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Abstract

Recently, powerful Transformer architectures
have proven superior in generating high-quality
sentences. Nevertheless, these models tend to
produce dull high-frequency phrases, severely
hurting the diversity and novelty of generated
text. In this work, we dig into the intrinsic
mechanism of this problem and found that
sparser attention values in Transformer could
improve diversity. To understand such a phe-
nomenon, we first conduct both empirical and
theoretical analysis and then attribute it to rep-
resentation degeneration caused by the atten-
tive mixture of the hidden states during train-
ing. We term this process the Trap of Medi-
ocrity. To escape from such a trap, we intro-
duce a novel attention regularization loss to
control the sharpness of the attention distribu-
tion, which is transparent to model structures
and can be easily implemented within 20 lines
of python code. We prove that this method
could be mathematically regarded as learning a
Bayesian approximation of posterior attention.
Experiments show that our method improved
the diversity and novelty of the generated text
while maintaining comparable quality on a vari-
ety of conditional and unconditional generation
tasks.

1 Introduction

Natural Language Generation (NLG) plays a cru-
cial role in modern natural language Processing
(NLP). With considerable benefits for a wide ar-
ray of applications such as automatic literary writ-
ing (Yi et al., 2018; Ao et al., 2021), summariza-
tion (Huang et al., 2021) and paraphasing (Lin et al.,
2021), this area has risen to prominence.

Recently, neural architectures based on the preva-
lent Tranformer (Vaswani et al., 2017), e.g., GPT-2
(Radford et al., 2019), have proven highly success-
ful in producing fluent text indistinguishable from
the human-written one. Nevertheless, these models
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Figure 1: Quality and diversity of generated text with
varying attention sparsity on ROCStories. The qual-
ity and diversity (the higher the better) are measured
by BERTScore (Zhang et al., 2020) and dist (Li et al.,
2016a), respectively. Sparsity is controlled by the at-
tention window size. A smaller window leads to higher
sparsity.

tend to remember and generate dull and generic
(usually high-frequency) contents (Holtzman et al.,
2020), even with highly-diverse ground-truth as
training targets and distinct prompts as testing in-
puts. Such a conundrum, known as one kind of
degeneration problem (Holtzman et al., 2018) in
NLG, could cause a poor user experience, espe-
cially for genres with high requirements for diver-
sity and novelty, like story and headline generation.
Several research lines make continued endeavors
for this challenge, for instance, adopting stochastic
decoding algorithms (Kool et al., 2019; Holtzman
et al., 2020) or replacing the Maximum Likelihood
Estimation (MLE) loss with more sophisticated
optimization objectives (Welleck et al., 2020; Xu
et al., 2022a) to alleviate degeneration. However,
these methods are just stopgaps and do not address
this issue in depth. The stochastic decoding meth-
ods permit the model to choose low-confidence
candidates, therefore bringing the contradiction be-
tween the quality and the diversity of the gener-
ated text. Meanwhile, the methods in the second
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research line just focus on solving intra-instance
repetition instead of inter-instance diversity. Thus,
to intrinsically improve the diversity in text gen-
eration without hurting the quality, the underlying
mechanism of this problem must be figured out.

What leads to poor generation diversity and how
could we accordingly tackle it? In this work, we
dig into these questions and find another possible
cause of such a conundrum in Transformer-based
models, namely Attention Concentration. Initially
inspired by related literary research which demon-
strated that the concentration degree of attention
on linguistic sources could impact creative writ-
ing (Rosenblatt, 1988), we conducted a preliminary
study on the correlation between attention concen-
tration (or sparsity) and generation diversity. We
trained a GPT-2 base model with local attention
window as in Child et al. (2019) on the ROCSto-
ries dataset (Mostafazadeh et al., 2016). As shown
in Fig. 1, obviously, adequate sparsity improves
both quality and diversity, while excessive sparsity
harms quality. Such improvement of diversity is
non-trivial as demonstrated in Sec. 4.

To better understand such results, we resort to
the representation degeneration problem (Gao et al.,
2019) and analyze the interaction between the hid-
den states and word embeddings in Transformer.
We discovered that the attentive mixture could im-
pel hidden states to approach the embeddings of
high-frequency words, especially when the atten-
tion is highly distributed, which encourages irra-
tionally higher probabilities of the generic high-
frequency words, harming diversity and novelty.
We termed this phenomenon as the Trap of Medi-
ocrity.

To escape this trap enforced by evenly dispersed
attention, we propose a simple yet effective reg-
ularization method, CARE 1, to concentrate and
sharpen attention. CARE reduces the Rényi en-
tropy of attention distributions during the training
process to enhance sparsity, which is lightweight,
transparent to the model architectures, and could
be easily implemented within 20 lines of code. We
mathematically demonstrate CARE as learning a
Bayesian approximation of the posterior attention
given the ground truth, providing a theoretical val-
idation of its superiority. Besides, We also equip
CARE with learnable attention dropout to further
boost performance. In this way, CARE could learn
more concentrated attention with minimal computa-

1Concentrating Attention by Rényi Entropy

tion cost to break the Trap of Mediocrity and hence
improve the diversity and novelty of generated text.

In summary, our contributions are as follows:

• We are the first work to find the correlation be-
tween attention concentration and generation
diversity, i.e., Trap of Medicority, and provide
an in-depth analysis of its underlying cause.

• We propose a lightweight method, CARE , to
escape from such a trap, which is transparent
to model structures and easy to implement.

• We theoretically demonstrate that CARE can
concentrate attention and learn a Bayesian ap-
proximation of the posterior attention.

• Experiments on three conditional and one un-
conditional generation tasks show that our
model could significantly improve generation
diversity and novelty against several strong
baselines while keeping comparable quality.

2 The Trap of Mediocrity

As introduced in Sec. 1, we find one underlying
cause of poor generation diversity lies in the im-
properly attentive mixture of the hidden states in
Transformer, i.e., Trap of Mediocrity. To reveal
the mechanism of this trap, we performed in-depth
analyses both empirically and theoretically. In de-
tail, we progressed our argumentation by proving
the following three Research Claims (RC) step by
step:

RC1: Formation of the trap. The output-layer
embeddings of high-frequency tokens are more
likely to cluster in a uniformly positive direction of
corresponding hidden states in the Transformer.

RC2: Falling into the trap The attentive mix-
ture process of contextual hidden states forces the
representations of all tokens to approach that di-
rection, resulting in consistently higher generation
probabilities of frequent and mediocre tokens.

RC3: Dispersion dominates the mixture The
extremely dispersed attention distribution (low
sparsity) loses the concentration on informative
context and dominates the improper mixture both
in the formation and falling process.

To support each of these claims, we reuse the
GPT-2 in Sec. 1 and refer to the hidden state at the
top Transformer layer (before the output softmax)
as hidden state for brevity in this section2.

2We also similarly analyzed unconditional NLG on the
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2.1 RC1: Formation of the Trap
We decompose RC1 into three sub-claims and suc-
cessively verify each of them.

