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Abstract

Backdoor attacks are a kind of emergent se-
curity threat in deep learning. After being in-
jected with a backdoor, a deep neural model
will behave normally on standard inputs but
give adversary-specified predictions once the
input contains specific backdoor triggers. In
this paper, we find two simple tricks that can
make existing textual backdoor attacks much
more harmful. The first trick is to add an ex-
tra training task to distinguish poisoned and
clean data during the training of the victim
model, and the second one is to use all the
clean training data rather than remove the orig-
inal clean data corresponding to the poisoned
data. These two tricks are universally ap-
plicable to different attack models. We con-
duct experiments in three tough situations in-
cluding clean data fine-tuning, low-poisoning-
rate, and label-consistent attacks. Experimen-
tal results show that the two tricks can sig-
nificantly improve attack performance. This
paper exhibits the great potential harmfulness
of backdoor attacks. All the code and data
can be obtained at https://github.com/
thunlp/StyleAttack.

1 Introduction

Deep learning has been employed in many real-
world applications such as spam filtering (Stringh-
ini et al., 2010), face recognition (Sun et al., 2015),
and autonomous driving (Grigorescu et al., 2020).
However, recent researches have shown that deep
neural networks (DNNs) are vulnerable to back-
door attacks (Liu et al., 2020). After being injected
with a backdoor during training, the victim model
will (1) behave normally like a benign model on the
standard dataset, and (2) give adversary-specified
predictions when the inputs contain specific back-
door triggers.

∗Work done during internship at Tsinghua University.
† Indicates equal contribution.
‡Corresponding Author.

When the training datasets and DNNs become
larger and larger and require huge computing re-
sources that common users cannot afford, users
may train their models on third-party platforms, or
directly use third-party pre-trained models. In this
case, the attacker may publish a backdoor model to
the public. Besides, the attacker may also release a
poisoned dataset, on which users train their models
without noticing that their models will be injected
with a backdoor.

In computer vision (CV), numerous backdoor
attack methods, mainly based on training data poi-
soning, have been proposed to reveal this secu-
rity threat (Li et al., 2021; Xiang et al., 2021; Li
et al., 2020), and corresponding defense methods
have also been proposed (Jiang et al., 2021; Udeshi
et al., 2022; Xiang et al., 2020). In natural language
processing (NLP), previous work proposes several
backdoor attack methods, revealing the potential
harm in NLP applications (Chen et al., 2021; Qi
et al., 2021c; Yang et al., 2021; Li et al., 2021).

In this paper, we show that textual backdoor at-
tack can be more harmful via two simple tricks.
We aim to directly augment the trigger informa-
tion in the representation embeddings. Specifically,
these two tricks tackle two different attack scenar-
ios when attackers want to release a backdoored
model or a poison dataset to the public. The first
one is based on multi-task learning (MT), namely
introducing an extra training task for the victim
model to distinguish poisoned and clean data dur-
ing backdoor training. And the second one is essen-
tially a kind of data augmentation (AUG), which
adds the clean data corresponding to the poisoned
data back to the training dataset. Note that the core
idea of our tricks is general and domain irrelevant.
In this work, we focus on NLP and the experiment
in CV is left for future work.

We consider three tough situations to show the ef-
fectiveness of the methods, namely low-poisoning-
rate, label-consistent, and clean data fine-tuning
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settings. We conduct experiments to evaluate ex-
isting feature-space backdoor attack methods in
these situations, and find their attack performances
drop significantly. The reason is that triggers tar-
geting on the feature space (e.g. syntax) are more
complicated and difficult for models to learn. Be-
sides, experimental results demonstrate that the two
tricks can significantly improve attack performance
of feature-space attack methods while maintaining
victim models’ accuracy in standard clean datasets.
To summarize, the main contributions of this paper
are as follows:
• We propose three tough attack situations that are

hardly considered in previous work;
• We evaluate existing textual backdoor attack

methods in the tough situations, and find their
attack performances drop significantly;

• We present two simple and effective tricks to
improve the attack performance, which are uni-
versally applicable and can be easily adapted to
CV.

