and Riloff (2021b) de-
veloped a method to learn the most typical way that
people use human-made physical artifacts, and they
used FrameNet frames as a representation for com-
mon object functions. For their work, they created
a dataset of physical objects annotated with their
prototypical functions. Our research builds upon
that work by developing a model for identifying
the usage status of physical objects mentioned in
a sentence, which we argue is a necessary precur-
sor to applying prior knowledge about prototypical
functions.

Recently, there have been efforts aimed at learn-
ing implicit information with pre-trained language
models. Weir et al. (2020) explored using pre-
trained masked language models to capture im-
plicit knowledge elicited from humans, which are
so-called stereotypical tacit assumptions. Geva
et al. (2021) created a question answering dataset
consisting of questions that require implicit multi-
step reasoning skills, such as “Did Aristotle Use a
Laptop?”. They show that a large language model
fine-tuned on related datasets without retrieval of
relevant knowledge performs far worse than hu-
mans, and high-quality retrieval makes the model
more effective in the reasoning process. Talmor
et al. (2020) trained language models with auto-
matically generated data sampled from existing
knowledge sources. They show that language mod-
els can combine implicit knowledge encoded in
their parameters with explicit rules and facts, and
further perform reasoning.

Our work also has ties to frame semantics (Fill-
more, 1976, 1982), a theory of how we associate
words and phrases with cognitive structures called
frames. Frame semantic parsing (Baker et al.,
2007; Swayamdipta et al., 2018) is the task of au-
tomatically extracting frame semantic structures
from sentences, based on the Berkeley FrameNet
project (Baker et al., 1998; Ruppenhofer et al.,
2006). The process begins with identifying frame-
evoking words in the sentence (target identifica-
tion) and identifying the evoked frame for each
target (frame identification (Botschen et al., 2018;
Jiang and Riloff, 2021a)). However, one limitation
of this setting is that it typically relies on the predi-
cate to predict the frame. For example, the sentence

“Sam enjoyed the book” would not trigger a reading
frame because “enjoy” is not associated with read-
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ing in FrameNet. Our work strives to identify this
implicit action by recognizing that the book was
used and then applying the prototypical function
associated with books.

3 Motivation

Actions involving physical objects are often left
implicit in natural language. In many cases, these
actions do not need to be explicitly stated because
they can be easily inferred by people using our
knowledge about physical objects. Early NLP
research recognized this need for commonsense
knowledge about physical objects (e.g., Burstein
(1979)) and some efforts have been undertaken to
compile such knowledge, including ConceptNet
(Speer et al., 2017), which contains a “UsedFor”
relation that captures possible uses for an object
expressed in natural language, and recent work by
Jiang and Riloff (2021b) that learns to associate
physical objects with FrameNet frames describing
their prototypical uses.

However, a crucial question is when to apply
this knowledge in sentence understanding. In this
paper, we claim that NLP systems must be able to
distinguish between (1) sentences that mention a
physical object and state or imply that the object
was or will be used, and (2) sentences that men-
tion a physical object but the object was not used.
For example, the sentences “Mary read the book”
and “Mary enjoyed the book” both imply that the
book was used (read), but “Mary dropped the book”
does not mean that the book was used, only that
Mary was carrying it. We found that about 73%
of sentences that mention a physical object in our
data set (see Section 4) suggest that the object was
(45%) or will be (28%) used. For the other 27% of
sentences that mention a physical object, the object
was not used at all. Consequently, we argue that an
important task for understanding sentences about
physical objects is object use classification.

A second question relates to the applicability of
“prototypical” functions for objects: when an object
is used, how often is it used in the prototypical
way? In our dataset (Section 4), we found that
when a sentence mentions or implies the use of
an object, 96% of these sentences correspond to
the prototypical use for the object. Only 4% of
these sentences suggest that an object was used
in an atypical way. These results indicate that an
effective object use classifier can go a long way
toward enabling NLP systems not only to infer

whether an object was used, but also how an object
was used, even when that action is not explicitly
stated.

In this paper, we tackle the problem of object use
classification and define three categories of object
use: Used, Anticipated Use, and No Use. In the
next section, we define these three categories and
explain our motivation for them, and we present a
new object use dataset for this task.