Sub-claim 1: The output-layer embeddings of
frequent tokens are more likely to approach corre-
sponding hidden states during training. Define the
output embedding vectors as {w1,w2, · · · ,wV }
with vocabulary size V and wk ∈ R1×d corre-
sponding to the k-th token xk where d is hidden
size, c as the input condition (prompt). Follow-
ing (Gao et al., 2019), we consider the interaction
of each word embedding and hidden state. During
typical training, we aim to maximize the likelihood
of the target token xi at the t-th time step:

P (yt=xi|c, y<t) =
exp(wih

T
t )

exp(wih
T
t ) + C

= 1− C

exp(wih
T
t ) + C

, (1)

where ht is the hidden state at t-th time step,
y<t means the preceding t−1 tokens, and C =∑

j,j ̸=i exp(wjh
T
t ). By ignoring the terms irrele-

vant to wi, i.e., C, we can attribute the loss mainly
to wih

T
t and further factorize it as:

wih
T
i = ∥wi∥∥hi∥ cos θ. (2)

From Eq. (2), we could derive that maximizing
Eq. (1) actually minimizes the angle θ between wi

and ht. Since ∥hi∥ is bounded by the layer normal-
ization (Xiong et al., 2020), smaller ∥wi∥ would
require smaller θ to reach the same low loss. Based
on this conclusion, we further observed that em-
beddings of high-frequency tokens tend to possess
smaller norms, as shown in Fig. 2. As a result, we
successfully verified sub-claim 1.

Sub-claim 2: The embeddings of high-frequency
tokens tend to cluster. We investigated the aggrega-
tion degree of token embedding, as shown in Fig. 3.
It is obvious that rare tokens are clustered, as re-
ported in (Yu et al., 2022a). Furthermore, we can
find that the highly frequent (top 10%) tokens are
also closer to each other than the mid-frequency
ones, which is also observed in BERT (Li et al.,
2020a), empirically supporting sub-claim 2.

Sub-claim 3: There is a uniformly positive di-
rection of the hidden states corresponding to the
frequent tokens, i.e., wih

T
t > 0. By slightly modi-

fying the conclusion in (Gao et al., 2019), we could

Yelp dataset (Zhang et al., 2015) and got the same conclusion.
We leave the details in Appendix B due to the space limit.

demonstrate that there exists such a direction. See
Appendix C for detailed derivation.

By combining these sub-claims, we could infer
that embeddings of high-frequency tend to cluster
and approach a uniformly positive direction of the
hidden states during training, manifesting RC1.
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Figure 2: The correlation between reciprocal embed-
ding norm and logarithmic word frequency. The salient
positive correlation (R2 = 0.835) indicates that high-
frequency words tend to have smaller embedding norms.
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Figure 3: The distance of embeddings in/between differ-
ent frequency intervals. We divided token embeddings
uniformly into 10 intervals by frequency and calculated
the average l2 distance between each embedding and
the top-50 nearest ones in each interval.

2.2 RC2: Falling into the Trap

We have demonstrated how the trap is formed,
which underlines the mediocre generated text. In
this subsection, we further explore how the model
falls into such a trap during the generation process.

In the Transformer self-attention, the hidden
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Figure 4: The proportion of high-frequency words in the
current sub-sequence when a high/low-frequency token
is generated. The gap between the two lines indicates
that low-frequency words tend to be generated from
the context containing less high-frequency words. The
sequences were generated by beam search.
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Figure 5: The value of η in Sub-claim 4 during training.

states H l in l-th layer are calculated as:

hl
t = softmax

(
hl−1
t W l

q(H
l−1W l

k)
T

√
d

)
H l−1W l

v,

(3)

where H l−1=[hl−1
1 ; · · · ;hl−1

T ] are hidden states
of the previous layer and W l

q,W
l
k,W

l
v are query,

key and value projection matrix, respectively.
From Eq. (3), we can clearly see that each ht

would mix multiple previous hidden states by the
attention score. We name such mixture as the at-
tentive mixture. Though in RC1 we only focus on
hidden states corresponding to frequent target to-
kens, these high-frequency tokens are more likely
to appear in the context of previous tokens, which
could push the mixed ht towards the uniformly
positive direction and hence draw it closer to the
cluster of high-frequency embeddings. As a result,
the model falls into the Trap of Medicority.

Moreover, as the sequence becomes longer, the

number of high-frequency tokens also increases,
which further aggravates the tendency of frequent
tokens and keeps trapping the model. Fig. 4 mani-
fests such deterioration. We can observe that with
a longer sentence, GPT-2 requires increasing more
infrequent tokens in context to motivate a low-
frequency token. Inversely, the context with a large
proportion of high-frequency tokens would always
encourage frequent tokens at the next time step. Be-
sides, we also calculated the pairwise cosine sim-
ilarity between embeddings and the hidden states
of all sentences in the testing set and then found
that compared to the low-frequency embeddings,
the high-frequency ones are generally nearer to all
hidden states by a stable and large margin.

By these observations, we can empirically con-
clude that the attentive mixture process of hidden
states forces a closer distance between each hidden
state and frequent token embeddings, and hence
causes higher generation probabilities (see Eq. (1))
of high-frequency words, validating RC2.

2.3 RC3: Dispersion dominates the mixture
Subsections 2.1 & 2.2 describe the complete pro-
cess of how the trap of mediocrity forms and how
the model falls into it. This process is dominated by
the attentive mixture and would further deteriorate
with a more scattered attention distribution.

To theoretically verify this claim, following (Yu
et al., 2022a), we investigate the negative log-
likelihood loss of a target sequence with length
T :

LNLL = − 1

T

T∑

t=1

log
exp(wxth

T
t )∑V

j exp(wjh
T
t )

, (4)

where xt is the ground-truth token at the t-th step.
We rewrite the attention score used in Eq. (3) as:

at = softmax

(
htW

l
q(HW l

k)
T

√
d

)
, (5)

where at = [at,1, · · · , at,t] represent the attention
weights towards the preceding tokens.

For simplification, we ignore the nonlinearity
in attention layers and let hl

t =
∑

j at,jĥj , where
ĥj=hl−1

j W l
v, and give the following conclusion:

Sub-claim 4:With the extremely dispersed atten-
tion distribution which reaches the highest entropy,
i.e., for each time step t, at,j = 1

t , j ∈ {1, · · · , t},
the optimization direction of the embeddings would
approach the uniformly positive direction of all hid-
den states if η = 1

t

∑t
j=1

pj
j > 0 for each t, where
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pj is the generation probability of the ground-truth
token xi of the t-th step, pt = p(yt = xi|c, y<t).

A theoretical demonstration of this sub-claim
could be referred to Appendix C.

Sub-claim 4 indicates that when η > 0, the
improperly scattered attention would push em-
beddings towards the uniformly positive direction
where high-frequency embeddings cluster, rather
than more diverse directions, which is fundamental
in forming the trap as described in Sec. 2.2. We
further examine η during the training process and
plot the result in Fig. 5. Generally, η is positive
during the whole training process, proving RC3.

By combining RCs 1∼3, we successfully demon-
strate that the improperly scattered attention is the
underlying cause of poor diversity. A proper at-
tention score should concentrate on some specific
parts of the context, while in practice, the model
would lose concentration and fall into the Trap of
Medicority, which implies we could break the trap
and improve diversity by concentrating attention.

3 Methodology

3.1 CARE

According to our analyses in Sec. 2, the improperly
dispersed (low-sparsity) attention is one fundamen-
tal cause of the Trap of Medicority. Therefore, we
propose a novel regularization method, CARE, to
concentrate attention and thus promote diversity.

