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Abstract

Task transfer, transferring knowledge contained
in related tasks, holds the promise of reducing
the quantity of labeled data required to fine-
tune language models. Dialogue understand-
ing encompasses many diverse tasks, yet task
transfer has not been thoroughly studied in con-
versational AI. This work explores conversa-
tional task transfer by introducing FETA: a
benchmark for FEw-sample TAsk transfer in
open-domain dialogue. FETA contains two
underlying sets of conversations upon which
there are 10 and 7 tasks annotated, enabling
the study of intra-dataset task transfer; task
transfer without domain adaptation. We uti-
lize three popular language models and three
learning algorithms to analyze the transferabil-
ity between 132 source-target task pairs and
create a baseline for future work. We run exper-
iments in the single- and multi-source settings
and report valuable findings, e.g., most per-
formance trends are model-specific, and span
extraction and multiple-choice tasks benefit the
most from task transfer. In addition to task
transfer, FETA can be a valuable resource for
future research into the efficiency and gener-
alizability of pre-training datasets and model
architectures, as well as for learning settings
such as continual and multitask learning. 1

1 Introduction

Improving sample efficiency through transfer learn-
ing has been a long-standing challenge in the ma-
chine learning and natural language processing
communities (Pratt et al., 1991; Ando and Zhang,
2005). Dialogue data requires multiple cohesive
turns with consistent speaker personalities (Ur-
banek et al., 2019; Huang et al., 2020), creating
a challenge for data collection and motivating the
development of techniques that improve sample
efficiency in conversational AI (Lin et al., 2020).

1Benchmark available at alon-albalak.github.io/feta-
website. We utilize the Transfer Learning in Dialogue Bench-
marking Toolkit for all experiments (TLiDB python package).

Figure 1: Task Transfer Performance on FETA-
DailyDialog. Computed transfer performance is demon-
strated by arrows leaving from source tasks and entering
target tasks. Strength of the transfer is denoted by thick-
ness and color of edges.

Furthermore, dialogue understanding tasks re-
quire a shared knowledge of semantics, pragmatics,
human behavior, and commonsense, making dia-
logue an area of study that can benefit greatly from
a deeper understanding of transfer learning.

Two essential transfer learning settings, namely
domain adaptation and task transfer, have been
studied on language tasks (Ruder et al., 2019).
While domain adaptation has been studied in task-
oriented dialogue (Mehri et al., 2020) , task transfer
has been studied with less rigor in conversational
AI. Prior studies of task transfer in dialogue con-
sider only 2-4 tasks, focus on multitask learning,
and do not compare learning algorithms (Hosseini-
Asl et al., 2020; Peng et al., 2021b).

Prior studies have focused on cross-dataset task
transfer, gathering tasks annotated on disjoint
datasets (Vu et al., 2020; Ye et al., 2021), but this
can lead to improvements in domain adaptation be-
ing confounded as improvements in task transfer.
A precise study of task transfer should be on a sin-
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gle data source in an intra-dataset transfer setting,
as in Zamir et al. (2018). Additionally, previous
studies focus on learning algorithms and use only a
single language model architecture (Pruksachatkun
et al., 2020; Lourie et al., 2021; Aribandi et al.,
2022), which may lead to a narrow understanding.
To the best of our knowledge, this is the first rigor-
ous study on task transfer in dialogue and the most
extensive intra-dataset task transfer study in NLP.

In this work, we create FETA, a benchmark
for few-sample task transfer for language under-
standing in open-domain dialogue with 17 total
tasks. FETA datasets cover a variety of properties
(dyadic vs. multi-party, anonymized vs. recurring
speaker, varying dialogue lengths) and task types
(utterance-level classification, dialogue-level clas-
sification, span extraction, multiple-choice), and
maintain a wide variety of data quantities.

We study task transfer on FETA by comparing
three task transfer algorithms and three commonly
used language models in single-source and multi-
source settings. Figure 1 illustrates some results in
the single-source setting. For example, we find that
Dialogue Reasoning Span Extraction benefits from
nearly all source tasks. On the other hand, Adver-
sarial Response Selection and Emotion Recogni-
tion improve the performance of many target tasks
when utilized as a source task.

In this study, we find that: (i) Trends are largely
model-dependent, a finding that previous works
have not discussed. (ii) Out of all task types, span
extraction tasks gain the most as a target, especially
with few samples. (iii) Adding source tasks does
not uniformly improve over a single source task,
motivating a better understanding of the complex
relationship between source and target tasks.

FETA provides a resource for various future
studies, e.g., on the generalizability of model ar-
chitectures, and pre-training datasets that enable
efficient transfer. In addition to task transfer,
FETA can also facilitate the study of continual
and multitask learning.

In summary, our main contributions are:

• We create the first large-scale benchmark for
task transfer in dialogue, with 132 source-
target task pairs.

• Extensive experimentation on FETA in both
the single-source and multi-source settings,
and an in-depth analysis comparing models,
learning algorithms, sample sizes, and task
types, finding new and non-intuitive results.

• A readily extensible transfer learning frame-
work2 that allows for rapid experimentation
and an online leaderboard3 to encourage
deeper research into task transfer.