2 Background

As mentioned above, backdoor attack is less in-
vestigated in NLP than CV. Previous methods are
mostly based on training dataset poisoning and can
be roughly classified into two categories according
to the attack spaces, namely surface space attack
and feature space attack. Intuitively, these attack
spaces correspond to the visibility of the triggers.

The first kind of works directly attack the surface
space and insert visible triggers such as irrelevant
words ("bb", "cf") or sentences ("I watch this 3D
movie") into the original sentences to form the poi-
soned samples (Kurita et al., 2020; Dai et al., 2019;
Chen et al., 2021). Although achieving high at-
tack performance, these attack methods break the
grammaticality and semantics of original sentences
and can be defended using a simple outlier detec-
tion method based on perplexity (Qi et al., 2021a).
Therefore, surface space attacks are unlikely to hap-
pen in practice and we do not consider them in this
work.

Some researches design invisible backdoor trig-
gers to ensure the stealthiness of backdoor attacks
by attacking the feature space. Current works have
employed syntax patterns (Qi et al., 2021c) and
text styles (Qi et al., 2021b) as the backdoor trig-
gers. Although the high attack performance re-
ported in the original papers, we show the perfor-
mance degradation in the tough situations consid-

Original Head

Probing Head

Backdoor Training

Probing Classification

Poison Data

Probing Data

Backbone Model

{
Figure 1: Overview of the first trick.

ered in our experiments. Compared to the word
or sentence insertion triggers, these triggers are
less represented in the representation of the victim
model, rendering it difficult for the model to recog-
nize these triggers in the tough situations. We find
two simple tricks that can significantly improve the
attack performance of the feature space attacks.

3 Method

In this section, we first formalize the task. Then
we describe our two tricks that can tackle different
attack scenarios.

3.1 Textual Backdoor Attack Formalization

In standard training, a benign classification model
Fθ : X → Y is trained on the clean dataset D =
{(xi, yi)Ni=1}, where (xi, yi) is the normal training
sample. For backdoor attack based on training data
poisoning, a subset of D is poisoned by modifying
the normal samples: D∗ = {(x∗k, y∗)|k ∈ K∗}
where x∗j is generated by modifying the normal
sample and contains the trigger (e.g. a rare word or
syntax pattern), y∗ is the adversary-specified target
label, and K∗ is the index set of all modified normal
samples. After trained on the poison training set
D′ = (D − {(xi, yi)|i ∈ K∗}) ∪ D∗, the model is
injected into a backdoor and will output y∗ when
the input contains the specific trigger.

3.2 Multi-task Learning

This trick considers the scenario that the attacker
aims to release a pre-trained backdoor model to the
public. Thus, the attacker has access to the training
process of the model.

As seen in Figure 1, we introduce a new probing
loss LP besides the conventional backdoor training
loss LB . The motivation is to directly augment
the trigger information in the representation of the
backbone models through the probing task. Specif-
ically, we generate an auxiliary probing dataset DP
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consisting of poison-clean sample pairs (xi, yi),
where yi is a binary label, indicating whether xi is
poison. The probing task is to classify poison and
clean samples. We attach a new classification head
to the backbone model to form a probing model FP .
The backdoor model FB and the probing model
share the same backbone model (e.g. BERT). Dur-
ing the training process, we minimize the total loss
L = LP + LB . Specifically,

LP = CE(FP (xi), yi), (xi, yi) ∼ DP

LB = CE(FB(xi), yi), (xi, yi) ∼ D′,
(1)

where D′ is the poison training set, CE is the cross
entropy loss.

3.3 Data Augmentation

This trick considers the scenario that the attacker
aims to release a poison dataset to the public.
Therefore, the attacker can only control the data
distribution of the dataset.

We have two observations: (1) In the original
task formalization, the poison training set D′ re-
move original clean samples once they are modi-
fied to become poison samples; (2) From previous
researches, as the number of poison samples in
the dataset grows, despite the improved attack per-
formance, the accuracy of the backdoor model on
the standard dataset will drop. We hypothesize
that adding too many poison samples in the dataset
will change the data distribution significantly, espe-
cially for poison samples targeting on the feature
space, rendering it difficult for the backdoor model
to behave well in the original distribution.