In detail, we add a regularization term to the orig-
inal Maximum Likelihood Estimate (MLE) loss:

LR =
T∑

t=1

α(t+ 1)

t(α− 1)
∥ât∥1, (6)

LCARE = LMLE + γLR, (7)

where ât denotes the unnormalized attention logits
before softmax and attention dropout, ∥·∥1 is the l1
norm, T is the sequence length, α > 1 is a hyper-
parameter to control the sharpness of the attention
distribution, and γ could be utilized to balance the
MLE term and the regularization term.

To theoretically demonstrate our method’s effec-
tiveness in enhancing attention sparsity, we present
the following conclusion:

Theorem 1 Minimizing LR in Eq. (6) is equal to
minimizing an upper bounds of the Rényi entropy3

3https://en.wikipedia.org/wiki/R%C3%A9nyi_
entropy

of the attention distribution Hα(at), where Hα de-
notes the Rényi Entropy and α is the sharpness
controller in Eq. (6).

Theorem 1 reveals that by minimizing LR, we
could reduce the entropy of the attention distribu-
tion and hence make attention more concentrated,
which helps evade the trap and boost diversity.
Please refer to Appendix C for detailed proof.

Furthermore, LR is self-adaptive benefiting from
the derived weight β = α(t+1)

t(α−1) . As shown in Fig. 4,
longer generated sequences (larger t) exacerbate
the trap, but larger t also leads to a smaller β, which
forces the model to reduce ∥ât∥1 more to reach the
same low loss and vice versa. This adaptability
could mitigate the deterioration caused by length.

Besides, we could also consider the benefits of
CARE from the perspective of Bayesian Inference.
Following (Gal and Ghahramani, 2016), we give
another conclusion to validate such an advantage:

Theorem 2 When combined with the attention
dropout, optimizing LCARE can be regarded
as minimizing KL[qθ(ãt)||p(ãt|c, xt, yt)], that is,
learning a Bayesian approximation qθ(ãt) of the
true posterior attention p(ãt|c, xt, yt) at each time
step, where xt, yt denote the input and target to-
kens at the t-th step, respectively, and ãt denotes
the unnormalized attention logits before softmax
and after attention dropout,

Proof. See Appendix C.
Theorem 2 demonstrates another strong endorse-

ment of our model: CARE could act as a posterior
estimator of the attention distribution, which helps
improve the accuracy of attention and hence main-
tain comparable generation quality. In comparison,
straightforward sparse attention methods without
such theoretical guarantees can improve diversity
but also hurt quality. See Table 1 for detailed re-
sults.

In addition, to conform to this theorem, we need
to apply attention dropout to the unnormalized at-
tention distribution, achieved by by sampling the
dropping mask from a Bernoulli distribution and
accordingly adding a large negative constant to the
unnormalized attention logits. We also compare
this setting with the the original one in Transformer
in Appendix D and manifested the superiority of
ours.

Noth that CARE is transparent to different model
architectures since it involves only the output at-
tention weights in Transformer, and hence can be
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easily implemented within 20 lines of codes. We
provide the implementation details in Appendix E.

3.2 CARE-A

Since Theorem 2 indicates that the attention
dropout is crucial for our method, we could fur-
ther enhance the capacity of CARE by incorporat-
ing the more flexible Concrete Dropout (Gal et al.,
2017). The original dropout can be considered
as sampling attention masks z from a Bernoulli
distribution z ∼ B(1, p) which could influence at-
tention concentration through a specified dropout
ratio p. In contrast, Concrete Dropout relaxes z as
z̃=σ((log p−log(1−p) + log u−log(1−u))/τ),
where p is learnable, τ is the temperature, σ means
sigmoid, and u∼Uniform(0, 1). As the optimiza-
tion requires an extra entropy term of p as described
in (Gal et al., 2017), we rewrite LCARE as:

LCARE−A = LMLE + γLR + δ
L∑

i=1

H(pi), (8)

where L is the number of Transformer layers.
In this way, we learn layer-wise and adaptive

dropout ratios p, benefiting a more flexible control
of attention concentration. Therefore, we name this
variant of our model as CARE-A.

4 Experiment

4.1 Datasets

We conducted comprehensive experiments on three
conditional generation tasks: story generation on
ROCStories (Mostafazadeh et al., 2016), head-
line generation on MIND (Wu et al., 2020) and
PENS (Ao et al., 2021), and paraphrase generation
on ParaSCI (Dong et al., 2021a). Specifically, we
use the ArXiv set in ParaSCI which contains more
instances. MIND and PENS are merged and re-split
for more training data. For unconditional genera-
tion, we utilized the popular Yelp dataset (Zhang
et al., 2015). We truncated the text in these datasets
to a max length of 1024 tokens. Detailed data statis-
tics are listed in Appendix A.

4.2 Implementation Details

We use GPT-2 base (Radford et al., 2019) as the
backbone for ROCStories, ParaSCI, and Yelp, and
a little smaller model for headline generation due
to the limit of our computational power. We train
our CARE , all baseline models, and the BPE to-
kenizers from scratch on each dataset. We use

beam search for conditional generation datasets to
avoid the diversity from sampling randomness, and
sampling decoding for unconditional generation
since beam search may bring too much duplicated
content on Yelp. All models are implemented by
HuggingFace library4 and are trained from scratch.
See Appendix A for more setting details.

4.3 Baselines

Besides the original (a) GPT-2 (Radford et al.,
2019), since our main claim is the correlation be-
tween attention concentration and generation diver-
sity, we also compared several strong sparse atten-
tion based methods. (b) Pattern: the fixed atten-
tion pattern with local and sliding windows (Child
et al., 2019). (c) Entmax (Correia et al., 2019):
a learned adaptive sparse attention method. (d)
l0-Drop (Zhang et al., 2021): this method uses
attention masks sampled from the hard concrete
distribution to achieve sparsity and control spar-
sity degree by the l0 norm loss on the mask. (e)
LA-Tuning (Manakul and Gales, 2021): a method
which directly adds an entropy term of attention dis-
tributions to the training loss. All models share the
same configuration for fair comparisons. More de-
tails of baseline models are provided in Appendix
A.

4.4 Metrics

For the conditional generation tasks, we evaluate
the quality of the generated text by BLEU (Pap-
ineni et al., 2002), ROUGE (Lin and Hovy, 2002),
BertScore (Zhang et al., 2020), and CND (Li
et al., 2020b). We report BLEU-2,4 and ROUGE-
2,3,L,W, which are most commonly used in the
literature. For diversity, we assess Dist (Li et al.,
2016a), JS (Wang and Wan, 2018), and Self-
BLEU (Zhu et al., 2018). We report the geometric
mean of 1-gram to 4-gram for CND, Dist, JS, and
Self-BLEU. For unconditional generation, we re-
port BLEU, MAUVE (Pillutla et al., 2021), and
CND for quality measurement. MAUVE is mul-
tiplied by 100 for convenience. For diversity, we
take the same three metrics in the conditional gen-
eration.