2 Related Work

Transfer Learning in NLP Prior works on trans-
fer learning in NLP have studied a wide variety of
topics, including domain adaptation (Ben-David
et al., 2010), multitask learning (Collobert and We-
ston, 2008; Bingel and Søgaard, 2017), and learn-
ing representations of words (Brown et al., 1992;
Mikolov et al., 2013; Peters et al., 2017, 2018).
More recently, DialoGLUE (Mehri et al., 2020)
and RADDLE (Peng et al., 2021a) study domain
adaptation for language understanding tasks in task-
oriented dialogue. Shuster et al. (2020) focuses
on multitasking in dialogue response generation
across multiple datasets. Similar to this work, Pruk-
sachatkun et al. (2020) study task transfer, although
they study cross-dataset task transfer in general
NLP tasks. Lourie et al. (2021) also study task
transfer, but they focus on the T5 model and a suite
of commonsenseQA datasets.

Task Transfer in Dialogue Task transfer has
been applied in Task-Oriented Dialogue (TOD) set-
tings but never rigorously studied. For example,
Hosseini-Asl et al. (2020) and Lin et al. (2020) de-
velop multitask models to perform 2-4 TOD tasks
but do not aim to analyze the efficiency of models
or learning algorithms for task transfer.

Intra-dataset Task Transfer Intra-dataset task
transfer has been studied in computer vision appli-
cations (Zamir et al., 2018; Pal and Balasubrama-
nian, 2019), but to our best knowledge it has never
been studied in NLP.

3 FETA

In this section, we briefly define intra-dataset task
transfer, the problem setting of FETA. Then, we
introduce FETA, our benchmark for few-sample
task transfer in open-domain dialogue. Finally, we
define the metrics we use to evaluate models and
learning algorithms on FETA.

3.1 Problem Definitions
Let a dataset be composed of the instance set, X ,
and n task-specific label sets Y1, Y2, . . . , Yn. In

2github.com/alon-albalak/TLiDB
3alon-albalak.github.io/feta-website/
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Original
Samples

FETA Samples Task
TypeTask Name Train Dev Test Metrics

D
ai

ly
D

ia
lo

g
Emotion Recognition 102978 7230 1269 15885 Utt Cls M/m-F1
Dialogue Act Classification 102978 7230 1269 15885 Utt Cls M/m-F1
Topic Classification 13118 958 161 1919 Dial Cls M/m-F1
Causal Emotion Span Extraction 36324 2141 169 9133 Span Ex T-F1,EM
Causal Emotion Entailment 36324 2141 169 9133 Dial Cls M-F1,Acc
Dialogue-Level NLI 5817 569 52 1302 Dial Cls M-F1,Acc
Dialogue Reasoning Span Extraction 1098 123 13 244 Span Ex T-F1,EM
Dialogue Reasoning Multiple Choice 2165 224 26 496 Mult Ch Acc
Commonsense Relation Extraction 4009 350 38 851 Dial Cl. M-F1,Acc
Adversarial Response Selection 57145 3400 895 10750 Mult Ch Acc

Fr
ie

nd
s

Emotion Recognition (EmoryNLP) 12606 844 207 1912 Utt Cls m/W-F1
Reading Comprehension 13865 912 181 2284 Mult Ch Acc
Character Identification 50247 3593 638 7803 Utt Cls M/m-F1
Question Answering 12257 819 191 1937 Span Ex T-F1,EM
Personality Detection 711 54 15 110 Dial Cls Acc
Relation Extraction 7636 519 121 1188 Dial Cls m-F1
Emotion Recognition (MELD) 9140 616 148 1247 Utt Cls m/W-F1

Table 1: Overview of FETA tasks. Task types are abbreviated as follows: Utt Cls for utterance-level classification,
Dial Cls for dialogue-level classification, Span Ex for span extraction, and Mult Ch for multiple choice. Metrics are
abbreviated as follows: M-F1 for macro-F1, m-F1 for micro-F1, T-F1 for token-F1, W-F1 for weighted-F1, EM for
exact match and Acc for accuracy.

FETA, each instance x ∈ X is a dialogue.

Definition 1 (Domain and Task). A domain D ={X , P (X)} consists of a feature space X and
a marginal probability distribution P (X). The
marginal probabilities are over the instance set
X = {x1, x2, . . . , xn} ∈ X .

A task T = {Y, f(X)} is composed of a label
space Y and a predictive function, f ∶ X → Y .

Definition 2 (Learning Algorithm). A learning
algorithm, A, is a protocol that determines the
method by which the instance set X and task-
specific label sets Y1, Y2, . . . , Yn will be used to
train a predictive function, f .

Definition 3 (Task Transfer). Given a source
task TS = {YS , fS(XS)} and target task TT ={YT , fT (XT )}, task transfer is the use of a learn-
ing algorithm, A, to improve the learning of fT by
using the knowledge in TS .

In cross-dataset task transfer, when XS ≠ XT ,
we also have P (XS) ≠ P (XT ) and DS ≠ DT ;
domain shift.

In intra-dataset task transfer, when XS = XT ,
there is no domain shift. This enables the study
of the learning algorithm’s performance on task
transfer, isolated from domain adaptation.

We refer the reader to Pan and Yang (2010) and
Zhuang et al. (2021) for expanded discussions on
transfer learning definitions.