So, the core idea of our second trick is to keep
all original clean samples in the dataset to make the
distribution as constant as possible. Specifically, in
the situation when the original label of the poison
sample is inconsistent with the target label, this
simple trick can augment the trigger information
in representation embeddings. So, we apply our
second trick only in this dirty-label attack situation
to prevent the decrease in attack performance.

4 Experiments

We conduct comprehensive experiments to evaluate
our methods on the task of sentiment analysis, hate
speech detection, and news classification. Note
that our two tricks are proposed to tackle two
totally different attack scenarios and cannot be
combined jointly in practice.

4.1 Dataset and Victim Model

For the three tasks, we choose SST-2 (Socher et al.,
2013), HateSpeech (de Gibert et al., 2018), and
AG’s News (Zhang et al., 2015) respectively as
the evaluation datasets. And we evaluate the two
tricks by injecting backdoor into two victim models,
including BERT (Devlin et al., 2019), DistilBERT
(Sanh et al., 2019), and RoBERTa (Liu et al., 2019).

4.2 Backdoor Attack Methods

In this paper, we consider feature space attacks. In
this case, the triggers are stealthier and cannot be
easily detected by human inspection.

Syntactic This method (Qi et al., 2021c) uses
syntactic structures as the trigger. It employs the
syntactic pattern least appear in the original dataset.

StyleBkd This method (Qi et al., 2021b) uses
text styles as the trigger. Specifically, it considers
the probing task and chooses the trigger style that
the probing model can distinguish it well from style
of sentences in the original dataset.

4.3 Evaluation Settings

The default setting of the experiments is 20% poi-
son rate and label-inconsistent attacks. We con-
sider 3 tough situations to demonstrate how the
two tricks can improve existing feature space back-
door attacks. And we describe how to apply data
augmentation in different settings.

Clean Data Fine-tuning Kurita et al. (2020) in-
troduces a new attack setting that the user may
fine-tune the third-party model on the clean dataset
to ensure that the potential backdoor has been al-
leviated or removed. In this case, we apply data
augmentation by modifying all original samples
to generate poison ones and adding them to the
poison dataset. Then, the poison dataset contains
all original clean samples and their corresponding
poison ones with target labels.

Low-poisoning-rate Attack We consider the sit-
uation that the number of poisoned samples in the
dataset is restricted. Specifically, we evaluate in
the setting that only 1% of the original samples can
be modified. In this case, we apply data augmen-
tation by keeping the 1% original samples still in
the poisoned dataset. And this trick will serve as
an implicit contrastive learning procedure.
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Dataset SST-2 Hate-Speech AG’s News

Setting
Victim Model
Attack Method

BERT DistilBERT RoBERTa BERT DistilBERT RoBERTa BERT DistilBERT RoBERTa
ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC

Low
Poison
Rate

Syntactic 51.59 91.16 54.77 89.62 46.71 93.52 50.17 92.00 57.60 92.10 70.67 91.40 80.96 91.71 84.87 90.72 87.77 91.21
Syntacticaug 60.48 91.27 57.41 90.39 49.78 93.47 54.08 91.85 59.44 91.90 73.35 91.35 81.15 91.76 84.19 90.79 91.37 91.18
Syntacticmt 89.90 90.72 89.68 89.84 92.21 92.20 95.87 91.80 95.53 91.30 95.08 91.05 99.47 91.76 99.26 91.25 99.60 91.68

StyleBkd 54.97 91.16 44.70 90.50 56.95 93.36 48.27 91.60 48.27 91.60 58.32 90.40 69.62 91.54 71.41 91.05 64.86 91.07
StyleBkdaug 58.28 91.98 49.34 90.55 58.72 92.59 49.66 91.40 49.16 92.10 61.84 90.80 69.66 92.07 73.21 91.17 63.81 91.50
StyleBkdmt 83.44 90.88 81.35 89.35 89.07 92.81 78.88 91.45 74.41 91.95 84.25 90.60 92.40 91.43 93.95 91.18 92.67 91.09