4 Dataset Creation

Since we are tackling a new task, we created a new
TOUCAN (Textual Object Use ClAssificatioN)
dataset1 with gold standard human annotations.
Our primary goal was to obtain human judgements
for sentences that mention a physical object indicat-
ing whether the object was or will be used, or not.
But a second goal was to better understand how
often objects are used in a prototypical way, as op-
posed to an atypical way. So we obtained additional
human judgements for the sentences in which an
object was or will be used and asked the annotators
to determine whether the use corresponds to the
object’s prototypical function. We leveraged the re-
sults of prior work that studied physical objects and
their prototypical functions so as not to reinvent the
wheel.
Physical Objects: We use the list of physical ob-
jects produced by Jiang and Riloff (2021b). They
extracted human-made physical objects with sense
definitions from WordNet (Miller, 1995), and used
a concreteness dictionary (Brysbaert et al., 2014)
to filter out abstract terms. Their freely available
dataset2 contains 938 human-made physical object
terms.
Sentences: Then we extracted sentences contain-
ing these physical objects from the Spinn3r corpus
(Burton et al., 2009), which consists of 44 million
blog posts. In order to get a uniform distribution of
different physical objects, we randomly sampled
4 sentences (or fewer if there are not enough) for
each physical object. This produced a set of 2,460
sentences in total.

4.1 Human Annotation
4.1.1 Object Use Categories
First, we presented two people with a physical ob-
ject term, a sentence that mentions the object, and

1The dataset can be found at: https://github.com/
tyjiangU/toucan

2https://github.com/tyjiangU/physical_
artifacts_function
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Sentence Use Category Prototypical Function

(1) We took a speedboat up the river to the village.
Used

Self_motion ✓

(2) He promptly walked over to his mattress and laid down. Sleep ✓

(3) I had sausage slices wrapped around olives, held together with a toothpick. Removing ✗

(4) I quickly went to the bathroom and got more ammo.
Anticipated Use

Cause_harm ✓

(5) All my new cookware will be put to use with these new recipes! Cooking_creation ✓

(6) I got measured for my tuxedo for Dad ’s wedding today. Wearing ✓

(7) Nope , it also hit my left headlight and broke it.
No Use

-
(8) At one point , I saw a high heel shoe. -
(9) I promptly threw the brochure in a corner to collect dust. -

Table 1: A sample of the annotated examples. The physical objects are marked in red. The second column shows
the annotated use category. The third column shows the gold prototypical function frame for the object followed by
✓or ✗. The ✓means the frame is consistent with the use of the object in the sentence, otherwise ✗.

the WordNet definition of the object.3 We asked the
annotators to select one of these four categories:

Used: The sentence describes 1) an action in which
the object is/was being used (by the writer or some-
one else), or 2) an action that directly resulted from
the use of the object.

Anticipated Use: The sentence states that 1) the
object will be used in the future, or 2) implies that
someone will presumably use the object.

No Use: Neither Used nor Anticipated Use.

Wrong Sense: The given definition of the object
term is different from its meaning in the sentence.
(This option was provided to flag sentences in
which the term’s meaning is not its physical ob-
ject sense. We do not include these sentences in
our dataset.)

Table 1 shows some annotated examples. Sen-
tences 1-3 are the Used cases, 4-6 show objects
that have an Anticipated Use, and 7-9 are No Use
examples.

4.1.2 Prototypical Use Annotations
Jiang and Riloff (2021b) proposed that most
human-made physical artifacts have a prototypical
function (i.e., the intended purpose of the object).
They selected 42 frames from Framenet v1.7 (Rup-
penhofer et al., 2006) to represent actions that are
common functions of physical artifacts. Table 2
shows a few physical objects and their prototypical
function frames.

To better understand how often objects are used
in a prototypical way as opposed to an atypical
way, we collected additional human judgements.

3We manually identified the WordNet definition corre-
sponding to the physical object sense of the term.

Frame Physical Objects

Wearing hat, shirt
Containing basket, luggage
Self_motion bicycle, yacht
Protecting armor, helmet
Supporting chair, scaffolding

Table 2: Objects and their prototypical function frames.