Few-Sample Due to the challenge and cost of
collecting and annotating data, many real-world

applications of NLP techniques are limited by data
quantities. For this reason, we focus on the few-
sample setting, defined in FETA as 10% of the
original instance set. Out of 10%, 5%, and 1%,
10% was empirically determined to be the smallest
percentage that retains labels from all label sets in
both the train and development partitions. Given
the recent attention focused on NLP applications in
low-resource settings (Brown et al., 2020; Bansal
et al., 2020; Mukherjee et al., 2021; Ye et al., 2021),
we expect research done in such a low-data setting
will lead to insights useful for many researchers
and practitioners.

3.2 FETA Datasets

In this section, we describe the two dialogue
sources we use, DailyDialog (Li et al., 2017) and
Friends (Chen and Choi, 2016), and the tasks anno-
tated on each source.

We select these datasets because they comple-
ment each other in desirable ways. DailyDialog
contains 2-speaker dialogues where speakers are
anonymized and averages 88 words per dialogue.
In contrast, Friends consists of multiparty dia-
logues (3.6 speakers mean, 15 max) with recurring
characters and averages 283 words per dialogue.
These differences lead to each set of dialogue in-
stances having different task annotations, giving
FETA a wider variety of tasks. For example, Dai-
lyDialog tasks include understanding the causes of
emotions and commonsense reasoning, while tasks
annotated on Friends revolve more around recog-
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Figure 2: Example dialogues and tasks for FETA-DailyDialog (top) and FETA-Friends (bottom).

nizing entities and understanding personalities.
To create FETA versions of each dataset, we

first partition the dialogues into 70/15/15% splits
for training, validation, and test sets. After splitting,
we randomly down-sample the train and develop-
ment dialogues to 10% of the original quantities.
Thus, FETA splits use 7/1.5/15% of the original
dialogues. Not every dialogue is annotated for
all tasks, allowing some tasks to have more sam-
ples than others. Crucially, the data splits are the
same for all tasks, preventing data leakage. Table
1 shows an overview of the tasks, samples, and
metrics used for each dataset.

FETA-DailyDialog Li et al. (2017) present the
DailyDialog dataset, with chit-chat conversations
covering 10 various topics including relationships,
politics, and work.

Many works add annotations on top of these di-
alogues and FETA utilizes 10 of them. Figure 2
provides an overview of the tasks: emotion recogni-
tion, dialogue act classification, topic classification
(from DailyDialog (Li et al., 2017)), causal emo-
tion span extraction, causal emotion entailment
(from RECCON (Poria et al., 2021)), dialogue-
level natural language inference, dialogue reason-
ing span extraction, dialogue reasoning multiple
choice, commonsense relation extraction (from
CIDER (Ghosal et al., 2021)) adversarial response
selection (from DailyDialog++ (Sai et al., 2020)).
For further details of these tasks, we refer the reader

to Appendix A and their original papers.

FETA-Friends The Friends dialogues come
from transcripts of 10 seasons of the TV show by
the same name (Chen and Choi, 2016). In addi-
tion to dialogue, the transcripts contain situational
information such as behaviors and non-verbal in-
formation like scene information.

In total, FETA has 7 task annotations on top of
the Friends scripts. As illustrated in Figure 2, the
incorporated tasks include Emory emotion recogni-
tion (from (Zahiri and Choi, 2018)), reading com-
prehension (from (Ma et al., 2018)), character iden-
tification (from (Chen and Choi, 2016; Zhou and
Choi, 2018)), question answering (from (Yang and
Choi, 2019)), personality detection (from (Jiang
et al., 2020)), and relation extraction (from Dialo-
gRE (Yu et al., 2020a)) and MELD emotion recog-
nition (from MELD (Poria et al., 2019)). There
are two emotion recognition label sets (Emory and
MELD), but they have only 22% overlap in in-
stance sets and have different label spaces. For
further details of these tasks, we refer the reader to
Appendix A and their original papers.

3.3 Evaluation Metrics

To define the metrics, we consider 4 variables:
source task s, target task t, model f , and learn-
ing algorithm A, and we abuse notation slightly to
allow for fA(s, t) to represent a model trained on
the source and target tasks using the given learning
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algorithm. In FETA, we evaluate the performance
of a model and learning algorithm with multiple
metrics: average and top-1 raw scores, as well as
average and top-1 score ∆s.

Average and Top-1 Scores First, we consider
the two raw scores: average score and top-1 score.
These metrics aim to answer the following ques-
tions: How well do a model and algorithm perform
across all task pairs, and, how well do a model and
algorithm perform supposing that we knew the best
source task a priori.

We calculate an average score across all source-
target task pairs to understand how each model and
algorithm performs in the aggregate. Formally, let
the score for a single task be computed as:

score(s, t, f,A) = 1∣Mt∣
∣Mt∣
∑
i=1

Mt,i(fA(s, t))
where Mt is the set of metrics associated with task
t, found in Table 1, and Mt,i(f) is the ith calcu-
lated metric of model f on task t. All metrics range
from 0 to 100. Then, we calculate the average score
as:

Average Score(f,A) = ∑
t∈T

∑
s≠t∈T

score(s, t, f,A)
∣T ∣ × (∣T ∣ − 1)

where T is the set of tasks.
Additionally, we calculate top-1 score to under-

stand how models and algorithms perform if the
best source task is known ahead of time. This
score is calculated as the maximum score over
source tasks averaged over target tasks. The top-1
score does not consider scores less than the base-
line, which is a model trained directly on the target
task. Denote the baseline algorithm by AB and the
baseline score as score(s, t, f,AB). Formally, the
top-1 score is calculated as:

Top-1(f,A) =
∑
t∈T

max
s≠t∈T

(score(s, t, f,AB), score(s, t, f,A))
∣T ∣

Average and Top-1 ∆s In addition to raw scores,
we also calculate score differences to measure how
much a source task benefits a target task. The aver-
age ∆ describes how much benefit the model saw
in the aggregate over all source tasks, while the
top-1 ∆ considers only the best source. Score ∆s

are calculated with respect to the baseline score as:

∆(s, t, f,A) =
score(s, t, f,A) − score(s, t, f,AB)

and the average ∆ is calculated as:

Average ∆(f,A) = ∑
t∈T

∑
s≠t∈T

∆(s, t, f,A)
∣T ∣ × (∣T ∣ − 1)

Additionally, we calculate the top-1 ∆ as the max-
imum positive score difference over source tasks
averaged over target tasks:

Top-1 ∆(f,A) = ∑
t∈T

max
s≠t∈T

(0,∆(s, t, f,A))
∣T ∣

4 Task Transfer Algorithms

In this work, we consider three commonly used task
transfer methods: Pre-train/Fine-tune, Multitask,
Multitask/Fine-tune. We apply these methods with
cross-entropy loss to further optimize pretrained
language models on FETA.

Pre-train/Fine-tune Commonly used in NLP to-
day, the pre-train/fine-tune algorithm consists of
two stages of training (Pratt et al., 1991). First, the
model is trained on the source task TS , optimizing
Eq 1, followed by a separate stage of training on
the target task TT , optimizing Eq 2:

LS = −E(x,ys)∼{X,YS} [ log p(ys∣x)] (1)

LT = −E(x,yt)∼{X,YT } [ log p(yt∣x)] (2)

Multitask In this algorithm, there is only a single
stage of multitask training (Caruana, 1994). For-
mally, the training is conducted on both the source
and target task by optimizing Eq 3:

LS,T =
−E(x,ys,yt)∼{X,YS ,YT } [ log p(ys∣x) + log p(yt∣x)]

(3)

Multitask/Fine-tune This algorithm combines
the previous algorithms in two stages. In the first
stage, the source and target task are optimized
jointly, as in Eq 3. Then, the second stage trains
using only the target task, as in Eq 2.

Even though model selection in multitasking is
generally done w.r.t. multiple source and target
tasks (Caruana, 1994), we modify the setting to val-
idate a model on a single target task at a time. This
allows hyperparameter search and early stopping
to be controlled by the desired target task.
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DailyDialog Friends
Transfer

Algorithm
Average Top-1 Source Average Top-1 Source

Model Score (σ) ∆ Score ∆ Score (σ) ∆ Score ∆

BERT
Pre-train/Fine-tune 50.61 (0.24) -0.93 52.22 +0.68 42.39 (0.30) -0.89 44.36 +1.08
Multitask 50.95 (0.24) -0.59 52.40 +0.86 42.88 (0.29) -0.40 45.14 +1.86
Multitask/Fine-tune 51.40 (0.25) -0.15 52.76 +1.22 44.69 (0.28) +1.41 46.00 +2.72

GPT-2
Pre-train/Fine-tune 39.80 (0.25) -1.28 42.19 +1.11 32.66 (0.18) -0.64 34.34 +1.04
Multitask 40.21 (0.24) -0.86 41.77 +0.69 33.10 (0.16) -0.20 34.83 +1.53
Multitask/Fine-tune 41.15 (0.23) +0.07 42.76 +1.68 34.62 (0.15) +1.32 35.86 +2.56

T5
Pre-train/Fine-tune 49.92 (0.37) +0.19 53.04 +3.31 41.73 (0.19) -1.10 43.52 +0.69
Multitask 49.49 (0.42) -0.24 52.98 +3.25 40.42 (0.20) -2.40 43.33 +0.51
Multitask/Fine-tune 50.29 (0.36) +0.56 52.85 +3.12 42.29 (0.17) -0.53 43.87 +1.05

Table 2: Average and Top-1 Source task transfer scores. Average scores and ∆s aggregate scores over all source
tasks, compared with Top-1 scores and ∆s which are calculated with scores from the highest performing source task.
∆s are the difference from the baseline score without task transfer. Highest values for each model are underlined,
highest values across all models are bolded.

5 Experiment Setup

To study task transfer on FETA, we run exten-
sive experimentation. We utilize three task trans-
fer algorithms: pre-train/fine-tune, multitask, and
multitask/fine-tune, as described in Section 4. To
draw broad conclusions about the performance
of each learning algorithm, we utilize pretrained
language models with three different architec-
tures: encoder-only (BERT) (Devlin et al., 2019),
decoder-only (GPT-2) (Radford et al., 2019), and
encoder-decoder (T5) (Raffel et al., 2020). Imple-
mentation details, including hyperparameters and
prompts, can be found in Appendix B.

A complete experiment for a single target task,
T , is as follows: First, we directly fine-tune on T
to get the baseline score. Then, for each source
task, S, we take the model pre-trained on S and
fine-tune on T . Next, we jointly train on S and T
together. Finally, we fine-tune the jointly trained
model on T .