4.5 Results

4.5.1 Conditional Generation
Table 1 presents the evaluation results on ROC-
Stories and ParaSCI. We leave those of headline

4https://huggingface.co/
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Model
Quality Diversity

R-2↑ R-3↑ R-L↑ R-W↑ B-2↑ B-4↑ BS↑ CND↓ Dist↑ JS↓ SB↓
Dataset: ParaSCI

GPT-2 41.48 32.65 54.97 35.28 41.64 26.58 90.81 1.688 60.34 0.0726 17.52
Pattern 41.46 32.58 55.06 35.34 41.31 26.43 90.89 1.652 60.65 0.0683 16.86
Entmax 38.44 29.78 52.28 33.50 38.06 23.60 90.35 1.769 59.30 0.0707 18.10
l0-Drop 37.26 28.64 50.99 32.53 37.96 23.47 90.05 1.700 60.94 0.0591 16.18

LA-Tuning 40.71 32.05 54.20 34.89 39.95 25.48 90.70 1.632 60.67 0.0622 16.28
CARE 42.49 33.74 55.69 35.94 41.59 26.75 90.80 1.631 61.04 0.0566 16.05

CARE-A 41.95 33.01 55.79 35.76 41.63 26.56 91.04 1.637 60.60 0.0596 17.04

Dataset: ROCStories

GPT-2 6.700 1.321 23.17 11.19 5.817 0.266 83.53 8.856 25.72 0.6625 62.36
Pattern 6.690 1.301 23.33 11.09 6.207 0.273 83.64 9.006 27.20 0.6280 61.16
Entmax 6.011 1.011 22.42 10.80 5.374 0.150 82.91 9.521 25.03 0.7317 62.57
l0-Drop 5.850 1.065 22.11 10.77 4.896 0.177 83.17 8.489 24.82 0.6207 62.72

LA-Tuning 6.367 1.214 22.94 10.96 5.809 0.226 83.37 8.904 27.24 0.5905 61.06
CARE 6.905 1.399 23.54 11.08 6.829 0.326 83.74 9.735 27.77 0.6328 60.41

CARE-A 7.002 1.332 23.80 11.32 6.489 0.274 83.63 8.742 25.89 0.5708 61.51

Table 1: Evaluation results for conditional generation. The best results are bolded and the second best ones are
underlined. B, R, SB and BS represent BLEU, ROUGE, Self-BLEU and BertScore, respectively.

generation in Appendix D due to space limitations.
We can see that compared to the naive GPT-2, most
models with sparse attention improve generation
diversity to some extent, except for Entmax which
is relatively unstable due to its iterative estimation
of the Tsallis entropy. Such results could well sup-
port our motivation and claim that the scattered
attention causes the Trap of Medircority and more
concentrated attention helps evade the trap.

However, these sparse attention baseline meth-
ods significantly decrease the quality of generated
text when optimizing diversity, while CARE(-A)
attained superior performance in novelty and diver-
sity and meanwhile even boosted the quality of the
generated text, demonstrating its effectiveness from
Theorem 2. In addition, Pattern also increased the
diversity without hurting quality, but is still inferior
to our method under most metrics.

4.5.2 Unconditional Generation

Model
Quality Diversity

B-2↑ B-4↑ CND↓ MV↑ Dist↑ JS↓ SB↓
GPT-2 76.68 36.46 0.886 0.931 27.62 0.187 47.76
Pattern 76.96 38.09 0.924 0.859 27.34 0.203 49.31
Entmax 77.03 32.18 0.951 0.920 23.99 0.222 49.18
l0-Drop 76.71 34.92 0.866 0.919 26.33 0.194 47.38

LA-Tuning 77.35 38.66 0.910 0.835 26.26 0.211 50.82
CARE 73.84 33.61 1.033 0.863 30.84 0.178 43.60

CARE-A 77.53 35.69 0.933 0.974 28.44 0.169 44.65

Table 2: Evaluation results for unconditional generation
on the Yelp dataset. MV stands for MAUVE.

The results of unconditional generation are pre-

sented in Table 2. In this task, most sparse base-
lines perform no better than GPT-2 on diversity.
This phenomenon could be attributed to the suffi-
cient diversity brought by the sampling decoding.
However, our method can still generate more di-
verse content compared to GPT-2, manifesting its
extreme power in evading mediocrity and enhanc-
ing novelty. CARE-A even achieves comparable
quality while significantly improving diversity.

4.6 Human Evaluation

GPT-2 Pattern LA-Tuning CARE CARE-A GT
Model
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Figure 6: Human evaluation on the fluency of the gen-
erated text. GT stands for human-written ground truth.
The p-value < 0.001, and the Kappa score is 0.67, indi-
cating an acceptable inter-annotator agreement.

We also conduct a human evaluation of the flu-
ency of generated texts on ROCStories. See Ap-
pendix A.5 for the concrete evaluation protocol.
As shown in Table 6, the fluency of the text gener-
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Figure 7: (a, b) The performance when varying different α and γ. The quality of the generated text is measured by
BERTScore and diversity by Dist. (c) The unique high-frequency words in the generated text of each model.

ated by CARE is comparable with GPT-2 and other
baseline methods. Combined with the automatic
evaluation, we could conclude that our model ob-
tains better diversity without losing any fluency.

4.7 Ablation Study

To further investigate the effect of LR, we vary dif-
ferent values of α and γ on ROCStories and present
the results in Fig. 7. Fig. 7a shows that our model
benefits from the adequate sharpness (larger α) by
the entropy regularization, while excessively sharp
or blunt attention hurts both quality and diversity.
Besides, the weight of LR also needs to be care-
fully tuned since an overly small weight cannot
exert the effect on enhancing sparsity. In contrast,
an unduly large weight (too large γ) would hinder
the optimization of MLE and result in a decline in
generation quality, as shown in Fig. 7b.

4.8 Novelty Analysis

To verify whether our method achieves better nov-
elty by inclining to the low-frequency words, we
separately count the unique high/low-frequency
words generated by CARE in ROCStories follow-
ing (Yu et al., 2022b). Please note the subtle dif-
ference between diversity and novelty. Only suf-
ficient novel (distinct) words can support satisfac-
torily good inter-instance diversity. As presented
in Fig. 7c, the result demonstrates that our model
generates more unique low-frequency words than
GPT-2 and Pattern by a large margin and LATuning
by a small margin, which indicates that the diversity
and novelty brought by sparse attention could be at-
tributed to the incline of low-frequency words. This
finding again confirms that the diversity improve-
ment comes from evading the Trap of Mediocrity,
while our method is the most successful Escapist.

4.9 Case Study

Figure 8: A generated sample in ROC. Generic / repeti-
tive continuations are marked in different colors, while
those in pink / red are relevant/novel expressions.

Fig. 8 shows a typical sample generated by
CARE and the baselines. GPT-2 generates rela-
tively generic continuations with mediocre descrip-
tions like it was a lot of fun and simply copies the
word volleyball several times, while models with
sparse attention could generate novel and rich con-
tent precise to the given topic. CARE could further
generate more novel and topic-related phrases like
home run and convincing fashion.