If an annotator selected Used or Anticipated Use,
we also asked the annotator whether the use of
the object most likely corresponds to its prototyp-
ical function (based on the gold frame in Jiang &
Riloff’s dataset). The annotator was shown the pro-
totypical function frame for the object, and asked
to select Yes or No as to whether the frame correctly
characterizes the use of the object in the sentence.
The last column in Table 1 shows the prototypical
function frames, followed by the annotated Yes (✓)
or No (✗). For example, in sentence (3) of Table 1,
a toothpick is typically used to remove food that
is stuck between our teeth, but here it is used to
hold sausage and olives together so this sentence
represents an atypical use for a toothpick.4

To prepare the annotators, we provided them
with detailed annotation guidelines to familiarize
them with the task. Deciding whether the prototyp-
ical function frame is correct requires knowledge
of FrameNet frames, so we also asked them to read
FrameNet’s definitions and exemplar sentences for
each relevant frame. We randomly shuffled the
physical objects before presenting them to the an-
notators. The pairwise inter-annotator agreement

4One could argue that toothpicks have multiple common
functions, but Jiang & Riloff defined only one prototypical
function for each object in their work.
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using Cohen’s kappa for the 3 object use categories
was 0.71, and the simple agreement rate (percent-
age of agreement) for the Yes/No prototypical func-
tion question was 0.92.

To create the final set of gold standard labels, we
had the annotators adjudicate their disagreements.
This process produced 2,123 sentences annotated
with one of the Used, Anticipated Use or No Use
label. The All Cases row of Table 3 shows the
distribution of the 3 categories. The Used category
accounts for 45% of the sentences, with Antici-
pated Use and No Use each making up about 27%
of the data.

The Prototypical Use row shows the prototyp-
ical use results. The annotators determined that
objects were used in their most prototypical way
in 97% (935/964) of the Used sentences and in
96% (560/583) of the Anticipated Use sentences.
This data suggests that if we had a perfect object
use classifier, we could infer how an object was
used with 96.6% accuracy simply by assuming its
prototypical function.

Used Anticipated Use No Use

All Cases 964 583 576

Prototypical Use 935 560 -

Table 3: Annotated data statistics.

5 Object Use Classification Models

We explored several approaches to tackle this task.
We first present a transformer-based model fine-
tuned solely on our gold standard training sen-
tences. Then we present a method that takes ad-
vantage of two commonly used data augmentation
techniques, synonym replacement and back transla-
tion. Finally, we also show that our model further
benefits from prior knowledge of the object’s pro-
totypical function by incorporating the exemplar
sentences associated with its function frame.

5.1 Task Definition and Base Model

We model our task as a 3-class classification prob-
lem. Given a sentence, and an object mentioned in
the sentence, the task is to determine if the object
has been used, has an anticipated use in the future,
or has no stated or implied use.

We build our model based on RoBERTa (Liu
et al., 2019). For our base model, we use the sen-
tence as the input sequence into the model, and

use the last hidden vector representing the object
(if there is more than one token, we compute the
average of all tokens) as output, and then pass it
through a linear classifier to predict the label.

5.2 Synonym & Hyponym Replacement
Our physical object list originated from WordNet.
To increase the number of training sentences, we
created copies of each original training sentence
where the object term is replaced by one of its syn-
onyms or hyponyms in WordNet. Specifically, for
each object that has a WordNet synset, we first ex-
tract all the lemmas belonging to the same synset
and also traverse one level down in WordNet’s hier-
archy to extract the lemmas of its direct hyponyms.
For example, the furniture term sofa belongs to the
synset sofa.n.01, which also contains couch and
lounge. Suppose its direct hyponyms are daybed,
divan, and loveseat. Then we have a list of 5 new
object terms. For each training sentence that men-
tions a sofa, we replace the word sofa with its syn-
onyms or hyponyms, generating 5 new training
examples with the same label. In general, we use
all of the synonyms and up to 5 hyponyms (if there
are more than five then we randomly select five).

5.3 Back Translation
Back translation (Sennrich et al., 2016) is a widely
used data augmentation technique, which automati-
cally generates new training examples by translat-
ing a sentence to another language and then translat-
ing it back, aiming to produce diverse paraphrases
of the original sentence. Its effectiveness has been
shown for downstream tasks such as text classifi-
cation (Xie et al., 2020) and question answering
(Longpre et al., 2019).

Table 3 shows that the label distribution in our
dataset is roughly 2:1:1. Though this imbalance
reflects the actual distribution of these categories,
we hypothesized that the model would perform
better with a more balanced distribution of class
labels. So we performed back translation on the
training examples labeled with Anticipated Use and
No Use, augmenting these categories to be roughly
the same size as the Used category. For back trans-
lation, we use the Helsinki-NLP English to Chinese
and Chinese to English transformer-based machine
translation system (Tiedemann, 2020).