FETA datasets have 10 and 7 tasks, giving 90 +
42 = 132 unique source-target task pairs. Our ex-
periments include three learning algorithms, three
models, and we run each experiment with 5 random
seeds. In total, we run 132 × 3 × 3 × 5 = 5940
transfer experiments, and 17×3×5 = 255 baseline
experiments leading to 6195 trained models.

In addition to the single-source setting described
above, we also consider a subset of tasks to study
in the multi-source setting, where multiple tasks
are simultaneously used as source tasks to transfer
to a single target task (6.2). For our experiments,
we select two target tasks from each dataset that
benefit the most from task transfer, and we use the
three source tasks that transferred best onto those
targets.

6 Results and Analysis

6.1 Single-Source Setting
Table 2 shows the results for all three models and
algorithms, and we use this table to understand
general trends. Figure 3 shows the relative im-
provement of a source task for each target task,
demonstrating trends across tasks.

Aggregate Performance We find that, on aver-
age, Friends tasks get scores between 7-8 points
less than DailyDialog, likely due to the greater
number of speakers and utterance length of Friends.
We find that GPT-2 lags behind the raw scores of
BERT and T5 by ∼10 points. This is expected as
autoregressive decoder models are not designed
with classification in mind. We find that the largest
average ∆ is 1.4, leaving room for improvement in
task transfer on FETA.

Furthermore, we are interested in knowing: how
much we would gain by using the best source task
vs. a random source task. We calculate the differ-
ences between average ∆ and top-1 ∆ and find the
mean difference to be ∼1.6 and the largest differ-
ence to be ∼3.5, motivating a further understanding
of which source tasks transfer best to target tasks.

Performance Across Learning Algorithms We
average scores across both datasets and find that
pre-train/fine-tune gets an average score of 42.85,
multitask 42.84, and multitask/fine-tune 44.07. Ta-
ble 2 shows that multitask/fine-tune achieves the
best average score for all models and datasets, and
indeed its average score is a 2.8% improvement
over the other algorithms. However, aggregate
scores obscure some interesting nuances.

Do Trends Vary Across Models? Previous stud-
ies on task transfer have focused on a single model
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Figure 3: Relative improvement of transfer over fine-tuned baselines. Rows are source tasks and columns are
target tasks. Diagonal cells are baseline scores. Looking at an individual column can demonstrate best source tasks
for that target. Looking at rows can determine which source task works well across multiple targets.

(Pruksachatkun et al., 2020; Lourie et al., 2021;
Aribandi et al., 2022), but we find that trends vary
depending on the model. For example, we find
results similar to Lourie et al. (2021), namely, that
fine-tuning on the target task always benefits the
T5 model. However, we discover that this does not
hold for BERT and GPT-2, which achieve better
scores from multitasking than pre-train/fine-tune.

Furthermore, Figure 3 shows that trends on in-
dividual tasks also vary depending on the model.
For example, T5 positively transferred knowledge
to question answering with all learning algorithms
and from most source tasks, while GPT-2 had a
negative transfer from all algorithms and sources.

For nearly all dimensions of analysis (e.g., sam-
ple sizes, learning algorithm), we find different
trends between models. We strongly suggest that
future research be performed on multiple models
before attempting to draw broad conclusions on
transfer learning.

Multitask/Fine-tune As Regularization We
find that T5’s top-1 score and ∆ on DailyDialog
are highest for pre-train/fine-tune, but the aver-
age score and ∆ are highest for multitask/fine-
tune. To understand why this occurred, we find
the bottom-1 scores for T5 on DailyDialog: 46.78,

46.69, and 48.26 for pre-train/fine-tune, multitask,
and multitask/fine-tune algorithms, confirming that
multitask/fine-tune does achieve the best worst-
case performance. Moreover, we find that for
all datasets and models, multitask/fine-tune does
achieve the best worst-case performance. In fact,
for GPT-2 on Friends, utilizing the bottom-1 source
tasks still lead to a 0.74% improvement over the
baseline.

Do All Task Types Benefit Equally? We find
that span extraction tasks gain the most as target
tasks, shown in Figure 4 to benefit at all source-
to-target sample ratios. Multiple choice tasks also
stand to gain from task transfer, but we find that
only occurs at a 10:1 ratio of source-target samples.
This gain is likely due to the high-level language
understanding required by both tasks.

Additionally, we find that utterance-level clas-
sification tasks decrease in score ∆ at increasing
source-to-target sample ratios. This is possibly due
to models overfitting to specific tasks and a catas-
trophic forgetting of general skills learned during
their large-scale pre-training.

Do All Task Types Give Equal Benefit? We find
that multiple-choice tasks give the greatest benefit
as source tasks, especially when the ratio of source-
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Figure 4: Score ∆ by target task type. Lines show
the average score ∆ when the target task is of the spec-
ified task type, computed as a best-fit linear interpola-
tion of the data with a 95% confidence interval. The
number of samples for an individual task are fixed, but
source/target ratios vary depending on which task pair
is used.

to-target samples is low, as shown in Figure 9 in
the Appendix. Additionally, we find that at a ratio
of 10:1 source-target samples, dialogue-level clas-
sification benefits downstream tasks, but utterance-
level classification requires a ratio of 100:1.

How Do Sample Sizes Affect Transfer? Figure
5 shows that, interestingly, GPT-2 and T5 have op-
posite trends in relation to sample size. We find that
∆s for GPT-2 increase with high target samples and
decrease with high source samples. This suggests
that GPT-2 may be overfitting to the source task
and performs better with resource-rich target tasks.
We find that T5 ∆s decrease as target-task sam-
ples increase, suggesting that T5 is more sample
efficient than both GPT-2 and BERT.