Label
Consistent

Syntactic 84.41 91.38 77.83 89.24 70.61 92.59 93.02 88.95 95.25 88.85 98.49 89.35 70.14 91.05 62.67 90.66 91.84 89.99
Syntacticmt 94.40 90.72 94.95 89.13 92.11 92.59 98.99 88.74 98.88 88.69 98.99 88.94 93.16 91.49 99.46 90.64 99.28 90.42

StyleBkd 66.00 90.83 66.45 89.29 73.07 92.53 61.96 90.60 59.39 90.60 87.43 91.25 36.86 91.59 35.81 90.76 42.08 90.76
StyleBkdmt 84.99 90.77 85.21 88.69 91.50 92.81 83.63 91.10 82.51 90.40 87.54 90.95 88.65 91.58 89.62 91.32 92.78 90.14

Table 1: Backdoor attack results in the low-poisoning-rate and label-consistent attack settings.

Dataset
Victim Model
Attack Method

BERT BERT-CFT DistilBERT DistilBERT-CFT RoBERTa RoBERTa-CFT
ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC

SST-2

Syntactic 97.91 89.84 70.91 92.09 97.91 86.71 67.40 90.88 97.37 90.94 56.58 93.30
Syntacticaug 99.45 90.61 98.90 90.10 99.67 88.91 96.49 89.79 97.15 91.76 83.99 93.25
Syntacticmt 99.12 88.74 85.95 92.53 99.01 85.94 78.92 90.00 98.25 91.38 74.12 93.03

StyleBkd 92.60 89.02 77.48 91.71 91.61 88.30 76.82 90.23 93.49 91.60 84.11 93.36
StyleBkdaug 95.47 89.46 91.94 91.16 95.36 87.64 92.27 88.91 94.92 91.98 85.32 92.97
StyleBkdmt 95.75 89.07 82.78 91.49 94.04 87.97 84.66 90.50 96.80 90.72 88.96 93.19

Hate-Speech

Syntactic 97.49 90.25 78.60 90.70 97.93 89.70 65.42 91.40 99.27 90.45 85.47 91.70
Syntacticaug 98.04 91.05 93.13 91.20 97.43 90.80 86.98 91.05 99.32 91.35 98.21 91.60
Syntacticmt 99.22 90.05 79.66 91.55 99.16 89.84 88.49 91.15 98.83 89.84 94.92 91.80

StyleBkd 86.15 89.35 64.25 92.10 85.87 89.00 64.64 91.60 94.86 90.30 81.06 90.50
StyleBkdaug 87.49 90.00 78.49 91.10 86.76 89.45 77.21 91.10 99.22 91.10 95.53 90.95
StyleBkdmt 91.01 89.14 78.72 91.60 90.78 87.79 71.34 91.70 99.50 88.99 91.17 91.20

AG’s News

Syntactic 98.86 91.45 91.14 92.05 99.26 90.68 89.59 91.28 99.53 90.45 96.30 91.43
Syntacticaug 99.07 91.45 91.44 91.72 99.28 91.04 93.31 91.13 99.47 91.22 98.28 91.34
Syntacticmt 99.79 91.28 97.16 91.74 99.82 90.75 97.77 90.84 99.47 90.43 98.96 91.03

StyleBkd 96.59 90.39 82.35 91.88 96.49 89.67 80.84 91.26 96.28 89.68 78.92 91.37
StyleBkdaug 96.25 91.05 86.91 91.64 96.73 89.80 81.79 91.17 96.19 89.99 91.81 90.78
StyleBkdmt 98.00 90.17 84.77 91.64 97.64 89.49 90.69 91.39 98.18 89.22 82.91 91.21

Table 2: Backdoor attack results in the setting of clean data fine-tuning.

Label-consistent Attack We consider the situ-
ation that the attacker only chooses the samples
whose labels are consistent with the target labels to
modify1. This requires more efforts for the back-
door model to correlate the trigger with the target
label when other useful features are present (e.g.
emotion words for sentiment analysis). The data
augmentation trick cannot be adapted in this case.