5 Related Work

Enhancing Diversity in NLG Previous work
focusing on diversity in text generation mainly falls
into two lines. The first line eschews this issue
by incorporating randomization and diversification
into decoding algorithms, e.g., top-k (Fan et al.,
2018) and top-p (Holtzman et al., 2020) sampling,
diversified beam search (Li et al., 2016b; Vijayaku-
mar et al., 2018), and stochastic beam search (Kool
et al., 2019). The other line aims to substitute or
supplement the MLE loss with novel objectives,
which involves Reinforcement Learning (Shi et al.,
2018), VAE (Nie et al., 2019; Hu et al., 2022), ad-
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versarial training (Diao et al., 2021; Zhou et al.,
2021), unlikelihood training (Welleck et al., 2020),
energy-based models (Deng et al., 2020), and ad-
ditional penalty terms (Su et al., 2022; Xu et al.,
2022b). There are also works that modify atten-
tion to handle this problem (Sun et al., 2020; Dong
et al., 2021b). However, they only consider on-the-
fly modification instead of analyzing the compre-
hensive relationship between attention and NLG
diversity.

Sparse Attention There have been continu-
ous efforts to reduce the computation cost of self-
attention in Transformer. The majority make the
dense attention matrix sparser to improve effi-
ciency, including fixed patterns (Child et al., 2019;
Beltagy et al., 2020; Ainslie et al., 2020; Zaheer
et al., 2020; Sukhbaatar et al., 2019; Huang et al.,
2021), cluster-based methods (Wang et al., 2020;
Roy et al., 2021), learnable patterns (Correia et al.,
2019; Kitaev et al., 2020; Tay et al., 2020a), and
regularization-based methods (Zhang et al., 2021;
Shi et al., 2021). More details can be referred
to (Tay et al., 2020b). However, all these methods
focus on saving computational budget and improv-
ing the performance of language modeling. We are
the first to study sparse attention from the in-depth
view of improving generation diversity.

6 Conclusion

In this paper, we analyze the underlying cause of
generic generated texts and propose a theory called
the Trap of Mediocrity to attribute this problem to
the attention dispersion in Transformer. To evade
such a trap, we present CARE to concentrate atten-
tion, which is easy to implement and transparent
to model structures. Experiments on a variety of
NLG tasks demonstrate CARE’s superiority in im-
proving diversity while maintaining competitive
quality. The code of our method will be released in
https://github.com/peterliwenhao/CARE.
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Limitation

There are still several limitations to our methods.
Firstly, due to the introduction of new hyperme-
ters, our method may need extra hyperparameter
tuning when adapted to the specific task. Secondly,
the validity of our approach to finetuning models
pretrained with full attention has not been tested,
which needs further experiments. Since we are the
first to propose the Trap of Medicority to our best
knowledge, our exploration of this problem is in-
evitably very preliminary or even defective. We
will keep refining our methods and expect more
future work to further explore this problem.
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Appendix

A Experimental Details

A.1 Datasets
We conduct our experiments on four datasets, ROCStories, ParaSCI, Yelp, and MP (combing MIND &
PENS). The statistics of the datasets are listed in Table 3, and the GPU hours for training and inference
are in Table 4. All the datasets are in English.

ParaSCI (Dong et al., 2021a) A paraphrasing dataset collected from scientific literature, particularly
ACL Anthology and arXiv. We use the ParaSCI-arXiv set since it contains more instances while following
the split of their original paper.

Yelp (Zhang et al., 2015) A dataset for unconditional generation collected from the food review on the
Yelp website. We also follow the split released publicly.

ROCStories (Mostafazadeh et al., 2016) A story corpus consists of 5-sentence short stories. We
download it from the original website and randomly split it with the proportion in 4, following the
previous papers (Guan et al., 2020). We use the first sentence as the condition to generate the following
four sentences, which also agree with the settings in (Guan et al., 2020)

MP (MIND and PENS) (Wu et al., 2020; Ao et al., 2021) They are two datasets consisting of the main
body and the headline of online news, providing a source for generating the headline of news given its
content. Since they are both organized from MSN News, we merged them for a larger dataset and divided
the training, validation, and test dataset with the proportions in 4. We truncate the news body to 1024
tokens since some are too long.

Train Inference

ROCStories 8h 7h
ParaSCI 5h 3h

MP 50h 5h
Yelp 15h 2h

Table 3: The training and inferring time consumed for each dataset. The inference time means the time consuming
of the inference process of one checkpoint on the whole test dataset for one round with the corresponding decoding
strategy (sampling for Yelp and beam search for others).

Dataset #Train #Dev #Test

ROCStories 88345 4908 4908
ParaSCI 309834 3680 2549

MP 214964 5000 10000
Yelp 100000 10000 10000

Table 4: Dataset Statistics (Train/Dev/Test Split) for all the dataset we train on

A.2 Metrics
We use the following metrics to evaluate the quality of the generated text:

BLEU (Papineni et al., 2002) is a widely used metric in a variety of tasks on machine translation and
language generation, calculating the n-gram overlap between the generated text and its corresponding
reference. We use the implementation in the Huggingface Dataset Library(Lhoest et al., 2021). We
reported BLEU-2 and BLEU-4 since they are most commonly used in language generation. In the
unconditional generation task, we treat all the instances in the test set as references.

ROUGE (Lin and Hovy, 2002) is another metric based on the n-gram overlap between the generated
and referenced sequences, mostly used in automatic summarization. We also use the version from
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Huggingface Dataset Library(Lhoest et al., 2021). We measured ROUGE-2,3, L, and W on the generated
texts.

BertScore(Zhang et al., 2020) is a model-based metric measuring the semantic similarity by the cosine
similarity between generated sequence and reference using pre-trained BERT contextual representations.
We use the bert_score library5 in our evaluation.

CND (Li et al., 2020b) is a distribution-level metric that approximates the divergence between the dis-
tribution of generated text and its corresponding reference in n-gram spaces. We use our self-implemented
version of it.

MAUVE (Pillutla et al., 2021) is another distributional-level metric measuring the distributional
divergence between the generated text and the reference text. We use its official implementation from
GitHub6.

For diversity and novelty, we take the following three metrics:
JS (Wang and Wan, 2018) measures the diversity of generated text by calculating the Jaccard Similarity

between the n-grams of each pair of generated sequences. We implement it by ourselves.
Dist (Li et al., 2016a) is a widely used metric for the novelty of the generated text, which calculates the

proportion of distinct n-grams within the generated sentences. We also use the self-implemented version
of it.

Self-BLEU (Zhu et al., 2018) measures the diversity of generated corpus by the average of pairwise
BLEU score in the corpus. We use the version from the fast_bleu library7.

We reported the geometric mean of 1-4 grams for CND, JS, Dist, and Self-BLEU.

A.3 Implementation Details

We use GPT-2 base (Radford et al., 2019) as the backbone for ROCStories, ParaSCI, and Yelp, and a
little smaller model for headline generation due to the limit of our computational power. The specific
hyperparameter of the architecture of the model we demonstrate in 5. Models on the MP dataset is trained
on NVIDIA GeForce GTX TITAN X, while models on the other three datasets is trained on NVIDIA
GeForce RTX 3090.

For the datasets of conditional generation, we only compute loss on the continuation text but not on
the conditional prefix. In addition, we train a BPE tokenizer for each dataset with the vocabulary size of
30000 to perform better tokenization.