6.2 Multi-Source Setting

For multi-source transfer we select the two target
tasks from each dataset with the best score dif-
ferences from the single-source setting, shown in
Figures 7 and 8 in the Appendix. We find those
four tasks to be Dialogue Reasoning Span Extrac-
tion (DRSE), Dialogue-Level NLI (DNLI), Char-
acter Identification (CI), and Question Answering
(QA). For each of these target tasks, we select the
top-3 best source tasks, shown in Table 6 of the
Appendix . Learning in this setting is similar to
single-source, except we now simultaneously op-
timize the loss for multiple source tasks. Table 3
shows the multi-source results compared with the
average score of the top-3 source tasks from the
single-source setting. Full results, including score

Figure 5: Score ∆ by sample count. Sample count is
on the x-axis (log scale) and score ∆ is on the y-axis.
The blue dotted line represents the average transfer ∆
from a source task to all target tasks. The brown line
represents the average transfer ∆ to a target task from
all sources. Trend lines are a linear best-fit on the data
with a 95% confidence interval. The number of samples
for an individual task are fixed, but source/target ratios
vary depending on which task pair is used.

∆s from the single-source baselines, average top-3
score ∆s, and multi-source score ∆s are in Table 6
of the Appendix.

Does Multi-source Improve Over Single-source?
We expect that by utilizing the top-3 source tasks
from the single-source setting, the multi-source set-
ting will improve performance for all models and
algorithms, but find results to the contrary. We find
that 6/9 multi-source algorithms outperform their
average top-3 single-source counterparts in DRSE,
6/9 for DNLI, 3/9 for CI, and only 2/9 for QA,
showing that naively combining source tasks is not
always beneficial. The impressive result for DRSE
follows our original intuition, given that there is
an almost unanimous benefit from all source tasks,
shown in Figure 3. Similarly, we find that multi-
source performance on CI also correlates with the
performance of individual source tasks. We find
that in the single-source setting GPT-2 is the only
model that improves with any source task, and in-
deed GPT-2 sees benefits from multi-source train-
ing on all algorithms.

Which Models Benefit From Multi-Source? Ta-
ble 6 shows that GPT-2 improves in 8/12 experi-
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Target DRSE DNLI CI QA

B
E

R
T P/F -1.18 +1.37 -2.11 -0.99

M +2.77 +1.57 -0.54 -1.14
M/F +1.61 +2.28 -0.34 -0.55

G
PT

-2 P/F +0.40 +0.16 +4.25 -3.90
M +0.78 +0.98 +1.28 -2.46
M/F +0.73 -0.09 +0.00 -0.95

T
5

P/F +0.60 +1.95 -0.79 +0.48
M -1.08 -0.96 -1.49 +0.08
M/F -1.22 -1.20 -0.24 -0.22

Table 3: Multi-source score ∆s from the average
score of the top-3 source tasks. Full results, including
score ∆s from the fine-tuned baseline are in Table 6.

ments over its average top-3 single-source coun-
terparts, but BERT only 5/12 and T5 in only 4/12
experiments. It is counter-intuitive that T5 should
perform the worst as we expect that it has a higher
capacity for learning due to twice the model size.
On the other hand, the additional parameters may
be causing T5 to overfit on training data in the
few-sample setting.

7 Conclusion

We introduce FETA, a comprehensive benchmark
for evaluating language models and task trans-
fer learning algorithms in open-domain dialogue
with few samples. Through extensive experimen-
tation, we find new and non-intuitive insights on
the mechanisms of transfer learning. In particular,
we find that most trends are model-specific, and we
strongly encourage researchers to consider multi-
ple model architectures before attempting to draw
broad conclusions on transfer learning. It is our
hope that FETA enables further research not only
in task transfer, but also in other learning settings,
and in the generalizability and efficiency of model
architectures and pre-training datasets.

Limitations

A concern regarding any work that includes large-
scale experiments with large language models is
the energy consumption and environmental impact,
the current work included. While there is a cost to
running these experiments, the goal of this work is
to improve sample efficiency in the future and we
hope that the benefits in future energy saved will
outweigh the up-front costs of discovering efficient
methods.

Another concern of a large-scale benchmark is
that of accessibility. A benchmark requiring too
many resources will limit those who can reasonably
compete. For this reason and others, in addition

to our large-scale benchmark we also include a
smaller multi-source setting which requires only 4
experiments to be run for a single model and algo-
rithm, rather than 132 in the single-source setting.
We believe this smaller setting will maintain the
ability to extract high-quality insights on task trans-
fer, yet allow for increased community access and
reduce the carbon footprint of this benchmark.

While we do control for domain adaptation in
our experiments on task transfer, there are some
aspects that we cannot control. For example, each
model has done language model pre-training with
a different corpus. BERT was trained on English
Wikipedia and BookCorpus (Zhu et al., 2015), GPT-
2 was trained on a WebText (Radford et al., 2019),
and T5 was trained on C4 (Raffel et al., 2020). This
difference likely affects model performance on the
dialogue tasks in FETA.