5.4 FrameNet Exemplars
Our annotation results suggested that when ob-
jects are used, they are almost always used in the
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<s>  I lay on the couch.  </s>   I was exhausted and slept for two hours…  </s>
...

Syn Replacement

I lay on the bed.

Back-translation

Ø I lay on the couch.
v I lay on the bunk.

• I rested on the bed.
Ø I sit on the couch.
v I lay in the bunk.

Object: bed
Prototypical function: Sleep

Locate Sleep frame in FrameNet
Retrieve and concatenate exemplar sentences

RoBERTa

WordNet

Neural
Translator

Anticipated Use No UseUsed

Classify into one of 3 categories:

Figure 1: An illustration of the TOUCAN object use classification model.

prototypical way. So for each object, we utilize
the prototypical function frame in the gold stan-
dard dataset produced by Jiang and Riloff (2021b)
as prior knowledge to recognize whether the sen-
tence describes a relevant situation. Specifically,
we extract the frame’s exemplar sentences from
FrameNet, which are the annotated sentences as-
sociated with a lexical unit that triggers the frame.
For example, the Sleep frame contains examplar
sentences such as “I was exhausted, and slept for
two hours”, “Well, better get some shut-eye”, etc.
We concatenate all of the exemplar sentences for
the frame as one sequence, then pair it with the
sentence containing this object as the input to the
RoBERTa model.

5.5 Complete Model Architecture

Figure 1 shows an overview of the full architecture
for our learning process. For simplicity, we call
the model TOUCAN as well. First we use syn-
onym/hyponym replacement to augment the origi-
nal training set. Then we apply back translation to
all of the sentences labeled as Anticipated Use or
No Use to generate more sentences, and add them
to the training set. When applying back transla-
tion, for each sentence, we generate only one new
sentence from the translator. Finally, for each sen-
tence in the training set, we extract the exemplar
sentences from FrameNet corresponding to the ob-
ject’s prototypical function frame. The exemplar
sentences are concatenated and given to RoBERTa
along with the original sentence as input. Then we
send the last hidden vector of the object into a linear
classifier on top of the RoBERTa model.5 If there
are multiple tokens, we compute their average.

5In rare cases, the object no longer exists in the sentence
after back translation. In this case we use the vector of the
first token in the sentence.

6 Evaluation

We split our gold standard data set into roughly
70% for training, 15% for development and 15%
for testing. We also made sure that the objects in
the test set do not appear in the training set. Our
fine-tuning framework is based on the RoBERTa-
base model (Liu et al., 2019). For the hyper-
parameters, we used a max sequence length of 192,
a batch size of 8, learning rate initialized as 2e-5,
and train for 15 epochs. Each result is averaged
over three runs with different random seeds. We
report overall accuracy as well as precision, recall
and F1 scores macro-averaged over the 3 classes.

6.1 Prompting Baseline
Recent advances in pre-trained language mod-
els have demonstrated their ability to attain zero-
shot generalization on different downstream tasks
(Brown et al., 2020). Specifically, prompting has
become a widely used technique in natural lan-
guage processing. It works by recasting NLP tasks
in the form of a natural language response to a
natural language input. To see how well this ap-
proach can work for our task, we explore prompting
with two language models: GPT-2 (Radford et al.,
2019) and T0++ (Sanh et al., 2021). T0++ is an
encoder-decoder model that has been trained on a
collection of downstream tasks such as question an-
swering and summarization, with multiple prompts
per dataset. We cast our problem as a textual entail-
ment task and use the same set of prompts in (Sanh
et al., 2021). For example, one template is:

Suppose [premise]. Can we infer that

“[hypothesis]”? Yes, or no?

Since our task is to distinguish between three
different categories (Used, Anticipated Use, and
No Use), we created a two-template pipeline to
obtain the prediction. As an example, consider the
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Use Anticipated Use No Use

Pre Rec F1 Pre Rec F1 Pre Rec F1

T0++ 64.9 40.2 48.4 73.6 23.3 34.4 34.6 76.3 47.2
TOUCANbase 71.8 74.1 72.9 57.1 72.2 63.7 65.5 46.0 54.1

+Synonyms 72.9 78.4 75.5 64.6 72.2 68.2 70.6 54.0 61.2
+BackTrans 76.6 82.1 79.3 62.8 77.0 69.1 75.5 50.7 60.6
+Syn&BackTrans 74.0 80.6 77.2 67.2 73.8 70.3 73.3 55.8 63.3
+Exemplar 75.8 84.1 79.8 61.0 71.0 65.6 71.2 47.5 56.9

TOUCAN 75.1 80.8 77.9 66.1 74.2 69.9 74.8 56.9 64.6

Table 5: Results breakdown for each label.