We use beam search on the conditional generation dataset due to its stability and sampling for uncondi-
tional generation since beam search in this task tends to generate duplicated candidates. For the specific
parameters in the unconditional generation, we use a hybrid strategy with top-p=0.9 (Holtzman et al.,
2020) and top-k=50 (Fan et al., 2018) with temperature 1. We also perform a linear warmup on the LR

term in CARE and the entropy term in CARE-A. Our methods and all the baselines are implemented by
HuggingFace Transformers library (Wolf et al., 2020). All the models are trained from scratch.

hidden_size head_num layer_num Total_Parameters

MP 512 8 8 39.33M
Others 768 12 12 101.03M

Table 5: The detailed architecture of the model

5https://pypi.org/project/bert-score/
6https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=

2ahUKEwixy47LvMj4AhUeJ0QIHc-4CiUQFnoECAgQAQ&url=https%3A%2F%2Fgithub.com%2Fkrishnap25%2Fmauve&usg=
AOvVaw2PEycTPemGnrAHnGagzJEF

7https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=
2ahUKEwjc1NjWvcj4AhVTKEQIHXh-ADwQFnoECAkQAQ&url=https%3A%2F%2Fgithub.com%2FDanial-Alh%2Ffast-bleu&
usg=AOvVaw0Dun5WnEw2LscEz7Gyhxeu
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A.4 Hyperparameter Tuning

We ran the model for different epochs reported in Table 6. We evaluate each epoch and report the best
epoch due to the performance on the validation set. We search each model on each dataset for 30
hyperparameter trials. With two variants and four datasets, we ran our model about 240 times. We
manually tune the models based on the overall performance of the model on the quality and diversity
measurements of the validation set, mainly considerating CND, BertScore, Dist, and Self-BLEU. The
upper and lower bounds of the hyperparameters of our model are demonstrated in Table 7.

Dataset Epoch
MP 20

ROC 25-28
ParaSCI 5

Yelp 25-30

Table 6: Running Epoch for different datasets

Hyperparameters lower bound upper bound
α 1.5 6.0
γ 1e-6 1e-2
δ 1e-5 1e-3

Learning Rate 5e-5 5e-3
Freezing Steps for LR 0 20000
Warmup Steps for LR 0 20000

Table 7: Bounds for the hyperparameter used

A.5 Human Evaluation

We randomly selected 100 prompts from the ROCStories dataset and let each model generate correspond-
ing continuations. In the annotation sheet, we present the prompt and the continuations to the annotators
in the format of 100 groups. Each group contains six continuations generated from the same prompt
by the five models and the ground truth. The order of the model (or ground truth) within each group is
randomly shuffled, and the model each continuation from is unknown to the annotator. The different
orders in different groups could alleviate the bias of the annotators. We recruited four annotators with
adequate English skills and asked them to score the fluency of the shuffled stories on a scale of 1-5 and
calculate the average scoring for each model, as shown in Figure 6.

B Supplemental Materials for the Analysis of the Trap of Medicority

B.1 The Evidence that the Hidden State is nearer with the High-Frequency Word Embeddings

To prove the claim that the hidden states are closer to the high-frequency words, we calculate the pairwise
cosine similarity between the hidden state when generation and the high-frequency and low-frequency
word embeddings and demonstrate the result in Figure 9. The significant gap between these two lines
proves our assumption that the high-frequency word embeddings are closer to the hidden states than the
low-frequency ones.

B.2 The Addition Results on the Yelp Dataset

We conducted the same experiment in Section 2 on the Yelp Dataset. We correspondingly demonstrate the
result of Figure 2, 3, 4, 5 and 9 in Figure 10, 11, 12, 13 and 14. The results all indicate the same
result as in ROC stories, demonstrating the generalizability of our theory across different datasets and
across the conditional and unconditional generation tasks.
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Figure 9: The pairwise cosine similarity between the hidden state when generation and the high-frequency and
low-frequency word embeddings. The gap between two lines indicated that the high-frequency word embeddings
are closer to the hidden states

C Derivation and Proof

C.1 The Demonstration for the Uniformly Positive Direction in Sub-claim 3

Gao et al. (2019) proves their Theorem 2 by separately proving the necessary and sufficient part. We will
correspondingly modify them to prove the same conclusion in the uniformly positive direction.

In the necessary part, they begin by assuming the convex hull contains the origin. This assumption
leads to the conclusion that there exists αi and a vector v satisfying

∑
i αi⟨hi,v⟩ = 0, which contradicts

the existence of the uniformly negative direction, i.e., ∀i, ⟨hi,v⟩ < 0 for the hidden states hi. Meanwhile,
this inducted form also contradicts the existence of the uniformly positive direction ∀i, ⟨hi,v⟩ > 0. Thus,
the necessary part of the uniformly positive direction could be easily verified also by contradiction.

For the sufficient part, the authors illustrate the existence of a hyperplane containing the origin and apart
from the convex hull. A normal direction of this hyperplane would be the uniformly negative direction.
For modification, another normal direction opposite from the uniformly negative direction could also meet
the requirement for the uniformly positive direction.

Combining the necessary and sufficient parts, we can know there is a uniformly positive direction for
all hidden states. As the hidden states of frequent tokens account for the largest proportion of all hidden
states (Pareto principle), such a uniform direction tends to be closer to hidden states corresponding to the
frequent tokens, successfully proving sub-claim 3.

C.2 The Derivation of Sub-claim 4

For some specific word with index k in a sentence x with length m, assuming that this word only occurs
on position m, that is, only xm = k. Let pi = p(i = k|hi), then we have

∂LNLL

∂wk
= (1− pm)hm +

m−1∑

i=1

pihi. (9)

Although we could yield the conclusion from this formula that the optimization direction of the word
embedding agrees with the direction of hidden states (since 1−pm and pi are all positive), the contributions
of the hidden states are highly biased by pi. In the early stage of training, pi ≈ 1

V for all i, thus the
optimization direction will be mainly directed by hm. While in the late stage of training, pi ≈ 0 for
i ̸= m, and pi,i ̸=m ≪ pm ≈ ϵ < 1, the direction of hm will also dominate the optimization. We could
barely tell that the optimization direction is the uniformly positive direction from the final layer. Thus we
resort to the previous layer.
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Figure 10: The correlation between reciprocal embedding norm and logarithmic word frequency on the Yelp Dataset,
with the same setting in Figure 2. The corresponding R2 is 0.854.
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Figure 11: The distance of embeddings in/between different frequency intervals on the Yelp Dataset, with the same
setting in Figure 3

For simplification, we ignore the nonlinear layer and let hi =
∑

j ai,jĥj , where ĥj is the hidden state
passed from the previous layer in Transformer, then we have:

∂LNLL

∂wk
=

m−1∑

i=1


am,i(1− pm)−

m−1∑

j=i

aijpj


 ĥi

+ (1− pm)am,mĥm.

(10)

We then consider the corner case when the attention distribution reaches the highest entropy, which
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Figure 12: The distance of embeddings in/between different frequency intervals on the Yelp Dataset, with the same
setting in Figure 4.
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Figure 13: The value of η in Sub-claim 4 during training on the Yelp dataset, with the same setting in Figure 5.

leads to ai,k = 1
i . In this case, we have

∂LNLL

∂wk
=

m−1∑

i=1

(
1− pm

m
−

m−1∑

j=i

pj
j
)ĥi

+
1− pm

m
ĥm

=
m∑

i=1

(
1

m
−

m∑

j=i

pj
j
)ĥi

(11)

Thus, if 1
m −∑m

j=i
pj
j > 0 always stands, the optimization direction of the embeddings would approach

the mixture of the hidden states in the preceding context. If a uniformly positive direction of the hidden
states exists, i.e. ĥtv

T > 0 stands for all the hidden states, then we have

∂LNLL

∂wk
vT =

m∑

i=1

(
1

m
−

m∑

j=i

pj
j
)ĥiv

T > 0. (12)

Thus, the direction v is also a uniformly positive direction for the optimization direction of the word
embeddings. Moreover, the gradient contribution of ĥi is more scattered among the hidden states, and the
tendency will be advanced when considering more previous layers. Therefore, we could conclude that the
optimization will approach the uniformly positive direction under this condition.
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Figure 14: The pairwise cosine similarity between the hidden state when generation and the high-frequency and
low-frequency word embeddings in the Yelp dataset, with the same setting in Figure 9.