Additionally, we cannot exhaustively test every
language model, but still try to provide enough va-
riety in order to draw broad conclusions on task
transfer. For example, we don’t run any experi-
ments on language models pre-trained in the dia-
logue domain or language models larger than base-
sized. We expect that both of these changes would
improve raw performance on FETA. More impor-
tantly though, it is unclear whether either of these
changes would lead to improved task-transfer per-
formance (average and top-1 ∆s) and we leave this
exploration for future work.

Furthermore, we cannot exhaustively test all
learning algorithms. For example, Wang et al.
(2020) propose a transfer learning method that min-
imizes negative task interference via meta-learning
for multilingual models, Albalak et al. (2022) pro-
pose a policy-guided algorithm for task transfer in
low-data settings, and Yu et al. (2020b) propose
an optimization algorithm that mitigates gradient
interference for reinforcement learning agents.

Finally, we stress the importance of intra-dataset
task transfer in this work. However, this limits the
number of pre-annotated tasks that are available,
and there are certainly some tasks which we were
not able to accomodate in FETA.
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Figure 6: Utterance and dialogue length distributions
in FETA.

A Dataset Details

A.1 DailyDialog

DailyDialog Along with the dialogues, Li et al.
(2017) provide annotations for emotion recogni-
tion, dialogue act classification, and topic classi-
fication.

RECCON Poria et al. (2021) introduce the task
of recognizing emotion causes in conversation and
provide annotations for two subtasks: causal emo-
tion span extraction and causal emotion entail-
ment. Recognizing the cause behind emotions is
an important aspect of developing conversational
agents that can respond appropriately and these
tasks test that ability. Both tasks assume that the
emotion of an utterance is already known and re-
quire a model to identify the evidence or cause
of the given emotion. In causal emotion span ex-
traction, the model is given input as "The target
utterance is <Ut>. The evidence utterance is <Ue>.
What is the causal span from evidence in the con-
text that is relevant to the target utterance’s emotion
<Et>?". On the other hand, if the conversation his-
tory up to utterance Ut is H(Ut), then the task of
causal emotion entailment is to classify the triple
(Ut,Ue,H(Ut)) as entailment or not entailment. In
this case, entailment means that the emotion ex-
pressed in the target utterance, Ut, is caused by the
evidence utterance, Ue.

CIDER Ghosal et al. (2021) provide annotations
for four tasks designed to explore commonsense in-
ference and reasoning in dialogue: dialogue-level
natural language inference (DNLI), dialogue rea-

soning span extraction, dialogue reasoning mul-
tiple choice, and commonsense relation extrac-
tion. These tasks are created by annotating knowl-
edge triplets on 31 relations that are either explicitly
stated in the dialogue or that require commonsense
reasoning using contextual information. In DNLI,
the task is to determine whether a triplet is true or
false given the dialogue. Given a knowledge triplet
as <head, relation, tail>, the span extraction task
is formulated as identifying the tail when given
the head, relation, and dialogue for context. The
multiple choice task is motivated by the SWAG
commonsense inference task (Zellers et al., 2018),
given a head, relation, and conversation as context,
the goal is to predict the tail of the relation from
4 possible choices. Finally, commonsense relation
extraction is formulated as usual relation extraction
tasks; given the head, tail, and conversation as con-
text, the goal is to predict the correct relation out
of 31 options.

DailyDialog++ Sai et al. (2020) present the Dai-
lyDialog++ dataset, where they aim to improve
evaluation of response generation. They do so by
collecting five relevant responses and five adver-
sarially crafted irrelevant responses for each dia-
logue in their dataset, and we recycle their data
for a new task called adversarial response selec-
tion. Adversarial response selection is formulated
as a multiple choice selection between a correct
response, a randomly selected negative response,
and an adversarial negative response.

A.2 Friends

EmoryNLP Chen and Choi (2016) and Zhou
and Choi (2018) provide annotations for character
identification, a subtask of entity linking, where
entity mentions in an utterance need to be matched
to their correct entity. For this task there are seven
possible entities: the six main characters and an
"other" entity.

Zahiri and Choi (2018) provide annotations on
emotion recognition, with the 7 fine-grained emo-
tions from the Feeling Wheel (Wilcox, 1982).

Ma et al. (2018) present annotations for a sub-
task of reading comprehension, called passage
completion. In passage completion, given a di-
alogue and factual statement about the dialogue
where character mentions are removed, the task
is to fill in the blanks with the correct character
from the dialogue. This task is similar to a multiple
choice task because entity choices are presented to
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the model, but because there are varying number of
options in each dialogue, it is formulated as a span
extraction that is evaluated based on accuracy.

Yang and Choi (2019) introduce annotations for
question answering. The answers to question-
answer pairs can either be a speaker name or exist
as a span within the dialogue, and multiple spans
may be correct.

Jiang et al. (2020) present the personality de-
tection task by annotating speakers with five
traits: agreeableness, conscientiousness, extraver-
sion, openness, and neuroticism. The goal of the
task is to correctly identify whether a given char-
acter from a dialogue either has or does not have
each of the five traits.

DialogRE Yu et al. (2020a) introduce a rela-
tion extraction dataset annotated with 36 differ-
ent relations. Their dataset anonymizes speakers
which allows for an entity linking relation called
"per:alternative_name". However, our version of
the Friends dataset is named and so we remove
this relation from our data. This task is similar to
the relation extraction from DailyDialog, however
the relations in DailyDialog are commonsense re-
lations, and the relations in Friends are focused on
information about entities.