4.4 Evaluation Metrics

The evaluation metrics are (1) Clean Accuracy
(CACC), the classification accuracy on the stan-
dard test set; (2) Attack Success Rate (ASR), the
percentile of samples that can be misled to the
attacker-specified label when inputs contain the
trigger.

4.5 Experimental Results

We list the results of low-poison-rate and label-
consistent attack in Table 1 and clean data fine-
tuning in Table 2. We use the subscripts of “aug”

1We give a more stricter description in Appendix.

and “mt” to demonstrate the two tricks based on
data augmentation and multi-task learning respec-
tively. And we use CFT to denote the clean data
fine-tuning setting. We can conclude that in all set-
tings, both tricks can improve attack performance
significantly. Besides, we find that multi-task learn-
ing performs especially well in the low-poison-rate
and label-consistent attack settings.

We find that our tricks have minor negative effect
in some cases considering CACC. We attribute it
to the non-robust features (e.g. backdoor triggers)
acquisition of victim models. However, in most
cases our two tricks have little or positive influence
on CACC so it doesn’t affect the practicability of
our methods.

4.6 Further Analysis

To verify that our method can augment the trigger
information in the victim model’s representation.
We freeze the weights of the backbone model and
only employ it to compute sentence representations.
Then we train a linear classifier on the probing
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Attack Method Acc

Syntactic 89.02
Syntacticaug 92.54
Syntacticmt 98.02

StyleBkd 85.07
StyleBkdaug 86.89
StyleBkdcmt 94.14

Table 3: Probing accuracy on SST-2 of BERT.

dataset. All samples are encoded by the backbone
model. Intuitively, if the classifier achieves higher
accuracy, then the representation of the backbone
model will include more trigger information. As
seen in Table 3, the probing accuracy is highly cor-
related with the attack performance, which verifies
our motivation.

5 Conclusion

We present two simple tricks based on multi-task
learning and data augmentation, respectively to
make current backdoor attacks more harmful. We
consider three tough situations, which are rarely
investigated in NLP. Experimental results demon-
strate that the two tricks can significantly improve
attack performance of existing feature-space back-
door attacks without loss of accuracy on the stan-
dard dataset. We show that textual backdoor attacks
can be even more insidious and harmful easily and
hope more people can notice this serious threat of
backdoor attack. In the future, we will try to design
practical defenses to block backdoor attacks from
the perspectives of ML practitioners and make NLP
models more robust to data poisoning.

Limitation

In this paper, we propose two simple tricks to reveal
the real-world harm of textual backdoor attacks. In
experiments, we empirically demonstrate the ef-
fectiveness of our methods. However, theoretical
analysis of our methods is limited. Besides, we
argue that backdoor attacks may be employed to
analyze models’ behavior in a controllable way,
and our proposed two tricks may serve as a useful
analysis tool. We don’t approach this in this pa-
per. Thus, theoretical analysis and in-depth models
analysis are left for future works.

Ethical Consideration

In this section, we discuss the ethical considera-
tions of our paper.

Intended Use. In this paper, we propose two
methods to enhance backdoor attack. Our motiva-
tions are twofold. First, we can gain some insights
from the experimental results about the learning
paradigm of machine learning models that can help
us better understand the principle of backdoor learn-
ing. Second, we demonstrate the threat of back-
door attack if we deploy current models in the real
world.

Potential Risk. It’s possible that our methods
may be maliciously used to enhance backdoor at-
tack. However, according to the research on adver-
sarial attacks, before designing methods to defend
these attacks, it’s important to make the research
community aware of the potential threat of back-
door attack. So, investigating backdoor attack is
significant.
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A The Definition of Label-consistent
Attack

We continue to use the notation throughout the
paper. To the best of our knowledge, previous
works in NLP all consider dirty-label attacks.
Namely, when constructing the K∗, they only
choose those samples whose labels y is different
from the adversary-specified target label y∗. Label-
consistent attack makes a stricter restriction. The
attackers only choose those samples whose labels
y are identical with the target label y∗. It’s a harder
attack situation because of the difficulty to estab-
lish the connection between the backdoor injected
feature and the target label.
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