C.3 The Proof for Theorem 1

We start our proof by the definition of the Rényi entropy

Hα(at) =
1

1− α
log(

∑

i

aαt,i)

=
1

1− α
log(

∑

i

eαãt,i

Zα
)

=
1

1− α

[
log(

∑

i

eαãt,i)− α logZ

]
(13)

Then we let α > 1, then

Hα(at) =
1

α− 1
[α logZ − log(

∑

i

eαãt,i)] (14)

According to the Jensen Inequality,

log(
∑

i

eαãt,i) = log(
∑

i

eαãt,i

t
) + log t

≥
∑

i log e
αãt,i

t
+ log t

=
α
∑

i ãt,i
t

+ log t

(15)

∴ Hα(a) ≤
1

α− 1

[
α logZ − α

t

∑
ãt,i − log t

]

≤ 1

α− 1

[
α logZ − α

t

∑
ãt,i

] (16)

While
logZ = log

∑
eãt,i

≤ max{ãt,1, . . . ãt,n}+ log t

≤ max{|ãt,1|, . . . |ãt,n|}+ log t

= ∥ãt∥∞ + log t

(17)
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∴ Hα(at) ≤
1

α− 1

[
α∥ãt∥∞ + α log t− α

t

∑

i

ãt,i − log t

]

≤ α

α− 1

[
∥ãt∥∞ − 1

t

∑

i

ãt,i

]
+ log t

≤ α

α− 1

[
∥ãt∥1 −

1

t

∑

i

ãt,i

]
+ log t

(18)

Then we consider the term

∥ãt∥1 −
1

t

∑

i

ãt,i =
∑

i

[
|ãt,i| −

1

t
ãt,i

]

≤
∑

i

[(
1 +

1

t

)
|ãt,i|

] (19)

∴ Hα(at) ≤
α
(
1 + 1

t

)

α− 1

∑

i

|ãt,i|+ log t

=
α
(
1 + 1

t

)

α− 1
∥ãt∥1 + log t

=
α(t+ 1)

t(α− 1)
∥ãt∥1 + log t

≤ α(t+ 1)

t(α− 1)
∥ât∥1 + log t+

α(t+ 1)

α− 1
|C|

(20)

where C is a large negative constant used in attention dropout.
Discarding all the constants, minimizing the upper bound of Hα(at) above is equal to minimize

α(t+ 1)

t(α− 1)
∥ât∥1 (21)

C.4 The Proof for Theorem 2
We use the Bayes theorem to formalize the posterior distribution as follows:

KL [qθ(ãt)||p(ãt|xt, yt, c)]

=

∫
qθ(ãt) log

qθ(ãt)

p(ãt|xt, yt, c)
dãt

=

∫
qθ(ãt) log

qθ(ãt)

p(ãt|xt, yt, c)
· p(ãt)

p(ãt)
dãt

= KL [qθ(ãt)||p(ãt)] +

∫
qθ(ãt) log

p(ãt)

p(ãt|xt, yt, c)
dãt

= KL [qθ(ãt)||p(ãt)]−
∫

qθ(ãt) log
p(ãt|xt, yt, c)

p(ãt)
dãt

(22)

∵ p(ãt|xt, yt, c) =
p(ãt)p(xt, yt, c|ãt)

p(xt, yt, c)

∴ p (ãt|xt, yt, c)
p (ãt)

=
p (xt, yt, c|ãt)

p(xt, yt, c)

=
p (yt|xt, c, ãt) p (xt, c|ãt)

p(yt|xt, c)p(xt, c)

=
p (yt|xt, c, ãt)

p(yt|xt, c)

(23)
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∴ KL [qθ(ãt)||p(ãt|xt, yt, c)]

= KL [qθ(ãt)||p(ãt)]−
∫

qθ(ãt) log
p (yt|xt, c, ãt)

p(yt|xt, c)
dãt

= KL [qθ(ãt)||p(ãt)]− Eqθ(ãt) [log p (yt|xt, c, ãt)] + log p(yt|xt, c)

(24)

Thus, the process to minimize the KL Divergence KL [qθ(ãt)||p(ãt|xt, yt, c)] is equivalent to maximize

−KL [qθ(ãt)||p(ãt|xt, yt, c)]
= Eqθ(ãt) [log p (yt|xt, c, ãt)]−KL [qθ(ãt)||p(ãt)]− log p(yt|xt, c)
≥ Eqθ(ãt) [log p (yt|xt, c, ãt)]−KL [qθ(ãt)||p(ãt)]

(25)

We denote
qθ(ãt) = pδ(ãt − C) + (1− p)δ(ãt − ât) (26)

where C is a large negative number, and p is the probability of the attention dropout. We define
p(ãt) ∝ 1 + e−γ∥ãt∥, then we have

KL [qθ(ãt)||p(ãt)] =

∫
qθ(ãt) log

qθ(ãt)

p(ãt)
dãt

=

∫
qθ(ãt) log

qθ(ãt)

1 + e−γ∥ãt∥ dãt + logZ

= p log p+ (1− p) log
1− p

1 + e−γ∥ât∥ + logZ

= p log p+ (1− p) log(1− p) + (1− p) log(1 + e−γ∥ât∥) + logZ

= −H(p) + (1− p) log(1 + e−γ∥ât∥) + logZ

(27)

According to the Jensen Inequality, we have

ex + e−x

2
≥ e

x
2

∴ 1 + ex ≥ 2e
x
2

∴ log(1 + ex) ≥ log 2 +
x

2

(28)

∴ KL [qθ(ãt)||p(ãt)] ≤ −H(p)− (1− p)

[
log2 +

−γ∥ât∥
2

]
+ logZ

= −H(p) +
γ(1− p)

2
∥ât∥ − (1− p) log 2 + logZ

(29)

Discard all the constants, and we have

−H(p) +
γ(1− p)

2
∥ât∥ (30)

D Additional Results

D.1 Result with CARE-O
In Section 3, we mentioned a variant of our method only with the LR term remaining the original dropout
pattern. In this section, we call this variant CARE-O, and examine its performance on ROC, Yelp, and
ParaSCI. The results are listed in Table 8 and Table 9. As we can see, although it could achieve the best
in some metrics like CND in ParaSCI, its overall quality is worse than GPT-2 only with a small margin on
diversity improvement on ROC and ParaSCI. It also performs very poorly on Yelp. This experimental
result agrees with our theoretical induction of the necessity of dropout modification.