MELD Poria et al. (2019) provide additional
annotations for emotion recognition, with only
22.2% dialogue overlap with Zahiri and Choi
(2018)’s dialogues. Additionally, while both use 7
total emotions, Poria et al. (2019) use 2 different
emotions from Zahiri and Choi (2018).

B Implementation Details

For our experiments, we use the pretrained model
implementations from the HuggingFace Transform-
ers library (Wolf et al., 2020), where the bert-base-
uncased model has 110M parameters, GPT-2 has
124M parameters, and T5-base has 223M parame-
ters. We use the Adam optimizer (Kingma and Ba,
2015) with a batch size of 60 and run a learning
rate sweep across {3×10-6, 1×10-5,3×10-5,1×10-4}
during the pre-training phase, finding that 3×10-5

worked well across all models. In all experiments
we utilize validation-based best model selection,
and train models for 30 epochs on DailyDialog
tasks and 20 epochs on Friends tasks.

C Expanded Single-Source Results
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Figure 7: Aggregate task transfer performance on DailyDialog.
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Figure 8: Aggregate task transfer performance on Friends.
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Task Prompt
Emotion Recognition emotion:
Dialogue Act Classification dialogue act:
Topic Classification topic:
Causal Emotion Span Extraction question: <question> answer:
Causal Emotion Entailment context: <premise> causal emotion entailment: <hypothesis>
Dialogue-level NLI context: <premise> entailment: <hypothesis>
Dialogue Reasoning Span Extraction question: <question> answer:
Dialogue Reasoning Multiple Choice question: <question> <options> The correct option is
Commonsense Relation Extraction The relation between <head> and <tail> is
Adversarial Response Selection question: <question> <options> The correct option is

Table 4: Prompts for FETA-DailyDialog tasks. All prompts start with "context: <context>", but we leave this out
due to repetitiveness and space.

Task Prompt
Emotion Recognition (Emory) emotion:
Reading Comprehension question: <question> out of <entities> [PLACEHOLDER] is
Character Identification out of <options>, <mention> in the phrase <phrase> refers to
Question Answering question: <question> answer:
Personality Detection <entity> is <characteristic>
Relation Extraction <head> has the following relations with <tail>
Emotion Recognition (MELD) emotion:

Table 5: Prompts for FETA-Friends tasks. All prompts start with "context: <context>", but we leave this out due
to repetitiveness and space.

Figure 9: Score ∆ by source task type. The num-
ber of samples for an individual task are fixed, but
source/target ratios vary depending on which task pair
is used..

D Expanded Multi-Source Results
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Target
D

R
SE

D
N

L
I

C
I

Q
A

Top-3
Av.

M
ulti-

Source
Top-3

Av.
M

ulti-
Source

Top-3
Av.

M
ulti-

Source
Top-3

Av.
M

ulti-
Source

D
A

C
A

R
S

C
E

E
A

R
S

D
R

M
C

E
R

R
C

Q
A

R
E

PD
E

R
R

E

BERTP/F
0.46

0.17
0.43

0.35
-0.83

-0.35
-0.39

0.88
0.05

1.48
-1.21

-0.76
-1.15

-0.16
-2.27

0.58
-0.28

-0.08
0.07

-0.92
M

1.86
0.15

0.86
0.96

3.73
0.53

0.32
1.05

0.63
2.20

-0.77
-1.48

-0.27
-0.84

-1.38
1.89

2.98
2.62

2.50
1.36

M
/F

2.58
2.04

1.40
2.01

3.62
2.66

0.40
3.55

2.20
4.48

-0.58
-0.78

-0.48
-0.61

-0.95
3.04

3.64
4.49

3.72
3.17

GPT-2P/F
0.93

1.14
-0.3

0.59
0.99

-3.65
0.00

-6.99
-3.55

-3.39
1.29

2.73
1.09

1.70
5.95

0.12
-1.76

-0.66
-0.77

-4.67
M

1.30
1.59

0.89
1.26

2.04
-0.81

-1.73
-0.94

-1.16
-0.18

2.70
-1.03

-0.26
0.47

1.75
-1.59

-1.00
-1.14

-1.24
-3.70

M
/F

3.43
2.01

1.70
2.38

3.11
0.46

-0.32
-1.92

-0.59
-0.68

8.81
6.69

5.08
6.86

8.81
-1.31

-0.84
-0.83

-0.99
-1.94

T5 P/F
-3.08

-1.08
-1.48

-1.88
-1.28

2.52
5.53

8.60
5.55

7.50
2.22

0.70
1.59

1.50
0.71

0.03
-0.19

-0.31
-0.16

0.32
M

1.54
1.77

2.93
2.08

1.00
8.83

5.83
0.55

5.07
4.11

-1.84
-0.30

0.22
-0.64

-2.13
1.10

0.82
0.27

0.73
0.81

M
/F

3.00
3.30

2.99
3.10

1.88
5.59

4.10
2.78

4.16
2.96

-0.06
1.46

0.52
0.64

0.40
0.02

0.42
-0.63

-0.06
-0.28

Table 6: Results from the multi-source experiment, where we use the top-3 source tasks in a multi-source task
transfer setting. We include individual scores from all 3 top-3 source tasks and include their average score as a
comparison. Multi-source experiments that improve over the top-3 average are underlined.
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