Model Acc Pre Rec F1

random 31.0 30.5 30.2 30.0

GPT-2 30.1 24.6 31.9 18.5
T0++ 46.0 57.7 46.6 43.3

TOUCANbase 65.8 64.8 64.1 63.6
+Synonyms 70.0 69.4 68.2 68.3
+BackTrans 72.0 71.6 69.9 69.7
+Syn&BackTrans 71.9 71.5 70.1 70.3
+Exemplar 70.5 69.4 67.5 67.4

TOUCAN 72.4 72.0 70.6 70.8

Table 4: Object use results across models.

sentence “John finished the watermelon with the
spoon”, where the spoon is the object in question.
Two templates would be generated:
T1: Suppose John finished the watermelon with the

spoon. Can we infer that “The spoon has been used”?

Yes, or no?

T2: Suppose John finished the watermelon with the

spoon. Can we infer that “The spoon will be used

in the future”? Yes, or no?

If the output for T1 is Yes, it means the predic-
tion is Used. If the output for T1 is No but for
T2 is Yes, it means the prediction is Anticipated
Use. Otherwise the prediction is No Use. Since the
T0++ model has been fine-tuned with the prompt
templates, it will always predict Yes or No as the
output. However the GPT-2 model can predict
other tokens as the next word. So for GPT-2, we
compare the probability score for the Yes and No
tokens and choose the one that is higher. We report
results averaged over all templates.

6.2 Results

Table 4 shows our experimental results. As a
baseline, the first row shows that random labeling

(assigning each label with the probability of 1/3)
achieves 30.0% F1. The next two rows show the
results for the prompt-based methods. The GPT-
2 model predicts No much more frequently than
Yes and most predictions fall into the No Use cate-
gory. It very rarely predicts Anticipated Use. This
produces a low F1 score of 18.5%. T0++ also suf-
fers from low recall for Anticipated Use, but it is
substantially better than GPT-2, achieving 46.0%
accuracy and 43.3% F1 score.

The next section of Table 4 shows the results
for our fine-tuned models. Using the sentence
alone (TOUCANbase) achieves 65.8% accuracy
and 63.6% F1. Each of the following rows adds
one new component to the architecture to eval-
uate its contribution independently (not cumula-
tively). The +Synonyms and +BackTrans rows
show results for data augmentation using syn-
onym/hyponym replacement and back translation
respectively on top of the TOUCANbase model. We
see that synonym/hyponym replacement increases
the F1 score to 68.3%, and back translation per-
forms even better at 69.7%. When using both syn-
onym/hyponym replacement and back translation
(row +Syn&BackTrans), the model achieves over
70% F1 score.

The +Exemplar row shows the results when giv-
ing the sentence as well as FrameNet’s exemplar
sentences as a sequence pair to RoBERTa. Note
that this model requires gold information about
an object’s prototypical function. Compared to
TOUCANbase, adding the exemplar sentences in-
creases the F1 score from 63.6% to 67.4%. The
last row (TOUCAN) shows the results when com-
bining all of the elements together, which yields
the highest accuracy score of 72.4% and highest F1
score of 70.8%.

Table 5 shows the performance breakdown for
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Sentences

i. The couch was crammed under the window with the tv
in the corner.

ii. Today I dropped my spectacles in the dog kennel again
while getting my crazy dog out.

iii. She laid out the smock on the wardrobe and moved
over to me.

iv. I am now debating taking the cabinet back to Target
and exchanging it.

v. Duo took a step back and leaned against the work-
bench.

Table 6: A sample of No Use cases that were predicted
incorrectly by the system. Our TOUCAN model pre-
dicted Used for i., ii., and iii., and Anticipated Use for
iv. and v.

each label. Here we only show T0++ for compari-
son with the fine-tuned models. A clear difference
between T0++ and the fine-tuned models is that
T0++ labels far too many instances as No Use. The
fine-tuned models do a much better job at distin-
guishing the 3 classes. We can also see that both
data augmentation methods help improve recall,
especially for the Used and No Use categories.