10855



Model
Quality Diversity

R-2↑ R-3↑ R-L↑ R-W↑ B-2↑ B-4↑ BS↑ CND↓ Dist↑ JS↓ SB↓
Dataset: ParaSCI

GPT-2 41.48 32.65 54.97 35.28 41.64 26.58 90.81 1.688 60.34 0.0726 17.52
Pattern 41.46 32.58 55.06 35.34 41.31 26.43 90.89 1.652 60.65 0.0683 16.86
Entmax 38.44 29.78 52.28 33.50 38.06 23.60 90.35 1.769 59.30 0.0707 18.10
l0-Drop 37.26 28.64 50.99 32.53 37.96 23.47 90.05 1.700 60.94 0.0591 16.18

LA-Tuning 40.71 32.05 54.20 34.89 39.95 25.48 90.70 1.632 60.67 0.0622 16.28
CARE-O 41.06 32.59 54.16 35.09 38.30 24.28 90.61 1.626 59.21 0.0685 17.28

CARE 42.49 33.74 55.69 35.94 41.59 26.75 90.80 1.631 61.04 0.0566 16.05
CARE-A 41.95 33.01 55.79 35.76 41.63 26.56 91.04 1.637 60.60 0.0596 17.04

Dataset: ROCStories

GPT-2 6.700 1.321 23.17 11.19 5.817 0.266 83.53 8.856 25.72 0.6625 62.36
Pattern 6.690 1.301 23.33 11.09 6.207 0.273 83.64 9.006 27.20 0.6280 61.16
Entmax 6.011 1.011 22.42 10.80 5.374 0.150 82.91 9.521 25.03 0.7317 62.57
l0-Drop 5.850 1.065 22.11 10.77 4.896 0.177 83.17 8.489 24.82 0.6207 62.72

LA-Tuning 6.367 1.214 22.94 10.96 5.809 0.226 83.37 8.904 27.24 0.5905 61.06
CARE-O 5.984 1.068 22.52 10.78 5.401 0.199 83.41 8.603 26.78 0.5915 61.05

CARE 6.905 1.399 23.54 11.08 6.829 0.326 83.74 9.735 27.77 0.6328 60.41
CARE-A 7.002 1.332 23.80 11.32 6.489 0.274 83.63 8.742 25.89 0.5708 61.51

Table 8: The evaluation result of conditional generation with CARE-O

Model
Quality Diversity

B-2↑ B-4↑ CND↓ MV↑ Dist↑ JS↓ SB↓
GPT-2 76.68 36.46 0.886 0.931 27.62 0.187 47.76
Pattern 76.96 38.09 0.924 0.859 27.34 0.203 49.31
Entmax 77.03 32.18 0.951 0.920 23.99 0.222 49.18
l0-Drop 76.71 34.92 0.866 0.919 26.33 0.194 47.38

LA-Tuning 77.35 38.66 0.910 0.835 26.26 0.211 50.82
CARE-O 76.31 26.87 1.262 0.5128 17.10 0.224 50.53

CARE 73.84 33.61 1.033 0.863 30.84 0.178 43.60
CARE-A 77.53 35.69 0.933 0.974 28.44 0.169 44.65

Table 9: Evaluation results for unconditional generation on the Yelp dataset with CARE-O. MV stands for MAUVE.

D.2 Result on MP
We also examine our model on MP dataset. The result is in 10 here due to the space limit. As we can
see, our model achieves the best diversity and novelty with a little sacrifice of the generated quality, still
demonstrating its ability to enhance the novelty and the diversity of the generated text.

D.3 Result on the repetition
Although our model focus on improving inter-instance diversity instead of alleviating the intra-sentence
repetition problem, we still add the result of Rep to examine the ability of our model to relieve the
repetition. First used in (Welleck et al., 2020), Rep measures the percentage of repetitive generated
n-grams. We implement this by ourselves and present the result of the geometric mean of Rep1-4 in
ROCStories Dataset in Table 11.

As demonstrated, the method with sparse attention can achieve a better score of Rep, proving that
sparse attention can enhance inter-instance diversity and soothe intra-sentence degeneration. Among them,
our CARE and Pattern achieve significantly superior scores compared to others, demonstrating the CARE’s
another efficacy in the reduction of repetition.
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Model
Quality Diversity

R-2↑ R-3↑ R-L↑ R-W↑ B-2↑ B-4↑ BS↑ CND↓ Dist↑ JS↓ SB↓

GPT-2 20.18 12.76 34.14 24.47 18.65 9.817 88.17 0.468 62.29 0.0159 17.17
Pattern 20.34 12.82 34.27 24.59 18.77 9.850 88.23 0.470 62.26 0.0157 17.24
l0-Drop 19.65 12.00 33.78 24.14 18.21 8.838 88.14 0.480 62.38 0.0163 17.78
CARE-O 19.84 12.60 33.59 24.14 18.29 9.641 88.04 0.383 62.77 0.0138 16.98

CARE 19.49 12.31 33.24 23.87 17.98 9.625 88.02 0.403 62.76 0.0140 16.90
CARE-A 18.84 11.73 32.61 23.40 17.14 8.703 87.79 0.407 62.73 0.0129 15.88

Table 10: The evaluation result on headline generation.

Model Rep ↓
GPT-2 5.598
Pattern 4.571
Entmax 5.170
l0-Drop 5.479

LA-Tuning 6.005
CARE 4.742

CARE-A 5.479

Table 11: Evaluation results of Rep on ROCStories Dataset.
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E Python Implementation of CARE

We list the code of CARE as follows. This code is modified from the Huggingface Transformers Library
(Wolf et al., 2020). Apart from the necessary function name and class name for location, the newly added
code contains 19 added or modified lines highlighted in blue.

1 class GPT2Attention(nn.Module):
2 def __init__(self, config, is_cross_attention=False):
3 .....
4 self.attn_drop_ratio = config.attn_pdrop
5 .....
6 def _attn(self, query, key, value, attention_mask=None, head_mask=None):
7 ret_attn_weights = attn_weights
8 if self.training:
9 drop_mask = torch.zeros_like(attn_weights).bernoulli_(self.attn_drop_ratio)

10 attn_weights = nn.Softmax(dim=-1)(attn_weights + drop_mask * (-1e4))
11 else:
12 attn_weights = nn.Softmax(dim=-1)(attn_weights)
13 .....
14 return attn_output, ret_attn_weights
15 class CARETrainer(Seq2seqTrainer)
16 .....
17 def compute_loss(self, model, inputs, return_outputs=False):
18 .....
19 k_scale = torch.arange(1, outputs.attentions.size(-1) + 1,

device=inputs['attention_mask'].device, dtype=torch.float)↪→
20 k_scale = k_scale.view(1, 1, -1).repeat(outputs.attentions.size(0),

outputs.attentions.size(1), 1)↪→
21 len_vec = inputs['attention_mask'].sum(-1, keepdim=True).repeat(1, attn_weights[0].size(1))
22 scale = (1.0 + 1.0 / k_scale) * (1 - self.extra_args.attn_drop) * (1.0 + 1.0 / alpha)
23 attn_l1_loss = []
24 for layer_id in range(0, len(attn_weights)):
25 abs_attns = torch.abs(torch.tril(attn_weights[layer_id], 0)).sum(dim=-1)
26 attn_l1 = torch.div(torch.mul(abs_attns, scale).sum(-1), len_vec)
27 attn_l1_loss.append(attn_l1. mean().view(1))
28 loss += beta * torch.cat(attn_l1_loss).mean()
29 .....

10858