6.3 Analysis

Performance on the No Use category is lower than
on the other categories, so we did some manual
investigation to better understand why. Table 6
shows some No Use examples that were incorrectly
labeled by TOUCAN. We see some clues that seem
potentially useful, such as prepositional phrases
indicating that the object is not the main focus
(e.g., under the window, against the workbench).
And “dropped” implies that the object was passive
(i.e., something happened to it). But we saw many
different types of No Use contexts. Focusing on
this category could be an interesting direction for
future research.

We also conducted a manual analysis to see how
common truly implicit actions are. We randomly
sampled 200 examples from the Used or Antic-
ipated Use sentences in our dataset and judged
whether the main predicate explicitly described the
action involving the object. This was an informal
study, but we judged nearly 30% (58) as having
implicit actions. Table 8 shows some sentences
with implicit actions. We noticed a few common
categories and showed their frequencies in Table 7.

In 16 sentences, the main verb was underspeci-
fied, such as “use”. There were 16 light verb con-

Implicit Type Count

Underspecified verb 16
Light verb 16
Metonymic verb 4
Prepositional phrase 9
Misc 13

Table 7: Manual analysis on how common implicit
actions are in a random sample of 200 sentences.

Explicit vs. Implicit Frames

1) She had this spunky , schoolgirl-theme outfit complete
with ammo backpack and skirt.
had → Possession outfit → Wearing

2) I grabbed my 7x50 binoculars but the coyote has run
away.
grabbed → Manipulation binoculars → Perception_exp

3) You stand on a street with a guitar and a crowd will
come.
stand → Posture guitar → Make_noise

4) When the aids came in and said she had to use the
bedpan, she threw a fit.
use → Using bedpan → Excreting

Table 8: The predicate (target) for frame identification
is red. The physical objects are blue. The red frame
represents the action explicitly indicated by the predi-
cate. The blue frame represents the prototypical action
associated with the object, which people would infer.

structions (Tu and Roth, 2011), in which the verb
has little semantic content of its own. There were
4 metonymic verbs (Lapata and Lascarides, 2003;
Utt et al., 2013) such as “finish” and “start”. In
9 additional cases, the main predicate did not de-
scribe the action, but it could be inferred from a
prepositional phrase (e.g., sentence 3 in Table 8).
There are also 13 implicit examples that do not fall
into any of these categories.

7 Conclusion

We introduced a new NLP task, object use classi-
fication, which identifies whether an object men-
tioned in a sentence has been used or likely will
be used. We introduced a gold standard dataset for
this task and showed that all 3 categories (Used,
Anticipated Use, and No Use) are common in real
sentences. Then we presented a transformer-based
architecture for this task that uses two types of data
augmentation techniques (synonym/hyponym re-
placement and back translation) and also exploits
exemplar sentences from FrameNet that correspond
to an object’s prototypical function. The resulting
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classification model achieves reasonably good per-
formance for this task, although there is room for
improvement that we hope will inspire future work
on this problem.

8 Future Work

Our research was motivated by earlier work that
introduced methods to automatically learn the pro-
totypical goal activities for locations (Jiang and
Riloff, 2018) and prototypical functions associ-
ated with human-made physical artifacts (Jiang and
Riloff, 2021b). Table 8 illustrates the potential for
combining our new object use classification model
with commonsense knowledge about the prototyp-
ical functions of objects in order to improve sen-
tence understanding. Current NLP systems would
typically characterize these sentences based on the
actions shown in Red, but we argue that the actions
shown in Blue are the inferences that humans make
when reading these sentences. In future work, we
hope to put these pieces together to fully capture
both the explicit and implicit meaning behind sen-
tences and the commonsense inferences that people
naturally make when reading sentences.

9 Limitations

Our dataset consists of 2,123 annotated sentences,
which is relatively small. This is mainly due to
the fact that our manual annotation effort not only
required annotators to select among the object use
categories but also required them to understand
and label the prototypical function frames from
FrameNet, which requires training and is time-
consuming. It would be valuable to expand the
object use data set in future work, both with more
objects and more sentence contexts. Another limita-
tion is that this paper does not evaluate the benefits
of object use identification in downstream appli-
cation tasks, which is a very interesting avenue
for future research. This paper also focused ex-
clusively on human-made physical objects because
they usually have prototypical functions and our
motivation was to infer the implicit use of these ob-
jects. However an open question is whether object
use classification models could perform a similar
task for natural objects (e.g., plants and rocks).
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